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Résumé 

À hautes températures, les propriétés de l’acier sont affectées et sa résistance est donc 

moindre que sa résistance à température ambiante. Des méthodes de calculs différentes 

doivent donc être utilisées pour prédire la résistance dans la situation exceptionnelle 

d’incendie. Les normes actuelles proposent des méthodes simplifiées pour prédire la 

résistance de l’acier à haute température. Toutefois, ces méthodes sont inspirées des 

méthodes de dimensionnement à froid et ne sont donc généralement pas adéquates pour 

prédire de façon précise la résistance des éléments en situations d’incendie.  

Ce mémoire présente les recherches effectuées pour la proposition d’une nouvelle méthode 

de calcul pour les sections d’acier ouvertes soumises à de hautes températures en utilisant 

l’Overall Interaction Concept (O.I.C). Cette méthode est basée sur l’interaction entre la 

résistance et la stabilité et permet de considérer les imperfections géométriques et matérielles. 

Entre autres choses, l’avantage de cette nouvelle méthode est qu’elle permet d’obtenir des 

résultats précis et de conserver une continuité entre les prédictions. 

Un modèle numérique a été utilisé pour prédire la résistance de l’acier à hautes températures. 

Ce modèle a été validé en comparant les résultats avec des résultats expérimentaux. À la suite 

de la validation, le modèle a été utilisé pour conduire des simulations dans lesquelles 

plusieurs géométries, températures, limites élastiques et cas de chargement ont été 

considérés. Les résultats ont ensuite été utilisés pour proposer de nouvelles équations dans le 

format O.I.C. 

La performance de la nouvelle proposition a été évaluée et comparée avec la performance de 

normes existantes. Cette évaluation a permis de conclure que la proposition donne des 

résultats beaucoup plus précis. 

Finalement, l’évolution du comportement de l’acier entre la température ambiante et les 

hautes températures a brièvement été analysé. Puisque ce point est abordé de façon sommaire, 

il ouvre la porte vers de futures études sur le sujet.  
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Abstract 

At high temperatures, steel suffers from great losses in strength and stiffness. Different design 

methods must therefore be considered to predict the resistance of steel in the exceptional 

situation of fire. Current standards propose simplified methods to predict the resistance of 

steel at high temperatures. However, these methods are inspired by steel design equations 

used at room temperature and are therefore generally not suitable to predict accurately the 

resistance of steel elements in fire situation.  

This thesis presents research investigations pursued to propose a new design method for open 

steel cross-sections subjected to high temperatures by means of the Overall Interaction 

Concept (O.I.C.). This calculation method is based on the interaction between resistance and 

stability and allows to consider geometrical and material imperfections. The advantage of 

this new calculation method is that it allows to obtain precise results and to keep continuity 

between predictions contrarily to standards that use the cross-section classification.  

A numerical model, initially developed for open steel cross-sections at ambient temperature, 

was improved to predict the resistance of steel at high temperatures. It was then verified 

against experimental test results to ensure its accuracy. After validation, the numerical model 

was used to conduct simulations using different geometries, temperatures, yield limits and 

load cases. Results were then used to formulate new design proposals for cross-sections at 

high temperatures in the O.I.C. format.  

The performance of the new proposal was then evaluated et compared with the performance 

of existing standards. This evaluation allowed to conclude that the proposition is much more 

accurate than existing standards. 

Finally, the evolution of the behaviour of steel between cold and high temperature was briefly 

analysed. As this point was only briefly discussed, it opens the door for future studies on the 

subject. 
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Introduction 

Use of steel in structures 

Steel is a material that is widely used in buildings and infrastructures. It can be used to 

construct houses and small buildings as well as very high skyscrapers, bridges and tunnels. 

The main advantages of steel use are as follow:  

• It is a strong material which allows to use small cross-sections and provides wide 

open spaces in buildings; 

• It makes light structures that require reduced foundations; 

• It can easily be used for prefabricated building which leads to very fast constructions; 

• It can easily be combined with other materials; 

• Due to its ductility, it is a good choice for buildings in seismic areas; 

• Its ductility also makes it a good material in fire situations as it allows for a 

progressive collapse of the structure. 

Those advantages explain why engineers and architects choose steel when designing 

buildings and bridges. However, improvements still need to be made regarding design for 

fire situations; which is the focus of the present study. Effectively, guidelines provided in 

actual codes are known to lack accuracy and are therefore not appropriate for the design in 

fire situations. 

Steel in fire situations 

During a fire, temperatures as high as 1000°C can often be reached. As steel sections are 

usually made of thin plates, they heat rapidly in such situation. When steel is subjected to 

heat, further to experiencing thermal elongation, it rapidly loses in strength and stiffness. 

Moreover, strength and stiffness do not decrease at the same rate when the temperature 

increases. Therefore, design methods used at ambient temperature cannot be used for the 

design in the case of fire. However, buildings must absolutely be designed by taking into 

consideration the fire situation as it could otherwise lead to the collapse of the structure if a 

fire occurs. As user safety is the most important criterion when designing any structure, the 
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fire situation must not be disregarded. Moreover, the fire situation most be considered in the 

design process as it can be decisive for member selection.  

Actual practice in fire design  

Both active and passive fire protection measures are often used in buildings. Active 

protection measures include fire alarms and sprinklers and are used to control the fire spread. 

Passive protection measures, on the other hand, provide fire resistance to the structure. These 

include adequate design of the structure (materials and dimensions), compartmentation and 

fire protection materials; they are used to ensure the structural stability and integrity of the 

structure during specific time periods prescribed by building codes. Theses time periods are 

based on the fire safety objectives and on the type of occupancy in the building [1]. 

In actual practice, steel structures are rarely designed by considering the properties at high 

temperature. Effectively, most buildings code have a prescriptive approach. This means that 

compartmentation and protection materials are mostly used as passive protection measures 

and that the protection materials are chosen from a wide range of products for which the 

resistance to fire has been proven following specific testing procedures. In the case of steel 

structures, theses protection materials include, but are not limited to, spray-on fire resistive 

materials (SFRM), intumescent coatings and enclosures of gypsum boards [1]. 

The use of fire protection materials does ensure the structural integrity of the structure in case 

of fire. It however greatly increases the cost of construction of a building. For example, 

according to a report made by the National Fire Protection Association (NFPA), in the United 

States, the cost of fire protection for a commercial building can represent up to 12% of the 

value of the building [2]. New methods most therefore be considered to ensure more 

economical design.   

In the past years, more buildings codes have switched to a performance-based approach to 

fire safety. This means that designers can choose the strategy they want to provide fire safety 

as long the level of performance required is proven to be met [1]. They can therefore 

incorporate fire considerations directly in the design process of steel structures which could 

lead to large money savings without jeopardizing user safety. Most design standards do 
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provide simplified methods of analysis that can be used when the design involves structural 

members that do not act as a system. Those methods mostly consist in using the equations at 

room temperature with a few modifications and reduced mechanical properties. However, 

the behaviour of steel at high temperature is very different than its behaviour at room 

temperature, and the guidelines thus often lack in precision and accuracy. Moreover, most 

standards resort to the cross-section classification which can lead to a lack in continuity and 

often use tedious calculation methods. Standards therefore need to be improved to accurately 

consider steel properties at high temperatures, to ensure safe designs and to increase the 

precision and the simplicity of the calculation methods. 

Overall Interaction Concept 

The need for more accurate and simpler design rules led to a new design method: the Overall 

Interaction (O.I.C). This new design method as been in development since 2012. It is based 

on the interaction between the main factors influencing the load bearing capacity of a member 

which are resistance and instability. One of the main advantages of the O.I.C. concept is that 

resistance predictions are no longer based on cross-section classification responsible for non-

continuous transitions in the design. The use of the O.I.C. is also much simpler than the actual 

calculation methods used in standards. 

To explain the background and the concept of the O.I.C., it is possible to recall the case of a 

simple column subjected to compression. Figure 1 shows the column and a graph of the 

resistance of the column as a function of its length.  
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Figure 1 : Resistance of a simple column under pure compression 

The graph shows that for very short columns, resistance is governed by the plastic capacity 

while for long members, resistance in governed by instability. The resistance of members of 

intermediate lengths is affected by imperfections and the resistance follows the “Real 

behaviour” curve which is a so-called buckling curve. 

The O.I.C. concept uses similar graphs and buckling curves. However, the curves used by 

the O.I.C. rely on dimensionless relative slenderness. These dimensionless parameters allow 

use the same buckling curves for elements with different shapes and properties. 

 

Figure 2 : O.I.C. buckling curves 

Figure 3 presents the general O.I.C. chart with the steps that need to be followed to determine 

the resistance according to the O.I.C. concept. The O.I.C. approach concerns both the local 

(cross-section level) and the global (member level) capacity. Although the present study 

focuses on the local resistance, all steps will be discussed. 
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Figure 3 : Principles and application steps of the Overall Interaction Concept 

The O.I.C. uses 3 key factors which are load multipliers. Rcr,L and Rcr,G are respectively the 

local and the global critical load multipliers. They are calculated by dividing the critical load 

(either local or global) by the initial load applied to the member. Both critical loads can be 

obtained by performing Linear Buckling Analysis (L.B.A.). To obtain the local critical load, 

the length of the member used in the F.E. numerical model must be very short to prevent 

global effects. Rpl is the plastic multiplier. It is obtained by dividing the plastic resistance by 

the initial load. The plastic resistance is determined with the use of a MATLAB tool. The 

initial load used to calculate the multipliers must be the same for all multipliers so that they 

can combined in the O.I.C. process.  

The main objective of the studies made on the O.I.C. is to determine the buckling curves that 

will later be used by designers following the approach presented on Figure 3. Different sets 

of curves must be developed for local and global behaviour. To determine the buckling curves 

that will later on be used by the designers, the following steps must first be followed by the 

researcher for the local behaviour:  
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1) The local relative slenderness must first be calculated with the following equation: 

 
,

pl

L

cr L

R

R
 =  ( 1 ) 

2) Geometrically and Materially Non-linear with Imperfections Analysis (G.M.N.I.A.) 

are then performed to determine the ultimate load multiplier Rb,L. As only the local 

resistance is of interest, the length of the member in the numerical model must be 

short enough so that no global effects occur. The initial load used to determine the 

ultimate load multiplier must be the same as the one used to calculate the critical and 

plastic multipliers; 

3) The local reduction factor must be calculated using the following equation: 

 
,b L

L

pl

R

R
 =   ( 2 ) 

4) Design curves can then be determined based on results obtained in steps 1-3 for 

various cases. 

The following steps must then be followed by the researcher for the global behaviour: 

1) The local relative slenderness must first be calculated with the following equation: 

 
,

pl

G

cr G

R

R
 =  ( 3 ) 

2) Geometrically and Materially Non-linear with Imperfections Analysis (G.M.N.I.A.) 

are then be performed to determine the ultimate load multiplier Rb,L+G. The ultimate 

resistance accounts for both local and global behaviour. The initial load used to 

determine the ultimate load multiplier must be the same as the one used to calculate 

the critical and plastic multipliers. 

3) The function used to calculate the fL/G coupling factor must then be determined. This 

function is based on the difference between non-linear analysis in which both local 
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and global buckling is considered and non-linear analysis free of local instabilities. 

The fL/G coupling factor accounts for [3]: 

• The influence of local behaviour which diminishes with the increase in length; 

• The second-order effects that can precipitate the local buckling of the cross-

section; 

• The local second-order effects that can cause a loss in stiffness and load 

redistribution. 

4) The local reduction factor must be calculated using the following equation: 

 
,

/

b L G

G

pl L G L

R

R f




+
=

 
  ( 4 ) 

5) Design curves can be determined based on results obtained in steps 1-4 for various 

cases. 

Once the design buckling curves have been developed, the O.I.C. approach from Figure 3 

can be followed by a designer. In this approach, the local and global slenderness are 

calculated using Equations (1) and (3) presented previously. Then, χL and χG are determined 

with the use of the buckling curves. Finally, the coupling factor fL/G is calculated. Finally, the 

ultimate multiplier, Rb,L or Rb,L+G, can be calculated with the equation presented on Figure 3. 

An ultimate multiplier over 1.0 means that the initial applied load must be multiply by a value 

over 1.0 for failure to be reached and therefore that the resistance is sufficient. 

Objectives of the Master’s thesis 

The objective of this Master’s thesis is to extend the O.I.C. for open I and H cross-sections 

shapes at elevated temperatures. In all studied cases, the temperature is considered to be 

uniform throughout the section. Only doubly-symmetric sections are studied and only the 

local resistance of those cross-sections is assessed in this thesis. Various shapes of hot-rolled 

and welded cross-sections are chosen to accurately represent the behaviour of compact to 

slender cross-sections in fire situations. Numerical simulations are also performed using 

different values of temperature, yield limit and load cases. 
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Methodology 

Chapter 1 of this thesis presents the State-of-the-Art realised at the beginning of the master. 

The aim of this literature review is to review previous work done on important subjects such 

as steel behaviour at high temperature, plastic resistance in fire conditions, local buckling 

and imperfections which will be useful and needed for the realisation of this thesis. Actual 

design methods in European, Canadian and American codes are also studied and are 

presented in this chapter.  

Chapter 2 presents a description of the finite element (F.E.) models used throughout the 

research. All parameters used in the model are described and sub-studies regarding the mesh 

density and the introduction of residual stresses are also presented. A validation study of the 

model against experimental results is also presented. 

Chapter 3 addresses the different parameters considered in the parametric study. In this 

chapter, all the cases studied are presented, discussed and analysed. 

Chapter 4 concerns the identification of the leading parameters. A leading parameter is a 

parameter that influences the resistance. Identification of leading parameters is mandatory to 

be able to define a series of buckling curves that can accurately predict the resistance. In this 

chapter, relevant parameters studied are presented and the chosen leading parameter are 

presented. 

Chapter 5 presents the proposed design curves based on the numerical study. Two different 

proposals are made: one proposal for welded sections and one proposal for hot-rolled 

sections. The performance of the proposals is then compared to finite element predictions 

and the influence of different parameters on the performance is studied. 

Chapter 6 proposes a comparison of the performances of the O.I.C. proposals and of existing 

standards. The intent of this chapter is to show that the O.I.C. proposals lead to more accurate 

results and are therefore an improvement over the current design methods.  

Chapter 7 presents worked examples that shows the efficiency of the O.I.C. proposals 

compared to the actual calculation methods used in standards. 
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Chapter 8 briefly discusses observations on the influence of increasing temperature on 

section capacity and explains what is left to study. 
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Chapter 1 : State of the art 

1.1 Steel behaviour at high temperature 

When subjected to fire, the heat of steel increases rapidly due to the good thermal capacity 

of steel. Steel elements also usually have high section factors A/V, the ratio between the area 

of the member in contact with the heat and the volume of the member, which also increases 

the rate at which steel heats [4]. In a fire, a steel element is rarely exposed equally to the heat 

on all its side. This leads to temperature gradients in the steel elements. When doing a 

simplified mechanical analysis, the temperature is often considered constant throughout the 

section and the higher temperature is kept as the uniform temperature. 

The heating of steel causes a decrease in both strength and stiffness that need to be accounted 

for when trying to predict the resistance of steel at high temperatures. Many experimental 

tests have been conducted over the years to determine the mechanical properties of steel at 

high temperatures. Those tests can either be transient-state tests or steady-state tests. When 

performing transient-state tests, the load is applied on the specimen at ambient temperature 

and then the temperature is increased at a constant rate. In steady-state tests, the specimen is 

first heated at a specific temperature and then load is applied and increased. Both methods 

can lead to differences in results [5]. When performing numerical simulations with finite 

element software, it is easier to use steady-state procedures. Effectively, in this method, 

material properties are adjusted to fit the desire temperature and the load is then progressively 

increased as it would be for a regular static numerical simulation at normal temperature. 

Figure 4 and Figure 5, extracted from Kodur et al. [5], show how the elastic modulus and the 

yield strength evolve with the increase in temperature. In those graphs, data from different 

models and tests are presented.  
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Figure 4 : Influence of the temperature on the yield limit of steel [5] 

 

Figure 5 : Influence of the temperature on the elastic modulus of steel [5] 

Graphs show that both the yield limit and the elastic modulus decrease with an increase in 

temperature. This can be explained by the fact that, when steel temperature increases, the 

nucleus of the iron atoms in steel move apart. This leads to weakened bonds and thus reduces 

both the yield strength and the elastic modulus of steel [5]. Both figures also show that the 

results from one study to the other can be very different. This can be explained by different 

test procedures, but also by the influence of the heat rate and of the rate of loading on the 

material properties. 
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Moreover, the typical linear stress-strain relationship used for steel is no longer accurate at 

high temperature. Effectively, the stress-strain relationship becomes drastically non-linear 

[6]. Because of the non-linearity, larger strains are needed to reach high stresses. According 

to Knobloch et al. [7], the stress-strain relationship can be classified in three temperature 

ranges : 

• For temperatures below 300°C, there is a linear elastic branch, a clearly defined yield 

point, a yield plateau and strain hardening is present at high strains; 

• For temperatures between 300°C and 600°C, the linear elastic branch becomes shorter 

and the stiffness is lower. No clear yield point can be noticed. However, the plastic 

behaviour remains governed by strain hardening;  

• For temperature over 600°C, the elastic branch is even shorter and the range for strain 

hardening is less pronounced. 

Figure 6 shows the stress-strain relationship at different temperatures obtained from tensile 

tests [8]. This figure is from a study from Knobloch et al. [8] on the influence of strain-rate. 

Among other things, it shows that higher strain rates lead to higher material properties 

(modulus of elasticity, proportional limits and yield strength). The difference is especially 

important for higher temperatures such as 550°C and 700°C.  

 

Figure 6 : Stress-strain relationships at various temperature based on tensile tests [8] 



 

13 

As the material law greatly depends on the strain rate and between different tests, Part 1-2 of 

Eurocode 3 (EC3) [9], which is the European standards for the design of steel, gives 

recommendations regarding the material law that can be used when performing numerical 

simulations. Figure 7 shows the recommended stress-strain relationship.  

 

Figure 7 : Steel material law at high temperatures recommended by Eurocode 3 [9] 

The standards also provide all the information to calculate the different parameters presented 

on the figure. The standards also allow to consider strain hardening in some cases. Figure 8 

shows the recommended stress-strain relationship with strain hardening. 
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Figure 8 : Steel material law at high temperatures with strain hardening recommended by Eurocode 3[9] 

This material law is only valid for temperatures below 400°C. However, the material law 

recommended by the standards is the one without strain-hardening shown on Figure 7. The 

second one from Figure 8 is presented as an alternative.  

At high temperatures, the loss in stiffness, shown in Figure 5, combined with the large strains 

needed to reach high resistance, due to the non-linearity of the material law shown on Figure 

7 and Figure 8, lead to significantly lower stability. Therefore, more cross-sections are 

subjected to local buckling at high temperatures than at ambient temperature. As for the loss 

in strength, shown on Figure 4, it has a direct impact on the resistance at high temperatures. 

The loss in resistance and stability increases as the temperature increases. As an example, 

Knobloch et al. [10] conducted an experimental study in which stub columns HEA shapes 

were loaded at different temperatures. The ultimate strength measured at 400°C, 550°C and 

700°C were respectively reduced to 89%, 45% and 14% of the ultimate resistance at ambient 

temperature. Moreover, a study conducted by Wang et al. [11] concluded that the degradation 

in resistance of high strength elements is much more rapid than in mild steel elements. This 

could be explained by the fact that, even at ambient temperature, high strength elements are 

more subjected to instabilities. Moreover, for different steel grades, the rates at which the 
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material respectively loses its resistance and its rigidity may be different, therefore affecting 

the behaviour.  

In addition, creep, which is not significant at ambient temperature, has a significant impact 

on the resistance of steel structures at high temperatures. Effectively, at elevated 

temperatures, deformations caused by creep accelerate and affect the response of the 

structure. Creep effects are noticeable at temperatures higher than 400°C [5]. 

1.2 Plastic resistance in fire conditions 

As explained previously, when the temperature increases, the stress-strain relationship of 

steel is no longer linear. As a result, at high temperatures, there is no clearly defined yield 

point. Therefore, the plastic resistance cannot be defined at high temperature as at room 

temperature. In some standards (Eurocode 3, CSA-S16, AISC), the stress at 2% total strain 

is used as the yield limit to calculate the plastic capacity. It is however an approximation as 

this stress does not correspond to a plateau such as in the material law at ambient temperature. 

Moreover, larger strains are necessary to reach higher stresses. A numerical study was 

conducted by Knobloch et al. [12] to understand the cross-section behaviour of steel sections 

at high temperatures. In this study, various cross-sections with different yield strengths were 

studied at ambient temperature and at multiple high temperatures. Results of the study 

confirmed that compact cross-sections were able to reach resistance higher than the plastic 

resistance at ambient temperature before failure du to strain-hardening effects. However, 

those same cross-sections, even those that were very compact, were not able to reach their 

full plastic capacity at higher temperature. Effectively, as larger strains need to be reached to 

increase the resistance, instabilities can develop before the plastic resistance is reached. Other 

studies have shown that, at the ultimate capacity, the strain reached by very stocky cross-

sections is smaller than 2% [13]. The use of the stress at 2% total strain in standards can 

therefore lead to unrealistic and unconservative results and, consequently, calculation 

methods must be improved. 
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1.3 Local buckling 

Local instability can have a significant impact on a cross-section’s resistance. The impact of 

instability increases as the slenderness of the cross-section increases. Instabilities occurs 

when compression stresses are applied to plates. A review on local buckling at ambient and 

at elevated temperatures is made in the following sections.  

1.3.1 Ambient temperature 

1.3.1.1 Brief historical review on buckling 

Euler was the first to contribute to buckling investigations. After accepting the theory 

proposed by Bernouilli stating that “the curvature of an elastic beam at any point is 

proportional to the bending moment at that point”, he studied the shape of a slender elastic 

bar under different loading conditions [14]. He then derived a first equation to predict load 

at which buckling occurs on a straight column without any imperfections made of a purely 

elastic material. The well-known form of the formulae (see Equation (5)) was proposed in 

1759 [15]. 
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In this equation, the parameter E was introduced as the modulus of extension which 

characterizes the elastic material response [15]. This last formulation does not however 

consider the fact that real columns are imperfect [16]. 

According to the summary made by Maquoi et al. [16], the studies conducted on buckling 

after Euler followed two distinct branches. First, the definition of the elasticity modulus was 

reviewed to consider inelastic behaviour of a column without any imperfections. Engesser 

[17] first proposed the use of a tangent modulus while Considere [18] and Jasinski [19] 

introduced a reduced modulus. In 1947, Shanley [20] demonstrated that the difference 

between both models reside in the fact that imperfections are not considered. The reduced 

modulus approach can adequately predict the buckling load of a perfect column. However, 

the buckling load of real columns is closer to the load predicted using the tangent modulus. 
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Other researchers focused their study on applying the theory proposed for perfect column to 

real column with imperfections. Young [21] was the first to demonstrate in 1807 that the 

behaviour of columns is affected by geometrical imperfections, load eccentricities and 

material inhomogeneity. 

As for contributions to the understanding of plate buckling, Saint-Venant was the first to 

contribute by establishing the differential equation of buckling for a plate loaded in its plane 

in 1870 [22].  

1.3.1.2 Concept of stability 

Instabilities can have a significant impact on the cross-section’s and member’s resistance. 

The effect is particularly present for slender sections. At the cross-section’s level, which is 

the focus of the present thesis, the slenderness of a sections depends on the height-to-width 

ratio of the plates that compose the cross-section. Local buckling of the plates occurs when 

the plates are no longer in a stable state of equilibrium. 

To explain the principle of stability, Figure 9 presents the three main types of equilibrium 

with the use of a ball on a surface.  

  
a) Stable b) Neutral c) Unstable 

 

Figure 9 : Types of equilibrium (figure from [23]) 

The drawing on the left shows a ball that is in a state called stable. If a force is applied to the 

ball, it will move. However, if the force is removed, the ball will return to its original position. 

An analogy can be made to a column under a compression load. If a lateral load is applied at 

the top of the column, it will generate a small displacement. However, if the column is in a 

stable equilibrium state, it will return to its initial position when the load is removed. 

The drawing in the middle shows a ball that is in a state call neutral. If a force is applied to 

the ball it will move but, contrary to the stable state, it will no go back to its initial position 

after the removal of the external force. It will however keep its new position which will 
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become its new state of equilibrium. When a column reaches its critical load, the same 

principle will apply. After the removal of the load, the column will not return to its initial 

position. However, it will keep its new position as a new state of equilibrium.  

Finally, the drawing on the right illustrates a ball in an unstable state of equilibrium. If even 

a very small force is applied to the ball, it will undergo a large displacement and will not be 

able to reach a new state of equilibrium by itself. To continue with the analogy, once the 

critical load has been reached, if a small load increment is applied to the column, it will 

undergo large deformations and will no longer be able to reach a stable state. 

The first form of instability that may occur in a column is instability by bifurcation (Linear 

Buckling Analysis (L.B.A.)). A bifurcation point is a point when two or more equilibrium 

states cross path. Instability by bifurcation is shown on Figure 10. This type of instability 

occurs with a perfect column free of any imperfections.  

 

Figure 10 : Instability by bifurcation (figure from [3]) 

On this figure, it is possible to see that when the applied compressive load (N) is lower than 

the critical load (Ncr), the column undergo limited axial shortening u but do not undergo 

transverse deflection w. The column follows what is identify as the fundamental path on 
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Figure 10 and is considered to be in a stable state of equilibrium. Once the load applied to 

the column reaches the critical load (Ncr), transverse deformations begin to increase and the 

column can no longer return to its initial shape. It then follows the path identified as the 

secondary path. Finally, if the load applied is larger then the critical load (Ncr), the column is 

no longer stable. 

As no structure is free of any imperfections, instabilities do not occur by bifurcation but by 

divergence of equilibrium (Geometrically and Materially Non-linear Analysis with or 

without imperfections (G.M.N.A. or G.M.N.I.A.). This type of instability is shown on Figure 

11. 

 

Figure 11 : Instability by divergence of equilibrium (figure from [3]) 

This figure shows that lateral deflection starts to develop before the attainment of critical 

load. This is due to the presence of initial imperfections. Moreover, owing to imperfections, 

the ultimate resistance of the structure will be reached before the applied load reaches the 

critical load.  
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1.3.1.3 Characterization of local buckling 

Local buckling refers to the buckling of the plates that compose a cross-section. As shown 

on Figure 12, plates subjected to compression stresses present some buckles. As plates are 

connected, the buckling of a plate triggers the movement on the adjacent plates.  

  
a) b) 

 

Figure 12 : Local buckling of an I-section under: a) Major-axis bending; b) Compression (L.B.A. analysis) 

1.3.1.4 Plate buckling 

Buckling occurs when plates are loaded with compressive stress in their plane. Figure 13 

shows how local buckling develops on a rectangular plate simply supported on all sides.  

 

Figure 13 : Development of local buckling (figure from [23]) 
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In this figure, the plate free of imperfections is loaded in only one direction. Initially, the 

compressive load is uniformly distributed on the side and the plate remains plane. As the load 

increases, the stress distribution on the side of the plate remains uniform, but the fibers 

parallel to the load are in compression while the fibers that are perpendicular to the applied 

load are in tension. When the critical load is reached, the stress distribution is no longer 

uniform due to the development of buckles. As the edges are stiffer than the middle of the 

plate, compression stress decreases in the middle of the plate and increases near the edges. 

The critical stress of a plate, without any imperfections and simply supported on all sides, 

can be calculated with the following differential Equation [24]. 
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In this equation, the deflection w can be expressed as the sinusoidal function presented in 

Equation (7) [24].  
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The deflection depends on the number of waves in both the x-direction (m) and in the y-

direction (n). In this equation, a and b are the dimensions of the plate. 

By combining both equations, the critical buckling stress σcr,p is obtained and is defined by 

the following Equation [25].  
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In this equation, the buckling factor k depends on the boundary conditions of the plates. If 

more restraint is provided by the boundary conditions, the value of k is higher which increases 

the critical stress. The buckling factor also depends on the aspect ratio and on the number of 

half-waves in both directions. 
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Figure 14 presents the buckling factor k as a function of the aspect ratio α = a/b and of the 

number of half-waves m for a simply supported plate subjected to pure compression in one 

direction. The value of m also indicates the buckling mode considered, i.e. when m = 1 the 

plate is in its first buckling mode and has one half-wave. 

 

Figure 14 : Factor k as a function of the aspect ratio for a simply supported plate under pure compression 

(figure from [3]) 

To determine the critical buckling stress, the minimum value of k must be used. As shown 

on Figure 14, the critical buckling mode is not the same for all aspect ratios. However, all 

buckling modes give a minimal value of k = 4. Finding the precise value of k for each plate 

based on its aspect ratio would be long and laborious. Therefore, for a simply supported plate 

under pure compression, the retained value is k = 4 which is conservative. 

1.3.1.5 Influence of boundary conditions and stress distribution 

As specified previously, the value of k is influenced by the boundary conditions of the plate. 

It is also influenced by the loading. Effectively, as compressive stresses are the ones that 

induce buckling, the critical load of a plate under pure compression where a compressive 

stress is applied uniformly will be lower than the one of a plate under bending where the 

compressive stress is only applied on a part of the plate. For set of each boundary conditions 
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and load cases, it is possible to obtain a graph similar to the one presented on Figure 14. 

Again, the minimal value of k is retained.  

 

Figure 15 : Value of k for various boundary conditions and stress distributions (figure from [3]) 

As expected, the figure shows that the buckling factor is higher when more restraint is 

provided by the boundary conditions and when non-constant compression (e.g. bending) is 

applied. When computing the critical stress of the plates composing an open-section, the web 

is often considered as simply supported on all sides while the flanges are considered as simply 

supported on three sides. These assumptions are however disputable has they do not consider 

plate interaction. This subject is discussed in the following section. 
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1.3.1.6 Plate interaction 

In many standards (e.g. Eurocode 3 [26], CSA S16 [27] and AISC [28]), plates that constitute 

a cross-section are considered individually when classifying the section or when determining 

the critical stress. The most conservative result is then kept and considered for the entire 

cross-section. As mentioned previously, in the case of I and H-sections, the web is considered 

as supported on all sides while flanges are considered as simply supported on three sides. 

These assumptions are conservative and non-realistic as they do not consider restraints 

provided by adjacent plates. Effectively, elements that are more stable have the capacity to 

stabilise less stable elements. In an experimental study, Cheng et al. [29] calculated the 

critical stress for individual plates of open section and compared the results with critical stress 

of the cross-section as a whole. Results show that the overall critical stress was always higher 

than the lowest critical stress of the individual plates which confirms that there is an 

interaction between plates and that plates do provide additional restraints to adjacent plates. 

Similar observations are made in [30], [31] and  [32]. 

In his book “Buckling Strength of Metal Structures” published in 1952, Bleich [33] explains 

that the only case in which proposed buckling factors k are accurate to determine the critical 

stress of a cross-section is the one where both plates buckle simultaneously. In that particular 

case, both plates have the same critical stress and none is able to provide restraint to the other, 

which means that all plates behave as simply supported. This limit case is however very rare 

and therefore, in the majority of cases, restraint is provided by one plate to the other. He 

therefore proposed formulas for the buckling factors accounting for the restraint provided by 

adjacent plates. Those equations are presented in Table 1. 

Table 1 : Proposed buckling coefficients by Bleich [33] 

 Buckling factor k Restraint coefficient 
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When a plate starts to buckle, it is not able to provide restraint to adjacent plates. This means 

that, in the case of I or H-sections, either the flanges provide restraint to the web or the web 

provide restraint to the flanges. Therefore, before using these equations, it is necessary to 

determine which plate provides restraint to the other.  

