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Abstract 

The deterministic or stochastic nature of the rules that regulate which species co-exist in a 

community has been long debated in ecology. This thesis aims to answer (1) if understanding the 

degree of determinism in the co-existence of species is more or less informative than other 

sources of uncertainty affecting regional biodiversity, (2) if biodiversity is important to 

understand ecosystem processes, and (3) if dominance and determinism are correlated. 

Using a landscape model I show that the degree of determinism or stochasticity (1) controls 

regional species richness, and (2) causes more uncertainty on species richness than land use 

change or climate change in the Tropical Andes.  

In herbaceous communities around the world, diversity is important to improve predictions of 

biomass productivity and litter accumulation mostly when the diversity and biomass descriptors 

of the communities were partitioned into legumes, forbs and graminoids. Graminoids, grasses 

and Carex, and one forb lineage were more likely to be dominant species than non-dominant, 

while more than a dozen forb lineages were more likely to be non-dominant species.  



 

iii 

The environment affected the dominant plants the most, increasing the role of habitat filtering, 

with a less common effect of limiting similarity; in contrast, non-dominant plants were mostly 

affected by limiting similarity among the non-dominants, but with no signal of habitat filtering. 

This pattern was observed in herbaceous systems using a local dominant removal experiment and 

a global observational dataset. 

The results show that dominant species are a more deterministic subset of species that converge 

towards a predictable optimum constrained by environmental conditions. In contrast, non-

dominant species are better described as a diverging group of species, potentially with multiple 

optimums, and therefore with a less predictable response. Understanding the differences between 

dominant and non-dominants can improve models of ecosystem services that rely either on 

biomass accumulation or on diversity. 
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Chapter 1  
Introduction 

Living systems are fascinating and complex. The recurrent interaction among species creates a 

forever-changing arena where the species compete and facilitate each other directly and 

indirectly. In this process, the species transform and organize matter and energy in their 

surroundings in ways that can currently be coarsely described (Holdridge 1967, Rosenzweig 

1995), but hardly detailed (Laughlin 2014, Storch et al. 2018). Several mechanisms have been 

proposed to predict which species will eventually co-exist and form a community, ranging from 

stochastic to deterministic mechanisms (MacArthur and Levins 1964, MacArthur and Wilson 

1967, Tilman 1980, Hanski 1982, Weiher and Keddy 1995, Chesson 2000, Hubbell 2001a).  

One of the most exciting academic puzzles of our time is the study of the rules that explain 

species co-existence, a field known as community assembly (Weiher et al. 2011). This 

theoretical question may be particularly relevant in the present context because global 

environmental changes are impacting ecosystems worldwide and endangering our society’s 

means of survival (Millennium Ecosystem Assessment 2005). A large amount of effort is 

continuously devoted to quantify ecosystem services such as carbon storage, water regulation 

and pollination (e.g. Guo et al. 2000, Fischlin et al. 2007, De Deyn et al. 2008). The 

quantification often accounts for how much benefits an ecosystem actually provides to a society 

and for ways to economically assess those benefits for the society. 

The connections between ecosystem changes and the associated impacts to society are, however, 

not commonly modeled in large-scale analysis of climate change or land use impacts. For 

instance, the Stern report on the global impact of climate change (2007) projected the impact of 

climate change on the global economy without the most basic causal link: changes in climate 

causes changes in ecosystems, which in turn causes changes in ecosystem services provided by 

those ecosystems, changing the benefits we obtain from the environment. One of the efforts to 

fill that gap was the creation of the Intergovernmental Science-Policy Platform on Biodiversity 

and Ecosystem Services (IPBES) (https://www.ipbes.net/) in 2012. 

The fact that this gap exists in current models that link global change and national and local 

impacts to ecosystem services is understandable given the little amount of information available, 
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compared to the amount of information they may require. On the one hand, despite the many 

advances in ecosystem descriptions that allow some generalizations (Lavorel et al. 2010, Cadotte 

2013, 2017), the models currently used to predict potential biodiversity changes require large 

amounts of information, which is often unavailable. These models are also theoretically and 

computationally complicated and often have little explanatory power (Thuiller et al. 2008, 

Steinmann et al. 2009, Kissling et al. 2011, Wisz et al. 2013, Ramirez-Villegas et al. 2014). On 

the other hand, some evidence indicates that so much detail can be of limited value: some simple 

empirical models can predict basic trends of biomass production without any explicit reference 

to the biodiversity in an area (Holdridge 1967), while other theoretical models suggest that 

diversity details may be of little importance because of strong physical constraints (Brown et al. 

2004). If we add to this list the fact that there is little capability to generalize common patterns in 

ecosystems (Lawton 1999), then the ecosystem gap in regional and global models of ecosystem 

services is totally justifiable.  

However, accepting that biodiversity is uninformative is counterintuitive for most ecologists, 

including myself. As do many, I think that there is a moral value in preserving and caring for the 

other species living on this planet. Besides, I also think that there is logical ground and enough 

evidence to assert that, as living organisms shape ecosystem services from carbon sequestration 

to pollination, biodiversity should be informative of these services (Tilman et al. 1997, Lavorel 

et al. 2010, Cadotte 2013, Garibaldi et al. 2016, Duffy et al. 2017, Manning et al. 2018). For 

instance, as species differ in their shape, chemical characteristics and requirements, the species 

will often differ in how they alter the environment (Lavorel and Garnier 2002). For instance, 

trees capture more carbon than forbs or grasses, legumes can help to fix nitrogen, and pollination 

is more benefitted by the diversity of bees than by an average single species (Garibaldi et al. 

2016). Therefore, biodiversity should be informative, but it is not clear how much. In other 

words, if we were interested in predicting the services that a grassland can provide how 

important will be to know if a legume or a grass will survive in that grassland? And given the 

prevalence of noise and stochasticity in natural systems, should we be more interested in local 

drivers of species performance or in processes occurring outside that location? 
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1.1 Stochasticity-determinism and neutral-niche axes in 
community assembly theory 

Stochasticity and determinism in the laws of nature is a common debate in philosophy and 

science that has existed for a long time, even before it became part of the community assembly 

theory discussion. Currently, stochastic processes are those that are better described by 

probability functions (Tucker et al. 2016) while determinism indicates a mostly predictable 

system. These probability functions can either represent truly random processes or just the 

combined effect of unknown deterministic processes (Clark et al. 2007). Ecology has long 

recognized the role of stochasticity in community assembly processes (Fisher et al. 1943, 

MacArthur 1955, Al-Mufti et al. 1977, Tilman 1980, Hanski 1982), but neutral models 

(MacArthur and Wilson 1967, Hubbell 2001a) are different because they assume that 

mechanisms are independent of species characteristics (Vellend et al. 2014).  

Niche models are based on the Hutchisonian definition of the niche (Hutchinson 1978) to 

describe different performances of species in an environment. In contrast to neutral models, local 

species abundance in niche models is controlled by both the correlation between the species 

fundamental niche and the environmental conditions of the site, and by the interactions with 

other species, especially competition and trophic interactions (MacArthur and Levins 1967, 

Hutchinson 1978, e.g. Hanski 1982, Fukami 2015, Tucker et al. 2016). Niche models were 

traditionally validated because the patterns they can create were often qualitatively similar to 

those observed in natural conditions.  

Neutrality is the assumption that all species are equivalent. Hubbell and others have shown that 

neutral models also generate realistic patterns like the ones originated by niche models (Hubbell 

2001a, McGill et al. 2007). In Hubbell’s model, regional species abundances are totally 

controlled by stochastic processes, while local species abundances result as a balance between 

(1) random mortality identical for all the individuals and (2) species migration probability (which 

is proportional to the abundances of the species in the region surrounding the local area). 

Therefore, at the local scale, the main difference between niche and neutral theories is if the 

uneven species abundances are caused by internal mechanisms (niche theories) or external 

constraints (neutral theories). 
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1.2 The three-filters analogy of community assembly 
theory, co-existence theory and phylogenetic 
dispersion 

Community assembly theory often accounts for three filters or mechanisms to explain some 

patterns in the species co-existing in a location (Weiher et al. 2011). The first filter is dispersal 

limitation, which defines the group of species in the region, i.e. the species pool, that can migrate 

to the location. This filter can be neutral as mentioned previously (oscillating by large scale 

stochastic mechanisms, Hubbell 2001a), niche-based (e.g. controlled by species dispersal traits, 

Lowe and McPeek 2014) or fixed (and therefore left outside of the model, particularly useful 

when models focus in the next two filters). The second filter, habitat filtering, is non-neutral and 

is caused by the correspondence between the fundamental niche of the species and the abiotic 

conditions of the habitat that limit the species that can maintain positive fitness in the area 

(Hutchinson 1978, Weiher and Keddy 1995). The third filter, often called limiting similarity, is 

also non-neutral and is caused by the competition among species that make dissimilar species 

more likely to co-exist (Gause 1932, MacArthur and Levins 1967, Weiher and Keddy 1995).  

Habitat filtering and limiting similarity filters are both based on species characteristics, which are 

not randomly distributed, but constrained by their evolutionary history (Gould 1990). Because 

relatedness is positively correlated with similarity, we expect to see similar species co-existing 

when habitat filtering is strong, creating an “under-dispersed” pattern in the phylogeny, i.e. co-

existing species belong to fewer lineages than expected by random (Webb 2000). Conversely, 

when limiting similarity is strong co-existing species should tend to belong to different lineages 

in the phylogeny, creating an over-dispersed phylogenetic pattern. With the widespread access to 

phylogenetic information, these relatively simple predictions have proven useful to test the 

generality of the community assembly model worldwide (Cadotte and Davies 2016, cf. Gerhold 

et al. 2015). 

A different point of view was proposed by Chesson’s coexistence theory (2000). In his theory, 

Chesson proposes that co-existence of species can be promoted by stabilizing and equalizing 

mechanisms. In his frame, niche differences could promote co-existence (stabilizing effects). But 

when niches are similar, similarity in the performance of the species (i.e. fitness) will promote 

co-existence by delaying the extinction of competing species (equalizing effects), mostly because 
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the extinction odds of both species will be too similar. Only in that scenario, when the same 

niche is occupied by similar species with similar fitness differences, species interactions became 

neutral, and the role of stochastic mechanisms increases. Mayfield and Levine (2010) extended 

the model to include phylogenetic patterns, and pointed out that under some conditions, 

competition could also lead to underdispersion or clustering, particularly when the main 

environmental constraint in the habitat has a single optimum strategy to deal with it (e.g. plants 

competing for light are required to be tall, therefore similar species that grow tall are more likely 

to co-exist if they have small fitness differences or other niche differences allowing coexistence). 

Further, if relatedness controls niche and fitness similarities, we should expect closely related 

species to co-exist via equalizing effects (similar niche, similar fitness) and distantly related 

species via stabilizing effects (dissimilar niche, fitness not relevant). 

1.3 Distinguishing between stochastic and deterministic 
communities 

The long debate about the role of stochasticity in nature is not yet solved, with contrasting results 

from real systems. Experimental and observational evidence started to accumulate showing that 

no pure model was able to properly describe every ecosystem pattern (Chase 2007, Li et al. 

2015). The contrasts arose not only between studies reporting different mechanisms, but even 

those studies designed to tease out the mechanisms reported that several mechanisms may be 

valid simultaneously (Gilbert et al. 2009).  

Several reasons explain the challenges in identifying the underlying nature of the community 

assembly process. One of them is that neutral and niche theories predict similar patterns (McGill 

et al. 2007). Despite the large contrast in the assumptions underlying both types of theories, 

without clear distinctions in the predictions, there is no way to tease them apart. 

Another problem arises because the two main deterministic mechanisms of the community 

assembly process (i.e. habitat filtering and limiting similarity) theoretically produce opposing 

signals. As previously mentioned, habitat filtering could produce underdispersion in the 

phylogeny, while limiting similarity could produce overdispersion. For instance, if both 

mechanisms are strong (or weak), which pattern should prevail (Chalmandrier et al. 2013)? 
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Yet another problem with the community assembly framework is that it focuses on negative 

interactions, with filters always reducing the species diversity, despite the evidence that positive 

interactions are common and widespread (Brooker and Callaway 2009). This is unsurprising, as 

the largest theoretical developments related to niche theory are strongly linked to the 

Hutchinsonian formalization of the niche (Soberón	2007), which highlights the requirements of 

the species, more than the transformation of the environment that the species create. 

A final problem arises from the different ways stochasticity is interpreted and measured (Clark et 

al. 2007, Vellend et al. 2014). One of the oldest and most basic definitions of determinism (and 

by opposition, stochasticity) is a process, that when repeated several times under similar 

conditions, yields always the same result. Unfortunately, controlling similar conditions is 

practically impossible in natural conditions; historical contingency (the deterministic or 

stochastic dependency of a state on the history that originated that state, Fukami 2015) becomes 

indistinguishable from stochasticity; and an apparent deterministic pattern, such as some species 

more likely to occupy a location, can occur by purely stochastic mechanisms, as in some neutral 

models (Hubbell 2001a, Tucker et al. 2016). Other approaches to measure the degree of 

determinism or stochasticity in a system rely on the definition of a reference system (e.g., 

abundances in the species pool), and a measure of the discrepancy between an observed sample 

to the reference system: when the discrepancy is large enough it can be interpreted as proof of a 

deterministic process (Vellend et al. 2014). A potential problem in this approach can occur when 

abundances in the reference system are affected by deterministic mechanisms that create 

abundances similar to those observed in the sample. The problem arises because the two 

deterministic patterns can not be distinguished and the comparison between will suggest that 

stochastic mechanisms prevail. 

1.4 Plants as engineers and the mass-ratio-hypothesis: is 
there a correlation between the stochasticity 
experienced by a species and its dominance? 

The lack of congruence in the evidence related to the stochasticity or deterministic nature of 

community assembly is concordant with Lawton’s (1999) assertion that there are no common 

patterns in ecology. However, I argue that for plants, combining two widely observed patterns 

can shed some light on the stochasticity-determinism discussion: the wide differences in 
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abundance among species, and that species, particularly plants, do not only compete but also 

transform the environment. 

One of the oldest patterns observed in nature is that few species are very abundant and most are 

not (Fisher et al. 1943, MacArthur 1960, McGill et al. 2007). Several terms have been used to 

describe this difference, such as dominant-subordinate-subdominant, or core-satellite framework 

(Hanski 1982) and the implications of that difference have been largely discussed (Brown 1984, 

Magurran and Henderson 2003, Cornwell and Ackerly 2010, Mariotte 2014).  

Similarly, it has largely been recognized that species transform their environment (Scott-Phillips	
et	al.	2013), and that some species have a larger impact than others (Paine 1969). In a broad 

sense, every species transforms their environment, but some of them, noticeably plants, have 

been widely recognized in their role of habitat modification (Huston 1994, Jones et al. 1997, 

Odling-Smee et al. 2013). That generalization has been widely discussed in the case of plants 

and it is called the mass-ratio-hypothesis, which states that each species contributes to any 

ecosystem process or habitat transformation proportionally to its biomass (Grime 1998), and 

therefore to its abundance.  

I present here three differences between dominant and non-dominant plants and how those 

differences can cause differences in the degree of determinism of each of those groups of plants. 

These differences are not exhaustive and not all of them may apply to every system, but 

exemplify why we should expect an asymmetry between dominant and non-dominant plants. 

First, less abundant species may be subject to more frequent stochastic extinctions than dominant 

species (MacArthur 1955). The rationale is that given a mean population size and a fluctuation in 

time described as a standard deviation of the population size, smaller populations will be more 

likely to cross the zero abundance line and become locally extinct. Second, because all species 

alter their environment (Jones et al. 1997) and that transformation of the environment is often 

proportional to the species biomass (Grime 1998), the non-dominant species should be more 

affected by the dominant species than by the environment. In contrast, dominant species should 

be relatively more affected by environmental conditions than by the interaction with other 

species. Because habitat filtering causes phylogenetic underdispersion and limiting similarity 

overdispersion, this hypothetical asymmetry between dominant and non-dominant species is 

testable in natural conditions (Webb 2000, Mayfield and Levine 2010, Gerhold et al. 2015). And 
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third, if by occupying space or by modifying the environment, dominant species reduce niche 

differences as well as fitness differences among non-dominant species, the dominant species will 

be increasing the role of stochastic mechanisms for non-dominant species (Chesson 2000).  

The first and third differences between dominant and non-dominant plants previously mentioned 

indicates that stochastic mechanisms can be more important for non-dominant species than for 

dominant ones (Chase 2007, Tucker et al. 2016), but provide no predictions about the type of the 

deterministic mechanisms. The second difference distinguishes between stochastic mechanisms 

and the two opposing deterministic mechanisms previously mentioned, habitat filtering and 

limiting similarity (Webb 2000, Cadotte et al. 2013, Gerhold et al. 2015).  

1.5 Thesis statement 
Whether communities are deterministically organized or not is an apparently simple question, 

but answering it has been plagued with difficulties and complexities. In the wake of large global 

changes, is it worthwhile to invest in a major effort to answer this question? I think two 

conditions have to be true to positively answer that question: (I) biodiversity is meaningful to 

predict ecosystem services and (II) our lack of understanding on the degree of determinism in 

natural communities creates similar uncertainty on how much biodiversity could survive than 

drivers of global change. Further, I hypothesize that the dominance of a species and the degree of 

determinism it faces in the community are correlated. Because ecosystem services are also 

expected to be related to the biomass of the species, the degree of determinism in the community 

will also impact the predictability of the provision of ecosystem services. 

