
 

Optimized Time-Dependent Congestion Pricing System for Large Networks: 

Integrating Distributed Optimization, Departure Time Choice, and Dynamic 

Traffic Assignment in the Greater Toronto Area 

 

 

 

 

By 

Aya Tollah Moustafa S. M. Aboudina 

 

 

 

A thesis submitted in conformity with the requirements 

for the degree of Doctor of Philosophy 

 

 

Department of Civil Engineering 

University of Toronto 

 

 

 

© Copyright by Aya Aboudina, 2016 



 

ii 

 

Optimized Time-Dependent Congestion Pricing System for Large Networks: 

Integrating Distributed Optimization, Departure Time Choice, and Dynamic 

Traffic Assignment in the Greater Toronto Area 

Aya Aboudina 

Doctor of Philosophy 

Department of Civil Engineering 

University of Toronto 

2016 

Abstract 

Congestion pricing is one of the most widely contemplated methods to manage traffic 

congestion. The purpose of congestion pricing is to manage traffic demand generation and 

supply allocation by charging fees (i.e., tolling) for the use of certain roads in order to distribute 

traffic demand more evenly over time and space. This study presents a system for large-scale 

optimal time-varying congestion pricing policy determination and evaluation. The proposed 

system integrates a theoretical model of dynamic congestion pricing, a distributed optimization 

algorithm, a departure time choice model, and a dynamic traffic assignment (DTA) simulation 

platform, creating a unified optimal (location- and time-specific) congestion pricing system. The 

system determines and evaluates the impact of optimal tolling on road traffic congestion (supply 

side) and travellers’ behavioural choices, including departure time and route choices (demand 

side). For the system’s large-scale nature and the consequent computational challenges, the 

optimization algorithm is executed concurrently on a parallel cluster. The system is applied to 

simulation-based case studies of tolling major highways in the Greater Toronto Area (GTA) 

while capturing the regional effects of tolling. The models are developed and calibrated using 

regional household travel survey data that reflect travellers’ heterogeneity. The DTA model is 

calibrated using actual traffic counts from the Ontario Ministry of Transportation and the City of 

Toronto. The main results indicate that: (1) more benefits are attained from variable tolling due 

to departure time rescheduling as opposed to mostly re-routing only in the case of flat tolling, (2) 

widespread spatial and temporal re-distributions of traffic are observed across the regional 

network in response to tolling significant – yet limited – highways in the region, (3) optimal 
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variable pricing mirrors congestion patterns and induces departure time re-scheduling and 

rerouting patterns, resulting in improved average travel times and schedule delays at all scales, 

(4) tolled routes have different sensitivities to identical toll changes, (5) the start times of longer 

trips are more sensitive (elastic) to variable distance-based tolling policies compared to shorter 

trips, (6) optimal tolls intended to manage traffic demand are significantly lower than those 

intended to maximize toll revenues, (7) toll payers benefit from tolling even before toll revenues 

are spent, and (8) the optimal tolling policies determined offer a win-win solution in which travel 

times are improved while also raising funds to invest in sustainable transportation infrastructure. 
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1. Introduction 

1.1. Background 

As traffic congestion levels soar to unprecedented levels in dense urban areas, and governments 

are challenged to meet the demand for transportation and mobility, congestion pricing is 

becoming one of the most widely contemplated methods to combat congestion (Washbrook et 

al., 2006). The Greater Toronto and Hamilton Area (GTHA) in Ontario, Canada, is a vivid 

example in terms of widespread congestion in all modes, particularly roads. Toronto is one of the 

‘top ten’ most congested North American cities (TomTom International BV, 2014). In 2006, the 

annual cost of congestion to commuters in the GTA was estimated to be $3.3 billion. Looking 

ahead to 2031, this cost is expected to rise to $7.8 billion (GTTA, 2008). 

Together, these factors strengthen the need to analyze, test, and deploy various traffic control 

policies in order to tackle the alarming congestion problems in the GTA region. This region 

involves widespread activities, heterogeneous travel behaviour, a wide range of socioeconomic 

attributes of travellers, multiple routing options, as well as many satellite cities, which make it an 

ideal case study in which to test any traffic control policy. 

Highway agencies and roadway authorities struggle with the policy-oriented and politically 

driven dilemma of whether or not to toll their roads; however, this should not be the question as 

the merits of adopting full-cost pricing were established decades ago (Small and Verhoef, 2007). 

The "tragedy of the commons" concept was established a century ago and was widely discussed 

by Garrett Hardin (1968) and many others since then. The tragedy of the commons is a dilemma 

arising from the situation in which multiple individuals, acting independently and rationally 

consulting their own self-interest, will ultimately deplete a shared limited resource even when it 

is not in anyone's long-term interest for this to happen. A famous example is when herders are 

given free access to open grassland for their cows to graze: cows tend to overgraze and deplete 

their source of sustenance to the detriment of everyone. The parallel to the tragedy of the 

commons in traffic could not be more direct. While transportation authority and society at large 

would like to "optimize" travel and minimize the overall cost of travel, travellers act very 

differently. Travellers act independently and rationally, based on their self-interest, i.e. 
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minimizing their direct cost while not paying attention to the societal cost and the detriment to 

others.  

Consequently, the purpose of congestion pricing is to ensure more rational use of roadway 

networks. This is accomplished by charging fees for the use of certain roads in order to reduce 

traffic demand or distribute it more evenly over time (away from the peak period) and space 

(away from overly congested facilities). In other words, congestion pricing involves charging 

drivers for the use of roads, more where and when it is congested, and less where and when it is 

not (Levinson, 2016). This will reduce travel – hence congestion – on congested routes and time 

periods, and may increase it on uncongested routes and time periods, where there is surplus 

capacity. i.e., it works towards balancing the load on the network; a strategy undertaken in other 

transport modes such as air transport, as well as most time-sensitive businesses (e.g., cinemas 

and restaurants). 

Road pricing has a long history, with turnpikes dating back at least to the seventeenth-century in 

Great Britain and the eighteenth-century in the US (Small and Verhoef, 2007). Road pricing for 

congestion management is more recent; it is referred to as ‘congestion pricing’. The earliest 

modern congestion pricing application is Singapore's Area License scheme, established in 1975. 

Since then, other applications have appeared, varying from single facilities such as bridges or toll 

roads to tolled express lanes as in the US, toll cordons as in Norway, and area-wide pricing as in 

London.  

A number of cities have implemented or are in the process of implementing road pricing. 

Highway 407 in Toronto, which was opened to traffic in 1997, is the world’s first all-electronic, 

barrier-free toll highway, in which tolls are charged based on vehicle type, distance driven, time 

of day, and day of the week (Lindsey, 2008). Except for the Highway 407 ETR, tolls in Canada 

do not vary over time, and no area-based road pricing scheme has been implemented in Canada, 

which lags behind the United States and a number of countries in Europe and Asia with respect 

to pricing practices.  

Different levels of government in Canada are contemplating congestion pricing options to 

alleviate traffic congestion problems. In 2013, Metrolinx (an agency of the government of 

Ontario) released its investment strategy in which it recommended the implementation of HOT 

(high-occupancy toll) lanes as a potential source of funding for transit expansion in the region. 

https://transportist.org/2012/10/11/load_balancing/
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The Ministry of Transportation Ontario (MTO) is actively evaluating High Occupancy Toll 

(HOT) lane options (Nikolic et al., 2015).  

Numerous studies have investigated the potential of congestion pricing schemes in reducing the 

vehicular demand, subject to travel and behavioural characteristics, as will be presented in 

Chapter 2. The following section briefly reviews a few studies that are relevant to the scope of 

this dissertation.  

In a study conducted at University Drive (Burnaby, British Columbia), single-occupant vehicle 

(SOV) commuters completed a discrete choice experiment in which they chose between driving 

alone, carpooling or taking a hypothetical express bus service when choices varied in terms of 

time and cost attributes. The results of this study indicate that a potential increase in drive alone 

costs brings greater reductions in SOV demand than an increase in SOV travel time or 

improvements in the times and costs of alternatives, i.e. carpooling and bus express service, 

(Washbrook et al., 2006). Another study conducted at the University of Toronto assessed the 

potential of congestion pricing against capacity expansions and extensions to public transit as 

policies to combat traffic congestion. The study concludes that vehicle kilometres travelled 

(VKT) is quite responsive to price (Duranton and Turner, 2011). Moreover, Sasic and Habib 

(2013) showed that the recommended strategy to lighten peak period demand while maintaining 

transit mode share in the Greater Toronto and Hamilton Area (GTHA) requires imposing a toll 

(of around $1) for all auto trips in addition to a 30% flat peak transit fare hike. Furthermore, their 

results suggest that such a pricing policy would have a larger effect on shifting travel demand 

over time than any other policies, not including a road toll. 

Tolling studies in the literature range from applying a flat or simple pricing structure (e.g. 

Lightstone, 2011; and Sasic and Habib 2013) on a small or sometimes hypothetical network, 

(e.g. Gragera and Sauri, 2012; and Guo and Yang, 2012), to a network-wide pricing scheme 

(e.g., Verhoef, 2002; and Morgul and Ozbay, 2010). Other efforts (e.g. Nikolic et al., 2015) 

study dynamic tolling of HOV (high-occupancy vehicle) lanes on specific corridors in a micro-

simulation environment, in which the network-effect and routing options affected by tolling are 

not considered. Other studies (Mahmassani et al., 2005; Lu and Mahmassani, 2008; Lu et al., 

2008; and Lu and Mahmassani, 2011) developed a multi-criterion route and departure time user 

equilibrium model for use with dynamic traffic assignment applications to networks with 
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variable toll pricing. These models consider heterogeneous users with different values of time, 

values of (early or late) schedule-delay, and preferred arrival time (PAT) in their choice of 

departure times and paths characterized by travel time, out-of-pocket cost, and schedule-delay 

cost. These authors, however, acknowledge that their algorithm suffers from computational 

limitations in a large network setting. 

All these studies contribute considerably to the state-of-the-art and state-of-the-practice in 

congestion pricing; nevertheless, the literature has some or a combination of the following 

limitations: 

- scarce tools, systems and case studies on large-scale regional networks/models (as opposed 

to hypothetical small networks); 

- hypothetical tolling scenarios that lack a methodological/practical basis;  

- neglecting many of the possible travellers' individual responses to pricing (e.g. choice of 

departure time and mode). Additionally, the limited number of studies that included those 

responses did not consider the drivers’ personal and socioeconomic attributes affecting the 

decision made in response to pricing, perhaps due to the lack of large-scale travel surveys; 

and 

- the network effect and routing options affected by tolling are not considered in the toll 

determination process. 

1.2. Overview of the Proposed System 

In light of the aforementioned gaps, this research was motivated by developing a robust system 

for the methodological derivation, evaluation, and optimization of variable congestion pricing 

policies to manage peak period travel demand, while explicitly capturing departure time and 

route choices in a large-scale dynamic traffic assignment (DTA) simulation environment. The 

system seeks the congestion pricing policies achieving the best spatial and temporal traffic 

distribution and infrastructure utilization to optimize the network performance (i.e., to minimize 

the total travel times). Not to belittle their probable occurrence, mode choice responses to tolling 

are beyond the focus of this study and will be considered in future work. 

The optimal congestion pricing system proposed integrates four main modules; namely, 1) a 

large-scale DTA simulation platform, 2) an econometric (behavioural) model of departure time 
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choice that considers drivers’ personal and socio-economic attributes as well as desired arrival 

times, 3) a widely used conceptual model of dynamic congestion pricing representing the 

theoretical basis of variable toll structure determination, and 4) a robust iterative distributed 

optimization algorithm for toll structures fine-tuning to consider the interconnectivity among 

tolled and non-tolled facilities/areas and hence achieve the best possible network performance. 

The system is intended to test different tolling scenarios; e.g. HOT lanes, congested highway 

sections, and cordon tolls. As a first implementation, the system is used in this research to 

determine and evaluate the optimal tolling strategies for key congested highways in the GTA 

region, namely, the Gardiner Expressway (GE), the Don Valley Parkway (DVP), and the express 

lanes of Highway 401. 

1.3. Dissertation Structure 

The structure of the dissertation is illustrated in Figure 1-1. After the introduction, a literature 

review of the basic economic models, the state-of-art, and the state-of-play of congestion pricing 

is presented in Chapter 2. Chapter 3 provides an overview of the four main modules of the 

optimal congestion pricing system along with the high-level integration and iteration amongst 

them. Chapter 4 presents the efforts and challenges associated with building, calibrating, and 

validating a large-scale DTA simulation model covering most of the GTA region based on the 

most recently available TTS demand data, GTA TAZs system, network geometry information, 

and loop-detector feeds. Details of the departure time choice model used, its formulation, 

variables and parameters retrofitting process, input data preparation, and the empirical model 

validation results are given in Chapter 5. Chapter 6 discusses the implementation details of the 

first level of optimal toll determination in the congestion pricing system. The preliminary results 

of (sub-optimal) tolling strategies determined for two tolling scenarios (i.e. simple and extended) 

in the GTA are also provided in that chapter. Chapter 7 describes details of the second level of 

optimal toll determination in the congestion pricing system. This chapter also presents the 

implementation details of that level on the extended tolling scenario considered for the GTA, 

along with a comprehensive assessment of the same scenario under different situations. The 

chapter concludes with a cost-benefit analysis conducted for the key stakeholders, i.e. the 

producer (e.g. the government) and the consumers (toll payers). Chapter 8 provides a summary 
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of the main features of the optimal congestion pricing system proposed, along with the main 

findings, research contributions and future research. 
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2. Literature Review 

This chapter starts with a theoretical background of the main economic models of congestion 

pricing, along with their objectives and implications. A literature review of the state-of-art and 

the state-of-play of congestion pricing is then provided. The chapter concludes with a summary 

of the limitations in the congestion pricing models developed/implemented that motivated this 

research. 

2.1. Introduction to Congestion Pricing: The Economic Perspective 

There are two main traffic flow modelling approaches for optimal congestion pricing; namely, 

static and dynamic models. In static models, static demand and cost curves are used for 

modelling, and the result are therefore static tolls (fixed over a period of time). Static pricing 

assumes a static demand curve for each congested link and time period, which means that in 

response to congestion level and the congestion price charged, people who are priced out either 

stay at home, carpool, take transit, or move to uncongested (free-flow) times or routes. 

Furthermore, this pricing model assumes that people who are priced out do not dynamically shift 

to other congestible time periods (i.e. alter their departure time) nor to other congestible parts of 

the network. 

In dynamic models, on the other hand, the variations of traffic demand with time are captured; 

accordingly, these models produce dynamic tolls that correspond to traffic dynamics. The details 

of static and dynamic congestion pricing models are discussed in the following subsections. 

2.1.1. Static Pricing Models 

Within the conventional static models in congestion pricing, two approaches might be followed 

to set road charges/prices; namely, profit maximizing pricing and social-welfare maximizing 

pricing. The difference between the two is very significant. In general, as shown in Figure 2-1, 

the ‘Demand’ represents the change in the quantity purchased to price; whereas the ‘Average 

Cost’ (AC) is the total production cost divided by the total quantity produced; the ‘Marginal 

Cost’ (MC) is defined as the change in total cost required to increase the output by one unit; and 

the ‘Marginal Revenue’ (MR) denotes the change in total revenue associated with an increase in 

output by one unit. 
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If the road is not priced (i.e., free-of-charge travel), demand and cost equilibrate when the AC 

curve intersects with the demand curve, as shown by point x in Figure 2-1. However, the 

marginal cost at this flow level is higher than the average cost, as the average cost does not 

consider the external cost of congestion, or the delay a traveller imposes on all other travellers. 

This ignored external cost of congestion component is viewed as social subsidy, i.e. a cost borne 

by society (all travellers) for which each individual traveller does not pay. The two pricing 

approaches are described as follows: 

 Profit Maximizing Pricing: If prices are set to maximize profits (defined as the difference 

between the total revenue and the total cost), we determine equilibrium in an unregulated 

environment resulting in what is known as ‘monopoly price’ (Pm), which is the price 

consistent with the output where the Marginal Revenue equals the Marginal Cost as follows: 

Profit = Total Revenue (TR) – Total Cost (TC) 

To maximize profit with respect to volume of production (Q): 

ΔTR/ΔQ = ΔTC/ΔQ 

i.e., Marginal Revenue (MR) = Marginal Cost (MC) 

 Social-Welfare Maximizing Pricing: If prices are set to maximize the social welfare (defined 

as the difference between the total benefits and the total costs), we determine a ‘marginal-

cost price’ (Pmc), which is the price consistent with the output where the Marginal Cost meets 

the Demand curve. 

Figure 2-1 illustrates the difference between both pricing rules (monopoly vs. marginal-cost). 

In transportation, marginal-cost pricing means that each traveller faces a perceived full-cost 

price (i.e., the travel cost in addition to the road charges imposed) equal to his/her activity's 

social marginal cost (i.e., the monetary value of the travel time incurred by a traveller in 

addition to the extra time incurred by the existing travellers due to the entrance of that new 

traveller to the system).  
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Figure 2-1: Monopoly Price Pm vs. Marginal-Cost Price Pmc 

Depending on the policies and constraints in place, social-welfare maximizing pricing may be 

associated with two pricing schemes; namely, first-best pricing and second-best pricing.  

 First-best pricing: entails system-wide pricing. However, doing so in practice is often 

impossible, as various constraints on what prices can be charged must be considered (for 

example, the political necessity of making ‘free’ options available).  

 Second-best pricing: involves optimizing social welfare given some constraints on policies; 

for example, the inability to price all links in a network, to distinguish between classes of 

users or vehicles, or to vary tolls continuously over time.  

Table 2-1 summarizes the first-best pricing rules for three cases: single road at normal 

congestion (where the density is below the critical density), single road at hyper-congestion 

(where the density exceeds the critical density), and an entire network at normal congestion. 

Finally, it should be noted that static models are appropriate only when traffic conditions do not 

change quickly, or when it is thought sufficient to focus on average traffic levels over extended 

periods of time, which is not the case in most large cities. In other words, static models do not 

capture transportation network dynamics, such as changes in demand over time, congestion, 

bottlenecks, and queue spill-backs. Dynamic models can generally overcome such limitations, as 

will be illustrated in the following section. 
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Table 2-1: First-Best Pricing Rules in Three Cases 

Facility Size Congestion Status Characteristics and Optimum Pricing 

Single Road 
Normal 

Congestion 
 

 The demand curve intersects the cost curves in the normal congestion region.  

 The un-priced equilibrium occurs at the intersection of the demand and the average cost curves (involves a traffic flow V0).  

 The optimal flow V1 occurs at the intersection of the demand and the marginal cost curves. 

 V1 can be achieved through an optimum toll τ equal to the difference between the marginal cost and the average cost at V1.  

 It is the excess congestion (difference between V0 and V1) that should be the focus of policy makers and transportation 

planners. That is, higher tolls that would move the system towards free-flow travel conditions are not, generally, the socially 

optimal conditions.  

 

Flow (V) 
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Single Road Hyper-Congestion 

 

 The demand curve is so high that it crosses the cost curves in the hyper-congestion region (where the traffic density exceeds 

the critical density, resulting in a traffic breakdown). 

 The optimal toll τ (shown in figure above) eliminates hyper-congestion and maintains flow at maximum capacity, i.e. 

prevents typical capacity loss due to hyper-congestion and restoring some 10–20% more throughput. A toll higher than τ 

will unnecessarily cut demand below capacity; some travellers whose marginal benefit (demand) exceeds their marginal 

cost (i.e. un-subsidised) will be priced-off the road. On the other hand, a toll less than τ cannot fully eliminate hyper-

congestion; it entails an equilibrium density above the critical value, resulting in a drop in capacity. The social welfares 

attained in both cases, over-tolling and under-tolling, are lower than that achieved at optimal tolling; this is due to the 

benefits forgone and the unpaid social externalities, respectively. 

 This case may be crafted as a win-win solution because it increases capacity (flow) but at the same time reduces congestion 

and raises funds to reinvest in sustainable transportation infrastructure. 

Dynamically Unstable 
(Small and Verhoef, 2007) 
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Network 
Normal 

Congestion 

 This case highlights the correspondence between the economic perspective of pricing (maximizing social welfare) and the 

traffic engineering perspective (system optimal traffic conditions). 

 That is, first-best tolling on a complete network is proved to satisfy system optimal conditions (where the total travel time 

in the network is minimised) rather than user equilibrium conditions (where no one can improve his/her travel time by 

switching routes; Small and Verhoef, 2007). 
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2.1.2. Dynamic Pricing Models 

Dynamic models take into consideration that congestion peaks over time then subsides.  

Therefore, in addition to hyper-congestion-free travel time, there is a delay component that peaks 

with congestion as well, which travellers need to take into account.  

Dynamic models, in general, assume that road users have a desired arrival time t*, deviations 

from which imply early or late schedule-delay costs. Travellers who must arrive on time during 

the peak encounter the most delay i.e. there is a trade-off between avoiding congestion delay and 

arriving too early or too late.  

The basic Bottleneck Model is the most widely used conceptual model of dynamic congestion 

(Small and Verhoef, 2007). It assumes that travellers are homogeneous and have the same 

desired arrival time, t*. Moreover, the model involves a single "bottleneck" with a kinked 

performance function; i.e., for arrival rates of vehicles not exceeding the bottleneck capacity and 

in absence of a queue, the bottleneck's outflow is equal to its inflow, and no congestion (delay) 

occurs. When a queue exists, vehicles exit the queue at a constant rate equal to the bottleneck 

capacity Vk. 

The total number of travellers that enters the system ultimately exits the system after having 

queued for a while. The optimal toll in this case attempts to “flatten” the peak, i.e. to spread the 

demand evenly over the same time period.  The price is set such that the inflow equals road 

capacity, which in turn equals the outflow. The optimal tolled-equilibrium exhibits the same 

pattern of exits from the bottleneck as the un-priced equilibrium, but it has a different pattern of 

entries. Pricing affects the pattern of entries with a triangular toll schedule, with two linear 

segments, which replicate the pattern of travel delay costs in the un-priced equilibrium. This 

optimal toll results in the same pattern of schedule-delay cost as in the un-priced equilibrium, but 

produces zero travel delay cost (i.e. no travel delays exist in the optimal case). Instead of 

queueing-delay, travellers trade-off the amount of toll to be paid vs. schedule-delay such that a 

traveller that arrives right on time t* pays the highest toll. The resulting tolled-equilibrium 

queue-entry pattern therefore satisfies an entry rate equal to the capacity Vk. The basic 

Bottleneck Model would work well only for a bridge-like case where people do not have routing 

options, i.e. their reaction to tolling is limited to departure time variation. 
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In conclusion, the main benefit of static marginal-cost congestion pricing is to achieve an 

optimum level of traffic flow by forcing travellers to pay the full cost of congestion externalities 

to society. On the other hand, dynamic congestion models suggest that a main source of 

efficiency gains from optimal pricing would be the rescheduling of departure times (temporal 

distribution) from the trip origin.  

Based on the theoretical approaches of congestion pricing discussed in this section in addition to 

other practical schemes implemented in some major cities (e.g. London, Stockholm, and 

Singapore), Table 2-2 provides a summary of different pricing policies, their objectives and 

impacts and how they relate, if at all, to optimal pricing presented above (where the black filled 

circles, in the table, denote a strong relation and so on). Although the classification in Table 2-2 

is highly subjective and reflects the author’s view, it is meant to provide a ‘high-level’ analysis 

of different policies to be followed for a certain objective sought by roadway authorities and 

highway agencies. 
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Table 2-2: Congestion Pricing - Objectives and Policies 

Policy 

options 

 

Main objectives/impacts 
 

Examples of each 

policy 
Reduce 

downtown 

traffic 

Encourage 

carpooling 

Maximize 

profits 

 

Control traffic 

(temporal/ 

spatial) 

 

Reduce 

auto-

mobile use 

Maximize social 

welfare (system 

optimal) 

Alter 

departure 

time choice 

Cordon tolls 

       
 

 London Congestion 

Pricing 

 Stockholm 

Congestion Pricing 
 

HOT lanes 

       
 

 I-15 HOT Lanes, 

San-Diego, CA 

 I-394 in Minnesota 

 SR-167 in Seattle 
 

Monopoly 

pricing 

       
 

 ETR 407 (Express 

Toll Route), ON, 

Canada 
 

Variable 

tolls 

       
 

 Singapore Electronic 

Road Pricing 
 

Distance-

based fees 

       
 

 "MileMeter", Texas, 

US 

 "Real Insurance 

PAYD", Australia 
 

First-best 

pricing 

       
---- 

Bottleneck 

pricing 

       

---- 
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2.2. State-of-the-Art 

According to Xu and Ben-Akiva (2009), current congestion pricing-related research is generally 

classified into two main categories. The first involves studies related to developing general 

frameworks of congestion pricing, as a traffic control policy. On the other hand, the second 

category focuses on users' behavioural responses to congestion pricing. This section is divided 

into three parts: the first two introduce some studies conducted so far in each of the above two 

categories, whereas the third part presents some research related to spending congestion pricing 

revenues. 

2.2.1. General Congestion Pricing Framework 

Studies related to developing general congestion pricing frameworks may focus on one of two 

aspects: analysis models and simulation models. Analysis models, in general, concentrate on 

theoretical viewpoints without being implemented on real networks, whereas simulation models 

focus on the application of the algorithm and are usually less complex but more applicable. 

2.2.1.1. Analysis Models 

As mentioned before, this research strand considers the correctness and completeness of the 

model, rather than its applications. The model is usually quite complex and requires complete 

information about the network and its users. While providing some theoretical perspectives and 

useful insights, the model can hardly be applied in practice. Some relevant studies are discussed 

in this section. 

Hall (2013) extended an existing standard dynamic congestion model to reflect the additional 

traffic externality induced from the decreased throughput observed at the critical road density. 

This study used survey and travel time data to estimate the joint distribution of driver preferences 

over arrival time, travel time, and tolls. The author applied his model on a single highway and 

showed (through calculations) that as long as some rich drivers use the highway at the peak of 

rush hour, adding tolls to a portion of the lanes (up to half) helps all road users, even before 

revenue is spent. 
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Yang et al. (2012) proposed a distance-based dynamic pricing algorithm that takes user 

responses to tolling into account. The authors applied a numerical approach to find the optimum 

pair-wise tolls (between on-ramps and off-ramps of a hypothetical bridge) that maximize the 

total revenue. In this study, pair-wise demands were determined based on the associated tolls 

using a logit model, and the algorithm was run every Δt time step, producing dynamic tolls. 

Yao et al. (2012) divided a toll optimization problem, involving DTA equilibrium conditions as 

constraints, into two sequential levels to decrease the problem complexity. The higher level acts 

as a central control that determines the second-best toll that minimizes the total delay (using 

MATGAPT software); whereas the lower level is a module that achieves dynamic traffic 

assignment equilibrium conditions. Furthermore, the authors accounted for demand uncertainty 

by assuming that each OD pair demand lies in a defined range and then the value (throughout 

this range) giving the worst delay is considered in the toll optimization procedure. 

Ohazulike et al. (2012) used game theory approach to extend the single authority congestion 

pricing scheme (referred to as Stackelberg game) to a pricing scheme with multiple 

authorities/regions with probably contradicting objectives (such as congestion, air pollution, 

noise, and safety). In their article, Ohazulike et al. investigated the existence of Nash equilibrium 

among actors and proved that no pure Nash equilibrium exists in general; it may exist, however, 

under special conditions. Additionally, they proved that competition may deteriorate the social 

welfare. The authors further designed a mechanism that simultaneously induces a pure Nash 

equilibrium and cooperative behaviour among actors, thus yielding optimal tolls for the system. 

Zangui et al. (2012) proposed a path-based (rather than link-based) tolling approach, unlike 

network-wide standard congestion pricing schemes. In other words, their model searches for the 

optimum path tolls that minimize traffic congestion, using a random neighbourhood search 

algorithm. Although simple, the proposed approach does not guarantee a unique solution for 

optimum tolls. 

Okamoto et al. (2012) proposed a solution scheme in which non-tolled routes are aggregated into 

a single route, in order to lower the computation complexities associated with the evaluation of 

optimum congestion charges on expressways. 
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2.2.1.2. Simulation Models 

Simulation models focus on the application of the algorithm. They are usually less complex but 

more practical than analysis models. In addition, studies often provide an example to test the 

algorithm, which, although simple, explains some characteristics of congestion pricing. 

However, most of the simulation models implemented so far use deterministic network 

equilibrium, optimization algorithms that are inefficient, and networks tested that are too small. 

Examples considering both facility pricing and network pricing are given next. 

Facility Pricing 

Dong et al. (2007) developed anticipatory state-dependent pricing for real-time freeway 

management. The tolling system imposes dynamic tolls with the objective of eliminating 

queueing on the tolled links. The system involves two components that operate in rolling horizon 

fashion; an anticipatory toll generator, and a prediction module. The anticipatory generator 

compares the predicted to the pre-set target link concentration (i.e., occupancy) values and 

adjusts the current link tolls accordingly, i.e. acts as a closed-loop regulator. The prediction 

module predicts future network states based on current states, past states, and previously 

predicted prices. However, the effect of tolling on the rest of the network is not taken into 

account while generating tolls. 

In Lightstone (2011), the standard static model was applied in a distance-based congestion 

pricing scheme proposed for implementation in the City of Toronto, specifically, on the DVP 

(Don Valley Parkway) and the Gardiner Expressway. The demand and cost curves of DVP and 

Gardiner were estimated based on the GTA regional demand forecasting system developed at the 

University of Toronto (GTA model version 3.0). Lightstone's model is built on the four-stage 

approach to modelling travel demand. The trip assignment is performed using EMME/2 

software. The demand curve was constructed by repeating an iterative process, in which the auto 

demand value is determined for random cost values, until an equilibrium point was reached 

where marginal cost was equal to demand. The optimal charge value, both for the AM and PM 

peak periods, was determined to be 0.125 $/km; it entails a 15.8% AM peak volume reduction 

and a 14.2% PM peak volume reduction. 
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De Palma et al. (2005) explored a policy of "no-queue tolling". In this policy, time-varying tolls 

are imposed selectively on a road network with the objective of eliminating queueing on the 

tolled links. Moreover, the authors classified "no-queue tolling" as third-best pricing, because the 

effects of the tolls on other links are disregarded. In their study, De Palma et al. used a dynamic 

traffic simulator to compute no-queue tolls for individual links and cordon rings on a laboratory 

network. Based on the results obtained, the authors recommend initiating third-best tolling 

schemes on real networks rather than waiting a long time for comprehensive congestion pricing 

(requiring extensive information on speed-flow curves and demand elasticities) to become 

feasible. 

In Bar-Gera and Gurion (2012), a facility pricing project was presented, implemented in Tel-

Aviv on a single left lane dedicated to public transport, high-occupancy vehicles, and toll payers. 

The system includes a dynamically responsive toll-setting mechanism that guarantees a certain 

level of service (speed) on the fast lane as well as a sufficient utilization (flow). The toll is 

dynamically set, in a control centre, based on two components: a predictive component that 

estimates the demand and willingness to pay, in addition to a feedback component that is used to 

adjust the toll automatically, based on real-time measurements (Leonhardt et al., 2012). 

Moreover, the project involves a free park-and-ride facility along the way that enables users to 

carpool or to switch to a free shuttle service to downtown, in addition to an auxiliary right lane 

connecting an on-ramp in the middle of the facility to an off-ramp at the western exit from the 

facility.  

Network Pricing 

Verhoef (2002) developed an algorithm to find second-best tolls where not all links of a 

congested transportation network can be tolled. Furthermore, a simulation model was used to 

study the performance of the algorithm for various archetype pricing schemes; e.g. a toll-cordon, 

pricing of a single major highway, and pay-lanes and free-lanes on major highways. 

Kazem (2012) tested and compared many pricing scenarios (e.g. flat, distance-based, and peak 

tolls) in a study area in the southern California region. The pricing scenarios were obtained by 

consulting public groups along with transportation agencies; i.e., no theoretical rationale governs 

the pricing patterns presented.  
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Morgul and Ozbay (2010) proposed a simulation-based evaluation of dynamic congestion pricing 

on the crossings of New York City, where many of the limited number of crossings to the island 

of Manhattan are tolled and function as parallel alternatives. Two simulation studies were 

conducted in this dissertation the first was performed using a mesoscopic simulator by 

considering the Manhattan network with a simple step-wise dynamic tolling algorithm, whereas 

the second calculates the real-time toll rates on two tolled alternative crossings and models the 

driver behaviour in response to toll rates and travel time information on both routes. The second 

algorithm is tested through a microscopic traffic simulation on a network including the two 

tunnels between New Jersey and New York City. In this dissertation, however, fixed demands 

were assumed for individual time periods. 

Xu and Ben-Akiva (2009) proposed a dynamic congestion pricing model in which traffic 

assignment relies on travellers’ choice behaviour (i.e. route choice and departure time choice), 

rather than deterministic network equilibrium. The objective of this model is to find the optimum 

toll schedule (for specific links on the network) that minimizes the travel time of all network 

users. The authors, however, acknowledged that their model can be improved in several ways; 

e.g. by using more robust optimization techniques, joint (instead of sequential) discrete choice 

models for departure time choice and route choice, and elastic (rather than fixed) demand 

assumptions.  

2.2.2. User Responses to Congestion Pricing 

The second approach in congestion pricing-related research considers users' behavioural 

responses to pricing. This class of studies does not focus on the determination of the pricing 

structure itself; rather, it investigates the possible impacts of hypothetical (fixed or variable) 

pricing scenarios on the individual (disaggregate) traveller that give rise to the network 

(aggregate) performance. Within users' responses to pricing, route choice and departure time 

choice have attracted the most attention in recent studies. Less attention, however, is given to 

users’ willingness to shift to other modes (i.e., mode choice). 

Lu and Mahmassani (2008) extended a previous study (Lu et al., 2008) that incorporates user 

heterogeneity in determining equilibrium route choices in a network in response to time-varying 

toll charges. More specifically, Lu and Mahmassani presented a generalization of that framework 
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to incorporate joint consideration of route and departure time as well as heterogeneity in a wider 

range of behavioural characteristics. The model explicitly considers heterogeneous users with 

different values of time and values of (early or late) schedule-delay in their joint choice of 

departure times and paths characterized by a set of trip attributes that include travel time, out-of-

pocket cost, and schedule-delay cost. Furthermore, the model was applied to a relatively small 

network (180 nodes, 445 links, and 13 zones) through a simulation-based algorithm. The authors 

acknowledged that their model suffers from computational limitations in a large network setting. 

Lu and Mahmassani (2011) extended the algorithm by incorporating the heterogeneity in users’ 

preferred arrival time (PAT). 

In a study carried out at University Drive (Burnaby, BC) based on SP surveys conducted at a 

Vancouver suburb, Washbrook et al. (2006) demonstrated a method for estimating SOV (Single-

Occupant Vehicle) commuter responses to policies introducing financial disincentives for driving 

alone (road charges and parking charges) and improvements to alternative modes. More 

specifically, 548 commuters from a Greater Vancouver suburb who drive alone to work 

completed a discrete choice experiment (DCE) in which they chose between driving alone, 

carpooling or taking a hypothetical express bus service when choices varied in terms of time and 

cost attributes. Interesting results were reached in this study. For example, increases in drive 

alone costs will lead to greater reductions in SOV demand than increases in SOV travel time or 

improvements in the times and costs of alternatives beyond a base level of service. Accordingly, 

the authors suggest that policy makers interested in reducing demand for auto travel should place 

at least as much emphasis on financial disincentives for auto use as they do on improving the 

supply of alternative travel modes.  

