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Centralized management provides benefits for cloud providers in terms of efficient and

simple management of their infrastructure. However, tenants who use these infrastruc-

tures to deliver a software service to the end-users, are handicapped by having to work

with traditional network primitives. Current service orchestration tools can automate

most of the service configuration and deployment process, but these do not yet include

significant SDN capabilities. In this thesis, we propose and examine high-level abstrac-

tion models for the orchestration of distributed cloud applications over multiple network

domains and multiple infrastructure providers. We provide cloud application developers

with a set of useful network functionalities that require no programming effort to pro-

vision and use. Our design relies on Hyperexchange, a protocol-agnostic exchange point

for peering of virtual networks, to enable orchestration among multiple virtual network

providers.
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Chapter 1

Introduction

The Internet initially evolved to deliver a specific task: universal reachability; and ap-

plication developers have benefitted from this capability through a simple interface, that

is End-to-End sockets. This model greatly simplifies the development of applications by

abstracting every other detail about the network from the perspective of an application

developer and led to the seminal client-server applications on which we now rely. To

make the end-to-end packet delivery possible at a universal scale, the Internet started

with a set of greedy architectural elements:

• At Layer-2, The main mechanism to avoid loops is Spanning Tree Protocol which

leads to removing links and wasting capacity.

• The basic routing mechanism at Layer-3 for both Inter-domain and Intra-domain

levels is the shortest-path algorithm.

• There is no resource management mechanism but a blind congestion control is

exerted at the bottleneck links.

• There is no central access control and the Internet is fundamentally open. Every

endpoint can send any amount of traffic to every other endpoint unless it is limited

by the infrastructure.

1



Chapter 1. Introduction 2

Over the past three decades, to meet any new requirement, these initial Internet

principles have been patched by introducing new protocols and middleboxes. These

patches have made the Internet a diverse collection of artifacts based on a few greedy

principles, which has become very complicated and difficult to change. Moreover, the

ever-growing scale of the Internet, both horizontally and vertically, has clearly shown the

severe inefficiencies of the current architecture. Due to the greedy path selection, 60%

of the paths in the entire Internet violate the triangle inequality [10]. Network Service

Providers typically over-provision the capacity of their network to virtually mask failures

from their clients and links are typically provisioned to 30-40% average utilization [53]. In

multi-domain scenarios, the blind end-to-end congestion control usually leaves significant

spare capacity at the inter-connection points. A recent study on the interconnections

points in the US has revealed that the aggregate peak utilization across interconnects is

roughly 50% [35].

The rise of cloud computing and especially distributed computing has introduced a

set of applications with new requirements that were never anticipated at the beginning

of the Internet. These applications demand far more services than just merely delivering

packets, but the Internet is incapable to adapt due to its ossified architecture.

Software defined Networking (SDN) promises to simplify network innovation by sep-

arating the control logic from the underlying switching elements and offering a pro-

grammable centralized view to the network engineers. Software Defined Infrastructure

(SDI) takes a further step by offering programmable control over all the consumable

resources in a cloud environment. Since the early rise of these concepts, some valu-

able achievements have been made in the enterprise networks towards increasing effi-

ciency and reducing failure rates and thus lowering the operational costs. Companies

like Google and Microsoft have almost doubled their WAN utilization by means of cen-

tralized control [51,53,69] and can avoid most of the common failures by automating the

infrastructure management procedures [65].
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Software Defined Infrastructures promise to redefine the network foundation of au-

tonomous carrier networks and Internet Service Providers (ISPs) towards integrated and

multi-tenant clouds offering programmable and fine-grained resources including but not

limited to virtual networks. In this new model, the traditional role of ISPs can be segre-

gated into two roles: Infrastructure Providers (InPs), who provide virtualizable network

infrastructure and Service Providers (i.e. tenants) who use virtual networks to provide

services for end-users [28].

1.1 Problem Statement

The paradigm of centralized management has delivered clear benefits for the cloud

providers regarding the efficient and simple management of their infrastructure. How-

ever, tenants who use these infrastructures to deliver a software service to the end-users,

are still given the traditional network primitives. Current service orchestration tools can

automate most of the service configuration and deployment process but there is yet al-

most no influential presence of SDN capabilities in these tools. The following reasons

can be pointed as the main roots of this limitation:

Additional Complexity: SDN can make the job of network engineers easier since

they are the front-line of dealing with the complexities of network management. But

for application software engineers who have been using networks through imperfect but

simple end-to-end sockets, SDN brings yet another piece of complexity that often seems

unnecessary to them. This view is supported by the five years of continuous development

and operation of the SAVI Testbed [56], a nation-wide deployment of the SDI concept.

It is observed over time that network programming is practically inconvenient and error-

prone for most tenants, who are not generally familiar with SDN and networking details.

Thus, realizing the capabilities of programmable networks [74] is not achievable, unless

higher-level abstractions are provided that give tangible benefits specifically for cloud
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Figure 1.1: Peering of two virtual network from different SDI providers

application developers. It is worth mentioning that defining simple interfaces targeting

common application developers is completely different than making new programming

abstractions that target network engineers. Programming abstractions for SDN is ex-

tensively studied in the literature [38,63,83,95,108,109,112] while an abstraction model

that provides easy-to-use network primitives for cloud users yet is missing.

Limited Scope: Even though some providers can give enhanced network capabilities

to their tenants, still the common denominator of different infrastructure providers is not

more than the very basic networking primitives that were traditionally available before

the advent of SDN and SDI. Real world cloud applications often require getting deployed

over multiple providers for better geographical coverage and to enable cost optimization

strategies. In these scenarios, developers must forego those occasional SDN benefits given

by only some of the providers.

Technology Diversity: Even in the cases where some advanced networking services

are commonly offered by multiple providers, each provider may use different technology

enablers to provision that specific service. As an example, Software Defined WANs

are one of the common SDN-powered services offered by various infrastructure providers.
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However, due to the diversity of the technologies being used by these providers for network

slicing and virtualization, it is simply not possible to provision a SDWAN over multiple

providers. As depicted in figure 1.1, both SAVI and GENI can provide Layer-2 SD-WANs

for their tenants. In SAVI, MAC-based ACLs are used for network slicing and isolation

among different tenants While GENI uses VLAN segmentation for network slicing and

due to this difference, it is not possible to provision end to end Layer-2 WANs over both

testbeds. In general, traffic exchange among multiple providers is not currently possible

except for traditional IP networking on both sides and therefore, going beyond the scope

of a single provider will limit tenants to the basic IP networking provided by the Internet.

1.2 Research Goals and Requirement Analysis

In this thesis, we propose and examine high-level abstraction models for the orchestration

of distributed cloud applications over multiple network domains and multiple infrastruc-

ture providers. The following major steps are required to be taken towards this goal:

• A high-level representation is needed to precisely model distributed cloud applica-

tions and their networking requirements. The model should be expressive enough

to encompass advanced networking features provided in an SDI. Also, it should

be intuitive for the cloud application developers to easily provision and consume

those advanced features using the proposed model without requiring them for any

programming effort.

• A clear mapping is required from the proposed model to the detailed configuration

and control rules in an SDI environment.

• The mapping procedure should be extended to support multi-domain and geograph-

ically distributed SDI deployments and to possibly include multiple autonomous

providers.
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We base the high-level application-oriented orchestration model on the Intent Driven

Networking (IDN). IDN promises to automate network management procedure and pro-

vide a set of provisionable network configuration primitives. This model, which initially

appeared in ONOS platform, hides the unnecessary details of the underlying infras-

tructure from users and allows them to customize network configuration using intents,

without needing to program their network [54].

A proper IDN framework for multi-domain SDIs must address certain requirements

that pertain to multi-tenant geo-distributed cloud environments:

Simple Abstraction: Simplicity is the central motivation for Intent Driven Net-

working. SDI users must be able to customize their network without having to be aware

of the underlying network topology or the challenges related to programming a network

controller. Intents should be abstracted as distributed and logical networking services

between any set of resource endpoints. The framework must translate the intent setup

requests to a set of low-level network control and configuration updates and enforce them

upon the network topology.

Multi-domain Scale: The existing intent frameworks are not designed for multi-

domain geographically-distributed SDN deployments (e.g. SAVI Testbed or Google B4

[53]). In these environments, each domain has an autonomous local controller to meet the

control plane response time requirements in the local network. An intent framework for

these environments must install and maintain end-to-end network intents over multiple

domains and hence over multiple control platforms.

Data-path Performance: Due to data-path performance requirements, these con-

figurations cannot be applied using encapsulated overlay tunnels over IP. For example,

the SAVI Testbed is comprised of data-path elements with up to 10 or even 100 Gbps of

bandwidth. Data-path performance of encapsulated overlay tunnels falls far below this

requirement.

Tenant Isolation: Isolation across tenants is a crucial requirement in multi-tenant
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environments. Therefore, the intent framework must avoid cross-contamination of intents

requested by different tenants.

In order to extend our model to support multi-provider scenarios, providers with

diverse technology enablers should get involved in an end-to-end setup. The need for in-

teroperability among different providers requires versatile and extensible exchange points

to interconnect autonomous SDIs. Such an exchange point should address the following

requirements:

Protocol Agnostic Exchange Points: A central feature of SDI architecture and a

Virtual Network Environment is the customizability and thus heterogeneity of network

protocols and logic [28]. As a result, exchange points must be introduced to provide

exchange services for different types of networks independent of the protocol being used.

Extensibility and Flexibility of Peering: To provide on-demand peering and

traffic exchange services, exchange points must enable rich functionalities on network

traffic that can range from a simple modification of header values to a complex, stateful

Deep Packet Inspection system. The OpenFlow [80] protocol is a proper solution for

fine-grained traffic forwarding. However, relying on a hardware switch as the only packet

processing pipeline will narrow down the network functionalities of an exchange point to a

limited set of header modifications. Thus, software-based packet processing frameworks,

such as P4 [22] or DPDK [52], are needed to overcome OpenFlow limitations. To this

end, the exchange point architecture must include processing resources in addition to

pure networking resources.

Multi-tenancy: Policy enforcement at the exchange point should not be limited

to the providers. Tenants (i.e. owners of VN’s) should also be able to define their

desired exchange policies so that end-to-end orchestration over VN’s can be possible.

An important requirement to realize this feature is a well-defined network flow space

authorization at the exchange points that can isolate incoming or outgoing traffic of

VN’s from each other.
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Figure 1.2: Use of HyperExchange for virtual network peering across different SDI providers

1.3 Thesis Overview

The next chapter gives a background of the foundation concepts including SDN, SDI,

and it also discusses previous works regarding multi-domain orchestration and network

management.

In Chapter 3 we begin with a straw-man architecture for multi-domain orchestration

with idealistic assumptions. Based on the architecture we propose a graph-based abstrac-

tion model for user-defined intents with a generic intent compilation algorithm that can

take provider intents into consideration. The chapter finishes by discussing the practical

limitations of this initial proposal and the required changes.

In chapter 4 we present HyperExchange [12], a protocol-agnostic and software defined

exchange fabric for peering of Infrastructure Providers and their hosted virtual networks.

It provides inter-domain tenant authentication and authorization for network control and

is architected as an autonomous SDI node that inter-connects participating networks.