The second chapter of my thesis aims to answer condition II: In order to assess the total number 

of species in a fragmented habitat, how much uncertainty is caused by our lack of knowledge of 

the degree of stochasticity-determinism in the predictability of species survival, compared to 

uncertainty caused by dispersal capability of the species, the effect of land use change and our 

ignorance about future climatic conditions? I developed a conceptual model base on common 

biogeographic patterns and used it to answer that question at a landscape level in the Tropical 

Andes. 

The third and fourth chapters explore the dominance-determinism correlation. The third chapter 

tests the assumption that stochasticity and determinism are different for dominant and non-
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dominant plants. This was done removing dominant plants in a meadow and studying the 

response of the non-dominant plants that became the new dominant species in the experimental 

plots. In particular, this chapter asks (1) if dominant species (in comparison to non-dominant 

species) are deterministic or stochastically organized, (2) if limiting similarity or habitat filtering 

are important drivers to explain phylogenetic dispersion of dominant and non-dominant plants, 

and (3) whether neutral mechanisms can explain the observed changes in species abundances. 

The fourth chapter aims to scale-up some of the results observed in the third chapter to meadows 

globally distributed. In particular, I aimed to answer (1) if phylogenetic dispersion of dominant 

plants is lower than of non-dominant plants, as a sign of stronger habitat filtering acting on 

dominant species and stronger limiting similarity acting on the non-dominant species; and (2) 

what can drive that difference. 

The fifth chapter builds on the findings of the previous chapters to explore condition I: In 

meadows around the world, will diversity help to predict biomass productivity and litter 

accumulation? In this chapter I hypothesized that graminoids (grasses and sedges), forbs and 

legumes relate differently to productivity and litter accumulation because, as shown in the 

previous chapter, they may follow different assembly rules. If this is the case, modeling the 

biodiversity-productivity relationships independently for each group should improve our 

predictions. 

The sixth chapter summarizes the findings of the previous four chapters, and present potential 

future studies that can help either to confirm or expand those findings. 

Chapters 2 to 5 have been developed as independent studies to be published in peer-reviewed 

journals, and one of them is already published. The independent studies are: 

• Arnillas, C. A., C. Tovar, M. W. Cadotte, and W. Buytaert. 2017. From patches to richness: 

assessing the potential impact of landscape transformation on biodiversity. Ecosphere 8(11). 

DOI: 10.1002/ecs2.2004 

• Arnillas, C. A., and M. W. Cadotte. (in preparation for Ecology). Dominant plants in a 

meadow are more deterministically assorted than non-dominant plants. 
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• Arnillas, C. A., M. W. Cadotte, and The Nutrient Network†. (in preparation for Ecology 

Letters). Globally, grassland species are deterministically phylogenetically over and under 

dispersed, and species’ phylogeny and dominance controls the difference. 

• Arnillas, C. A., M. W. Cadotte, J. Firn, K. J. La Pierre, and The Nutrient Network† (in 

preparation for Ecology). Can functional groups and scale dependent causality solve the 

productivity-biodiversity conundrum? 

† For these studies, I will follow co-authorship guidelines of The Nutrient Network 

(http://www.nutnet.org). 
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Chapter 2  
From patches to richness: Assessing the potential impact of 

landscape transformation on biodiversity 

2.1 Abstract 
Natural patchiness and human fragmentation results in habitats that are not continuously 

distributed. How spatial configuration of patches in fragmented habitats influence biodiversity 

remains largely controversial. Here, we propose a framework to extend the species-area 

relationship approach to analyze how changes in habitat configuration affect species richness in 

fragmented habitats. We use hypothetical communities that are characterized by (1) their 

tolerance to human activities, (2) the dispersal capability of the individuals of any species, (3) the 

species-area relationship and (4) the species turnover among patches. Further, the species 

turnover is a function of (4a) the predictability of species survival and (4b) the species 

recolonization odds.  

In our framework, we identify three extreme communities that encompass the richness of all 

potential different communities, and thus encapsulate the richness of real communities. We 

propose a graph to visualize the effect of different patch sizes on species richness, an index to 

quantify those changes and a second graph using the index to visualize the effect of distance 

between patches on species richness. 

After applying our framework and tools to the Tropical Andes we found strong differences in the 

impact of natural vs. human-driven fragmentation on richness between biomes. When projecting 

future richness values under climate change scenarios, the largest source of uncertainty in our 

richness calculation (>90%) were species turnover among patches and species dispersal for most 

of the biomes rather than future climate or species tolerance to human activities. Habitat loss 

consistently decreased the species richness, however, fragmentation per se often increased it. The 

increment was mostly linked to the species turnover rate among patches.  

Our framework is a new theoretical tool to study the main patterns that underlie regional richness 

and, therefore, can provide new insights to face spatial habitat reconfiguration caused by human 

activities. 
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Keywords: biodiversity; climate change; fragmentation; land use change; species-area 

relationship; richness; Tropical Andes. 

2.2 Introduction 
The impact of habitat loss and fragmentation on biodiversity is a topic that has garnered much 

attention the last couple of decades (e.g. Tilman et al. 1994, Loehle and Li 1996, Fahrig 2003, 

Rybicki and Hanski 2013). Habitat loss is known to be one of the most important causes of 

species extinction (Diamond et al. 1989), but the effect of fragmentation per se (the disruption of 

previously contiguous habitats without major habitat loss, hereafter fragmentation) and 

increasing habitat isolation (e.g. Fahrig 2003) on richness is still a topic of debate (Simberloff 

2000, Fahrig 2013, Rybicki and Hanski 2013). For instance, although most researchers expect 

richness to decline with increasing fragmentation, Fahrig (2017) found that a positive or 

negligible impact was actually a more common pattern. 

Concerns about the effect of habitat loss and fragmentation on biodiversity is largely related to 

the disproportionate impact of human activities on nature, and how land use and global warming 

are affecting the size and spatial configuration of patches within habitats (Parmesan 2006, 

Thuiller et al. 2008, Tylianakis et al. 2008). Often unrecognized is the fact that topography, 

climate and geographic barriers produce naturally patchy habitats with potentially strong effects 

on species diversity patterns (Bertuzzo et al. 2016). Regardless of the origin of the patches, the 

large number of interacting processes that links changes in spatial configuration with changes in 

species diversity limits our ability to adequately predict diversity responses to fragmentation. 

Perhaps more importantly, we currently lack the necessary information needed to identify which 

of these processes is more important for improving our ability to predict changes in diversity. 

Several fragmentation metrics such as total habitat area, edge density or fractal related metrics 

have been used to measure the impact of habitat loss and fragmentation on biodiversity 

(McGarigal and Marks 1995), and experiments, often using microcosm systems, have been used 

to distinguish the relative role of each in natural conditions (Gonzalez 2000). But despite the 

intuitive relevance of these metrics for biodiversity and their statistical links to species richness, 

most of them lack a causal underpinning that can provide strong quantitative predictions. For 

example, most efforts to link fragmentation and habitat loss to biodiversity have focused on focal 

species (Saura and Pascual-Hortal 2007, Watts et al. 2010) without incorporating important 



 

13 

biological processes such as species interactions and dispersal restrictions (Kissling et al. 2011, 

Wisz et al. 2013, but see Leroux et al. 2017).  

The species-area relationship (SAR) is one of the few widely accepted correlations between 

biodiversity and landscape patterns (Rosenzweig 1995, Lewis 2006, Whittaker and Triantis 

2012), with several models proposing mechanisms underlying it (Hubbell 2001a, Rybicki and 

Hanski 2013). In particular, the SAR can convert a spatial measure (i.e. area) into a measure of 

biodiversity for a habitat, i.e. species richness (e.g. Simberloff and Abele 1976, Lomolino 2000, 

Triantis et al. 2012).  

Whittaker and Triantis (2012) distinguished two main types of SAR: The species accumulation 

curve (SAC), also known as continental-SAR, is the result of expanding a sample area in an 

otherwise continuous habitat where the increase in richness is the result of sampling a larger 

proportion of the population. The SAC curves are tri-phasic, with steeper slopes at small and 

large spatial scales (Rosenzweig 1995, Hubbell 2001a). The second type is the island-SAR 

(ISAR), in which the number of species is counted in fragments of a discontinuous habitat. In 

this case the SAR is defined by the species distribution in the landscape. In the ISAR model, 

more species can be observed in larger islands because the latter have larger areas that 1) can 

accommodate more individuals or 2) have more spatial heterogeneity (MacArthur and Wilson 

1967, Hubbell 2001a). Rybicki and Hanski (2013) identified a third type of SAR, the one-

fragment-SAR (OF-SAR), which is similar to an ISAR but assumes that a fragment is isolated of 

the others because migration is not possible (see Appendix A2 for a more detailed discussion 

about ISAR). The most recent review on ISARs supports a convex upward curve without an 

asymptote, which can be described with a power-law function, is the most commonly observed 

ISAR in nature (Matthews et al. 2016). 

We develop a framework to assess regional species changes caused by natural and artificial 

fragmentation, habitat loss, and other landscape changes. To do that, we used the ISAR because 

it represents a basic biological intuition tested in the field (Simberloff and Abele 1976, Matthews 

et al. 2016) and supported by some simple ecological models (Hubbell 2001a, Rybicki and 

Hanski 2013): we expect more species in a larger isolated or semi-isolated space for a given 

community (see Appendix A2).  As usually defined in SAR models, we assume that the species 

of a taxonomic group, guild or trophic level living in a habitat constitute a community, as usually 
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defined in SAR models, and share two population level properties: their dispersal capability and 

their tolerance to human activities, and that two community level properties are fixed: the ISAR 

and species turnover among patches. The turnover is the degree at which species found on 

smaller fragments are not found on larger fragments (Baselga 2010), and is in turn affected by 

the impact of dispersal constraints and the predictability in extinctions and survivals caused by 

species interactions (Lomolino 1996). We define a Levins-McArthur community (hereafter 

LEM-community) as a hypothetical community with a particular combination of these four 

properties. The species in a particular LEM-community will perceive the fragments as one or 

more patches according to the individual organism dispersal capability. With these concepts, we 

(1) develop a conceptual framework to explore how LEM-communities and habitat configuration 

affect total habitat species richness and (2) develop two graphical approaches and an index to 

describe the impact of changes in habitat configuration on the richness of some particularly 

extreme LEM-communities. Finally, we apply these tools to describe the impact of 

fragmentation and habitat loss on species richness in the Tropical Andes and to discuss the main 

sources of uncertainty in our richness calculation for this biodiversity hotspot. 

As other montane areas, the Tropical Andes are a highly biodiverse area important for human 

well-being (Körner and Ohsawa 2005) with a rough topography that makes their habitats 

naturally patchy. These characteristics (Dirnböck et al. 2003, 2011) make the Andes and other 

mountain areas particularly vulnerable to the synergistic interactions of habitat loss, 

fragmentation and climate change (Travis 2003). Their biological and social relevance and 

fragility make this area a natural area to apply this research. 

 

2.3 The Conceptual Framework: Assessing the Richness 
of a Community in a Patchy Environment 

We designed the framework to evaluate how landscape configuration influences (long-term) 

equilibrium species richness of a community within a habitat, accounting for its patchiness. To 

that end, we defined a LEM-community as a set of species that occupy only one habitat and 

respond similarly to human-induced habitat transformation, disperse similarly (individual 

dispersal and recolonization capability) and have consistent interactions, with either predictable 

or unpredictable survival across the patches (Figure 8). With this information, we estimated (1) 
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the available habitat and (2) the patches as perceived by a species of a LEM-community. 

Together, (1) and (2) describe habitat configuration; then, we (3) assessed the number of species 

per patch and (4) describe the species turnover rate among patches. In the next sections, we will 

use these results to develop a graphic representation and an equation to assess species richness 

changes caused by spatial configuration changes. 

 

Figure 1 Key characteristics that influence the number of species that can survive in a 

fragmented habitat.  
The landscape is characterized by the natural distribution of the habitats and the human activities on it. Species of a 
habitat will use the habitat according to their tolerance to human activities and their dispersal capability, thus the 
patches represent the way the species perceive the habitat. Each patch can be composed of non-contiguous 
fragments, as far as the movement of individuals among them is so frequent that keeps their population 
synchronized preventing a meta-population dynamic (see detailed explanation in the conceptual framework in the 
main text). If all the species in that habitat share these characteristics, the species-area relationship (f) can estimate 
the richness in each patch base on its area (Ai). The total number of species in the habitat (S, total richness) will 
depend on the patch richness and on the species turnover among patches, represented as the proportion of species 
present in a patch and absent in any larger patch (pi). The species turnover is controlled by the capability of species 
to recolonize any patch and by the predictability of the species survival caused by the interaction among species. 

 (1) Available habitat: The habitat is a set of fragments of the landscape that share similar 

environmental conditions, where the LEM-community can exist (i.e. biomes, sensu Olson et al. 

2001). Each fragment is a continuous area of the habitat with a discrete boundary (e.g. Figure 

S1). If the community is composed of species intolerant to human-induced habitat loss, only 

“remnant habitats” are available for the community. Conversely, species tolerant to 

anthropogenic transformation of the habitat will occupy remnant and altered areas (“potential 
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habitats”). Once the available habitat is defined, we can calculate fragment sizes and inter-

fragment distances for a given habitat. 

(2) Patch definition and habitat configuration: If the individual dispersal capability of species is 

high enough, species will perceive two (or more) fragments of the habitat as a single patch. This 

will happen when individuals can easily cross from one fragment to another, allowing 

individuals to use resources from different fragments. If dispersal is fully unrestricted, the whole 

habitat operates as a single patch, and the community responds as a “unitary community”. A 

unitary community is the first of three cases of extreme LEM-communities. Also, by decreasing 

the dispersal capability of species, the species perception of the number, size and distance 

between patches will change (Figure 9). 

 

Figure 2 Effect of the maximum individual dispersal in the habitat configuration, 

represented by the number of patches and the proportion of the total habitat in the largest 

patch. 
Several fragments can act as a single patch if individual organisms can disperse more than the distance between 
those fragments. In (a) the two largest fragments are close to each other, causing a sharp increase in the proportion 
of the largest patch with the increase in the maximum individual dispersal distance. However, the small fragments 
are spread around, causing a smooth decrease in the number of patches. In (b) the smallest fragments coalescence 
quickly in two large patches creating a sharp decrease in the number of patches, while the proportion of the largest 
patch increases once the maximum individual dispersal equals the distance between these two groups of fragments. 
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 (3) Number of species in a patch: The number of species in a patch is ultimately controlled by 

species interactions as well as resources availability and variability. We use the island-species-

area relationship (ISAR) to estimate the expected number of species in each patch of the habitat. 

The ISAR is a monotonically increasing function, with a decreasing or constant slope. Once 

fragments below the dispersal threshold have been grouped into patches, we assumed that the 

ISAR of those patches become a good approximation of the one-fragment-species-area-

relationship, which is defined as the ISAR for ‘completely isolated populations’ (Rybicki and 

Hanski 2013). 

(4) Species turnover among patches: Turnover refers to the degree of species dissimilarity 

among different patches (Baselga 2010). High species turnover indicates that patches tend to 

have different sets of species. Species turnover is controlled by (a) the consistency of a species 

survival when interacting with other species (predictability of species survival), and (b) 

population dispersal, which in turns controls the probability of re-colonization. The population 

dispersal can be larger than the individual dispersal, since a population can spread through the 

habitat patches in different generations. As previously discussed, the extreme “unitary 

community” has species with unrestricted individual dispersal which implies that only one patch 

exists, and therefore turnover is meaningless (Figure S2c). In any other case, more than one 

patch exist, and meta-populations dynamics may appear (sensu Levins 1969). Metapopulation 

dynamics imply that species can become locally extinct in some patches, and is strongly linked 

to turnover rate: When recolonization is impossible (no population dispersal) each patch could 

have a different set of species in the long term, creating a total turnover and a “disjoint 

community”. However, if recolonization is possible but limited (restricted population dispersal), 

turnover will decrease when (a) species become extinct in a consistent order (species survival is 

predictable, i.e. species A will be the first to disappear, then B, then C, etc.) and (b) each species 

can recolonize every patch (Wright et al. 1997, Ewers and Didham 2006). Conversely, if 

turnover is negligible then the largest patch has every species of the habitat and smaller patches 

simply contain predictable species subsets, this scenario corresponds to a “nested community” 

(Patterson and Atmar 1986). In contrast, turnover increases when each patch can contribute some 

species to the species pool of the habitat. This can happen when: (a) species survival is stochastic 

(Hubbell 2001a), (b) because patch composition depends on the order species arrive to the patch 



 

18 

(priority effect sensu Drake 1991), or (c) some patches are more isolated (Aranda et al. 2013) 

and stochastic extinctions are not always rescued (Brown and Kodric-Brown 1977). 