In a study conducted at the University of Toronto by Sasic and Habib (2013), discrete choice 

models were developed to describe mode-choice and departure time choice in the GTHA. The 

empirical models were then used to evaluate mode and time switching behaviour in response to 

combined variable transit pricing with peak congestion pricing policies. The results reported in 

that study suggest that a policy involving a road toll would have a larger effect on shifting travel 

demand over time than any other policies not including road tolls. 

Liu et al. (2011) presented the current practice of modelling the impact of roadway tolls with the 

mode choice model. The study revealed four dimensions of analysis that have a significant 
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influence on mode choice, including socioeconomic (e.g. household income and number of 

workers), travel cost (e.g. parking, gasoline, maintenance, tolls and fares), temporal (e.g. on-

vehicle time, walk time, transfer wait time and headway), and categorical (e.g. transit strike, 

seasonal variation and alternative-specific intangibles). 

Table 2-3 provides a comparison between the different congestion pricing-related studies 

reviewed so far. The studies are classified/compared based on the pricing approach adopted, the 

size of the tolling scenario, and whether or not user behaviour was considered. 

Table 2-3: Congestion Pricing-related Studies: Comparison 

Criterion 

 

Study 

Theoretical 

(Analysis) 

Approach 

Practical 

(Simulation) 

Approach 

Facility-

Based 

Network-

Based 

User 

Behaviour 

Component 

Verhoef 

(2002) 
 X  X  

De Palma et 

al. (2005) 
 X X   

Washbrook 

et al. (2006) 
X  X  X 

Dong et al. 

(2007) 

 X X   

Xu and Ben-

Akiva (2009) 

 X  X X 

Duranton 

and Turner 

(2011) 

X  X  X 

Morgul and 

Ozbay (2010) 

 X  X X 

Lu and 
 X  X X 
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Mahmassani 

(2011) 

Lightstone 

(2011) 

 X X   

Yang et al. 

(2012) 

X  X  X 

Yao et al. 

(2012) 

X   X  

Bar-Gera 

and Ben-

Gurion 

(2012) and 

Leonhardt et 

al. (2012) 

 X X   

Kazem (2012) 
 X  X X 

Zangui et al. 

(2012) 

X   X  

Sasic and 

Habib (2013) 

X   X X 

Hall (2013) 
X  X  X 

Nikolic et al. 

(2015) 

 X X   

 

2.2.3. Spending Congestion Pricing Revenues 

In order to overcome political opposition to freeway congestion pricing, people usually focus on 

using the net revenues to benefit the public. Revenues may be spent on infrastructure expansions, 

subsidizing improvements to the non-priced part of the highway system, transit improvements, 

rebating motor fuel taxes, reducing general taxes (such as income or property taxes), and 

investing in transit. 

In fact, revenue uses have implications for efficiency as well as for equity and political 

feasibility. For example, congestion pricing may be welfare-reducing if revenues are distributed 
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in a lump-sum manner, because doing so discourages labour supply; non-wage income 

discourages labour supply. On the other hand, when revenues are used to reduce/rebate the 

distorting labour taxes, the usual efficiency advantage of such tax reductions is magnified.  

Many congestion pricing projects in US considered integrating transit with congestion pricing 

by, for example, extending HOT lanes to accommodate bus rapid transit (BRT) services and 

therefore increasing transit ridership (e.g. I-15 BRT). Previous studies in Belgium, however, 

have found that a marginal increase in peak-period road prices yields the highest benefit when 

revenue is spent on road capacity expansion. However, it yields negative benefit when it is spent 

on public transportation, unless the degree of social inequality aversion is very high. This latter 

result is mainly because public transportation is already highly subsidized in this specific study 

region, and it illustrates a critical point about congestion pricing: because the revenues are 

typically large compared to the value of the time savings, inefficient spending of those revenues 

can completely undo the net benefits of the policy (Small and Verhoef, 2007).  

As for infrastructure expansion, Rouwendal and Verhoef (2006) discuss the conceptual link 

between optimal congestion pricing and road capacity. These authors suggest that a useful way 

of increasing public acceptability of congestion pricing would be to introduce a close 

relationship between toll revenues and investment in road capacity. In their article, Rouwendal 

and Verhoef build upon a theorem derived by Mohring and Harwitz (1962). This theorem states 

that the revenues from the first-best optimal toll match the cost of the optimal amount of 

infrastructure, under two conditions. The first condition requires that travel costs remain constant 

if the number of trips and the capacity of the infrastructure change in the same proportion, 

whereas the second one requires that there be no scale effects in the construction of 

infrastructure. For road infrastructure, the first condition is generally acceptable and only small 

deviations from condition two have been revealed in empirical research. Moreover, the theorem 

remains valid if road maintenance and deviations from perfect competition on the land market 

are taken into account. The theorem therefore suggests that in a long-run setting, road transport 

may be self-financing if prices are set equal to marginal costs and road capacity is adjusted to its 

optimal level. 
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King et al. (2007) recommend that toll revenues be given to city governments where highways 

pass through. They argue that such a policy is fair because these cities bear the local external 

costs of a regional system. They also argue that the policy is efficient because cities are already 

an organized and effective lobby group. Their aim is not to eliminate losers from road pricing, 

but rather to create gainers with sufficient motivation to overcome opposition to it. 

Moreover, Poole (2011) discussed several possible uses of pricing revenues and the 

consequences of each of them. The most commonly proposed use of revenues is to expand non-

driving alternatives for those tolled off the freeways, inspired by the successful London and 

Stockholm implementations. Poole reported several problems with this approach, if applied in a 

U.S. context. Those two European systems are cordon-price congestion pricing, aimed at 

reducing traffic in traditional CBDs that already have much higher transit mode share than any 

large congested U.S. metro area. Many-to-one radial transit systems are a good fit for serving the 

CBDs of traditional mono-centric urban areas. Yet they are a relatively poor fit for serving the 

many-to-many commuting situation of large U.S. metro areas whose primary commuting pattern 

for several decades has been suburb-to-suburb. Another proposal, presented in that article, is that 

100% of the net revenues be allocated to the jurisdictions through which priced freeways extend, 

in proportion to route-miles or lane-miles. There would be no restrictions on the use of these 

funds; they would become a new source of general revenue for those cities. Nevertheless, the 

author mentioned that this proposal might be an example of “monopoly exploitation” version of 

congestion pricing, since it does not direct resources (i.e., pricing revenues) to locations and 

projects where prices indicate that increased investment is needed. In other words, the proposal 

disregards the users-pay/users-benefit principle. 

In conclusion, there is no unique strategy that can be referred to as the most efficient way of 

spending pricing revenues. Instead, case-specific studies should be conducted for each region 

(considering implementing congestion pricing projects) to determine the most appropriate use of 

revenues in that region. 

2.3. State-of-Play Worldwide 

The United States, the United Kingdom, France, Norway, Sweden, Germany, Switzerland, 

Singapore, and Australia have implemented major congestion pricing projects. The projects may 
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be classified as being facility-based or area-based. In this section, the main characteristics of 

some implemented pricing schemes (in both classes) will be discussed to illustrate the variety of 

ways in which congestion pricing has been implemented worldwide. 

2.3.1. Facility-Based Projects 

This category refers to congestion pricing applications that allow users to choose between two 

adjacent roadways (or lanes within the same road): one tolled but free-flowing and another free 

but congested. Highway 407 (aka ETR 407), in Canada, is a good example of such projects. 

Additionally, several congestion pricing applications have been deployed in the United States; 

for example, I-15 in San Diego, I-394 in Minnesota and SR-167 in Seattle. These programs apply 

dynamic pricing strategies, using real-time information collected from loop detectors (Dong et 

al., 2007). 

ETR 407 (Express Toll Route) 

This is a multi-lane electronic highway running 107 km across the top of the GTA from Highway 

403 (in Oakville) to Highway 48 (in Markham). ETR 407 was constructed in a partnership 

between "Canadian Highways International Corporation" and the Province of Ontario and 

currently owned by "407-ETR International Inc.". The fees are distance-based and variable 

according to zone congestion-level (light and regular), day of the week (weekday, weekend and 

holidays), and time of day (peak period, peak hours and off-peak). Speeds on Highway 407 are 

almost double those on other free highways during peak periods.  

It should also be noted that, unlike US congestion pricing applications, tolls on ETR 407 are not 

regulated; i.e. they differ according to a fixed schedule that is posted (and updated if necessary) 

on their website. To what extent this pattern reflects traffic threshold regulations (provincial 

safety and environmental standards and to relieve congestion on alternative public highways) and 

to what extent profit maximization is achieved, is difficult to tell (Lindsey, 2007). 

I-15 HOT Lanes, San-Diego, CA 

This project was implemented in 1996 along the 13 km HOV section of I-15 in San Diego. The 

HOT lanes on I-15 are now about 32 km long. The program determines toll values by comparing 

aggregated volumes obtained from two observation intervals against volume thresholds 
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prescribed in a look-up table. The tolls are updated every 6 min ($0.5–4) and then displayed on 

variable message signs. An evaluation study of this dynamic and state-dependent pricing 

application for the US Department of Transportation concluded that it was successful (Dong et 

al., 2007). 

2.3.2. Area-Based Projects 

In this type of project, users pay a fee to enter a restricted area, usually within a city centre, as 

part of a demand management strategy to relieve traffic congestion within that area. 

Implementations in three big cities will be presented: London, Stockholm and Singapore. 

London Congestion Pricing  

This was the first congestion pricing program in a major European city (in service since 2003). It 

involves an £11.50 daily cordon fee (flat price) for driving in the "Central London Congestion 

Pricing Zone" during weekdays (i.e. from 7 am to 6 pm). The fee is paid once per chargeable day 

regardless of how many times the user crosses the charging zone. After one year of cordon tolls 

and during charging, the traffic circulating within the zone decreased by 15%, traffic entering the 

zone decreased by 18% and congestion (measured as the actual minus the free-flow travel time 

per km) decreased by 30% within the zone (Santos, 2008). 

Stockholm Congestion Charges 

Stockholm ran a seven-month congestion charging trial (between January and July 2006), after 

which public support increased. The congestion tax was then implemented on a permanent basis 

on August 1, 2007. In this project, vehicles entering the inner-city area on weekdays (from 6:30 

am to 6:30 pm) pay a toll that varies between $1.29–4.11 according to the time of day. Unlike 

the London pricing scheme, drivers in Stockholm pay every time they cross the charging area 

with a maximum daily charge of $8 per day. After implementation, traffic volumes reduced by 

25%, public transit ridership increased by 40,000 users per day, and retail sales in central 

Stockholm shops increased.  

Singapore Electronic Road Pricing 

The ERP (Electronic Road Pricing) project was implemented in Singapore in 1998, after 23 

years of operating a cordon scheme with paper licenses. It covers wide regions of the island; 

http://en.wikipedia.org/wiki/Transportation_demand_management
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namely, the Central Business District (from 7:30 am to 7:00 pm) and expressways/outer ring 

roads (from 7:30 am to 9:30 pm). Charges vary by location and time of day in 30 min steps 

(adjusted quarterly depending on average speeds measured in the previous quarter). Five min toll 

intervals were introduced between some 30 min steps in order to discourage motorists from 

speeding up or slowing down when the toll is about to increase or decrease. Similar to 

Stockholm pricing, vehicles in Singapore pay every time they cross the charging area. 

2.4. Concluding Remarks  

As presented throughout this chapter, there are numerous dimensions to the congestion pricing 

problem that need to be considered, or at least reasonably assumed, when planning a congestion 

pricing strategy. Despite the numerous studies that have contributed considerably to the state-of-

the-art and the state-of-practice in congestion pricing, they still suffer from a number of 

limitations that limit their use in large and complex urban areas. Figure 2-2 summarizes the 

major challenges and gaps in the existing literature that have motivated the current research. 
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Figure 2-2: Limitations in Current Dynamic Congestion Pricing-related Research/Practice 
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3. Methodology Overview: Optimal Congestion Pricing System 

In light of the gaps in the state-of-the art of congestion pricing, discussed in Chapter 2, this study 

seeks to develop a robust system for the methodological derivation, evaluation, and optimization 

of variable congestion pricing policies to manage peak period travel demand, while explicitly 

capturing departure time and route choices in a large-scale dynamic traffic assignment (DTA) 

simulation environment. 

The study, through the extensive travel survey data available in the Greater Toronto Area (GTA), 

considers the drivers’ heterogeneity in their values of (early or late) schedule-delay and desired 

arrival time. Moreover, drivers’ personal and socio-economic attributes – affecting the choice of 

departure times – are taken into account besides the trip-related travel time, out-of-pocket cost, 

and schedule-delay cost.  

The optimal variable congestion pricing policies are obtained through a bi-level procedure. The 

first level involves the determination of time-dependent queue-eliminating toll structures for 

congested facilities. The toll structure determination is motivated by the Bottleneck Model, 

which is the most widely used conceptual model of dynamic congestion pricing (Small and 

Verhoef, 2007). On the other hand, the second level involves iterative optimization (i.e., fine-

tuning) of the toll structures determined in the first level to achieve the best possible network 

performance. This is achieved through further optimization of the toll structures obtained in the 

first level to consider the potential route and departure time choice dynamics in response to 

tolling in addition to the large-scale network interconnectivity. The second level uses a robust 

iterative optimization algorithm that is run concurrently (i.e., distributed) on a parallel computing 

cluster. 

This chapter presents a system for the determination and evaluation – through a large-scale 

simulation environment – of optimal variable congestion pricing policies as a method of spatial 

and temporal traffic congestion management. The system is based on four key pillars: 1) a large-

scale calibrated dynamic traffic assignment simulation platform that is used to assess the impact 

of various pricing options on routing and congestion patterns; 2) an econometric (behavioural) 

model of departure time choice that is built and calibrated using regional household travel survey 

data that capture the heterogeneity of travellers’ personal and socioeconomic attributes; 3) the 
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Bottleneck Model for dynamic congestion pricing, which is the theoretical basis of the initial 

variable toll structure determination approach adapted here; and 4) a robust iterative distributed 

optimization approach for toll structures fine-tuning to achieve the best possible network 

performance. These pillars are integrated and implemented into a single system that incorporates 

iterative optimization of variable tolling while looping between the departure time choice layer 

and the DTA layer until departure time choices and route choices reach equilibrium, under each 

tolling scenario being assessed during optimization. For the system large-scale nature and the 

consequent (time and memory) computational challenges, the optimization algorithm is run 

concurrently on a parallel computing cluster. The key pillars of the approach are described next. 

3.1. Mesoscopic Large-Scale Dynamic Traffic Assignment (DTA) Simulation 

Model 

Congestion pricing is typically sought in large congested urban areas, where congestion spreads 

over wide space for long peak hours. Therefore, to control traffic dynamically in large-scale 

congested networks, three systems are needed concurrently: (1) a prescriptive decision-

setting/control tool (e.g. a demand or supply control policy such as congestion pricing or ramp 

metering etc.), (2) a descriptive calibrated econometric departure time choice model, and (3) a 

descriptive calibrated dynamic traffic assignment (DTA) model that captures route choice 

dynamics and the evolution of traffic congestion resulting from travellers seeking the least-

generalized-cost routes to their destinations. A large-scale DTA simulation model is, hence, 

required for optimal congestion pricing policy derivation and evaluation; a model that can 

realistically capture the route choice dynamics network-wide (over time and space) resulting 

from fixed or variable tolls along key corridors. It is noteworthy that these tolls would in turn 

affect travellers’ departure time choice; and therefore the need to integrate both the route and 

departure time choice models within the same system. 

To that end, and to capture the system-wide effects of tolling in large urban areas, a mesoscopic 

large-scale DTA model is used here. In a large-scale interconnected network (like the GTA) 

where long-distance trips have diverse routing options, tolling relatively short highway segments 

might create temporal and spatial traffic changes network-wide that go beyond the tolling 

interval and the tolled segment. This necessitates conducting the simulations on a regional scale 

for comprehensive policy determination and assessment. 
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In general, mesoscopic models simulate the movement of vehicles in the transportation network 

in groups according to the fundamental diagrams of traffic theory. These models offer a 

compromise between microscopic and macroscopic models; unlike macroscopic models, they 

model individual vehicles, and unlike microscopic models, they are less computationally 

demanding and hence are more suited for modelling large networks (Abdelgawad and Abdulhai, 

2009). 

Transportation networks are dynamic; changes in demand over time, congestion, bottlenecks, 

unpredicted incidents etc. cause link travel times to change with time and cause congestion to 

spillback upstream with time. Accordingly, the shortest path between certain origin-destination 

pair may change over time as well. Therefore, it is important to use DTA simulation models for 

the determination and assessment of spatial and temporal traffic demand management policies 

like congestion pricing. These models use dynamic (i.e. time-dependent) shortest path algorithms 

to find the shortest path between each origin-destination pair in the network at all possible 

departure times (from the origin node). 

Details related to the demand patterns, which are inputs to the mesoscopic simulation model, the 

key traffic assignment control parameters, the simulated network geometry, and the simulation 

model base-case calibration/validation results will be discussed in Chapter 4. 

3.2. The Econometric Model for Departure Time Choice 

In order to capture users' individual departure time choice responses to variable tolling, this study 

uses an econometric (behavioural) departure time choice model. The model considers drivers’ 

socio-economic attributes and the network level-of-service attributes. This study extends a 

departure time choice model recently developed at the University of Toronto (Sasic and Habib, 

2013) that describes departure time choice in the Greater Toronto and Hamilton Area (GTHA). 

The developed departure time choice model is a Heteroskedastic Generalized Extreme Value 

(Het-GEV) model that further enhances the Choice Set Generation Logit (GenL) captivity 

component developed by Swait (2001).  

The Het-GEV model explicitly captures the correlation between adjacent choice alternatives (by 

allowing choice alternatives to appear in multiple clusters) while the GenL form captures the 

captivity of decision makers to specific choice alternatives due to schedule constraints. The GEV 
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class of models for discrete choice applications makes use of random utility maximization 

theory, where each agent (traveller) is assumed to choose an alternative that maximizes its 

random utility. The random utility for any alternative is defined as a systematic and a random 

component (where the joint density of all random components is distributed according to the 

extreme value distribution).  

Two types of scale parameters are introduced in this model. These are the root scale parameter 

and the nest scale parameter of a particular choice set. Moreover, the modelling framework uses 

a scale parameterization approach to capture heteroskedasticity in departure time choices. This 

approach also captures heterogeneity in users’ departure time choice responses to variations in 

trip-related attributes (e.g. travel time and cost) at each choice interval.  

The model was developed and calibrated in the original study using the Transportation 

Tomorrow travel Survey (TTS) of 2006. In this study, the model was retrofitted using the latest 

TTS survey of 2011 (DMG, 2015). Additionally, the schedule delay and toll cost components 

were incorporated in the model variables, and their associated parameters were recalibrated 

accordingly. 

Details of the model choice set structure, the utility function variables, the extensions and 

assumptions made to incorporate schedule-delay and toll cost components in the model variables 

and the associated parameters adjustment/recalibration process, the steps followed to prepare the 

data required by the model, and the retrofitted model base-case validation results are all 

presented in Chapter 5. 

3.3. Optimal Toll Structures Bi-Level Determination Approach 

Congestion in large cities like Toronto has reached a level where demand is usually over 

capacity in peak periods, resulting in long lasting queues on key corridors. Additionally, the 

traffic instability occurring when traffic density exceeds the critical density (i.e. the density 

corresponding to capacity) causes a significant 10–20% drop (breakdown) in capacity (Small and 

Verhoef, 2007). We therefore search for an economic pricing strategy that enforces traffic pacing 

(i.e., departure time rescheduling) and works towards eliminating traffic queues. Traffic pacing 

ensures that demand enters the network at a rate that does not exceed capacity; hence, at least 
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theoretically, no queues or delays form. Furthermore, targeting the elimination of traffic queues 

through congestion pricing will also sustain the original capacity. 

In light of these benefits, we are looking for 1) time-dependent toll structures for traffic pacing 

and to eliminate queues in the peak period on congested facilities while taking into consideration 

the drivers’ desired work-trip arrival times and associated schedule (early or late arrival) delays 

and 2) suitable toll levels to enforce proper route choices that minimize the total travel times. In 

other words, we are seeking congestion pricing policies that achieve the best – spatial and 

temporal – traffic distribution and infrastructure utilization to optimize the network performance 

(i.e., minimize the total travel times).  

For practicality and spatial equity, the tolling scheme adopted here is distance-based; toll values 

are entered to the network in ($/km). Therefore, each vehicle pays according to the distance 

travelled on tolled facilities. A bi-level procedure is used, as mentioned earlier, to determine the 

optimal toll structures achieving the above benefits. The first level involves the determination of 

time-dependent queue-eliminating toll structures for congested facilities. This is motivated by the 

Bottleneck Model for optimal dynamic congestion pricing, based on the simulated base-case (no-

pricing) traffic conditions on the congested facilities to be tolled. Using the Bottleneck Model 

alone to determine tolls is insufficient in large networks with numerous routing options, i.e. 

when travel choices are more than just departure time choice. The second level, therefore, 

involves genetic optimization to fine-tune the toll values obtained in the first level further, to 

achieve the best network performance, while considering the large-scale network (route and 

departure time choice) dynamics in response to tolling. This is performed through a robust 

iterative optimization algorithm that is integrated to the departure time choice and DTA 

simulation models, and is run concurrently (i.e., distributed) on a parallel computing cluster. The 

two optimal toll determination levels are described next. 

3.3.1. Level I: Initial Toll Structures Determination Based on the Bottleneck Model 

for Dynamic Congestion Pricing 

Dynamic models consider that congestion peaks over time then subsides. Therefore, there is a 

congestion delay component that peaks with the congestion that the travellers experience. 

Dynamic models assume that travellers have a desired arrival time t*; deviations from which 
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imply early or late schedule delays. Travellers who must arrive on time during the peak periods 

encounter the longest delay; i.e., there is a trade-off between avoiding congestion delay and 

arriving too early or too late. 

The basic Bottleneck Model is the most widely used conceptual model of dynamic congestion 

pricing (Small and Verhoef, 2007). It involves a single "bottleneck" and assumes that travellers 

are homogeneous and have the same desired arrival time. Moreover, the model assumes that for 

arrival rates of vehicles not exceeding the bottleneck capacity and in the absence of a queue, the 

bottleneck's outflow is equal to its inflow; as a result, no congestion (delay) occurs. The peak 

period is considered to start when the inflow exceeds the bottleneck capacity, resulting in traffic 

queues and increased travel times that build up to a maximum when the inflow starts decreasing 

below capacity. The peak does not end at this point of time; rather, it ends when all travellers 

who entered the system (from the beginning of the peak period) ultimately exit after having 

queued for a while. When a queue exists, vehicles exit the queue at a constant rate, which is the 

same as the bottleneck capacity. Note that the total number of travellers that enters the system 

ultimately exits the system after having queued for a while. 

The optimal toll in the Bottleneck Model attempts to “flatten” the peak in order to spread the 

demand (inflow) evenly over the same time period. In this case, the price is set such that the 

inflow equals the bottleneck capacity, which in turn equals the outflow. The schedule-delay cost 

function is assumed to be piecewise linear in the Bottleneck Model. Accordingly, pricing affects 

the pattern of entries with a triangular toll schedule (that rises from zero to a maximum then falls 

back to zero) replicating the pattern of travel delay costs in the un-priced equilibrium. This 

results in the same pattern of schedule-delay cost as in the un-priced equilibrium, but it produces 

zero travel delay cost (i.e. no travel delays exist in the optimal case). Instead of queueing delay, 

travellers trade off the amount of toll to be paid versus schedule delay such that a traveller who 

arrives right on time t* pays the highest toll. The resulting tolled-equilibrium queue-entry pattern 

therefore satisfies an entry rate equal to the bottleneck capacity, i.e. the queue entry rate equals 

the queue exit rate. Further details of the theoretical Bottleneck Model for dynamic congestion 

pricing are provided in Chapter 6. 

The toll structure introduced here is motivated by this theoretical bottleneck pricing theory; 

where key benefits arise from rescheduling (temporal distribution) of departure times from the 
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trip origin, resulting in no (or at least less) queueing delays on tolled facilities. Initial toll 

structures are determined for congested facilities based on their queueing delay patterns under 

simulated base-case traffic conditions (i.e., without tolling), as will be described in detail in 

Chapter 6. 

3.3.2. Level II: Toll Structures Fine-Tuning Using Distributed Optimization 

Algorithm 

Although the Bottleneck Model provides the core concept, it is limited to the case of a single 

bottleneck, where the departure time choice is the only choice travellers have to respond to 

pricing. In large urban networks, there are a myriad of origin-destination pairs, trip lengths, 

travellers’ schedules, desired work/school arrival times, routing options and travel behaviour that 

vary across the population. These factors might affect the (departure time rescheduling) benefits 

obtained from the initial toll structures determined for congested facilities in the large-scale 

network. This is due to the possible temporal and spatial traffic changes network-wide (in 

response to time-dependent tolling) that go beyond the tolling interval(s) and the tolled route(s), 

and might bring counterproductive impacts of tolling, as will be demonstrated later. 

Therefore, the proposed pricing system extends the conceptual (optimal) triangular pricing 

structure suggested by the Bottleneck Model to the more complex and general case of a large 

urban network. More specifically, an optimization module is integrated into the congestion 

pricing system to fine-tune the initial toll structures calculated (in Level I), while considering the 

network-wide dynamics that were absent in the Bottleneck Model. The fine-tuning process 

involves finding (through an optimization algorithm) the optimal adjustment factors to be applied 

to the initial toll structures, in order to obtain the optimal (Level II) toll values leading to the best 

possible network performance. 

The optimization module, integrated into the pricing system, uses a Genetic Algorithm (GA) for 

optimization. The GA belongs to the class of Evolutionary Algorithms (EAs). It generates – 

through an iterative process – solutions to the optimization problem using techniques inspired by 

natural evolution, such as selection, mutation, and crossover. In each generation, the value of the 

objective function (i.e. fitness) of every individual in the population is evaluated. The fittest 

individuals are stochastically selected from the current population and possibly modified 

https://en.wikipedia.org/wiki/Evolutionary_algorithm
https://en.wikipedia.org/wiki/Mutation_(genetic_algorithm)
https://en.wikipedia.org/wiki/Crossover_(genetic_algorithm)
https://en.wikipedia.org/wiki/Stochastics
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(recombined and mutated) to form a new generation of candidate solutions that is then used in 

the next iteration of the algorithm. The GA terminates when either a user-specified (maximum) 

number of generations has been produced, or when a satisfactory level of convergence (e.g., a 

solution that satisfies minimum criteria) has been reached (Back, 1996). 

As mentioned, the proposed pricing system uses econometric departure time choice modelling 

(based on regional travel surveys) in conjunction with DTA assignment to capture network-wide 

departure time and route choice dynamics in response to each tolling scenario (solution) being 

evaluated during optimization. 

For the system large-scale nature and the consequent (time and memory) computational 

challenges, the optimization algorithm is run concurrently on a parallel computing cluster under 

a ‘Map-Reduce’ programming paradigm, as will be described later. For that purpose, a java-

based middleware for distributed in-memory processing, denoted as Apache Ignite©, is utilized 

for system deployment on the parallel cluster. Moreover, the use of a large network of remote 

servers – hosted on the Internet – is possible through this middleware, which allows on-demand 

access to Internet-based shared resources in accordance with the application requirements. 

Details of the optimization problem specifications (e.g., the optimization variables and the 

objective function), the GA package used, and the middleware configuration and implementation 

are presented in Chapter 7. The results and analysis of the full system implementation on a case 

study in the GTA are also presented in that chapter. 

3.4. The Integrated Optimal Congestion Pricing System 

Figure 3-1 shows the general framework of the integrated optimal congestion pricing system 

developed here. The ultimate goal of this system is to provide a tool for optimal (time-

dependent) congestion pricing policy derivation and evaluation, while taking into account the 

route choice and departure time choice dimensions in large-scale regional networks. The figure 

presents the system’s four key modules (described briefly in the preceding sections), the input 

data provided to the system, and the data exchanged between the system modules. Further details 

corresponding to the input data required by the system are provided next. Additionally, the 

implementation sequence and the three levels of convergence sought (highlighted in Figure 3-1) 

https://en.wikipedia.org/wiki/Crossover_(genetic_algorithm)
https://en.wikipedia.org/wiki/Algorithm
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are described and illustrated through a flowchart of the optimal congestion pricing system, in 

Section 3.4.2. 
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Figure 3-1: Optimal Congestion Pricing System Framework 
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3.4.1. System Input Data 

Two types of data should be provided to the congestion pricing system implemented here. The 

first is entered once to the testbed, highlighted in Figure 3-1, which is used to evaluate any 

congestion pricing scenario. The second is related to the tolling scenario under analysis. The two 

types are further described next. 

3.4.1.1. Testbed-related Data 

As mentioned, the congestion pricing policies to be determined and optimized by the system are 

evaluated through a testbed of hybrid dynamic traffic assignment and departure time choice 

behavioural models. The testbed provides detailed traffic simulation results (e.g. travel times and 

costs) under equilibrium route and departure time choices, in response to tolling. It takes as 

input: 

1. The network topology: traffic analysis zones (TAZs), highways, major arterials, on-and-off 

ramps, speed limits, traffic signal information at the major signalized intersections, etc. 

2. The historical demand in the form of time-dependent origin-destination (OD) matrices for the 

period of study. 

3. The commuters’ personal and socio-economic attributes required by the behavioural model 

for departure time choice. 

The travel demand-related data used here are extracted from the latest 2011 Transportation 

Tomorrow Survey (TTS; DMG, 2015). TTS is a household-based travel demand survey that is 

conducted in the Greater Toronto and Hamilton Area (GTHA) every five years. The survey 

provides detailed information on trips made on a typical weekday by all individuals in the 

selected households. Information collected in the survey includes household-related attributes 

(e.g., the number of people and the number of vehicles available for personal use), person-related 

attributes (e.g., their age, driver licence availability, and work/school location), and trip-related 

attributes (e.g., origin, destination, purpose, start time, and type of transportation used). Five 

percent of the GTHA households are contacted by telephone and all trips made by residents 11 

years of age or older on a specific weekday are recorded. Expansion factors are used to expand 

the collected data to represent the total population of the survey area in the year of the survey. 

The expansion factors are determined based on geographical areas and verified based on the 
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Canada Census data that are used as the control total for calculating the expansion factors (DMG, 

2015). 

3.4.1.2. Tolling Scenario-related Data 

The congestion pricing system implemented here is designed to determine and test different 

tolling scenarios, e.g. HOT lanes, congested highway sections, and cordon tolls. Toll values can 

be discretized with time (up to a toll value per minute) and space (up to a toll value per link). The 

following tolling scenario-related specifications should be provided to the system: 

1. The facilities of interest intended to be tolled (e.g. link, corridor, or cordon): Depending on 

their base-case congestion levels, the “Optimal Toll Determination – Level I” module 

(described briefly in Section 3.3.1 and shown in Figure 3-1) determines whether or not each 

facility of interest needs to be tolled. For those who should be tolled, the module determines 

an initial toll structure for each of them, as will be described in detail in Chapter 6. 

2. Spatial tolling specifications: The tolled facilities can take the form of HOT lane(s) on 

congested highways, entire roads (i.e. not just one lane), or cordon tolls. A combination of 

these policies can be implemented and tested in any one scenario. 

3. Temporal tolling specifications: The toll interval width (during which toll is fixed over time) 

and the bounds of the tolling period (i.e., start and end times of tolling) should be specified 

for each facility of interest. The actual peak (hence tolling) start and end times within the 

tolling period bounds are then determined by the “Optimal Toll Determination – Level I” 

module. 

4. The maximum allowable toll value for each facility of interest (for political reasons, say): 

This value will not be exceeded in the optimal toll determination, even if doing so improves 

the network performance. 

3.4.2. System Flowchart 

The flowchart presented in Figure 3-2 illustrates the high-level input, output, and implementation 

sequence of the optimal congestion pricing system implemented in this study. As illustrated in 

the figure, the system works in the following order: 

- Calculate Initial Toll Structure for Each Facility of Interest in the Network: The structure 

takes a nonlinear version of the price of the Bottleneck Model (i.e., step tolls rather than a 
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continuous triangular toll structure), as shown in Figure 3-1. The price is calculated based on the 

base-case simulated travel times on the facility of interest; it rises from zero to a maximum then 

falls back to zero when congestion decreases.  

- Fine-Tune the Initial Toll Structures for Optimal Network Performance: The optimization 

algorithm seeks the optimal adjustment factors to be applied to the initial tolls to achieve the best 

network performance. Each factor is multiplied by the corresponding initial toll structure to 

increase or decrease it. Each vector of adjustment factors – composed by the optimization 

algorithm – is evaluated through a testbed of DTA and departure time choice models, as will be 

described next. After evaluation, the objective function value is returned to the optimization 

algorithm. The fine-tuning process is repeated iteratively until certain convergence criterion is 

met. The convergence sought at this step is the 3rd level (toll structure convergence) highlighted 

in Figure 3-1 and Figure 3-2. 

- Apply Departure time Choice Model: The departure time choice model takes as input the toll 

structures, the heterogeneous personal and socio-economic commuters’ attributes, and the 

average OD travel times and costs calculated across the network from the most recent DTA 

simulation run. The output of the discrete-choice model, in turn, represents the new temporal 

demand patterns (with modified trip start times) due to tolling. 

- Run DTA Simulation Model: The DTA simulation model takes the network topology, the toll 

structures, and the anticipated demand. It performs iterative dynamic user-equilibrium (DUE) 

traffic assignment, which is the 1st level of convergence (route choice convergence) highlighted 

in Figure 3-1 and Figure 3-2. It results in OD travel times, updated network conditions, and 

routing options given the inputs received. 

- Integrate Departure time and Route Choices: The equilibrium in drivers’ behavioural responses 

to pricing policies is sought by iteratively and sequentially simulating the changes in route choice 

and departure time choice in response to tolling through the DTA simulator and the discrete-

choice module, respectively. More specifically, the discrete-choice module estimates the impact 

of the input toll schedules given the most recent network conditions (travel times and costs) on 

travellers' individual departure time choices. The updated choices are then fed back into the 

dynamic traffic assignment simulator, which, in turn, produces the new network conditions and 

so on, until a certain convergence criterion is met. The convergence sought is the 2nd level 

(departure time choice convergence) highlighted in Figure 3-1 and Figure 3-2, after which the 
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objective function (e.g. total travel time) is calculated and returned back to the optimization 

algorithm. 

- Conduct Detailed Performance Analysis under Optimal Tolls: When the optimization 

algorithm converges to the optimal adjustment factors (hence toll structures), a detailed analysis 

is conducted to assess the impact of the optimal congestion pricing policy determined. The 

analysis is carried out on three levels: (1) impact on the whole network, (2) impact on tolled 

facilities and their direct parallel routes, and (3) impact on toll payers. 

In the process above, three levels of equilibrium are sought. The first (inner iterative loop) is the 

dynamic user equilibrium within the traffic assignment simulation model, i.e., route choice 

convergence. The convergence criteria used for traffic assignment are referred to as the Relative 

Gap (RG); this is a measure of how close the current assignment solution is to the User 

Equilibrium (UE) network assignment (Chiu et al., 2008). The traffic assignment iterations 

terminate when the RG drops below certain pre-specified convergence threshold or when a pre-

specified maximum number of iterations is reached. The second level (intermediate iterative 

loop) is the equilibrium in the departure time choice model output in response to changes in the 

traffic network travel times and costs under specific input toll structures; i.e., departure time 

choice convergence. The intermediate loop terminates when travellers cease to change their 

departure time interval, i.e. when the maximum (absolute) relative difference in the total number 

of vehicles at any departure time interval drops below a pre-specified convergence threshold. 