In 2010, a study was conducted by Seif et al. [34] to qualify the impact of plate interaction 

on buckling. In this study, the authors propose buckling factors k for the web and the flanges 

that take into account the interaction between plates. Table 2 presents the suggested equations 

to determine the web buckling factor of I shape sections.  

Table 2 : Proposed web buckling factors by Seif et al.[34] 

Loading Web buckling factor 

Compression 
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Once the web buckling factor is determined, Equation (9) can be used to determine the flange 

buckling factor.  
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The variable h presented in equations from Table 2 and in Equation (9) refers to the distance 

between the mid-height of the flanges. 

1.3.1.7 Post buckling behaviour 

Due to the redistribution of the stresses after the critical stress is reached, plates exhibit post 

buckling resistance contrary to columns. Effectively, when the plate buckles, a tensile 

membrane action develops and provides additional resistance to the plate [25]. The 

phenomenon is shown on Figure 16.  

 

Figure 16 : Stress redistribution after buckling in a plate simply supported on all sides (figure from [3]) 

This figure shows that the transverse fibers in tension distribute the load of the fibers in 

compression to the edges. For this post buckling resistance to exist, the plate must be 

supported on at least one side parallel to the load application. Else, no stress redistribution is 

possible and the plate acts like a column.  
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When a column reaches its critical load, failure is reached which is not the case for plates. 

Figure 17 shows the typical load path for both columns and plates. 

 

 
a) b) 

  
Figure 17 : Typical load path of : a) An axially compressed column ; b) A compressed plate (figure from [3]) 

Figure 17 shows that the ultimate load of a compressed column governed by instability is 

reached at a load smaller than the critical load due to the presence of imperfections. If the 

column is free of any kind of imperfections, then this same column reaches failure when the 

critical load is attained. The figure also shows that the load path of a compressed plate 

governed by instability is completely different. Just like for columns, the presence of 

imperfections reduces the ultimate load. However, the peak load can, in some cases, be 

reached at a load much higher than the critical load.  

Figure 18 describes the theorical load path of a perfect plate which failure is due to both 

buckling and yielding. 
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Figure 18 : Theorical load path of a perfect plate in compression (figure from [3]) 

As explained previously, the compressive stress is uniformly distributed until the critical load 

is reached. When the applied load is increased over the critical load, stresses increase near 

the edges and decrease in the center of the plate due to the phenomenon explained by Figure 

16. The hypothesis made here is that failure occurs when the fibers on the edge of the plate 

reach the yield strength of the plate [3].  

When codes try to predict the local strength of slender section, they need to consider the true 

behaviour of real plates where distribution of stresses is no more uniform along the width. 

The Effective Width Method (E.W.M.) is used in most standards. The concept of the 

Effective Width Method is presented on Figure 19. 
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Figure 19 : Concept of the Effective Width Method (figure from [3]) 

In this method, the non-uniform stress distribution is replaced by a uniform effective stress 

block of length beff . In 1932, equations were proposed by Von Karman for the Effective 

Width Method [35]. The equations were derived by assuming that the critical stress on the 

effective width is equation to the yield limit. Equations (10) to (13) show how to obtain the 

effective width based on Von Karman’s theory.  
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The equations proposed by Von Karman are however not representative of real plates as they 

consider a perfect plate free of imperfections. A proposal, presented by Equation (14), was 

made by Winter in 1970 [36] to take into consideration those imperfections [22].  
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Where : 
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These last formulas are used in the Canadian code [27] while modified versions of Winter 

formulas are used in Part 1-5 of the EC3 [37]. The modified formulas for internal and 

outstand elements are respectively presented in Equations (16) and (17). In Equation (16), ψ 

is the stress ratio calculated based on the stress distribution. 
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1.3.1.8 Buckling curves 

Buckling curves are used to consider the interaction between resistance and instability. Such 

buckling curves are the basis of the Overall Interaction concept (O.I.C.) presented previously. 

An example of a buckling curve is presented on Figure 20.  

 

Figure 20 : Example of buckling curve 

Buckling curves usually use non-dimensional parameters which allows to compare elements 

with different section’s geometries and material properties. In the case of the O.I.C., the non-

dimensional parameters used are the relative slenderness (λrel) and the ultimate reduction 

factor (χ). 
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1.3.1.8.1 European buckling curves 

From 1960, the European Convention for Constructional Steelwork (ECCS)’s main objective 

was to uniformize the method used in standards. In 1970, the ECCS proposed three buckling 

curves with non-dimensional parameters that consider imperfections. The three curves are 

defined by the following formula in which N  is the buckling reduction factor, equivalent to 

χ in the O.I.C., and   is the reduced slenderness, equivalent to λ in the O.I.C. [16]  
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The non dimensional parameters are calculated as follow:  
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In the last equations, σK is the ultimate stress, λ is the slenderness while λr is the Euler 

slenderness. The three curves differ in the value of α and β. Figure 21 shows the three 

buckling curves [16]. 
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Figure 21 : Three buckling curves initially proposed by ECCS 

Those three curves were however criticized. The first principal critic was that there was no 

plateau for small slenderness. Then, the second principal critic was that the curves were 

established for the most common steel grade with plate thickness under 40 mm. However, 

higher steel grades and more important thickness needed to be accounted for to be 

representative of what was practically used in construction. Five new buckling curves were 

therefore proposed by ECCS. Many proposals were made before incorporating the final 

version in Eurocode 3 [16]. 

The curves currently used in Eurocode 3 depend on both the section’s geometry and the 

material properties. Equation (21) is the general equation used for the buckling curves in 

Eurocode 3 [26]. In this equation, the reduction factor χ is defined as a function of the non-

dimensional slenderness  . 
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In this equation, the intermediate calculation parameter   is derived from the following 

equation. 
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As for the non-dimensional slenderness, it is calculated with Equation (23). However, the 

effective area is used instead of the gross area for class 4 cross-sections.  
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The parameter α in Equation (22) is the generalised imperfection factor which is different for 

each of the five curves. The values of the parameters α are presented in Table 3 [26].  

Table 3 : Imperfection factors for the buckling curves from Eurocode 3 

Buckling curve a0 a b c d 

α 0.13 0.21 0.34 0.49 0.76 

 

The five buckling curves are presented on Figure 22. 

 

Figure 22 : Buckling curves from Eurocode 3 
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For all those curves, there is a plateau for slenderness lower than 0.2. Effectively, at such 

small slenderness, no buckling is considered. The choice of the buckling curves depends on 

the thickness of the plates, the axis of buckling and the steel grade. Eurocode 3 proposed a 

table to allow the user to choose the right curve. 

1.3.2 Elevated temperatures 

It has been explained previously that the stress-strain relationship of steel at high 

temperatures is no longer linear. Because of this non-linear stress-strain relationship, large 

strain are needed for the resistance to increase which means that more cross-sections are 

subjected to buckling at high temperature [4]. Studies have also shown that, as at ambient 

temperature, even very compact sections can experience buckling after reaching their plastic 

capacity due to strain hardening effects. This post-plastic local buckling is of interest at high 

temperatures as it permanently alters the load-bearing capacity of the member during fire 

exposition and after [38]. 

The critical stress of a plate free of imperfections can be calculated using the same equation 

as at ambient temperature but with a Young’s modulus adapted to the considered temperature 

[7]. As explained previously, Young’s modulus decreases with the increase in temperature. 

Therefore, the critical stress of a plate also diminishes with the increase in temperature.  
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However, according to Knobloch et al. [7], the factor k is different for slender and stocky 

plates. For slender plates, which are defined as the plates for which the critical stress is lower 

than the proportionality limit at a specific temperature, the factor k used at ambient 

temperature can be used. For stocky plates, plates with critical stresses higher than the 

proportionality limit, the buckling factors k depend on the plastification rate and on the non- 

linear stress-strain relationship.  

In current codes, when calculating the resistance of slender sections at elevated temperatures, 

the effective properties are calculated using the effective width method at ambient 

temperature. However, using the same equations as at ambient temperature does not take into 
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consideration the non-linearity of the stress-strain law. A few proposals have been made to 

calculate more adequately the effective properties of slender cross-sections.  

Quiel and Garlock [38] proposed new equations to calculate effective properties of cross-

sections. The proposed reduction factors ρ respectively for internal and external elements are 

presented below. The factor ρ is the equivalent of the reduction factor χ used in the O.I.C. 

but applicable to plates. 

 ,effb b =   ( 25 ) 
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 In those equations, the relative slenderness is calculated according to Equation (28).  
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In those equations, the ratio between the proportionality limit reduction factor and the yield 

limit reduction factor diminishes the calculated ultimate strength. However, by including this 

reduction directly in the calculation of the effective properties, the user does not have do use 

the 0.2 % plastic strain when calculating the ultimate resistance as done in Eurocode 3 [39]. 

Couto et al. [40] also proposed new equations for the effective width method at high 

temperatures. Those equations are calibrated based on the equations currently used in 

Eurocode 3. The proposed formulas for internal and outstand elements are respectively 

presented in Equations (29) to (31). 

 ,effb b =    ( 29 ) 
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In those equations, factors αθ and βθ are temperature-dependant parameters than can be 

calculated with equations presented in Table 4.  

Table 4 : Factors to use in Equations (30) and (31) 

 Internal elements Outstand elements 

αθ 
0.2 ,

,

0.9 0.315
p

y

k

k



 
− 


  0.2 ,

,

1.1 0.63
p

y

k

k



 
− 


 

βθ 
0.2 ,

,

2.3 1.1
p

y

k

k



 
− 


 0.2 ,

,

2 1.1
p

y

k

k



 
− 


 

εθ 
235

0.85 0.85
yf

 =  =    

 

Those proposed equations allow to use the strength at 2% total strain instead of the 0.2% 

proof strain currently used in Part 1-2 of Eurocode 3, which leads to more optimized cross-

sections. In this proposal, an effective section is calculated for both class 3 and class 4 

sections. Contrarily to the actual method used in standards, the proposed equations consider 

the non-linear stress-strain relationship that has a great influence at high temperatures. 

In 2006, Fontana and Knobloch [4] proposed a strain-based approach to consider the local 

buckling of cross-sections at high temperatures. The authors explain that the stress-based 

approach currently used in codes to determine effective widths at ambient temperatures and 

at high temperatures is not suitable for high temperatures as the material law is no longer 

linear. Effectively, at high temperatures, the maximum load-carrying capacity is not reached 

at the proportional strains as it is at ambient temperature since the proportional strain is not 

equal to the yield strain. The authors therefore consider that a strain-based approach is more 
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precise to determine those effective widths as the non-linearity of the material law can easily 

be considered. In this approach, the plates’ slenderness is first calculated based on the 

boundary conditions and on the strain distribution on the plate. With the plate slenderness, 

the reduction factor can be calculated. The stress distribution within the section can then be 

obtained and the resistance calculated. The advantage of this method is that the non-linearity 

of the material law is considered, contrary to common methods, which leads to more accurate 

results. However, this method is again an improvement to the calculation of effective 

properties at high temperature. It does not, however, eliminate the need for cross-section 

classification. 

All new proposed methods lead to more accurate results than the actual method used in 

standard to calculate the effective properties of slender sections. However, the calculation of 

effective properties remains tedious and does not eliminate the need to resort to cross-section 

classification. 

1.4 Imperfections and their influence 

The manufacturing of cross-sections induces geometrical and material imperfections. These 

imperfections have a non negligible impact on the cross-section resistance. Therefore, when 

using finite elements models to predict the resistance of cross-sections or members, 

imperfections must be considered, as the goal of the model is to represent as accurately as 

possible the real behaviour of those elements.  

1.4.1 Geometrical Imperfections 

Geometrical imperfections induced by the factoring process include, but are not limited to, 

eccentricities, out-of-flatness, out-of-straightness, etc. Those imperfections must be 

incorporated in numerical models as they are present in all steel members and can affect the 

resistance significantly by trigering premature buckling and yielding. Two types of 

geometrical imperfections must be taken into consideration: local and global imperfections. 

However, as this study focuses on the cross-sectional resistance, only local imperfections are 

discussed in the present section. 



 

38 

Some experiments have been conducted in which researchers have measured the real 

geometrical imperfections before introducing those in numerical models. However, those 

experimental experiments are long and complex and it would therefore not be realistic to 

expect all researchers to conduct this type of measurements before conducting numerical 

simulations. Those experiments have been conducted to be able to propose simplified 

methods for the introduction of geometrical imperfections into numerical models. Two 

simplified methods are generally used to introduce geometrical imperfections into Finite 

Element Models. Many researchers use the eigenmode’s shapes scaled to an appropriate 

amplitude as initial imperfections. Others prefer to incorporate geometrical imperfections 

using functions. For example, the geometrical imperfections on the flange of an open sections 

could be defined by a sinusoidal function. Many studies have proposed guidelines for the 

introduction of geometrical imperfections. A few are summarized below.  

In a study by Yun et al. [41], an experimental campaign was conducted to measure 

geometrical local imperfections. Numerical simulations were then used to compare the 

results obtained with the measured imperfections and results obtained with an approximate 

modelling of local geometrical imperfections. Imperfections were either modeled with the 

use of sinusoidal functions or with the use of the first eigenmode shape and different maximal 

amplitudes were considered. Results of the study show that, for I-sections subjected to 

compression and major-axis bending, the amplitude and shape of local imperfections do not 

have a significant impact on the results. It was therefore recommended to stay consistent with 

Eurocode 3 which uses the first eigenmode with an amplitude of h / 200 where h is the clear 

height of the web. 

Schafer and Peköz [42] conducted a study to characterise geometrical imperfections when 

modeling cold-formed steel. The study recommends a simplified approach which consist in 

combining at least two different eigenmode shapes. The study also recommends using the 

following equations to calculate the maximal amplitude (ω0) based on either the plate’s width 

(w) or the plate’s thickness (t). 

 0 0.006 w =   ( 32 ) 

 



 

39 

 2

0 6 tt e − =    ( 33 ) 

A study was conducted by Gagné et al. [43] in which sinusoidal functions were used to 

consider the geometrical imperfections on open sections. In this study, many cross-sections 

shapes were considered from compact to slender. The results of the numerical study show 

that there was generally no significant differences when using either an amplitude of the 

sinusoidal function based on the plate’s thickness, 0.1 t , or based on the plate’s width, 

/ 200a . However, for very slender sections, the use of the plate’s width is preferred by the 

authors. 

The use of sinusoidal functions to introduce local imperfections was also studied for steel 

hollow sections by both Hayeck [44] and Nseir [45] in their PhDs. In both case, multiple 

amplitudes and periods were tested. Both studies concluded that the use of sinusoidal 

functions allowed to obtained representative finite element results. 

Part 1-5 of Eurocode 3 [37], which is dedicated to plates, also provides some guidelines. The 

code recommends the use of the first buckling shape obtained from a Linear Buckling 

Analysis for the shape of the geometrical imperfection. As for the amplitude, it is 

recommended to use either the minimum value of / 200a or / 200b , where a and b are 

refered to the dimensions of the plate, or 80 % of the geometric fabrication tolerance. In the 

case that material imperfections are also to be considered in the numerical model, which is 

usually the case, Part 1-5 of Eurocode 3 also states that one type of imperfection (either 

geometrical or material) should be chosen as the primary and that the other one can be 

reduced by 30 %. 

As described above, many guidelines already exist regarding the introduction of 

imperfections into finite element models. However, there is no consensus on those guidelines. 

A recent study as be conducted by Gérard et al. [46] to address the influence of different 

types of imperfections on the local resistance of open sections and to provide guidance in the 

introduction of geometrical imperfections into numerical models. In this study, geometrical 

imperfections were introduced by using sinusoidal functions or with the use of the first 

buckling mode. For the imperfections using sinusoidal functions, different amplitudes and 
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half-wave lengths were tested. For the imperfections using the first buckling mode, different 

amplitudes were studied.  

Although the results of the study show that the use of the first buckling mode shape is 

convenient and procures adequate results, the study concludes that it is not the most suitable 

way to introduce geometrical imperfections in finite element models. Effectively, the first 

eigenmode depends on the loading of the cross-sections and is therefore not constant from 

one load case to another one and not representative of real distribution when some parts of 

the cross-sections are almost not affected. Moreover, this method requires additional 

numerical analysis to obtain the first buckling mode. Therefore, the study recommends the 

use of sinusoidal functions to introduce geometrical imperfections. Based on the results, the 

recommended pattern for the study of cross-section resistance is a sinusoidal function with 3 

half-waves. The use of an odd number of half-waves allows to have the maximal stress at the 

center of the member. Then, the use of 3 half-waves allows to have a suitable length in the 

numerical simulations. Effectively, if only one half-wave was used, the member would be 

too short, and the end conditions would affect the resistance. On the other hand, using more 

than 3 half-waves would lead to a length at which global effects can influence the resistance.  

Figure 23 shows the representation of the sinusoidal functions on a plate.  

 

Figure 23 : Sinusoïdal imperfections on web and flanges [46] 

The recommended amplitude of the imperfections on the web and the flanges and half-period 

shown on the figure are expressed in terms of the buckling lengths (a) of the elements which 
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depends on the manufacturing process. For hot-rolled sections, 2 2w fa h t r= −  −  and

2f wa b t r= − −  , while for welded sections, w fa h t= − and fa b= due to the absence of 

fillets. In both cases, h  refers to the full height of the section. Amplitudes of / 200wa  for the 

web and of / 200fa for the flanges are used. The half-period length is the average between 

the buckling lengths of the web and flange: 0.5 ( )avg w fa a a=  + [46]. 

1.4.2 Residual stresses 

Residual stresses are stresses that are present in the material even if no external loads are 

applied. They are the result of uneven cooling of the plates that compose a cross-section after 

the manufacturing process. As hot-rolled and welded sections are manufactured in different 

ways, they do not present the same type of residual stresses. Both differ in terms of 

amplitudes and distributions. However, in both cases, the residual stresses are auto-

equilibrated on the section. Material imperfections must be incorporated in numerical models 

as they can induce premature yielding of some fibers in the section and cause stiffness 

reductions. Residual stresses present in a cross-sections depend on the temperature of the 

steel.  

1.4.2.1 Residual stresses at ambient temperature 

The amplitude and the distribution of the residual stresses on a cross-section depends on the 

geometry of the cross-sections and on the manufacturing process. Many studies have been 

conducted in which residual stresses were measured on specimens. When performing 

numerical simulations, residual stresses must be included to ensure reprensentative results. 

However, measuring residual stresses on specimens and introducing them in the model as 

measured is not practical and realistic. Over the years, various residual stress patterns have 

been proposed for both hot-rolled and welded sections.  

1.4.2.1.1 Proposed residual stress patterns for hot-rolled cross-sections 

A first residual stresses pattern for hot-rolled sections suggested by ECCS [47] is presented 

on Figure 24.  
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Figure 24 : Residual stresses pattern proposed by ECCS for hot-rolled sections [47] (figure from [3]) 

In this triangular pattern, the parameter α is dependant on the shape of the sections. For a 

column shape, / 1.2h b  , 0.5 = , while for a beam shape, / 1.2h b  , 0.3 = . 

Figure 25 presents a second pattern suggested by Galambos and Ketter which is also known 

as the Lehigh pattern [48]. Contrary to the pattern from ECCS, this proposal suggests the use 

of a constant tension residual stress along the web of the section.  

 

Figure 25 : Residual stresses pattern proposed by Galambos and Ketter for hot-rolled sections [48] (figure 

from [3]) 

Equation (34) is used to calculate the maximal tensile stress. 
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A study was conducted by Young in 1975 [49] in which the residual stresses were measured 

on British structural shapes. This study proposes a residual pattern using a parabolic 

distribution. The study also concludes that, contrary to both patterns presented previously, 

the residual stresses pattern does not depend on the yield limit. In this proposal, the maximal 

stresses are defined as a function of the section’s dimensions. Figure 26 presents the proposed 

pattern. 

 

Figure 26 : Residual stresses pattern proposed by Young for hot-rolled sections [49] (figure from [3]) 

The following equations are used to calculate the maximal stresses presented in Figure 26. 
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Another parabolic pattern has been proposed by Boissonnade and Somja [50] and is presented 

on Figure 27. 
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Figure 27 : Residual stresses pattern from Boissonnade and Somja for hot-rolled sections [50] (figure from 

[2]) 

In the study, the authors also compare this parabolic pattern with the one proposed by ECCS 

and presented in Figure 24. Both patterns are also compared using a yield limit of 235 MPa 

and using actual steel yield limit. The study concludes that both patterns are suitable for the 

introduction of residual stresses in numerical models. However, the authors recommend the 

use of 235MPa as the reference yield stress as it has proven to procure results closer to 

experimental results. 

1.4.2.1.2 Proposed residual stresses pattern for welded cross-sections 

In welded sections, residual stresses can either be a result of the uneven cooling after welding 

and/or of the flame cutting of the plates’ edges. As welds highly heat the material, resulting 

residual stresses can reach the yield limit of the cross-section. A first pattern proposed by 

ECCS [47] is presented on Figure 28. 
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Figure 28 : Residual stresses pattern proposed by ECCS for welded sections [47] (figure from [3]) 

In this pattern, fyk is the yield limit. It is reached close to the welds. The amplitude of the 

compressive stress in other areas is obtained with the following equation. 

 0.25cf cw ykf = =   ( 38 ) 

As for the geometrical dimensions, they can be obtained using the following equations. 

 1 0.075f fa b=   ( 39 ) 

 
2 0.125f fa b=   ( 40 ) 

 1 0.075w wa b=   ( 41 ) 

 2 0.125w wa b=   ( 42 ) 

An adapted and simplified version of the ECCS proposal was made by Gérard in her PhD 

and is presented on Figure 29. In this adapted pattern, the trapezoidal shape was replaced by 

a rectangular shape. The geometry of the pattern is obtained by using the average dimensions 

of the trapezoidal pattern. 
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Figure 29 : Adapted Residual stresses pattern proposed by ECCS for welded sections (figure from [3]) 

Patterns presented on Figure 28 and Figure 29 account for the residual stresses due to welding 

but do not consider residual stresses resulting of the flame cutting of the flanges. Wang et al. 

[51] proposed a residual stresses pattern that accounts for the flame-cut flanges and is based 

on measurements made for their study. It is shown on Figure 30.  

 

Figure 30 : Residual stresses pattern proposed by Wang et al. for welded sections [51] (figure from [3]) 

In this pattern, parameters α and β depend on the cross-section’s type. 
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A pattern was also proposed in the PhD of Kim [52] which is referred to as the “Best-fit 

Prawel” residual stresses. It was obtained based on measurement made by Prawel et al. [53]. 

It is presented on Figure 31. 

 

Figure 31 : Best-fit Prawel residual stresses proposed by Kim [52] (figure from [3]) 

1.4.2.1.3 Comparison of proposed patterns 

As described in previous sections, multiple residuals stresses patterns for both hot-rolled and 

welded cross-sections have been proposed over the years. However, no clear and consensual 

recommendations on the introduction of those stresses in finite element models are proposed.  

Part 1-5 of Eurocode 3 [37] does make recommendations on the introduction of geometrical 

imperfections into finite element models, but does not give any indication regarding material 

imperfections. However, it does state that if two types of imperfections are included, one 

type should be chosen as the primary imperfection and the secondary imperfection amplitude 

can be reduced by 30 %.  

In her PhD thesis, Gérard [3] proposes a comparison between proposed residual patterns. She 

first provides an analysis on why proposed patterns presents such discrepancies by 

highlighting the fact that residual stresses pattern used by American and European present 

major differences. American numerical studies mostly use the Galambos and Ketter pattern 

[48] presented in Figure 25. European numerical studies on the other hand mostly use the 

pattern proposed by ECCS [47] and presented on Figure 24. The major differences between 
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both patterns is that Galambos and Ketter proposes a constant tensile stress on the web while 

the pattern proposed by ECCS has a triangular distribution along the web. The ECCS also 

provides different patterns for column and beam shapes. Gérard then gathered experimental 

measurements of residual stresses to compare them with proposed patterns.  

She first compared residual stresses patterns proposed for hot-rolled cross-sections. For 

columns shapes ( / 1.2h b  ), the following patterns were compared to experimental results.  

 

Figure 32 : Residual stresses patterns with respect to column shapes (h/b < 1.2) [3] 

As for beam shapes ( / 1.2h b  ), Gérard compared the following patterns to experimental 

results. 
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Figure 33 : Residual stresses patterns with respect to beam shapes (h/b > 1.2) [3] 

Based on the results of the comparison made in the study, the author concluded that the 

pattern 1 from Figure 32 and pattern 2 from Figure 33 are respectively the most accurate for 

column and beam shapes. 

Gérard also made a comparison between experimental measurement of residual stresses on 

welded section and two of the patterns presented previously: the rectangular pattern adapted 

from ECCS [47] (see Figure 29) and the best-fit Prawel pattern (see Figure 31). It was 

concluded that the rectangular pattern was overall in agreement with the measured residual 

stresses while the best-fit Prawel pattern underestimates the stresses. 

This comparison allows to see which residual stresses pattern represents most accurately the 

real distribution of the residual stresses in steel cross-sections. It does not however study how 

the patterns influence the results obtained in numerical studies. In her PhD, Gérard also 

compares the influence of proposed patterns on ultimate resistance and make 

recommendations on the introduction of residual stresses in numerical models [3]. 
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For hot-rolled sections, the triangular pattern proposed by ECCS [47] and parabolic patterns 

proposed by Boissonnade and Somja [50] were compared using the actual yield limit and a 

yield limit of 235 MPa. Results of the study show that there is no significative difference in 

the maximum load reached when using either one of the patterns although the parabolic 

pattern leads to slightly higher resistances. As for the use of the actual yield limit or of a yield 

limit of 235 MPa to calculate the maximum residual stress, negligible differences were 

noticed. The use of 235 MPa was however deemed as the most reasonable option as no 

experimental measurements justifies the use of a portion of the actual yield limit. Figure 34 

presents the recommended parabolic residual stresses pattern by the study. 

h / b < 1,2 h / b > 1,2 

  
Figure 34 : Recommended residual stresses pattern for hot-rolled sections by Gérard [3] 

For welded cross-sections, the rectangular pattern adapted from ECCS [47] and an adapted 

trapezoidal pattern were compared. Results of the study show that the differences obtained 

with either pattern are negligible and therefore that both patterns could be used in numerical 

models. However, the rectangular pattern is much easier to incorporate in a finite element 

model and is therefore recommended by the author.  

1.4.2.2 Residual stresses at elevated temperature 

Many studies have been conducted to understand residual stresses at ambient temperature. 

Yet, little information is available about residual stresses in steel members at elevated 

temperature. Two experimental studies by Wang et al. [54] and Wang et al. [55] have been 

conducted respectively on welded high strength sections and thin-walled H-sections to 
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evaluate the residual stresses after fire exposure. In both experimental series, sections were 

heated at the desired temperature and then cooled down to room temperature. Residual 

stresses were measured in specimens at ambient temperature and after heat exposure. Both 

studies’ results show that after high temperature exposure and cooling, residual stresses 

reduce significantly, and that larger reductions are observed as the heating temperature 

increases. The second study even proposes a residual stresses model based on the exposition 

temperature (see [55]).  

Those studies have shown a significant reduction in measured residual stresses in steel 

sections after they had been heated and subsequently cooled down. However, the tests 

performed did not consider loaded sections. Therefore, these tests do not indicate adequately 

the evolution of residual stresses in a loaded section subjected to high temperatures. As 

presented in the work of Franssen [56], residual stresses present at ambient temperature 

should be considered as an initial condition and their evolution depends on both the increase 

in temperature and on the loading.  

The influence of the residual stresses on the lateral-torsional buckling of I-beams was studied 

by Vila Real et al. [57]. Results of this study shows that the effect of the residual stresses on 

the resistance decreases with the increase in temperature. Similar conclusions were drawn by 

Couto et al. [58] in a study on the lateral-torsional buckling of beams with slender cross-

sections subjected to fire. Results of the study have shown that residual stresses do have an 

influence on the resistance. However, the effect of residual stresses in the case of fire is less 

important than at room temperature. This can be explained by the fact that there seems to be 

a relaxation of the residual stresses when the beam is heated.  

All studies discussed above point to the fact that the detrimental effect of residual stresses on 

resistance are less important at high temperatures. However, it has also been showed that 

residual stresses do not completely disappear and do have an effect on the resistance. 

Residual stresses should therefore not be neglected at high temperatures.  
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1.5 Current design methods 

Standards provide ways to determine the local and global resistance of elements. The intent 

of this section is to present how to calculate the resistance according to three standards: the 

European standard, Eurocode 3 (EC3), the Canadian standard, CSA-S16-14 (S16-14), and 

the American standard, ANSI/AISC 360-16 (AISC). This study focuses on the local 

resistance of cross-sections. However, the cross-sections used in the numerical simulations 

do have a certain length (cf. Chapter 2). This length is chosen to avoid the effect of global 

instabilities. However, this length might be long enough for codes to consider the effect of 

global instabilities in their equations. Therefore, both the equations for the cross-section’s 

resistance and the global resistance are presented in the next sections.  

1.5.1 Concept of cross-section classification 

Almost all approaches from standards are based on the concept of cross-section classification. 

The resistance of compact and semi-compact section is usually obtained by the means of 

straightforward equations. On the other hand, the resistance of slender sections is often 

obtained through the use of the Effective Width Method.  

The classification of the cross-sections depends on the slenderness of the cross-section and 

on the ability for sections to experience large rotations. The classification process differs 

from one standard to the other. Both the European [26] and Canadian [27] standards resort 

to 4 classes for cross-sections subjected to bending:  

• Class 1 are compact cross-sections that can reach their full plastic capacity and to 

allow a redistribution of the bending moment. No local buckling occurs before the 

section reaches its full plastic capacity and large deformations can occur; 

• Class 2 are compact cross-sections that can also reach their full plastic capacity but 

there is no guarantee that there will be a redistribution of the bending moment. No 

local buckling occurs before the section reaches its full plastic capacity, but 

deformations are limited; 

• Class 3 are semi-compact cross-sections that can reach their elastic capacity without 

any local buckling occurring. However, local buckling occurs before the section 

reaches its full plastic capacity. Those cross-sections’ resistance is between the elastic 
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and the plastic resistance. The European standard accounts for the reserve of 

resistance past the elastic resistance while the Canadian standard limits the resistance 

to the elastic bending moment;  

• Class 4 are slender cross-sections that suffer from local buckling before reaching their 

elastic capacity. Their resistance is limited to their reduced elastic bending moment. 

As for the American standard [28], sections subjected to bending are classified as compact, 

non-compact and slender. In all standards, sections subjected to compression are either 

compact (class 1, 2 or 3) or non-compact (class 4). The limits from one class to the other are 

different in each code.  

1.5.2 Resistance in fire situations according to European standard [9] 

The simplified approach given by part 1-2 of Eurocode 3 to determine the resistance at 

elevated temperatures consist in using the equations at ambient temperature with a few 

modifications but by considering the reduced mechanical properties of steel at elevated 

temperatures. In this simplified approach, the temperature in the cross-section is considered 

to be uniform. Table 5 presents the reduction factors that must be used to calculate steel 

properties at a given temperature. Intermediate values that are not given in the table can be 

obtained by linear interpolation.  
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Table 5 : Reduction factors for steel at elevated temperature according to Eurocode 3 [9] 

Temperature  

( a ) 

(°C) 

Reduction 

factor for 

effective yield 

strength 

, , /y y yk f f =  

(-) 

Reduction 

factor for 

proportional 

limit 

, , /p p yk f f =  

(-) 

Reduction 

factor for 

elasticity 

modulus 

, , /E a ak E E =  

(-) 

Reduction  

factor for the 

0.2% proof 

strain 

0.2 , 0.2 , /p p yk f f =  

(-) 

20 1.000 1.000 1.000 1.000 

100 1.000 1.000 1.000 1.000 

200 1.000 0.807 0.900 0.890 

300 1.000 0.613 0.800 0.780 

400 1.000 0.420 0.700 0.650 

500 0.780 0.360 0.600 0.530 

600 0.470 0.180 0.310 0.300 

700 0.230 0.075 0.130 0.130 

800 0.110 0.050 0.090 0.070 

900 0.060 0.0375 0.0675 0.050 

1000 0.040 0.0250 0.0450 0.030 

1100 0.020 0.0225 0.0225 0.020 

1200 0.000 0.0000 0.0000 0.0000 

 

1.5.2.1 Cross-section classification 

The first step is to determine the cross-section classification. In Eurocode 3, the cross-section 

classification at elevated temperatures is the same as for classification at ambient 

temperature. The classification of each plate of the cross-sections is made based on the width-

to-thickness ratio of the plate (c / t). The width-to-thickness ratio limit between each section 

class is determine with the use of two different factors: 1) the factor ε which depends on the 

yield limit and 2) the distribution of stress in the considered plate. At elevated temperatures, 

a 15% reduction is applied to the value of ε as shown in Equation (43) to take into account 

the fact that the stability of a plate decreases as the temperature increases.  
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 
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 

 ( 43 ) 

Equations are then provided by the code for elements with cross-section’s class from 1 to 3. 

