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ABSTRACT 

 

Resilient operation of medium/large scale off-grid energy systems is a key challenge for 

energy crisis solutions, which requires continuous and sustainable energy resources. In this 

context, microreactors are incorporated with renewables to provide a continuous, reliable, 

and sustainable energy supply. The research is apportioned into two parts. In the first part, 

the study proposes three methods of hybridization for planning and identifying the most 

efficient Nuclear-Renewable Micro Hybrid Energy System (N-R MHES). Based on 

proposed hybridization techniques, mathematical modeling of N-R MHES's economy is 

carried out. An artificial intelligence optimization technique is used to achieve the optimal 

system configurations of different N-R MHESs and determine the best hybridized nuclear-

renewable system. In the second portion of the study, a traditional technology, diesel-fired 

Micro Energy Grid (MEG), is compared with the best configured N-R MHES. This study 

of the comparison indicates that microreactor-based MEGs could be a potential 

replacement for diesel-fired MEGs.  
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Chapter 1: Introduction 

Electricity is an essential precondition for global advancement and economic growth. 

Electricity demand is rising proportionally to the population and economic development. 

Currently, the world is undergoing two main challenges for managing high electricity 

demand. The first problem is how to support the increased demand for electricity without 

exploiting finite energy resources (mainly fossil fuels). Another challenge is how to 

produce electricity without affecting the environment [1]. 

Energy crisis leads to most of the challenges and opportunities that the world is facing 

nowadays. All energy production sources have shortcomings, such as air pollution, 

accidents, and GHG emissions. About five million premature deaths has been occurred 

every year due to air pollution [2], and fossil fuel is the main contributor to air pollution. 

Mining of fossil fuel and uranium, raw material transportation, construction, oil and gas 

extraction, and deployment involve accidents. Though there are numerous downsides in 

energy generation, it varies significantly depending on generation sources. Clearly, fossil 

fuel is the deadliest and dirtiest form of energy production source, while nuclear and 

Renewable Energy Source (RES)-based generation are the cleanest and safest form of 

energy production. Fig. 1-1 represents the death rate percentage per TWh from different 

energy production sources in Europe [3]. It should be noted that anti-pollution regulations 

are already well-established in Europe. Hence, the death rate caused by fossil fuel may 

increase for other regions.   

 

Figure 1-1: Death Rates by Energy Production Sources  
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A substantial amount of electric energy is currently produced from conventional sources 

like coal, gas, and oil. Generation of electricity by using these resources tends to increase 

Greenhouse Gas (GHGs) in the atmosphere. Research is ongoing to lessen the 

environmental impact of traditional source usages for electricity generation. For instance, 

one such initiative is the implementation of Carbon Capture and Storage (CCS). In this 

process, the waste carbon dioxide from power plants can be captured and transported to a 

storage site for disposal. Thus, carbon dioxide is restricted from dispersion in the 

environment [4]. 

In recent times, the world is looking for sustainable energy sources that will be used to 

meet today's demand without putting the sources into a threat to future usages. 

Consequently, RESs, such as solar, wind, geothermal, hydropower, and ocean energy, are 

recognized as sustainable sources for electric energy production [5]. RESs are intermittent, 

and electricity cannot be stored economically for a lengthened period. Therefore, some 

other energy sources are needed to provide back-up for RESs during their unavailability 

period and act as a base load or critical load supplier.  

Affordable, resilient, and carbon-free electricity generation is the most vital determinant to 

achieve a sustainable energy system. Mostly, RESs are recognized as carbon-free energy 

resources to meet electric demand.  Due to nearly zero carbon emissions from nuclear 

plants, there is a worldwide tendency to move towards nuclear energy. The hybridization 

between RESs and nuclear reactors may result in a carbon-free, reliable, and innovative 

energy infrastructure.  

Public perspectives on nuclear energy vary widely from country to country, and nuclear 

energy policies are not friendly in several countries. After the Fukushima-Daiichi nuclear 

disaster in 2011, Germany planned to phase out 10 out of 17 nuclear plants from 2011 to 

2017. Germany intends to shut down the remaining nuclear facilities by 2022. It is 

estimated that the phase-out policy of nuclear plants will cause more than 1,100 new deaths 

in Germany due to air pollution from other conventional generation sources [6]. A study 

reports that around two million lives would have been saved if fossil fuel-based generation 

had been replaced by nuclear [7].      

Energy sources also have long-term consequences on climate change. Fossil-fired based 

generations release a significant amount of GHGs. The energy resources emitting the least 

carbon are considered the safest and cleanest form of sources. Several co-benefits regarding 

public health, safety, and environmental impact have been reported if fossil-fired 

generations are substituted by either renewables or nuclear [8],[9]. Fig. 1-2 represents the 

amount of carbon dioxide generation by sources per kWh [3]. It can be concluded by 

comparing Fig. 1-1 and Fig. 1-2 that safer resources have lower pollution. Coal, oil, and 

natural gas are still the highest contributors to environmental pollution depicted in Fig. 1-

2. Though technology deployment depends on several factors, e.g., capital cost, 

construction time, and project location, nuclear and renewables are the most appropriate 

technologies in terms of human health and environmental issues.  

https://www.dictionary.com/browse/dispersion
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Figure 1-2: GHG Emissions by Energy Production Sources  

Fig. 1-3 exhibits the energy share by different sources from 1975-2020 [10]. It is important 

to note that the summation of individual percentage by the sources will not give 100% since 

some other resources are not placed in Fig. 1-3. The International Energy Agency (IEA) is 

expecting that global energy share by renewables will take the lead over the coal-powered 

generation by 2020. It is also predicted that coal-powered generation share will fall at the 

highest margin in 2020 for the first time in the last 45 years. Renewables have already taken 

the lead over coal in 2019.  Renewables are expected to increase more since several projects 

will be completed in the upcoming years [10]. Because of minimal GHG emissions, 

affordability, and sustainability, nuclear and RESs have become vital energy sources. 

Therefore, nuclear and renewables should go hand-in-hand to maximize the benefits and 

provide an innovative energy crisis solution.    
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Figure 1-3: Global Energy Share by Energy Production Sources   

This study concentrates on micro-scale nuclear-renewable integration for off-grid 

applications. Different coupling approaches for off-grid applications are proposed and 

discussed in this research. Efficient and straightforward energy management techniques 

have also been offered for integrated systems. A robust optimization technique is applied 

to obtain the best system configuration. The study also investigates the techno-economic 

feasibility of Nuclear-Renewable Micro hybrid Energy Systems (N-R MHESs) by 

comparing traditional fossil-fired technologies.  

1.1. Background 

Electric demand for distant locations is typically served by Micro Energy Grid (MEG) 

since the electric grid footprint is not available. MEG refers to an energy network that links 

local RESs to support electrical and thermal demand. The generation side of an MEG 

involves fossil-fired internal combustion engines, microturbines, fuel cells, and RESs. The 

sizing of microgrids solely depends on assessment and understanding of system load and 

geographical characteristics; a specific sizing of MEG does not fit all types of system 

demand [11]. The "Combined Heat and Power (CHP)" and the "Distributed Generation 

(DG)" concepts are employed together in MEG to generate electric and thermal energy. An 

MEG can operate both grid-connected and off-grid mode. MEG allows high penetration of 

RESs, reduces transmission losses, enhances system reliability by operating in island mode 

during the fault, and improves energy management capability [12].  
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The CHP is also known as "Cogeneration"- concomitant generation of electric and thermal 

power from the same energy source. In a CHP facility, the waste heat is recovered and used 

as valuable thermal power for heating and cooling. Most of the electricity generation plant 

utilizes heat engines to produce electricity from heat. The theoretical heat-to-electricity 

conversion efficiency for modern combustion plants range from 30% to 60%; practical 

efficiency can be even less than the theoretical. CHP facility can improve the overall 

system efficiency of up to 90% and, CHP's benefits are widely recognized. Nevertheless, 

recovered waste heat is not usually considered for large-scale electricity generation plants 

since traditional generation plants are located far from the consumer end. Therefore, 

decentralized generation at the consumer end has a great potential to use waste heat by 

CHP units [13].    

Microreactors can replace fossil fuel-based generators within MEG to reduce GHG 

emissions significantly and improve system operating conditions. An MEG, along with 

microreactors, is termed as " N-R MHES." N-R MHES is a combination of very small-

scale nuclear reactors, called Micro Modular Reactor (MMR), and different RESs. N-R 

MHES provides a resilient energy supply for electric and thermal demand for off-grid 

applications. DG principle is also implemented in N-R MHES. CHP criteria are often 

applied in N-R MHES, but there are no binding rules for CHP implementation. In 

traditional MEG, RESs and fossil fuel-based generators are regarded for energy production. 

At the same time, nuclear reactors and RESs are considered as generators in N-R MHESs 

instead of fossil-fired generators [14]. An N-R MHES provides virtually zero carbon 

footprint since no fossil fuel is burnt within the system. However, some GHGs are released 

at mining, construction phase of the system, fuel and raw materials shipment, 

decommissioning, and waste management [15].  

N-R MHES can offer several secondary commodities. Fig. 1-4 represents a typical 

interconnected N-R MHES with possible resources and applications [16]. An 

interconnected Nuclear-Renewable Hybrid Energy System (N-R HES) can serve several 

applications, such as seawater desalination, electric transportation, district heating, and 

calcination. It is also economical to produce secondary commodities with N-R HES rather 

than only satisfying electrical and thermal demand [8].  
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Figure 1-4: A Typical Interconnected N-R MHES  

Since N-R MHES involves RESs and various types of demand profiles that always 

fluctuate depending on multiple factors, a Sensitivity Analysis (SA) has been carried out 

to realize the influence of system parameters on overall system feasibility and performance. 

SA is a framework for evaluating the consequence of variation in input parameters or the 

system's mathematical model on system output. In SA, one of the input parameters is 

varied, while other parameters are kept constant. The percentage of output changes is 

observed concerning the variation of input parameter [18]. Sensitivity analysis serves three 

purposes. The first one is to predict the uncertainty of systems’ output caused by alternating 

input system parameters; the second one is to determine the degree of inaccuracies that can 

affect systems’ output significantly; the third one is to estimate the outcomes of system 

infrastructure generality due to variation in inputs [19].   

1.2. Motivation 

According to the Agenda for Sustainable Development (2030), seventeen Sustainable 

Development Goals (SDGs) are set for action by the developed and developing countries. 

Among the seventeen SDGs, one of the most crucial goals is "Affordable and Clean 

Energy." The objective of the goal - "Affordable and Clean Energy"- is to assure not only 

affordable, resilient, and modern form of energy but also sustainable and carbon-free 

electricity for the planet [20]. 

RES-based Hybrid Energy System (HES) has been identified as a potential clean energy 

system to lessen GHG emissions and meet the growing electricity demand. However, due 

to variability, uncertainly, and a lower capacity factor of the RESs, it is quite challenging 
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to achieve a 100% RES-based energy system. The flexibility measures, such as energy 

storage, can respond to the intermittency of RES in this type of scenario [21]. Stand-alone 

RES-based HES, combined with energy storage, is possible to some extent to serve small-

scale energy demand. However, the sizing of energy storage, e.g., electric battery, Pumped 

Hydro Storage (PHS), and hydrogen, is critical for a microgrid. Moreover, there is no large-

scale storage available currently, and a few large scales (in MW scale) electric batteries are 

being proposed to develop some areas [22]. Large-scale PHS is available, but PHS is site-

specific and has a high capital cost [23]. Hydrogen can be a possible massive energy storage 

media. Fuel Cell (FC) utilizes the stored hydrogen to generate electricity. Nonetheless, FC's 

efficiency is significantly low (around 30%-60%), and it is under the research and 

development (R&D) stage [24]. It is recommended to allow high penetration of renewables 

and install energy storage systems to overcome intermittency drawbacks. Therefore, 

energy storage systems are always indispensable, but a clean and continuous form of 

energy source is also required to minimize the vast energy storage requirement.  

Typically, MEG's operating strategy comprises diesel generator and energy storage to 

support energy demand and ensure system reliability. Due to lower initial cost and fast 

response characteristics, diesel Genset is usually integrated with RESs to meet small scale 

demands (in a kW). Diesel Genset has high fuel and maintenance cost, and it produces a 

notable amount of GHGs, e.g., carbon monoxide, black carbon, sulfur dioxide, nitrogen 

oxide, and particulate matter [25]. Diesel Genset can operate from 15,000 to 50,000 hours 

in its' lifetime [26]. However, the continuous operation for serving medium/high energy 

demand reduces the lifetime of a Genset. 

Because of the high fixed cost, high capacity factor, and base-load supply capability of 

MMR, stand-alone off-grid MMR-based energy systems do not provide flexible and 

economic operation [27]. A vast amount of energy will be wasted in this type of off-grid 

energy systems even if energy storage systems are included. Stand-alone off-grid MMR-

based energy systems also elongate the energy storage sizing unnecessary since the surplus 

energy can not be sold to electric grids [28]. Hence, energy-mix is an essential pathway for 

the global energy crisis solution. In [29], it is stated that the optimal range of contribution 

of renewable, nuclear, and gas technology in a hybrid system should be 50%, 50-60%, and 

70-80%, respectively. However, gas technologies produce a significant amount of GHG 

emissions.     

Bragg-Sitton et al. (2014) addressed a few challenges for integrating clean and reliable 

baseload generation sources, Nuclear Power Plants (NPPs), with intermittent RESs. It is 

also not an economical approach to run a baseload energy system into load-following to 

handle variable resources. Underutilized resource capacity and cycling cost can also make 

a system economically extravagant [30].  

In these circumstances, it is imperative to introduce an energy source that will provide 

continuous electric and thermal energy supply for medium/large-scale demand. Usually, 

RESs cannot provide a constant supply for a longer duration. Hence, a nuclear 

microreactor, a continuous mode of power supply with essentially zero carbon emissions, 
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is aimed to combine with RESs and energy storage systems. Nuclear-renewable integrated 

systems assure continuity, reliability, and resiliency for off-grid applications. An efficient 

energy management and control algorithm is also required to minimize the challenges of a 

nuclear-renewable integrated system.  

1.3. Problem Definition 

Though integrated nuclear-renewable energy systems have been addressed in a few pieces 

of literature, precise hybridization techniques for micro-scale nuclear-renewable integrated 

systems need to be focused on. Research on the modeling of generic N-R HES is going on 

at Idaho National Laboratory (INL), Oak Ridge National Laboratory (ORNL), and 

Argonne National Laboratory (ANL) to test the economic viability of integrated systems 

[31]. Some researchers aim to develop a few interconnected nuclear-renewable 

hybridization models for large-scale integration [17]. Still, small-scale integrated systems 

might provide different innovations due to the unique characteristics of MMR. Therefore, 

specific hybridization techniques of N-R MHES for off-grid applications are required. The 

nuclear-renewable interconnection techniques also need to be verified through engineering 

approaches.  

Simulation platforms of nuclear-renewable hybrid systems require modeling of system 

architecture to implement the energy management algorithm and assess the techno-

economic feasibility. The techno-economic evaluation does not require dynamic modeling 

of each system component. However, the system component design needs power balance 

models, reliability parameters, and different cost models associated with system 

performance.   

Identification of Key Performance Indicators (KPIs) is necessary to assess system 

performance, and KPIs must comprise technical and economic criteria. Besides, since the 

coupling techniques offer compact and efficient energy management algorithms for 

different HESs, a robust optimization technique is demanded to achieve the systems' 

optimal configuration. Optimal system configuration is a prerequisite to analyze 

interconnected nuclear-renewable hybrid systems. The interconnected systems involve a 

massive amount of data and sophisticated energy management techniques. Traditional 

optimization techniques are not adequate to find the best solution composing of a large 

amount of data. In this situation, an intelligent optimization technique is a right choice.  

Sensitivity analysis is another fundamental approach for evaluating this type of study. The 

objective function of N-R MHES optimization depends on several sensitivity variables. 

Average energy demand fluctuation, peak demand shifting, component cost, project 

lifetime, discount rate, inflation rate, generator capacity factor, and system reliability 

constraints have a significant impact on the fitness function of the hybrid system 

optimization problem. The analysis results of N-R MHES must be confirmed through 

sensitivity assessment. This type of evaluation helps the user to strengthen the decision-

making framework.  
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The techno-economic feasibility assessment of a micro-scale nuclear-renewable integrated 

system has not been conducted yet. Economic aspects and system reliability need to be 

evaluated for the proposed N-R MHESs. Besides, as N-R MHESs could be an excellent 

replacement of fossil-fired MEGs for off-grid applications, a comparative study based on 

selected KPIs between the proposed methods and traditional technologies is compulsory. 

The comparative research must evaluate the system's output sensitivity to all possible input 

variables. 

1.4. Objectives 

The study's primary goals are to develop and identify the most effective nuclear-renewable 

hybridization technique and compare the competency of the best N-R MHES with 

traditional technologies. To achieve the goals, the study will cover the following 

objectives:  

• Development of different coupling/hybridization methods for integrating nuclear 

and renewable resources within Micro Energy Systems (MESs).  

• Modeling of N-R MHESs based on the developed coupling methods. 

• Identification of KPIs for techno-economic evaluation of N-R MHESs.  

• Optimization and sensitivity analysis of the micro hybrid energy systems in view 

of evaluating the system performance.  

• Utilization of the proposed optimal N-R MHES to compare with conventional 

technologies.  

 

Three different coupling methods are proposed for micro-scale nuclear-renewable 

hybridized systems in the first step. Three distinct types of energy management algorithms 

are also developed for each system configuration. In the next level, economic modeling of 

each system component is accomplished in the MATLAB simulator for the techno-

economic assessment. A list of KPIs is identified to evaluate the cost-efficiency and 

reliability of the systems. Later, a robust optimization technique, titled Particle Swarm 

Optimization (PSO), is implemented to obtain the best system configurations for three 

different hybridized systems in terms of Net Present Cost (NPC). System reliability 

constraints and energy balance constraints are employed in the optimization problem. 

System performance is evaluated based on the selected KPIs and sensitivity analysis.  

In the following step, the best N-R MHES, among the three proposed hybridized nuclear-

renewable systems, is used to compare it with other possible technologies. A diesel Genset 

is used as a convenient surrogate technology for this study. Diesel Genset is inserted into 

the best N-R MHES to replace MMR, while the rest of the system components are kept the 

same. The new system arrangement is labeled "Diesel Genset-based MEG." An identical 

energy management algorithm and reliability constraints are also used here to obtain the 

optimal configuration of the diesel-based MEG. In the later section, the best N-R MHES 

and the optimal diesel Genset-based MEG are compared to recognize these two systems' 

superiority. Sensitivity analyses are conducted in all sections to strengthen the achieved 

results. 
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1.5. Thesis Outline 

The thesis is structured in chapters, which include sections and sub-sections. The total 

number of chapters of this thesis is seven. The current chapter holds the "Introduction" 

chapter.   

The second chapter aims to provide a brief literature review of the research. The section 

covers fundamental concepts and state-of-arts of MEG, N-R HES, MMR, CHP, 

optimization algorithms, and system KPIs.   

The third chapter contains the research methodology. The research framework, data 

collection methods, methods of analysis, discussion on methodological choice, and 

assumptions are discussed in detail here.  

The proposed N-R MHESs based on distinct hybridization methods are outlined in 

Chapter-04. The system working principle and energy management algorithms are 

described in this section. A detailed representation of diesel-fired MEG is also shown here.  

The components of the system architecture are identified and discussed in Chapter-05. 

Required mathematical equations, system sizing, and component cost of each element are 

presented in this chapter.  

Chapter-06 interprets the mathematical details of the optimization problem formulation. 

The objective function, optimization constraints, and decision variables are listed in this 

chapter. The implementation steps of optimization techniques are also shown in this 

section.   

Chapter-07 holds the results and discusses the research findings. The effectiveness of the 

proposed hybridization techniques is compared and analyzed in this section based on 

system KPIs. The diesel-fired MEG is also examined in the second part of this chapter.    

Finally, Chapter-08 concludes with a summary and direction of the intended future works 

of this study. This chapter also summarizes the main contribution of the research carried 

out.    

 

 

 

 

 

 

 



 

27 

Chapter 2: Literature Review 

The literature reviewed for this research is presented in four main sections. Section 2.1 

provides an overview of MEGs and their advantages over conventional energy 

infrastructure. It also discusses the research works done in MEG. Section 2.2 offers detail 

on previous research activities on nuclear-renewable integration. This study intends to 

integrate MMR with renewables, and MMR is a new concept. Therefore, MMR's brief idea 

is also provided in this section. A concise description of cogeneration, also known as CHP, 

is stated in Section 2.3. Different types of optimization techniques are reviewed in the 

subsequent section, Section 2.4. Finally, Section 2.5 lists the system performance 

indicators considered for the study. 

2.1. Micro Energy Grid (MEG) 

MEGs are a new form of microgrids (power grids) that simultaneously supply electric and 

heat energy [30]. MEGs add CHP units to provide thermal energy. An MEG combines 

different types of fossil-fired energy generation resources and RES, and it is located at the 

consumer end. The "Distributed Generation (DG)" concept is applied in MEGs. MEGs are 

considered as a potential solution for low-cost energy supply and reduction of GHG 

emissions. Uniqueness, diversity, controllability, interactivity, and independence are the 

main features of MEGs. Energy storage systems are installed in MEGs to confirm the 

energy grid's stability and reliability. Energy storage systems also supply energy to grids 

and loads in case of emergencies. MEGs can perform both at the grid-connected mode as 

well as at the islanded mode. Bidirectional power supplies are available between MEGs 

and traditional grids, and it provides outstanding support for conventional grids during a 

blackout [12], [32]. A typical MEG is presented in Fig. 2-1 [33]. The benefits of MEGs 

can be explained as follows [34], [35].  

▪ Reduction of Energy Loss: Since the distance between generation sources and loads 

is minimal, MEGs reduce the transmission losses of electric and heat energy 

significantly.   

▪ Capability of high RES penetration: MEGs can handle high penetration of RESs 

with Electrochemical Energy Storage (EES), Thermal Energy Storage (TES), and 

plug-in electric vehicles. It also utilizes the intermittent nature of RESs efficiently.  

▪ Improvement of Energy Management: Planning of an MEG includes the optimal 

number of system components. Therefore, electric and heat energy are utilized 

properly within an MEG. 

▪ Contribution to Secondary Production: Since an MEG generates electric and 

thermal energy simultaneously, excess electrical and thermal power can contribute 

to forming secondary products, such as hydrogen and water.   
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Figure 2-1: A Typical MEG  

An HES is a single facility that includes multiple energy resources as inputs and produces 

one or more products as outputs. Among the output products, there must be at least one 

commodity like electricity or transportation fuel. HESs include multiple energy conversion 

subsystems. In HESs, the products might be coupled behind electric transmission buses or 

electric grids. An electric grid is regarded as a single entity and an immensely dynamic and 

responsive subsystem for supplying electrical energy. Several types of integration are 

possible in HESs, such as electrical, mechanical, thermal, chemical, and hydrogen. An 

advanced control system is used in HESs to maintain energy demand, energy conversion 

strategy, and subsystems' operating principles. Moreover, HESs produce many non-energy 

outputs whose outputs are energy-intensive; this increases the system performance and 

overall profitability [14].  

Different manufacturers are designing several types of power supply facilities, such as 

mobile microgrids with portable energy storage systems, for off-grid applications. These 

facilities need extensive energy storage systems, fuel storage, and diesel generators for 

continuous power supply. It might be a suitable solution for a small community with 

minimal energy demand [36]. Still, a traditional microgrid is not competent in handling 

large scale commercial and industrial loads in a remote area. 

Several pieces of research have been carried to identify the optimal system configuration 

to provide a resilient electric supply. Giatrakos et al. (2009) predicted the viability of a 

Photovoltaic (PV)/diesel Genset/batteries-based HES [37]. Mohammed et al. (2019) 

optimized a Wind Turbine (WT)/tidal turbine/PV panel/batteries-based HES to provide a 
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reliable electricity supply to a distant area in Brittany, France. The PSO was used as an 

optimization technique in [38]. Ming et al. (2017) proposed optimal design methods for a 

PV/WT/batteries-based HES for both grid-connected and islanded modes of operation. A 

Multi-Objective Evolutionary Algorithm (MOEA) was used in [39] to minimize system 

cost and fuel emissions. An and Tuan (2018) proposed an HES optimization method based 

on a dynamic programming method to reduce system cost for a location in Vietnam [40]. 

Al-Masri et al. (2019) addressed the advantages of the inclusion of pumped hydro storage 

with WT for the Jordanian utility grid. Al-Masri et al. (2019) reported that emissions and 

grid purchase reductions were 24.69% and 24.68% for the WT/pumped hydro-based HES 

of the project location [41]. Halabi et al. (2017) studied different configurations of HES in 

HOMER Pro software for Sabah, Malaysia. The study results demonstrated that HES, 

consisting of PV/diesel/batteries, showed the best result in terms of economic, 

environmental matrix, and sustainability [42].   

Researches on optimal sizing and operation of MEGs have also been conducted in some 

literature. Abdollahi et al. (2014) studied a CHP system to determine the optimal 

functioning and sizing of thermal energy storage. The Linear Programming (LP) algorithm 

was adopted in [43] to minimize the objective function- the total fuel cost. Razavi et al. 

(2018) carried out a case study comprising of electricity-only units, heat-only units, and 

CHP units to determine the optimal operating point of CHP units. The research was 

conducted in the General Algebraic Modeling System (GAMS) software based on Mixed-

Integer Nonlinear Programming (MINLP) [44]. Hu et al. (2020) proposed a modified 

optimized algorithm, a combination of PSO and Genetic Algorithm (GA), to obtain the 

optimal configuration of a wind/solar/hydro-based CHP hybrid system based on heat-

electric coordinated dispatch [45]. Awad et al. (2016) optimized the operation of a 

PV/thermal/micro-turbine CHP system to fulfill electric and thermal demand by utilizing 

heat from a CHP unit. The research was conducted in the AnyLogic and the MATLAB 

simulator [46]. Fang and Lahdelma (2016) optimized a CHP model with thermal energy 

storage to maximize the system revenue and minimize the system production cost using a 

sliding time window method [47].  

2.2. Nuclear-Renewable Integration 

2.2.1. Nuclear-Renewable Micro Hybrid Energy System 

Bragg-Sitton et al. (2014) have defined nuclear-renewable hybrid systems as an energy 

network that fundamentally accomplishes the grid electricity demand and drives an 

additional industrial product generation process by surplus thermal or electric energy [48]. 

The secondary industrial process may include upgradation of synthetic fuel by heating, 

desalinated water production by electricity and heat, titanium dioxide production by 

thermal energy, district heating, and productions in paper mills [49]. A nuclear-renewable 

integrated system is proficient in optimal energy distribution to multiple production scheme 

for maximizing the profit. Ruth and Cutler (2017) defined N-R HESs as a single energy 
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generation interface consisting of a nuclear reactor, at least one renewable resource, and an 

industrial process that utilizes electric or thermal energy, or both [50].  

An N-R HES is a collaborative network of different RESs, nuclear reactors, energy storage 

systems (ESSs), power electronic devices, and various energy users (e.g., electric, thermal, 

and hydrogen). Since no fossil fuel is combusted in N-R HESs, it is the cleanest HES with 

virtually zero GHG emissions. N-R HESs utilize a substantial amount of waste heat energy 

from thermal generators (e.g., nuclear reactor, geothermal energy, concentrated solar 

power, and biomass) to generate different commodities. Several advanced control 

algorithms are used in N-R HESs to ensure the security and reliability of the system. Based 

on the size of a hybrid system, the coupling scheme can be categorized into two types [51], 

as discussed below. 

❖ Large-scale Coupling 

In large-scale coupling, a traditional large-scale NPP is collocated with regionally 

available RESs. The coupling may occur at either the electrical, thermal, or 

electrical-thermal levels. For example, the International Atomic Energy Agency 

(IAEA) recommends that a conventional large-scale NPP must have a bare area 

called an "exclusion zone" around NPPs for safety purposes. A part of this 

exclusion zone can be used to install wind turbines to extract wind energy and 

integrate it with NPP generations or electric grids [52]. Since the exclusion zone is 

typically a large empty area, it might be a favorable space for achieving high wind 

speeds, implying a high wind energy potential. However, the exclusion zone 

requirement for small-scale reactors has been changed in the new regulation [53]. 

The sizing of an exclusion zone for a small reactor is nearly reduced to non-existent. 

Hence, the cost of real state for WT and solar panels needs to be considered.    

Moreover, PV panels can be fitted on different facilities of NPPs to harness solar 

power. The large-scale coupling also includes Mobile Microgrids (MMs) with 

traditional NPPs for various purposes. An MM is an HES consisting of different 

RESs, such as wind and PV, with intelligent remote-control capabilities for resilient 

off-grid power supplies [54]. An MM can also be linked with large-scale NPP for 

emergency cases to support the essential electric system, Class I power supply, of 

NPP. Class I power class, associated with a battery bank, is the most sensitive 

power class in NPPs, and it can never be interrupted. Hence, a battery fast charging 

mechanism powered by MMs can solve the drawbacks of battery banks and ensure 

the safety of NPPs. In summary, the integration of MMs with traditional NPPs 

works for both objectives – load demand fulfillment and NPP emergency back-up 

support [55]. 

 

❖ Modular-scale Coupling 

In modular-scale coupling, a small-scale reactor, such as Small Modular Reactor 

(SMR) or MMR, is conjoined with RESs at a site where RESs are mostly available. 