The third level (outer iterative loop) is the equilibrium in the network performance measurement 

used in the optimization function, under different toll structures tested by the optimization 

algorithm; i.e., toll structure convergence. The algorithm terminates when the adjustment factors 

(i.e., toll structures) achieving acceptable network performance are obtained, or when a pre-set 

maximum number of iterations is reached. 
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Figure 3-2: Optimal Congestion Pricing System Flowchart 
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It is important to mention that the feedback component, provided to the route and departure time 

choice models, means that decisions are not obtained in one step. In fact, the one-step solution is 

not accurate because it neglects the interaction between individuals; i.e., each individual's (route 

and departure time) choices affect the travel times, costs, etc. that determine the choices of 

others. The feedback component, hence, opens the door for such interference to affect the final 

choices. More specifically, the final equilibrium choices – of each model – will be reached after 

multiple iterations. After each iteration, some attributes change (e.g. travel times) in response to 

aggregated choices of previous iterations. These attributes are re-evaluated and then re-entered to 

the model (feedback), and the new set of choices is re-evaluated and so on, until the choices 

settle and convergence is reached at each level. This is ultimately what happens in reality in 

response to new policies; travellers keep changing their actions and choices, according to the 

network state and the choices of other travellers, until an equilibrium is approximately reached. 

Also, a one-shot toll determination approach might bring counterproductive results unless the 

impact of tolls on other parts of the network is considered and used to update (i.e. fine-tune) the 

tolls imposed iteratively.  

Incorporating a three-level nested feedback structure (as described) in large-scale optimal 

congestion pricing system is one of the main and challenging contributions of this study. It 

involves integration and iteration among several large-scale computationally intensive modules, 

dealing with (i.e., reading and writing) massive input and output data. This entails storage and 

computational time issues. Accordingly, it becomes necessary to harness the power of several 

computers. For this reason, the optimization algorithm is run concurrently on a parallel 

computing cluster under a Map-Reduce programming paradigm. Specifically, several solutions 

(i.e., toll structures) are distributed (mapped) to multiple nodes of the cluster and evaluated in 

parallel. The evaluation results are then combined (reduced) at the master node for further 

processing. A new batch of solutions is subsequently mapped/reduced and so on, until the 

optimization algorithm reaches equilibrium. 

Chapters 4, 5, 6, and 7 present the details of each of the four system modules respectively 

(shown in Figure 3-1) along with their associated input/output data. The system effectiveness is 

tested through several tolling scenarios in the GTA, presented in Chapters 6 and 77.  
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4. Development of Dynamic Traffic Assignment Simulation Model 

for the GTA 

As mentioned before, one of the key tools required to control traffic dynamically in large-scale 

congested networks – e.g., through congestion pricing – is a descriptive DTA model that 

captures route choice dynamics and the evolution of traffic congestion resulting from travellers 

seeking the least-generalized-cost routes to their destinations. Moreover, in a large-scale 

interconnected network where long-distance trips have diverse routing options, tolling a 

relatively short highway might create temporal and spatial traffic changes network-wide that go 

beyond the tolling interval and the tolled route. For that purpose, and to capture system-wide 

effects of tolling, a mesoscopic large-scale DTA model of a large area in the GTA region is 

developed and used in this study. The development of this model was a collaborative effort 

between the author, Islam Kamel (Ph.D. Candidate) and Dr Hossam Abdelgawad (Postdoctoral 

Fellow) over a period of two years (2013–2014). 

The network is developed in DynusT (Dynamic Urban System in Transportation), a mesoscopic 

DTA model that is suitable for regional-scale dynamic traffic simulation and assignment. 

Mesoscopic models simulate the movement of vehicles in the transportation network in groups 

according to the fundamental diagrams of traffic theory. These models offer a compromise 

between microscopic and macroscopic models; unlike macroscopic models, they model 

individual vehicles, and unlike microscopic models, they are less computationally demanding 

and hence are more suited for modelling large networks (Kamel et al., 2015). DynusT uses the 

Anisotropic Mesoscopic Simulation (AMS) concept, which assumes that a vehicle’s speed 

depends on the density of the vehicles ahead of it in the same lane or adjacent lanes in what is 

referred to as the speed influencing region (SIR). The relationship between the speed and the 

density is governed by macroscopic speed-density relationships (Chiu et al., 2008). 

The development of the GTA DTA simulation model in DynusT involved a variety of data 

collected from multiple sources within the region. A comprehensive GIS database from the Land 

Information Ontario (LIO) warehouse was used to form the basis of the model geometry. 

Additionally, the Traffic Analysis Zones (TAZs) used in this model were extracted from the 

most recent TAZ shape files available at DMG (2015) for the GTHA. As mentioned in Chapter 
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3, the model’s travel demand-related data were extracted from the latest 2011 Transportation 

Tomorrow Survey (TTS; DMG, 2015). Finally, real loop-detector feeds (volumes and speeds) 

collected at more than 175 locations over Highways 400, 401, 403, 404, QEW, the Gardiner 

expressway, and the Lakeshore Blvd were used for the calibration and validation of the model. 

These real data are provided by City of Toronto and Ministry of Transportation Ontario (MTO) 

to ONE-ITS (one-its.net) servers at the University of Toronto. 

This chapter presents a detailed explanation of the modelling process of the GTA network in 

DynusT in terms of network geometry, travel demand, and key simulation parameters calibration 

and validation process. The chapter concludes with a brief discussion of the challenges faced 

during building, calibrating, and use of the model. 

4.1. Supply Modelling 

The simulation model used here incorporates all highways, major arterials, on-and-off ramps, as 

well as traffic signal information at the major signalized intersections throughout a large area 

covering most of the GTA area. A simplified snapshot of the model, showing the high-level 

freeways and arterials modelled, is provided in Figure 4-1. The model covers 1,497 TAZs (i.e. 

more than 7000 km2), 1,138 km of freeways, and 4,589 km of arterials, making it one of the 

largest mesoscopic dynamic traffic simulation models built in the region. The model consists of 

26,446 links, including all highways and major arterials in the modelled part of the GTA region, 

and 14,228 nodes, including 830 signalized intersections. 
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Figure 4-1: Simplified Layout of the GTA Simulation Model 

The following steps were taken to build the simulation model (supply side): 

1. As mentioned, a GIS database from Land Information Ontario (LIO) warehouse was used to 

form the basis of the model geometry. This database, although being rich, suffered from 

multiple missing items; e.g. encoding locations and timing of 800+ signalized intersections 

and the number of lanes and geometry of more than half the network. Further effort was 

therefore made to populate traffic signals’ information at the major signalized intersections 

and to complete the missing data (Kamel et al., 2015). 

2. The vertices of the TAZs included in the model were exported from the TAZ layer using 

ArcGIS. A short script was then written in Java to import the vertices (x and y) coordinates 

and map them to the corresponding zones in the simulation model. This process resulted in 

333,025 vertices imported for the model 1,497 zones. Additionally, the TAZ zoning system 

numbers (that contain gaps between different cities/regions) were properly matched to the 

sequenced zone numbers created in the simulation model. 
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3. Unlike the centroid-connector method used in planning models, vehicles in DynusT are 

generated and dissipated through generation links and destination nodes, respectively, 

specified for each TAZ in the model. The traffic released from generation links is distributed 

across the road segments proportional to their capacity and the length. The generation links 

and destination nodes were carefully created not to be part of the freeway system across the 

GTA. This is because trips normally start/end at parking lots, parking garages, residential 

areas, etc. but not along freeways. 

4. As described before, the AMS model used in DynusT moves the vehicles based on the 

fundamental traffic flow diagrams. DynusT uses modified (single- and two-regime) versions 

of the Greenshield traffic flow model to construct the speed-density functions for different 

road segments (e.g. freeway, collector, on- and off-ramps, etc.), according to their speed 

limits and to the model parameters specified for each category. The model parameters were 

calibrated to attain the best fit between the simulated and observed speed-density curves. 

Further details of the parameter calibration process are provided in Section 4.3. 

4.2. Demand Modelling 

The time-dependent OD matrices used as input for the simulation model were extracted from the 

2011 TTS data survey, after applying the reported expansion factors to cover the total demand in 

the survey area. The demand extracted includes all auto (SOV, HOV, taxi passenger, and 

motorcycles) morning trips from 6:00 to 10:30 am generated every 15 minutes. The majority of 

home-based work trips in the GTA – on which we focus in this study – were observed to occur 

during this time period (Sasic and Habib, 2013). Although the core demand entered into the 

model corresponds to 4.5 hours, the simulation is conducted for a 6-hour period to account for 

warming up the network and draining the demand at the end of the simulation. 

To reflect the sheer size of the input demand data, an OD matrix with 2.25 million cells (1497 x 

1497 OD combinations) is generated every 15 minutes over the 6:00 to 10:30 am period, 

resulting in more than 40 million OD cell records that are fed into the simulation model. During 

this period, around 2 million trips traverse the area modelled in the GTA network; their 

individual traces are stored on a minute-per-minute basis. 
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Despite their unquestionable impact on traffic conditions, truck demand and transit on-street 

units (e.g. buses and street cars) are not included in the input demand considered. . This is 

primarily due to the absence of their relevant data in the TTS survey from which the input 

demand was extracted. Additionally, the DTA simulation software used does not include a transit 

assignment model to simulate/assign transit units in the network. However, the absence of trucks 

and transit units in the model was compensated for by adjusting the demand of some ODs during 

the model calibration process (Section 4.3). This was applied to ODs feeding corridors where 

loop detector readings exceeded simulated traffic (probably due to shortage in the input demand). 

It is also important to emphasize that this study focuses on the morning peak period of traffic, 

during which truck demand is relatively low (Roorda et al., 2010). 

4.2.1. Demand-related Issues 

4.2.1.1. Demand Smoothing 

The shorter the time intervals by which OD matrices are generated from the travel survey data, 

the more accurate the simulation model can capture traffic flow and speed dynamics, especially 

in the congested peak periods. However, this comes at the expense of the size and processing 

time of the input demand data. Additionally, it might lead to inaccurate simulation results 

depending on the quality and richness of the collected survey data.  

As mentioned, 15 minute-wide OD demand matrices were used as input to the simulation model. 

A flip-flopping pattern was, however, observed in the number of trips generated over the 

successive (15 minutes) time intervals. More specifically, the number of trips generated at 

quarter-hours (6:15, 6:45, 7:15 and so on) falls behind those generated at half-hours (6:00, 6:30, 

7:00 and so on), respectively. This is mostly due to the fact that survey respondents have a 

tendency to report their trip start times on a half-hour basis, rather than quarter-hours. In other 

words, the majority of trips started between 7:00 and 7:30 am (say) were reported to have started 

at 7:00 am, although some of them might have started at (or after) 7:15 am in reality. To resolve 

this issue, the OD matrices were filtered through a mathematical procedure, denoted as a moving 

average, to generate a smooth demand curve while maintaining the same total number of trips 

(Kamel et al., 2015). 
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4.2.1.2. Adding Background Demand 

Being a centre for business, finance, education, and culture, Toronto attracts much traffic that 

passes through the GTA region but starts and/or ends outside of it. This extra traffic is referred to 

hereafter as the ‘background demand’. It has three types: 1) from outside the GTA to the inside, 

2) from the GTA to the outside, or 3) from and to zones outside the GTA but passing through 

some routes within the network. Ignoring this background demand might underestimate the 

amount of traffic flowing on the network main corridors. 

To handle this issue, a model of the Greater Toronto and Hamilton Area (GTHA) was simulated 

to identify the background trips (fulfilling any of the above three criteria) and add them at the 

proper time-intervals to the corresponding input OD cells of the GTA network (shown on the 

right-hand side of Figure 4-2). More specifically, the simulation results of the large GTHA 

network (shown on the left-hand side of Figure 4-2) were analyzed by tracing the paths of the 

spotted background trips and identifying the following: 

1. The trip origin and destination zones within the GTA: For types 1 and 3 trips, the origin 

zone is modified to be the GTA boundary zone through which the trip traverses inwards 

to the GTA network. For types 2 and 3 trips, the destination zone is modified to be the 

GTA boundary zone through which the trip traverses outwards from the GTA network. 

Otherwise, the origin or destination zones remain unchanged. 

2. The trip modified start time: For types 1 and 3 trips, the start time is modified to be the 

time at which the trip reaches the boundary of the GTA network (identified from the 

output of the GTHA simulation model). The modified time is obviously larger than the 

actual trip start time due to the time elapsed from the beginning of the trip until it reaches 

the GTA boundary. On the other hand, the start times of type 2 trips are not changed. 

Following the described procedure, around 260,000 trips were added to the original (GTA only) 

demand, resulting in a total of 2 million trips traversing the GTA simulation model in the 

morning period. In other words, the background demand constitutes 13% of the total demand 

entered into the GTA simulation model used here. Figure 4-3 shows the total smoothed demand 

of the GTA (at each 15 minute interval) during the morning period, before and after including 

the background trips. 
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Figure 4-2: Background Demand Illustrating Diagram 

 

Figure 4-3: GTA Total Demand Profile (Kamel et al., 2015) 
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4.2.2. Demand Input Modes 

In this study, two modes of releasing traffic demand into the simulation model are utilized: 1) 

typical OD demand matrix, and 2) vehicle-by-vehicle input with detailed start time and path 

information. Initially, the vehicles in the network are simulated from the input time-dependent 

OD matrices, extracted from travel survey data, over the simulation horizon. After a DynusT run 

from OD demand matrix mode converges to UE, information of the simulated vehicles (e.g., 

vehicle ID, start time, and origin and destination zones) is listed in output files. DynusT can use 

this vehicle-by-vehicle output information as input for alternative scenarios. 

The advantage of using the second input mode is having an apples-to-apples comparison 

between the base-case scenario and a variety of other scenarios with the same input vehicles. In 

other words, the vehicle-by-vehicle input mode removes the possibility of variability in 

simulation results stemming from different vehicle input. As described, the second mode is based 

on the completion and output of a DynusT run from the OD demand matrix mode. Accordingly, 

in order to apply the departure time choice model to capture the impact of variable tolling on the 

start times of specific vehicles in the network, the base-case network is re-simulated (after a 

complete run with OD demand mode) with the imposed tolling scenarios using the detailed 

vehicle-by-vehicle input mode. 

4.3. Simulation Model Calibration and Validation 

Sections 4.1 and 4.2 have indicated the amount and diversity of the data required to develop the 

supply and demand sides of the simulation model. Dealing with the diversity and size of data 

sources to build the simulation model was a challenging task. However, more challenging was 

the calibration process conducted after the model was built, for validating its base-case output 

and therefore being able to use it for new policy assessment. Clearly, the larger the size of the 

model and its associated input data, the more factors affecting the accuracy of its output; 

consequently, the more complicated and multidimensional the calibration process. 

The calibration process consisted of: 1) proper choice of model parameters, e.g. value of time 

(VOT), traffic flow model parameters, and freeway bias factor that controls travellers’ perception 

bias towards freeway travel time; and 2) handling issues emerging from possible input data 
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inaccuracies, e.g. bias in survey responses and imprecise GIS database information. The 

calibrated model was then validated by plotting – i.e., comparing – the simulated traffic volumes 

and speeds at 177 locations (over Highways 400, 401, 403, 404, QEW, the Gardiner expressway, 

and the Lakeshore Boulevard) against their corresponding observed values collected from loop 

detector readings. Additionally, the GEH statistic was utilized as an evaluation criterion for the 

simulated volumes in the GTA model (Kamel et al., 2015), as will be detailed later on. 

The efforts exerted to correct the input demand inaccuracies include demand smoothing to 

resolve the observed flip-flopping pattern (as described in Section 4.2.1) and increasing or 

decreasing the demand of some OD pairs, at specific time-intervals, to match traffic on the key 

corridors these OD’s affect. A direct impact of the latter step is to compensate for the absence of 

trucks and transit units in the input demand, as mentioned earlier. On the supply side, the 

geometry (e.g. number of lanes) and speed limits of highways and major arterials and ramps 

were carefully checked and adjusted. 

Further details of the VOT and traffic flow model parameters selected, the GEH statistic used to 

measure the calibrated model accuracy, and the DUE convergence of the simulation model are 

described next. 

4.3.1. Value of Time (VOT) and Freeway Bias Factor 

The objective of DUE assignment is to estimate traffic distribution among alternative routes, for 

each OD pair and assignment interval, by equilibrating the generalized cost of all routes. The 

generalized cost consists of the actual travel time and the equivalent travel time of tolls charged 

on the route (if any) based on the VOT specified (Chiu et al., 2008). In this context, VOT 

represents the amount of money the trip maker is willing to pay to save a unit travel time. VOT 

varies across individuals because of their different socioeconomic characteristics, attitudes, trip 

purposes, and latent preferences (Lu et al., 2006). Hence, some trip makers take slower paths to 

avoid tolls, whereas others choose toll roads to save time. 

There is no consensus on a unique VOT for the GTA region. Various economic factors affect the 

value of this parameter; e.g. time of day choice, labour supply, taxation, activity scheduling, 

intra-household time allocation, and out-of-office productivity (Small, 2012). 
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Habib and Weiss (2014) investigated the temporal evolution of commuting mode choice 

preference structures using three datasets of TTS surveys collected over a 10-year period. From 

the empirical models obtained, the authors estimated the VOT as the ratio of the coefficients of 

in-vehicle-travel-time and travel cost variables. The average VOT, among different occupation 

groups, was found to be 8.37 $/hr, in 2006 Canadian dollars. Accounting for Canadian inflation 

rates from 2006–2015, this value is equivalent to 10 $/hr in 2015 Canadian dollars (Worldwide 

Inflation Data, 2015). In a more recent study, Zohreh et al. (2016) investigated commuting mode 

choices using a fused SP and RP dataset collected in the GTHA. The subjective value of in-

vehicle-travel-time saving was directly estimated in the systematic utility function of the model. 

It was found to vary from 14.5–19.5 $/hr. According to findings of both studies, the average 

VOT used in this study for the GTA simulation model is 15 $/hr. 

The traffic assignment software used allows for only single-user class with single VOT. 

According to Lu et al. (2006), considering multiclass traffic assignment (i.e., considering 

heterogeneity in VOT in route choice) is generally challenging in large-scale simulation models 

due to computational efficiency and solution storing space issues. The findings of the same study 

on a relatively small network (180 nodes, 445 links, and 13 zones) show that using a single VOT 

in the model (as opposed to discrete or continuous range of VOT) might bring biased 

estimation/prediction of network performance. This is due to overestimating or underestimating 

the toll-road usage when the toll charged is relatively low or high, respectively. This possible 

bias is, however, alleviated in the current study as follows: 

1. The integration of the toll optimization module into the developed congestion pricing system 

aims at determining the optimal (i.e., moderate) toll structures triggering traffic re-

distribution over time and space that bring the best network performance. It can be concluded 

from the findings of Lu et al. (2006) that if toll levels are moderate (i.e., neither low nor 

high), the prediction of network performance will probably be consistent under different 

VOT assumptions: single, discrete range, or continuous range. Accordingly, it is expected to 

obtain un-biased prediction of network performance under the optimized toll charges. 

2. The departure time choice model integrated in the optimal congestion pricing system 

considers users’ heterogeneity in values of (early or late) schedule delay and desired arrival 
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time, as will be illustrated in detail in Chapter 5. In other words, drivers’ heterogeneity is 

considered in the departure time choice level. 

The ‘Freeway Bias Factor’ is another parameter that was adjusted in the calibration process of 

the simulation model. This controls the traveller's perception bias towards freeway travel time 

and can take values between 0–100. The value selected for this parameter (to obtain realistic 

congestion on freeways) is 10; i.e., drivers will perceive the freeway link travel time to be 

shorter by 10%. 

4.3.2. Traffic Flow Model Parameters 

As mentioned earlier, vehicle movements in DynusT are simulated through the Anisotropic 

Mesoscopic Simulation (AMS) concept, which assumes that a vehicle’s speed depends on the 

density of the vehicles ahead of it in the same lane or adjacent lanes, in what is referred to as the 

speed influencing region (SIR). The length of the SIR is one of the parameters that may be 

controlled/calibrated in DynusT. The typical value assigned for this parameter, and used here, is 

around 240 m. The relationship between the speed and the density is governed by single- and 

two-regime traffic flow models, defined in Equations (4-1) and (4-2), respectively. In the two-

regime model, the speed (v) equals the free-flow speed (vf) for densities less than the breakpoint 

density (kbp); whereas it follows a modified Greenshield equation for higher densities where 

other parameters – such as the minimum speed (v0), the jam density (kj), and the shape term (α) – 

affect the relationship (Chiu et al., 2010). The single-regime model is a special case of the two-

regime model, where the breakpoint density equals zero, as can be inferred from the two 

equations. 

 

(4-1) 

 

 

 (4-2) 
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The speed-density relationship on each road segment in the network (freeway, collector, on- and 

off-ramps, etc.) is governed by one of these models. Here, the two-regime model is used for 

freeway links, whereas the single-regime model is used for other link types. 

The free-flow speed (also referred to as speed intercept) for each link is automatically assigned 

the speed limit value specified for this link. The jam density was calibrated against the maximum 

observed densities. The minimum speed, breakpoint density, and shape parameter were then 

manually calibrated to attain the best fit between the simulated and the observed speed-density 

curves. Table 4-1 shows the calibrated traffic flow model parameters. Figure 4-4 and Figure 4-5 

illustrate the speed-density curves of a single-regime model (associated with a 60 km/hr speed 

intercept) and a two-regime model (associated with a 120 km/hr speed intercept), respectively. 

Table 4-1: Traffic Flow Model Calibrated Parameters 

Parameter Single-Regime Model Two-Regime Model 

Density breakpoint (vehicle/km/lane), kbp  NA 11 

Speed intercept (km/hr), vf  Link speed limit Link speed limit 

Minimal speed (km/hr), v0  5 5 

Jam density (vehicle/km/lane), kj  112 112 

Shape term, α 3 3.2 
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Figure 4-4: Speed-Density Diagram of Single-Regime Model 
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Figure 4-5: Speed-Density Diagram of Two-Regime Model 

4.3.3. GEH Statistic for Simulation Model Validation 

As mentioned earlier, the GEH statistic is used as an evaluation criterion for the simulated 

volumes in the calibrated GTA model. The GEH is widely used to measure the accuracy of 

traffic simulation models. Its value reflects the difference between the observed and the 

simulated volumes. The GEH statistic is computed as follows: 

 (4-3) 

Where V is the model simulated hourly volume at a location and C is the actual hourly count at 

the same location. The average GEH of the whole model is 9.75, as shown in Figure 4-6. This 

value falls in the cautiously acceptable range of the calibration targets developed by Wisconsin 

DOT, as summarized in Table 4-2. 

Table 4-2: GEH Calibration Targets (www.wisdot.info/microsimulation) 

GEH < 5 Acceptable fit, probably OK. 

GEH between 5–10 Caution: possible model error or bad data 

GEH > 10 Warning: high probability of modelling error or bad data 

http://www.wisdot.info/microsimulation
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The best attained GEH of 9.75 was therefore accepted with three factors in mind: (1) the sheer 

size of the regional network, (2) the large number of loop detector stations and the inevitable 

variability in the quality of the loop detector data used in the calibration process and (3) possible 

inaccuracies in TTS data (from which demand was extracted) resulting from respondents’ biases. 

 

Figure 4-6: Scatterplot of the Observed and Simulated Hourly Volumes (Kamel et al., 2015) 

4.3.4. Simulation Model DUE Convergence and Relative Gap 

As mentioned in Chapter 3, the convergence criterion used for the traffic assignment model is 

referred to as the Relative GAP (RG). The RG at each iteration represents the relative difference 

between total travel times experienced for all users over their assigned paths (resulting from this 

specific iteration) and the total travel times of shortest-path DUE conditions. The difference is 

relative to the combined total shortest travel times for all the demand. The RG reflects how close 

the assignment solution (at each iteration) is to the target User Equilibrium (UE) network 
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assignment. Detailed formulae of the RG are provided in Chiu et al. (2008). Figure 4-7 illustrates 

the evolution of the RG over a 20-iteration run of the GTA DTA simulation model for the 6:00 to 

10:30 am demand period. This is the typical convergence curve associated with the first (inner) 

iterative loop in the optimal congestion pricing system, referred to in Section 3.4.2. 
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Figure 4-7: GTA DTA Simulation Model Convergence 

4.4. GTA (Large-Scale) Simulation Model Challenges 

The GTA network contains thousands of links and nodes, and millions of vehicles, making it one 

of the largest mesoscopic dynamic traffic simulation models built in the region. A number of 

challenges were faced while building, calibrating, running, and processing the output of the GTA 

simulation platform, as will be summarized in this section. This is mostly due to the size of the 

network, the volume of data, the variety of data sources, the veracity and value of the data used 

to build and calibrate the model, and the volume of the output data produced during the 

simulation. 

4.4.1. Model Building and Calibration 

As highlighted in the preceding sections, several issues arose during the development of the 

simulation model and required (in most cases) time and computationally demanding procedures 

to deal with them.  
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On the demand side, importing around 2.25 million OD cells to the model every 15 minutes 

(over the course of 4.5 hours) involved several processing hours of the OD matrices extracted 

from TTS diaries. This is due to the specific input format required by the simulation software, 

e.g. all matrix cells should be provided, even if they contain zero records, in addition to the 

effort/time taken to match the GTA TAZ zoning numbers to the sequenced numbering created 

and used in the simulation model. Also, as described earlier, a mathematical procedure was 

applied to generate a smooth demand pattern and to correct the flip-flopping phenomenon 

observed at quarter-hours, possibly due to survey respondents’ bias. Additionally, the 

background demand (that starts and/or ends outside the GTA region but passes through it) was 

identified and added to the GTA demand at proper time intervals and OD cells by processing the 

trajectories of around 2.2 million vehicles simulated in a larger model of the GTHA region. 

Moreover, the demand of some OD pairs at specific time intervals was adjusted to match 

congestion on the key corridors that these ODs affect. This was performed by analyzing the paths 

of the trips travelling through those corridors to obtain their ODs and hence adjusting those that 

contribute highly to the corridor traffic.  

On the network geometry side, the GIS database played a key role in forming the basis of the 

model geometry; however, it suffered from several missing items. Accordingly, the geometry 

(e.g. number of lanes) and speed limits of highways and major arterials and ramps all over the 

network were carefully checked and adjusted. Another non-trivial task was to allocate (non-

freeway) generation links and destination nodes for each of the model 1497 TAZs. Although the 

allocation process was automated, several zones had to be re-processed individually upon 

receiving simulation errors related to releasing their demand (e.g., a dead-end link might be 

assigned by mistake as a generation link). 

On the model calibration side, the process was multidimensional and time-consuming due to the 

sheer size of the model and the numerous factors affecting the output simulation results, as 

illustrated in the previous section. Moreover, the loop detectors’ raw data available contain 

millions of daily records over several years. Therefore, these datasets had to be inspected to 

extract traffic speeds and volumes that could be used for model calibration and validation. Due to 

the variations and seasonality of the observed data, a wide range of weekdays (Tuesday, 

Wednesday, and Thursday) across several months (September, October, and November), over 
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the period from 2010–2012 (during which TTS survey data were collected), were considered in 

the calibration process. Special procedures, detailed in Kamel et al. (2015), were followed to 

identify the defective loop detectors to be excluded – based on their reported data – and the 

correctness of the counts obtained from non-defective (i.e., accepted) loop detectors. 

4.4.2. Model Execution: Required Resources and Runtime 

The model runtime is generally affected by the following factors: network size, demand size (i.e., 

number of OD cells and demand intervals), number of computer processors allocated to the 

simulation model, and number of iterations specified for DUE. 

The memory usage fluctuates during model execution depending on the task being performed 

(viz. assignment, simulation, writing vehicle information into files, etc.). In the GTA simulation 

model, the maximum memory usage reaches around 13.5 GB. This high memory consumption is 

due to the sheer size of the model and the associated massive computations and storage-space 

requirements during the simulations. 

On an i7 Machine with 16 GB of RAM, the DTA run-time of the GTA simulation model until 

convergence (using 20 iterations) is around 7.5 hours. The associated RG curve, representing the 

1st level of convergence (i.e., route choice convergence) in the optimal congestion pricing 

system, is shown in Figure 4-7. As clarified in the description of the optimal congestion pricing 

system (provided in Section 3.4), the GTA simulation model is run several times in sequence 

with the departure time choice model – under each tolling scenario tested – until the 2nd level of 

convergence (i.e., departure time convergence) is reached. Moreover, the hybrid testbed (i.e., the 

combined departure time choice and DTA simulation models) is run several times to test 

different tolling scenarios generated by the optimization algorithm until the 3rd level of 

convergence (i.e., toll structure convergence) is reached. Therefore, running a single full-price 

optimization scenario would take several weeks if it is executed in a serial mode using a single 

high-end PC (in terms of memory and CPUs). 

The required resources and runtimes were obstacles against full system implementation. These 

challenges made use of a parallel high-performance cluster an urgent need to run the full system 

in a reasonable time. Running the system in parallel mode entailed significant effort to set up and 



 

63 

 

configure parallel computer nodes for the proper communication and task distribution among 

them, as will be described in detail in Chapter 7. 

4.4.3. Processing Model Output 

The simulation modelling platform generates output statistics at different levels: network-wide, 

link-based, and trip-based. Output statistics vary in volume and frequency of generation. On the 

network-level, total travel times and total trip distances are single values, produced once for the 

entire network at the end of the simulation. On the other hand, the number of vehicles generated, 

inside and leaving the network, is released every minute throughout the simulation. On the link-

level, average speeds, densities, and queue lengths are reported every minute for each single link. 

This results in about 40 million readings for traffic data of the morning period simulated in the 

GTA. On the trip-level, detailed vehicle trajectory data are provided for each vehicle in the 

simulation; e.g. origin node, destination node, start time, nodes traversed, times spent on each 

link, and total trip time. The vehicles’ path and time information is updated almost every second; 

this process generates more than 17 million node-arrival time pairs each hour. 

The large volume and frequency of the generated traffic data posed serious challenges to extract 

meaningful information from this huge dataset. Data processing and analytical techniques were 

used to deal with the raw output data of the simulation model and to extract useful information 

that could be used to analyze the network performance – at various levels – under pricing 

policies, and therefore make informative pricing-related decisions (e.g. tolling periods, locations, 

levels, etc.). 

This chapter has emphasized the efforts exerted to build, calibrate, and validate a large-scale 

DTA simulation model for the GTA based on the most recent available demand data, GTA TAZs 

system, network geometry information, and loop-detector feeds. In fact, using this simulation 

model – integrated with the other system components – for optimal toll determination and 

realistic estimation of drivers’ behavioural responses to pricing network-wide, is one of the 

major contributions of this study. 
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5. The Econometric Model for Departure time Choice in the GTA: 

Retrofitting and Integration with the DTA Simulation Model 

The integration of an econometric departure time choice model into the proposed optimal 

congestion pricing system is important to assess the differential impact of pricing scenarios on 

the departure time choice of distinct drivers. The departure time shift due to time-dependent tolls 

is one of the key travel behaviour changes to be expected, which can induce significant benefits 

to motorists and the system overall. It not only relieves the infrastructure from overuse, 

congestion and delays, but does so in a manner that is proportional to the problem itself; i.e. 

congestion, when and where it occurs. 

This chapter describes the details of the econometric model used to model departure time choice 

in the proposed optimal congestion pricing system. The chapter starts with an introduction to the 

different approaches to simulate departure time changes. An overview is then given to the 

departure time choice set formulation and the original variables used in the model utility 

functions and scale parameters. The extensions and assumptions to incorporate schedule-delay 

and toll cost in the model and to re-calibrate the associated parameters are then discussed. The 

steps followed for the preparation/estimation of the data required by the model are then 

presented. After that, the model implementation details to simulate commuters’ departure time 

choices and the convergence criterion of the model output are described. Finally, the model base-

case validation results are illustrated. 

5.1. Simulating Departure Time Change Approaches 

Several approaches can be followed to simulate drivers’ departure time along with route changes 

within a traffic simulation environment. The most simple, yet non-realistic, approach is to induce 

random perturbation of trip start times throughout the simulation, based on a certain pre-set 

probability, as in Balmer et al. (2008). This approach is easy to implement and is not 

computationally demanding. However, the stochastic mutations might bring unrealistic start 

times (e.g., a work trip starting at 2:00 am). Additionally, the changes in start time are not 

directly affected by the policies introduced (like time-dependent congestion pricing).  
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Another approach, followed by Lu et al. (2006), involves joint departure time and route-choice 

algorithms – implemented iteratively until equilibrium – based on a set of trip attributes that 

include travel time, out-of-pocket cost, and schedule-delay cost. This approach has the advantage 

of realistically modelling the joint nature of both departure time and route choices within a 

simulation environment. However, it cannot be handled in a large network setting within the 

limits of practical computational capabilities. Additionally, it does not consider the impact of 

driver-related attributes (e.g. personal and socio-economic characteristics) on the choice-making 

process.  

A third approach, followed here, is through integrating an econometric behavioural departure 

time choice model (that considers both trip and driver attributes) into a large-scale traffic 

assignment simulation model. This provides a computationally tractable tool to estimate 

departure time and route choice responses to traffic management policies that affect travel times 

and costs, in a large-scale setting. The problem with this approach is the underlying assumption 

that departure time and route choices are made sequentially (rather than jointly). However, this is 

compensated for here by iterating and feeding back between departure time and route choices 

until both choices reach equilibrium. 

5.2. Overview of the Departure Time Choice Model Used 

As briefly mentioned in Chapter 3, this study extends a recently developed model (Sasic and 

Habib, 2013) at the University of Toronto that describes departure time choice in the GTHA. The 

key challenges in departure time choice modelling are accurately representing the continuous 

nature of time while allowing a comparison of non-adjacent departure time slots and capturing 

the choice captivity to specific time slots. The model combines a heteroskedastic Generalized 

Extreme Value (Het-GEV) structure with overlapping choice sets that account for alternative 

choice correlation and choice captivity. Overlapping choice sets also allow for the continuous 

nature of departure time choices. 

The choice probabilities are expressed as the probability of a choice set being selected multiplied 

by the conditional probability of selecting the choice from within the choice set. The probability 

that a choice set is selected depends on the expected maximum utility of the choice alternatives 

within the set. The random utility for any alternative is defined as a systematic and a random 
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component, where the joint density of all random components is distributed according to the 

extreme value distribution. 

Two types of scale parameters are introduced in this model. These are the root scale parameter 

and the nest scale parameter of a particular choice set. Moreover, the modelling framework uses 

a scale parameterization approach to capture heteroskedasticity in departure time choices. This 

approach also captures heterogeneity in users’ departure time choice responses to variations in 

trip-related attributes (e.g. travel time and cost) at each choice interval. The model was 

developed and calibrated in the original study using the Transportation Tomorrow travel Survey 

(TTS) of 2006. 