A novel data model is provided by HyperExchange to specify heterogeneous networks

in a uniform way. Once networks are specified, a tenant can define policies to allow

traffic exchange and enable peering of networks. This chapter continues by presenting a

prototype implementation of HyperExchange that is deployed between SAVI and GENI

testbeds (Figure 1.2). This prototype is an extension of the SDI-manager reference
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model written in Python. In the current implementation, the user can specify a VN

using a network specification API. The authorization module uses a private API to get

VN attributes and to authorize the specification. The current implementation supports

a combination of OpenFlow actions as the policies described by user. The authorization

module uses remote APIs for network specification requests but for policy flow entries,

it uses local specifications of network domains.

In chapter 5 we present MD-IDN [14], a framework for scalable multi-domain IDN. We

extend the compilation algorithm presented in chapter 3 to achieve scalability in multi-

domain networks: First, user-defined intents are processed over an abstracted multi-graph

of network domains and their interconnections, and a set of local intents is then generated

for each of the involved domains. Afterwards, the local intents will be compiled and

installed in local regions in parallel. MD-IDN is deployed as a public service in the SAVI

Testbed over more than ten data centers spanning across Canada. In multi-domain, large-

scale environments, our experiments show that MD-IDN can improve intent compilation

time by at least one order of magnitude.

Chapter 6 includes five use cases of networking features enabled by MD-IDN: SD-

WAN, Distributed Virtual Router, Distributed Firewall, Tapping, and Service Function

Chaining. It then continues with an evaluation of these use cases in the SAVI testbed.

We present the thesis conclusions in Chapter 7 and we identify the future directions

of our research.



Chapter 2

Background and Related Work

In this chapter, we review the recent efforts towards programmable networks and in-

frastructure and discuss their real achievements. We start with an overview of Software

Defined Networking, its main principles and its major use cases and achievements in

the past few years. We then provide an overview of the concept of Software Defined

Infrastructure and continue by providing architectural details about two of the major

testbeds that have realized the SDI concept. In the last part, we will cover prior efforts

for multi-domain network management and end-to-end orchestration.

2.1 Software Defined Networking

The core idea behind Software Defined Networking is breaking the vertical integration

of control logic and data forwarding in network switches and routers. Through this

separation between the control plane and data plane, network switches become simple

forwarding elements that are controllable by a (logically) centralized remote controller

(Figure 2.1). In an ideal SDN deployment, network engineers and operators would no

longer be required to manually configure network devices using limited and vendor spe-

cific interfaces; instead we can write an application program that is integrated with the

controller and installs the required flow entry rules in the switches. This transformation

10
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Figure 2.1: Conceptual Model of a Software Defined Network

simplifies the laborious task of network management to writing software programs to

control the entire network, and as a result, it reduces the barrier to innovate in com-

puter networks. Since the advent of SDN, its principles have been incorporated in many

enterprise networks and led to better efficiency and simplicity in the operation of their

underlying network [51, 53, 65, 69]. Among the many proposed control platforms for

SDN, Open Networking Operating System (ONOS) [18], OpenDaylight (ODL) [82] and

Ryu [99] are the major open source projects that are currently under continuous develop-

ment and support. Ryu is a light-weight platform written in Python mostly being used for

experimental purposes. ONOS and OpenDaylight on the other hand are enterprise-level

controllers written in Java, and both are supported by the Linux Foundation.

2.1.1 Southbound Protocol

Currently, the OpenFlow protocol is the de facto choice for southbound interaction be-

tween the controller and the underlying switches. An OpenFlow switch has an OpenFlow

agent that receives and interprets the OpenFlow messages coming from the controller,
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and at least one flow table that stores flow entry rules. Each entry consists of matching

criteria, an action list and a set of counters. Despite its vast integration in almost all

the current Software Defined Networks and SDN controllers, OpenFlow has the following

shortcomings:

• Even though OpenFlow is drafted up to version 1.6, current hardware switching

fabrics mostly support only the initial version (e.g., 1.0) and partially cover some of

the OpenFlow 1.3 features. Other versions are only supported in software switches

(i.e., Open vSwitch - OVS).

• OpenFlow was initially designed for network control that includes setting the

forwarding rules in the switches and changing the forwarding behavior of a pre-

configured network. However, OpenFlow cannot modify the network configuration

such as adding or removing ports and tables or any other device settings in the

network. This limitation becomes more critical in virtual environments (i.e., cloud

infrastructure providers) where configurations can change on-demand. To resolve

this limitation, network controllers should support additional southbound protocols

such as NetConf or OVSDB protocol.

• The set of available matching criteria and possible actions in addition to the multi-

table capability in OpenFlow 1.1 and later, gives an incredible flexibility to alter

the forwarding behavior of an SDN. However, OpenFlow is fundamentally inca-

pable of sophisticated packet processing such as stateful forwarding or conditional

pipelines and an alternative solution should be used regarding these requirements

(e.g., P4 [22] or Click [64]).

2.1.2 Northbound Abstractions

SDN controllers provide northbound APIs for interaction with external softwares or func-

tionality extensions by network engineers and developers. To simplify network application
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development, many projects have tried to define intuitive and high-level domain specific

programming languages for SDN [63, 95, 110]. Even though these proposals can greatly

simplify network programming, none of them is fully adopted by the major open source

SDN controllers.

2.1.3 Intent NBI

The concept of programmable network control has been recently directed towards the

definition of high-level intent NBI [30, 107] and Intent-Driven Networking is recently

gaining interest. All major SDN control platforms are now providing an intent North-

bound Interface (NBI) as a high-level abstraction for network management. With these

frameworks cloud users and network operators can conveniently define “what needs to be

done”, rather than “how it should be done”. There are currently many efforts towards

implementation and integration of Intent-based networking in SDN platforms [6–8].

2.2 Software Defined Infrastructures

As depicted in Figure 2.2 SDI builds upon both SDN and traditional cloud computing by

providing an abstraction from the underlying infrastructure resources, exposing control

over compute, network, storage, and other resources via a programmatic interface [59].

In this environment, computer networks can provide services beyond a simple packet de-

livery. Applications can be deployed dynamically across multi-region and geographically

distributed clouds in which resources can be provisioned on-demand, chosen among a

variety of types including compute, storage and networking.

SDI promises to redefine the foundation of carrier networks and Internet Service

Providers (ISPs) towards integrated, multi-tenant clouds that offer programmable and

fine-grained resources, including but not limited to virtual networks [58, 71, 86, 102]. In

this new model, the traditional role of ISPs can be separated into two roles: Infrastructure



Chapter 2. Background and Related Work 14

Figure 2.2: Conceptual Model of a Software Defined Infrastructure

Providers (InPs), that provide virtualizable network infrastructure; and Service Providers

(i.e. tenants) that use virtual networks to provide services for end-users. There is now an

opportunity for a Service Provider to deploy its Virtual Network over multiple InPs, thus

achieving greater geographic coverage and creating new cost optimization strategies.

2.2.1 SAVI Testbed

The SAVI testbed is a multi-tenant Software-Defined Infrastructure (SDI) composed of

heterogeneous resources including virtual machines, bare-metal, FPGA and GPU servers

connected through virtual networks. Users manage their resource slices through pro-

grammatic interfaces (i.e., APIs). The testbed is comprised of twelve regions spanning

from the Postech Edge in South Korea to several other university edges in Canada, more

specifically two core data-centers located in Toronto and ten other university edge regions.

Figure x displays the current geographical deployment of the SAVI testbed.

In each region of the testbed, the network data plane follows a simple leaf-spine

topology enabled through physical and virtual OpenFlow supporting switches. However,

data-path elements within different regions may vary based on the supported OpenFlow

version ranging from 1.0 to 1.3, as well as based on the bandwidth capacity ranging
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Figure 2.3: SAVI Testbed data centers as of June 2017

from 1 Gbps to 100 Gbps. Furthermore, among different regions, the data plane is

interconnected through 1 or 10 Gbps dedicated links. This technological diversity and

ranging capacities of the links and switches represents a natural outcome of evolution

over time, and it is yet a challenge to be dealt with in practical scenarios.

The management plane in the SAVI Testbed is distributed with each region having

its own autonomous SDI management system [87] that communicates only with a central

identity management system. In each region, the SDI Management system controls the

corresponding resource controllers to provide a compatible interface and configuration

for each specific infrastructure resource. Figure 2.4 shows the architecture of a SAVI SDI

node, which is designed for joint management of cloud and networking resources. The

design of the SAVI node leverages the open-source cloud computing platform OpenStack

[101], and the de facto standard SDN protocol OpenFlow [81]. While an out-of-the-

box deployment of OpenStack only supports the virtualization of traditional computing

resources (e.g., CPU, memory, and storage), in SAVI testbed it is extended to support

unconventional resources including FPGAs and GPUs by adding new device drivers.
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Figure 2.4: The Architecture of a SAVI Node

From a networking perspective, each region is an autonomous SDN domain with

a separate controller. Having a dedicated SDN control platform for each domain is a

typical design practice in large-scale and widely distributed SDN deployments. This

practice allows the internal network control per domain to be independently working

and the controller response time to intra-domain network events is minimized. In each

domain, the controller is only aware of the internal topology and the interconnection

points to the other domains.

Users can benefit from SDN capabilities by using user-flows in SAVI SDI. This feature

allows users to enforce their forwarding policies to the endpoints that they own. By

leveraging this API, users can perform RESTful requests to match a flow and perform a

set of actions on it. User-defined SDN applications are enabled on SDI using the Network

Control Module, a technology-agnostic SDN platform with access to infrastructure-wide

information [74]. Tenants are defined in form of separate projects in SAVI SDI and

users can participate in multiple projects. All the resources in a project including the
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Figure 2.5: Map of the GENI Testbed [4]

networking resources are isolated and protected against other projects.

2.2.2 GENI Testbed

GENI, the Global Environment for Networking Innovation [20], is a distributed testbed

sponsored by the U.S. National Science Foundation (NSF) for the development of future-

oriented network experiments. The initial efforts for the testbed design goes back to 2005

and 2006, essentially before the rise of SDN. GENI is built on the federation of regional

campus networks and racks across multiple sites and universities in the U.S. (Figure 2.5).

It provides sliceable resources for experimenters to examine new network models and

Internet architectures. Sliceability here means the ability to slice and virtualize a set of

resources with a degree of isolation among different experimenters. The set of resources

allocated for a specific experiment is called slice and each individual resource is an sliver.

Unlike in SAVI, layer-two networks in GENI are isolated using VLAN tags. To setup

a layer-two connection between VMs, a user must define a topology in the form of an

Rspec and pass it as a request to the Stitching tool. This tool, acting as an orchestrator,

will then call Aggregate Managers involved in the topology to request the necessary

resources, including VMs and VLAN tags.
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2.3 Multi-Domain Orchestration

Real-world applications can involve multiple service providers due to the geographical

distribution of the end users or to optimize the cost of service delivery. End-to-end

orchestration is a challenge when orchestration has to be done among multiple cloud

regions that possibly have different authorization domains and control logic. In this

section, we will review the key technology enablers as well as the recent studies regarding

multi-domain orchestration and network management.

2.3.1 Software Defined Exchange

The increasing prevalence of Intern Exchange Points (IXP) [26] has made the Inter-

net topology denser and flatter [24, 33, 42, 72]. Traditional IXPs are comprised of a

shared Layer-2 switching fabric that interconnects more than two autonomous systems [9].