In this way, for a given dispersal level, nested and disjoint communities define, respectively, the 

minimum and maximum richness that can exist in a patchy habitat. As individual dispersal 

capability increases from zero to unrestricted (Figure 9), the number of patches is reduced and 

the largest patch size increases, causing both communities to converge into the unitary 

community. This implies that nested communities with zero dispersal will have the smallest 

largest patch possible (the largest fragment) and hence will have the minimum species richness 

for any nested community. Conversely, a disjoint community with zero dispersal rate would have 

the maximum number of species for a given spatial configuration of the habitat because the 

number of patches is maximal and each patch would contain a different set of species (Figure 

S2). These two community types, nested and disjoint with zero individual dispersal, along with 

the unitary community, define three extreme community types that provide the possible 

boundaries of richness values for the full range of individual dispersal capability. 

2.3.1 Building the toolbox 

Here we present two novel graphical approaches and a numerical index to study the richness of 

the nested, disjoint and unitary communities, and their potential change due to changes in habitat 

configuration. The first graph (patch-size profile) provides qualitative information about 

potential richness change with relatively few assumptions. Most notably, no assumption is made 

about the specific shape of the ISAR. However, the index assumes a particular ISAR function 

and provides numerical estimates of richness change. The index is then used to explore the effect 

of distances between patches with the second graph, the dispersal profile. 

2.3.1.1 Patch-size profile: Visualizing habitat availability and inferring 
general richness patterns 

To visualize the effects of habitat patchiness on richness we plot the cumulative patch area 

against the order of the patch for a single habitat type (sorted from the largest to the smallest) 

(Figure 10a-b). This curve, hereafter referred to as the ‘patch-size profile’, shows the largest 

patch size (LPS, y-axis value of left side of the curve), the total habitat area (THA, y-axis value 

of right side of the curve), the contribution of the patches of intermediate size (slope of the 

curve), and the number of patches (maximal x-axis value). We log-transformed the x-axis to 
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facilitate the visualization of changes in the number of patches. Profiles closer to the bottom and 

right side of the graph indicate less habitat area or a more fragmented habitat. 

 

Figure 3 Construction and interpretation of a patch size profile.  
(a) For a particular habitat of a landscape, patches of a potential habitat (red) that are used by the tolerant LEM-
communities, are identified and sorted from left to right from the largest (order 1) to the smallest one. The same 
process is applied to patches of the remnant habitat (blue), used by intolerant communities. (b) Then, the cumulative 
sum of the patches area is plotted (solid lines). Dashed lines define the two habitat configuration extremes for a 
defined number of patches and total habitat area: First, every patch has the same area (bottom line) and second, one 
very large patch and all the others as small as possible (above line). These configurations define the extreme 
richness scenarios. If species turnover is null, the above line will indicate the highest richness and the bottom one the 
lowest richness. If turnover is complete, the values switch, and now the above line will indicate the lowest richness 
and the bottom line the largest one. Differences in the largest patch size (d1), the total habitat area (d2) and the 
number of patches (d3) between profiles are shown. (c) Three different profiles as a result of different underlying 
mechanisms and how to interpret them in terms of the expected impact on richness for the different communities. In 
the left panel, habitat loss of the largest patch caused the near parallel profiles. In the middle panel, 10 largest 
patches were split in two (fragmentation of largest patches without habitat loss) caused the convergent profiles. And 
in the right panel, halving by two the second to tenth largest patches (habitat loss of medium-sized patches) caused 
the divergent profiles. The logarithmic scale in the x-axis helps to visualize the profiles of the largest patches, but 
reduces the visual effect of divergence caused by fragmentation without habitat loss. 

Patch order (decreasing size)

C
um

ul
at

iv
e 

ar
ea

Tolerant 
species

Intolerant 
species

d2

d3

d1

Potential
habitat

Remnant
habitat

a) Landscape structure by habitat type

b) Patch size profile relevant to each 
     LEM-community

Size of the added contiguous patch

C
um

ul
at

iv
e 

ar
ea

Divergent
profiles

Parallel 
profiles

c) Type of patches profiles, underlying habitat change 
     and expected impact on non-tolerant communities

Tolerant

Habitat 
lossType

Affected
patches

Largest
patch

Habitat 
fragmentation

Largest
patches

Habitat 
loss

Medium-
size

patches

Unitary

Nested

Disjoint

Convergent
profiles

Non-tolerant

Patch order (log)
Habitat change

Expected change in richness on extreme LEM- 
communities non-tolerant to human activities

Decrease Unchanged IncreaseLegend



 

20 

In addition, assuming only a general form of the ISAR (where largest patches have more species 

than smaller ones and that the number of new species per unit of area is smaller when area 

increases), one can observe that: (1) the right side of the profile (THA) defines the number of 

species that can subsist in a unitary community; (2) the left side (LPS) defines the richness in a 

nested community; and further, (3) the more evenly split the habitat is into patches (patch-size 

profile closer to the bottom dashed line in Figure 3b) the higher the richness in a disjoint 

community with the same total habitat area and number of patches (Appendix 3).  

Although it is not possible to calculate richness using the patch-size profile directly, we can 

visualize relative changes by comparing multiple profiles plotted together. For example, multiple 

profiles representing the effect of climate change, land use activities, or another landscape 

transformation can be contrasted. If remnant and potential patches are plotted together, the 

distance between the profiles shows the impact of land use change on species richness (d2 in 

Figure 3b). Profiles that are parallel, convergent or divergent are caused by different changes in 

the habitat configuration and imply different impacts on intolerant LEM-communities (Figure 

3c). 

When comparing current and projected future profiles, one possibility is that the future profiles 

can be lower than the current ones. Lower future profiles indicate lower habitat availability and a 

higher risk of species loss. On the other hand, future profiles could be higher than current ones, 

implying that there is an increase in available habitat. We discuss the implications of this 

scenario later on. 

Additionally, the uncertainty of future climatic conditions can be taken into account by plotting a 

set of profiles for different scenarios but with the same climatic models (i.e. uncertainty in the 

concentration of gasses in the atmosphere), or using different climatic models for a same 

scenario (i.e. uncertainty caused by our level of understanding of the climatic system). Thus, a 

lack of congruence of the profiles implies uncertainty for projecting species richness. Further, 

multiple profiles can differ between the right, middle or left side of the graphs, representing 

stronger impacts on unitary, disjoint and nested communities, respectively.  
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2.3.1.2 Quantifying the potential impact of landscape changes on 
biodiversity 

For a given LEM-community described by its habitat, tolerance to human activities level and 

maximum individual dispersal capability, the habitat configuration can be described by the 

number of patches (k), and the area of each patch Ai, with i = 1 being the largest and i = k the 

smallest patch. Then, habitat richness (S) can be described by 

    eq. 1
 

where Si is the number of species in patch i, and it is linked to the patch area by the Arrhenius 

SAR (cAi
z, where the variables c and z of  the Arrhenius expression remain constant (Ewers and 

Didham 2006)); and pi represents the species turnover as the proportion of species in the patch i 

that are absent in any larger patch.  

The species turnover rate can be easily described for the extreme communities previously 

presented. In a nested community, every species is present in the largest patch, so p1=1 and 

p2..k=0, that implies that its richness is Sn=cA1
z where A1 is the largest patch size (LPS). In a 

disjoint community pi=1 for every patch because each species in each patch is unique, and its 

richness Sd= ∑Si = c∑Ai
z. Finally, there is only one patch in a unitary community, such that k=1 

and p1=1, A1 is the total area of the habitat (THA) and Su=c∑A1
z=cTHAz.  

To quantify the impact of different habitat configurations on the richness of our LEM-

communities we define  

    eq. 2
 

which is the ratio of the richness of any LEM-community to the richness of the unitary tolerant 

LEM-community at a given time. The selection of the unitary community as a reference is rather 

arbitrary, but by using it the index will show that (1) land use change reduces habitat richness of 

nested and unitary communities (which is intuitive) and (2) species turnover is meaningless 

when there is only one patch. When the reference community is the unitary one, R-values will 

range from that for nested community with null dispersal (which is always < 1 when more than 
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one fragment exist because z < 1) to the R-value of the disjoint community with null dispersal 

too (which is always > 1 when more than one fragment exist also because z < 1), and unitary 

communities will always have an R-value equal to 1. Any other community that can support the 

same number of species as the unitary community will also has an R-value of 1.  

R-values can either be used directly or combined to assess the impact of different aspects of the 

landscape configuration (Figure 4). For instance, using the remnant habitat to define the patches 

in the numerator and assuming again unrestricted dispersal, the R-values will assess the impact 

of human activities on the richness of intolerant unitary communities. Further, by plotting the R-

values for nested and disjoint communities with different maximum individual dispersal we can 

explore the effect of connectivity (distances between patches) in the richness of the habitat. We 

call this graph the connectivity profile (Figure 4a-b). The equation used to calculate the 

connectivity profile (eq.2) allow for a direct interpretation of the proportion of species of 

different LEM-communities (Figure 4c), such as the proportion of species with unrestricted 

dispersal and tolerant to human activities able to survive due to current land use change. Since 

the R-values are on a normalized scale, the values can be compared among habitats as the 

proportion of species of a unitary tolerant community able to survive in a particular LEM-

community. Therefore, R-values can be subtracted between them to obtain ΔR-values that can 

isolate the impact or uncertainty related to a particular component (Figure 4d). For instance, the 

uncertainty related to natural fragmentation is caused by different species turnover rates, and can 

be measured as the difference in the R-values of the extreme disjoint and nested tolerant 

community. 
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Figure 4 Connectivity profile using R-values and their relationship with patch metrics often 

used in fragmentation analysis.  
a) Expected connectivity profile for disjoint and nested communities of tolerant and intolerant communities. Every 
basic equation used to estimate an R-value profile represented in the figure is a particular case of R = ∑ p i-

1Ai
z/THAT

z, symbols as in (b), and equations detailed in (c). In particular, nested communities (Rn) are represented 
by p=0 (null species turnover rates among patches), while disjoint communities (Rd) by p=1 (total species turnover 
rates), intermediate values of p generate curves intermediate to the ones presented in (a). As maximum individual 
dispersal capability increases, the habitat configuration changes (e.g. number of patches decreases and proportion of 
largest patch increases) and both R-values for nested and disjoint communities converge in the unitary community 
(Ru). Human activities (dashed lines) can only reduce the area occupied by the habitat, reducing the species richness 
for nested and unitary communities (lower curves for RIu and RIn than for RTu and RTn, respectively). On the other 
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hand, when compared with the richness of natural fragmentation (RTd), human-induced fragmentation can increase 
richness of a disjoint community (RId), while habitat loss will decrease it. Some equations of R-values (c) and ΔR-
values (d) provide examples of how to link the figure, LEM-communities, common patch metrics (i.e. largest patch 
size, LPS, and total habitat area, THA) and their interpretation. 

To study the effect of intermediate species turnover rates, we assumed that the proportion of new 

species will decrease with any new patch, so that pi=pi-1. Here, p represents a nested-turnover 

gradient, with p=0 being a fully nested community, and p=1 a disjoint community (full species 

turnover). It is important to highlight that even when p=0.9, it does not imply each patch will add 

90% of new species. For instance, if p=0.9 the patch i=10 will have less than 40% of new 

species. Other functions can represent the proportion of new species in each patch, but we 

believe it is more likely to expect a decreasing function when new patches are observed 

(regardless the order in which the patches are added) because the probability of finding a new 

species should decrease as more samples of the population are observed. 

Importantly, the R- and ΔR-values should be interpreted as potential impact assessments rather 

than probabilities of extinction. This is important because they ignore important ecological 

processes as adaptation, and, particularly, the time needed to achieve the new equilibrium.  

2.3.2 Applying the conceptual framework 

We applied the framework to the biomes of the Tropical Andes, a biodiversity hotspot (Myers et 

al. 2000) where human land use has been prevalent for centuries (Ellenberg 1979), and has 

impacted different habitats with different intensities. Apart from human transformation of the 

landscape, climate change will likely cause an upward displacement of biomes, further reducing 

habitat area and increasing fragmentation (Malcolm et al. 2006). We use our framework to 

analyze: 1) how current spatial configuration	shapes the species richness of the Andean biomes, 

2) the main sources of uncertainty in calculating habitat species richness when habitat loss and 

climate change are accounted for and 3) how changes in habitat configuration in the future would 

affect different extreme LEM-communities. 

We used the patch-size profile to visualize and qualitatively estimate the impact of land use and 

climate change on richness. Numeric estimates of these impacts per biome and measures of the 

uncertainty on calculating changes in richness (R), were obtained using R-values for several 

LEM-communities assuming different maximum individual dispersal levels and different species 
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turnover rates. Dispersal levels were selected based on the minimum and maximum distance 

among fragments in the habitat. 

2.4 Methods 

2.4.1 Spatial database 

The study area (Figure S3) covers the tropical Andean region from Venezuela to Bolivia above 

approximately 600 and up to 6000 m a.s.l. This region encompasses 8 biomes (sensu Tovar et al. 

2013): glaciers and cryoturbated areas (hereafter cryoturbated areas), two forested biomes that 

are the evergreen montane forest (hereafter evergreen forest) and the seasonally dry tropical 

montane forest (hereafter seasonal forest), three tropical alpine grassland biomes that are the 

paramo, humid puna and xeric puna, and finally two lower altitude biomes that are the prepuna 

and montane shrublands. Here we used the biome maps produced by Tovar et al. (2013) at 1km2 

resolution for the present and the future climate change scenarios. The map for the present 

represents a baseline from the year 2000 (current scenario) and we assume that their distribution 

is representative of the 1960-2000 climate conditions. Future biome maps represent projections 

using future projected climate as described by WCRP CMIP3 multi-model dataset (Meehl et al. 

2007), for two future periods (2010-2039 and 2040-2069), 8 global climate models (GCMs) for 

emission scenarios A2 and 10 for A1B (Table S1). Biomes surrounding the Andes were also 

modelled to capture the change in the lower boundary of the Andean biomes, but they are out of 

the scope of this study. 

We defined potential biomes as the biomes projected by the model under present or future 

climatic conditions. Remnant biomes are defined as potential biomes excluding current human 

transformed areas (Tovar et al. 2013). Since we used only a map of current human transformed 

areas, the projected future patch sizes of remnants biomes are overestimated. Two pixels of the 

same habitat were assigned to the same patch if they shared an edge or a corner (i.e. the Queen 

contiguity rule). Patches of 1 pixel were discarded from the indices to reduce noise from 

misclassified pixels. 

2.4.2 Assessing fragmentation impact on Andean biodiversity 

We used potential and remnant patch-size profiles of current biomes to assess the impact of 

natural and human-induced fragmentation, respectively. To quantify the effect of natural and 
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human induced fragmentation and habitat loss on extreme community types we estimated R-

values for the extreme LEM-communities (nested and disjoint communities with null dispersal, 

as well as unitary communities) for each biome as observed at the present (see formulas in 

Figure 4).  

2.4.3 Uncertainty in habitat richness under present and future 
conditions 

We used the R-values to get an initial estimate of the role of different sources of uncertainty 

(species turnover, dispersal capability, human impact and climate change). First, for present 

conditions we estimated R-values for different levels of species turnover (ranging p from 0 to 1), 

and for different dispersal capabilities (from no dispersal to unrestricted dispersal) for both, 

potential and remnant habitats and plotted connectivity profiles with them. Second, we estimated 

the extra uncertainty related to climate change with future R-values for each available 

combination of climatic scenario and model. With this future dataset, we fitted linear models 

were the R-values were the dependent variable, using as explanatory variables the climatic 

scenario, climatic model, tolerance to human activities, maximum individual dispersal and 

turnover rate. We also included the interaction between maximum individual dispersal and 

turnover rate because the predicted strong interaction between these two terms. We estimated the 

relative weight of the uncertainty related to each explanatory variable using the percentage of the 

ANOVA type I sum of squares of the R-values for each model. Because fully disjoint 

communities (p=1.0) created extremely high R-values, we discarded their values to prevent a 

biased result. Also, to control for different number of levels in each factor, we used ten 

maximum dispersal distances evenly distributed for each habitat. Then, we compared the mean 

sum of squares fitted by the model.  

To calculate the ISAR, we used several z values between 0.1 and 1, but focused on z = 0.25 to 

describe our results. This value of the z exponent is frequently used and is theoretically justified 

(e.g. Thomas et al. 2004, Rybicki and Hanski 2013). Further empirical z-values converge 

towards that value when increasing the range in the patch size (Figure S4). The other values were 

used to test the sensitivity of the conclusions to that parameter. We also analyzed an extreme 

case when each new patch has the same probability of new species (p1 = 1 and pi>1 = p). 
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2.4.4 Effect of spatial reconfiguration in extreme LEM-
communities per habitat 

To analyze the effect of future spatial reconfiguration on species richness of extreme LEM-

communities we plotted patch-size profiles for future climatic conditions. We used scenario 

A1B, and included one profile per climatic model for future remnant and potential biomes. 

All the analyzes were performed with R 3.3.1 (R Core Team 2016), and the packages raster 

(Hijmans et al. 2015), igraph (Csardi and Nepusz 2006) and ggplot2 (Wickham 2009).  