In this study, effort has been devoted to calibrating/retrofitting the Sasic and Habib (2013) model 

to meet current research needs. The model was retrofitted using the latest TTS survey of 2011 

(DMG, 2015). Additionally, schedule-delay and toll cost components were incorporated in the 

model variables, and their associated parameters were recalibrated accordingly. It is noteworthy 

that the TTS survey does not have data about tolling or users’ response to such cost. Therefore, a 

model for capturing the impact of tolling on travellers’ behaviour cannot be estimated directly 

from the TTS data, hence the need to retrofit the above model. Perhaps in the future the impact 

of tolling on travel behaviour could be directly estimated via stated preference surveys, but this is 

beyond the scope of this study.  

5.3. Original Model Formulation 

5.3.1. Choice Set Formulation 

The datasets from the 2006 TTS survey (DMG, 2015) were used for the empirical model of 

departure time choices of home-based commuting (i.e. home to work or school) trips in the 

Greater Toronto and Hamilton Area (GTHA) (Sasic and Habib, 2013). The datasets from the 

latest 2011 TTS survey are used here to retrofit the 2006 model for 2011 conditions, as will be 

explained in the next section. In this model, departure time is represented as nine (30 min) 

discrete time intervals – lying within eight choice sets – that span the morning peak (when the 

majority of home-based work trips occur), as shown in Figure 5-1. The reason a 30 min 

bandwidth is used is that it was found to carry the minimum level of detail required to represent 
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variability in the departure time choice distribution. Shorter intervals resulted in a lack of 

observations for a significant number of alternative departure time options. 

The choice framework is shown in Figure 5-1. This framework resembles the decision making 

process, where an individual chooses his/her departure time within a specific range (portion) of 

the day. The overlapping choice sets allow individual choice alternatives to be in multiple choice 

sets, and hence accommodate the latent choice set approach within the choice probability 

calculation. In other words, the probability that an individual chooses to depart from home to 

work during some interval is defined as the weighted sum of the probability of choosing this 

time-interval over the one preceding it, and the probability of choosing this time-interval over the 

one following it. Moreover, the probability of choosing some departure time interval is affected 

by explanatory variables, as well as the scale parameters that explain additional choice 

heterogeneity. 

 

Figure 5-1: Departure Time Choice Framework in the Het-GEV Model, (Sasic and Habib, 2013) 

5.3.2. Model Variables 

Two types of explanatory variables exist in this model, in the systematic utility functions and the 

root and nest scale parameters; namely, 1) commuters’ personal and socio-economic attributes; 

and 2) transportation level-of-service (LOS) attributes corresponding to alternative departure 

time segments. Commuter attributes include: work duration, occupation category (general office, 

manufacturing, or professional), gender, job status (full- or part-time), and age category. Level-
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of-service attributes include travel time, travel distance, and travel cost corresponding to each 

departure time segment. Table 5-1 summarizes the model’s original variables defining its 

systematic utility functions, root scale parameter, and nest scale parameters. The highlighted 

variables in the first column are dummy variables that take 0 or 1 values. Downtown Toronto, in 

the study context, involves 18 TAZs bounded by Front Street, Bloor Street, Yonge Street, and 

Spadina Avenue. The steps taken to prepare/calculate the model variables corresponding to the 

GTA morning commuting trips (considered here) are presented in Section 5.5. 

Table 5-1: Departure Time Choice Model Variables (Sasic and Habib, 2013) 

Variable Description 

Systematic Utility Function:  

ASC Alterative Specific Constant 

TC Total Cost 

IVTT In-Vehicle Travel Time 

WD (or SD) Work (or School) Duration 

Dest Destination of the trips: downtown Toronto 

Occ1 Occupation category: general office 

Occ2 Occupation category: manufacturing 

Occ3 Occupation category: professional 

Root Scale Parameter:  

Gen Gender: male 

Age1 Less than 25 years old 
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Age2 25–35 years old 

Age3 35–45 years old 

Job Job status: full-time 

TC/TD Total Cost/ Total Distance 

IVTT/TD In-Vehicle Travel Time/ Total Distance 

Orig Trip origin: downtown Toronto 

Dest Trip destination: downtown Toronto 

Nest Scale Parameter:  

LogDist Logarithm of distance between origin and destination 

As mentioned earlier, the modelling framework uses the scale parameterization approach. This is 

clear from Table 5-1, where the scale parameters do not take constant values; rather, they vary 

according to trip and driver attributes. This approach captures heterogeneity in users’ departure 

time choice responses to variations in trip-related attributes (e.g. travel time and cost) at each 

choice interval. More specifically, the root scale parameter μR explains the baseline heterogeneity 

across the population; the higher the value of μR, the more stable the choices, and vice versa. In 

other words, the class of trip makers having low values of μR are choice users, whereas those who 

have high values of μR are more captive users. On the other hand, μc is the nest scale parameter 

for choice set c. A higher value of μc indicates higher correlation between the shared alternatives 

within the nest, and vice versa. The probability of choosing certain alternative j, Pj, is calculated 

as follows: 
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Where Pj|c is the conditional probability of alternative j in the choice set c and Qc is the 

probability of the choice set c. Qc is calculated based on the following formula: 

 

Where Ic is the inclusive value of a particular choice set c. Ic is calculated as follows: 

 

where K is the total number of alternatives in the choice set c. The conditional probability of any 

alternative j in a particular choice set c is calculated according to the following formula: 

 

The model was estimated based on the TTS 2006 survey data. Additionally, the model does not 

include explicit variables for toll cost or schedule-delay. This is because the TTS survey dataset, 

based on which the model was estimated, contains no toll information; neither does it contain 

work/school start times (i.e., desired arrival times) of commuting trips, as mentioned earlier. 

Therefore, the model was retrofitted by incorporating these variables and recalibrating some 

model parameters based on the most recent 2011 survey dataset. The model adjustment details 

are presented next. 

5.4. Model Retrofitting and Recalibration 

The model adjustment and recalibration process went through several steps performed in 

sequence. It started by updating the utility functions’ ASCs to match the 2011 TTS survey 

dataset used here. The schedule-delay cost was then integrated into the model in the form of a 

piecewise-linear function, as will be illustrated in detail. This entailed 1) determining an 

approach to synthesize the desired arrival time of each commuter in the model, since this 

information is not reported in the TTS survey, and 2) calibrating the early and late schedule-

delay shadow prices. The coefficients of the IVTT variable were recalibrated accordingly. 
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Finally, the toll cost variable was added to the total cost, and the corresponding toll coefficient 

was then calibrated. 

As outlined, each step involved calibrating specific parameters in the model. The calibrated 

parameters were determined using a factorial design procedure (Cheng, 2013). The objective of 

this procedure was to determine the set of parameters that brought the best model base-case 

validation results, at the designated step. The validation was performed by implementing the 

modified departure time choice model together with the traffic simulation model iteratively until 

convergence – i.e., executing the testbed shown in Figure 3-1 – under base-case conditions (i.e., 

without tolling). After convergence, the resulting simulated traffic conditions are compared 

against those obtained without applying the departure time choice model. The purpose of 

calibration is hence to find the parameters that minimize the absolute error between both 

simulated outputs, at all time intervals, for the following measurements: 

- number of commuters who choose to depart at each time interval; 

- average resulting travel time per km (calculated by averaging the travel time of each 

commuter divided by the distance travelled in km, over all commuters departing at each 

time interval); and 

- average distance travelled. 

Intuitively, a perfect (i.e. 100% accurate) departure time choice model should bring identical 

demand temporal distribution and hence identical simulated traffic attributes, at base-case 

network conditions, to those obtained under the original demand extracted from TTS data 

without applying the departure time choice model. The validation details and final results are 

presented in Section 5.7. 

5.4.1. Alternative Specific Constants (ASCs) 

The departure time choice model considers the following: 1) alternative specific constants, 2) 

coefficients of variables defining systematic utility functions, 3) coefficients of variables 

defining the root scale parameter, and 4) coefficients of variables defining the nest scale 

parameters. As a result, the model has 74 statistically significant parameters. The empirical 

model was originally estimated based on the 2006 TTS survey. The alternative specific constants 
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(ASCs) were therefore updated to be consistent with the 2011 dataset, according to the following 

rule (Train, 2003): 

 

Where Ai is the number of decision-makers in the 2011 population who chose departure time 

interval i, and Si is the number of decision-makers in the 2006 population who chose the same 

interval. Table 5-2 shows the ASCs before and after adjustment. The updated constants are 

proportional to the corresponding shares of drivers in the 2011 dataset – at each time-interval – 

yet carrying the behavioural information involved in the originally estimated constants. It can be 

noted from the table that the updated ASCs are higher than the original ASCs. This is due to the 

fact that the 2011 population, hence shares in different departure time intervals, is larger than 

that of 2006. 

Table 5-2: Original and New ASCs in the Departure Time Choice Model 

Time 

Interval 

6:00 to 

6:30 

6:30 to 

7:00 

7:00 to 

7:30 

7:30 to 

8:00 

8:00 to 

8:30 

8:30 to 

9:00 

9:00 to 

9:30 

9:30 to 

10:00 

10:00 to 

10:30 

Original 

ASCs 
0 -0.4508 -0.2099 0.1803 0.3659 0.1143 0.007 -0.3665 1.3054 

New 

ASCs 
1.0010 1.0426 1.4983 2.0899 2.3680 2.2478 2.0469 1.3484 1.7053 

 

5.4.2. Schedule-Delay Cost 

The schedule-delay (early or late arrival) cost is intuitively an important factor contributing to 

the departure time choice for morning commuting – i.e., work or school – trips (having a specific 

desired arrival time). It is crucial to attain the anticipated departure time rescheduling effects of 

tolling in accordance with the Bottleneck Model pricing structure adapted here. As mentioned, 

this variable is absent from the original model, since the work/school start times (i.e. desired 

arrival times) of commuting trips are not reported in the TTS survey. Without schedule-delay 

cost, the model would erroneously exaggerate shifting commuting trips to outside the toll period. 
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In other words, the schedule-delay cost is what keeps commuters “anchored” to their desired 

arrival times. Accordingly, this schedule-delay variable is added to the travel time variable in the 

model. 

The schedule-delay cost, cs, used here takes the following formula (Small, 1982): 

 

where β and γ are the shadow prices of early and late arrival delays, respectively. t is the trip start 

time, T(t) is the travel time, and td is the desired arrival time.  

According to Verhoef (2003), early and late arrival delays are perceived differently by 

commuters, and hence have different coefficients (i.e., shadow prices) in the schedule-delay cost 

function with a ratio of 1 to 4, respectively. This ratio was further modified in this study during 

model validation to be 1 to 2, which better fits the GTA data without underestimating the number 

of trips that started at late time intervals due to exaggerated late arrival costs. The modified ratio 

denotes that GTA travellers perceive the cost of arriving one hour later than desired twice the 

cost of arriving one hour earlier. 

5.4.3. Desired Arrival Time 

The desired arrival time of a commuter is the time at which the commuter wants to arrive at work 

or school; deviations from which imply early or late schedule-delays. Obviously, the existence of 

desired arrival times (e.g., work/school start times) for morning commuters is what creates a 

peak, as travellers are anchored to their desired arrival times. This results in increased travel 

times and long queueing delays around the average desired arrival time, and hence creates the 

typical morning traffic peak. 

As mentioned before, the desired arrival time information is not reported in the TTS survey; only 

actual arrival time (shifted from the desired time by an unrevealed schedule-delay component) is 

reported. Accordingly, a desired arrival time value is synthesized for each vehicle in the network 

once at the beginning of the simulation, and is kept fixed for the entire system implementation. 

Heterogeneity is expected to be observed in desired arrival times within a large-scale application 

involving millions of commuters having diverse socioeconomic characteristics, employment 



 

74 

 

categories, and work schedules (as in the GTA). Assuming a single desired arrival time in such a 

large-scale model results in an overestimated number of trips starting around this single desired 

time, and hence creates an exaggerated simulated morning traffic peak. In other words, a model 

making that assumption predicts travel times that climb and fall much quicker than observed 

(Hall, 2013). It is therefore important to allow for a continuum of desired arrival times in the 

model for the sake of more realistic results. 

In Hall (2013), desired arrival times follow a uniform distribution over an interval [ts, te], where 

ts and  te are the first and last desired arrival times, respectively. These times were determined in 

that study based on the start and end times of the period at which the slope of observed travel 

time profile is fixed. In another transit-related study (Wahba, 2009), the desired arrival time is 

synthesised by first establishing a range of possible desired arrival time values for each 

passenger. The lower and upper bounds of that range are obtained by adding the minimum and 

maximum travel times, respectively, to the trip start time. The range is then discretized to data 

points representing 5-minute increments, one of which is selected randomly to be the passenger 

desired arrival time. 

In this study, the desired arrival time (td) is randomly generated for each vehicle in the network 

following a log-normal distribution. i.e., ln(td) is assumed to have a normal distribution with 

parameters μ (mean) and σ (standard deviation). The log-normal distribution is suitable for 

random variables that are inherently positive. Additionally, it has a quasi-bell shape that enforces 

ascending probabilities for values (i.e., desired arrival times) close to the mean, and vice versa. 

Accordingly, it is believed to produce a more realistic distribution of simulated desired arrival 

times than following a uniform distribution. 

Several values were tested for the mean and standard deviation of this distribution; 8:30 am (i.e. 

minute 150 counting from 6:00 am) was ultimately selected as the mean desired arrival time (i.e. 

μ = ln(150)) and σ = 0.05 – measured in ln(minute) – was set as the standard deviation. The 

selected parameters were found to bring the best validation results among other tested values, 

when the integrated departure time and traffic assignment testbed is applied in the base-case. 

More specifically, they resulted in the closest output distribution of simulated departure (hence 

arrival) times for commuting trips to those obtained in the GTA base-case traffic assignment 

simulation results (without applying the departure time choice model). The final validation 
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results of the adjusted departure time choice model are presented in Section 5.7. Furthermore, the 

selected parameters entail the best relationship between travel time and schedule-delay cost 

values, such that the minimum schedule-delay costs are observed at the same time-interval where 

the maximum travel time delays are experienced, and vice versa, as suggested by the Bottleneck 

Model (described briefly in Section 3.3.1). 

Figure 5-2 illustrates the output simulated travel times and schedule-delays, averaged among 

commuting trips that started at each half-hour interval. This output is obtained when the desired 

arrival times of commuters are generated according to the selected log-normal distribution 

specifications. Clearly, the 8:00 to 8:30 am interval exhibited the maximum average travel time 

per km and the minimum average schedule-delay cost. 
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Figure 5-2: Estimated Average Travel Time per km and Schedule-Delay Cost 

5.4.4. Recalibrating IVTT Coefficients 

The departure time choice process of morning commuters involves a trade-off between avoiding 

congestion delay and arriving on the (desired) time to work or school; travellers who arrive on 

time encounter the longest travel delay during the peak period, and vice versa. In other words, 

schedule-delay is what keeps commuters anchored to departing close to their desired arrival 

times, and hence results in increased IVTT in peak hours. Between the two variables (i.e. travel 

time and schedule-delay cost), only IVTT is considered in the original departure time choice 
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model. The absence of schedule-delay was implicitly compensated for through the estimated 

coefficients of IVTT of the original model. More specifically, it can be observed from Figure 5-3 

that the original coefficients corresponding to the 6:30 to 8:00 am interval are noticeably larger 

than those of the 8:30 to 10:00 am interval. The numerical values are reported in  

Table 5-3. This difference attracts more trips to earlier intervals so as to arrive close to their 

desired arrival times (e.g. 8–9 am), and hence creates the typical morning traffic peak. In other 

words, the differences between the original IVTT coefficients compensate for the 

unexplained/missing schedule-delay component. 

When the schedule-delay is explicitly incorporated in the departure time choice model, the 

summation of both variables (i.e., IVTT and schedule-delay) should naturally bring the typical 

bell-shaped distribution of morning traffic demand, without such difference in coefficient values. 

Hence, adding schedule-delay while using the original IVTT coefficients will overestimate the 

number of trips that start between 6:30 and 8:00 am. 

Accordingly, the coefficients of IVTT were recalibrated to avoid biases in model output choices 

(as a result of adding schedule-delay costs). The modified parameters are reported in  

Table 5-3 and illustrated in Figure 5-3. They were determined using a factorial design procedure, 

as described at the beginning of this section.  

Table 5-3: Original and Modified Coefficients of IVTT in the Departure Time Choice Model 

Time 

Interval 

6:00 to 

6:30 

6:30 to 

7:00 

7:00 to 

7:30 

7:30 to 

8:00 

8:00 to 

8:30 

8:30 to 

9:00 

9:00 to 

9:30 

9:30 to 

10:00 

10:00 to 

10:30 

Original 

Coefficients 
0 -0.0107 -0.0087 -0.0149 -0.0196 -0.03 -0.0332 -0.0182 0 

Modified 

Coefficients 
-0.015 -0.0187 -0.0167 -0.0249 -0.0196 -0.015 -0.0102 -0.0082 -0.005 
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Figure 5-3: Original vs. Modified IVTT Coefficients 

It can be noted from Figure 5-3 that the modified coefficients of the 6:00 to 9:00 am intervals 

have relatively close values, compared to the original coefficients. This was expected, as 

explained above. However, the modified coefficients obtained for the last three intervals are 

relatively higher than the remainder. Other lower coefficients tested at those late intervals 

underestimated the number of trips started at them, mostly due the high values of late schedule-

delay costs, indicated in Figure 5-2. Intuitively, the more comprehensive the overall cost function 

used in the model (IVTT, schedule-delay, travel distance, fuel cost, tolls, etc.), the better it can 

explain the departure time choice behaviour, and hence the fewer differences between the cost 

coefficients among various intervals. 

5.4.5. Toll Cost 

As can be observed from Table 5-1, the model does not include an explicit variable for the toll 

cost. This is because the TTS survey dataset contains no toll information to assist in the 

coefficient estimation of such parameter. For the sake of variable pricing policy testing in this 

study, the imposed tolls are added to the travel cost variable. The coefficient of the inserted toll 

variable (in the utility of each departure time choice) is set such that the ratio between the 

coefficients of in-vehicle-travel-time (IVTT) and toll variables is compatible with the average 

VOT used in the DTA simulation model of $15/hr (indicated in Section 4.3.1). 
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It should be noted that forecasting the impact of hypothetical transportation demand management 

strategies based on revealed preference (RP) model parameters might underestimate the impact 

of these policies (Habib et al., 2013). In other words, using the auto cost parameter might not be 

ideally suited for tolls. This is due to the fact that drivers – to some extent – may not be very 

elastic to increases in travel time and basic costs (e.g. maintenance, fuel, etc.); however, they 

may react more clearly to changes in parking cost and road charges (i.e., out-of-pocket money), 

as it is something they can avoid.  

Nevertheless, adding the toll cost to the travel cost variable is expected to give an approximate 

estimation of drivers’ behavioural responses to variable pricing. More realistic modelling of 

commuters’ responses to pricing in the GTA might be achieved by re-estimating the departure 

time choice model based on stated preference (SP) data surveys incorporating toll information, in 

addition to the existing revealed preference information in the TTS surveys, which is beyond the 

scope of this study and could be undertaken in future work. 

The departure time choice model is applied to individual commuters (iteratively and sequentially 

with the traffic simulation model) both during the model recalibration/validation phase and 

ultimately during optimal congestion pricing policy determination and evaluation. Applying the 

model requires providing it with certain personal and trip-related attributes. The next section 

presents the procedure followed here to prepare the data necessary to apply the model. 

5.5. Model Input Data Preparation 

As highlighted in Section 5.3, two types of variables are required by the departure time choice 

model: 1) commuters’ personal and socio-economic attributes; and 2) transportation level-of-

service (LOS) attributes corresponding to alternative departure time segments. Commuter 

attributes include: work duration, occupation category (general office, manufacturing, or 

professional), gender, job status (full- or part-time), and age category. Level-of-service attributes 

involve travel time, travel distance, and travel cost corresponding to each departure time 

segment. It should be mentioned that the departure time choice model is only applied to 

commuting trips (representing the majority of morning trips) for which the original model was 

estimated. Hence, route choice is assumed to be the only choice non-commuting trips have to 

respond to pricing; it is modelled through the DTA simulator. We believe that this assumption 
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should not create much bias in the overall measured effect, because only a fraction of travellers 

typically respond to a toll or other shock by changing departure time. A lack of response from 

non-commuters could be compensated for by a more-than-proportional response from 

commuters, so that the overall response is similar to a case in which all travellers are flexible. 

This section provides the preparation details of both input data classes required for applying the 

model to the GTA. 

5.5.1. Personal and Socio-Economic Attributes  

As clarified earlier, the departure time choice model used here was estimated for morning 

commuting (home to work or school) trips in the GTHA, which constitute the majority of 

morning trips made during peak hours. Accordingly, the model is applied only to the commuting 

trips simulated in the GTA DTA model. 

This section presents our efforts to 1) extract the records of the original and background 

commuting trips – considered here – from the TTS datasets and to prepare the necessary driver-

related attributes required by the departure time choice model, and 2) design a criterion to 

determine whether certain trips in the model are commuting, and properly extract their attributes 

(from the database prepared in the first step) based on their OD and start time interval. 

5.5.1.1. Preparing Driver-related Attribute ‘Database’ for Commuting Trips 

in the GTA Model 

The purpose of this step is to prepare a database of the personal and socio-economic attributes, 

required by the departure time choice model, for all (original and background) commuting trips 

simulated in the GTA model. The database records are extracted from the TTS 2011 survey 

datasets. Further processing and calculations are performed on the ‘raw’ survey data to prepare 

the necessary attributes required by the model, reported in Table 5-1. The database is constructed 

through the following steps: 

– Extract all auto (SOV, HOV, taxi passenger, and motorcycles), morning (started from 6:00 to 

10:30 am), commuting (ending at work or school) trips – from the TTS datasets – starting 

and/or ending at a GTA zone. 

– Extract and link the person-related characteristics to the attributes of each filtered trip. 
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– Calculate the dummy variables required by the model (Occ1, Occ2, Occ3, Gen, Job, Age1, 

Age2, Age3, Orig, and Dest) based on the ‘raw’ trip and person attributes. 

– Calculate the work/school duration (WD/SD) corresponding to each trip. This variable is not 

directly reported in the TTS surveys. It is therefore calculated approximately by subtracting 

the reported work trip start time from the start time of the following trip made by the same 

person. The difference among both start times, however, involves the WD in addition to the 

travel time taken to arrive to work. Consequently, the average travel time corresponding to 

the trip OD and start time interval, estimated from the GTA base-case simulation results, is 

subtracted from the calculated difference to obtain the WD. 

The total number of database records extracted based on the above steps is 55,073. Applying the 

expansion factors reported in the TTS survey for those records yields the 1,270,000 commuting 

trips simulated in the GTA model. The records are divided into two groups: original records 

(44162) and background records (10911), depending on the origin and destination zones.  

5.5.1.2. Identifying Commuting Trips and Extracting their Records from the 

Driver Attribute ‘Database’ 

As described in Chapter 4, the initial demand entered into the DTA simulation model takes the 

form of time-dependent OD matrices (i.e., trip count per OD and time-interval). Accordingly, the 

trip purpose information is absent in the demand. Therefore, it becomes necessary to design a 

procedure that can be used to 1) determine whether a certain simulated trip is commuting, and 2) 

properly extract its relevant attributes from the database prepared. The ultimate goal of this step 

is to provide the departure time choice model with detailed information of the simulated 

commuting trips in the model (ID, OD, start time, etc.) along with their extracted personal and 

socio-economic attributes. 

Each simulated trip in the model might be an original GTA trip or a background trip (i.e., one 

that started and/or ended outside the GTA region, but passed through it). The OD pairs having 

nonzero demand are hereafter referred to as active OD pairs. Similarly, the departure time 

intervals during which trips are started among certain OD pair are referred to as the active 

intervals of that OD pair. According to the explanation provided in Section 4.2.1, background 

trips are added to the most suitable ODs and time intervals in the GTA demand. Accordingly, the 
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ODs and time intervals to which background trips are added might be active or inactive in the 

original GTA demand.  

The flowchart presented in Figure 5-4 illustrates the procedure followed to determine whether a 

simulated trip is an original or background trip. If the trip OD or start time interval is inactive in 

the original GTA demand, then it is automatically classified as a background trip. If both 

attributes are active in the original GTA demand, then the trip might be either an original trip or 

a background trip added to that active OD and time interval. In this case, a trip is considered 

background with a probability equal to 10%. The 10% threshold was set based on the average 

relative ratio of background demand added to active ODs and time intervals in the original GTA 

demand. More specifically, a uniform random number is generated from 0–1. The trip is 

classified as a background trip if the generated value is less than the threshold value; otherwise, 

it is classified as an original trip. This procedure answers the third question raised in the 

flowchart.  

Background trips involve long distances travelled in the morning period between the GTA area 

and its surrounding regions. Accordingly, these trips are likely to be work or school trips, and are 

hence considered as ‘commuting’ trips in this study. On the other hand, a trip classified as an 

original trip is considered as commuting based on the probability of having commuting trips 

during its OD and time-interval. This probability is calculated as the ratio of commuting trips to 

all trips, generated during the trip OD and time interval in the original GTA demand. The 

classification is then performed through a random number generation technique similar to that 

described before, which answers the fourth and final question raised in the flowchart. 

Each original commuting trip is assigned a record, from the “original records” in the database, 

having the same OD and start time interval as those of the trip. If more than one record is found 

in the database under the same OD and start time interval, one of them is randomly selected 

based on their weights (expansion factors). On the other hand, each background commuting trip 

is assigned a randomly selected record, from the “background records” in the database, 

according to a uniform distribution. This is because the original OD information of background 

trips no longer exists after they were added to the GTA OD demand. 
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Figure 5-4: Procedure Followed to Identify Model Commuting Trips and Extract their Records from the 

Attribute Database 
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After applying the procedure described in the flowchart to all simulated trips in the GTA model, 

the detailed information of the identified commuting trips (ID, OD, start time, etc.) along with 

their extracted personal and socio-economic attributes are written to files provided as input to the 

departure time choice module. 

5.5.2. Network-Related Attributes 

The second type of data required by the departure time choice model is related to network 

average travel times, distances, and costs corresponding to commuters’ ODs at all departure time 

intervals. Unlike driver-related attributes, this type of data changes – and is hence recalculated – 

following each traffic assignment simulation model run, as illustrated in the system flowchart in 

Figure 3-2. 

The preparation process of this data type involves processing the detailed path and time 

trajectories of around 2 million vehicles, stored in large output files of the simulation model. The 

records processed for each vehicle contain its OD, start time, travel time, links traversed, and 

time spent on each link along the trip. The travel distance of each commuting trip is calculated 

by summing the lengths of links traversed during that trip. Additionally, the tolled links traversed 

during the trip are identified to be used by the departure time choice model for toll cost 

calculations, as will be described in Section 5.6. 

As highlighted earlier, the departure time intervals during which trips are started among certain 

OD pairs, are referred to as the active intervals of that OD pair. For each OD pair having 

commuting trips in the simulation model, the average travel time and travel distance of that OD 

pair at each active interval are calculated by averaging the travel times and distances, 

respectively, of trips started during that interval. The travel cost is calculated, by multiplying the 

travel distance by the average cost of auto use per unit distance. The value used for the latter 

parameter is 0.1534 $/km, as was calculated in Miller et al. (2015) based on average gas and 

other car-related operational and maintenance costs in the GTA. 

It is important however to mention that the departure time choice model requires the network-

related attributes of each commuter’s OD at all (active and non-active) departure time intervals. 

For that purpose, the average travel time, distance, and cost of each non-active interval of certain 
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OD pairs are approximated by averaging the corresponding attributes calculated for active 

intervals. This procedure is summarized in Figure 5-5. 

  

Figure 5-5: Calculating OD Attributes Based on Traffic Simulation Model Output 

It should be emphasized that providing the departure time choice model with traffic attributes 

calculated from a DTA simulation model, rather than static assignment, is one of the efforts 

made here for realistic policy evaluation results. As can be inferred, the process of calculating 

the traffic-related attributes, required by the model, is both time- and memory-demanding. This 

is due to the massive number of records processed and also to the fact that the process is repeated 

multiple times during the full system implementation. In fact, it comes as the second major 

factor, after the DTA simulation model runtime, contributing to the long runtime of the full 

system. 

The implementation details of the departure time choice model, within the congestion pricing 

system, to simulate individual commuters’ choices and the criterion followed to test convergence 

in the model’s aggregated output are presented next. 

5.6. Simulating Commuter Departure Time Choice and Model Convergence 

Criterion 

Figure 5-6 illustrates the steps taken to simulate commuters’ departure time selection process in 

the optimal congestion pricing system. The figure represents a close-up of the departure time 

For each Active Interval For each Non-active Interval 

 

 

 

Note: trips considered are those made between the OD 

pair and started during the interval considered. 

 

 

 

Note: the summation is performed over the corresponding 

arguments calculated for the OD active intervals. 
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choice module integrated into the full system (outlined in Figure 3-1). As clarified in the figure, 

the module takes as input: 1) commuters’ personal characteristics and synthesized desired arrival 

times; 2) traffic level-of-service (LOS) attributes of commuters’ ODs at all time-intervals and the 

IDs of tolled links traversed by each commuting trip in the last traffic assignment simulation run; 

and 3) detailed information of tolled links (e.g. link ID, and length) and toll structures (i.e., toll 

values per time-interval) being tested. The inputs differ in the frequency by which some of them 

might change during system execution, as highlighted in the figure. The output of the departure 

time choice module is a vehicle-by-vehicle input demand file for the traffic assignment 

simulation model with updated commuter start times. 

As shown in the figure, the module loops over all commuting vehicles in the model. The 

personal attributes of each commuter are linked to the corresponding trip LOS attributes 

generated – at all departure time intervals – by the DTA simulation model of the GTA. The 

schedule-delay and toll costs are then calculated for that commuter at all time intervals. The 

extracted and calculated variables are hence plugged into the model formulae to obtain the 

probability of choosing each departure time interval. The commuter departure time choice is 

determined using a Roulette Wheel selection approach. The new trip start time is then calculated 

by adding or subtracting multiples of 30 minutes (depending on the departure time interval 

chosen) to its original start time set in the DTA simulation run under original TTS demand. After 

all the commuting trips are processed, their start times are updated in the input demand file of the 

DTA simulation model. Further details of the schedule-delay and toll cost calculations as well as 

the Roulette Wheel selection approach followed are given next. 
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Figure 5-6: Simulating Commuters' Departure Time Choices in the Optimal Congestion Pricing System 
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5.6.1. Calculating Schedule-Delay Costs at all Departure Time Intervals 

The schedule-delay cost, cs, of any commuter is calculated at every departure time interval 

according to the following formula: 

 

Where td is the commuter’s desired arrival time, and β and γ are the early and late arrival shadow 

prices, respectively, as defined earlier in the chapter. The arrival time of any interval is 

calculated based on the trip start time (if it departs during that interval) and the average travel 

time of the commuter OD at that interval. This is expressed as follows: 

 

The trip start time, at any interval, is calculated by adding or subtracting multiples of 30 minutes 

to the original trip start time, such that the resultant time lies in the interval under interest. For 

example, if the original trip start time is 7:18:30 am, then its hypothetical start time during the 

8:00 to 8:30 am interval will be 8:18:30 am; whereas its hypothetical start time during the 9:30 to 

10:00 am interval will be 9:48:30 am, and so on. The schedule-delay cost is then calculated at 

each interval and is added to the utility function at that interval, as indicated in Section 5.4. 

5.6.2. Calculating Toll Costs at all Departure Time Intervals 

Two assumptions were made for toll cost calculations. First, if a vehicle joins a tolled facility at 

certain time interval, it will be charged for the entire distance driven on that facility based on the 

links’ toll rates (in $/km) of that time-interval. This is similar to how tolls are charged on HOT 

lanes in the US. In other words, if a new tolling interval starts before the vehicle exits the tolled 

facility, the vehicle will be charged for the rest of its trip (on the tolled facility) based on the old 

toll rates. The reason behind making this assumption is that once a vehicle joins the tolled 

facility, it might not be possible to leave it; therefore, increasing or decreasing the toll cost for 

that vehicle will create no (route shift) impact. Secondly, the toll cost expected to be incurred by 

a commuter at certain time-interval is calculated based on the tolls to be charged at that interval 

on the tolled links traversed by the commuter in the most recent DTA simulation run (i.e., the 

commuter’s historical path). This assumption mimics to some extent what commuters do in 
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reality to make a departure time choice; they compare travel conditions (time, cost, toll, etc.) 

across different times on their historical paths (which might not be the shortest). It should be 

mentioned that keeping track of individual vehicle paths is possible through DTA simulation 

models, which adds to the benefits of using one of them here.  

The toll cost incurred by a vehicle that joins the tolled route during departure time interval i is 

hence calculated according to the following formula: 

 

The toll values used in the formula are extracted from the tolled links information entered into 

the departure time choice module, as illustrated in Figure 5-6. The toll cost at each interval is 

then multiplied by the toll coefficient and added to the travel cost variable of the utility function 

corresponding to that interval, as indicated in Section 5.4.      

5.6.3. Roulette Wheel Approach for Departure Time Selection 

This approach is similar to a Roulette Wheel in a casino. A proportion of the wheel is assigned to 

each possible selection based on its weight (i.e., probability of being chosen). A random 

selection is then made, similar to how the roulette wheel is rotated. The roulette ball falls in the 

bin of an individual choice with a probability proportional to its width. The selection is 

implemented by first generating the cumulative probability distribution (CDF) over the list of 

choices. A uniform random number is then generated in the range [0, 1] and the inverse of the 

CDF of that number determines the choice selected (Back, 1996). 

Figure 5-7 shows an example of departure time selection using the Roulette Wheel approach, 

based on choice probabilities. Obviously, choices with higher probabilities (i.e., larger portions 

of the wheel) have higher chances of being selected; however, the selection made is not 

necessarily that having the highest probability, as can be inferred from the figure. It should also 

be noted that repeating the Roulette Wheel selection several times (under the same choice 

probabilities) might bring different selections, depending on the random numbers generated. 

https://en.wikipedia.org/wiki/Cumulative_probability_distribution_function
https://en.wikipedia.org/wiki/Uniform_distribution_(continuous)
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Figure 5-7: Roulette Wheel Selection Example 

5.6.4. Convergence Criterion of the Integrated Departure Time and Traffic 

Assignment Models 

As mentioned in Chapter 3, the DTA network simulation model and the departure time choice 

model run sequentially and iteratively until convergence in the departure time model output (i.e., 

drivers’ start time rescheduling responses to tolling) is reached. To that end, the temporal 

distribution of commuters – over different intervals – is compared across every two consecutive 

iterations. Convergence is reached when travellers cease to change their departure time intervals; 

i.e., when the maximum value of the absolute relative differences in the amount of trips started at 

each interval drops below a pre-specified threshold, denoted as α. The convergence (stopping) 

criterion is given in the following formula: 

 

Where Ci is the number of trips started during interval i in the current iteration, Pi is the number 

of trips started during interval i in the preceding iteration, and α is the convergence threshold. 

The value of α represents the maximum acceptable error in the departure time choice model 

output relative to the output of the preceding iteration. 

It should be noted that the randomness inherent in the nature of the probabilistic discrete 

departure time choice process might cause some variation/difference in the discrete choice model 

output, even when the model is applied repeatedly under identical inputs. Therefore, the value of 

α should be higher than the upper limit of those potential differences. Observing the model 
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output – across different runs – when applied to the GTA morning commuting trips (around 

1,270,000), under identical inputs, it was found that a suitable value for α to be used in this 

application is 0.1. The number of iterations required for convergence is generally affected by the 

stability of the DTA simulation model output across multiple runs. According to the convergence 

criteria specified, it takes the integrated departure time choice and traffic assignment models 

around three iterations (of the intermediate loop) to converge in the GTA simulation-based case 

studies. This is considered a relatively fast convergence for such a large-scale application. 