Through this Layer-2 fabric, gateway routers of the participating networks can exchange

BGP routes and normal traffic. In the initial deployments, different AS pairs had to

separately initiate a BGP session to exchange their reachability information. A Central

Route Server was proposed to improve the architecture by eliminating the need for AS-

to-AS sessions [97]. In the new architecture, each participating network initiates only

one session with the route server.

Software Defined Exchange points (SDX) are proposed to enable incremental innova-

tion in the Internet inter-domain connections [37]. SDX replaces the central route server

with an OpenFlow controller as well as the underlying switches with OpenFlow-enabled

switches (Figure 2.6). The first SDX implementation was mainly able to alter the default

BGP route by giving an illusion of a virtual OF switch to each participating network [48].

Later, the industrial scale SDX was introduced to improve scalability issues regarding

the first SDX architecture [46]. After the first introduction of SDX, it has been studied

in many other recent works [77, 105] with the goal of providing flexible inter-domain
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Figure 2.6: Conceptual model of a Software Defined Exchange Point

routing for carrier network operators.

2.3.2 End-to-End Routing

Given the capability of SDX, it is now possible to propose centralized and programmable

approaches for inter-domain routing. In [68] Control Exchange Points (CXP) are used

to stitch inter-domain paths over the IXP multigraph which is an abstraction of the

Internet topology with IXPs as vertices and edges are the virtual links between IXPs

over an AS (Figure 2.7). CXP provides more path-diversity compared to the default set

of BGP-based paths which follows valley-free routing policies [39,40].

There are also other works to centralized inter-domain routing using SDN [67] or via

a small set of brokers [73]. In [17], the potential of multipath routing is studied for the

case of centralized inter-domain routing. A case of multi-provider embedding of service

function chains is studied in [34] which is mainly concerned with the optimization of

allocation and placement. Also, an emulation of Intent-based management of multiple

OpenFlow/SDN domains is proposed in [25].
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Figure 2.7: The role of Control Exchange Points to stitch inter-domain paths over the IXPs

2.3.3 Current Orchestration Platforms

Over the past few years, there have been several works around moving the architecture

of legacy carrier networks towards integrated clouds and datacenters [58, 71, 86, 102]

offering on-demand resource provisioning and automated orchestration. As a result of this

evolution, cloud service orchestration has been studied in many recent works [16,75,92]

as a challenge and yet a potential for future distributed applications. These works have

essentially focused on orchestration regarding efficient placement or service modeling in

a single cloud region

Cloud brokers are considered as a solution for orchestrating services over multiple

service providers [89, 111]. However, this model does not necessarily address inter-

domain authorization, peering and routing problems between multiple autonomous ser-

vice providers.

There are enterprise orchestration tools such as Cloudify [1], ansible [50], JuJu [3], pro-

viding automation for deployment and configuration of a software stack. Also, Heat [2]

is the main orchestration component in OpenStack. Docker Swarm [98] and Kuber-



Chapter 2. Background and Related Work 21

netes [15] are container orchestration tool and could be used when the entire software

stack is containerized as a group of micro services.

2.4 Remarks

Current IDN frameworks pose two main limitations that affect deployment in production

grade and multi-domain networks. They are mainly concerned with a single network

domain, and thus enabling end-to-end network intents over a multi-domain and large-

scale setup is still a challenge. Furthermore, these frameworks do not consider any

differentiation between user intents and provider intents, and only a limited set of intent

classes are available for both.

Current SDX proposals mainly target the traditional all-IP participating networks

and provide policy enforcement capability for the operators of the participating ASes.

However, the ability to peer heterogeneous virtual networks with different protocol stacks

is yet to be studied.

All of the current orchestration tools are mainly concerned about modeling and de-

ployment of an application service and they rely on the legacy IP networking primitives.

In multi-domain cases, GRE or VXLAN encapsulation are created over the underlying

IP connections which inherits all the main limitations of IP networks.
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The Straw-man Proposal

Cloud service orchestration involves the process of provisioning resources as well as con-

figuration and deployment of application services in an automated way. This process

should ideally include monitoring and performing possible reconfiguration based on the

real time measurement results. Our focus is essentially on the end-to-end network man-

agement of a distributed cloud application and the main goal is to provide multi-domain

network orchestration for these applications.

3.1 Design principles

In this part we discuss two main principles followed to design an end-to-end orchestration

platform as well as their justifications:

The first principle is basing the abstraction model on an Intent-based API rather

than a fully programmable SDN. Software Defined Networking allows users to control the

network using programmable control and configuration APIs. However, in multi-tenant

environments providing users the ability to have full and direct access to the shared

underlying network carries many potential issues and risks including the following:

• Complexity: Regular users with no networking expertise, find it inconvenient

22
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to have to program the network controllers with low level abstractions such as

the OpenFlow protocol. Instead, they should be given the ability to specify their

networking requirements, without having to know or understand the underlying

network topology or the technology-enablers for that matter.

• Lack of Robustness: If users are given the ability to define their own custom

flow rules in the shared underlying network, chances of potential network failures

would be increased. These failures could occur as a result of human errors or lack

of networking expertise.

• Provider Privacy: In general, providers do not expose details of their internal

topology or network configurations to their users. Reasons could involve both,

business and security aspects. Intent Driven Networking can preserve users’ ability

to customize network behavior, while abstracting the details that providers wish to

keep private.

• Pricing Model: Giving users the ability to define low level flow entries or con-

figuration changes to the shared underlying networks makes it difficult or even

impossible for providers to define a fine-grained pricing model for network infras-

tructure usage; since the logical affect of low level flow entries to the shared network

is not always clear. Whereas, in Intent Driven Networks the provider can define a

clear pricing model for each of the offered intent classes.

• Control Authorization: Authorizing the network control at the flow entry level

is challenging and can incur false negatives or false positives. Whereas, in the Intent

Driven Networking the authorization would be done at the logical level. This is

supported by the fact that for each intent, the provider is already well aware of the

logical behaviour, as opposed to the unknown behaviour that could be produced

by a set of custom flow entries defined by a user.



Chapter 3. The Straw-man Proposal 24

• Conflict Detection: User defined flow entries have a great potential of causing

network control conflicts, even in the scope the users’ own network. In contrast,

IDN enables providers to detect and resolve potential control conflicts at the logical

level, in an abstracted way from the users perspective, which in turn will improve

the overall productivity and simplicity of the network.

Therefore, Intent Framework as a high level abstraction for network management can

eliminate those issues and risks, since it prevents the exposure of the underlying network

to consumers. We proceed by elaborating on the reasons that gave precedence to the

Intent Framework, as opposed to users having network programmability rights.

The other principle is following a hierarchical foundation to decouple the orchestration

model from the underlying resource management procedures in individual domains. In

the current SDN platforms, intents are implemented as a set of programming modules to

automate the mapping between user inputs and the low-level flow rules in the network.

This mapping procedure (i.e. intent compilation) may vary based on the control platform,

infrastructure vendor and even the intent type within the same platform. As an analogy

to this, consider having a dedicated compiler for each program which makes it difficult

to improve or optimize the compilation process independent of the intent types and SDN

frameworks. To overcome this issue, a hierarchical design as well as a uniform intent

abstraction model are required to decouple the high-level intent-based model from the

underlying control platforms.

3.2 Proposed Architecture

Figure X shows our initial design where the most bottom layer include SDI domain each

having a controller instance. Each domain offers primitive resource types, specially for

networking and centralized controller is responsible. We assume that all infrastructure

providers participating in an end-to-end orchestration have the following basic capabili-
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Figure 3.1: Abstraction Layers for End-to-End Orchestration.

ties:

Multi-tenancy: Multi-tenancy essentially involves isolation and protection of ten-

ants resources (including physical and virtual resources) against each others. This means

that tenants use of resources poses no threat to the provider or other tenants.

Self Service Capabilities: All resources and features offered by providers should

need no manual intervention of the provider to provision or consume.

The set of controllers collaborate on forming the end-to-end global topology view and

Network Information Base (NIB) which is the middle layer. Finally, above the global

topology view, the orchestration platform can receive, compile and install application

specific intent-model. The global orchestration platform relies on the ability to define

custom flow rules in each domain through local controllers.

3.3 Intent Graph Abstraction Model

In this section we first highlight the natural differences between user and provider intents

in a multi-tenant environment and mention the requirements of both sides. Based on

the user requirements, we continue by defining a uniform graph-based abstraction model

as a precise description of intents. As a result of this uniform foundation, a generic
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compilation process for user intents is provided, which can consider provider intents as

well. This uniformity allows us to decouple the intent compilation and installation process

apart from the intent type and network controller platform. In a multi-tenant cloud

environment, there is a fundamental difference between providers’ intents and customers’

intents. Providers are more concerned with the infrastructure and the effective usage of

resources based on the overall user demands, whereas users are not aware about the

infrastructure details or the underlying topology details. Using a networking analogy,

users are only aware about their own endpoints and the end-to-end networking services

among them, while a provider deals with routing and optimal resource usage decisions.

Considering this difference, a proper orchestration framework should directly target users’

demands with a simple and intuitive interface, while also being able to consider providers’

policies concerning infrastructure usage, topology views and path selection.

3.3.1 Application Intent Graph

To build upon a uniform foundation, a simplistic graph-based representation for network

intents is proposed. This abstraction model is application-centric, meaning that it is

based on application requirements over the endpoints. There are mainly two types of

generic network intents regarding the endpoints in the network: Forwarding and Blocking.

Forwarding can be expressed in the form of n1

f

→
n2, where the edge label f defines the

traffic type. Additionally, a blocking intent can be defined as n1

f

/→
n2. As an example,

to specify a forwarding intent for layer 2 traffic, the intent can be defined as n1

eth

→
n2.

Also, to block layer 3 communication from one node to the other, the intent can be

specified in the form of n1

ip

/→
n2.

An intent graph is a collection of generic network intents in the form of a directed
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Figure 3.2: Sample policy graph. e1 and e2 are endpoints (e.g. VM), m1 is a middlebox and gw is the
Internet gateway.

graph representing the desired policies between endpoints, without any involvement of

the underlying topology. A sample intent graph is shown in Figure 3.2, where the intents

include a bi-directional layer 2 communication among e1 and e2, a one way layer 3

connection from e1 to the gateway, and the returning path from the gateway to e1

redirected through a middlebox. In order to define intent classes, a mapping function is

needed to map the inputs of that specific intent class to an adequate intent graph. Once

the mapping is done, the compilation, installation and the life cycle follow a uniform

process. This design enables adding new intent classes as simple as writing the mapping

function only. In contrast to this uniform design, within current intent-based frameworks

each new intent class should have a specific compiler.

