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ABSTRACT

The analysis and characterization of .the steady-state security of

a bulk-power electric system is investigated in a region-wise or set­

theoretic framework. The study is divided into three parts: a detailed

examination of the theoretical aspects of general security regions; a

formulation and analysis of the problem of characterizing a set of secure

operating points by a simple, explicit function; and an investigation into

the secure loadability of a power system.

Based on the results of the theoretical study, general approximate

relations expressing dependent load flow variables in terms of the nodal

injections are derived. Their degree of accuracy and extent of validity

are investigated through analytical and simulation-based analyses.

The general problem of characterizing subsets of a security region

by simple, explicit functions is formulated as an optimization problem.

'For the case where the subsets are expressed by ellipsoids, two algorithms

are developed and tested. The problem is then extended to include embedding the

largest ellipsoid of a £ixed orientation inside a security region.

The application of explicit security sets to the problem of predic­

tive security assessment is studied in detail. A number of explicit

security subsets overlapping along the predicted daily trajectory is used

to define a "security corridor". This predicted corridor has the property

that as long as the actual trajectory stays within it, very little computation

is needed to assess the system security.

The secure loadability of a power system is first studied in the

demand space by considering the orthogonal projection of security sets into

that space. It is then studied in the voltage space in the context of

existence of a secure load flow solution to a given loading condition. Pro­

perties of the set of secure voltage solutions are explored by enclosing it

with a linear set. Furthermore, it is shown that, under favorable conditions,

one can easily characterize a subset of the set of secure voltage solutions

by a number of linear constraints.
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L'analyse et la caracterisation de la securite en ~egime

permanent pour un reseau et transmission ont eta etudiees dans le contente

de la theorie des ensembles. L~etude est divisee en trois parties: un

examen detaille:·des aspects theoriques des x;,egions de securite. generalei

la formulation et l'analyse de probleme de la caracterisation d'un ensemble

de points de fonctionnement par une fonction simple, sous forme explicite,

et l'etude de la capacite de charge d'un reseau.

Une analyse theorique a permis de deriver des relations ap­

proximative generales, exprimant les variables dependantes de l'ecoulement

de puissance en terme des injections de noeud. Ledeqre de precision de

ces approximations ain~ que leurs limites d'app~ication sont determinees

a l'aide de simulations et d'analyses theoriques.

Le probleme general de la caracterisation des sous-ensembles

d'une region de securite par des fonctions simples et sous fo~e explicite

est formula comme probleme d'optimisation. Dans le cas au les sous­

ensembles sont exprimes par des ellipsoides, deux algorithmes sont develop­

pes et verifies. Le probleme est alors elargi de fa~on a inclure le plus

grand ellipsoide d'orientation fixe a l'interieur d'une ~e9ion de securite.

L'application d'ensembles de securite au prob1eme de l'evalua­

tion preventive est etudiee en detail. On utilise un·certain nombre

d'ensembles de securite se recoupant long de la trajectoire journaliere pre­

vue de fa~on a definir un corridor de securite. Ce corridor prevu possede

la propriete qu'aussi longtemps que la trajectoire y est confinee, un

minimum de calculs est.requis pour evaluer la securitedu systeme.

Le chargement securitaire d'un reseau est en premier lieu

etudie en considerant la projection ort~ogonale des ensembles de securite

sur cet espace. Il est ensuite etudie dans l'espace des tensions, dans

le contexte de 1 'existence d'une solution pour une ch~ge donnee , Lea

proprietes de l'ensemble des solutions securitaires ~nt explorees en l'en-

chassant dans un ensemble lineal.re. De plus, i1 est detnontrer.que,.dans les

circonstances favorables, i1 estaise de caracteriser un sous~ensemble des

solutions securitaires par un certain nombre de contraintes lineaires.·
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1.1

1.1.1

CIWTER !

INTRODUCTION

General

A bulk-power system is made up of a high-voltage trans­

mission network joining the generating plants to the transmission sub-

stations. Generating plants normally consist of a number of synchronous

generators driven by ste&a, gas, or hydro turbines. A step-up trans-

former directly feeds the output of a generating plant into the

transmission system.

The transmission system is composed of several separate

successive networks which are tied together at sub-stations. Each network

is distinguished by its operating voltage level. The structure of trans-

mission system enables it to serve a variety of, load points at different

voltage levels over a large geographical area. Another function of the

transmission network is to prOVide links between the underlying system and

its neighbouring power systems, integrating them into a "power pool".

The distribution systems are not considered here as part of

the transmission system, but rather as major: loading points fed from the

transmission system.



1.1.2 Background and Motivation

The main function of an electric power system is to

generate electric power in sufficient quantities at the most suitable

2

generating locality, transmit it to the load centers, and distribute it

to the individual customers. Furthermore, this has to be done reliably,

in proper form and quantity, and at the lowest possible ecological and

economical cost, [2]. Each of these requirements poses a variety of

operational constraints which are to be considered in the planning and

enforced during the operation of the system. The degree of complexity

associated with achieving these objectives in a power system is closely

tied to the system size, or equally to its vulnerability to disturbances

or equipment failure.

The present day power systems include hundreds of transmission

lines, generating plants and sub-stations. The rapid expansion of power

systems in North American countries is in response to the growing energy

demand which, in turn, is influenced by the population growth and the con-

sumer oriented social structure of the countries. The largest growth rate

in energy consumption in the United States has been in the electric sector

at a rate of 6.7% annually (3] • This amounts to doubling the total

electric energy demand every 11 years. Figure 1.1 depicts the projection

of Canada's energy supply / demand curve up to year 2000 14] • Here, a

basically exponential growth trend can be observed. The congestion of

traditional urban areas and the imposition of more stringent pollution laws

has also contributed to the expansion of power systems. During the last
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decade the residential areas and industrial units have been mov~ng to

the countryside at an inc~easing rate. This trend is expected to be

accelerated in the future.

The degree of-vulnerability of present-day power systems to

disturbances (from internal or external sources) can be appreciated from

the available statistics on the large and small scale blackouts during

the last few years 17]. On the U.S. bulk-power system alone, an annual

aver,age of 35 interruption of at least 100 Mw for periods longer than

15 minutes is reported. Among the major blackouts, the New York blackout

in 1977 is the best known IS] • Similar wide-spread blackouts were also

experienced in France and Sweden in 1978 and early 1979, respectively.

The tremendously high social and economical costs of large

scale blackouts £6] had been the prime factor in calls for improved system

reliability and urgent need for developing security oriented operating

strategies. These are operating strategies which should enable a system

to absorb the impact of a wide range of disturbances easily, while the

system remains faithful to its basic objectives. The widespread installa­

tion of modern control centers, equipped with high speed computers capable

of coordinating the actions of.various decision points in the system, has

been in part the response of the power industry to this need [13]. The

complex nature of the problems associated with evaluating the desired

operating strategies, however, has kept, and continues to keep, the search

for more efficient strategies an active field of research.
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The evaluation of the ~egree of vulnerability of a power

system to various potential disturbances and the computation of control

actions which can minimize the impact of a set of disturbances is what

is called "the security problem". In this thesis, different aspects of

the security problem are studied and new techniques for treating some of

the pertinent problems are proposed.

1.2

1.2.1

Power System Security

Basic Definitions IS]

Security of a bulk power system is considered as referring

to "an instantaneous, time varying condition that is a function of the

robustness of the system. relative to imminent disturbances". The degree

of security of an operating point is estimated by evaluating its security

level based on the available reserve mar2ins (i.e., transmission and

generation capacity) on the one hand, and the likelihood of the distur­

bances on the other.

Being basically an operating problem, power system security

is divided into two different problems: a state evaluation (detection,

estimation) problem, referred to as "security assessment" I9] , and a

control problem, termed the "security "enhancement" 110] •
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Generally, security assessment refers to t~e process of

assess~ng the relative robustness of the system in its actual state

through extracting the necessary information from system-derived data.

This process, however, is often viewed as a combination of two primary

security functions: 'SecuritY,monitoring and 'security 'analysis. Se­

curity monitoring refers to the function of processing the incoming data

and correlating it with available data to reliably estimate the system's

present or the near future operating condition. The security analysis

function consist of simulating the system Wlder various contingency con­

ditions in order to estimate the security level of the system and supply

data to the security enhancement process 19]. Obviously, the avail­

ability of a set of precisely defined system states is the prerequisite to

the process of security assessment.

Security enhancement refers to·, any set of on-line control

actions aimed at increasing the system's robustness and, thus, raising its

security level. Security enhancement is viewed as a means for better

utilization of installed generation and transmission capacity in an operat­

ing power system through improved controls. It involves considering

alternative operating control strategies for the actual loading condition

in order to attain the highest possible security level subject to the

economic considerations.



1.2.2 01?erating·States and Related Control Actions

7

In 1966, with the aim' of develop~ng a framework for systema­

tic analysis of the overall power system operating problem, Dyliacco

introduced the concept of multi-state operation of electric power systems

Ill]. He originally decomposed system operation into three states;

Normal; Emergency; and Restorative. Refinements of these definitions

were later suggested I12, 13], by decomposing the normal state into two

stages: Secure and Alert (or Insecure). To date, the most comprehensive

classification of the operating states is due to Fink and Carlson I8] ,

who introduced the concept of the security levels and added an additional

state, referred to as "in extremes". Their normal state is restricted to

the operating conditions with an adequate security level and does not in­

clude the alert state. In this thesis, except for using the original

definition of normal state, (i.e., including the alert state), the defini­

tions of [8] are used.

The decomposition of steady-state operating states is based

on two sets of algebraic relations - one comprised of equality and the

other of inequality constraints - and a subjective measure, namely the

security level. The equality constraints represent the system's total

demand - total generation balance while the inequalities reflect various

operating restrictions on the system components.

In the normal state both sets of constraints are satisfied,

and it is only the security level which detennines if an operating point



is in the secure or alert state. As shown in Figure 1~2, a no~al

8

operat~ng point will be in the secure state if it is accompanied by

"Sufficient reserve margins to provide an "adequate" level of system

security with respect to the stresses which the system may be subjected

to. The same op~rating point could, however, be in the alert state if

the reserve margins fall below some "threshold of adequacy" or if the

probability of some disturbances increase significantly.

NormaL State

In that case

Figure 1.2.

Al.e r t

State

..
Probable System Stresses

Pictorial representation of the impact of system reserve
margins and probable stresses on the operating state of
an operating point.

preventive'controls are needed to increase the system security level to

that of the secure state. If the required preventive measures are not

taken, a sufficiently severe disturbance can take the system to an
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Emergency state. In this state, inequality constraints are violated

and the security level is negative. The system, however, would still

be intact and should the 'heroic 'measures (or 'corrective controls) be

taken in time, the system could be guided toward the normal state. If

these measures fail to produce the desired state transition or are not

taken in time, the system then begins to disintegrate and is in extremes.

Here, both sets of constraints are violated; portions of the system load

are rejected and the system is no Lonqe r intact. At this stage, coordi­

nated emergency actions are needed to avert the total collapse of as many

parts of the system as possible. When the collapse is averted, the

system could enter the restorative state. In this state restorative con-

trol actions are dit;'ected toward reconnecting the system and picking up all

the rejected loads. Once these measures are fully in effect, the system

could transit to the no~a1 state.

1.3

1.3.1

Review of Previous Work

General Classifications

A short classification of security problems is given in

Figure 1.3. In this study -we are primarily concerned with the steady­

state security analysis in its deterministic mode.

Th.ere are two distinct classes of approaches as applied to

power system security analysis. The distinction is based mainly on the
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Problems
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Hardware

,
",,

Security

Assessment

Security

Enhancement

Security

Monitoring

/
/

I

Security

Analysis

Security

Control

,,,

Steady-State Transient

Deterministic Probabilistic

Figure 1.3. A short classification of security problems.



general philosophy behind the two.
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One class tries to evaluate directly

every operating condition in terms of its security. This is a "point-

wise" methodology and the basis of the majority of numerical techniques

which are now widely employed in the power system industry for security

analysis. The approaches which fall into this category require detailed

on-line analysis for every operating condition from load or network

changes. The other class opts for a more general view by first identify-

ing a large set of secure operating conditions. This is a "region-wise"

methodology and it is often referred to as "set-theoretic approach".

The set oriented approaches try to reduce the on-line computational burden

by assigning some of this effort to their initial off-line phase.

1.3.2 Numerical Based.A;E?&?roaches

Two numerical algorithms are the backbone of different

approaches used in the point-wise security analysis. These are: The

load flow [17] and the optimal load flow [41] • For a given network,

loading condition, and control strategy the load flow program analyzes the

steady-state interaction among real and reactive powers and voltage magni­

tudes in the system. In contingency evaluation, load flow programs are

used to compute the impact of the potential disturbances on the system.

The optimal load flow program manipulates the control variables to evaluate

the best operating strategy with respect to a specific techni'cal or econo­

mic objective. Theoretically, such algorithms can be used to compute
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control actions needed for the transition from an operatlng state. to

another .. In practice, however, both these algorithms, when used on-

line, are employed in simplified or approximate forms.

1.3.2.1 Security Analysis Calculations

A large volume of literature discussing a wide spectrum of

numerical approaches exists on this subject Cc.f .. I14-26]). Their prime

objective is to lessen the computational burden associated with the direct

use of the load ·flow program, but without compromising the validity of the

security predictions.

Since the sensitivity based analyses allow trade-off possibi­

lities between the speed and the computational procedures, they are widely

used in connection with the contingency evaluation.

flow equations in the pre-outage case are given by

Assuming the load

= (1.1)

where ~ is the vector of network parameters and !o is the vector of

specified injections, then the post-outage case is given by

z (~ + /1 x , ~ + A.!.) = z + li. z (1.2)
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For relatively small change in the state vector, ~, from a first

order Taylor series expansi.on of (1.2) and implication of (l.l), it

follows that

ti x (1.3)

The accuracy of (1.3) depends actually on how small A w and a z are.

If these changes cannot be assumed small, then a x is calculated from:

az (~, ~
... ti w) -1

A. x ::: I :I {~ -+ IJ. z - Z (~, ~
+ ~ ~) } (1.4)

d
~

a! (~, ~)
Note that when (l.3) is applicable, only the base Jacobian, I dX ]

-0
is needed. This is not the case in (1.4). But, by expressing, the in-

verse of the Jacobian in (1.4) in terms of the base Jacobian through the

application of the "matrix inversion lemma" its computational efficiency

can be increased significantly [14] • The base Jacobian is usually

available in its triangular factors which are used within a scheme of sparse

matrix computation. A brief survey of outage calculation schemes based on

equations (1.3) or (1.4) is given in Appendix A.

1.3.2.2 'Security Control Calculations

In theory, one should be able to compute the best control

strategy, under any steady-state system condition, by solving a security-



constrained optimization problem. for most systems, however, such an
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approach is impractical. Consider for example the case where the

calculation ofa preventive control stra~egy is desired. There main~

taining or enforcing a certain level of security is sought while

minimizing the adverse economic or other consequences of the required

control action. This in mathematical terms is translated into the

following problem:

Minimize: C (~ , ~)

subject to

D. (x , , ~) = 0
-J,. -J.,

H. (x , , ~) 2: °-~ -].

i = 0, ... , N
cg

i = 0, ... , N
cg

(1.5)

where!'1 is the total number of contingencies considered.
cg

The equalities represent the load constraints while the inequalities re-

present the operating constraints. The subscript i counts the listed

contingencies and i = 0 corresponds to the intact system. Note that

the constraints with i ~ 1 represent the "security constraints". A

rigorous treatment of this problem would involve introducing a state vec-

tor x such that

x = T
I~

T
!.l , ... , T JT

~
cg

(1.6)

For practical systems, the excessively large dimension of x renders an

on-line solution to (1.5) impossible.



15

Because of this basic difficulty, very little work is

done on solving (1.5). The. general tendency (in the exist~ng work)

is to get around the dimensionality problem by indirectly accounting

for the security constraints. A brief survey on various schemes used

in computing different types of control actions is also included in

Appendix A.

1.3.3 Set-Theoretic 'APproach to Security Analysis

The numerical simulation based methods of steady-state

security assessment have many conceptual and practical limitations.

Though these methods are very effective when analyzing one case at a time,

the required amount of computation becomes excessive when a range of

operating conditions are to be predicted· for a large number of network

structures - as is often the case. Furthermore, in view of the uncer-

tainties present in the input' data, these methods are inadequate for

reliably assessing· the system security.

To overcome these shortcomings, a new technique based on

the computation of an explicit description of the set of secure states was

proposed by the M.I.T. group {52], in the mid 197Q's • In their classical

paper they suggested that ~e problem of security assessment should be

posed as: "Given the set of postulated contingencies, what is the set

of all pre-contingency injection pattern that are secure?" After cnarac-
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terizing such a set, then the problem of evaluating the securi.ty of an

operating point is simply one of verifying the membership to the set,

and the problem of security control is one of having the operating

trajectory guided toward, or kept inside, the set. The impact of the

uncertainties in the input data on the security assessment can be evalua­

ted by considering the closest distance of an estimated operating point

to the boundary of the set.

Prior to this work, there had been few attempts to improve

upon the conventional technique of sequential contingency testing, using

approaches which are conceptually related to the set-theoretic approach.

For example, methods suggested in refere·nces I53 .... 55] for solving the

transmission interchange capability problem under various potential con­

tingencies fall in this category. These methods, nevertheless, lack the

generality of the approach in [52] •

The use of the pattern recognition techniques 156, 57] for

off-line computation of security functions can also be regarded as an

effort to characterize the boundary of the set of steady-state or transient

secure operating points. This method is in fact an automated and systema­

tized extension of the conventional techniques used in power utilities in

an attempt to separate the stable and unstable conditions. The pattern

recognition techniques were not initially well-received because of the

prohibitively excessive computational requirements involved in finding an

adequate traini,ng set for large scale power systems. Recent improvements
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on these methods l58, 59J , coupled wit~ the rapid evaluation of com­

puters however have renewed optimism in their use in power system

security analysis 1651 •

The problem of explicit description of a security set is

one of eliminating the large number of irrelevant constraints among those

defining the set. Reference {52] proposes a "bounding hyper-box method"

for this problem. This method is essentially an iterative process where

a hyper-box is used to screen out the irrelevant constraints. Though

conceptually simple, for security sets defined in large dimensional spaces,

the proposed method could involve excessively large computational require­

ments. De Maio and Fischel {61] , instead of using the bounding hyper­

box method, suggested to use the algorithm developed by Mattheiss [60J •

This algorithm starts with an LP problem which maximizes a generalized

slack variable representing the margin between the points inside the set

(linear) and the binding constraints. Then by systematic pivoting, it

passes over all the vertices of the linear set and at each vertex identi-

fies n binding constraints. They recognized that the initial LP

solution is in fact the center of the largest sphere that can be embedded

into the set, and it can be interpreted as "the most secure" point in the

set. In related publications [62,63], Fischl exploits this very con­

cept to identify a permanently secure region in the presence of uniformly

distributed uncertainties in tne bus load levels.

Though so far the number of available publications concern­

ing the application of set-theoretic techniques to power system security is
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quite limited, nevertheless, their capabilities and advant.aqe.s over

purely nmnerical schemes are well recognized. The advan~age of having

a computationally feasible characterization of ~ security set lies in

the fact that it practically contains an infinite number of secure ope-

rating points. This makes it a "powerful tool in a variety of power

system operation and planning applications" 152] •

1.4 Outline of 'the Problem

The set theoretic approach of reference [52J is based on

the DC load flow model and therefore can define security regions only

in the space of the real power ihjections. As a result, the impact of

a significant part of the system data on the security of an operating

point - namely, its associated reactive power demand and voltage level -

cannot be taken into account. For practical systems, one may also expect

that, even when the redundant constraints are screened out, the security

set still will be defined by such a large number of constraints that it

does not offer any advantage over numerical schemes.

Considering the above limitations, this study addresses it­

self to the following important questions:

(1) What are the analytical tools needed to expand the

scope of the previous work to the extent that one
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can use the steady-state security ~egions to

evaluate the security of an operat~ng point

eompletely and accurately?

(2) Can a secure operating region, or part of it,

be expressed by a simple, explicit function?

(3) Can one, for a given loading condition, establish

simple necessary and sufficient conditions to

detect the existence of secure load flow solutions,

or equally, the existence of control strat.egies

capable of producing secure operating points?

(4) What are the implications of a positive answer to any

one of the above questions with regard to various

security related functions of a power system?

Obviously, the scope of this study is quite large and embraces a variety

of problems some of which are purely theoretical in nature.

1.5 .Methodology

To provide comprehensive answers to the questions motivating

this study, the following methodologies are pursued:



(l) Taylor series expansion formulae are used to

deri.ve sufficiently general and accurate rela­

tions for defining the security regions in the

space of the load flow specified nodal injec­

tions.

(2) Optimization techniques are employed to solve the

problem of expressing part of a security set by a

simple, explicit function.
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(3) Necessary and sufficient conditions for detecting the

secure loadability of a system is sought by consider­

ing the orthogonal projection of its security sets

into the demand space. The existence of secure load

flow voltage solutions is studied through enclosing

such solutions by a linear set.

(4) NUInerical examples are used to demonstrate various

security related potential applications of the approxi­

mate relations, explicit security sets, and the

linear sets enclosing the set of secure load flow

solutions.
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1.6 Claim of Originality

To the author ' s be.st of knowle.dge, the followi,ng are the

original contributions of this study to tha field of power system

security analysis and operation:

(1) Providing a general definition for various steady state

security sets and their corresponding invulnerability

set. Other significant points in connection to these

definitions are:

(i) Representation of probable contingencies as. general

functions of the state vector;

(ii) Exploring the relations between the general steady­

state security sets and the security regions in the

space of specified injections.

(2) Derivation of general, accurate approximation formulae for

load flow dependent variables in terms of the specified

nodal injections. This also involves:

Ci} Setting up a framework for comprehensive error

analysis of linear approximation formulae;

(ii} Generalization of the derivation scheme to in­

clude quadratic and higher-order approx~aation

formulae;



(iii) Demonstrat~ng the potential application of

quadratic approximation formulae for deriv~ng

highly accurate loss fo~ulae;

(iv) Examining various implications of using these

approximate formulae in formulating the secure

economic dispatch problem.

(3) Exploring the influence of the choice of the reference bus,

reference angle, slack bus, and the expansion point of the

approximation formulae on different aspects of security

22

regions. It is demonstrated that:

(i) In genet:al, the security sets, both in the voltage

and in the injection space, ~an be disjoint;

(ii) An improper choice of the expansion point for the

approximate formulae may result in an empty security

set, when it actually exists.

(4) Construction of various security sets and the invulnerability

set in the injection space. This also embraces:

Ci} Exploring the possibility of deriving the re­

quired approx±mation formulae, corresponding to

different network configurations, using the

intact network data;
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(Li.) Deriving functions representi,ngthe effect of

simultaneous load or generator outages on the

pre-out,age injection vector, shortly after

the occurrence of the outages.

(5) Fo~ulation of the problem of explicit characterization

of local sub-sets of a security set as an optimization

problem. Other related points are:

(i) Proposing two practical ~lgorithms for solving

the problem;

(ii) Exploring the source ,of convergence difficulties

arising in such optimization problems.

(6) Formulation of the problem of characterizing the largest

sub-set of a security set for a given function.

It is shown that this problem can be formulated as a

mini-max problem, and for the special case of having linear constraints

it can be reduced to a standard LP problem.

(7) Proposing a practical scheme for screening out the redundant

constraints among those defin~ng the set of secure operating

conditions in the voltage space.



(8) Demonstrat~ng potential applications of the l~rgest sub~

set of a security set in fast and efficient computation

of stand-by control actions.

(9) Introduci.ng the concept of security corridors for pre­

dictive security assessment and enhancement. This

includes:

(i) :Proposing solutions to the problem of orienta­

tion, overlapping, and characterization of

constituting elements of a security corridor;

(ii) Exploring various applica~ions of security

corridors in security monitoring, security analysis,

and security control calculations.

(10) Introducing the concept of secure loadability sets.

Other related points are:

(i) Proposing a solution to the problem of characteriz­

ing sub~sets of a secure loadability set;

(ii) Presenting the concept of secure-economic load­

ability set;

24
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(iii) Explor~ng the possibility of employing loadabi­

lity sets in security assessment, p1anni.?g, and

load management.

(11) Proposing techniques for enclosing the set of secure load

flow voltage solutions by a linear set. This concept,

originally developed in [64] , is extended to include:

(i) Embedding a linear set inside the set of secure

load flow vol~age solutions;

(ii) Identification and tuning of the parameters

affecting.the ntightness" of the enclosing set;

(iii) Demonstrat~ng the practicality and possible appli­

cations of the linear sets in conjunction with

various optimal load flow algorithms.

1.7 Outline of the Thesis

The first four chapters of this thesis are essentially

analytical-theoretical studies into the basic steps of a general approach

to the characterization of steady-state security regions. Chapters VI

and VII examine in detail the characterization and applications of



security sets defined by simple, explicit functions. The next two
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chapters look into th.e characterization of secure loadi,ng conditions

in the demand and vO,lt,age spaces. A more detailed description of the

chapters is provided below.

Chapter II

This ch.apter is devoted to derivation of some of the essen-

tial analytical properties of the load flow equations. The derivations

are based on the quadratic structure of the system's basic relations in

the voltage spac~.

Chapter III

Definitio.ns of general steady-state security regions are

provided in this chapter. The relations existing between the general

regions and a number of simple but fundamental security sets are also

explored.

Chapter IV

In this chapter general approximation formulae which explicitly

relate any dependent load flow variable to the vector of specified nodal

injections are derived. Furthermore, the analytical properties of these

formulae, their extent of accuracy, and the nmnerical aspects of their de­

rivations are examined.
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Chapter V

Same fundamental theoretical aspects of security regions

in the injection space as well as in the voltage space are investigated

in this chapter. The use of the approximate relations developed in

Chapter VI in constructing the security regions, and their applications

in the formulation of the secure~econo~c dispatch problem is also dis­

cussed.

Chapter VI

In this chapter, th.e problem of explicit characterization

of sub-sets of a security region by simple functions is formulated and

efficient numerical schemes for its solution are proposed. In addition,

the problem of screening out the redundant constraints from implicit

description of a security region is looked into.

Chapter VII

A wide r~nge of applications of sub-sets of a security

region expressed by simple, explicit functions are studied in this

chapter. Their applications to various security problems are examined

in the context of a set-theoretic approach to the predictive security

assessment and enhancement.

Chapter VIrI:

The concept of secure loadability sets is introduced in

this chapter. The derivation of certain important secure loadability



sets and their potential applications are also explored.

Chapter IX

This chapter deals with the characterization of the set of secure load
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flow solutions. Certain properties of the set of secure load flow

solutions are shown to be extractive from its enclosing ~inear set.

Moreover, it is illustrated that under favorable conditions one can

characterize part of the set of secure voltage solutions by embedding a

linear set inside it.

presented.

Results of the numerical examples are also
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CHAPTER II

STEADY-STATE MODEL OF ELECTRIC POWER SYSTEMS

2.0 Introductory Remarks

In this chapter we develop the well-known mathematical

model of a power system under steady-state conditions. This provides

essential background material for reference and further developments in

the proceeding chapters. The modelling is based on the application of

circuit theory and related concepts to a power system network. The

modelling of transmission lines and transformers by lumped 'TT-network

model, generators by power sources, and load areas by power sinks is

assumed. The result is a set of non-linear algebraic,relations in the

complex nodal voltages of the network which characterizes the behaviour

of the complex power flows and voltage levels throughout the network

under steady-state conditions.

The characterizing relations are expressed here mainly in

their rectangular form. Their polar version is not used because of poor

susceptibility to analytical studies and the complexity associated with

exploiting some of its basic properties. Special attention is given to

variable classification in the resulting model to ensure conciseness and

clarity in the future chapters.
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2.1 Mathematical Model

assumed.

Henceforth a balanced three-phase power system is

The transmission system is represented by a positive-phase-

sequence network of linear lumped series and shunt branches - Figure

2.1. No network element - such as phase shifters or non-bilateral

network branches - which could give rise to asymmetric nodal admittance

matrix are assumed to exist in the system. The complex quantities are

distinguished here by capital letters.

2.1.1 Constitutive Relations

The basic relations governing the steady-state operation

of a power system are the following:

(i) Nodal current equations:

The vector of complex nodal (bus) currents, ~,

is related to the vector of complex bus volt­

ages, V , through

(2.1)

where [Y
b

] represents the nodal bus admittance

matrix. The dimensions of .!., V, and [Y
b]

are respectively lIb xl, Nb x 1 and Nb x Nb '

where Nb is the number of buses in the system.



(ii) Net nodal injected power:

At the k~th bus, the net nodal injected power,

Sk is related to the net nodal current, I
k

,

and the bus voltage, V
k,

according to

=

where * stands for the complex conjugate.
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(2.2)

(iii) Line current flow

.
On the Q,-th transmission line, connecting bus i

and j , the line current,

bus i to j , is given by

I.. ,
~J

flowing from

I ..
~J

= 1 V ySht + (V V) yser
2 i t i - j Q,

(2.3)

or from bus j to bus i

I ..
J~

= 1 ySht
'2 V j i + (V. - V.) yser

J ~ t
(2.4)

The line parameters ySht are intro­
i

duced in Figure 2.1. To avoid complications, the

line current magnitude is however introduced by a

single subscript Q" that is

I 1
2 6

IQ, ~
1 * *
2

(I.. I.. + I.. I .. )
~J ~J J~ J ~

(2.5)



(iv) Line Power Flow

The power flow on the t-th transmission line,

s~, is defined here by

32

= (2.6)

where the direction of positive flow is assumed

to be from bus i toward bus j.

Bus i Bus J

Figure 2.1. Representation of a simple transmission line.



2.1.2 State Variable Formulation

The natural choice of the state vector for a power
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system in steady-state is the nodal voltage vector. This is due to

the fact that a knowledge of y. provides one with the value of all

key quantities, introduced in (2.1) - (2.6). Using the control te~i-

nology, with V as the state vector there can be no unobservable mode

in the system (the transmission network is assumed to be connected).