2.5 Results 

2.5.1 How does the current habitat configuration of Andean 
biomes impact their biodiversity? 

Strong differences in natural fragmentation between biomes can be observed (potential patch-

size profiles in Figure 5 and Figure S5, and Table 1). The high elevational grasslands xeric and 

humid puna have a large patch that covers most of their potential area (Figure 5c and Figure S5b, 

respectively), which imply large R-values for nested tolerant communities. In both habitats, the 

relatively low R-values of disjoint communities and the low difference between R-values of 

disjoint and nested (ΔRT) extreme communities suggests low natural fragmentation and a low 

uncertainty in the species richness caused by natural fragmentation. Similarly, the patch-size 

profiles indicate that despite the large number of fragments, the small size of most of them may 

contribute very little to the richness value. Conversely, Glacier and cryoturbated areas and 

paramos have a small largest patch, several medium-sized patches and not as many small patches 

(Figure S5c and a, respectively). The R-values for nested tolerant communities in these two 

biomes is thus lower than for other biomes (0.61 and 0.85 respectively), while disjoint 

communities get intermediate values, caused by a balance between important medium-sized 

patches, but not as many small patches, as in other biomes. 
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Figure 5 Patch size profile for current potential (black lines) and remnant biomes (gray 

lines), assuming zero individual dispersal.  
a) Evergreen forest shows the highest human impact. Human impact considerably reduced the area of the largest 
patches (parallel and slightly divergent profiles, see Figure 3c) and increased fragmentation (more patches). b) 
Montane shrubland profile shows that the largest patches remained with similar size but medium size patches have 
reduced their size due to human impact (divergent profiles, see Figure 3c) and many small patches got lost. c) Xeric 
puna does not show a significant human impact. Triangles and dots show the threshold between patches smaller and 
larger than 10 km2 and 1 km2, respectively. 

 

Table 1 R-values for current potential and remnant Andean biomes.  
For each habitat, the table shows the R-values for nested, disjoint and unitary communities, either tolerant or 
intolerant to human activities. Intolerant communities occupy remnant patches only, while tolerant ones can occupy 
the entire potential habitat. Unitary communities use the whole habitat as a single patch. The area of the largest 
patch defines the R-values for nested communities. Disjoint communities occur when every patch has a different 
species subset. The R-values represent the proportion of species able to survive in each community type divided by 
the number of species able to survive in a unitary tolerant community. Patches of 1 km2 were excluded from the 
analysis. 

 
 Unitary Nested Disjoint 
Habitat Tolerant Intolerant Tolerant Intolerant Tolerant Intolerant 
Evergreen forest 1 0.874 0.902 0.547 100.6 221.1 
Glacial and cryoturbated areas 1 1.000 0.609 0.609 60.8 60.8 
Humid puna 1 0.979 0.985 0.946 41.9 58.5 
Montane shrublands 1 0.966 0.937 0.929 140.4 118.2 
Paramo 1 0.916 0.855 0.599 36.9 54.3 
Prepuna 1 0.992 0.898 0.892 22.3 24.9 
Seasonal forest 1 0.967 0.863 0.856 169.5 175.9 
Xeric puna 1 0.997 0.985 0.983 50.4 48.1 
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The effect of current land use can be perceived in the switch to the bottom and right of the 

remnant patch size profiles in comparison to the potential patch size profile, in many habitats, 

but particularly in the evergreen forest (Figure 5a). The second most affected biome due to 

current land use is the paramo (Figure S5a). These two biomes showed a large difference in their 

largest patches between remnant and potential habitat (almost parallel profiles), suggesting a 

large impact of land use on the richness of unitary and nested communities. In fact, for evergreen 

forest the R-values (Table 1) suggest a decrease of ~12.6% of species in a unitary community 

(ΔRu), and ~35% for a fully nested community (ΔRn), once equilibrium condition of the new 

spatial configuration is achieved. On the other hand, the increase in the number of patches and 

the massive reduction in area of evergreen forest could also affect the disjoint communities 

(large ΔRd). In the case of shrublands, human impact mostly affected medium size patches 

(divergent profiles) without a change in the largest patch size (Figure 5b). However, the observed 

reduction in the number of patches, leads to negligible, small and larger impacts on the richness 

of nested, unitary and disjoint communities, respectively (ΔRn ≈ 0, medium ΔRu, and high ΔRd). 

Finally, habitat loss had little or no impact on the communities of some biomes such as xeric 

puna (Figure 5c), prepuna or cryoturbated areas (Figure S5e and c, ΔRu ≈ ΔRn ≈ ΔRd ≈ 0). 

2.5.2 Present and future habitats’ richness uncertainty  

For present conditions, the connectivity profiles using various levels of species turnover (Figure 

6) suggest that the largest source of uncertainty in calculating R-values is related to the species 

turnover rate and to the individual dispersal capability. Given that there is not much difference 

between the curves of tolerant and intolerant communities, the effect of habitat loss is not as 

significant. R-values for species turnover rate (p) above 0.9 were extremely high, but even lower 

values caused high uncertainty on R-values on any maximum individual dispersal, as can be seen 

in each figure in the vertical distance between curves with different turnover rate.  
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Figure 6 Connectivity profiles for evergreen forest, montane shrubland and xeric puna at 

present time for different maximum individual dispersal capabilities (x-axis) and for both 

tolerant (top) and intolerant (bottom) communities. 
Lines represent a gradient of species turnover rates (p values ranging from 0 to 1 in colours). The plots show a large 
source of uncertainty in the R-values related to species turnover rate, followed by maximum individual dispersal 
distance, while values representing species tolerant and intolerant to human activities (top and bottom respectively) 
are more similar among them when controlling for the other variables. 

The uncertainty of future richness estimates, measured as variability on R-values, was also 

related mostly to species turnover (Table 2a). Although we discarded the most extreme turnover 

rate (p=1.0) to reduce biasing the results, we still found that the largest source of uncertainty, 

was related, first, to species turnover rate among patches and, second, to maximum individual 

dispersal. Those two components and their interaction term explained more than 90% of the 

uncertainty of the estimated richness of each habitat. When accounting for different degrees of 

freedom in each explanatory variable (Table 2b), species turnover still represented the largest 

source of uncertainty. In contrast to the present conditions, the second largest source of 

uncertainty differed among habitats: tolerance to human activities for evergreen forest, shrubland 

and seasonal forest; maximum individual dispersal for prepuna, paramo, humid and xeric puna 

and glacier and cryoturbated areas. Future climate, as a combination of uncertainty of climate 

scenario and model is a very large source of uncertainty for cryoturbated areas too. These results 

suggest different ranking in the main threats faced by each of those biomes. 
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Table 2 Main sources of uncertainty in the species richness calculations of the Andean biomes 

during the period 2040-2069. 
After fitting a fixed effects linear model with the R-values, uncertainty was estimated as (a) the percentage of the 
total variance (represented by the sum of squares) and (b) the mean sum of squares. The model described climate 
uncertainty by two greenhouse gas emission scenarios (A1B and A2) and several climate models (10 for A1B, 8 for 
A2), and the LEM-communities as tolerance to land use change (tolerant or intolerant), ten levels of maximum 
individual dispersal capability (MID, actual distances varied according to each biomes’ spatial configuration) and 
ten different species turnover rates (p=0, 0.1, … 0.9). In (a) turnover rate explains by itself the largest proportion of 
the variance. Further, together, MID and turnover rate explained more than 90% of the total variance. In (b) mean-
sum of squares figures suggest that predictability is the single largest source of uncertainty, and that the second most 
important source of variability is strongly related to habitat stressors, either land use or climate change. 

 
a) Proportion of the sum of squares by uncertainty source 

Source Evergreen 
Forest 

Glacier and 
cryoturbated 

areas 

Humid 
puna 

Montane 
shrublands Paramo Prepuna Seasonal 

forest 
Xeric 
puna 

Scenario 0.00 0.25 0.00 0.00 0.00 0.00 0.00 0.01 
Model 0.10 3.60 1.45 0.83 0.30 0.97 0.34 1.73 
Tolerance 1.85 0.00 0.02 1.26 0.37 0.02 0.79 0.01 
MID 12.89 3.82 22.61 1.53 11.60 12.52 4.08 14.92 
Turnover rate 46.20 69.49 33.55 87.96 59.30 56.25 81.09 51.35 
MID * Turnover rate 35.29 21.80 39.26 6.04 26.91 26.03 12.37 28.91 
Residuals 3.67 1.04 3.11 2.38 1.51 4.21 1.32 3.08 

 
b) Mean sum of squares by uncertainty source 

Source 
Evergreen 
montane 
forest 

Glacier and 
cryoturbated 
areas 

Humid 
puna 

Montane 
shrublands Paramo Prepuna 

Seasonal 
montane 
forest 

Xeric 
puna 

Scenario 0.02 1.81 0.00 0.02 0.03 0.00 0.00 0.03 
Model 0.06 2.85 0.33 1.30 0.29 0.35 0.48 0.58 
Tolerance 10.64 0.00 0.05 17.91 3.25 0.06 9.97 0.02 
MID 8.24 3.02 5.09 2.41 11.28 4.54 5.71 5.03 
Turnover rate 29.53 54.96 7.55 138.82 57.69 20.40 113.42 17.32 
MID * Turnover rate 2.51 1.92 0.98 1.06 2.91 1.05 1.92 1.08 
Residuals 0.01 0.00 0.00 0.01 0.00 0.00 0.01 0.00 

 

2.5.3 Effect of spatial reconfiguration in extreme LEM-
communities per habitat 

We plotted the patch-size profile for future climate models under the A1B scenario to further 

explore the changes in the patch sizes and their impact on different LEM-communities in a more 

robust way (no assumption about the island-species-area-relationship, ISAR function). The 

projected patch-size profiles for the future (Figure 7 and Figure S6) showed three patterns of 

climate change impact: (1) biomes with significant displacement of their profiles to the lower-

right corner (i.e. cryoturbated areas, evergreen forest and Paramo); (2) biomes that have a 

significant rise in their profiles, suggesting lower fragmentation and even greater habitat area 

(i.e. seasonal forest); and (3) biomes with uncertain futures, with some climate models projecting 
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an upward and others a downward curve displacement (i.e. xeric puna, montane shrubland, and 

prepuna). Humid puna habitat was largely projected to decline, but some future uncertainty 

remains – nine models projected habitat reduction and only one an increase. 
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Figure 7 Patch-size profile for projected future biomes under different climate models 

(gray lines) for potential and remnant areas, assuming zero individual dispersal.  
Black solid lines represent present profile. Evergreen forest (a) is the biome projected to be the most affected by 
climate change showing a projected reduction in total area while seasonal forest (b) is projected to have an increase 
in habitat size under future climate conditions. Both habitats have more uncertainty related to the total habitat area 
than to the largest patch size. Prepuna (c) shows a high uncertainty under future projected scenarios, with higher 
uncertainty in the largest patch size. Data represents A1B scenario for the period 2040-2069. 

In some biomes, the future profiles diverged among them, indicating more uncertainty in the size 

of medium-sized patches that affect richness of disjoint and unitary communities. This is the case 

for potential evergreen forest, seasonal forest (Figure 7a-b), paramo and cryoturbated areas 

(Figure S6a-b), and implies that the future species survival of nested communities is less 
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uncertain (either positive or negatively) than for other communities in the habitat. Prepuna 

showed the opposite pattern (Figure 7c), where future profiles converged indicating more 

uncertainty in the richness of nested communities. Shrublands, xeric and humid puna had almost 

parallel profiles (Figure S6c-e), suggesting similar uncertainty levels for the richness of each 

LEM-community. Finally, human impact of the environment mostly constrained the potential 

future R-values, as can be seen on paramo, evergreen and seasonal forest. An unexpected pattern 

is observed in remnant evergreen forest (Figure 7a-remnant habitat), where more habitat is 

available for nested communities, but less for unitary ones (left and right hand of the profiles, 

respectively). 

2.5.4 Sensitivity analysis 

The effect of species turnover rate and dispersal capability on the uncertainty of species richness 

is robust for z-values in the range 0.1-0.5 (Figure S7a,b). This range of exponents corresponds to 

the observed range of z-values reported in natural systems in scales comparable to the areas 

studied here (Figure S4, and references in (Matthews et al. 2016)). For z-values closer to 1, the 

pattern changes and the uncertainty in each biome is mostly controlled by the source primarily 

driving total habitat modification. The ranking of the most important variable (either species 

turnover rate, dispersal capability and their interaction) depends on the function used to represent 

the change in the proportion of new species in each patch (Figure S7b). 

2.6 Discussion 

2.6.1 Describing Andean biomes richness 

Our results show that the Andean biomes have different levels of fragmentation due to both, 

natural and human-driven factors that have impacted their richness. Cryoturbated areas and 

seasonal forest are strongly naturally patchy habitats (Armenteras et al. 2003), the first one 

having little evidence of human direct transformation. On the other hand, our results also show 

that land use change has negatively, and strongly, impacted richness in the paramo and the 

evergreen forest. These findings complement those of Tovar et al. (2013) whose analysis show a 

drastic reduction of habitat extent in both biomes. 

Consistent with the findings of Fahrig (2017) we have also found that fragmentation per se is 

likely to cause an increase in richness, with a higher increase when turnover increases. This 
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should not be taken as a sign of a healthier environment though, because the model only refers to 

the number of species but does not predict the identity of the species, thus, the quality of the 

services or functions provided by the ecosystem based on the new species composition is 

uncertain (Sobral et al. 2016). In the equilibrium state, the number of species can increase from 

the migration and establishment of species from other habitats or from speciation (Chave et al. 

2002), but immigration of non-native species will likely drive increases in the short term. For 

instance, a larger R-value caused by habitat loss can imply an increase in alien species, thanks to 

their plasticity, genetic variability, new climatic conditions variable enough as to encompass 

their original climatic constraints, among others (Hylander and Ehrlén 2013). However, the 

potential richness increase also provides some hope for native species survival, because 

fragmentation may be able to maintain the diversity that would otherwise be lost from habitat 

destruction. This seemingly contradictory result cannot occur in unitary or nested communities, 

which means that meta-population dynamics have to prevail and that extinction cannot be 

predictable. This mechanism is different from the one proposed to explain “extinction debt” 

(Hylander and Ehrlén 2013), because this higher richness level is caused by a long-term 

equilibrium according to the island-species-area relationship (ISAR) that underlies the model, 

and not a transient situation. 

However, it is important to highlight that even though fragmented habitats with high turnover 

rates could support higher community richness than continuous habitats, the probability of 

randomly losing any single species in any patch is higher due to smaller population sizes and 

susceptibility to environmental stochasticity (MacArthur and Wilson 1967). Also, with each 

species present in less patches, the probability of recovery of any population from propagules 

from other populations is lower (Levins 1969). These two processes may threaten the stability of 

the system. Also, a larger proportion of alien species can increase the probability of one 

becoming invasive, and facilitating the replacement of local by other alien species as in an 

invasive meltdown (Simberloff and Holle 1999).  

When we analyzed the effect of future climate change scenarios on species richness, overall, our 

results support previous projections of future species loss (Ibáñez et al. 2006, Feeley and Silman 

2010, Dullinger et al. 2012) for several biomes (e.g. evergreen forest and paramo). However, our 

analyzes also show that there could be an increase in richness in others, particularly in the 

seasonal forest. Projections for this biome show all future patch-size profiles are above the 
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present profile for tolerant and intolerant species. These contrasting results match the conceptual 

model proposed by Young (2009), who suggests species adapted for dry and warm conditions 

might expand their distribution, while species better adapted for wet and cold conditions could 

show range contractions.  

As expected, future climate change interacted with land use transformation. Extending the results 

obtained by Tovar et al. (2013), our future patch-size profiles indicate that biodiversity loss due 

to land use change will remain the major threat to biodiversity in evergreen forest, shrublands 

and humid puna. Interestingly, regardless the sign of the effect of climate change, human 

transformation of the habitats reduced the future species richness uncertainty in several habitats, 

a result consistent with the findings of Feeley et al. (2011) for montane tree species, who found a 

reduction in the variability of the species distribution when human activities were taken in 

account. 

The unexpected result observed for evergreen forests where climate change would cause that 

nested communities increase in their equilibrium richness while unitary communities decrease is 

consistent with an upward displacement of the biome. This would be the case under the 

assumption that the connection between patches above the current tree line is allowed despite of 

human activities. Unfortunately, people in human settlements located in the higher grassland 

biomes (particularly humid puna) often burn trees to keep their traditional production system 

(Feeley et al. 2011), and, even now, upward seed dispersal is not as likely (Rehm and Feeley 

2015). It is crucial to point out that we assumed that land use will remain constant despite future 

land use is expected to expand. If agriculture increases in areas similar to those where crops are 

currently more prevalent, as often assumed in land use change models (Verburg and Veldkamp 

2001, Tovar et al. 2011), then future deforestation should reduce the total cover and fragment the 

evergreen forest more than any other habitat. Overall, the effects of changes in climate and land 

use represent a considerable threat to evergreen forest.  