Those equations are presented in the following sections. For slender sections (class 4), 

Eurocode 3 suggest verifying that the reached temperature is not over the critical temperature. 

However, appendix E of the code specifies that the resistance can be calculated by replacing 

the area by the effective area and the section’s modulus by the effective section’s modulus in 

all equations. Both are calculated according to Part 1-5 of the EC3 with the material 

properties of steel at 20°C. Moreover, the reduced yield limit is replaced by the proof strength 

at 0.2% plastic strain. All equations presented are used when the temperature is considered 

to be uniform in the cross-section. Eurocode 3 proposes other equations when there is a 

temperature gradient. However, those are not presented here as this study focuses on sections 

subjected to uniform temperature.  

1.5.2.2 Element subjected to compression  

According to EC3, a cross-section subjected to compression in a fire situation should satisfy 

the following equation: 

 ,

, ,

1.0
fi Ed

fi Rd

N

N 

  ( 44 )  

In the previous equation, Nfi,θ,Rd is either the cross-section’s resistance or the member’s 

resistance. For compact sections (class 1, 2 or 3), the resistance is calculated with Equation 

(45) considering the whole cross-section area. 
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=  ( 45 ) 

To obtain the member’s resistance, the cross-section’s resistance is multiplied by a reduction 

factor as shown in Equation (46). This reduction factor is based on buckling curves as 

presented in section 1.3.1.8.1 and takes into account flexural buckling. 
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The reduction factor is obtained with the following equations:  
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+ −

 ( 47 ) 

In this equation the parameter 
  is calculated with the following equation. 

 ( )2

0.5 1     =  +  +   ( 48 ) 

Counter to the resistance calculations at room temperature, the imperfection parameter α is 

the same for all cases and is given in Equation (49). 
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0.65
yf

 =    ( 49 ) 

Finally, the non-dimensional slenderness at high temperature is calculated with equation 

(50). In this equation, the slenderness at room temperature is modified by the reduction 

factors used at high temperatures for both the yield limit and Young’s modulus. 
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For class 4 sections, the same equations are used but the area is replaced by the effective area 

and the 0.2% proof strain is used. 

1.5.2.3 Element subjected to bending 

According to Eurocode 3, an element subjected to bending in a fire situation should satisfy 

the following equation: 
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  ( 51 ) 
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Similar to the resistance for elements subjected to compression, the resistance can be 

calculated at the cross-section and at the member’s level. At the cross-section level, the 

resistance is calculated using the appropriate section’s modulus based on the cross-section’s 

classification. For sections of class 1 or 2, flexural resistance is obtained by considering that 

the section reaches its full plastic capacity. The following equation is used:  

 
,

, , , , ,

,

pl y y

fi Rd pl fi Rd

M fi

W k f
M M
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 
= =  ( 52 ) 

For class 3 sections, the partial-plastic section modulus, which is obtained from an 

interpolation between the plastic section modulus and the elastic plastic modulus, is used to 

calculate the resistance. Equation 53 is used to determine the resisting moment at a precise 

temperature. 
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The partial-plastic section modulus Wep is obtained with the following equations. 

 , , , , ,( )ep y pl y pl y el y ep yW W W W = − −    ( 54 ) 

 , , , , ,( )ep z pl z pl z el z ep zW W W W = − −   ( 55 ) 

Equations (56) and (57) are used to determine the value of β factors. 
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When the element is subjected to major-axis bending, the resistance to lateral-torsional 

buckling must be verified. The resistance is obtained by applying the reduction factor ,LT fi  

to the cross-section’s resistance. The reduction factor is calculated with the same equations 

as the reduction factor for compression. However, the slenderness is calculated with Equation 

(58). 
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In this equation, the section’s modulus W is chosen based on the cross-section’s class.  

For Class 4 sections, the same equations are used but the section modulus is replaced by the 

effective section modulus and the 0.2% proof strain is used.   

1.5.2.4 Element subjected to combined compression and bending  

If the cross-section is subjected to both compression and bending, additional verifications 

must be made at the cross-section and at the member’s level. No formulas are explicitly given 

in Part 1-2 of Eurocode 3 to verify the interaction at elevated temperature at the cross-

section’s level. The manual Fire Design of Steel Structures [39] gives those equations which 

are the equations used at ambient temperature adapted to elevated temperatures. 

The resistance under fire condition of class 1 and 2 cross-section is obtained from plastic 

resistance. If an axial force is present on a member subjected to bending about one axis, its 

effect must be taken into account by satisfying the following criterion: 

 , , ,fi Ed N fi RdM M   ( 59 ) 

In this equation, MN,fi,Rd is the plastic moment reduced due to the axial load.  

For major-axis bending, the impact of the axial force shall not be taken into consideration if 

both following criteria are satisfied : 
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Otherwise, the reduced plastic moment about the major-axis should be calculated using 

Equation (62). 
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 where : 
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( 2 )fA b t

a
A

−  
=  ( 64 ) 

For minor-axis bending, the impact of the axial force shall not be taken into consideration if 

the following criterion is satisfied : 
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Otherwise, the reduced plastic moment about the minor-axis should be calculated using 

Equations (66) and (67). 

 , , , , , ,N z fi Rd pl z fi RdM M= if     n a  ( 66 ) 
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−   
   if    n a  ( 67 ) 

If the cross-section is subjected to compression and bi-axial bending, Equation (68) must be 

satisfied.  
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 where : 2 =   and ( 69 ) 

 5 1n =    ( 70 ) 

For cross-section verification of class 3 sections, the same criterion as for class 1 and 2 

sections must be satisfied.  

 , , ,fi Ed N fi RdM M  ( 71 ) 

The reduced moment due to axial load is calculated using the following equations: 

 , , , , , , (1 )N y fi Rd pl y fi RdM M n=  −  ( 72 ) 
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If the cross-section is subjected to bi-axial bending, Equation (75) must be satisfied.  
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 ( 75 ) 

 where : 2 =   and  ( 76 ) 

 5 1n =    ( 77 ) 

For class 4 sections, the cross-section resistance is verified elastically. In this equation, 

resistance are obtained with effective properties and with the proof strength at 0.2% plastic 

strain as explained previously. 
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At the member’s level, the Eurocode 3 gives two interactions formulas that must be verified: 
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In those equations, yW  must be chosen based on the cross-section classification. Parameters 

yk , zk and LTk are interaction factors. 

1.5.3 Resistance in fire situations according to Canadian standards [27] 

The simplified approach suggested by CSA S16-14 to predict the cross-section resistance is 

to consider a uniform temperature and to use equations provided at ambient temperature with 

reduced mechanical properties. The reduction factors are the ones proposed in Eurocode 3 

and are presented in Table 5. The effective yield strength, used to calculate the resistance at 

a specific temperature, should be determined as follow:  

 ( )y y yF T k F=   ( 81 )  

New equations are however provided for flexural buckling and for lateral torsional buckling. 

1.5.3.1 Cross-section classification 

In CSA S16-14, no specifications are given for the cross-section classification at high 

temperatures. Therefore, the classification is done in the same way as at ambient temperature. 

The classification is made based on the slenderness of the plates (bel / t). The limit between 

classes is based on the loading and on the yield limit. No indications are given in the standards 
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for the cross-section classification. At elevated temperatures, it was therefore decided to 

make the classification by using the yield limit at ambient temperature instead of the reduced 

mechanical properties. Effectively, using the reduced mechanical properties to classify cross-

sections would result in higher limits between classes. Cross-sections would therefore be 

considered as less slender at elevated temperature. However, the slenderness is known to 

increase with elevated temperature. Using properties at ambient temperature is therefore 

more appropriate although it does not consider the increase in slenderness caused by the 

increased temperature.  

1.5.3.2 Elements subjected to compression  

According to CSA S16-14, the cross-section resistance is determined by using the following 

equations. In these equations,  is a safety factor and is equal to 0.9. For non-slender section 

(class 1, 2 or 3), the resistance is calculated with Equation (82) considering the whole cross-

section area. 

 ( ) ( )r yC T A F T=    ( 82 ) 

For slender sections (class 4), only the effective cross-section area is considered. It is 

determined using the reduced element widths determined with the maximum width-to-

thickness ratio. This method used for the calculation of the effective area is specific to the 

Canadian standards. Equation (83) shall be used to calculate the resistance.  

 ( ) ( )r eff yC T A F T=    ( 83 ) 

As for the resistance to flexural buckling, Annex K recommends using the following 

equations. In Equation (84), n depends on the fabrication process. In the case of hot-rolled 

and welded sections, n is equal to 1.34. In the same equation, the constant d = 0.6 and is used 

to reduce the variable n therefore lowering the buckling curve and reducing the resistance. 

As for the factor K in Equation (85) is the effective length factor that depends on the boundary 

conditions. It is equal to 1.0 in the case of a simply supported column. 
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In this new equation, no indication is given related to the use of an effective area for class 4 

sections. In the article from which this equation was obtained [59], the authors explain that 

this can lead to unconservative results for class 4 sections but only for very small lengths that 

are not commonly used in constructions. The equation is therefore used for all section classes. 

1.5.3.3 Members subjected to bending 

According to CSA S16-14, the cross-section resistance is obtained by using the appropriate 

section’s modulus based on the classification as shown in the following equations. In all 

equations,  is a safety factor and is equal to 0.9. The resistance of a cross-section of class 

1 or 2 subjected to bending in a fire situation is obtained by considering that the section 

reaches its full plastic capacity. The plastic section modulus Z is used to calculate the 

resistance in the following equations.  

 ( ) ( )r yM T Z F T=    ( 86 ) 

It is considered that for class 3 sections, the elastic capacity is reached. Equation (87) is used 

to determine the elastic resisting moment at a precise temperature. The elastic resistance is 

obtained with the elastic section modulus S. 

 ( ) ( )r yM T S F T=    ( 87 ) 

For class 4 sections, the effective section’s modulus is used to calculate the resistance. 

 ( ) ( )r eff yM T S F T=    ( 88 ) 

The effective section’s modulus depends on the individual classification of the web and of 

the flanges. If both the web and the flanges exceed the limit of class 3 sections, the effective 
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properties of the section are determined based on the specification of CSA S136. If only the 

web exceeds the limit of class 3 sections, the following equation can be used to reduce the 

resistant moment in which ( )rM T is obtained with Equation (89).  
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Finally, for cross-sections with only flanges exceeding the class 3 limit, the length of the 

flanges is determined by the maximum width-thickness-ratio.  

As for the resistance to lateral torsional buckling, Annex K proposes the following adapted 

equations in which KC = 0.12 and ( )pM T  is the plastic moment calculated with ( )yF T . 
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As for the proposed equation for the flexural buckling, no indications are provided about 

section’s classification. The equation is therefore used for all cross-sections.  

1.5.3.4 Cross-section subjected to combined compression and bending  

If the cross-section is subjected to both compression and bending, an additional verification 

must be made. For class 1 and 2 sections, Equation (93) must be satisfied. 
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For class 3 and 4 sections, Equation (94) must be satisfied. 
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For all sections, Equation (95) must also be satisfied. 
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In Equations (93) and (94), 1,xU , 1,yU  and   depend on the verification that is being made. 

Three verifications must be made with these equations: cross-sectional strength, overall 

member strength and lateral-torsional buckling strength. 

1.5.4 Resistance in fire situations according to American standards [28] 

Appendix 4 of the American standard gives specifications to determine the resistance of steel 

elements at elevated temperature. As for other standards, reduced mechanical properties must 

be used to consider the loss in resistance at elevated temperature. The effective yield strength 

at a specific temperature should be determined as follows:  

 ( )y y yF T k F=   ( 96 ) 

The modulus of elasticity should be determined using the following equation:  

 ( ) EE T k E=   ( 97 ) 

Table 6 presents the reduction factors recommended.  
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Table 6 : Reduction factors for steel at elevated temperature according to the American standard 

Temperature (

a ) 

(°C) 

Reduction factor 

for effective 

yield strength 

( ) /y y yk F T F=  

(-) 

Reduction factor 

for proportional 

limit 

( ) /p p yk F T F=  

(-) 

Reduction factor 

for elasticity 

modulus 

( ) /yk E T E=  

(-) 

20 1.000 1.000 1.000 

93 1.000 1.000 1.000 

200 1.000 0.80 0.900 

320 1.000 0.58 0.78 

400 1.000 0.42 0.70 

430 0.94 0.40 0.67 

540 0.66 0.29 0.49 

650 0.35 0.13 0.22 

760 0.16 0.06 0.11 

870 0.07 0.04 0.07 

980 0.04 0.03 0.05 

100 0.02 0.01 0.02 

1200 0.00 0.00 0.00 

 

1.5.4.1 Cross-section classification 

The cross-section classification depends on the width-to-thickness ratio (b / t). Limits 

between different classes depend on the loading, the yield limit, and the elasticity modulus. 

To determine the classification of cross-sections, mechanical properties at the considered 

temperature are used as they provide more conservative results.  

1.5.4.2 Cross-section subjected to compression  

According to AISC, the resistance to compression at high temperatures must be calculated 

using the equations from room temperature, but with the modified mechanical properties. 

However, a new equation is provided for flexural buckling : 
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 ( ) ( )c c nP T P T=   ( 98 ) 

In this equation, c  = 0.90 and the nominal compressive strength ( nP ) is determined based 

on the classification of the flange and the web.  

For cross-sections without slender elements, the nominal compressive strength is determined 

using the whole section and the following equation:  

 ( ) ( )n cr gP T F T A=   ( 99 ) 

For hot-rolled sections, the critical stress for flexural buckling at high temperatures is 

calculated with Equations (100) and (101).  
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For built-up members, the critical stress is the minimum between the critical stress for 

flexural buckling calculated with Equations (100) and (101) and the critical stress for 

torsional and flexural buckling calculated with Equations (100) and (102).  
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For cross-section with slender elements, the resistance is calculated with Equation (103) 

which replaces the gross area of the cross-section by the effective area. The critical stress is 

calculated in the same way as for compact sections. 

 ( ) ( )n cr eP T F T A=   ( 103 ) 
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The effective area is determined using the formulas provided in the standard and the 

properties at high temperatures. 

1.5.4.3 Cross-section subjected to bending 

According to the American standards, the bending resistance is determined with the 

following equation: 

 ( ) ( )c b nM T M T=   ( 104 ) 

In this equation, b = 0.90 and the nominal flexural strength ( nM ) is determined based on 

the classification of the flange and the web. The bending resistance at high temperature must 

be calculated using the equations from room temperature but with the modified mechanical 

properties. However, different equations are provided for lateral-torsional buckling. 

1.5.4.3.1 Sections with compact web bent about their major axis 

  Sections with compact flanges 

If the cross-section has flanges classified as compact, the nominal flexural strength is either 

governed by yielding of the section or by lateral-torsional buckling. For the resistance to 

yielding, the value of nM  is obtained with Equation (105).  

 ( ) ( ) ( )n p y xM T M T F T Z= =   ( 105 ) 

The calculation of the resistance to lateral-torsional buckling depends on if the unsupported 

length of the member is under or over the limiting unbraced length which is calculated with 

the following equations: 
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 ( )( ) 0.3L y p yF T F k k=  −   ( 107 ) 
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If the unsupported length of the member is under or equal to the limiting unbraced length, 

the value of nM for the lateral-torsional buckling is calculated with Equations (108) and 

(109).  
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 ( ) ( )r L xM T F T S=   ( 109 ) 

Otherwise, the value of nM is calculated with Equations (110) and (111). 

 ( ) ( ) ( )n cr x pM T F T S M T=     ( 110 ) 
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C E T LJ
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   
=  +   

   
 
 

 ( 111 ) 

  Sections with noncompact flanges 

For sections with non-compact flanges, the resistance is either governed by the lateral-

torsional buckling or by the compression flange local buckling. The resistance to lateral-

torsional buckling is calculated with Equations (106) to (111). The resistance to the 

compression flange buckling is obtained with Equation (112). 

 ( ) ( ) ( ( ) 0.7 ( ) )
pf

n p p y x

rf pf

M T M T M T F T S
 

 

 −
= − −     − 

 ( 112 ) 

 Sections with slender flanges 

As for the sections with the noncompact flanges, the resistance of sections with slender 

flanges is either governed by the lateral-torsional buckling or by the compression flange local 
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buckling. The resistance to lateral-torsional buckling is calculated with Equations (106) to 

(111). The resistance to the compression flange buckling is obtained with Equation (113). 

 

 2

0.9 ( )
( ) c x

n

E T k S
M T



  
=  ( 113 ) 

1.5.4.3.2 Sections with noncompact web bent about their major axis 

 Sections with compact flanges 

For section with compact flanges, the resistance is controlled either by compression flange 

yielding or by lateral-torsional buckling. The resistance to compression flange yielding is 

obtained with Equation (114).  

 ( ) ( ) ( )n pc yc pc y xcM T R M T R F T S=  =    ( 114 ) 

The resistance to lateral-torsional buckling must be calculated if the unsupported length of 

the member is over the limiting laterally unbraced length for the limit state of yielding which 

is calculated with the following equation:  

 
( )

( ) 1.1
( )

p t

y

E T
L T r

F T
=    ( 115 ) 

Otherwise, the calculation of the resistance to lateral-torsional buckling depends on if the 

unsupported length of the member is under or over the limiting unbraced length which is 

calculated with Equation (106) presented previously but with ( ) 0.7 ( )L yF T F T=  . If the 

length of the member is under the limiting unbraced length, Equation (116) must be used to 

determine the resistance to lateral-torsional buckling. 

 ( ) ( ) ( ( ) ( ) ) ( )
pf

n b pc yc pc yc L xc pc yc

rf pf

M T C R M T R M T F T S R M T
 

 

  −
=  −  −        −  

( 116 ) 

Else, the resistance to lateral-torsional buckling is calculated with Equation (117).  
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 ( ) ( )n cr xc pc ycM T F S R M T=     ( 117 ) 

In this equation, the critical stress is calculated with Equation (118).  
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 ( 118. ) 

 Sections with noncompact and slender flanges 

For sections with noncompact and slender flanges, the resistance is controlled either by the 

compression flange yielding, by lateral-torsional buckling or by compression flange local 

buckling. The resistance to the first two failure modes is calculated with the equations 

presented in the preceding section. 

The resistance to the compression flange local buckling of sections with noncompact or 

slender is determined using respectively Equations (119) and (120). 

 ( ) ( ) ( ( ) ( ) ) ( )
pf

n pc yc pc yc L xc pc yc

rf pf

M T R M T R M T F T S R M T
 

 

 −
=  −  −      − 

 ( 119 ) 

 2

0.9 ( )
( ) ( )c xc

n pc yc

E T k S
M T R M T



  
=    ( 120 ) 

1.5.4.3.3 Sections with slender web bent about their major axis 

 Sections with compact flanges 

For sections with compact flanges, the resistance is controlled either by compression flange 

yielding or by lateral-torsional buckling. The resistance to compression flange yielding is 

obtained with Equation (121).  

 ( ) ( )n pg y xcM T R F T S=    ( 121 ) 
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The resistance to lateral-torsional buckling must be calculated if the unsupported length of 

the member is over the limiting laterally unbraced length for the limit state of yielding which 

is calculated with Equation (115) presented previously. If lateral-torsional buckling must be 

considered, the resistance is obtained with the following equation:  

 ( ) ( )n pg cr xcM T R F T S=    ( 122 ) 

The critical stress depends on the length of the section compared to the limiting unbraced 

length for the limit state of inelastic lateral-torsional buckling which is calculated with 

Equation (123).  

 
( )

( )
0.7 ( )

r t

y

E T
L T r

F T
=  


 ( 123 ) 

If the unsupported length of the member is under or equal to the limiting unbraced length, 

the value of nM for the lateral-torsional buckling is calculated with Equation (124). 

 ( )
( )

( ) ( ) 0.3 ( ) ( )
( ) ( )

b p

cr b y y y

r p

L L T
F T C F T F T F T

L T L T

  −
=  −       −  

 ( 124 ) 

Else, equation 125 must be used. 
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 
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 ( 125 ) 

 Sections with noncompact and slender flanges 

For section with noncompact and slender flanges, the resistance is controlled either by the 

compression flange yielding, by lateral-torsional buckling or by compression flange local 

buckling. The resistance to the first two failure modes is calculated in the preceding section. 

The resistance to compression flange local buckling is determined using respectively 

Equation (126). 
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 ( ) ( )n pg cr xcM T R F T S=    ( 126 ) 

The critical stress for sections with noncompact and slender flanges is respectively 

determined with the following equations: 

 ( )( ) ( ) 0.3 ( )
pf

cr y y

rf pf

F T F T F T
 

 

 −
= −    − 

 ( 127 ) 
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E T k
F T
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t

 
=

 
   

 ( 128 ) 

1.5.4.3.4 Sections bent about their minor axis 

 Sections with compact flanges 

If the cross-section has flanges classified as compact, the nominal flexural strength is the 

resistance to yielding determined using the following equation: 

 ( ) 1.6 ( )n p y y y yM M F T Z F T S= =      ( 129 ) 

 Sections with noncompact and slender flanges 

For sections with noncompact and slender flanges, the resistance to minor-axis bending is 

either governed by the resistance to yielding obtained with Equation (129) or by the 

resistance to flange local buckling.  

The nominal flexural strength is determined with the following equation if the section has 

noncompact flanges: 

 ( ) ( ) ( ( ) 0.7 ( ) )
pf

n p p y y

rf pf

M T M T M T F T S
 

 

 −
= − −     − 

 ( 130 ) 

If the flanges are classified as slender, the following equation must be used: 
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 ( ) ( )n cr yM T F T S=   ( 131 ) 

where  2

0.69 ( )
( )cr

E T
F T




=  ( 132 ) 

1.5.4.4 Cross-section subjected to combined compression and bending  

If the cross-section is subjected to both compression and bending, an additional verification 

must be made. 

If 0.2
( )

r

c

P

P T
 ,  

8
1.0

( ) 9 ( ) ( )

ryrxr

c cx cy

MMP

P T M T M T

 
+  +   

 
 ( 133 ) 

If 0.2
( )

r

c

P

P T
 , 1.0

2 ( ) ( ) ( )

ryrxr

c cx cy

MMP

P T M T M T

 
+ +     

 ( 134 ) 

1.5.5 Comments on methods proposed by standards 

For cross-sections of classes 1 and 2, all three codes use the stress at 2% plastic strain with 

the plastic modulus to calculate the resistance. The 2% plastic stress is also used to calculate 

the resistance of class 3 sections with the elastic modulus. According to Knobloch and 

Fontana [4], the method of calculation is unconservative as the strains at this level lead to 

local buckling even for compact sections.  

As for class 4 sections, the calculation method depends on the code. The method proposed 

by Eurocode 3 do consider the increase in slenderness at high temperatures by using a 

reduction factor of 0.85 when classifying the cross-section. This is however a simplification 

of the real ratio between reduction factors used for the elasticity modulus and the yield limit 

[39]. Moreover, this reduction factor is not considered when using the Effective Width 

Method to calculate the effective properties of class 4 cross-sections. According to a study 

made by Knobloch and Fontana [4], the simplification made in the code results in a 

discontinuity at the class 4 limit which could be reduced by using the reduction factor of 0.85 

to calculate the effective properties. The method also proposes to use 0.2% proof stress when 
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calculating the resistance of class 4 sections. However, this method leads to conservative 

results and does not allow for an economical design.  

The Canadian standards do not consider the temperature when either classifying the cross-

sections or calculating the effective properties. As a result, the increase in slenderness caused 

by the increase in temperature is not accounted for which means that the resistance of sections 

considered to be of class 3 at ambient temperature can be overestimated at high temperatures 

as some of them may buckle before reaching their elastic capacity. Moreover, when 

calculating the resistance, the 2% total stess is used which may lead to unconservative results. 

Finally, in the American standards, the properties at high temperatures are used for both the 

classification and the calculation of the effective properties. This allows to consider the 

increase in slenderness caused by the increase in temperature.  

1.6 New proposals at high temperatures 

In 2018, an equivalent stress method was proposed by Maraveas et al. [60]. This method 

proposes to modify the stress-strain relationship for compression to consider local buckling. 

To do so, the following expression is proposed to calculate the buckling reduction factor: 

 
2

, ,

1

p p

k
     

=
 +  +

  ( 135 ) 

In this equation the non-dimensional plate slenderness is calculated as in Part 1-5 of Eurocode 

3 [37] : 
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b t

k

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


=
 

  ( 136 ) 

The parameter ε is calculated with the following equation where kE,θ et ky,θ are the reduction 

factors for Young’s modulus and the yield strength used in Eurocode 3 [39]. 
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The other parameters from Equation (135) are temperature-dependant and can be found in 

Table 7.  

Table 7 : Proposed parameters for the equivalent stress method [60] 

Type of plate 
Temperature 

(°C) 
α β γ 

Flange 

20 -0.19800 1.375 -0.0368 

200 -0.10000 1.000 0.6350 

> 300 -0.05500 1.130 0.6200 

Web 

20 -0.00066 0.446 0.9000 

200 0.04860 0.723 0.7400 

> 300 -0.03100 1.347 0.5300 

Figure 35 shows the modified stress strain relationship. 

 

Figure 35 : Proposed modified stress-strain relationship [60] 

This method allows to use more representative stresses based on the loading. However, it 

does not improve the overall design method.   
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Chapter 2 : Finite element modeling and validation 

The intent of this chapter is to present a description of the finite element model used to 

conduct the study.  

2.1 Finite element model’s characteristics and features 

The finite element software ABAQUS is used to perform numerical simulations. In the 

present study, Geometrically and Materially Non-linear Analysis (G.M.N.I.A.) and Linear 

Buckling Analysis (L.B.A.) are performed. G.M.N.I.A. analysis are performed using Riks’ 

method which allows to go easily beyond the peak load and the subspace iteration method is 

used to perform the L.B.A. analysis.  

S4R shell elements are used in the model. Those elements are 4 nodes, quadrilateral elements 

with reduced integration. These elements were chosen as they are widely used in numerical 

simulations and give good results. The shell elements are placed at mid-thickness of the real 

plate and given the appropriate thickness. The shell elements allow an adequate consideration 

of plate buckling as they can be loaded in their plane.  

For hot-rolled sections, a specific modeling was done for the web-to-flange area. This area 

suffers from 2 problems when modeled with shell elements:  

1) There is an overlap of the elements at the intersection of the web and the flange caused 

by the modelling with shell elements;  

2)  The radius area is not taken into consideration.  

Both problems are illustrated on Figure 36. To fix those problems, beam elements are added 

at the centre of gravity of the two radius areas. The beams have a square shape which area is 

set to represent the radius area minus the overlapped area. A box shape is used to capture the 

additional torsional inertia provided to the cross-section by the radius. With the use of beam 

elements, the cross-sections geometrical properties are equal to the actual profiles’ properties 

[50]. Moreover, the radius of a hot-rolled cross-section procures additional rigidity to the 

flange-to-web area which is not considered in the shell modelling. To account for that 

additional rigidity, relatively rigid spring elements are added between the web and the 
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flanges. Those springs help the area to remain relatively unaffected by local buckling as it 

would be in reality. Added beam and spring elements are shown on Figure 36. 

 

Figure 36 : Web-to-flange intersection modelling for hot-rolled sections 

For welded sections, both beam elements and spring elements are excluded from the model. 

Effectively, in those sections, the welds are not considered in the cross-section area and do 

not provide a significant restraint to local buckling. The small overlap between shell elements 

from the web and shell elements from the flange is not considered to have a significant impact 

on the results.  

2.2 Mesh density study 

To ensure the accuracy of the results, a mesh density study was conducted. The goal of the 

study was to select a mesh that provides accurate results with minimum computation time. 

With a finer mesh, the accuracy is better, but computation time is high. On the other hand, a 

coarser mesh provides rapid computation time, but the results loose accuracy. Analyses were 

conducted with five types of meshes, from coarse to fine, to determine the most appropriate 

one to use in the numerical study. The five types of mesh differ in the number of elements 

used in the web and in the flanges. Figure 37 shows the different mesh configurations tested 

for both I and H sections. On this figure, it is possible to see that the mesh is not uniform 

especially for the coarser meshes. This is due to the fact that nodes are “manually” placed to 

introduce accurately the residual stresses and geometrical imperfections.   
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Type 1 Type 2 Type 3 

  
Type 4 Type 5 

I-sections 

   
Type 1 Type 2 Type 3 

  
Type 4 Type 5 

H-sections 

Figure 37 : Mesh configurations 
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The following parameters were considered to ensure a complete and accurate mesh study:  

- Two types of analysis were performed: L.B.A. and G.M.N.I.A. analysis; 

- Two load cases were considered: compression and major-axis bending; 

- Twelve different sections were modeled (six IPE sections and six HEA sections). 

Those sections include regular sections and modified sections obtained by reducing 

all thickness of existing sections by 30%. Reduced sections are denoted with “-“; 

- Two temperatures were considered: 450°C and 700°C; 

- Two values of Fy were considered: 355 MPa and 690 MPa. 

A total of 480 G.M.N.I.A. and 480 L.B.A. numerical simulations were carried out. In all 

simulations, the initial load applied to the cross-section is the load carrying capacity predicted 

by EC3 divided by 3,5 which allows an easy convergence with the used convergence 

parameters. Initial imperfections and residual stresses were applied according to the 

recommendations presented in sections 2.5 and 2.6. As for the length of the cross-section, it 

was limited to three times the half-period length of the sinusoidal functions used for the 

material imperfections to avoid global instabilities. 

Figure 59 to Figure 41 present L.B.A. and G.M.N.I.A. results. The results obtained are in 

terms of the critical buckling load multiplier, Rcr, for L.B.A. simulations and in terms of the 

ultimate load multiplier, Rult, for G.M.N.I.A. simulations. In all cases, the results obtained 

with the finest mesh (Type 5) is used as reference. Effectively, as type 5 mesh is very fine, it 

is considered that the results obtained with this type of mesh are close enough to the real 

value. The vertical axis of graphs is the load multiplier of the studied case divided by the load 

multiplier obtained with the type 5 mesh. A value of 1 means that the result is “exact”. 
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a) 

 

b) 

 

c) 

 

d) 

Figure 38 : Mesh study, L.B.A. results for compression: a) Fy=355 MPa and T=450°C; b) Fy=690 MPa and 

T=450°C; c) Fy=355 MPa and T=700°C; d) Fy=690 MPa and T=700°C 
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a) 

 

b) 

 

c) 

 

d) 

Figure 39 : Mesh study, L.B.A. results for major-axis bending: a) Fy=355 MPa and T=450°C; b) Fy=690 

MPa and T=450°C; c) Fy=355 MPa and T=700°C; d) Fy=690 MPa and T=700°C 
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a) 

 

b) 

 

c) 

 

d) 

Figure 40 : Mesh study, G.M.N.I.A. results for compression: a) Fy=355 MPa and T=450°C; b) Fy=690 MPa 

and T=450°C; c) Fy=355 MPa and T=700°C; d) Fy=690 MPa and T=700°C 
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a) 

 

b) 

 

c) 

 

d) 

Figure 41 : Mesh study, G.M.N.I.A. results for major-axis bending: a) Fy=355 MPa and T=450°C; b) Fy=690 

MPa and T=450°C; c) Fy=355 MPa and T=700°C; d) Fy=690 MPa and T=700°C 
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All graphs show that the results obtained with the Type 1 mesh present significant 

discrepancies with the reference results in most cases. As for the other types of mesh, the 

results obtained do not present pronounced differences. Table 8 presents the maximum 

deviations obtained with both types of analyses and for both types of loads. 