The number of trips started at any departure time interval is calculated by summing the 

probabilities of choosing that interval across all commuters, rather than counting the number of 

commuters who selected that interval. This is to avoid the possible bias in departure time 

selections due to random number generation and Roulette Wheel selection that might bring 

slightly different choices when repeated several times, under identical model inputs. More 

specifically, if the random selection process is repeated infinitely large number of times (say n, 

where n→∞) for all commuters, the average (over all n trials) number of commuters who 

selected each departure time interval (i = 1, 2, … or 9) will be equal to the summation of 

probabilities of selecting that interval (pi) among all commuters (Train, 2003). This is expressed 

in the following formula: 

 

As highlighted in Chapter 3, the feedback provided to the departure time choice model means 

that decisions are not obtained in one step; each individual's choice affects the travel times, costs, 

etc. that determine the choices of others. In fact, one-step solutions neglect the interaction 

between individuals. Conversely, the feedback component opens the door for such interaction to 

affect the final choices. This mimics what happens in reality in response to new policies; people 

keep changing their actions and choices, according to the network state and choices of other 

travellers, until equilibrium is reached. The final base-case validation results following the 

departure time choice model retrofitting and recalibration processes are presented next. 
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5.7. Departure Time Choice Model Validation 

In Figure 5-8, the number of commuting trips starting at each half-hour interval and their 

corresponding average travel time per km are compared among two simulation runs, whose 

measurements are referred to in the figure as “original demand” and “modified demand”. The 

total number of commuting trips in the GTA model – for which the departure time choice model 

is applied and plots in Figure 5-8 are reported – is around 1,270,000 trips (out of a total of 2 

million trips in the model). The measurements under “original demand” are obtained from the 

output of a GTA DTA simulation run in base-case conditions (i.e., without tolling) using the 

original demand extracted from TTS survey data, without applying the departure time choice 

model. On the other hand, those under “modified demand” are obtained from applying the 

retrofitted/re-calibrated departure time choice model iteratively with the GTA DTA simulation 

model under base-case conditions. As mentioned, the comparison/validation process was 

repeated with each set of parameters being calibrated until the best values entailing the minimum 

error (between original and modified demand related measurements) were obtained at that 

calibration phase, as described in Section 5.4. The patterns shown in Figure 5-8 represent the 

best correspondence attained, in the absolute values and the overall trends, between the ‘original’ 

and ‘modified’ demand-related measurements after performing all model retrofitting/calibration 

steps. 
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Figure 5-8: Comparisons between ‘Original’ and ‘Modified’ Demand-related Measurements 

The nine departure time intervals used in this model (viz. 6:00-6:30, 6:30-7:00... 10:00-10:30) 

were assigned the numerical indices 0, 1... 8. For each vehicle in the simulation model, the 

difference between its observed (original) departure time interval index and its estimated one 

was calculated at the end of the iterative simulations. The value of the difference lies between -

8–8. Intuitively, the higher the percentage of vehicles with a zero difference (when estimated and 

observed departure time intervals coincide) the better. Figure 5-9 shows the percentage of 

vehicles whose difference lies in each ‘index difference group’ when applying the calibrated 

discrete choice model iteratively with the DTA simulation model in the base-case (i.e., without 

tolling). It is shown that the estimated departure time choice of more than 80% of the commuters 

lies within three intervals (before or after) from the original (half-hour) choice, which we believe 

is reasonable, given the continuous nature of the departure time and the boundary value problems 

that may result from time discretization. The findings from Figure 5-8 and Figure 5-9 

demonstrate the performance of the calibrated framework when applied to the GTA in the base-

case without tolling. 
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Figure 5-9: Percentage of Commuters vs. Index Difference 

5.8. Summary 

The discrete choice model has 74 statistically significant parameters, among which only 18 

needed to be adjusted for the validation of the model outputs, for the following reasons: 1) to 

update the model to be consistent with the 2011 TTS dataset being used, 2) to adapt with the 

added schedule-delay and toll cost components, and 3) to compensate for possible bias in output 

choices resulting from providing the model with travel times and costs estimated based on the 

DTA simulation model, rather than the less accurate static assignment output times and costs 

used in the original model estimation. Effort was devoted towards calibrating/retrofitting the 

2006 model to the target year of 2011 to meet current research needs. This was carried out for 

three reasons: 1) the 2006 model was recently developed; repeating the estimation for 2011 was 

beyond the scope of this study; 2) updating a 2006 model using 2011 dataset is a way of using 

two repeated cross-sectional data where 2006 data are used for estimation and 2011 data for 

validation; and 3) estimating a departure time choice model that captures toll cost and schedule-

delay cost directly was not possible, as neither the 2006 nor the 2011 TTS data contained the 

necessary information, i.e. retrofitting was unavoidable. The retrofitting process performed, 

however, should not affect the robustness of the original model formulation given its relatively 

large number of parameters and statistically significant explanatory variables, as well as the 

parameterized root and nested scale parameters. 
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It is important to emphasise that one of the major contributions of this study is the integration of 

a behavioural departure time choice model, into the proposed congestion pricing system, to 

assess the differential impact of pricing scenarios on drivers’ departure time choices. The model 

not only involves travel time, schedule-delay, and toll cost variables, but also considers the 

personal and socio-economic attributes of individual drivers. Moreover, it considers users’ 

heterogeneity in values of (early or late) schedule-delay and desired arrival time.  

The estimated measurements plotted in Figure 5-8 and Figure 5-8 are calculated based on the 

simulation output obtained from applying the adjusted departure time choice model iteratively 

with the DTA simulation model under base-case conditions (i.e., without tolling). This output is 

used, throughout this study, in the initial toll calculations and comparative assessment of 

different tolling policies. It is hereafter referred to as the “base-case” output, against which toll 

policies are evaluated.  

The departure time choice model integration process was accompanied by many challenges. 

First, the model retrofitting/recalibration process involved several phases and multiple trials 

within each phase to attain the parameters achieving the best base-case validation results. The 

validation results of each set of parameters tested were obtained through a complete run (taking 

multiple hours) of the GTA testbed. In addition, calibrating a single model to describe accurately 

the departure time choice behaviour of more than 1.27 million diverse commuting trips in the 

GTA was definitely challenging. The ultimate purpose of the model adjustment process was to 

guarantee the effectiveness/robustness of the model in estimating the base-case 2011 commuters’ 

departure time choices; and therefore to trust the model’s ability to forecast commuters’ 

behavioural responses to future tolling scenarios properly. 

Secondly, preparing the driver-related data required by the model entailed time-consuming effort 

to process the raw 2011 TTS survey datasets and extract the attributes linked to each (original or 

background) commuter identified in the GTA model properly. Thirdly, calculating the network-

related attributes required by the model involved processing records of 2 million vehicles stored 

in massive output files, produced by the traffic assignment simulation model. This is undertaken 

to 1) calculate the average travel times and costs of commuters’ ODs at every departure time 

interval, and 2) identify the tolled links traversed by each commuting vehicle in the model. The 

calculation process is obviously time- and computationally demanding. Moreover, it is repeated 
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iteratively – post the termination of each GTA traffic assignment simulation run – to provide the 

departure time choice model with the updated network attributes, based on which the model 

estimates the new demand profiles to be fed back into the traffic simulation model, and so on 

until convergence. As a result, this process represents the second major factor causing the 

running time of the full system to be long. 

The next chapter presents the first-level of optimal toll determination in the proposed congestion 

pricing system, based on the Bottleneck Model. The procedure is discussed and demonstrated 

through case studies in the GTA. 
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6. Optimal Congestion Pricing Determination - Level I: Calculating 

Time-Dependent Queue-Eliminating Toll Structures Based on the 

Bottleneck Model 

The optimal toll structures are determined in the congestion pricing system through a bi-level 

procedure, as described briefly in Chapter 3. The first level involves the determination of time-

dependent queue-eliminating toll structures for congested facilities. The second level involves 

fine-tuning the toll values obtained in the first level to achieve the best network performance, 

while considering the large-scale network (route and departure time choice) dynamics in 

response to tolling. 

This chapter presents the details of the first level, referred to as “Optimal Toll Determination – 

Level I” in the optimal congestion pricing system framework outlined in Figure 3-1. The chapter 

starts with an overview of the theoretical economic model adopted here for dynamic congestion 

pricing, i.e. the Bottleneck Model. After that, the procedure followed to identify the congested 

facilities that need to be tolled and to calculate their initial toll structures (based on the 

Bottleneck Model) is described. This procedure is then applied and tested on several tolling 

scenarios in the GTA. The chapter concludes with a general discussion and insights driven from 

the preliminary results of the partially optimized tolling scenarios tested. 

6.1. Theoretical Basis: The Bottleneck Model for Dynamic Congestion Pricing 

Dynamic models consider that congestion peaks over time then subsides. Therefore, there is a 

congestion delay component that peaks with the congestion that the travellers experience. 

Dynamic models assume that travellers have a desired arrival time; deviations from which imply 

early or late schedule-delays. Travellers who arrive on time during the peak periods encounter 

the longest delay; i.e., there is a trade-off between congestion delay and schedule-delay costs. 

As mentioned before, the Bottleneck Model involves a single "bottleneck" and assumes that 

travellers are homogeneous and have the same desired arrival time, t*. Moreover, the model 

assumes that for arrival rates of vehicles not exceeding the bottleneck capacity and in the 

absence of a queue, the bottleneck's outflow is equal to its inflow; as a result, no congestion 
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(delay) occurs. When a queue exists, vehicles exit the queue at a constant rate, which is the same 

as the bottleneck capacity Vk. Figure 6-1-a illustrates the un-priced equilibrium condition of this 

model (i.e., equilibrium in the absence of tolling), and Figure 6-1-b shows the two components 

of the total cost c(t) in the un-priced equilibrium condition: travel delay cost cT(t) and schedule-

delay cost cs(t) (early and late arrival costs). The schedule-delay cost is assumed to be a 

piecewise linear function in this model. The summation of the two costs (i.e., the total cost) is 

constant in the un-priced equilibrium, as illustrated in the figure. 

According to Figure 6-1-a, the peak period is considered to start when the inflow exceeds the 

bottleneck capacity (i.e., at time tq), resulting in traffic queues and increased travel times that 

build up to a maximum when the inflow starts to decrease below capacity (at time tmax). The peak 

does not end at this point of time; rather, it ends when all travellers who entered the system – 

from the beginning of the peak period – ultimately exit after having queued for a while (i.e., at 

time tq’). 

The optimal toll in the Bottleneck Model attempts to “flatten” the peak in order to spread the 

demand evenly over the same time period. In this case, the price is set such that the inflow equals 

road capacity, which in turn equals the outflow. The optimal tolled-equilibrium exhibits the same 

pattern of exits from the bottleneck as the un-priced equilibrium, but has a different pattern of 

entries. Pricing affects the pattern of entries with a triangular toll schedule, with two linear 

segments, which replicate the pattern of travel delay costs in the un-priced equilibrium. This toll 

is shown in Figure 6-1-b as τ(t), and results in the same pattern of schedule-delay cost as in the 

un-priced equilibrium, but produces zero travel delay cost (i.e. no travel delays exist in the 

optimal case). Instead of queueing-delay, travellers trade off the amount of toll to be paid versus 

schedule-delay, such that a traveller who arrives right on time t* pays the highest toll, and vice 

versa. The resulting tolled-equilibrium queue-entry pattern therefore satisfies an entry rate equal 

to the capacity Vk, i.e. the queue entry rate equals the queue exit rate in Figure 6-1-a.  
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a) Dynamic Queueing Equilibrium 

 

 
b) Average Cost Components and Optimal Tolls by Queue-Exit Time  

Figure 6-1: Equilibrium in the Basic Bottleneck Model (Small and Verhoef, 2007) 

Congestion in large cities like Toronto has reached a level where demand is usually over 

capacity in peak periods, resulting in long lasting queues on key corridors. Additionally, the 

traffic instability occurring when traffic density exceeds the critical density (corresponding to 

capacity) causes a significant breakdown (10–20% drop) in capacity (Small and Verhoef, 2007). 

Therefore, targeting the elimination of traffic queues, through congestion pricing, will allow the 

sustenance of the original capacity.  

In light of the above, we are looking for an economic pricing strategy to enforce traffic pacing 

(i.e., departure time rescheduling) and work towards eliminating traffic queues, while 
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considering drivers’ desired arrival times and the associated schedule-delays. Moreover, the toll 

levels should be carefully designed to enforce proper route choices that minimize the total travel 

times. In other words, we are seeking congestion pricing policies that achieve the best – spatial 

and temporal – traffic distribution and infrastructure utilization to optimize the network 

performance (i.e., minimize the total travel times). 

Accordingly, the toll structure introduced here is motivated by the theoretical bottleneck pricing 

theory, where the key benefits arise from rescheduling (i.e., temporal distribution) of departure 

times from the trip origin, resulting in no queueing-delays on tolled facilities. Although the 

Bottleneck Model provides the core concept, it is limited to the case of a single bottleneck with 

homogeneous travellers having a single desired arrival time. Therefore, the impact of travellers’ 

heterogeneous attributes and desired arrival times on their departure time choices is not 

considered in the model. Additionally, departure time is assumed to be the only choice travellers 

have to respond to pricing. A number of studies (van den Berg and Vehoef, 2011; van den Berg, 

2014) have analyzed equilibrium in a bottleneck while considering travellers’ heterogeneity in 

desired arrival times and/or cost parameters (e.g., VOT and early/late schedule-delay shadow 

prices). The optimal time-varying toll obtained in these studies does not have a simple triangular 

shape as suggested by the Bottleneck Model; rather, it is increasing and piecewise-convex during 

the early intervals, and decreasing and piecewise-convex during the late intervals. 

The congestion pricing system proposed here extends the conceptual pricing structure suggested 

by the Bottleneck Model – and generalized in subsequent studies while relaxing some of its 

unrealistic assumptions by incorporating several desired arrival times and/or cost parameters – to 

the more complex and general case of a large urban network with myriad of origin-destination 

pairs, trip lengths, travellers’ desired arrival times, routing options, and travel behaviour that 

vary across the population. More specifically, the system uses the general pricing rules of the 

Bottleneck Model to determine initial toll structures for congested facilities. The procedure 

followed for that purpose is described in detail in the next section. Avoiding the unrealistic 

assumptions of the Bottleneck Model might bring different impacts of tolling than those obtained 

in the tolled-equilibrium output of the model (described earlier). Consequently, the routing and 

departure time choice responses to tolling – across the full network (rather than a single 

bottleneck) and the entire morning period (rather than the peak period) – are evaluated here 
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through integrated econometric departure time choice and DTA simulation models, described in 

detail in previous chapters. The evaluation results of initial toll structures obtained for several 

case studies in the GTA are presented in Section 6.3. Based on the evaluation results, initial toll 

structures are then adjusted (fine-tuned) through an iterative distributed optimization algorithm 

to attain the best network performance, as will be detailed in Chapter 7. 

6.2. Initial Toll Structure Design Approach 

The optimum toll τ(t) in the Bottleneck Model varies continuously over time, as illustrated in 

Figure 6-1-b. It is however impractical to change the toll every second, as suggested by the 

model. ‘Step tolls’ are the closest approximation to this ideal situation in practice; different toll 

values are set at discrete time intervals, and the toll is constant within each interval, as 

highlighted in Figure 3-1. 

As reported earlier, the study period is focused on the morning period from 6:00 to 10:30 am 

when the majority of commuting trips in the GTA occurs, and hence significant traffic utilizes 

the main corridors to Central Business Districts (CBDs) and other employment centres. The 

variable-tolling intervals used are the nine half-hour intervals shown in Figure 5-1, for 

compatibility with the departure time choice model.  

Step tolls might however create negative driving habits when the toll schedule is known by 

drivers, depending on the step (time interval) width and the relative toll differences among 

adjacent steps. The longer the steps and the larger the toll differences, the more negative the 

implications that step tolling might cause in traffic. For example, as the end of a tolling interval 

approaches, drivers have an incentive to slow down or to stop before reaching the tolling point, 

and wait until the toll is lowered from one interval to the next. This is referred to as the ‘braking 

behaviour’ and has been observed in practice in some cities, such as Singapore, Stockholm, and 

San Francisco (Lindsey et al., 2012). Braking can intuitively reduce the gains from tolling due to 

loss of road effective capacity while drivers are stopped or are slowing down. Drivers might also 

speed up in order to pass through the tolling point and avoid a toll increase. 

Lindsey et al. (2012) analyzed step-tolling in the Bottleneck Model under the assumption that 

drivers stop and wait for a toll to decrease if the cost of waiting (travel time and schedule-delay) 

is less than the amount of toll saved. These authors also presented some policy recommendations 
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to prevent or limit braking in designing step-toll systems; e.g., enforcing traffic laws to deter 

stopping in the middle of traffic lanes or parking on the shoulder, imposing minimum speed 

limits to discourage slowing down, introducing five-minute graduated rates between half-hour 

tolling periods, and designing sophisticated systems with distance-based charges instead of 

location-based toll collection schemes (to avoid braking problems arising when tolls are levied at 

specific locations). 

In light of this discussion, some steps were taken to lessen the undesired consequences of step-

tolling. As mentioned earlier, the tolling scheme adopted in the congestion pricing system is 

distance-based: each vehicle pays according to the distance travelled on tolled facilities. This 

tolling scheme aims to attain spatial equity besides diminishing the incentives for drivers to slow 

down or stop before specific toll-collection locations. Additionally, possible inaccuracies in 

base-case queueing-delays estimated from DTA simulation might bring large gaps in toll values 

of adjacent intervals. Accordingly, the initial step tolls – determined based on the Bottleneck 

Model – undergo a toll smoothing procedure to avoid substantial toll changes, as will now be 

described in detail. 

Figure 6-2 illustrates the procedure followed to determine initial toll structure (i.e., distinct toll 

values for the nine half-hour tolling intervals) for each congested facility of interest in the tolling 

scenario, based on the Bottleneck Model pricing rules. The figure represents a close-up of the 

“Optimal Toll Determination – Level I” module integrated into the optimal congestion pricing 

system (outlined in Figure 3-1). The purpose of the procedure is to 1) determine whether or not 

each facility of interest needs to be tolled and 2) calculate initial toll structures for facilities that 

should be tolled. This procedure is applied once at the beginning of the full system 

implementation for a certain case study. As shown in Figure 6-2, the module takes as input the 

information of facilities under interest (to be tolled) in the tolling scenario; e.g., corresponding 

links, speed limit, and base-case traffic attributes. On the other hand, the output of the module is 

the tolled links information including link ID, length, start node, end node, facility number, and 

initial time-dependent toll values. The facility number is a unique ID of the tolled facility to 

which the link belongs. 

As described in Section 6.1, the optimal toll in the Bottleneck Model attempts to flatten the peak 

(i.e., spread the demand evenly over the same period) through a triangular toll schedule that 
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replicates the pattern of queueing-delay costs in the un-priced equilibrium. This toll schedule 

results in zero queueing-delays in the optimal case, according to the Bottleneck Model findings. 

The queueing-delay, as illustrated in Figure 6-1-a, represents the excess travel delay over the 

‘travel time at capacity,’ defined as the time taken to cross the road when the inflow rate equals 

road capacity, Vk. 

6.2.1. Estimating Queueing-Delay Patterns  

Following the same queue-eliminating optimal pricing rule adopted in the Bottleneck Model, the 

toll structure determination procedure, illustrated in Figure 6-2, starts with estimating the pattern 

of queueing-delay for each facility of interest based on the DTA simulation output in the base-

case. Obviously, the purpose of queue-eliminating tolling is to enforce traffic pacing (i.e., 

departure time rescheduling) that works towards eliminating traffic queues (i.e., hyper-

congestion), hence achieving the optimum infrastructure utilization level of tolled facilities. 

Accordingly, if the estimated base-case travel times of certain facility are below or close to the 

facility ‘travel time at capacity’ at all times (i.e., if the queueing-delay is zero or negligible at all 

times), then the facility should not be tolled. Tolling such facility will unnecessarily cut its 

demand level and hence underutilize its available capacity, which is against the benefits of 

tolling targeted here.  

The queueing-delay, at a certain time t, is defined as the average extra travel time incurred by 

vehicles entering the facility at t over the facility travel time at capacity (i.e., the travel time 

when the inflow equals the road capacity). The queueing-delay, therefore, represents the extra 

travel time incurred due to ‘hyper-congestion’, as indicated in the following formula:  

 

The travel time at capacity is calculated by dividing the facility length by the speed value at 

capacity. This value is determined from the speed corresponding to the maximum flow in the 

traffic flow model used in the DTA simulation model. For instance, according to the traffic flow 

model parameters used (reported in Section 4.3.2), the critical density and speed values 

associated with the maximum flow on a freeway having a 100 km/hr speed limit are 29 veh/km 

and 57 km/hr, respectively, as illustrated in Figure 6-3. Therefore, the travel time at capacity for 

an 18 km-long facility (like the Gardiner Expressway) is calculated as 19 minutes according to 
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this procedure. It should be emphasized that the queue-eliminating tolling adopted here, 

following the Bottleneck Model general pricing rules, addresses hyper-congestion only to restore 

operation to the capacity point, leading to full utilization of the network. In other words, no toll is 

imposed so long as the ‘base-case travel time’ is below the ‘travel time at capacity’, even if the 

former is higher than the ‘free-flow travel time’. It should also be noted that although the traffic 

flow models used in the DTA simulation software feature hyper-congestion (i.e. decreased flow 

values as density exceeds the critical density), they do not incorporate the capacity drop at the 

critical density (as can be observed in Figure 6-3). Therefore, the anticipated benefits from the 

‘restored capacity’, due to hyper-congestion elimination, cannot be explicitly measured under 

those models. 

Unlike the assumption of a bottleneck having a single entrance and exit, facilities considered to 

be tolled in reality have multiple entrances (on-ramps) and exits (off-ramps). Therefore, it 

becomes challenging to estimate the (time-dependent) travel time on a facility accurately, given 

that vehicles might join and leave it at different intermediate locations. That is, the time 

experienced by each vehicle on the facility does not generally represent the travel time required 

to cross the entire facility. Accordingly, the base-case travel time pattern of each facility is 

approximated here by summing the travel times of the individual facility links. More 

specifically, the average travel time required to cross the facility by vehicles entering during 

certain time-interval, T, is calculated by summing links’ average travel times during that interval. 

The link average travel time during T is calculated by dividing the link length by the average link 

speed during T. Minute-by-minute link-related statistics, reported in the output of the DTA 

simulation model, are processed to calculate the required average link speeds and hence travel 

times. The procedure followed to calculate the facility average travel time at any interval T is 

summarized as:  

 

The selection of T involves a tradeoff between choosing a small interval to avoid diluting traffic 

dynamics from one side, and choosing a large interval to account for the time taken to cross the 

entire facility from another side (since link times are summed over the same interval). A 15 min 

value was chosen for T based on the range of lengths, hence travel times, of facilities selected to 
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be tolled through different scenarios considered in this study. Larger values tested for T resulted 

in the inaccurate estimation of peak start and end times, hence counterproductive impacts of 

some toll structures calculated based on those values. For each facility, the queueing-delay is 

calculated by subtracting the corresponding travel time at capacity from the estimated travel time 

pattern, when the latter exceeds the former; otherwise, the queueing-delay is zero. 

6.2.2. Initial Toll Structure Determination 

The beginning and end times of the estimated queueing-delay pattern of each facility define the 

peak period start and end times of that facility, respectively. According to the Bottleneck Model, 

a continuous triangular toll pattern that replicates the queueing-delay pattern – i.e., increases 

from zero up to a maximum value, then falls back to zero when the queues are clear – should be 

imposed on the facility during that period. This is however approximated here through step tolls 

in which distinct toll values are imposed on half-hour tolling intervals, as mentioned earlier. The 

first and last tolling intervals of each facility are identified as the half-hour intervals during 

which the peak period of that facility starts and ends, respectively. 

As mentioned, the toll pattern of each congested facility should replicate its base-case estimated 

queueing-delay pattern in order to attain the desired rescheduling benefits of variable tolling. 

Therefore, the toll is assigned a zero value during early and late intervals having zero queueing-

delay, whereas it is assigned the maximum value during the interval having the largest average 

queueing-delay. Similarly, toll levels (indicated by the maximum toll values) corresponding to 

different congested facilities should be proportional to their congestion levels in order to obtain 

the desired route shift impacts of tolling. The estimated ‘maximum queueing-delay per km’ 

values of different congested facilities (having distinct lengths) indicate their congestion levels. 

In other words, route shifts should be taken into account in addition to temporal shifts. 

As a reference, a toll value of 0.15 $/km should be set per interval for every 1 min/km average 

‘queueing-delay per km’ experienced in the base-case during that interval. This value was found 

– among multiple values tested – to create moderate route shifts resulting in an adequate capacity 

utilization level, under the average VOT used in the simulation model. Accordingly, the toll 

value at each tolling interval (i = 1, 2… 9) for every congested facility is calculated by 
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multiplying 0.15 by the average ‘queueing-delay per km’ estimated on the facility during that 

interval.  

Some factors might occasionally cause abrupt changes in toll values calculated for adjacent time-

intervals. Possible inaccuracies in travel time (hence queueing-delay) estimation are among those 

factors. Additionally, averaging traffic attributes (e.g. travel time) over discrete time-intervals 

might dilute rapid traffic changes happening during some intervals. Therefore, the calculated toll 

structures undergo a smoothing procedure to avoid the negative consequences of large toll gaps, 

outlined earlier. The procedure involves slightly increasing or decreasing some toll values and/or 

extending the tolling period, while preserving the general structure of the tolls. The procedure 

aims to obtain a smoother toll structure, as illustrated through an example provided in Figure 6-4. 

The toll structure calculated for each facility is applied simultaneously on all links belonging to 

that facility. In other words, a unique toll value (in $/km) is imposed on all links belonging to the 

same facility at each time interval. This unique value changes (over all links) from one interval 

to another, depending on the toll structure. However, non-equal toll values are generally imposed 

on links belonging to different tolled facilities at any given interval. 

The initial toll structure design procedure, described in this section and summarized in Figure 

6-2, resembles the first step towards optimal congestion pricing determination. It answers the 

questions of what, when, and how much to be tolled. The procedure is applied and tested through 

several tolling scenarios in the GTA presented in the following section. It should be emphasized 

that this procedure is general in the sense that it can determine the queue-eliminating toll 

structure replicating any congestion pattern over time, whether having a single or multiple peaks 

(within the analysis period). 
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Figure 6-2: Initial Toll Structure Determination Procedure based on the Bottleneck Model              

(Optimal Toll Determination – Level I) 
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Figure 6-3: Traffic Density and Speed at Capacity 

 

Figure 6-4: Toll Structure Smoothing - Illustrative Example 

6.3. Application and Evaluation of the Initial (Sub-Optimal) Toll Design 

Approach through Tolling Scenarios in the GTA 

The implemented congestion pricing system is intended to test different tolling scenarios; e.g. 

single or multiple freeways, urban corridors, HOT lanes, a sub-network and cordon tolls. In this 

study, the system is applied to two test scenarios of tolling major freeways in the GTA while 

capturing the regional effects across the entire region. The route selected to be tolled in the first 

scenario is the Gardiner Expressway (GE), which is considered as the main artery running 

through Downtown Toronto. In the second scenario, tolled facilities are extended to include the 

Don Valley Parkway (DVP) and the express lanes of Highway 401, in addition to the GE. 
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For each tolling scenario, the initial (sub-optimal) toll structures of the facilities under interest 

are first determined, using the approach described in Section 6.2. The calculated toll structures 

are then tested through the integrated testbed of departure time and GTA DTA simulation 

models. More specifically, the output of the “Optimal Toll Determination – Level I” module (in 

Figure 3-1) is directly entered to the testbed; i.e., the optimization algorithm module is not 

activated at this stage. The system terminates when the second level of equilibrium (i.e., the 

departure time choice convergence) is reached under the tolling scenario tested. 

The simulation modelling platform generates output statistics at different levels: network-wide, 

link-based, and trip-based, as described in Chapter 4. The statistics produced vary in volume and 

frequency of generation. The initial toll structures of each scenario are evaluated by processing 

the simulation output data and calculating appropriate network performance measures at various 

levels (i.e. network, tolled facilities, and affected travellers), as will be illustrated through the 

tolling scenarios presented next. 

6.3.1. Scenario I - Tolling the Gardiner Expressway 

The purpose of this scenario is to study the effectiveness of the system proposed in the 

evaluation of variable (as opposed to flat) congestion-pricing policies. To that end, two tolling 

structures are investigated: 1) variable tolling structure estimated based on the Bottleneck Model 

pricing rules (described above), and 2) flat tolling across all time-intervals. A single route is 

selected to be tolled in this scenario; equal toll values are imposed on both route directions at any 

time interval, as a first implementation. The route selected to be tolled is the Gardiner 

Expressway (GE). The GE, as shown in Figure 4-1, is the main artery running through 

Downtown Toronto, the core and economic hub of the GTA and arguably Canada. The 

expressway is 18 km long between Highway 427 and the Don Valley Parkway (DVP). It is 6–10 

lanes wide in varying locations. The number of commuting trips during the 6:00 to 10:30 am 

morning period in a typical weekday on the GE corridor (i.e., the Gardiner Expressway and its 

parallel arterials on both directions) is approximately 90,000.  

In addition to the fact that the GE suffers from extended periods of congestion, there is an 

ongoing debate on whether to tear it down, to toll it and use the revenue for its maintenance, or 

to apply other hybrid proposals to improve its operation. Hence, the GE was the first choice to 

http://en.wikipedia.org/wiki/Ontario_Highway_427
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test the proposed congestion pricing system. It is important, however, to emphasize that although 

the pricing strategy is applied only to this main artery within the heart of Toronto, the impact of 

doing so is regional, as it draws demand from across the GTA. Therefore, the simulations and 

analysis are conducted on the entire GTA network, due to the inter-connectivity and multiple 

routing options existing in this network and to capture regional effects. 

The peak period start and end times on the GE corridor were found to be 7:00 am and 9:30 am, 

respectively. Consequently, no toll is imposed before 7:00 am or after 9:30 am in the variable 

pricing structure tested in this scenario. The pattern of queueing-delays on the corridor in the un-

priced equilibrium is shown in Figure 6-5. This pattern was estimated through a slightly different 

procedure than that presented in Section 6.2. In particular, the procedure followed in this 

scenario uses the simulated attributes of trips made on the entire corridor (i.e., both the tolled 

facility and its parallel arterials) to estimate the corridor overall capacity (maximum outflow), 

peak start time, corridor average travel time at capacity, and average trip travel times. The 

queueing-delay, at any time instant, is then calculated as the average excess travel time, at this 

time instant, over the travel time experienced at capacity. However, the procedure described in 

Section 6.2 is believed to be more mature; it relies on the simulated attributes of the tolled 

facility itself in order to estimate (eventually) its queue-eliminating toll structure. As mentioned 

earlier, trips using the corridor start and end at different locations in general. Hence, their travel 

times might not accurately represent the facility travel time. The refined procedure is applied in 

the second extended tolling scenario. 

 

Figure 6-5: Average (Base-Case) Queueing-Delay on the GE Corridor 
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Figure 6-6 illustrates the two tolling structures tested in this scenario. The variable toll structure 

replicates the queueing-delay pattern shown in Figure 6-5. On the other hand, the flat tolling 

structure was set by taking the average of the time-dependent non-zero toll values of the first 

structure, for a fair comparison between two tolling structures having the same ‘average’ order of 

magnitude. 

 

Figure 6-6: Tolling Structures 1 and 2 for the GE in Scenario I 

6.3.1.1. Network-Wide Analysis 

Figure 6-7 shows the major routing decision points for traffic approaching Toronto. The results 

are summarized in the form of percentage difference of overall traffic flow during the period 

from 6:00 am to the end of the tolling period (in each case) along the key corridors between the 

flat and variable tolling scenarios and the base-case. Inspection of the results indicates the 

following: 

Variable Tolling 

- Overall, the variable toll resulted in mild routing changes across the GTA compared to 

the flat tolling scenario; -1% at QEW, +5% at Highway 401, and -7% at DVP. 
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- At the GE, only 5% divergence was observed at the bifurcation to Lake Shore, resulting 

in maximizing the efficiency of the downstream sections of the GE. 

Flat Tolling 

- Overall, the flat toll resulted in more pronounced re-routing patterns across the GTA 

compared to variable tolling; showing -2% at QEW, +5% at Highway 401, and -8% at 

DVP.  Flat tolling is less conducive to departure time changes, as all periods have the 

same toll; therefore, its impact is predominantly on re-routing. 

- On the GE, significant divergence (re-routing) was observed at the bifurcation to Lake 

Shore, resulting in shockwave and congestion upstream of this bifurcation. This 

congestion resulted in – interestingly – less flow on the GE downstream the off-ramp to 

Lake Shore, i.e., underutilizing the GE by as much as 44%. This observation was 

confirmed by the low speed values (20–28 km/hr.) along the sections of the GE upstream 

of the off-ramp. 
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Figure 6-7: Major Routing Decision Points for GE Corridor Traffic 

6.3.1.2. Trip-Based Analysis 

Figure 6-8 shows: (a) the changes in departure time choices, (b) travel times, and (c) the patterns 

of entry and exits from the network for the original 90,000 commuting trips through the GE 

corridor in the morning period, under different tolling scenarios. This analysis involves all the 

trips that are affected by tolling the GE, including: 

- trips passing through the tolled route; 

- trips diverting from the tolled route to other alternative routes after tolling (e.g. the Lake 

Shore Boulevard); and 

- trips on the parallel arterials that might be affected by route shifts out of the tolled route.     
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c) Loading and Exit Curves of Trips through the GE Corridor after Variable Tolling 

Figure 6-8: Analysis of Trips through the GE Corridor under Different Tolling Scenarios 

Variable Tolling 

As is clear from Figure 6-8-a, variable tolling induced shifting of approximately 5% of the peak-

hour traffic passing through the corridor (from 7:30 am to 8:30 am) to earlier and later time-

intervals. As a result, lower travel times are observed at all time-intervals after variable tolling, 

as shown in Figure 6-8-b. Furthermore, the variable pricing scenario resulted in 9.5% savings in 

the total travel times of the trips that travelled through the corridor (at all time-intervals), relative 

to the base-case as shown in Figure 6-8-c. In Figure 6-8-c, the total area between the loading and 

exit curves of the trips that travelled through the corridor (which represents the total travel times 

spent on the network by those trips) shrunk by 9.5%. The benefits come from rescheduling of 

departure times from the trip origin, in addition to the route shift impacts of tolling. Moreover, 

this figure shows that – unlike in the simple Bottleneck Model – variable tolling on real-world 

road networks affects not only the cumulative loading curve but also the cumulative exit curve. 

Flat Tolling 

Flat tolls create no incentive for drivers to avoid relatively congested periods by changing their 

departure times across the tolled periods, as they have the same toll. This is seen in Figure 6-8-a. 
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This scenario outperforms the base-case by only 2% net savings in the total travel times 

compared to 9.5% in the variable tolling case. The benefits under flat tolling come solely from 

the route shift impacts of tolling. However, as is clear in Figure 6-8-b, this gain is realized more 

at early and late intervals, while some deterioration in travel times is observed at peak time-

intervals (i.e. 8–9 am). Further explanation for these findings will be given in the next section.   