Consider, for example, the expression for the net nodal

injected power in (2.2). In matrix form,

(2.7)

where T stands for transpose, and [Ok] is an Nb x Nb matrix whose

entries are all zero, except the (k, k) element which is 1/2.

equation (2.1) in (2.7), it follows that:

Using

= (2.8)

2
One can easily find similar expressions for IItl and

Since V is a complex vector, it poses certain difficulties

when considering algebraic operations which involve differentiation with

respect to V. This difficulty is overcome by separating the real and

imaginary parts of V and other complex variables, that is:
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V
11

j fe +

IY
b

]
~

[G] j [B]+

Sk ~ Pk
+ j qk

(2.9a)

(2.9b)

(2.9c)

where the definition of the rectangular components of the complex variables

in (2.9) is understood. Invoking the above relations in (2.8), after

some manipulation, it follows that

where

T r
Pk

= x [P
k

] x
-r -r

T r
qk = x (Qk] x

-r --r

(2.10)

(2.11)

Tx =
--r

[ T e.~, (2 .12)

[G] [Ok] + [Ok] [G] I [B] [Ok] - [Ok] [Bll

= -----------t------ ----~
- [B] [Ok] + [Ok] [B] \ [G] [Ok] + [Ok] [GJ

I
[B] [Ok] + [Ok] [BJ : ,..iG] [Ok] + IO

k
] [G]

I
= - - - - - - - - - - - ---t- _.- - - - - - - - ---

I
I

[G] (Ok] - IO
k

] IG] 1 (B] [Ok] + [Ok] (B]

(2.13 )

(2.14)
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Note that the matrices IP
k

] and fQk] are 2 Nb x 2 Nb dimensional,

symmetric, and highly sparse.

the square of the nodal voltageand qk'

can be represented by a quadratic form

Similar to P
k

v
k
2 = e 2 + f2

k k
magnitudes,

in x 1 i.e.,
--r

= (2.1S)

where [VkJ is obtained from [P
k

] by setting the matrices [G] and

(B] equal to the unity matrix. It is also easy to show that

I I
21

2 T
[It]= x x

--r --r

L T [pL]
Pi = x x

-r i -r

L T [QL]qt = x x
-.r t -.or

where

L
j

L ~ sL
Pt + qt t

[ItJ ,
L·

andand the matrices [P t] ,

matrices [G] and [B] in [P
k]

whose details are omitted.

(2.16 )

(2.17)

(2.l8)

(2.19 )

[Q~] are obtained by replacing the

and [Qk] by appropriate square matrices
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Basic Analytical Formulation of Loadflow.Problem

Loadflow Esuations (LFE) and Bus Types

The steady state operation of a power system is normally

characterized by specifying certain quantities at the network·buses.

Buses are thus classified accordingly into different types.

A PV bus is one at which the net injected active power

is specified, and the voltage magnitude is maintained at a specified

value by reactive power injection.

A PQ bus is one at which the net injected power is

specified. The PQ buses are also referred to as "load buses".

Specifying all the real power injections in effect specifies

the system
2

I R losses, these being the sum of real power injections.

The losses are difficult to specify in advance and quite often some volt-

age levels are extremely sensitive to the specified value. A few percent

underestimation of losses could result in unusually high voltages at those

buses. This difficulty is circumvented by letting the real power at one

of the generation buses (a bus to which a generator is connected) to be

free. This bus is usually referred to as the slack (or swing) bus.

The phasorial nature of the nodal voltages permits one. to

choose one of the voltage phase angles at will; thus, fixing a reference

frame for the remaining phase angles.

specified is called the reference bus.

The bus whose phase angle is
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The components of the reference bus voltage, V are
r

related to each other through

The specified injectionswhere e
r

form N !J.
z

f = e tan e
r r r

is the specified reference angle.

2 Nb - 1 non-linear equations., which when

(2.20)

added to (2.20),

form a consistent set of relations for x
-r

known as the loadflow equa-

tions (LFE). The specified quantities can be in general represented by

z.
.i,

T r
x [z.] x
--r ~--r

i = 1, ... , N
z

(N ~ 2 Nb - 1)
z

(2.21)

where z. is a specified nodal value whose functional relation with the
~

network parameters is represented by
r

(Z . ] •
~

The linear relation (2.20)

is often used in the above equations to reduce the number of unknowns ,·by

1 and have all the equations in the quadratic form.

to x by
--r

or

Let x be related

x =
-r

(2.22)

where fUr] can be viewed as a unity matrix with an additional last row

representing (2.20). Using. the above relation in {2.2l}, one obtains

z.
~

Tx (Z.] x
~

i=l, .•. I N
z

(2.23)
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[Z. ]
~

For e = 0,
r

the matrix [Z. ]
~

is obtained from
r

[Z. ]
.i,

by deleting its

last row and column.

Now from (2.23), it follows that

T
[ZlJzl x

T
[Z2]z2 x

z = x ~. [L (~) ] x (2.24)

T
[ZN ]z 'xN Lz z_J

where the definition of [L (~) ] in (2. 24) is understood. Note that

[L (~)] is a square (N x N ) and highly sparse matrix.
z z

2.2.2 Analytical Properties of LFE

The following properties of the rectangular version of

LFE are used often in this thesis.

For constant scalars and and vectors
~l and
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("2.25 )

(ii) Since the matrices [Z.] are all symmetric,
.i

(2. 26)

For a N dimensional vector a
z

(iii)
T

a z =

N
z

I
i=l

a. z.
~ .~

T= x [.Z {£.}] x (2.27)

where
N

z

~
i=l

a. [Z.]
~ ~

(2.28)

(iv) (2 .29)

which is obvious by comparing (2.27) with

Cv) As a direct result of (2.29) and the symmetry of the

matrix [Z (~)],

T a [L ( ) J
£. ax !.

a
a x

{!!:..T [L (,?5.}]}

= lz (~) J (2 .30)
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(vi) For an invertable IL (~)],f the following relation is

always true

a
d x

- IL (x}]-l {__d__ [L (x)]} [L (_x)]-la x

where the notation
-1

] is used to denote the inverse of a matrix.

The above relation is obtained by the partial differentiation of the

identity

where [I] represents the unit matrix.

the above relations, one can prove that,

Now using equation (2.30) and

where

T
a.

a
a x

(L (~)]-1 (2.31)

( [

-T
(L (~] ~

-T] denotes the transpose and inverse of a matrix)

{vii} Noting that

a z. a~
{~T ~} x}T x T= [Z. ] = { rz.]a x .d x ~ ~

+ IZ .J
~

T= 2 x IZ.]
~
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Using the definition of .[L (~)] in (2.24), it follows that,

a z
[J (~)] a x

= 2 [L (~)] (2.32 )

Thus the matrix [L (~)] is half of [J (~)] I the Jacobian of the LFE.

2.3

2.3.1

Variable Classification

Dependent and Independent Variables

The variables corresponding to the specified quantities

in z are regarded as the independent variables. The dependent variables

are the remaining ones whose value is fixed once z is specified.

Denoting the dependent variables by the vector of 1..'

the components of 1. are in general of the form

y. = Y. (x)
~ ~

T
= x [Y.] x

~

i=l, ... , N
dp

(2. 33)

where [Y.], a sparse symmetric matrix, specifies the functional relation
~

of Y
i

with the network parameters, and N
dP

is the number of those de­

pendent variables which are important to power system security analysis.

These include the slack bus real power generation, the reactive power

generatio?s, the voltage level at the load buses, and the line current
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magnitudes (or, depending" on the problem, the real and reactive power

flows) .

2.3.2 Load Variables

Those independent variables whose values are decided

primarily by the consumers are normally referred to as load or demand

variables. In control theory terminology, the load variables are the

disturbance variables which refer to the fact that the unpredictable

changes in these variables cause the system to deviate from its nominal

state.

TIle load variables are denoted by the vector d which

consists of the of the real demands,
d

and thevector power a vector

of the reactive power demands,

d
Ea

d = -
d

So

cl
So that is

(2.34)

Here, as in the conventional loadflow formulations

[17] , the dependence of the load variables on the voltage levels are

ignored.
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Control and Non-Controllable Variables

The variables defining the steady-state model of a

power system can also be classified according to their controllability.

The load and the dependent variables, upon which the power system operator

cannot exercise any direct control, are classified as the uncontrollable

variables. The control variables are then those variables which can

be directly manipulated to "track" and/or "corrtroL" the uncontroll-

able ones.

Here the control variables are denoted by the vector ~ ,

and the voltagev
E.

at the PV buses, i.e.levels,

which is made up of the real power generations,

2
v ,

2
v

u = (2 • 35)

Relation Between z , U I and d

The vector of the specified injections, ~, is related

to u and d through a linear relation of the form

2
v

z = [KJ t~-] = !:K]

v
E._....~ .....-

d
-0....... (2.36)
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where J"K] is, in general, a highly sparse, constant, rectangular

matrix. Those rows of [K] which correspond to real power injec-

tions, can have at most two non-zero entries (+1, +1), depending on

the type of bus they correspond to (i.e., simple or mixed bus). The

rest, have only one non-zero entry (+1). For a system with no mixed

(hybrid) buses, [K] is simply the unit matrix.

The mixed buses break up into simple PV and PQ buses,

whenever a detailed representation of the system (including generator

step-up transfonmers) is used.

generality, one can always have

u

z =

d

This means that, without loss of

(2.37)

This simplification, though not essential, permits a

more elegant formulation of many security problems (see Section 3.2).

It basically turns each control or load variable into a bus injection;

thus, allowing them to be expressed directly in terms of x , that is

u. (~)
T tu. ] i=l, N (2 .38)u. = x x ... ,

~ ~ ~ c

d. D. (!.)
T

[D. ] j=l, (2.39)= = x x ... , N
dJ J J



where N
c

and N
d

are respectively the number of specified control

and demand variables in the system. In this thesis, relation (2.37)

is assumed to hold.

45
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CHAPTER III

GENERAL FORMULATION OF STEADY-STATE

SECURITY REGIONS

3.0 Preliminary Remarks

Our simple. model of the steady state operation of a power

system is far from being realistic. In this model, the range of varia-

tion of the power system variables is restricted only by the load flow

equations. In reality, a mixture of practical, economical, and

environmental limitations, which is equivalent to various inequality

constraints on the power system variables, further restricts their range

of variation. The identification of these limitations (from a technical

point of view) and their incorporation into the model is a basic step

toward the objectives of this thesis and is the main theme of this chapter.

A non-numerical approach of incorporating a set of in­

equalities into a mathematical model is basically what is called Ita set-

theoretic approach". The application of this approach to our model leads

to the formulation of various security sets whose construction and

characterization will be pursued in the proceeding chapters.

3.1 Limitations on Power System Variables

Here, a brief review on the nature and origin of the

limitations on power system variables is given. They are classified
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into the following categories:

(i) Engineering Limitations

Like any other system, power system components have

limited capabilities. For example, because its main shaft can stand

up to only a certain amount of torsional torque, the real power output

of a generator cannot exceed a certain amount. Alternatively, a trans-

mission line has a restricted power handling capacity, because of its

limited heat transfer capability. These types of limitations are

basically of engineering nature; hence, the name "engineering limita-

tions" . They reflect the limited capabilities of the materials used in

each device, as well as the compromises made in their design to accommo­

date conflicting design objectives.

(ii) Perfonnance Limitations

To ensure quality and non-interruption of service, some

power system variables are· forced to lie within certain bands. These

include, for example, the voltage levels at the load buses, whose varia­

tions are restricted to guarantee delivery of the power to the consumer

at some acceptable voltage level, or the reactive power generations, which

are restricted to ensure a good power factor for the generators as well as

to safeguard against system instability due to over-generation of reactive

power.
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Normally, a performance limitation pertains to the

general operation of the system, while an engineering limitation

concerns the operation of a unit in the system. But in many cases,

these two aspects are inter-related and cannot be separated. The

distinction is thus normally avoided by referring to both types of

limitations as operating constraints.

The operating constraints are further divided into the

"hard" and "soft" constraints. A soft constraint being one whose

slight violation can be tolerated for a limited period of time. A hard

constraint, on the other hand, should be s"crictly respected at all times.

Examples of the soft and the hard constraints are respectively the line

thermal limits and the ceilings on the real power generations.

(iii) security Constraints

Based on a preventive ~hiloso~hy, power system variables

"are further restricted to ensure continuation of the service in the face

of some postulated contingencies. In theory, these restrictions, called

the "security constraints", should limit the permissible operating condi­

tions to those which, even under certain sudden changes in the. system,

would not violate any of the operating constraints.

(iv) PhysicalCons~raints [66, 67]

The load flow equations represent the physical restrictions

on the power system; that is, the power demand must be met with adequate
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The additional "realizability" condition

is a direct consequence of the non-linearity of the power system and

drastically affects the range of power injections that a power system

could otherwise sustain. A physically non-realizable injection vector

gives rise to a dynamically unstable system. Such' an injection is

recognized in the model as one for which .there exists no real load flow

solution.

3.2

3.2.1

The Set-Theoretic Approach

General Formulation

The normal operating state of a power system is defined

by its physical and operational constraints. Let these constraints be

defined respectively by the following general forms:

F (l. ~) = 0 (3.la)

h = H (!. !.) L ~Q, (3.lb)

where

§T [~T T 5!T], u

Here w represents the vector of network parameters while

the vector hi represents the operating limitations imposed on different
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normal operating conditions, for a given network (~= '!!.o) and power

demand (~= ~o), a realizable control vector o
u = u is available

such that the resulting bus voltages, o
x = X , satisfy (3.1).

Numerical approaches for monitoring the system security

are based on solving equation (3.la) for
o

x numerically, then using

it in (3.lb) to check the operating constraints on the system. This

has to be repeated for a large number of w and u. Though very

efficient algorithms are developed to perform these computations (9,17, 22]

still, for large power systems, the required computing time can easily

exceed a monitoring time frame.

The set-theoretic approach attempts to replace this

"point-wise" approach by a "region-wise" approach. Instead of verifying

the security of a single operating point it tries to characterize all the

operating points § which satisfy (3.1). Since the main part of the

required computation can be carried out off-line, this approach facilitates

the on-line monitoring notably.

To demonstrate the basic concepts involved in a set-theore-

tic approach, let there exist a vector function X (l) such that

x (1) J = 0

This simply means that

(3.3)
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is an explicit solution to the equations (3.la).
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(3.4)

Now replacing relation

(3.4) into (3.1b), one obtains a set of inequalities in tenns of § •

These inequalities define a region in the § space with the property

that its points satisfy all the physical and operational constraints.

Representing this region by a set s§ , it follows that,

[The General Steady-State Security Region]

(3.5)

The set S§ is termed the general steady-state security region (SSSR)

and any system condition is called a normal condition

(or a normally secure condition).

Because of the non-linearity of ~ <1 ' ~), the step

suggested by equation (3.3) is formidable. It is, nevertheless, possible

to obtain a first order approximation to S§ by linearizing (3.1). For

a base point (lo'~)' it follows that

where
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Eo ~ F (!o, !o)

!!o ~ H (!o, !o)

(3.8)

(3.9)

and where the partial derivatives are defined according to:

For a general function
1 2 n

W (t£. ' x , ••• , !. ) ,

3!!o
[--.~

J.
3.!o

i
3 x

... , 1
=x-o (3.10)

r'n
X = n

~

The linear expressions (3.6) and (3.7) make it possible

to eliminate x and obtain a set of linear inequalities in terms of 1.

corresponding to (3 .~,) • These linear inequalities can be repres,ented in

a general form by

(3.11)

where' [A (!o' !o)] is a rect~gularmatrix defined by (3.6) and (3.7)

1
and similarly for b (!o' !o, h i , The eJq)ression (3.11) defines in

where the super-script indicates a first order approxi-
d!o

Note that the system's Jacobian, [-], is assumed to be non-
3!o

singular at (!o'!o); .\7hile the existence of the partial derivatives with

effect

mation.

respect to w is implied.
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~.2.2 Imposition of the Security Requirements

Imposing the security requirements upon a given normal

condition §O is equivalent to demanding that in the event that the

system undergoes certain sudden changes, ~ § , the constraints (3.1)

will still be respected, that is

F (1° + II .§ ~) 0 (3.12a)

V tJ. § e C (1°)

H (1° + II § , ~) ~
hR., (3.12b)

The set C (1°) containscall the probable sudden excursions (contingencies)

from §o against which the system should remain secure, and it is de-

fined in general, by

c (~) = {ll i I II § = E.? (1) j = 1, ... ,N }
cg (3.13)

Each possible value of ~1., referred to as a "contingency", is speci-

tied by a function of l,.e? (1) · The contingencies are selected

primarily based on system's past history, load predictions, weather con-

ditions, and operator's judgement (experience) regarding the stresses

Thus in practice N , the
cg

number of contingencies considered, is not fixed and varies with § •

developing in different parts of the system.

to be a constant, equal to theHowever, for simplicity, we consider Ncg

number of all different contingencies considered over a long period of

operation. (Note that this should not affect any of our results, as
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long as the exclusion of a contingency from the contingency list would

imply the invulnerability of the system to that contingency).

A contingency may correspond to changes in the network

parameters (e.g., line or transformer outages), in the control variables

(e.g., generator outages), and / or in the demand variables (e.g., loss

of load).

To verify the degree of vulnerability of, say, §o to the

postualted contingencies using numerical techniques requires running

On the other

hand, with a knowledge of S§ , one needs to simply check if

and

post
§ =

pre
§

j

+ P
pre

(1 )

then for each contingency,

Employing the above relation, one can find the set of all pre-contingency
j pre

conditions which are secure to a given contingency ~ (! ). Denoting

j
this set by s§ , it is simply given by (for generality the super-script

pre
"pre" has been dropped from § ).:
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which is obtained by replacing § in (3.5) by ! + ~j (!).

(3.14)

In Figure

w

3.1 such a transformation between the "pest" and n pr e " contingency

states is demonstrated pi.ctorially.

sJ Sj (~ - § )
J

Figure. 3.1. Construction of the set s~ ,from the set s§
for the contingency !J. § = £? (lPre).

As can be seen in Figure 3.1, not all the points in

(tJ ,Q )

correspond to normal conditions. Only those points which be-

long to the intersection of and represent the pre-contingency

conditions which are both normally secure and invulnerable to the jth

contingency. Generalization of this property leads to the definition of

s~ , the general steady-state invulnerability set, defined by
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N

SI 11 cg
sj= n

§
j=O

§

[The General Steady-State Invulnerability Set]

(3.15 )

where This set contains only those pre-contingency system

are normally secure.

conditions which are invulnerable to all the postulated contengies and

In theory, s~ can be used to resolve many com-

plex power system planning, control, and security problems. But as will

be discussed in the next section, its explicit use in practice has never

been exploited.

3.2.. 3 Cross-sections of the General SSSR

To simulate the line outages by changing ~, a trans-

mission line model has to be parameterized by its admittance and shunt

susceptance. For large power systems, where there are thousands of

transmission lines, such parameterization results in a very large dimen-

sion for ~1 and consequently § • This poses a major difficulty in

employing the sets and for security and control calculations.

For security calculations, the dimensionality problem

can be resolved by noting that, while performing the contingency analysis,

one in fact deals with only a certain number of cross sections of S§

projected into the -(u, d) = ~ space. Thus instead of characterizating

S§ , one can choose to characterize its projections in the ~ space.



Let s
z

denote the cross-section of for
0.

w = w
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projected into the ~ space, i. e. ,

s
z = {~/ w =

o
w (3.l6)

where
o

w represents the value of the network parameters for the in-

tact network. Clearly, S contains all the injections ~ which,
z

under normal conditions (no contingency in effect), satisfy the operat-

ing constraints. Let us also assume (for the time being) that the

contingencies simulating the sudden structural changes are not accom-

panied by the changes in ~, and there are N of them.
w

In other

words, the simulation of the generator and load contingencies is re-

stricted to the intact network (consistent with the normal practice in

electric power utilities). Den~ting the changes in
o

w due to the

network contingencies by ~ w
k

K =1, ... , N
w

projection of the

cross-sections of corresponding to
o k

w + 6. w K = 1, ... , N
w

into

the ~ space produces the following sets

{~/ w 1, ... , N
w

Each of the above sets contains the operating conditions which are in-

vulnerable to a specified network contingency. Using the set s ,
z

the

sets of the pre-contingency injections which are invulnerable to the re-

maining·contingencies can be formed. Formulation of these sets, denoted

by K N + 1, ... ,N ,
w cg

(as in the previous section) requires
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access to functions which can express,the effect of a specified con-

tingency on the pre-contingency injections.

In the case where a contingency consist of simultaneous

changes in the network structure as well as in the injection vector,

slight modification is needed. The operating points invulnerable

to such contingency are identified by first finding the cross-section

of s§ corresponding to the post-contingency value of ~, and then

subjecting the resulting set to a non-linear shift relevant to the

changes in the ~ (assumed to be given). Note that in reality, even a

single structural change, because of the resulting imbalance in the re-

active power and the required re-routing of the power flows, is always

accompanied by changes in z. These changes, which are normally small,

are difficult to estimate and thus usually neglected.

Characterizing the aforementioned sets would allow

characterization of the invulnerability set in the ~ space, defined

by,

N

SI ~
cg

skn
z

k=O
z

where SO = S It is readily seen that SI is the projection of
z z z

SI (~ = ~o) into the z space. In Figure 3.2, for the case where§

(3.17)

there are only two network contingencies, the relations existing among

S 1 and SI are shown pictorially.
z z
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(t; - §)

I
I
I
J
I

I I I I
I I I I
I ,I I

si

w

Figure 3.2. ITypical relations among S§, S, and S for a
z z

power system subjected to two postulated network

contingencies.

3.3 Direct Construction of S
z

The mathematical model of a power system in the § space

is highly non-linear, which makes it very unattractive to try to charac-

terize Sz by first constructing S§ . The alternative would be to

construct S directly.
z

This requires first defining a number of

simple, basic sets in their appropriate spaces. These sets can be

viewed as the building blocks of S ,
z

whose recognition allows a better



understanding of the make up of s
z

Note that, compared with the
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§ space, the power system relations are less non-linear in the z

space.

3.3.1 Basic Sets

In the control space (~-space), the operating limitations

on the control variables define a hyper-box which is denoted by

and represents the set of admissible control strategies, that is

H
u

H
u

(3.18)

where M
u and

m
u are respectively the vector of upper and lower bounds

on the components of u. Here u includes the real power generations

at PV buses and the square of the voltage magnitudes at the generation

buses. This set is therefore more general than the generation set of

reference [52] .

The dependent variables are similarly restricted by operating

limitations. In the :i. space these bounds form a hyper-box, denoted by

H, embodying all the allowable values that the dependent variables can
y

assume. This -set is called the set of allowable ratings for system com-

ponents, and is defined by:

·e
H

Y
(3.19)
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la and

m
X.
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indicate the maximum and minimum bounds on the

components of z. Note that this. set, in addition to thermal limits,

includes bounds on the reactive generations, load bus voltage levels, and

limits on the real power generation at the slack bus.

One can equally define a hyper-box in the load space by

setting bounds on the load variables. This set is called the a priori

loading set and is denoted by H
d

that is

(3.20)

components of d.

The vectors d
M

and dID represent respectively conservative bounds on

The ,value of d
M

could correspond to the original

long-term demand forecasts on whose basis the system is designed (expanded),

or to the power interruption capacity of the major circuit breakers in

the system. The lower bound, may be taken as zero or some value

well below the lowest point of the daily load trajectory.

3.3.2 Maps into the Voltage Space

Consider the ith operating constraint in (3 .lb) I i.e.,

where the variable h. is expressed in ~ through the relation
~

h.
~

H. (i, 15.)
~

T= A (H.] ~
~

At the limit, the quadratic surface
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"iT ta.i x = h~ divides the volt.age space into two parts, of which the
&L 1. - 1.

feasible one can be defined by a set xi, where

N
'x £ R z} (3.21)

We would like to describe that part of the voltage .space which is common

to the feasible regions of all the operating constraints.

advantageous to do this in terms of the following sets

(i) The Secure Control Set:

It will be

(ii) The Secure Rating Set:

N
x £ R .;} (3.22)

y
x

{x / y (x)
N

x e: R Z
} (3.23)

(iii) The Secure A priori Loading Set:

D
x

{~/ D (X) =
N

X e: R z} (3.24)

where the components of the vector Y .(xl, 'U (lS.), and D (x) are de-

fined respectively in equations (2.38)" (2.33) and (2.39). That part

of the voltage space whose points satisfy all the operating conditions on·

the intact system fo~ a set, called the secure voltage set and is denoted

by s
x

It is clear that

S = u ny nO
x x x x

(3.25)
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or equivalently

sx

N
s

n
i=l

i
X (3.26)

where i runs over all the operating constraints, and N. s 2 (N + N
d

+ N ).
c dp

The bounds on d should be normally non-binding, thus one

often expects to have

SeD
x x

i.e., all possible loads should be satisfiable.

concentrate primarily on the other two sets.

(3.27)

This permits one to

3.3.3 Maps onto the ~ Space

Any point ~ in the voltage space can be mapped into the

~ space via the LFE, i. e., ~ = [L (~)] e.

the following important sets are produced:

Under this transfromation,

(i) The Set of Realizable ~ [66, 68, 69]

Since the transformation ~ = [L (~)] ~ is non-linear in

~, the voltage space does not transform anto the whole ~ space. In

fact the image of the x space is jammed into a solid conical structure

in the z space, called the steady-state feasibility region.
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This region, the range space of the operator [L (~)]~, is denoted by

R and is simply defined by
z

R
z {~/ ~ = (3.28)

Any point ~ outside this conical region is not physically

realizable and consequently there cannot exist a load flow solution

corresponding to it.

(ii) The Set of Normally Secure Injections

By transforming s
x

into the ~ space, the set of all

injections ~ which do not violate the operating constraints on the·in-

tact network, that is s ,
z

is produced. It then follows that

s
z {~/ ~ = [L <'Jf.)] ~ s }

x
(3.29)

A more useful definition of S can be formulated in tenns of the
z

feasible portions of the ~ space, i.e.; xi, i=l, , N, defined
s

by the individual operating constraints. Denoting the transformation

of into the ~ space by the set
i

Z , that is

[L (~) J ~ (3.30)

The set S is then simply given by
z



65

l-h

I
c

r-----.,
I I

: lJL __~

I
'<

le

IN
fI

r'
IX
~

IX

;0
N

10.
11

'0
~

IX
~

"ID
0.

J:
0.

I~
0.

(f)
N

'Q.
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N
s

ZiS = (1
z

i=l

From the definition of R and S , it follows that,z z

s C R
z z

(3.31)

(3.32)

which implies that all points belonging to s
z

are physically realizable

and have at least one load flow solution. In Figure 3.3 the different

sets and transformations which produce s
z

are indicated. One should

take notice that once a practical scheme for characterizing

established, it would be rather easy to characterize

3.4 Example

s
z

is

To shed more light on some of the ideas expressed in this

chapter, a simple example is worked out here.

3.4) is chosen for this purpose.

A two bus system (Figure

follows that

Choosing bus 1 as the reference bus with 81 0, it

where

2
e

1 vI

x = e
2

z = -P2 =
f

2 -q2 d
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2 T
[VI]

2 (3.33a)z = vI ~ .K = e
11

T
[P 2]

2 f2) (9 21 £2)- z2 = P2 = ~. oK :::
g22 (e

2
+ + e

l
e

2 + b
212

(3.33b)

T
[Q2]

2 f2) {g21- z3 q2 = A A ::: - b
22

(e
2 + + e

1 £2 - b
21

e
2)2

(3.33c)

and the matrices {g .. } = [G] and {b .. } = [B] are obtained from [Y
b

] ,
~J ~J

given by

Important dependent variables for this example are:

.T
[P1]

2
b

12 £2 (3.34a)Yl = PI = !. ~ = 911
e

1 + g12 e
1

e
2 - e

1

T
[Q1] b

l l
2

£2 b
12Y2

= ql = A- A = - e - g12 e
l - e

1
e

21.

(3.34b)

2 T
[V2]

2 £2 (3.34c)Y3 v
2

= A K = e
2 + 2
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I I {2 = xT
j r ] x

I 1 - 1-

(3.34d)

Assuming the line parameters and the engineering limitations to be those

given in Table 3.1, the following basic sets are defined.

TABLE 3.1.

DATA FOR THE SYSTEM OF FIGURE 3.3

y PI ql v
2 IIII 1.1 VI d -P2 -'12

M
0.75 0.2 1.04 0.67

M
1.1 d

M
1.2 0.9y 1.1

m
0.0 -0.05 0.94

m
1.0 dID -0.9y 0.0 1.1 -1.2

ser
0.2 j 0.5 ysht 0.0 j 0.2 91 0Z = + ; = + ; =

H = {E- I [1.0] s £ S; [1.1] } (3.35a)
u

0.0 0.75

-0.05 0.2

H = {z I 0.94 ".§..l. £ 1.04 } (3.35b)
Y

0.0 0.67

-1.2 1.2

H
d

= {£ / S; d :::; } (3.35c)

-0.9 0.9



Three cross-sections of corresponding to:Figure 3.5.

( a) "i = 1.0; (b)

s
x

v· =
1

1.05 = 1.1.
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The sets U, Y, and Dare then readily obtained by
x x x

using the expressions in (3.33) and (3.34) to represent their corres-

ponding variables in (3.35). The inter-section of these sets in the

voltage space defines

Figure 3.0.

s
x

Three cross-sections of S
x

are shown in

BUSH1
(SLACK)

v1=e1+j O

1.y.sht
2.

Figure 3.4. The two bus system used in the example.

For this simple example, it is possible to obtain an ex-

plicit solution to the voltage vector A. in terms of ~.

order equation of the form

2
e

2
+ 2 et. (~) e

2
+ a (~) = 0

A second

(3.36)

has to be solved for A relation of the form



=

71

(3.37)

then allows one to calculate £2. Equation (3.36) restricts the range

of the specified injections to those for which

2
Or (z) - B (~) ~ 0

It can be easily shown that

r (~) =

(3.37)

where

r
l

8 2 2
/ b

22
ro (b

22 + 9
2 2)

~
2 2 2

r
2

(b
21

+ g21) / 4

It follows that

R = {~/ r (z) ~ O}
z

Equations (3.36), (3.37), and (3.33a) thus can be used

to express all the dependent variables in (3.34) in tenns of z. An
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z

in this case is therefore possible. In
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Figure 3.6 three cross-sections of R
z

and S , corresponding to
z

those of Figure 3.5, are shown. A number of cross-sections of S
z

are also super-tmposed in Figure 3.7 to produce a 3-dimensional im-

pression of s
z
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CHAPTER IV

GENERAL APPROX!MATIONFORMULAE

FOR LOAD FLOW DEPENDENT VARIABLES

4.0 Introductory Remarks

Explicit formulae relating the load flow dependent variables

to certain independent injections have been extensively used in the analysis

of power system problems. The distribution factors [15 , 16J, DC load

flow [17, 18] and the decoupled load flow schemes (20, 21] each can pro-

vide such formulae. The resulting formulae ,are, nevertheless, limited in

their accuracy and generality.

In this chapter, general approximation formulae are derived

which explicitly relate any dependent load flow variable to the vector of

specified nodal injections. The approach introduced here is novel because:

first, it involves all the specified nodal injections; second, it can

theoretically yield approximation formulae of any order or degree of ac­

curacy, and third, it is highly systematic requiring only the no~al load

flow assumptions.

Since these approximation formulae are central to the applica­

tion of the set-theoretic approach to the security problems, their various

aspects are studied in some depth here.
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4.1 Transformation of Dependent Variables into the z Space

4.1.1 Motivation

Relations (3.30) and (3.31) simply state that the set

of all normal operating conditions , s
z

can be constructed by trans-

forming each constrained variable from the x space into the ~ space

separately. Since the u and the i spaces are the orthogonal sub-

spaces of the ~ space, constrained control or load variables are trans-

formed into the ~ space trivially, e.g.

u.
~

(4.1)

where all the entries· of ~. are zero except its ith one which is 1.
~

On the other hand, the constrained variables belonging to y
x

are compli-

cated functions of ~ which in general cannot be computed as closed form

relations. Thus any relation expressing the dependent variables

explicitly in ~ will be approximate in nature. The proceeding sections

examine the schemes for .computing such approximate relations.