MMRs are moveable and modular in size. MMRs are towed into a suitable location 

to combine with RESs in modular-scale coupling schemes. HESs that use a 
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modular-scale coupling method are called N-R MHESs. N-R MHESs have 

immense applications in remote communities, transportation electrification, distant 

oil and gas mining facilities, and remote chemical industries. A grid-connected N-

R MHES also provides an excellent energy solution to the medium-level electricity 

demand with the lowest NPC and COE [51].  

Suman (2018) highlighted the critical challenges of nuclear-renewable integration, such as 

integration values, regulatory, financial, technological, plant testing, and plant operation. 

The author suggested that the information linkage-based nuclear-renewable coupling 

would overcome the complexities of the integration process [27]. 

Ruth et al. (2014) classified the nuclear-renewable integration process into six: electrical, 

thermal, chemical, hydrogen, mechanical, and information. A combination of RESs, 

nuclear reactors, and industrial processes, including the versatility of grids and making the 

best possible use of investment, was explored in [56]. The study concluded that nuclear 

and renewable energy integration could be a potential solution for a long-term and ample 

amount of power and heat supply. The integrated system is free from sudden price changes, 

such as fossil-fuels price fluctuations. The document also pointed out that the nuclear-

renewable hybrid system can supply load-following power, and excess energy can be used 

to produce secondary energy-intensive products. Nevertheless, the authors recommend 

system analysis, technical advancement, and optimization to implement this hybrid system 

in practice [56]. 

Rabiti et al. (2015) highlighted a generic strategy for designing, simulation, co-simulation, 

and control of N-R HESs. They addressed system design requirements, Figure of Merits 

(FOMs), required system constraints, grid modeling, and market analysis procedures. They 

also defined design objectives, solution approaches, computational tools, and data 

collection criteria. Existing gaps between available software framework and required tools 

were also addressed in this study. The authors also recommended several tools, such as 

Adams, Amesim, ANSYS, CarMaker, Dymola, EnergyPlus, MATLAB/Simulink, Hopsan, 

LMS Virtual.Lab, MapleSim, NI LabVIEW, OpenModelica, SimulationX, and xMOD, 

which need to be thought for future works [57].  

Though several computational tools are available, such as HOMER, HOGA, Hybrid2, 

SOLSIM, and RAPSIM, for non-nuclear HESs, very few numbers of computational tools 

are available for N-R HESs. For example, MODELICA, Excel, and RAVEN are used to 

design and interpret the N-H HES although these tools are not explicitly developed for 

nuclear hybrid energy systems [58], [59], [60]. Modelica is broadly used for the 

development of dynamic systems consisting of small components. An HES was effectively 

modeled in [59] by using Modelica. Only NPP and WT were considered as inputs in this 

study, while electricity and synthetic fuel were accepted as output. Control algorithms of 

the HES were assessed in Modelica comprehensively. The developed HES would be 

needed to optimize for estimating profitability. Currently, all of the physical models are 

designed in Modelica.  
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Sabharwall et al. (2015) observed three possible cases in [61] on nuclear-renewable 

integration for financial analysis. The cases were (1) standalone nuclear generation system, 

(2) nuclear/wind generation system, and (3) nuclear/wind/hydrogen generation system. A 

sensitivity analysis was conducted by varying the discount rate, depreciation rate, and 

energy market to compare the Net Present Value (NPV), Internal Rate of Return (IRR), 

Cost of Energy (COE), and payback period of the three cases. It was inferred that the 

nuclear/wind/hydrogen system could be a profitable project for future energy generation.   

A comprehensive research and development program on dynamic modeling, simulation, 

component development, and testing of N-R HESs was articulated in [17], which provided 

a useful background to support the analysis of N-R HESs. N-R HESs have been categorized 

into three classes: tightly coupled N-R HES, thermally coupled N-R HES, and loosely 

coupled N-R HES. The potential benefits of N-R HESs include GHG-free electricity, a 

resilient electric grid, and low COE. The authors have also regarded the integration of 

SMRs and RESs for future work. It is expected to demonstrate N-R HESs infrastructure by 

2030. 

Baker et al. (2017) quantified the benefits of a flexible Nuclear Hybrid Energy System 

(NHES) integrated with a grid. An SMR, battery storage, wind power generation source, 

and a desalination plant were studied within the NHES. The SMR was regarded as a 

primary generation source, and the sizing of the SMR (300 MWe) was discussed in this 

study. The authors concluded that battery investment was only justifiable for higher levels 

of renewable energy penetration [62]. 

A grid-connected N-R HES has been assessed in [63] with a flexible load, named high-

temperature steam electrolysis (HTSE). The research primarily concentrates on the 

modeling and control of the system equipment in Modelica. The study claimed a reliable 

steady-state operation of NPPs, high-penetration of RESs with resiliency, and efficient 

production of alternative commodities, such as oxygen and hydrogen. Since a Light Water 

Reactor (LWR) was used in this study, and the HTSE required high input temperature, it 

was suggested to include temperature-boosting technology with the HTSE system. 

Furthermore, the investigation asserted grid stability by satisfying demand and system 

constraints. 

Garcia et al. (2016) configured an NHES with multiple commodities production and grid 

stability. The NHES model was also capable of planning uncertainly, KPI optimization, 

and real-time energy management. The NHES was superior to conventional energy 

systems in terms of identifying uncertainly and high-level penetration of RESs. Besides, 

the NHES could significantly reduce GHG emissions by serving electric grids and 

industrial demand with a baseload heat generator, i.e., nuclear reactor and RESs. However, 

the simulation carried out by Garcia et al. was not verified with real data obtained from 

industries. The probabilistic modeling and uncertainly of the sources were also overlooked 

in the study [64]. 
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Mag et al. (2016) investigated the concept of a hybrid nuclear plant where an SMR and 

solar PV were considered. This hybrid plant also consisted of a molten salt thermal energy 

storage system. Electricity from photovoltaic was converted into heat and used for the 

superheating of nuclear steam. The investigation determined that the hybrid nuclear power 

plant was more efficient than a standalone NPP. Molten salt storage served as extensive 

and indirect electric energy storage. The authors proved that thermal storage was more 

cost-effective than compressed air storage and competitive with pumped hydro storage in 

terms of capital cost and round-trip efficiency. The study also concluded that the hybrid 

nuclear power plant has a lower initial cost per kilowatt than the standalone nuclear power 

plant. However, the nuclear reactor considered in this study was not commercially available 

[65].  

Epiney et al. (2020) stated the necessity of installing a large-scale flexible generator, such 

as gas turbines, for absorbing electricity demand fluctuation that can also be reduced by 

the concept of N-R HESs. A RAVEN/Modelica-based software framework was 

demonstrated in [66] to appraise the economic aspects of N-R HESs. The research asserted 

that financial profits could be attained by incorporating the proper industrial process into 

nuclear reactors. The study also examined a general case for implementing the proposed 

framework. Nevertheless, the methodology needed validation by real data, such as wind 

speed and industrial load demand, which are typically dependent on geographical 

conditions. 

Chen et al. (2016) optimized two configurations of NHESs to understand system 

complexities, difficulties, and opportunities in Texas and Arizona, USA. The heat 

generation plant consisted of an SMR, wind energy, solar PV, electric grid, and additional 

energy conversion units that produced chemical products, such as gasoline, Liquefied 

Petroleum Gas (LPG), and freshwater. The research demonstrated that the proposed 

optimizer could achieve economic gain.  The study also supported the view that higher gain 

could be achieved if the system decreased its' participation to produce electricity and 

increased its' participation to generate alternative commodities like gasoline, freshwater, 

and LPG. The research recommended that online optimization should be developed to work 

with real-time commodity prices and energy markets [58]. 

Gabbar et al. (2020) revealed and compared five different cases, such as traditional fossil 

fuel-based energy systems, fossil fuel/RESs-based HESs, standalone RESs-based energy 

systems, independent nuclear energy systems, and N-R MHESs in [28]. Small-scale N-R 

HESs could be an excellent prospect of continuous electricity supply for off-grid 

applications in terms of the discount rate, inflation rate, and project lifetime. N-R MHESs 

provided the best resiliency and reliability to the demand for long term energy policy. 

Besides, modular N-R HESs have the potential to reduce the amount of GHG significantly. 

The flexible operation of nuclear reactors with variable renewable sources has been 

presented in [67]. The mixed-integer linear programming (MILP) was implemented to 

evaluate the nuclear reactor's operating constraints, such as core reactivity. The 

investigation claimed that the flexible nuclear reactor operation would provide less 
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operating expenses and higher system revenue. The flexible nuclear reactor also has 

increased the energy generation contribution of renewable resources. 

Progresses on the development of N-R HESs were exhibited in [68] by modeling a small 

scale reactor in Modelica software. The demonstration illustrated the design simplicity of 

the reactor model and simple module alteration in Modelica. However, the model has 

focused more on the features of Modelica software than the development and integration 

of a complete N-R HES. Currently, the International Atomic Energy Agency (IAEA) has 

issued a report on nuclear-renewable integration [69]. The report has comprised several 

case studies, prospects, applications of N-R HESs, opportunities and challenges of nuclear-

renewable integration, and the role of small-scale reactors in nuclear-renewable 

hybridization. The document also points out the nuclear energy policy of different counties 

to accelerate the innovation of nuclear-renewable integration. 

Epiney et al. (2018) described a case study on the installation of a Reverse Osmosis (RO) 

plant for water supply, collaborated with Arizona Public Supply (APS). The study mainly 

focused on applying N-R HESs software framework to conduct the case. Three different 

cases were developed and analyzed in this study. A sensitivity analysis was carried out at 

the end of the investigation by varying different system parameters, such as discount rate, 

wholesale electricity price, project lifetime, net demand projection, and amount of salty 

water. However, N-R HES modeling was not presented in the study [70]. A similar case 

study has been conducted by Kim and Garcia (2015) in [71]. They also proposed a 

nuclear/PV HES for water desalination plants by the RO process. The HES was modeled 

in an object-oriented Modelica interface. Moreover, the authors evaluated the system 

response due to step-changes in variable electrical load and PV penetration. Technical 

issues were the main interests of this study.  

Ruth et al. (2016) has analyzed two scenarios of N-R HESs. The first scenario considered 

a nuclear reactor, thermal power cycle, WT, and synthetic gasoline production plant in 

Texas. The second scenario included a nuclear reactor, a PV panel, a thermal power cycle, 

and a desalination plant. The economies of the N-R HESs were compared with available 

natural gas systems for both scenarios. The N-R HESs of the study primarily focused on 

serving industrial processes. The research team found the N-R HESs as a potentially 

profitable candidate system compared to other technologies [72]. The authors extended this 

research in [50], and this document highlighted the economic potential of N-R HESs for 

hydrogen production.  

Three scenarios of N-R HESs for supplying thermal energy were mentioned in [73]. The 

first arrangement constituted a nuclear reactor, thermal power cycle, wind power plant, and 

electric boiler. The second scenario comprised a nuclear reactor, thermal power cycle, wind 

power plant, and electric thermal storage. The last configuration was a combination of a 

nuclear reactor, thermal power cycle, wind power plant, electric boiler, and thermal 

storage. The electric thermal storage stored thermal energy that was generated by 

electricity. The financial performance analysis indicated that the third arrangement has the 

lowest NPV, lowest IRR, and highest TCI. The analysis results were evident because the 
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thermal power supply was elevated significantly by introducing the electric boiler and the 

thermal storage simultaneously in the third scenario. The result was also apparent since the 

authors assumed that the cost of heat generated from the nuclear reactor was less than the 

price of heat generated from gas (electric boiler) [73]. 

Redfoot and Borrelli (2018) indicated the similarities between the Nuclear Fuel Cycle 

Simulator (NFCS) and the required modeling features of N-R HESs. The authors addressed 

the necessary functionalities of N-R HESs and the already developed software used to 

model N-R HESs. The required functionalities of an N-R HES included dynamic feature, 

component optimization, stochastic model of renewables, grid demand model, economic 

KPIs, and sensitivity analysis. Redfoot and Borrelli recommend incorporating new 

components, flexibility provision, financial tools, open-source tools, physical modeling 

tools, and uncertainty tools into the NFCS in the future to get benefits in N-R HESs 

modeling [74]. 

2.2.2. Micro Modular Reactor (MMR) 

A very few literature and resources are found that talked about MMRs. According to the 

IAEA, NPPs rated under 300 MWe can be interpreted as "small" NPPs. The IAEA defines 

NPPs as "medium" if reactors have a power rating up to 700 MWe. The "small" and 

"medium" NPPs collectively have been referred to as "small and medium reactor (SMR)," 

but commonly, they are termed as "Small Modular Reactor (SMR)." One subclass of SMRs 

is "very small reactors (vSMRs)" that are rated under 15 MWe [75].  

MMRs are somewhat different from SMRs in terms of power rating, and microreactors are 

defined differently in various literature. According to [116], the sizing of MMRs is below 

10 MWe. In [76], the electric and the thermal power rating of MMRs are defined as below 

30 MWe and 100 MWt, respectively. Small-scale nuclear reactors like MMRs are currently 

getting attention for their small size, affordability, security, reliability, and innovativeness. 

Several manufacturers are working to develop and bring microreactors into the market. A 

list of microreactors (under-development) is presented in Table 2-1. 

Table 2-1: A List of Microreactors [75] 

Name Capacity (MWe) Type Developer 

eVinci 0.2-5 Heatpipe FNR Westinghouse, USA 

NuScale micro 1-10 Heatpipe NuScale, USA 

Aurora 1.5 Heatpipe FNR Oklo, USA 

Sealer 3-10 Lead FNR LeadCold, Sweden 

Holos Quad 3-13 HTR HolosGen, USA 

U-battery 4 HTR 
Urenco-led consortium, 

UK 

MMR-5 5 HTR UltraSafe Nuclear, USA 

Starcore 10-20 HTR Starcore, Quebec 

Gen4 module 25 Lead-bismuth FNR Gen4 (Hyperion), USA 
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MMRs are fourth-generation micro-scale nuclear reactors that afford clean, reliable, and 

cost-efficient electric and thermal power. MMRs are specially designed for remote 

residential and industrial applications where there is no footprint of electric grids. It has a 

CHP provision that facilitates MMRs to generate electrical and thermal energy 

simultaneously. It reduces electric and thermal power generation by up to 50%. Since 

MMRs do not release any GHG emissions during operation, it reduces 100% carbon 

emissions. MMRs are developed in industries and brought it as a package at project 

locations. It requires a small size of concrete foundation. Microreactors are sized 

concerning the international standard of portable containers so that the reactor can be 

exported to any license location by ship, rail, or road. The reactor is sealed and does not 

require to refuel during its lifetime. Thus, it assures the utmost security of fuel supply. The 

fuel module is discharged from MMRs facility at the end of its lifetime and kept in a 

commissioned nuclear waste management facility. A new fuel module replaces the old 

module; no engineering work is done with the fuel module at the site. In addition, no spent 

fuel facility is located at the reactor site. Hence, MMRs' design provides excellent 

environmental protection. The development cost of MMRs is also lower compared to 

SMRs and other fourth-generation nuclear reactors. As a large portion of MMRs’ expenses 

is related to sunk cost, the energy cost and economic risks are entirely predictable for 

MMRs. MMRs can provide flexible operation of NPP [77].  

Microreactors are high-temperature and gas-cooled modern reactors. An MMR facility 

consists of a main nuclear plant (MMR plant) and an adjacent plant. Main nuclear plants 

generate heat, and the heat is transferred to adjacent plants. Adjacent plants consist of all 

components required to convert the heat into electricity and process heat depending on 

customer requirements. A schematic of an MMR facility is shown in Fig. 2-2.  

 

Figure 2-2: MMR Facility consisting of Main NPP and Adjacent Plant 
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Main nuclear plants consist of three main components: Closed-loop Helium Cycle, 

Intermediate Heat Exchanger (IHX), and Molten Salt System. In an MMR facility, helium 

is used as the primary coolant, while molten salt is utilized as the secondary coolant. MMR 

plants employ a closed-loop helium cycle to extract and transfer the generated process heat. 

Helium circulates through the reactor core and removes heat from the core. Cold helium 

passes through the nuclear reactor core and gets heated by a controlled fission reaction. 

The hot helium goes through the IHX and transfers heat to the molten salt system. The cold 

helium is recirculated through the reactor core by an electric-powered circulator after losing 

heat to the molten salt system. In a molten salt system, cold molten salt enters the IHX, 

absorbs heat from helium, and passes out to adjacent plants [78]. A simplified diagram of 

a main nuclear plant is presented in Fig. 2-3.  

 

Figure 2-3: MMR Plant/Main Nuclear Plant (Simplified Schematic) 
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Main NPPs are chemical facilities, and adjacent plants are non-nuclear facilities. The IHX 

separates the chemical process from power blocks (adjacent plants). It mitigates the 

potential risks of contaminating radioactive materials into power blocks. In a hybrid energy 

system, molten salt is utilized differently for electricity generation, process heat, and 

thermal energy storage [79].  

Adjacent plants are solely used to utilize the thermal energy extracted from molten salt and 

produce electricity as well as process heat. All the equipment required to generate 

electricity are installed in adjacent plants. The offices, parking lots, transmission lines, and 

visitors and training centers are also located at adjacent plants. Adjacent plant areas are 

enclosed with a dedicated security fence. However, infrastructure design depends on 

locations and design requirements. 

Adjacent plants are divided into two cycles: molten salt cycle and steam cycle. A molten 

salt cycle acts as an intermediate medium to exchange the generated heat from MMR plants 

to the steam cycle through a heat exchanger. The purpose of the heat exchanger is to supply 

electricity and thermal power to the customers. A molten salt system consists of hot salt 

tank, hot salt pump, cold salt tank, cold salt pump, gas furnace, and pipes. The molten salt 

is pumped to the hot salt tank, and then it is pumped to a steam generator. After that, the 

cold molten salt is transferred to the cold salt tank before reheating in MMR plants. The 

connector between cold and hot molten salt tanks is a nuclear plant bypass. A bypass allows 

molten salt from the cold reservoir to be pumped directly to the hot reservoir. Therefore, it 

enables molten salt circulation without the molten salt passing through nuclear plants. This 

bypass serves many operational purposes, for example, during start-ups or the adjustments 

of tank temperature. A gas furnace is used in the molten salt cycle to manage the 

temperature of molten salt during MMR plants' unavailability.  

A steam cycle/power generation cycle consists of turbine, generator, air-cooled condenser, 

and additional required structures. The purpose of this cycle is to generate electricity and 

process heat. Bleed steam is extracted from turbines at a specific pressure and temperature 

for thermal applications depending on requirements. Typically, a modern MMR can supply 

process heat at 710°C [80]. An electric grid can be located near to adjacent plants for a 

grid-connected mode of operation. An air-cooled condenser is used to remove the heat 

generated during steam condensation without the help of any external sources. 

Superheaters convert the wet steam or saturated steam into dry steam or superheated steam. 

Superheated steam is used in turbines to generate electricity. Preheaters recover the heat 

from flue gases and increase thermal efficiency [81, p.], [82]. A simplified schematic of an 

adjacent plant is presented in Fig. 2-4.   
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Figure 2-4: Adjacent Plant (Simplified Schematic) 

Nuclear cogenerations have several advantages, such as reduction of GHG emissions, 

improvement of overall plant efficiency by utilizing waste heat or low-grade thermal 

energy, curtailment of energy generation cost, and lowering environmental impact [83]. 

Since NPP efficiency is between 30-40%, a massive amount of energy is wasted in nuclear 

generation. A cogeneration process can enhance NPP efficiency by up to 80% by utilizing 

the waste thermal energy. However, the integration of a cogeneration subsystem must be 

chosen sensibly [84]. MMRs can save the cost of heat and electricity, up to 50% [77]. 

MMRs are powered by Tristructural Isotropic (TRISO) fuel. The uranium enrichment of 

TRISO fuel is 9-12% [85]. The primary objective of using TRISO fuel is to retain 

radioactive materials, high coolant temperature, and minimize an emergency shut-down 

system's requirement. TRISO fuel can only generate heat; it can not be re-processed. 

TRISO fuel can proliferate its reaction, and the reaction can not go out of control. A 

traditional operating reactor adds highly complex and specialized safety systems. On the 

contrary, the TRISO fuel module itself maintains the fission product retention during 

accidents and normal conditions. Thus, TRISO fuel is secured. TRISO particles are 

combined to structure the fuel pellets.  

TRISO fuel is composed of five regions. The spherical center of TRISO fuel, called fuel 

kernel, is the uranium. A porous carbon buffer encircles the fuel kernel. The carbon buffer 

aims to accommodate internal gas buildup and reduce the speed of the fission fragment. 

The carbon layer is surrounded by low-density pyrolytic carbon (PyC) or inner PyC (IPyC), 

followed by silicon carbide (SiC), followed by high-density pyrolytic carbon (PyC) or outer 

PyC (OPyC) [86]. PyC layers safeguard the SiC layer from chemical attack during fuel 

operation. It also provides extended protections to fission products. Corrosive gases are 

used to store SiC, and IPyC protects the center from these corrosive gases. SiC works as a 

primary pressure vessel for the particle. It also strengthens the fuel against building up the 

gas pressure. Furthermore, it provides a diffusion barrier for metallic and gaseous fission 

products [87].  A TRISO fuel particle's cutaway view is pictured in Fig. 2-5, as redrawn 

from [88].   
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Figure 2-5: Cutaway View of a TRISO Fuel Particle 

2.3. Combined Heat and Power/Cogeneration   

A CHP unit provides both thermal and electric power concurrently from a single generation 

unit. The generation sources involve fossil fuel (e.g., coal and natural gas), nuclear fuel, 

and renewable resources (e.g., geothermal, biomass, and concentrated solar thermal 

power). The most popular renewables, such as wind, hydro, and solar PV, are not involved 

in thermal generation. Hence, the deployment of CHP units is not possible for these types 

of renewables [89]. A CHP unit consists of five main components: prime mover, electric 

power generation unit, waste heat recovery unit, energy management unit, and thermally 

activated equipment [90], [91].  

The proximity between heat production and demand is one of the critical factors in CHP. 

Since heat energy can not be transported in a long-distance, it is mandatory to install CHP 

units close to the thermal demand site. It is also always economical to supply both 

electricity and heat generated from CHP units to the same customer. CHP technologies can 

be divided into two categories: topping cycle and bottoming cycle [92].  

❖ Topping Cycle CHP: In a topping cycle CHP, the primary or top objective is to 

generate electricity. The energy left over after generating electricity will be used to 

produce valuable thermal energy for heat users. Typically, gas turbines and 

reciprocating engines are used in a topping cycle. The waste thermal energy 

rejected from a generating station is captured to produce useable thermal energy. 

Topping cycle CHP generally produces relatively low-grade heat. Trilateral flash 

cycle, with the help of a Convergence-Divergence (CD) nozzle, can generate power 

from low-grade heat. However, high-grade heat can also be obtained from the 

topping cycle CHP by balancing the generation between power and heat [93], [94]. 

A schematic of a simplified topping cycle CHP is presented in Fig. 2-6 [95].   
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Figure 2-6: Topping Cycle  

❖ Bottoming Cycle CHP: In a bottoming cycle CHP, electricity production is the 

bottom-line priority. The main target of the bottoming cycle CHP is to generate 

heat for industrial applications. The waste heat recovered from heat engines is used 

to generate electricity. Bottoming cycle CHP provides proper quality heat for the 

industrial process and driving steam turbines. If the heat energy has a comparatively 

low temperature, an Organic Rankin Cycle turbine can be used to convert lower 

grade heat into electric power. It is also possible to extract combustible gas, e.g., 

blast furnace, from a bottoming cycle CHP to drive gas turbines [96], [97].  A 

generic layout of a bottoming cycle is presented in Fig. 2-7 [95].   

 

Figure 2-7: Bottoming Cycle  

2.4. Optimization Algorithms  

Numerous optimization techniques have already been explored and utilized in HESs to 

achieve optimal sizing and operation. The main goal of the optimization is to find system 
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configuration with minimum cost and maximum reliability. Optimization techniques can 

be classified into three categories [98]. Fig. 2-8 summarizes the types of optimization 

techniques.   

 

Figure 2-8: Classification of Optimization Techniques 

2.4.1. Classical Optimization Techniques 

Classical optimization techniques rely on numerical analysis, iterative methods, and 

graphical analysis [99]. It solves differential equations to determine the optimal solution 

[100]. Classical optimization techniques include Linear Programming (LP), Mixed Integer 

Linear Programming (MILP), Nonlinear Programming (NLP), Dynamic Programming 

(DP), and analytical methods. If the objective function and the constraints are linear, LP 

and MILP are used to solve the problem. 

LP is employed in [101] to minimize the NPC of Wind/PV-based hybrid energy system in 

three different sites in India. The optimization constraints incorporate battery autonomy, 

energy balance equation, and PV capacity. Theo et al. (2016) has introduced MILP in [102] 

to obtain the optimal size of an on-grid hybrid energy system with minimum NPV and 

optimum energy storage. A multi-objective MLIP is applied in [103] to find locations and 

Distributed Generation (DG) system sizing based on the least total system cost and CO2 

emissions. MLIP is also used in [104] to minimize the total operating cost and CO2 

emissions in a grid-connected PV/fuel cell/battery-based hybrid energy system. However, 

classical optimization techniques could not regard system characteristics, such as WT 

installation height, the PV panel's tilt angle, and the number of battery chargers. But all of 

these parameters have an impact on energy production [105].  

2.4.2. Meta-heuristic Optimization Techniques  

Meta-heuristic optimization techniques can be grouped into two categories: single 

algorithm and hybrid algorithm. In the single algorithm, one artificial intelligent-based 

algorithm is used to find the optimal solution. It has better accuracy and convergence 

capability compared to classical methods. The single algorithm includes Genetic Algorithm 

(GA), Ant Colony Optimizer (ACO), PSO, Artificial Bee Colony (ABC) optimization, 

Cuckoo Search (CS), Simulated Annealing (SA), and other meta-heuristic methods. The 

hybrid algorithm combines two or more single algorithms, either classical or meta-

heuristic, to find the optimal solution. Hybrid Big Bang-Big Crunch (HBB-BC), Hybrid 
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Teaching-Learning-based Optimization (HT-LBO), Hybrid GA and an Exhaustive-Search 

(HGA-ES), Iterative-Pareto-Fuzzy (IPF), Modified Electric System Cascade Analysis 

(MESCA), Hybrid Simulated Annealing-Tabu Search (HAS-TS), MarKov-based GA 

(MarKov-GA), Discrete Chaotic HS-based Simulated Annealing (DCHSSA), Improved 

Simulated Annealing Particle Swarm Optimization (ISAPSO), and Hybrid Flower 

Pollination Algorithm and Simulated Annealing (HFPA-SA) are some of the examples of 

hybrid algorithm. Theses hybrid algorithm is more efficient than the single algorithm, and 

it overcomes the drawbacks of the single algorithm [98]. Some of the meta-heuristic 

optimizations used in HESs are listed in Table 2-2.   

Table 2-2: A list of Meta-heuristic Optimization Techniques used in HESs 

Objective 

Function 

Optimization 

Technique 
Results Reference 

COE PSO, GA 

Solar/diesel/hydro/biomass/biogas-based 

energy system was developed to serve the 

system demand with the least COE. Reliability 

criteria, economic parameters, renewable 

factor, and CO2 emissions were incorporated as 

optimization constraints. 

[106] 

NPC, 

Availability 

of electricity 

MOGA1 

The grid-connected PV/wind system was 

analyzed to minimize total system cost and 

availability of electricity. 

[107] 

LCC2, 

Reliability 
PSO 

A PV/wind/battery-based system was 

optimized to obtain minimum LCC and highest 

reliability. 

[108] 

TPC3 HBB-BC4 

HBB-BC, a combination of BB-BC and PSO, 

was used to find the optimal size of the stand-

alone PV/WT/battery-based energy system. 

[109] 

TAC5, LPSP, 

fuel cost 
HT-LBO6 

Sizing optimization of a stand-alone 

PV/WT/diesel/battery-based energy system was 

carried out with reliability constraints. 

[110] 

COE HAS-TS7 

A WT/PV/diesel/biodiesel/FC/battery-based 

small autonomous energy system was 

optimized, which also provided better 

performance compared to individual SA or TS 

in terms of convergence and quality. 

[111] 

LPSP, 

Payback 

Period 

HFPA-SA8 

A RES-based hybrid has been studied to obtain 

the optimal PV panel tilt angle, the number of 

batteries, and the number of PV panels in 

Tehran, Iran. 

[112] 

1Multi-objective GA, 2Life Cycle Cost, 3Total Present Cost, 4Hybrid Big Bang-Big Crunch, 
5Total Annualized Cost, 6Hybrid Teaching-Learning-based Optimization, 7Hybrid 

Simulated Annealing–Tabu Search, 8Hybrid Flower Pollination Algorithm and Simulated 

Annealing 
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PSO algorithm was chosen in this study. The algorithm was developed by Kennedy and 

Eberhart in 1995, and it is a metaheuristic optimization technique. PSO's underlying idea 

is based on social intercommunication by a group of the population, called a swarm, and 

evolutionary computation. The two best values are measured in the PSO algorithm for each 

particle's location. The first value is the best value for a particle that has been obtained so 

far by that individual particle or swarm; this is called personal best, and the value is stored. 

PSO optimizer discovers the best value among the population that is called the global best. 

Individual particle directs towards the personal best and global best based on its position 

and velocity. Fitness function is used in PSO to find out the best solution among all the 

possible solutions. Constrains can be incorporated into the objective function. PSO 

algorithm can be explained in three steps [113].  

⎯ Assess the fitness of an individual particle. 

⎯ Upgrade the global and personal best fitness and location. 

⎯ Upgrade each particle's position and velocity.  

Every particle identifies the best fitness value. During the iteration, the particle with the 

best fitness value is compared to other particles and upgraded. This process proceeds until 

it gets some concluding criteria, like predefined fitness value or iteration number. The 

particle position is updated by using Eq. 2-1 [114].  