Table 8 : Maximal deviation from exact result 

  Type 1 Type 2 Type 3 Type 4 

L.B.A. 
N 7.49% 2.05% 1.12% 0.38% 

M 12.89% 1.32% 0.67% 0.34% 

G.M.N.I.A. 
N 4.46% 1.18% 0.80% 0.63% 

M 4.10% 1.49% 1.41% 1.35% 

 

The table shows that the maximal deviation for Type 3 and over is 1.41%. This is considered 

accurate as it is below the confidence threshold of the numerical simulation which is between 

3 and 5%. Any of these 3 meshes could therefore be used in numerical simulations. The other 

important factor to consider is the computation time needed to get the results of a simulation. 

The average computation times for G.M.N.I.A. analyses for each type of mesh and for both 

types of loads are presented on Figure 42.  

 

Figure 42 : Average computation time for each type of mesh 

The figure above shows that the computation time significantly increases when the mesh 
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Based on the results, the Type 3 mesh was deemed the most appropriate. It has proven to 

procure accurate results while minimizing the computation time. 

2.3 Material behaviour 

As explained previously, the temperature has a significative impact on steel’s properties. In 

the finite element model, the material law recommended by EC3 is used. At low 

temperatures, 20°C to 100°C, the material law is elastic-perfectly plastic. At higher 

temperatures, the material law becomes elastic-elliptic-perfectly plastic. In all cases, no strain 

hardening is considered which is conservative [39]. Figure 43 presents the stress-strain 

relationship for carbon steel at various temperatures. 

 

Figure 43 : Stress-strain relationship for carbon steel at elevated temperatures [39] 

The stress-strain relationships shown on Figure 43 are obtained with the constitutive law 

recommended by Part 1.2 of Eurocode 3 and presented previously which is divided in four 

zones: a linear segment until the proportional limit is reached (fp,θ), an elliptic transition 

ending at the effective yield stress (fy,θ), a plateau and a linear descending branch at large 

strains [39]. The four zones are visible on Figure 44. In the present study, the last part of the 

constitutive law, the descending branch, is not considered. Table 9, obtained from Part 1.2 of 

Eurocode 3 [35], gives the equations needed to plot the constitutive law.   
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Table 9 : Steel constitutive law at elevated temperatures [39] 

Strain range Stress σ Tangent modulus 
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Where :  

,yf   Effective yield strength 

,pf   Proportional limit 

,aE   Elasticity modulus 

,p   
Strain at the proportional 

limit 

,y   Yield strain 

,t   
Limiting strain for yield 

strength 

,u   Ultimate strain 

 

Figure 44 is a representation of the constitutive law described in the previous table. 
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Figure 44 : Stress strain relationship of steel at elevated temperatures [39] 

The different parameters that are temperature-dependant (fy,θ, fp,θ, Ea,θ) are obtained by 

multiplying the value at room temperature by reduction factors that vary with the temperature 

[39]. Reduction factors recommended by EN 1993-1-2 are presented in Table 10.  

Table 10 : Reduction factors for steel at elevated temperature [39] 

Temperature ( a ) 

(°C) 

, , /y y yk f f =  

(-) 

, , /p p yk f f =  

(-) 

, , /E a ak E E =  

(-) 

20 1.000 1.000 1.000 

100 1.000 1.000 1.000 

200 1.000 0.807 0.900 

300 1.000 0.613 0.800 

400 1.000 0.420 0.700 

500 0.780 0.360 0.600 

600 0.470 0.180 0.310 

700 0.230 0.075 0.130 

800 0.110 0.050 0.090 

900 0.060 0.0375 0.0675 

1000 0.040 0.0250 0.0450 

1100 0.020 0.0225 0.0225 

1200 0.000 0.0000 0.0000 

Both fy and Ea are taken at ambient temperature. Interpolation is used for intermediate values. 
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2.4 Support conditions and loading 

Ideal fork conditions are applied in the finite element model allowing axial displacement, 

strong and weak axis rotation and warping. Axial displacement is blocked at the middle of 

the cross section allowing both ends to move. Figure 45 shows the applied boundary 

conditions. 

 

Figure 45 : Boundary conditions applied in the finite element model 

Kinematic linear constraints are used at the end sections so that the displacement of each 

node is governed by the 4 corner nodes (not shown on figure). Linear constraints ensure that 

Bernoulli’s principle, “all plane sections remain plane”, is respected and allow the loads to 

be applied as axial load directly at the 4 corner nodes. Figure 46 shows how loads are applied. 

If multiple loads are applied, concentrated loads at nodes are added to create the full loading.  
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Compression - N Major-axis bending - My Minor-axis bending - Mz 

Figure 46 : Loading applied in the finite element model [3] 

For combined load cases where all three forces are applied to the cross-section (N + My + 

Mz), previous studies have shown that, under fork support conditions, the cross-section is not 

able to reach its full plastic capacity [61]. When all three loads are applied on the cross-

section, the plastic distribution of stresses can be represented as shown on Figure 47. 

 

Figure 47 : Plastic distribution of stresses under N + My + Mz [62] 

The figure shows that the stresses due to the minor axis bending moment in the lower and 

upper flange are not equal. Figure 48 shows that the warping moment is needed to obtain the 

plastic distribution shown on Figure 47. 
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Figure 48 : Interaction between the minor axis bending moment and warping moment [62] 

As the warping moment is needed to reach the full plastic distribution and therefore the full 

plastic capacity, some warping restraint must be provided to allow the warping moment to 

develop.  

Studies were conducted on the effect of warping restraint in both [3] and [61]. In those 

studies, end plates were used to create warping restraint at both ends of cross-sections. Both 

studies showed that when no warping restraint is provided on very short members (cross-

sections), it is not possible to reach the full plastic capacity by comparing the obtained 

numerical results with results from Materially Non-linear Analysis (M.N.A.). The studies 

also showed that the use of warping restraint is not needed for the study of members, 

Effectively, when performing simulation on members, the loading on the length of the 

member is not uniform. Less loaded parts of the member are therefore able to create 

additional warping restraints allowing the section to reach the full plastic capacity. However, 

when performing simulations at the cross-section level, loading is uniform throughout the 

section and no warping restraints is provided. Therefore, the section can not reach its full 

plastic capacity. 

To allow the cross-sections subjected to both axial force and biaxial moment to reach the full 

plastic capacity, warping restraint is added to the finite element model using a rigid body 

condition which acts in the same way as the endplates discussed previously. All nodes at one 

end of the cross-section are set as a rigid body, and the node at mid-height of the web is set 

as the reference node. By doing so, all nodes at the end of the section undergo the same 

displacement, which prevents the flanges from moving in opposite directions and ensure that, 
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following Bernoulli’s principle, “plane sections remain plane”. When using the rigid body, 

all boundary conditions and loads are applied directly at the reference node.  

Numerical simulations were conducted with both models to evaluate the impact of warping 

restraint on the results. Figure 49 shows results obtained with and without warping restraints 

for cross-sections subjected to both axial force and biaxial moment. Results are shown for 

two different levels of compression defined by the variable n, which is obtained by dividing 

the applied compression load by the plastic resistance in compression of the cross-section.  

 

a) 

 

b) 

Figure 49 : Influence of warping restraint on results for : a) n = 0.4; b) n = 0.8 
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As expected, the figure shows that the results obtained without warping restraint are 

significantly lower than the ones obtained with warping restraint which confirms that when 

no warping restraint is provided, the cross-section is not able to reach its ultimate capacity. 

Figure 49 exhibits that even sections with low slenderness are not able to reach the full plastic 

capacity.  

It was noticed that both the ultimate resistance multiplier (Ru) and the critical resistance 

multiplier (Rcr) are larger when warping restraint is applied in the model. Table 11 presents 

the maximum, average and minimum deviation in the results obtained with and without 

warping restraint.  

Table 11 : Influence of warping restraint on results 

 
n = 0.4 n = 0.8 

Ru (-) Rcr (-) Ru (-) Rcr (-) 

Maximum deviation 

(%) 
31 23 14 29 

Minimal deviation 

(%) 
10 9 4 9 

Average deviation 

(%) 
18 14 7 14 

 

Results confirm that the ultimate load obtained is significantly lower when no warping 

restraint is provided which agrees with results obtained in both [3] and [61]. Results show 

that this is particularly true for cross-sections subjected to lower axial force. Warping 

restraint is therefore needed so that the ultimate load of the section is not underestimated. As 

for the critical load, results are on average 14 % lower when no warping restraint is provided. 

This can be explained by the fact that the additional restraint increases the stability. The 

critical load obtained without warping restraint is more representative of the real buckling 

load as it is calculated with fork boundary conditions. However, in order to stay consistent 

throughout the numerical study, all simulations, L.B.A. and G.M.N.I.A., for load cases with 

axial force and biaxial bending are done with warping restraint. 
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2.5 Geometrical imperfections 

Based on the recommendations made by Gérard et al. [46], sinusoidal functions with 3 half-

waves are used to introduce local geometrical imperfections in the finite element model. 

Figure 50 shows the representation of the sinusoidal imperfections. 

 

Figure 50 : Sinusoïdal imperfections on web and flanges [46] 

The amplitude of the imperfections on the web and the flanges and the half-period shown on 

the figure are expressed in terms of the buckling lengths (a) of the elements which depends 

on the manufacturing process. For hot-rolled sections, 2 2w fa h t r= −  −  and 

2f wa b t r= − −  , while for welded sections, w fa h t= −  and fa b= due to the absence of 

fillets. In both cases, h  refers to the full height of the section. Amplitudes of / 200wa  for the 

web and of / 200fa  for the flanges are used. The half-period length is the average between 

the buckling lengths of the web and flange: 0.5 ( )avg w fa a a=  + [46].  

2.6 Residual stresses 

As discussed in section 1.4.2.2, the evolution of residual stresses for sections submitted to 

high temperatures under load is not well known. However, many studies have shown a 

significant reduction in residual stresses when sections are subjected to high temperature. 

Therefore, this reduction was considered when introducing residual stresses in the finite 
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element model for both welded and hot-rolled cross-sections by reducing the maximal 

amplitude of the residual stresses. 

2.6.1 Welded sections 

For welded sections, the same residual stress pattern is used for cross-sections at ambient and 

elevated temperatures. The pattern used is the one recommended by Lucile Gérard in her 

PhD thesis [3] and is presented on Figure 51.  

 

Figure 51 : Residual stress pattern for welded sections [3] 

When residual stresses are added to the finite element model, the first step of the numerical 

analysis is a stress redistribution even before external loading is applied. If there are no 

geometrical imperfections introduced in the model and if the pattern used for the residual 

stresses is perfectly auto equilibrated, very limited stress redistribution occurs. After 

introducing the residual stresses in a finite element model at ambient temperature without 

any geometrical imperfections, no stress redistribution was noted which confirms that the 

pattern used is auto equilibrated.  

As mentioned previously, the same residual stress pattern is used for cross-sections subjected 

to elevated temperatures. However, as the yield strength diminishes with the increase in 

temperature, the yield strength corresponding to temperature studied is used. With this 

approach, it was anticipated that there would not be any stress redistribution after the 

application of the residual stresses in the finite element model when no geometrical 
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imperfections are introduced as discussed previously. A test was conducted with a section at 

a temperature of 200°C. At this temperature, there is no reduction in yield limit. Therefore, 

the residual stresses applied are exactly the same as for a cross section at 20°C. Figure 52 

presents the distribution of stresses in the section before and after redistribution.  

 

a) 

 

b) 

Figure 52 : Maximal stress distribution in cross-section (MPa) : a) Before stress redistribution ; b) After 

stress redistribution 
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The legend on the figure shows a significative stress redistribution (up to 14% difference). 

The stress redistribution can be explained by the fact that even thought there is no reduction 

in Fy at 200°C, the material law is no longer elastic-perfectly plastic and the elasticity limit 

is no longer equal to the yield limit. Table 12 presents the yield limit and the elasticity limit 

at 20°C and 200°C. 

Table 12 : Material properties at 20°C and 200°C 

Temperature (°C) Fy (MPa) Fp (MPa) 

20 355 355 

200 355 286 

 

Values in Table 12 show that there is a significative difference between the yield limit and 

the proportionality limit even at low temperature. The non-linearity of the material law at 

elevated temperatures induces a stress redistribution which is not present at ambient 

temperature. It was therefore considered to use the proportionality limit as the maximal 

residual stress applied in the finite element model instead of the yield limit. When applying 

the residual stresses with this maximal stress, no stress redistribution was noted in the cross-

section. As the residual stress pattern used is auto equilibrated this result was expected and 

desired. 

A sub-study was conducted to quantify the impact of the two proposed methods used to 

introduce the residual stresses on the results. The following parameters were considered to 

ensure a complete and accurate study: 

- GMINIA analysis were performed; 

- No geometrical imperfections were introduced so that the effect of the introduction 

of residual stresses could be studied; 

- Two load cases were considered: compression and major-axis bending; 

- Two maximal residual stresses were considered: Fy and Fp; 

- Twelve different cross-sections were modeled (six I-shape sections and six H-shape 

sections). Those sections include regular sections and modified sections obtained by 

reducing all thickness to obtain more slender sections; 

- Three temperatures were considered: 300°C, 450°C and 700°C. 
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A total of 144 numerical simulations were carried out. In all simulations, the initial load 

applied to the cross-section was the load carrying capacity predicted by EC3 divided by 3,5 

which allows an easy convergence. The length of the “cross-section” was limited to three 

times the half-period length of the sinusoidal functions used when geometrical imperfections 

are included to avoid global instabilities. 

Figure 53 and Figure 54 present the simulation results in O.I.C. format.  

 

Figure 53 : Resistance of cross-sections under pure compression with maximal residual stress Fy and Fp 

 

Figure 54 : Resistance of cross-sections under major-axis bending with maximal residual stress Fy and Fp 
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Table 13 presents the average and maximum deviation between results for both load cases. 

Table 13 : Average and maximum deviation between results obtained with Fy and Fp for welded sections 

 Average deviation (%) 
Maximum deviation 

(%) 

Compression 0.61 3.39 

Major-axis bending 0.23 3.04 

 

Results show that there is almost no impact on the maximal load capacity of the cross-

sections when using either the yield strength or the proportionality limit as the maximal 

residual stress. It was therefore chosen to use the proportionality limit as the maximal residual 

stress since it ensures no load redistribution during the initial step of the simulation.  

2.6.2 Hot-rolled sections 

For hot-rolled sections, the same residual stress pattern is used for cross-sections at ambient 

and elevated temperatures. The pattern used is the one recommended by Lucile Gérard in her 

PhD thesis [3] and is presented on Figure 55. The maximum value for Fy is set at 235 MPa 

as discussed in section 1.4.2. 

h / b < 1.2 h / b > 1.2 

 

 

Figure 55 : Residual stress pattern for hot-rolled sections [3] 
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The introduction of the residual stress pattern in the finite element model is complex due to 

its parabolic form. To facilitate the incorporation of the residual stresses in the model, the 

residual stresses are calculated in the middle of each shell element and the value obtained is 

applied to the entire element. This method allows to estimate the residual stresses by a 

discontinuous pattern which is shown on Figure 56. 

 

Figure 56 : Stair pattern used to introduce residual stresses in the finite element model 

When residual stresses are added to the finite element model, the first step of the analysis is 

a stress redistribution. If there are no geometrical imperfections introduced in the model and 

if the pattern used for the residual stresses is perfectly auto-equilibrated, no stress 

redistribution occurs. After introducing the residual stresses with the stair pattern in a finite 

element model without any geometrical imperfections, a small stress redistribution was 

noted. This redistribution occurred since the stair pattern is not perfectly auto-equilibrated. 

Stresses in the cross-sections were compared before and after the redistribution to ensure the 

validity of the chosen pattern. Figure 57 shows the stresses before and after the redistribution 

for a cross-section at ambient temperature.  
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a) 

 

b) 

Figure 57 : Maximal stress distribution in cross-section (MPa) : a) Before stress redistribution ; b) After 

stress redistribution 

As shown in the figure, the stress redistribution is very small and can be neglected, which 

confirms that the chosen way to introduce residual stresses is appropriate.  
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As mentioned previously, the same pattern is used for cross-sections at elevated 

temperatures. However, as the yield strength diminishes with the increase in temperature, the 

yield strength corresponding to the temperature studied is used like for welded cross-sections. 

Such as for sections at ambient temperature, a maximum value of 235 MPa is considered. 

Residual stresses considered for hot-rolled sections are significatively lower than the ones 

considered for welded sections. Effectively, as shown on the pattern on figure 5, the maximal 

residual stress that can be applied is 0.5 Fy. Table 14 shows the yield and proportionality 

limits at various temperature, the value used as Fy for the residual stresses (Fy_used) and the 

value of 0.5 Fy _used. 

Table 14 : Yield and proportionnality limits and used value for the residual stresses at various temperatures 

Temperature (°C) Fy (MPa) Fp (MPa) 
Fy_used (MPa) 0.5 Fy_used 

(MPa) 

20 355 355 235 117,5 

300 355 218 235 117,5 

450 316 138 235 117,5 

550 222 96 222 111 

700 82 27 82 41 

 

As shown in the table, the maximal applied residual stress is almost never over the 

proportionality limit. Therefore, the redistribution of stresses would only happen at very high 

temperatures and even at those temperatures, the redistribution would not be as important as 

for welded sections since the difference between the maximal applied stress and the 

proportionality limit is small.  

However, to be consistent with the way residual stresses are applied for welded sections, it 

was considered to use the proportionality limit as the maximal residual stress applied in the 

finite element model instead of the yield strength like for welded section.  

A sub-study was conducted to quantify the impact of the two proposed methods used to 

introduce the residual stresses. The following parameters were considered to ensure a 

complete and accurate study: 

- GMINIA analysis were performed; 
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- No geometrical imperfections were introduced so that the effect of the introduction 

of residual stresses could be studied; 

- Two loads cases were considered: compression and major-axis bending; 

- Two maximal residual stresses were considered: Fy and Fp with a maximum value of 

235 MPa; 

- Twelve different cross-sections were modeled (seven I-shape sections and six H-

shape sections). Those sections include regular sections and modified sections 

obtained by reducing all thickness to obtain more slender sections; 

- Three temperature were considered: 300°C, 450°C and 700°C. 

A total of 144 numerical simulations were carried out. In all simulations, the initial load 

applied to the cross-section was the load carrying capacity predicted by EC3 divided by 3,5 

which allows an easy convergence. The length of the cross-section was limited to three times 

the half-period length of the sinusoidal functions used when material imperfections are 

included to avoid global instabilities. 

Figure 58 and Figure 59 presents the simulation results in O.I.C. format.  

 

Figure 58 : Resistance of cross-sections under pure compression with maximal residual stress Fy and Fp 
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Figure 59 : Resistance of cross-sections under major-axis bending with maximal residual stress Fy and Fp 

Table 15 presents the average and maximum deviation between results for both load cases. 

 

Table 15 : Average and maximum deviation between results obtained with Fy and Fp for hot-rolled sections 

 Average deviation (%) 
Maximum deviation 

(%) 

Compression 0.20 1.05 

Major-axis bending 0.12 0.69 

 

Results show that there is almost no impact on the maximal load capacity of the cross-

sections when using either the yield strength or the proportionality limit as the maximal 

residual stress. It was chosen to use the proportionality limit as the maximal residual stress 

since it ensures no load redistribution during the initial step of the simulation.  

2.7 Model validation 

To ensure the validity of the finite element model, it was tested against experimental results 

and assumptions made for boundary conditions and residual stresses were verified. The 

experimental results used for the comparison were obtained from the PhD thesis of Pauli 
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[63]. In her study, many HEA100 short columns were tested with different loading and at 

different temperatures. In all case, a compression load is applied at the top of the specimen. 

For the combined load cases, the compression load is applied with an eccentricity to create a 

bending moment.  The use of stub columns allowed to obtain the cross-section resistance. 

Table 16 presents the 20 studied specimens and the ultimate load reached. 

Table 16 : Studied specimens by Pauli [63] 

Specimen Temperature 

Boundary 

conditions 
Load excentricity Ultimate Load 

y z ey ez N My Mz 

[-] [°C] [-] [-] [mm] [mm] [kN] [kNm] [kNm] 

S02 550 pin tie 0 10 389 3.89 0 

S03 550 pin tie 0 50 225 11.25 0 

S04 20 tie tie 0 0 1124 0 0 

S05 20 pin tie 0 10 845 8.45 0 

S06 550 tie pin 10 0 376 0 3.76 

S07 550 tie tie 0 0 434 0 0 

S08 400 pin tie 0 10 764 7.64 0 

S09 400 tie pin 10 0 739 0 7.39 

S10 20 pin tie 0 50 510 25.5 0 

S12 20 tie pin 10 0 724 0 7.24 

S13 550 tie tie 0 0 511 0 0 

S14 400 tie pin 50 0 288 0 14.4 

S15 550 pin tie 0 50 236 11.8 0 

S16 20 tie pin 50 0 309 0 15.45 

S17 400 pin tie 0 50 467 23.35 0 

S18 550 tie pin 50 0 140 0 7 

S19 400 tie tie 0 0 996 0 0 

S20 20 tie tie 0 0 1028 0 0 

S21 700 tie tie 0 0 135 0 0 

S22 700 tie tie 0 0 162 0 0 

 

2.7.1 Validation against numerical model using experimental data 

Firstly, a validation was made to ensure that the numerical model is able to reproduce the 

experimental tests that were performed. In this validation, the specimens were modeled as 
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closely as possible to the ones used during the experiments. First, the measured widths and 

thicknesses from the experimental study of Pauli were used [63]. The average dimensions of 

each part of the cross-sections were calculated and introduced in the model. Table 17 presents 

the dimensions used.  

Table 17 : Average dimensions used in the numerical model 

Specimen 
Geometrical dimensions 

h b1 b2 tw tf1 tf2 r L 

[-] [mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm] 

S02 98.75 101.3 101.65 5.59375 8.0825 8.0625 12 297.5 

S03 98.9 101.4 101.3 5.4975 8.0525 8.0875 12 298.0 

S04 98.85 101.55 101.25 5.5025 8.0892 8.0767 12 298.3 

S05 98.95 101.7 101.4 5.5125 8.085 8.07 12 298.3 

S06 98.725 101.25 101.65 5.5225 8.0983 8.0475 12 297.5 

S07 98.8 101.25 101.65 5.51375 8.0725 8.0825 12 298.0 

S08 98.85 101.35 101.7 5.52 8.0658 8.0467 12 297.5 

S09 98.825 101.4 101.7 5.48875 8.09 8.058 12 297.3 

S10 98.75 101.75 101.15 5.4825 8.0517 8.0617 12 301.3 

S12 98.925 101.2 101.7 5.4825 8.06417 8.0817 12 297.3 

S13 98.825 101.7 101.35 5.47625 8.04 8.0508 12 299.0 

S14 98.775 101.15 101.65 5.49625 8.0475 8.0233 12 301.8 

S15 98.725 101.15 101.65 5.5075 8.0767 8.0775 12 301.0 

S16 98.85 101.55 101.35 5.50375 8.0708 8.0542 12 301.0 

S17 98.8 101.45 101.25 5.48875 8.0517 8.0483 12 301.8 

S18 98.75 101.65 101.3 5.51375 8.0467 8.07 12 301.3 

S19 98.85 101.65 101.2 5.5175 8.0825 8.0517 12 298.5 

S20 98.9 101.65 101.5 5.53 8.075 8.084 12 298.3 

S21 98.85 101.45 101.1 5.4825 8.13 8.0908 12 298.0 

S22 98.85 101.25 101.6 5.5125 8.0608 8.075 12 298.5 

 

Then, the material laws determined experimentally by tensile material coupon tests were 

used. They were modelled using the measured data during the experimental test. Figure 60 

shows the experimental material laws. Material laws for the HEA100 sections are used in the 

model. 
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Figure 60 : Experimental material laws [63] 

Then, the specimens were modelled as close as possible to real the test setup. Figure 61 

presents the test setup used in the experimental study [63]. 
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Figure 61 : Test setup from the Ph.D. of Pauli [63] 

As it can be seen on Figure 61,Figure 61 : Test setup from the Ph.D. of Pauli [63] endplates 

were used in the experimental tests. They were therefore introduced in the finite element 

model. Also, Figure 61 shows that the supports are not placed directly after the end plate. 

The end supports were therefore placed away from the end plates. As the exact distance 

between the end plates and the support was not given in the PhD report, it was estimated 

based on the dimensions that were provided. The boundary conditions were defined as the 

ones used experimentally: rotation is blocked around an axis when the specimen is not 

subjected to bending around that same axis. Numerical simulations were performed with 

residual stresses and geometrical imperfections. No information was provided about the real 

residual stresses. Residual stresses where therefore introduce in the model according to 

section 2.6. As for the geometrical imperfections, they were measured during the experiment. 

It would, however, have been hard to model precisely the real geometrical imperfections and 
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they were, consequently, modelled according to section 2.5. Finally, the initial load applied 

in the numerical model was the maximal load obtained experimentally divided by 3.5.  

Table 18 shows the comparison between the maximal compression load obtained 

experimentally and numerically. In this table, a negative difference indicates that the 

numerical value is lower than the experimental value while a positive difference indicates 

that the numerical results is higher. 

Table 18 : Comparison of experimental and numerical results 

Specimen 
Strain rate 

[%/min] 

Experimental peak 

compression load 

[kN] 

Numerical peak 

compression load 

[kN] 

Difference 

[%] 

S02 0.10 389 369 -5.17 

S03 0.10 225 218 -3.10 

S04 0.10 1124 995 -11.45 

S05 0.10 845 792 -6.32 

S06 0.10 376 344 -8.61 

S07 0.02 434 479 10.34 

S08 0.10 764 734 -3.86 

S09 0.10 739 632 -14.49 

S10 0.10 510 457 -10.35 

S12 0.10 724 741 2.33 

S13 0.10 511 477 -6.68 

S14 0.10 288 268 -6.91 

S15 0.10 236 218 -7.66 

S16 0.10 309 322 4.14 

S17 0.10 467 444 -4.84 

S18 0.10 140 148 5.41 

S19 0.10 996 1000 0.44 

S20 0.10 1028 999 -2.86 

S21 0.02 135 172 27.55 

S22 0.10 162 172 6.10 

   Average (abs) 7.43 

   Min 0.44 

   Max 27.55 

   Standard deviation 5.84 

 

Results show that the maximal loads obtained with the numerical model are quite close to 

the maximal loads obtained experimentally with an average difference of 7.43 %. It can also 
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be noticed that the two most unconservative results, for specimens S07 and S21, are obtained 

for specimens that were experimentally loaded using a smaller strain rate (0.02 %/min instead 

of 0.10%/min). Those “bad results” can be explained by the fact that material laws used in 

the simulations were obtained with tensile tests performed using a strain rate 0.10%/min. As 

described in Chapter 1, the strain rate has an important effect on the results. Numerical results 

for which the material law was obtained at a strain rate of 0.10%/min can therefore not be 

compared to experimental results obtained at another strain rate. If those results are discarded, 

the average difference between experimental and numerical results is reduced to 6.15 % with 

a maximum difference of 14.5%, which is much more acceptable. The very good results 

obtained with the numerical simulations also confirms that the use of residual stresses in the 

simulations is justified.  

In addition to the comparison of the peak loads, the force-displacement curves obtained 

experimentally and numerically were compared. Two examples of such curves are presented 

on Figure 62Figure 64. All other curve comparisons are presented in Appendix 1. To obtain 

those graphs, the load-displacement curves were extracted from the PhD of Pauli [63] and 

the numerical curves were then scaled and placed over the graphs to allow comparison. 

  
S03 – 550 °C – N+My S04 – 20 °C – N 

 

Figure 62 : Comparison of experimental [63] and numerical load-displacement curves 
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For all specimens, except specimen S13, the initial slope from the numerical model is higher 

than the slope obtained experimentally. This can be explained by the fact that the modeled 

specimen is more rigid than the specimen in the experimental setup. Effectively, the setup is 

not entirely modeled in the finite element simulations which leads a smaller number of 

sources of deformability. This also results in smaller displacements at peak load in the 

numerical simulations. As only the peak loads are of interest in the present study, this aspect 

is considered acceptable.  

The graphs also allow to understand why most results at 20°C are underestimated. 

Effectively, as it can be seen on the graph of specimen S04, strain hardening allows to reach 

higher peak loads. The red curve on Figure 62 shows that the peak load reached by the 

numerical simulation is the load attained on the plateau before strain hardening effects. As 

the material law used for 20°C in the numerical model, which is presented on Figure 60, is 

elastic perfectly plastic, no strain hardening effects are accounted for in the numerical 

simulation. The good correlation between the red curve and the first plateau of the 

experimental curves confirms the good performance of the model. To capture the effect of 

strain hardening with the numerical model, the material law would need to consider this 

effect. However, no information about the material law at larger deformations was given in 

the study of Pauli and it was therefore not possible to use the material law with stain 

hardening in the numerical model.  

The deformations of the specimens obtain in the experimental and the numerical studies were 

also compared. Figure 63 shows the comparison for specimen S09. 
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S09 – 400 °C – N+Mz 

Figure 63 : Comparaison of experimental [63] and numerical deformations 

The figure shows that the deformations obtained experimentally and numerically are very 

similar which confirms that the numerical model can reproduce the actual behaviour of steel 

sections. All compared deformation present strong similarities and are presented in Appendix 

1. 

In conclusion, the first validation allowed to confirm that the numerical model was able to 

reproduce experimental results. Effectively, the average difference of 7.43% with a standard 

deviation of 5.84% between numerical and experimental peak loads was judged acceptable. 

Moreover, the comparison of the numerical and experimental deformations allowed to 

confirm that the numerical model can reproduce the behaviour of the cross-sections. 

2.7.2 Validation against the actual numerical model used in the study 

Then, a validation study was conducted to see the performance of the actual model used for 

the numerical study. In this model, no end plates are used and the material laws considered 

are the ones from Eurocode 3. Multiple comparisons were made. First, the model was used 

exactly as described in sections 2.1 to 2.2, i.e. with residual stresses and fork boundary 

conditions. Then, numerical simulations were carried out without residual stresses and with 

the boundary conditions used during the experimental test. Results are shown on Figure 64. 

In this figure, the ultimate load obtained with the finite element model is divided by the 
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ultimate load obtained experimentally. A result over 1.0 indicates that the prediction given 

by the numerical model is higher than the results obtain with the experimental test.  

 

Figure 64 : Comparison between experimental results and numerical results obtained with numerical model 

used for the actual study 

The results first show that the use of residual stresses or not in the numerical simulations has 

almost no impact on the ultimate load reached. Effectively, the maximal difference between 

results obtained with and without residual stresses is 0.15 %, which is negligible. It is 

however important to keep in mind that only hot-rolled sections are considered in the present 

validation. As residual stresses are higher in welded cross-sections, the difference should be 

higher in those type of cross-sections. The difference should stay however small.  