6.3.1.3. Tolled Route-Based Analysis  

Figure 6-9 shows the average travel times on the tolled route (the GE), eastbound direction, from 

Highway 427 to the DVP. The times are reported at each time interval for different tolling 

scenarios.  

0

5

10

15

20

25

30

35

G
ar

d
in

er
 T

ra
ve

l T
im

e 
(m

in
)

Time Interval

Base Case

Variable Tolling

Flat Tolling

 

Figure 6-9: Average Travel Time on the Gardiner Expressway Eastbound (from 427 to DVP) 

Variable Tolling 

As seen in Figure 6-9, variable tolling entails a noticeable decrease in travel times on the tolled 

route; especially at the middle congested time-intervals. The maximum observed saving is 7 min 

(out of 27 min), i.e. around 25 %, at the 8:00 to 8:30 am time-interval.  

Flat Tolling 

Flat tolling results in improvements in travel times at early and late intervals. However, it causes 

a significant increase in travel times on the tolled route from 8:30 to 9:30 am, as clearly shown in 

Figure 6-9, which agrees with the findings from the trip-based analysis. The deterioration occurs 
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due to the excessive demand at peak hours that did not shift to other time-intervals due to the 

absence of incentives (i.e., no toll variation over time). This demand tries to exit the tolled route 

(the GE) to the immediate parallel arterials (Lake Shore Boulevard), and is limited by off-ramp 

and arterial capacity constraints. Therefore, it creates a shockwave/congestion upstream that 

blocks the off-ramp and backs up onto the tolled route itself at peak hours, which is very 

counterproductive. In fact, this observation demonstrates how flat tolling on real-world road 

networks (in which congestion propagates in the form of spillbacks, shockwaves, etc.) can have 

appreciably different effects than those suggested by studies of single links or toy networks. 

6.3.1.4. Discussion and Conclusions  

It can be concluded from the analysis of different tolling structures presented in this scenario (on 

network, trip, and tolled-route bases) that:  

1. In a large-scale interconnected network (like the GTA) where long-distance trips have 

diverse routing options, tolling a relatively short, yet major, highway like the GE creates 

temporal and spatial traffic changes network-wide that go beyond the tolling interval and 

the tolled route. This confirms the importance of conducting the simulations on a regional 

scale for policy determination and assessment. 

2. More benefits are gained from departure time re-scheduling due to variable pricing, 

compared to just re-routing as in flat tolling. This emphasizes the importance of the 

integrated departure time module to the proposed variable congestion pricing framework, 

to provide realistic modelling of users' individual departure time responses to variable 

pricing policies. 

3. Pricing that only induces re-routing (and no departure time re-scheduling), or excessive 

re-routing due to, for instance, overpricing, can send traffic to off-ramps to parallel routes 

so aggressively that it blocks the off-ramp and backs up onto the main freeway, limiting 

access to the priced road itself, which is not only counterproductive but also nullifies the 

very purpose of pricing itself. This emphasizes the importance of variable pricing to 

mirror congestion patterns over time, which is the methodological basis (adapted from 

the Bottleneck Model) of the proposed variable tolling framework. 
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6.3.2. Scenario II - Tolling the Gardiner Expressway, the Don Valley Parkway, and 

401 Express Lanes 

The purpose of the first experiment was to test the system’s functionality and effectiveness 

through a scenario involving a single, yet vital, tolled route with equal toll structures on both 

directions. The facilities to be tolled are extended in this scenario include the DVP and the 

express lanes of Highway 401, in addition to the GE, as highlighted in Figure 6-10. The 401 

Express is divided into three segments in the analysis, separated by major north-south highways, 

as is clear in the figure. Moreover, the toll structures are differentiated along opposite directions 

of each facility/segment, resulting in a total of 10 separate routes to be considered for tolling, as 

illustrated in the figure. A single (sub-optimal) toll structure is determined and imposed on each 

route. 

 

Figure 6-10: Routes to be tolled in Scenario II (Google Maps) 

The DVP is a 15 km-long expressway connecting the GE in Downtown Toronto with Highway 

401. It has six lanes for most of its length and eight lanes north of York Mills Rd. The DVP is 

the only north-south expressway serving Toronto’s Downtown. Consequently, it suffers from 

significant traffic congestion during the morning and afternoon/evening periods, and is 
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considered – along with the GE – as among Toronto’s busiest municipal routes. There is 

increased municipal interest to examine various tolling options on the GE and the DVP for the 

primary purpose of offsetting their capital, operating, and maintenance costs (Lively and Rossini, 

2015). Accordingly, they have been selected among the facilities to be tolled in this scenario. 

However, the primary purpose of tolling in this study is not to raise funds for municipalities, but 

rather to alleviate traffic congestion on tolled routes through variable tolling, while considering 

network-wide performance. 

Highway 401 is an 828 km-long 400-series highway in the Canadian province of Ontario. It 

extends from Windsor in the west to the Ontario-Quebec border in the east. The section of 

Highway 401 passing through Toronto is one of the busiest highways in the world (Allen, 2011). 

The entire route is maintained by the Ministry of Transportation Ontario (MTO).   

The highway expands into a collector-express system as it approaches Hurontario Street in 

Mississauga. The system divides each direction into collector and express lanes, creating four 

carriageways along the highway. Collector lanes are connected to every interchange, through on- 

and off-ramps. Express lanes, on the other hand, are only connected to few interchanges. Access 

between collector and express lanes is available at several transfer points. The purpose of the 

collector-express system is to improve traffic flow for both local and long-distance trips. 

The collector-express system stretches for more than 55 km along the highway, including a 5 km 

gap east of Highway 427 all the way to Kipling Ave (noticed between segments 1 and 2 in 

Figure 6-10). Only express lanes are selected to be tolled in this scenario, leaving collector lanes 

as a free alternative. The express lanes are divided into three segments in the analysis as follows: 

 Segment 1: extends from Hurontario Street in the west to Highway 427 in the east. 

 Segment 2: extends from Kipling Ave in the west to DVP in the east. 

 Segment 3: extends from DVP in the west to Pickering in the east. 

As mentioned, the tolling structures are differentiated among both eastbound (EB) and 

westbound (WB), or northbound (NB) and southbound (SB), directions of each facility/segment 

selected to be tolled. The number of commuting trips (to which the departure time choice model 

is applied) passing through the routes to be tolled and their parallel arterials during the 6:00 to 

https://en.wikipedia.org/wiki/Local-express_lanes
https://en.wikipedia.org/wiki/Local-express_lanes
https://en.wikipedia.org/wiki/Hurontario_Street
https://en.wikipedia.org/wiki/Highway
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10:30 am morning period is around 455,000 trips, which represents around 25% of the total 

demand. 

The initial (sub-optimal) toll structures estimated for the 10 routes selected to be tolled in this 

scenario are illustrated in  

Table 6-1. These structures were obtained using the ‘Optimal Toll Determination – Level I’ 

module outlined in Figure 6-2 and described in detail in Section 6.2. According to the criterion 

followed, it was concluded that no tolling was needed for the westbound express lanes of 401-

segment 1 (401-WB-1), nor for the eastbound express lanes of 401-segment 3 (401-EB-3) in the 

morning peak. It can also be seen from Table 6-1 that the toll structures estimated for different 

routes, even those corresponding to opposite directions of the same facility/segment, vary in their 

start and end times as well as overall toll levels. This is due to the fact that those routes have 

different congestion levels and queueing-delay patterns in the base-case. For example, the 

southbound lanes of the DVP are usually more congested in the morning peak than northbound 

lanes due to the extra traffic heading to Downtown Toronto during that period, and vice versa. 

Comparing the initial toll structures of GE-EB and GE-WB with the variable tolling structure 

estimated in the first scenario for the GE (Figure 6-6), it can be observed that the highest toll 

value in the latter (0.15 $/km) is close to the average of the highest toll values estimated 

individually for both directions in the current scenario (i.e. 0.11 $/km and 0.22 $/km). This 

agrees with the fact that the variable tolling structure in the first scenario was estimated based on 

the average queueing-delay pattern of all GE corridor users in both directions, as described 

before. 

Table 6-1: Initial (Sub-Optimal) Toll Structures Derived for Scenario II 

Route Toll Structure ($/km) 
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401-

Segment 
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Network Performance Evaluation under Tolling Scenario II 

The initial toll structures calculated are then applied to the corresponding routes and tested 

through the integrated testbed of departure time and GTA DTA simulation models. The system 

terminates when equilibrium is reached under the tolling scenario tested. Total travel times  

network-wide decreased from 605690 hr to 601363 hr after tolling; i.e., 4327 hours were saved 

in traffic during the 6:00 to 10:30 am period as a result of the initial toll structures imposed. 

The improvement in total network travel times is minimal considering the fact that only 138 

freeway km are tolled in this scenario, out of a total of 5727 km (1138 freeway km plus 4589 

arterial km) modelled in the network. However, it indicates that the initial toll structures tested 

did not exacerbate the total network performance due to possible longer alternative paths taken to 

avoid tolls or increased traffic on non-tolled parallel arterials. 

The 6:00 to 10:30 am period considered here involves less congested early and late intervals that 

can realistically attract traffic as a consequence of variable tolling. In other words, the departure 

time choice process – among different intervals – involves trade-offs between travel time cost, 

schedule-delay cost, and toll cost. Figure 6-11 illustrates the departure time changes, across 

different intervals, for the original 455,000 commuting trips travelling through tolled routes 

and/or their parallel arterials in the morning period. Variable tolling prompted departure time 

changes amongst trips that passed through tolled routes; they represent almost half the total 

commuting trips considered. As is clear from the figure, around 4% of the total commuting trips 

from the 7:30 am to 9:00 am peak period shifted to earlier and later intervals. Shifts to early 
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intervals are obviously higher than late intervals for the reason that the late arrival shadow price 

is higher than that of early arrival, as highlighted before. 

 

Figure 6-11: Percentage of Commuting Trips Shifted to/from each Time-Interval after Tolling 

As mentioned before, the tolling schemes designed here have two main objectives. The first is to 

induce proper route shifts resulting in better infrastructure utilization (i.e., higher flow levels) on 

tolled routes and their parallel arterials. The second objective is to prompt traffic pacing – 

through variable tolling – that works towards eliminating traffic queues on tolled routes, while 

considering drivers’ captivity to their desired arrival times. In other words, the purpose of 

congestion pricing is to enforce spatial and temporal traffic distribution for the sake of improved 

infrastructure utilization and network performance (i.e., lower total travel times). 

In light of these objectives, it is important to evaluate (i.e., measure) the impact of departure time 

and route shifts – motivated by the tolling scenario – on tolled routes and their parallel arterials. 

For that purpose, the travel time patterns of tolled routes are calculated, based on the output of 

the tolling scenario, and compared against those estimated in the base-case, as will be illustrated 

later. It should be noted, however, that travel times might not solely capture the utilization 

efficiency of tolled routes and their parallel arterials. For instance, improved travel times due to 

significantly decreased flow levels (i.e., underutilization of route capacity) are not desired. 

Additionally, improved travel times on tolled routes together with increased congestion (hence 

travel delays) on parallel arterials are not desired either. Accordingly, the number of route users 
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should also be incorporated, along with travel times, for a comprehensive evaluation criterion of 

route capacity utilization level. i.e., the ultimate objective (from an infrastructure utilization 

perspective) is to attain the highest flow levels with the minimal travel times (i.e., highest 

speeds) at all time-intervals (temporal efficiency) for tolled routes and their parallel arterials 

(spatial efficiency). Therefore, the product of average flow and average speed along certain route 

segments over specific time-intervals is used as an indicator of the utilization level of that 

segment during the time-interval considered; the better the segment is utilized, the higher the 

value of multiplication. Although higher values of average flow demonstrate better route 

utilization, this variable (by itself) is insufficient to express the route status. This is due to the 

fact that the same flow values can be observed at different (subcritical and supercritical) traffic 

conditions, according to traffic flow theory. Hence, speed is multiplied by flow for a thorough 

evaluation and comparison of route utilization levels under different policies. A similar concept, 

referred to as “productive capacity”, is used to measure transit system performance; it is defined 

as the product of line capacity and operating speed (Brian, 1980). The route utilization level at all 

time intervals is measured here in veh.km/hr.2, according to the following rule: 

 

Table 6-2 reports the utilization levels – before and after tolling – of tolled routes and their 

parallel arterials. The summation of the numbers corresponding to each tolled route and its 

parallel arterials indicates the utilization level of the entire corridor, provided in highlighted cells 

in the table. Routes having better utilization after tolling are marked in the table with red 

triangles facing up; those whose utilization decreased after tolling are marked with blue triangles 

facing down. The following remarks can be made based on the table results: 

 GE-EB and DVP-SB improved entirely after tolling. This indicates that their associated toll 

structures prompted moderate shifts that alleviated congestion on tolled routes while 

improving utilization of their parallel arterials. 

 Toll structures on GE-WB, DVP-NB, 401-EB-2, and 401-WB-2 created improvements on 

tolled routes. However, the utilization levels of parallel arterials decreased slightly after 

tolling on those corridors. The probable reason behind this decrease is that tolling created 
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traffic shifts beyond the remaining available capacity on the parallel arterials of those 

corridors. 

 401-WB-3 and 401-EB-1 became underutilized after tolling. However, the utilization level of 

their parallel arterials increased. This indicates that the initial toll structure of these routes 

was relatively high, and that the parallel arterials had sufficient capacity to absorb the traffic 

that had shifted after tolling. 

Overall, the aggregate utilization levels of most of the corridors – reported in the highlighted 

cells – improved after tolling. Moreover, the utilization level of all tolled routes along with their 

parallel arterials improved after tolling, as can be concluded from the final record in the table. 

The role of toll structure fine-tuning (i.e. the second level of optimal toll determination) is to 

adjust the initial toll structures in order to attain the best utilization levels resulting in the 

minimum total travel times network-wide, as will be detailed in the next chapter. 

Table 6-2: Infrastructure Utilization Level (in veh.km/hr2) of Tolled Routes and their Parallel Arterials 

before and after Tolling 

Route Base-Case Under Tolling Scenario II 

GE-EB (Tolled) 7.20 * 10^8 7.39 * 10^8 ▲ 

GE-EB (Parallel) 9.48 * 10^8 9.69 * 10^8 ▲ 

GE-EB (Corridor) 1.67 * 10^9 1.71 * 10^9 ▲ 

GE-WB (Tolled) 8.41 * 10^8 10.07 * 10^8▲ 

GE-WB (Parallel) 6.00 * 10^8 5.72 * 10^8 ▼ 

GE-WB (Corridor) 1.44 * 10^9 1.58 * 10^9 ▲ 

DVP-NB (Tolled) 8.37 * 10^8 8.45 * 10^8 ▲ 

DVP-NB (Parallel) 4.18 * 10^8 4.16 * 10^8 ▼ 

DVP-NB (Corridor) 1.25 * 10^9 1.26 * 10^9 ▲ 

DVP-SB (Tolled) 8.63 * 10^8 9.44 * 10^8 ▲ 

DVP-SB (Parallel) 5.55 * 10^8 5.56 * 10^8 ▲ 

DVP-SB (Corridor) 1.42 * 10^9 1.50 * 10^9 ▲ 

401-EB-1 (Tolled) 2.87 * 10^8 2.50 * 10^8 ▼ 

401-EB-1 (Parallel) 4.63 * 10^8 4.66 * 10^8 ▲ 

401-EB-1 (Corridor) 7.50 * 10^8 7.16 * 10^8 ▼ 
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401-EB-2 (Tolled) 4.68 * 10^8 4.91 * 10^8 ▲ 

401-EB-2 (Parallel) 1.41 * 10^9 1.39 * 10^9 ▼ 

401-EB-2 (Corridor) 1.88 * 10^9 1.89 * 10^9 ▲ 

401-WB-2 (Tolled) 5.04 * 10^8 5.11 * 10^8 ▲ 

401-WB-2 (Parallel) 2.79 * 10^9 2.75 * 10^9 ▼ 

401-WB-2 (Corridor) 3.30 * 10^9 3.26 * 10^9 ▼ 

401-WB-3 (Tolled) 4.74 * 10^8 4.40 * 10^8 ▼ 

401-WB-3 (Parallel) 2.37 * 10^9 2.57 * 10^9 ▲ 

401-WB-3 (Corridor) 2.84 * 10^9 3.01 * 10^9 ▲ 

All Tolled Routes and 

Parallel Arterials 
1.46 * 10^10 1.49 * 10^10▲ 

 

Figure 6-12 shows estimated travel time patterns on tolled routes in the base-case and after 

applying the initial (sub-optimal) toll structures (reported in  

Table 6-1). The routes’ travel time values at capacity are also highlighted in the figure. The 

vertical gap between travel time pattern and travel time at capacity – when the former surpasses 

the latter – represents the queueing-delay pattern, as described before.  

It can be observed from Figure 6-12 that queueing-delay values and/or duration (i.e., start and 

end times) on tolled routes generally decreased after tolling. The travel time savings attained are 

attributed to route shift impacts of tolling in addition to rescheduling of the start times of trips 

using the tolled routes. Significant savings are observed – after tolling – on GE-WB, DVP-NB, 

401-EB-2, and 401-WB-3. Some of these savings are, however, associated with increased 

congestion on parallel routes or underutilization of tolled route capacity, as concluded earlier 

based on Table 6-2.  

The travel times of 401-WB-2 are higher than base-case times during the 8:00 to 9:00 am period. 

This is attributed to the relatively high toll values imposed during that period relative to other 

intervals, as can be observed in  

Table 6-1. In particular, extra traffic re-routing from the tolled express route – to avoid high tolls 

– backs-up upstream of the access points to the collector, resulting in increased travel times 
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during that period. Nevertheless, the aggregate utilization level of that route (i.e., the tolled 

express lanes) over all time intervals improved after tolling, as is evident in Table 6-2. 

The travel time (hence queueing-delay) patterns of 401-WB-3 and GE-WB, shown in Figure 

6-12, seem to be exaggerated in the base-case. This was found, through investigations, to be an 

artifact of the integrated departure time choice model. In particular, the model tends to 

overestimate the trips generated during middle intervals in the base-case, as can be observed in 

Figure 5-8. Accordingly, the simulated travel times during those intervals – under the updated 

demand profile estimated by the model – might exceed the simulated times under the original 

demand (from TTS surveys). The exaggerated base-case queueing-delays resulted in relatively 

high initial toll structures estimated for those routes compared to others ( 

Table 6-1). 
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Figure 6-12: Tolled-Routes’ Travel Time Patterns before and after Tolling 

Concluding Remarks 

The simple and extended tolling scenarios presented in this chapter show the effectiveness of the 

proposed system in 1) determining initial (sub-optimal) toll structures for congested facilities, 

following the Bottleneck Model dynamic pricing rules, 2) simulating the consequent travellers’ 

routes and departure time choice responses through integrated testbed of departure time and 

DTA simulation models, and 3) evaluating the network performance under each scenario. The 

tolling scenario evaluation criteria included travel time savings and route shift patterns network-

wide; the utilization level of tolled corridors (i.e. tolled routes and/or their parallel arterials); 

travel time savings on tolled routes; and the impacts of tolling on travel times and departure time 

choices of commuting trips affected by tolling. 

The results demonstrate how congestion pricing on real-world road networks can have different 

effects to those suggested by studies of single links or toy networks. For example, unlike the 

simple Bottleneck Model, variable tolling affects not only the cumulative loading curve but also 
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the cumulative exit curve. Another example is that imposing a flat toll on a link can actually 

increase travel time on the link because of spillback. The results also indicate the importance of 

conducting simulations on a regional scale for policy determination and assessment. It can be 

observed that benefits come from route shift impacts of tolling in addition to rescheduling of 

departure times due to variable pricing, compared to re-routing only, as in flat tolling. This 

affirms the necessity of integrating the departure time module into the congestion pricing system, 

for realistic modelling of travellers' departure time responses to variable pricing policies. 

Moreover, the comparisons conducted in the first scenario between flat and variable tolling 

structures emphasize the importance of variable pricing to replicate congestion patterns over 

time; otherwise, tolling might bring counterproductive results. 

In conclusion, the initial toll structures determined via the “first level of optimal toll 

determination” module resulted in noticeable overall benefits – at different levels – in both 

scenarios. However, further adjustments are needed for the toll levels of those (initial) structures 

to optimize the utilization level of tolled corridors (and hence to avoid the undesired impacts of 

tolling) and minimize total travel times network-wide. The toll adjustment (fine-tuning) process 

considers the interconnectivity among tolled and non-tolled facilities in the network. The process 

is achieved through a distributed genetic optimization algorithm, as will be described in detail in 

the next chapter.  
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7. Optimal Congestion Pricing Determination - Level II: Toll 

Structures Fine-Tuning Using Distributed Genetic Optimization 

Algorithm 

This chapter describes the final module in the proposed optimal congestion pricing system 

(outlined in Figure 3-1): the “Optimal Toll Determination – Level II”. The chapter starts with a 

description of the different components of the optimization problem; e.g., the selected 

optimization variables and objective function. An overview is then given of the genetic 

optimization algorithm used and the choice of its parameters. After that, the middleware 

integrated into the optimization platform for distributed computing is described along with the 

configuration process conducted for the parallel cluster used. The optimization module is then 

applied on the second tolling scenario – introduced in Chapter 6 – to optimize the initial toll 

structures obtained for its eight tolled routes. Then, a comprehensive comparative assessment is 

provided for the same scenario under different situations: base-case, initial toll structures, and 

fine-tuned toll structures. The chapter concludes with a cost-benefit analysis provided to 

investigate the implementation feasibility of the variable tolling strategies determined via the 

proposed optimal congestion pricing system.   .  

7.1. Optimization Problem Description 

7.1.1. Optimization Variables 

As emphasized in Chapter 6, the initial toll structures derived replicate the base-case queueing-

delay patterns (defined as the excess travel time over ‘travel time at capacity’) of tolled facilities. 

In other words, the tolling structure start and end times as well as toll values at different intervals 

mirror the congestion temporal profile of the tolled route in the base-case. This is expected to 

motivate departure time rescheduling (i.e., traffic pacing) towards eliminating queueing-delays 

(i.e., hyper-congestion), according to the Bottleneck Model findings. Therefore, as a first 

implementation, the variable selected to be controlled through optimization – for each tolled 

route – is the magnitude of the toll structure of that route. Braid (1996) suggested adjusting the 

optimal (first-best) toll structure on a bottleneck via shifting it up or down by a uniform amount, 

when a second un-tolled bottleneck runs parallel to it. This approach might, however, lead to 
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tolling before the network reaches capacity; i.e. tolls may start earlier and stay later than the 

bounds of the peak (during which queues exist in the unpriced equilibrium). It might also cause 

the tolls to lose proportionality to congestion at different intervals, since adding equal amounts to 

the numerator and denominator of a fraction will generally change its value. Accordingly, the 

initial toll structure of each tolled route is adjusted during the toll fine-tuning process via 

multiplying (rather than adding) it by certain factor. In other words, the entire structure is scaled 

up or down by this factor, while preserving its start and end times and the relative ratios between 

toll values at different intervals that were carefully estimated in the first level of optimal toll 

determination based on the base-case queueing-delay patterns, as detailed in Chapter 6. 

Accordingly, each tolled route considered will be assigned an optimization variable, i.e., a scale 

factor (SF). The same SF is multiplied by all toll values corresponding to different intervals of 

the initial toll structure of each route. Hence, the number of optimization variables (i.e. scale 

factors) equals the number of tolled routes considered in the tolling scenario. For instance, the 

second tolling scenario requires eight optimization variables for its eight tolled routes: SFGE-EB, 

SFGE-WB, SFDVP-NB, SFDVP-SB, SF401-EB-1, SF401-EB-2, SF401-WB-2, and SF401-WB-3. Scale factors are real 

numbers lying within a range from zero up to a maximum, set individually for each route, based 

on its maximum allowable toll value. Each set of feasible values for the eight scale factors is 

referred to as a “solution vector”. 

7.1.2. Objective Function 

The purpose of the “bi-level” procedure of optimal toll determination is to find the optimal toll 

structures resulting in the best traffic distribution over space and time that alleviates congestion 

(i.e., queueing-delay) on busy routes and time-intervals, respectively, and hence minimizes the 

total travel times while accounting for commuters’ schedule-delay costs. As clarified earlier, the 

first level of optimal toll determination entails the determination of initial (sub-optimal) toll 

structures on each congested facility individually to eliminate queueing without considering the 

effects on other routes. The initial toll structures are determined based on the Bottleneck Model 

general pricing rules, which work towards eliminating queueing-delay on the congested facility, 

through departure time rescheduling, while considering schedule-delay costs. The role of the 

second level of optimal toll determination is to adjust the toll magnitudes of the initial toll 

structures in order to maximize the utilization level of tolled corridors (i.e. tolled routes and their 
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parallel arterials) through route shifts, which will probably minimize the total travel times 

network-wide (i.e., achieve system optimal (SO) traffic conditions). 

The “total travel times network-wide” are produced and reported, as a single value, in the output 

of the DTA simulation model. On the other hand, the “utilization level of tolled corridors” is 

measured here by summing the multiplication of average flow and average speed over all links 

(belonging to the tolled routes and their parallel arterials) at all time-intervals, as illustrated in 

Chapter 6. The first criterion (i.e., the total travel times network-wide) is selected as an objective 

function for the sake of inclusive assessment that involves the impact of scale factors (being 

tested during optimization) not only on the tolled corridors but also on the entire network. The 

second criterion (i.e., the utilization level of tolled corridors) is then used, after termination of the 

optimization algorithm, to choose among the best solutions obtained in the last iteration 

(exhibiting similar low total travel times). The purpose of doing this is to choose the best 

solution that achieves not only improved travel times network-wide (which are directly 

minimized during optimization), but also enhanced utilization efficiency of tolled corridors. 

7.1.3. Optimization Problem Segmentation 

In the case of a large number of tolled routes (hence optimization variables), the optimization 

algorithm might encounter a quasi-flat objective function issue. i.e., the objective function takes 

close values at various solution vectors tested during optimization, which makes the search 

process for the global optimal solution extremely challenging and time-consuming. This 

phenomenon has been observed when attempting to optimize the eight scale factors of the second 

tolling scenario experiment concurrently. The main reason identified behind this issue is that, for 

a general solution vector, the combined improvements and deteriorations observed on different 

tolled routes – in response to their modified toll structures – might cancel each other out, 

resulting in similar objective function values for various solution vectors. The issue becomes 

more obvious as the number of tolled routes increases, especially if these routes (or some of 

them) are not highly correlated; i.e., improvement or deterioration in traffic conditions of some 

route causes no (or negligible) consequences on other routes. For instance, an accident on GE-

EB does not directly affect traffic conditions on 401-WB; however, it might partially block 

access to DVP-NB shortly after its occurrence, and so on.  
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In fact, the issue described above might generally occur when attempting to optimize several 

traffic policies, applied on barely correlated parts of the network, in one optimization process 

(i.e., through a single objective function). More specifically, the individual impact of each tested 

policy becomes diluted in the total objective function value that is affected by changes associated 

with all policies tested. i.e., a single objective function value might not clearly reflect the 

individual (positive or negative) local impacts of various policies tested under the same solution 

vector. 

In optimization theory, if a function of a certain system (e.g., total travel times network-wide) is 

completely additive of the functions of its subsystems (travel times on separate parts/corridors) 

and if these functions are independent of each other, then the function of the entire system is 

optimized (i.e. minimized) when each function of its subsystems is optimized (Huang et al., 

2009).  Accordingly, in order to address the quasi-flat objective function issue, toll structures 

(i.e., scale factors) of each group of correlated routes are optimized separately, while fixing toll 

structures of other tolled routes. That is, the optimization problem is separated into smaller 

problems to avoid the quasi-flat – that is, hard to be optimized – objective function associated 

with a larger number of (uncorrelated) tolled routes. Another benefit achieved through this 

problem segmentation comes from the fact that the smaller the number of optimization variables, 

the faster the corresponding optimal solution can be reached under certain limited available 

computational resources. This is of great significance in the current application given its large-

scale nature, entailing huge memory and computational time requirements, as highlighted before. 

It should be mentioned that the full GTA simulation model is executed throughout all 

calculations associated with small optimization problems. It should also be noted that according 

to this theorem, the “total travel times network-wide” achieved under the optimal scale factors – 

determined through several optimization problems – should theoretically take the same optimum 

value obtained if all scale factors are optimized concurrently. 

It is therefore necessary to set a proper criterion that can be used to quantify correlation among 

different routes, and hence differentiate those whose toll structures can be optimized separately. 

Intuitively, as the amount of common traffic using certain routes increases, the mutual impact 

between traffic conditions on those routes increases as well. Accordingly, the ‘correlation level’ 

between two routes is measured here based on the percentage of their common traffic with 
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respect to the average traffic using both routes. The former quantity denotes the trips passing 

through both routes; the latter refers to the average number of ‘distinct’ trips using any of the two 

routes. The correlation level calculation approach is further illustrated in the following formula. 

The number of common trips is subtracted in the denominator to avoid double counting them. 

 

The number of common trips and the correlation level among each couple of routes – selected to 

be tolled in the second scenario – are displayed in the matrix presented in Table 7-1. A number 

displayed in the matrix diagonal (i.e., having the same row and column IDs) represents the total 

number of trips passing through the route associated with its row/column, in the base-case during 

the morning analysis period considered in this study. On the other hand, a general number 

displayed in row X and column Y represents the number of common trips among routes X and Y. 

Moreover, the correlation levels among different routes, calculated based on the preceding 

formula, are displayed in brackets in the same matrix. Obviously, the matrix is symmetrical; 

therefore, only one half of it is given in the table.  

A threshold value of 10% is set to identify correlated routes. That is, two routes are considered to 

be correlated if their correlation level exceeds the threshold value set. The cells corresponding to 

the correlated route pairs – determined based on this criterion – are highlighted in the lower half 

of the matrix.  

The next step after identifying correlated route pairs is to cluster each group of mutually 

correlated routes whose toll structures can be optimized separately. This is performed through 

the algorithm illustrated in Figure 7-1. According to that algorithm, three groups of mutually 

correlated tolled routes are identified for the second tolling scenario as follows: 

1. GE-EB and DVP-NB. 

2. 401-WB-3, 401-WB-2, DVP-SB, and GE-WB. 

3. 401-EB-1 and 401-EB-2. 
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Table 7-1: Common Traffic and Correlation Matrix of Tolled Routes in Scenario II – Groups of Mutually 

Correlated Tolled Routes (Marked by Red Sequenced Numbers) 

 GE-EB GE-WB DVP-NB DVP-SB 401-EB-1 401-EB-2 401-WB-2 401-WB-3 

GE-EB 35976        

GE-WB 
11 

(0.0%) 
42904       

DVP-NB 
6576 

(23.4%)1
 

238 

(0.7%) 
26883      

DVP-SB 
0 

(0.0%) 

11481 

(35.7%)2
 

394 

(1.3%) 
32969     

401-EB-1 
2523 

(8.0%) 

3 

(0.0%) 

67 

(0.2%) 

284 

(0.9%) 
29864    

401-EB-2 
0 

(0.0%) 

450 

(1.1%) 

26 

(0.1%) 

1596 

(4.7%) 

10809 

(38.6%)3 

36910   

401-WB-2 
661 

(1.7%) 

0 

(0.0%) 

3284 

(9.9%) 

346 

(0.9%) 

0 

(0.0%) 

0 

(0.0%) 
42781  

401-WB-3 
157 

(0.4%) 

2094 

(5.2%) 

209 

(0.6%) 

6332 

(19.0%)2 

0 

(0.0%) 

1 

(0.0%) 

12856 

(36.7%)2 

40086 
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Figure 7-1: Algorithm for Clustering Mutually Correlated Routes 

In fact, the approach presented in this section to identify the correlated routes/parts of the 

network can also be employed for other traffic planning purposes. For instance, if some 

‘existing’ traffic policies undergo major operational changes/upgrades, it might be important to 

determine whether or not other ‘existing’ policies need to be altered accordingly in order to 

avoid undesired consequences on other parts of the network. This can be achieved by analyzing 

the correlation between the areas of influence of different policies according to the criterion 

presented, and so on. 

7.2. The Optimization Methodology – Distributed Genetic Algorithm 

7.2.1. Genetic Algorithms: Overview and Parameter Design 

A Genetic Algorithm (GA) is utilized here to find the optimal scale factors for the initial toll 

structures, resulting in the best network performance. GAs are heuristic search approaches that 

avoid most of the problems associated with traditional deterministic optimization techniques 

(e.g., gradient descent approaches, the simplex method, and the Frank-Wolfe algorithm). More 

{ //start 

     For (each column  in the matrix) 

     { 

          For (each row  in that column) 

          { 

               If (route  is correlated with route ) 

               { 

                    If (route  or  belongs to a previously formed cluster ) 

                    { 

                         Add the other route to cluster .  

                    } 

                    Else 

                    { 

                         Form a new cluster  and add routes  and  to it. 

                    }   

               } 

          } 

     } 

} //end 
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specifically, GAs rely on the evolution of multiple solutions in the search space; therefore, they 

have higher chances of finding the global optima without getting stuck in local minima (or 

maxima). Additionally, GAs do not require differentiation of the objective function, which is 

suitable for problems in which the objective function cannot be represented in a closed form 

(such as the current application). Moreover, an important property of GAs is that they can be 

parallelized (Back, 1996). That is, the evaluation of different solutions (chromosomes) can be 

distributed across multiple processing units simultaneously. This allows the power of High 

Performance Computing (HPC) clusters to be employed in large-scale – memory and 

computationally demanding – applications. 

GAs are inspired by the process of natural selection and biological evolution. In a GA, a 

population of initial solutions (chromosomes) is first created. A chromosome is one feasible 

point in the search space; it carries the values of the optimization variables in the form of a string 

of genes. Each candidate solution (i.e. chromosome) in the population is then evaluated to obtain 

some measure of its ‘fitness’. Evaluation can be as simple as substituting variable (gene) values 

in a closed-form mathematical function, if one exists, or it might require a series of long 

simulation runs such as the current application. After evaluating the fitness values of initial 

chromosomes, selection and a series of genetic operators (crossover and mutation) are applied on 

the population to produce new candidate solutions (i.e. children), with increasingly improved 

fitness values. In each generation, fitter chromosomes have higher probabilities of being selected 

for reproduction; hence the stochastic gradual improvement in fitness from one generation to the 

next. This cycle of evaluation, selection, and reproduction continues for a number of generations 

(iterations) until a certain stopping criterion is met.  

In the current application, the genes represent the values of the scale factors corresponding to the 

tolled routes under consideration in each optimization problem, as will be specified in detail 

later. Moreover, the ‘fitness’ value of each chromosome is measured directly through the 

objective function value (i.e., the total travel times network-wide) attained under this 

chromosome. Figure 7-2 is a close-up of the “Optimal Toll Determination – Level II” module 

integrated into the full system (Figure 3-1). The figure illustrates the basic GA cycle executed 

within this module. 
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As clarified in the figure, the module takes as input the initial (sub-optimal) toll structures of 

congested facilities, determined in the 1st level of optimal toll determination. The genes (scale 

factors) tested during optimization are multiplied by the initial toll structures of the 

corresponding facilities, as highlighted earlier. As outlined in the figure, the GA utilized in the 

module goes through the following cycle:  

– Initial population: generates random initial chromosomes within the solution search 

space. The initial chromosomes are generated to be uniformly distributed across the 

solution space in each problem. This is to avoid trapping the GA within a limited search 

domain, and to guarantee obtaining a global optimal solution through exploring diverse 

spots in the solution space during evolution. 