 

𝑦𝑘+1
𝑖 = 𝑦𝑘

𝑖 + 𝑣𝑘+1
𝑖  Eq. 2-1 

 

Where, 𝑦 is the particle position, and 𝑣 is the particle velocity. 𝑖 and 𝑘 denote the number 

of particles and the number of iterations. 

The velocity of a particle in the swarm is updated using the following equations.  

𝑣𝑘+1
𝑖 = K[𝑣𝑘

𝑖 + 𝑐1𝑟1(𝑝𝑘
𝑖 − 𝑦𝑘

𝑖 ) + 𝑐2𝑟2(𝑝𝑘
𝑔
− 𝑦𝑘

𝑖 )] Eq. 2-2 

  

K =
2𝑘

|2 − 𝜑 − √𝜑2 − 4𝜑|
 Eq. 2-3 

  

𝜑 = 𝑐1 + 𝑐2 > 4 Eq. 2-4 

Where, 𝑐1 is the individual acceleration coefficient, 𝑐2 is the social acceleration coefficient,  

K is the constriction coefficient, 𝑟1 and 𝑟2 are the random number between 0 to 1, 𝑝𝑖 is the 

personal best position, and 𝑝𝑔 is the global best position.  

The PSO principle, as stated above, is followed in this study to solve the problem. The 

problem is formulated in the MATLAB environment based on requirements. The 

implementation algorithm of PSO in the defined problem is outlined in Fig. 2-9.  
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Figure 2-9: Implementation of the PSO Algorithm in the Problem 

2.4.3. Computer Software 

Several computer software tools are available for hybrid energy system analysis. Hybrid 

Optimization Model for Electric Renewable (HOMER) is one of the most extensively used 

software packages for optimizing HESs [115]. Some other available software packages for 

HES optimization include SOLSTOR, HYBRID2, RETScreen, SOMES, HYSYS, HOGA, 

iHOGA, and iGRHYSO [116].   

2.5. Key Performance Indicators (KPIs) 

KPIs evaluate the benefits and the drawbacks of a system. KPI works as an essential 

decision-making factor for designers. Since an N-R MHES is a complex integrated system, 

it is mandatory to identify and evaluate KPIs for system deployment. By conducting a 

comprehensive literature review, KPIs of a hybrid energy system are categorized in mainly 

four sections: Technical, Economical, Environmental, and Socio-Economical. A list of 

KPIs is shown in Fig. 2-10.  
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Figure 2-10: Classification of KPIs 

The study primarily focuses on technical and economic KPIs. The discussion of 

environmental and socio-cultural indicators is beyond this study. Some critical KPIs 

considered in this study are discussed as follows.  
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2.5.1. Generation Reliability Factor (GRF) 

GRF is an indication of how much demand is supported by an energy system. The 

following equations calculate GRFs for both electric and thermal demand of the system 

studied here [117]. 

𝐺𝑅𝐹𝑒𝑙𝑒𝑐 =
∑ 𝑃𝑔𝑒𝑛(𝑡) × ∆𝑡
𝑡𝑡𝑜𝑡𝑎𝑙
𝑡=1

∑ 𝑃𝐸𝐿(𝑡) × ∆𝑡
𝑡𝑡𝑜𝑡𝑎𝑙
𝑡=1

× 100% ∀ 𝑡 ∈ 𝑡𝑡𝑜𝑡𝑎𝑙 Eq. 2-5 

   

𝑃𝑔𝑒𝑛(𝑡) = 𝑃𝑝𝑣(𝑡) + 𝑃𝑤(𝑡) + 𝑃𝑀𝑀𝑅(𝑡) + 𝑃ℎ(𝑡) + 𝑃𝑏𝑖𝑜(𝑡) (for MMR-

based MEG) 
∀ 𝑡 ∈ 𝑡𝑡𝑜𝑡𝑎𝑙 Eq. 2-6 

𝑃𝑔𝑒𝑛(𝑡) = 𝑃𝑝𝑣(𝑡) + 𝑃𝑤(𝑡) + 𝑃𝑑𝑖𝑒𝑠𝑒𝑙(𝑡) + 𝑃ℎ(𝑡) + 𝑃𝑏𝑖𝑜(𝑡) (for diesel-

based MEG) 

   

𝐺𝑅𝐹𝑡ℎ𝑒𝑟 =
∑ 𝑇𝑔𝑒𝑛(𝑡) × ∆𝑡
𝑡𝑡𝑜𝑡𝑎𝑙
𝑡=1

∑ 𝑃𝑇𝐿(𝑡) × ∆𝑡
𝑡𝑡𝑜𝑡𝑎𝑙
𝑡=1

× 100% ∀ 𝑡 ∈ 𝑡𝑡𝑜𝑡𝑎𝑙 Eq. 2-7 

   

𝑇𝑔𝑒𝑛(𝑡) = 𝑇𝑀𝑀𝑅(𝑡) + 𝑇𝑏𝑖𝑜(𝑡) (for MMR-based MEG) 
∀ 𝑡 ∈ 𝑡𝑡𝑜𝑡𝑎𝑙 Eq. 2-8 

𝑇𝑔𝑒𝑛(𝑡) = 𝑇𝑑𝑖𝑒𝑠𝑒𝑙(𝑡) + 𝑇𝑏𝑖𝑜(𝑡) (for diesel-based MEG) 

Where, 𝑃𝑔𝑒𝑛(𝑡) is the total electric energy generation (kW) within a system at time step 𝑡, 

𝑇𝑔𝑒𝑛(𝑡) is the total thermal energy generation (kW) within a system at time step 𝑡, and ∆𝑡 

is the time step considered in the analysis. 

2.5.2. Loss of Power Supply Probability (LPSP) 

A loss of power supply occurs when the system demand is higher than the system 

generation. It is necessary to keep the loss of power supply within a specific margin for 

ultimate system reliability. The least loss of power supply implies the most reliable system. 

Hence, another reliability constraint, LPSP, is introduced in the study. LPSP is also 

considered a constraint in the optimization problem.   

LPSP is the ratio of summation of power shortage at each time step and summation of 

demand at each time step. The maximum and minimum values of LPSP are 100% and 0%, 

respectively. The lower value of LPSP indicates a more reliable energy system. LPSP can 

be expressed by the following equations [118],[119].   

𝐿𝑃𝑆𝑃𝑒𝑙𝑒𝑐 =
∑ (𝑃𝑑𝑒𝑚(𝑡) − 𝑃𝑔𝑒𝑛(𝑡))
𝑡𝑡𝑜𝑡𝑎𝑙
𝑡=1

∑ 𝑃𝐸𝐿(𝑡)
𝑡𝑡𝑜𝑡𝑎𝑙
𝑡=1

× 100% 𝑃𝑑𝑒𝑚(𝑡) > 𝑃𝑔𝑒𝑛(𝑡) Eq. 2-9 
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𝑃𝑑𝑒𝑚(𝑡) = 𝑃𝐸𝐿(𝑡) + 𝑃𝐸𝐸𝑆,𝑆𝑂𝐶
𝑚𝑖𝑛 (𝑡) + 𝑃𝐻𝑡𝑎𝑛𝑘,𝑆𝑂𝐶

𝑚𝑖𝑛 (𝑡) ∀ 𝑡 ∈ 𝑡𝑡𝑜𝑡𝑎𝑙 Eq. 2-10 

   

   

𝐿𝑃𝑆𝑃𝑡ℎ𝑒𝑟 =
∑ (𝑇𝑑𝑒𝑚(𝑡) − 𝑇𝑔𝑒𝑛(𝑡))
𝑡𝑡𝑜𝑡𝑎𝑙
𝑡=1

∑ 𝑃𝑇𝐿(𝑡)
𝑡𝑡𝑜𝑡𝑎𝑙
𝑡=1

× 100% 𝑃𝑑𝑒𝑚(𝑡) > 𝑇𝑔𝑒𝑛(𝑡) Eq. 2-11 

   

𝑇𝑑𝑒𝑚(𝑡) = 𝑃𝑇𝐿(𝑡) + 𝑃𝑇𝐸𝑆,𝑆𝑂𝐶
𝑚𝑖𝑛 (𝑡) ∀ 𝑡 ∈ 𝑡𝑡𝑜𝑡𝑎𝑙 Eq. 2-12 

Where, 𝐿𝑃𝑆𝑃𝑒𝑙𝑒𝑐 and 𝐿𝑃𝑆𝑃𝑡ℎ𝑒𝑟 are the loss of power supply probability for electric and 

thermal demand, respectively, 𝑃𝐸𝐸𝑆,𝑆𝑂𝐶
𝑚𝑖𝑛 (𝑡) is the required power to maintain minimum 

State of Charge (SOC) of the EES, 𝑃𝐻𝑡𝑎𝑛𝑘,𝑆𝑂𝐶
𝑚𝑖𝑛  is the minimum power required for 

generating hydrogen to maintain the minimum SOC of hydrogen tank, and 𝑃𝑇𝐸𝑆,𝑆𝑂𝐶
𝑚𝑖𝑛 (𝑡) is 

the required power to maintain minimum SOC of the TES.  

2.5.3. Surplus Energy Fraction (SEF) 

It is requisite to maintain surplus energy within a nuclear-renewable hybrid system for 

optimal planning. It is not expected to generate a large amount of surplus energy without 

being stored in a storage. Though it is quite challenging to maintain zero surplus energy in 

a nuclear-renewable integrated system due to the variable nature of RESs, it is essential to 

keep the excess energy generation within a specific limit. Therefore, a KPI, namely SEF, 

is regarded in this study. SEF is another constraint employed in the optimization problem. 

SEF is the ratio of total excess energy in a specific period to the total energy production 

within that particular time. SEF must be limited to a particular percentage, and a larger 

percent of SEF is not acceptable for an optimal and reliable energy system. SEF can be 

calculated from the following equations [119], [120].  

𝑆𝐸𝐹𝑒𝑙𝑒𝑐 =
∑ (𝑃𝑔𝑒𝑛(𝑡) × ∆𝑡 − 𝑃𝑐𝑜𝑛(𝑡) × ∆𝑡)
𝑡𝑡𝑜𝑡𝑎𝑙
𝑡=1

∑ 𝑃𝑔𝑒𝑛(𝑡) × ∆𝑡
𝑡𝑡𝑜𝑡𝑎𝑙
𝑡=1

× 100% 𝑃𝑔𝑒𝑛(𝑡) > 𝑃𝑐𝑜𝑛(𝑡) Eq. 2-13 

   

𝑃𝑐𝑜𝑛(𝑡) = 𝑃𝐸𝐿(𝑡) + 𝑃𝐸𝐸𝑆,𝑆𝑂𝐶
𝑚𝑎𝑥 (𝑡) + 𝑃𝐻𝑡𝑎𝑛𝑘,𝑆𝑂𝐶

𝑚𝑎𝑥 (𝑡) ∀ 𝑡 ∈ 𝑡𝑡𝑜𝑡𝑎𝑙 Eq. 2-14 

   

𝑆𝐸𝐹𝑡ℎ𝑒𝑟 =
∑ (𝑇𝑔𝑒𝑛(𝑡) × ∆𝑡 − 𝑇𝑐𝑜𝑛(𝑡) × ∆𝑡)
𝑡𝑡𝑜𝑡𝑎𝑙
𝑡=1

∑ 𝑇𝑔𝑒𝑛(𝑡) × ∆𝑡
𝑡𝑡𝑜𝑡𝑎𝑙
𝑡=1

× 100% 𝑇𝑔𝑒𝑛(𝑡) > 𝑇𝑐𝑜𝑛(𝑡) Eq. 2-15 
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𝑇𝑐𝑜𝑛(𝑡) = 𝑃𝑇𝐿(𝑡) + 𝑃𝑇𝐸𝑆,𝑆𝑂𝐶
𝑚𝑎𝑥 (𝑡) ∀ 𝑡 ∈ 𝑡𝑡𝑜𝑡𝑎𝑙 Eq. 2-16 

Where, 𝑆𝐸𝐹𝑒𝑙𝑒𝑐 and 𝑆𝐸𝐹𝑡ℎ𝑒𝑟 are the surplus electric energy fraction and surplus thermal energy 

fraction, respectively, 𝑃𝐸𝐸𝑆,𝑆𝑂𝐶
𝑚𝑎𝑥 (𝑡) is the required power to maximize the EES’s SOC, 

𝑃𝐻𝑡𝑎𝑛𝑘,𝑆𝑂𝐶
𝑚𝑎𝑥 (𝑡) is the required power to maximize the hydrogen storage’s SOC, and 𝑃𝑇𝐸𝑆,𝑆𝑂𝐶

𝑚𝑎𝑥 (𝑡) is 

the required power to maximize the TES’s SOC.  

2.5.4. Levelized Cost of Energy (LCOE)  

LCOE is a fundamental economic matrix to compare different generation sources and 

energy systems. It accounts for capital cost, replacement cost, Operations and Maintenance 

(O&M) cost, and other financial indices throughout the project lifetime. Lower LCOE 

resembles a higher profit for investors.     

LCOE ($/kWh) is the average cost per unit of electricity or energy (kWh). The following 

equation is used to calculate LCOE [118].   

𝐿𝐶𝑂𝐸 =
𝑁𝑃𝐶𝑡𝑜𝑡𝑎𝑙

∑ (𝑃𝐸𝐿(𝑡) + 𝑃𝑇𝐿(𝑡)) × ∆𝑡
8760
𝑡=1

×
𝑖(1 + 𝑖)𝑛

(1 + 𝑖)𝑛 − 1
 Eq. 2-17 

Where, 𝑁𝑃𝐶𝑡𝑜𝑡𝑎𝑙 is the system total NPC ($), 𝑖 is the real interest rate (%), and 𝑛 is the 

project lifetime (years).  

 

2.5.5. Level of Autonomy (LA) 

LA is defined as the ratio of the number of hours when a loss of load does not occur and 

the total number of system operation hours. The higher value of LA defines better system 

reliability. The maximum and minimum values of LA are 100% and 0%, sequentially. LA 

is expressed by the following equations [118].  

𝐿𝐴𝑒𝑙𝑒𝑐 =
𝐻𝑡𝑜𝑡𝑎𝑙 −𝐻𝐿𝑂𝐿

𝑒𝑙𝑒𝑐

𝐻𝑡𝑜𝑡𝑎𝑙
× 100% Eq. 2-18 

  

𝐿𝐴𝑡ℎ𝑒𝑟 =
𝐻𝑡𝑜𝑡𝑎𝑙 −𝐻𝐿𝑂𝐿

𝑡ℎ𝑒𝑟

𝐻𝑡𝑜𝑡𝑎𝑙
× 100% Eq. 2-19 

Where, 𝐻𝑡𝑜𝑡𝑎𝑙 is the total operation hour of an energy system (hours),  𝐻𝐿𝑂𝐿
𝑒𝑙𝑒𝑐 is the total 

number of hours when a loss of electric load occurs (hours), and 𝐻𝐿𝑂𝐿
𝑡ℎ𝑒𝑟 is the total number 

of hours when a loss of thermal load occurs (hours).  

2.5.6. Renewable Fraction (RF) 

RF defines as the percentage of total generated energy that comes from RESs. RF value of 

a fully RESs-based energy system is 100%, whereas 0% RF value implies that none of the 
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RESs-based generators are installed within a system [121]. The following equation 

determines the RF of an HES [122]. 

𝑅𝐹 = 1 −
∑ 𝑃𝑛𝑜𝑛𝑟𝑒𝑛𝑒𝑤(𝑡)
𝑡𝑡𝑜𝑡𝑎𝑙
𝑡=1 + ∑ 𝑇𝑛𝑜𝑛𝑟𝑒𝑛𝑒𝑤(𝑡)

𝑡𝑡𝑜𝑡𝑎𝑙
𝑡=1

∑ 𝑃𝐸𝐿(𝑡)
𝑡𝑡𝑜𝑡𝑎𝑙
𝑡=1 + ∑ 𝑃𝑇𝐿(𝑡)

𝑡𝑡𝑜𝑡𝑎𝑙
𝑡=1

× 100% Eq. 2-20 

Where, 𝑃𝑛𝑜𝑛𝑟𝑒𝑛𝑒𝑤(𝑡) is the electricity production from non-renewable resources (kW), and 

𝑇𝑛𝑜𝑛𝑟𝑒𝑛𝑒𝑤(𝑡) is the thermal energy production from non-renewable resources (kW). RF is 

calculated only in the second part of this study.  
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Chapter 3: Methodology  

In this chapter, the research framework is presented by a flowchart in section 3.1. Methods 

of data collection are covered in section 3.1. Section 3.3. discusses the technique of analysis 

adopted in this research. The evaluation and justification of methodology is provided in 

section 3.4. A list of assumptions of this research is noted in section 3.5.  

3.1. Research Framework 

This section identifies the problem and the potential framework to solve the problem. Fig. 

3-1 presents a flowchart of the research framework. The research framework systematically 

explained a new research topic named N-R MHES. The study needed quantitative primary 

data for a specific project location to conduct a case study. The data served as surrogate 

data to evaluate system performance. Since a nuclear-renewable integrated system 

experiences demand fluctuation, component cost variations, economic index variations, 

and system reliability constraints, the sensitivity analysis has been conducted in both parts 

of the study to strengthen the research.  

 

Figure 3-1: Research Framework 
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3.2. Methods of Data Collection 

This research required several quantitative data, such as electric load profile, thermal load 

profile, solar irradiance, temperature, wind speed, and streamflow. The needed data related 

to MMRs have been collected by conducting an extensive investigation from literature 

reviews, websites, and manufacturers. Since MMRs’ data are sensitive and subjected to 

change from manufacturer to manufacturer, the base-case is taken very carefully by 

viewing all aspects. Several communications were done through emails with different 

research organizations and manufacturers to get more realistic data. The most trustworthy 

and popular websites were chosen to get the data of solar irradiance, temperature, wind 

speed, and streamflow. The average monthly electric load data has been obtained from 

Ontario Tech University (UOIT) campus. As the exact thermal load demand has not been 

received for the UOIT campus, a typical thermal demand was considered for the study. The 

thermal load profile was taken from the Hybrid Optimization Model for Multiple Energy 

Resources (HOMER) Pro software library. HOMER Pro is one of the mort standard and 

widely used software developed by the National Renewable Energy Laboratory, U.S.A. 

HOMER has a robust library comprising residential, commercial, industrial, and 

community-type load profiles [123]. The thermal demand profile was a combination of 

residential and industrial load demand. 

The data of capital cost, replacement cost, O&M cost, and component lifetime were 

collected from different manufactures and industry partners. Several cross-checked were 

made with other manufactures to confirm the most realistic equipment prices. The data are 

properly acknowledged and referenced in the later sections.    

3.3. Methods of Analysis 

The hourly data for one year contains a total of 8760 data points (365 𝑑𝑎𝑦𝑠 × 24 ℎ𝑜𝑢𝑟𝑠/

𝑑𝑎𝑦). Investigation of an HES with 8760 data and a large number of variables significantly 

increased the simulation time. To reduce the simulation time, it was necessary to lessen the 

number of data points with conservative assumptions. Therefore, the daily data (24 data 

points) for each month (total 12 months) of a year was assumed to be identical; this guided 

to use of 288 data points (12 𝑚𝑜𝑛𝑡ℎ × 1 𝑑𝑎𝑦/𝑚𝑜𝑛𝑡ℎ × 24 ℎ𝑜𝑢𝑟𝑠/𝑑𝑎𝑦) rather than 

considering 8760 data points in the simulation [124]. For example, the daily profile (24 

data point) of January was the same throughout January; this held for the rest of the months. 

But, the daily load profile of January was not the same as the rest of eleven months. So, the 

assumption directed to work with only 288 data (12 𝑚𝑜𝑛𝑡ℎ × 1 𝑑𝑎𝑦/𝑚𝑜𝑛𝑡ℎ ×

24 ℎ𝑜𝑢𝑟𝑠/𝑑𝑎𝑦) in simulation instead of 8760 data; this reduced the simulation times three-

folded.   

The following steps have been considered to convert the resources data (solar irradiance, 

temperature, and wind speed) from 8760 data points to 288 data points.  
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⎯ The yearly (8760 data points) resources data (solar irradiances, temperature, and 

wind speed) were gathered from different websites.  

⎯ Eight thousand seven hundred sixty (8760) data sets were divided into 12 sections 

to categorize each section into one month.  

⎯ This data processing technique aimed to represent each month by hourly data of a 

single day; each month was represented with 24 data points. The 24 data points for 

each month were the hour-by-hour average of each day. For example, to measure 

the first data point of (among 24 data points) January, each first hour data of each 

day (total 31 days) of January was taken and made the average.  Similarly, January's 

second resource data point (among 24 data points) was the average of each second-

hour data of each day (total 31 days) of January. The entire data processing was 

carried out by MATLAB programming.  

The solar irradiance, temperature, and wind speed data are represented in Fig. 3-2, Fig. 3-

3, and Fig. 3-4, respectively [125].   

 

Figure 3-2: Solar Irradiance  
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Figure 3-3: Temperature 

 

Figure 3-4: Wind Speed 

The hourly load profile of a year was not available for the UOIT campus. Therefore, the 

monthly average data of electric demand for the year 2018 has been obtained for the UOIT 

campus. A typical electrical load profile, an aggregate of residential and industrial demand, 

was captured from the HOMER Pro software library and scaled to reflect the monthly 

average load demand of UOIT. Since the HOMER Pro library provides hourly data of a 

year (total 8760 data points), it was required to convert 8760 data points into 288 data 

points for simulation. The data processing techniques explained above were followed here 

for data conversion. Hence, each month's daily load profile was assumed to be the same, 

but the monthly load profile would be changed throughout the year. For example, the daily 
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demand profile (24 data point) of January was the same throughout the whole month of 

January; this held for the rest of the months. But, the daily load profile was not the same as 

the rest eleven months. This assumption was conservative since the real-life load profile 

mostly experiences seasonal changes, not the daily changes. Fig. 3-5 presents the electric 

load profile of the UOIT campus (2018) regarded in the study.   

 

Figure 3-5: Electrical Load Profile 

Since the exact thermal load profile was not available for the UOIT campus, a typical 

thermal demand profile, a combination of residential and industrial demand, was collected 

from the HOMER Pro software library. The same steps were followed for the thermal data 

set to convert 8760 data points into 288 data points. The synthesized thermal load profile 

is displayed in Fig. 3-6.   

 

Figure 3-6: Thermal Load Profile 
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The monthly average streamflow data of the year 2018 were collected from Lake Ontario, 

Oshawa, Ontario, Canada. The nearest watercourse to the UOIT campus is Lakeview Park, 

situated at the shore of Lake Ontario. Lakeview Park is around 10 km far from UOIT 

Campus [126]. The monthly average data of Lake Ontario were collected and processed in 

MATLAB to convert the monthly average data into the hourly time step data (8760 data 

points) and 288 data points. MATLAB functions named "datetime," "timetable," and 

"retime" were used for monthly average data conversion into hourly data. The streamflow 

rate, available on the website [127], was the total water flow rate of Lake Ontario. 

Therefore, the data is scaled down to reflect a maximum of 1000.64 kW hydropower plant. 

The hourly streamflow data (8760 data points) of a year were converted into 288 data points 

by following the technique, as mentioned earlier. Though hydro dams provide a baseload 

supply to demand, the streamflow's actual intermittency was reflected in the scaled data. 

The variability in hydropower generation made the analysis more robust and practical. The 

streamflow data used in the study is shown in Fig. 3-7. Each month in Fig. 3-7 indicates 

the daily mass flow rate (24 data points) for that particular month.  

 

Figure 3-7: Streamflow Rate 

3.4. Discussion on Methodological Choice 

Though a large-scale nuclear-renewable integration was addressed in [128], this study 

discussed, modeled, and optimized three specific coupling methods for a micro-scale 

nuclear-renewable integration. To compare the three hybridization methods, system 

demand was kept fixed for all cases; the resources were arrayed in all possible 

combinations to support the load. It was imperative to develop and optimize all proposed 

hybridization techniques-based HESs before comparing the systems with conventional 

technologies.   
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Since the nuclear-renewable integrated systems depend on multiple variables, a sensitivity 

analysis has been conducted in the study to validate the assumptions. The sensitivity 

assessment evaluated the impact of different system variables, confirmed the methodology, 

and strengthened the research results.  

Due to versatility, simplicity, and large-scale open resources, MATLAB simulator was 

used in this study. MATLAB allows users to accomplish with mathematical modeling-

based simulation and object-orientated simulation (MATLAB SIMULINK). Since object-

oriented simulation has pre-defined parameters and less library support, the numerical 

modeling-based simulation was adopted in this study. The mathematical modeling-based 

simulation provides excellent flexibility to users; users can include different parameters 

and variables depending on overall system requirements.   

PSO performs perfectly in a non-smooth global optimization problem. It has several 

advantages over traditional optimization algorithms. The key benefits of PSO are as 

follows [129]. 

⎯ PSO does not include derivatives in a mathematical formulation. 

⎯ PSO programming and implementation are more straightforward than other 

heuristic optimization algorithms. 

⎯ PSO is affected insignificantly by the characteristic of the objective 

function. On the contrary, mathematical optimization algorithms and other 

metaheuristic algorithms are quite sensitive to the objective function's 

nature. 

⎯ PSO includes few parameters, such as inertia weight factor and two 

acceleration coefficients. 

⎯ The influence of parameters on the solution is more limited for PSO 

compared to other metaheuristic algorithms.  

⎯ PSO has a robust convergence algorithm. 

⎯ PSO produces high-quality results and a steady convergence curve within 

a quicker simulation time.    

⎯ PSO has a roughly 80% better time rate than conventional optimization 

techniques [130].   

By considering all circumstances, PSO is selected for this study.  

Moreover, a single objective PSO with several reliability constraints was implemented in 

this research. It eliminated the necessity of a multi-objective PSO technique. In multi-

objective PSO for hybrid system problems, both economic matrix and reliability indexes 

are considered as objective functions. On the other hand, an economic matrix, called NPC, 

was regarded as the objective function in this study. Multiple reliability indexes were 

considered as constraints; this served the purpose of multi-objective PSO without any 

cumbersome process and with less simulation time. 

3.5. Assumptions Considered in Modeling  
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The study addressed several assumptions. Each assumption related to a specific topic is 

indicated in the designated section in the latter part of the study. However, the key 

assumptions that were made in this study can be summarized as follows.  

⎯ The daily electric demand (hourly) and the daily thermal demand (hourly) for a 

month were the same.   

⎯ It is only possible to guess the anticipated annual variability of the resources data 

for the entire project lifetime. To estimate the uncertainty and the variability of the 

yearly resource data, it is required to interpret the past data for at least ten years. It 

is also difficult to guess the resource input's uncertainty since it follows an intricate 

meteorological pattern [131]. Therefore, solar irradiance, temperature, wind speed, 

and streamflow rate were identical for each year of the total project lifetime.  

⎯ The only available MMR size for this study was 1000 kW.  

⎯ The capacity factor of the MMR is considered as 95% for the base case analysis 

[132].  

⎯ The nuclear reactor is unavailable during the period of fuel module replacement. 

The diesel Genset is unavailable when generators complete their lifespan and 

require replacement. The WT, PV panels, and other equipment are also inaccessible 

during the component replacement period. This replacement period for the nuclear 

fuel module, the diesel Genset, and components may offer alternative generation 

sources to support the system demand. But, the cost associated with alternative 

sources is not considered in any of the cases in the study for simplicity. 

⎯ The main shortcomings of a large-scale Genset are high fuel cost and high O&M 

cost. On the other hand, a very small-scale Genset needs to adjust the output 

voltage, and multiple units of Gensets take a considerable amount of space. By 

regarding all benefits and drawbacks of Gensets, a trade-off was made between 

large-scale Genset and very Small-scale Genset. Therefore, only three types of 

diesel Genset, rated as 50 kW, 30 kW, and 20 kW, were available for diesel-fired 

MEG. 

⎯ It is very unusual to get an NPP that provides a vast amount of thermal supply to 

the demand [133], and NNPs accomplish a large share of thermal demand in this 

study. Hence, the monthly average thermal demand was less than the electric 

demand.   

⎯ The quality of heat generated from the CHP unit is beyond this study. 
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Chapter 4: Proposed System Architectures and 

Energy Management 

The first part of the analysis develops, discusses, and compares the three N-R MHESs that 

are modeled based on the proposed hybridization methods. The second part of the research 

extends the discussion and provides a comparative study between the best nuclear-

renewable hybridized system and a traditional technology-based MEG. Since the study 

focused on off-grid applications, no electric grid is regarded in this study. The proposed 

hybridization methods are explained in section 4.1, 4.2, and 4.3.  

4.1. Direct Coupling 

The direct coupling method is a conventional hybridization means of nuclear reactors and 

RESs. In this coupling, electricity is generated from different RESs and nuclear reactors, 

and the resources simultaneously serve electrical and thermal requirements by utilizing 

only electricity. CHP facilities and by-product commodities are not regarded in this 

configuration. Hence, thermal generation is not available in this infrastructure. As there is 

no direct thermal generation within this HES, the system architecture does not include any 

thermal energy storage. Electrochemical, chemical, electrical, and mechanical energy 

storage systems might be added to store the excess electricity. Fig. 4-1 depicts a system 

schematic of directly coupled N-R MHES.  