Generally, and despite the important challenge imposed to Andean ecosystems by land use and 

climate change, the R-values we obtained suggest that the largest source of uncertainty in 

calculating potential richness comes from our poor understanding of two biological properties of 

the communities: the predictability of the species survival caused by the interactions among 

species and the recolonization odds (Table 2). These two properties together control the species 
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turnover rate among patches (pi values). Therefore, estimating empirical turnover patterns around 

the world can be as important as describing the ISAR itself (Brown and Kodric-Brown 1977, 

Baselga 2010, Matthews et al. 2016). A third property, the maximum individual dispersal, has a 

large impact on regional richness (Table 2; Figure S7), and is strongly related to recolonization. 

In this context, the largest efforts to address the risks related to climate change and habitat loss, 

should be focused on describing these interrelated properties. A better understanding of these 

properties can help to direct future research. For instance, if predictability of species survival and 

recolonization odds are high, the largest effort should be directed to characterize species traits 

and their impact on community assembly processes. Conversely, if either or both are low, more 

effort should be put to describe current species distribution. 

2.6.2 General framework 

The ISAR has received a lot of attention from ecologists (Pimm and Askins 1995, Thomas et al. 

2004, Ewers and Didham 2006), and several mechanisms have been proposed to explain its 

shape (see for a review Whittaker and Triantis 2012). However, one of the most important 

limitations of its application is the lack of a clear framework to use ISARs in fragmented 

landscapes, an issue explicitly addressed in this paper. Here, we built on the species-area 

relationship to assess the impact of spatial configuration of a fragmented habitat on species 

richness of its community. 

Our approach focused on the definition of hypothetical communities that we named Levins-

McArthur communities (LEM-communities), in recognition to their contributions to spatial 

ecology and biogeography. Each LEM-community is conceptually associated with a habitat, and 

characterized by species with the same individual dispersal capability and tolerance to human 

impact. The LEM-community also has a particular ISAR and a species turnover rate among 

patches. Using the general shape of a ISAR we deduced that disjoint communities (i.e., complete 

species turnover among patches) and nested communities (i.e., the largest patch has every 

species) bracket the potential richness for any given dispersal capability, as can be seen in Figure 

6. We also showed how the richness of these communities converge into a unitary community 

when the individual dispersal capability increases. Finally, we discussed how the species 

turnover rate among patches is a function of recolonization and of the predictability of the 

survival caused by interactions among species. Because species turnover is the largest source of 
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uncertainty (also shown by Matthews et al. 2016 for real datasets), understanding these two 

biological properties is fundamental to improve the predictability of richness changes. 

In general, our approach is similar to surrogate species approaches, where species with certain 

characteristics (e.g., high dispersal or tolerant to human activities) can be used to represent 

broader communities (Watts et al. 2010). However, since the model works at the community 

level, community characteristics, such as species interactions, were implicitly included. 

Additionally, the model can be used in areas where species information is scarce. Some simple 

assumptions can be included to narrow the uncertainty related to the survival among species. For 

instance, the probability of an extinction could be inversely proportional to the overall abundance 

of a species, as in a neutral model (Hubbell 2001a), increasing the predictability of species 

survival among patches. Therefore, general patterns of species turnover and nestedness (Baselga 

2010) could provide a strong basis to improve and validate these models with a minimum loss of 

generality. Another pattern to explore is the inclusion of explicit patterns of endemism (e.g. 

periphery, central area, particular areas), because where endemism is not as important, we can 

expect higher predictability in species survival among patches (more nestedness and less 

turnover). Also, nesting species distribution models into the projection of this habitat-oriented 

framework would open an interesting research agenda. 

Some of the limitations of ISARs would still be applicable to our general framework. One 

important limitation is the assumption that the species from one habitat cannot exploit other 

habitats (Tjørve 2002, Proença and Pereira 2013). This assumption is also a limitation of our 

proposed approach. However, if the proportion of species coming from other environments 

remains relatively constant over time and for different human tolerance levels, the effect on the 

numerator and denominator of the R-values will be similar, and the R-values will be robust. 

Another limitation is that often the global distribution of the habitat is not included in the study 

area, and that could create a bias in the ISAR. In our particular study, this is not a major source 

of concern because the habitats were mostly fully contained in the area, but should be evaluated 

before extending the model to other regions. 

Other limitations of the ISAR have been already incorporated into our framework, such as the 

need to incorporate species differences in the ISAR representation (Ewers and Didham 2006, 

Franzén et al. 2012) or the usage of different ISAR (Dengler 2009). We addressed the first step, 
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species perception of the environment, by changing the patch definition in a way consistent with 

the community, similar to the identification of an appropriate habitat scale proposed by Fahrig 

(2013), and not by changing the z exponent of the ISAR (as in Franzén et al. 2012). The second 

limitation is an important one, but only valid for the R-values because the patch-size profiles do 

not assume any particular ISAR shape. 

A fundamental assumption of the R-index is that by using our extreme communities, composed 

of species that have ecologically similar individuals, we obtained extreme values of richness. 

Real communities, which are composed of species with mixed ecological strategies or 

characteristics, should have intermediate R-values. This assumption requires a more detailed 

analysis, but it seems consistent with the results of Kadmon and Allouche (2007) for landscapes 

composed of only one habitat, as it is the case in our framework, where the richness is assessed 

biome by biome. 

Another fundamental assumption of the model is that the habitat is homogeneous among patches, 

so that the survival probability of a species does not depend on the patch identity. Directional 

turnover, when species are replaced in a predictable way along a gradient (Anderson et al. 2011) 

violates this assumption. A similar problem occurs if species richness is controlled by habitat 

heterogeneity in each patch instead of patch area (Freemark and Merriam 1986). In these two 

cases, the model can be used to test the underlying mechanisms by building a basic assumption 

of a nested pattern and exploring if the addition of extra environmental dimensions improves the 

prediction of the species richness, nestedness or turnover patterns. 

Finally, the most important assumption of our framework is that ISAR is a community property, 

in other words, that the number of species relates to the area of the habitat such that the larger the 

area the more species will survive there, and that each new spatial unit will add the same or less 

species to the patch. As previously discussed, besides empirical evidence (Triantis et al. 2012, 

Matthews et al. 2016), some simulation models support this assumption, but may diverge in the 

equations that should be used to link the area and the species richness of a patch (see Appendix 

2). Because this framework makes explicit the different sources of variation in species richness 

calculation for a given habitat it can help to test some of the fundamental models and theories 

about community assembly and their relative contribution in natural conditions.  
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2.7 Conclusion 
Currently, species distribution models are the most common method to assess climate change 

impacts on biodiversity (e.g. Thomas et al. 2004, Feeley and Silman 2010). Despite evidence 

showing the relevance of biotic interactions even at large spatial scales, species distribution 

models usually lack species interactions and rely on species-specific characteristics, for which 

the necessary information can be scarce (Wisz et al. 2013, de Araújo et al. 2014). Our approach, 

grounded on community analyzes and how the species perceive their surroundings (habitat 

characteristics, individual dispersal capabilities, tolerance to human activities and recolonization 

odds) and on some community properties (species-area relationship and predictability of species 

survival), provides an alternative approach to estimate changes on potential richness under 

different scenarios of habitat configuration. This approach provides a new way to apply species-

area relationships to patchy habitats, which are frequently present in nature and become more 

prevalent where human activities occur. It also highlights a strong difference of the effect of 

fragmentation and habitat loss on species richness contingent on community properties that 

should be further studied. Finally, our proposed framework adds a new tool to those used by 

managers to adapt management plans in the face of increasing land use, climate change and other 

threats that can reduce or fragment a habitat.  
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Chapter 3  
Dominant plants in a meadow are more deterministically assorted 

than non-dominant plants 

3.1 Abstract 
Whether communities are assembled deterministically or stochastically has been a matter of 

debate in ecology for a long time. We argue that all species in a plant community are not 

governed by environmental constraints in the same way, and specifically that dominant species 

are influenced more by the environment than non-dominant species, but moderates the 

environment for non-dominant species, thus altering the role of deterministic mechanisms. Here, 

we removed two dominant species in temperate meadow plots and tested for differences in the 

mechanisms that organize plant communities. We assessed whether plots became more similar 

when we focus on the new dominant species that emerged after treatments were applied 

compared to the remaining non-dominant species. After removing dominant species, we found 

that non-dominant communities diverged over time while the new dominant species converged 

among plots over time. We found those trends despite plot level stochasticity and site-level 

changes in species abundances. Phylogenetic analyses suggest that the new dominant species 

were driven by habitat filtering and limiting similarity simultaneously. Conversely, non-

dominant species were more affected by limiting similarity. The larger role of limiting similarity 

for non-dominant species could imply that deterministic processes became less predictable due 

to, for instance, an increase on the importance of priority effects. 

3.2 Introduction 
The relative importance of deterministic and stochastic processes in determining community 

assembly mechanisms is a source of near constant debate in ecology (e.g. Hubbell 2001b, Tilman 

2004, McGill et al. 2007). When deterministic processes prevail, traits that characterize a species 

(such as seed dormancy, height, frost tolerance, leaf thickness, nectar production, root structure, 

fungi associations) modify the survival odds of that species in its environment (MacArthur and 

Levins 1967, Chesson 2000, Tilman 2004). In contrast, stochastic mechanisms prevail when the 

number of seeds per species arriving to a place is more important than species characteristics. 

This dichotomy in mechanism is important because if local deterministic, or niche-based, 

processes are more important than stochastic ones, traits can provide predictive insights into 
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future community structure and composition under environnemental change. However, if 

stochastic processes prevail locally and regionally as in neutral models, more effort should be 

allocated to describing species distributions and dispersal patterns. Therefore, disentangling these 

processes is more relevant than ever as ecologists attempt to predict the potential impacts and 

consequences of global change on diversity and ecosystem services (Pearson and Dawson 2003, 

McGill et al. 2007, Buytaert et al. 2011, Laughlin et al. 2012). 

Niche and neutral models predict an uneven species abundance distribution at local scales with 

few abundant species and a long tail of low abundance species (McGill et al. 2007), but they 

differ in the mechanisms resulting in dominance by few species. Observational studies have a 

notoriously difficult time disentangling these competing mechanisms and a dominance removal 

experiment can provide insights into the mechanisms structuring communities. Removing 

dominant species frees space that non-dominant species can occupy, but niche and neutral 

models differ on which species should occupy that space. In a neutral community propagules of 

dominant species are always more abundant than propagules of non-dominant ones. However, 

because the dominant species are constantly removed the abundance of the propagules that can 

actually survive (the non-dominant ones) is more even than if the dominant species were present. 

In turn, the more even distribution of propagules generates a larger effect of stochasticity added 

to the initial stochasticity among plots, reducing the similarity between plots (Figure 8a). In 

contrast, in a niche community the dominant removal causes a reorganization of competitive and 

facilitative networks among the remaining species, and therefore a new ranking is likely to occur 

(e.g. a previously outcompeted plant can became dominant). The new deterministic ranking 

increases the initial similarity between plots (Figure 8b). 
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Figure 8 Expected dynamic of several plots after dominant plants are removed (vertical 

dark gray bar) and some non-dominant species occupy the released space. 
In a stochastic system the new dominants are likely to be those with higher density at the removal, increasing the 
dissimilarity of the system. In a deterministic system, the new dominants are likely to be those non-dominant species 
better suited for the new conditions, reducing the dissimilarity among the plots. 

As with most theoretical studies on this topic, the predictions in Figure 8 assume that all the 

species in a community behave similarly and follow the same deterministic or random assembly 

mechanisms (e.g. Tilman 1980, 2004, Hubbell 2001b, Gilbert et al. 2009). However, dominant 

species confront environmental conditions more than non-dominants and thus dominant and non-

dominant species likely face differing environmental constraints and might be subject to 

differing assembly mechanisms. For instance, dominant plants can reduce resources (e.g. 

shading, nutrients acquisition; Tilman 1980, Hubbell 2001b) but can also reduce environmental 

variability (e.g. decreased temperature or moisture variability; Brooker et al. 2008, McIntire and 

Fajardo 2014) (Figure 9). Thus, dominant species may be more deterministically assorted than 

non-dominants, or the other way around, independently of which species are the dominant ones 

in a given locality. 
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Figure 9 Dominant species interact more with the environment and with other dominant 

species (often intraspecific interaction) than with non-dominant species, while non-

dominant species follow the opposite pattern.  
Double-headed arrows represent biotic interactions, while single headed arrows represent interactions of species 
with the environment. Dominant plants also modify the environment under them by reducing some conditions (e.g. 
light, gray shade in the oscillating line at the left) and reducing the variability of others (e.g. wind, amplitude of the 
oscillation in the line at the left). 

The convergence or divergence of plots over time is one way to identify the relative role of 

deterministic and stochastic processes. However, even if determinism is apparent because of 

increasing similarity over time, we cannot determine the mechanism responsible for this pattern 

from compositional patterns alone. However, these mechanisms create predictable community 

phylogenetic patterns based on the assumption that more closely related species are likely to be 

more similar (Webb et al. 2002, Weiher et al. 2011, Gerhold et al. 2015). With limiting 

similarity, strong interspecific interactions mean that the coexisting species will be more 

distantly related than expected by chance (overdispersion) because species compete more 

strongly when they are more similar to each other (MacArthur and Levins 1967). Strong positive 

interactions are also more frequent among distantly related species and can generate a similar 

overdispersed pattern (Valiente-Banuet and Verdú 2007). For habitat filtering, environmental 

constraints limit which species are able to thrive at a site, and those that do likely share some key 

traits or ecological strategies, increasing the relatedness of the coexisting species (clustered) 

(Mayfield and Levine 2010, Cadotte and Tucker 2017).  

In this study we aimed to evaluate the difference between community assembly processes 

affecting dominant and non-dominant species. In particular, we want to test whether dominants 
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are more deterministically sorted than non-dominant plants, and if deterministic, whether 

limiting similarity or habitat filtering prevails in each of these groups of plants. We evaluated the 

changes in community similarity after dominant species were removed over four years in five 

temperate meadows with varying species richness and composition, and explored the change in 

similarity among plots. At the end of the study period, we identified the dominant species in each 

plot and measured the changes in community similarity when only the new dominant species or 

only the remaining non-dominant species were used. We compared the dissimilarity among 

communities and compared these results with other treatments in the same sites to validate if the 

observed trends were caused by the effect of removing the dominant species, removing biomass 

or changing the species richness. We also compared the phylogenetic dispersion of each 

dominance group of species in each treatment to identify different structuring mechanisms. 

Finally, we explored the response of each species that became dominant in each site in the 

dominant removal treatments to see if they responded differently to different treatments or if they 

were just following site level trends. 

3.3 Methods 

3.3.1 Experimental design 

In 2014, we identified and commenced the experiment in five old-field meadow sites at the 

Koffler Scientific Reserve, 40 Km North of Toronto. The Reserve was horse pasture more than 

20 years ago, and the sites were located in fields in different areas of the reserve. In each site we 

visually identified areas with high species similarity and set 30 plots of 1x1m, leaving around 1m 

or more between them. By the end of the experiment, site species richness ranged between 13 

and 54 species, and the dominant species were different combinations of three species: Solidago 

altissima, Bromus inermis and Poa pratensis (Table S2). 

We measured cover and height of each species in each plot three times every year. On June 2014 

we defined two dominant species per site as the species with largest coverage, height and 

frequency (proportion of plots where the species is present). At each site, we removed dominant 

species in five randomly selected plots (Dominant Removal plots, DR) and randomly matched 

them with another five plots. We randomly removed ramets in this second group of plots until 

we removed a similar amount of fresh biomass (Dominant Matching plots, DM) as in matching 

DR plots to account for the effect of dominant species from the removal of biomass. In another 
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five plots, we randomly selected two non-dominant species and removed them to account for the 

effect of changes in richness (Non-Dominant Removal plots, NDR). We also then matched these 

plots with five other plots and removed the same amount of biomass (Non-Dominant Matching 

plots, NDM). The other ten plots remained untreated as controls. The plants were removed 

mechanically cutting the stems or leaves as close to the ground as possible, to remove as much 

biomass without altering the soil structure. Removal treatments were reapplied at least twice a 

year after the plants measurements. 

3.3.2 Phylogenetic information 

We used the phylogeny of a nearby national park built by Jin (2015). Of the 61 species observed, 

seven species were identified at the genus level, so we replaced each of them with random 

congenerics in the tree for each one. Two species were not in Jin’s tree, so we compare their 

location in Zanne et al. (2014) phylogeny and found a close match to each of them. We discarded 

species without a complete identification and non-tracheophytes (6 species in total). 

All the analyses presented later were done with R 3.4.2 (R Core Team 2017). The phylogenetic 

analyses and data manipulation used the packages picante (Kembel et al. 2014). 

3.3.3 Abundance and definition of new dominants 

We estimated volume occupied by each species (height multiplied by cover) as a non-destructive 

proxy of species abundance. Because different species fill the space differently, the total volume 

cannot be used as a direct estimate of total biomass, but it provides an estimate of the tri-

dimensional space occupied by each species. When field data was partially missing (e.g. height 

recorded, but not coverage, less than 1% of the records), we used other available information 

(e.g. pictures, count of ramets) and compared it with other records in the same site and treatment 

to fill the gap and prevent data loss.  