4.1.2 General Formulation

Let the set of the LFE be expressed generally by

z = z (~) (4.2)

and a typical dependent variable by
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y = (4.3)

mapping z back into the xexistence of an inverse operator,

Theoretically, the existence of a solution to (4.2) is equivalent to the

-1
Z

space, namely

-1
x = Z <..~) (4.4)

Disregarding the existence and uniqueness problems associated with this

inverse transformation, any variable y can be expressed in te~s of ~,

that is

y = (4.5)

The problem of establishing explicit relation between y and ~ is then

basically that of obtaining an explicit representation for either

or y [Z-l (~)] .

-1
Z (~)

4.2 Approximation Technisues

In this section the em~hasis is mainly on the approximation

techniques which allow full exploitation of the quadratic formulation of

the LFE. Alternative formulations with no significant advantage over

these formulations are not presented here.



4.2.1 Parametric Aeproach

The essence of this approach is to assume a certain type

79

of approximate relation between y and ~ and then try to adjust the

unknown parameters in the assumed relation to ensure tracking of the

exact relation by the assumed one as closely as possible.

Since a linear relation involves the smallest possible num-

ber of parameters, it is of particular interest here.

of the form

Assuming a relation

=
T

0. + 0. .~o (4.6)

for y, there are 1 + Nz = 2 Nb parameters (0.
0

and a) to determine.

Invoking relation (2.27), it follows that

(4. 7)

The exact relation for y, as introduced in (2.33) I is however of the

form

y = (4.8)

[Z (~)] -+ [Y] (4.9)
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Different formulation of the problem suggested in (4.9) are possible.

The most obvious one is to equate corresponding entries of the matrices

[Z (~)] and IY] and, after eliminating identical equations, solve an

over-determined set of linear equations for a •

4.2.2 Linearization Based.Aperoach

Because of the non-linear nature of the LFE in ~, an

inverse operator,
-1

,[ , as suggested in equation (4.4), cannot in general

be computed. It is, nevertheless, possible to remove the non-linearities

by linearization and· obtain an approximate inverse operator.

equation (2.24) about ~' yields after somemanipulatio~s,

2 [L (~)] x - [L (~)] ~

Linearizing

(4.10)

This allows us to obtain an expression corresponding to (4.4), that is

x = 1 1 -1
"2 ~ + 2 [L (~)] ~ (4.11)

where it is assumed that [L (~)] is non-singular.

stituting this relation into (4.8), it follows that,

Now sub-

1:. y + 1:. aT (x ) ~ + 1
4 0 2- --0 4

(4.12)

where the super-script ~ denotes a second-order approximation and



=
T
~ IY] ~
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(4 .13)

-T
[L (~)] IY] ~

-T -1
[L (~)] [Y]!L (~)]

(4.14)

(4.15 )

Equation (4.11) is basically the iteration rule of the

Newton-Raphson (NR) algorithm and equation (4.i2) in fact corresponds

to the value of y evaluated after the first NR iteration. This sug-

gests that higher order formulae can be obtained by explicitly carrying

out the NR steps. Considering a constant gradient Newton algorithm

(BNA), for the second iteration one obtains

where

-1
[L (~)] z

Inserting the above relation in y = Y (~), a fourth order

relation results. Further NR steps produce expressions which are of the

order 8, 16, 32, and so on.

4 •2 . 3 Taylor Series ~FPansion (TSE). Formulae

Approximation fo~ulae can be systematically derived based

on a Taylor series expansion of y in z .

YT' it follows that,

Denoting such a series by



=

2
1 a Yo 1 T a Yo

Yotl'"lI a :JAz+2TA.z I~JAZ+

~ a~
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(4.16)

where A z z - ~ and

(4.17)

Based on (4.16), and by different truncation of the series, various approxi-

mation formulae can be derived.

4.2.4 Comparison of Approximate·Formulae

We initially started experimenting with all the three schemes

introduced above, testing them· under similar situations. It soon became

evident that the linear TSE formulae are distinctly superior to those of

the parametric approach, no matter what technique is used in solving (4.9).

Furthermore, the second-order TSE formulae proved to be consistently mare

accurate than those based on linearization of the LFE. Such a trend is

exhibited in Figure 4.1, where the three schemes are applied to the 2-bus

system of Section 3.4.

The parametric approach is not successful because, as seen

in Figure 4.1, it tries to follow the exact value of a dependent variable

all over the x space. There is no simple way of introducing in that

approach the fact that in practice, under the steady-state condition, one

is primarily interested in that part of the voltage space where the realis-
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Figure 4.2.
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That part of the voltage space is shown shaded in

The linearization based approach is not competitive with

the second-order TSE formulae because, in addition to a lesser degree

of accuracy, it lacks the flexibility offered by the latter. In the

TSE approach I the first-order term in the series normally carries the

largest weight. This is due to the fact that YT
= aT (~) z is of

the same order as y .: y (~ in terms of x . The higher order terms

therefore are basically of refining or corrective nature. This property

allows one, for example, to drop the quadratic terms from the second order

expansion formulae and still represent the approximated variables with

fair accuracy. This is not the case in the other approach where all the

'V
three terms in (4.12) contribute significantly to the value of Y

L.

In Figure 4.3, the accuracy· of the approximation formulae

derived based on the iterations of the BNA is compared with those of the

TSE. The graphs indicate that l comparing the formulae of the same order,

the TSE formulae have higher accuracies than those of the linearization

based approach. However, from a computational point of view, the formulae

based on the latter can be evaluated with higher efficiency.

graphs are obtained for the a-bus system of reference [3 ]

These

and although

given for a particular variable (the system losses) are typical for other

dependent variables in that system.
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The rest of this and the next two chapters examine dif- .

ferent aspects of applying the TSE formulae in forming the security

sets in the injection space. The subscript T·, used to distinguish

the TSE approach, is dropped hereafter.

4.3 Derivation of TSE Formulae

Due to the vectorial nature of the differentiations involved

in (4.16), it is obvious that after the third term one has to reckon with

the increasing dimensionality of the partial derivative tensors produced.

By concentrating on the evaluation of the terms in the s~ries, as opposed

to performing the differentiations separately, one can avoid such diffi-

culties.

Denoting the nth term of the Taylor series by T (x , ti ~) ,n -0

then

00

y = I T (~, 11 ~)

n=O
n

where by definition

an

T (~1 11 ~)
1 I I az

Yo J 6.z. tiz. AZ
k= ...

n n ! dZ 3z ~ J
i=l o. o. Ok

~ J
j=l (4.18)

k=l
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The summation sign here, indexed with (;t, j, ... , k), represents n

different sununations. From above, it can be easily verified that,

1
n

N
zL _d ' {T (~, tJ., z)} A z.

a zo.n-1 -~ 1

i=l 1

1
d Tn-l (~I 6- ~

= J 6- z
n a !o

Applying the chain rule,

1
a T

n-l (~, a z) a !o -1
T (~, 6- ~ = ~ [~' 6- z

n n a
~ a~

1
a T

n-l (~, s ~ -1
/::,. z

= [ l[J (~)]n a
~

(4.19)

where in the last step computation (2.32) is used. Note that (4.19) in-

valves only the differentiation of a scalar with respect to a vector.

4.3.1 Linear Relations

Since TO (!c, /::,. ~) = Y
O'

from (4.19) it follows that,

a TO (~l a z ) -1
Tl (~I A ~) = I ] [J (~)] /::,. za

~

{_d__ T
-1

= (~ IY] ~)} [J (~) a z
a~

T -1
= . {2 ~ IY]} IJ (~)] A z = !T (~) A z (4.20 )



where ! (~) is defined in (4013).

given by

A linear TSE formula is thus
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4.3.2 Quadratic Relations

Again based on (4.19),

(4.21)

1
a T

1 (~, A ~) -1
= [ ] [J (~) ] ~ z

2 a !o

1 a [~T
-1

2
.(-- (!o) A ~] } [J (!o) ] A z
a~

1 Ta§.. (~) -1
= - t:,. z [ Cl x ] [J (~)] t:,. z

2 .;.;0 V

(4.22)

Using the definition of ~ (~) and the computations in (2.3l) and (2.32)

a .§. (!o) -T
T _0_._ -1

T

= [L (!o) ] [YJ + {!o [Y] [L (~] }a
~

a
!o

-T -1
T

= [L (~) ] [Y] + { - [Z (.@) ] [L (~)] }

=
-T

2 [J (!o)] fry] - [Z (~) ] } (4.23)

A quadratic TSE formulae is then of the form
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rv + ~T (~)
T

(§) ] (4.24)y = Yo ~ z + A z rc A z

where

11
-T

(4.25)
[C (.@) ] IJ (~] { IY] - [Z (.@) ] } [J (~)] -1

4.3.3 Higher Order Relations

Similarly to the way in which the first and second order TSE

formulae are derived, the third and higher order relations can be obtained.

As one embarks on deriving the higher order relations, the computations get,

nevertheless, more messy. This necessitates a more organized approach in

manipulating the results, as demonstrated in ref. [70] where a third order

TSE fo~ula is derived.

4.4

4.4.1

Error Analysis

Analytical properties of· the Linear ExPansion Error

By noting that

= =

one is able to simplify relation (4.21) to

y = (4.26)
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Now let us denote the error associated with the linear approximation by

El (x), that is

y (4.27)

Using equations (2.27) and (4.8), the error El (~) then can be simply

expressed by

(!.)
T

[Y]
T

[Z (.@) ]e
l = x x - x x

T
[E (!a) Jx x (4.28)

where

-~ { ,
[E (~)J [YJ -IZ (~)J}

The matrix [E (!o)J has a central role in the expansion formulae. It

appears in all the higher order expansion formulae (see equation (4.25) and

(4.24), emphasizing their secondary or corrective nature compared to the

first order formulae.

it follows that,

Since at ~ the error is zero, (i.e., El (~) = 0),

= o (4.29)

Exploiting (4.29), the error can also be expressed as a quadratic function

of t1 x x -~, that is

e
l

(~) = (4.30)
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Since the matrix lE (!.c)] appears in all higher order relations,

relation (4.29) can be used to simplify them.

formulae in (4.24), for example, reduces to

The quadratic expansion

'V

Y = (4.31)

4.4.2 Bounds on the Linear EeEansion Error

various properties of quadratic forms can be used to analyze

the nature of El (~) in order to better understand the validity of the

linear approximation formulae. Numerical results, for example, indicate that

for some variables (those that are always non-negative), such as the volt-

age magnitude squared, magnitude squared of line currents or the line losses, .

the linear expansion error is always positive or zero when the expansion

point is near the flat voltage profile (con~ition for zero transmission

losses) . This implies that the matrix [E (~)] is positive semi-definite

for these variables. A rigorous proof of this result for the system losses

is presented in Appendix H •

A more quantitative relation on the error El (x) can be

derived fram the minimum (X
mi n

)
E

and maximum (A
max

) eigen-values of
E

From (4.28), it follows [71] ,

2
Ami n

II xll
E

El (~) = (4.32)



92

Similarly, for each entry of ~, one can write

z.
J

= T
x [Z.J
- J

j = 1, ... , N
z

(4.33)

Relation (4.33) can be used to es­
2

z in terms of Axil , that istablish bounds on the magnitude of

h '\min and '\max . 1 h 1 d h 11were A A are respect~ve y t e argest an t e sma est
j j

eigen-values of the matrix IZ.] •
J

min
y

2
11 xII ~ 11 z.U max

~ y
2

11 xII (4.34)

As shown ,in reference [72] , the special structure

where

j = 1,

min
y. and

I Nz

max
y are simple, positive functions of

,min max
/\j and Aj ,

of the matrices [Z.] j : I, ... , N, can be exploited ~o obtain explicit
J Z

relations for their eigen-values in terms of the network parameters. Com-

bining the last few expressions, it is easy to verify:

(4.35)

This relation provides the absolute bounds on €l (35.) for any injection

vector z .
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Short Cut to the Derivation of TSE Formulae

While seeking for a relationship between the TSE formulae

and the Newton-Raphson (NR) load flow algorithms, we noticed that the

tedious derivations of the expansion fonnulae can be avoided by using

equation (4.11), which is the essence of all NR algorithms.

Since y is in fact the first order sensitivity of y to ~,

it is not surprising to see that equation (4.26) can be derived simply by

linearizing y and using equation (4_11), that.is

y ::;: T
- x

--0 [YJ ~ +
T

2 ~ [Yl x

TT' 1 -1
= - ~ [Y] ..~ + 2 ~ [y] {; ~ + 2 [L (~] ~} = eT (~) ~

(4.36)

Now consider equation (4.27) 1 that is

y = 1?.T (~) z + T
x [E (~)] x (4.37)

This is due to the existence

It is not possible to improve over the first order expansion formulae by

expressing €l (~) linearly in terms of z.

of relation (4.29) I making the corresponding 1?. identically zero. One

can, however, use equation (4.11) to approximate €l (~) by a quadratic

function of ~1 namely

(4.38)=

1 1 -1 T 1 1 -1
{2~ + 2 tr, (~J ~} [E (!o)] {2!o + 2 {L (!o)] ~}

T
z [C (~)] z



(2.32) and (4.26).
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where we have made use of the computation (4.29) and the definitions

It is interesting to note that now by replacing
~ ~

El (x) in (4.37) by El (~) the same expression for y, as given in

(4.31), results.

With slight modifications, the same scheme can be followed

to obtain the expansion formulae for higher order terms. A third order

fonnu1ae, for example, can be derived by first defining a vector

1.. (!o'~) such that

= (4. 39)

From (4.31), it follows that,

= [C (~)] z (4.40)

'\I

then adding an approximate error function €2 (~) to y and repeating

the previous steps, one can readily arrive at,

(3 )
y

T
z [C (~)] z +

T
z re (r.)] z (4.41)

where the super-script (3) indicates a third order TSE formula.
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4.5.1

Numerical Results

Error Propa2ation Maps for a Two Bus System
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A two bus system is examined here primarily because its

mathematical model, as opposed to larger systems, involves only a few

variables, enabling us to show some of the results graphically.

The system here is that of Section 3.4, Figure 3.4. The'

first four graphs show" how the equi - % error" contours prop.agate in the

P2 - Q
2

plane for the first order expansion of the indicated dependent

variables. Figures 4.5a""· .through 4.5d show the propagation of equi - %

"error contours, when the second order expansions are used.

ing points in relation to these graphs are of importance:

(i) A large area around the expansion point can be

identified as a very low error region.

The follow-

(if) Among the variables examined, the expansion

formula for the reactive power injection seem

to be more susceptible to large errors as .!.

moves away from !.o. It is, nevertheless,

important to note that the + ~ % error con­

tour present in Figure 4.4b corresponds to the

zero reactive power injection contour and the

error {not the % error) is indeed numerically

quite small along this contour.
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Figure 4.4. Equi - % error contours for linear approximation of

(a) P1; (b) q1; (c) V~ ;(~) 1111
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4.5.2 Numerical Simulations
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The eight bus system of reference [3] is chosen to study

the errors involved in approximating unknown variables in the system.

The error analysis here is based on a random simulation approach. Ran-

dom numbers are generated within a hyper-box in the x space. The sides

of the hyper-box are 0.2 p. u, long and the expansion point, ~, is at

its center.

These variations of x around ~ generate a wide spectrum

of operating points covering and going beyond their normal expected range.

The generated numbers are substituted into the system equations to obtain

generations, loads, voltage levels, and power transfers. Those numbers

which do not correspond to realistic load flows (i.e., positive real power

generations, negative real loads) are discarded. After forming z from

these data, the expansion formulae are used to calculate the value of the

unspecified variables in the system. The results are then compared with

their calculated exact value. A few typical results for some of the de­

pendent variables, y, are shown in Figures 4.6a through 4.6d. Note that

Yl and Y2 in these graphs are representing the linear and quadratic ap­

proximations respectively. Table 4.1 below summarizes these errors.

Note that in accord with the previous observation, the error associated

with approximating the reactive power generations i..s relatively larger

than in other variables in the system.

To reduce the volume of this thesis the results of similar

comparisons, between the linear TSE formulae and those linear formulae
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Figure 4.6. Typical error spread of linear (Y
l)

and quadratic

(Y2) approximations to : (a) real power injection

at the slack bus ; (b) reactive power injections

at generator buses; (c) voltage squared at load

buses; (d) real line flows, for random operating

points.
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which are currently in use, are not presented here.
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One should re~og~

nize, however, that since these fo~ulae usually do not carry any in-

formation on the vo1~age levels or reactiv~ generations, a mean~ngful

comparison between them and the TSE formulae is difficult to make.

In those cases where a comparison is possible (e.g., with real line flows)

the TSE formulae produce more accurate and more general results.

TABLE 4.1.

AVERAGE OF THE % ERRORS

FOR SOME TYPICAL DEPENDENT VARIABLES

2
V P QSlack

p
Load Slack Line

.100 x I
El

I 2 20 25 8
Y

100 x I
E

2 I 0.2 3
Y

3.5 1
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CHAPTER V

APPLICATION OF THE TSE FORMULAE

TO SECURITY RELATED PROBLEMS

5.0 Preliminary. Remarks

The general approximation formulae developed in the previous

chapter are strong analytical tools for the in depth study of a number of

power system problems. With their aid, many of the problems which are

historically formulated based on approximation formulae, can be refonnulated

with a wider scope and more encompassing objectives. Moreover, since these

approximation formulae are general, they can potentially constitute the

basis of fresh approaches to a number of problems whose conventional formu­

lation does not call for the use of such formulae.

In this chapter, initially, some mathematical properties of

security sets are summarized. This is to provide a clear picture of

various security sets in different spaces, and to pin-point possible pitfalls

which are historically overlooked in their analysis. The employment of

the TSE formulae in constructing the security sets in the z space is

then studied. Next, the role of the approximation formulae in various

formulations of the secure-economic dispatch is high-lighted.

5.1 Some Mathematical Pro:eerties of Security Sets

The objective of this section, is to clearly show how, under the

transformation z = Z (~), various security sets are related. The per-
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tain~g concepts are presented primarily pictorially, without go~n9 into

1e.nghty proofs ~

5.1.1 Structure of Sz

The set S is the intersection of a hyper~box H, with az Z

non-linear set Y, i.e.
z

The set Y is defined in equation (3.23).
x

To demonstrate this/consider the following maps:

z = z (x)

u ~ H
x u

z = z (x)

D »- H
dx

z = z (x)
y JI" y

x z

(5.4)

(5.5)

(S.6)



The sets H and H
d

in the z space represent two open-ended
u
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parallelograms, whose intersection defines H ,
z

i.e.

u
x

n D
x

z =
H

u
n H ~

d
H

z
(5. 7)

Now since S = (U n 0 ) n y using (5.6) and (5.7) , one canx x x x

wr'ite

z = Z (x)

s JJ- H n y = S (5.8)
x z z z

Hence, to describe S
z

one basically needs to describe y
z

5.1.2 Properties of u n D
x x

Consider the set Uno
x x This set, in theory, can be

disjoint.

defined by

This is demonstrated in Figure 5.1, where U and Darex x

u {~ I 4 S;
T c· o :.J s 9}= u = x xx 1

D {!. /0. 5 s 'd
l

T

G.s :'J S; 2}= = x xx

u

Since 1 the disj oint pa'rts of the set U n D all mapz
d

1
x x



into a single region in the z space, i.e., into the hyper-box

Here

H •
z
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H
z

= {z I ~4l s
- h·~

z

Now, considering the inverse map (i.e., from the z space into the x

space), each z € H maps into various disjoint parts of U n D
- z x x

In other words, the disjoint parts of

The solutions toflow solutions to injections Z € H
z

u n D
x x

are the locii of load

ZT = [5 8 0 9J
~ ".

for example, are the intersections of the surfaces u
1

=5.8 and d
l

= 0.9,

shown by dotted lines in the picture. Thus one can associate an inverse

transformation,
-1

x = z. (~), with the ith disjoint part.
-J.

5.1.3 Map of S into the z Space
x

From above, it is clear that

S C u n 0 .- S C H (5.9)
x x x z z

Hence, when S is disjoint, 5 can be either connected or disjoint,
x z

depending on how the disjoint parts of S are located relative to those
x

of U ('1 D
x x If each disjoint part of S

x
lies in a different disjoint

part of u n D
x x

s
z

will be connected. This is demonstrated in

.e
Figure 5.2(a), where Y is defined by

x
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s
x

/

(a)

___+---.,.-e:- -~~------,1
1

s ~fjl(~~-- !-'<li)

Illustration of possible disjointness of

-----

,:...' ..-

\
~'

---------~,.~c!)

.----+---""""--'f----""-------rl 1

(b)

Figure 5.2. Illustration of conditions which give rise to:
(a) a connected S (b) a disjoint S

z z



y {~ / 2.5 s T

6,875 -:'8J s s.a}= Yl = x xx·
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When more than one disjoint part of 5x
lie inside one of the disjoint

parts of ux
n D ,

x
s

z
will be disjoint. That is demonstrated in

Figure 5.2(b) for

y =
x = T

x

-1.75

x ~ 8}
7

This is, however, a very unusual case and there is no evidence that it

could actually happen in practice.

5.1.4 Choice of the Inverse Transfo~ation

In Section 4.2, it was demonstrated that in transforming a

dependent variable into the z space via a TSE formula, a first order

approximation
-1

(~) is needed. Figure 5.2, it is clearto x = Z From

that not all the possible inverse transformations are suitable for this

purpose. To have a non-empty S
z

the choice has to be restricted to

those inverse transformations which correspond to the disjoint parts of

5 (here
x

-1
~l (~) and

-1
~ (~)) . Now the key question is how one should

know a priori which inverse transfonnation(s) fall(s) in this category.
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Apparently, there is no simple answer to this question.

Traditionally, it is assumed that whenever S
x

is non-empty, it has a

disjoint part corresponding to the realistic voltage solutions. There

seems to be no rigorous proof to support this assumption, but it can be

loosely related to the conventional choice of the ref~rence angle (i.e.,

e
r

= 0; f
r

= 0; e
r

By accepting this assumption, the inverse transformation cor-

responding to the realistic voltage solutions is always among the "right"

ones. Note that by choosing ~ to be a realistic voltage solution, then

-1 1 1 -1
x = Z (~) = '2 ~ + 2" [L (~)] z

is an approximation to the inverse transformation corresponding to that

particular type of voltage solutions. Other inverse transformations can

be approximated by using their proper ~ •

5.1.5 Influence of the Reference and Slack Buses on Security Sets

To study the impact of the location of the reference bus or the

choice of the slack bus on various aspects of security sets, one has to

look for more general operatillg spaces.

Let us denote all the dependent and independent variables by

the vector .!l.. The system!s physical and operating constraints then can

be expressed, in general, by,
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T
In ,J 0Tl. - x x =

J.. -r l. -r

i = 1, ... , N
dp

+ N
z

m M
n. s; n. s; f\.
~ ~ ~

(5.10)

(5.11)

By substituting for n.
1.

in (5.11), using (5.10) , one obtains a security

set, denoted by S
r

in the x space.
-r

That is

5
r

m
{x / n.
-r ~

T
x
--:r

x
-r

Mn.
~

i = 1, ... ,N
d

+ N }
P z

(5.12)

This set is obviously invariant with the location of the

reference bus. The intersection of S with the hyper-plane
r

T
a x = 0
-r -r

defines the set 5
x

where the entries of a are all zero, except its
-r

rth and (r + Nb>-th entries which are -tan e and +1, respectively
r

(equation (2.20) ) • For different values of e and different locations
r

of the reference bus, different a and, consequently, different S
-r x

result. However, for a fixed location of the reference bus, variation of

e
r

does not change the size or the shape of s , but affects only its
x

location in the x space. Therefore I the set 5
x

while it fails to

be invariant with the location of the reference bus, can be regarded as

invariant under e variations.
r
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To define an invariant set corresponding to s
z

one

has to work in the !l. space. The set of points (LL, x) satisfying

equation (5.10) define a non-linear manifold in the (n.,~) space.

The projection of this manifold into the !l-space when intersected with

the hyper-box defined in (5.11) 1 defines a set, s
n

which is invariant

under the choice of the slack bus. As shown in Figure 5.3, S is then
z

the projection of s
n

into some N
z

dimensional sub-space of the ~

space, specified by the choice of the independent variables.

By choosing different slack buses, one is in fact specifying

different sets of independent variables, or is equivalently choosing

different sub-spaces of !l. The projection of s
n

is not, in general,

the same in these different sub-spaces and different s
z

could result.

NON-LINEAR MANIFOLD

HYPER-BOX

.0r

D1
~--+- ........,........._--..----------"'"

Figure 5.3. An illustration of the relationship
between S and S

n z
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An important conclusion here is that, a security margin

computed based on the distance of the operating point to the boundary of

a set, as suggested in [62J, is meaningful only when the set is an

invariant security set. For S or S , such a security margin willx z

have different values depending on the location of the reference bus or

choice of the slack bus.

5.2 Construction of S and SIz z

Henceforth, the following assumptions are made:

(i) The set Sx if non-void, contains realistic

(ii)

voltage solutions.

The set S is a co.nnected one.
z

5.2.1 Implicit Description of s
z

Based on the above discussions and the use of (S.l) , s
z

can be described approximately by representing each constraint defining

When a first order TSE formulae isY
z

by a singl~ TSE formula.

used for this purpose, a linear set, denoted by S
z

results. That is,
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s =
z

H
z

n m
{~/ s.

~

M
y.

.i,

(5.10 )

The set S is a convex polyhedron which tries to approximate the non­
z

linear set S
z

The above description of·S is an "implicit" one,
·z

because a good many of the constraints defining it are redundant, i.e.,

their deletion does not alter S •
z

The minima!.. representation [52] of

s, then will be its "explicit" description.
z

For the example of Section 3.4, three cross-sections of S
z

are given in Figure 5.4.
.,

Comparing these cross-sections with those of

Figure 3.6 indicate that S is approximating S with reasonable accu-
z z

racy.

A second order approximation to the constraints defining

Y produces a closer approximation to S
z z

Denoting the resulting set

by
'V
S I it can be expressed by

z

'V
S =
,z

H
z

n m
{~/ y. ::;

~

T T M8. z + Z [C (B.)] z s Y, ; i =1 , ••• , N
dP

}
-'.l. -:l ...

(5.ll)

A comparison of the cross-sections of given in Figure

5.5, with those of s
z

for the same example, confirms that
'V
S
z

is in-

Note that since the TSE

'V
5 will be
z

5 and
z

fairly accurately.5
z

formulae are accurate only locally, the accuracy of

deed representing

enhanced when ~ is chosen from S (i.e.,
x
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Figure 5.4.
A

Cross-sections of S
z corresponding to Figure 3.6,

for: (a) vI = 1.0 (b) vI = 1.05; (c) vI = 1.10.

(Expansion point : ~ = [1.1025, -0.2, -0.2]).
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Cross-sections of S corresponding to Figure 3.6,

z
for: (a) vI = 1.0 ; (b) vI = 1.05 ; (c) vI = 1.1 •

(Expansion point : ~ = [1.1025, -0.2, -0.2]) •
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Now by comparing the surface pi = 0.75 in Figure 5.5

with its exact; counter-part in Figure 3.6, it becomes clear that the

exact map is the result of two inverse transformations -1
Zl (~) and

-1
Z2 (z) (solutions to equation (3.21» . The upper-half of the surface

is produced by the inverse transfonnation corresponding to the realistic

voltage solutions,
-1

~1 (~, while the lower-half is produced by

-1
Z2 (~) • The two emerge into one on the boundary of R

z

The expansion point used here to derive various TSE

formulae is a realistic voltage solution. Hence, in Figure 5.5, only

the upper-half of the surface pi = 0.75 is approximated. Had ~;e used

formulaeTSEthe resultingan expansion point corresponding to
-1

~2 {z.},

would have, instead, approximated the lower-half of that surface..e
An important point here is that, unlike the surfaces in

Figure 3.6, parts of the surfaces defining ""S or 5 lie outside R
z z z

This is due to the fact that an approximate relation for
-1

x = z (!.) ,

and consequently the TSE formulae based on that, do not contain the in-

herent restrictions which limit the range of their exact counterparts to

R In the next chapter, we discuss cases where this aspect of thez

approximation formulae could cause certain difficulties.
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5.2.2 Implicit Description of sI
z

In Section 3.1.2 we introduced the functions

j=l, ... ,N to represent the changes in the system
cg

condition after the occurrence of anyone of the listed contingencies.

in the ~ space.

On the assumption that these functions are available, we were able to

~I
~ §formulate

Ncg .
To characterize sI = () sJ as a first step, one

Z j=O Z

needs to have similar functions to systematically derive conditions under

which a pre-contingency injection remains secure to the listed contingen-

cies.

Since the network parameters cannot be manipulated directly

in the z space, the contingencies involving changes in w have to be

treated separately.

(i) Generator or Load Outages

We emphasize again that here only those contingencies are

considered which do not change the topological structure of the power

network. This implies that we are considering· only the type of generator

(or load) outages that lead to partial shut-down of a generating plant (or

load point) . This is to avoid conversion of a PV bus to PQ due to

the outage.
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Let the kth out.aqe be represented in general by a

sudden change of every z.
~

by
k

E. Z.
~ ~

(e~ ,i=l, •••
a,

, N
z

are mostly

zero). As a result of the out.aqe, .the operati.ng state changes from

~re to zpost = Zpr e + A k
u. z • We would like to obtain an explicit

expression forA zk in terms of zpre

Shortly after the outage the inertial response of the

generators causes a shift in the system frequency. This frequency shift

activates the automatic controls local to each substation, causing the

internal reserve of the system to pick up the loss of generation (or sudden
~

load increase). Next the generators are rescheduled by central control,

allocati.ng the exist~ng demand between the generators based on an

economic dispatch.

In Appendix. B , it is shown that a first order approximation

to the function describins 6 zk is possible, and it has the seneral

form

= IN (£k)] z (S.12)

For the time frames considered above, the matrix [N (e
k) ]

has different forms and leads to different VUlnerability sets.

Us~ng (5.12), the poat.-cont.dnqency injections for the kth

contingency are related to the pre-cont~ngency ones through:
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post pre
6.

k
IIN (e;k) ] prez = z + z = z (5.13 )

where

[IN (ek) ] ~ { It] + [N {e:k)J} (S .14)

The set of those pre-contingency injections which are secure

to the kth contingency is then obtained easily by replacing ~ by

{IN (£k)] z in all the constraints defining

the first order approximation:

s
z

In particular, for

~k ~ k
S = S (~~ [IN (§..)] !.)z z

or for the second order,

k=l ••• N
cg N

w
(5.15 )

k=l ••• N
cg N

w
(5.16)

(ii) Line or Transformer Outage

A line or transformer outage alters the network admittance

As a result, allmatrix, (YbJ •

the intact network change. Since

4 (!o) and

[L (!o»)-1

[C (S.)] computed for
~

enters into the definition

and [C (~}J, i=l, ... , N
dP

' there is no simple way to

To form the set ofmodify them to account for the changes in IY
b]

.

pre-contingency injections which are secure to the jth contingency (in-

volving line or transformer outages), one has to calculate
j4 (~) and

i=l, ... , N
dP

directly, i.e., as in the case of the in-
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tact network. . The superscript "j" indicates the jth contin-

gency.