Any types of RESs, e.g., solar, wind, hydro, biomass, and geothermal, can be counted 

within the directly coupled HES. One of the conventional renewable sources, geothermal 

energy, is not added in Fig. 4-1 since geothermal energy depends on geographical 

conditions. For the same reason, pumped hydro energy storage is not considered in the case 

study. The thermal demand may involve residential energy demand, district heating, 

calcination plant, and seawater desalination plant. In a directly coupled N-R MHES, the 

electric requirement is met by direct electricity production, while the thermal demand is 

accomplished by Electricity-to-Heat (E2H) unit. E2H unit converts electric energy into 

thermal energy. It should be noted that the required thermal energy to produce biogas is 

obtained from N-R MHESs; this also holds for other coupling methods discussed in the 

following sections.  
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Figure 4-1: Schematic of Direct Coupled N-R MHES 

In the energy management algorithm, a hierarchy is maintained in the charging and 

discharging of storage systems. As stated in the earlier section, hydrogen storage is 

introduced in the proposed HES to reduce EES sizing. It has a higher priority than EES in 

the charging and discharging mechanism. If there is any surplus electricity available, it will 

be stored in the hydrogen tanks, followed by the EES. Similarly, the deficit amount of 

electric and thermal demand will be fulfilled by FCs, followed by the EES. FCs utilize the 

stored hydrogen to generate electricity. After charging the hydrogen tanks and EES, if there 

is any excess electric energy available, it will be consumed by electrical dump loads. The 

energy management strategy is outlined in Fig. 4-2.    
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Figure 4-2: Energy Management Algorithm of Directly Coupled N-R MHES 

Any combination of renewables, energy storages, and loads is plausible within this type of 

N-R MHES. The arrangement of different equipment is not limited to the proposed N-R 

MHES shown in this study. However, energy management fundamentals must be 

maintained in extended or reduced types directly coupled N-R MHESs.  
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4.2. Single Resource and Multiple Product-based 

Coupling 

In this kind of hybridization, electrical and thermal load are served by nuclear reactors and 

Biogas Generators (BGs); no other renewables are involved in this HES. Generated 

electricity from nuclear reactors and biomass directly serves the electric load. In contrast, 

CHP's recovered thermal power from nuclear reactors and BGs is supplied to thermal load. 

Since electrical and thermal generators are available within the HES, this system 

configuration can combine electric, electrochemical, thermal, and mechanical energy 

storage systems. Heat-to-Electricity (H2E) units and E2H units are inserted to ensure the 

ultimate reliability of energy supply. However, the H2E unit and the E2H unit will have 

the least preference and will be operated in extreme cases. The detailed architecture of this 

coupling is shown in Fig. 4-3. 

 

Figure 4-3: Schematic of Single Resource and Multiple Products-based Coupled N-R MHES 

The energy management flowchart of this coupling is shown in Fig. 4-4. For electrical 

energy management, if there is any surplus electrical energy within the system, it will be 

stored in the hydrogen tanks and EES. Still, if there is excess energy after charging the 

hydrogen tanks and EES, and there is a requirement from thermal demand, it will be used 

to serve the thermal load through the E2H unit. Electric dump loads will consume the 
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additional excess electric energy. Likewise, if there is any shortage of electrical energy 

management demand, the hydrogen tanks and EES will be discharged to fulfill the 

electrical need. The H2E unit will be operated if the hydrogen tanks and battery banks 

cannot support the deficit electric demand. Since BGs depend on thermal power, it is 

reasonable to integrate BGs with nuclear generation so that the nuclear reactors can 

partially/fully support the BGs with thermal energy. There are no traditional RESs, such as 

solar, wind, and hydro, in this system architect, except BGs. 

In thermal energy management, the surplus thermal energy will be stored in TES. The 

further excess heat will be supplied to serve electric demand by the H2E unit if there is any 

electrical demand shortage. The rest of the excess thermal power, if available, will be 

consumed in thermal dump loads. On the other hand, the deficit thermal demand will be 

satisfied by discharging of the TES. After discharging the TES, the deficit thermal demand 

will be accomplished by the E2H unit, provided there is excess electric energy. Both H2E 

and E2H units have the least precedence in the energy management algorithm. 

 

Figure 4-4: Energy Management Algorithm of Single Resource and Multiple Products-based Coupled N-R MHES 
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4.3. Multiple Resources and Multiple Product-based 

Coupling 

Multiple Resources and Multiple Products-based coupling is a blended hybridization 

technique of direct coupling and single resource and multiple products-based coupling 

method. In this type of hybridization, electrical load is served by MMRs, PV panels, WTs, 

Hydro Turbines (HTs), and BGs, while thermal load is met by recovered heat from MMRs 

and BGs. The purpose of the rest of the system equipment, e.g., hydrogen tank, FC, EES, 

TES, E2H, and H2E, is similar to the single resource and multiple products-based coupling 

method. CHP and by-product commodities are considered in this type of hybridization 

process. Fig. 4-5 and Fig. 4-6 illustrate the schematic and the energy management strategy, 

respectively, of the "multiple resources and multiple products-based coupling method."  

 

Figure 4-5: Schematic of Multiple Resources and Multiple Products-based Coupled N-R MHES 
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Figure 4-6: Energy Management Algorithm of Multiple Resources and Multiple Products-based Coupled N-R MHES 
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Chapter 5: System Modeling 

5.1. Nuclear Power Plant (Micro Modular Reactor)  

This study principally focuses on the economic model of MMRs. The discussions on the 

licensing processes and the regulations are beyond this study. MMR deployment cost 

depends on several determinants, such as technology, plant design, civil works, licensed 

site location, environmental qualifications, transport facility, financing organization, and 

labor. Transmission and Distribution (T&D) cost is excluded in this research since the T&D 

cost is associated with all types of technology. The deployment of MMRs qualifies for 

Production Tax Credits (PTCs). PTCs are the per kWh tax credit for the selected energy 

system, mainly for RES-based energy systems [134]. The PTCs are available for nuclear 

generation also up to 6000 MWe at USD 0.018/kWh. However, the inclusion of PTCs in 

an MMR cost model has an insignificant impact. Thus, PTCs are not contemplated in this 

study [132].  

The installation cost of a first-of-a-kind any equipment is higher than the next deployment. 

Similarly, the overnight capital cost of an MMR decreases with lessons learned. The 

learning rate is the fraction of cost reduction per doubling the cumulative capacity/unit, 

with experience gained in a production plant [135]. The relationship between lessons 

learned and cost reduction of a technology can be expressed by the following “one-factor 

learning curve” equation [136].  

𝐿𝑅 = 1 − 2−𝑅 Eq. 5-1 

Where, 𝐿𝑅 is the learning rate (%), and R is the rate of cost reduction (%). The exact 

learning rate is always case-specific. The Nth-of-a-kind cost, the stabilized cost of 

technology for a particular learning rate, depends on project locations and design 

complexities. For example, an MMR produced in a factory has a higher learning rate than 

an MMR produced on-site. Besides, the learning rate will be higher in a dedicated MMR 

production factory than a mixed MMR production factory with other commodities.  

Depending on the learning rate, the overnight capital cost of an MMR unit will be 

decreased. Eq. 5-2 represents the relationship between cost reduction and MMR capital 

cost [137].  

𝐶𝑢 = 𝐶1𝑠𝑡 × 𝑁𝑡ℎ
−𝑅 Eq. 5-2 

Where, 𝐶𝑢 is the unit cost of an MMR of 𝑁𝑡ℎ number MMR unit ($), and 𝐶1𝑠𝑡 is the cost 

of the 1st MMR unit ($). Since R is the rate of cost reduction, R is negative in Eq. 5-2.   

The detailed input parameters of the MMR studied in the study are listed in Table 5-1 [132]. 

The input values are collected from several MMR developers.  
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Table 5-1: Specification of the MMR Unit 

Parameters Value 

Reactor size (𝑘𝑊𝑒) 1000 

Plant lifetime (Years) 40 

Core lifetime (Years) 10 

Capacity factor (%) 95 

Nominal overnight capital cost ($/𝑘𝑊𝑒) 15,000 

Fixed O&M cost ($/𝑘𝑊𝑒) 350 

Fuel cost ($/𝑀𝑊ℎ) 10 

Decommissioning cost ($/𝑀𝑊ℎ) 5 

Refueling cost of fuel module ($) 20 million 

Plant efficiency (%) 40 

 

Fig. 5-1 represents the impact of learning rates on the number of MMR deployment. 

Factory fabricated product-based industries, such as automotive, aerospace, and 

shipbuilding, have a learning rate between 15% to 20% [138]. Since MMRs are also 

factory-made products, MMRs’ learning rate is expected to 5%-15%. Besides, the “Korea 

Hydro & Nuclear Power” has encountered a learning rate of 10% for nuclear reactors [139]. 

By considering all viewpoints, a 10% learning rate is considered in this study. The fuel 

price and the O&M cost of MMRs are also expected to reduce with operational experience 

gained. However, since these costs contribute to the total cost insignificantly [140] and the 

overnight cost is the primary driver of the value for MMRs, the fuel cost and the O&M cost 

reduction are not included to avoid undesirable complexities in the study.     

 

Figure 5-1: Capital Cost Reduction for Different Learning Rates 

The analysis incorporates site engineering and MMR licensing cost in the MMR capital 

cost. Due to various technologies and manufacturers, refurbishment cost may not fit in a 

fixed economic model of MMR. Some may replace the entire nuclear reactor, refurbish it 

at the central facilities, refuel it, and then reuse it. On the other hand, some may only refuel 

the reactor in-place and not carry out any refurbishment. Therefore, the refurbishment cost 

is managed into the fixed O&M cost in the analysis rather than handling it separately. The 
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fuel cost, listed in Table 5-1, includes the fuel management cost as well. Decommissioning 

cost is accrued during the operation of MMRs. Hence, it is considered as evenly spread 

over the project lifetime. The refueling cost is the sum of expenses to transport the fuel 

module from the factory to the licensed site and install it at a dedicated location. The 

refueling cost does not include the MMR fuel cost since it is captured in the “Fuel Cost.” 

The cost associated with “exclusion zone” for microreactors is not considered in this study 

since “exclusion zone” concept is near non-existence for microreactors. As research is 

going on to develop regulatory documents for microreactors, detailed requirements and 

specifications on “exclusion zone” are hardly known. However, it can be added in future 

microreactor economic models depending on the required ratio of “exclusion zone” area 

and costs related to the site real estate.  

Nuclear power plant operation is primarily categorized into two sections: baseload 

operation and load-following operation [141]. MMR-based NPPs are also capable of 

operating in both modes. The baseload MMR operation always provides a constant power 

level at its maximum capacity. Baseload MMRs are only unavailable during the 

maintenance or refurbishment period. On the other hand, load-following MMRs change 

their output depending on the system demand variation for the long or short term. Though 

traditional large-scale reactors are not operated in load-following mode, the modern 

microreactor has the capability of load-following operation. Load-following of 

microreactors is performed by adjusting reactor control rods, bypassing steam turbines, and 

making one or multiple units offline [142].    

Load-following MMR is a complex mechanism and likely to face high thermo-mechanical 

stress. Microreactor vendors claim that the main steam supply and reactor coolant systems 

will be affected by the load-following strategy, which may lead to frequent replacements. 

The load-following technique also affects heat exchangers due to the rapid rate of 

temperature change. Small/micro-scale reactors can perform load-following from 100% to 

as low as 20% power. The power ramp of this kind of reactors is linear, and it is around 

5% per minute. Rates of power ramp and duration of low power operation are restricted 

with a defined limit. Another critical issue with load-following is Fuel Pellet Cladding 

Interaction (PCI) at greater than 5% per minute power ramp. But lower reactor power 

density, like a micro-scale reactor, reduces the risk [142]. Adjustment of a baseload system, 

such as NPP, to handle a variable demand causes significant wear and tear on systems and 

increases O&M cost [143]. 

The capital cost is the main contributor to MMR's total deployment cost. The O&M cost 

and the fuel cost do not depend on the amount of generated electricity. Hence, load-

following, reduction of electricity production, is not cost-efficient. However, secondary 

commodities production by excess thermal generation utilizing CHP units may lead to 

improve the investment economics [140]. On the contrary, base-load plant operation is 

straightforward; it always provides a specific amount of energy supply over a period. For 

HESs, the rest of the demand is met by dispatchable generation sources and variable RESs 
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along with energy storage systems. The appropriate energy mix depends on total system 

cost, availability, and optimal system configuration [144]. 

Moreover, load-following NPP is required if a significant portion of energy contribution 

comes from nuclear generation [145]. The energy mix of renewables with nuclear reduces 

a substantial contribution of nuclear generation in HESs. By considering the circumstances 

mentioned above, MMR's baseload operation, linked with electric and thermal energy 

storage, is adopted in this study. The waste heat is recovered and utilized in cogeneration 

to produce useable thermal power.  

5.2. Solar Energy  

Solar energy can be utilized in two ways to generate electricity: Concentrated Solar Power 

(CSP) and Solar Photovoltaic (PV). The solar PV system is considered in this study. Solar 

PV panels absorb photons from solar energy by utilizing semiconductor materials and 

convert the solar energy into Direct-Current (DC). A solar PV system comprises several 

components, such as PV modules, power electronics equipment, and mounting equipment. 

The semiconductor materials used in a PV module include amorphous silicon, 

polycrystalline silicon, monocrystalline silicon,  and cadmium telluride [146].   

Solar power generation by PV panels largely depends on solar irradiance, ambient 

temperature, and PV panel surface area. The PV panel's precise modeling to extract solar 

power from the UOIT location is represented below [147]. 

𝑃𝑃𝑉(𝑡) = 𝑁𝑃𝑉 × ɳ𝑃𝑉  (t) × 𝑃𝑉𝑎𝑟𝑒𝑎 × 𝐺𝑡(𝑡) ∀ 𝑡 ∈ 𝑡𝑡𝑜𝑡𝑎𝑙 Eq. 5-3 

   

ɳ𝑃𝑉(𝑡) = ɳ𝑟𝑒𝑓 × ɳ𝑀𝑃𝑃𝑇 × [1 + 𝛽(𝑇𝑐(𝑡) − 𝑇𝑐𝑟𝑒𝑓)] ∀ 𝑡 ∈ 𝑡𝑡𝑜𝑡𝑎𝑙 Eq. 5-4 

   

𝑇𝑐(𝑡) = 𝑇𝑎(𝑡) + (
𝑁𝑂𝐶𝑇 − 20

800
) × 𝐺𝑡(𝑡) ∀ 𝑡 ∈ 𝑡𝑡𝑜𝑡𝑎𝑙 Eq. 5-5 

Where,  𝑁𝑃𝑉 is the number of the PV panels, ɳ𝑃𝑉 (t) is the instantaneous PV panel 

efficiency (%), 𝑃𝑉𝑎𝑟𝑒𝑎 is the area occupied by the unit PV panel (𝑚2), 𝐺𝑡(𝑡) is the solar 

irradiance (𝑘𝑊/𝑚2), ɳ𝑟𝑒𝑓 is the reference efficiency of the PV panel (%), ɳ𝑀𝑃𝑃𝑇 is the 

efficiency of the Maximum Power Point Tracking (MPPT) unit (%), 𝛽 is the temperature 

coefficient (℃−1), 𝑇𝑎(𝑡) is the ambient temperature (℃), 𝑇𝑐𝑟𝑒𝑓 is the PV panel reference 

temperature (℃), and 𝑁𝑂𝐶𝑇 is the nominal operating cell temperature (℃).  

Table 5-2 lists a detailed specification of the solar PV panel considered in this study. 

Disposal cost of PV panels after completion of lifetime is not considered. PV panels can 

be installed either on roof-top or other dedicated places. Therefore, real estate cost related 

to PV panel is not also considered in this study.    
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Table 5-2: Parameters of the Solar PV Panel 

Parameter Value Reference 

Area Occupied by unit PV panel (𝑚2) 5 N/A 

Capital Cost ($/kW) 1200 [148] 

Replacement Cost ($/kW) 1000 [148] 

O&M Cost ($/kW/Year) 12 [149] 

Lifetime (Years) 25 [150] 

Reference Efficiency of PV Panel (%) 17.3 [151] 

Efficiency of the MPPT unit (%) 95 [151] 

Temperature Coefficient (℃−1) -0.41 [151] 

PV panel reference temperature (°C) 25 [151] 

Nominal Operating Cell Temperature (°C) 45 [151] 

 

5.3. Wind Energy 

The wind is abounding in the environment, and it has great potential to generate electricity 

with zero fuel cost. To determine the exact amount of wind power derived by a WT, the 

wind speed is first estimated at the hub height for the project site. Eq. 5-6 calculates the 

wind speed at hub altitude [152].  

𝑉(𝑡) = 𝑉𝑟𝑒𝑓(𝑡) × (
ℎℎ𝑢𝑏
ℎ𝑟𝑒𝑓

)

𝑎

 ∀ 𝑡 ∈ 𝑡𝑡𝑜𝑡𝑎𝑙 Eq. 5-6 

Where, 𝑉(𝑡) is the calculated wind speed (𝑚/𝑠), 𝑉𝑟𝑒𝑓(𝑡) is the wind speed at the 

anemometer height (𝑚/𝑠), ℎℎ𝑢𝑏 is the hub height (m), ℎ𝑟𝑒𝑓 is the anemometer height (m), 

and 𝑎 is the power-law exponent.  

The wind speed measured at the hub height is used to calculate the actual wind power 

generation. The system designers must comply with the wind turbine power curve and wind 

speed to select the WT. Wind turbine power curves provide an initial idea of what size the 

WT should have. Depending on the maximum, minimum, and average wind speed, the 

designers select the WTs. A typical power curve of a WT is given in Fig. 5-2. 
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Figure 5-2: A Typical Power Curve of Wind Turbine  

Wind power generated by the selected WT is measured from the following equation [153].  

𝑃𝑊(𝑡) =

{
 

 
0,

𝑃𝑟

𝑉𝑟
3 − 𝑉𝑚𝑖𝑛

3 × 𝑉3(𝑡) −
𝑉𝑚𝑖𝑛
3

𝑉𝑟
3 − 𝑉𝑚𝑖𝑛

3 × 𝑃𝑟

𝑃𝑟,

, 

𝑉(𝑡) < 𝑉𝑚𝑖𝑛, 𝑉 > 𝑉𝑚𝑎𝑥 

𝑉𝑚𝑖𝑛 ≤ 𝑉(𝑡) ≤ 𝑉𝑟      

  𝑉𝑟 ≤ 𝑉(𝑡) ≤   𝑉𝑚𝑎𝑥 

Eq. 5-7 

Where, 𝑉𝑚𝑖𝑛 is the minimum wind speed (𝑚/𝑠), 𝑉𝑚𝑎𝑥 is the maximum wind speed (𝑚/𝑠), 

𝑉𝑟 is the rated wind speed (𝑚/𝑠), and 𝑃𝑟 is the rated power of the WT (𝑘𝑊). 

Table 5-3 presents different parameters of the WT studied in this research. 

Decommissioning cost of WTs is not regarded in this study. Since installation of WTs 

depends on project location and user requirements, real estate cost associated with WTs is 

not considered here.  

Table 5-3: Parameters of the Wind Turbine 

Parameter Value Reference 

Nominal Capacity (kW) 10 N/A 

Capital Cost ($/kW) 1130 [148] 

Replacement Cost ($/kW) 1130 [148] 

O&M Cost ($/kW/Year) 48 [154] 

Lifetime (Years) 25 [155] 

Hub Height (m) 16 [156] 

Anemometer Height (m) 50 [125] 

Minimum wind speed (m/s) 2.75 [156] 

Maximum wind speed (m/s) 20 [156] 

Rated wind speed (m/s) 6 [156] 

Power Law Exponent 1/7 [152] 
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5.4. Hydro Power (Water Energy) 

A hydropower plant can operate at both baseload and load-following mode. Hydroelectric 

plants can change the power output instantly by opening turbine valves [145]. A run-of-

river hydroelectric plant is considered in this study with a baseload mode of operation. In 

a run-of-river hydro, the natural streamflow of a river is redirected downwards by 

penstocks, and the penstock heads to the power generating house (turbine house). 

Streamflow is utilized to generate electricity by using turbines and generators. The used 

water is fed back to the main watercourse further downstream. A run-of-river system is 

also ecology-friendly since fishes can bypass through ladders of the system [157]. A 

schematic of a run-of-river hydroelectric plant is drawn in Fig. 5-3. 

 

Figure 5-3: Run-of-River System 

The monthly mass flow rate of Lake Ontario, located near the UOIT campus, for one year 

is collected and synthesized for the simulation. The maximum nominal capacity of the 

hydro plant is 1000.64 kW in this study. The mass flow rate data is scaled to ensure the 

nominal sizing of the hydroelectric plant. The nominal power of the hydropower plant can 

be determined from the following equations [158]. 

𝑃ℎ(𝑡) =  𝐻𝑒𝑓𝑓 × 𝜌𝑤 × 𝑔 × 𝑄𝑡𝑢𝑟𝑏𝑖𝑛𝑒(𝑡) × 𝜂𝐻𝑇 ∀ 𝑡 ∈ 𝑡𝑡𝑜𝑡𝑎𝑙 Eq. 5-8 

   

𝐻𝑒𝑓𝑓 = 𝐻𝑎(1 − 𝐻𝑙𝑜𝑠𝑠)  Eq. 5-9 

Where, 𝐻𝑒𝑓𝑓 is the effective water head (𝑚), 𝜌𝑤 is the water density (1000 
𝑘𝑔

𝑚3
), 𝑔 is the 

gravitational constant (9.81 
𝑚

𝑠2
), 𝑄𝑡𝑢𝑟𝑏𝑖𝑛𝑒(𝑡) is the mass flow rate (

𝑚3

𝑠
) at time step 𝑡, 𝜂𝐻𝑇 

is the HT efficiency (%), 𝐻𝑎 is the available water head (𝑚), and 𝐻𝑙𝑜𝑠𝑠 is the pipe head loss 

(%).  

The mass flow rate or HT flow rate is the amount of water that passes through the HTs. In 

this study, the mass flow rate is calculated using the following equation. 
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𝑄𝑡𝑢𝑟𝑏𝑖𝑛𝑒 = {

0,
𝑄𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒,
𝑄𝑚𝑎𝑥,

 

𝑄𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 < 𝑄𝑚𝑖𝑛 

𝑄𝑚𝑖𝑛 ≤ 𝑄𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 ≤ 𝑄𝑚𝑎𝑥      

𝑄𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 >  𝑄𝑚𝑎𝑥 

Eq. 5-10 

Where, 𝑄𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 is the available mass flow rate to the HTs (
𝑚3

𝑠
), 𝑄𝑚𝑖𝑛 is the available 

minimum mass flow rate to the HTs (
𝑚3

𝑠
), and 𝑄𝑚𝑎𝑥 is the available maximum mass flow 

rate to the HTs (
𝑚3

𝑠
). 

A detailed specification of the hydroelectric plant is shown in Table 5-4.  

Table 5-4: Parameters of the Run-of-River System 

Parameter Value Reference 

Nominal Capacity (kW) 1000.64 N/A 

Capital Cost ($/kW) 2500 [159] 

Replacement Cost ($/kW) 250 [159] 

O&M Cost ($/kW/Year) 100 [159] 

Lifetime (Years) 40 [159] 

Efficiency (%) 80 [160] 

Pipe Head Loss (%) 15 [158] 

Available Water Head (m) 25 [158] 

Design Flow Rate (m3/s) 5.1 N/A 

Minimum Mass Flow Ratio (%) 50 [158] 

Maximum Mass Flow Ratio (%) 150 [158] 

 

5.5. Biomass Energy  

Biogas is produced in the Anaerobic Digestion (AD) process, where microorganisms split 

the organic matters into smaller chemical substances in the absence of oxygen. The AD 

process produces biogas as well as digestate as a by-product [161]. It could be a suitable 

replacement for natural gas. It could also be a potential solution for reducing GHG emission 

projects [162]. In the biogas generation process, manure is mixed with water to produce 

slurry. The slurry is pumped to deliver it in a digester and heated in the digester at a specific 

temperature to generate biogas.  

A schematic of a biogas production plant from cow manure is outlined in Fig. 5-4 [163].   

A digester is an insulated, sealed, and concrete-made vessel. A gas storage is integrated 

with digesters to store the generated biogas. Therefore, the digester’s roof is made of a 

flexible double membrane roof. The biogas generated in the digester is cooled down and 

supplied to CHP units. The CHP unit utilizes the biogas to produce electricity and heat 

energy. The generated electric power serves the electrical demand. The thermal energy is 

mainly used to heat the digester, and the rest of the thermal energy is used for heating or 

other thermal applications  
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Figure 5-4: Schematic of the Biogas Plant with CHP 

The study considers a farm-based small-scale biogas plant. The biogas is produced from 

cow manure, and the dairy farm consists of 150 cows. The nominal capacity of the BG is 

65.10 kW. Eq. 5-11 can estimate the biogas production of the dairy farm in a year [164]. 

𝐵𝐺 = 𝑁𝑖 ×𝑚𝑖 × 𝑘𝐷𝑆𝑖 × 𝑘𝑂𝑆𝑖 × 𝑣𝐵𝑖 × 365 Eq. 5-11 

Where, 𝐵𝐺 is the amount of biogas production (𝑚3/𝑦𝑒𝑎𝑟), 𝑁𝑖 is the number of animals in 

a specific group, 𝑚𝑖 is the manure produced per animal (37 kg/day) [165], 𝑘𝐷𝑆𝑖 is the dry 

substance content in the manure of particular animal (0.23) [163], 𝑘𝑂𝑆𝑖 is the organic 

substance content in dry substance (0.85) [163], and  𝑣𝐵𝑖 is the specific biogas output from 

the organic substance (0.3 𝑚3/𝑘𝑔) [163].  

Total energy production from biogas is calculated from the following equation.  

𝐸 = 𝐵𝐺 × 𝑒𝐵𝑖 Eq. 5-12 

Where, 𝐸 is the energy generated from biogas (𝑘𝑊ℎ/𝑦𝑒𝑎𝑟), and 𝑒𝐵𝑖 𝑖𝑠 𝑡ℎ𝑒 specific heat 

energy obtained from manure (6 𝑘𝑊ℎ/𝑚3) [166]. The amount of energy generated from 

Eq. 5-12 is the input energy of the CHP unit.  

The expression of electric power and thermal power generated from the CHP unit can be 

presented as follows, respectively.  

𝑃𝑏𝑖𝑜,𝑒𝑙𝑒𝑐(𝑡) =
𝐸 × 𝐾𝑒
𝑇𝑐

 ∀ 𝑡 ∈ 𝑡𝑡𝑜𝑡𝑎𝑙 Eq. 5-13 
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𝑃𝑏𝑖𝑜,𝑡ℎ𝑒𝑟(𝑡) =
𝐸 × 𝐾𝑡
𝑇𝑐

 ∀ 𝑡 ∈ 𝑡𝑡𝑜𝑡𝑎𝑙 Eq. 5-14 

 Where, 𝑃𝑏𝑖𝑜,𝑒𝑙𝑒𝑐(𝑡) and 𝑃𝑏𝑖𝑜,𝑡ℎ𝑒𝑟(𝑡) are the electric and thermal power output of the CHP 

unit (kW), respectively, 𝐾𝑒 and 𝐾𝑡 are the electric and thermal efficiency of the CHP unit 

(%), respectively, and 𝑇𝑐 is the number of operational hours of the plant during the year 

(4380 hours/year). The electrical efficiency of a biogas plant usually varies from 30% to 

40%, while the thermal efficiency is 35-55% [167].  

The AD unit requires heat energy to increase and maintain the digester temperature at a 

certain level. Eq. 5-15 measures the heat energy needed by the digester. As a rule of thumb, 

30% extra energy is added to Eq. 5-15 by considering the losses [168].  

𝑄𝑑 = 𝑀 × 𝑠𝑠𝑢𝑏 × (𝑇𝑑 − 𝑇sub ) × 1.3 Eq. 5-15 

Where, 𝑄𝑑 is the required thermal energy to heat the substrate material (kJ/year), 𝑀 is the 

total mass flow rate that is a combination of manure and water (kg/year),  𝑠𝑠𝑢𝑏 is the 

specific heat capacity of substrate/feed (𝑘𝐽. 𝑘𝑔−1.℃−1) [169], 𝑇𝑑  is the required 

temperature in digester (℃), and 𝑇sub  is the substrate/feed temperature (℃). The mixture 

of manure and water has a ratio of 1:1 to maintain 12% total dry solid content in the AD 

process [170]. As a rule of thumb, the feed's specific heat is the value of water 

(4.18 𝑘𝐽. 𝑘𝑔−1.℃−1). The slurry, mixture of manure and water, is pumped and kept in the 

digester at 35 ℃ [171]. The minimum substrate/feed temperature implies the maximum 

heat energy consumption in the digester. Hence, 0℃ is assumed as the substrate/feed 

temperature in this study, which could be the lowest substrate/feed temperature.  

The capital cost of the biogas plant incorporates AD unit cost, CHP unit cost, and other 

cost. The AD unit cost is the summation of construction cost of the digester, mixer, and 

accessories. The purchase cost and installation cost of the CHP unit are merged in the total 

CHP unit cost. The “others cost” covers civil work, management cost, backup storage cost, 

safety system, piping, and grid connection cost. The replacement cost is the summation of 

scheduled maintenance cost, labor cost, and insurance cost.  

Table 5-5 outlines the different parameters of the biogas plant.  

Table 5-5: Parameters of the Biogas Plant 

Parameter Value Reference 

Nominal Capacity (kW) 65.10 N/A 

Capital Cost ($/kW) 4000 [172] 

Replacement Cost ($/kW) 2500 [164] 

O&M Cost ($/kW/Year) 300 [172] 

Lifetime (Years) 25 [172] 

Electric Efficiency (%) 40 [167] 

Thermal Efficiency (%) 30 [167] 
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In this study, the BG is performed when the solar irradiance becomes insignificant. The 

BG provides uniformity on the generation side. Usually, solar radiation reaches zero in the 

evening time and starts increasing in the morning. Therefore, the BG is scheduled from 

7.00 p.m. to 7.00 a.m. to produce electricity from biogas. If there is any shortage of required 

thermal energy to heat the digester, the deficit thermal energy will be supplied from N-R 

MHESs.  