We defined the dominant species at the end of the experiment in each plot as at least two species 

with the largest volume that occupied at least 50% of the total observed plot volume, discarding 

any species being removed from that plot. Frequency was one of the criteria to define pre-

treatment dominance. However, high frequency is only a valid criterion if deterministic 

mechanisms prevail, so we did not include frequency as a criterion to define dominance at the 

end of the experiment. To identify the new dominant species we used the maximum volume of 
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each species in the final year in each plot. All together, we classified the species at each plot as: 

site dominants (pre-treatment criterion), new dominants (final year criterion) and non-dominants. 

It is important to highlight that the new dominant species in the DR treatment will be by 

definition different species than the site dominants. However, the new dominants and the site 

dominants should coincide in all the other treatments (DM removes a large amount of biomass, 

but because it is removed randomly the impact should reduce the abundance of all the species 

proportionally). 

3.3.4 Statistical analysis 

3.3.4.1 Treatment efficacy 

To assess the efficacy of the treatments in each site, we estimated the average plot richness and 

total volume of species classified as initial site dominants in each treatment and site. We repeated 

those estimates for the new dominant species and for the non-dominant species to assess if 

treatments affected the community significantly.  

3.3.4.2 Deterministic vs. stochastic trends 

To assess whether the treatments increased the importance of deterministic or stochastic 

processes in the plant communities as a whole we measured the similarity among plots in each 

visit, treatment and site. Then, we used the pre-treatment conditions as a reference level and 

count the number of visits in which the similarity was higher or lower compared to the pre-

treatment conditions. In a system that is not changing in time (deterministic and stochastic 

processes remain similar), the similarities should still oscillate because of small random 

fluctuations in measurement and local conditions, and in half of the cases the system will be 

more similar than before. However, if deterministic (or stochastic) processes increase, the 

proportion of times the plots are more similar should be higher (or lower) than 0.5.  

We estimated the mean Bray-Curtis similarity (Magurran 2013) among plots in each visit, 

treatment and site using the vegan package (Oksanen et al. 2017). The similarity values range 

from one for identical communities to zero for communities with no species in common. Before 

measuring the similarity, we discarded the species removed in each plot in the DR and NDR 

treatments before and after the treatments started to compare the changes in the part of the 

community that was allowed to survive. We estimated for each site and treatment the proportion 
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of times the similarity increased compared to the pre-treatment condition and averaged the 

proportions among sites. 

We repeated the previous analysis using the new dominant and the non-dominant species 

observed in each treatment to subset the community. In some cases, all the species in two or 

more plots in the same period, treatment and site were labeled as new dominant species. In those 

cases we assumed that the similarity between any two of these plots was one as the plots share a 

similar condition: all the species are new dominants. 

3.3.4.3 Different deterministic processes: limiting similarity and habitat 
filtering  

To test if limiting similarity or habitat filtering were more relevant as deterministic mechanisms 

to explain the changes in the communities we measured the average relatedness (mean 

phylogenetic distance, MPD) of the species in each plot at the end of the experiment using the 

package picante (Kembel et al. 2014). To control for different number of species in different 

plots we compared the observed value with 4999 runs obtained randomly by selecting the same 

number of species in the plot from all the species observed in each site at any moment during the 

experiment (null model “richness” in the package picante). We summarized the information 

estimating the standardized effect size of MPD (SES-MPD) in each plot at the end of the 

experiment, where SES-MPD is the difference of the observed MPD minus the average of the 

MPD of the random and the observed samples, divided by the standard deviation of the latter. 

When SES-MPD is negative, the observed species are more closely related than expected by 

chance indicating habitat filtering, while when positive, the species are more distantly related 

than expected by chance, indicating limiting similarity. We tested whether the standardized 

effect size was similar among treatments using an ANOVA test, with site as a fixed term. 

MPD is a metric that captures the overall relatedness among species. However, competitive 

interactions are expected to be stronger among closely related species than among distantly 

related ones. Therefore, we re-did the previous analyses using the standardized effect size of the 

mean nearest taxonomic distance (SES-MNTD). MNTD averages the relatedness of each species 

with its closest relative. In comparison with MPD, MNTD is more sensitive to the structure of 

the tips of the tree, while MPD is more sensitive to the topology of the base of the tree.  



 

49 

We repeated the last two analyses using different sub-set of species: only the new dominant 

species as identified in each treatment in each site and the non-dominants. To keep consistency 

among tests for communities defined in different ways, we used only presence-absence indices. 

We estimated the average treatment effects and the partial residuals and plotted them with the 

package visreg (Breheny and Burchett 2018). 

3.3.4.4 Testing neutrality using species trends 

We explored in more detail the transformation of the community in the dominant removal 

treatments to test if the observed pattern corresponded to neutral mechanisms. In particular, we 

focus on a prediction of the neutral community: after the dominant species are removed all the 

species increase their abundance, and the species more likely to occupy the space are those that 

were more abundant before the dominant species were removed. This should be the case because 

the local species abundance and the frequency rank are constrained by the regional species 

abundance rank for all the species and because the regional species abundance rank changes 

more slowly than the local abundance rank can. To validate the expectation with the observed 

data, three conditions should hold: first, the frequency ranking of the new dominant species at 

the end of the experiment should be correlated with the frequency ranking before the treatments 

were applied. Second, the species that became the new dominants should have had the higher 

frequency rankings before the treatments were applied. And third, the new dominant species in 

the dominant removal plots should occupy more volume than in the control plots at the end of 

the experiment because they should be filling the gap left by the site dominant species. These 

conditions are not exclusive of neutral mechanisms, but they should be true if neutral 

mechanisms prevail.  

We measured the correlation between initial and final rankings of new dominant species (first 

condition) using Kendall’s τ and tested the difference in initial ranks between new dominants 

and remaining non-dominants using Wilcoxon rank sum test with continuity correction (second 

condition). We used frequency for these two tests because neutral theory predict they should be 

correlated and to avoid duplicating a criterion already used to define local dominance (volume). 

Finally, we used generalized least squares models with different variances per treatment to test if 

each new dominant species increased their volume compared with the other two treatments (third 

condition). For this last test we included only sites in which the focal species became new 
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dominant because only in these sites we expected to find a treatment response. Site and treatment 

interaction was tested for each model and kept if significant. 

3.4 Results 

3.4.1 Treatment efficacy 

In the five study sites, the treatments were effective in removing different amounts of biomass, 

small in non-dominant removal (NDR) and non-dominant matching (NDM) treatments, large in 

dominant removal (DR) and dominant matching (DM) treatments. Also, the site dominant 

species occupied most of the biomass in all treatments except dominant removal (DR), 

confirming that the DR treatments were effective in reducing drastically the volume occupied by 

the site dominant species (Figure S10). It is important to notice that the volume of the new 

dominants increased steadily in the DR plots, but never increased as much as to compensate for 

the removed biomass. 

3.4.2 Deterministic vs. stochastic trends 

As we expected, dominant and non-dominant species faced different degrees of change in 

stochasticity and determinism, even in DR, where all the original dominant species were 

replaced (Figure 10). In DR and NDR treatments the deterministic processes acting on dominant 

species became stronger, while the stochastic processes increased on the non-dominant species. 

When the biomass was removed randomly the pattern was reversed: stochasticity increased in 

dominant plants and determinism increased in non-dominant ones. 
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Figure 10 Effect of the treatments on community dissimilarity measured as the proportion 

of times the measured Bray-Curtis dissimilarity was lower than the dissimilarity before the 

treatments were applied.  
Treatments are represented in individual panels: Ctrl: Control; NDM: Non-dominant matching, NDR: Non-dominant 
removal; DM: Dominant matching; DR: Dominant removal. Values higher than 0.5 indicate convergence after the 
impact (deterministic mechanisms driving a change in the community) while values lower than 0.5 indicate 
divergence after it (stochastic mechanisms driving a change in the community). Similarity values were measured 
using different sets of species: ‘all’ indicates all species were included in similarity estimation; ‘New’ indicates the 
dominant species defined in the last year in each site/treatment were used; and ‘ND’ indicates that the species not 
flagged as dominants were used. Dashed line shows the average value observed for control plots when all the 
species are included. 

The difference between dominant and non-dominant species was not apparent in the control 

treatments (Ctrl). The control treatment also indicated an increase in deterministic processes 

among plots in most sites, similar for new dominant and non-dominant species. This site-level 

change in control plots was robust to the use of the period with maximum biomass only (around 

August) in each year (Figure S11), consistent with deterministic changes acting at a site scale. 

3.4.3 Different deterministic mechanisms: Limiting similarity and 
habitat filtering 

At the end of the experiment, the dominant and non-dominant species in the communities tended 

to differ in the relative effect of limiting similarity and habitat filtering. Mean phylogenetic 

distance (MPD) suggested that dominant removal treatments increased the clustering in the 

communities compared with the control treatment (Figure 11a) mostly because it increased the 

clustering of the dominant species (Figure 11c). However, we found the opposite effect, an 

increase in over-dispersion, when using mean nearest taxonomic distance (MNTD, Figure 11d). 
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Neither habitat filtering nor limiting similarity seemed to have a strong impact on non-dominant 

plants in the dominant removal (DR) treatments compared with the control plots.  

 

Figure 11 Partial residuals (dots), confidence band (gray box), and prediction line (blue 

solid line) of the standardized effect size (z-scores) of the mean phylogenetic distance (SES-

MPD) and mean nearest taxon distance (SES-MNTD) for each treatment and for all the 

community (All, panels a,b), dominant species as defined at the end of the experiment 

(panels c,d) and non-dominant species (panels e,f). 
Dotted lines represent z-scores of ±1.96, and the dashed line the z-score of zero. Significance: *** < 0.001, ** < 
0.01, * < 0.05, · < 0.1. 

Random biomass removal (DM and NDM treatments) had stronger effects on non-dominant 

plants: non-dominant plants clustered more in DM and NDM than in control plots when a large 

amount of biomass was randomly removed (MPD, p < 0.05; MNTD, p < 0.1). Random removal 

of small amounts of biomass had the opposite effect increasing the non-dominant over-

dispersion. Sites showed a sharp contrast in the relative weight of over and under-dispersion 

among them (Figure S12). 
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3.4.4 Testing neutrality using species trends 

We found little support to the assumption that neutrality is an important mechanism structuring 

these communities. If species were neutral, the final frequency of the new dominant species 

should be correlated with the original correlation of those species (condition 1 in methods section 

testing neutrality). Even when the correlations were positive (Kendall’s τ > 0.3, Table 3), they 

were significant only in one site (p-value = 0.04). We also found that the species with initial 

higher frequency ranking were not more likely to became new dominant than those with lower 

initial frequency ranking (Wilcoxon rank test p > 0.1, condition 2). Finally, only 3 of the 17 new 

dominant species in different sites increased their volume in the dominant removal treatments 

compared with the other treatments (p < 0.05, Table 4, condition 3), 12 increased but non-

significantly (p > 0.05), and, unexpectedly, the volume of two species decreased when they 

became dominant (Vicia cracca, p < 0.05; Linaria vulgaris, p > 0.1). These last two species were 

present in every site, but only became dominant in the site with lowest diversity. The DR 

treatment consistently increased the variance of 15 of the 17 new dominants species, probably 

because the species grew in some plots but not in others. In contrast, and as expected, the DM 

treatment created a really heterogeneous response in the volume mean and variance of the 17 

species. The other treatments had no consistent effect on the new dominant species (Table S4). 
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Table 3 Changes in species ranking in the dominant removal treatments compared with the 

expectations for a neutral model.  
New dominant plants in a site were the two or more largest species needed to obtain at least 50% of total volume in 
each plot. Ranking was measured as frequency in the pre-treatment visit for the initial conditions, and for the spring 
and summer visit of the final year of the experiment. The expectations for a neutral model are that (1) the initial and 
final rankings are positively correlated (Kendall’s τ test) and (2) that the initial ranking of the new dominant species 
will be higher (lower values) than the ranking of the other species present in the dominant removal plots still present 
in the control plots at the end of the experiment (Wilcoxon rank test). 

Site	 New	dominant	species	 Initial	rank	of	non-
dominant	species	
present	in	control	
plots	at	the	end(c)††	

Rank	test	of	new	dominant	
vs.	non-dominant	species	

(initial	conditions)		
(between	columns	a	and	c)	

Initial	
richness	in	
DR	plots	

Initial	
ranking(a)	

Final	
ranking(b)†	

Initial-final	ranking	
correlation	
(Kendall’s	τ)	

(between	columns	a	and	b)	 W	 p-value	
T	 6	 1,2,3,4	 1,2,3,4	 1.0*	 	 	 	
F	 13	 1,2,3,4,5,6	 4,2,1,4,7,2	 0.072	 6	 0.5	 0.313	
C	 13	 1,4,7	 1,5,5	 0.816	 1,3,5,5	 6.5	 1	

S	 15	 2,5,7,	
8,12,12	 1,7,4,1,9,6	 0.357	 1,3,4,10,12	 19	 0.519	

N	 31	 1,2,5,15,	
20,25,32¥	

1,1,1,14,	
10,23,20	 0.720	

2,2,6,7,8,9,10,10,	
12,13,14,16(x3),	
20(x4),	25(x4)	

72	 0.818	

Note: Species sorted by ranking can be found in Table S3. * p-value < 0.05. † Species sorted in the same order as in column (a). †† 
(xN): N species with the same rank. ¥ Species absent at the beginning of the experiment. 
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Table 4 Effect of treatments in new dominant species in comparison with the control plots 

at the final visit of the experiment.  
All models were fitted using generalized least squares with different variance per treatment, and volume log+1 
transformed using only sites where the species became dominant. Despite not all models fitted properly, we kept a 
homogeneous approach for consistency among them. Control treatment variance is always 1. Arrows indicate 
average positive (↑) or negative (↓) effect of the treatment. Significance: *** < 0.001, ** < 0.01, * < 0.05, · < 0.1. 
Effect of the other treatments and regression fit descriptors are presented in Table S4 and effect of site in Table S3. 

 

Species	

Dominant	(-),	new	dominant	
(+)	and	other	species	(p)	by	

site	

Treatment	
variance	rate	to	
control	variance	

Treatment	
trend	

T	 F	 C	 S	 N	 DR	 DM	 DR	 DM	
Symphyotrichum	novae-
angliae	

p	 +	 +	 +	 +	 1.58	 0.83	 ↑***	 ↑	

Poa	pratensis†	 -	 -	 +	 +	 +	 1.18	 1.43	 ↑**	 ↓·	
Euthamia	graminifolia	 	 p	 +	 p	 +	 1.79	 0.95	 ↑*	 ↑	
Bromus	inermis	 +	 -	 -	 -	 -	 2.75	 1.15	 ↑·	 ↓	
Daucus	carota	 	 	 p	 +	 p	 1.78	 2.41	 ↑·	 ↑·	
Vitis	riparia	 	 p	 p	 	 +	 ††	 	 ↑	 	
Carex	sp.	 	 +	 p	 p	 p	 4.39	 1.80	 ↑	 ↑·	
Monarda	fistulosa	 	 	 	 +	 +	 3.54	 2.11	 ↑	 ↑	
Symphyotrichum	ericoides	 	 +	 p	 	 	 3.10	 1.59	 ↑	 ↑	
Solidago	altissima	 -	 +	 -	 -	 -	 2.32	 0.40	 ↑	 ↓*	
Cirsium	arvense	 	 	 p	 +	 p	 1.85	 0.81	 ↑	 ↑	
Asclepias	syriaca	 +	 p	 p	 +	 p	 1.58	 0.19	 ↑	 ↓·	
Symphyotrichum	lanceolatum	 	 	 p	 p	 +	 1.55	 0.21	 ↑	 ↓	
Crepis	sp.	 	 	 	 	 +	 1.37	 1.52	 ↑	 ↑	
Hieracium	caespitosum	 	 +	 	 p	 p	 1.32	 0.09	 ↑	 ↓	
Linaria	vulgaris	 +	 p	 p	 p	 p	 0.85	 1.01	 ↓	 ↓	
Vicia	cracca	 +	 +	 p	 p	 p	 0.67	 0.71	 ↓*	 ↓	
Notes: †Poa pratensis was positively affected by DR treatment in every site but N.  †† The general approach used in this analysis 
generated an extremely large variance probably meaningless, caused by the presence of a large Vitis riparia in a single plot. 
 

3.5 Discussion 
The deterministic or stochastic nature of community assembly processes in ecosystems, and the 

relevance of species identity, is constantly studied and debated in ecology (McGill et al. 2007, 

Vellend et al. 2014, Tucker et al. 2016). By removing dominant species, we found that species 

responded differently suggesting that species characteristics are important, and therefore 

providing little support to neutral mechanisms, despite the existence of local stochastic 

mechanisms. Also, we found that deterministic mechanisms played a significant role but this role 

changed with the exposure of the plants to the environment: Dominant plants, by being more 

directly affected by environmental conditions, were strongly affected by habitat filtering and 

limiting similarity, consistent with an optimum competitive strategy controlled by the 

environment (Maire et al. 2012). In contrast, the less exposed non-dominant species diverged. 
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This divergence in non-dominant species created a less predictable pattern because divergence 

can occur in several ways. 