– Fitness evaluation: evaluates fitness values of chromosomes in the population through 

the integrated testbed of departure time choice and DTA simulation models, described in 

earlier chapters. Specifically, the genes (scale factors) of each chromosome are multiplied 

by the initial toll structures. The new toll structures are then entered as input to the 

integrated departure time choice and DTA simulation models. The chromosome fitness 

value is calculated as the total travel times network-wide obtained after equilibrium in 

route and departure time choices. 

– Selection: chooses the best candidate solutions to pass their genetic information from one 

generation to the next based on their fitness values. Therefore, individuals with higher 

fitness values have a greater chance to be copied to the intermediate population for the 

genetic operators to exchange their traits for better solutions. Specifically, a “ranking 

selection” mechanism is used here, in which individuals in a population of n 

chromosomes are ranked in descending order of fitness, with a rank of n points given to 

the best individual and a rank of 1 given to the worst individual. Roulette wheel selection 

is then performed based on the probability calculated according to the individual rank as 

follows (Mohamed, 2007): 

 

“Ranking selection” will tend to avoid premature convergence by tempering selection 

pressure for large fitness differentials that occur in early generations. This is due to 
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calculating the probability of selection for each individual based on its ranking, and not 

the fitness value. 

– Reproduction: applies genetic operators of crossover and mutation on the selected 

intermediate population to generate new candidate solutions:  

o Crossover: acts on two parents in the intermediate population by combining their 

traits (genetic information) to form two new children. This operator is applied 

with a probability denoted as the crossover probability; it is assigned a value of 

0.9 in this study. 

o Mutation: randomly changes each allele in every chromosome in the population 

based on the mutation probability selected. It is considered as a secondary 

operator in order not to lose the fittest potential areas in the search space; 

therefore, the probability of mutation should be small. It is assigned a value of 

0.05 in this study. 

– New generation: chooses the best (i.e. fittest) chromosomes out of the current generation 

and the reproduced children for the new generation. 

– Convergence: the cycle described is repeated until a pre-specified convergence criterion 

is met, as will be clarified later. The convergence sought at this step represents the third 

and highest level of convergence (i.e., the toll structure convergence) in the optimal 

congestion pricing system. 
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Figure 7-2: Basic GA Cycle within the "Optimal Toll Determination- Level II" Module 

The choice of the crossover and mutation probabilities is made based on the recommendations of 

Abdelgawad and Abdulhai (2009) for optimization applications involving long simulation runs. 

Further details of the population size, genes’ ranges, and GA convergence criterion are provided 

in Section 7.3. This study uses a GA platform developed at the University of Toronto (Mohamed, 

2007), referred to as GENOTRANS (Generic Parallel Genetic Algorithms Framework for 
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Optimizing Intelligent Transportation Systems). The distributed GA feature in GENOTRANS 

was upgraded by integrating and configuring a Java-based middleware for distributed in-memory 

processing, denoted as Apache Ignite. This upgrade resulted from the collaborate teamwork of 

Tamer Abdulazim, Islam Kamel, Mohamed Elshenawy and the author. Not only can 

computations be carried out concurrently on parallel processing units, but also the system 

deployment on a large network of remote servers – hosted on the Internet – is made possible 

through this platform upgrade. This eliminates the need for a local physical computing cluster, 

and allows on-demand access to Internet-based shared resources based on the application 

requirements. The configuration and implementation details relevant to the integrated 

middleware are detailed next. 

7.2.2. Distributed Computing Configuration and Implementation 

As can be inferred from the details provided so far, the system implementation involves 

integration and iteration among several large-scale computationally intensive modules, dealing 

with (i.e., reading and writing) large amounts of input and output data. This entails storage issues 

and unreasonably long system running times if only one computer is used. Accordingly, it 

becomes necessary to harness the power of several computers in the system deployment.  

For that reason, the GA is run concurrently on a parallel computing cluster managed through the 

Apache Ignite middleware integrated to the optimization platform. The middleware operates 

under a Map-Reduce programming paradigm that orchestrates the processing by controlling the 

distributed servers, running the various tasks in parallel, and managing all communications and 

data transferred between different system components, while avoiding redundancy (Dean and 

Ghemawat, 2004). In particular, several solutions (chromosomes) are distributed (mapped) to 

multiple nodes of the cluster and evaluated in parallel, i.e. each node (CPU) evaluates one 

chromosome. The evaluation results are then combined (reduced) at the master node for further 

processing. A new batch of solutions is subsequently mapped/reduced, and so on until the 

optimization algorithm reaches equilibrium. 

It is important to note that there are two main strands of distributed computing applications: 

Massive Parallel Processing (MPP) and High-Performance Computing (HPC). MPP involves 

breaking the program into relatively small tasks distributed over a massive number of nodes. 

https://en.wikipedia.org/wiki/Redundancy_(engineering)
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HPC is the use of parallel processing for running advanced (memory and computationally 

demanding) application programs efficiently, reliably and quickly. In other words, HPC is likely 

to be employed for complex applications requiring high processing power and speed (Rouse, 

2007). In the optimal congestion pricing application, the individual tasks (chromosome fitness 

calculation) involve running a series of long simulation runs iteratively with the departure time 

choice model. Therefore, the application can be classified under the second strand, which 

requires a HPC parallel cluster. 

In general, the two described strands require different configuration settings of the distributed 

computing engine. For example, the “failure detection time-out” is one of the configuration 

parameters to be selected. This represents the maximum allowable time, beyond which the task 

being executed on some node is aborted if that node does not respond to the other cluster nodes 

within the preset allowable time span. This parameter should therefore be assigned smaller 

values in MPP applications compared to HPC applications. This is because the frequency of 

communication and data transfer between cluster nodes in the former applications is generally 

higher than the latter, due to the short running-time of their parallel tasks. i.e., setting a small 

“failure detection time-out” guarantees that a disconnected node in MPP applications is quickly 

discovered and hence re-assigned a new task, for efficient use of cluster nodes. 

The configuration process of a parallel cluster might require significant testing to find the proper 

combination of parameters for the application under consideration. In fact, this was one of the 

most challenging tasks in the current study, which involved several non-trivial issues. For 

example, frequent disconnections of cluster nodes have been observed to occur shortly after the 

DTA simulation model invokes the vehicle assignment module, denoted as MIVA 

(Multithreaded Isochronal Vehicle Assignment). The reason identified for this phenomenon, 

after extensive trials and investigations, is that when MIVA is started, the processor becomes 

100% occupied for quite a long time (15–20 minutes) such that it does not respond to the master 

node within the default time span value, and hence loses communication with the cluster.  

Among the multiple solution tactics examined, two configurable parameters were found to tackle 

this problem: the “failure detection time out” and the “maximum missed heartbeats”. These two 

parameters control the maximum allowable response time, beyond which a node is considered 

disconnected from the cluster if it does not respond to the master node messages. Accordingly, 
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the values of both parameters were relaxed such that the maximum allowable time span exceeds 

the maximum execution period of MIVA (during which the processor might not communicate 

properly with the cluster). Additionally, the number of processor cores allowed to be used by the 

DTA simulation model in each node was set to be less than the total available cores in that node. 

This is to avoid occupying the full processor for long time periods in a way that might affect the 

communication exchanged between different cluster nodes. 

As mentioned, each chromosome fitness calculation requires a considerable amount of memory 

and processing power. Therefore, the configuration parameters related to the “number of parallel 

jobs” were adjusted in order to guarantee that a new task (i.e., chromosome fitness calculation) is 

started on certain node only after the execution of the preceding task has terminated on that node.  

On the other hand, the memory required by the Java processes on different nodes varies 

depending on the tasks assigned to these nodes. For example, the Java process in the master node 

requires more memory than the other cluster nodes, due to the communication overheads 

associated with it. Accordingly, the “maximum memory allocated to Java” was one of the 

parameters configured in this study, upon several trials, to avoid having failures related to the 

limited Java space. 

As emphasized earlier, an important feature of integrated Java-based middleware is that it 

enables the deployment of the optimal congestion pricing system on a network of remote servers 

hosted on the Internet. This makes the use of online shared memory and computing resources 

possible, depending on the requirements of the application under consideration. In other words, it 

eliminates the system dependency on a certain physical (local) parallel computing cluster.  

As a first implementation, a parallel cluster of five computers – each having 16 GB of RAM 

memory and Intel Core i7-3770 processor @ 3.40 GHz – was made available in the Intelligent 

Transportation Systems Laboratory at the University of Toronto, to test and implement the 

optimal congestion pricing system on simulation-based case studies in the GTA. In the future, 

subject to available financial resources, we may consider running the system on commercially 

available HPCs, such as those offered by Amazon and others. 
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7.3. Full Optimal Congestion-Pricing System Implementation Results and 

Analysis for Tolling Scenario II 

This section presents the implementation details and results of applying the “second level of 

optimal toll determination” on tolling scenario II considered for the GTA region. This step 

concludes the full optimal congestion pricing system implementation for that tolling scenario. 

As clarified in Section 7.1, the optimization of the scale factors to be multiplied by the initial 

(sub-optimal) toll structures of the eight tolled routes in the second scenario, is carried out 

separately for each group of correlated routes. Accordingly, the distributed GA optimization 

module is applied separately and sequentially for three optimization problems classified in Table 

7-2.  

While optimizing the toll structures of specific routes in each problem, those of other tolled 

routes are kept fixed to their initial values or to their optimized values (if already obtained in 

preceding problems), as indicated in the 4th column of Table 7-2. This setting guarantees that the 

impact of the optimized toll structures is considered during subsequent optimization problems. 

Moreover, the sequence of carrying out the three optimization problems is ordered such that the 

one having the largest number of optimization variables is conducted at the end, as highlighted in 

the table, to avoid altering its optimum results during subsequent problems. Additionally, the 

impact of previously optimized toll structures – on the utilization levels of their corridors – is re-

evaluated in subsequent optimization problems. This is to ensure that altering (i.e., optimizing) 

the tolls of other routes does not affect the best route utilization levels attained under previously 

optimized toll structures. 

The population size, the genes’ feasible ranges, and the stopping criterion are among the GA 

parameters to be designed for a particular application. It should be noted that there is tradeoff in 

any optimization technique, involving multiple initial solutions, between the number of initial 

solutions (i.e., the population size in a GA) and the number of generations required until 

convergence (i.e., the speed of convergence). In some cases, however, the GA might get stuck at 

a local minimum if it starts the search process from a limited number of initial solutions, 

regardless of the number of generations produced. This is because the new chromosomes – 

produced though the genetic operators of crossover and mutation – evolve within a limited area 
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in the search space. Therefore, other potentially better areas in the search space might not be 

explored.  

Table 7-2: Optimization Problems’ Specifications for Tolling Scenario II 

 
Chromosome 

Size 

Optimization Variables 

(Genes) 

Toll Structures on 

other Routes 

Population 

Size 

Optimization 

Problem 1 
2 

Gene 0:  

Gene 1:  

401-EB-1   Initial 

16 

401-EB-2  Initial 

401-WB-3  Initial 

401-WB-2  Initial 

GE-WB Initial 

DVP-SB   Initial 

Optimization 

Problem 2 
2 

Gene 0:  

Gene 1:  

GE-EB Optimal 

10 

DVP-NB  Optimal 

401-WB-3  Initial 

401-WB-2  Initial 

GE-WB  Initial 

DVP-SB  Initial 

Optimization 

Problem 3 
4 

Gene 0:  

Gene 1:  

Gene 2:  

Gene 3:  

GE-EB Optimal 

10 

DVP-NB Optimal 

401-EB-1 Optimal 

401-EB-2 Optimal 

The population size is generally recommended to be larger than the chromosome size (i.e., the 

number of genes). As reported in Table 7-2, a population size equal to 16 was selected in the first 

optimization problem. This value was however cut to 10 in the following two problems for the 

sake of more efficient utilization of the available computers in the parallel cluster. In particular, 

if the population size is not a multiple of the cluster size, then some nodes will be occasionally 

idle during the fitness evaluations of the population chromosomes.  
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The genes (i.e. scale factors) are specified in this application as real numbers with a minimum 

allowable value equal to zero. The maximum allowable value for each gene is determined based 

on the evaluation results of the initial toll structure corresponding to that gene. That is, lower 

maximum limits were assigned to the scale factors corresponding to overestimated initial toll 

structures (e.g. 401-EB-1 and 401-WB-3), and vice versa. The purpose of doing this is to limit 

the search space to areas beyond which toll structures might be excessively high, and would 

hence result in undesired (counterproductive) results, or might be politically unpalatable with 

consequent public disapproval. In other words, the lessons learned from the evaluation results of 

the initial (sub-optimal) toll structures are harnessed to provide the GA with a concise search 

space for a faster and more efficient evolution/search process. The upper limits of different genes 

were assigned values ranging from 1–3. 

The optimization process is terminated if the value of the best fitness function does not change 

by more than 1% (over two successive generations) or if the number of iterations reaches 10; 

whichever comes first. 

7.3.1. GA Evolution and Optimal Solutions 

Figure 7-3 illustrates the GA evolution results of the three optimization problems and the optimal 

solution achieved in each case after convergence. As can be observed from the figure, the first 

two problems converge after three generations, whereas the third converges after six generations 

(obviously due to its larger chromosome size). The worst (highest) fitness values decrease among 

successive generations, while the best (lowest) values converge to certain minimal (optimal) 

value. As mentioned before, further comparisons are conducted between the best (candidate) 

solutions obtained in the final GA iteration, in order to choose the solution that achieves not only 

improved travel times network-wide (directly optimized through the GA), but also enhanced 

utilization efficiency of the tolled corridors. The comparisons depend on the utilization levels 

attained on the tolled corridors corresponding to the tolled routes being optimized in each 

problem. 

The convergence observed in different optimization problems is relatively fast, considering the 

large-scale nature of the application. Specifically, a total of 12 GA iterations were performed 

over the three optimization problems until convergence, as opposed to 25 iterations performed in 
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another optimization application involving simulation runs on a smaller network (Abdelgawad 

and Abdulhai, 2009). The relatively fast observed convergence is attributed to several factors. 

The main factor is that the initial toll structures, being adjusted through optimization, are 

carefully estimated based on the “Bottleneck Model of optimal dynamic congestion pricing”. 

Accordingly, the role of the GA is to fine-tune the toll levels of the (sub-optimal) estimated toll 

structures, rather than to search from scratch for the optimal toll values and tolling intervals. 

Other factors include the concise search spaces identified through careful selection of the genes’ 

ranges (based on the evaluation results of the initial toll structures), in addition to the relatively 

large population sizes used in each problem (compared to the chromosome sizes). 

As expected, the total travel times network-wide decrease gradually and sequentially among the 

optimal solutions of the three optimization problems (highlighted on the top-right corner of each 

figure). This is obviously due to the fact that the optimized toll structures obtained in each 

problem are used in the subsequent problem(s), in which the other toll structures are further 

optimized. 
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Figure 7-3: GA Evolution and Optimal Solutions of the Three Optimization Problems 
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An interesting observation from the evaluation analysis of various chromosomes generated 

during optimization is that the tolled corridors have different sensitivities to identical toll 

changes on their tolled routes. That is, the same amount of toll increase (or decrease) might lead 

to different results on tolled routes and their parallel arterials, depending on the corridor 

criticality (i.e., usage level) and the available capacity of parallel arterials. For instance, a small 

toll increase (i.e. a few cents per km) on the GE-EB above the optimal levels can send excessive 

traffic to off-ramps to parallel routes, such that it blocks the off-ramp and backs up onto the main 

freeway. On the other hand, significant toll changes (up to 15 cents per km) on the lower section 

of the DVP-NB (south of Bloor Street) hardly affect the total travel times and utilization level of 

the entire corridor. This emphasizes the importance of conducting tolled route-based analysis, 

while considering the parallel arterials and the entire corridor vitality within the network. 

Table 7-3 shows the execution times of the three optimization problems, corresponding to the 

population size identified and the number of generations created in each problem until 

convergence. The expected execution times if the system is implemented in a serial mode (i.e., 

using a single computer) are also provided in the table for comparison purposes and to show the 

speedup achieved through the parallel cluster. 

Table 7-3: GA Execution Time under Serial and Parallel Modes 

 
Population 

Size 

# of 

Generations 

Execution Time 

(Parallel Mode) 

Execution Time  

(Serial Mode) 

Optimization 

Problem 1 
16 3 198 hours (8.25 days) 828 hours (5 weeks) 

Optimization 

Problem 2 
10 3 108 hours (4.5 days) 450 hours (2.7 weeks) 

Optimization 

Problem 3 
10 6 216 hours (9 days) 972 hours (6 weeks) 

Total -- -- 522 hours (22 days) 2250 hours (3 months) 

The optimal (fine-tuned) toll structures obtained from the three consecutive optimization 

problems are illustrated in Table 7-4, along with their corresponding initial toll structures. The 

optimal toll structures are calculated via multiplying the optimal scale factors (reported between 
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brackets in the first column) by the corresponding initial toll structures. The toll levels of most of 

the tolled routes decreased after optimization. This decrease occurred – most probably – as a 

result of the route shifts induced from the initial toll levels, in order to maintain proper utilization 

levels of tolled routes and parallel arterials after tolling. 

Another significant observation/conclusion that can be derived from the table is that the optimal 

toll levels achieving the best network performance are clearly lower than the toll rates of the 407 

Express Toll Route (ETR) in the morning period (average of 0.35 $/km). In other words, 

congestion pricing strategies intended to manage traffic demand, rather than to maximize toll 

revenues, are carefully crafted to alleviate traffic congestion through proper toll levels and are 

less aggressive than revenue-maximizing (monopoly) approaches. 

Table 7-4: Initial and Fine-Tuned Toll Structures of Scenario II Tolled Routes 

Route 

(Scale 

Factor) 

Initial (Sub-Optimal) Toll Structures Fine-Tuned (Optimized) Toll Structures 

GE-EB 

(1.44) 

   

GE-WB 

(0.73) 
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DVP-NB 

(0.29) 

  

DVP-SB 

(0.90) 

  

401-EB-1 

(0.46) 

  

401-EB- 2 

(0.64) 
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401-WB-2 

(0.77) 

  

401-WB-3 

(0.75) 

  

 

7.3.2. Comparative Assessment of Network Performance under Tolling Scenario II 

in Different Cases 

This section provides a comprehensive comparative assessment involving travel time savings, 

monetary savings, overall toll revenues, and system net benefits, for the second tolling scenario 

under different situations: base-case, initial toll structures, and fine-tuned toll structures. The 

section concludes with a simple cost-benefit analysis provided to investigate the implementation 

feasibility of the variable tolling strategies determined via the proposed optimal congestion 

pricing system.  

7.3.2.1. Network-Wide and Trip-Based Analysis 

 

Table 7-5 summarizes the overall time and monetary savings achieved at different levels along 

with the total toll paid (i.e., toll revenues) under the initial and fine-tuned toll structures. The 

analysis considers trips at different levels: the entire network, tolled corridors, and tolled routes. 

Tolled corridors involve tolled routes and their parallel arterials, as highlighted before. The 
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savings reported in the table, as well as their associated percentages, are calculated relative to the 

corresponding base-case values. The monetary values of travel time savings are calculated by 

multiplying the corresponding time savings (in hours) by the average VOT used in the GTA 

model (15 $/hr.). It should be emphasized that the values presented in the table correspond to the 

6:00 to 10:30 am morning period considered here. Moreover, the toll-related statistics illustrated 

in the table – namely, the total tolled kilometres travelled and the total toll revenue – are related 

only to the tolled routes of the scenario under analysis. That is, the 407 ETR simulated toll 

measurements are not included in those statistics, in order to focus on the congestion 

management-driven tolling policies that are tested and compared (as opposed to toll revenue-

maximizing approaches that price out more users and may leave parts of the network 

underutilized). 

The toll levels of the fine-tuned (i.e. optimized) toll structures are generally lower than those of 

the initial toll structures, as can be observed from Table 7-4. As a result, the total toll revenues 

collected in the former case are lower than in the latter case, as noted in  

Table 7-5. Additionally, the ‘tolled kilometres travelled’ under fine-tuned tolls are higher than 

those travelled under initial tolls. The travel time savings achieved – at all levels – under fine-

tuned tolls are higher than those achieved under initial tolls. This improvement in travel times 

was expected to occur as a result of the initial toll fine-tuning (optimization) process. An overall 

cost-benefit analysis is provided at the end of this section for the two key stakeholders: the toll-

system provider (e.g., the government) and the toll payers. 

The percentage of relative travel time savings – highlighted in Table 7-5 – decreases across the 

three trip-levels considered, i.e. tolled routes’ users, tolled corridors’ users, and all network 

users, respectively. This is attributed to the fact that travel time savings resulting from tolling 

certain (limited) network routes become more diluted the larger the scale of the population 

among which savings are measured. However, the fact that travel times improved at higher trip-

levels, even marginally, indicate that the toll strategies imposed did not exacerbate the traffic 

conditions on other non-tolled routes or areas, which is important. This is because any tolling, 

optimized or not, will improve the tolled facility performance, but possibly at the expense of 

parallel arterials or other parts of the network. Optimized tolling, however, improves the system 

at all levels. 
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Table 7-5: Overall Savings against Toll Paid in Different Cases 

During (6:00 to 10:30) 

Morning Period 

Initial (Sub-Optimal) Toll 

Structures 

Fine-Tuned (Optimized) 

Toll Structures 

Network-Wide (2 million trips) 

Total Travel Time Savings  4327 hr. (0.7%) 10,313 hr. (1.7%) 

Monetary Value of Total 

Travel Time Savings  
$64,905 $154,695 

Total Tolled Kilometres 

Travelled 
1,748,081 km 1,837,013 km 

Total Toll Revenue $174,829 $147,750 

Trips Using Tolled Corridors (455,000 trips) 

Total Travel Time Savings  7719 hr. (2.87%) 7831 hr. (2.91%) 

Monetary Value of Total 

Travel Time Savings  
$115,783  $117,467 

Monetary Value of Total 

Schedule-Delay Savings 
$27,518 $21,540 

Trips Using Tolled Routes (220,000 trips) 

Total Travel Time Savings  
11,712 hr. (7%) 

for 219919 toll payers 

12,457 hr. (7.5%) 

for 220925 toll payers 

Monetary Value of Total 

Travel Time Savings  
$175,678 $186,854 

Monetary Value of Total 

Schedule-Delay Savings 
$57,047 $50,798 

Furthermore, the absolute travel time savings achieved network-wide are lower than those 

achieved by toll payers (i.e., tolled routes’ users) in both cases, as is clear in the table. This is 

probably due to the increased travel times on routes and time-intervals affected by route-shift and 

departure time shift impacts of variable tolling, respectively. It should be emphasized, however, 
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that the spatial and temporal traffic re-distribution (prompted by variable tolling) that results in 

alleviated congestion on over-utilized routes and time intervals and increased flow (hence travel 

time) levels on under-utilized routes and time intervals, is desirable from a network performance 

perspective, as long as the resulting increased inflow values are below capacity. The efficiency 

of the spatial and temporal traffic distribution – resulting from variable tolling – is evaluated 

through the utilization levels of affected routes and time intervals, as will be demonstrated in the 

tolled corridors analysis results. 

It can also be seen from Table 7-5 that the difference between the absolute travel time savings of 

‘toll payers’ and ‘network-wide users’ is clearly smaller under fine-tuned tolls compared to the 

initial-tolls. This is due to the improved utilization levels of parallel arterials (affected by route 

shifts) achieved under the fine-tuned toll structures, as will be demonstrated later in Section 

7.3.2.2. 

Although there was a concern that the schedule-delay costs would increase after variable tolling 

due to departure time shifts to early and late (low-toll) intervals, the statistics reported in  

Table 7-5 indicate that schedule-delay costs decreased under both tolling structures. Moreover, 

the fine-tuned tolls resulted in lower schedule-delay savings than the initial tolls. These remarks 

will be explained through the observed trip-length and travel time patterns after tolling, presented 

next. 

Figure 7-4 shows the changes in: (a) departure time choices, (b) pattern of average trip lengths, 

and (c) average travel times for the original 455,000 commuting trips that travelled through the 

tolled corridors in the morning period, under different tolling cases. This analysis involves all 

trips affected by tolling, including those passing through the tolled routes, those diverting from 

the tolled routes to other alternative routes after tolling, and those on the parallel arterials that 

might be affected by route shifts out of the tolled routes. 
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a) Percentage of Trips Shifted (from or to) Each Time Interval 

 

b) Average Travel Distance (Trip Length) among Trips Started at Each Time Interval 
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c) Average Travel Time among Trips Started at Each Time Interval 

Figure 7-4: Analysis of Trips Using Tolled Corridors in Scenario II 

As highlighted earlier, the departure time choice process – among different intervals – involves 

trade-offs between travel time cost, schedule-delay cost, and toll cost. Figure 7-4-a illustrates the 

departure time changes, across different intervals, for the original 455,000 commuting trips 

under initial and fine-tuned tolls. The lower toll levels of the fine-tuned toll structures prompted 

fewer (absolute) departure time shifts than the initial toll structures. Moreover, shifts to early 

intervals are generally higher than to late intervals due to the relatively large late schedule-delay 

costs, as discussed in previous chapters. The individual demand (i.e., departure time choice) 

patterns observed for different tolled routes are presented in the tolled corridor analysis results. 

Figure 7-4-b shows the average trip length (i.e. distance travelled) among trips that started at 

each time interval. It can be observed from the figure that variable tolling – in both tolling cases 

– motivated the re-distribution of trips across different intervals based on their average trip 

lengths. More specifically, trips having relatively large average trip lengths are prompted to start 

at early or late time intervals (having zero or low toll rates), and vice versa. The main reason 

behind this observation is that the toll structures imposed are quasi-triangular (i.e., rising from 

zero to a maximum value then falls back to zero) and distance-based. Accordingly, longer trips 

become more liable to shift to early or late departure time intervals to avoid high tolls. In other 

words, the longer the trip, the more its start time becomes sensitive (i.e., elastic) to variable 

distance-based tolling policies. In fact, this conclusion might be generalized to any traffic 
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policies affecting travel times or costs. i.e., travel behavioural choices (e.g., mode, route, and/or 

departure time) of long trips are generally expected to be more elastic to variable traffic policies. 

This is due to the fact that these trips suffer more from increased travel times or toll levels. 

Figure 7-4-c illustrates the average travel time values of trips that started at different intervals in 

the base-case and under ‘initial’ and ‘fine-tuned’ tolls. The average travel times observed at early 

and late intervals after tolling (in both cases) are higher than those observed in the base-case. 

This is mostly attributed to the longer average lengths of trips that started during those intervals 

(Figure 7-4-b), which obviously entails longer average trip times. The net travel time savings 

obtained in both tolling cases, relative to the base-case, are reported in  

Table 7-5 under the tolled corridor users’ statistics. 

The trip-length distribution patterns observed after tolling, the heterogeneity considered in 

travellers’ attributes and desired arrival times, along with the improved travel times during peak 

hours, are probably the main reasons behind the schedule-delay savings attained after tolling ( 

Table 7-5). More specifically, longer trips lend themselves to starting at earlier intervals, as a 

result of tolling, incurring lower congestion (hence travel time) levels, and hence arriving at their 

destinations at earlier times (that are probably closer to their desired arrival times) compared to 

their base-case arrival times. On the other hand, trips that started during peak (middle) intervals 

after tolling incur fewer queueing-delays than the base-case, and hence arrive at their 

destinations at times closer to their desired arrival times as well. It can therefore be concluded 

that variable distance-based tolling might result in lower overall schedule-delay costs (compared 

to the base-case) when travellers have diverse trip lengths and heterogeneous attributes and 

desired arrival times, which is the case in large urban networks. In fact, this observation agrees 

with the findings of Newell (1987), which indicate that additional gains may arise when users are 

heterogeneous due to arrival time adjustments, which do not occur with homogeneous users. In 

particular, that study concluded that the optimum time-varying tolls in a bottleneck reduced the 

aggregate schedule-delay costs of two groups of travellers (of equal size) having identical 

desired arrival times, but different relative costs of schedule-delay versus travel delay. From 

another perspective, the schedule-delay savings achieved under fine-tuned tolls are lower than 

those achieved under initial tolls, as observed in  
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Table 7-5. This is possibly due to the lower absolute departure time shifts observed in the former 

case compared to the latter (Figure 7-4-a).  

7.3.2.2. Tolled Corridors-Based Analysis 

Table 7-6 reports the utilization levels of tolled routes and their parallel arterials, calculated 

under different tolling cases. The summation of the numbers corresponding to each tolled route 

and its parallel arterials indicates the utilization level of the entire corridor, provided in 

highlighted cells in the table. A comparison between the route utilization levels achieved under 

the initial toll structures against those obtained in the base-case (i.e., the 2nd and 3rd table 

columns) has already been provided in Table 6-2. The purpose of Table 7-6 is to show the impact 

of the ‘fine-tuned toll structures’ on the use of different routes/corridors and to compare it 

against the ‘base-case’ and the ‘initial toll structures’ case. For comparison purposes, two 

coloured triangles are provided in the table next to each number reported in the ‘fine-tuned toll 

structures’ column. More specifically, the left and right triangles indicate whether or not the 

route utilization level under fine-tuned toll structures improved over the base-case and the initial 

toll structures case, respectively. The red upward-facing triangles denote higher relative 

utilization; the blue downward-facing triangles denote lower relative utilization. 

Table 7-6: Utilization Level (in veh.km/hr2) of Scenario II Tolled Routes and their Parallel Arterials 

under Different Situations 

Route Base-Case Initial Toll Structures Fine-Tuned Toll Structures 

GE-EB (Tolled) 7.20 * 10^8 7.39 * 10^8 ▲ 7.58 * 10^8 ▲▲ 

GE-EB (Parallel) 9.48 * 10^8 9.69 * 10^8 ▲ 9.57 * 10^8 ▲▼ 

GE-EB (Corridor) 1.67 * 10^9 1.71 * 10^9 ▲ 1.71 * 10^9 ▲▲ 

GE-WB (Tolled) 8.41 * 10^8 10.07 * 10^8▲ 9.80 * 10^8 ▲▼ 

GE-WB (Parallel) 6.00 * 10^8 5.72 * 10^8 ▼ 5.48 * 10^8 ▼▼ 

GE-WB (Corridor) 1.44 * 10^9 1.58 * 10^9 ▲ 1.53 * 10^9 ▲▼ 

DVP-NB (Tolled) 8.37 * 10^8 8.45 * 10^8 ▲ 8.27 * 10^8 ▼▼ 

DVP-NB (Parallel) 4.18 * 10^8 4.16 * 10^8 ▼ 4.18 * 10^8 ▲▲ 

DVP-NB (Corridor) 1.25 * 10^9 1.26 * 10^9 ▲ 1.25 * 10^9 ▲▼ 

DVP-SB (Tolled) 8.63 * 10^8 9.44 * 10^8 ▲ 9.62 * 10^8 ▲▲ 

DVP-SB (Parallel) 5.55 * 10^8 5.56 * 10^8 ▲ 5.40 * 10^8 ▼▼ 
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DVP-SB (Corridor) 1.42 * 10^9 1.50 * 10^9 ▲ 1.50 * 10^9 ▲▲ 

401-EB-1 (Tolled) 2.87 * 10^8 2.50 * 10^8 ▼ 2.76 * 10^8 ▼▲ 

401-EB-1 (Parallel) 4.63 * 10^8 4.66 * 10^8 ▲ 4.86 * 10^8 ▲▲ 

401-EB-1 (Corridor) 7.50 * 10^8 7.16 * 10^8 ▼ 7.62 * 10^8 ▲▲ 

401-EB-2 (Tolled) 4.68 * 10^8 4.91 * 10^8 ▲ 4.77 * 10^8 ▲▼ 

401-EB-2 (Parallel) 1.41 * 10^9 1.39 * 10^9 ▼ 1.43 * 10^9 ▲▲ 

401-EB-2 (Corridor) 1.88 * 10^9 1.89 * 10^9 ▲ 1.91 * 10^9 ▲▲ 

401-WB-2 (Tolled) 5.04 * 10^8 5.11 * 10^8 ▲ 5.75 * 10^8 ▲▲ 

401-WB-2 (Parallel) 2.79 * 10^9 2.75 * 10^9 ▼ 2.83 * 10^9 ▲▲ 

401-WB-2 (Corridor) 3.30 * 10^9 3.26 * 10^9 ▼ 3.40 * 10^9 ▲▲ 

401-WB-3 (Tolled) 4.74 * 10^8 4.40 * 10^8 ▼ 4.85 * 10^8 ▲▲ 

401-WB-3 (Parallel) 2.37 * 10^9 2.57 * 10^9 ▲ 2.52 * 10^9 ▲▼ 

401-WB-3 (Corridor) 2.84 * 10^9 3.01 * 10^9 ▲ 3.01 * 10^9 ▲▲ 

All Tolled Routes and 

Parallel Arterials 
1.46 * 10^10 1.49 * 10^10▲ 1.51 * 10^10▲▲ 

It can be observed from final row in Table 7-6 that the aggregate utilization level of all tolled 

routes and their parallel arterials improved under ‘fine-tuned toll structures’ over the other two 

cases (i.e., the base-case and the initial toll structures case). The individual utilization levels of 

the majority of tolled corridors (reported in the highlighted cells) improved under ‘fine-tuned 

tolls structures’ over the other two cases. The following remarks can also be made based on 

Table 7-6: 

 As a result of the toll increase on the GE-EB after fine-tuning (Table 7-4), the utilization 

level of its parallel arterials decreased slightly relative to the initial tolls case, although it is 

still higher than the base-case level. This is probably a result of the extra route shifts 

occurring in the parallel arterials following the toll increase. 

 As concluded in Section 6.3.2, the initial toll structures on 401-EB-2, and 401-WB-2 created 

traffic shifts beyond the remaining available capacity on the parallel arterials of those 

corridors, which resulted in a decrease in their parallel arterial utilization levels. The toll fine-

tuning process, however, decreased toll levels on both routes to an extent that created suitable 

route choices and better overall utilization levels on tolled routes and parallel arterials, 

relative to the other two cases. 
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 As concluded in Section 6.3.2, the initial toll structures on 401-WB-3 and 401-EB-1 resulted 

in an underutilization of tolled routes and better utilization of parallel arterials, probably due 

to their readily available capacity that absorbed the traffic that shifted in response to tolling. 

It can be noticed from Table 7-6 that this problem was tackled through the lower fine-tuned 

toll structures on both routes, which produced better utilization levels. 

 It can also be observed that slight toll decreases on 401-EB-1 (3 ¢/km) and 401-WB-2 (5 

¢/km), following the initial toll structures fine-tuning process, resulted in obvious 

improvements in the utilization levels of both routes and their parallel arterials. This confirms 

the conclusion made earlier regarding the various sensitivity levels of different tolled routes 

to identical toll changes, which further emphasizes the significance of the toll fine-tuning 

process and the route-based analysis conducted. 

The observed changes in route utilization levels in response to fine-tuned toll structures are 

further explained/interpreted through the tolled-routes detailed analysis presented next. 