5.2 .•3 Numerical Considerations

From
j

(4.14), ~ (!o) , i:=:l, ••• , N
dp

are the solutions to

i=l, ••• , N
dP

(5.17)

where are the counterparts of [L (!o] and (Y.] ,
~

for the outaged network.

following schemes:

The above equations can be solved by one of the

(a) Inverting [L
j

(!o)] ;

(b) Decomposing [L
j

(!o)] into a triangular form

(c) Using only [L (!o)] •

For a large power system, inverting [L
j

(.!o)] is very ex-

pensive and time consuming.

realistic approach.

Decomposing [L
j

(.!o)] is often a more

In cases where [L (~)] is already in a decomposed

form and storage limitations do not permit compiling a new Jacobian, it is

possible to fonnulate (5.17) in terms of [L (!o)] • Defining:
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[y~] - [Y.]
~ ~

(5.l8a)

(5.lab)

~ 6~ (~) - 6. (!.o)
~ -:L

and recalling that ~ (~).. is the solution to

(5.l8c)

(5.lad)

=

after some manipulation, one call rewrite equation (5.17) in the form:

[L
T A 6~ b? [A L

j
(!.o) ] II a? (5.19)(!.o) ] = -

-:L ~ .."

The above equations can be solved i.terativelY for Normally after

two to three iterations sufficient convergence is achieved. As shown in

ref .. · [14],. for a single line outage, the matrix [A L
j

(!o] can have at

most 16 non-zero elements, thus no significant memory is normally needed

to store

Computing the Jacobian inverse seems to be the most efficient

way of calculating [e (~)] i==l, ••• , N
dP

' for the intact or the outaged .

network. In this case the matrix inversion Lemma (c.f. 173J) can be em-

played to compute
j -1

[L (~)] using
-1

[L (!o)]
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5.3 Secure-Ecqnomic Dispatch

In this section,[76, 77, 78, 79] •

gains in using the TSE formula over other

·cal allocation of the total real power demand

lae have historically played a significant part

its without violat~ng anyone of the operating

limits is called the" ecure-economic dispatch" [43,~44, 74,75] •

among the generating

in

The approximation fo

we highlight the pote

approximate relations presently in use.

5.3.1 Problem Formul tion

notation of Section 5.1.5, the secure-economic

dispatch problem can e formulated as a constrained optimization problem

of the general form

Minimize f (.!l.)

subject to

= o i = (5.20)

to the load variables are fixed, i.e. I

M
n. ~ n.

1 1

m
n

which cor

where f (~) descri es the way the total generation «ost varies with ~.

Those



m
n.

J
= M

n.
J

= j = 1, ••• , N
d,

where
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is a given demand vector.

The dimension of the above problem is excessively large and its solution

is in general quite time consuming. Since one is searching for an opti-

mum control strategy, the dimension of the problem would be reduced

drastically, if f (~) can be expressed in terms of u.

then becomes:

The problem

Minimize: f (!l) 9 (E.)

u E S (~ = iO) (5.21)
z

As shown in Figure 5.6, the set is the projection of the

cross-section of 5
z

corresponding to d = dO, into the u space.

The cost function, is often expressed by

N
g

(p~)f (.!l.) = I f.
a, ~

i=1

(5.22)

where f. (p~) represents the generation cost of the ith generator.
~ ~

The total number of generation units is N which· includes the slack bus
g

For simplicity, we assume that there is only one generator per

bus, thus allowing the generation vector, £g, to be expressed by

v
2.

(5.23 )
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Unlike p~ , i=2, ... , N , the dependent variable pg is not part
.L 9 1

of the control vector, u , and its relation with u is not known.

52

----- I
I
I

d,
d

Figure 5.6. An illustration of the relation

between S and S (d =~) •
z z - v

5.3.2 The Loss Formula

patch.

To simplify the problem, the set S (£ = dO) is often
z

· d h h b (pg.. )m _< g (g)M · 1 Napproxamatie by t e yper- ox P. ~P. , ~= ,. .. ,
~ ~ ~ g

The resulting problem is called the generation constrained economic dis-

Here, pi is the only variable which has to be expressed in

terms of u.

Traditionally, variations of with u is approximated

indirectly. First the total loss in the system, is approxi-
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mated by a quadratic function of the form

= v
£. +

v
[E] z (5.24)

Then, by substituting Pi from above into the real power balance equa-

tion, that is

=

i=l

an expression for is found (Pd

(5.25 )

is the total real power demand) .

The expression in (5.24) is often referred to as the

"loss formula" [76, 80, 81, 82] , and the constants ~ and IB] as

the "B- coefficients". Because of the basic role of the loss formula

in economic dispatch, during the last three decades, it has been the sub-

ject of extensive research [76,81,83,84] . As a result, a large

volume of literature, discussing various techniques of computing the

B-coefficients, is available. Many of these techniques involve compli-

cated transformations based on restrictive assumptions (3, 76, 85] or

premises incompatible with the mathematical model of the system fll0] .

The use of the TSE formulae 170] in deriving a loss formula, seems

to have been overlooked by other authors.

Using the expressions for the net real power injections in

(5.25), it readily follows that
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A quadratic expansion for p~ in terms of z., that is

= (5.28)

produces a loss formula which has the same form as (5.24).

of this formula, over those presently in use, is that:

(a) It is quite general and includes the effect of

all injection variables on the losses;

(b) its derivation is very systematic and involves

only the usual load flow assumptions;

(c) under unbiased conditions, it offers a much

higher accuracy.

The advantage

A simple comparison of the derivation of various loss formulae with that

suggested in (S.28) confirms the validity of the first two statements.

The last statement is verified by a simulation"'""based accuracy test.
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In Figure 5.7, the relative accuracy of the expansion

formulae in calculating the total 12a loss is compared with a B-

coefficient loss-formula. The expansion formulae are derived for the

eleven bus system of reference [109] , where the corresponding

B-coefficients are supplied. We have subjected the three loss-formulae

to an error analysis similar to that explained in Section 4.5.2. The

expansion point of the TSE formulae corresponds to one of the base

points upon which the B-coefficients are calculated. As the results

show, the quadratic TSE loss-formula estimates the system losses con-

sistently more accurately than the a-coefficient loss-formula. The

average of the errors for the linear expansion was 65%. The average

for B-coefficients loss-formula was 30% while that. for the second order

Taylor was 7%.

sparse.

Unlike [P~] , the matrix

This 'makes direct expansion of

[Pg] (Pg = x
T IPgl] x_) is highly

1 1

pg in terms of ~ computationally
1

more efficient than calculating and using (5. 25) • It can be proved,

however, that when the loss formula is given by (5.28), both schemes pro-·

duce the same expression for

Consider a quadratic expansion of

one can express ~
1

in terms of ~, namely

By partitioning it,

t:Jl + ~l u + (5 .29)

The generation constrained problem is then
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N

Minimize: £ (u p9) = ~g f. (P?)
1 l. 1.

i=l

subject to

(p9}m S .pg S (p9) M

(5.30)

Rather than being used to express £1. (pi) andand (5.29).

(pi>m spi s (p~) M. in terms of1, u , expression (5.29) is normally

treated as an equality constraint • The dependent variable then

plays the role of a decision var1.able.

readily appreciated.

The resulting simp1i6ity can be

5.3.3 The General Secure-Economic Dispatch Problem

As mentioned in Chapter I, based on replacing each cost

function by a number of piece-wise linear s.egments and the use of LP

techniques, Stott [48] has proposed a very efficient approach for solving

(5.21). Central to his approach is the assumption that power systems,

in general, even under stress, can be operated with only a few dependent

variables at their limits. As a result, only few constraints in y
z

need to be considered. He formulates the problem in te~s of
v

£ ; con-

sequent1y, the constraints defining y
z are limited to real line flows.
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By adopt~g Stottls approach, but using the TSE formulae

to express dependent variables, a comprehensive formulation of the prob-

lem results. The significant improvements will be:

(i) All the operating constraints can be considered;

(ii) the control vector here includes the vol~age

levels, allowing to:

(a) Add the system losses T
(Pn = B z) to the

XI ~-

objective function to minimize the total

loss;

(b) alleviate violations of bounds on dependent

variables which are relatively insensitive

to real power variations;

(lii) since at each LP iteration, all components of u

(and thus ~) are shiftedoptimally, the scheme can

potentially converge to the exact solution (i.e., by

up-dating ~ (~) for the dependent variables

involved) •

Since the scheme uses a reduced "basis" (tableau) [86]

method, the inclusion of the voltage levels as control variables does not

have any significant effect on the amount of computation required. Note

that, instead of running a DC load flow to check the constraints after

each generation reschedual (as suggested in [48]) one iteration of a

BNA type load flow can be used.
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CHAPTER VI

CHARACTERIZATION OF LOCAL AND GLOBAL SUBSETS

OF SECURITY SETS

6.0 PreliminafY Remarks

The security sets, in their implicit form, suffer from the

following limitations:

(i) Their inside points are not easily accessible.

(ii) Since they are described by a large number of

constraints, their direct use in the analysis

of security related problems is not computa­

tionally desirable.

In this chapter, we have addressed these difficulties by

investigating the possibility of describing a subset of a security set

by a simple, easy to evaluate function. Furthermore, we have looked

into the problem of filtering out redundant constraints from implicit

description of a security set.

6.1 Characterizing a Local Subset

In this section, the problem of expressing part of a

security region by a simple, explicit, and easy to evaluate function is



examined.

chapter.

The application of such subsets are discussed in the next
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6.1.1 Problem Statement

Consider th~ following problem. Find a large subset of

S such that it contains a given point and can be described by an
z

explicit function.

Let z
-g

be the given point and c (z, z ) represent the
- --g

function.

defined by:

We are actually searching for a set s (c),
s

which can be

S (c)
s {=. / 0 s c (~, z )

-g
c} (6.1)

The constant c has to be chosen such that

S (c) C S
s z

With a little thought, one can conclude that the function

c (~, z) should necessarily have the following properties:
--g

(i) Since S is normally a closed set, the contours
z

of C (~, z) must define closed surfaces;
-g
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(iil For >

:::J S (c
2

)
s

have a single minimum at

(iii) To have

z = z
~

always inside S (c) (irrespective of
s

the function C (z, z) must
---g

and C (z , z ) = 0
.~ -g

C >0),

z
~

the value of

Note that the last property ensures the automatic satisfac-

tion of the lower bound o~" C (!.' z )
~

Because of the second property, to have s lc)
s

c s
z

the value of c has to be bounded from above. Denoti~g this bound by

*c, the set

*c ,

is

*s (c), defined by C (z, z ) =
s - ~

*Clearly, cat least, at one point.S ,
z

touches the boundary of

the solution to the following problem:

Minimize c = C (~, z )
-g (6.2)

z e Ext ts )
z

Because of the properties of C (z, z ), this very difficult
-~

problem, breaks down into a series of relatively s~ple and manageable

sub-problems. Examin~ng Figure 6.1, it is easily understood that the

solution to (6.2) is simply the smallest value that c (z, z )
--g

assumes
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u

----I-------~rt/C__--:::...-=::;..-_t_------..... d

Figure 6.1. contours of C (~, z) and the boundary
-g

of S
z

when it is maximized subject to the operat~ng constraints one at a time.

In other words:

* *c = Min [c. ]
j J

where

*c. = Min [C (z , z )]
J ~ --g

Z€ Ext (zJ) .

(6.3)

(6.4)

The set is defined in (3.30) • Note that in this chapter the super-

script * identifies optimum and sub~optimum values.



6.1.2 Choice of the Function C (~, z )
-g

Among various possibilities, we opt to describe
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C (~, z )
--g

by a hyper-ellip,~oid of the form:

C (~, z )
-g

T
(~ -~) fA] (~-~)

_e

The positive definite matrixfAJ, which defines the shape and the

orientation of the hyper-ellipsoid, offers adequate flexibility to S (c).
s

Note that the suggested function possesses all the listed properties for

c (~, z ) .
--g

With this choice of C (z, z ), the problem in (6.4) when
--g

involving an independent variable is simply

Minimize

subject to

c. =
a

(z - z ) T [A] (z - z )
-:-9 -.-g (6.5)

z =
R,

z.
].

R,
(z.

].
=

M
z.

a,
or

m
z .)

a

where R,. is defined in (4.1)
--:L

The Ext (Zi) is represented by the

boundary hyper-surface T R,
(R,. z = z.).
--:L - ~

For a constrained dependent variable, us~ng z = [L (x)] ~,

the problem takes the form:



Minimize C' =
j

{IL (x)] x - z }T lA]' {IL (x)] x - z }
- --g - ~
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subject to (6.6)

T R,
x IY.J x = Y»

J J

The relative complexity of this problem can be appreciated by recogniz-

ing that solving a much simpler problem of th.is type, that is

Minimize,: {[L (x)] ~- zspec}T {[L (x)] ~_ zspec}

x

(6. 7)

has been the subject of extensive research during the last decade 187, 88, 89] .
I

6.1.3 Solution Techniques

The solution to the problem (6.5) is straight forward.

The stationary point of the LagrCl:Ilge function, L (!., A) , defined by

L (~, A)
T T 1

(z - z) [A] [ z - z ) - A (1. z - z.)
-.-g - --g --:L - --:L

(6.8)

coincides with the solution point. Thus, one needs to solve

Cl L (~" A) T

[ a z ~ = 2 [A] (z ~ z ) ... A ~.
- ~ -:L

= o (6.9)

*for z Here an analytical solution is possible, namely



This gives

*z =
*A

z +­
~ 2
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(6.10)

*
c." =

1.
(6.11)

The value of *A *is obtained by insist~ng that z should lie on

T ~
1, Z = zl.' ,
~-

giving

*
~ T

][z, - 1,. -z
A 1. ~" =:s r

(6.12 )= > 0
2 ~~ [A] -1 1,.

--:L ~

.tt
A widely accepted approach for solving problems such as

(6.6) is to solve a sequence of unconstrained problems {90, 91, 92] of

the form

Min L (~, A, o) =
T .

{[L (x)] ~ .... ~} lA] {[L (x) ] x ~ z }
~

(6.13)

The role of the parameter p in the ~ugmented Lagrange function,

L (~, A, p) , is to make sure that L (~, A, p) has a minimum. This

will be the case if p is chosen larger than a certain value [ 90 ]

Here, one starts with some value for p and an initial guess to A ,
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and solves the resulting problem in (6.13). Next, the solution is used

to update A (and possibly p) • The problem is then resolved using

the updated A • This process is repeated till certain convergence

requirements are satisfied.

Sasson (87, 88] , after experimenting with various opti-

mization algorithms, chooses a Fletcher-Powell scheme [93, 94] for

solving (6.7). This algorithm is highly reliable but converges in more

than N iterations, making it unsuitable for large dimensional systems.z

Since (6.6) has to be solved for all the constrai~ed dependent variables,

and each solution could involve solving (6.13) a few times, the adaptation

of that scheme is not justified here. In the following, we discuss two

schemes which proved to be quite efficient in solving (6.6).

Proposed Algorithm:

The gradient of L (~, A, p) is simply

[A] {[L (_x)] x - z } - 2 A [Y.] x
--g J -

T
4 [L (~)]a x

d L (~, A, p) T

-------~

+ P {~T ][Y.
J

!L
x - y.} IY.] x

J J
(6.14)

At the solution point, *!., the gradient vanishes and *Y. (~)
J

!L= y.
J

*Hence, x = x satisfies:

2 A IY. ] x
J

(6.15 )
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IL (x)] x = (6.16)

To solve thi~ system of non-linear equations, we propose the following

iterative scheme

where

k+1
x =

k
z (6.17)

k 6­
z

k
x (6.18)

A
k

is updated in analogy to equation (6.12), namely

-tit Note (6.17 ) represents a load flow problem. For enforci.ng

This is based on the re~ognitionwhere

that

Jl, 13: (x
k

) ]

A
k

[y. - z
J :J - =;9= 2 (6.19)

13: (x
k

)
-1

(x
k

)[A] f3 •
J J

B. (x
k

)
J
k

z can be viewed as the solution to the following problem:

T
Min (z - z.) rA] (z... z )

~ -.-g
z

subject to (6.20)



with itsIn other words, for each iteration, by replacing Y. (x)
] -

linear TSE formulae, problem (6.6) is solved approximately.
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Then

by running a load flow (i.e., solving equation (6.17) and A
k

IInitialize I
k=l

"Calculate (update)

-, k
S. (~" ) (Appendix C )
J

r k=k+ll
Use equations (6.11, 18, 19) to

compute: A
k, k and

k
c. , z

J

.

Compute
k+l

x ,
l'-

the load flow No Check for- Yes _J . I...

solution
k

--.0'"1 Ex~t

to z convergence-

Figure 6.2. Flow diagram for computation of *c. .
J

are updated. This view of the proposed iterative scheme provides valuable

insight into the behaviour of the algorithm.

The major steps of the algorithm are summarized in the

flow diagram of Figure 6.2. To calculate
kx
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it is not necessary to compute
k

IL (~) J • This is documented in

Appendix C where it is shown that the problem of computing
ka. (x )

J -

can be fo~ulated in terms of any available base Jacobian.

From the interpretation given to the algorithm in (6.20),

it is clear that the sequence of the solutions, obtained during the

iterations, satisfy all the optimality conditions, except

which is satisfied approximately.

!1,
Y. (x) = y.

J - J

The iterations are thus aimed at

enforcing this condition. At the solution, however,

!1, 6: * *T (x*) ]-1 * *y. = (x ) z x .£Y
j

] IL {IL (x ) ] x }
J ~

*T * *= x [Y .] x = y. (~ ) (6.21)e J J

The optimality conditions for this problem are listed in Appendix D •

Modified Algorithm:

In the proposed algorithm, during the load flow iterations

areandor equivalently
k

z 8. (x
k

)
J -

These quantities are updated only after the load flow converges.

the injection vector

fixed.

One may logically expect that updating A
k

and ! (~k) during the load-

flow iterations could improve the algorithlnts overall rate of convergence.

To study this possibility, we chose to look into the

iterations of a BNA type algorithm I 17 ] This choice was made to

capitalize on the computational efficiency offered by the existing load

flow routines ..
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Consider ~ ..general load flow problem:

[L (x)] x z

By setting ~ =.~ + 6. ~ (~ corresponds to a base operating point)

in this relation, the following iterative rule results:

k+l 1 1 ( ] -1 { A zk}
x ="2 ~ + "2 IL~) ~ - u (6.22)

h 1\ zk 6.were u
k k

IL (6. ~ )] 6. x Now by replacing ~ by
k

z in (6.22) ,

after some manipulation, it follows that,

k+l k
A

k
b

k
x

~ +

where

k 6. 1 1 -1 ~k}
~

-x + - IL (~)] {!g - 6.2-b 2

b
k !::J. 1

[L (~)] -1 [A]-l S. <!.k)
4 J

(6.23)

(6.24)

(6.25)

Here is determined by demanding that k+l
x must satisfy Y

j
(~)

1
== y.

J

i.e., by solving

k
(~ +

!1;
y.

J

or equivalently,
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(6.26)

With the matrices [A] and [L (~)] available in appropriate forms,

the major part of the required computation per-iteratio~ goes into the

the updating .of ~ (x
k

) • This computation, as explained in Appendix C

can also be carried out using IL (~)], instead of IL (x
k

) ]

A good~ase point for this algorithm is

the load flow solution to z
--<J

This choice of ~

~ (i.e., ~ = ~)I

k
chanqes ~ to

l'

x
--g

(6.27)

It can be readily shown that in each iteration of this

algorithm, one is -almost solv~ng the follow~ng problem

Mip.imize =

T 1,
x [Y.J x = y.

J J

(6.28)

where
k -1 f::" 1 -1 -1 k-T

[D] = 4[L (~)] [A] [L (x )] • In Figure 6.3, it is shown

that the objective function in (6.28) is locally ~ good approx~ation

to the original one in (6.6).

In Appendix D, the optimality conditions for a solution

to (6.6) are discussed. It seems that, because of the special form of

the objective function and the constraints, by choosing x as the initial
-, '--g

point, the resulting solutions should satisfy all the optimality conditions.
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Initialize 1

compute
...... k k °".

~ X = X - X- - -

Compute

~
k

!1J = z - z
--g

Update 6. (Appendix C }
--:J

Solve for yo and b
k

from
=-1 -

![L (xO) ]
£.1 = !1J

[L (~o)] b
k 1 [A] -1 a. (x

k
)=- 4 J

k 1 ° £'1)Compute
~ = - (2£ +

2

and solve A
k

using (6.26 )

~~

Compute

k k Ak
b

k
x = ~ +

~~

y k k 1l---oNO Check for YES
~EXitl= + r"- convergence

Figure 6.4. The flow diagram for the modified algorithm.
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The major steps of the resulting algorithm are sUmmarized

by the flow chart in Figure 6.4.

6.1.4 Features of the Proposed Al20rithms

The first algorithm is conceptually simple and straight

forward. Its main feature is that a substantial part of its required

computation can be carried out in the form of load flow runs, for which

highly sophisticated routines are already available.

was relatively high (or low, depend-

Its major drawback is its susceptibility to divergence.

t
YjIn few cases, where the value of

ing on the variable) 'the algorithm failed to converge to a solution. To

understand the circumstances which give rise to such situations, the

will

R
z

the contours(or small),

s: (x
k

) z = y~
J - J

This, as indicated in Figure 6.6, increases the chances

in the .=.. space approach partially the boundary of
i

y. (x) = v .
J - "'J

As a result, only a small portion of the hyper-plane

be inside R
z

of

interpretation of the iterative scheme, as given in (6.20), can be used.

t
y.

J
As sho~~ in Figure 6.5, for large values of

that
k

z k=l,. .. , fall outside R
z

causing (6.17) to diverge.

An obvious remedy here is to use initially a smaller value

*calculated c, 's ,
J

was larger than any of the previouslyIf the resultingfor
R,

y. •
J

*c.
J

no more computation is needed. Otherwise, can
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be increased to its full value in steps; using the solution of one step

as the starting point to its proceeding one.

computationally expensive process.

This is an effective, but

The modified algorithm enables one to stay on the hy~er-

surface
~

Y, (x) = s.
J - J

all the time. Since the map of
~

Y. (x) = y,
J - J

lies

'completely inside R ,this algorithm is not susceptible to the type of.
z

divergence discussed above. For the few non-convergent cases witnessed

before, the modified algorithm converges, but rather slowly. It ex-

hibits a "zig-zaggingn convergence pattern, which we could only attribute

to the ill-conditioning of the matrix [Ok] in (6.28).

The second order equation for Ak, in rare cases, may have

no real solution. This situation is shown in Figure 6.7. In such cases,

Ak
is computed from:

kT k
b (Y.] ~

J -u

which is the only solution to

(6.31)

k
{(~ +

~ 2
y, }

J

The modified algorithm no~ally conv~rges in 3 iterations.

'Allowing two BNA iterations for updating
k

S. (~),
--:J

each iteration is
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f

)\kgk

t/'
~ (x)=yf

__........--------I'=:=::::::-.---+-----------.-.e

Figure 6.7. Geometrical representation of a case

where (6.26) has no solution.

computationally equivalent to 4; BNA iterations; thus, requiring a

total of 13, BNA iterations per problem. For the same problems,

the first algorithm often converges in less than 4 iterations (i.e.,

3 load flow runs are needed, at most) . Assuming an average of 4 itera-

tions per load flow, it takes a total of 19 BNA iterations to converge,

i.e., 51 BNA iterations more than what is required by the modified

algorithm (the above estimates are based on the cases where rA] has

been a diagonal matrix or IAJ-1 has been supplied).
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6.2.1

Characterization of a Global Subset

Problem Statement

We would like to solve the following problem.
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What is

the largest possible subset of

function?

S which is expressible by a given
z

to represent the function, implyingAgain we use C (z , z )
- -g

that it satisfies all the previously stated conditions.

then can be formulated as:

The above problem

Ma~imize c

E' Z E S-g Z

C (~, z )
-g

(6.32 )

The main difference between this problem and the one in

(6.2) is that, unlike the latter, here Z can vary over the whole
--g

will be a set, similar to (6.1), representing in effect a

could describe the largest local subset of*C (!.1 Z )
-g

to (6.32)

S
z

Upon varying Z
--g

over s
Z

*we wish to find a Z = Z
-g --g

s
z

such that

The solution

crude approximation to s
z

6.2.2 Problem Formulation

using relations (6.3) and (6.4), problem (6.32) can be

restated as



*c = Max

z 65
:-9 z

Min . {Min [c (~, z )]}
--g

j Ext (zj)
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(6.33)

In words, to find the solution, a "maxi-min" problem has to be solved.

The mini-max or maxi-min problems are encountered frequently

in various engineering and economic areas [95, 96, 97] • As a result,

there is a good deal of literature, discussing various solution algorithms,

available on this subject [98~ 99,100,101] • The proposed approaches are,

however, very specialized, tailored for certain applications (c.f. [98]) •

In the next section, it is shown that, when C (z, z )
- g

is

a unique solution to (6.33) can be found easily.-e
represented by a hyper-ellipsoid and S is approximated by

z
s ,

z

6.2.3 Solution in z-space

Consider the case where zj is described approximately by

aT, ( 0£:J !.)~
R,

S y.
J

Using relations (6.11) and (6.12) , the solution

to the problem: Max

zj

re (~, z )]
:-9

is simply

*c =
j

j=l, ••• , N
s

(6.34)

where

that

2
n.

J
=

T -1
B. (~) lA] B. (~ ) •--:J -v J --v

We would like to find a z
:-9

such
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s~ (~)
t

2z - y.
* =:J -g J }c Max Min { [ ]

z e:S j n.
-g z J

(6.35)

Let c represent the smallest of

*c. ~ c > 0 j=l, ••• , N) •
J S

* 1/2 1/2
(c. ) ~ c

J

*c. , j=l, ••• , N (i.e.,
J S

This obviously implies

j=l, ••• , N
s

(6.36)

Inserting equations (6.34) into the above expression, one obtains,

aT. 0 t
~ (x) z - y.

_[-:J - =g ]
n.

J

1/2
j=l, ••• , N

s
(6.37)

where the minus sign indicates that the original inequalities are of the

!L
y .•

J
The inequalities in (6.37) can be used to

reformulate the problem in (6.35) as an LP problem, namely:

Maximize:

subject to

c
1/2

(6. 38)

1/2

~ (!o) ~ + nj C
!L

S; y.
J

j=l, ••• , N
s

Here c
1/2

is treated as a simple variable. By solving this standard

LP problem, one obtains *z
-g

and *1/2
c The following points are

worth mentioning here:



(1)
*1/2

Since both c and

obvious that the set

are positive, it is
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~
y.

]

is a sub- set of S
z

*1/2
n. c

]

and thus

j=l,

*Z € S
-g Z

... , N
s

(2) At the solution, Nz + 1 = 2 Nb of the constraints

are satisfied at their bounds. Therefore, the em-

bedded hyper-e11ipsoid touches (at least) that many

active constraints.

(3) The presence of the redundant constraints do not

hamper the algorithm.

To improve the solution accuracy, one needs to run at least 2 Nb load

flows, in order to update the ~ of the "touching" constraints and

repeat the solution. One may, instead, argue that the solution point

computed here should not be too far from the true

be employed to calculate an exact local subset of

*z ,and thus it can
-g

S (using the modi­
z

fied algorithm). In this case only the touching constraints and those

close to being touched need to be considered.



6.2.4 Solution in ~-5pace

It is not easy to solve problem (6.33) in the ~space
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with acceptable accuracy.

problem:

Instead, we try to solve the followi~g

where

Maximize
x e: 5

''3' x

Minimize
x e Ext (5· )

x

r = R (!., x )
-g (6.39)

R (x . x )
- .--g

(x - x )T [A] (x - x )
- .. ~ --g

l'

(6.40)

.e
Here, an exact solution is possible •

Consider the set of operating constraints, defining

namely

s
x

h. =
1.

Tx [H.] x
3..

i=l, .•. , N
s

(6.41)

Assume a point °X E S
X

is available. Linearizing the above constraints

around ox , one obtains

T (xO) s k. i=l, N (6.42)Q. x ... ,
---:L 1. s

where

(xo) ~ [H.J
0

(6.43)Q. x
1- 3..



k. ~ 1 Ih~
~ 2 1.

159

(6.44 )

Now, by following the same steps as in the last section, one ends up with

the following problem:

1/2
Maximize r

subject to (6.45)

where

1/2
r k.

.i,
i==l, ... , N

5

~.
1.

A 0 1 0 1/2
g {et::' (~) [AJ - Cl • (~)}
~ ~

(6.46)

Solving this LP problem one obtains *x
--g

Now to get the exact solu-

tion, we propose an iterative process.

In the kth iteration, after finding k *x = x
--g -g

the points

at which the linear constraints touch R (~, xk) are computed.
--g

given by

They are

k+l
x. =
~

k
x
-g +

-1
[AJ i=l, ... , N

s
(6.47 )

by computing

These points are then projected into their corresponding hyper-surfaces

A
k

from:
i
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i=l, ... , N
s

(6. 48)

are then used to re-, N )
s

i=l,

Equations (6.48) give rise to relations similar to those in (6.26).

(x~+l ,
-:l..

The resulting points

linearize the constraints and repeat the LP solution.

To converge, one may need to solve a few LP problems.

The volume of the computations, however, can be reduced markedly, after

the first LP solution. By discarding those constraints whose

*r =
i

* 2(A. ~./2)
~ ~

*exceed r by a certai~ fraction (e.g., 25%), the

size of the LP tableau decreases sharply.

After finding the solution to (6.39), one may transform

*R (x, x) into the ~-space using a TSE formula.-g By choosing the

expansion point to be *x
-g

a rather simple relation results.

Note that in the case [A] = [I], one actually finds

the largest hyper~sphere that can be embedded into s 160J •
x

6.3 Filtering the Redundant Constraints

6.3.1 Motivation

Quite often, a substantial number of the constraints des-

cribing s
z

(implicitly) are redundant, i.e., they can be deleted



without affecting sz The red~dancy in the operating constraints
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is normally a consequence of implementing certain security measures in

a power system in. its design (expansion) stage. A common design (ex-

pansion) objective is to build into the system the ability to maintain

quality service for ~ range of predicted loads, while certain key gene-

rating and transmitting components are inoperative. This obviously

requires the system components to have ratings much higher than what is

needed during the normal operation. Note that, for a well designed

system/ a redundant constraint, say, among the constraints describing

S ,will be an active constraint for some other security sets, and vice­
z

versa.