3.3.2 Intent Graph Compilation

Each request to the orchestration framework will be submitted to the compilation process

in the form of an intent graph. This process is outlined in Algorithm 1 and it involves

three main steps:

Authorization: Upon receiving a new intent graph as an input, an examination

based on the endpoint ownership information supplied by a reference monitor is com-

pleted. Since the intent graph only includes the involved endpoints and abstracts away

the topology, the authorization process becomes quite straightforward. For each policy

edge, the source and destination endpoints must be checked against the user’s ownership
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Algorithm 1: Policy graph compilation

CompilePolicyGraph (GP , GT )
inputs : A policy graph GP = (VP , EP ); network topology graph

GT = (VT , ET )
output: List of flow entries denoted by F
F ← ∅;
assert authorization
assert feasibility
foreach policy edge e ∈ EP do

if e.type is FORWARD then
path← getPath(GT , e.src, e.dst);
foreach hop h = (in port, dpid, out port) ∈ path do

f ← forwarding rule( e.traffic type, e.src, e.dst)
F.append(f)

else if e.type is BLOCK then
s← getEdgeSwitch(GT , e.src)
f ← blocking rule( e.traffic type, e.src, e.dst)
F.append(f)

return F ;

and privileges. In current practices [44] where tenants have to directly define low-level

flow entries to control their networks, every new flow-entry in every switch along the path

has to be authorized. This enforces a considerable amount of unnecessary workload and

complexity to the authorization process. In contrast, using a intent graph abstraction,

the authorization process is decoupled from the network topology and flow-entries and

instead it is precisely focused on the end-points.

Feasibility Check: In the second step of the compilation process, the input intent

graph gets checked by the existing intent graph for the user to ensure that the new setup

does not have any conflict with the previously installed intents. In case of conflict, the

user has the ability to force the intent installation.

Flow Entry Generation: After the authorization and feasibility check, the main

compilation process starts. During this process, for each policy edge in the intent graph,

the compiler inquires for a path between the source and destination nodes from the global

topology and generates flow-entries based on the traffic type specified on the policy edge.
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3.4 Discussion and Remarks

The proposed architecture can easily be emulated using a distributed SDN control plat-

form such as ONOS. However, some of the assumptions in this design are too idealistic

to be realizable in a practical scenario. We argue about these limitations in two scenar-

ios: Multiple domains under one administration and multiple domains under multiple

providers.

In case of multi-domain with single administration, the following reasons can justify

the unsuitability of the intent graph compilation and installation over a global graph:

• Scalability and Geographical Distribution: In multi-domain environments

two common features are the incremental behaviour in terms of the network size

and the geographical dispersion of the network itself. Intent graph compilation

over a global topology will not be able to scale appropriately in multi-domain and

geographically distributed networks. Use of distributed controllers can improve

scalability and fault tolerance as long as different instances have a reasonable ge-

ographical distance and round trip time for communication. For instance, in the

SAVI Testbed if we consider only Victoria, Toronto and Korea regions, it is not

technically reasonable or even required to share the topology information and net-

work control state. The global topology in a multi-region deployment can easily

grow to thousands of nodes and any intent compilation process over such a huge

graph is not practically appropriate.

• Technology Variation: The technical architecture of the internal network control

is usually diversified among different network domains due to the evolution over

time. For instance, in the SAVI Testbed, there are four regions that are using

the latest OpenStack version, whereas the rest of them use a previous version.

The same occurrence can be noted within the Geni Testbed, where ExoGeni uses

OpenStack, while ProtoGeni does not use OpenStack. Therefore having a set of
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controllers following the same technology and version is not the case in real SDI

deployments and it is technically challenging to have a uniform global topology

over all of the regions.

In case of multi-domain with multiple administration (multi-provider) in addition to

the above issues, there may be the following challenges:

• Provider Privacy: Different providers would not publicly share the topology and

network information with each other. Therefore, a multi-domain intent framework

should work with a minimal set of information provided by each domain not the

entire topology.

• Inter-domain Network Slicing: Network slicing is a critical task in a multi-

tenant environment to keep virtual networks isolated against each other. However,

different providers would not use the same slicing criteria and thus it is not possi-

ble to simply inter-connect SDI networks. Consider a provider which uses VLAN

isolation for network slicing and enforces security check only on the VLAN tags.

The other provider may use MPLS or MAC-based isolation and be only sensitive

about MAC addresses of the frames. The networks of these two provider cannot

be directly peered.

To address these limitations, we first introduce HyperExchange as an exchange point

between SDI providers with dissimilar architectures in the next chapter. Furthermore,

To overcome the issues raised for scalability in multi-domain environments we present

MD-IDN in Chapter 5.
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HyperExhcange

Current inter-domain networking has evolved based on a standard structure: A group

of Autonomous Systems (AS) using IP as the internal network structure while relying

on BGP for inter-domain peering. This structure made inter-networking possible in the

first place, but afterwards it led to a notorious ossification. The problem, more precisely,

is rooted in two major sources: First, the existing all-IP foundation of ASs forces a

fixed addressing scheme which is location-based and assigned through standard address

registries. Moreover, routing based solely on destination IP prefixes results in a severe

control inflexibility in internal operation of ASs.

The other major challenge of the current Internet arises where different ASs inter-

connect with each other at exchange points. Use of BGP as the basis of inter-domain

networking has caused a set of unresolved issues [23] including:

• Difficult and painful troubleshooting and security maintenance,

• Large convergence times,

• Anomalies caused by possible routing inconsistencies,

• Adversity of QoS policy expression and enforcement,

• Unoptimized end-to-end paths due to triangle inequality violations.

31
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While these challenges can be traced back to the technology limitations in the early

years of the Internet, recent advancements in SDN and NFV have provided new capabil-

ities to motivate a reconsideration of inter-domain networking beyond its conventional

restrictions. Along these lines, two major trends are ongoing in the research commu-

nity and industry. In one direction, Software Defined Exchanges (SDX) [36] have been

introduced to make Internet Exchange Points (IXP) [9] more flexible and to facilitate

inter-domain routing while keeping ASs with the traditional all-IP structure. In the

other direction, several attempts has been made to redefine the network foundation of

autonomous carrier networks and Internet Service Providers (ISPs) towards integrated

and multi-tenant clouds and datacenters offering programmable and fine-grained virtual

networks [57] [70] [85]. In this new model, the traditional role of ISPs will be segregated

into two roles: Infrastructure Providers (InPs), who provide virtualizable network infras-

tructure and Service Providers (i.e. tenants) who use virtual networks to provide services

for end-users [28]. SAVI [55] and GENI [19] testbeds are two real deployments of such

InPs. However, flexible peering of InPs and their hosted VNs has remained a challenge.

To address the aforementioned trends, we have introduced the concept of HyperEx-

change [12] as an exchange fabric for InP’s and their hosted VN’s. HyperExchange, in

summary, provides the following particular contributions:

• A formal model that redefines the conventional concepts of network domain and

sub-nets and a uniform data-model for networks and their sub-nets. We have

extended the model to formally specify the pipeline of HyperExchange.

• An extensible design for the data-plane pipeline that leverages OpenFlow and cus-

tom VNF’s to provide arbitrary packet processing capabilities.

• A control-plane design based on SDI model to provide multi-tenancy and to enable

tenants of InPs to enforce network control policies on their own slice of traffic.
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Figure 4.1: A conventional IXP peering three AS’s

4.1 Formal Specifications

The network model at an exchange point specifies a clear semantic to bind slices of traffic

(incoming or outgoing) to each participating network. This binding is central to define

any traffic management in the exchange point. Figure 4.1 demonstrates a sample IXP

and three participating ASs. In this case the IXP is modeled as a Layer 2 switching

fabric and each participating network is connected to the IXP via a physical connection.

Since all of the participating networks are IP networks, the mapping between networks

and traffic at IXP is defined by source and destination IP addresses. This model forms

a simple two-dimensional flow space in which source and destination IP addresses are

dimensions. Figure 4.2 represents the slice of traffic coming from AS1 and going to

AS2. While this model greatly simplifies the traffic slicing in IXP, it enforces two main

limitations for inter-networking. First, only public IP networks can participate in an

exchange point and second, forwarding logic at IXP is mainly defined by IP prefixes.

Neither conventional IXPs nor current implementations of SDXs have targeted exchange

of traffic between VNs with customized network protocols. Depending on vendor specific

features, some exchange points may offer limited support of non-IP protocols but no

exchange point have been introduced with a protocol-agnostic model that satisfies VN

peering requirements mentioned in the previous section.
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Figure 4.2: Two-dimensional flow space of current exchange points

4.1.1 Geometric Model

The network model of HyperExchange is built on a geometric model which is inspired by

HSA (Header Space Analysis) [62] with some modifications. The perspective in HSA is

a network with a set of switching boxes and their interconnecting links; while HyperEx-

change model is defined for traffic at a single point (exchange point) that interconnects

arbitrary InPs and VNs. As a result, topologies or protocols of participating networks

are not important and a network at exchange point is specified by the set of packets that

belongs to it. In this model, each packet is considered as a point in a geometric space.

Using this formalism, a clear specification for networks and subnets are provided. The

model is then extended to define InP and tenant control policies and the main pipeline

of HyperExchange.

Basic concepts

We Start with a brief introduction of the basic spaces and concepts of our model.

Total Header Space: A header space of H with length of L can be represented

by {1, 0}L [62]. For example, the header space of IP address header can be defined

by {1, 0}32. A header field can be any bit sequence in the packet including the content.

Consider the set of headers {h1, . . . hn} with length of {L1, . . . Ln} as list of interested
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fields; the total header space is the cross product of all header spaces defined by this list:

IH = ×n
i=1{0, 1}

Li (4.1)

Port Space: A space represented by the total set of interconnecting ports of exchange

point. These ports can be physical or logical ports. In order to preserve the generality

of the model, a packet drop can be modeled by sending the packet to a logical port

associated with drop.

IP = {P1, . . . , Pm} (4.2)

Flow Space: The flow space is the cross product of IH and IP. Each packet in

an exchange point belongs to two networks: source and the destination. To solve this

conflict, we exclude incoming flow space and outgoing flow space at exchange point. To

distinguish these spaces, we use a single bit binary vector. Thus the total flow space of

HyperExchange will be:

IF = IH× IP× {0, 1}1 (4.3)

Match Expression: A Boolean expression defined over header values and/or port

numbers. For those headers that have source and destination values such as IP and

MAC, the source value will be matched in incoming space while the destination value

will be used to match in outgoing space. The same principle is applied for incoming

and outgoing port numbers. Each match expression is associated with a region in the

flow space which is the basic building block of flows. A flow is represented by “F” and

formally is a subset of the flow space.

Filter Function: Given a set of packets, a Match Expression M, returns a subset of

packets which constitutes the flow defined by M. The behavior of the Filter Function for
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a single packet is:

ΨM ({pkt}) =

 {pkt} if M holds for pkt

φ otherwise;
(4.4)

The output of the Filter Function on the entire Flow Space is the flow associated with

M, that is the region defined by M in IF.

FM = ΨM (IF) (4.5)

The next rules show how the Filter Function is expanded by logical expressions on M.

The formal proof of the following rules follows from the definition of filter function and

due to the space limitation we simply state them.

ΨM1∧ M2 (F ) = ΨM1 (F ) ∩ΨM2 (F ) (4.6)

ΨM1∨ M2 (F ) = ΨM1 (F ) ∪ΨM2 (F ) (4.7)

ΨM1o ΨM1 (F) = ΨM1 (ΨM2 (F )) = ΨM1∧M2 (F ) (4.8)

Network Space: A region in IF that binds all packets coming from or going to a

participating network and is represented by FN . The filter function ΨM (IF) = FN that

filters all packets in FN is called the binding function of N and M is called the binder

expression of N.