Table 7-7 presents illustrative diagrams in which the demand and travel time patterns on tolled 

routes are compared across different tolling cases. In particular, each figure provided in the 

‘departure time choice’ column illustrates the demand pattern (i.e., the number of trips generated 

at different time-intervals) of the associated tolled route in the base-case and under fine-tuned 

toll structures. Moreover, the percentage decrease in the number of trips using the tolled routes 

(under fine-tuned tolls) is highlighted on the top part of each figure. The percentages are 

calculated for each tolled route – over all the morning period, tolled period, and non-tolled 

period – relative to the base-case demand generated during each period. The negative 

percentages obtained at some periods denote a relative increase in the tolled route demand during 

those periods compared to the base-case. The demand patterns and percentage decreases 

provided in the table articulate the route and departure time shift impacts of the fine-tuned toll 

structures on the demand of tolled routes at different periods. 

The figures provided in the right-hand column of Table 7-7 give the estimated travel time 

patterns on tolled routes in the base-case, under initial toll structures, and under fine-tuned toll 

structures. The routes’ travel time values at capacity are also highlighted in the figures (through 

the straight purple lines). As described before, the vertical gap between the travel time pattern 

and the travel time at capacity (when the former surpasses the latter) represents the queueing-
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delay pattern. The absolute and percentage maximum average travel time savings attained on 

different routes as a result of fine-tuned tolling, relative to the base-case, are highlighted in the 

top-left corner of each figure. Additionally, the time intervals at which the indicated maximum 

travel time savings were observed are also highlighted.  

Table 7-7: Tolled Routes Analysis - Departure Time Choice and Travel Time Patterns 

Tolled 

Route 
Departure time Choice Pattern (Demand) Travel Time Pattern 

GE-

EB 

  

GE-

WB 

  

DVP-

NB 

  

3 min (11%) 
[8:00-8:30] 

 

 

% Demand Drop: All: 2%, Tolled: 3%, Non-tolled: 1% 

 

 

23 min (59%) 

[8:00-8:30] 

 

% Demand Drop: All: 0%, Tolled: 3%, Non-tolled: -16% 

 

11 min (38%) 

[8:00-8:30] 

% Demand Drop: All: 2%, Tolled: 5%, Non-tolled: -4% 
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DVP-

SB 

  

401-

EB-1 

  

401-

EB-2 

  

401-

WB-2 

  

15 min (54%) 
[9:00-9:30] 

 

 

% Demand Drop: All: 7%, Tolled: 16%, Non-tolled: -16% 

 

 

 

 

 

 

7 min (23%) 
[8:00-8:30] 

 

 

% Demand Drop: All: 2%, Tolled: 4%, Non-tolled: -4% 

 

 

 

 

 

2 min (19%) 
[8:00-8:30] 

 

 

% Demand Drop: All: 3%, Tolled: 6%, Non-tolled: -3% 

 

 

 

 

12 min (45%) 

[9:00-9:30] 

 

 

% Demand Drop: All: -2%, Tolled: -1%, Non-tolled: -9% 
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401-

WB-3 

  

 

The relatively large queueing-delay savings attained on most tolled routes – under fine-tuned toll 

structures – are attributed to the following impacts of tolling: 

 Route shifts to free (parallel) arterials, especially during the tolling periods. 

 Partial route shifts amongst tolled route users; i.e., less distance driven on tolled routes by 

tolled route users in response to distance-based tolling. 

 Departure time rescheduling amongst tolled routes’ users.  

 Shorter lengths, hence distances driven on tolled routes, of trips made during peak hours as a 

result of distance-based variable tolling (as discussed before). 

Although the variable toll structures imposed on the GE-EB in the first tolling scenario (Figure 

6-6) and under fine-tuned toll structures (Table 7-4) have similar maximum values (around 0.15 

$/km), the highest queueing-delay savings achieved in the latter case (38%, Table 7-7) exceeds 

that achieved in the former case (25%, Figure 6-9). This is because the two toll structures have 

different “temporal profiles”; i.e. different relative ratios between toll values at different 

intervals. In particular, the fine-tuned toll structure replicates the base-case queueing-delay 

pattern of the GE-EB itself, rather than the average queueing-delay pattern across all corridor 

users in both directions (as in the first tolling scenario). As a result, more savings are achieved 

under the fine-tuned toll structure. This emphasizes the importance of variable pricing to mirror 

congestion patterns of tolled routes, and demonstrates the effectiveness of the variable toll 

determination procedure described in Section 6.2. 

Table 7-7 shows that the travel time patterns obtained under fine-tuned tolls on some routes (e.g., 

on GE-WB, DVP-NB, and 401-WB-3) are worse (i.e., higher) than those obtained under initial 

60 min (65%) 

[9:00-9:30] 

 

 

% Demand Drop: All: 10%, Tolled: 18%, Non-tolled: -30% 
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toll structures. This is because the objective of the toll fine-tuning process performed was to 

adjust toll levels in order to maintain proper utilization levels on tolled routes and their parallel 

arterials. In other words, decreased travel times on tolled routes associated with deteriorated 

traffic conditions on parallel arterials (e.g., parallel arterials of DVP-NB under initial tolls) or 

underutilized tolled route capacity (e.g. GE-WB under initial tolls) are not desired. 

Interestingly, the two figures corresponding to the DVP-SB (in Table 7-7) indicate that the travel 

time pattern on that route clearly improved under fine-tuned tolls, despite the fact that its total 

demand slightly increased after tolling. This is most probably a result of the departure time shifts 

observed on that route in response to variable tolling. This observation demonstrates the benefits 

achieved from proper departure time rescheduling under similar (or even higher) numbers of 

route users. 

7.3.2.3. Cost-Benefit Analysis of Optimal Toll Strategies 

In order to appraise the implementation feasibility of the tolling strategies determined by the 

optimal congestion pricing system, an annual cost-benefit analysis is conducted for the two key 

stakeholders: the producer (e.g. the government) and the consumers (toll payers). The producer, 

in this context, refers to the entity that incurs the toll-system implementation and operations costs 

– for the sake of traffic congestion management – and collects the toll revenues. The consumers 

are the actual toll-system users who care about obtaining benefits in response to the toll paid; i.e., 

the consumers are the toll payers. 

As indicated in Table 7-8, the overall costs from a producer’s perspective involve the capital cost 

(incurred once) associated with the initial toll-system implementation, in addition to the annual 

maintenance and operations costs. On the other hand, the overall producer benefits consist of the 

monetary value of the network-wide travel time savings as a result of tolling, as well as the toll 

revenues collected. Travel time savings are included as a producer benefit, since it is assumed to 

be the main objective sought by the government via congestion pricing (as a traffic management 

tool), as opposed to revenue maximizing (monopoly) pricing approaches. On the other hand, the 

cost incurred by consumers is the total amount of toll paid; their benefits include the monetary 

value of their own travel time and schedule-delay savings as a result of tolling. Schedule-delay 
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changes are assumed only to concern toll payers; therefore, they are not considered in the overall 

producer benefits, as they do not explicitly affect the traffic network performance. 

Table 7-8: Annual Cost-Benefit Analysis (under Optimized Tolls) from the Perspectives of the Producer 

and Consumer  

Entity 
Overall Costs          

($ Millions) 

Overall Benefits  

($ Millions) 

Benefit-Cost 

Ratio 

Government 

(Producer) 

Capital 

Implementation 

Cost: 

Annual 

Operations 

Cost: 

Toll 

Revenues 

Travel Time 

Savings 

2.15  

(after 1st year) 
88.5 73.2 76.8 80.5 

Total Producer Costs: 

1st year: 161.7 

After 1st year: 73.2 

Total Producer Benefits: 

157.3 

Toll Payers 

(Consumers) 

Toll Paid:  

76.8 

Travel Time 

Savings 

Schedule-

Delay 

Savings 
1.61 

97.2 26.4 

Total Consumer Benefits: 

123.6 

The annual values reported in Table 7-8 for the total toll collected, the monetary value of travel 

time savings network-wide, and the monetary value of travel time and schedule-delay savings 

across toll payers, were calculated based on the corresponding values reported in  

Table 7-5 (under the ‘optimized’ toll structures case). As stressed earlier, the values presented in 

the latter table correspond to the 6:00 to 10:30 am morning period. Therefore, two assumptions 

were made to estimate the savings/revenues that can be obtained annually under the same 

optimal toll strategies. First, it was assumed that the same optimal toll structures will be imposed 

in the morning and afternoon periods (i.e., twice a day), during weekdays (i.e., five times a 

week), and over the entire year (i.e., 52 weeks). The second assumption is that the same 

savings/revenues, reported in  
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Table 7-5, will be attained during each and every (morning or afternoon) tolling period. 

According to those assumptions, the annual savings/revenues – reported in Table 7-8 – were 

calculated by multiplying the corresponding values in Table 7-5 by (two daily tolling periods * 

five weekdays * 52 weeks). 

The producer-related costs, presented in Table 7-8, were calculated based on a report conducted 

by Lively and Rossini (2015), in which the authors developed estimates for the capital and 

operations costs of a distance-based tolling system for the GE and the DVP. The capital costs 

estimated in that report include 1) the roadside costs (associated with gantry structures, toll 

hardware/software and communication devices at each toll point); and 2) the central control 

system costs (associated with the hardware/software to support processing transactions and the 

operational centre staff). The estimated annual costs involve 1) the annual maintenance costs for 

24/7 maintenance of the toll system hardware and software; 2) the annual replacement/upgrade 

fund to perform regular system upgrades; and 3) the annual operational costs for processing toll 

transactions, billing customers and providing customer service (Lively and Rossini, 2015). The 

total length of the eight tolled routes/segments considered in the second tolling scenario (being 

evaluated) is almost double that of the four directions of the GE and the DVP. Therefore, the 

toll-system capital and annual costs (given in Table 7-8) were roughly calculated by doubling the 

corresponding values estimated in Lively and Rossini (2015) for the GE and DVP toll systems. 

As highlighted in Table 7-8, the ‘benefit-to-cost ratio’ from a toll payer’s perspective is 1.61, 

which shows that toll payers benefit from tolling even before toll revenues are spent. The ratio 

attained is well above the unity ratio obtained in the Bottleneck Model, in which the toll replaces 

queueing-delay dollar-for-dollar as a means of rationing road space. This could be attributed to 

the following factors: 1) the schedule-delay savings obtained under fine-tuned tolls, which 

represent around 30% of consumers’ costs; 2) the extra travel time savings achieved on tolled 

routes due to route shifts to parallel arterials; and 3) the decreased toll values (i.e., cost) on most 

tolled routes, after fine-tuning, compared to the initial ‘Bottleneck’ toll values disregarding the 

effect of tolling on parallel arterials. The ‘benefit-to-cost ratio’ from a producer’s perspective is 

2.15. It can also be inferred from the table statistics that the producer’s net benefits attained in 

the first year represent more than 95% of the capital implementation cost. These findings clearly 

indicate that the tolling policies determined through the optimal congestion pricing system – 
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proposed here – offer a win-win solution in which travel times and overall network performance 

are improved, while raising funds to invest in sustainable transportation infrastructure, which is 

desirable from both the public and the government perspectives. 

7.3.3. Final Remarks and Conclusions 

This chapter has presented the design and implementation details of the “Optimal Toll 

Determination – Level II” module, which concludes the full optimal congestion pricing system 

implementation. The details provided in this chapter have demonstrated: 1) the efforts exerted to 

tackle the objective function-related issues through a problem-segmentation methodological 

approach; 2) the challenges associated with integrating and configuring a middleware (to the GA 

platform) for distributed computations on a parallel cluster; and 3) the effectiveness and 

implementation feasibility of the tolling strategies determined through the optimal congestion 

pricing system for a case study in the GTA region. The results and analysis presented 

demonstrate the benefits achieved, at different levels, under the determined optimal tolling 

strategies. The benefits come from the route and departure time shift impacts of distance-based 

variable tolling.  

In fact, the determination of proper pricing strategies to manage traffic demand and congestion is 

challenging in large-scale interconnected congested networks (like the GTA). In the special case 

of tolling specific congested routes in the network, improperly high toll levels might excessively 

send traffic to off-ramps to parallel arterials, which can generate counterproductive results. On 

the other hand, moderate toll levels intended to maintain adequate utilization levels of tolled 

routes and their parallel arterials might not induce the expected rescheduling benefits of variable 

tolling. In other words, the desired behavioural changes in route and departure time choices 

might be contradictory in some situations. Accordingly, variable tolling strategies intended to 

manage traffic congestion – by distributing demand more evenly over time and space – should be 

carefully crafted while considering 1) the criticality/sensitivity of the tolled routes, 2) the traffic 

conditions and available capacity on parallel arterials, and 3) the entire traffic network 

interconnectivity. 

The optimal congestion pricing system developed here provides a new and comprehensive tool 

for optimal tolling strategy determination and evaluation in large-scale networks. The system’s 
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robustness and effectiveness have been examined through simulation-based case studies in the 

GTA region. The results demonstrate that properly constructed and optimized variable tolling 

policies result in moderate route and departure time shifts that bring obvious traffic benefits. In 

conclusion, the tolling policies determined through the optimal congestion pricing tool offer a 

win-win solution in which travel times and overall network performance are improved, while 

also raising funds to invest in sustainable transportation infrastructure. 
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8. Conclusions 

Congestion pricing is widely viewed among economists and practitioners as one of the most 

promising control tools to tackle traffic congestion. A significant body of research has been 

conducted thus far in this area. However, theoretically and/or methodologically sound studies are 

often applied to small or even hypothetical networks, i.e. case studies on large-scale urban 

network models are scarce. Additionally, the tolling scenarios applied in most practically 

oriented studies lack methodological justification. Furthermore, the users’ individual responses 

to pricing (e.g. departure time and route choices) are usually disregarded; if considered, the 

impact of personal and socio-economic attributes on their choices was often not captured. 

This dissertation has focused on developing a system for optimal congestion pricing policy 

determination and evaluation to manage peak period travel demand, while explicitly capturing 

departure time and route choices in a large-scale DTA simulation environment. The system seeks 

the congestion pricing policies that achieve the best spatial and temporal traffic distribution and 

infrastructure utilization to optimize the network performance (i.e., minimize the total travel 

times). 

The system involves a departure time choice model extended to incorporate tolls and schedule-

delay cost components – in addition to driver- and trip-related attributes – for comprehensive 

modelling of the morning peak travel behaviour. Through the extensive travel survey data 

available in the GTA, we have considered the heterogeneity in drivers’ values of (early or late) 

schedule-delay and desired arrival time. The optimal congestion pricing policies are obtained 

through a bi-level procedure. The first level involves determining variable queue-eliminating toll 

structures for congested facilities motivated by the Bottleneck Model of dynamic congestion 

pricing. The second level involves iterative optimization fine-tuning of the toll structures 

determined in the first level to achieve the best possible network performance while considering 

the route and departure time shift impacts of tolling network-wide. The second level uses a 

robust iterative optimization algorithm that is run concurrently (i.e., distributed) on a parallel 

computing cluster.  
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The time-dependent tolling scheme adopted in the congestion pricing system is also distance-

based: each vehicle pays according to the distance travelled on tolled facilities. This tolling 

scheme aims to attain spatial equity besides diminishing the incentives for drivers to slow down 

or stop before specific toll-collection locations. Additionally, it creates an incentive for drivers to 

minimize the distances driven on the tolled routes; a type of behaviour denoted here as ‘partial 

route-shift’. 

Concisely, the developed optimal congestion pricing system consists of the following four main 

modules: 

1. A large-scale calibrated DTA simulation platform, covering most of the GTA region, which 

is used to assess the impact of various pricing options on routing and congestion patterns;  

2. An econometric (behavioural) model of departure time choice that is built and calibrated 

using regional household travel survey data, capturing the heterogeneity of travellers’ 

personal and socio-economic attributes;  

3. The Bottleneck Model for dynamic congestion pricing, which is the theoretical basis of the 

initial variable toll structures determination approach adapted here; and  

4. A robust iterative distributed optimization approach for toll structure fine-tuning to achieve 

the best possible network performance.  

All these modules are integrated and implemented into a single system that incorporates iterative 

optimization of variable tolling while looping between the departure time choice layer and the 

DTA layer until departure time choices and route choices reach equilibrium, under each tolling 

scenario being assessed during optimization. For the system’s large-scale nature and the 

consequent (time and memory) computational challenges, the optimization algorithm is run 

concurrently on a parallel computing cluster. 

The system is intended to be general and applicable to a variety of tolling scenarios (e.g. 

congested highway sections, HOT lanes, and cordon tolls). As a first implementation, it was used 

to determine and evaluate optimal distance-based variable tolling strategies for key congested 

freeways in the GTA region. The impacts were assessed at the regional level, trip level, and the 

tolled-corridor level. Moreover, a cost-benefit analysis was conducted for the two key 
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stakeholders, i.e. the producer (e.g. the government) and the consumers (toll payers). The results 

confirm the robustness and effectiveness of the proposed optimal congestion pricing system. 

8.1. Summary 

Chapter 1 of the dissertation started with a description of the motivation behind this research 

effort. It also highlighted the limitations of existing congestion pricing studies and outlined the 

research objectives. The chapter concluded with a high-level description of the proposed optimal 

congestion pricing system. 

Chapter 2 provided an overview of the main economic models of congestion pricing, along with 

their objectives and implications. A literature review of the state-of-art and the state-of-practice 

of congestion pricing was also provided. The chapter concluded with a summary of the 

gaps/limitations in the dynamic congestion pricing models developed/implemented that 

motivated this research. 

Chapter 3 presented a brief overview of the full optimal congestion pricing system, including the 

four main modules along with their integration and iteration. The chapter also highlighted the 

different input data types provided to the system, i.e. simulation testbed-related data and tolling 

scenario-related data.  

Chapter 4 described the process followed to build, calibrate, and validate a large-scale DTA 

simulation model (covering most of the GTA region) based on the most recently available TTS 

demand data, GTA TAZs system, network geometry information, and loop-detector feeds. The 

chapter concluded with a discussion of the challenges associated with that model. 

Chapter 5 described the details of the departure time choice model integrated to the optimal 

congestion pricing system, including the choice set formulation and the original model variables. 

The chapter then discussed the extensions carried out to incorporate schedule-delay and toll cost 

components in the model, and to re-calibrate the associated parameters. The 

preparation/estimation details of the data required by the model were also presented. The 

implementation details, the convergence criterion, and the model base-case validation results 

were then illustrated. The chapter concluded with a summary of the challenges associated with 

retrofitting and implementing the departure time choice model. 
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Chapter 6 presented the details of the first level of optimal toll determination in the congestion 

pricing system. The chapter started with an overview of the adopted theoretical economic model 

for dynamic congestion pricing, i.e. the Bottleneck Model. After that, the procedure followed to 

identify the congested facilities to be tolled and to calculate their initial toll structures motivated 

by the Bottleneck Model was described. The procedure was then applied and tested on two 

tolling scenarios of major highways in the GTA. The chapter concluded with a general 

discussion and insights driven from the preliminary results of the tested partially optimized 

tolling scenarios.  

Chapter 7 described the second level of optimal toll determination in the congestion pricing 

system. The chapter started with a description of the different optimization problem components 

and the procedure followed to tackle some objective function-related issues. An overview was 

then given of the GA used for optimization and the choice of its parameters. After that, the 

middleware integrated into the optimization platform for distributed computing was described, 

along with the configuration process conducted for the parallel cluster used. The chapter then 

presented the implementation details of the optimization module on the extended tolling scenario 

considered for the GTA (introduced in Chapter 6), after which a comprehensive comparative 

assessment was provided for the same scenario under different situations. The chapter concluded 

with a cost-benefit analysis provided to investigate the implementation feasibility of the tolling 

strategies determined via the proposed optimal congestion pricing system. 

8.2. Major Findings 

The analysis of the flat and variable tolling structures presented in the first GTA tolling scenario 

(Gardiner Expressway) in Chapter 6 led to the following principal findings: 

– In a large-scale interconnected network (like the GTA) where long-distance trips have 

diverse routing options, tolling a relatively short, yet major, highway like the GE creates 

temporal and spatial traffic changes network-wide that go beyond the tolling interval and the 

tolled route. This confirms the importance of conducting the simulations on a regional scale 

for policy determination and assessment. 

– More benefits are gained from departure time re-scheduling due to variable pricing, 

compared to just re-routing as in flat tolling. This emphasizes the importance of the 
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integrated departure time module to the proposed congestion pricing system, to provide 

realistic modelling of users' individual departure time responses to variable pricing policies. 

– Pricing that only induces re-routing (and no departure time re-scheduling), or excessive re-

routing due to, for instance, overpricing, can send excess traffic to off-ramps to parallel 

routes that blocks the off-ramp and backs up onto the main freeway, limiting access to the 

priced road itself. This is not only counterproductive, but also nullifies the very purpose of 

pricing. This emphasizes the importance of variable pricing to mirror congestion patterns 

over time, which is the methodological basis (adapted from the Bottleneck Model) of the 

proposed variable tolling framework. 

– Less congested (early and late) intervals can realistically attract traffic as a consequence of 

variable tolling during the peak period. In other words, the departure time choice process – 

among different intervals – involves trade-offs between travel time cost, schedule-delay cost, 

and toll cost. Moreover, shifts to early intervals are generally higher than late intervals 

because the late arrival shadow price is higher than that of early arrival. 

– Congestion pricing on real-world road networks can have different effects to those suggested 

by studies of single links or toy networks. For example, unlike in the simple Bottleneck 

Model, variable tolling affects not only the cumulative loading curve but also the cumulative 

exit curve. Another example is that imposing a flat toll on a link can actually increase travel 

time on the link because of spillback. 

The analysis of the initial (sub-optimal) toll structures derived for the GTA extended tolling 

scenario (eight tolled routes/segments), in Chapter 6, led to the further following conclusions: 

– The simple and extended tolling scenarios conducted demonstrated the effectiveness of the 

proposed system in 1) determining the initial (sub-optimal) toll structures for congested 

facilities, following the Bottleneck Model dynamic pricing rules; 2) simulating the 

consequent travellers’ route and departure time choice responses through the integrated 

testbed of the departure time and DTA simulation models; and 3) evaluating the network 

performance under each scenario. 

– The initial toll structures determined via the “first level of optimal toll determination” 

module resulted in noticeable overall benefits at different levels. However, further 

adjustments are needed for the toll levels of those structures to optimize the utilization of 
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tolled corridors (and hence avoid the undesired impacts of tolling) and minimize the total 

travel times, while considering the interconnectivity and interdependency among tolled and 

non-tolled facilities in the network. 

The detailed analysis conducted in Chapter 6 furnished important information concerning the 

choice and design of the optimization variables used via the distributed GA for toll structures 

optimization (fine-tuning) in Chapter 7. The optimization algorithm (second level of optimal toll 

determination) was applied on the initial toll structures of the GTA extended tolling scenario. 

The resulting network performance was compared against those obtained under the initial toll 

structures and the base-case. The analysis/comparison conducted in Chapter 7 led to the 

following findings: 

– In the case of a large number of tolled routes (hence optimization variables), the optimization 

algorithm might encounter a quasi-flat objective function issue. i.e., the objective function 

takes close values at various solutions tested during optimization, which makes the search 

process for the global optimal solution extremely challenging and time-consuming. A 

criterion was designed to classify groups of mutually correlated routes and hence optimize 

toll structures on each group separately. 

– The carefully estimated initial (sub-optimal) toll structures, the concise search spaces 

identified for different problems based on the evaluation results of the initial toll structures, 

and the relatively large population sizes used, led to relatively fast GA convergence (i.e., low 

number of iterations to convergence) considering the large-scale nature of the application. 

– Tolled routes have different sensitivity levels to identical toll changes, which emphasizes the 

importance of conducting tolled route-based analysis while considering the parallel arterials 

and the entire corridor vitality within the network. It also emphasizes the significance of the 

toll fine-tuning process 

– As a result of the fine-tuned toll structures, the overall travel time savings achieved – at 

different levels – are higher than those achieved under initial tolls. Additionally, fine-tuned 

tolls avoided the undesired consequences of some initial toll structures, such as underutilized 

tolled route or excessive route shifts to parallel arterials. This was demonstrated through the 

improved utilization levels of tolled corridors observed under fine-tuned tolls, which reflects 

the efficiency of the spatial and temporal traffic distribution resulting from those tolls. 
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– The variable distance-based tolling prompted longer trips to shift to early or late departure 

time-intervals to avoid high tolls. i.e., the longer the trip, the more its start time becomes 

sensitive (i.e., elastic) to variable distance-based tolling policies. This conclusion could be 

generalized to traffic policies affecting travel times or costs. That is, the travel behavioural 

choices (e.g., mode, route, and/or departure time) of long trips are expected to be more elastic 

to variable traffic policies, due to the fact that those trips suffer more from increased travel 

times or toll/fare levels. 

– As a consequence of the trip-length redistribution and the improved travel times during peak 

hours (resulting from variable distance-based tolling), the overall schedule-delay costs 

improved (i.e., decreased) after tolling. Moreover, the schedule-delay savings associated with 

the fine-tuned (lower) toll structures are less than those associated with the initial (higher) 

toll structures, possibly due to the lower absolute departure time shifts observed under the 

former tolls. 

– The desired behavioural changes in route and departure time choices might be contradictory 

in the case of tolling specific congested routes in a large-scale interconnected network (like 

the GTA). High toll levels might excessively send traffic to parallel arterials, which can lead 

to counterproductive results. On the other hand, moderate toll levels intended to maintain 

adequate utilization levels of tolled routes and their parallel arterials might not induce the 

expected rescheduling benefits of variable tolling. Accordingly, variable tolling strategies 

intended to manage traffic congestion should be carefully determined depending on the local 

conditions of the tolled route and its parallel arterials, while considering the entire traffic 

network interconnectivity. 

– As a consequence of the previous remark, the optimal toll levels obtained – achieving the 

best network performance – are clearly lower than the toll rates of the 407 Express Toll 

Route (ETR) in the morning period (average of 0.35 $/km). In other words, congestion 

pricing strategies intended to manage traffic demand, rather than to maximize toll revenues, 

are carefully crafted to alleviate traffic congestion through proper toll levels and are less 

aggressive than revenue-maximizing (monopoly) approaches. 

– The cost-benefit analyses conducted for the two key stakeholders indicate that:  

o Toll payers benefit from tolling even before toll revenues are spent,  
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o The producer’s net benefits attained in the first year represent more than 95% of the 

toll-system capital implementation cost, and  

o The producer’s benefit-to-cost ratio exceeds 2.  

Therefore, the tolling policies determined through the optimal congestion pricing tool offer a 

win-win solution in which travel times and overall network performance are improved, while 

also raising funds to invest in sustainable transportation infrastructure. 

In conclusion, the queueing-delay savings – hence, restored capacity and improved utilization 

levels – resulting from the optimal tolling strategies determined, are attributed to the following 

behavioural impacts of tolling: 

1. Route shifts to free (parallel) arterials, especially during the tolling periods. 

2. Partial route shifts amongst tolled routes’ users; i.e., less distances driven on tolled routes 

by tolled routes’ users in response to distance-based tolling. 

3. Departure time rescheduling amongst tolled routes’ users.  

4. Shorter lengths, hence shorter distances driven on tolled routes, of trips made during peak 

hours as a result of distance-based variable tolling. 

8.3. Research Contributions 

The research presented in this dissertation provides an innovative full-fledged system (tool) for 

the optimal time-dependent toll-strategy determination and evaluation in large-scale networks. In 

particular, the system carefully determines and evaluates the tolling strategies resulting in the 

best spatial and temporal traffic distribution (i.e., route and departure time choices) that works 

towards eliminating congestion (queueing-delay) and minimizing the total travel times. In brief, 

this study contributes to the state-of-the-art of congestion pricing through the following aspects:  

1. Designing a system for optimal congestion pricing determination and evaluation in large-

scale networks. 

2. Developing the different system modules for the GTA region. Each module was 

implemented by either: a) developing certain component (from scratch) based on the most 

recently available GTA data, b) retrofitting exiting models to meet the current research 
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needs, or c) designing a practical procedure that is motivated by an existing theoretical 

model. 

3. Integrating the large-scale computationally intensive modules developed, which involved 

massive communication (i.e., input and output data exchanged) and multiple iterations 

performed among different modules. 

More specifically, the research presented involves important contributions in many areas, such 

as:  

1. Developing the optimal congestion pricing system through integrating distinct modules. This 

entails two significant characteristics of the system:  

a. Any module can be upgraded/replaced separately without the need for rebuilding the full 

system. i.e., each module can be altered locally (upon need) without affecting the overall 

implemented system structure and integration. 

b. Any module can be detached (i.e., not utilized) from the integrated system if it is not 

needed in certain context. For instance, the ‘optimal toll determination’ modules can be 

detached if the purpose is to evaluate the impact of a certain variable pricing policy, 

rather than to determine the optimal one. In this case, the variable pricing policy (to be 

evaluated) is directly given as input to the integrated testbed of departure time choice and 

DTA simulation models, and so on. 

2. Incorporating a three-level nested feedback structure in the large-scale optimal congestion 

pricing system and determining proper convergence criterion for each level. Unlike one-shot 

solution approaches, the multiple feedback levels allow for more realistic modelling of the 

interaction (interference) among individuals’ choices. 

3. Building, calibrating, and validating a large-scale DTA mesoscopic simulation model 

(covering most of the GTA region) based on the most recently available demand data, GTA 

TAZs system, network geometry information, and loop-detector feeds. This involved the 

following: 

a. Extracting time-dependent OD matrices (having over 40 million cell records) from the 

2011 TTS data survey and adding the background demand for realistic modelling and 

results. 
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b. Conducting data processing and analytics techniques to process the raw output data of the 

simulation model and to extract useful information for policy evaluation. 

4. Simulating commuters’ departure time choices through an econometric model that considers 

drivers’ personal and socio-economic attributes, in addition to the travel times and costs of 

different choices. This was performed by extending a behavioural model developed at the 

University of Toronto that describes departure time choice in the GTHA, through the 

following major steps: 

a. Updating some model parameters to match the 2011 TTS survey dataset. 

b. Integrating toll and schedule-delay cost components and recalibrating the associated 

parameters. 

c. Preparing a database for driver-related attributes of the GTA morning commuting trips, 

while considering background trips. The attributes were extracted from the TTS 2011 

survey dataset. 

d. Developing an algorithm to identify the model commuting trips properly, and extract 

their records from the prepared database. 

e. Preparing the network-related attributes (viz. times, distances, and costs) required by the 

departure time choice model via processing the output of the DTA simulation model. 

f. Validating the output of the adjusted/retrofitted model against the base-case observed 

departure time choices. 

5. Deriving the initial toll structures based on a conceptual model of dynamic congestion 

pricing, i.e. the Bottleneck Model. This involved designing a practical methodological 

approach/criterion to perform the following: 

a. Estimate the queueing-delay pattern and identify the peak period start and end times. 

b. Determine the congested routes that need to be tolled and estimate their initial toll 

patterns. 

c. Apply a toll structure smoothing procedure to avoid abrupt toll changes. 

6. Developing evaluation criteria for the different tolling scenarios through network-wide, trip-

based, tolled corridor-based comparative statistics. Additionally, a criterion was developed 

and used to measure the route utilization level at different time-intervals. 
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7. Applying a distributed genetic optimization algorithm (GA) to adjust/fine-tune the initial toll 

structures (estimated based on the Bottleneck Model rules) for the sake of optimal utilization 

of tolled and parallel routes, as well as minimal total travel times network-wide. This 

involved the following: 

a. Harnessing the evaluation results of the initial toll structures to provide the GA with 

concise search spaces for faster and more efficient evolution. 

b. Developing an innovative methodological approach to identify the correlated routes/parts 

of the network. This approach could be employed for other traffic planning purposes. 

8. Distributing the computations of the GA on a parallel cluster for the system large-scale 

nature and the consequent (time and memory) computational challenges. To that end, the 

distributed computing feature – in the GA software package used – was upgraded by 

integrating and configuring a Java-based middleware for distributed in-memory processing. 

The integrated middleware eliminates the system’s dependency on certain (local) physical 

clusters, and makes use of online shared memory and computing resources possible, 

depending on the requirements of the application under consideration. 

9. Implementing the (full) optimal congestion pricing system developed through an extended 

scenario of tolling multiple highways in the GTA region. The evaluation process of the 

variable tolling strategies determined involved a thorough quantitative analysis of their 

impacts on the entire network; the tolled corridors and their users; and the tolled routes and 

their users. Additionally, a cost-benefit analysis was conducted from the perspectives of the 

producer and consumers in order to appraise the implementation feasibility of the determined 

tolling strategies.  

8.4. Future Research 

The research presented here can be further extended and improved in several ways. The 

following are suggestions for future research: 

1. Considering multi-class traffic assignment through heterogeneous (rather than single) VOT 

assumption in the route choice model, in order to avoid biased estimation of network 

performance under hypothetical tolling scenarios (that are not necessarily optimal). This 
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would require a modification of the DTA simulation software used or using other DTA 

software that would allow for multi-class assignment. 

2. Including the OD demand of transit on-street vehicles (e.g. buses and street cars); this would 

entail developing/integrating the details of the transit networks in the GTA and a transit 

assignment module into the DTA simulation model. This step is important for a more 

realistic evaluation of tolling strategies involving surface streets (e.g. cordon and area tolls). 

3. Including the OD demand of trucks. This would entail additional analysis for truck tolling-

related attributes (e.g. Value of Freight Transport Time). For instance, the analysis conducted 

in Lively and Rossini (2015), to investigate different tolling options for the GE and the DVP, 

suggests that the toll rates of heavy vehicles (trucks) should be twice as much as those of 

light vehicles. 

4. Extending the optimal congestion pricing system by considering other possible behavioural 

responses of tolling; e.g. mode-choice, destination-choice, foregoing trips, and induced trips 

due to travel time savings. Considering joint models for various behavioural responses (e.g., 

mode and departure time choices) might also bring more realistic results. Changing the 

destination or foregoing trips that are less likely to happen with morning commuting (work or 

school) trips, at least on the short-to-medium run before longer-term decisions such as 

residential and work location changes are contemplated. Nevertheless, mode-shifts to other 

competitive transit alternatives (in terms of travel times and costs) are more likely to occur, 

depending on their available capacity. In the GTA, the transit system is currently as busy as 

the roads during the rush hours. 

5. As highlighted, the auto cost parameter might not be ideally suited for tolls. Accordingly, the 

departure time choice module can be upgraded by re-estimating the model based on future 

stated preference data surveys incorporating toll information, in addition to the existing 

revealed preference information in the TTS surveys. 

6. Investigating the impact of using unequal tolling intervals; i.e., shorter intervals for peak 

hours and longer intervals for the off-peak period. This is expected to provide better demand 

management (control) during the morning period. 

7. Developing an online toll regulator module, through which real-time traffic measurements, in 

every time interval, would be used to update, if necessary, the optimal link toll values during 

that interval. The purpose of this module would be to account for any unexpected traffic 
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disturbances. For instance, if traffic conditions deteriorate on a certain tolled route, an 

incremental increase in toll can be added to restore optimal conditions, while considering the 

traffic state on parallel arterials. Regulation time intervals should be carefully designed in 

order to achieve prompt tackling of unexpected (i.e. non-recurring) traffic disturbances. 

8. Conducting revealed preference surveys to collect more accurate information about the 

desired arrival times of morning trips. 

9. Estimating the ‘extra’ anticipated benefits achieved from the ‘restored capacity’ due to 

hyper-congestion elimination through variable tolling. This requires a modification of the 

traffic flow model used in the DTA simulation software, in order to feature the ‘capacity 

breakdown' at the critical density explicitly. 

10. Investigating drivers’ perception and behavioural responses towards variable tolling policies 

in the afternoon/evening peak period. 

11. Including traffic-related externalities other than congestion; for example, pollution, 

greenhouse gas emissions, noise, and safety. 
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