5.6. Electrolyzer, Hydrogen Tank, and Fuel Cell (FC) 

Alternative energy storage, other than battery storage, is considered in this study to reduce 

the battery sizing. Hydrogen storage is installed in the studied HESs to store excess 

electricity in the form of hydrogen. In this type of energy storage, the surplus electricity is 

used to produce hydrogen by electrolyzers. An electrolyzer is an electrochemical device, 

which dissociates water into oxygen and hydrogen by utilizing electrical current. 

Electrolyzers produce hydrogen by low-temperature electrolysis processes and stores in 

hydrogen tanks. FCs use hydrogen to generate electricity if there is energy need in N-R 

MHESs. The amount of hydrogen produced by the electrolyzer is formulated as follows 

[173], [174]. 

𝐻𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛(𝑡) = {𝐻𝑡𝑎𝑛𝑘(𝑡) − 𝐻𝑡𝑎𝑛𝑘(𝑡 − 1)}

= ɳ𝑒𝑙𝑒𝑐 × 𝐸𝑒𝑙𝑒𝑐(𝑡) ×
𝐻2 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 (𝑘𝑔/𝑚

3)

𝐻2 ℎ𝑒𝑎𝑡𝑖𝑛𝑔 𝑣𝑎𝑙𝑢𝑒(𝑘𝑊ℎ/𝑚
3)

 
∀ 𝑡 ∈ 𝑡𝑡𝑜𝑡𝑎𝑙 Eq. 5-16 

Where, 𝐻𝑡𝑎𝑛𝑘(𝑡) is the amount of hydrogen (kg) at time 𝑡,  ɳ𝑒𝑙𝑒𝑐 is the electrolyzer 

efficiency (%), 𝐸𝑒𝑙𝑒𝑐(𝑡) is the input energy to the electrolyzer (𝑘𝑊ℎ), 𝐻2 heating value is 

3.4 𝑘𝑊ℎ/𝑚3 in standard condition, and  𝐻2 density is 0.09 𝑘𝑔/𝑚3.  

Electric energy produced by the FC is determined from the following equation [174]:  

𝐸𝐹𝐶(𝑡) = {𝐻𝑡𝑎𝑛𝑘(𝑡 − 1) − 𝐻𝑡𝑎𝑛𝑘(𝑡)} × ɳ𝐹𝐶

×
𝐻2 ℎ𝑒𝑎𝑡𝑖𝑛𝑔 𝑣𝑎𝑙𝑢𝑒(𝑘𝑊ℎ/𝑚

3)

𝐻2 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 (𝑘𝑔/𝑚
3)

 
∀ 𝑡 ∈ 𝑡𝑡𝑜𝑡𝑎𝑙 Eq. 5-17 

 Where, ɳ𝐹𝐶 is the efficiency of the FC (%).   

A detailed specification of the FC, electrolyzer, and hydrogen tank are outlined in Table 5-

6, Table 5-7, and Table 5-8, respectively.  

Table 5-6: Parameters of the Fuel Cell 

Parameter Value Reference 

Capital Cost ($/kW) 600 [175] 

Replacement Cost ($/kW) 500 [175] 

O&M Cost ($/kW) 0.0153 [175] 

Lifetime (Years) 4.5 [175] 

Efficiency (%) 50 [176] 
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Table 5-7: Parameters of the Electrolyzer 

Parameter Value Reference 

Capital Cost ($/kW) 1500 [177] 

Replacement Cost ($/kW) 1000 [177] 

O&M Cost ($/kW/Year) 20 [177] 

Lifetime (Years) 15 [175] 

Efficiency (%) 80 [178] 

 

Table 5-8: Parameters of the Hydrogen Tank 

Parameter Value Reference 

Rated Capacity (kg) 25 N/A 

Capital Cost ($/kg) 1200 [177] 

Replacement Cost ($/kg) 800 [177] 

O&M Cost ($/kg/Year) 15 [177] 

Lifetime (Years) 25 [177] 

Minimum SOC (%) 5 N/A 

Maximum SOC (%) 100 N/A 

 

5.7. Energy Storage System  

5.7.1. Electrochemical Energy Storage (EES) 

EES stores electric energy in the form of chemicals and supplies as electricity. EES can be 

categorized as conventional batteries and flow batteries. The selection and the 

compatibility of either EES or TES entirely depend on technical advancements, 

environmental impacts, economic feasibility, policy and market constraints, and logistic 

limitations. It can not be said in general indeed for single storage to be the best one [179]. 

Therefore, selection and recommendation of energy storage are beyond this study. A 

generic EES is considered and model in this research.  

The battery capacity of a system depends on the demand and the days of autonomy. The 

following equation can measure the EES (battery) capacity (kWh) [121]. 

𝐸𝐸𝑆𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 =
𝑃𝐸𝐿,𝑎𝑣𝑔 × 𝐴𝐷 ×𝑁𝑏𝑎𝑡

𝐷𝑂𝐷 × ɳ𝑖𝑛𝑣 × ɳ𝐸𝑆𝑆
 Eq. 5-18 

Where, 𝑃𝐸𝐿,𝑎𝑣𝑔 is the average electric demand (𝑘𝑊), 𝐴𝐷 is the autonomy days (typically 3 

to 5 days), 𝑁𝑏𝑎𝑡 is the number of the battery bank, DOD is the depth of discharge of the 

battery (%), ɳ𝑖𝑛𝑣 is the inverter efficiency (%), and ɳ𝐸𝑆𝑆 is the battery efficiency (%).  

The maximum and minimum SOC of the EES are subjected to the following equations 

[174].  
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𝐸𝐸𝑆𝑆𝑂𝐶,𝑚𝑎𝑥 = 𝐸𝐸𝑆𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 × 𝐷𝑂𝐷 Eq. 5-19 

  

𝐸𝐸𝑆𝑆𝑂𝐶,𝑚𝑖𝑛 = 𝐸𝐸𝑆𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 × (1 − 𝐷𝑂𝐷) Eq. 5-20 

The following equations describe the EES charging and discharging scheme (17) and (18), 

respectively. 

𝐸𝐸𝐸𝑆(𝑡) ≤ 𝐸𝐸𝐸𝑆
𝑟𝑎𝑡𝑒𝑑 ∀ 𝑡 ∈ 𝑡𝑡𝑜𝑡𝑎𝑙 Eq. 5-21 

   

𝐸𝐸𝐸𝑆(𝑡) = 𝐸𝐸𝐸𝑆(𝑡 − 1) + 𝐸𝐸𝐸𝑆,𝑖𝑛(𝑡)ɳ𝐸𝐸𝑆 ∀ 𝑡 ∈ 𝑡𝑡𝑜𝑡𝑎𝑙 Eq. 5-22 

   

𝐸𝐸𝐸𝑆(𝑡) = 𝐸𝐸𝐸𝑆(𝑡 − 1) −
𝐸𝐸𝐸𝑆,𝑜𝑢𝑡(𝑡)

ɳ𝐸𝐸𝑆
 ∀ 𝑡 ∈ 𝑡𝑡𝑜𝑡𝑎𝑙 Eq. 5-23 

Where, 𝐸𝐸𝐸𝑆
𝑟𝑎𝑡𝑒𝑑 is the rated energy of the battery (𝑘𝑊ℎ), 𝐸𝐸𝐸𝑆,𝑖𝑛(𝑡) is the available battery 

charging energy (𝑘𝑊ℎ), ɳ𝐸𝐸𝑆 is the battery efficiency (%), and 𝐸𝐸𝐸𝑆,𝑜𝑢𝑡(𝑡) is the possible 

battery discharging energy (𝑘𝑊ℎ). 

Parameters of the EES studied in this research are listed in table 5-9.  

Table 5-9: Parameters of the EES 

Parameter Value Reference 

Capital Cost ($/kWh) 398 [175] 

Replacement Cost ($/kWh) 398 [175] 

O&M Cost ($/kWh/Year) 10 [179] 

Lifetime (Years) 5 [175] 

Efficiency (%) 85 [180] 

Days of Autonomy (Days) 3 [121] 

Depth of Discharge (%) 80 N/A 

Inverter Efficiency (%) 95 [181] 

 

5.7.2. Thermal Energy Storage (TES) 

TES is mainly classified into two categories based on types of heat: sensible heat and latent 

heat. Sensible heat-based TES covers Underground Thermal Energy Storage (UTES), 

Hot/Cold water storage, and solid media storage. Latent heat-based TES includes 

Thermochemical Storage (TCS), Molten Salts, Liquid Air Energy Storage (LAES), and 

Phase Change Materials (PCMs) [179].  

The selection of TES wholly depends on energy and power capacity, energy and power 

capacity cost, discharge time, response time, storage degradation rate, energy and power 

density, specific energy and power, round-trip efficiency, cycle life, technology lifetime, 



 

79 

O&M cost, technology readiness level, and storage output temperature. By considering all 

determinants, a generic hot and cold-water TES is adopted in this study. A hot and cold-

water TES has reasonable expenses, short discharge and response time, moderate round-

trip efficiency, average technology lifetime, and medium-level technology readiness. 

Parameters of the TES with load-following capability are listed in Table 5-10. The TES 

charging and discharging scheme can be expressed by Eq. 5-25 and Eq. 5-26, sequentially 

[182].  

𝐸𝑇𝐸𝑆(𝑡) ≤ 𝐸𝑇𝐸𝑆
𝑟𝑎𝑡𝑒𝑑 ∀ 𝑡 ∈ 𝑡𝑡𝑜𝑡𝑎𝑙 Eq. 5-24 

   

𝐸𝑇𝐸𝑆(𝑡) = 𝐸𝑇𝐸𝑆(𝑡 − 1) + 𝐸𝑇𝐸𝑆,𝑖𝑛(𝑡)ɳ𝑇𝐸𝑆 ∀ 𝑡 ∈ 𝑡𝑡𝑜𝑡𝑎𝑙 Eq. 5-25 

   

𝐸𝑇𝐸𝑆(𝑡) = 𝐸𝑇𝐸𝑆(𝑡 − 1) −
𝐸𝑇𝐸𝑆,𝑜𝑢𝑡(𝑡)

ɳ𝑇𝐸𝑆
 ∀ 𝑡 ∈ 𝑡𝑡𝑜𝑡𝑎𝑙 Eq. 5-26 

Where, 𝐸𝑇𝐸𝑆
𝑟𝑎𝑡𝑒𝑑 is the rated energy of the TES (𝑘𝑊ℎ), 𝐸𝑇𝐸𝑆,𝑖𝑛(𝑡) is the available charging 

energy of the TES (𝑘𝑊ℎ), ɳ𝑇𝐸𝑆 is the efficiency of the TES (%), and 𝐸𝑇𝐸𝑆,𝑜𝑢𝑡(𝑡) is the 

output energy of the TES (𝑘𝑊ℎ).  

Table 5-10: Parameters of the TES 

Parameter Value Reference 

Capital Cost ($/kWh) 5 [183] 

Replacement Cost ($/kWh) 5 [183] 

Lifetime (Years) 30 [184] 

Efficiency (%) 80 [185] 

Days of Autonomy (Days) 2 N/A 

Depth of Discharge (%) 80 N/A 

 

5.8. H2E unit 

H2E unit is considered to generate electricity from excess thermal power if required by the 

electric load. The H2E unit will be operated when there is no alternative to serve the 

electrical demand except excess thermal energy. The H2E unit consists of steam generators, 

steam turbines, and electric generators. The steam generator produces high-pressure steam, 

which is supplied to the steam turbine. The steam turbine is coupled with an electric 

generator. The high-pressure steam is used to rotate the turbine, and electricity is eventually 

produced from the electric generator. The following equations measure the electric power 

generated from the H2E unit.  

𝐻2𝐸(𝑡) = ɳ𝐻2𝐸 × 𝑃𝑒𝑥𝑐𝑒𝑠𝑠(𝑡) ∀ 𝑡 ∈ 𝑡𝑡𝑜𝑡𝑎𝑙 Eq. 5-27 
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ɳ𝐻2𝐸 = ɳ𝑆𝐺 × ɳ𝑆𝑇 × ɳ𝐸𝐺  Eq. 5-28 

Where,  ɳ𝑆𝐺 is the steam generator efficiency (%), ɳ𝑆𝑇 is the steam turbine efficiency (%), 

ɳ𝐸𝐺 is the electric generator efficiency (%), and 𝑃𝑒𝑥𝑐𝑒𝑠𝑠(𝑡) is the surplus thermal power at 

time step 𝑡.  

The technical and economic parameters of the H2E unit are listed in Table 5-11.   

Table 5-11: Parameters of the H2E Unit 

Parameter Value Reference 

Capital Cost ($/kW) 1932 [186], [187] 

Replacement Cost ($/kW) 1932 [186], [187] 

O&M Cost ($/kW/Year) 0.9 [186], [187] 

Lifetime (Years) 15 [186], [187] 

Steam Generator Efficiency (%) 40 [188] 

Steam Turbine Efficiency (%) 40 [189] 

Electric Generator Efficiency (%) 95 [190] 

 

5.9. E2H Unit 

An E2H is also regarded in this research to produce thermal energy from surplus electric 

power. The E2H unit will come to the operation in extreme cases, similar to the H2E unit. 

The working principle of the E2H unit is identical to an electric boiler. The surplus 

electrical energy is used to serve the deficit thermal demand by the E2H system if there is 

any shortage in meeting the thermal power. The thermal power production by the E2H unit 

can be represented by Eq. 5-29.  

𝐸2𝐻(𝑡) = ɳ𝐸2𝐻 × 𝑇𝑒𝑥𝑐𝑒𝑠𝑠(𝑡) ∀ 𝑡 ∈ 𝑡𝑡𝑜𝑡𝑎𝑙 Eq. 5-29 

Where,  ɳ𝐸2𝐻 is the efficiency of E2H unit (%), and 𝑇𝑒𝑥𝑐𝑒𝑠𝑠(𝑡) is the surplus electric power 

at time step 𝑡.   

Table 5-12 shows parameters of the E2H unit considered here.  

Table 5-12: Parameters of the E2H Unit 

Parameter Value Reference 

Capital Cost ($/kW) 54 [191] 

Replacement Cost ($/kW) 54 [191] 

O&M Cost ($/kW/Year) 0 [191] 

Lifetime (Years) 20 [191] 

Efficiency (%) 98 [192] 
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5.10. Diesel Generator  

Diesel Gensets are usually diesel engines that are coupled with generators. In this study 

(the second part of the analysis), diesel generators are used as a surrogate component of 

the conventional fossil-fired energy-generating technology to compare the MMR-based 

MEG for off-grid applications. Standalone off-grid RES-based HESs are hardly capable of 

fulfilling the medium/large-scale energy demand [158]. A typical fossil-fired microgrid 

includes diesel generators as a back-up power supply when renewables are unavailable. 

But diesel generators are included in this study to operate accompanying with renewables. 

The surplus energy generated from the MEGs will be stored in the EES. PSO finds out the 

minimum number of Gensets that need to be included within the system with the lowest 

NPC.  

MMRs will be replaced in the second part of this study by different diesel Gensets to meet 

the load. Three types of small size Gensets are chosen for this study rather than using a 

large-size Genset. Large-scale Genset contributes to an extensive amount of capital cost, 

installation space, and fuel cost. Optimal sizing of diesel Gensets in a hybrid energy system 

requires the assessment of daily and yearly demand and growth rate. The peak demand of 

a remote community is typically 5 to 10 times higher than the average demand [193]. So, 

if the peak demand is considered in the optimal sizing of Gensets, the system will be 

oversized. Research reveals that it is economical and reliable to use different sizes of 

Gensets rather than using several equal-sized Gensets to optimize the Genset-loading and 

obtain maximum fuel efficiency [194]. The typical size of a Genset that is transported to 

remote locations is within 15-2500 kW. The smaller size of Gensets is also simpler to install 

[195]. Moreover, a small-size generator has less operating and fuel cost than a large-scale 

generator [196]. Small-size generators also need to regulate the voltage with inverters and 

battery chargers’ output [197]. Therefore, by considering all perspectives, a trade-off is 

made between very large-scale Gensets and very small-scale Gensets. This study considers 

three reduced-sized diesel Gensets, rated as 50 kW, 30 kW, and 20 kW, by observing the 

system demand. When diesel Gensets work with renewables, it is typically designed to run 

at 80-100% of their rated power [198]. The diesel Gensets, considered in this study, run at 

the rated power to maximize the Genset efficiency. Light-load operation of diesel Gensets 

can cause premature aging, and it also stimulates the risk of machine failure [194]. A 

typical efficiency curve of a diesel generator is presented in Fig. 5-5 [199].  
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Figure 5-5: Efficiency Curve of a Diesel Genset  

The following equation calculates the fuel consumption rate of the diesel generators [194]. 

𝐹 = 𝐹𝑖 × 𝑃𝑟𝑎𝑡𝑒𝑑 + 𝐹𝑠 × 𝑃𝑜𝑢𝑡 Eq. 5-30 

Where, 𝐹 is the rate of fuel consumption (L/hr), 𝐹𝑖 is the fuel curve intercept coefficient of 

the diesel generator (L/hr/kWrated), 𝑃𝑟𝑎𝑡𝑒𝑑 is the rated capacity of the diesel generator (kW),  

𝐹𝑠 is the fuel curve slope of the diesel generator (L/hr/kWout), and 𝑃𝑜𝑢𝑡 is the diesel 

generator output (kW).   

A detailed specification of the diesel generators considered here is recorded in Table 5-13.  

Table 5-13: Parameters of the Diesel Generators 

Parameter Value Reference 

Nominal Capacity (kW) 50, 30, 20 N/A 

Capital Cost ($/kW) 800 [200] 

Replacement Cost ($/kW) 800 [200] 

O&M Cost ($/kW/Year) 35 [200] 

Lifetime (Years) 2.5 [200] 

Fuel Curve Intercept Coefficient (L/hr/kWrated) 0.011 [201] 

Fuel Curve Slope (L/hr/kWout) 0.244 [201] 

Diesel Price ($/L) 0.719 [202] 

Electric Efficiency (%) 40 N/A 
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Chapter 6: Simulation Model 

This section formulates the optimization model to find out the optimal configuration of 

different HESs. The chapter also discusses the decision variables, the optimization 

constraints, and the optimization problem's boundary conditions. Three different systems 

are optimized based on three proposed hybridization methods. A diesel-fired MEG is also 

optimized to analyze and compare with the best configured N-R MHES. The optimization 

is carried out based on the energy management algorithms outlined in Chapter 4.  

6.1. Objective Function 

A single-objective N-R MHES planning problem is addressed in this study to minimize the 

system NPC. The optimization problem formulation consolidates technical and economic 

parameters. The objective function is the economic KPI (NPC), whereas the optimization 

constraints include LPSP, SEF, and other technical parameters. To obtain the optimal 

system configuration with minimal NPC, it is necessary to formulate the fitness function 

for optimization. The fitness function is the summation of NPC of all system components. 

The objective function of the minimization problem can be defined as follows. 

min 𝑓𝑁𝑃𝐶 =∑𝑁𝑃𝐶𝑖
𝑖∈𝐺

  Eq. 6-1 

Where, 𝐺 is the set of system component and 𝑁𝑃𝐶𝑖 is the NPC of the ith component. The 

system component includes PV panel, WT, MMR, HT, BG, EES, TES, FC, hydrogen tank, 

electrolyzer, E2H, and H2E unit. 

The NPC is the sum of the present worth of total capital cost, replacement cost, O&M cost, 

and fuel cost. Except for the nuclear reactor, the NPC of other system components can be 

calculated by the following equation. 

𝑁𝑃𝐶𝑖 = 𝐶𝑐𝑎𝑝,𝑖 + 𝐶𝑟𝑒𝑝,𝑖 + 𝐶𝑂&𝑀,𝑖 + 𝐶𝑓𝑢𝑒𝑙,𝑖 − 𝐶𝑠𝑎𝑙𝑣,𝑖 ∀𝑖 ∈ 𝐺 Eq. 6-2 

Where, 𝐶𝑐𝑎𝑝,𝑖 is the capital cost ($), 𝐶𝑟𝑒𝑝,𝑖 is the total replacement cost (present worth) ($), 

𝐶𝑂&𝑀,𝑖 is the total operation and maintenance cost (present worth) ($), 𝐶𝑓𝑢𝑒𝑙,𝑖 is the present 

worth of fuel cost (present worth) ($), and 𝐶𝑠𝑎𝑙𝑣,𝑖 is the salvage value of the ith component 

($). 

The capital cost of all equipment occurs at the commencement of the project lifetime. It is 

calculated once in the entire project lifetime. The capital cost of any component is 

calculated as follows. 

𝐶𝑐𝑎𝑝,𝑖 = 𝑁𝑐𝑜𝑚,𝑖 × 𝐶𝑐𝑎𝑝,𝑢𝑛𝑖𝑡(𝑖) ∀𝑖 ∈ 𝐺 Eq. 6-3 

Where, 𝑁𝑐𝑜𝑚,𝑖 is the number of equipment, and 𝐶𝑐𝑎𝑝,𝑢𝑛𝑖𝑡(𝑖) is the capital cost of the unit 

component ($).  
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The replacement cost occurs at the completion of the component lifetime. The number of 

replacements depends on the project lifetime and the equipment lifetime.  The replacement 

cost (present worth) of system equipment is calculated as follows [174]. 

𝐶𝑟𝑒𝑝,𝑖 = 𝑁𝑐𝑜𝑚,𝑖 × ∑ 𝐶𝑟𝑒𝑝,𝑢𝑛𝑖𝑡(𝑖) ×
1

(1 + 𝑟)𝑗𝑟𝑒𝑝

𝑁𝑟𝑒𝑝

𝑛=1

 ∀𝑖 ∈ 𝐺 Eq. 6-4 

   

𝑁𝑟𝑒𝑝 = ⌈
𝑇𝑝𝑟𝑜𝑗𝑒𝑐𝑡

𝐿𝑇𝑐𝑜𝑚,𝑖
⌉ − 1  Eq. 6-5 

   

𝑟 =
𝑖′ − 𝑓

1 + 𝑓
  Eq. 6-6 

   

𝑗𝑟𝑒𝑝 = ∑(𝑛 × 𝐿𝑇𝑐𝑜𝑚,𝑖)

𝑁𝑟𝑒𝑝

𝑛=1

  Eq. 6-7 

Where, 𝑁𝑟𝑒𝑝 is the number of replacements that occurred for the component, 𝐶𝑟𝑒𝑝,𝑢𝑛𝑖𝑡(𝑖) is 

the unit replacement cost of the ith component ($), 𝑟 is the real discount rate (%), 𝑇𝑝𝑟𝑜𝑗𝑒𝑐𝑡 

is the project lifetime (year), 𝐿𝑇𝑐𝑜𝑚,𝑖 is the ith component lifetime (year), 𝑐𝑒𝑖𝑙(𝑋) is a 

function rounding the element 𝑋 to the nearest integer which is equal or greater than 𝑋, 𝑖′ 

is the nominal discount rate/the rate at which the money has been borrowed (%), and 𝑓 is 

the inflation rate (%). 

The O&M cost of a component in the HESs is counted for each year, and it continues 

throughout the whole project lifetime. The O&M cost is the same for each year. Therefore, 

the O&M cost (present worth) is computed by the following equation [174]. 

𝐶𝑂&𝑀,𝑖 = 𝑁𝑐𝑜𝑚,𝑖 × 𝐶𝑂&𝑀,𝑎𝑛𝑛𝑢𝑎𝑙(𝑖) ×
{(1 + 𝑟)𝑇𝑝𝑟𝑜𝑗𝑒𝑐𝑡} − 1

𝑟(1 + 𝑟)𝑇𝑝𝑟𝑜𝑗𝑒𝑐𝑡
  ∀𝑖 ∈ 𝐺 Eq. 6-8 

Where, 𝐶𝑂&𝑀,𝑎𝑛𝑛𝑢𝑎𝑙(𝑖) is the yearly O&M cost of the ith component ($/year).  

The fuel cost of the system equipment differs from component to component, and it 

depends on the equipment working principle. Renewable sources do not have any fuel cost. 

MMRs and fossil-fired generators have fuel cost since they utilize uranium and different 

fossil fuel, e.g., coal, diesel, and natural gas, to generate electricity. The equation to 

determine the fuel cost (present value) of equipment can be represented as follows [174].  

𝐶𝑓𝑢𝑒𝑙,𝑖 = 𝑁𝑐𝑜𝑚,𝑖 × 𝐶𝑓𝑢𝑒𝑙,𝑎𝑛𝑛𝑢𝑎𝑙(𝑖) ×
{(1 + 𝑟)𝑇𝑝𝑟𝑜𝑗𝑒𝑐𝑡} − 1

𝑟(1 + 𝑟)𝑇𝑝𝑟𝑜𝑗𝑒𝑐𝑡
 ∀𝑖 ∈ 𝐺 Eq. 6-9 

Where, 𝐶𝑓𝑢𝑒𝑙,𝑎𝑛𝑛𝑢𝑎𝑙(𝑖) is the annual fuel cost of the ith component ($/year).  
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The salvage value is the worth of a component at the end of its useful life. In this study, the 

salvage value is estimated for each system component. A linear depreciation is considered 

in the analysis to calculate the salvage value. In linear depreciation, the amount is evenly 

distributed over the useful lifetime, and the salvage value of a component is directly 

proportional to the rest of the component lifetime. The salvage value depends on 

replacement cost despite the capital cost. The salvage value is calculated as follows [203].  

𝐶𝑠𝑎𝑙𝑣,𝑖 = 𝑁𝑐𝑜𝑚,𝑖 × 𝐶𝑟𝑒𝑝,𝑢𝑛𝑖𝑡(𝑖) ×
𝐿𝑇𝑐𝑜𝑚(𝑖),𝑟𝑒𝑚

𝐿𝑇𝑐𝑜𝑚,𝑖
×

1

(1 + 𝑟)𝑇𝑝𝑟𝑜𝑗𝑒𝑐𝑡
 ∀𝑖 ∈ 𝐺 Eq. 6-10 

   

𝐿𝑇𝑐𝑜𝑚(𝑖),𝑟𝑒𝑚 = 𝐿𝑇𝑐𝑜𝑚,𝑖 − (𝑇𝑝𝑟𝑜𝑗𝑒𝑐𝑡 − 𝐿𝑇𝑟𝑒𝑝,𝑖)  Eq. 6-11 

   

𝐿𝑇𝑟𝑒𝑝,𝑖 = 𝐿𝑇𝑐𝑜𝑚,𝑖 × ⌊
𝑇𝑝𝑟𝑜𝑗𝑒𝑐𝑡

𝐿𝑇𝑐𝑜𝑚,𝑖
⌋  Eq. 6-12 

 Where, 𝐶𝑠𝑎𝑙𝑣,𝑖 is the salvage value of the ith component ($), 𝐿𝑇𝑐𝑜𝑚(𝑖),𝑟𝑒𝑚 is the remaining 

lifetime of the ith equipment at the end of the project lifetime (year), and 𝐿𝑇𝑟𝑒𝑝,𝑖 is the 

duration of replacement cost (year).  

Cost analysis of MMRs is not as simple as the other energy generation sources. The total 

deployment cost of an MMR is a sum of several types of cash flows, and each of the cash 

flows influences the overall cost differently. MMRs involve some new types of expenses, 

such as decommissioning cost and refueling cost. Therefore, the NPC of an MMR is 

estimated separately by the following equation.  

𝑁𝑃𝐶𝑀𝑀𝑅 = 𝐶𝑐𝑎𝑝,𝑀𝑀𝑅 + 𝐶𝑂&𝑀(𝑓𝑖𝑥𝑒𝑑),MMR + 𝐶𝑓𝑢𝑒𝑙,𝑀𝑀𝑅
+ 𝐶𝑑𝑒𝑐𝑜𝑚,𝑀𝑀𝑅+ 𝐶𝑟𝑒𝑓𝑢𝑒𝑙𝑖𝑛𝑔,𝑀𝑀𝑅 − 𝐶𝑠𝑎𝑙𝑣,𝑀𝑀𝑅 

Eq. 6-13 

Where, 𝐶𝑐𝑎𝑝,𝑀𝑀𝑅 is the MMR capital cost ($), 𝐶𝑂&𝑀(𝑓𝑖𝑥𝑒𝑑),MMR is the MMR fixed O&M cost ($), 

𝐶𝑓𝑢𝑒𝑙,𝑀𝑀𝑅 is the MMR fuel cost ($), 𝐶𝑑𝑒𝑐𝑜𝑚,𝑀𝑀𝑅 is the MMR decommissioning cost ($), 

𝐶𝑟𝑒𝑓𝑢𝑒𝑙𝑖𝑛𝑔,𝑀𝑀𝑅 is the MMR refueling cost ($), and 𝐶𝑠𝑎𝑙𝑣,𝑀𝑀𝑅 is the salvage value of MMR ($). All 

the cost is in the form of present worth.  

The O&M cost, the fuel cost, and the salvage value of MMRs are determined by the 

equations listed above. Though MMRs have a similar type of capital cost like other 

generation sources, it is calculated uniquely in the study. MMR is a first-of-a-kind product, 

and the capital cost of an MMR decreases with the increased number of MMR modules. 

The equation to estimate the MMR capital cost is expressed as follows [137].   