Subnet: Network N1 is a subnet of Network N2 if and only if the space of N1 is a

subset of the space of N2:

FN1 ⊆ FN2 ⇐⇒ N1 � N2 (4.9)

Note that “�” denotes subnet relation.
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Control Policies and Pipeline

In HSA [62] any packet traversal through networking boxes is modeled as transformation

over the flow space. We use the same notion to model control policies defined by InPs or

VN owners at HyperExchange. A policy in general can be a sequence of OpenFlow actions

or steering traffic through a custom VNFs. An OpenFlow header modification transforms

the packet in IH while dropping the packet or sending it out of a port is transformation in

IP. Note that a packet drop is modeled by assigning a logical port to the packet. Based

on this notion a control policy can be expressed as chain of transformation functions in

IF:

P (F ) = T1 (. . . Tn (F )) = T1o . . . o Tn (F ) (4.10)

This chain can include filter function as well to apply the policy on a specific slice

of traffic. Consider the traffic coming from VN1 in InP1 and going VN2 in InP2 and

consider M1.1, M1, M2.2 and M2 as the binder expression of these networks respectively;

then the incoming pipeline can be modeled as follows:

ρin = PV N1 o ΨM1.1 o PInP1 o ΨM1 (IF) (4.11)

And the final outgoing traffic will be:

ρout = PInP2 o ΨM2 o PV N2 o ΨM2.2 (ρin (F)) (4.12)

Policy Authorization

Since a policy is modeled as a transformation in flow space, a policy authorization indi-

cates the set of allowed transformations. It is assumed that all networks without subnet

relation are isolated:

FN1 6⊂ FN2 ⇒ FN1 ∩ FN2 = ∅ (4.13)
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A transformation is allowed if it keeps the packet in the same network space.

P (F) :

 FN → FN ⇒ Allowed

otherwise ⇒ Not Allowed
(4.14)

Transformation along network spaces can be allowed if the principal of the policy has

ownership over both networks.

This formal model helps us to present a precise and general definition of VNs. It

abstracts away the internal protocols and topologies of participating networks and hence,

it is the basis of a pipeline design and can even be extended to include ICNs and name-

based routing. We also used the model to drive a logic for authorization. The notion

of binding helps us to guarantee the isolation of policies and can be extended to include

custom ABAC authorization policies.

4.1.2 Network Specification Data Model

We have defined a data model for network specification at exchange point based on the

geometric model described. For simplicity, one level of network hierarchy is considered

in this model. Thus, at the top level we have InP networks and at the next level VNs

can be defined as subnets of InPs. The data model is JSON structured with following

main values:

Network ID: A unique identifier for the network.

Network Domain: If this network is a VN, network ID of InP will be specified as the

domain. Network domain will not be specified for InP networks.

Binder Expression: A match expression that filters all packets of this network at

exchange point. The binder is a list of lists modeling the expression in form of “sum of

product” (i.e. OR of ANDs).

Metadata: A set of key values that describe additional attributes of the network.

The representation of this data model for service provider 2 in Figure 4.3 is:
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Figure 4.3: Conceptual representation of HyperExchange

{ n e t i d : InP2 ,

net domain : None ,

b inder :{{ port : 2}} ,

metadata : {}

}

Consider VN2 in the Figure 4.3 as private IP network with address range of 192.168.0.0/16.

Then network data structure for this network will be:

{ n e t i d : VN2,

Net domain : InP2 ,

b inder : {{ ip : ” 192 . 168 . 0 . 0/16”}}

metadata : {}

}

4.2 Data-Path Design

HyperExchange is architectured with a three-layer data plane that is inspired by our

SDI reference model. The bottom-most layer is the hardware switching fabric connected

to a set of server racks on top. Each rack hosts a software switch (i.e. OVS) and an

OpenStack [100] agent on top of that. The set of Open vSwitches forms the second

layer of a data plane which is the software switching fabric. These software switches
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Figure 4.4: Main steps of the switching pipeline

are mainly used to establish steering circuits through Virtual Network Functions (VNF)

and also as secondary flow store for swapping flow tables with hardware switches. The

upper-most layer is the VNF-plane which is a set of Virtual Machines (VMs) hosting

standard (validated) software network functions. VMs in each agent are connected to

the OVS through Virtual Ethernets (Veth pairs).

4.2.1 Traffic Switching Pipeline

A packet processing pipeline is designed to realize the concept of formal model described

in the previous section. To address the exclusion of incoming and outgoing flow spaces,

the pipeline is designed with two separate phases. Since the outgoing phase has techni-

cally the same steps (in reverse direction) as the incoming phase, we only describe the
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incoming phase and we refer to the incoming phase as the pipeline.

The pipeline should enforce policies for InPs and their tenants separately. A logical

priority is considered for InPs over their hosted VNs and the control policies of the

provider should be applied on the traffic prior to applying tenant policies. To make a

clear separation between packets from different participating networks (including provider

network and tenant network) our design has benefited from the multi-table feature in

OpenFlow 1.3. A separate flow table is used for each of the participating networks.

Figure 4 demonstrates the overall life cycle of a packet in the pipeline which has the

following four main steps.

Traffic Binding to InP Networks

Packets coming to the exchange point will be matched by the binder of InP networks

at the very first step. This is the technical realization of binder function described

in previous section, using OpenFlow match. the binding process is actually done by

matching all packets by a flow-table containing binder flow-entries of all InP networks.

In case of match, the packet will be sent to the policy table of the matched InP. A packet

in this step must be bound to at most one InP network (is const). If a packet does not

match to any InP network binder, it will be dropped.

InP Policy Enforcement

There is a dedicated flow table per each service provider. Filters and actions defined by

an InP will be stored as flow entries in its dedicated policy table. It is common that a

packet does not match to any entry in the policy table of InP; that means the InP has

not defined any policy. In this case, the packet will be sent directly to next table in the

pipeline line. This can simply be done by defining flow entry with the least priority to

match on all packets and send them to the next table as the action.
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Traffic Binding to VNs

VN network binding is similar to InP binding. There is a separate tenant binding (i.e.

a flow table for tenant network binding) dedicated to each InP. There is a flow table for

tenant network binding per each service provider. After enforcement of policies defined

by associated InP, packets will be matched by the VN binding table of the same InP.

Once the packet is matched to a VN in the InP, it will be sent to the policy table of that

VN.

Tenant Policy Enforcement

Similar to InP policy tables, there is a dedicated table for each tenant of each InP. These

tables contain flow-entries associated with the policies defined for each VN. In contrast

with InP policy tables, a packet cannot continue the pipeline without matching any entry

in the VN policy table and in that case the packet will be dropped.

4.2.2 Design Challenges

Here we mention and address two important challenges of the design described above, in

terms of scalability and feasibility.

Virtual Flow Tables

The primary approach of dedicating a flow table for each InP network as well as each

VN network can cause a severe growth in the number of flow tables needed. Due to the

limited number of flow tables supported in a real OpenFlow switch, this can cause an

important scalability problem for our design. To address this issue we introduced a novel

approach called Virtual Flow Table (VFT) with which we can store multiple flow tables

in a single real flow table. Metadata in OpenFlow 1.3 is used to realize this. Each VFT

is assigned with a Virtual Table ID (VTID). In the primary case once a packet matches

to a network binder the packet will be sent to the table associated with that network.
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In this case, once the packet is matched in the binding table VTID of the designated

network will be set as the Metadata and packet will be sent to the next table which stores

all tables of a group (for example policy tables of all service provider networks). In this

table, all flow entries of a Virtual Table have metadata = VTID as an additional match

criterion. As an example, consider a table containing all of the policies of all InPs. The

policies of each InP will be differentiated by an extra match criterion that is VTID of that

InP. By using this approach, the total number of flow tables can be greatly decreased to

a fixed number.

Circuit Switched VNFs

HyperExchange allows users to steer traffic through Virtual Network Functions (VNF).

However, the steering mechanism is a challenge in this design. OpenFlow logical ports

can be used to establish a dedicated circuit to each middlebox. This will allow packets to

be forwarded only based on incoming port in a service chain. A logical port is a standard

type of OpenFlow ports that can be used to create logical links. The concept of logical

ports in OpenFlow protocol is neutral to the technology being used to realize it. For

example, VXLAN tunnels can be used to establish logical links. If a user specifies VNF

steering in the control policy, the SDI manager (described in next section) will create

a dedicated logical port in the main switch and stablish a tunnel between the logical

port and the VM running the VNF. This design abstracts away the topology details of

HyperExchange for users.

4.3 Prototype Implementation

We have implemented a prototype of HyperExchange to show the feasibility of our model-

ing and design. The prototype is an extension of our SDI-manager reference model called

Janus written in Python. The control plane of HyperExchange is an extension of our ref-
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Figure 4.5: Overall architecture of HyperExchange control-plane

erence SDI manager design [88]. Figure 5 shows the overall architecture of control plane

which includes SDI-manager and the modules added specifically for HyperExchange. The

SDI-manager has southbound APIs to the SDN controller (Ryu) which controls Hardware

and Software OpenFlow switches. The other southbound API of SDI-manager is to the

Cloud controller (OpenStack). Through this API VMs will be provisioned on demand to

host requested VNFs based on user policies.

4.3.1 Main Modules

The control-plane of HyperExchange includes three main modules and each provides its

own associated northbound APIs.

Network Specification Module

Any participating network must be specified through this module. InP networks will be

defined statically and cannot be defined by user requests through API, but tenants of

predefined InPs can define arbitrary VNs through the API. The API specification is the

JSON data-model described in section 2. Once a network is defined, this module extracts

attributes from the binder list of the specified VN and sends an authorization request
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Figure 4.6: Authorization process in the Reference Monitor Module

to the Reference Monitor to authorize the VN. In case of successful authorization, the

network specification module creates binding flow-entries from the specifies binder list

and installs them to the switch.

Policy Specification Module

The user defined policies for network control will be received by Policy Manager (PM).

Upon receiving a policy, the PM module extracts policy attributes and creates an autho-

rization request to the Reference Monitor. If the response is “permitted”, the policy will

be stored in database and the policy flow table in switch.

Reference Monitor

This module is the reference monitor for authorizing network control policies at Hy-

perExchange. The authorization system relies on ownership information that indicates

the subset of authorized flow space of each user. Since VNs from different InPs can

participate in HyperExchange, a single static root of trust cannot be used to indicate
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ownership information. To address this issue and provide more dynamic and extensi-

ble authorization, we have designed an Attribute Based Access Control (ABAC) system

for HyperExchange. The overall architecture of this system is shown in Figure 6. This

architecture is inspired by XACML [41] and includes three main points. Authorization

Decision Point (ADP) receives authorization requests from other control-plane modules.

It then retrieves Access Control Policies from Policy Administration Point (PAP) and

network ownership information from Network Information Point (NIP). NIP can get the

ownership information of tenant VNs from their InP through API on a secure channel.

4.3.2 Technical Issues

Here we mention and address two important technical issues regarding the implementa-

tion of the control-plane.