Since in large systems the redundant constraints can consti-

tute more than 75% of the total number of operating constraints [52, 61] ,

their deletion in the security related problems could reduce the volume

of the computation drastically. This is certainly true in the case of

computing a local or a global subset of sz Other examples include the

security monitoring process and solving the secure-econo~c dispatch

problem (Section 5.3).

unfortunately, it is not easy to identify a redundant operat-

ing constraint. Various proposed schemes [52,61) seem to involve

excessively large amounts of computations.

problem in some detail.

In this section we study this



6.3.2 Definition and General A£~roach

Consider a set defined by the following constraints
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gj (x) ~ 0 j=l, ... , m (6.49 )

A constraint gk (x) ~ 0 (k ~ m) is redundant if and only if the set

of points defined by

o j=l, •.. , m j "F k

is equal to that defined by (6.49).

The obvious way of verifying whether or not the constraint

gk (x) ~ 0 is redundant, is to solve the fol~owing problem:

subject to

Min
x

gj (x) ~ 0 j=l, ... , m

(6.50 )

*Denoting the solution by x *if gk (~) > 0, the

constraint is redundant, otherwise it is "binding" or "active" .

The above procedure is not practical for identification of

the redundant constraints in the implicit definition of the security sets.
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This is becaus~ of the large number of constraints involved in describ-

ing each set.

In what follows, we present a practical scheme which is

fundamentally different from the above one.

6.3.3 A Simulation-Based Approach

Here, unlike the above scheme which identifies the redundant

constraints, we try to sort out the active ones.

sets:

Consider the following

s
x

T
{~/ x [H.J x

J
= j=l, ".. , N

s
(6.51)

Clearly, among these sets, the non-empty ones correspond to the active

constraints. This means here, that to demonstrate that the kth con-

straint is active, it is sufficient to find a point belonging to B
k

The boundary of s
x

denoted by B
x

can be expressed

in terms of the above sets, namely,

N
s

B
j

B = U
x j=l

From above, it follows that a point belonging to B
x

(6" 52)

can identify at

least one active constraint. This simple property is exploited here to

propose an efficient scheme for sorting out the active constraints. Note
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that, while it is no~ easy to find points belonging to, say, B
k

points belonging to B
x

can be found fairly easily.

Let
a

x represent a point inside s
x

and v denote a

general direction in the x space. The line
o

x=x +a.v intercepts

B at least at two points.
x

These two points can be found by solving

for a and checking if xO + a
j

v ~

= h~
J

j=l, ,,". , N
s

where

(6. S3)

denotes a

solution to the jth equation.

in the form

The above equations can be rewritten

{_v
T
. ]}[H. ~

J

aT 0
{~ [H.] x

J

fl,
y.} = a

J

j=l, • •• , N
s

(6.54)

To have a computationally viable scheme, v has to be chosen such that the

~ vT [H.] v and vT [H.] xO b t d ff' · tl (aT [ J a~erms can e compu e e ~c~en y x H, x
J - J - - J

is assumed to be known). A convenient set of directions are the coordinate

axes. When moving away from
o

x along the ith ax.is , the line becomes:

o 0x = x + (x. - x.) i, .
~ ~-~

special structure of

T
Then ~. (H.] 2. = (h .. ). and, by exploiting the

-.J.. J -:L. ~~ J
T 0rH.], 1. [H.J x can be computed quite easily (for

J ~ J -

further clarification, see Appendix E ) " As shown in FiOgure 6. 8, by moving

along all the coordinate axes one can potentially identify

constraints.

2 N
z

active



165

f

- ......---I-Jr-.....,.~---+-_........ ----_e

Figure 6.8. Illustration of the basic idea behind
the proposed scheme.

The scheme is clearly based on the access to a large

number of points inside s
x

It is computationally inefficient to try

to get such points by generating points randomly in a large hyper-box

containing s
x

Instead, one can use the largest hyper-sphere that can

be put inside S
x

As described in Section 6.2.4, that involves solv-

ing a LP problem (for an approximate solution) with a tableau contain-

ing all the constraints. Points randomly generated inside the hyper-

sphere then can be used efficiently to sort-out the active constraints.

The basic approach is described in the flow diagram of Figure 6.9. Many

details are not given in the flow diagram to present the main idea as

clearly as possible.
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Initialize

N = 1
r

hyper-sphere (or box)

Generate
o

x inside the

N > 1
v

= 1 Enter the violated one

in the active list

NO YES

Choose Yk from the

non-classified list

Alter
o

x.
~

such that

Y
k

(xO ) =
-new

N = 1 o
x ·5:-new

N =0
v

N > 1

Enter the violated one

in the active list
Q,

Include Yk ~ Yk
the active list

in N
v

number of

violated constraint~

Figure 6.9.

N number of generated
r

random points.

The flow diagram for identifying the active con-

straints forming 5
x
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Since S is not convex, there is a risk that by confining
x

the random points to the hyper-sphere, some of the active constraints

remain undetected. Thus, after generating sufficiently large number

of points, it is advisable to replace the hyper-sphere by a hyper-box.

A suitable hyper-box is the one whose center coincides with that of the

hyper-sphere and its sides are 4 to 5 times the radius of the latter.

It is worth remembering that in the process of finding the

largest hyper-sphere, at least, 2 Nb of the active constraints are re­

cognized.
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CHAPTER VII

SET-THEORETIC·APPROACH TO PREDICTIVE

SECURITY ASSESSMENT AND ENHANCEMENT

7.0 Preliminary Remarks

In this chapter we have tried to exhibit how sub-sets of a

security set, when available in a simple and explicit form, can facilitate

various security related flIDctions of a system .. The operating aspects

of power systems which are examined in relation to this effort are:

(i) Under vulnerable conditions, the operator needs to

compute a stand-by control strategy as quickly as

possible. Since, under such circumstances, the

economical aspect of the computed controls is not

crucial, the use of fast and efficient techniques

which produce non-optimal control strategies is

justified.

(ii) Under similar environmental, industrial and system

conditions, the system trajectory closely repeats

itself. Thus, based on past data, the future sys­

tem trajectory can be estimated within a limited

range of accuracy.

(iiil Normally the transition of operating conditions

fram one state to another is gradual. Thus, the

state vector stays in the neighborhood of an immediate

past operating state for an appreciable period of time.
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Each of the ab~ve operating aspects has motivated .one

of the sections of this chapter.

7.1 APR1ication of Global Sub-Sets to Security Control

7.1.1 Motivation

Consider a normal secure operating point which is vulnerable

to a number of the listed contingencies. To correct this operating con-

point inside

dition, the operator is faced with the following difficulties:

(i) There is often no control strategy that does not in-

volve load curtailment and can result in an operating

I
S

z

(ii) The corrective control action, if any, is often

\
economically unattractive. This is compounded by the

fact that, in many cases, the probability that a

critical contingency actually occur is quite low.

Because of the above difficulties, it has been the policy

of many electric power utilities to compute stand-by control actions for

each critical·contingency, to be used in the event that one of the criti-

cal contingencies actually occur 110,102] .
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To compute the required control strategies, in theory,

one has to solve the following problems:

Minimize

z e: sk
z

N
9

L
i=l k e: K

(7 .1)

The vector ~ represents the present system load,while members of the

set K identify the critical contingencies. The summation, as before,'

represents the total generation cost. The role of the diagonal matrix

[D] is to make sure that the load curtailment would be considered as the

last resort by less-heavily weighing the corresponding te~ in (7.l).

solving the above problems on-line is not practical since

the required computing time, even for a single problem, may prove ex-

cessive. It can be argued, however, that the operator's concern under

vulnerable conditions is primarily to make sure that one has access to

some feasible control strategies, rather than to seek an optimum solution

to (7 .1) . In other words, minimization of the operating cost does not

have the highest priority while the system is in the emergency state.

In this section, a simple and fast procedure for computing

feasible, but non-optimal, stand-by control strategies is introduced.
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Let
~

represent a normally secure operating point which

is vulnerable to the r-th contingency, i.e. ,
~

E: S but
~

f/ sr .
z z

would like find control ~
T

I~
T

Lld
T] such thatWe to a strategy z = ~,-r --r

(~ + ~ z ) e: Sr
v --r z

By studying Figure 7.1, one notes that there are

two distinct classes of operating points which can include ~. For

one class s~ (~=~) is non-empty, while for the other class it is

empty. This distinction is important because for the first class ~ d
-r

can be zero, i.e., no load shedding is required.

Denoting the largest hyper-ellipsoid that can be embedded

inside Sr by
z

it is clear that if

(z + 6 Z ) E: Er - (~+ 6 -rz ) € sr
z~ -r z v

(7.2)

A very simple and efficient method of correcting the vulnerability of ~

is then by searching for a 6 Z
--r

such that As will

be shown below such a A Z can be found very easily, but the result may
-r

be more conservative than if we used an o~timal strategy.

Let Er be defined byz

~ *
T

* *E,r I!. / (~ - z } lA J (z ~ Z } s c }
z -r r --:r r

Obviously, since



=
* T

(z - z )
~ -r

*fArJ (~ - =r) *> c
r
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(7.3)

To keep the procedure of computing 6. z
-r

as simple as possible, we move

along the line connecting' 30 *to z
--.r

the center of the ellipsoid,

until we intersect the boundary of
r

Ez
The line is expressed by

6.z = t~!o o ~ t ~ 1

6. * IJ. *where 6. z = z z and Ll!o !o - z
-r --r

*
1/2

IJ. z = [1 - (c / co) ] 6.
~--r r

ldo
kb --------~~~-~

E[

The solution is then

(7.4)

5z

_---t- --'-- ------~d

Figure 7.1. Illustration of the two possible situations for

a vulnerable operating point.
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The above control strategy is undesirable since it

generally will result in load shedding. It is thus preferable to

try to enforce

6. U

6. d
-r

=

= 0 by moving along the line

where .6 U *u - u
-r

and The control adjustments,

6. u
--r

are computed by finding the point where this line intersects the

boundary of a secure control set, produced by projecting the cross-section

of r
Ez corresponding to d =~ into the u space. Here, the secure

control set is given by

where

A
r t

A
rI

uu I ud
I
f *(A ] = ----4----- 11 ~

= ~ - d
r t --r

I
r t r

AUd I Add,

*~. c
r

(7 .5)

Inserting 11 u t 11~. into (7.5), and. also replacing the inequality

sign in (7.5) by an equality sign, one ends up with the following

equation for t:

where

o (7.6)
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When equation (7.6) has no real solution, we could use equation (7.4).

Instead of moving along a line, it is possible to minimize

2
II!. - ~II

section,

2
or II~ - ~II over the set

r
E (d = ~), respectively.z --v

Er or over its projected cross­
z

However, in that case, the

solution must be obtained by a numerical scheme, which could be time con-

suming.

Note that the underlying assumption here is that if, say, the

r-th contingency occurs on the system, the present system configuration

would assume the form for which Er is computed.
z

The matrix CA] can be chosen by experimentation. For
r

instance, one can choose [A ]
r

to be (see Appendix F )

[A ]
r

max
A

r

max
[I] - (A

r

min

-. )[~ ~J
min max

o < A <.:\
r r

11 et 11 = 1--r

(7. 7)

and experiment with different

.:\max
r

Ami n
r

and a,
-r

The eigenvalues of the



max min max
above matrix are all A except A which is set less than A

r r min r

Since the eigenvector corresponding to :x- is a the resulting
r --r
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ellipsoid will be stretched primarily in the direction of a
--r

This

Note that the inverse of fA] for this
r

implies that a good choice for

sr is known to be 11 long"
z

case is simply

a.
-r

would be along a direction where

-1
lA] =

r
1

A
max
r

rn +

max
A

r

Arnax
r

min
- A

r [. a
Am~n --r

r

The simplicity, the low storage requirements, and the computational

efficiency of this particular choice are important factors to consider.

Because of these properties, it is more practical to embed a few different

ellipsoids, with such lA ]
r

matrices, inside each Sr ,
z

rather than to

look for an optimal matrix lA] •
r

Then, when the computation of a

stand-by control strategy is needed, one can use these different ellip-

soids to compute different control strategies and choose the most

appropriate one. The computing efficiency of this choice is due to the

min
- Ax:

fact that one can write

* T *
(~ - z) [A] (~- z )

-r r -r

max 2
=A II z - z*n

r --r

max
+ (A

r
T * 2

[a. (~- z )]
--r -r

To keep the storage requirements of fA ]
r

down, one can

also use a d~agonal matrix. In that case, the l.ogical choice for [A ]
r

is lA ]
z

The diagonal elements of .lA ]
z

are defined by



(a .. )
~1. Z

M
1 / (z.

a,

2
m

z , )
1.

i 1, ... , N
.z
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(7 • 8)

M
and

m
defined in equation (5.2) . The resultingwhere z. z. are

a l.

ellipsoid tries to fill up the hyper-box H as much as possible.
z

7.2 Security Corridors

7.2.1 Motivation

The daily trajectory of a power system is defined by varia-

tions of the system's injection vector with time, over a 24-hour period.

Many security related problems which arise during the operation of a

power system can be best predicted and treated by understanding the rela-

tionsexisting between the system's daily· trajectory and its various

security sets. This is a well recognized concept which has been studied

under the. heading of "predictive security assessment", I 9,103] .

The predictive security assessment is part of the overall

operation planning in a power system. Based on the daily bus load

forecasts I104, 105], it tries to predict in advance the critical condi-

tions which may arise during the next day's operation. The approach

followed by the industry, to study the steady state aspect of the system

response to the predicted loading conditions, is to run a large number

of load flows off~line along the predicted trajectory. The control

strategies employed in these simulations are computed on the basis of the
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The resulting data are then studied to

find time intervals during which anyone of the physical, operating,

or security constraints may be violated. corrective control strate-

gies are computed and stored to be used in the event that the predicted

violations actually take place.

Because of the point~wise nature of this scheme, the ex-

tremely l~rge volume of the data produced in this process hardly reveals

the relation between the system trajectory and the security sets. More-

over, since the actual trajectory always deviates somewhat from the

predicted one, this pre-calculateddata cannot be used to precisely

establish the security of the system during· its actual on-line operation.

In this section and the following ones, we examine how the

process of predictive security assessment can be carried out by a region-

wise approach. Our effort is focused primarily on the potential

applications of such an approach to actual on-line security analysis.

7.2.2 Parameters. Influencing a Daily Trajectory

Since at each instant, the system trajectory is defined by

T T T!. = I~ , 3. ] 1 the parameters influencing it are those which affect the

daily variations of dand u.
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The daily variation of the load, d, is correlated to

various environmental, industrial, and social factors 1106, 107, 108]

If these factors do not drastically change from one day to another, the

daily load trajectory will be repeated closely.

The daily variation of u is tied to the variation of d

the cost and the extent of the generation available per bus, as well as

the network configuration. Variations of u are closely linked to those

of d because of the physical constraints on the system, i.e., at every

instant demand must be met with sufficient generation. Since the de-

mand is allocated between the generators primarily on an economic basis,

the generation cost and the generation capacity of each generating unit

have a profound influence on the daily pattern of u. This means that

losing a generating unit or bringing one on-line, could change the

"normal"pattern of u.

A change in the power network configuration alters, in

general, the shape of all the security sets in the ~ space. This in

turn affects the control strategy (~) needed for secure operation, i.e.,

for keeping the system·trajectory inside S and other security sets.
z

Very often changes in the "generation status" of the system or in its

configuration are required as part of the system's routine maintenance

work. These changes are normally scheduled in advance, and their effects

on the system trajectory are predictable.
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z
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Note that since u is computed primarily based on an economic dispatch

strategy, the system trajectory stays, most of the time, on or close to

the boundary 0 f s
z

u
Sz

DAILY TRAJECTORY

Figure 7.2. The relative position of a daily trajectory

with respect to sz

An important observation here is that: once the system

daily trajectory and the system configuration are predicted, within

finite uncertainties, the significant part of S will be the neighbourhood
z

surrounding the trajectory. In that case, instead of trying to characterize

the whole S , it would be sufficient to characterize the part of the
z

set surrounding the trajectory.



7.2.3 The Concept of a Security Corridor

Consider a circular tube in the z space whose inner
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axis coincides with a given (reference) daily trajectory. By proper

choice of the size of the circular cross-sections of the tube, one can

ensure that all the daily "trajectories which stay close to the reference

trajectory lie inside the tube. Let the tube be divided into 48 seg-

ments each corresponding to a 30 minutes time period marked by the

trajectory. Since these segments are quite small, the secure part of

each can be described by a small number of constraints. In that case,

whenever the actual system trajectory is inside the tube and the system

configuration is unchanged, the task of security monitoring will be quite

simple. Instead of working with all the constraints defining the security

set, the operator would deal with a specif~c segment of the tube and a

small number of constraints which change every 30 minutes.

It is not generally possible to define an explicit circular

tube whose inner axis is a general trajectory. This difficulty, however,

can be resolved by replacing the tube by a number of over-lapping hyper­

ellipsoids. A pictorial illustration of this is given in Figure 7.3.

Since the hyper-ellipsoids are expressible by simple, explicit functions

and they can be oriented to lie along the trajectory, they seem to be the

logical choice for this purpose.

Th.e h.yper~ellipsoids replacing the tube are defined by
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{_Z I (_Z - z.) LA.] (z - z.) s; c.}

~ 1. - -J,. 1.
i = 1, ... , n
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(7.9)

where n is their total number.

is denoted by E
C

, i.e.,

Their union fo~s a corridor which

c
E

n
U

i=l

i
E

We refer to the secure part of

corridor", which is defined by

~
n

ic c (l S UE E = E
s z i=l s

denoted by
c

E
s

as the "security

(7 .10)

where E
i
5

is the secure part of i
E Now tne major problems to be

resolved are the following:

(1) How to choose [A.] , i = 1, ... ,n to ensure
1.

that the hyper-ellipsoids are oriente~ along the

trajectorYi

(2 ) How to ascertain that
i

E , i = 1, .•. , n are

(3)

overlapping sufficiently;

How to characterize E
i
s

i = 1, ... , n •



182

Figure 7.3. A pictorial representation of a reference daily

trajectory and its associated security corridor.

7.2.4 orientation Problem

The center of the hyper-e11ipsoids (z. i = I,
--:L.

, n)

are chosen on the reference trajectory. Let the tangents to the trajec-

tory at z.
-~

be represented by a. .
-l,

The hyper-e1lipsoids are laid

along the trajectory by making sure that their major axis lie along

a., i = I, ..., n
-:l.

In Appendix F two techniques for constructing

lA. J, i ;:: 1, ...
1..

n with such a property is discussed. We introduced

the first approach earlier in Section 7.1.2 (equation (7.8». The other

as well as[A. ]
~

approaches allow efficient computation of

approach is based on the Gram-Schmidt orthogonalization process. Both

-1
rA.] •

~
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A daily trajectory is normally available only at discrete

points, termed the "base points". The trajectory is then approximated

by linear interpolation of the base points.

of ~, i = 1, ... ,n is quite simple.

As a result, computation

7.2.5 Overlapping J?roblem

Here, two ellipsoids are assumed to be overlapping suffi-

ciently when at least the last quarter of the time period covered by the

first ellipsoid is part of the time covered by the second. The time

covered by an ellipsoid is defined to be the period that the trajectory

is inside that ellipsoid.

The parameters affecting the overlapping of the ellipsoids

points where the trajectory enters and leaves E
i

. This is particularly

are primarily c., i = 1, ... ,n.
~

For a given c. ,
~

one can find the

simple when the trajectory is given by a piece-wise linear function.

First, by checking the membership in E
i of the base points neighbouring

z., the two segments of the trajectory which are intercepted by the
~

boundary of E
i

are identified (see Figure 7.4). Next by solving two

quadratic equations, similar in fo~ to equation (7.6), the intercepting

points are computed. If the time of entering and the exit time, respectively,

happen to be well inside the time periods covered by Ei - 1 and Ei +l , it

is clear that sufficient overlapping among i-1
E , and

"+1
El. exists.
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c. 1 '
~-

c. ,
1.

and c
i
+

l
must be increased, or the points Z ..

-:L
and z. 1--].+

have

to be chosen closer to z~l.
~-

7.2.6 Characterization·' Problem

Consider E
i•
s

By definition

2 Ndp j
Ei = E

i n S = E
i n ( n z ) () H

s z j=l
z

(7 .11)

We would like to represent

.e
= () ( n . zj

j£IJ. "

accozddnq to

() H
z

(7 .12)

The members of the set 1i identify those constraints zj which inter-

sect These constraints can be rec,ognized by solvi,ng the following

optimization problem:

Minimize

subject to

R,
Y ;= y. , )-J

1,
c ..

1.J
=

T
(z - Z.) [A. ] (z - z.)
- -:1.. ~ - --J..

(R, = M o~ m)

(7 .13)

for j = 1-1 ••• , N ­
dp

The above problem is identical to the one dis-
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cussed in Section 6.1.3. There, it is demonstrated that when y. is
J

approximated by the solution to the above problem

is simply

"'Jl,
c ..
~J

=

Jl, T 2
Iy. - a. (~) z.]

J =:J-'J--:L

T -1a. (~) lA.] 8. (~)-:J -v ~ J ..-v

Jl, = M or ID

j = l, .•• , N
dP

(7 .14)

Then the constraint is redundant to E
i
s

if and only if

'" M
c.. > c.. For more accurate results, the proposed algorithms of the
~J ~

last chapter should be employed.

7.2.7 General Remarks on Constructing a Security Corridor

The choice of z. and c. , i = 1, ... ,n is crucial to
--l, ~

the construction of a security corridor. Some of the important points

relevant to their choice are discussed below.

To keep n small, it is essential to choose z. (i = I, .. . , n)
--:L

on long segments of the trajectory I as much as possible, or on segments

Moreover,

z . ~ belong to
--:L.

will not be empty,to ensure that the resulting

which do not make large angles with their neighbouring segments.

E
i
s

sz
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To have an idea of the size of one can use the
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=
200 T ~l

(.) {c ~ et lA.]
Pd. ~ ~

~

(7.l5)

The above formula gives the maximum percent change that the total real

demand, P
d,

can have inside E
i

with. respect to (P
d).

' the total
~

demand at Z.. It is derived by solving the following optimization
~

problem:

Maximize

subject to

= + +
d T

+ P
N

= Cl z
d

T
(_z - z.) [A.] (~- z.) = C.

-:l. ~ - --:l. ~

(7 .16)

Computing the percent change inside E
i

of various injections along the

eigenvectors of

of E
i

.

[A. ]
~

also gives a good indication of the relative size

The size of E
i

is obviously a function of c ..
~

The

value of c. , however, cannot be increased freely.
~

A large value for

could increase the number of the constraints defin~ngc.
~

defeating the priJne objective of'constructing
c

Es A small

significantly,

on

the other hand, makes E
C

narrow around z.
-~

and causes the daily trajec-

tories with slight deviation from the reference trajectory to leave E
C

•
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The size and shape of Ei dep~d also on the eigenvalues

of lA .. ] , over which we have control.
l.

We found the follow~ng steps for choos~ng and C ..
1..

and conatrruct.Inq quite practical.

Step 1 Choose z .. on a Lonq s.egment of the trajectory
-""1

and run a load flow to ascertain z. € S
-:L Z

Step 2 Compute a. '0-:L 0

lA.] ,
l.

and (see Appendi?' F ).
!'

.e

Step 3
M mCompute values of c .. and c.. j =' 1, ••• , N

dpJ.) l.)

using equation (7.14), and tabulate the%D. in ascend-

ing order.

Step 4
max

Decide on N.
~

that I
i

can have.

the maximum number of elements

and compute

Choose the value of c. to be the first
~

Step 5

the list (i.e., the smallest
1,

c .. )
1.)

1
c ..
l.)

in

the time when the trajectory enters and leaves the

resulting E
i,

as well as the corresponding "b. P
d

•

Step '6 Repeat Step 5
max

tor the next N. values of
~

~
c ..

1..J

the list and tabulate the results.
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Step 7 Compare the results with those of
i-I

E in order

to establish wh.at value for Co. should be chosen
~

in order to have:

(a) sufficient overlapping with i-1
E

Cb) comparable size with i-I
E

(c)
max

a small number of constraints « N. )
~

intersecting E
i

.

If such a c. cannot be found, then either change the
~

eigenvalues of [A. ] or choose z. closer to
~i+l~ -ra,

and repeat the relevant steps.

The sixth step above, implies that the value of c.
.i,

is

actually bounded from above by the restriction on the number of elements

when values of+ 1) - th , N
dP

, R, = M or m ,

I
i

(i = 1, ... , n)

can assume is the value of thec.
~

!1, • 1c .. , J = ,
~J

The number of elements in

The largest value that

!1,
c.. ,
~J

· I
i

~n •
max

(N.
~

are ordered ascendingly.

is limited mainly because of the non-sparsity of the vectors

B. (x.) j€I
i

I i = 1, .•• , n which tax the available memory in the system
-J' -~.

heavily.

As a rule of thumb, when the system is lightly loaded (e.g.,

between 94100 P .-M. to 6.00 A.M.} the points z , (i = 1, ... , n)
-:l.

can

be chosen far from each other. This is due to the fact that during this
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TRAJECTORY YZ
/./

E~

Figure 7.4. An illustration of the way the size of Ei

and Ei could vary with c ..
s ~

period the trajectory is expected to be well inside y
z

An ellipsoid

under this condition could cover a wide range of operating hours and could

be represented with very few or no constraints from y
z On the other

hand, when the system is heavily loaded (e.g., around noon), the center

of the hyper-ellipsoids have to be chosen close to each other in order to

keep the number of intersecting constraints per ellipsoid small.
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Example

In this section, for a typical reference daily trajectory,

the detailed characterization of the secure· part of a hyper-ellipsoid

and the computation of a security corridor inside 5 for as-bus
z

system is presented. The prime objective of this example is to demon-

strate the feasibility of the proposed scheme.

produce an "optimal" security corridor.

System Data:

(i) Network structure (Figure 7.5).

No attempt is made to

BUS #5
(SLACK)

BUS#4
(PV)

L 1

BUSI1
(PO)

BUS #2
(PO)

BUS~3
(PV)

Figure 7.5. Network configuration for the example.



(ii) Network Data

Line Impedance Susceptance
(p .. u) (p .u)

1 0.030 + j 0.100 0 + j 0.015

2 0.020 + j 0.060 0 + j 0.020

3 0.025 + j 0.090 0 + j 0.012

4 0.010 + j 0.030 0 + j 0.008

5 0.025 + j 0.105 0 + j 0.010

6 0.025 + j 0.105 0 + j 0.010

(iii) Operating Constraints

0.9604 1.0404 2
u

1 = v
3

= z3

0.9604 1.0404 2
u

2 = v
4

= z4
m

1.1025 s 1.1664
,M 2u = u ~ = u u

3
= Vs = Zs

0.3 0.8 u
4 = P3 za

0.0 0.0 Us = P 4
= z9

191

0.0 0.5 d
1 = -q = z11

0.0 1.0 d
2

= -q2 = z2

rf1 = 0.0 .... d s 1.5 = ~ d
3

= -P = z6.:::=

1

0.0 2.0 d
4 = -P2 = z7
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2
0.9025 0.9801 Yl

;::: v
1

0.9604 1.0404
2

Y2
;:: v

2

-0.1 0.5 Y3 = q3

-0.85 0.0 Y4 = q4

0.15 1.5 Ys
;::: q5

m
0.8 s Zs 2.4

M
:L = = Y.. Y6 = Ps

2
2.1025 Y7 = II11.

2
0.25 Ya = II21

2
~ 0.5625 Y9 = [I3 1

2
0.25 YI0= I I41

2
0.5625 Y11= IIsl

2
1.44 Y12= I I61

e
Ail the values inare p.u.

Reference Trajectory Data

For simplicity, the following control variables are assumed

to remain at the following specified values during the operation,

Zs ;::: 1.1664 Z9 = 0.0 •

Variation of the other injections with time over a 24rhour period is ~

given in Figure 7.6. The loads are computed based on a load forecasting
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dJ·30
o
o

w
o
o

0.55
RERL POWER (PUJ

0.80 1.05 1.30 1.55 1.80

en
o
o

CD

o
--4 0

-Con

o
o

ce
o
o

o
o

0.70o.~o 0.50 0.60
REACT I VE POWER (PUJ

0.30
~-+---""",--",~--.--_~--,,...-:o----....,..------r--...-..::;;...-.--,~------t
00.20 0.80
o

Figure 7.6. Daily varia~ions of ~e indicated injections

for the system in Figure 7.5.
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scheme, and the generation is based on an economic dispatch

strategy.

Detailed Computationof'a Hyper-ellipsoid

1
The centerof E is chosen at zl where

T
zi = I~0.227,~0.35, 1.0, 1.0, 1.1664, -0.78, ~1.38, 0.403, O.Ol •

From Figure 7.6 it can be seen that zi represents the system condition
.:

at t = 1,00 •

simply:

The unit vector t~ngent at the trajectory at zi is

T
a

i = I-0.I026, "0.3666, 0.0, 0.0, 0.0, -0.2933, -0.7332,

'0.4812,0.0] •

The anql,e that a1 makes with the precedi;ng s.egment is relatively small

and one can easily show that Xi £ Sx where Xi is the load flow

solution to !.l' given by

T
~l = 10.9732, 0.9972, 0.9972, 0.9979, 1.08, -0.1035, -0.0777,

-0.075, -0.06436] •

To construct 1A1] , we have chosen the approach based on the

Gram-Schmidt orthogonalization process, (see Appendix F). The e,igen-
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values of IA1J are picked 'empirically according to

A, = 400
J

A
j = 1 when (a. ) = Max {Cak)l}

J 1 k

A. = 16 otherwise
J

j=l, . . .. , N
z

(7.17)

~
For the resulting lA

I
] , the exact values of all c l j Cus~ng the algorithms

of Chapter VI) and their approximate values (equation (7.14» are computed.

Table 7.1 summarizes the first 15 of these values and other relevant

information as required in steps 5 and 6 of Section 7.2.7.

A quite similar type of data results when the alternative

approach of constructing [AI] is pursued.

From the table, it is clear that the approximate and

the exact values of are often very close. This is in particular true

for those at the top of the list, which happen to be the most important ones.

As can be seen from the table, if one chooses cl = 0.07279,

the set El will be simply:
s

H
z

(7.18)
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max
CORRESPONDING TO t 1 = 1:00 AND . NI = 14

(AS REQUIRED IN STEPS 4TO 6 'OF SECTION 7.2.7)

Limiting t Ai max
Constraints c

1 j
c

1 j
%~ P

d
t t t. - t
in out ~n out

j , R,

4, m 0.07279 0.07273 26.35 23:42 6:06 6:24

3, m 0.1195 0.1191 . 33.76 23:24 6:46 7:22

10, M 0.1726 0.1718 40.57 23:17 6:56 7:39

5, M 0.1880 0.1878 42.35 23:15 6:58 7:43

1, M 0.22016 0.2160 45.82 23:12 7:04 7:52

4, M 0.3337 0.334 56.42 23:01 7:42 8:41

3, M 0.3991 0.4005 61.70 22:53 7:46 8:53

7, M 0.5767 0.5901 74.17 22:13 7:55 9:42

6, M 0.6174 0.6304 76.74 22:12 7:58 9:46

12, M 0.6704 0.6775 79.97 22:10 8:00 9:50

2, m 1.0183 1.059 98.55 21:51 8:58 11:07

2, M 1.0419 1.002 99.69 21:10 8:59 11:49

1, m 1.346 1.412 113.32 21:03 9:23 12:20

8, M 1.4636 1.512 118.16 16:48 9:52 17:04

9, M 1.785 1.822 130.50 15:32 9:58 18:26

t
1

= 1:00 ~ax+ 1 = 15
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no constraint from Y is needed to characterize the secure part
z·

The resulting El covers nearly 6 hours of the trajectory,

during which the total real power demand can deviate from its expected

value up to 26% ..

lightly loaded.