𝐶𝑐𝑎𝑝,𝑀𝑀𝑅 = ∑ 𝐶𝑐𝑎𝑝,𝑀𝑀𝑅(1𝑠𝑡) × (𝑁𝑀𝑀𝑅)
−𝑅

𝑁𝑀𝑀𝑅

𝑛=1

 Eq. 6-14 
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Where, 𝑁𝑀𝑀𝑅 is the number of MMRs required, 𝐶𝑐𝑎𝑝,𝑀𝑀𝑅(1𝑠𝑡) is the capital cost of 1st 

MMR ($), and 𝑅 is the rate of cost reduction (%).  

As the decommissioning cost is accrued evenly throughout the project lifetime, it can be 

calculated by the following equation [174].  

𝐶𝑑𝑒𝑐𝑜𝑚,𝑀𝑀𝑅 = 𝑁𝑀𝑀𝑅 × 𝐶𝑑𝑒𝑐𝑜𝑚,𝑀𝑀𝑅(𝑎𝑛𝑛𝑢𝑎𝑙) ×
{(1 + 𝑟)𝑇𝑝𝑟𝑜𝑗𝑒𝑐𝑡} − 1

𝑟(1 + 𝑟)𝑇𝑝𝑟𝑜𝑗𝑒𝑐𝑡
 Eq. 6-15 

 Where, 𝐶𝑑𝑒𝑐𝑜𝑚,𝑀𝑀𝑅(𝑎𝑛𝑛𝑢𝑎𝑙) is the MMR decommissioning cost accrued in each year 

($/year).  

The refueling cost occurs every ten years (fuel module lifetime) interval, commencing in 

the first year, throughout the project lifetime. The following equations calculate the MMR 

refueling cost [174].  

𝐶𝑟𝑒𝑓𝑢𝑒𝑙𝑖𝑛𝑔,𝑀𝑀𝑅 = 𝑁𝑀𝑀𝑅 × ∑ 𝐶𝑟𝑒𝑓𝑢𝑒𝑙𝑖𝑛𝑔,𝑀𝑀𝑅(𝑢𝑛𝑖𝑡) ×
1

(1 + 𝑟)𝑗𝑟𝑒𝑓𝑢𝑒𝑙

𝑁𝑟𝑒𝑓𝑢𝑒𝑙

𝑛=1

 Eq. 6-16 

  

𝑁𝑟𝑒𝑓𝑢𝑒𝑙 = ⌈
𝑇𝑝𝑟𝑜𝑗𝑒𝑐𝑡

𝐿𝑇𝑓𝑢𝑒𝑙(𝑀𝑀𝑅)
⌉ − 1 Eq. 6-17 

  

𝑗𝑟𝑒𝑓𝑢𝑒𝑙 = ∑ (𝑛 × 𝐿𝑇𝑓𝑢𝑒𝑙(𝑀𝑀𝑅))

𝑁𝑟𝑒𝑓𝑢𝑒𝑙

𝑛=1

 Eq. 6-18 

Where, 𝐶𝑟𝑒𝑓𝑢𝑒𝑙𝑖𝑛𝑔,𝑀𝑀𝑅(𝑢𝑛𝑖𝑡) is the refueling cost of a single MMR module ($), 𝑁𝑟𝑒𝑓𝑢𝑒𝑙 is 

the number of refueling of MMR fuel module in the project lifetime, and 𝐿𝑇𝑓𝑢𝑒𝑙(𝑀𝑀𝑅) is 

the lifetime of the MMR fuel module (year).  

6.2. Constraints  

Several optimization constraints are exercised in this research to confirm the utmost 

reliability and resiliency of the system. The generation by any source must be less or equal 

to the maximum capacity of that source. It can be presented as: 

𝑃𝑔𝑒𝑛
𝑖 (t) ≤ 𝑃𝑔𝑒𝑛,𝑚𝑎𝑥

𝑖  ∀ 𝑖, ∀ 𝑡 Eq. 6-19 

   

𝑇𝑔𝑒𝑛
𝑖 (t) ≤ 𝑇𝑔𝑒𝑛,𝑚𝑎𝑥

𝑖  ∀ 𝑖, ∀ 𝑡 Eq. 6-20 
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Where, 𝑃𝑔𝑒𝑛
𝑖 (𝑡) and 𝑃𝑔𝑒𝑛,𝑚𝑎𝑥

𝑖  are the electric generation of the 𝑖𝑡ℎ component at time 𝑡 and 

maximum electricity generation of the 𝑖𝑡ℎ component, respectively, and 𝑇𝑔𝑒𝑛
𝑖 (𝑡) and 

𝑇𝑔𝑒𝑛,𝑚𝑎𝑥
𝑖  are the thermal power generation of the 𝑖𝑡ℎ component at time 𝑡 and maximum 

thermal power generation of the 𝑖𝑡ℎ component, sequentially.  

The system's cumulative production must be greater or equal to the overall system 

requirements to ensure the highest reliability of the optimal system. The following 

equations present the energy management constraints of the optimization problem.  

∑𝑃𝑔𝑒𝑛
𝑦
(t) ≥ ∑ 𝑃𝐸𝐿

𝑦 (𝑡)

𝑡𝑡𝑜𝑡𝑎𝑙

𝑡=1

 ∀ 𝑡 ∈ 𝑡𝑡𝑜𝑡𝑎𝑙 , ∀ 𝑦 Eq. 6-21 

   

∑𝑇𝑔𝑒𝑛
𝑦
(𝑡) ≥ ∑ 𝑃𝑇𝐿

𝑦 (𝑡)

𝑡𝑡𝑜𝑡𝑎𝑙

𝑡=1

 ∀ 𝑡 ∈ 𝑡𝑡𝑜𝑡𝑎𝑙 , ∀ 𝑦 Eq. 6-22 

   

∑𝑃𝑔𝑒𝑛
𝑦 (𝑡) = ∑ 𝑁𝑃𝑉𝑃𝑝𝑣(𝑡) +

𝑡𝑡𝑜𝑡𝑎𝑙

𝑡=1

∑ 𝑁𝑊𝑇𝑃𝑤(𝑡)

𝑡𝑡𝑜𝑡𝑎𝑙

𝑡=1

+ ∑ 𝑁𝑀𝑀𝑅𝑃𝑀𝑀𝑅(𝑡) +

𝑡𝑡𝑜𝑡𝑎𝑙

𝑡=1

∑ 𝑃ℎ(𝑡)

𝑡𝑡𝑜𝑡𝑎𝑙

𝑡=1

+ ∑ 𝑃𝑏𝑖𝑜(𝑡)

𝑡𝑡𝑜𝑡𝑎𝑙

𝑡=1

  

∀ 𝑡 ∈ 𝑡𝑡𝑜𝑡𝑎𝑙 , ∀ 𝑦 Eq. 6-23 

   

∑𝑇𝑔𝑒𝑛
𝑦 (𝑡) = ∑ 𝑁𝑀𝑀𝑅𝑇𝑀𝑀𝑅(𝑡) +

𝑡𝑡𝑜𝑡𝑎𝑙

𝑡=1

∑ 𝑇𝑏𝑖𝑜(𝑡) 

𝑡𝑡𝑜𝑡𝑎𝑙

𝑡=1

 ∀ 𝑡 ∈ 𝑡𝑡𝑜𝑡𝑎𝑙 , ∀ 𝑦 Eq. 6-24 

Where, 𝑃𝑔𝑒𝑛
𝑦
(t) is the electric power generation (kW) at time step 𝑡 in year 𝑦, 𝑃𝐸𝐿

𝑦 (𝑡) is the 

electric demand (kW) at time step 𝑡 in year 𝑦, 𝑇𝑔𝑒𝑛
𝑦
(𝑡) is the thermal power generation 

(kW) at time step 𝑡 in year 𝑦, 𝑃𝑇𝐿
𝑦 (𝑡) is the thermal demand (kW) at time step 𝑡 in year 𝑦 

(kW), 𝑁𝑃𝑉 is the number of PV panels, 𝑁𝑊𝑇 is the number of WTs, and 𝑁𝑀𝑀𝑅 is the number 

of MMRs.  

The energy storage systems of the N-R MHESs are subjected to the following constraints 

to maintain the proper operation of the energy storage systems.   

𝑆𝑂𝐶𝐻𝑡𝑎𝑛𝑘,𝑚𝑖𝑛 ≤ 𝑆𝑂𝐶𝐻𝑡𝑎𝑛𝑘
𝑦

(𝑡) ≤ 𝑆𝑂𝐶𝐻𝑡𝑎𝑛𝑘,𝑚𝑎𝑥  ∀ 𝑡 ∈ 𝑡𝑡𝑜𝑡𝑎𝑙, ∀ 𝑦 Eq. 6-25 
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𝑆𝑂𝐶𝐸𝐸𝑆,𝑚𝑖𝑛 ≤ 𝑆𝑂𝐶𝐸𝐸𝑆
𝑦 (𝑡) ≤ 𝑆𝑂𝐶𝐸𝐸𝑆,𝑚𝑎𝑥  ∀ 𝑡 ∈ 𝑡𝑡𝑜𝑡𝑎𝑙, ∀ 𝑦 Eq. 6-26 

   

𝑆𝑂𝐶𝑇𝐸𝑆,𝑚𝑖𝑛 ≤ 𝑆𝑂𝐶𝑇𝐸𝑆
𝑦 (𝑡) ≤ 𝑆𝑂𝐶𝑇𝐸𝑆,𝑚𝑎𝑥  ∀ 𝑡 ∈ 𝑡𝑡𝑜𝑡𝑎𝑙, ∀ 𝑦 Eq. 6-27 

Where, 𝑆𝑂𝐶𝐻𝑡𝑎𝑛𝑘
𝑦

(𝑡) is the SOC (%) of hydrogen tank at time step 𝑡 in year 𝑦, 

𝑆𝑂𝐶𝐻𝑡𝑎𝑛𝑘,𝑚𝑖𝑛 and 𝑆𝑂𝐶𝐻𝑡𝑎𝑛𝑘,𝑚𝑎𝑥 are the minimum and maximum SOC (%) of the hydrogen 

tank, respectively, 𝑆𝑂𝐶𝐸𝐸𝑆
𝑦

 is the SOC (%) of EES at time step 𝑡 in year 𝑦, 𝑆𝑂𝐶𝐸𝐸𝑆,𝑚𝑖𝑛 and 

𝑆𝑂𝐶𝐸𝐸𝑆,𝑚𝑎𝑥 are the minimum and maximum SOC (%) of the EES, respectively, 𝑆𝑂𝐶𝑇𝐸𝑆
𝑦 (𝑡) 

is the SOC (%) of TES  at time step 𝑡 in year 𝑦, and 𝑆𝑂𝐶𝑇𝐸𝑆,𝑚𝑖𝑛 and 𝑆𝑂𝐶𝑇𝐸𝑆,𝑚𝑎𝑥  are the 

minimum and maximum SOC (%) of the TES, respectively.  

Reliability parameters, such as LPSP and SEF, are inserted as optimization constraints in 

the problem formulation to confirm the energy systems' reliability and resiliency. The 

lower values of the LPSP and SEF imply better system reliability. The reliability 

constraints can be presented as follows. 

𝐿𝑃𝑆𝑃𝑒𝑙𝑒𝑐 ≤ 𝐿𝑃𝑆𝑃𝑒𝑙𝑒𝑐,𝑚𝑎𝑥  Eq. 6-28 

  

𝐿𝑃𝑆𝑃𝑡ℎ𝑒𝑟 ≤ 𝐿𝑃𝑆𝑃𝑡ℎ𝑒𝑟,𝑚𝑎𝑥 Eq. 6-29 

  

𝑆𝐸𝐹𝑒𝑙𝑒𝑐 ≤ 𝑆𝐸𝐹𝑒𝑙𝑒𝑐,𝑚𝑎𝑥 Eq. 6-30 

  

𝑆𝐸𝐹𝑡ℎ𝑒𝑟 ≤ 𝑆𝐸𝐹𝑡ℎ𝑒𝑟,𝑚𝑎𝑥 Eq. 6-31 

Where,  𝐿𝑃𝑆𝑃𝑒𝑙𝑒𝑐,𝑚𝑎𝑥 and 𝐿𝑃𝑆𝑃𝑡ℎ𝑒𝑟,𝑚𝑎𝑥 are the maximum limit of LPSP for electric and 

thermal demand, respectively, and 𝑆𝐸𝐹𝑒𝑙𝑒𝑐,𝑚𝑎𝑥 and 𝑆𝐸𝐹𝑡ℎ𝑒𝑟,𝑚𝑎𝑥 are the maximum limit of 

SEF for electric and thermal demand, respectively. The maximum LPSP and the maximum 

SEF values are set to 5% and 10%, respectively, in the optimization problem. These are 

the typically acceptable margins of LPSP and SEF for a reliable energy system [119], [121].  

In the second portion of the analysis, the equations for total generation by the diesel-fired 

MEG can be expressed by Eq. (6-32) -(6-35). The other optimization constraints and the 

decision variables of the diesel-fired MEG are identical to the MMR-based MEG.  

∑𝑃𝑔𝑒𝑛
𝑦 (𝑡) = ∑ 𝑁𝑃𝑉𝑃𝑝𝑣(𝑡) +

𝑡𝑡𝑜𝑡𝑎𝑙

𝑡=1

∑ 𝑁𝑊𝑇𝑃𝑤(𝑡)

𝑡𝑡𝑜𝑡𝑎𝑙

𝑡=1

+ ∑ 𝑃𝑑𝑖𝑒𝑠𝑒𝑙(𝑡) +

𝑡𝑡𝑜𝑡𝑎𝑙

𝑡=1

∑ 𝑃ℎ(𝑡) +

𝑡𝑡𝑜𝑡𝑎𝑙

𝑡=1

∑ 𝑃𝑏𝑖𝑜(𝑡)

𝑡𝑡𝑜𝑡𝑎𝑙

𝑡=1

  

∀ 𝑡 ∈ 𝑡𝑡𝑜𝑡𝑎𝑙 , ∀ 𝑦 Eq. 6-32 
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∑𝑇𝑔𝑒𝑛
𝑦 (𝑡) = ∑ 𝑇𝑑𝑖𝑒𝑠𝑒𝑙(𝑡) +

𝑡𝑡𝑜𝑡𝑎𝑙

𝑡=1

∑ 𝑇𝑏𝑖𝑜(𝑡) 

𝑡𝑡𝑜𝑡𝑎𝑙

𝑡=1

 ∀ 𝑡 ∈ 𝑡𝑡𝑜𝑡𝑎𝑙 , ∀ 𝑦 Eq. 6-33 

 

∑ 𝑃𝑑𝑖𝑒𝑠𝑒𝑙(𝑡)

𝑡𝑡𝑜𝑡𝑎𝑙

𝑡=1

= ∑ 𝑁50
𝑑𝑖𝑒𝑠𝑒𝑙𝑃50

𝑑𝑖𝑒𝑠𝑒𝑙(𝑡) + ∑ 𝑁30
𝑑𝑖𝑒𝑠𝑒𝑙𝑃30

𝑑𝑖𝑒𝑠𝑒𝑙(𝑡)

𝑡𝑡𝑜𝑡𝑎𝑙

𝑖=1

𝑡𝑡𝑜𝑡𝑎𝑙

𝑖=1

+ ∑ 𝑁20
𝑑𝑖𝑒𝑠𝑒𝑙𝑃20

𝑑𝑖𝑒𝑠𝑒𝑙(𝑡)

𝑡𝑡𝑜𝑡𝑎𝑙

𝑖=1

 

∀ 𝑡 ∈ 𝑡𝑡𝑜𝑡𝑎𝑙 Eq. 6-34 

   

∑ 𝑇𝑑𝑖𝑒𝑠𝑒𝑙(𝑡) = ∑ 𝑁50
𝑑𝑖𝑒𝑠𝑒𝑙𝑇50

𝑑𝑖𝑒𝑠𝑒𝑙(𝑡) + ∑ 𝑁30
𝑑𝑖𝑒𝑠𝑒𝑙𝑇30

𝑑𝑖𝑒𝑠𝑒𝑙(𝑡)

𝑡𝑡𝑜𝑡𝑎𝑙

𝑖=1

𝑡𝑡𝑜𝑡𝑎𝑙

𝑖=1

𝑡𝑡𝑜𝑡𝑎𝑙

𝑡=1

+ ∑ 𝑁20
𝑑𝑖𝑒𝑠𝑒𝑙𝑇20

𝑑𝑖𝑒𝑠𝑒𝑙(𝑡)

𝑡𝑡𝑜𝑡𝑎𝑙

𝑖=1

 

∀ 𝑡 ∈ 𝑡𝑡𝑜𝑡𝑎𝑙 Eq. 6-35 

Where, 𝑁50
𝑑𝑖𝑒𝑠𝑒𝑙, 𝑁30

𝑑𝑖𝑒𝑠𝑒𝑙, and 𝑁20
𝑑𝑖𝑒𝑠𝑒𝑙 are the number of diesel Genesets rated as 50 kW, 30 

kW, and 20 kW, sequentially, 𝑃50
𝑑𝑖𝑒𝑠𝑒𝑙(𝑡), 𝑃30

𝑑𝑖𝑒𝑠𝑒𝑙(𝑡), and 𝑃20
𝑑𝑖𝑒𝑠𝑒𝑙(𝑡) are the electric power 

generation (kW) by 50 kW, 30 kW, and 20 kW generators, respectively, at time step 𝑡, and 

𝑇50
𝑑𝑖𝑒𝑠𝑒𝑙(𝑡), 𝑇30

𝑑𝑖𝑒𝑠𝑒𝑙(𝑡), and 𝑇20
𝑑𝑖𝑒𝑠𝑒𝑙(𝑡) are the thermal power generation (kW) by 50 kW, 30 

kW, and 20 kW generators, sequentially, at time step 𝑡.  

6.3. Decision Variables 

The optimization problem intends to find out the optimal configuration of the three distinct 

N-R MHESs. The decision variables include the number of PV panels, number of WTs, 

number of MMRs, size of the hydro plant (kW), number of hydrogen tank, size of EES and 

TES (kWh), size of E2H and H2E unit (kW), and the efficiency of the required CHP unit 

(%). The decision variables of the problem can be written as follows. 

0 ≤ 𝑁𝑃𝑉 ≤ 𝑁𝑃𝑉,𝑚𝑎𝑥 𝑁𝑃𝑉 ∈ ℤ Eq. 6-36 

   

0 ≤ 𝑁𝑊𝑇 ≤ 𝑁𝑊𝑇,𝑚𝑎𝑥 𝑁𝑊𝑇 ∈ ℤ Eq. 6-37 

   

0 ≤ 𝑁𝑀𝑀𝑅 ≤ 𝑁𝑀𝑀𝑅,𝑚𝑎𝑥 𝑁𝑀𝑀𝑅 ∈ ℤ Eq. 6-38 

   

0 ≤ 𝑁𝐻𝑡𝑎𝑛𝑘 ≤ 𝑁𝐻𝑡𝑎𝑛𝑘,𝑚𝑎𝑥 𝑁𝐻𝑡𝑎𝑛𝑘 ∈ ℤ Eq. 6-39 
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0 ≤ 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝐻𝑇 ≤ 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝐻𝑇,𝑚𝑎𝑥  Eq. 6-40 

   

0 ≤ 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝐸𝐸𝑆 ≤ 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝐸𝐸𝑆,𝑚𝑎𝑥  Eq. 6-41 

   

0 ≤ 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑇𝐸𝑆 ≤ 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑇𝐸𝑆,𝑚𝑎𝑥  Eq. 6-42 

   

0 ≤ ɳ𝐶𝐻𝑃(𝑀𝑀𝑅) ≤ ɳ𝐶𝐻𝑃(𝑀𝑀𝑅),𝑚𝑎𝑥  Eq. 6-43 

Where, 𝑁𝑃𝑉,𝑚𝑎𝑥, 𝑁𝑊𝑇,𝑚𝑎𝑥, 𝑁𝑀𝑀𝑅,𝑚𝑎𝑥, and 𝑁𝐻𝑡𝑎𝑛𝑘,𝑚𝑎𝑥 are the maximum limit of the PV 

panel, WT, MMR, and hydrogen tank, respectively, 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝐻𝑇, 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝐸𝐸𝑆, and 

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑇𝐸𝑆 are the required capacity of the hydro plant, EES, and TES, respectively, 

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝐻𝑇,𝑚𝑎𝑥, 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝐸𝐸𝑆,𝑚𝑎𝑥, and 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑇𝐸𝑆,𝑚𝑎𝑥, are the maximum capacity 

limit of hydro plant, EES, and TES, respectively, ɳ𝐶𝐻𝑃(𝑀𝑀𝑅) is the required CHP efficiency 

of MMR, and ɳ𝐶𝐻𝑃(𝑀𝑀𝑅),𝑚𝑎𝑥 is the maximum CHP efficiency of MMR.  

The following equations represent the relationship between thermal power generation and 

CHP unit's efficiency [204].   

𝑇𝑖(𝑡) = (
𝑃𝑖(𝑡)

ɳ𝑖
− 𝑃𝑖(𝑡)) × 𝐻𝑅𝑅 

∀ 𝑡 ∈ 𝑡𝑡𝑜𝑡𝑎𝑙 

∀𝑖 ∈ 𝐺 
Eq. 6-44 

   

ɳ𝐶𝐻𝑃(𝑖) = (1 − ɳ𝑖) × 𝐻𝑅𝑅 ∀𝑖 ∈ 𝐺 Eq. 6-45 

Where, 𝑇𝑖(𝑡) is the thermal power generation from ith source (kW), 𝑃𝑖(𝑡) is the electric 

power generation from ith source (kW), ɳ𝑖 is the thermal-to-electricity generation efficiency 

(%), and 𝐻𝑅𝑅 is the heat recovery ratio (HRR) of the CHP unit.   

To analyze the second part, it is mandatory to obtain the optimal system configuration. A 

new variable, the number of diesel Gensets, is introduced in this part instead of the number 

of MMRs. The rest of the constraints and the decision variables are kept similar to the 

MMR-based MEG. The decision variables for diesel Genset can be written as follows.  

0 ≤ 𝑁50
𝑑𝑖𝑒𝑠𝑒𝑙 ≤ 𝑁50

𝑚𝑎𝑥 𝑁50
𝑑𝑖𝑒𝑠𝑒𝑙 ∈ ℤ Eq. 6-46 

   

0 ≤ 𝑁30
𝑑𝑖𝑒𝑠𝑒𝑙 ≤ 𝑁30

𝑚𝑎𝑥 𝑁30
𝑑𝑖𝑒𝑠𝑒𝑙 ∈ ℤ Eq. 6-47 

   

0 ≤ 𝑁20
𝑑𝑖𝑒𝑠𝑒𝑙 ≤ 𝑁20

𝑚𝑎𝑥 𝑁20
𝑑𝑖𝑒𝑠𝑒𝑙 ∈ ℤ Eq. 6-48 
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0 ≤ ɳ𝐶𝐻𝑃(𝑑𝑖𝑒𝑠𝑒𝑙)
50 ≤ ɳ𝐶𝐻𝑃(𝑑𝑖𝑒𝑠𝑒𝑙),𝑚𝑎𝑥

50   Eq. 6-49 

   

0 ≤ ɳ𝐶𝐻𝑃(𝑑𝑖𝑒𝑠𝑒𝑙)
30 ≤ ɳ𝐶𝐻𝑃(𝑑𝑖𝑒𝑠𝑒𝑙),𝑚𝑎𝑥

30   Eq. 6-50 

   

0 ≤ ɳ𝐶𝐻𝑃(𝑑𝑖𝑒𝑠𝑒𝑙)
20 ≤ ɳ𝐶𝐻𝑃(𝑑𝑖𝑒𝑠𝑒𝑙),𝑚𝑎𝑥

20   Eq. 6-51 

Where, 𝑁50
𝑚𝑎𝑥, 𝑁30

𝑚𝑎𝑥, and 𝑁20
𝑚𝑎𝑥 are the maximum limits of the Gensets with a rated 

capacity of 50 kW, 30 kW, and 20 kW, respectively, ɳ𝐶𝐻𝑃(𝑑𝑖𝑒𝑠𝑒𝑙)
50 , ɳ𝐶𝐻𝑃(𝑑𝑖𝑒𝑠𝑒𝑙)

30 , and 

ɳ𝐶𝐻𝑃(𝑑𝑖𝑒𝑠𝑒𝑙)
20  are the required efficiency of the Gensets with a rated capacity of 50 kW, 30 

kW, and 20 kW, respectively, and ɳ𝐶𝐻𝑃(𝑑𝑖𝑒𝑠𝑒𝑙),𝑚𝑎𝑥
50 , ɳ𝐶𝐻𝑃(𝑑𝑖𝑒𝑠𝑒𝑙),𝑚𝑎𝑥

30 , and ɳ𝐶𝐻𝑃(𝑑𝑖𝑒𝑠𝑒𝑙),𝑚𝑎𝑥
20  

are the maximum efficiency limits of the CHP units of the 50 kW, 30 kW, and 20 kW 

Genset, respectively.    

6.4. Implementation of Optimization Algorithm (Particle 

Swarm Optimization) 

PSO implementation steps are discussed in detail as follows.  

Step 1: Read the following input data of the N-R MHES planning problem: 

A. Load system demand data (hourly electric and thermal load 

data) and meteorological data (hourly solar irradiance, 

ambient temperature, wind speed, stream flow rate for one 

year).  

B. Load system equipment’s characteristics (e.g., MMR, 

battery bank, hydrogen storage, and TES). 

C. Load economic parameters of each system component, such 

as capital cost, replacement cost, fuel cost, O&M cost, and 

lifetime.  

Step 2: Initialize all the parameters of PSO and required system components: 

A. Set the maximum number of iterations and population size to 300 

and 250, respectively.  

B. Set the number of individual runs to 100.   

C. Set the personal acceleration coefficient (𝑐1) and global acceleration 

coefficient (𝑐2).  
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D. Set the inertia coefficient (𝑤). 

E. Set the value of constriction coefficient (𝐾), where 

𝑘 = 1, 𝐶1 = 𝐶2 = 2.05 

F. Set the constraints as follows: 

𝐿𝑃𝑆𝑃 ≤ 0.05, 𝑆𝐸𝐹 ≤ 0.10 

G. Set the upper bound and lower bound of the decision variables as 

follows. 

▪ Upper bound and lower bound of the number of MMR:  

[10, 0] for Case-01 

[05, 0] for Case-02, Case-03 

▪ Upper bound and lower bound of the number of PV panel: 

[100, 0] 

▪ Upper bound and lower bound of the number of WT: [100, 

0] 

▪ Upper bound and lower bound of HT (kW): [1000.64, 0] 

▪ Upper bound and lower bound of MMR CHP efficiency (%): 

[50, 0] 

▪ Upper bound and lower bound of 50 kW, 30 kW, and 20 kW 

of Gensets: [50, 0] for all types of Genset 

▪ Upper bound and lower bound of the number of hydrogen 

tank: [25, 0] 

▪ Upper bound and lower bound of EES (MW): [100, 0] 

▪ Upper bound and lower bound of TES (MW): [25, 0] 

H. Set the initial global best to "𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑦. "  

I. Set the position and the velocity randomly to generate the initial 

population.  

Step 3: Apply the particle positions to find the value of the objective function. 

Step 4: Update the individual best position by comparing it with the other 

populations.  
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Step 5: Compare the personal best with the global best and update the global best 

value. The particle with the minimum value of the objective function will be 

selected as the global best.   

Step 6: Update velocities by using Eq. 2-2. Apply the velocity limits.  

Step 7: Update the position of the particles. Apply the upper bound and lower bound 

limits. Follow Step 3 to Step 7 until all the particles (the maximum number 

of particles is specified initially) are evaluated.  

Step 8: Different particles provide a different value of cost function. Store the best 

cost value.  

Step 09: If the simulation reaches the maximum number of iterations, then stop. 

Otherwise, update the iteration variable and continue from Step 3 to Step 10. 

If the program is set to run multiple independent runs, it will run up to the 

specified number of individual runs.    

 

A static penalty function is also introduced with the objective function. Once the constraints 

are violated, a fixed value (1 × 1015) will be added to the objective function no matter 

how much the violations are. Though several penalty functions, such as static penalty 

functions, dynamic penalty functions, and adaptive penalty functions, are typically utilized 

in optimization, the simplest and efficient one- static penalty function- is adopted in this 

study [205].  
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Chapter 7: Results and Discussions 

In this chapter, the simulation results of different proposed nuclear-renewable integrated 

systems have been presented. The chapter is primarily segmented into two sections. The 

first section aims to identify the most effective hybridization method based on the techno-

economic parameters explained in earlier chapters. The first section discusses the 

comparison of the proposed three hybridization methods. The second section compares the 

designated most efficient nuclear-renewable hybridized system and a diesel-fired MEG. 

The diesel-fired MEG acts as a representative of conventional fossil-fired technologies. 

The diesel-fired MEG is developed by only replacing MMRs with diesel Gensets for the 

second part of the analysis.   

Prior to conduct the comparative study, the developed optimization algorithm is verified 

by employing four benchmark functions. The studied benchmark functions are Rosenbrock 

function, Ackley function, Michalewicz function, and Eggholder function. Table 7-1. 

represents the equations and bounds of the corresponding test functions. Different 

dimensions and types (unimodal and multimodal) of the functions are considered for testing 

the optimization algorithm. Fig. 7-(1:4) show the convergence plots for all the benchmark 

functions. 