Unified Identity

The authorization system of HyperExchange requires getting ownership information of

a tenant VNs from InPs. However, each of the InPs and the HyperExchange itself have

a local identity management system. A single user can have an identity in each of these

systems. Unifying different identities of a single real user is a fundamental challenge

for authorization at HyperExchange. Our primary solution for this problem is to use

a centralized identity provider for all of the participating InPs and exchange point. In

this case all of the service providers and the exchange point will authenticate tenants

through the central identity provider. A single Shibboleth identity server can be used

as the identity provider for all parties. In the general, all of the participating InPs may

not be joined in the same identity provider. In case of multiple identity providers, an

identity peering mechanism is needed which is neutral to the design of HyperExchange.
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Network Resource Deallocation

A common feature of multi-tenant environments is the high frequency of deallocation

and reallocation of the resources. An example of networking resources can be a VLAN

tag or a floating IP address. Since HyperExchange relies on ownership information of

networking resources from InPs to authorize tenant policies at exchange point, a resource

deallocation in an InP can invalidate a previously authorized tenant policy at exchange

point. For example, if Alice as a tenant allocates IP1 = 142.150.208.235 in SAVI as the

InP, her policies over IP1 will be authorized and enforced in flow tables of the exchange

point. However, once she releases IP1 in SAVI, her previously defined policies that include

IP1 are no longer valid at the exchange point. This example shows that exchange point

must be aware of resource deallocation/reallocation in the participating InPs to make

sure that tenants policies are always valid. An ideal solution for this challenge could

be a notification of deallocation from the InPs. However, not all of the participating

InPs can provide such capability. For those service providers, a timeout and revalidation

mechanism can be used for all of the specified VNs.

In the current implementation the user can specify a VN using a network specification

API. The authorization module uses a private API to get VN attributes and to authorize

the specification. By this step, the policy specification API is the primary structure

of OpenFlow flow-entries. Our current implementation supports OpenFlow actions and

traffic steering through a single function as the policies described by user and traffic

steering through a chain of VMs is under development. The authorization module uses

remote APIs for network specification requests but for policy flow entries, it uses local

specifications of network domains.

We have deployed our prototype of HyperExchange between SAVI and GENI testbeds.

Our prototype deployment is built on a hardware switch between ORION and Internet2

networks, the underlying interconnection of SAVI and GENI testbeds respectively. Each

of the SAVI and GENI networks are connected to the exchange point via a single dedi-
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cated physical port. The Experimental results are covered in Chapter 6.

4.4 Discussion and Remarks

How does HyperExchange compare with existing Software Defined Exchanges?

Richter et al. [96] presented that how a central route server can facilitate peering at

IXPs. The concept of Software Defined Exchanges (SDX) and use of SDN for flexible

inter-domain networking is introduced in [36]. The primary implementation of SDX [47]

enables participating autonomous systems to overwrite basic BGP route selection at

IXPs. The Cardigan project [106] was another primary attempt to enhance inter-domain

networking by use of SDN. Based on the measurements provided in [45] none of these

primary implementations can address scalability requirement of a large scale exchange

point. Industrial Scale SDX (iSDX) [45] is a more recent implementation of SDX based

on Ryu controller which has addressed the scalability issues of primary implementations

by use multi-table feature of higher version of OpenFlow. All of these implementations

have some features in common. Only IP networks can exchange traffic in current SDX

architectures. Moreover, these implementations have not targeted exchange between

multi-tenant environments so there no clear division between service provider networks

and tenant networks.

Why is it beneficial to peer Virtual Networks? Expanding a Virtual Network

over multiple Infrastructure Providers is a requirement for future services; because of

the geographical distribution of the network (e.g. Akamai global CDN that is expanded

over many multiple ISPs) and cost optimization strategies and federation (e.g. Apple

iCloud that uses Amazon EC2 in addition to their own data-centers). In these cases,

the network needs to be deployed in multiple InPs and it is required to federate these

InPs and their networks. In fact the main motivation of this project came out of a real

problem that is network federation of two research testbeds (SAVI GENI). The only
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current solution is encapsulation over IP (i.e. overlays) which inherits the ossification of

the current Internet and provides a narrow solution for specific use cases, not a holistic

approach for network federation of multiple SDI domains.

How does control authorization in HyperExchange compare with other

network flow authorization frameworks? Authorization of network control policies

from tenants of different service provider poses new challenges in the design of exchange

points. Even though the authorization of network control is discussed in FLANC [43] and

used in iSDX implementation, a static root of trust is considered to have all ownership

information of networking resources and it is not mentioned that how this information

can dynamically be gathered from participating service providers. Particularly, in a

Virtual Networking Environment, network domains of tenants may change rapidly and

the Reference Monitor of the exchange point must be able to recollect these ownership

information as they change in participating Infrastructure Providers. HyperExchange

uses secure APIs to collect and update tenant ownership information from participating

InPs.

How is HyperExchange related to Virtual Network Embeding? Virtual Net-

work Embedding is concerned about the mapping between virtual topology and physical

topology and is well studied in the literature [113] [29] [93]. In case where multiple InPs

are involved, an end-to-end VNE platform can used to slice and map slices of VNs to

each InP [27]. However, these InPs can use different logic and technologies for network

virtualization. For instance, there are multiple protocols available to create a virtual

Layer-2 network including GRE, VLAN, VXLAN and MPLS and each of them might

be used in one of the InPs. However, the nature of a Layer-2 network is the same and

the exchange point must be able to peer Layer-2 networks independent of the underlying

protocol. In these cases the VNE platform can employ a HyperExchange to enable traffic

exchange between dissimilar InPs.
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MD-IDN

Intent-Driven Networking (IDN) promises to provide a simple, yet expressive high-level

abstraction over the network controller [54]. This abstraction hides the unnecessary

details of the underlying infrastructure from users and allows them to customize network

configuration using human readable intents.

Current IDN frameworks [6–8] have implemented intents with a specific design and

compilation process. Therefore, there is no uniform notion of network intents among

different control platforms. Additionally, in these frameworks user intents are not clearly

differentiated from provider intents. Furthermore, current intent NBIs compile intents

over a flat non-abstracted topology, which is not scalable and feasible in multi-domain

scenarios.

In this chapter, we introduce MD-IDN [14], a framework for end-to-end Multi-Domain

Intent-Driven Networking over multiple SDI deployments. To enable intent compilation

over heterogeneous network domains, we based our design on the general graph represen-

tation of network intents presented in Chapter 3. MD-IDN framework first compiles the

user-requested intent in the form of a intent graph over an abstracted multi-graph of do-

mains and their interconnections. This process results in a set of local intent graphs that

are to be submitted to the local intent framework of each domain. MD-IDN introduces

50
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the following particular contributions:

• A generic and extensible graph representation for user-defined network policies and

intents. This intent graph abstracts away details of the network topology from the

users’ perspective.

• We introduce and evaluate a set of algorithms to automatically distribute and

scale the compilation and installation of intents in the form of a intent graph over

heterogeneous and multi-domain networks.

• Our proposal for MD-IDN goes beyond a paper design. It is deployed and avail-

able as a public service for SAVI Testbed users, and has been under continuous

improvement and development over the past year.

5.1 End-to-End Network Intents

As mentioned before, enabling multi-domain network intents is not possible by simply

adding an IDN framework for the entire global network. The challenge originates mainly

from scalability issues and the fact that different domains may use various control plat-

forms and consequently not allow direct control over their network to an external entity.

To address these issues, based on the proposed intent graph model in Chapter 3, a hier-

archical and distributed IDN design is presented in this Chapter. In this design, a global

IDN first processes the requested intents over an abstracted topology to generate a set

of local intent graphs.

5.1.1 Topology Abstraction

We proceed by briefly describing the topology abstractions that are required for feasible

and scalable compilation of multi-domain intents.
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Local Topology

The internal network topology of each domain is referred to as local topology, shown in

the collections within Figure 5.1. In a real multi-domain scenario where different domains

could potentially have autonomous control, the domain provider would not provide the

detailed local topology view to the external entities. However, the local IDN deployed

over the internal control platform could have access to this topology.

Global Topology

The global topology is the actual detailed graph including all the nodes in each domain

and the interconnections between the domains as depicted in Figure 5.1. It is clear that

this graph grows drastically as the number or the average size of domains increases.

However, this topology is not usually available in practical multi-domain environments

since different domains keep their internal topology private. In addition, no single central

entity would be able to directly define control policies over such topology.

Inter-domain Multigraph

The Domain Multigraph is an abstracted graph where each domain is represented as a

node and the domain interconnections as edges. This graph abstracts away the internal

topology of the domain. This multigraph is built with minimal amount of information

(only the interconnection points) provided by each domain, and thus it is much smaller

than the real global topology.

5.1.2 Multi-domain Intent Compilation

The general multi-domain compilation is a two-step process. In the first step, the input

intent graph gets projected over the domain multigraph resulting with the domain intent

graph (Algorithm 2) which then gets processed into separate local intent graphs for each

of the involved domains (Algorithm 3).
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Domain 1

Domain 2 Domain 3

s1 s2

s3 s4

e5e6 e7

e1’e9’

e1’

e9’

s5 s6

e8 e9e11

e1
e2 e3 e4 d1

d2 d3

Domain Multigraph

Figure 5.1: A sample multi-domain topology

Algorithm 2 receives a intent graph GP and begins by removing all the edges whose

both source and destination belong to the same domain and directly places that policy

edge in the local intent graph of that domain. After this process the remaining edges in

the input GP are the ones that are between two endpoints from different domains. Next,

it starts to construct the domain intent graph. To achieve that, it maps every node to

its domain in the domain intent graph and for each edge in the input intent graph, an

edge in the domain intent graph gets created. Figure 5.2 exemplifies this process, where

Figure5.2.a shows an end-to-end Layer2 connectivity intent between e1 from d1 and e9

from d3. Since d1 and d3 are not directly peered, a transit domain like d2 is required.

Accordingly, Algorithm 2 results with a domain intent graph as shown in Figure 5.2.b.

The resulting domain intent graph is delivered to Algorithm 3 which generates the

adequate local intent graphs for each domain involved in the domain intent graph. Each

domain can process intent graphs that only contains its internal endpoints. To identify

external nodes to the internal topology of another domain, we use the notion of shadow
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Algorithm 2: Projection of multi-domain policy graph over domain multigraph

CompileMDPolicyGraph (GP , GD,M)
inputs : GP = (VP , EP )

// multi-domain policy graph

GD = (VD, ED)
// domain multigraph

D
// mapping of nodes to domains

outputs : G dict
// Dict of local policy graphs per domain

GI = (VI , EI)
// Projected policy graph over domain multigraph

initialization();
foreach policy edge e ∈ EP do

// check if the edge is intra-domain or inter-domain

if D[e.src] = D[e.dst] then
d← D[e.src]
G dict[d].addEdge(e)
GP .removeEdge(e)

else
pathi ← getPath(GD, D[e.src], D[e.dst])
foreach dn, dn+1 ∈ pathi do

fi ← “e.src : e.f : e.dst′′ ei ← newedge(dn, fi, dn+1)
// create a new edge with lable of e.src:e.f:e.dst

GI .addEdge(ei)

return G dict,GI ;

nodes which represent mock nodes registered in the internal topology at the interconnec-

tion point. Following our example, e9 is not known for d1, thus it gets registered as e9´

in d1 and e1 gets registered as e1´ in d3. Now, both nodes are external to d2, so both

e9´ and e1´ get registered in d2. Consequently, each domain has an updated topology

view and can receive a local intent graph. Figure 5.2.c shows the three resulting local

intent graphs for each domain.