3.5.1 The dominant species 

We found evidence of three processes that could explain the observed deterministic trend in the 

new dominant species: an increase in the role of habitat filtering (Maire et al. 2012), an increase 

of limiting similarity (Figure 11) and site-level trends that prompted the increase in abundance of 

some species regardless the treatment (Figure 10a and b, Table 4).  

The decrease in mean phylogenetic distance (MPD) of the new dominant species suggests that 

abiotic filters are more important than species interactions, and simultaneously, the increase in 

mean nearest taxonomic distance (MNTD) suggests the opposite pattern. This apparent 

contradiction can be the outcome if traits that control the general performance of a species in an 

environment are conserved and shared deeper in the phylogeny (e.g. stem and root architecture, 

cold tolerance), while traits that control performance in the presence of competitors are the 

product of trait divergence more recently (e.g. height, resource allocation strategies). This 

difference between MPD and MNTD is consistent with recent studies showing that competitive 

differences among plants appear to be under the control of relatively few traits, while many more 

traits influence species niches (Kraft et al. 2015b, Cadotte 2017), because as species diverge 

more of their traits are likely to diverge too. This is consistent with the original model of 

community assembly proposed by Weiher and Keddy (1995), as the species that cope with the 

new environmental conditions are a subset constrained by properties deep in the phylogeny, 

reducing MPD. Those species interact, reducing the survival odds of close relatives, which in 

turn increase MNTD.  

Regional drivers also influenced the increase in similarity among new dominant species. 

Regional drivers include random site level changes in species abundance and changes of 

environmental conditions. Changes in environmental conditions can shift the optimum traits in 

the community (Laughlin 2014). Alternatively, a less stable environment can act as a stressor on 

the community (Chase 2010). However, regional trends are not synonym of neutral community 

assortment (Hubbell 2001b). On the one hand, the new dominant species were not always the 

second most dominant species (after the site dominants) at the beginning of the experiment. 
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Under a neutral assortment model we would expect the second most dominant species to be more 

likely to fill the gap after the removal of the site dominant species (Table 3). 

Second, we found different species-responses (Table 4), which is by definition contradictory 

with neutrality. Five species exemplified the different species-responses: Poa pratensis, 

Symphyotrichum novae-angliae, Euthamia graminifolia, Vicia cracca and Asclepias syriaca. Poa 

pratensis was present in almost every plot at the beginning of the experiment and it was often the 

most abundant non-dominant species in sites dominated by Bromus inermis and Solidago 

altissima, thus its preponderance to becoming a new dominant can easily be explained by a either 

a neutral model or limiting similarity with B. inermis. In contrast, niche-related deterministic 

processes better explained S. novae-angliae and E. graminifolia abundance trends: the release of 

the space occupied by S. altissima allowed these species to occupy the emptied volume and, 

presumably, niche space. Interestingly, these three species belong to the same clade of the North 

American Astereae tribe (Noyes and Rieseberg 1999), suggesting that similarity and competition 

between the original dominant and these new dominant species could explain the contrasting 

response of MPD and MNTD (Mayfield and Levine 2010). The legume V. cracca, despite being 

frequent in every single site, only became dominant in the two less diverse sites. In these two 

sites the DR treatment reduced V. cracca volume (Table 4), suggesting a positive effect of the 

dominant species on V. cracca, and almost no other species were able to grow. Finally, most 

species responded like A. syriaca with marginally larger biomass in the DR treatments than in 

the control ones, and becoming dominant in only one site despite being present in all or most of 

the sites. The lack of strong response to the release of the dominant species can be caused by 

local stochasticity, historical contingency (Fukami 2015) or by species at their carrying capacity, 

in an scenario that species have limited impact on each other. 

3.5.2 The non-dominant species 

Non-dominant species responded more deterministically to the random removal of biomass 

(Figure 10). When large amounts of biomass were removed (dominant matching, DM) the 

phylogenetic dispersion of non-dominants decreased (Figure 11e,f), as expected if habitat 

filtering gains importance (Webb et al. 2002). The treatment itself is an artificial random 

disturbance that also created a more exposed (and variable) environment for the non-dominant 

species. This increase in variability (regardless the specific cause) can explain the increase in 
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habitat filtering. Because both MPD and MNTD decreased compared to the control treatment, 

we found little evidence for an increase in competition between close relatives as observed in 

dominant plants in DR plots. The small role of limiting similarity among non-dominant species 

can be caused by the large presence of site dominant species occupying most of the space, 

making the interactions between non-dominant and site dominant species more important than 

between non-dominant species. 

In contrast, to the DM treatment that affected most plants in the plots, non-dominant matching 

(NDM) increased the randomness mostly of the non-dominant community without affecting the 

dominant species. This focalized effect of the NDM treatment occurred because often only small 

ramets were needed to match the biomass removed in the NDR treatment, driving the impact to 

mostly non-dominant species. The random removal of ramets probably opened new spaces 

among non-dominant species, and these new spaces were affected by stronger inter-specific 

interactions, explaining the relative higher impact of limiting similarity in the non-dominant 

species in the NDM treatment. 

If non-dominant species are also affected by limiting similarity, why did non-dominant species 

appear more random in the DR treatment? We hypothesized that it occurred because limiting 

similarity with the dominant species ultimately means being different from those dominant 

species, but that difference can point in several directions and magnitudes. In the absence of a 

single optimum that maximizes fitness, historical contingency (Fukami 2015) and equalizing 

mechanisms (Chesson 2000) become more important, and both reduce the predictability of the 

community composition. 

3.5.3 Long-term trends 

The incomplete replacement of the site dominant species by new dominant species suggests that 

the patterns observed could change with time. However, a longer time should strengthen the 

interactions among species in the DR plots more than in the control plots, as the DR plots are 

still filling the volume and therefore defining the interactions among the species. This process 

should increase the discrepancy among new dominants and non-dominant species as both are 

driven by deterministic mechanisms. Also, longer time series could help to distinguish the role of 

ontogenetic variability, phenotypic plasticity and population dynamics in this process. 
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All together, even in this early years the information provided suggests a difference in the 

dynamic of dominant and non-dominant species: dominants being more deterministic than non-

dominants because the combined and simultaneous effect of limiting similarity and habitat 

filtering; in contrast, non-dominants are mostly affected by limiting similarity (Maire et al. 2012, 

Mariotte 2014). However, stochasticity and site level trends played an important role for 

dominant and non-dominant species. For instance, we expected the new dominant species 

observed in the dominant removal treatments to perform randomly in the control plots instead of 

converging (Figure S11), because they were originally non-dominant species and most of them 

were still non-dominants in the control plots at the end of the experiment. However, it is 

important to note that this conclusion presumes a relatively stable system. But the weather 

conditions were far from average: right before the experiment (2013) and during the first year 

(2014) the area experienced the two coldest consecutives winters in decades (CMOS-SCMO 

BULLETIN n.d.) followed by a warm and dry summer in 2016 and by a cold and rainy summer 

in 2017 (Phillips 2018). Changing environmental conditions can switch the equilibrium or just 

induce a more predictable community if inter-annual variability is a source of stress (Li and 

Shipley 2018). In both situations, the result is a switch in a subset of species that can outperform 

others and increase their dominance, reducing the dissimilarity among plots in a consistent way, 

as we observed. We have not enough information to rule out any of these mechanisms. 

Finally, the removal of the dominant species aboveground and with limited soil disturbance in 

our experiment created a space that was not fully occupied even after four years, suggesting that 

underground species interactions can be important and long-lasting. Underground processes 

include legacies in microbial communities, the accumulation of resources in roots for subsequent 

growth as well as the survival of the root system of the removed species (Bardgett and Wardle 

2010). An alternative hypothesis is that the removal of the dominant species increased the access 

to more aboveground resources but also increased the exposure to environmental stressors, as 

hypothesized in the introduction. The added stress caused by these variable conditions may offset 

some of the potential benefits until the plants in the community can cope with those new 

conditions either by arrival of new individuals better fitted for those conditions or by individual 

plastic responses. Longer experiments could help to clarify the role of these mechanisms. 
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3.5.4 A note on traits and phylogenies 

Traits should provide a more deterministic way to represent species interactions and 

phylogenetic relatedness is assumed to be a proxy of traits similarity. However, it is not granted 

that phylogenies can properly describe trait similarity neither that the phylogenetic patterns 

observed can represent the limiting similarity and habitat filtering accurately (Gerhold et al. 

2015, Cadotte et al. 2017). At the same time, it is not granted that any specific set of traits 

sampled will properly capture the hypothesized interaction mechanisms, nor that the chosen 

interaction mechanism is the most important one. Also, recording traits are time consuming and 

often destructive, so that only a limited set of traits can be sampled.  

The phylogenetic approach used here (define the new dominant species, track their change along 

time and compare how MPD and MNTD of the new dominant species compare to non-

dominants in control and dominant removal plots) provides two things: first, a way to narrow 

down questions. For instance, in the context of our specific experimental setting and results we 

can start asking which traits are conserved or not in the phylogeny, how deeply they are 

conserved, and how are the microclimatic or soil conditions changing with the different 

treatments? And second, this approach provides a replicable way to test for disparities in 

dominant and non-dominant mechanisms in any dominant removal experiment in plant 

communities. The later opens the door to asses the generality of these findings in previous 

dominant removal experiments using widely available phylogenetic trees (e.g. Zanne et al. 

2014). 

3.6 Conclusions 
Community assembly theory transitioned from asking if communities were deterministic or 

stochastic, to assuming that communities can fluctuate between those two extremes, to more 

recently assuming that different mechanisms can act on different subsets of communities. Our 

results expanded our understanding of how processes can act on community components and 

showed that limiting similarity and habitat filtering, two contrasting deterministic mechanisms, 

act simultaneously in the same group of dominant species, while limiting similarity is more 

important for non-dominant species. These resulted in more deterministic trends for the 

dominant species than for non-dominant ones. In contrast with dominant species, non-dominants 

can be subject to more stochasticity, but also to a larger role of historical contingency.   
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Chapter 4  
Dominant species converge, non-dominant species diverge: 

dominance, assembly rules and phylogenies interact in 
herbaceous ecosystems around the world 

 

4.1 Abstract 
Multiple lines of evidence suggest that dominant and non-dominant plants are different. For 

instance, the mass-ratio hypothesis predicts that plants transform their environment 

proportionally to their biomass. Hence, dominant species modify the environment in which non-

dominant species live more than the opposite. Consistent with this disparity between dominants 

and non-dominants and with community assembly theories, in grasslands around the world 

dominant species were more closely related than expected by chance. Close relatedness is 

expected when a strong environmental filter allow only species sharing some traits to survive. 

Conversely, we found that non-dominant species were either randomly assorted or less related 

than expected by chance, showing disparity in the assembly processes of dominant and non-

dominant species. Furthermore, several lineages scattered in the phylogeny had more non-

dominant species, suggesting that traits related to non-dominants evolved multiple times and 

were phylogenetically conserved. 

4.2 Introduction 
Community assembly research aims to describe the mechanisms that drive the co-occurrence and 

co-existence of species and whole community patterns through time and across space (Weiher et 

al. 2011). However, usually unacknowledged is the fact that assembly mechanisms can vary for 

different subcomponents of a community (Pandit et al. 2009, Passy 2017) and that the difference 

between those subcomponents may not be random but predictable, and related to the abundance 

of the species in each subcomponent (Magurran and Henderson 2003). 

One of oldest and most researched general patterns in ecology is that few species are very 

abundant, or dominant, and many more are not (Fisher et al. 1943). Both dominant and non-

dominant groups of species are expected to have different characteristics with, for instance, 
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dominant species capturing more sunlight and other resources, while non-dominant species, 

especially in harsh environments, are often facilitated by dominant species (Lortie and Callaway 

2006). Further, we should expect that local extinction of dominant species would be caused by 

deterministic processes and non-dominants are subject to stochastic extinctions (MacArthur and 

Wilson 1967). Dominant species fragment the environment where non-dominant species exist 

creating several small habitats adequate for smaller non-dominant plants (Aarssen et al. 2006). 

Finally, dominant species are more likely to modify the environment (e.g. light availability, wind 

exposure) than the non-dominants (sensu mass-ratio hypothesis, Grime 1998), despite some 

outstanding exceptions like legumes that can fix nitrogen from the air into the soil. These 

differences between dominant and non-dominant species can result in differences in how these 

two groups of species assemble into communities. In other words, the mechanisms that drive the 

co-existence of dominant plant species may not be the same as those for non-dominants. 

Community assembly processes are often described as the interaction of three fundamental 

processes (Weiher and Keddy 1995, Weiher et al. 2011). First, dispersal limits the species that 

can physically reach a place. Second, for those species that reach a site, environmental 

constraints will only permit species that possess key traits to thrive there (e.g. frost tolerance). If 

those traits are shared by closely related species, the species that survive will be more closely 

related than expected by chance (clustered) (e.g. Webb et al. 2002, Gerhold et al. 2015). And 

third, species interactions (e.g. soil nutrient competition) will select for species that can coexist 

with one another, often selecting for species with niche differences. Thus, interspecific 

interactions can be manifest by the survival of species more distantly related (overdispersed) if 

the traits influencing niches are more similar in closely related species. These three processes, 

often called dispersal limitation, habitat filtering and limiting similarity, respectively, act 

simultaneously (Cadotte and Tucker 2017). Thus, clearly clustered and overdispersed 

phylogenetic patterns are only obvious when either habitat filtering or limiting similarity is 

stronger than the other, and if the relatedness of the species able to disperse to the area allow 

those trends to be observed (Chalmandrier et al. 2013). 

Dispersal limitation, habitat filtering and limiting similarity are frequently employed to 

understand assembly mechanisms for a whole community, but since dominant and non-dominant 

plants are subject to different influences and ecological processes, we should expect that they 

will be undergoing different assembly mechanisms. In particular, we expect dominant species to 
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be more affected by habitat filtering than by limiting similarity because their larger volume 

should expose them more to the environmental conditions compared to non-dominants. 

Conversely, non-dominant species should be less affected by habitat filtering than by limiting 

similarity since the dominants shape and moderate local environmental conditions. This disparity 

in the strength of habitat filtering and limiting similarity in turn should imply a disparity in 

relatedness associated with dominance (hereafter relatedness disparity), with dominant species 

more phylogenetically clustered than non-dominant species. 

This study explores the existence of relatedness disparity associated with dominance in 

herbaceous dominated ecosystems around the world. We used a global observational dataset 

(Borer et al. 2014a) that provides us with a unique opportunity to compare the relationship 

between species relatedness and dominance globally. In particular, (1) we determined if 

dominant species were more closely related to one another than non-dominant species within 

sites, and if this relatedness disparity was mostly driven by dominant species clustering or non-

dominants overdispersion. Then, (2) we explored whether the dominant plant lineages in one site 

were more or less likely to be also dominants in different parts of the world. Because many of 

the sites are located in grasslands around the world, we expected to observe several grass species 

present in each site, some as dominants and others as non-dominants, and therefore a random 

pattern when the community is partitioned in dominant and non-dominant species. 

Finally, (3) we searched for environmental variables and tree topology characteristics that could 

explain changes in the relatedness disparity around the world as a way to explore potential 

driving mechanisms (e.g. harsher environments increasing the role of facilitation and in turn 

increasing the disparity between dominants and non-dominants, or phylogenetic trees with even 

branches reducing it).  For this last analysis we used the results of the first two questions to 

evaluate if a functional group (e.g. graminoids, forbs, woody species) explains changes in 

relatedness disparity among sites. Because we found that graminoids were often dominants, we 

added the working hypothesis that graminoid prevalence (proportion of biomass composed by 

graminoids) explains relatedness discrepancy and is explained by site productivity (represented 

as total standing biomass), and that legume biomass explains site productivity as a proxy of 

biological input of nitrogen (Figure 12). We assessed the role of these and other potential 

explanatory variables (descriptors of location, climate, human management, phylogenetic tree 
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topology) in explaining changes in relatedness disparity between dominant and non-dominant 

species. 

 

Figure 12: Initial model representing the basic relationships (solid black arrows) of legume 

mass (LM), total biomass (BM), proportion of graminoids (pGr) and difference in the 

dispersion of the dominants and non-dominant plants (Δ ses).  
The figure also represents the other potential interactions tested using stepbackwards variable selection (solid gray 
arrows). The gray box shows the interactions of the climatic variables and site location information. Dashed lines 
and boxes indicate that hemisphere (Hem), latitudinal distance to the Equator (lat) and elevation (Elev) are part of 
the site location description, and that precipitation (P), precipitation variance (PV), temperature (T) and temperature 
range (TR) are part of the climatic description. The arrows point in the causal direction. 

 

4.3 Methods 

4.3.1 Data sources 

4.3.1.1 Phylogenetic information 

We used the Zanne et al. (2014) phylogenetic tree (obtained from Phylomatic 

http://phylodiversity.net/phylomatic/, accessed on 2017-08-16) to create a phylogenetic tree with 

every vascular plant species present in the Nutrient Network (NutNet) dataset (Borer et al. 

2014a). When a species was absent from the phylogenetic tree (44% of the observed species), we 

TRTP PV
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looked for the other species of the same genus already in the tree, found the tip distance (branch 

length of the species terminal node to the closest node), identify the species closest to the median 

of the tip distances and included the missing species as a sister species of the species closest to 

the median. If the genus was absent, the new species was linked to the family node (4.6%). 