Table 7-1: A list of Studied Benchmark Functions  

Function 

Name 

Equation Upper 

and lower 

bounds 

Rosenbrock 

function 𝑓(𝑥) = ∑ [100(𝑥𝑖+1 − 𝑥𝑖
2)
2
+ (𝑥𝑖 − 1)

2]

𝑑−1

𝑖=1

 

[-2.048, 

2.048] 

Ackley 

function 𝑓(𝑥) = −20 𝑒𝑥𝑝(−0.2√
1

𝑑
∑𝑥𝑖

2

𝑑

𝑖=1

)− 𝑒𝑥𝑝(
1

𝑑
∑𝑐𝑜𝑠(2𝜋𝑥𝑖)

𝑑

𝑖=1

)

+ 20 + 𝑒𝑥𝑝 (1) 

[-32.768, 

32.768] 

Michalewicz 

function 𝑓(𝑥) = −∑𝑠𝑖𝑛(𝑥𝑖)𝑠𝑖𝑛
2𝑚 (

𝑖𝑥𝑖
2

𝜋
)

𝑑

𝑖=1

 

 

𝑚 = 10 

[0, 𝜋] 

Eggholder 

function 𝑓(𝑥) = −(𝑥2 + 47) 𝑠𝑖𝑛 (√|𝑥2 +
𝑥1
2
+ 47|)

−𝑥1 𝑠𝑖𝑛 (√|𝑥1 − (𝑥2 + 47)|) 

[-512, 

512] 
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Figure 7-1: Convergence Plot (Rosenbrock Function)  

 

Figure 7-2: Convergence Plot (Ackley Function) 

 

Figure 7-3: Convergence Plot (Michalewicz Function) 

Dimension=2 (Unimodal) 

f(x)= 0, at x= (1, 1) –Literature 

f(x)= 0, at x= (1, 1) – Experimental 

Dimension=12 (Multimodal) 

f(x)= 0, at x= (0,……., 0) – Literature 

f(x)= 0, at x= (0,……., 0) – Experimental 

Dimension=10 (Multimodal) 

f(x)= -9.6602 – Literature 

f(x)= -9.6225 – Experimental 
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Figure 7-4: Convergence Plot (Eggholder Function) 

The results confirm that the expected values are obtained for each case. It certainly verifies 

that the developed PSO algorithm can identify the optimal results efficiently regardless of 

the function dimensions and types.    

7.1. Comparison between the Proposed Hybridization 

Methods 

An adequate number of population (250) and iterations (300) are considered in the PSO 

algorithm. The results of PSO assert that the “Multiple Resources and Multiple Products-

based coupled N-R MHES (Case-03)” provides the lowest NPC ($ 201.26 million), while 

the NPC of “Directly coupled N-R MHES (Case-01)” is the highest ($ 345.94 million). 

The “Single Resource and Multiple Products-based coupled N-R MHES” is denoted as 

“Case-02” in this study. The NPC of the three cases is shown in Fig. 7-5.  

 

Figure 7-5: Comparison of NPC for the Proposed N-R MHES 
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Table 7-2 records the details of the optimal configuration of three N-R MHESs. Case-03 

includes the least number of MMRs since renewable generation is available in this case. A 

maximum number (100) of solar PV panels and WTs are utilized in Case-01 since the 

availability of solar irradiance at the project location is reasonable. Case-02 and Case-03 

disregard the EES in the system architecture as the hydrogen storage is sufficient to manage 

the system demand. The PSO algorithm does not suggest including any E2H and H2E units 

in any of the system configurations.   

Although Case-02 comprises five MMR units in the system, the PSO optimization suggests 

running one unit at 32% of its rated power; this is one vital drawback of the stand-alone 

MMR-based energy system (Case-02). If all the five units operate at maximum capacity, 

the 𝑆𝐸𝐹 will be larger than the defined boundary, and the reliability constraint will be 

violated. This situation may also include large-scale energy storage systems to store the 

excess generation with an additional storage cost. Load-following MMRs may overcome 

the sizing problem of energy storage systems in this case, but the NPC will still be high 

due to MMRs' substantial capital cost. On the other hand, if four MMR units have been 

incorporated within the system, the 𝐿𝑃𝑆𝑃 will be higher than the specified limit. Thus, the 

reliability constraint will also be violated. Since it is required to determine an integer 

number of MMR units, the PSO selects five MMR units; one of them will run less than its 

rated capacity. As a significant fraction of MMR total deployment cost is related to sunk 

cost, the NPC will be roughly comparable whether one of the MMR units runs at 32% of 

its rated capacity or operates at its full capacity. Therefore, the operation of Case-02 is not 

a profitable investment, and it is challenging for variable energy demand. It should be noted 

that MMR units run at the nominal capacity for Case-01 and Case-03.   

Table 7-2: Optimal Configuration of different Proposed N-R MHES 

Cases 
Direct 

coupling 
(Case-01) 

Single resource and 
multiple products-

based coupling (Case-
02) 

Multiple resources and 
multiple products-

based coupling (Case-
03) 

Number of particles 250 250 250 
Number of iterations 300 300 300 

Number of MMR 5 5 3 
Number of PV panels 100 N/A 95 

Number of WT 100 N/A 38 
HT capacity (kW) 1000.64 N/A 1000.64 

Required efficiency of 
CHP unit (%) 

N/A 16.8 24.6 

Number of hydrogen 
tank 

25 22 23 

EES capacity (MWh) 12.85 0 0 
TES capacity (MWh) N/A 19.90 19.90 

BG capacity (kW) 65.10 65.10 65.10 
E2H unit capacity (kW) 0 0 0 
H2E unit capacity (kW) N/A 0 0 
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Table 7-3 presents the KPIs considered in the study. No separate 𝐿𝑃𝑆𝑃s, e.g., 𝐿𝑃𝑆𝑃𝑒𝑙𝑒𝑐 and 

𝐿𝑃𝑆𝑃𝑡ℎ𝑒𝑟, are calculated for Case-01 since electric and thermal demand are fulfilled 

simultaneously by utilizing only electric power. Case-01 considers the electrical demand 

and the thermal demand as a single entity. The maximum allowable limits of 𝐿𝑃𝑆𝑃 and 

𝑆𝐸𝐹 are 5% and 10% in the optimization problem. Literature reviews found the specified 

limits of 𝐿𝑃𝑆𝑃 and 𝑆𝐸𝐹. If HESs have the 𝐿𝑃𝑆𝑃 and 𝑆𝐸𝐹 within the defined limits, the 

system is considered as reliable and resilient. All the system arrangements, recorded in 

Table 7-3, have the values of 𝐿𝑃𝑆𝑃 and 𝑆𝐸𝐹 within the defined limits, signifying the 

reliability for all cases. However, electric 𝐿𝑃𝑆𝑃 and 𝑆𝐸𝐹 of Case-03 are the lowest (4.36% 

and 1.42%, respectively), referring to the most reliable system. If the 𝐺𝑅𝐹 is higher than 

100% and as much as close to 100%, the system is considered as reliable in terms of 𝐺𝑅𝐹. 

Therefore, Case-03 is also identified as the most reliable system in terms of 𝐺𝑅𝐹 (𝐺𝑅𝐹𝑒𝑙𝑒𝑐 

and 𝐺𝑅𝐹𝑡ℎ𝑒𝑟 are 115.31% and 108.71%, respectively). However, Case-02 shows the same 

thermal 𝐺𝑅𝐹 as Case-03. The higher value of 𝐿𝐴 shows better resiliency and operability of 

the system. Hence, Case-02 (87.85) and Case-03 (76.39) indicates the highest resiliency in 

terms of electric and thermal 𝐿𝐴, respectively.   

Table 7-3: KPIs of different Proposed N-R MHESs 

Parameters 

Directly 

Coupled 

System 

(Case-01) 

Single Resource and 

Multiple Products-

based Coupled System 

(Case-02) 

Multiple Resources and 

Multiple Products-

based Coupled System 

(Case-03) 

𝐿𝑃𝑆𝑃𝑒𝑙𝑒𝑐 (%) 
5 

5 4.36 

𝐿𝑃𝑆𝑃𝑡ℎ𝑒𝑟 (%) 5 5 

𝑆𝐸𝐹𝑒𝑙𝑒𝑐 (%) 
7.16 

3.45 1.42 

𝑆𝐸𝐹𝑡ℎ𝑒𝑟 (%) 10 10 

𝐺𝑅𝐹𝑒𝑙𝑒𝑐 (%) 
119.04 

118.48 115.31 

𝐺𝑅𝐹𝑡ℎ𝑒𝑟 (%) 108.71 108.71 

𝐿𝐴𝑒𝑙𝑒𝑐 (%) 
87.50 

87.85 86.11 

𝐿𝐴𝑡ℎ𝑒𝑟 (%) 73.26 76.39 

𝐿𝐶𝑂𝐸 ($/kWh) 0.5071 0.4483 0.2950 

 

Fig. 7-6 presents the PSO convergence plot of Case-01 for the best solution. The swarms 

reach the optimal value with the progression of the iteration number. The best solution is 

obtained by 100 independent runs of the PSO program. PSO is a natural-inspired 

optimization algorithm, and the problem contains several constraints. Thus, the PSO shows 

slightly different values in each run. Therefore, it is imperative to run the PSO program 

multiple times and identify the best results from the various runs. One hundred individual 

runs are a reasonable approximation to get a satisfactory solution.  
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Figure 7-6: Convergence Plot (Case-01) 

Fig. 7-7 represents the total energy generation and consumption scenario of Case-01. The 

figure shows that energy production, along with the support of the energy storage systems, 

is following the demand. However, there will be a small deficit or excess power within the 

system due to the allowable 𝐿𝑃𝑆𝑃 and 𝑆𝐸𝐹 limits. Fig. 7-8 depicts the charging and 

discharging mechanism of the energy storage systems based on the defined energy 

management algorithm in the earlier chapter. TES is absent in Case-01 since thermal 

energy production is not possible in this case.   

 

Figure 7-7: Total Energy Generation and Consumption Scenario (Case-01) 
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Figure 7-8: Energy Storage Operation (Case-01) 

Fig. 7-9 shows the PSO convergence plot of the best run for Case-02. The particles move 

towards the optimal value very quickly. The multiple independent runs produce almost the 

same fitness value at each run. Fig. 7-10 represents the total electric power generation and 

consumption scenario of Case-02. The electrolyzers, hydrogen tanks, and FCs contribute 

to follow the variable electrical demand based on the energy management algorithm 

identified in Chapter-04. Fig. 7-11 illustrates the thermal power generation and 

consumption scenario. The TES always supports to meet the thermal demand by absorbing 

the excess thermal energy and delivering the required thermal power. The electric 

generation and the thermal generation have surplus and deficit power due to the permissible 

limits of 𝐿𝑃𝑆𝑃 and 𝑆𝐸𝐹 constraints. Fig. 7-12 illustrates the charging and discharging 

scheme of the hydrogen tanks and TES.  

 

Figure 7-9: Convergence Plot (Case-02) 
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Figure 7-10: Total Electric Energy Generation and Consumption Scenario (Case-02) 

 

Figure 7-11: Total Thermal Energy Generation and Consumption Scenario (Case-02) 

 

Figure 7-12: Energy Storage Operation (Case-02) 
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Fig. 7-13 illustrates the PSO convergence plot for Case-03. The particles are able to find 

the optimal NPC efficiently with less number of iterations. Similar to Case-02, Fig. 7-14 

and Fig. 7-15 represent the electric and thermal power generation and consumption 

processes, respectively. Both the figures show that the production, along with the energy 

storage systems, is almost always achieving the system demand. Fig. 7-16 illustrates the 

charging and the discharging scheme of the hydrogen tanks and TES. The energy storage 

systems always accompany the demand by maintaining the minimum and maximum SOC 

of the storage.  

 

Figure 7-13: Convergence Plot (Case-03) 

 

Figure 7-14: Total Electric Energy Generation and Consumption Scenario (Case-03) 
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Figure 7-15: Total Thermal Energy Generation and Consumption Scenario (Case-03) 

 

Figure 7-16: Energy Storage Operation (Case-03) 

Before going to further analysis, it is necessary to establish the energy management 

algorithm proposed for different hybridization techniques. To do so, one new set of electric 

and thermal load data have been collected and utilized. Fig. 7-17 and Fig. 7-18 illustrate 

the new electric and thermal demand profile.  
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Figure 7-17: Electric Load Profile (for energy management algorithm verification) 

 

Figure 7-18: Thermal Load Profile (for energy management algorithm verification) 

Since the demand profile is changed, the optimization algorithm will find a new set of 

decision variables for each hybridization technique. The new sets of decision variables are 

utilized to verify whether the energy supply is accomplishing the system demand or not. 

Fig. 7-19 shows that the total energy supply fulfills the total system demand effectively 

with a tolerable margin of reliability. It validates the proposed energy management 

algorithm for Case-01. Similarly, Fig. 7-(20:21) and Fig. 7-(22:23) depict the energy 

supply capability of the energy management algorithm proposed for Case-02 and Case-03. 

The system supply always achieves the electric and the thermal demand with an acceptable 

reliability limit. This part of analysis also shows that Case-03 has the lowest NPC value.    
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Figure 7-19: Energy Management Algorithm Verification (Case-01) 

 

Figure 7-20: Electric Energy Management Algorithm Verification (Case-02) 

 

Figure 7-21: Thermal Energy Management Algorithm Verification (Case-02) 

NPC: $ 195.50 M 

LPSP: 5% 

SEF: 0.6% 

NPC: $ 181.06 M 

LPSP: 5% 

SEF: 5.57% 

LPSP: 5%  

SEF: 8.32% 
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Figure 7-22: Electric Energy Management Algorithm Verification (Case-03) 

 

Figure 7-23: Thermal Energy Management Algorithm Verification (Case-03) 

Since a nuclear-renewable integrated system's performance depends on several variables, 

the later sub-sections discuss system performance sensitivity to different parameters. The 

sensitivity analysis validates the outcomes obtained from the base case analysis. The 

sensitivity analysis also investigates the impact of various parameters on system economic, 

reliability, and resiliency. A sensitivity assessment is crucial for a system modeler to model, 

analyze, and develop the system infrastructure. The most influential parameters are 

identified in the sensitivity analysis. It helps the research community for future research 

and development. Several system variables are selected for the sensitivity assessment and 

presented in later sub-sections. Table 7-4 summarizes the main concepts of the sensitivity 

analysis conducted in this section.    

NPC: $ 126.82 M 

LPSP: 5% 

SEF: 0.001% 

LPSP: 5% 

SEF: 8.32% 
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Table 7-4: A Summary of the Sensitivity Analysis Conducted in Section 7.1  

Sub-Section Summary 

7.1.1 
This part evaluates the sensitivity of the variation in daily peak demand to 

NPC. 

7.1.2 
The sub-section assesses the sensitivity of the variation in annual peak demand 

to NPC. 

7.1.3 
This portion of the analysis explores the impact of average demand changes on 

system NPC. 

7.1.4 
The sub-section assesses and identifies the influence of different equipment 

cost on NPC. 

7.1.5 
This sub-section determines the impact of system economic parameters, such 

as discount rate, inflation rate, and project lifetime, on NPC. 

7.1.6 
This part evaluates the impact of the MMR capacity factor on system 

configuration and system NPC. 

 

7.1.1. Assessment of Sensitivity to Shifting of Daily Peak 

Demand 

Though the peak occurs (both electric and thermal demand) at mid-day in the base cases, 

it is also reasonable that the peak may occur at the beginning or end of the day. The peak 

demand for any load depends on the types of load and the project location. Usually, wind 

speed does not reach zero-level at night, while there will be no solar irradiance at night. 

Hence, alterations in peak demand cause inclusion or reduction of generation sources 

depending on geographical regions and the level of system demand. Therefore, a sensitivity 

analysis has been conducted in this sub-section by shifting the peak demand (both electric 

and thermal demand) by 12 hours. Fig. 7-24 and Fig. 7-25 depict the shifted peak scenarios 

of the electrical and the thermal demand, respectively. 

 

Figure 7-24: Shifted Electric Peak Demand (daily) 
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Figure 7-25: Shifted Thermal Peak Demand (daily) 

Fig. 7-26 represents the differences in the NPC of three nuclear-renewable hybridized 

systems due to variation in system peak. The system peak variation analysis is divided into 

three parts: variation in electric load, variation in thermal load, and variation in both 

electrical and thermal load. From all the cases of system peak variation, Case-03 provides 

the lowest system NPC. Since Case-01 and Case-03 include renewables and the demand 

profile is changing, the NPC will change due to the inclusion or reduction of different 

generation sources. Therefore, the NPC of Case-01 and Case-03 are varied in Fig. 7-26 

compared to the base case NPC mention in Fig. 7-5. The PSO recommends to include four 

MMR units for Case-02 in electric peak demand variation and thermal peak demand 

variation. But the PSO includes five microreactors in Case-02 for variation in both electric 

and thermal demand, while one of the units will run at 27 % of its rated capacity. 

Conversely, MMR capacity is always fully utilized in Case-01 and Case-03. The hydrogen 

storage, EES, and TES cost are mainly accountable for the changes in NPC for Case-02 

since the sizing of the storage systems changes with the variation in demand. The reliability 

parameters are regarded as optimization constraints, and the system resiliency is 

maintained in all cases. 

 

Figure 7-26: Impact of Variation in Daily Peak Demand 
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7.1.2. Assessment of Sensitivity to Shifting of Seasonal Demand 

In the base case analysis, the electric and the thermal annual peak occurs nearby the month 

of July-August. The seasonal peak demand also depends on the type of load and 

applications. Hence, the seasonal peak demand is shifted by six months in this sub-section, 

implying that the annual peak will occur at the starting of the year (around January) in the 

shifted load demand. Fig. 7-27 and Fig. 7-28 present the electric and the thermal seasonal 

shifted load profiles, respectively. 

 

Figure 7-27: Shifted Electric Peak Demand (seasonal) 

 

Figure 7-28: Shifted Thermal Peak Demand (seasonal) 

Similar to sub-section 7.1.1, this sub-section also divides the sensitivity analysis into three 

parts. The simulation results also reveal the lowest NPC for Case-03 and the highest NPC 

for the Case-01 in all sections. Fig. 7-29 summarizes the sensitivity assessment results due 

to annual peak demand variation. The seasonal peak variation does not affect the NPC of 



 

110 

Case-02 and Case-03. Therefore, the NPC for Case-02 and Case-03 presented in Fig. 7-29 

is almost similar to the base case. The seasonal peak variation affects Case-01 since the 

electric and the thermal load are viewed as a single demand in Case-01; any differences 

either in electrical demand or thermal demand alter the NPC.  

As the Case-02 consists of nuclear and BG, the system peak (daily and yearly) variations 

can not affect the optimal system configuration and the NPC significantly. PSO includes 

five MMR units in all types of peak variation in Fig. 7-29 (Case-02). PSO also recommends 

running one of the MMR units to run at 30%-32% of its maximum capacity for Case-02. 

The sizing of TES almost remains the same in this sensitivity analysis of all scenarios for 

Case-02. Thus, the NPC for Case-02 is the same for the seasonal electric demand peak 

variation, seasonal thermal peak variation, or both. On the other hand, since Case-01 and 

Case-03 include a considerable number of renewables, seasonal peak variation affects the 

optimal system architecture and the NPC, as shown in Fig. 7-29. 

It should be mentioned that there is a positive co-relationship between typical system 

demand and availability of renewables, e.g., solar irradiance and wind speed. It indicates 

that solar irradiance, wind speed, and peak demand usually reach the maximum at the same 

time, mid-day, in a day. Therefore, daily peak variations impact more severely than 

seasonal peak variations, as presented in Fig. 7-26 and Fig. 7-29.  

 

Figure 7-29: Impact of Variation in Seasonal Peak Demand 

7.1.3. Assessment of Sensitivity to Variation in Average Energy 

Demand 

Electric and thermal average demand may rise or decrease by a certain percentage at any 

time or throughout a particular duration. Therefore, a sensitivity analysis is carried out in 

this sub-section by increasing and decreasing the electric and thermal average demand by 

10%. 
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Fig. 7-30, Fig 7-31, and Fig. 7-32 represent NPC diversity due to changes in the average 

electric demand, the average thermal demand, and both electrical and thermal average 

demand, respectively, by ±10%. The results show that Case-03 provides the most 

economical NPC despite increasing or decreasing the electric and the thermal demand by 

a certain amount. The results also imply that the directly coupled system (Case-01) has the 

highest NPC for all cases. Fig. 7-30 tells that the NPC of all cases increases proportionately 

with the increase in electric demand. The augmentation of electrical demand adds more 

generation components or storage, which ultimately increase the NPC. However, the 

extension of electric demand does not always affect the NPC of Case-02 evenly. The 

scenario (Case-02), where the electrical demand is decreased by 10%, comprises four 

MMR units running at full capacity. On the contrary, the base case and the 10% increase 

in electric demand (Case-02) include five MMR units. For the base case, one of the MMR 

units runs at 32% of its nominal capacity. For the 10% increase of electric demand, one of 

the MMRs operates at 76% of its rated power, and PSO includes more hydrogen storage in 

this case. Hence, the NPC ($ 308.18 million) increases due to the inclusion of additional 

hydrogen storage systems.  The sizing of the TES remains the same as the base case.     

As illustrated in Fig. 7-31, the thermal demand variation does not significantly affect Case-

02 and Case-03 due to MMR's CHP unit. The CHP unit has no additional cost; the CHP 

unit cost is already incorporated within the component. The optimization only identifies 

the required efficiency of the CHP unit to fulfill the thermal demand. The PSO selects the 

same number of MMR units for any kind changes in thermal demand in this case; hence, 

the NPC of Case-02 is equal in all stages in Fig. 7-31. However, TES contributes to 

fluctuations in the NPC due to the variation in thermal demand. Since Case-01 meets the 

thermal requirement by electricity, the thermal demand variation combines more electricity 

generation sources within the N-R MHES that increase the NPC. Fig. 7-32 simulates both 

electric and thermal demand variation simultaneously. Since the electrical demand is 

altering in Fig. 7-32, the NPC increases with the increase of both demands for all three 

cases. However, Case-03 provides the best performance in terms of NPC for any load 

variation.  

 

Figure 7-30: Impact of Variation in Average Electric Demand 
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Figure 7-31: Impact of Variation in Average Thermal Demand 

 

Figure 7-32: Impact of Variation in both Average Electric and Thermal Demand 

7.1.4. Assessment of Sensitivity to Variation in System 

Equipment Cost 

This sub-section investigates the impact of different equipment’s cost on system NPC. The 

discussion also intends to validate the comparison results made for the base case of three 

proposed hybridization methods. Though the HESs consist of various equipment, the main 

components are considered in this sensitivity analysis. The overall deployment cost of a 

single element, such as PV panel, WT, MMR, hydro plant, BG, EES, FC, electrolyzer, and 

TES, is varied by ±20% of their base values. The impact of changing the component overall 

installation cost for Case-01 is illustrated in Fig. 7-33. Fig. 7-33 says that the MMR has the 

highest effect on the NPC. The FC, electrolyzer, and EES also have a moderate impact on 

the changes in NPC, and the rest of the components do not affect the system NPC 

significantly. The upper portion of Fig. 7-33 is the amplified version of the dotted part in 

that figure.   

335.26 345.94

390.79

305.83 305.84 305.85

201.29 201.26 201.13

0

50

100

150

200

250

300

350

400

450

10% decreased Base case 10% increased

N
P

C
 (

m
il

li
o

n
 $

)

Case-01 Case-02 Case-03

323.34
345.94

400.14

248.44

305.84 308.19

196.72 201.26

256.32

0

50

100

150

200

250

300

350

400

450

10% decreased Base case 10% increased

N
P

C
 (

m
il

li
o

n
 $

)

Case-01 Case-02 Case-03



 

113 

Since the MMR is the primary driver of increasing or lowering the NPC, the MMR total 

cost is viewed in detail in Fig. 7-34. The different costs of MMRs, e.g., overnight capital 

cost, fixed O&M cost, refueling cost, fuel cost, and decommissioning cost, are varied by 

±20% of their base prices to recognize the main contributor of the MMR total cost. Fig. 7-

34 illustrates that refueling cost and overnight capital cost are the primary driver in 

changing the MMR total cost, while the other expenses are trivial. Fig. 7-35 shows the 

impact of error in different MMR cost data on system NPC. This part of analysis intends 

to investigate the influence of each type of cost separately since each type of expense has 

a different impact on system NPC. Since microreactors are not in reality now and will be 

available soon, each part of MMRs’ total cost may experience differences within a specific 

range separately. Different technologies may provide a diverse range of cost variation for 

various cost types, such as capital cost, fixed O&N cost, refueling cost, fuel cost, and 

decommissioning cost. Therefore, The error in each cost input data (microreactors) is 

assumed to vary by ±10%, a reasonable margin of error used for quality control assessment 

[206]. This error analysis represents the total system NPC fluctuations due to the inserted 

errors in different microreactors’ cost input.      

 

Figure 7-33: Impact of Variation in System Equipment Cost (Case-01) 



 

114 

 

Figure 7-34: Impact of Variation in Different Types of Cost of MMR (Case-01) 

 

Figure 7-35: Error Analysis of Microreactor Costs (Case-01) 

Fig. 7-36 depicts the impact of various components due to the variation of overall 

component cost for Case-02. Similar to the results of Case-01, the MMR has a tremendous 

effect on the system NPC. The FC and the electrolyzer have a limited impact on the system 

economy, but the rest of the components have an insignificant effect on the NPC. Fig. 7-

37 illustrates the influence of different types of MMR cost on the total MMR cost. Fig. 7-

37 tells that the refueling cost and the capital cost are again the most vital contributor in 

the MMR deployment for Case-02, similar to the Case-01. Fig. 7-38 shows the effect of 

error of inputs to various MMR cost data on system NPC. The error is also considered to 

vary by ±10%, a similar assumption made for Case-01 in the previous section.     
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Figure 7-36: Impact of Variation in System Equipment Cost (Case-02) 

 

Figure 7-37: Impact of Variation in different types of Cost of MMR (Case-02) 
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Figure 7-38: Error Analysis of Microreactor Costs (Case-02) 

Fig. 7-39 addresses that the MMR has the most critical influence on the NPC, while the 

FC, electrolyzer, and hydro plant also significantly impact the system economy for Case-

03. The PV panels and the TES also affect the NPC. However, the rest of the equipment 

has a trivial effect on the system NPC. Like Case-01 and Case-02, the refueling and the 

capital cost of the MMR are the main contributor to raising or lowering the total MMR 

cost, as illustrated in Fig. 7-40. By observing all the findings from the above discussion, it 

is said that Case-03 is always superior to the other two hybridization methods for any 

fluctuations in equipment cost. Fig. 7-41 shows the impacts of error in different cost data 

(microreactor) on system NPC. The error value is regarded to vary by ±10%, similar to the 

error analysis part for Case-01 and Case-02.   
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Figure 7-39: Impact of Variation in System Equipment Cost (Case-03) 

 

Figure 7-40: Impact of Variation in different types of Cost of MMR (Case-03) 
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Figure 7-41: Error Analysis of Microreactor Costs (Case-03) 

7.1.5. Assessment of Sensitivity to Variation in Economic 

Parameters 

Project lifetime, discount rate, and inflation rate are the three most important economic 

parameters in the techno-economic analysis of HESs. The project lifetime, discount rate, 

and inflation rate for the base case are 40 years, 8%, and 2%, respectively.  

In this section, a sensitivity analysis is conducted by differing project lifetime, discount 

rate, and inflation rate from its base case. Fig. 7-42 summarizes the results of sensitivity to 

the project lifetime. The project lifetime is varied from 20 years to 100 years. The system 

NPC raises with the increment of the project lifetime. The NPC reaches a stable position 

for higher project lifetime in N-R MHESs. The figure also tells that the investment in any 

N-R MHES is also financially profitable for a longer project lifetime. The results show that 

Case-03 has the least NPC irrespective of the project lifetime. The system reliability is also 

ensured by executing the reliability constraints into the optimization problem.  
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Figure 7-42: Impact of Variation in Project Lifetime 

The discount rate is varied from 5% to 10% to evaluate the impact of the discount rate on 

system planning. The NPC falls with the increase in the discount rate, as shown in Fig. 7-

43. It is recommended that system planners should always choose a higher discount rate 

for economic system modeling. The result tells that Case-03 provides the least NPC 

irrespective of any value of the system discount rate. The rate of changes in NPC is also 

more limited for higher values of the discount rate.  

 

Figure 7-43: Impact of Variation in Discount Rate 
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of any value of the inflation rate. Therefore, the sensitivity assessment of the economic 

parameters also proves Case-03 as the most economic hybridization method for N-R 

MHESs.  

 

Figure 7-44: Impact of Variation in Inflation Rate 

7.1.6. Assessment of Sensitivity to Variation in Capacity Factor 

(MMR) 

A capacity factor indicates how a rated capacity of a generation source is utilized in an 

energy system. The MMR considered in the research may not always run at maximum rated 

power. The capacity factor is considered at steady-state mode throughout the operation of 

microreactors. Therefore, the base capacity factor (95%) would not be achieved. In this 
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depending on the demand for stand-alone MMR-based HES (Case-02). A stand-alone 

MMR-based HES makes the reactor selection relatively inflexible.  

For Case-01 and Case-03, the reduced capacity factor allows to include more renewable 

generation sources. The inclusion of a few PV panels, WTs, or HTs can manage a small 

variation of MMR Capacity. Since the MMR deployment cost is very high, the 

optimization recommends using renewable sources rather than incorporating a new MMR 

unit. Therefore, the NPC of Case-01 and Case-03 are also increased with the decreasing of 

MMR’s capacity factor. However, Case-03 provides the lowest NPC in all values of 

capacity factor, while Case-01 has the highest NPC in all cases. 