As for the boundary conditions, results show that the use of fork boundary conditions or of 

the real boundary conditions used in the experiment has little effect on the ultimate load 

reached. The maximum difference observed is 3.1%. The maximal difference is observed for 

cases where the load applied is pure compression and where rotations are blocked around 

both axes in the experimental tests. The difference can therefore be explained by the fact that 

by providing more restraint, the cross-sections is less subjected to local buckling. A more 

significant difference is observed when the section is subjected to pure compression as it is 

the loading case that has the most influence on local buckling.  
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To compare the performance of the model with the experimental results, only the results 

obtained with residual stresses and fork support conditions (blue lines on Figure 64) are 

considered as they represent the model used for the numerical study and as it has been 

demonstrated that the difference with results obtained without residual stresses and with the 

real boundary conditions are very small. Table 19 presents the maximum, minimum and 

average difference between experimental results and finite element results. 

Table 19 : Differences between experimental results and finite element results 

Average 

difference 

Minimal 

difference 

Maximal 

difference 

Standard 

deviation 

15.4 % 0.1 % 31.3 % 10.0% 

 

Results show that there is a large variability in the performance of the model. The cases for 

which the differences between experimental and numerical results are the higher are the ones 

at ambient temperature (S04, S05, S10, S12, S16 and S20). In all cases, the resistance reached 

with the numerical model is lower than the one obtained experimentally. This can be 

explained by the fact that in the numerical model, an elastic-perfectly plastic material law 

without strain hardening is used, which neglects the gain of resistance from strain hardening 

of the steel. Moreover, the material law used in the numerical model considers a yield limit 

at 355 MPa. By looking at the experimental material law on Figure 60, it can be noticed that 

the yield limit is much higher which explains the difference between the results.  

For other temperatures, there is again a large variability in the differences between 

experimental and numerical results. This can be again explained by the material law used in 

the model. Figure 60 shows the material laws proposed by Eurocode 3 and the material laws 

determined experimentally. It is possible to see that the material law proposed by Eurocode 

3 do not have the exact same shape as the material law for experimental study and do not 

reach the same maximal stress. The difference between laws can therefore explain the 

difference in the results.  

Although the results show a variability between experimental and numerical results, the 

model is still considered accurate. Effectively, conducting experimental study on steel 

sections subjected to fire is very hard and results are not always precise. Results depend, for 
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example, on the heat distribution in the section and on the strain rate. Strain rate can 

particularly have an impact on the results. For example, specimen S21 and S22 were both 

loaded with pure compression at 700°C. The first one was loaded with a strain rate of 

0.02%/min while the second one was loaded with a strain rate of 0.10%/min. The ultimate 

resistance of the first one was 135 kN while the ultimate resistance of the second one was 

162 kN, which is a 20 % difference. As experimental results can also have a large variability, 

it is considered adequate to use the numerical model for the present study.  
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Chapter 3 : Numerical parametric studies 

The intent of this chapter is to present parameters considered in the numerical parametric 

studies. By considering all those parameters a total of 12 960 simulations were conducted. 

3.1 Types of analysis 

In the numerical parametric studies, 2 types of analysis are performed: L.B.A. and 

G.M.N.I.A..  

Linear Buckling Analysis (L.B.A.) are performed to obtain the critical multiplier (Rcr). The 

critical multiplier is the value of the first eigenvalue which correspond to the first buckling 

mode. As only the local behaviour is studied, the length of the members is chosen to ensure 

that no global buckling occurs as explained before. Figure 65 presents an example of a local 

buckling mode for a cross-section subjected to pure compression. 

 

Figure 65 : First local buckling mode of a cross-section subjected to pure compression 

Geometrically and Materially Non-linear with Imperfections Analysis (G.M.N.I.A.) are 

performed to obtain the ultimate capacity of the cross-sections. The ultimate capacity is the 

peak load obtained during the analysis. For the peak load to be considered accurate, the 
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criterion presented on Figure 66 must be verified for the last positive increment (ΔR1) and 

for the first negative increment (ΔR2). On the figure, Rb is the maximum load multiplier. A 

tolerance of 0.2% is adopted for the present parametric study. 

 

Figure 66 : Criterion for peak load [3] 

3.2 Choice of cross-sections 

Multiple hot-rolled and welded cross-sections were chosen to cover a wide range of 

slenderness. The chosen sections are presented below. The length of each sections is chosen 

short enough to avoid global instabilities during simulations. The length is set to three times 

the half-period length used to incorporate geometrical imperfections which is the average 

between the web height and the flange width. 

3.2.1 Hot-rolled sections 

A total of 13 hot-rolled sections are considered in the parametric study. The geometrical 

properties of the chosen sections are presented in Table 20. The selection of sections contains 

both beam shapes (IPE) and column shapes (HEA).   
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Table 20 : Choice of hot-rolled cross-sections for the parametric study 

Designation 
Flange width 

(b) 
Height (h) 

Flange 

thickness (tf) 

Web 

thicknesss (tw) 
Radius (r) 

(-) (mm) (mm) (mm) (mm) (mm) 

IPE120 64 120 6.3 4.4 7 

IPE220 110 220 9.2 5.9 12 

IPE270 135 270 10.2 6.6 15 

IPE360 170 360 12.7 8.0 18 

IPE400 180 400 13.5 8.6 21 

IPE600 220 600 19.0 12.0 24 

HEA120 120 114 8.0 5.0 12 

HEA240 240 230 12.0 7.5 21 

HEA300 300 290 14.0 8.5 27 

HEA400 300 390 19.0 11.0 27 

HEA500 300 490 23.0 12.0 27 

HEA600 300 590 24.0 13.0 27 

HEA1000 300 990 31.0 16.5 30 

3.2.2 Welded Sections 

A total of 14 welded sections are considered for the parametric study. The geometrical 

properties of the chosen sections are presented in Table 21. The selection of sections contains 

both beam and column shapes. 

Table 21 : Choice of welded cross-sections for the parametric study 

Designation 
Flange 

width (b) 
Height (h) 

Flange 

thickness (tf) 

Web thicknesss 

(tw) 

Flange 

radius (r) 

(-) (mm) (mm) (mm) (mm) (mm) 

IPE220 110 220 9.2 5.9 0 

IPE360 170 360 12.7 8 0 

IPE600 220 600 19 12 0 

WWF700x245 400 700 30 11 0 

WWF900x347 500 900 35 11 0 

WWF1200x302 400 1200 25 16 0 

WWF1200x302- 400 1200 17.5 11.2 0 

WWF500x651 500 500 60 60 0 

WWF550x503 550 550 50 20 0 

WWF650x499 650 650 40 20 0 

WWF600x369 600 600 30 20 0 

WWF450x177 450 450 20 11 0 

WWF500x197 500 500 20 11 0 

WWF500x197- 500 500 14 7.7 0 
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Some IPE shapes, which are normally hot-rolled sections, have been included in the welded 

sections’ selection. These have the same plate dimensions has typical IPE sections, however, 

as they are considered as welded sections, no radius are considered. This choice will allow 

the comparison of the same sections under the effect of different residual stresses specific to 

the manufacturing processes. It will also allow to study the influence of the radius. Sections 

denoted by “-“ are sections for which the thicknesses of the web and flange has been reduced 

to obtain more slender sections.  

3.3 Load cases 

Both simple and combined load cases are considered in the parametric study. First, 

simulations are carried out for sections under pure compression (N), pure major axis bending 

(My) and pure minor axis bending (Mz). For those simulations, the initial load applied to the 

cross-section is the ultimate capacity predicted by Eurocode 3 divided by 3,5 which allows 

an easy convergence.  

Then, simulations are conducted with multiple load case combinations. Load combinations 

are defined by 2 parameters: n, which is the quantity of axial force applied and θ, which 

represents the degree of biaxial bending. The parameter n is defined as the ratio between the 

applied load and the plastic capacity of the section. The parameter θ links the quantity of both 

types of bending, my and mz by the following relationship:  

 tan( ) /z ym m =  ( 138 ) 

where my and mz are defined as the ratio between the applied load and the plastic capacity. 

Figure 67 represents different proportions between biaxial bending and axial compression. 

The figure also shows basic interaction formulas. 
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Figure 67 : Interaction between biaxial bending and axial compression [3] 

Doted lines represent different proportions of biaxial bending. If θ = 0°, there is only major 

axis bending. On the contrary, if θ = 90°, there is only minor axis bending. Any value in 

between indicates that both kind of bending are presents. Then, for any value of θ chosen, 

the doted lines represent the various values of n, quantity of axial force, that can be 

considered. If n = 0 then the section is only under bending loads. On the contrary, if n = 1, 

the sections is only subjected to compression.  

The simplified linear interaction represented on the figure is described by the following 

equations.  

 1y zn m m+ +   ( 139 ) 
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After choosing a value of n, the quantity of axial load, the value of my and mz can be calculated 

with the chosen θ and Equations (138) and (139) presented previously. Using the plastic 

capacities of the section, the ultimate loads can then be calculated. Those ultimate loads are 

used to determine the initial load applied in the simulations. Initial loads are obtained by 

dividing the ultimate loads by 3,5 which allows an easy converge. Those initial loads are 

used to calculate the needed multipliers which are obtained by increasing proportionally all 

loads. 

The different values of n and θ chosen for the study are presented in Table 22. For all chosen 

values, all possible combinations are tested. The choices made allow to sweep the entire 

graph. 

Table 22 : Levels of axial force and of biaxial bending applied 

n 0; 0.40; 0.80 

θ 0; 30; 50; 70; 90 

 

Interaction formulas from EC3, which represent the approached plastic capacity of a section 

under combined loading, are also represented on the figure. Those curves show that the 

simplified interaction formula used to determine the initial applied load is conservative when 

there is biaxial bending. Therefore, the expected G.M.N.I.A. result is higher than the 

simplified interaction curve as shown on the figure.  

As for the application of the combined loads, many sequences can be considered. Loads can 

be applied at different times and increase in various way. Studies have been conducted to 

quantify the impact of the sequence on the peak load [45]. The results of these studies indicate 

that no sequence is perfect. However, it was recommended to apply all forces at the same 

time and to then increase all loads proportionally. This method procures a greater adequacy 

with numerical tools used during the O.I.C. process and provide results that are on the safe 

side.  
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3.4 Temperatures 

In the present study, the temperature of the steel is considered uniform throughout the cross-

sections. Five different temperature are studied: 20°C, 350°C, 450°C, 550°C and 700°C. 

Figure 68 present the impact of temperature on the material law.  

 

Figure 68 : Material law for different temperatures 

As explained before, as the temperature increases, both the yield limits and the elasticity 

modulus decrease. Therefore, the increase in temperature diminishes the ultimate capacity of 

the cross section first by limiting the stresses that can be reached in the cross section and 

second by increasing the slenderness of the cross section which is then more prone to local 

buckling.  

Studying various temperature allows to compare the behaviour of the cross section at ambient 

and elevated temperature. It also allows to quantify the effect of various increases in 

temperature on the cross-section’s behaviour and resistance. 

The high temperatures between 350°C and 700°C were chosen as they represent the 

temperatures at which a real building is expected to stand in a real fire situation. Effectively, 

in a real fire, the temperature increases rapidly and temperature below 350°C are therefore 

not expected for long period of time. On the other, temperatures over 700°C are reached after 

a certain period of time after which buildings are not expected to stand. 
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3.5 Yield stress 

Three different values of Fy are used to conduct the simulations: 355 MPa, 460 MPa et 690 

MPa. The different values allow to reach different level of stresses in the cross-sections. It 

also allows to study the behaviour of the cross-sections at different level of slenderness as 

sections become more slender as the yield limit increases. Therefore, they become more 

prone to local buckling instabilities which affect the ultimate resistance of the section.   
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Chapter 4 : Identification of parameters governing the 

resistance 

4.1 Introduction 

As explained in the previous chapter, many parameters such as different geometries, load 

cases, temperatures and yield limits were chosen to perform a large number of numerical 

simulations. The results of those simulations are used to determine the parameter that 

influences the resistance and that will be needed to make O.I.C. proposals. The O.I.C. format 

allows to take into consideration the yield limit by the means of the plastic multiplier (Rpl) 

and to consider the buckling behaviour through the critical multiplier (Rcr). The influence of 

the temperature is also considered in both these multipliers as the yield limit and Young’s 

modulus are both reduced by temperature. However, geometrical and material imperfections 

are not considered by either of these factors. 

 Figure 69 shows the results obtained for welded sections subjected to compression. 

 

Figure 69 : Results for welded sections subjected to compression 
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This figure shows that the results are widely spread even though many parameters are already 

accounted for. It would be possible to use only one buckling curve placed underneath all the 

points to predict the resistance. It would however lead, in some cases, to very conservative 

results. To avoid this issue, points need to be group and associated to a series of buckling 

curves. The goal of this section is therefore to determine which parameters influence the 

resistance and can be used to efficiently group the points. 

4.2 Influence of temperature 

This study focuses on the resistance of steel at high temperature. Therefore, the influence of 

temperature on the results is first studied. On Figure 70 and on Figure 71, results are plotted 

in O.I.C. format with different series for the various temperature considered in the 

simulations. Only results obtained for sections under pure compression are presented on the 

graphs so that figures are not overloaded with data. The same tendencies were however 

noticed for the other load cases. 

 

Figure 70 : Influence of the temperature on the results for hot-rolled sections subjected to compression 
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Figure 71 : Influence of the temperature on the results for welded sections subjected to compression 

On both graphs, it is possible to see that the tendencies are very different at room temperature 

and at high temperatures even thought the lost in resistance and the lost in rigidity is 

considered by the non-dimensional parameters. This can be explained by the fact that the 

material law at high temperatures is not linear, therefore inducing a different behaviour. 

Accordingly, different proposals must be made for cold and high temperatures. However, for 

all high temperatures, even though the increase in temperature does have an impact on the 

local slenderness (λL), it does not affect the tendencies. Effectively, the results obtained at the 

different high temperatures seam to follow the same buckling curves. As the present study 

focuses on the response at high temperatures, results obtained at room temperature will not 

be considered when searching for the leading parameter and when formulating the design 

proposals.  

4.3 Influence of Fy 

As mentioned previously, the influence of Fy is already considered through the plastic 

multiplier (Rpl). However, further investigation was made to ensure no further consideration 

was needed. Figure 72 and Figure 73 show the influence of the yield limit on the results. As 
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for the influence of the temperature, only results for sections under compression are shown 

in those figures so that the tendencies are easier to identify. 

 

Figure 72 : Influence of Fy on the results for hot-rolled sections subjected to compression 

 

Figure 73 : Influence of Fy on the results for welded sections subjected to compression 
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Both graphs show that the increase in yield limit increases the local slenderness (λL). 

However, as for the different temperatures, no significant tendencies can be observed which 

indicates that the yield limit is considered adequately by the plastic multiplier (Rpl) and that 

it does not need to be accounted for again. 

4.4 Geometrical parameters 

Both the temperature and the yield limit have been studied in the previous sections. Based 

on the results, those two parameters have proven to be already considered adequately by the 

O.I.C. approach. Therefore, geometrical parameters will be studied in this section to find the 

one that influences the most the resistance of the cross-sections. All the studied parameters 

are formulated based on the sections’ dimensions defined on Figure 74.  

 

Figure 74 : Definition of the sections' dimensions 

As the behaviour of hot-rolled and welded sections is different, parameters are studied 

separately for both fabrication processes. In order to have a simple design proposal, one of 

the main objectives while searching for leading parameters was to find one that is suitable 

for all load cases. The following sections summarize the results of the investigations for both 

hot-rolled and welded sections. 
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4.4.1 Welded sections 

Table 24 presents the results of the investigations made regarding the leading parameter for 

welded cross-sections. In this table, all parameters studied are presented as well as all 

different load cases considered. The value of n indicates the importance of the compressive 

force. A value of 1 indicates pure compression. The value of θ indicates the degree of 

biaxiality. A value of 0 indicates pure majors-axis bending while a value of 90 indicates pure 

minor-axis bending. The check marks (✓) indicate that the studied parameter seams suitable 

for the considered while the cross marks (✕) indicate that it is not. For each parameter and 

each load case, a graph must be plotted in the O.I.C. format to determine if the parameter is 

suitable or not. Figure 75 shows an example of a graph plotted for welded sections subjected 

to compression. 

 

Figure 75 : Example of a good leading parameter for welded sections subjected to compression 

In this graph, the points are separated in different series based on the value of the studied 

parameter. A gradation of colours is used to efficiently see the tendencies: the dark blue 

points are used for the lowest value of the studied parameter while the red points are used for 

the highest value of the studied parameter. A parameter is considered suitable when it is 
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possible to observe a trend on the graph. For example, on Figure 75, the blue points are at 

the top of the graph and the red points are at the bottom of the graph with points in between 

organised logically. It is important to note that the observed trend does not need to be as good 

as the one showed on Figure 75 for a parameter do be judged acceptable.  

Figure 76 shows an example of a leading parameter which is not suitable for the studied load 

case. Effectively, on this graph, it is possible to see that no clear trend can be identify as the 

colour are not organised. It would therefore not be possible to use this parameter to define a 

series of buckling curves. 

 

Figure 76 : Example of a bad leading parameter for welded sections subjected to compression 
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Table 23 : Leading parameters tested for welded sections 

Load combination N My Mz My + Mz N + My + Mz 

n 1 0 0 0 ≤ 0.6 > 0.6 

θ - 0
 

9
0
 

3
0
 

5
0
 

7
0
 

0
 

3
0
 

5
0
 

7
0
 

9
0
 

0
 

3
0
 

5
0
 

7
0
 

9
0
 

2 2

,

,

fw w

f f w

bk t

k t h





   
     

  

  ✕ ✕ ✕ ✕ ✕ ✓ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ 

h

b
  ✕ ✕ ✕ ✕ ✓ ✕ ✕ ✕ ✓ ✕ ✕ ✕ ✕ ✕ ✕ ✕ 

w w

f f

h t t

b t t

   
         

  ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ 

w

w f f

th b

t t t

    
         

     

  ✓ ✓ ✕ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

23

w

w f f

th b

t t t

    
         

     
 ✓ ✓ ✕ ✓ ✕ ✕ ✓ ✓ ✓ ✕ ✕ ✕ ✕ ✕ ✕ ✕ 

2

w

w f f

th b

t t t

    
         

     
 ✓ ✓ ✕ ✓ ✓ ✕ ✓ ✓ ✓ ✕ ✕ ✕ ✕ ✕ ✕ ✕ 

32

w w

f f

t tb

h t t

    
              

 ✕ ✕ ✕ ✕ ✓ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ 

22

w w

f f

t tb

h t t

    
              

 ✕ ✕ ✕ ✕ ✓ ✓ ✕ ✕ ✓ ✕ ✕ ✕ ✕ ✕ ✕ ✕ 

w

f

tb

h t

  
       

 ✕ ✕ ✓ ✕ ✕ ✓ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ 

 

Based on the results, the parameter   is the most suitable even thought it is not perfect for 

all load cases. 

 w

w f f

th b

t t t


    
=          
     

  ( 141 ) 

This parameter combines the effect of (a) the slenderness of the web through / wh t , (b) the 

slenderness of the flanges through / fb t  and (c) the ratio of the plates thickness /w ft t  which 
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indicates the rotational restraint provided by one plate to the other . To get the best parameter 

as possible, various exponents were tested on / wh t [3]. After many tests, the parameter   

was chosen as the final leading parameter for welded sections.  

 

0.6

w

w f f

th b

t t t


    
=          
     

  ( 142 ) 

This parameter will be used in the design proposal for welded sections presented in the next 

chapter. 

4.4.2 Hot-rolled sections 

Table 24 presents the results of the investigations made regarding the leading parameter for 

hot-rolled cross-sections. In this table, all parameters studied are presented as well as all 

different load cases considered. The check marks (✓) indicate that the studied parameter 

seams suitable for the considered while the cross marks (✕) indicate that it is not. The value 

of n indicates the importance of the compressive force. A value of 1 indicates pure 

compression. The value of θ indicates the degree of biaxiality. A value of 0 indicates pure 

majors-axis bending while a value of 90 indicates pure minor-axis bending. 
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Table 24 : Leading parameters tested for hot-rolled sections 

Load combination N My Mz My + Mz N + My + Mz 

n 1 0 0 0 ≤ 0.6 > 0.6 

θ - 0
 

9
0
 

3
0
 

5
0
 

7
0
 

0
 

3
0
 

5
0
 

7
0
 

9
0
 

0
 

3
0
 

5
0
 

7
0
 

9
0
 

2 2

,

,

fw w

f f w

bk t

k t h





   
     

  

  ✕ ✕ ✕ ✓ ✓ ✓ ✕ ✕ ✕ ✓ ✕ ✕ ✕ ✕ ✕ ✕ 

h

b
  ✕ ✕ ✓ ✓ ✓ ✓ ✕ ✕ ✓ ✓ ✓ ✕ ✕ ✕ ✕ ✕ 

w w

f f

h t t

b t t

   
         

  ✕ ✕ ✓ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ 

w

w f f

th b

t t t

    
         

     

  ✓ ✓ ✕ ✕ ✕ ✕ ✓ ✓ ✕ ✕ ✕ ✓ ✓ ✓ ✕ ✕ 

23

w

w f f

th b

t t t

    
         

     
 ✓ ✕ ✕ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✕ 

2

w

w f f

th b

t t t

    
         

     
 ✓ ✕ ✕ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

32

w w

f f

t tb

h t t

    
              

 ✕ ✕ ✓ ✓ ✕ ✓ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ 

22

w w

f f

t tb

h t t

    
              

 ✕ ✕ ✓ ✓ ✓ ✓ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ 

 

As shown in the table, no parameter is perfectly suitable for all load cases. The parameter   

was however chosen for the design proposal of hot-rolled sections as it is the one which is 

the most suitable. Moreover, this parameter has proven to be suitable for hot-rolled sections 

at room temperature. 

 

2

w

w f f

th b

t t t


    
=          
     

  ( 143 ) 

This parameter is very similar to the one chosen for welded sections as it also combines the 

effect of (a) the slenderness of the web through / wh t , (b) the slenderness of the flanges 
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through / fb t  and (c) the ratio of the plates thickness /w ft t  which indicates the rotational 

restraint provided by one plate to the other. The only difference between the two parameters 

is the exponent on / wh t . Even if both parameters are similar, it was not possible to find a 

parameter suitable for both section types. Effectively, the differences in residual stresses, in 

generally used cross-section shapes and in plate thicknesses between both section types lead 

to different behaviour. 
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Chapter 5 : Proposed design curves 

5.1 Background of the proposed approach 

As explained in the introduction, the Overall Interaction Concept (O.I.C.) is based on the 

concept of buckling curves. This concept allows to consider both the influence of the 

resistance and the stability. As shown previously in Figure 2, the buckling curves are 

expressed in the form ( )f =  , where  is a reduction factor while is the slenderness. 

The equations used to calculate both parameters in the case of local resistance are 

respectively presented in Equation (2) and Equation (1). As those parameters are non-

dimensional, they can be used to compare sections with various geometries and material 

properties.  

The formulation used for the O.I.C. proposals is based on the Ayrton-Perry approach which 

is presented in the following equations: 

 
22

1


  

=

+ −

  ( 144 ) 

 ( )
2

1 0.2   = + +  −   ( 145 ) 

In this formulation, is used to consider the influence of imperfections.  

The modified version of the Ayrton-Perry formulas used in the O.I.C. approach at the cross-

section level is as follows: 

 
2

1
L

L




  
=

+ −
  ( 146 ) 

 ( )( )00.5 1 L L L

    =  +  − +   ( 147 ) 

In this formulation, L accounts for imperfections and  considers post-buckling effects. 

Both parameters depend on the leading parameter identified.  



 

136 

For very small slenderness, L obtained numerically can be over 1.0 due to strain hardening. 

However, in the proposal, the value of L is limited to 1.0. The parameter 0 in Equations 

(146) and (147) corresponds to the end of the plateau.  

One of the main goals while formulating the O.I.C. proposals is to keep the continuity 

between the various load cases. To do so, the same leading parameter must be identified for 

all load cases. In this respect, a 3-dimensional loading space is defined to encompass all 

possible load combinations. In this loading space, the amount of compression and the amount 

of bi-axial bending in the load combination are defined by two angles,   and  . Those angles 

are shown on Figure 77. 

 

Figure 77 : Angles used to define the loading  

Both angles can take any value between 0° and 90°. If  = 0°, the loading is pure compression 

and if  = 90°, the loading is pure bending, either about one or both axes. As for the bi-axial 

bending angle, if  = 0°, there is only major-axis bending while if  = 90°, there is only minor-

axis bending. Any value in between those extreme values for either of these angles indicates 

a combined load case. For any load combination, both angles can be calculated based on the 

relationship between n, my and mz also identified on Figure 77. Those three variables are 

calculated with the following equations.  

 u

pl

N
n

N
=  ( 148 ) 

   

   
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,

,

y u

y

y pl

M
m

M
=  ( 149 ) 

 
,

,

z u

z

z pl

M
m

M
=  ( 150 ) 

In theses previous equations, the ultimate loads are used. However, when starting the O.I.C. 

process, the ultimate load are not known yet. As the O.I.C. uses the principle of load 

multiplier to get the ultimate resistance and as this multiplier is the same for all types of load, 

the initial loads can be used to calculate the variables n, my and mz that are used to calculate 

the two angles. Effectively, ultimately the initial loads will all be multiplied by the same 

multiplier to obtain the ultimate resistance. Therefore, the increase in loading is proportional 

and the use of the initial loads in the calculation does not affect the relationship between all 

three variables. The formulas used to calculate angles are as follows: 

 ( )tanz ym m =    ( 151 ) 

 ( ) ( )tan cosym n  =     ( 152 ) 

 ( ) ( )tan sinzm n  =    ( 153 ) 

All possible combinations of these two angles create the 3-dimensional loading space used 

in the O.I.C. design proposal. The loading space is shown on Figure 78. 
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Figure 78 : 3-dimensional loading space 

In this loading space, three extreme cases can be identified and are circled on Figure 78. 

Those cases are the simple load cases. Therefore, the first step while formulating an O.I.C. 

proposal is to determine the buckling curves for all three simple load cases. Theses buckling 

curves allow to obtain the local reduction factors for all three simple load case and are defined 

as follow.  

 ( ), ,L N L Nf =   ( 154 ) 

 ( ), ,L My L Myf =  ( 155 ) 

 ( ), ,L Mz L Mzf =  ( 156 ) 

The buckling curves are defined using the modified Ayrton-Perry formulae presented 

previously in Equations (146) and (147) and using the chosen leading parameter. Once all 

three reduction factors have been determined, they can be combined with the following 

equation to obtain the reduction factor for the combined load case studied. 

( )( ) ( ) ( )( ) ( ) ( )( )
(1/ )

, , ,cos sin cos sin sin

n
n n n

a b c d e

L L N L My L Mz         
=  +   +  
  

  ( 157 ) 

χ L,N 

χ L,My 

χ L,Mz 
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In this equation, the different exponents are determined during the formulation process during 

which all the results from the numerical study are considered. The equation is built so that, 

when calculating the ultimate reduction factor, only the reduction factors associated to the 

loading are considered. For example, if the load case N + My is considered, only ,L N  and

,L My will be considered in the calculation of L . 

To summarize, here are the steps that must be followed when using the O.I.C. proposal for 

combined load cases. For simple load cases, only steps 1), 4) and 5) apply. 

1) Determine the loading on the section; 

2) Calculate n, my and mz using Equations (148), (149) and (150); 

3) Calculate angles   and   using Equations (151), (152) and (153); 

4) Determine all required load multipliers; 

5) Calculate reduction factors for simple load cases; 

6) Calculate the reduction factor for the combined load case studied. 

To calculate the values of n, my and mz and to calculate the plastic multipliers, the value of 

Fy reduced according to the temperature is needed. The reducing factors ky,θ from Eurocode 

3 are used to determine the values of Fy,θ. 

As hot-rolled sections and welded sections present different characteristics and do not follow 

the same tendencies, a different leading parameter was identified for those different 

manufacturing processes in the previous chapter. Therefore, two proposals are presented in 

the following sections: one for hot-rolled sections and one for welded sections.    

5.2 Proposal for welded sections 

After the investigation made to find the most appropriate leading parameter and presented in 

Chapter 4, the parameter chosen for welded sections is   which is defined with the 

following equation:  
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0.6

1000

w

w f f

th b

t t t


    
         

     =   ( 158 ) 

This parameter indicates that the behaviour of hot-rolled sections is influence by the 

slenderness ratio of the web, the slenderness ratio of the flanges and the ratio between the 

thickness of the web and the thickness of the flanges. 

5.2.1 Proposed equations 

As explained previously, buckling curves are first presented independently for each simple 

load case. An interaction formula is then used for the combined load cases. Then, the 

performance of the model is studied in section 5.2.2. 

5.2.1.1 Equations for compression 

Table 25 presents the proposed O.I.C. design for compression.  

Table 25 : Design proposal for compression 

For , 0L N   For , 0L N   

, 1.0L N =   

( )( ), 0 ,0.5 1 L L N L N

    =  +  − +  

,
2

,

1
L N

L N




  
=

+ −
 

0  L      

0.2 0.079 2.92 − +   0.29 2.71 0−     

 

Figure 79 presents the results from numerical simulations and design curves obtained for 

different values of the leading parameter μ. On this figure, curves for specific values of the 

leading parameter are associated to points that lie in an interval of leading parameter values. 

The figure is used to give a first idea of the good performance of the model. However, to 

accurately assess the performance of the model, each numerical result must be compared to 

the prediction made by the proposal for its specific value of the leading parameter. This 

comparison is made in section 5.2.2. 
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Figure 79 : Design proposal for welded sections under compression 

5.2.1.2 Equation for major-axis bending 

Table 26 presents the proposed O.I.C. design for major-axis bending. 

Table 26 : Design proposal for major-axis bending 

For , 0L My   For , 0L My   

, 1.0L My =   

( )( ), 0 ,0.5 1 L L My L My

    =  +  − +  

,
2

,

1
L My

L My




  
=

+ −
 

0  L      

0.3 0.019 1.84 − +   0.86 8.23 0−     

 

Figure 80 presents the results from numerical simulations and design curves obtained for 

different values of the leading parameter μ.  
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Figure 80 : Design proposal for welded sections under major-axis bending 

 Equation for minor-axis bending 

Table 27 presents the proposed O.I.C. design for minor-axis bending. 

Table 27 : Design proposal for minor-axis bending 

For , 0L Mz   For , 0L Mz   

, 1.0L Mz =   

( )( ), 0 ,0.5 1 L L Mz L Mz

    =  +  − +  

,
2

,

1
L Mz

L Mz




  
=

+ −
 

0  L      

0.3 0.024 1.42 − +   0.86 6.27 0−     

 

Figure 87 presents the results from numerical simulations and design curves obtained for 

different values of the leading parameter μ.  
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Figure 81 : Design proposal for welded sections under minor-axis bending 

5.2.1.3 Equation for combined load cases 

As explained previously, for combined load cases, the reduction factor is obtained by 

combining the reduction factors obtained for simple load cases. For hot-rolled section, the 

local reduction factor is obtained with Equation (161). 

   ( )( ) ( ) ( )( ) ( ) ( )( )
(1/3)

3 3 3
0.17 2.6 0.4 8 5.5

, , ,cos sin cos sin sinL L N L My L Mz         
=  +   +  
  

  ( 159 ) 

5.2.2 Performance of the proposal 

To assess the performance of the proposed model, graphs are plotted. In those graphs, values 

are represented as the ratio between χL_O.I.C. and χL_FE. A value of 1.0 means that the model 

can predict exactly the resistance. A value over 1.0 means that the prediction by the model is 

unconservative while a value lower than 1.0 means that the prediction by the model is 

conservative. The first graph presented on Figure 82 is a histogram of all results obtained for 

the proposal. As mentioned in section 3.2.2, some reduced sections with reduced flange and 
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web thicknesses have been considered for the welded sections. Therefore, two series are 

shown on the graph: one with all results and one without the reduced sections.  