This is typical for the periods where the system is

It is interesting to note that the first constraints

[(4, m) and (3, m)] limiting the ellipsoid are those which correspond to

the lower bounds on the reactive power generations .. This is indicative

of the tendency of the generators in the system to reduce their reactive

generations (or to generate negative reactive power) under the lightly

loaded conditions, where a relatively large amount of positive reactive

power is produced by passive elements in the system.

The next constraint limiting El, (10, M), corresponds to

the upper-bound on a line current magnitude. Obviously the reactive com-

ponent of the current is responsible for the rise in the current magnitude.

The third type of constraint which limits El, under these

conditions, are normally those corresponding to the upper bounds on the

voltage limits at the load buses. This is again due to the production

of a large amount of positive reactive power in the system by the passive

elements which tends to rise the vol~age level at the load buses.
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Computation of a Security Corridor

By choosing other points on the trajectory and repeating

the above computations, a security corridor correspond~ng to the given

trajectory is constructed. The important quantities defining the se-

curity corridor are tabulated in Table 7.2. Note that in this table

t. ,
a,

when used in conjunction with Figure 7.6, specifies Z. I
-J. ~I

For simplicity and reduction in the volume ofand consequently lA.] •z,

the data, the eigenvalues of lA . ] I i = I, . •• ,
a,

11 are all chosen

according to (7.17). The negative numbers iri I
i , i = 1, ... , 11,

indicate that the constraints corresponding to the lower bounds on the

relevant dependent variables have to be considered.

implies the alternative.

A positive number

sufficiently.

The ellipsoids forming the corridor are overlapping

This can be seen easily by comparing the times that the

trajectory enters

the number of elements in I
i
I' 1~ = , •••ing

(t. )
~n

N
m
.
ax = 5, ; = 1.. , ... ,

a,

and· leaves

11,

(t t)ou the ellipsoids. By choos-

, 11

is kept small.

By expressing each according to

Ei () Ei n T ~ roil= H {z I 6. (x.l Z s Yj
j € (7 .19)

s z - J -:L.

i = 1, ... I n

where .x .
-~

is the load flow solution to ~, one can show that the

reference trajectory used here is fully inside sz This requires
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i t. c. " i
%~

pInaX t. tE I
outJ. J. d J.n

1 1:00 0.1726 {-4, -3} 40.6 23:17 6:56

2 7:00 0~1944 {-4} 43.2 4:37 8:58

3 11:00 0.0823 {9, 6, 4, 7} 21.79 8:12 11:44
A'

4 12:00 0.1022 '.- {10, 4, 9} 10.60 11 :14" 12:29

5 13:00 0.1045 {4, 6, 7, 9, la} 22.10 11:52 13:51

6 14:00 0.1093 {4, 6, 7, 9} 22.50 13:11 15:13

7 15:00 0.1237 {4, 6, 3, 7} 25.33 14:18 17:15
--

8 17:00 0.2173 {IO, 4, 3, 6, 7} 22.26 15:26 17:44

9 18:00 0.2117 {10, 4, 7, 6, 3} 19.06 16:19 20:28

10 21:00 0.1211 {9, 4, 6, 7} 21.82 19:04 22:41

11 23:00 0.1955 {-4, -3, 'IO} 45.67 20:52 02:57
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simply checking the base points forming the trajectory .against the con-

straints which define the secure part of the ellipsoids containing them.

Examining the values of for different hyper-

ellipsoids, one observes that a significant deviation in the total real

demand with respect to the predicted values on the trajectory can be

tolerated inside eachhyper-ellipsoid. The smallest permissible devia-

tion is inside E
4

and corresponds to the time period when the system is

most heavily loaded. If desired, by changing the eigenvalues of [A
4
J

and the inclusion of more constraints in the definition of E
4
s

it is

possible to increase the

7.3 General Features and Potential Applications of Securit:f Corridors

Suppose the next-day load trajectory is predicted by a bus

load forecast routine in the form of a piece-~ise linear function in the

d space. By computing the required controls for the predicted loading

conditions and the anticipated system structure at successive short inter-

vals, a daily trajectory can be formed. The controls can be computed

simply by a generation constrained economic dispatch routine. As dis-

cussed in Section 7.2.1, constructing a security corridor around such a

trajectory is tantamount to a region~wise predictive security assessment.

In the following, various features and potential applications of a security

corridor surrounding the trajectory is discussed.



7.3.1 General Features

(a) Accommodating the "uncertainties
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The matrices fA.] , i = 1, ••• ,n can be chosen to
~

correspond to the covariance matrices of the probability errors in the

load forecast and in the control settings at z. , i = 1, ... , n •
-::J..

The resulting hyper-ellipsoids would be stretched in the directions where

the deviations from the expected values are J lrge. As such, the result-

ing E
C

would try to accommodate the uncertainties in the load forecast

and the controls.

This particular choice of the matrices lA.. ], i = 1, ... , n,
~

however, suffers from excessive storage requirements, and results in cam-

putational inefficiency.

(b) Identification of Critical Conditions

During the construction of the security corridor, by following

the trajectory inside the secure part of each hyper-ellipsoid, one can

what constraints are crossedeasily find when the trajectory leaves s
z

(violated) by the trajectory, and when the trajectory re~enters s
z

The

insecure part of the trajectory then has to be redefined by the operator,

by computing new control strategies capable of keeping the trajectory

inside S
z Consequently, during the actual ·operation, the operator will

know approximately wnen the routine control strategy has to be switched

to a new one, what type of strategy has to be used, and for how long the

new strategy should be followed.
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(c) Identification of Important Constraints

The sets I
i , ; = 1.&., ••• , n identify the important con-

straints for different time intervals. These constraints can be

expressed linearly in the z space with high accuracy by choosing their

expansion point to be the center of their relevant ellipsoids. Since

is not excessive.8. (x.), i = 1, ..• , n,
J -~

their number per ellipsoid is quite small, the computation and storage

j e: I
i

,requirements of

(d) Load Flow Runs

Since no load flow run is needed to check the security of

a point inside a hyper-ellipsoid whose secure part is already characterized,

the required number of load flow runs for this approach is relatively

small. Under favourable circumstances, the load flow runs, needed to

construct a security corridor inside s
z

are limited to the verification

of z. e: S
-J. Z

i = 1, ... , n •

(e) Predictable Changes in System Configuration
and Generation Status

Because of the routine maintenance work, the power system's

configuration and generation status can change during the day. These

changes are, however, scheduled in advance and can be taken into account

in the process of constructing a security corridor.
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(f) Treatment of contingencies

After constructing a security corridor inside S
z

and

fixing the system trajectory, one can ideally construct a security

corridor corresponding to each probable contingency, or equivalently

each security set. Then, by finding the time intervals where the

trajectory is inside each security set, one can estimate the periods

when the system is invulnerable to a given contingency and its monitor-

ing is not needed.

7.3.2 Application·to Security·Monitoring

As mentioned earlier, security corridors can be used for

on-line monitoring of the system conditions. This is possible as long

as the system topology is identical to the one for which the security

corridors are computed.

Consider an operating point z
-g

and a security corridor

The steps which have to be followed for monitoring

following:

z
--g

are the

Step 1 Compare the time at which z occurs with the
-g

time interval covered by each ellipsoid fo~ing

E
C

to identify the relevant ellipsoid.
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Step 2 Let E
k

be identified in Step 1. Compute

T
r = (z -~) IA

k]
. (z .- ~) (7 • 21)

9 -g -g

Step 3 If

by

r g < c
k

' find all the constraints defined

k 2 k
I for which c

kJ
' < r (t = M or rn, j E I ) ·

9

Step 4 Check T
6. (-oxJ z
J -g

only for those constraints

Step 5

identified in Step 3 •

Repeat the above steps for the security corridors

constructed for other security sets.

Figure 7.7 demonstrates why in Steps 3 and 4 one needs to check only

those constraints for which
s.

j I
k this particularc

k j
< r , s For

9

I k __. { } mexample 1, -2, 3 , ck = c4k ' and for the indicated operating

point only the constraint Yl ~ Y~ must be verified.

Note that as long as

for verifying theor on When r > c .
g k

r ~ ck '
9

we cannot use

the operating point is inside

Ek

security of

not 2 € 5
-g z

z
--g

and a load flow run is then needed to check whether or



205

7.3.3 Application to Security Control

Among the control options open to the system operator for

security control, are the following major control actions:

(a) Rescheduling of real power generations;

(b) Rescheduling of reactive power generations to:

(1) Reset voltage levels at generation buses;

(2) Allow shunt reactor or capacitor switching;

(c) Changing the network topology via switching actions.

In the following, we examine how such control actions can be computed

using the security corridors.

Computation of Stand-by Controls

The ellipsoids forming the security corridors can be used

to compute stand-by control strategies. Since the center of the ellip-

soids are inside their corresponding security sets, it is possible to

compute the required controls based on the approach of Section 7.1.

In Figure 7.7 we have shown graphically how an 'acceptable

control strategy can be computed for an operating point !o outside

which

The line connecting the center

is intercepted by all those constraints into

the secure part of an ellipsoid Ek•

Ekof



,.....
I
I
I
I
I
I
I
I
I
j

IeYz1
I

206

-.- - - - -....,
I Hz
~
I
I
I
I
I
I
I
I
I
I
I
I

----~-~--~-----~~-~~--~

Figure 7.7. Justification of steps 3 and 4 of the security

monitoring scheme based on the security corridors.

are violated by !o. Since these constraints are represented by linear

or quadratic functions of ~, the intercepting points can be easily



computed. Among them, the point closest to the center of E
k

is on
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the boundary of and represents a feasible solution.

by fixing the demand part of z in the constraints defining

Note that here one can also try to avoid load shedding

E
k

•
s

(See Section 7.1.2). However, when this fails to produce a solution,

one can repeat the approach on other ellipsoids forming the security

corridors.

Evaluation of Corrective Controls

Corrective controls are computed when in an emergency state

the violated constraint(s) may be tolerated for a limited time period.

If the required controls involve only rescheduling of real power opera-

tions and altering the voltage levels, as discussed above, they may be

computed with the help of a security corridor inside s
z

Corrective controls may include switching of the shunt re-

actors or capacitors of the system. When such elements are located at

the PQ buses, their switching ~esults in certain changes in the demand

components of the operating point. In Appendix G it is demonstrated

that these changes can be estimated accurately. Thus, one can use

security corridors to verify whether the post switching operating point

is secure, or what should be the extent of the changes to ensure security.
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Having access to the security corridors corresponding to

different system configurations, gives one the opportunity to study the

effectiveness of corrective controls based on changing the network

topology. Using the security corridors, the operating point which has

resulted in-an emergency condition can be checked against various security

sets. Any network configuration whose associated security set contains

that point, represents a possible control strategy. Of course, the

feasibility of implementing such switching control strategies must be

decided by the system operator.

Note that an emergency, stand-by, or corrective control

strategy may consist of a combination of the three listed types of

control actions. In that case, the security corridors represent a

fast and efficient way of computing, or verifying the effectiveness of,

the computed or decided control actions.
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7.4 Construction of Security Corridors Using Hyper-Boxes

The use of hyper-boxes in constructing security corridors

deserves special attention. The important advantages of using hyper-

boxes over the ellipsoids are the following:

(i) To verify the membership of a point in a hyper-

box very little computation is required;

(ii) Overlapping of two hyper-boxes can be checked

trivially;

(i1i) The required computation for characterizing the

secure part of a hyper-box is straightforward.

(Lv) The redundant constraints existing in the implicit

description of the secure part of a hyper-box can

be easily identified.

To clarify the last two statements, consider a hyper-box

~ 1 defined by .

(7 • 28)

Let us expand the dependent variables linearly about ~, the voltage



solution to the canter of the hyper-box. To find
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the constraints intersecting with ~ r one needs to solve the follow-

ing LP problem:

Extremize

subject to

N
Z

L . U\J j

k=l

k = 1, .•• , N
z

(7 .29)

The above problem has to be solved for all the constraints in y
Z

Consider the case where the objective function must be maximized. By

simply examining how it can assume its maximum value over H
b

, one

arrives at the solution. *The solution point, z, is given by

* M
Zk = (zk) when (Sk) . > 0

b J

* m
zk = (zk) when (Sk) . < 0

b J

k = 1, ... , N (7.30)
z

* Mz < y. , one concludes that the constraint
J

Then if So: ~}J

87 (xbJ s Mz YjJ -
does not intersect the hyper.-box. The minimum of the

objective function is also required to fully understand the relation

between the hyper-box and the constraints

can be similarly computed.

yn: ~ 6: (x )
J J -t>

z ~
M

y .•
J

That
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Let us denote the secure part of by H
s

It is

defined by

H
s

Hz () '. {z IS': tx) z s YJ~
- --.J-t>

b
j € J } (7.31)

where the members of the set

~ = ~. Moreover, the redundant constraints

Jb can be identified easily by solving a fewamong those defined by

such that H n
z

y
z

andM

~

represent the constraints from

It is clear that one can always' pick up~.intersecting

small LP problems (see Section 6.3.2) •

In Figure 7.8, the construction of a security corridor

using hyper-boxes is demonstrated. The difficulties which are noted in

that process are the following:

(i) One needs a large number of hyper-boxes to cover

a daily trajectory ;

(ii) To verify the membership of a point to H ,
s

all

the constraints in the set have to be checked (com-

pare with the case where ellipsoids are used, i.e.,

Section 7.3.2, Step 4).
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u
Bound.ary

0 .(;' C"
.L J.J

Z

TRAJECTORY

predicted direction
of trajectory at ~Q

_---J.----------------------------I~d

Figure 7.8. Construction of a security corridor,

using hyper-boxes.

7.5. A New Monitoring Scheme

isz
-g

and load flow runs are used for monitoring the system

Consider the case where the operating point,

inside S
z

conditions. In the following, we demonstrate how one can use the result

of a load flow run (for' z) to characterize the secure part of an
--g

ellipsoid surrounding z
-g

fast and efficiently. The operating points

following z
-g

then can be monitored using this ellipsoid, often for a



significant time duration. When the operat.Lnq points leave the

213

ellipsoid, a new load flow' can then be run and the same procedure re-

peated.

We emphasize that this monitoring scheme, since it does

not require any information on the future load variations, can be used

at any time during the operation and represents a new monitoring scheme.

Let repres.ent the ellipsoid surrounding z
-g

the

"present" operating point.

T

{~/ (~-~)

We define Eg according to

[A] (z - z ) s c }
z - -g 9

(7 .32)

where [A] is a diagonal matrix whose non-zero elements are defined in
z

(7 • 8) • The secure part of denoted by is defined by:

H
z

() T
{z lB. (~) z s
- J --v

~
y.

J
(7.33)

Our goal is to make the characterization of

c~~ be carried out in a real time environment.

simple enough so that it

Using the expression

has to compute, first,

(7 .14) , to characterize E
g
s

one

~ eT (!.ol
2

~
ry. :s]

c = J :::;
j = 1, N

dpgj 6: lA ]-1 s: ... ,
J

(!.o) z --:J
(!.o) t = M or ID (7.34)
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This computation simplifies greatly, when the fo11owi~g points are

noted.

Ca) The terms
T ~1e. (~ ) lA ] . 6,' (~) ,

J --v Z -.J ··v
j = 1, .•. , Ndp

can

be computed in advance. This is due to the fact that the parameters in-

volved in this computation, are all independent of the present or the

future operating points. These values, however, should be recomputed,

whenever the system topology changes.

corresponds to a highly desirable situation, i.e., when

j = 1, ... , Ndp

!o = x
--g

This may indeed improve the accu-

== ~ (~) ~ ,

is a first order approximation to

s , (x )
J --g

Y. (x) in (7 • 34) •
J ~

S': . (x 1 Z
J ~ -g

is the load flow solution to z), one can replace
--g

Since(b)

Y. (x ), (x
J -g -g

6~ (~) !g by
J

racy of the results, because

ing to z
-g

R, = M or m •

Note that during monitoring the system condition correspond­

R,
one actually computes all (y. - Y. (x)], j = 1, .•. , N

d
'

J J ~ P
T -1

Therefore, by pre-computing the terms ~ (~) [AzJ ~ (!o)'

the expression in (7.34) can be computed trivially.

remaining then is the computation of ~ (!o)' j e: I
g

The major calculation

By choosing the v-alue of c in (7 .32) equal to the
9

smallest ~ shown in F.igure 7.7, 'I~ becomes empty and doesc . , as one
9J

not need to compute any' ~ . (~) _ However, when the resulti.ng ellipsoid

is very small (i.e., when z
-g

is approaching the limit on a dependent



variable}, one may have to choose a larger value for c
9
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which then

Our experience shows that, ir-requires computing a fe.w ~ (~)

respective of th.e system size, one can compute 5 to 6 different

~ (~) within the time period. needed to solve a load flow problem.

Thus, it is quite practical to compute a few ~ (~) on-line, if needed.

Now consider tne case where the value of c varies with
9

time according to

T
c et} = [~(t) - z J [A J .I~ et} ... z ]

9 -g z ~

where !. = ! (t) represents the operating. point at time t.

(7 .37)

This also

turns the set r g
into a function of time, because it has to represent all

those constraints for which
R,

c (t) > c . (. 1 n )9 gJ J = , ... , Ndp ' N = M or m ·

To monitor the system condition at time t = t , then one haso
T R, 9

to verify the inequalities: ~ (~) ! (to) ~ Y
j

, j € I (to). ~hat can be

carried out without computing f3. (x ) , j. € I
g

(to). This is due to the
J -0

fact that one can write {see equation (4.14»,

T
= x IY.J x

-0 J -1
Y j € r g

(t )o (7.38)

where ~l is the solution to th.e system of linear equations

IL (~)] ~l =
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In other words, monLt.cr.Lnq . z (to) would involve soLvf.nq (7 •..39) and

computing (7.381.

When the number of elements in 19 (t) gets so large that

it is more advantageous to monitor the system condit"ions by running load

flows, because it limits the checks to certain constraints, still a

knowledge of I
g

(t) is quite useful. This s~ggests that, even when

the monitoring is performed by the conventional methods, to cut down on

the number of constraints to be checked, values of

and updated frequently.

~
c .

gJ
can be computed

By allowing c.
~

in (7.9) to vary with time (similar to

c (t) in (7.37}), the size of the individual ellipsoids fo~ing a
9

security corridor becomes time dependent. This can be viewed as reaching

out for the operating· points outside the corridor by expanding an appropri-

ate ellipsoid.
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CHAPTER VIII

CHARACTE~ZATION OF SECURE LOADABILITY SETS

8.0 Preliminary Remarks

A major step in power systems expansion planning is the

security analysis of the economically feasible system configurations

vis-a-vis the projected future load profiles. This is normally

carried out by solving a large number of optimal load flows, correspond­

ing to different plans (i.e., system configurations) and different

loading conditions.

explored.

In this chapter the concept of secure loadability sets is

This concept provides an alternative approach to the problem

of assessing the security of various system configurations. The approach

is straightforward and does not involve expensive repeated optimal load

flows otherwise needed. A secure loadability set defines a region in

the d space such that. for every point of that region there exists, at

least, one control vector capable of producing a secure opearting point.

8.1

8.1.1

Secure Loadability Sets

Concept of a Secure Loadability Set

Consider Figure 7.1. From this picture it is clear that

not all the loading conditions can potentially produce normal operating
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In fact, this property is restricted to those loading conditions

which lie inside the projection of S into the d space .. In other
z

words, a given loading condition, 20' is normal if and only if

S (d =~) is non-empty.
z - -v

Thus, denoting the set of normal loading

conditions by Sd' it follows that,

{~ / S (~)
z

is non-empty} (8.1)

The set Sd can also be interpreted. as the union of the projections of

all possible cross-sections of S
z

(parallel to the d space) into the

d space. Again, one can similarly define the set of secure loading con-

ditions corresponding to the postulated contingencies, namely,

is non-empty} j = 1, ... , N
cg

(8.2)

In words, if a loading condition 20 belongs to there exists, at

least, a control strategy corresponding to ~ . capable of producing an

operating point invulnerable to the jth contingency.

8 ..1.2 Characterization of Secure Loadability·Sets

To project a finite region of the z space into the d

space, one needs to identify the outer-boundary of that region, as seen

from the d space. Here, the outer boundary of s ,
z

denoted by o
z



is the collection of the points T
z whose corresponding
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control set, S (d),
z -

is composed of a finite number of (normally

only one) control vectors, i.e.,

o ~ {~/ s (~)z z
has a finite number}
of elements

(8.3)

The boundary of is simply the projection of all Z E 0
- z

into the

d space. The projection of a point
T

!a into the d space

is simply ~ .'

For a general set, identification of its outer boundary,

as well as the description of the boundary of the projected set is quite

complicated.

sets.

This is, however, somewhat simpler for linear security

Consider, for example, S
z

Since S is defined by
z

linear constraints, using the algorithm developed by Mattheiss 160, 61] ,

one is able to compute all its vertices and identify those which belong

to o
z

By projecting the vertices belonging to o
z

into the d

The projected pointsspace, one ends up with the vertices of Sd.

then can be used to construct a convex hull [Ill] in the 2. space. In

that process all the linear constraints defining Sd are computed.

Since these computations can be carried out off-line systematically, their

relatively large computational requirements should not be considered as

a major Obstacle.



8.2

8.2.1

Sub-Sets'of a Secure Loadabi1ity Set

Characterizing Local Sub-Sets

Consider the following optimization problem:

Minimize u :: (d - ~) T [F] (2, - ~),.
d £ Ext (Y

d)
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(8.6)

where is the orthogonal projection of Y
z

into the d space, and

[F] is a symmetric, positive definite matrix. The vector ~ is fixed

and ~ £ Yd • It is obvious that this problem can be solved by reformulat-

ing it in the ~ space and replacing Y
d

by Y
z

But, since the

objective function is quadratic in d, that involves solving a rather

difficult optimization problem in a much larger space.

Chief among our objectives being simplicity, we thus look

for sub-optimal solutions which pose less difficulties. Remembering that,

by considering each constraint one at a time, the counter-part of this

problem was solved easily (Section 7.2.6) in the ~ space, we are prompted

to look into the following problem:

Minimize l.lj :: (d - ~) T (F) (d - ~)

subject to

+u +
T

~d
1

d ;: y.
- J



where +u = u
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is a fixed, feasible, control vector, and

T
~ (~)

forming

=

Y
z

By solving this problem for all the constraints

one arrives at the following solution:

j

where

+
II =

+Min (ll.)
J

+
II . =

J

t T + T 2
IYj - ~u!!. - ~d ~]

T -1
~d [F] ~d

~ = M or m

j=l, •.• , N
dP

A general interpretation of this solution is given in Figure 8.1. For

+a general Y , II represents the largest value that the ellipsoid
z
T +

u = (~-~) (F] (~-~) can assume over . Y
z

(E. = ~). The set

+y (u = u) is a load set, which is defined by the projection of the
z - -

cross-section of the set y
z

(for +
~=~) into the load space. Clearly,

From Section 6.2.3, we remember that such a u can be

among the feasible control strategies, there is a

+
lJ maximum.

+ *u = u which makes

computed by solving a mini-max problem. There it was demonstrated that

for linear constraints the problem reduces to the following simple LP

problem:

subject to

Maximize r (8.9)



a:
JU

u + ~. r s
J

= M or m
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where ~.
J

-1 1/2
[F] ~d} and

b.
r =

j=l, .•. , N
dp

1/2
1J

Yz

yZ(~= ~:t)

(8.10)

Figure 8.1. Interpretation of the proposed sub-optimal approach.

The above optimization process 'can be viewed as allowing

+
u to slide along the £ axis to vary the size of +

Y (u = U )
Z - -

until
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the cross-section over which. 11 takes its largest value is found

(see Figure 8.1). '* * 2Note that the resulting solution, l.l = (r)

is not an optimal one, because it is restricted to a particular cross~

section of Y
z

Since the set Yd is the union of all such cross"

sections, it may offer more room to the ell'ipsoid to "expand". However,

one can easily show that for the cases where 20 is close to the

boundary of Yd , very often., the sub-optimal and the optimal solutions

produce identical results.

It is interesting to note that by treat~ng' ~ in (8.IQ)

as an unknown vector, one can also obtain a sub-optimal solution to the
,..

problem of embedding the l~rgest ellipsoid inside Yd , for a given IF] •

8.2.2 Characterizing 'the Secure~Economical'LoadabilitY'Set

Suppose, for a given power system, there exists an explicit

function E relating the demand vector, d, to its unconstrained (not in­

cluding the physical equality constraints) optimal control strategy, i.e.,

U = E (d) (8.11)

Now, consider the intersection of the non-linear manifold' ~ ~ .!' (d) = .2.

with the set of normal operating points, sz As snown in ~igure 8.2,

the projection of the part of the manifold which is inside sz into the



d space, produces a unique loadability set. When the function E
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represents the economic dispatch of the load, we call the resulting

set the set of secure-economical loading conditions, and denote it by

Clearly,
e

Sd can be defined by

5 [E. = E (~)]z
(8.12)

which implies replacement of u by ! (~) in every relation defining

5 Interesting properties of this set include:
z

u
u= E(d)-- --

Sz

Figure 8.2. Illustration of the relation between the sets
eSa and Sa.



(i) From the definition of

c

it follows that,
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(ii) The constrained optimal dispatch for any loading

condition is simply given by

E (~)

(iii) When the operating point
T

!o
1.1 T T
= r~ (~), ~]

represents a highly desirable operating condition. This

is due to the fact that, under such conditions, not only

the system is operated most economically, but none of the

system components are under stress. In other words,

without risking the violation of any of the operating con-

straints, the system is being operated in its most efficient

economic mode. Thus for planning purposes, it may be

desirable to make
e

Sd as large as possible.

Derivation of E (~) for a Simple Case

Let the economic dispatch cost function be represented by

a quadratic expression in ~g , the generation vector, and let

the slack bus generation, be related to the other bus injections linearly.

Under such conditions, the unconstrained generation dispatch is the solu-

tion to the following problem:



subject to

Minimize: +
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(8.14 )

where a and [0] (a diagonal matrix) contain the cost coefficients.
--c c

For fixed voltage levels (:l> and demand vectors (~) , by partitioning

the vector ~l (~) , the equality constraint can be rewritten in the

form

where

d (8.15)

8 I pg
-Iv 1

!1 (xo) B
~ pg= 1.. = =-lp

!ld -8
vp

-12

With the equality constraint expressed by (8.15), the solution to the un-

constrained economic dispatch is simply

T
-1

T T 2
1

-1 1- [0 ] a + 2 (!1d 2. + !lv ~ ) -1
pg c -c

= - - [0 ] a + [ ~ ID ] 1-2 c -c T [0 ]-1 c
2 1. 1.c

(8.16)

After deleting the first row in this expression (corresponding to pi>, it
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can be rearranged in the general form:

where

=

IB ],
v

(rectangular matrices) , and

(8.17)

are functions of

~l (x
O)

as well as the generators' cost coefficients. Since

~T = [~2T, E,.V'l'] it is evident that for a given voltage level the above

expression is a first order approx~ation to u = E {£}.

8.3

8.3.1

Applications of Secure Loadability Sets

Security Assessment

When characterized explicitly, the secure loadability sets

can be employed efficiently to assess the security of the system for a

given loading condition.

are the following:

The main fact.ors contributing to this efficiency

(i) The number of constraints defining, say, Sd

explicitly is much smaller than those defining

S
z

(ii) Since the dimension of the d space is normally

much smaller than the z space, the storage and
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the computational requirements for security

assessment of a loading condition is rela­

tively small;

(iii) The security of the system for a given loading

condition can be verified without restricting it

to a particular set of controls;

(iv) The secure loadability sets allow one to re­

cognize quickly those emergency or vulnerable

conditions which can be corrected without resort­

ing to load curtailment.

It has to be re-emphasized, however, that the secure

loadability sets are primarily suitable for off-line security assessment.

Because of this, their main application is in power system expansion

planning.

8.3.2 Power System Eeeansion Planning

Once the secure loadability sets for different system con­

figurations are characterized, the security assessment for the projected

load profiles reduces to simple constraint checks. Thus, there is no

need for solving complicated optimization problems. In the following
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some other applications of these sets in power system expansion

planning are touched upon.

Based on the present daily load trajectory and the pro~

jected future load levels, one can forecast a future daily load

trajectory. This load trajectory, then, can be used to identify the

best expansion plan among the economically feasible plans from a se-

curity point of view. The best plan should have a normal loadability

set (Sd) that embodies the entire trajectory. Moreover, the total

time spent by the trajectory inside its sI (the projection of SI
d z

into the d space) should be longer than the corresponding time for

any other plan.

The secure loadability sets can be used for computing the

operating range of the required reactive supports for a given expansion

plan. This involves treating the sites where the instal~ent of the

shunt reactors or capacitor~ are intended as load points in the system.

Then, by altering their corresponding components 'in d and considering

the future load profiles, one can determine what ratings of such devices

offer "better" security to the future system.

For a well-designed power system, the set of injections

which are dynamically stable, should include the set of normal operating

points. This can be investigated by transient stability simulations

along the boundary of Sd. Of particular interest are those boundary
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points which are close to the estimated future daily load trajec­

tory.

8.3.3 Load Control

The idea of load control or load management has been around

for quite some time [112, 113] • In the past, the implementation of any

type of large scale load control has not been considered seriously, mainly,

because of its socio-political implications, and the lack of strong

motivations. However, the new economical realities have changed the

picture considerably. To meet the increasing demand, the power system

industry may soon feel that it is necessary to consider a much more effi­

cient use of the available generation capacity in the fo~ of the load

management. The publ-ic' s gradual change of attitude towards compulsory

energy conservation measures is also an encouraging sign in this regard.

One of the basic problems in load control is the lack of

quantified objectives [114]. This difficulty can be resolved easily

by defining the objectives in terms of the loadability sets. For example,

depending on the policy of a company, or their feasibility, the objectives

can be one, or a combination, of the following:

(i) To ensure operating in the normal state, allow a

daily load trajectory which lies entirely inside Sd.



tory that lies completely inside

(ii) To operate the system in its most economical

mode, with a certain degree of security,

restrict the daily load trajectory to the in-

side of the set

(iii) To have maximum security, allow a load trajec­

I
Sd •

231
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CHAPTER IX

SECURE LOAD FLOW SOLUTIONS

9.0 Introductory Remarks

The difficulty of performing security analysis in the volt­

age space stems mainly from the fact that in that space the load and

control variables are non-linear functions of the dependent voltage

vector. This sharply contrasts with :the simplicity of the security

analysis in the ~-space where the space variables are the load and control

variables which are known, independent quantities. The voltage space,

nevertheless, offers certain important features which are not present in

the ~-space. The most important one from a security point of view is the

simplicity in which various network topology changes can be reflected in

the security problem formulations. Other significant features include

the presence of sparsity in power flow relations as well as their greater

accuracy.