 

Figure 7-45: Impact of Variation in Capacity Factor (MMR) 
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most desirable nuclear-renewable integrated system (Case-03). Fig. 7-46 represents a 

schematic of a typical diesel Genset-based MEG. Diesel Gensets will only replace the 

MMRs in Case-04; the rest of the system configuration will be identical. The maximum 

available generation by combining all types of Gensets is kept the same as MMRs (Case-

03). Since three classes, 50 kW, 30 kW, and 20 kW, of reduced-size Gensets are used in 

Case-04 to lessen the NPC, maximum available power is apportioned equally to the 50 kW 

Genset, 30 kW Genset, and 20 kW Genset. To establish uniformity, the energy 

management algorithm of diesel Genset-based MEG (Case-04) is considered as same as 

the multiple resources and multiple products-based coupled N-R MHES (Case-03). The 

energy management algorithm for Case-04 is outlined in Fig. 7-47.    

 

Figure 7-46: Schematic of Diesel Genset-based MEG 
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Figure 7-47: Energy Management Algorithm of Diesel Genset-based MEG 

The NPC comparison between Case-03 and Case-04 is presented in Fig. 7-48. The NPC of 

Case-04 ($ 346.06 million) is about one and half times higher than the NPC of Case-03 ($ 

201.26 million). Though a comprehensive energy-flow model has been exercised in the 

diesel-fired MEG to reduce the system cost, the NPC of Case-04 is still largely higher 

compared to Case-03. The results of the optimal configuration of diesel-fired MEG are 

recorded in Table 7-5. The equal number of populations and iterations with the previous 

cases are considered in this optimization problem. The PSO optimization results suggest 

including three types of Gensets, PV panels, WTs, hydro plant, hydrogen storage, EES, 

and TES. The optimal system intends to utilize multiple small-size generators rather than 

using a large-scale Genset. A single unit of 50 kW generator is also added to the optimal 

system. The optimal system utilizes the full availability of all renewable energy generating 
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components, such as PV panels, WTs, HTs, and BG; the maximum number of these 

components are incorporated in the optimal configuration. The results do not insert the 

E2H unit and the H2E unit within the optimal system configuration.   

 

Figure 7-48: Comparison of the NPC between Case-03 and Case-04 

Table 7-5: Optimal Configuration of Diesel Genset-bases MEG 

Case Diesel Genset-based MEG (Case-04) 

Number of particles 250 

Number of iterations 300 

Number of Diesel 
Genset 

Genset (50 kW rated) 2 
Genset (30 kW rated) 50 
Genset (20 kW rated) 50 

Number of PV panels 100 

Number of WT 100 

HT capacity (kW) 1000.64 

Required CHP 
Efficiency (%) 

Genset (50 kW rated) 29.8 
Genset (30 kW rated) 30.0 
Genset (20 kW rated) 21.6 

Number of Hydrogen tank 12 

Battery bank capacity (MWh) 12.53 

TES capacity (MWh) 19.90 

BG capacity (kW) 65.10 

E2H unit capacity (kW) 0 

H2E unit capacity (kW) 0 

 

Table 7-6 lists the KPIs of Case-04 and compares them with Case-03. Both Case-03 and 

Case-04 confirm the maximum resiliency within the defined reliability constraint limits. 

Due to the reduced size of diesel Gensets, Case-04 is more reliable in terms of 𝐺𝑅𝐹 and 

𝐿𝐴 (electrical); 𝐿𝑃𝑆𝑃𝑒𝑙𝑒𝑐 and 𝑆𝐸𝐹𝑒𝑙𝑒𝑐 have better values for Case-03 compared to Case-04. 

Since the total cost of diesel Genset installation and maintenance is high, more RESs are 
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LCOE of Case-04 (0.5073 $/kWh) is approximately 1.5 times higher than Case-03 (0.2950 

$/kWh).   

Table 7-6: Comparison of KPIs between Case-03 and Case-04 

Parameters 

Multiple Resources and Multiple 

Products-based Coupled System 

(Case-03) 

Diesel Genset-based MEG 

(Case-04) 

𝐿𝑃𝑆𝑃𝑒𝑙𝑒𝑐 (%) 4.36 5 

𝐿𝑃𝑆𝑃𝑡ℎ𝑒𝑟 (%) 5 5 

𝑆𝐸𝐹𝑒𝑙𝑒𝑐 (%) 1.42 8.70 

𝑆𝐸𝐹𝑡ℎ𝑒𝑟 (%) 10 10 

𝐺𝑅𝐹𝑒𝑙𝑒𝑐 (%) 115.31 113.15 

𝐺𝑅𝐹𝑡ℎ𝑒𝑟 (%) 108.71 108.71 

𝐿𝐴𝑒𝑙𝑒𝑐 (%) 86.11 90.63 

𝐿𝐴𝑡ℎ𝑒𝑟 (%) 76.39 75.00 

𝑅𝐹 (%) 10.25 15.10 

𝐿𝐶𝑂𝐸 ($/kWh) 0.2950 0.5073 

 

Fig. 7-49 illustrates the PSO convergence plot of Case-04 for the best independent run. Fig. 

7-50 and Fig. 7-51 demonstrate the electric and the thermal energy generation and 

consumption plots for the diesel-fired MEG. The electrical and the thermal generation 

sources accompanying the energy storage systems favorably serve the electric and the 

thermal demand in Case-04. A few amounts of energy deficiency or surplus happen due to 

the allowable defined limits of the 𝐿𝑃𝑆𝑃 and 𝑆𝐸𝐹 constraints. Fig. 7-52 represents the 

charging and discharging process of the energy storage systems employed in Case-04.   

 

Figure 7-49: Convergence Plot (Case-04) 
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Figure 7-50: Total Electric Energy Generation and Consumption Scenario (Case-04) 

 

Figure 7-51: Total Thermal Energy Generation and Consumption Scenario (Case-04) 
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Figure 7-52: Energy Storage Operation (Case-04) 

The energy management algorithm proposed in Case-04 has also required validation before 

additional analysis. Therefore, the same procedure, conducted earlier, is followed here to 

verify the energy management algorithm by utilizing new sets of load profiles, presented 

in Fig. 7-17 and Fig. 7-18. As new load profiles are introduced, the PSO will identify a 

new set of variables for Case-04. By using the new value of the decision variables for Case-

04, the supply (electric and thermal) can meet the demand adequately with a fair margin of 

reliability. Fig. 7-53 and Fig. 7-54 show the energy supply and demand scenario for Case-

04 with new electric and thermal profiles. Also, Case-04 still has a higher NPC than Case-

03.  

 

Figure 7-53: Electric Energy Management Algorithm Verification (Case-04) 

NPC: $ 165.69 M 

LPSP: 5 % 

SEF: 2.79% 
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Figure 7-54: Thermal Energy Management Algorithm Verification (Case-04) 

Since both the arrangements, Case-03 and Case-04, are dependent on diverse determinants, 

it is required to carry out a sensitivity analysis by considering the most influential factors. 

The later sub-sections present the sensitivity analysis in detail for Case-04. This sensitivity 

analysis's primary purpose is to verify the results obtained from the base case comparison 

between Case-03 and Case-04. It should be remarked that the cost of environmental impact 

and the cost of GHG emissions are not considered in this study. Table 7-7 compiles the 

main idea of the sensitivity assessment carried out in section 7.2.  

Table 7-7: A Summary of the Sensitivity Analysis Conducted in Section 7.2 

Sub-Section Summary 

7.2.1 
This segment compares the NPC of Case-03 and Case-04 due to the shift in 

daily peak demand. 

7.2.2 
The sub-section assesses the sensitivity of the difference in seasonal peak 

demand from base cases to NPC for Case-03 and Case-04. 

7.2.3 
This piece of assessment estimates the impact of average demand changes on 

system NPC. 

7.2.4 
The sub-section evaluates and identifies the impact of different equipment cost 

on NPC. 

7.2.5 
This sub-section determines the impact of system economic parameters, e.g., 

discount rate, inflation rate, and project lifetime, on NPC. 

7.2.6 
This segment evaluates the influence of renewable resources on system 

planning and NPC. 

7.2.7 
This sub-section determines the NPC of Case-03 and Case-04 and analyzes the 

impact on NPC due to variation in PV panel and WT availability. 

 

LPSP: 5% 

SEF:0.003% 
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7.2.1. Assessment of Sensitivity to Shifting of Daily Peak 

Demand 

Like sub-section 7.1.1, a sensitivity analysis is conducted to evaluate the impact of shifting 

the daily peak demand. Fig. 7-55 represents the comparison of the NPC for Case-03 and 

Case-04 for the shifted electric and thermal demand. The sensitivity analysis shows that 

Case-04 has substantially higher NPC than Case-03, referring Case-03 is more profitable 

than Case-04. 

 

Figure 7-55: Impact of the Shifting of Daily Peak Demand 

7.2.2. Assessment of Sensitivity to Shifting of Seasonal Demand 

Another sensitivity analysis is conducted here by moving the seasonal demand by six 

months since it differs from region to region, similar to the study of sub-section 7.1.2. Fig. 

7-56 highlights the sensitivity analysis results for Case-03 and Case-04 due to the variation 

in electric demand, thermal demand, or both. The results affirm that the NPC of Case-03 is 

still less than Case-04 for all situations. The sensitivity results signify that Case-03 has 

more financial advantages than Case-04. Similar to the results obtained in sub-section 

7.1.2, the annual peak load variation does not widely affect the NPC. Thus, the NPC 

indicated in Fig. 7-56 for Case-04 are roughly the same as the base case value.   
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Figure 7-56: Impact of the Shifting of Seasonal Peak Demand 

7.2.3. Assessment of Sensitivity to Variation in Average Energy 

Demand 

The electric demand and the thermal demand are altered by ±10% here to evaluate the 

sensitivity of NPC to system demand for Case-04. Fig. 7-57, Fig. 7-58, and Fig. 7-59 

present the NPC of Case-03 and Case-04 due to the modified electric, thermal, and both 

electric and thermal demand, sequentially. The results again show the cost-efficiency of 

Case-03 over Case-04 for all cases. Case-03 has less NPC than Case-04 regardless of the 

increase or decrease of electric demand, thermal demand, or both electrical and thermal 

demand. The increment of electric demand forces to include more generators. Hence, the 

NPC increases with the rise of electric demand for Case-04, as shown in Fig. 7-57. Due to 

the CHP capability and less influence of TES on total NPC, the thermal variation does not 

alter the NPC significantly, illustrated in Fig. 7-58. Since Fig. 7-59 simulates both the 

electric and the thermal load variation, the system NPC increases with the extension in 

system demand.    

 

Figure 7-57: Impact of Variation in Average Electric Demand 
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Figure 7-58: Impact of Variation in Average Thermal Demand 

 

Figure 7-59: Impact of Variation in both Average Electric and thermal Demand 

7.2.4. Assessment of Sensitivity to Variation in System 

Equipment Cost 

This section intends to investigate the consequence of the component’s cost on the total 

system economy for Case-04. The equipment’s impact on NPC for Case-03 has already 

been studied in sub-section 7.1.4. Therefore, this sub-section investigates the sensitivity of 

the NPC due to the alteration of different component cost for Case-04. Fig. 7-60 shows that 
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is apparent since multiple units of 30 kW generators and 20 kW generators are installed 

within the HES. Due to two-unit installation of 50 kW Genset, it has reasonable impact on 

the total system NPC. The EES, electrolyzer, FC, and hydropower plant also have a 

moderate influence on the NPC. The rest of the components have a limited impact on the 

NPC. Fig. 7-61 examines the details of the most influential cost contributors, 30 kW and 

20 kW Gensets, in Case-04. Fig. 7-61 points that the fuel cost of 30 kW Genset has the 

most contribution in the NPC variation, followed by fuel cost of 20 kW, O&M cost of 30 
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kW, and O&M cost of 20 kW, respectively. The capital cost and the replacement cost of 

the generators are trivial compared to the other investments. By analyzing the discussion 

stated above, Case-03 is an extensively profitable configuration compared to Case-04.  

 

Figure 7-60: Impact of Variation in System Equipment Cost (Case-04) 

 

Figure 7-61: Impact of Variation in Diesel Genset Cost 
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7.2.5. Assessment of Sensitivity to Variation in Economic 

Parameters 

Similar to sub-section 7.1.5, project lifetime, discount rate, and inflation rate are studied 

here to evaluate these parameters' impact on the system NPC. Fig. 7-62 points out the NPC 

of Case-03 and Case-04 for different project lifetime. The figure tells that the Case-03 has 

a lower NPC than Case-04 regardless of the project lifetime. The rate of changes in NPC 

is very low for a higher project lifetime. 

 

Figure 7-62: Impact of Variation in Project Lifetime 

The discount rate varies from 5% to 10% to assess its’ sensitivity to the NPC system. The 
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Figure 7-63: Impact of Variation in Discount Rate 
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The system NPC progresses with the rise of the inflation rate, shown in Fig. 7-64. The base 

case's inflation rate was assumed to be 2%, and it is adjusted from 1% to 6% in this 

sensitivity analysis. The results, illustrated in Fig. 7-64, show that Case-03 has a lower 

NPC than Case-04 for all inflation rate values. The sensitivity assessment of all economic 

parameters strongly supports that Case-04 is not economically profitable at any point of 

view, compared to Case-03.   

 

Figure 7-64: Impact of Variation in the Inflation Rate 

7.2.6. Assessment of Sensitivity to Variation in Renewable 

Resources  

Solar irradiance, wind speed, and streamflow may rise or fall at any time of the year. Hence, 

another sensitivity analysis is handled here by changing the solar irradiance and the wind 

speed by ±10%. The purpose of this sensitivity assessment is to evaluate if Case-04 is 

analogous to Case-03 at any point of resource alteration. The sensitivity assessment is not 

conducted for the streamflow since it does not fluctuate much throughout a year for small-

scale run-of-river hydro plants [157].     

The optimization algorithm suggests the number of generation components based on 

resource availability. If any resource availability is reduced, the optimization either chooses 

another generation source or incorporates more identical elements to fulfill the demand. 

The PV panels and WTs are recognized as the least contributor to NPC in the earlier 

sensitivity analysis. Therefore, due to the unavailability of either solar irradiance or wind 

speed, the optimization will either pick some other high-priced generation sources or add 

more WTs and PV panels. Thus, the NPC is increased for the decrease of solar irradiance 

and wind speed pointed in Fig. 7-65 and Fig. 7-66. Similarly, if the solar irradiance and the 

wind speed are increased, the PSO optimization will avoid including a large number of PV 

panels, WTs, and high-cost generation sources. Hence, the NPC will be decreased, as 
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illustrated in Fig. 7-65 and Fig. 7-66. Though the NPC is decreasing with the increase of 

solar irradiance and wind speed, the NPC of Case-03 is still not comparable to the NPC of 

Case-04. Case-04 has a higher NPC than Case-03 for all cases, presented in Fig. 7-65 and 

Fig. 7-66. It should also be noticed that the wind speed variation strongly affects the NPC 

compared to the variations in solar irradiance due to the lower installation cost of WT.   

 

Figure 7-65: Impact of Variation in the Solar Irradiance 

 

Figure 7-66: Impact of Variation in the Wind Speed 
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run-of-river system is kept outside of this analysis since it is not easy to increase the 

hydroelectric plant size instantly. The BG is also not tested in this part as the generation in 

BG depends on the number of available cattle. 

The maximum available number of the PV panels and the WTs have been adjusted from -

50% to 500% in the optimization problem to reflect the variation in PV panel and WT 

availability. Fig. 7-67, Fig. 7-68, Fig. 7-69 depict the NPC variety due to differences in PV 

panel availability, WT availability, and both. Fig. 7-67 shows that the NPC of Case-03 does 

not change much due to the changes in PV panel availability. It implies that the 

optimization does not include PV panels in the optimal N-R MHES, even if the PV panel 

availability is extended. The NPC of Case-04 decreases with the increase of PV panel 

availability. However, the NPC also does not change significantly for Case-04 for the 

increased number of PV panel availability, signifying PV panel requirement is limited for 

the optimal diesel-fired MEG (Case-04). Fig. 7-68 shows that the NPC starts decreasing 

with the increased number of available WTs for both Case-03 and Case-04. However, the 

NPC reduction sustains for a particular range of WT availability; the NPC does not vary 

beyond 200% changes of WTs for Case-04. Due to the lower installation cost and 

reasonable energy conversion efficiency of WTs, compared to solar PV panels, the PSO 

optimization includes more WTs rather than adding PV panels in this case. Since the 

increased availability of WTs includes more WTs and discard PV panels, the NPC is 

reduced. The corresponding NPC values in Fig. 7-68 for 200%, 300%, 400%, and 500% 

changes in WT availability should not differ, but these values are fluctuating a bit due to 

the iterative PSO algorithm. Since both the availability of PV panels and WTs have been 

changed in this case, Fig. 7-69 presents a similar variation, like Fig. 7-68, in the NPC for 

Case-03 and Case-04. The degree of changes in the NPC is higher in Fig. 7-69 due to the 

combined effect of both changes.  

By analyzing Fig. 7-67, Fig. 7-68, and Fig. 7-69, Case-03 is always more competent in 

accomplishing the demand. Another finding from this study is that installing a massive 

number of renewable sources, such as PV panels and WTs, may not be profitable for HESs; 

optimal planning is mandatory for these kinds of systems. This analysis also verifies that 

the assumptions made for considering the variable limits in the optimization problem are 

conservative. Furthermore, this part of the investigation shows that a 100% RES-based 

energy system may not be an economic system compared to HESs.  
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Figure 7-67: Impact of Variation in PV Panels Availability 

 

Figure 7-68: Impact of Variation in WT Availability 

 

Figure 7-69: Impact of Variation in both PV Panels and WT Availability 
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Chapter 8: Conclusions and Recommendations  

8.1. Summary and Conclusions 

This research introduces three distinct nuclear-renewable hybridization approaches, i.e., 

"Direct Coupling," "Single Resource and Multiple Products-based Coupling," and 

"Multiple Resources and Multiple Products-based Coupling." The study recognizes 

"Multiple Resources and Multiple Products-based Coupling" as the most useful 

hybridization technique. The simulation results show that "Multiple Resources and 

Multiple Products-based N-R MHES" provides the lowest NPC ($ 201.26 million) 

compared to "Directly coupled N-R MHES" ($ 345.94 million) and "Single Resource and 

Multiple Products-based N-R MHES" ($ 305.84 million) for the base case. The results also 

confirm that all the systems provide an adequate margin of reliability for the base case. The 

sensitivity analysis proves that "Multiple Resources and Multiple Products-based N-R 

MHES" remains the most effective hybridization technique despite the variation in key 

input parameters, such as daily demand peak, seasonal demand peak, average system 

demand, equipment cost, capacity factor, project lifetime, inflation rate, and nominal 

discount rate. "Directly coupled N-R MHES" has technical advantages, such as full 

resource usage, but it is not a profitable investment. "Single Resource and Multiple 

Products-based Coupled system" is challenging to meet the variable demand; the MMR 

unit's capacity is not utilized properly in this case. "Multiple Resources and Multiple 

Products-based Coupled N-R MHES" provides outstanding performance for dynamic load 

by using the resource capacity suitably.  

The second part of the investigation tells that MMRs could be an excellent replacement for 

diesel Gensets within MEGs in terms of technical, economic, and environmental aspects. 

The significant fuel cost and the frequent replacement of diesel Gensets cause the diesel-

fired MEG extremely expensive. Though MMRs have substantial capital cost, the lower 

fuel cost and other costs make the MMR-based MEG economical. The environmental 

issues are not counted in this study, but it is evident that the GHG emissions are excessively 

high for diesel Gensets. The NPC of the diesel-fired MEG is significantly higher than the 

most effective MMR-based MEG, and this statement is true for all scenarios investigated 

in the sensitivity analysis. Diesel Gensets are used as a surrogate of all fossil-fired 

generators in this study. However, MMRs could also be an ideal replacement for coal-

based and natural-gas-based generators within MEGs. The sensitivity analysis reveals that 

N-R MHESs are more cost-effective and technically reliable than traditional MEGs or 

stand-alone MMR-based energy systems. The sensitivity assessment considers the key 

input parameter, e.g., daily peak demand, yearly peak demand, average energy demand, 

component cost, solar irradiance, wind speed, project lifespan, inflation rate, discount rate, 

PV panel availability, and WT availability, that has a substantial influence on overall 

system economy and system resiliency. The hybridization between MMRs and renewables 

maximizes the benefits of both resources. N-R MHESs also support a more straightforward 

energy management strategy.     
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8.2. Contributions of the Thesis 

The primary goal of this study is to provide an innovative and sustainable solution to the 

energy crisis for off-grid applications. To attain such an objective, this study evaluates the 

potentiality of replacing traditional fossil-fired generators with MMRs within MEGs and 

proposes three different hybridization techniques for nuclear-renewable integration. 

Detailed modeling and analysis have been carried out to identify the best hybridization 

method for micro-level nuclear-renewable integration. The best hybrid nuclear-renewable 

system is compared with a conventional diesel Genset-based MEG. The results obtained in 

all cases have been validated by sensitivity analysis. However, the main contribution of 

this research can be summarized as follows. 

⎯ A comprehensive literature review is conducted to identify the problem and gaps in 

the research topic. A reasonable solution is presented to the identified research 

problem to bridge the gap.  

⎯ Three different coupling methods for nuclear-renewable integration are introduced 

in this study. The hybridization procedures, along with energy management 

algorithms, are implemented in the MATLAB environment. Though the previous 

works on nuclear-renewable integrated systems are carried out on physical 

component-based simulators, such as Modelica and RAVEN, this study is carried 

out in the most versatile and popular simulator, MATLAB. 

⎯ A metaheuristic optimization algorithm, PSO, is developed and executed in the 

proposed system arrangements to identify the systems' best configuration. System 

reliability constraints are efficiently utilized in the optimization problem, rather 

than using them as an objective function. It reduces optimization complexity.  

⎯ One of the most traditional fossil fuel-based power generation sources, diesel 

Genset, is compared with the best nuclear-renewable hybridized configuration. The 

study affirms the cost-competency, reliability, performability, and resiliency of the 

proposed nuclear-renewable hybridized system over the traditional MEG.  

⎯ Since the demand varies from region to region and the availability of RESs are 

highly dependent on the meteorological condition, a sensitivity analysis is carried 

out widely to determine the system parameters' effect on planning, economy, and 

resiliency. The sensitivity analysis ensures that the results obtained in the base cases 

are not confined to a particular project location or specific load demand; the 

conclusions hold regardless of the demand and project site. The sensitivity analysis 

also provides ample information to the system planners regarding the impact of 

different system equipment on system economy and resiliency. It will help in the 

deployment stage in the future.   
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8.3. Safety Aspects of N-R MHES 

It is important to ensure safety of microreactor operation as the main component within N-

R MHES. The safety of microreactors has already been demonstrated in several studies. 

Microreactors have an enhanced-safety features, and it provide a secure solution to the 

international energy crisis. MMR plants do not need any active safety system. The natural 

convection process removes the generated heat of the core. Plants can operate safely 

without taking support from external electric and water supply systems. The reactor 

temperature also does not increase suddenly due to the high-performance fuel module. 

Hence, the fuel module provides a large-scale safety margin. The molten salt is used as 

thermal storage in MMRs that provide both electric power and process heat. Because of 

modularity and scalability, multiple MMR units can be rearranged to support different 

ranges of power demand [77]. 

Microreactors are new, and it includes several unique characteristics. Therefore, research 

is progressing to develop regulatory documents for microreactors. Some initial 

considerations for regulatory review of microreactors have been addressed in [208], but 

this document only presents limited ideas on microreactor safety assessments. Probabilistic 

Risk Assessment (PRA) can address the inherent issues related to microreactors. However, 

PRA model will be relatively simple for microreactors compared to traditional large 

reactors. Licensing Basic Events (LBE), such as Anticipated Operational Occurrences 

(AOOs), Design Basis Events (DBEs), and Beyond Design Basis Events (BDBEs), and 

Design Basic Accidents (DBAs), need to be identified for microreactor sites. The expected 

frequencies for different events of microreactor sites are listed in Table 8-1 [208]. 

Table 8-1: Different types of Events Associated with Microreactor Facility 

Event Category Types Anticipated Frequency 

(per reactor year) 

May challenge safety goals Rare <10-5 

Expected to happen during 

the lifespan of the population 

of plants 

Infrequent <10-2 to ≥10-5 

Expected to happen during 

lifespan 

Frequent ≥10-2 

 

As microreactors will be operated with less human interventions and managed remotely, 

several guidelines and operational procedures for MMR may not be the same as traditional 

NPPs. The anticipated number of accidents and events will be small for microreactors 

[208]. Some documents that provide preliminary idea on development of new regulatory 

documents for microreactors are listed below: 

• IAEA-TECDOC-1915: Considerations for Environmental Impact Assessment for 

Small Modular Reactors.  



 

141 

• NEI 18-04: Risk-Informed Performance-Based Guidance for Non-Light Water 

Reactor Licensing Basis Development. 

• NRC Draft Regulatory Guide 1353: Guidance for a Technology-Inclusive, Risk-

Informed, and Performance-Based Methodology to Inform the Licensing Basis and 

Content of Applications for Licenses, Certifications, and Approvals for Non-Light-

Water Reactors. 

• NUREG-1860: Feasibility Study for a Risk-Informed and Performance-Based 

Regulatory Structure for Future Plant Licensing, Volumes 1 and 2. 

Microreactors are still in the R&D stage. Several manufacturers are working on the 

development and demonstration of microreactors that will be ready in the near future. 

Possible challenges to the development of microreactor-based energy systems are 

identified in some studies. “Security by design” is a new and potential approach that can 

be integrated with the unique microreactor design process [209], while “Safeguards by 

Design” and “Safety by Design” methods have already been used practiced in traditional 

large-scale reactors [210]. “Security by design” includes Safety, Security, and Safeguard 

(3S) features in nuclear reactors' design. “Fault Tree Analysis” can help to achieve the 

implementation of the “Security by design” approach [211]. A comprehensive review 

process on proposed nuclear facilities and experts can identify new microreactors' potential 

risks and solutions. The solution may include verification tools for sealed fuel module, 

verification of spent fuel tank condition, and confirmation of passive safety system.   

Since N-R MHESs occupy small area, the terrestrial impact is also small for these kind of 

systems. Effects on air quality, sound quality, and dust generation during the microreactor 

facility's construction stage are limited compared to traditional large-scale NPPs. Water 

management and waste management facilities are very important parts for N-R MHESs 

deployment. Although radiological hazards are always identified as a potential risk for 

nuclear facilities, microreactors' inherent passive safety system reduces the risk 

significantly. The spent fuel transportation system requires a high level of precaution. N-R 

MHES development also requires special considerations on fish, fish habitats, aquatic 

species, and migratory birds around the facility. Moreover, inputs form indigenous peoples 

of the selected project is also a vital factor in the development of N-R MHES [78].      

The operation of renewable energy generation sources is considerably safe. For example, 

solar panel operation requires glasses and gloves to minimize the risks of electric shock. 

Metallic jewelry is also avoided during working with electric instruments [212]. In wind 

power generation, a safety zone is maintained around wind turbines during operation. 

People are prohibited from entering this zone as a safety precaution [213]. Several 

regulatory documents for testing, installing, and inspecting solar PV panels and WTs are 

available from different organizations (e.g., CSA and IEC). These types of regulatory 

documents should be followed during the development stage of N-R MHESs. By 

considering the safety aspects of all component of N-R MHESs, it is expected that N-R 

MHESs are competent in performing safely.   
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8.4. Future Work and Recommendations 

This research intends to consolidate nuclear and renewable sources to operate in tandem. 

Several works need to be done to determine the specific application of N-R MHESs.  The 

following can be proposed as future works. 

⎯ Different electric, electrochemical, mechanical, and thermal energy storage could 

be combined in N-R MHESs depending on the applications and the availability to 

make the system more versatile. 

⎯ The uncertainly and the variability of the resources input data, e.g., temperature, 

solar irradiance, wind speed, and mass flow rate, can be introduced in the 

optimization model in future research.   

⎯ The cost associated with alternative energy generation sources that operate during 

equipment replacement, such as the nuclear fuel module, WT, PV panel, and diesel 

Genset, should be incorporated in the future work. The energy management 

procedure during a specific component replacement period should also be 

documented in future research.   

⎯ The cost of real estate for nuclear facilities and renewable generation sources 

(where applicable) should be included in the future study if demanded to develop a 

realistic project outline.   

⎯ “Traceability Matrix” format can be adopted in the future to arrange the 

assumptions for extended research of this study. 

⎯ Electrification transportation is one of the most crucial issues at present, which has 

a massive impact on energy systems. Therefore, EV fast-charging stations could be 

incorporated and evaluated with N-R MHESs for remote locations.  

⎯ A Comprehensive licensing procedure for N-R MHESs should be focused on future 

research.   

⎯ The maximum acceptable limits of the reliability constraints used in this research, 

such as LPSP and SEF, can be varied and conducted another sensitivity analysis to 

see their impacts on NPC.  
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⎯ Different energy management algorithms can be employed and tested to quantify 

the benefits of different N-R MHESs for various applications. 

⎯ Alternative artificial intelligent optimization algorithms, e.g. Genetic Algorithm 

(GA), Ant Colony Optimizer (ACO), PSO, Artificial Bee Colony (ABC) 

optimization, Cuckoo Search (CS), and Simulated Annealing (SA), can also be 

utilized in future to obtain the optimal system configuration.  

⎯ Flexible operation of MMRs can be adopted in future research for N-R MHESs to 

evaluate the techno-economic performance analysis. 

⎯ The quality of the heat associated with N-R MHESs should be examined and 

quantified in future investigations to identify specific applications.   

⎯ MMR model could be developed in MATLAB Simulink interface for technical and 

economic evaluation. The developed model could be incorporated with other 

simulators for techno-economic assessment; this will create a multi-dimensional 

research area.  
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