 

Figure 82 : Accuracy of O.I.C. proposal for welded sections 

The graph shows that the overall performance of the model is good as most results are 

between 0.85 and 1.05 with the biggest portion between of the results between 0.9 and 1.0. 

Moreover, most of the unconservative results are below 1.05 which is considered acceptable 

since no safety factor is currently considered. The proposal seams however to lead to some 

results which are too conservative. Those results are circled in red on the graph. By 

comparing the two series, it is possible to conclude that those very conservative results are 

obtained for the reduced sections. The purpose of considering those sections was to see if the 

proposal could extend outside of the range of cross-sections typically used in construction. 

Results show that for very slender sections that are not typically used, the proposal might not 

have such a good performance. However, the proposal is very performant for typical sections. 

Accordingly, the rest of the evaluation of the performance of the model will be performed 

without those reduced sections. 
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Figure 83 presents the performance of the O.I.C. proposal for the different load combinations.  

 

Figure 83 : Performance of proposal for welded sections based on the load combination 

On the graph, two lines are displayed to show the targeted upper (1.03) and lower (0.90) 

limits. The red line indicates that a unconservative results of maximum 3 % are desirable 

while the green line indicates that conservative results of maximum 10 % are desirable. The 

black line indicates a perfect prevision. 

This graph confirms that the overall performance of the model is good as the majority of the 

results lie between the fixed limits. Moreover, the results that do not fall within the fixed 

interval mostly are on the conservative side. The results on the unconservative side are in the 

worst cases 9% too high with very few results over 3% which is considered acceptable. 

Effectively, the proposal will ultimately be associated to a safety factor which will 

compensate for the results that are slightly over 1.0. Table 28 presents the statistics of the 

results based on the different load combinations.  
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Table 28 : Statistical study of O.I.C. proposal for welded sections for all load cases 

Load 

combination 
N My Mz N+My N+Mz My+Mz N+My+Mz All 

Mean 0.97 0.99 0.95 0.97 0.95 0.93 0.93 0.94 

Max. 1.04 1.04 1.02 1.04 1.09 1.07 1.02 1.09 

Min. 0.88 0.93 0.77 0.86 0.79 0.81 0.81 0.77 

C.O.V. 0.043 0.030 0.052 0.039 0.065 0.059 0.051 0.053 

Values < 0.8 0 0 4 0 4 0 0 8 

Values < 0.9 13 0 13 22 64 117 270 499 

Values > 1.0 37 50 15 58 64 49 35 308 

Values > 1.03 7 11 0 1 28 14 0 61 

Values > 1.1 0 0 0 0 0 0 0 0 

Values > 1.25 0 0 0 0 0 0 0 0 

Total number 

of cases 
144 144 144 288 288 432 864 2304 

 

First, the table shows that the accuracy of the proposal is great for simple load cases. 

Effectively, the means of those load cases vary between 0.95 and 0.99 which is very good as 

it is only slightly lower then 1.0. Moreover, the C.O.V. for those load cases is small (max 

5.2%), which indicates that all obtained results are very close to the mean. It is possible to 

see that a considerable number of results are however over 1.0 for the compression and the 

major-axis load cases. Nevertheless, very few of theses results are over 1.03 with a maximum 

value of 1.04, which is considered to be more than acceptable. Effectively, as mentioned 

previously, for the proposal to be used in real design situations, it will have to be associated 

to a safety factor. With that safety factor, the unconservative results that are less than 1.04 

will become very close to 1.0. On the other side, the most conservative results are obtained 

for Mz with a minimal value 23% too conservative. However, the table shows that only 13 

results are under the target of 0.9 which is therefore acceptable. 

As for the combined load cases, the load case N + My is the one with the best performance 

with its mean of 0.97, its small coefficient of variation of 3.9% and its maximal value of 1.04. 

It is also the one with the less number of results below 0.9. The performance of this load case 

is similar to the performance of the simple load cases. The load combinations with the worst 

performances are My + Mz and N + Mz. Effectively, these are the load cases that have the 

most unconservative values and the biggest coefficients of variation (6.5% and 5.9%). Both 
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also have a significative number of conservative results (<0.9) but very few of those are 

below 0.8 which is therefore considered acceptable.  As for the load case N + My + Mz, it is 

the one with the most conservative results. Effectively, it has a mean of 0.93 with almost no 

values over 1.0 (4%) and a maximal value of 1.02. With the use of a safety factor, those 

results would be even more conservative. However, as the C.O.V. is small (5.1%) most 

results are between 0.88 and 1.0 which is very good. 

Even if the performance is not the same for all load cases, the table shows that the global 

performance of the model is good as the mean of the all the values is 0.94 with a coefficient 

of variation of 5.3 % and only a few results over the upper limit of 3% (2.6% of results). 

Moreover, the results on the unconservative side are under 1.09 which is considered 

acceptable as a safety factor will be needed for the proposal to be used.  

Figure 83, presented previously, also shows the results obtained with the different values of 

Fy. As can be seen in the figure, the value of Fy does not significantly impact the performance 

of the model. Table 29 presents the statistics of the results based on the value of Fy.  

Table 29 : Statistical study of O.I.C. proposal for welded sections for different value of Fy 

Fy (MPa) 355 460 690 

Mean 0.95 0.94 0.94 

Min 0.81 0.80 0.77 

Max 1.06 1.07 1.09 

C.O.V. 0.054 0.055 0.058 

Values > 1.0 145 99 125 

Values > 1.03 29 11 21 

Values > 1.1 0 0 0 

Values > 1.25 0 0 0 

Total number of cases 768 768 768 

 

The table shows that results obtained with Fy = 355 MPa are slightly more precise as the 

mean is closer to 1.0 and the C.O.V. is slightly lower. It is also the value of Fy for which the 

maximal value is the lowest. On the other side, the variability in the results increases as the 

value of Fy increases. However, results are very similar, and it can be concluded that the 

proposal is adequate for all values of Fy.  
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Figure 84 presents the influence of the temperature on the precision of the proposed model. 

 

Figure 84 : Performance of proposal for welded sections based on the temperature 

Based on the results, it can be concluded that the temperature does not affect the precision of 

the model. Effectively, no general tendencies related to the temperature can be noticed.  

5.3 Proposal for hot-rolled sections 

After the investigation made to find the most appropriate leading parameter and presented in 

Chapter 4, the parameter chosen is   which is defined with the following equation.  
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This parameter shows that the behaviour of hot-rolled sections is influenced by the 

slenderness ratio of the web, the slenderness ratio of the flanges and the ratio between the 

thickness of the web and the thickness of the flanges. 

5.3.1 Proposed equations 

As explained previously, buckling curves are first presented independently for each simple 

load case. A interaction formula is then used for the combined load cases. The purpose of the 

following sections is only to present the equations used in the proposal. The performance of 

the proposal is studied in section 5.3.2. 

5.3.1.1 Equations for pure compression 

Table 30 presents the proposed O.I.C. design approach for pure compression.  

Table 30 : Design proposal for pure compression 

For , 0L N   For , 0L N   

, 1.0L N =   

( )( ), 0 ,0.5 1 L L N L N

    =  +  − +  

,
2

,

1
L N

L N




  
=

+ −
 

0  L      

0.2 0.003 0.89 − +   0.41 2.18 −    

 

Figure 85 presents the results from numerical simulations and design curves obtained for 

different values of the leading parameter γ.  
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Figure 85 : Design proposal for hot-rolled sections under pure compression 

5.3.1.2 Equation for major-axis bending 

Table 31 presents the proposed O.I.C. design for major-axis bending. 

 

Table 31 : Design proposal for major-axis bending 

For , 0L My   For , 0L My   

, 1.0L My =   

( )( ), 0 ,0.5 1 L L My L My

    =  +  − +  

,
2

,

1
L My

L My




  
=

+ −
 

0  L      

0.3 0.02 0.59 +   1.34 7.02 −    

 

Figure 86 presents the results from numerical simulations and design curves obtained for 

different values of the leading parameter γ.  
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Figure 86 : Design proposal for hot-rolled sections under pure major-axis bending 

5.3.1.3 Equation for minor-axis bending 

Table 32 presents the proposed O.I.C. design for minor-axis bending. 

Table 32 : Design proposal for minor-axis bending 

For , 0L Mz   For , 0L Mz   

, 1.0L Mz =   

( )( ), 0 ,0.5 1 L L Mz L Mz

    =  +  − +  

,
2

,

1
L Mz

L Mz




  
=

+ −
 

0  L      

0.3 0.023 0.88 − +   0.71 2.24 −    

 

Figure 87 presents the results from numerical simulations and design curves obtained for 

different values of the leading parameter γ.  
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Figure 87 : Design proposal for hot-rolled sections under pure minor-axis bending 

5.3.1.4 Equation for combined load cases 

As explained previously, for combined load cases, the reduction factor is obtained by 

combining the reduction factors obtained for simple load cases. For hot-rolled section, the 

local reduction factor is obtained with Equation (159). 

   ( )( ) ( ) ( )( ) ( ) ( )( )
(1/3)

3 3 3
0.3 1.5 0.18 4 7

, , ,cos sin cos sin sinL L N L My L Mz         
=  +   +  
  

  ( 161 ) 

5.3.2 Performance of the proposal 

To assess the performance of the proposed approach, graphs are presented hereafter. In those 

graphs, values are represented as the ratio between χL_O.I.C. and χL_FE. A value of 1.0 means 

that the calculation method can predict exactly the resistance. A value over 1.0 means that 

the prediction by the proposal is unconservative while a value lower than 1.0 means that the 

prediction by the proposal is conservative. The first graph presented on Figure 88 is an 

histogram of all results obtained for the proposal.  
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Figure 88 : Accuracy of O.I.C. proposal for hot-rolled sections 

The graph shows that the overall performance of the model is good to very good. Effectively, 

most results are between 0.85 and 1.05 with the biggest portion between of the results 

between 0.9 and 1.0. Moreover, very few results have over 5% of insecurity. Finally, only 

5.7 % of the results are below 0.85 which means that the proposal does not predict 

overconservative results. This aspect will be discussed in the following sections. 

Figure 89 presents the performance of the O.I.C. proposal for different load combinations.  
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Figure 89 : Performance of proposal for hot-rolled sections based on the load combination 

On the graph, two lines are displayed to show the targeted upper (1.03) and lower (0.90) 

limits. The red line indicates that a unconservative results of maximum 3 % are desirable 

while the green line indicates that conservative results of maximum 10 % are desirable. The 

black line indicates a perfect prediction. 

This graph shows that the overall performance of the model is good as most of the results lie 

between the fixed limits. Moreover, the results that do not fall in the fixed interval mostly are 

on the conservative side. The results on the unconservative side are in the worst cases 6% too 

high which is considered acceptable. Table 33 presents the statistics of the results based on 

the different load combinations.  
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Table 33 : Statistical study of O.I.C. proposal for hot-rolled sections for all load cases 

Load 

combination 
N My Mz N+My N+Mz My+Mz N+My+Mz All 

Mean 0.97 0.95 0.96 0.96 0.94 0.97 0.91 0.94 

Max. 1.05 1.05 1.02 1.06 1.05 1.04 1.05 1.06 

Min. 0.86 0.86 0.88 0.83 0.83 0.84 0.75 0.75 

C.O.V. 0.043 0.051 0.031 0.052 0.050 0.045 0.055 0.057 

Values < 0.8 0 0 0 0 0 0 1 1 

Values < 0.9 9 34 4 44 68 45 317 521 

Values > 1.0 32 22 25 79 32 115 29 334 

Values > 1.03 9 8 0 23 13 12 8 73 

Values > 1.1 0 0 0 0 0 0 0 0 

Values > 1.25 0 0 0 0 0 0 0 0 

Total number 

of cases 
156 156 156 312 312 468 936 2496 

 

First, the table shows that proposal is very accurate for simple load cases. Effectively, the 

means of those load cases vary between 0.95 and 0.97 which is slightly lower then 1.0. 

Moreover, the C.O.V. for those load cases is small (max 5.1%), which indicates that all 

obtained results are very close to the mean. It is possible to see that some results are over 1.0. 

However, only a hand full of results are over 1.03 with a maximum value of 1.05, which is 

considered to be more than acceptable. Effectively, as a safety factor will be used with the 

proposal, the slightly unconservative results will become very close to 1.0. Moreover, for 

simple load cases, the minimal value is 0.86 which is very good. 

As for the combined load cases, the load cases N + My and My + Mz are the ones with the 

best performances. Effectively, both load cases respectively have means of 0.96 and 0.97 and 

small coefficient of variation (5.2% and 4.5%). These load cases do however have a non 

negligeable number of values over 1.0 (25% of results). As the maximum value is 1.06, the 

performance of both load cases is still considered very good. Then, when all types of loads 

are present (N + My + Mz), the results are more conservative. Effectively, the mean of this 

set of data is much lower than for other load combinations (0.91) and it is also the load 

combination with the minimal prediction (0.75) and the smallest proportion of results over 

1.0. It also has a significative number of results under 0.9. It is however still considered 

accurate as most results are still between 0.85 and 0.97.  
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Even if the performance is not the same for all load cases, the table shows that the overall 

performance of the model is good as the mean of the values is 0.94 with a coefficient of 

variation of 5.7 % and only a few results over the upper limit of 3% (3% of results). These 

statistics indicate that most results are between 0.88 and 1.0, all load cases considered, which 

is more than acceptable. 

Figure 90 shows the same graph as Figure 89 but with points identified based on the section 

types.  

 

Figure 90 : Performance of proposal for hot-rolled sections based on the section types 

This figure shows that the most conservative results obtained for the combined load case 

N+My+Mz are the predictions for two specific sections: IPE600 and HEA1000. Those results 

are circled in red. These two sections are the ones with the highest webs. As presented 

previously, the chosen length for the numerical simulations is three times the average 

between the web high and the flange width. As both these sections have a very high web, the 

length of the section is to long to avoid global instability effects such as flexural buckling 

and lateral-torsional buckling. Simulations were therefore redone to try and eliminate those 
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stability problems. For the load cases without minor-axis bending, supports were added along 

the middle of each flange to prevent global buckling. It was however not possible to add 

those supports in cases with minor-axis bending. The length was therefore reduced to three 

times the flange width for those cases. As the width of the flanges is significantly smaller 

than the height of the web in those sections, the length of the tested specimen was lower 

which allowed to avoid global stability issues. However, other problems arose from this 

modification. Effectively, even thought the length is smaller, geometrical imperfections are 

still incorporated in the model as three half waves along the web. However, at this short 

length, the natural deformation is no longer three half waves. Therefore, the failure of the 

cross-sections is potentially not governed by the right failure mode which can lead to results 

that are not representative of the reality. The result is that the prediction from the O.I.C. 

proposal is compared to resistance predicted by the finite element model which might not be 

accurate in those particular cases which can explain why the proposed model is so 

conservative for those two sections.  

Figure 89, presented previously, also shows the results obtained with the different values of 

Fy. As can be seen in the figure, the value of Fy does not significantly impact the performance 

of the model. Table 34 presents the statistics of the results based on the value of Fy.  

Table 34 : Statistical study of O.I.C. proposal for hot-rolled sections for different value of Fy 

Fy (MPa) 355 460 690 

Mean 0.95 0.94 0.93 

Min 0.80 0.78 0.75 

Max 1.06 1.05 1.05 

C.O.V. 0.052 0.055 0.061 

Values > 1 164 133 110 

Values > 1.03 28 25 20 

Values > 1.1 0 0 0 

Values > 1.25 0 0 0 

Total number of cases 832 832 832 

 

The table shows that results obtained with Fy = 355 MPa are slightly more precise as the 

mean is closer to 1.0 and the coefficient of variation is slightly lower. However, the most 

unsafe results are also obtained with this value of Fy. On the other side, the most conservative 
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results are obtained with Fy = 690 MPa. However, results are very similar, and it can be 

concluded that the proposal is adequate for all values of Fy.  

This study focuses on the response of open cross sections at high temperature. Figure 91 

presents the influence of the temperature on the accuracy of the proposed model. 

 

Figure 91 : Performance of proposal for hot-rolled sections based on the temperature 

Based on the results, it can be concluded that the temperature does not affect the precision of 

the model. Effectively, no general tendencies related to the temperature can be noticed. 
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Chapter 6 : Comparison of proposal with current codes 

The performance of both O.I.C. proposals has been demonstrated in the previous chapter. 

The intent of the current chapter is to compare the performance of the proposal with existing 

standards. The European standards, the Canadian standards and the American standards are 

studied in the following sections.  

The different standards will be compared using the O.I.C. format used in the previous 

sections. This means that the ratio between the reduction factor predicted by the calculation 

method (χmethod) and the reduction factor obtained by finite elements (χFE) is used to evaluate 

the performance of the standards. A value of 1.0 means that the model can predict exactly 

the resistance. A value over 1.0 means that the prediction by the model is unconservative 

while a value lower than 1.0 means that the prediction by the model is conservative. As a 

reminder, this factor is obtained with the following equation:  

 
,b L

L

pl

R

R
 =   ( 162 ) 

In this equation, the value of ,b LR is the ultimate multiplier by which the initial loading must 

be multiplied to reach the ultimate load according to the standards’ calculation method. As 

for the value of Rpl, which is the load multiplier needed to reach the full plastic resistance, it 

can be calculated in two ways. First, it can be calculated according to the equations provided 

by the standards. In that case, the equations for Class 1 or 2 sections (or compact sections in 

the case of the American standards) are used. The multiplier can also be calculated using 

numerical tools to get the exact results instead of an approximated value.  

When calculating the resistance according to standards, typical O.I.C. reduction factors are 

never calculated. Effectively, the ultimate load is calculated for each simple load case and, 

for combined load cases, the resistances are then combined with interaction formulas. 

Consequently, the ultimate load previsions must be compared to the ultimate load obtained 

with finite elements. As the Rpl calculated with the standards’ equations is an approximation 

and is different for all standards, using this value could lead to false conclusions on the 



 

160 

performance of the standards. The plastic multiplier used for the comparison must therefore 

be the exact multiplier obtained with numerical tools. 

Two types of graphs are used in the following sections. First, histograms are used to compare 

the performance of the standards with the O.I.C. proposals. Then, graphs with all the results 

predicted by the studied standards are used to evaluate the performance of the standards. On 

these graphs, two lines are displayed to show the targeted upper and lower limits. The red 

line indicates that a unconservative results of maximum 3 % are desirable while the green 

line indicates that conservative results of maximum 10 % are desirable. The black line 

indicates a perfect prevision. 

6.1 Comparison with the European standards 

This section presents the comparison of the performance of the EC3 with the O.I.C. 

proposals.  

6.1.1 Compression 

Figure 92 is an histogram of the results for sections under pure compression. In this 

histogram, predictions from the Eurocode 3 and from the O.I.C. proposals are compared to 

the results obtained with the finite element simulations.  
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Figure 92 : Accuracy of the results obtained by the O.I.C. proposals and the EC3 for compression 

This figure shows that the O.I.C. proposals lead to much more accurate results than the 

Eurocode 3 for cross-sections under pure compression. Effectively, most of the resistances 

predicted by the standards are very unconservative with predictions up to 56 % under the 

finite element results.  

Results obtained with the Eurocode 3 for sections under compression are shown on Figure 

93. This figure shows the results obtained for both hot-rolled and welded sections and for the 

three values of Fy studied.  
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Figure 93 : Performance of the EC3 for sections under compression 

The graph shows that most sections are classified as class 4 by the Eurocode 3. This can be 

explained by the fact that Eurocode 3 considers the increased slenderness at high temperature 

when classifying cross-sections. All the predictions obtained for that class are on the 

conservative side. Moreover, they can be considered too conservative which can lead to 

uneconomical design. The fact that most of the results are too conservative can be explained 

by two reasons. First, for class 4 sections, the Eurocode 3 uses the 0.2 % proof stress to 

calculate the resistance instead of the 2 % proof stress which is used for other section classes. 

This significantly reduces the predicted resistance for class 4 sections which leads to very 

conservative results. Then, the buckling curve used to calculate the resistance to flexural 

buckling does not considered a plastic plateau for very small slenderness which means that 

the resistance is reduced even for very short elements.  

As for the temperature, it does not have a significant impact on the accuracy on the 

predictions for sections from class 1 to 3. Effectively, the orange circles around the green 

points show that, for a specific cross-section, the predictions present sensibly the same 
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accuracy for all temperatures. However, for class 4 sections, the temperature greatly impacts 

the accuracy. The purple points with orange circles show that the accuracy is variable for a 

specific section subjected to different temperatures. Therefore, the results show that the 

reduction factors to obtain the 0.2% proof strength might not be accurate. 

The figure finally shows that results become more conservative as the yield limit increases. 

Effectively, as Fy increases, the slenderness increases. As a result, the section’s class can 

change between different value of Fy. If a section passes from a class 3 to a class 4, the 

accuracy of the prediction drastically drops. Moreover, for sections that are considered Class 

4 for all values of Fy, the results also become more conservative with the increase in yield 

limit which indicates that the increase in Fy leads to a bigger reduction in the effective area 

which is not proportional to the actual decrease in resistance.  

6.1.2 Major-axis bending 

Figure 94 is a histogram of the results for sections under major-axis bending. In this 

histogram, predictions from the Eurocode 3 and from the O.I.C. proposals are compared to 

the results obtained with the finite element simulations.  

 

Figure 94 : Accuracy of the results obtained by the O.I.C. proposals and the EC3 for major-axis bending 
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The graph shows that O.I.C. proposals again have a better overall performance than the 

Eurocode 3. However, the Eurocode 3 also presents a good performance. Effectively, most 

of the predicted results are between 0.85 and 1.05. However, the Eurocode 3 also leads to 

some very conservative results.  

Results obtained with the Eurocode 3 for sections under major-axis bending are shown on 

Figure 95. This figure shows the results obtained for both hot-rolled and welded sections and 

for the three values of Fy studied. 

 

Figure 95 : Performance of the EC3 for sections under major-axis bending 
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predict accurately the resistance. Moreover, the orange circle shows that as for the sections 

under compression, the temperature has an impact on the precision for class 4 sections.  

In the case of major-axis bending, the influence of the yield strength on the results depends 

on the section’s class. Effectively, for sections that are considered class 1 for all values of Fy, 

the increase in yield limit leads to less conservative results. On the contrary, for sections that 

are considered class 3 for all yield limit, the increase in Fy leads to more conservative results. 

The impact of the yield limit on the accuracy of the results is not pronounced for class 2 and 

class 4 sections. 

6.1.3 Minor-axis bending 

Figure 96 is a histogram of the results for sections under minor-axis bending. In this 

histogram, predictions from the Eurocode 3 and from the O.I.C. proposals are compared to 

the results obtained with the finite element simulations.  

 

Figure 96 : Accuracy of the results obtained by the O.I.C. proposals and the EC3 for minor-axis bending 
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leads to a significant number of very conservative results that can be up to 62 % too 

conservative. 

Results obtained with the Eurocode 3 for sections under minor-axis bending are shown on 

Figure 97. This figure shows the results obtained for both hot-rolled and welded sections and 

for the three values of Fy studied.  

 

Figure 97 : Performance of the EC3 for sections under minor-axis bending 

The figure shows that the results are very accurate for class 1 and 2 sections for which the 

plastic resistance is calculated. Then, the resistance calculated for class 3 sections is generally 
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6.1.4 Combined load cases 

The performance of the Eurocode 3 and of the O.I.C. proposals for simple load cases has 

been compared in the previous sections. In all cases, the O.I.C. proposals have proven to be 

more accurate than the EC3. Figure 98 is an histogram showing the performance of the O.I.C. 

proposals and of the EC3 for combined load cases. The performance for both hot-rolled and 

welded sections is shown on the figure. 

 

Figure 98 : Accuracy of the results obtained by the O.I.C. proposals and the EC3 for combined load cases 

The histogram shows that the performance of the O.I.C. proposals is much better than the 

performance of the European standards. Effectively, most of the results are between 0.9 and 

1.0. The figure also shows that although the performance of the Eurocode 3 for simple load 

cases was not so bad, the accuracy of the results when it comes to combined load cases is 

very poor. Effectively, the standards predicts results that are too conservative for both hot-

rolled and welded sections. 

Figure 99 shows the performance of the Eurocode 3 for hot-rolled sections and welded 
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Figure 99 : Performance of the EC3 under combined loading 

The figure shows that the predictions of the Eurocode 3 for combined load cases is too 
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6.2.1 Compression 

Figure 100 is a histogram of the results for sections under pure compression. In this 

histogram, predictions from the Canadian standards and from the O.I.C. proposals are 

compared to the results obtained with the finite element simulations.  

 

Figure 100 : Accuracy of the results obtained by the O.I.C. proposals and the standard S16-14 for 

compression 

This figure shows that the O.I.C. proposals lead to much more accurate results than the 

Canadian standards for cross-sections under compression. Moreover, most of the results 

obtained by the standards are over 1.0 which means that they are unconservative. Some of 

them are even very unconservative with predictions up to 46 % over the finite element results. 

The graph also shows that the accuracy of the O.I.C. proposals is similar for both section 

types while the Canadian standards leads to much less conservative results for welded 

sections. 

Results obtained with the Canadian standards for sections under compression are shown on 

Figure 101. This figure shows the results obtained for both hot-rolled and welded sections 

and for the three values of Fy studied.  

0

10

20

30

40

50

60

70

F
re

q
u

en
cy

 [
-]

χL_method / χL_FE [-]

OIC - Hot-rolled

OIC - Welded

S16-14 - Hot-rolled

S16-14 - Welded

Number of cases on graph : 300



 

170 

 

Figure 101 : Performance of the Canadian standards for sections under compression 

This figure first shows that the results obtained for hot-rolled sections are generally more 
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the same equation is used to calculate the resistance for both type of sections. However, for 
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because of the radius; 
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3) Residual stresses are less important in hot-rolled sections which leads to higher 

resistance.  
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The first aspect, the area of the section, is considered in the equation. However, the two other 

aspects are not considered, which leads to unconservative predictions for the welded sections.  

Then, the figure shows that most of the very unconservative results are obtained for slender 

sections. In the Canadian standards, for the fire situation, the resistance is either governed by 

the cross-section’s resistance calculated with the effective area or by the resistance for 

flexural buckling, which is calculated with the full area for all section classes. Therefore, 

when flexural buckling governs the resistance, the resistance is overestimated as local 

buckling is not considered. The equation for flexural buckling presented in the standard S16-

14 is the result of the work of Takagi and Deirerlein [48]. In the article presenting this new 

equation, the authors address the case of slender sections. Effectively, they state the equation 

leads to unconservative results for slender sections of very short member. However, they 

explain that the influence of the slender sections on the overall resistance of the member 

diminishes as the length of the member increases. As unconservative results are obtained for 

short lengths that are not used in real construction project, the equation was judged adequate. 

In the case of the present study, cross-sections are studied and therefore very short lengths 

are considered which explains why so many unconservative results are obtained.  

Finally, the value of Fy seams to have an impact on the previsions. For sections that are 

compact for all values of Fy, the accuracy of the prediction is similar no matter what yield 

strength is considered. This means that the equation for flexural buckling adequately captures 

the effect of the increase in yield limit. However, for slender sections, higher values of Fy 

lead to more conservative results for the same studied sections. This can be explained by the 

fact that, in the case of compression, the effective area of a slender section is calculated by 

using the limit between compact and slender sections to reduce the length of the plates. This 

limit is calculated with the value of Fy. Therefore, the effective area is much smaller for 

higher value of Fy. In those cases, the resistance the cross-section’s resistance is much lower 

and closer to the real resistance of the section.  

As for the temperature, it seems to have a small impact on the performance of the standards. 

The impact is more pronounced for slender sections. For example, points circled in orange 

on Figure 101 are results obtained for the same section but at temperature varying from 350°C 

to 700°C. As the temperature increases, the prediction by the standards become more 
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unconservative. This can be explained by the fact that when classifying the section and when 

calculating the effective area, properties at ambient temperature are used. Therefore, the 

increase in slenderness caused by the increase in temperature is not considered which leads 

to unconservative results.  

6.2.2 Major-axis bending 

Figure 102 is an histogram of the results for sections under major-axis bending. In this 

histogram, predictions from the Canadian standards and from the O.I.C. proposals are 

compared to the results obtained with the finite element simulations.  

 

Figure 102 : Accuracy of the results obtained by the O.I.C. proposals and the standard S16-14 for major-axis 

bending 

The graph shows that the O.I.C. proposals are more accurate than the Canadian standards and 

that the proposal for welded sections is the most performant. Effectively, Figure 102 shows 

that the predictions by the S16-14 are on the conservative side as most of the results are under 

1.0. Moreover, the performance of the standards is very different for hot-rolled and welded 

sections. Most of the results obtained for the hot-rolled sections are on the conservative side 

while the standards predict a non negligeable amount of unconservative results for the welded 

sections.  
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Results obtained with the Canadian standards for sections under major-axis bending are 

shown on Figure 103. This figure shows the results obtained for both hot-rolled and welded 

sections and for the three values of Fy studied. 

 

Figure 103 : Performance of the Canadian standards for sections under major-axis bending 

The figure shows that the most conservative results are mostly obtained for class 1 cases. The 

resistance calculated with the Canadian standards is either governed by the cross-section’s 
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section’s resistance depends on the cross-section’s class. However, the proposed equation for 

lateral torsional buckling at high temperatures, which calculates a reduction factor for the 
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very compact sections, the reduction factor is significant which explains why such 
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class increases, the formula continues to govern over the cross-section’s resistance and 
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eventually governs over the torsional-lateral buckling. In that case, the predictions become 

much more conservative.  

The value of the yield limit also has a small impact on the accuracy of the results. Effectively, 

predictions are the most conservative for a yield limit of 690 MPa. As the yield limit 

increases, the reduction factor in the lateral-torsional buckling equation increases faster than 

the real reduction in resistance observed in the finite elements results. Therefore, the 

predictions become more conservative.  

Figure 103 also shows that the results are less conservative and even in some case 

unconservative for the welded sections. As for the sections under compression, this can be 

explained by the fact that the resistance for both section types is calculated with one equation 

while hot-rolled sections are in fact more resistant than welded sections as explained in 

section 6.2.1.  

In the case of major-axis bending, the temperature has almost no impact on the accuracy of 

the results (see orange circles on the figure). 

6.2.3 Minor-axis bending 

Figure 104 is an histogram of the results for sections under minor-axis bending. In this 

histogram, predictions from the Canadian standards and from the O.I.C. proposals are 

compared to the results obtained with the finite element simulations.  
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Figure 104 : Accuracy of the results obtained by the O.I.C. proposals and the standard S16-14 for minor-axis 

bending 

This figure shows that both the Canadian standards and the O.I.C. proposals lead to a large 

number of very good predictions for both hot-rolled and welded sections. However, the 

Canadian standards leads to more conservative results than the proposal. Those results can 

be up to 35% too conservative which can lead to uneconomical designs.  

Results obtained with the Canadian standards for sections under minor-axis bending are 

shown on Figure 105. This figure shows the results obtained for both hot-rolled and welded 

sections and for the three values of Fy studied. 
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Figure 105 : Performance of the Canadian standards for sections under minor-axis bending 

The figure shows that the resistances predicted by the standards for class 1 and 2 sections is 

very close to the resistances obtained with the finite element model. Those sections are the 

ones for which it is considered that the full plastic capacity can be reached.  

However, the resistance predictions for class 3 sections are overconservative. The resistance 

for class 3 sections is calculated using elastic properties instead of the plastic properties. 