In this chapter we look into the possibility of characteriz­

ing the set of secure load flow voltage solutions for a given loading

condition. The schemes proposed here are based· on the original develop-

ment in [64]. There, the non-linearity of the load flow relations is

avoided through an indirect method which reduces the non-linear relations

to a set of linear ones without using the standard linearization method.

These linear relations retain so many properties of the original ones as

to suggest that they could be used to detect unfeasible loading conditions

or to find secure load flow solutions.
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9.1.1
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Enclosing the. Set of Secure·Load Flow Solutions by a Linear Set

General Definitions and Motivation

For a specified loading condition, £, the physical con-

straints on a power network define a non-linear manifold in the ,?£-space,
N

L,e., a set in R Z with fewer degrees of freedom than N Denoting
Z

the manifold by the set

it can be defined by

M (d) ,
x-

based on the notation of Section 2.3.3,

M (d)x-
6. T= {.Y~ [D .] x = d .

J J
(9.1)

Now, let S (d)x _. denote the set of all voltage vectors satisfying the

given demand as well as the operating constraints.

of M (d) and S (d) , it follows that,
x- x-

From the definition

S (d)
x-

a.= M (d) nun y
x - x x

(9.2)

The characterization of S (d), while fundamental to the
x-

analysis of various security related problems, is extremely difficult.

Simple properties of S (d)
x- such as whether it is empty, though crucial

to the computation of corrective controls in an emergency state, cannot be

verified unless one actually attempts to compute the required control

actions. Thus if S (d) is empty, many precious seconds would be lostx-

seeking a non-existent solution.
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Many properties of a non-linear set (such as its shape,

relative size, emptiness, etc.), however, may be studied by surrounding

it "closely" by simple set.s which can be more easily analyzed. In

studying the properties of S (d) such a scheme is followed.x-

9.1.2 The Basic Aeeroach

To study the properties of

La(d) with the property:
x-

S . (d) ,
x- first a linear set

S (d)
x- (9.3)

is sought. The major steps in deriving La(d)
x- are:

(i) Expressing the LFE in an appropriate form;

(ii) Using the appropriate form of the LFE to de-

rive necessary linear constraints representing

the non-linear operating constraints.

The second step also includes identification and, if possible, adjustment

of the factors influencing the degree of tightness with which a
L (d) en­x-

closes S (d) •
x-

sub-sections.

These steps are examined in detail in the following



9.1.2.1 LFE in the Nodal Current Form

using equation (2.l),the rectangular components of the
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nodal current injections can be related to the bus voltage components,

i.e. ,

I -~ Ire(X) + J' Iim(x ) {[G] 'IB]} ( + · f)- -r - -r = +J ~ J_

or

rre(x ) = [G] e - [B] f
- -r

Iim(x ) = [G] f + [B] e
- -r

(9.4a)

(9.4b)

The superscripts "re" and "imn represent respectively the real and

imaginary components of a complex quantity. The above expressions in-

dicate~' that the real and imaginary components of every nodal current

injection are linear in x-r

Now, using equation (2.2), the net real and reactive power

injections at the kth bus can be related to the kth components of

and
im

I (x) I namely,
- -r

=

From above, it follows that,
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(9. Sa)

(9.Sb)

Solving these equations for {e~) and one arrives at:

p
(~)I~e(;.) = (.-&) ek + f

k2 2
vk V

k

im P q
I k (;.) = (~) f

k - (~) e
k2 2

~k vk

(9. Ga)

(9.6b)

Combining equations (9.4) with the above relations, one obtains the

right-hand-side are the only non-linear 'tenus, these equations are re- ,.•
nodal current form of the LFE • Since the terms appearing in their

garded as a quasi-linear version of the LFE.

9.1.2.2 Derivation'of'Linear'Necessary"Conditions

A thorough examination of equations (9.6) rev~a1s that by
"Pk q

establishing limits on the quantities (2) and (~) one can obtain

. vk , vkre am
linear constraints on I

k(;.)
and I

k
(;.). The resulting linear con-

straints would define the set L~(d). The basic steps in deriv~n9 these
x-

relations are illustrated below, while a detailed deri~ation is deferred.



Let us assume that the kth bus is a PV bus.

case, the operating constraints at that bus are normally
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In that

0
m s ~

M
(9. 7a)< Pk P k Pk

0
m M

(9.7b)< qk s qk s qk

(V~) 2 2
~ (v:>

2
(9.7c)s v

k

Using these relations, one can write:

v v
(....L)2 m s m

~ s M (....L)2 M
Pk Pk Pk Pk

s PkM m, v
k vk

v v
(....L)2 m m s M (....L)2 M

qk s qk s qk qk ~ qkM m
V

k V
k

or, considering only the outer bOW'lds,

m M
Pk s

Pk s ~

(v:>
2 2 (v~> 2v

k

m M
qk

s ~ s
qk

(v:>
2 -2

(V~>2v
k

(9. Sa)

(9. ab)

(9.9a)

(9.9b)

Now assuming that both ek and f
k

are positive, one can multiply the

above inequalities by e
k

and f
k

respectively and add the results to

get:
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m m f
k

M M
f kPk

e
k + q Pk qk Pk ek + qkk

(V~) 2
s

2 e
k + -rfk ~

(V~)2v
k

v
k

Using equation (9.6a) in the above relation, one arrives at the following

linear constraints

m m
f

k
) / (V~)2~ (P

k
ek + qk

re
I

k
(X

r
)

M M
f

k
) / (V~)2s (P

k
e

k + qk

Similarly, by multiplying the inequalities in (9.9) by and

(9.l0a)

(9.l0b)

and

adding up the new constraints, and exploiting equation (9.6b), one obtains:

(9.l0c)

(9.l0d)

Note that (9.10) are linear inequalities in x and re­
~

present a set of necessary conditions on the voltage SOlutions.

9.1.2.3 Factors Influencing the Enclosing Set

Two factors influence how tightly the inequalities (9.10)

enclose the set S (d) •
x- These-factors are:
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(l) The range of v
k;

(2) The size of the ratio ek I f k •

The range of V
k

influences the resulting inequalities by affecting

v
CMk) 2 , the coefficients enlarging the bounds on P

k
and

v
k

in (9.8). Since and are normally quite close, these co-

efficients will stay close to unity provided that the constraints

(v:> 2 s v~ s (v:> 2 are explicitly enforced.

The second factor comes into the picture when, in deriving

(9.10), the inequalities in (9.9) are first mUltiplied by e
k

and f
k,

and then the results are added and subtracted. The impact of these opera-

tions on the resulting inequalities is illustrated in Figure 9.1 for two

simple inequalities: m Mx S x S x These inequali-

ties are initially multiplied by two positive numbers A and B such that

after being added and subtracted, they produce the following relations

(9.11a)

(9.1Ib)

As shown in Figure 9.1, for different values of a = A/B the above con-

straints define different regions in the X-Y plane, which all enclose the

region defined by the original constraints. Moreover, the larger the ratio

A/B, the tighter the resulting inequalities enclose the original region.
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Figure 9.1. The effect of different choice of a = A/B

on the constraints enclosing the set

{x
m

s x ~ xM ; ym s y s yM} •
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By comparison, larger ratios of produce tighter inequalities to

enclose S (d) •
x-

Figure 9.1 indicates that to have a reasonably tight

the assumptions so far made on the values of

enclosure of the original region, one should have
e

kthis condition on
f
k

and f
k

can be iisted as:

(j > 5 • By imposing

e > 0
k

f > 0
k

(9.12)

Obviously, it is not easy to guarantee the validity of all the assumptions

in (9.12), unless one follows a more general approach involving adjustable

parameters in the problem formulation. Such an approach is detailed be-

low.

Consider a linear combination of I~e(!r) and

namely,

=

(9.13a)

where a. and 8 are a pair of arbitrary adjustable parameters, which can

and

form:

To establish an exact analogy between A

Pk qk
B in (9.11) and the terms multiplying and:2 in (9.l3a), we also

v2 v
k ~

be different for each bus.
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(9.l3b)

Now, instead of e
k

and f
k,

one can multiply the inequalities in

(9.9) by (a e
k

+ 6 f
k

) and (a f
k

- f3 e
k

) , and use relations (9.l3)

to arrive at a new set of linear inequalities, namely,

pm m

~ (a e
k

+ s f
k

)
k

+ (a f - a e
k

)
qk

(v:) 2 k
(v:)

2

I~e{!r)
im (9.l4a)

a + f3 I k (!r)

M M

S (a e
k

+ s f
k

)
Pk + (a f - f3 e

k
)

qk

{V~)2 k {V~)2

(9.l4b)

m M

~ (a f
k

f3 e
k

)
Pk

(a e
k

+ (3 f
k

)
qk

- --
(V~)2 m 2

(v
k

)

(9.14c)

8 Ire(x ) Lm- + a I k (!r)k -r M m

s (a. f
k f3 e

k
)

Pk
(0. + s f

k
)

qk- ------ - e
k(V~>2 {v:>

2

(9.14d)

The assumptions in (9.12) consequently change to

> o (9.lSa)

(9.1Sb)



Cl e
k

+ 6 f
k

(l f
k

- 6 e
k

5
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(9.1Sc)

Now, one could adjust the parameters (l and 6 such that the new

assumptions remain valid for all feasible values of and

9.1.3 Linear Necessary Conditions on Bus Voltage Levels

q
...1s:.

2
v

k
To re-

PkAs pointed out earlier, to keep the bounds on 2 and
v

k
· h h . (Vm

k
· ) 2 2 ( M) 2 h b f dt~g t, t e constra~nt ~ vk ~ vkas to e en orce •

present this constraint linearly, one needs a large number of linear

constraints, unless the possible values of e
k

and f
k

can be restricted

to certain parts of the (e
k

, f
k

) plane. Let W
k

represent an estimate

of the average value of 9k over Sx(~) (see Section 9.l.4), and let Ok

denote an upper bound on the possible deviation of 9
k

from ~k ' i.e.,

< k = l, ••• , Nb (9.16)

As shown in Figure 9.2, this relation restricts the values of .ek
and

f
k

to a rather small area in the (e
k

, f k) plane. Wh.en Ok is small,

one can surround this area by 5 lines with sufficient accuracy. The

linear constraints corresponding to these lines are:
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Figure 9.2. Linear necessary constraints corresponding
to the bounds on a voltage level.

1:

2:

3:

4:

(W
k + °k/2) + sin (l/lk °k/2) f

k
s Mcos e

k - V
k

(W
k

+ °k/2) + sin -, + Q
k

/ 2) f
k

s Mcos e
k

V
k

(9.17a)

(9.17b)

(9.18a)

(9.18b)

5: (9.18c)
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At the reference bus, in addition to the constraints.on

the volt:age magnitude, one·has to enforce

tan (9 ) e - £ = 0
r r r

This relation, however, permits one to reduce the constraints on

v2 =.e2 + £2 to two equivalent linear inequalities, namely,
r r r

vm cos 9 S e S ~ cos e
r r r r r

(9.19)

(9.20)

9.1.4

assumptions (9.15a) and (9.15b) are always valid. Relation (9.15C),

however, imposes a much more restrictive condition on ok.

demonstrated by noti,ng that

This can be

a e
k

+13 f
k

a f k - a ek
= o

eotan (9
k

- ~k + ok > cotan (11.3 )

where we have made use of the fact that tan (9
k)

= fk/e
k

and 5 ~ cotan

o
(11.3 ) • The above relation is equivalent to
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which in view of relation (9.16) leads to

(9.21)

In short, to enclose the set S (d)
x- sufficiently tight by the linear

constraints in (9.15), o?e should be able to estimate an average value

for by within the accuracy of
o

+ 5.35 •

Such estimates are usually known from operational experience

on the network. When the network buses are electrically close, one can

choose tp = e
k r

for k=l, ••• , Nb • This assumes that all the phase

angles in the network are not going to deviate more than 5.350 from the

reference angle. One can also choose a set of feasible real power injec-

tions and run a DC load flow to compute an often very good estimate of the

phase angles.

Note that the estimation accuracy of (9.21) is not highly

demanding, though it can be further relaxed by decreasing the lower limit

in (9.1Sc). This would however give a more conservative enclosure of

S (d)
x- by



9.1.5
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Linear Necessary Conditions on ?ower Injections
'at a Generation 'BUs

The relations derived in (9.13) correspond to a generation

bus. For the suggested choice of a and {3, those inequalities can

.be rearranged to read

(9.22a)

(9.22b)

where ; ~ - L ~ tan (lP - 6 ) •
k n

k
k k

~ = tan (9 ) •r r

Note that for the reference bus



9.1.6 Linear Constraints .Enclosing .the Load ··Manifold

At a PQ bus, one normally has
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Pk
=

spec
< 0Pk

qk = spec
< 0qk

(V~) 2
2 s (v:)

2
~ v

k

Thus, one can write

spec
P k

spec
Pk

~ ~

Pk

(v:)
2 2 (V~) 2-v

k

spec
qk

spec
qk

~ ~ L
(v:)

2 "2 (V~)2v
k

(9.23a)

(9.23b)

(9.23c)

(9.24a)

(9.24b)

These inequalities are different .from those of (9.9) in the direction of

the inequality signs. Thus, by setting and

m M spec
qk = qk = qk in (9.22) and reversing the direction of the resulting in-

equalities,.one obtains linear constraints which tightly surround the load

manifold.



9.1.7 Linear NecessaryConditions·onLine Power Flows

For a transmission line connecting bus k to j, the
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line current (from k to j) is given by

Now consider the power flowing from bus k to bus j, that

is

=

As in Section 9.1.2.1, the above relation leads to

re Pk' qk'
I
k j

(x ) = (.:JS.l) e
k

+ (..:ll) f
k.....-r; 2 2

v
k

v
k

im tkj) qk'
I

k j
(x ) = f - (...JS.J..) e

k-r 2 k 2
v

k
v

k

(9.26a)

(9.26b)

Now starting from the constraints and
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to obtain:
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one can follow the same steps leading to (9.22).,

(9.27a)

S -

9.1.8

(9.27b)

Summary.·of the constraints .Fonning 'the 'Enclosin9" 'Set

The linear constraints formi,nq La{d)
x-

are summarized in

Table 9.1. constraints (9.17) are not included in the table, because

they simply represent relation (9.16), which is assumed to be true. The

set L:<d) is thus comprised of 3~ constraints corresponding to the

vol~age magnitudes, and 4 (Nb + N
t

) constraints due to the restrictions

on the nodal power injections and the line power flows. For example, for

a 15 bus system with is defined by 200 inequality

constraints and 1 equality (i.e., equation (9.19» •

Since the basic tool available for analyzi,ng linear sets is

the simplex method, it is advisable to choose This choice of

9 generally ensures that x ~ 0 which fits into the conventional formu­
r...-or

lation of the LP problems.
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a
.SUMMARY OF. 't'HE ~~NEAR. COijS't'RAINTS ~ORMING L (~)

x
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I~ =k
1
'flk

Bounds on Generations:
m m

~k
m m

Pk - ~k qk Pk + qk
~ [ ] e

k + [

(v:)
2

] f
k(V~)2 ..

re
~k

im
I k (!x) + I k (!x) M M

~k
M M

Pk - ~k qk Pk + qk
~ [ ] e

k
+ [

(V~>2
] f

k
(v:> 2

M m m M
Pk qk q Pk

~ [
(V~) 2

- n ~ e
k + [_k_._ + nk ~ f

k. k
(v:>

2
(v:> 2 (V~)2

I~e(!x)
im

+ nk I k (;.)
m M M m

[
Pk qk qk Pk f

k
s - nk

-.--j e
k + [-+ n

k
]

(v:>
2 (V~>2 (v~) 2 (v:>

2

Bounds Demands: Set
m M spec

and
m M spec

inon Pk = Pk = Pk qk = qk = qk

the above relations and change the direction of the inequalities.

Bounds on Line Power Flow:
M - ~

M M M

I~(X ) I
Pk· qk' qk' + ~k Pk,I re

~k
[ J k J~ [J . J~ f

kI
k

. (x ) + s
(V~)2

e
k +

J -r J -r (V~> 2

M M M M

I re I~(X ) I
Pk, + nk qk' qk' - nk Pk·I

k.
(x ) + nk

~ - [ J J, e
k

+ [ J j] f
kJ

J -r J -r (v:) 2 (V~>2



TABLE 9.1 (cent'd)

Voltage Limits:

For the reference bus:
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m
v cos 9

r r
S; e

r
M

S; v cos e
r r

tan (9 ) e - f = 0
r r r
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9.2 Characterizing Subsets of the Set of Secure
Load Flow Solutions

The

The approach presented in the last section can be modified

S (d), denoted by Lb(d) •
x- x-to obtain an approximate subset of

required modifications are of two t~!pes:

(i) Instead of enclosing the set u n y
x x

by linear

constraints, embedding a linear set inside that set is

attempted.

(ii) Full representation of the physical constraints is

replaced by using certain linear cross section of

the load manifold.

The details of the above modifications when applied to

various system constraints are given in the following sub-sections.

9.2.1 Derivation of Linear sufficient Conditions

When embedding subsets in the set of operating constraints,

u n y
x x

one should make sure that no point exterior to U n y
x x

will be included in the enclosed subset. Thus, for instance, instead of

using relations (9.9), one starts with the following conditions:
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v 2 v i
m

" (~) ID
(2) M < M

(9.28a)0 < Pk
s P k

s Pk
s Pk - P km M

V
k

v
k

v 2 v 2 M M
(9.28b)

0
m s (~) m

~ s "(2) qk s qk< qk qk qkm M
v

k
Vk

or, considering only the inner bounds,

m M
Pk Pk s

Pk (9.29a)

(v:> 2 s
2 (v:> 2

v
k

m M
qk

s
qk

s ~ (9.29b)
{V~>2 2 (v:> 2

v
k

Now, to derive linear constraints using (9.29), one has to modify the

guide-line (9.11) such that the resulting relations define a subset of

the original set. It is easy to show that the appropriate sufficient re-

lations in this case are

A ym + B X
M s B X + A Y s A yM + B X

m
(9.30a)

A X
m - B ym S; A X - B,y s A X

M - B yM (9.30b)

Thus any X and y satisfying the above, also satisfy xm s X s xM and

ym s y s ~ . For C1 = A/B = 10 , this is illustrated in Figure 9.3 .
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set
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Figure 9.3. Relation between the set· {,;n s x ~ xM; ym ~ y ~ yM} and

its subset, derived based on the sufficient conditions in

(9.30) for a =10 .

\/om
k

Figure 9.4. Linear sufficient constraints corresponding to the
bounds on a voltage level.
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Now following the same steps as detailed in tne previous

section, inequalities (9.29) and the guideline (9.30) can be used to

derive a set of linear sufficient conditions. The resulting inequali-

ties will be identical to those of (9.22), except for the following

changes:

and
m

v
k

are replaced byandAll Mv
k

respectively.

(i)

(ii) is defined by =
1

- -- =nk

The second change is due to the fact that here, instead of relation (9.17b),

relation (9.l7a) is used. The linear, sufficient conditions corresponding

to the line power flows are obtained by making the same changes in equations

(9.27) •

Also, instead of relations (9.18), representing necessary

conditions on the voltaqe levels, one has to use the following sufficient

conditions:

(iii)

(9.3la)
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(9.3lb)

(v) (9.3lc)

The relation between these constraints and .,the o~iginal bounds on

shown in Figure 9.4.

is

9.2.2 'Load Manifold 'Representation

At the PQ buses, we fix the value of the volt.age ~9nitude.

As a result, the load manifold becomes the intersection of, a number 0"£

hyper-planes of the form:

(V~pec)2 re spec spec
I

k
. (;.) = Pk

e
k + qk f

k

(v=pec) 2 im spec
f -

spec
I k (;.) = Pk qk ~k

(9.32a)

(9.32b)

where is chosen inside the range

Obviously, the resulting load manifold is the cross-s~ction of the o~igi-

nal manifold for
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To have results consistent with the specified value..", of"."

vol~age levels, ~ese should be enforced.

the equality constraint:

For this purpose, we use

(vi) (9.32c)

The relation between the above line and the constraint v - v
spec

isk - k

illustrated in Figure 9.4 by line 6.

9.2.3 Numerical·Considerations

satisfy

Inequality (9.29a) is valid if
M m M

P P v·
k' k' k and

(9.33)

Since values of are normally far apart while and

are quite close, the above condition is almost always satisfied. The

same argument applies to other inequalities in (9.29).

In replacing the nonlinear constraint .... _ spec
Y k - vk

by the

linear constraint in (9.32c), a certain amount of error is introduced.

Assuming, however, that relation (9.16) holds, the , error lies in the

interval:
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(9.34)

For o
ok = 5.65 this interval is I-O.122 , 0.366] , which is rather

insignificant. Note that since cannot be enforced exactly,

points bel~ng~ng to Lb(d) satisfy the demand with a small error.x- Also,

to be consistent with the actual bounds on vk' v:pec has to be chosen from

the rCl:nge

(9.35)

The above relation is derived by demanding that the ~egment of the line

(9.32c) satisfying (9.16) should also satisfy v: S v
k

S v:

In the present fontlu;lation, every PQ bus introduces 3 -

equality constraints into Lb(d) •
x- There is also an equality constraint

due to the reference bus (equation (9. 19». Thus, for an Nb - bus

system with m PQ buses, in order Lb(d) to be more than a single point
x-

(if not empty), one should have

3 m + 1 < 2 Nb

where is the dimension of x
---!:'

Therefore, a 15 bus system must

have less than 10 and a 50 bus system should have less than 33 PQ

buses in the system in order for this method to be applicable.
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Afplications '

Potential Applications of an 'Enclosing Set

The set LaCd), being defined by inequalities linear in
x-

x , can be analyzed via linear programming.
-r

Once L~(d) is formed,
x-

it can easily provide the following information on

(i) Existence of Secure Load Flow Solutions

S Cd)x-

The absence of a voltage vector x satisfying the in­
-r

a a .
equalities defining L (d) indicates that L (d) and hence that S (d)x- x- x-

are empty. Note that the existence of La(d) does not necessarily imply
x-

the existence of a secure load flow solution, but rather indicates that

"near" secure voltage solutions exist.

(ii) Size and Shape of S (d)
x-

For a given loading condition d = d ,
- -0

the "width" of

the set Sx(2.0> in any direction c can be estimated approximately from

the solutions of the following problem:

Extremize

(iii)

a
x € L (~)
-r X·--v

Near Secure Load Flow Solutions

(9.36)

Since
aL . (d) surrounds
x-

S (d)
x- "tightly", its vertices often

represent possible near secure solutions. To obt.ain "better" solutions,
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one can maximize and minimize a linear objective function over . La (d)
x-

(i.e., solve C9.36)} to obtain two extreme points of

line segment joining these two points lies entirely inside

The

One then can search along such a line to find a point at which the line

either intersects or is very close to the load manifold.

(iv) Starting Points for Opt~al'LoadFlowAlgorithms

Suppose the objective function of an optimal load flow

problem can be expressed, or approximated, by a linear function in x-r

Then, by minimizing (or maxim~zing) that objective function over L (d),
x-

one obtains an approximate solution to the original problem. Such a

solution could prove invaluable to the optimal load flow schemes which

require good starting points [90 , 91] •

9.3,,2 Potential·Applications·of·an.Embedded Set

The set Lb (d) offers equally interesti,ng possibilities.x-

The most important ones are:

(i) Secure Load Flow Solutions

The set Lb(d) , when non-empty, contains an infinite number
x-

of secure load flow solutions. Thus, it can be used in an emergency

state to compute a corrective control strategy. The choice of the voltage
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levels at the PQ b~ses, however, is crucial under such circumstances.

When voltage levels are not chosen properly, the set L Cd)
x- will be

empty. One can, nevertheless, hope that the system operator can use

his experience, or use the past data, to assign voltage levels to the

PQ buses appropriate to the existing loading condition. A suitable

Note that the required

objective function can be used to avoid solutions. which lead to economi-

cally poor system performance.

The fact that such computations can be carried out entirely

by the highly efficient and reliable LP routines, suggests that the set

Lb(d) can be used for on-line computations.
x-

tableau once computed, requires little effort to accommodate changes in

the loading condition, network configuration, or the operating limits.

(ii) Starting Points for Optimal Load Flow Algorithms

Certain classes of the algorithms designed to solve constrained

optimal problems require starting points satisfying all the constraints in

the problem [90 , 97] • Such points are usually found by"ad hoc"proce....

dures which are basically trial and error in nature. The set Lb(d}
x-

allows a systematic approach for finding such solutions.

when the objective function can be expressed linearly in

It is clear that

x , the result­
-r

ing solution would also represent an approximate solution to the original

optimization problem.



It has to be em-

9.4 Examples

In this section, the results of analyzing the sets

and LbCd} for a three bus system are presented.x-

phasized that these results pertain to those typical properties of

and Lb(d) which are observed in various studied systems.
x-
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9.4.1

(i)

System Data

Network Confi2Uration (Fi2Ure'9.5)

'\", G1 "\, G2

"'~~"""Vl T
.l.Jl

Figure 9.5. Network configuration for the example.



. (ii) 'Network Data tin p.u.)

Line Susceptance Impedance

1 0 + j 0.015 0.030 + j 0.100

2 0 + j 0.020 0.020 + j 0.-060

. 3 0 + jO.OlO 0.025 ~ j 0.105
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(iii) System Constraints tinp .u.}

0.1 s P1 s 1.0 0.1 s P2 ~ 1.0

005 s ql ~ 0.4 005 s q2 s 0.5

0.97 ~ vI s 1.03 0.97 s v2
s 1.03

P3 = -1.2 q3 -0.5 0.94 s v
3

~ 0.98

Ipl21 :::; 0.2 Iql21 s 0.1

Ip231 s 1.0 Iq231 s 0.5

Ip3l' s 0.8 Iq3l1 S 0.4

(iv) Value of the Adjustable Parameters

Since the buses in the chosen power network are electrically

close, one can allow
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tP1 = = = e
r

Value of the other adjustable parameters are set at

9 =
r

= = Q
3

Here, bus No. 1 represents both the slack and the reference bus.

9.4.2 Properties of 'the 'computed Enclosin2Set

For the given system data linear inequalities forming

L: (~) are computed. The following LP problems are then solved:

Maximize :

x
-r

eT
2N

b
+ x = + I (x , )
~ -r - .i,

i=l r
(9.37)

The solutions of the above problems are two extreme vertices of

The line segment connecting these two points is givenand x
-r

which, corresponding to the sign of the objective function, are denoted

+x
-.or

by

by

x
-x = o S t s 1 (9.38)
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This is

x (t=l)
-r

andindicates that forTable 9.2 +x (t=O)
-r

some of the system constraints (marked by *) are violated.

obviously due to the fact that La(d}::) S (d).
x- x-

By the same argument,

one can hope that as the vector x moves into the set
-r

La(d)
x- along

the line C9.38}, it enters into the set u n y
x x

This is verified·

by searching along the line. The search, as recorded in Table 9.2, has

shown that part of the line (9.38) identified by 0.31 ~ t ~ 0.92 is in-

deed inside the set U n yx x
This range of t is also reflective of

the degree of "tightness" with which S (d)x-
is surrounded by

along the direction So •

Next, by minimizing the function

f{t) =
k=N

g+1

2
{, [ ( . ) spec].
I\k Pk t - Pk

2
I () Qk

spec ] }+ Yk qk ·t. - (9.39 )

0.31 ~ t ~ 0.92

~le tried to find a point on the secure portion of the line (9.38) close

to the load manifold, M (d) •
x-

In (9.39), the positive constants A
k

and are appropriate weights, while the functions Pk(t)

represent the variation of P
k

and along the line (9.38). Since

the demand variables are quadratic in x
-r

their variation with t is

also quadratic. Thus, to compute, say, Pk(t) it is sufficient to have

its value at three points along the line (9.38). For this example, using

Value ofA
3

= Y3 = 1.0, the function f(t) has a minimum at t ~ 0.485.

various relevant quantities for t = 0.485 is also given in Table 9.2.
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TABLE '9.2.

VOLTAGE' SOLUTIONS AND' CORRESPONDING 'VALUES' OF SYSTEM VARIABLES

Variable t = 0.00 t = 0.31 t = 0.485 t = 0.92 t = 1.00

e
l

0.726946 0.714220 0.706831 0.689178 0.686894

e
2

0.727010 0.709045 0.698614 0.673695 0.669060

e
3

0.730550 0.714724 0.705535 0.683585 0.679500

f
1

0.726946 0.714220 0.706831 0.689178 0.685894

£2 0.701069 0.700970 0.700912 0.700775 0.700150

£3 0.653328 0.650685 0.649151 0.645481 0.644804

VI 1.028L4S.00o 1.01OL4S.000 0.999L4S.00o 0.974L4S.000 O.970L45.000

V2
1.010L43.96° 0.997L44.67° 0.989L4S.090 0.972L46.13° O.969L46.320 *

V
3

0.980L41.aoo O.966L42.310 0.958L42.610 0.940L43.36° 0.937L43.S00 *

PI 0.83983 0.59797- 0.46125 0.14568 0.08869 *

P2 0.48952 0.66205 0.76010 0.98796 1.02936 *

P3 -1.30439 * -1.23800 * -1.20028 -1.11267 * -1.09676 *
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TABLE 9.2 (cent'd)

~ariab1e t = 0.00 t = 0.31 t = 0.485 t=· 0.92 t = 1.00

q1 0.44531 * 0.39969 0.37382 0.31387 0.30300

q2 0.14553 0.14975 0.15429 0.17134 0.17548

q3 -0.54682 * -0.51695 * -0.49968 -0.45863 * -0.45103 *

P12 0.22466 0.08913 0.01259 -0.16385 -0.19568

P 23
0.71233 0.75063 0.77241 0.82308 0.83230

P31 -0.60352 -0.50017 -0.44151 -0.30537 -0.28066

.
q12 0.11233 * 0.09720 0.08864 0.06881 0.06522

q23 0.26729 0.26021 0.25682 0.25093 0.25017

q31 -0.29410 -0.27588 -0.26478 -0.23674 -0.23128

(Violated constraints for the given solution points are marked by stars (*» •
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Existence.of the Set La (d)
x-

By increas~ng tne real demand fram -1.2 to -1.55 and

changing the range of allowable voltage level at the load bus to

1.0 ~ v
3

~ 1.05 , the set La(d)
x- disappears. The absence of LaCd)

x-

implies that the load manifold, M (d) Ix- is not intersecting the set

u () Y , and, thus, S (d) must be empty.x x x- Note that the assumed

loading condition and the voltage limits do not correspond to abnormal

loading conditions or voltage profiles on the studied system. In fact,

A small increase into meet the specified demand.

the system seems to have sufficient generation and transmission capacity

M
P12 = 0.2, however,

causes the set La{d) to reappear.
x-

9.4.3 Properties of the Computed Embedded Set

In the same three bus system, under the loading condition and

operating constraints stated in Section 9.4.1, the set Lb{d)
x- is formed.