The second row of Figure 5.2.d shows a multi-domain service chaining intent graph in

which the source is in d1, two middleboxes are in d2 and the destination is in d3. Upon

running Algorithm 2, the domain intent graph shown in Figure 5.2.e is obtained and it

gets passed to Algorithm 3 in order to generate the three local intent graphs as shown in

Figure 5.2.f, including the required shadow nodes.
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Algorithm 3: Decomposition of domain projected policy graph into local policy
graphs

CompileMDPolicyGraph (GI , G dict,D)
inputs : GI = (VI , EI)

// Projected policy graph over domain multigraph

G dict
// Dict of local policy graphs per domain

D
// mapping of nodes to domains

outputs : G dict
// Final dict of local policy graphs per domain

initialization();
foreach inter-domain policy edge ei ∈ EI do

(src, f, dst)← ei.label
dst′ ← registerShadowNode(D[src], dst)
escr domain ← new edge(src, f, dst′)
G dict[D[src]].addEdge(escr domain)
src′ ← registerShadowNode(D[dst], src)
edst domain ← new edge(src, f, dst′)
G dict[D[dst]].addEdge(edst domain)

return G dict, GI ;
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Figure 5.2: Decomposition of sample multi-domain intent graphs into local intent graphs for each
domain

5.2 Implementation

We now describe an implementation of MD-IDN as shown in Figure 5.3. The architecture

has two main software components: the local IDN and the global IDN. Our Python-based

implementation of the main platform components has over 6000 lines of code and has

been under continuous refinement since last year. We proceed by briefly describing the

implementation of the main components.
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Figure 5.3: MD-IDN architecture and main components

5.2.1 Local IDN

The local IDN provides the basic intent graph compilation for each domain. Upon re-

ceiving an input intent graph, it performs the local compilation process using Algorithm

1. To find paths between endpoints, it uses the southbound APIs provided by the local

SDI manager. In addition, it may receive requests to add shadow nodes, upon which

it adds the node to the current topology view. The local IDN also tracks events in the

local network, thus if certain network events that might affect the existing intent intent

graphs occur, it will trigger a recompilation based on the latest network changes and will

essentially re-install the intent, if possible. Within the local IDN, each intent might have

different states including pre-compilation, compilation, installation, installed and failed.

5.2.2 Global IDN

The global IDN receives multi-domain intent requests from users and maps each request

to an adequate intent graph using mapping functions. It then performs a two-step compi-

lation provided by Algorithm 2 and Algorithm 3. The resulting set of local intent graphs

will be submitted to the local IDN for the involved domains. To construct and maintain

the domain multi-graph, a simple domain discovery mechanism is implemented which

enables the global IDN to receive domain interconnection points from each local IDN.

After the compilation process, all the local intent graphs will be submitted to the local
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IDNs using asynchronous non-blocking RESTful calls in parallel. Once the results are

received, if a failure had happened within the domains hosting an endpoint, the intent

setup will fail; otherwise, if the failure happened in a transit domain, the global IDN

will try to find an alternative transit domain, if one exists. Multi-domain intents can

have different states similar to the local IDN states. In our primary implementation the

global IDN is a single centralized platform. However, in the case of many multiple local

IDNs, the global IDN could be implemented in a distributed fashion where each instance

is connected to a set of local IDNs.

5.3 Evaluation

In order to evaluate the design and implementation of the platform we targeted the

performance of the multi-domain intent compilation process to evaluate the feasibility of

the MD-IDN design and the effect of the proposed algorithms in a multi-domain scale.

To evaluate our design, we measured the compilation time of a policy graph for a WAN

intent over a large multi-domain topology. In these experiments two setups are compared:

a flat compilation over the global topology, similar to the available alternative practices;

and a hierarchical distributed compilation process of MD-IDN. To focus on the intent

compilation time, we have eliminated the communication round trip times and the flow

installation times.

Using the described scenario, two different experiments are performed to analyze how

the MD-IDN design can improve the intent compilation performance which represents

the major bottleneck as the network size grows in a multi-domain scale. In terms of path

selection, CSPF [78] (Constrained Shortest Path First) algorithm is used in both cases,

similar to the one used in ONOS controller [7]. In case of using optimal path selection

algorithms, compilation time over the flat global topology considerably will be increased.

In the first experiment the compilation time is measured against an increasing number
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Figure 5.4: Intent compilation time vs global network size with increasing number of domains

of network domains ranging from two to ten while keeping the topology size of each

domain fixed with an average of 1K nodes per domain. Figure 5.4 shows that as the

number of domains increases, the case of naive compilation over the global topology

results with considerable increase, whereas the MD-IDN approach keeps the compilation

time almost fixed. In case of having ten network domains, MD-IDN performs 30x faster

than the naive approach. This result stems from the fact that in MD-IDN the primary

compilation over the abstracted domain multi-graph happens discreetly fast, thus not

contributing much to the overall compilation time. The rest of the compilation process

happens in parallel in different domains. Therefore, the multi-domain intent compilation

time remains almost equal to the maximum time elapsed in the local domains.

In the second experiment the number of network domains is kept fixed to four, while

the size of each domain is increased from an average of 0.25K to 32K nodes per domain.

As depicted in Figure 5.5 the MD-IDN shows a gradual increase, whereas the performance

of the naive approach falls much faster.
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Figure 5.5: Intent compilation time vs global network size with increasing size of domains

5.4 Discussion and Remarks

What is the definition of Intent and Intent Driven Network (IDN) in the

context of this paper? Policy-based management is a broad area with a long history

of work and proposals on network policy mapping and policy refinements. Our use of the

term Intent applies specifically to the Northbound Interface (NBI) in Software Defined

Networks (SDN). In this context, high level management policies are defined as a set of In-

tents enforced through an Intent NBI which is a declarative middleware between network

applications and the controller. This definition follows Intent frameworks implemented

in industry-leading SDN controllers (ONOS and OpenDaylight) and is established by the

Open Networking Foundation [54]. our work follows the same concept as network intents

in SDN and is not proposing an alternative definition. There are additional recent white

papers and industry initiatives from Huawei [6] and Cisco on intent-based networking

following the same principles and definitions.

How MD-IDN is different from the current Intent-based frameworks? In

the current IDN solutions [6–8] intents are implemented as a set of programming modules
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to automate the mapping between user inputs and low-level flow rules in the network.

This mapping procedure (i.e., intent compilation) may vary based on the control platform,

infrastructure vendor and even the intent type within the same platform. In contrast,

we proposed a precise and uniform intent abstraction model based on intent graphs that

can be integrated within any underlying control platform. Among the policy abstraction

models that have been used in prior works [31,32,84,94], PGA [91] has the most similar

abstraction model, where policy graphs are defined for endpoint groups in the network

and are used as an intermediate abstraction for network intents. PGA targets scenarios

where multiple parties should have control over one enterprise network, whereas MD-

IDN mainly focuses on multi-domain and widely distributed networks. Network topology

abstraction in Software-Defined Networking has been previously proposed and used [11,

60,79,104]. However, the unique part of our work is the use of this abstraction to simplify

and scale the intent compilation process. There are distributed or hierarchical controller

designs for SDN [18, 49, 66, 90], the SDI manager in the SAVI testbed [87] also follows

the same approach. However, this work is not about proposing another distributed

controller design. Instead, MD-IDN uses hierarchy and distribution to improve intent

compilation scalability over geographically distributed network domains. This work adds

the following main contributions to the recent efforts in IDN: - Enabling End-to-End

network intents over Multiple domains/providers - Algorithms that scale to the extent

of large and geographically distributed SDNs - A very first implementation of IDN in a

testbed that supports real users and evaluations, and that shows significant performance

gains. In fact, the motivation of this work came from the real experience of operating

the testbed and witnessing the limitations and difficulties of users in using the SDN

capabilities in real scenarios.

What are the roles of User and Provider in the context of this paper? The

roles of User/Tenant and Provider are considered in the context of Software-Defined In-

frastructures (SDIs) and an Infrastructure Provider. In this context the provider provides
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the virtualized infrastructure and the user/tenant uses the infrastructure to deliver an

application service to the end users. Thus a content provider like Netflix or any applica-

tion service provider like Skype are considered to be users/tenants of the Infrastructure

Provider.

What is the relation between the compilation phase and topology discovery

protocols? The compilation phase relies on the topology information provided by the

underlying SDI manager in each domain. The SDI manager itself would employ discovery

protocols (such as LLDP or BDDP) to gather topology information and to build the

topology graph.

Why do the authors need to define intent classes? Although the graph model

is capable of defining any customized intents, the classes act as an additional abstraction

that provides users with a set of commonly used advanced network functionalities in the

form of an intent class.

What are the Intent states handled by each of the Local and Global IDN?

The Global IDN keeps the state of end-to-end intents over the domain multigraph while

local IDNs handle the state of local intents over the local topology. A change in the local

topology would trigger a state change in that local IDN and if the change makes the local

intent uninstallable the state of the end-to-end intent will change in the global IDN.
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Use cases and Experiments

In this chapter we first introduce the available usecases for MD-IDN followed by a set of

experiments. We also provide an experiment of multi-provider setup between SAVI and

GENI testbeds using HyperExchange.

6.1 MD-IDN Usecases

To deploy MD-IDN, we have added a local IDN to each region which uses southbound

APIs offered by the SDI manager to retrieve the required information and to install flow-

entries to the underlying network. The required information includes the interconnection

points to the other domains and the available paths between the internal endpoints based

on the provided topology view by the SDI manager. The local IDN provides northbound

APIs for submitting policy graphs and registering shadow nodes. Apart from local IDNs

in each region, a deployed global IDN receives end-to-end intent requests from users, and

it generates and submits local policy graphs for each of the involved domains.

Over the above described deployment, we have provided five intent classes and map-

ping functions from intent inputs to policy graphs accordingly. Each of these intent

classes enables a unique network service beyond the common networking services avail-

able in OpenStack. The intents can be easily provisioned by the Testbed users from an
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Figure 6.1: Sample policy graphs of the five Intent classes that are currently available in the SAVI
Testbed

extended web UI portal or by using RESTful APIs. Figure 6.1 demonstrates sample pol-

icy graphs for each intent class, where the endpoints could reside within different network

domains/regions. We proceed by briefly summarizing each of these classes.

6.1.1 Virtual L2 WAN

This intent class provisions a virtual WAN between a set of endpoints across the Testbed.

Originally, there is no such service provided by an out of box installation of OpenStack.

Figure 6.1.a shows a sample policy graph for this service between three endpoints. After

compilation, flow-entries related to Ethernet traffic will be installed along the selected

path between the instances in order to establish the distributed WAN without the in-

volvement of a central switch. The process is transparent from users’ perspective as they

only need to instantiate a WAN and add endpoints to it.

6.1.2 Distributed Virtual Router

The DVR intent provisions a distributed virtual router between a selected set of endpoints

from different IP subnets in different regions or projects. This intent enables a layer

3 connectivity between the existing IP addresses of the selected instances without the

involvement of a central router. The intent eliminates the need of flows passing centralized

regional routers; which is the default OpenStack approach causing additional delay and

bandwidth bottleneck for inter-domain traffic.