However, when a section is very close to the limit between class 2 and 3, the real resistance 

does not suddenly drop from the plastic resistance to the elastic resistance. Therefore, using 

elastic properties for class 3 sections leads to conservative results. This drop in resistance can 

be seen for the sections in the red rectangle on the figure. Those sections are considered of 

class 1 or 2 for yield limits of 355 MPa and 460 MPa but of class 3 for a yield limit of 690 

MPa. Therefore, the prediction of resistance for those sections is very good for lower yield 

limits but much too conservative for the upper yield limit. The accuracy of the predicted 

resistance for class 3 sections increases as the sections get closer to the limit for class 4 

sections. Effectively, the figure shows that the prediction for sections that are of class 3 for 
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all values of Fy becomes more accurate with the increase of Fy. This can be explained by the 

fact that sections with higher yield limits are slenderer and their real resistance is therefore 

closer to the elastic resistance. As no sections considered in this study are of class 4 under 

minor-axis bending, it was not possible to evaluate the performance of the standards for this 

type of section.  

As for sections under compression presented in section 6.2.1, Figure 105 shows that the 

results are less conservative for welded sections than for hot-rolled sections. This can again 

be explained by the fact the same equation is used for both types of section while resistance 

for welded sections is in fact lower than the resistance of hot-rolled sections as presented in 

section 6.2.1. 

Finally, the figure also shows that, especially for class 3 sections, the results become less 

conservative as the temperature increases (see orange circles). This can be explained by the 

fact that the slenderness increases with the increase in temperature which means that the real 

resistance of the section gets closer to the elastic resistance.  

6.2.4 Combined load cases 

The performance of the Canadian standards and the O.I.C. proposals for simple load cases 

has been compared in the previous sections. In all cases, the O.I.C. proposals have proven to 

be more accurate than the Canadian standards which leads to either too conservative or 

unconservative predictions for most of the studied sections. The performance of the Canadian 

standards is therefore expected to be bad for combined load cases as it is based on the 

combination of the predicted resistances for simple load cases. Figure 106 is an histogram 

showing the performance of the O.I.C. proposals and of the S16-14 for combined load cases. 

The performance for both hot-rolled and welded sections is shown on the figure. 
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Figure 106 : Accuracy of the results obtained by the O.I.C. proposals and the standard S16-14 for combined 

load cases 

The histogram shows that the performance of the O.I.C. proposals is much better than the 

performance of the Canadian standards. Effectively, most of the results are between 0.9 and 

1.0. The graph also shows that the performance of the proposal is similar for both hot-rolled 

and welded sections. On the other side, the figure shows that the Canadian standards predict 

mostly too conservative results for hot-rolled section. As for the welded sections, the 

standards are more accurate but predicts a large number of unconservative results. Figure 107 

shows the performance of the Canadian standards for hot-rolled sections and welded sections.  
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Figure 107 : Performance of the Canadian standard for welded sections under combined loading 

The figures confirm that the hot-rolled sections lead to more conservative results than the 

welded sections which can be explained by the fact that, for the simple load cases studied 

previously, the prediction is more conservative for hot-rolled sections. In all cases, the results 

become less conservative for higher values of axial compression with the most conservative 

results obtained for the My + Mz load cases. Moreover, the section’s class has an influence 

on the performance of the standards. Although it is not visible on the presented graph, in 

most cases, the results obtained for class 3 and 4 sections are more conservative. Effectively, 

the equation to verify the resistance of sections under combined load cases is more 

conservative for those classes.  

6.3 Comparison with the American standards 

This section presents the comparison of the performance of the American standards to the 

O.I.C. proposals.  
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6.3.1 Compression 

Figure 108 is an histogram of the results for sections under compression. In this histogram, 

predictions from the American standards and from the O.I.C. proposals are compared to the 

results obtained with the finite element simulations.  

 

Figure 108 : Accuracy of the results obtained by the O.I.C. proposals and the standard AISC for compression 

The figure shows that the O.I.C. proposal leads to more accurate results for both section 

types. Effectively, the histogram shows that although the mean of the results obtained with 

the American standards is close to 1.0, the results are very scattered and a lot of results are 

on the unconservative side. 

Results obtained with the American standards for sections under compression are shown on 

Figure 109. This figure shows the results obtained for both hot-rolled and welded sections 

and for the three values of Fy studied.  
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Figure 109 : Performance of the American standards for sections under compression 

As for the results obtained with the Canadian standards, this figure first shows that the results 

obtained for hot-rolled sections are more accurate than the ones obtained for welded sections. 

This can be again explained by the fact that the same equation is used to calculate the 

resistance for both types of sections even though the resistance of hot-rolled sections is higher 

than the resistance of welded sections as explained in section 6.2.1. 
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and the section’s class. Effectively, even though the most conservative results are obtained 

for compact sections, the results are distributed similarly for both compact and slender 

sections.  
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standards, the influence of temperature was negligible even at this last high temperature. The 

bad performance of the Americans standards can be explained by the fact that the reduction 

factor in the AISC rules are not the same as in the Canadian and European Standards. Table 

35 shows the reduction factor used on the yield limit for all considered standards.  

Table 35 : Reduction factors for the yield limit (ky,θ) at different temperatures according to all standards 

Temperature EC3 and S16-14 AISC 

350°C 1.000 1.000 

450°C 0.890 0.889 

550°C 0.625 0.632 

700°C 0.230 0.264 

 

The table shows that the reduction factors are very similar for temperatures up to 550°C. 

However, the reduction factor at 700°C, the reduction factor used in the American standards 

is 15% smaller than the one used in the European and Canadian standards. Therefore, it can 

be concluded that the reduction factor from the American standards should be modified. 

6.3.2 Major-axis bending 

Figure 110 is a histogram of the results for sections under major-axis bending. In this 

histogram, predictions from the American standards and from the O.I.C. proposals are 

compared to the results obtained with the finite element simulations.  
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Figure 110 : Accuracy of the results obtained by the O.I.C. proposals and the standard S16-14 for major-axis 

bending 

The graph shows that the O.I.C. proposals are much more accurate than the American 

standards. Effectively, the American standards leads to some very unconservative results, 

especially for welded sections.  

Results obtained with the American standards for sections under major-axis bending are 

shown on Figure 111. This figure shows the results obtained for both hot-rolled and welded 

sections and for the three values of Fy studied. In the American standards, the resistance for 

major-axis bending is determined based on the classification of both the web and the flanges. 

In the legend of the figure, C stands for compact while NC means non-compact. 
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Figure 111 : Performance of the American standards for sections under major-axis bending 

The figure first shows that the standard leads to better and more conservative results for hot-

rolled sections. Again, this can be explained by the fact that the same equations are used for 

both section types while hot-rolled section are more resistant. Then, as for the sections under 

compression, the temperature has an impact on the performance of the standards. Effectively, 

the results circled in orange are the results for sections at 700°C. As explained in the previous 

section, the reduction factor for the yield limit at this temperature seams not to be accurate 

which leads to those unconservative results. The yield limit also has a small impact on the 

predictions. Effectively, results obtained with higher values of Fy are more conservative.  

6.3.3 Minor-axis bending 

Figure 112 is a histogram of the results for sections under minor-axis bending. In this 

histogram, predictions from the American standards and from the O.I.C. proposals are 

compared to the results obtained with the finite element simulations.  
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Figure 112 : Accuracy of the results obtained by the O.I.C. proposals and the standard AISC for minor-axis 

bending 

This figure shows that both the American standards and the O.I.C. proposals lead to a large 

number of very good predictions for both hot-rolled and welded sections. However, the 

American standards lead to more unconservative results than the O.I.C. proposals.  

Results obtained with the American standards for sections under minor-axis bending are 

shown on Figure 113. This figure shows the results obtained for both hot-rolled and welded 

sections and for the three values of Fy studied. 
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Figure 113 : Performance of the American standards for sections under minor-axis bending 

The figure shows that the overall performance of the American standards for sections under 

minor axis bending is not bad. The standards do however lead to a few unconservative results 

which are circled in orange. Those results are obtained for sections at 700°C. As explained 

in section 6.3.1, the reduction factor for the yield limit should be closer to the one found in 

the European and Canadian standards. The one provided in the American standards does not 

reduce the yield limit enough at 700°C, which leads to unconservative results. For other 

temperatures, the prediction of the standards for compact sections is very close to the finite 

element prediction as in this case the section is able to reach its full plastic capacity. For non-

compact sections, the performance is variable. In the American standards, the resistance for 

non-compact sections is calculated by considering a transition between the plastic resistance 

and the elastic resistance. For sections that are very close to the limit between compact and 

non-compact sections, the resistance predictions are very good as they are very close to the 

plastic capacities. However, as the section becomes slenderer, the prevision becomes more 

conservative. The prediction is still better than if the sole elastic resistance was considered. 
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6.3.4 Combined load cases 

The performance of the American standards and the O.I.C. proposals for simple load cases 

has been compared in the previous sections. In all cases, the O.I.C. proposals have proven to 

be more accurate than the American standards. Figure 114 is a histogram showing the 

performance of the O.I.C. proposals and of the American standards for combined load cases. 

The performance for both hot-rolled and welded sections is shown on the figure. 

 

Figure 114 : Accuracy of the results obtained by the O.I.C. proposals and the standard AISC for combined 

load cases 

The histogram shows that, for combined load cases, the performance of the O.I.C. proposals 

is better than the performance of the American standards. Effectively, most of the results are 

between 0.9 and 1.0. The graph also shows that the performance of the proposal is similar 

for both hot-rolled and welded sections. On the other side, the American standards leads to 

more unconservative results. Some of them are even 80% unconservative which is 

unacceptable.  

Figure 115 shows the performance of the American standards for hot-rolled sections and 

welded sections.  
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Figure 115 : Performance of the American standards for welded sections under combined loading 

The figure confirms that the hot-rolled sections lead to much more conservative results than 

the welded sections which can be explained by the fact that, for the simple load cases studied 

previously, the prediction is more conservative for hot-rolled sections. Then, the figure shows 

that the standard leads to many unconservative results for the combined load cases. However, 

most of the unconservative results are obtained for sections at 700°C. Therefore, if those 

results are not considered, the predictions of the American standards for combined load cases 

present a good accuracy.  

Figures also show that the most unconservative results are obtained for the combinations N 

+ My and N + Mz. However, the predictions for load cases where both bending moments are 

present a good accuracy. 

6.4 Conclusion 

In conclusion, the comparisons made allowed to identify many problems with the predictions 

made by currently used standards and to conclude that the O.I.C. proposals have a much 
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better overall performance. Effectively, even though some standards can provide some 

accurate predictions for some cases where simple loading is considered, they can lead to 

either very conservative or very unconservative results. Moreover, the performance of the 

studied standard is greatly dependant on the load case. On the contrary, both O.I.C. proposals 

lead to much more accurate results and the good accuracy of the prediction is much more 

consistent between load cases.  
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Chapter 7 : Worked examples 

The purpose of this section is to compare resistance calculations by means of the O.I.C. 

proposals with predictions from actual code equations to show the improvement in efficiency 

and accuracy. The chapter is divided in two parts. First, the cross-section resistance is 

calculated with the O.I.C. and with different standards. The intent of this part is to show the 

improvement in efficiency. Then, as the different standards consider the influence of the 

global behaviour at very short lengths, the calculations are made by considering the overall 

resistance. The intent of this second part is to show the improvement in accuracy. In all 

examples, no safety factors are considered which allows to compare the precision of the 

equations. 

The chosen section is a hot-rolled HEA300 with a yield limit of 690 MPa and at a temperature 

of 700°C. This example was chosen as it considers a slender section (class 4) which requires 

more tedious calculations. In each part, two examples are presented. First, an example is 

made for a load case of pure compression. Then, an example is made for the same section 

under compression and biaxial bending.  

7.1 General information and basic data  

First, this section presents the dimensions of the considered cross-section. Figure 116 shows 

the definition of the dimensions. 

 

Figure 116 : Definition of the sections' dimensions 
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All dimensions are presented in Table 36. 

Table 36 : Dimensions of the hot-rolled section HEA600 

h [mm] 290 

b [mm] 300 

tw [mm] 8.5 

tf [mm] 14 

r [mm] 27 

 

Table 37 then presents the loading acting on the cross-section. 

Table 37 : Loading on the cross-section 

 Example 1: compression Example 2: combined loading 

Compression 283.73 kN 408.19 kN 

Major-axis bending - 7.95 kNm 

Minor-axis bending - 2.13 kNm 

 

7.2 Cross-section resistance 

As explained previously, this section presents the calculations of the cross-section’s 

resistance with the O.I.C. proposal and with the existing standards. 

7.2.1 Example 1: section under compression 

7.2.1.1 Cross-section resistance to compression according to the O.I.C. proposal 

The steps presented in Chapter 5 are used here to determine the local resistance according to 

the O.I.C. proposal 

1) Determine the loading acting on the section 

The loading is presented in Table 37. 

 

 



 

192 

2) Calculate n, my and mz using Equations (148), (149) and (150) 

For a simple load case, this step is not necessary. 

3) Calculate angles   and  using Equations (151), (152) and (153) 

For a simple load case, this step is not necessary. 

4) Determine all required load multipliers 

The required load multipliers are the plastic multiplier and the critical multiplier. The 

plastic multiplier can either be obtained by dividing the plastic resistance by the initial 

loads or with numerical tool. The critical multiplier is determined using L.B.A. 

simulations.  

Table 38 : Required load multipliers 

Rpl [-] Rcr [-] 

6.293 5.132 

5) Calculate reduction factors for simple load cases 

The leading parameter γ must first be calculated. 

      

2
2

290 300 8.5

8.5 14 14
0.1514

100000 100000

w

w f f

th b

t t t


                          
           = = =  

Then, the local relative slenderness λL is calculated using the following equation. 

      
,

6.293
1.107

5.132

pl

L

cr L

R

R
 = = =  

Finally, the reduction factor χL is calculated with the buckling curve equations.  

      
0 0.2 =  

      0.003 0.89 0.003 0.89 0.1514 0.132L = − +  = − +  =  

      0.41 2.18 0.41 2.18 0.1514 0.080 = −  = −  =  

      ( )( ) ( )( )0.080

00.5 1 0.5 1 0.132 1.107 0.2 1.107 1.064L L L

    =  +  − + =  +  − + =  

      
2 2 0.080

1 1
0.706

1.064 1.064 1.107
L

L




  
= = =

+ − + −
 

Once the reduction factor is calculated, it is possible to calculate the ultimate load 

multiplier Rb and the ultimate load Nmax.  
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0.706 6.293 4.44b L plR R=  =  =  

max 4.44 283.73 1259.76N kN =  

The result indicates that according to the O.I.C. the initial loading must be multiplied by 

4.44 to reach failure.  

6) Calculate the reduction factor for the combined load case studied 

For a simple load case, this step is not necessary. 

7.2.1.2 Cross-section resistance to compression according to the European standards 

1) Cross-section classification 

Eurocode 3 considers the effect of the temperature when classifying the section by 

modifying the material parameter ε. 

  

0.5
0.5

235 235
0.85 0.85 0.496

690yf


   
= = =       

 

Web: 

  
2 2 290 2 14 2 27

24.47 38 38 0.496 18.848
8.5

f

w

h t rc

t t


−  −  −  − 
= = =   =  =  → Class 4 

Flanges: 

  

2 300 8.5 2 27

2 2 8.48 14 14 0.496 6.944
14

w

f

b t r
c

t t


− −  − − 

= = =   =  = → Class 4 

The overall section class is 4. 

2) Cross-section resistance 

In the case of class 4 sections, the European standards propose to calculate effective 

section properties using the effective width method and the properties at ambient 

temperature. 

   

0.5
0.5

235 235
0.584

690yf


   
= = =       

 

Web: 

   4.0k =    (uniform stress distribution 1.0 = ) 
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2 2 290 2 14 2 27

8.5 0.738
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h t rb
tt

k k 


 
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2 2

0.055 3 0.738 0.055 3 1
0.951

0.738

p
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 




− + − +
= = =  

    ( ) ( )2 2 0.951 290 2 14 2 27 197.808eff fh b h t r mm =  =  −  −  =  −  −  =   

Flanges: 

   0.43k =    (Uniform stress distribution 1.0 = ) 

   

2 300 8.5 2 27
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b
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0.973
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
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

− −
= = =   

    
2 300 8.5 2 27

0.973 115.544
2 2

w
eff

b t r
b b mm 

− −  − − 
=  =  =  =   

Effective area and resistance: 

   

( )( ) ( ) ( )

( )( ) ( ) ( )

2

2

2

2 2 2 2 4

2 2 115.544 8.5 2 27 14 197.808 2 27 8.5 27 4

10984

eff eff w f eff wA b t r t h r t r

mm





=   + +   + +   +  −
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=

 

In Eurocode 3, the 0.2% proof stress is used to calculate the resistance of class 4 sections.  

   
, , 0.2, 10984 0.13 690 985fi Rd eff p yN A k f kN =   =   =  

This resistance corresponds to an ultimate multiplier of 3.47 which means that the initial 

loading must be multiplied by 3.47 to reach failure according to the European standards.    

7.2.1.3 Cross-section resistance to compression according to the Canadian standards 

1) Cross-section classification 

The classification is made with the properties at ambient temperature. 

Web: 

    
290 2 14 670 670

30.82 25.51
8.5 690y

h

w F

− 
= =  = =      → Class 4 
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Flanges: 

    
300 / 2 200 200

10.71 7.61
14 690

el

y

b

t F
= =  = =      → Class 4 

The overall section class is 4. 

2) Cross-section resistance 

In the case of class 4 sections under compression, the Canadian standards propose the 

calculation of an effective area using the reduced flange width and web height according 

to the maximum width-to-thickness ratio.  

    
670 670

8.5 216.84
690
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y

h w mm
F

=  =  =   
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( ) ( )2 2

2

2 4 2 213.08 14 216.84 8.5 27 4

8438

eff eff f eff wA b t h t r

mm

 =   +  +  − =   +  +  −

=
  

The reduced value of Fy at 700°C is calculated using the reduction factor ky. 

    ( ) 690 0.23 158.7y y yF T F k MPa=  =  =  

    ( ) ( ) 8438 158.7 1339r eff yC T A F T kN=  =  =  

This resistance corresponds to an ultimate multiplier of 4.72 which means that the initial 

loading must be multiplied by 4.72 to reach failure according to the Canadian standards.    

7.2.1.4 Cross-section resistance to compression according to the American standards 

1) Cross-section classification 

The classification is made with the properties at elevated temperatures.  

The reduced value of Fy at 700°C is calculated using the reduction factor ky. 

    ( ) 690 0.264 182.16y y yF T F k MPa=  =  =  

The reduced value of E at 700°C is calculated using the reduction factor kE. 

    ( ) 210000 0.17 35700EE T E k MPa=  =  =  

Web: 
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The section is slender. 

2) Cross-section resistance 

For slender sections, an effective area must be calculated. 

Web:  
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For the cross-section resistance, no length is considered and the critical stress is therefore 

equal to the yield stress. 
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For the cross-section resistance, no length is considered and the critical stress is therefore 

equal to the yield stress. 
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    ( ) ( ) 9572 182.16 1744n e crP T A F T kN=  =  =   

This resistance corresponds to an ultimate multiplier of 6.15 which means that the initial 

loading must be multiplied by 6.15 to reach failure according to the American standards.    

7.2.2 Example 2: section under combined loading 

7.2.2.1 Cross-section resistance to combined loading according to the O.I.C. proposal 

The steps presented in Chapter 5 are used here to determine the local resistance according to 

the O.I.C. proposal 

1) Determine the loading on the section 

The loading is presented in Table 37. 

2) Calculate n, my and mz using Equations (148), (149) and (150) 

To calculate the values of n, my, and mz, the plastic resistances must be calculated for all 

simple load cases. The reduced value of Fy at 700°C is calculated using the reduction 

factor ky,θ from Eurocode 3. 

     , , 690 0.23 158.7y y yF F k MPa =  =  =  

The plastic resistances can then be calculated. 

     , 158.7 11253 1785.85pl yN F A kN=  =  =  

     , , , 158.7 1383272 219.53y pl y y plM F W kNm=  =  =  

     , , , 158.7 641166 101.75z pl y z plM F W kNm=  =  =  

The values of n, my and mz can then be calculated. As explained previously, as the 

ultimate loads are not yet known, the initial loads are used.  

     
408.19

0.2286
1785.85
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N
= = =  
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,
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y i
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y pl
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= = =  

     
,
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z i

z

z pl

M
m

M
= = =  

3) Calculate angles  and  using Equations (151), (152) and (153) 

1 1 0.0209
tan tan 30

0.0362

z

y

m

m
 − −

   
= = =        

 

( ) ( )
1 1 0.0362

tan tan 10.37
cos 0.2286 cos 30

ym

n




− −
   

= = =           
 

4) Determine all required load multipliers 

The required load multipliers are the plastic multipliers and the critical multipliers for 

all 3 simple load cases. The plastic multipliers can either be obtained by dividing the 

plastic resistance by the initial loads or with numerical tool. The critical multipliers are 

determined using performing L.B.A. simulations. The plastic multiplier for the 

combined load case is also needed. In this case, for more precision, the multiplier is 

obtained with numerical tools. Table 38 presents the required load multipliers.  

Table 39 : Required load multipliers 

Loading Rpl [-] Rcr [-] 

N 4.375 3.567 

My 27.614 28.068 

Mz 47.770 65.591 

N + My + Mz 3.839 - 

 

5) Calculate reduction factors for simple load cases; 

The leading parameter must first be calculated. 
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Then, the relative slenderness are calculated using the following equation. 

      
,

pl

L

cr L

R

R
 =  

Figure 51 presents the relative slenderness for all load case.  

Table 40 : Relative slenderness for all load cases 

Loading λL 

N 1.107 

My 0.992 

Mz 0.850 

 

Finally, the reduction factor for each simple load case is calculated with the buckling 

curve equations. The equations are presented in Figure 52. 

Table 41 : Buckling curve equations for all simple load cases 

Loading N My Mz 

0  0.2 0.3 0.3 

L  0.003 0.89 − +   0.02 0.59 +   0.023 0.88 − +   

  0.41 2.18 −   1.34 7.02 −   0.71 2.24 −   

  ( )( )00.5 1 L L L

    +  − +  

L  
2

1

L

  + −
 

 

The results of the calculation are presented in Table 42. 
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Table 42 : Calculated parameters 

Loading N My Mz 

0  0.2 0.3 0.3 

L  0.132 0.109 0.110 

  0.080 0.277 0.371 

  1.064 1.037 1.001 

L  0.706 0.761 0.802 

 

It is important to note here that calculations were redone for the reduction factor for the 

compression. However, the value had already been calculated in the first example.  

6) Calculate the reduction factor for the combined load case studied 

Finally, the interaction formula is used to determine the reducing factor for the combined 

load case. 

( )( ) ( ) ( )( ) ( ) ( )( )
(1/3)

3 3 3
0.3 1.5 0.18 4 7

, , ,cos sin cos sin sinL L N L My L Mz         
=  +   +  
  

 

( )( ) ( ) ( )( )

( ) ( )( )

(1/3)
3 3

0.3 1.5 0.18

3
4 7

0.706 cos 10.37 0.761 sin 10.37 cos 30

0.802 sin 10.37 sin 30

 
 +  

 
=  
 +  
 

 

0.703=  

Once the reduction factor is calculated, it is possible to calculate the ultimate multiplier.  

0.703 3.839 2.70b L plR R=  =  =  

The result indicates that the initial loading must be multiplied by 2.70 to reach failure.    

7.2.2.2 Cross-section resistance to combined loading according to the European 

standards 

1) Cross-section classification 

Eurocode 3 considers the effect of the temperature when classifying the section by 

modifying the material parameter ε. 

  

0.5
0.5

235 235
0.85 0.85 0.496

690yf


   
= = =       
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When the section is subjected to combined loading, the stress distribution is considered 

when classifying the section.  

Web: 

( )

( )

, , ,, ,

1

6
3

2

2907.95 10 14 27408.19 10 2
40.79

11253 183273500

y fi Ed ffi Ed

y

hM t rN

A I




 − −
= +

  − −
= + =

  

( )

( )

, , ,, ,

2

6
3

2

2907.95 10 14 27408.19 10 2
31.76

11253 183273500

y fi Ed ffi Ed

y

hM t rN

A I




 − −
= −

  − −
= − =

 

2

1

31.76
0.779

40.79





= = =   

  

2 2

2 2 290 2 14 2 27
24.47

8.5

38 38 0.496
20.83

0.608 0.343 0.049 0.608 0.343 0.779 0.049 0.779

f

w

h t rc

t t



 

−  −  −  − 
= = =

 
 = =

+  +  +  + 

      

  → Class 4 

Flanges: 

  

2 300 8.5 2 27

2 2 8.48 14 14 0.496 6.944
14

w

f

b t r
c

t t


− −  − − 

= = =   =  = → Class 4 

The overall section class is 4. 

2) Cross-section resistance 

In the case of class 4 sections, the European standards propose to calculate effective 

section properties using the effective width method and the properties at ambient 

temperature. According to the standards, the effective properties must be calculated for 

each load case separately.  

 

a) Resistance to compression 

The cross-section resistance to compression was calculated in the first example.     
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, , 0.2, 10984 0.13 690 985fi Rd eff p yN A k f kN =   =   =  

b) Resistance to major-axis bending 

   

0.5
0.5

235 235
0.584

690yf


   
= = =       

 

The width of the compression flange is first reduced. 

Compression flange: 

   0.43k =   (uniform stress distribution 1.0 = ) 

   

2 300 8.5 2 27
2 2

14 0.780
28.4 28.4 28.4 0.584 0.43

w

f
p

b t r

b
tt

k k 


 

− −  − − 

= = = =
     

  

    
2 2

0.188 0.780 0.188
0.973

0.780

p

p






− −
= = =   

    
2 300 8.5 2 27

0.973 115.544
2 2

w
eff

b t r
b b mm 

− −  − − 
=  =  =  =   

Then, the new centroid of the section must be calculated with the reduced flange. 

    

( )( ) ( ) ( )

( )( ) ( ) ( )

2

,

2

2

2 2 2 2 4

2 2 115.544 8.5 2 27 14 290 2 14 8.5 27 4

11162

eff cf eff w f f wA b t r t h t t r

mm





=   + +   + −   +  −

=   + +   + −   +  −

=

 

( )( ) ( )( )

( ) ( )

( )( ) ( )( )

( ) ( )

2

,

,

2

2 2 2
2

2 4

2 2

14
2 115.544 8.5 2 27 14 290 290 2 14 8.5

2

290 2 14 27 4 290
14

2 2

11162

143.88

f

eff w f f w

f

f

eff cf

eff cf

t
b t r t h h t t

h t r h
t

z
A

mm





 
 + +    − + −    

 

 −   − 
 + +
 
 =

 
 + +    − + −    

 

−   −  
+ + 

 =

=

 

With the position of the new centroid, the stress distribution can be calculated in the 

web. 

Web: 



 

203 

     

( )

( )

, , , ,

, , ,2

1 ,, , , ,

, ,

143.88 14 27
0.979

290 14 27 143.88

y fi Ed eff cp f

y eff cf eff cp f

f eff cpy fi Ed f eff cp

y eff cf

M z t r

I z t r

h t r zM h t r z

I










−  − −

− −
= = = −

− − − − − −

− −
= − = −

− − −

  

   2 27.81 6.29 9.78 7.81 6.29 0.979 9.78 0.979 23.33k  = −  +  = − − + − =     

   

2 2 290 2 14 2 27

8.5 0.306
28.4 28.4 28.4 0.584 23.33

f

w
p

h t rb
tt

k k 


 

−  −  −  − 

= = = =
     

  

    
( ) ( )

2 2

0.055 3 0.306 0.055 3 0.979
2.08 1

0.306

p

p

 




− + − −
= = =   → 1.0 =  

Therefore, there is no reduction in the web. The centroid previously calculated can 

be used to calculate the effective inertia of the cross-section and the effective section 

modulus. 

( )

( )
( )

( )

( )
( )

( )

( )

( )

2
2

4

,

32 22

3

41 1 4
4

3 16 9 4 2 6 4

24 4

2 6 4 12 2

2 2
2

12

y eff f eff

w f

eff f w eff

eff w f

eff w

r r
I r h t z r

t h tr r h
z t r h t z

b t r t
b t



 





       − 
=   − − +  − − − −             −  −      

   −   −    
+  − − − + +   −        −     

 + +  
+ +  +( )

2

23

2
2

12 2

f

f eff

f f

f eff

t
r t h z

b t t
b t z

 
+    − − 

 

  
+ +   − 

 
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( )

( )
( )

( )

( )
( )

( )

( )

2

2

4

2 32

2

290 14 143.88
27 41 1

4 27 4 27
3 16 9 4 2 27

6 4

27 4 8.5 290 2 144 27
143.88 14 27

2 6 4 12

2 115.544290
290 8.5 143.88

2










− − − 
      −

=   − − +          − −        −  

   −  − 
+  − − − +     −  

 +  
+   − +  

  

( )

( )

3

2

23
4

8.5 2 27 14

12

14
2 115.544 8.5 2 27 14 290 143.88

2

300 14 14
300 14 143.88 182634978

12 2
mm

+  

 
+  + +    − − 

 

  
+ +   − = 

 

 

, 3

,

182634978
1259552

290 143.88

y eff

eff y

eff

I
W mm

h z
= = =

− −
  

In Eurocode 3, the 0.2% proof stress is used to calculate the resistance of class 4 

sections.  

   , , , , 0.2, 1259552 0.13 690 113y fi Rd eff y p yM W k f kNm =   =   =  

 

c) Resistance to minor-axis bending 

For minor-axis bending, the cross-section reduction is only calculated for the flanges 

as there is almost no stresses in the web. 

     

( )

, , ,

, ,2

1 , , ,

, ,

2
8.5 27

2 2 0.208
300

2 22

w
z fi Ed

w
z eff cf

z fi Ed

z eff cf

t
M r

t
rI

bbM

I










  + 
 

+ +
= = = − = =


  

   
2 20.57 0.21 0.07 0.57 0.21 0.208 0.07 0.208 0.53k  = −  +  = −  +  =  

           

2 300 8.5 2 27
2 2

14 0.703
28.4 28.4 28.4 0.584 0.208

w

f
p

b t r

b
tt

k k 


 

− −  − − 

= = = =
     
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2 2

0.188 0.703 0.188
1.04 1.0

0.703

p

p






− −
= = =   → 1.0 =  

Therefore, there is no reduction and the elastic modulus is used to calculate the 

resistance.  

, , , , 0.2, 420637 0.13 690 37.7z fi Rd el z p yM W k f kNm =   =   =  

d) Interaction equation 

For the cross-section resistance of a class 4 section, the following interaction 

equation is used. 

  , , , , , , , ,

, , , , , , , ,

408.19 7.95 2.13
0.54 1

985 113 37.7

fi Ed y fi Ed z fi Ed

fi Rd y fi Rd z fi Rd

N M M

N M M

  

  

+ + = + + =   

Since the interaction equation is linear, the ultimate multiplier can be obtained by 

reversing the result obtained with the interaction formulae. This resistance 

corresponds to an ultimate multiplier of 1.85 which means that the initial loading 

must be multiplied by 1.85 to reach failure according to the European standards.    

7.2.2.3 Cross-section resistance to combined loading according to the Canadian 

standards 

1) Cross-section classification 

The classification is made with the properties at ambient temperature. 

Verification to decide which class limits to use for the web: 

    
6 6

,

,

2.13 10 7.95 10
5.02 0.9 5.66

424466 1263955

f z

z el

M

W

 
= =   =   

The limits for elements subjected to combined axial compression and major-axis 

bending must be used. 

Web: 

   
290 2 14 1100 1100 408.19

30.82 1 0.39 1 0.39 38.14
8.5 1785.85690

f

ply

Nh

w NF

 −   
= =   −  =  −  =       

      

     → Class 1 
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Flanges: 

    
300 / 2 200 200

10.71 7.61
14 690

el

y

b

t F
= =  = =      → Class 4 

The overall section class is 4. 

2) Cross-section resistance 

The reduced value of Fy at 700°C needed to calculate the resistance was calculated in the 

previous example.  

a) Resistance to compression 

The cross-section resistance to compression was calculated in the first example.     