We have tried however to keep the voltage level on the demand bus at

v3 = 0.96 •

Any voltage vector b
x e L· (d) ,
-r x- represents a secure load

flow solution. Two such points are computed by maximizing and minimizing

the objective function in (9.37) over L
b

(d) •
x-

These solutions are identi-

fied in Table 9._3 by t = 0 and t = 1 respectively. The mid-point of
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the line segmE7nt connecting these two solutions is also included in the

table to represent a point inside L
b

(d)
x-

The values of various system variables computed for the

tabulated points are fully indicative of the fact that, within the intro-

duced approximations, S{d) :) Lb(d) •
x- x-

Since the loading condition is

enforced by equality constraints, the load is (approximately) satisfied

along any line connecting two points belonging to Lb(d) •
x- Th.e small im-

The amount of imbalance is

balance between the actual demand and those implied by the solutions, is

due to the linear enforcement of v3 = 0.96 •

generally small (here about %0.5) and for various tested systems has not

been observed to exceed" %2 •

-o

o
c.o

W-Jo
......J
CO
CC

CCo
0::::'
>-o

o
C\J

o

Figure 9.6.

t i i
0.25 0.50 0.75
Ll NE PRRRMETER (T)

Variation of some of the system variables along a

li~e joining two vertices of LbCd)x-



TABLE 9.3

VOLTAGE'SOLUTIONS 'AND'CORRESPONDING 'VALUES 'OF SYSTEM

VARIABLES FOR TWO VERTICES OF, L
b

(4) Al~O THEIR MID-POINTx-
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Variable t = 0.0 t = 0.5 t = 1.0

e
1

0.707967 0.703669 0.699370

e 2 0.711990 0.706558 0.701125

e
3

0.711990 0.706558 0.701125

f
1

0.707967 0.703669 0.699370

£2 0.685959 0.697076 0.708192

£3 0.640488 0.645921 0.651353

VI 1.001L4S.000 0.995L4S.00o O.989L45.00o

V
2

0.986L44.060 O.989L44.7So 0.993L45.49°

V3
O.957L41.97o 0.957L42.43° 0.9S7L42.S9°

PI 0.74162 0.51694 ,0.29495

P2
0.47412 0.69681 0.91903

P3 -1.19421 -1.19328 -1.19250



TABLE 9.3 (cont'd)
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Variable t = 0.0 t = 0.5 ·t = 1.0

ql 0.37796 0.28454 0.19224

q2 0.15313 0.23946 0.33187

q3 -0.49759 -0.49720 -0.49687

P12 0.18898 0.04954 -0.08822

P 23
0.66177 0.74622 0.83057

P 31
-0.54284 -0.46023 -0.37821

q12 0.08670 0.03313 -0.01978

q23 0.25020 0.28695 0.32601

q31 -0.25967 -0.23081 -0.20068



The vo Lt.aqe solution in Table 9.3 correspondi.ng to
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t = 0.0 represents a vertex of the set LP (d) •
x- Restricted variables

and Comparing

the value of the last three variables at that vertex with their corres-

ponding original limits indicates that this vertex is fairly close to

the b,oundary of S (d) •
x-

Figure 9. 6 shows the variation of some of the unspecified

variables along the line segment connecting the voltage solutions in

Table 9.3 • The large amount of variations· that the real power injec-

tions exhibit is suggestive that for this example Lb(d) is a relativelyx-

large set. Cleraly, under such circumstances, L
b

(d) can be used tox-

obtain a very good starting point to any optimal load flow problem.
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C~TER' X

'CONCLUSIONS AND SUGGESTIONS FOR'FURTHER'INVESTIGATION

10.1 Conclusions

A general approach to the analysis and the explicit characteri-

zation of those operating conditions under which a bulk-power system is

steady-state secure is put forward in this thesis. Theoretical and

numerical tools basic to this study have been developed by exploiting the

analytical properties of the mathematical model of the system. The im-

plications and potential applications of the results with regard to various

security related problems have been investigated. The validity of the

proposed schemes and their potential applications are demonstrated through

a number of numerical examples.

\

Significant results and notable developments in this thesis

are the following:

(i) The general steady-state invulnerability set in the space

of the network parameters and the specified nodal injections possesses im-

portant properties which qualify it as a basis for a unified approach to

the treatment of various security related functions of a power system.

(ii) The security sets in the injection space are the consequence

of two successive mathematically well-defined transformations on a number

of simple, elementary sets.



(iii) Using Taylor series expansion formula, app~oximate ex-
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pressions, relating dependent load flow variables to the nodal

injection vector, can be derived systematically. It is shown that the

resulting linear relations have adequate accuracYI while the quadratic

relations are highly accurate. .

(iv) The approximate relations derived based on the Taylor series

expansion formulae have their major applications in:

(1) Constructing steady-state security regions in

the injection space;

(2) Functional representation of the impact of the

load-generator outages on thepre-outage opera­

ting points;

(3) Systematic derivation of highly accurate loss

formulae;

(4) Expanding the scope of some efficient secure­

economic dispatch algorithms which are based on the

DC load flow model or decoupled load flow schemes.

(v) When a security set is non-empty, there exists only a cer-

tain class of expansion points for the approximate relations which lead

to the correct description of the set in the injection space.



(vi) In theory, security ~e9ions in both vol~age and injec-
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tion spaces can be disjoint.

(vii) The steady-state security regions are not invariant under

the choice of the location of the slack or the reference bus.

(viii) The problem of characterizing part of a security region by

a simple, explicit function has been formulated as an optimization pro­

blem. When the explicit function is a general ellipsoid, two efficient

numerical schemes for solving the resulting problem have been developed

and tested.

(ix) The problem of embedding the largest set inside a security

set for a given explicit function has been formulated as a mini-max

problem. For the case where the set is linear and the function is a

general ellipsoid, it is demonstrated that the problem is reducible to

a simple standard LP problem.

(x) An efficient scheme has been suggested for screening out

the redundant constraints among those defining a security set. The

scheme is based on the random generation of points inside the set and

does not involve excessive computations.

(xi) A simple technique has been proposed to compute various

stand-by control strategies for a system under vulnerable conditions.
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The technique requires pre-computi.ng the largest ellipsoids that can be

put inside various security sets.

(xii) The concept, of a security corridor and numerical schemes

required for its computation have been developed. A security control

is composed of a number of overlapping explicit security sets covering

a predicted daily trajectory. As long as the actual trajectory stays

inside a security corridor, security is guaranteed and no additional com­

putations are required. Construction of a security corridor has been

shown to be virtually a systematic region-wise predictive security assess­

ment scheme with results which can significantly improve various security

functions of a system.

that:

Through numerical examples it is demonstrated

1. To form a security corridor, only a small number

of explicit security sets are required;

2. Compared to running load flows, the residence of

the actual trajectory inside (or outside) a

security corridor can be verified trivially;

3. For the greater part of the predicted trajectory, a

typical security corridor is "wide" enough to allow

large deviations of the actual trajectory from the

predicted one inside its boundary.
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(xiii) A new monitoring scheme w~ich involves infrequent de-

tailed security analysis has been proposed. The scheme is based on new

developments suggesti.ng that by usLnq the information on the security

of an operati.ng point and pre-computing a number of coefficients, part

of the security region surrounding the operating point can be characteri­

zed trivially.

(xiv) The concept of a secure loadability set with notable

applications to system expansion planning and load management has been

introduced. A secure loadability set contains all the loading conditions

for which there exist at least one control strategy capable of producing

a secure operating point. For the case where the security set is linear,

an approach for characterizing its secure loadability set has been out-

lined. Techniques are also developed to characterize sub-sets of a secure

loadability set. One such sub-set is the set of secure-economical

loadability set with important implications in power system expansion

planning.

(xv) Simple techniques are developed to enclose, or to charac-

terize a subset of, the set of secure load flow solutions by a linear set.

The validity and the performance of these techniques are verified through

numerical examples. It is demonstrated that:

1. The degree of "tightness" of an enclosing set

can be partly influenced by adjusting certain

parameters;
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2. The emptiness of the enclos~ng set is a suf­

ficient condition for the non-existence of a

secure load flow solution;

3. The linear subsets can provide easy access to

voltage vectors satisfying all the equality and

inequality constraints. Thus, they serve as a

systematic means for computing starting points

to optimization algorithms which require such

points as their starting points.

10.2 SUggestions for Further Investigation

Since a large portion of this thesis is devoted to

analytical studies, some numerical aspects of the proposed schemes may

have not been fully explored. Future research efforts thus can be

directed toward further investigation of the efficiency and performance

of the proposed schemes on larger systems and under more realsitic

operating conditions.

Other suggestions for furth.erresearch. include:

(i) The modification of the system's math.ematical model to in-

clude the transformer turn ratios as part of the control variables. This
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leads to more ~eneral results and, in particular, to more practical loss

formulae.

(ii) The application of approximation formulae in network

equivalencing. Approximate relations can be derived to express expli-

citly the power flows in the tie-lines connecting a system to its

neighbouring system in terms of the nodal injections in both systems.

Thus, - with the availability of communication links between control

centers of the neighbouring systems - the impact of changes inside one

system on a neighbouring system can be easily accounted for by computing

changes in the relevant tie-line power flows.

(iii) The development of a new numerical scheme for obtaining all

the solutions to a load flow problem. This problem can be related to the

algorithms developed in Chapter VI by formulating it in the following

form:

f (E) = Min
x

subject to

T
(~ - !a) (!. - ~) = E

Zeros of the scalar function f (E) occur at various load flow solutions

and thus can be found by increasing value of E from zero in steps and

solving the resulting problems.



(iv) Explor~g the possibility of us~ng the explici~ global
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and local sub-sets of a security set in solv~g optimization problems

Lnvo Lvdriq that set. A possible approach may involve first substitut-

ing the set by its global sub-set and solving the optimization problem,

and then refining the resulting approximate solution by successive use

of the local sub-sets.

(v) The development of fast and efficient numerical schemes to

compute the coefficients

T -1a. (~} [A] 8. (~)
J --v Z -J- v

j=l, ••• , Ndp

directly in terms of ~ ' [Y
i

] and [A] , without actually computing
z

The availability of such schemes could greatly reduce the ~e-

quired computation time for up-dating these coefficients in case of a

change in network topology or drastic departure of the operating points

from the neighbourhood of !o = [L (~)] ~ •

(vi) The formulation of a generalized security corridor in the

space of network parameters and nodal injections. In this space a se-

curity corridor may accommodate deviations from the expected values both

in the injections and in the network parameters.

(vii) The development of more efficient schemes to characterize

a secure loadability set. The scheme proposed in Chapter VIII involves
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rather excessive off-line computations and may prove to be highly

expensive.

(viii) The investigation into the possibility of combining the

derivation of LaCd) and Lb(d) in such a way that the factors in-
x - x-

fluencing La Cd) offset each others' effect. The resulting set shouldx-

be able to produce better approximate solutions for optimization problems

involving 5 (d) •x-
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~PENDI.X A

A .BRIEF' SURVEY'ON.PURELY' NtJ.MERICAL .SCHEMES

.USED . FOR SECURITY· ANALYSIS' AND 'CONTROL

A.I SecuritlAnalysis

One of the earliest line-outage calculation methods is the

"distribution factor method" developed by EI-Abiad and St.agg IlS] in

early 1960·5. It is based on the DC load flow approximation and is

strictly a sensitivity analysis method. This method has been used for

a number of years in power utilities rI6] and, apart from poor accuracy

and lack of information on reactive flows, has interesting features for

on-line application.

The "exact; DC outage method" I17, 18] is basically an

improved version of the distribution factor method. The improved

accuracy, though not substantial, is offset by extra computational re­

quirements. An AC load flow routine would have to be called occasionally

to check (or verify) the DC load flow solutions.

The so-called Z-matrix method is an approximate version

of a load flow scheme known by the same name. This method was suggested

by Brown in the late 1960's r193 •

the DC load flow based methods.

Its accuracy is slightly better than

Two general load flow schemes which, because of their

special features, are currently used extensively for contingency evalua-
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tion are Stott's "fast decoupled load flow" 120, 21J and the "itera­

tive linear load flow'~ scheme of Peterson et al 122]. These schemes

can predict efficiently the post-fault value of all key variables, while

their accuracy is controlled by the number of iterations.

The decoupled load flow scheme takes advantage of the

relative insensitivity of the real power injections to the voltage magni­

tudes and of the reactive power injections to the voltage phase angles.

The weak coupling between these variables allow an approximation of the

Jacobian matrix, when a Newton-type algorithm is employed. In the itera­

tive load flow methods the sine and cosine functions·of the voltage phase

angles are expressed as their Taylor series expansion formulae. The

number of terms used (from the series) is in general an accuracy control

parameter, but quite often the first two terms are employed. The above

two methods appeared in the literature in the early 1970's and both ex­

ploit the sparsity as well as the symmetry present in the power flow

equations.

In 1972 Daniel and Chen [23] proposed changing the real

power injections at the system buses to simulate a line outage. Some

numerical improvements to this scheme was then suggested by Stagg and

Phadke [24]. The final modification came from Sachdev and Ibrah£m [25]

who used both real and reactive power injection changes to simulate a line

outage. The important aspect of this scheme is that it allows using the

same mathematical model for ~re~fault as well as post-fault calculations.
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A.2 Security Control

As mentioned in Section 1.3.2.2, because of the excessively

large dimension associated with the preventive control problem, it is

normally reduced to another problem which tries to take into account the

security constraints indirectly. Kaltenbach and Hajdu I28]·, for instance,

proposed that the security constraints can be introduced into a constrained

optimization problem concerning only the intact network, through modifying

the operating constraints. Peschan et al I29J suggested a similar ap­

proach but requiring a simplified special-purpose optimal load flow
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Heuristic approaches based upon adapting objective functions

which tend to reduce the power flow. or current magnitude in the critical

lines are also suggested. The most basic one in this ca~egory is intro-

duced by Sachdev and Ibrahim 130] and the most recent one is developed

by Blaschak and Heydt 131] • To be effective, such approaches demand

considerable insight and familiarity with the power network.

When the computation of corrective controls are desired,

the enforcement of the violated constraints is given the highest priority,

thus allowing the security constraints to be ignored. This still does

not permit an exact optimal rescheduling due to the limited time available

for the considerable computation burden.

While the first optimal power flow programs (OPF) were

developed primarily as tools for system planning, with the advent of large

and fast dispatch computers, their potential value for the system operation

was quickly recognized. The first concrete approaches to OPF were deve-

loped in France by Carpentier [32, 33] and Abadie [34, 35] • They

proceeded in developing a new gradient algorithm, the method of "Generali­

zed Reduced Gradient", in which dependent and independent variables are

exchanged in case of constraint violations. This work was later followed

in the U.5. by Peschon and others 135, 37, 38]. Another research group

in the U.5. (Domel and Tinney) also suggested a gradient projection

technique for the reduced gradient of the control parameters I39, 40J •

Their method incorporates constraint violations on the dependent variables

into the objective function as penalty te~s. Here, there is no exchange
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between the dependent "and independent variables except for reactive

generation limit violations whi.ch are handled by bus type switchi?g~

A comprehensive review on OPF techniques is provided in references

14l] and [42] • A key element in these approaches is their reliance

on fast sparsity oriented Newton...type powe.r flow routines.

A different approach to corrective control (security dis­

patch) based on the. use of approximate linear power flow models, which

permits the employment of linear programming (LP) routines, was pursued

independently in the Great Britain I43, 44] and the U.S. 145 - 48] •

The principal motive for the use of LP arised from the sbozticcmfnqs of

nonlinear programming methods. These deficiencies include:

(i)

(ii)

(iii)

(iv)

(v)

Unreliability or slowness of conv~rgence;

The need for sophisticated algorithms and

tuning procedures;

The need for a feasible starting point;

Complicated sparsity manipulation of matrices;

In the case of using penalty functions, diffi­

culties in recognizing infeasibility.

The main attractions of LP, in contrast, are inherent computational

reliability and speed. Furthe~ore, the duality property of LP formu-

lation allows the l~rge number of constraints present in the corrective

control problem to be handled efficiently and systematically.
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A major difficulty in this approach is that the fo~ula­

tion of objective functions must be in accord with the framework of LP

problems. In the case of total generation cost minimization, for

example, quite often piece-wise linear functions are used to represent

the cost function of individual generators. This may require assigning

a variable to each cost segment, thus increasing the number of variables

significantly. Moreover, the constraints are to be transformed into the

chosen operating space. The computation required in this step renders

this approach unattractive for on-line use. These difficulties were

later overcome largely byStott and Marinho [481. They combine the re­

laxation technique [49] with their "reduced basis" approach to decrease

drastically the number of required constraint transformation. Another

significant contribution of their work is the efficient treatment of

piece-wise cost functions, requiring no extra variables in the program.

It is possible to generalize their approach to include preventive control,

but the required computation still would be excessive.

The approximate linear model, used in the above approaches I

takes into account only the real-power injections and the voltage angles.

Results in most cases show good agreement between the real power flows

predicted by the linear model and that found by an AC power flow solution

of the new operating point. This model is nevertheless inadequate for

applications which. involve changes in the voltage profile or rescheduling

of reactive power generations.
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A recent work ISO], which permits manipulation of all

control variables, now seems to be. getti;ns w~de acceptance. Thisap­

proach can be viewed as a marriage between the nonlinear OPF and those

using linear network models. It is based on successive linearization

of the power flow equations and application of LP. The key factor here

is the treatment of all variables (dependent or independent) as decision

variables. This eliminates the need for transforming the dependent

variables into the "operating space". Furthermore, the increase in the

problem size due to the inclusion of reactive power generations and

voltage magnitudes is offset by the employment of an efficient LP algorithm

which exploits the preserved sparsity of the full linear formulation and

the use of the "uppez--boundanq'' technique 151]. After every LP iteration,

however, a power flow run is needed to ensure staying on the load manifold

as the algorithm proceeds toward the optimum solution.

Through suitable formulation of the objective function the

corrective and emergency control calculations (e.g., generation reschedul­

ing and load shedding option) are often combined into a single problem

[37 - 41]. By proper weighting of the terms defining the objective

function, one can assign different priorities to different control actions.

Thus by assigning the lowest priority to emergency control actions these

controls are evaluated only in the event that corrective controls fail to

relieve the existing over-loads. As a result, the numerical approaches

cited for corrective control calculations, dependf.nq on the available time,

could be used for emergency control evaluation as well.
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',AJ?l?ENDIX' B

'FUNCTIONAL REPRESENTATION' OF .A .LOAD

OR GENERATOR OUTAGE

Shortly after tne occurrence of a load o~ generator

outage" the system responds to it in the form of a frequency shift, 6£ •

Thus, the change in the system state, to the first order, is

A • k
u z. =

1.

k
p. 6f + E. Z.

1. 1. 1.
i 1, li •• , N

z
. (B. 1)

k 6 a Z.
where e. is defined in Section 5.2.2, and Jl. = (a f1.) 0 is assumed

1. 1. f=f
to be known (e.g., the slope of a generator droop curve). To account for

the possible variations in the slack bus real power injection due to.the

outage, one has to allow also a 6. pg
1

of the form:

= (B.2)

To be physically feasible, the resulting new state should'

satisfy the LFE • This can be ensured approximately by demanding the

enforcement of the relation

= 8~ (!o) fJ. z

N
z

= L
j=l

<a .) 6 z ,
J 1 J

(B.3)

The above relation is simply the incremental form of relation (8.14). Add-
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ing that to equations (B.l) and (B.2), one has enough equations to solve

for /). f, a z.
~

and After some elementary manipulation of

equations (B.l - B.3), one arrives at the following solutions:

where

k
A Z. =

~

k k T
[cr. r + €. ~.] Z
~- ~-J.-

i = 1, •.• , N
z

(B.4)

(8 . )
~ 1

k
(s .

~

cr.
~

and ~. is defined in (4.1)
-~

the form of equation (5.12).

Special Case

Using (B.4), /). zk is expressible in

Since is proportional to the equivalent inertia of the

slack bus generators, in the case where slack bus generators are signifi-

cantly larger than other generators in the system, one often has

As a result cr. ~ 0 •
~

This reduces equations (B.4) to



A k, :::
u Z.

J..

k rr
E.' R,: z =
~ -1.-

k
E. Z.
~ ].

i l, .•• , N
Z
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i.e., there will be no significant frequency change in the system. For

the slack bus, however, from equation (B.3), one obtains:

N
z

kb. pg L «(3 . ) E. z. (B. 5)
1 J 1 J J

j=l

In words, all the variations in the load or generations will be absorbed

by the slack bus generators.
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APPENDIX C

UP..DATING A LINEAR TSE FORMULA

Here we would like to demonstrate that ~ (!o)

up-dated f?r a new expansion point x, , using an available decomposed
--J.

based Jacobian, [L (!o)].

solving

A direct computation of 6. (x.) involves
J -~

T
[L (x.)] 8. (x.) = [y .] x ,

--J,. -:J -~ ] -~
tc.a:

for 8. (x.) •
J ~

Defining,

a x ~ x. -
!o-J.

6. 8.
~

8. (x , ) B. (!o)-
-:J J -~ -:J

one can rewrite equation (C.I) in the form:

= [y.] (~+ 6. x)
J -cv -

CC.2)

Using the property (2.25) and the definition of ~ (!a),

(C.2) reduces to

equation

= (C.3)



The above equation can be solved iteratively for

the iteration rule

6 B.
J

ac.cording to

311

T k+l
[L (!o)] t:. ~

where

= (C.4)

6 b
T

[y.] 6. x - [L (6 x) JB. (~)
J - -J-v

(C.5)

Since the term [L (6 x)]T 6 8~ is of second order, the suggested
- -:J

algorithm normally converges very fast.
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APPENDIX'D

OPTIMALITY CONDITIONS

Setting p = 0, the first order optimality conditions

for the optimization problem stated in (6.13) take the following

form:

(i) (d. L) = 0 or
d x *x = x

* )] T * !A* *[L (~ ex (~ ) - [Y. ] x = 0 (D.1)
2 J

where

* 6. * *a. (~ ) = [A] {[L (?i ) ] x - z } (D.2)
-g

(ii) or

*Y. (~)
J

*(iii) A > 0

= ~
y.

J
(D.3)

(D.4)

.e

The second order optimality condition for this problem can

be presented as follows:
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(Lv) For every vector v satisfying

T *v (Y.] x = 0
J

the relation

T a2
L

v I 2 ~ v ~ 0
a x *

x = x

*It = A

must hold, where

(D.5)

(0.6)

= 2 [L (:,)] T [A] [L (:,)] + [Z (~)] - A [Y.]
J (D.7)

The vector a = ~ (~) is introduced in {D.2}. The condition (0.6)

is checked by finding a set of N -1
z orthogonal vectors satisfying (0.5) •

This is carried out by using the Gram-Schmidt orthogonalization process,

which is discussed in Appendix F •
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APl?ENDIX E

NUMERICAL CONSIDERATIONS IN' IDENTIFYING

t\fON-REDONDANT CONSTRAINTS

The term which requires special attention in obtaining

equation (6.54) is

one can write

T
x rH.J 1. =

J -1.

T
~. [H.] xv""
~ J

1
a h.

2 (r7"> 4

For a variable

1 d h.
= -~

2 d x.
1.

T
h. = x [H.T x ,

J J -

(E.l)

Thus, one can compute T
1, [H.] ~
-1. Ju

by direct partial difference of h.
J

and evaluating the result at ~ = ~. The number of terms present in
a h .
.--J is normally less than four. However, when h . represents a real
d x. J

1.

or reactive power injection at bus j and j = i or j = i + N, the
a h.

number of terms defining ~ could be significantly larger. In that
a X.

1.

case, one can simplify the derivatives by expressing them in terms of the

relevant power injections, that is:

a Pk Pk
q

= [9
kk

+ -] e
k

+ [B
kk

+ .Js.] f
k

(E. 2)
d

2 2
e

k
V

k
v

k

= (E.3)

(E. 4)
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(E.5)

Knowing the values of Pk = Pk (!.) and x=x- ~
makes

the computation of the above derivatives trivial. Note that the first

step in the proposed algorithm is to ascertain ~ € Sx ' which involves

computing all P
k

(xo) and Q
k

(x) •

Relations (E.2) to (E.5) can be derived easily by exploiting

the special structure of load flow equations in their current from (see

section 9.1).
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APl?ENDIX "E

EVALUATION OF THE MATRICES REQUIRED

IN CONSTRUCTION OF SECURITY CORRIDORS

Here, one would like to compute a positive definite matrix

[A.J in such a way that its eigen-vector corresponding to the smallest
.i,

eigenvalue lies along a given vector a. •
-~

In the following, two dif-

ferent approaches to this problem are introduced.

Approach 1

Consider the following choice for [A.]
~

[A. J
~

= ,m.ax) [ T
A a. a.]

a, -J. -.J..
(F .1)

By choosing the above matrix satisfies all the re-

quirements stated for [A.] •
~

This can be proved easily by noting that

for a general vector ~, one can write

T
[a. a. ] w =

~ ----:L.
(a~ w) a.
-.J. - -J,.

(F.2)

Thus, with tl a . 11 = I,
-J.

[A. J max (A~in A~ax) T
a. } Ami na. = A. a. + (a. a. = a.a,

-~ ~ -2, ~ ~ -~ -~ -~ 1 -~
(F.3)

and for any vector b satisfying T
a. b = 0 ,
-J. -



lA.] b = A~ax b + (A~in
1. ~ - . ~

A~ax) (a~ b) a.
~ -~ - -~

= A~ax b
~ -
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(F.4)

In words, a. and N -1 possible independent vectors perpendicular to
-J,.. Z

it (a full basis for the null space of

of [A.] •
~

Furthermore, except for

[a. a7J) fo~ the eigen-vectors
-J,.. --J,.

A~in, all the other eigenvalues

of [A. ]
.i,

are equal to

Applying the matrix inversion lemma, one can show readily

that

-1
[A. ]

~
=

(A~ax _ A~in)
1 [IJ + J. J.

A~ax Amax A~in
J. i ~

T
[a. a.]
~ -:l.

(F. 5)

Note that here one has control only over A
mi n

and
L

maxA. •
.i,

By specifying these two parameters, all the eigenvalues of the matrix

[A.] will be fixed.
.i,

Approach 2

A positive definite matrix

in the form.:

[A. ] = [M.] T fA.] [M.]
~ J. 1. J.

[A. J
~

can be expressed generally

(F.6)

The eigen-vectors of fA. ]
1.

are the columns of the matrix {M.] , and
J.

fA . ] is a diagonal matrix containing the eigenvalues.
1.

To have the re-
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-J,.
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[M.] •
~

Moreover, all the eigenvalues must be positive and the smallest one

should correspond to a. •
-J,.

We start with the fol1ow~ng set of independent vectors

{a., !.2' ••• , s., ... , -NlL -}
-J., -.J..

Z

(F.7)

where R,. has 1 in the ith position and zeros elsewhere.
~

This set

of independent vectors then can be converted into a set of orthogonal

vectors by the Gram-Schmidt process: First

is computed according to

m = a.
-1 -~

and then each

=

T

~-14
!!!.l - ••• - Il

m
11 2 ~-l

~-1

(F .8)

The final vectors, when normalized, can represent the columns of [M.] •
~

At that stage, a. need not be the first column of
-.:L.

IM.] •
~

Note that

-1
[A.] ==

~

-1
[M.]T [A.] [M.]

~ ~ J.
(F.9)

The specific choice of the original set of vectors, intro-

duced in (F.7), facilitates the required computations considerably.
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APPENDIX G

COMPUTATION OF THE CHANGES IN THE INJECTION·VECTOR

DUE TO SHUNT REACTOR OR.CAPACITOR SWITCHING

Suppose, in order to modify the operating point ~ ,

some reactive devices at the load buses j, k, and R, are switched

into the system. The reactive power injections at these buses change

according to

A Q. =
1.

2
- /1 B .. v ,

1.~ ~
i=j,k,R, (G. 1)

where
2

v.
~

represents the post-switching voltage level at bus i . The

values of /1 B.. i = j, k, R, are known in terms of the reactance of the
l.~

switched devices. From Section 4.5.2 we know that the voltage levels

at the load buses can be expressed accurately by a linear function of the

injection vector. Thus, one can write

=

i = j, k, R,

(G.2)

where (v~}2 is the pre-switching voltage level at bus i and
~

= (G.3)

Since and /1 QR, are the only changes in the
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injection vector, it follows that

(G.4)

where (8 ) ,
r .

1.

(S ) , and
m.

~

i = j, k, !l,

(an). are respectively components of ~ (~)

~

corresponding to 6. Q.,
J

and in 6. z . By using relations

(G.2) and (G.4) into (G.l), one ends up with a system of linear

equations for the unknowns 6. Q.,
J
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APPENDIX H

PO,SITlVE SEMI~EFINITENES.S O;F THE .MATRIX

For the network losses, the matrix IE(~)] is given by

where

=
-T

IL (~}] IY.q,] ~

(H.l)

(H.2)

We would like to prove rE.q, (~)] ~ 0 when ~ is

chosen sufficiently "close" to ~, the flat vo~tage profile. The

proof is based on the following proposition:

For any matrix [A] and vector ~l satisfying

T
Zl [A] 1.1 > 0

there exists a € > 0 such that any 1.2 satisfying

is guaranteed to satisfy

(H.3)

(H.4)
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The proof also uses the facts that
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(H. 51

= o (H.6)

= o (H.7)

that:

To use the above proposition, first one needs to prove

= (H.8)

This is easy to verify once one notes that £1 (~) can be written in

the form

=

The second term in this expression is of third

(H.9)

where 6.!. =~ - ~ •

order in d ~; therefore, for small A!. I the first tenn is always

dominant. The first term, however, represents the network losses at

4 ~ and is positive when ~ ~ ;f ~ • This implies that for all ~

sufficiently close to· ~ relation lH.81 is always true.
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Now we prove by contradiction that rE {~}J ~ 0 •

Starting from the assumption that lE (~lJ -c 0, one can assume that

!o can be chosen so closeto'~ that lE (~)] has only one negative

eigenvalue. This is a realistic assumption considering the fact that

for ~ = ~ Denot~ng this

eigenvalue by , 'A­
m

follows that

and its corresponding eigenvector by x
-.om

it

T; rE (~}] ~ =
2

'A Rx n < 0
m -m

(H.10)

On the other hand, ~ is chosen very "close" to ~.

Since

~.

satisfies (H. 6) , the vector x must be very "close" to
-m

This im-

plies that one can always choose ~ sufficiently close to ~ to

satisfy

IIx - x 11 < <5
~ -m

(H.ll)

where <5 is a positive constant. But, relations (H. 8·) and (H.Il)

according to the aforementioned proposition ~ply that

(H.l2)

which contradicts (H.lQ}.

Q.E.D.
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