Chapter 6. Use cases and Experiments 64

6.1.3 Service Function Chaining

The service chaining intent enables redirection of specific subset of the traffic through a

pre-defined SFC. This intent enables multi-domain service chaining for which the cur-

rent alternative approach is using overlay tunnels over the legacy IP inter-networking.

With the legacy approach users have no control over the underlying network and in ad-

dition, tunneling causes considerable overhead, rendering the SFC unusable for practical

high-bandwidth scenarios. Whereas this intent class provides an actual underlay SFC

experience intuitively to the user over multiple network domains, while the provider of

each domain preserves the control and privacy of the internal topology details.

6.1.4 Tapping

The tapping intent class enables network traffic to be duplicated to an additionally spec-

ified instance taking a monitor role. The instance receives copies of network traffic for

potential further processing, while allowing the default traffic path. In case of detecting

a malicious flow, it could be blocked or redirected to a middlebox.

6.1.5 Distributed Firewall

This intent class enables multi-domain security policies in addition to the default Open-

Stack security groups. It operates based on a black-list approach to block malicious flows

at the source domain, leaving the destination domain network unutilized, as opposed to

the OpenStack security groups enforcing a white-list approach right behind the destina-

tion endpoint. The distributed firewall intent could be leveraged for DDoS defense by

easily updating and managing the black-list. There has been a huge body of research for

DDoS detection [21] [76] [61] [103], however in a practical case where attacking flows are

coming from different external domains, the main challenge is the effective mitigation

upon the primary detection as the victim domain cannot block the flows outside of its
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network domain. This intent class spans the effective defence footprint to a multi-domain

scale.

6.2 Performance results and Evaluation

To evaluate the credibility of MD-IDN, we designed and performed a second set of ex-

periments targeting the real use cases. In these experiments we have compared the new

network functionalities enabled by MD-IDN with the available alternative solutions; in

terms of network delay and bandwidth capacity. The data plane performance is evalu-

ated through experiments based on the MD-IDN use cases that are currently available in

the SAVI Testbed. In these experiments, three Intent classes (Service Function Chain-

ing, Distributed Virtual Router and Virtual L2 WAN) are tested and compared with the

available alternative solutions for Testbed users.

To test the SFC intent class, we created a scenario where traffic from a source passes

through two middleboxes prior to reaching the destination. As an alternative, we created

the same chain using VXLAN overlays and performed delay and bandwidth tests on both.

In Figure 6.2a, the delays incurred from the chaining using VXLAN overlay, the underlay

approach using MD-IDN, and the default case with no chaining involved are measured.

As expected, the default one has the least delay, while with chaining included, the MD-

IDN setup adds insignificant overhead, as opposed to the VXLAN chaining overhead

being 3x to 4x more.

In terms of the bandwidth, Figure 6.3 shows a comparison of the TCP bandwidth

performance between the chaining intent class and the direct communication with no

middlebox involved. While the default case with no middlebox saturates up to 25 Gbps,

the chaining intent with two middleboxes can easily saturate up to 15 Gbps. The per-

formance of the VXLAN case is not included in the graph, as its performance was far

below the other two numbers. In fact, once the sequence of the two middleboxes is added,
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Figure 6.2: End-to-End delay, direct chaining using MD-IDN vs overlay chaining using VXLAN vs no
middlebox

the TCP bandwidth drops to less than 100 Mbps. The main reason behind this drastic

decrease is related partly to VXLAN, as it encapsulates overlay TCP packets in underlay

UDP packets, which in turn affects KVM’s networking [5], as it does not perform well

with UDP packets. We used other encapsulation methods like GRE and received almost

identical results.

In another experiment, a virtual L2 WAN was created between instances from Toronto

Edge data center and Toronto Core data center. To compare with an alternative ap-

proach, a virtual L2 connection was created using VXLAN ports. Figures 6.4 show that

MD-IDN provides less network delay, since it does not have the encapsulation overhead.

In the last experiment, a DVR instance was used to route traffic between two end-

points with different subnets. By default the flow should pass software routers inside

the controller machines, however DVR eliminated this redirection. Figure 6.5 shows the

comparison of the delay incurred by the DVR intent class and the default approach, and

it can be concluded that the DVR intent class incurs much less delay.
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6.3 Multi-Provider Experiment: Peering of Layer-2

Networks [13]

By use of HyperExchange it is possible to setup layer-2 networks over multi-region clouds

without encapsulation. A generic virtual layer-2 network is key for any further innova-

tion in upper layers such as IP alternatives. Also it makes it possible to simply define

custom and private IP networks on a Wide Area layer-2 Network. These features make

inter-domain layer-2 peering a beneficial usecase of HyperExchange. Layer2 networks in

SAVI are established by end-to-end path stitching on OpenFlow switches based on MAC

addresses of endpoints. On the other side GENI uses VLAN tags to create a layer-2

network between arbitrary set of VMs. Each of these InPs has a different logic to realize

a Layer2 network. Thus peering of two virtual Layer2 networks on both sides as sin-

gle end-to-end layer-2 network is the challenge we addressed by use of HyperExchange.

Our flexible model for networks at exchange point allows us to simply define and peer

these networks in a uniform manner. In our test case we had two VMs in SAVI testbed

connected in a Layer2 network in Toronto with the following network data structure at

exchange point:
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{ n e t i d : SAVI L2 ,

Net domain : SAVI NET,

binder : {{mac = fa : 1 6 : 3 e : 6 5 : ac : 52} ,

{mac = fa : 1 6 : 3 e : 5 d : 3 3 : db}}

metadata : {}

}

In GENI side we defined a VLAN including a VM in Chicago with the following

network data structure at exchange point:

{ n e t i d : GENI L2 ,

Net domain : GENI NET,

binder : {{VLAN TAG = 7273}}

metadata : {}

}

As can be seen, the network attributes of a Layer2 network in GENI is not related

to the number of nodes. However, in SAVI as the number of nodes in a Layer2 network

increases, the network attributes to be authorized will also increase. Figure 6.6 demon-

strates the relation of number of nodes and the time it takes at HyperExchange to query

each InP to verify network specifications. We have emulated authorization API to GENI

by users own credentials. However, an speaksfor API is under development in GENI that

can be used for remote authorization on behalf of the user.

Figure 6.7 shows the comparison of cumulative distribution of time over 10 trials

for specification of the GENI side VN. The overall time is the time of processing VN

specification, authorization through remote API and creation and installation of binding

flow-entries to the switch. In Figure 6.7 the black line is the time excluding remote

authorization time and the dotted line is the entire time. The figure shows that a large

amount of time is spent on remote authorization. Thus our technique to authorize only
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Figure 6.6: Remote attribute authorization time based on the number of nodes in VN

Figure 6.7: Time analysis of network specification in HyperExchange (GENI Side)

the network specification using remote API and authorizing later policies by local and

pre-authorized domains can effectively reduce the policy installation time.

We defined the following policies to peer these VNs at HyperExchange:

bind ( SAVI L2 ) . incoming ( )

. modify ({” type ” :”SET VLAN” ,

” value ” :7273} )

. output (GENI L2)

bind (GENI L2 ) . incoming ( )

. modify ({” type ” :”STRIP VLAN”})

. output ( SAVI L2 )
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Figure 6.8: RTT comparison of the regular path over the Internet vs the directed path through the
exchange point

As mentioned earlier, policy specification must be installed as flow entries at this state

of our implementation and the above code is the pseudo representation of the peering

policies. As depicted in Figure 6.8, we have measured Round Trip Time from a VM in

Chicago to a VM in Toronto for the regular path over the Internet and Layer2 directed

path through exchange point. Our experiment shows that HyperExchange flexibility

helps InP tenants to setup arbitrary end-to-end paths between VNs over autonomous

Infrastructures.
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Conclusion and Future Directions

In this thesis we presented abstractions as well as an architectural model for end-to-

end orchestration over multiple autonomous service providers. We started by defining

a uniform intent abstraction model named application intent graph which encompass

the communication model of a distributed cloud application and is able to express new

network functionalities. Using the intent graph model, cloud application developers can

provision advanced networking configurations without requiring to program the network.

Based on the model, a uniform compilation algorithm is introduced and we presented

a straw-man architecture to realize the proposed model in a multi-domain cloud environ-

ments. We mentioned the practical limitations of the initial design mainly for scalability

and inter-provider network slicing.

In order to address the multi-provider network slicing problem, we presented Hy-

perExchange which enables traffic exchange between Infrastructure Providers and their

hosted Virtual Networks. We built a formal model for traffic classification at exchange

point and extended it to design the traffic switching pipeline of HyperExchange. Our for-

malism allowed us to define a protocol-agnostic network model that satisfies the feature

of protocol customizabality of Virtual Networking Environemnts. Based on the formal

specifications, we proposed an extensible architecture for the switching fabric of the ex-
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change point. Our current design for authorization system is inspired by XACML but

does not fully support its standards.

we presented MD-IDN to enable end-to-end intents over multi-domain, multi-tenant

networks. This uniformity allowed us to extend the intent framework to cover multi-

domain intents, where each domain could have autonomous network control and would

only require receiving and installing local policy graphs. A set of algorithms are provided

to map a policy graph spanning multiple network domains to a set of local policy graphs.

Our evaluations show that MD-IDN can easily scale to numerous multi-domain networks,

each containing hundreds of nodes.

The proposed architecture is implemented and deployed in the SAVI Testbed over

multiple regional network domains. Also, a propototype of Hyperexchage is deployed

between SAVI and GENI testbeds. To demonstrate the value of MD-IDN, we developed

and deployed five intent classes available to the Testbed users. Our use case experiments

confirm that network functionalities enabled by MD-IDN provide better networking per-

formance and experience to the Testbed users than the available alternatives, while in

addition it provides an intuitive and easy to use interface for cloud application developers.

7.1 Future Directions

This work represents an initial step and provides a feasible and practical direction to-

wards an Intent-Driven Internet, where users can request end-to-end network intents over

multiple providers. Here we mention the potential research directions for this thesis:

• Inter-domain traffic engineering: Currently infrastructure providers have many

options to optimize bandwidth allocations and guarantee certain quality of service

levels in their internal networks. However, inter-domain traffic engineering has

seen very limited success. SDXs create an opportunity to provide fair and optimal

bandwidth allocation at the inter-domain level. Also, given the end-to-end pro-
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grammability, many cost optimization strategies for cloud service deployment can

be studied.

• Integration with orchestration tool: There has been extensive standardization

efforts for cloud service orchestration and many modeling languages have been

introduced including TOSCA. As a future direction, we can extend current widely-

used orchestration tools and modeling languages to include our application intent

graph modeling and enable advanced networking configuration.

• Improving conflict detection and resolution The intent graph abstraction

simplifies the task of sanity checks and conflict detection between different intent

requests. However, when different tenants are competing for a specific resource or

bandwidth, a more intelligent and fair conflict resolution approach is requierd.
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and Mario Pickavet. A model to select the right infrastructure abstraction for

service function chaining. In Network Function Virtualization and Software Defined

Networks (NFV-SDN), IEEE Conference on, pages 233–239. IEEE, 2016.

[105] Jonathan Stringer, Dean Pemberton, Qiang Fu, Christopher Lorier, Robert Nelson,
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