    ( ) ( ) 8438 158.7 1339r eff yC T A F T kN=  =  =  

b) Resistance to major-axis bending 

Since only the flanges are both in compression due to the compression load and are 

classified as class 4, the Canadian standards recommends reducing the flange width 

according to the width-to-thickness ratio. 

    
200 200

2 2 14 213.08
690

eff f

y

b t mm
F

   
 =   =   =     
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 

      −   
=   − − +  −  − −              −  −       

  −   − 
 + +  +      
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
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 

      −   
=   − − +  −  − −              −  −       

  −   − 
+ +  +   =     
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,
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/ 2 290 / 2

y eff

y eff

I
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h
= = =  

    ,( ) ( ) 940031 158.7 149ry y eff yM T W F T kNm=  =  =  
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c) Resistance to minor-axis bending 

Again, since only the flanges are classified as class 4, the Canadian standards 

recommends reducing the flange width according to the width-to-thickness ratio. 
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z eff

z eff

eff
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b
= = =  

    ,( ) ( ) 530546 158.7 33.7rz z eff yM T W F T kNm=  =  =  

d) Interaction equation 

For the cross-section resistance of a class 4 section, the following interaction 

equation is used. 

    1 1
1

( ) ( ) ( )

f y fy z fz

r ry rz

C U M U M

C T M T M T

 
+ +   

For the cross-section resistance, the length is considered to be equal to 0. Therefore: 

     1 1 1.0y zU U= =  

     
408.19 7.95 2.13

0.42
1339 149 33.7

+ + =  

Since the interaction equation is linear, the ultimate multiplier can be obtained by 

reversing the result obtained with the interaction formulae. This resistance corresponds 

to an ultimate multiplier of 2.38 which means that the initial loading must be multiplied 

by 2.38 to reach failure according to the Canadian standards.    
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7.2.2.4 Cross-section resistance to combined loading according to the American 

standards 

1) Cross-section classification 

The classification is made with the properties at elevated temperatures.  

The reduced value of Fy at 700°C is calculated using the reduction factor ky. 

    ( ) 690 0.264 182.16y y yF T F k MPa=  =  =  

The reduced value of E at 700°C is calculated using the reduction factor kE. 

    ( ) 210000 0.17 35700EE T E k MPa=  =  =  

a) Compression 

Web: Slender 

Flanges: Slender 

 

b) Major-axis bending 

Web: 

 
290 2 14 2 27 (700) 35700

24.47 3.76 3.76 52.64
8.5 (700) 182.16y

h E

w F

−  − 
= =   =  = → 

Compact 

Flanges: 

    
300 / 2 (700) 35700

10.71 1 1 14.00
14 (700) 182.16y

b E

t F
= =   =  =    → Non-compact 

 

c) Minor-axis bending 

Flanges: 

300 / 2 (700) 35700
10.71 1 1 14.00

14 (700) 182.16y

b E

t F
= =   =  =    → Non-compact 

2) Cross-section resistance 

a) Compression 

( ) ( ) 9572 182.16 1744n e crP T A F T kN=  =  =  
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b) Major-axis bending 

For a cross-section with a compact web and non-compact flanges, two resistances 

must be calculated: The resistance to flexural-torsional buckling and the resistance 

to the compression flange local buckling. For the cross-section resistance, the 

considered length is 0. 

i) Lateral-torsional buckling 

When no length is considered, the resistance to lateral-torsional buckling is given 

by the plastic resistance. 

(700) (700) 252n pM M kNm= =  

ii) Compression flange local buckling 

300 / 2
10.71

14

b

t
 = = =    

( ) 35700
0.38 0.38 5.32

( ) 182.16
pf

y

E T

F T
 =  =  =  

(700) 35700
1 1 14.00

(700) 182.16
rf

y

E

F
 =  =  =  

( ) ( ) ( ( ) 0.7 ( ) )

10.71 5.32
252 (252 0.7 182.16 1259552) 195

14 5.32

pf

n p p y x

rf pf

M T M T M T F T S

kNm

 

 

 −
= − −     − 

− 
= − −    = 

− 

 

c) Minor-axis bending 

For a cross-section with non-compact flanges, the resistance is either governed by 

the yielding or by the flange local buckling. 

i) Yielding 

(700) (700) 117n pM M kNm= =  

ii) Flange local buckling 

300 / 2
10.71

14

b

t
 = = =    

( ) 35700
0.38 0.38 5.32

( ) 182.16
pf

y

E T

F T
 =  =  =  
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( ) 35700
1 1 14.00

( ) 182.16
rf

y

E T

F T
 =  =  =  

( ) ( ) ( ( ) 0.7 ( ) )

10.71 5.32
252 (252 0.7 182.16 420210) 77.5

14 5.32

pf

n p p y y

rf pf

M T M T M T F T S

kNm

 

 

 −
= − −     − 

− 
= − −    = 

− 

 

3) Interaction equation 

    
408.19

0.23 0.2
( ) 1744

r

n

P

P T
= =   

   
8 408.19 8 7.95 2.13

0.29 1.0
( ) 9 ( ) ( ) 1744 9 195 77.5

ryrxr

n nx ny

MMP

P T M T M T

   
+  + = +  + =        

 

Since the interaction equation is linear, the ultimate multiplier can be obtained by 

inversing the result obtained with the interaction formulae. This resistance corresponds 

to an ultimate multiplier of 3.39 which means that the initial loading must be multiplied 

by 3.39 to reach failure according to the American standards.    

7.2.3 Analysis and comparison of the results 

The main purpose of this first section was to compare the improvement in efficiency and 

simplicity. The examples show that the length of resolution is variable from one calculation 

method to the other. However, the calculations with the O.I.C. proposal are significantly 

more efficient than the calculations with other standards. First, the equations used are simpler 

that the ones used in the different standards. Effectively, the equations are very short, and the 

parameters used in the equation are small numbers which helps prevent errors. Then, the 

great advantage of the O.I.C. proposal is that the calculation of the resistance is done in the 

same way for all load cases. Effectively, the equations for all load cases are very similar. The 

calculation process is therefore much easier to follow.  

This first section also allows to compare the prediction of various standards for the cross-

section resistance with the O.I.C. proposal. As the length used in the numerical simulation is 

very short, the ultimate resistance obtained is effectively the cross-section resistance and it 

is therefore expected for the cross-section resistance calculated with the standards to be close 
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to the ones obtained numerically. Table 43 presents the ultimate multiplier obtained with all 

calculation methods. 

Table 43 : Ultimate load multiplier according to the finite elements simulations and to the various calculation 

methods 

 F.E. O.I.C. EC3 S16-14 AISC 

N 4.27 4.44 3.47 4.72 6.15 

N + My + Mz 2.82 2.70 1.85 2.38 3.39 

 

The results show that there is a lot of variability between the results. It also shows that the 

multiplier obtained with the O.I.C. is much more precise than the ones obtained with other 

standards. Table 44 shows the ratio between the multipliers obtained with the calculation 

methods and the multiplier obtained numerically which allows to compare efficiently the 

precision of each calculation method. 

Table 44 : Ratio between the ultimate multiplier calculated by the various calculation method and the 

ultimate multiplier obtained by finite elements simulations 

 O.I.C./F.E. EC3/F.E. S16-14/F.E. AISC/F.E. 

N 1.04 0.81 1.11 1.44 

N + My + Mz 0.96 0.66 0.84 1.20 

 

Results show that the O.I.C. is the most precise calculation method as it gives predictions 

only 4% away from the real value. Although the prediction is on the unsafe side, it is judged 

adequate as it is only 4% on the unconservative side and as no safety factor was used in the 

calculations. Eurocode 3 gives predictions that are very conservative (up to 34%), the S16-

14 gives either too unconservative results or too conservative results and AISC provides 

results that are way too unconservative (up to 44%). However, as explained previously, 

overall equations that consider the length must be used to adequately compare the precision 

as the standards consider the influence of global instabilities even at very short lengths. 

7.3 Resistance by considering the global resistance equations 

As explained previously, this section presents the calculations of the overall resistance with 

the existing standards. For the O.I.C. proposals the resistance is the same as the one calculated 
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in the previous section. Effectively, Figure 117 presents the failure mode of the section for 

both load cases. In both cases, the figure shows that global instabilities do not occur, and that 

failure is due to local buckling of the plates which indicates that the length does not have an 

influence on the cross-section resistance. 

  

a) b) 

Figure 117 : Failure mode of the cross-section under a) compression and b) combined loading 

It is however necessary to consider the length when calculating the resistance according to 

several standards as the equations are formulated to consider global instabilities even at very 

short lengths. Considering the member resistance therefore allows for an accurate 

comparison of the precision between standards and the O.I.C. proposal. 

7.3.1 Example 1: section under pure compression 

7.3.1.1 Resistance according to the European standards 

1) Cross-section classification 

The classification was made in the previous section. 

Web: Class 4 

Flanges: Class 4 

The overall section class is 4. 

2) Cross-section resistance 

The cross-section resistance was calculated in the previous section. 
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, , 0.2, 10984 0.13 690 985fi Rd eff p yN A k f kN =   =   =  

This resistance corresponds to an ultimate multiplier of 3.47 which means that the initial 

loading must be multiplied by 3.47 to reach failure according to the European standards.    

 

3) Member resistance 

   
235 235

0.65 0.65 0.221
690yf

 =  =  =  

   
1

210000
54.80

690y

E

f
  =  =  =   

, , ,
,

, , 1 ,

10984
864

0.2311253
0.28

74.84 54.80 0.13

eff

cr
y eff y y y

z

E cr E z E

A
L

k A f k kA

k N k i k

  


  

 





=  =  =  =  =
 

 

   ( ) ( )
2

2
, ,, 0.5 1 0.5 1 0.221 0.28 0.28 0.57z zz     =  +  + =  +  + =  

   ,
2 2 22

,, ,

1 1
0.83 1.0

0.57 0.57 0.28
z fi

zz z  



  

= = = 
+ −+ −

 

   
, , ,

,

, , 1 ,

10984
864

0.2311253
0.16

127.40 54.80 0.13

eff

cr
y eff y y y

y

E cr E y E

A
L

k A f k kA

k N k i k

  


  

 





=  =  =  =  =
 

 

   ( ) ( )
2

2
, ,, 0.5 1 0.5 1 0.221 0.16 0.16 0.53y yy     =  +  + =  +  + =  

   ,
2 2 22

,, ,

1 1
0.92 1.0

0.53 0.53 0.16
y fi

yy y  



  

= = = 
+ −+ −

 

          , , , , 0.2, 0.83 10984 0.13 690 818b fi Rd z fi eff p yN A k f kN =    =    =  

This resistance corresponds to an ultimate multiplier of 2.88 which means that the initial 

loading must be multiplied by 2.88 to reach failure according to the European standards.    

7.3.1.2 Resistance according to the Canadian standards 

1) Cross-section classification 
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The classification was made in the previous section. 

Web: Class 4 

Flanges: Class 4 

The overall section class is 4. 

2) Cross-section resistance 

The cross-section resistance was calculated in the previous section. 

    ( ) ( ) 8438 158.7 1339r eff yC T A F T kN=  =  =  

This resistance corresponds to an ultimate multiplier of 4.72 which means that the initial 

loading must be multiplied by 4.72 to reach failure according to the Canadian standards.    

3) Member resistance 

The reduced value of Fy at 700°C needed to calculate the resistance was calculated in the 

previous section. The reduced value of E at 700°C is calculated using the reduction factor 

kE. 

    ( ) 210000 0.13 27300EE T E k MPa=  =  =  

Annex K of the standards propose the same equation for all cross-section class to 

calculate the resistance to flexural buckling. 

        
2 2

1 864 158.7
(700) 0.28

74.84 27300

ym

z

z m

FK L

r E


 

 
=  =  =

 
 

        
2 2

1 864 158.7
(700) 0.16

127.40 27300

ym

y

y m

FK L

r E


 

 
=  =  =

 
 

       

( ) ( )
, 1 1

2 2 0.6 1.34 0.6 1.34

11253 158.7
(700) 1535

1 (700) 1 0.28

ym

r z

d n d n
z

A F
C kN

     

 
= = =

+ +

 

        

( ) ( )
, 1 1

2 2 0.6 1.34 0.6 1.34

11253 158.7
(700) 1671

1 (700) 1 0.16

ym

r y

d n d n
y

A F
C kN

     

 
= = =

+ +

 

In this case, the cross-section resistance is smaller than the resistance to flexural 

buckling. This is explained by the fact that the equation for flexural buckling does not 

consider that the section is considered as slender. This resistance corresponds to an 

ultimate multiplier of 4.72 which means that the initial loading must be multiplied by 

4.72 to reach failure according to the Canadian standards.   
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7.3.1.3 Resistance according to the American standards 

1) Cross-section classification 

The classification is made with the properties at elevated temperatures.  

The reduced value of Fy at 700°C is calculated using the reduction factor ky. 

    ( ) 690 0.264 182.16y y yF T F k MPa=  =  =  

The reduced value of E at 700°C is calculated using the reduction factor kE. 

    ( ) 210000 0.17 35700EE T E k MPa=  =  =  

Web: Slender 

Flanges: Slender 

The section is slender. 

2) Member resistance 

For slender sections, an effective area must be calculated. 

Web:  
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F T F T
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Flange:  
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    ( ) ( ) 10286 145.0 1492n e crP T A F T kN=  =  =   

This resistance corresponds to an ultimate multiplier of 5.26 which means that the initial 

loading must be multiplied by 5.26 to reach failure according to the American standards.    

7.3.2 Example 2: section under combined loading 

7.3.2.1 Resistance according to the European standards 

1) Cross-section classification 

The classification was made in the previous section. 

Web: Class 4 

Flanges: Class 4 

The overall section class is 4. 

2) Cross-section resistance 

The cross-section resistances were calculated in the first example.     

a) Resistance to compression 

   
, , 0.2, 10984 0.13 690 985fi Rd eff p yN A k f kN =   =   =  

b) Resistance to major-axis bending 

   
, , , , 0.2, 1259552 0.13 690 113y fi Rd y eff p yM W k f kNm =   =   =  

c) Resistance to minor-axis bending 
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, , , , 0.2, 420637 0.13 690 37.7z fi Rd z el p yM W k f kNm =   =   =  

3) Member resistance 

a) Resistance to compression 

The resistance to flexural buckling was calculated in the previous section. 
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b) Resistance to major-axis bending 
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, , , , , 0.2, 0.94 1259552 0.13 690 107b fi Rd LT fi y eff p yM W k f kNm =    =    =  

 

c) Resistance to minor-axis bending 

For minor-axis bending, the local and global resistances are the same. 

, , , , 0.2, 420637 0.13 690 37.7z fi Rd z el p yM W k f kNm =   =   =  
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4) Interaction equation 

The following equations are used to verify the resistance to combined loading. 

   , , , , ,

min, 0.2, , 0.2, , 0.2,
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This resistance corresponds to an ultimate multiplier of 1.55 which means that the initial 

loading must be multiplied by 1.55 to reach failure according to the European standards.    
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7.3.2.2 Resistance according to the Canadian standards 

1) Cross-section classification 

The classification was made previously. 

Web: Class 1 

Flanges: Class 4 

The overall section class is 4. 

2) Cross-section resistance 

The cross-section resistances were calculated in the previous section 

a) Resistance to compression 

( ) ( ) 8438 158.7 1339r eff yC T A F T kN=  =  =    

b) Resistance to major-axis bending 

,( ) ( ) 940031 158.7 149ry y eff yM T W F T kNm=  =  =   

c) Resistance to minor-axis bending 

,( ) ( ) 530546 158.7 33.7rz z eff yM T W F T kNm=  =  =  

3) Overall resistance  

a) Resistance to compression 

The resistance to flexural buckling was calculated in the previous section.  
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b) Resistance to major-axis bending 

Annex K of the standards propose the same equation for all cross-section class to 

calculate the resistance to lateral-torsional buckling. 

    
700 800

( ) 3 2.4
500

zC T
+

= =   → (700) 2.4zC =  

    
,( ) ( ) 1383272 158.7 219.5p y pl yM T W F T kNm=  =  =  
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c) Resistance to minor-axis bending 

For minor-axis bending, the local and global resistances are the same. 

,( ) ( ) 530546 158.7 33.7rz z eff yM T W F T kNm=  =  =  

4) Interaction equations 

The interaction equation to use for Class 4 sections is the following. 

    1 1
1

( ) ( ) ( )

f y fy z fz

r ry rz

C U M U M

C T M T M T

 
+ +   

Three verifications must be made: cross-sectional strength, overall strength and lateral-

torsional buckling strength. 

The following interaction equation must also be satisfied : 
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    1
1

,

1
1.006

408.19
11

65920

y
f

e y

U
C

C


= = =

−−

  

a) Cross-sectional strength 

408.19 1.006 7.95 1.018 2.13
0.42

1339 149 33.7

 
+ + =  

b) Overall strength 

408.19 1.0 7.95 1.0 2.13
0.38

1535 149 33.7

 
+ + =  

c) Lateral-torsional buckling strength 

408.19 1.0 7.95 1.0 2.13
0.37

1535 180 33.7

 
+ + =  

d) Bi-axial bending 

7.95 2.13
0.12

149 33.7
+ =        

7.95 2.13
0.11

180 33.7
+ =  

The most critical verification is verification a). The local behaviour is not considered in 

the calculation of the flexural buckling resistance nor in the calculation of the lateral-

torsional buckling resistance. In the considered case, the cross-section resistance is more 

critical than the member resistance. Since the interaction equation is linear, the ultimate 

multiplier can be obtained by reversing the result obtained with the interaction formulae. 

This resistance corresponds to an ultimate multiplier of 2.38 which means that the initial 

loading must be multiplied by 2.38 to reach failure according to the Canadian standards.    

7.3.2.3 Resistance according to the American standards 

1) Cross-section classification 

The classification is made with the properties at elevated temperatures.  

The reduced value of Fy at 700°C is calculated using the reduction factor ky. 

    ( ) 690 0.264 182.16y y yF T F k MPa=  =  =  

The reduced value of E at 700°C is calculated using the reduction factor kE. 

    ( ) 210000 0.17 35700EE T E k MPa=  =  =  

a) Compression 

Web: Slender 
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Flanges: Slender 

b) Major-axis bending 

Web: Compact 

Flanges: Non-compact 

c) Minor-axis bending 

Flanges: Non-compact 

2) Member resistance 

a) Compression 

( ) ( ) 10286 145.0 1492n e crP T A F T kN=  =  =  

b) Major-axis bending 

For a cross-section with a compact web and non-compact flanges, two resistances 

must be calculated: the resistance to flexural-torsional buckling and the resistance to 

compression flange local buckling. 

iii) Lateral-torsional buckling 
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iv) Compression flange local buckling 
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c) Minor-axis bending 

For a cross-section with non-compact flanges, the resistance is either governed by 

yielding or by the flange local buckling. 

iii) Yielding 

( ) ( ) 117n pM T M T kNm= =  

iv) Flange local buckling 
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3) Interaction equation 
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Since the interaction equation is linear, the ultimate multiplier can be obtained by 

reversing the result obtained with the interaction formulae. This resistance corresponds 

to an ultimate multiplier of 3.00 which means that the initial loading must be multiplied 

by 3.00 to reach failure according to the American standards.   

7.3.3 Analysis and comparison of the results 

The intent of this section was to adequately compare the prediction of the different 

calculation methods by considering the length of the sections in the calculations made with 

the standards. Table 47 shows that, as for the cross-section resistance, there is a lot of 

variability between the results which is explained by the fact that all standards propose very 

different approaches. 

Table 45 : Ultimate load multiplier according to the finite elements simulations and to the various calculation 

methods with overall equations 

 F.E. O.I.C. EC3 S16-14 AISC 

N 4.27 4.44 2.88 4.72 5.26 

N + My + Mz 2.82 2.70 1.55 2.38 3.00 

As for the cross-section resistance the ratio between the calculated ultimate multipliers and 

the finite elements ultimate multiplier is shown in the following table to adequately compare 

the precision of the different methods. 

Table 46 : Ratio between the ultimate multiplier calculated by the various calculation method with overall 

equations and the ultimate multiplier obtained by finite elements simulations  

 O.I.C./F.E. EC3/F.E. S16-14/F.E. AISC/F.E. 

N 1.04 0.67 1.11 1.23 

N + My + Mz 0.96 0.55 0.84 1.06 

 

Again, the O.I.C. proposal proves to be the more accurate of all calculation methods. In the 

case of the European standards, the results that were already conservative when considering 

only the cross-section resistance are even more conservative as the standards considers an 

additional reduction in resistance due to global instabilities (up to 45%). The results, which 

are much too conservative, can lead to very uneconomical designs. Effectively, in the case 

of combined loading, the real resistance of the section is almost twice the predicted 
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resistance. In the case of the Canadian standards, the results are the same as the ones obtained 

for the cross-section resistance as it was the governing case. This can be explained by the 

fact that the equations that consider the global instabilities in the case of fire disregard the 

local resistance. At very short lengths, the cross-section resistance is therefore more 

conservative than the global resistance. Finally, in the case of the American standards, the 

use of global equations improves the precision by giving more conservative results. However, 

those are still on the unconservative side (up to 23%). Even though in this case the use of 

global formulas improves the results, the standards can still be considered unprecise as the 

results for the cross-section resistance are corrected by equations that considered the global 

behaviour which does not have an effect on the resistance at such small lengths. 
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Chapter 8 : Observations on the influence of increasing 

temperature on section capacity 

For this numerical study, finite element simulations where initially done with five different 

temperatures: 20°C, 350°C, 450°C, 550°C and 700°C. Figure 70 and Figure 71, presented 

previously, respectively show the influence of the temperature on the results for hot-rolled 

and welded sections. With these figures, it was concluded that, for both section types, it was 

possible to identify tendencies between the results obtained at various high temperatures, but 

that the behaviour at room temperature was very different from the behaviour at high 

temperature. It was therefore decided to make a proposal for hot temperatures different form 

the existing proposal at room temperature that was made in another study. The performance 

of the proposal at high temperature was proven to be very accurate for the studied high 

temperatures by the evaluation made in Chapter 5. 

However, the simulations made did not allow to evaluate the proposal at smaller 

temperatures, between 20°C and 350°C. Additional simulations were therefore performed 

for compression load cases with three other temperatures: 100°C, 150°C and 250°C. Both 

proposals, the proposal at room temperature and the proposal at high temperature, were then 

used to predict the resistance in compression of sections at temperatures varying from 20°C 

to 700°C. The proposal at 20°C was made by Liya Li, a PhD student and is present in 

Appendix 2. The performances of the proposals at room temperature and at high temperatures 

are respectively presented on Figure 118 and Figure 119. 
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Figure 118 : Performance of the 20°C proposal for various temperatures 

 

Figure 119 : Performance of the high temperatures proposal for various temperatures 

Figure 118 shows that the proposal at room temperature is very good for cross-sections at 

20°C and at 100°C. However, the proposal is not accurate for temperatures over 100°C with 

particularly bad performance for temperatures over 250°C. Effectively, at those temperatures, 

predicted resistances are more than 10% higher than the real resistances. The use of this 

proposal at such temperatures could therefore lead to unsafe designs. Then, Figure 119 shows 
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that the proposal at high temperature is good for temperatures 250°C and over. At lower 

temperatures, the proposal leads to too conservative predictions. The different performances 

between both proposals indicate that there is no continuity between both proposals. It could 

be considered acceptable to have two different proposals, but it would be preferable and 

simpler to have one proposal that gives accurate results for all temperatures. 

To understand why there is no continuity between a good proposal at room temperature and 

a good proposal at high temperature, the evolution of the behaviour with the increase in 

temperature was studied and is presented on Figure 120 and Figure 121. 

 

Figure 120 : Evolution of resistance with the increase in temperature for hot-rolled sections 
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Figure 121 : Evolution of resistance with the increase in temperature for welded sections 

The figures show the evolution of the reduction factor χ and of the local slenderness λ with 

the increase in temperature. It is first possible to see that the evolution is not the same for all 

sections, which means that the geometry has an impact on the evolution of the behaviour. 

The difference can mostly be seen between very compact sections for which the resistance is 

very close to the plastic resistance (χ close to 1.0) and the sections for which the reduction 

factor drastically diminishes with the increase in temperature. Then, both figures show that 

the reduction factor decreases more rapidly between the smaller temperatures than between 

the higher temperatures. This could probably be explained by the shape of the material law. 

Based on the material laws provided by Eurocode 3 and used in the finite element 

simulations, it is possible to see that as the temperature increases, the length of the elastic 

branch decreases. However, the deformation at which the plastic plateau begins is the same 

for all temperatures. This means that as the temperature increases, the non-linear part of the 

material law becomes more important. In order to have a proposal that is continuous at all 

temperatures, the proportionality limit should therefore be included in the proposal. This 

aspect was however not studied further in this study. Further research would be necessary to 

see if it is possible to find a proposal suitable for all temperatures.  
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Conclusion 

Main conclusions 

The main objective of this study was to develop a new design method for the cross-section 

capacity of steel open sections at high temperatures. Currently, fire protection in structures 

is mostly ensured by the use of certified protective materials which can greatly increase the 

costs. In the past years, most codes have opened the possibility to performance-based 

approaches which allow the incorporation of the fire considerations directly in the design. 

However, current calculations methods for steel at high temperatures proposed by codes need 

improvements to ensure the accuracy of the predictions and the efficiency of the calculations. 

This study therefore proposes to rely on the Overall Interaction Concept (O.I.C.), a new 

design method continuously developed since 2012, to make a new proposal at high 

temperatures. 

The first chapter of this thesis presents a state-of-the art review in which relevant information 

was collected and studied. It presents a review on the behaviour of steel at high temperatures, 

on local buckling at normal and at high temperatures, on geometrical imperfections, on 

residual stresses at normal and high temperatures and on current design methods used in 

standards. This literature review provides important information needed to conduct the 

current study and allows to highlight the need for a new design method. 

Then, Chapter 2 gives a detailed description of the finite element model used to perform the 

numerical simulations. Information about the element’s type, material behaviour, 

geometrical imperfection, residual stresses, support conditions and loading are provided. 

Then, the sub-study on mesh density made to find the best compromise between accuracy 

and computation time is presented. Finally, a validation of the finite element model against 

experimental results is presented, which confirms that the use of the numerical model is 

adequate. 

With the finite element model validated, Chapter 3 provides information about the considered 

parameters in the numerical study. It gives information about the type of numerical analysis 

conducted, the chosen cross-sections dimensions, the considered load cases and on the 
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studied temperatures and yield limits. The study focuses on the bi-symmetric sections 

subjected to a uniform temperature.  

Once all numerical simulations were done, results were gathered and studied to identify 

leading parameters. Those parameters are needed to group the results that follow the same 

tendencies therefore allowing to formulate an O.I.C. proposal. Chapter 4 presents the studied 

parameters and the chosen ones. First, the study of the temperature showed that a distinct 

proposal was needed at elevated temperatures. Then, two geometrical leading parameters 

were identified: one for the hot-rolled sections and one for the welded sections. Those 

parameters are considered adequate for all load cases and all temperatures over 350°C, 

therefore ensuring the continuity of the proposals. 

Then, Chapter 5 presents the O.I.C. proposals at high temperatures. Two proposals are 

presented: one for the hot-rolled sections and one for the welded sections. Both proposals 

rely on modified Ayrton-Perry equations that depend on the chosen leading parameter, to 

define the buckling curves. Those equations allow to determine the reduction factors for all 

three simple load cases. Then, an interaction formula based on a 3-dimensional loading space 

is used to combine the reduction factors obtained for simple load cases and to determine the 

reduction factors for combined load cases. The chapter then presents an evaluation of the 

performance of the model based on the temperature, the load case and the yield limit. The 

results show that the proposed models have a very good overall performance. 

Chapter 6 presents a comparison between the performance of the O.I.C. proposals and the 

performance of the European, Canadian and American standards. In all cases, the O.I.C. 

proposal proves to be much more precise than the current design methods.  

Chapter 7 then presents several worked examples in which the resistance of a cross-section 

under compression and under combined loading is calculated using the O.I.C. proposal and 

the current standards. Those examples show that the O.I.C. proposal, in addition to being 

more accurate, is significantly simpler. Effectively, less variables and calculations are 

necessary, the equations are simpler and the calculation method is the same for all load cases. 

Finally, Chapter 8 presents a brief study on the evolution of the behaviour between room 

temperature and high temperatures. It first shows that the O.I.C. proposals made at room 
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temperature and the ones suggested for high temperatures in the current study are not 

continuous. It also shows that the evolution of the behaviour with the increase in temperature 

is not the same for all sections and therefore highlights the need for more research on the 

subject.  

Future developments 

The objective of the study, which was to propose a new design method for the cross-section 

capacity of steel open sections at high temperatures, has been reached. However, the work 

done is only the first contribution in the field of fire resistance. As mentioned previously, 

future research works could include the study of the evolution of the behaviour of steel with 

the increase in temperature to allow for a continuous design proposal for all temperatures. 

Then, as this study focused on the cross-sectional resistance, more research needs to be done 

to extent the proposal to global resistance as members used in structures are affected by both 

local and global instabilities. Then, for the proposal to eventually be used in codes, a safety 

factor must be identified and coupled with the proposals. Also, the study only considered 

sections subjected to uniform temperatures. More research could therefore be done to 

quantify the impact of the temperature gradient and to include its effect in the proposals.  

In a more global context, the O.I.C. has the advantage of being suitable for all geometries 

and material. Research could therefore be made in order to make O.I.C. proposal at high 

temperatures for other steel shapes and even other materials. 
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Appendix A : Model validation  

This appendix first presents the comparison between the numerical and experimental stress-

strain relationship for all specimens studied for the model validation. On all figures, the red 

line is the load displacement curve obtained numerically while the black line is the load-

displacement curve obtained experimentally. 
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Then, all failure modes for experimental and numerical specimens are compared. 
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Appendix B : O.I.C. proposal for the cross-section 

resistance of open-sections at room temperature 

The O.I.C. proposal for the cross-section resistance of open sections at room temperature was 

made by Liya Li, a current PhD student. The proposal is presented in this appendix. Similarly 

to the proposals at high temperature, a proposal is made for hot-rolled sections and another 

proposal is made for welded sections. The same modified Ayrton-Perry buckling curves are 

used. 

For hot-rolled sections, the chosen leading parameter is the same as the one at high 

temperature : 

 

2

w

w f f

th b

t t t


    
=          
     

   

The different parameters needed to calculate the reduction factor for simple load cases are 

presented in Table 47. 

Table 47 : Equations for the calculation of the reduction factor for simple load cases for hot-rolled sections 

Loading case 0  L    

N 0.45 0.005 0.1 +   
0.01

0.31


+  

My 0.4 
20.02 0.26 0.3 +  −   22.11 3.64 −   

Mz 0.35 0.08 0.3 +   
0.05

3.23


−  

 

The following equation is used to calculate the reduction factor for combined load cases: 

( )( ) ( ) ( )( ) ( ) ( )( )
(1/7.65)

7.65 7.65 7.65
0.15 0.29 0.33

, , ,cos sin cos sin sinL L N L My L Mz         
=  +   +  
  

 

For welded sections, the chosen leading parameter is presented is the following equation: 
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The different parameters needed to calculate the reduction factor for simple load cases are 

presented in Table 48. 

Table 48 : Equations for the calculation of the reduction factor for simple load cases for hot-rolled sections 

Loading case 0  L    

N 0.5 0.034 0.43 − +   0.23 0.32 −   

My 0.5 
0.50.26 1.15 0.84 − +  −   0.40 

Mz 0.5 0.25 0.35 

 

The following equation is used to calculate the reduction factor for combined load cases: 

( )( ) ( ) ( )( ) ( ) ( )( )
(1/9)

9 9 9
0.15 1.2 0.04

, , ,cos sin cos sin sinL L N L My L Mz         
=  +   +  
  

 

 

 

 

 

 

 

 

 

 