Overall, only in 8% of the 2355 genus-site combinations, a species absent in the phylogeny had 

one or more congeneric species in the same site, which supports the robustness of the 

replacement strategy. 

To represent different phylogenetic topologies in different sites and assess their role in the 

observed relatedness patterns we pruned the tree to the species present in each site and estimated 

the number of species, Faith’s Phylogenetic Diversity (hereafter PD) as a measure of 

phylogenetic history (Faith 1992), and three tree topology indices (Table S6). Phylogenetic 

manipulation of the data was done in R using functions in the APE (Paradis et al. 2017) and 

apTreeshape (Bortolussi et al. 2012) packages.  

4.3.1.2 Site level data 

We used pre-treatment data from the NutNet experiment as a global observational dataset. These 

data were downloaded on 2017-12-04, and any site with at least 30 sampled plots was included. 

In each site, plots were located at least 1.5m apart of each other. Each plot was composed by one 

1x1m cover subplot and two 0.1x1m biomass subplots. The biomass subplots were located at less 

than 0.5m from the cover plot and the harvested biomass was pooled together. Species cover was 

measured for each species present in the plot, while biomass was measured as aboveground 

biomass for each functional group.  

For each site, and using vascular plants cover data, we used three indices to rank species 

dominance: (1) the proportion of the plots where the species was present (frequency), (2) the 

mean species cover across all plots (assuming cover is 0 when the species was absent, cover), 

and (3) the mean species cover of the plots where the species was present only (cover PO). We 

focus on sites with a strong dominance of vascular plants (vascular plant cover larger than 90% 

of living mass cover). 

We included site management descriptors (anthropogenic origin or not, presence of burning, 

presence of grazers) and biomass measurements from the NutNet dataset to identify variables 
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that could explain global changes in relatedness disparity (Table S6). In each site, we summed 

plot level functional groups biomass to estimate the total aboveground annual net productivity 

(BM), estimated legume aboveground annual net productivity (LM) and obtained the proportion 

of the living biomass that corresponded to graminoids (pGr). For this analysis we included only 

sites that had sampled functional groups biomass, and where the discrepancy in the proportion of 

graminoid cover and average proportion of graminoid biomass in each plot was less than 0.8, to 

prevent data inconsistencies. Climatic information was obtained from Worldclim 2 (Fick and 

Hijmans 2017). 

We found 75 sites with at least 30 plots with cover before treatments were applied and 57 with 

complete biomass information (Figure S13). The sites were distributed in North America (39 

total, 31 with biomass), Europe (11, 7), Australia (10, 10), South America (8, 3), Africa (4, 3) 

and Asia (3, 3). Overall, the data included 1784 species from 135 families of vascular plants. 

4.3.2 Are dominant and non-dominant species similarly 
assorted? Estimating the relatedness of dominant, non-
dominants and their disparity 

To assess if the dominant species were more closely related to one another than species within 

the non-dominants we split the species in each site into three partitions (dominant, intermediate 

and non-dominant) each with a third of the species in the site according to the species rank. Even 

though forcing a symmetric partition may not be ecologically meaningful, we used this partition 

as it requires fewer assumptions and previous work has shown that it provides similar results to 

other ways to partition the community (Umaña et al. 2017). (See Appendix 2 for a comparison 

between partitions using this dataset, showing that all the partitions correlate and that partitioning 

the community in three symmetric groups provides conservative results.)  

For these analyses, we ranked the species based on percent cover and focused on the first 

(dominant, D) and third (non-dominant, ND) partitions. For each site, we estimated the mean 

phylogenetic distance (MPD, average phylogenetic relatedness between all pair of species in the 

site) for dominants (Dmpd) and non-dominants (NDmpd). To build the random expectations, we 

randomly sampled the same number of species observed in each partition from the species in the 

site. We repeated the randomizations 999 times and built a null MPD distribution. We estimated 

the standardized effect size for dominants and non-dominants (e.g. Dses.mpd = (Dmpd – 
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MPDmean)/MPDsd), where MPDmean and MPDsd are the mean and the standard deviation, 

respectively, of the observed and randomly generated MPD values together). Because of this 

normalization, the expected variance of each standardized effect size (SES) value is 1. The SES 

approaches zero when the observed set of species in a partition is random in relation to the 

species phylogeny, negative if the species are more closely related and positive if more distantly 

related.  

We defined the relatedness disparity (Δses.mpd) as the difference between the SES measures of the 

dominant partition (Dses.mpd) minus the non-dominant partition (NDses.mpd) for each site. A 

positive relatedness disparity (Δses.mpd = Dses.mpd - NDses.mpd > 0) indicates that dominant species 

are more distantly related than non-dominants, as may be expected if limiting similarity (e.g. 

strong competitive interactions for soil nutrients) drives the assembly of the dominant species 

and habitat filtering (e.g. shade tolerance) is responsible for the assembly of non-dominant 

species. 

We tested if dominant relatedness (Dses.mpd) was different from zero globally, regardless the 

identity of the species in each site. We assumed each site’s Dses.mpd value represents an 

independent observation and used a Shapiro-Wilks normality test first. If the site Dses.mpd were 

not normally distributed we used a Wilcoxon signed rank test to decide if the mean of the site 

Dses.mpd was lower, equal or higher than zero. If normal, we used a Kolmogorov-Smirnoff 

goodness-of-fit test (KS-test) to assess if the site Dses.mpd followed a normal distribution with 

mean 0 and variance 1, indicating random species sorting. If this KS-test was rejected, we kept 

the sign of the mean site Dses.mpd to indicate whether clustering or overdispersion prevails. Then, 

we removed the mean site Dses.mpd and did a second KS-test with the same parameters to confirm 

that the lack of fit was caused only by the mean. If the second KS-test was rejected we recorded 

if the variance was larger or smaller than 1. We repeated the analysis for NDses.mpd and for 

Δses.mpd. In the latter case, we used mean 0 and variance 2, assuming Δses.mpd was the difference of 

two normally distributed variables with mean 0 and variance 1.  

We used mean nearest taxonomic distance instead of MPD and repeated the previous analyses to 

estimate the SES (Dses.mntd, NDses.mntd and Δses.mntd). MNTD is the average phylogenetic 

relatedness of all the species with its closest relative. Because MPD includes all species pairs, 
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MPD is more sensitive to the basal structure of the tree while MNTD is more sensitive to the 

structure of the tips of the phylogeny (Cadotte and Davies 2016). 

We redid the estimates using the species ranking provided by the other two abundance metrics 

(frequency and cover PO). 

4.3.3 Are certain lineages more likely to be either dominant or 
non-dominant? 

Using the previously described partition of species, we tested if the species in each of the 

partitions in different sites belonged to similar lineages. We expected all lineages to be equally 

likely to be in any partition (e.g., a grass lineage should be equally likely to have dominant or 

non-dominant species). For each partition, we estimated two phylogenetic indices of beta-

diversity among sites, the Sørensen-derived phylogenetic multisite and the pairwise-dissimilarity 

(Leprieur et al. 2012, Baselga et al. 2017). We also obtained the nestedness- and turnover-

fractions of the Sørensen’s phylogenetic dissimilarities. These indices allowed us to assess if the 

changes in the similarity between the partitions were driven by loss of certain branches of the 

phylogeny (nestedness) or by replacement of them (turnover). The observed dissimilarities for 

each partition were compared against 1497 random global datasets. Each random global dataset 

was built by selecting a third of the species in each site and then re-estimating the Sørensen’s 

indices (multisite and mean pairwise for each partition) for each randomly generated dataset. The 

null hypothesis we tested was all species are equally likely to be in any dominance partition. To 

control for potential biogeographic bias, we repeated the analysis removing data from Australia, 

which tends to be unique in several biogeographic aspects, and North America, where 39 of the 

75 sites are located. 

To identify whether some lineages were more likely to be dominants we counted the number of 

sites in which any species of that lineage was dominant and compared that value with the total 

number of species of that lineage in any site. As in the previous test, we assumed that the 

probability that any taxon in any site of being in each dominance partition was identical (1/3), 

and ran a binomial test in each branch with 10 or more counts in that lineage. We repeated the 

analysis with the intermediate and non-dominant partitions. 
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4.3.4 Are there environmental conditions, topological 
characteristics of the phylogeny or biogeographic aspects 
that drive the relatedness disparity? 

We explored whether some functional groups, tree topology, site productivity, climatic 

conditions, geographic location or human management of the site could help to explain changes 

in the relatedness disparity around the world. First, based on the results from the previous two 

questions, we identified graminoids as a functional group most likely affecting the relatedness 

disparity. Second, we ran preliminary backwards-stepwise regressions (using AIC as the model 

selection criterion) to identify the subset of variables that were more likely to be important in 

explaining biological sources of nitrogen (legumes aboveground biomass, LM), productivity 

(total aboveground biomass, BM), the prevalence of graminoids (proportion of BM composed by 

graminoids, pGr) and relatedness disparity (Δses, representing either Δses.mpd or Δses.mntd). Besides 

the paths between these four variables and the site descriptors, we included direct and indirect 

paths between these four variables (Figure 12).  

The backwards-stepwise regressions resulted in four models that included predictor variables 

that were direct and indirectly connected to the four response variables (LM, BM, pGr, Δses). 

Because regression models only test for correlations, these connections represent causal paths 

that can be direct or indirect and can go in either direction (Shipley 2016). Using the Figure 12 as 

a metamodel, we combined the LM, BM, pGr and Δses models into a directed acyclic graph 

(DAG) and retained only direct paths. To retain only direct paths we removed any predictor 

variable from a model if it was already included as a predictor of any ancestor variable (e.g., if A 

was predicted by B and C, hereafter A ← B+C, and B ← C, we kept only A ← B ← C; notice 

that in A←B←…←P, variables B to P are ancestor variables of A). We tested for missing paths 

in the DAG using path analysis (Shipley 2016), and added the covariates as explanatory 

variables one by one, starting from the most exogenous variables (the ones with less ancestor 

variables) to the descendent ones. The links were added only when they were statistically needed 

(p-value of the partial correlation < 0.05). We used Fisher’s C index to validate the assumption 

that the DAG was a valid predictor of the observed correlation among the variables. 

Lastly, we replaced Δses in the final path model with Dses (and NDses) and searched for missing 

paths to test whether any of the predictor variables not correlated to Δses could directly affect the 
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dispersion of either partition. These analyses were done using piecewiseSEM (Lefcheck 2016). 

An evaluation of legumes biomass as a predictor of total biomass can be found in the Appendix 3 

and a detailed review of the model results in the Appendix 4. 

All analyses were done in R version 3.4.2 (R Core Team 2017). Besides the previously 

mentioned packages, we used ggplot2 (Wickham 2009). Across the study, we assumed a 

statistical significance level of 0.05. 

4.4 Results 

4.4.1 Are dominant and non-dominant subcomponents similarly 
assembled? Relatedness of dominant, non-dominants and 
their disparity 

As expected, in herbaceous dominated systems around the world there is a relatedness disparity 

(Δses.mntd < 0, Δses.mpd < 0, Table 5, Figure S14), with dominant species more closely related than 

expected by chance (Dses.mntd < 0, Dses.mpd < 0). This result is consistent for different dominance 

metrics (frequency, mean cover of the plots where species were present only and overall mean 

cover, the later including the effect of the first two) and phylogenetic metrics (mean nearest 

taxon distance, MNTD, and mean phylogenetic distance, MPD). Non-dominant species were 

overdispersed using MNTD (NDses.mntd > 0), but randomly assorted according MPD (NDses.mpd = 

0). To simplify the results, hereafter, we will present only the results based on mean nearest 

taxonomic distance and mean cover per plot because (1) mean cover per plot captures the effect 

of the other two dominance metrics, and (2) MNTD is more sensitive to recent history in the 

phylogeny than MPD, and therefore is probably more sensitive to competitive interactions, 

which is the expected mechanism driving non-dominant species patterns. 
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Table 5: Expected and observed global phylogenetic dispersion patterns of the dominant 

(Dses) and non-dominant (NDses) partitions and the relatedness disparity (Δ ses = Dses - NDses). 
The analysis was performed using mean nearest taxonomic distance (MNTD) and mean phylogenetic distance 
(MPD), and three different dominance metrics (mean cover, frequency and mean cover of the plots where the 
species is present only, cover PO). We used the Shapiro-Wilk test for normality, the Wilcoxon test for not normaly 
distributed values and the Kolmogorov-Smirnoff to test for mean and variance. Symbols: (-) Negative mean, 
undersdispersion; (+) positive mean, overdispersion; (0) zero mean, stochastic assortment; (hv) variance higher than 
expected variance; (NN) non-normal distribution. 

Dispersion 
metric 

Dominance 
criteria Δ ses Dses NDses 

Expected distribution Normal Normal Normal 
Expected mean µ < 0 µ < 0 µ > 0 

Expected variance σ2 = 2 σ2 = 1 σ2 = 1 
MNTD Cover - - + 

 
Frequency -NN - +NN 

 
Cover (PO) - -NN + 

MPD Cover - -NN 0 

 
Frequency - -NN 0NN 

 
Cover (PO) -hv -NN 0NN 

 

4.4.2 Are certain lineages more likely to be either dominant or 
non-dominant? 

Dominant species around the world were more closely related, i.e. less phylogenetic 

dissimilarity, than expected by chance (p-value < 0.001, Figure 13). A small turnover fraction of 

the total beta diversity explains the higher similarity of the dominant plants, which implies that 

some lineages were more commonly present than expected by random assembly. Conversely, the 

nestedness fraction of dissimilarity of dominants was larger than expected by chance. When 

nestedness fraction is measured using species, a large value indicates a strong reduction in the 

number of species, by extension, a large nestedness fraction in this phylogenetical turnover index 

indicates that in sites with fewer species, the species present belonged to fewer lineages than 

expected by random assembly. The pattern was reversed for non-dominant plants (i.e. against a 

random distribution, the observed values indicate more dissimilar lineages around the world, 

several lineages appearing in different sites and lineages getting lost more heterogeneously) 

while the intermediate partition was indistinguishable from random assembly. These patterns 

were robust to the exclusion of Australian or North American sites, and to the use of multisite 

and mean pairwise index (Figure S15). 
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Figure 13: Phylogenetic dissimilarities among sites when each site is partitioned into 

dominant, intermediate dominance and non-dominant species, each partition with a third 

of the species.  
The total phylogenetic dissimilarity is measured as the multisite Sørensen (SOR), and decomposed in turnover 
(SIM) and nestedness (SNE) fractions. Dashed lines represent the observed values when species dominance is 
assigned base on mean cover per plot, while the black solid line represent the probability of a given dissimilarity 
value if the species were randomly distributed in the three partitions. 

Grasses and sedges mostly comprised the lineages more often found in the dominant partition, 

and were also less likely to occur in the intermediate or non-dominants partitions (Figure 14). 

Within the grasses (113 genus in the family Poaceae), several genera were more often associated 

with dominant species (e.g. Bromus, Elymus, Calamagrostis, Poa, Panicum, Sporobolus), but 

only Carex of the 15 genera of sedges (family Cyperaceae) was more likely to be dominant. 

Among non-graminoids, only goldenrods (Solidago spp. and another genus in the same lineage) 

were likely to contain dominant species (p < 0.05). Acanthacea and Hypochaeris radicata may 

be more associated with dominant species (p < 0.05), but were reported in less than 15 sites, so 

their status is inconclusive. 
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Dominant	 Intermediate	 Non-dominant	

 

Figure 14: Phylogenetic tree of species observed in the experiment showing the probability 

of a lineage to be dominant, intermediate or non-dominant.  
The dominance partitions were determined at each site independently, with a third of species in each site in each of 
the partitions. The black solid outside arc indicate grasses, the black dotted arc legumes and the gray arcs indicate 
forbs. A gray edge indicates that the lineage was present in less than 10 sites (not enough cases to take a decision) or 
that the proportion is not different than 1/3 (p-value > 0.1). Red colors indicate proportion lower than expected, and 
green ones higher than expected. The edge’s width indicates the significance of the difference. 

On the other hand, more than a dozen different lineages were associated with non-dominant 

species more often than expected by chance (p < 0.05). In contrast to the strong dominance of the 

graminoid lineage, non-dominant lineages cover a large portion of the phylogenetic tree. Among 

the monocots, several genera in the orders Liliales and Asparagales (e.g. orchids) were more 

often non-dominants. The dicot lineages more likely to be identified as non-dominant included 

species of the genus Brassica (Brassicacea), Geranium (Geraniaceae), Oxalis (Oxalidaceae), 

Ulmus (Ulmaceae), Polygala (Polygalaceae), Silene (Caryophyllaceae), Ratibida (Asteraceae), 

Taraxacum (Asteraceae), Myosotis (Boraginaceae), Gentiana (Gentianaceae) and Castilleja 

(Orobanchaceae). 

 

4.4.3 Are there environmental conditions, topological 
characteristics of the phylogeny or biogeographic aspects 
that drive the relatedness disparity? 

Based on the results of the two previous questions, we decided to use the proportion of 

graminoids of the total biomass (pGr) as a predictor of relatedness disparity (Δses.mntd) to capture 

the role of this functional group. The regressions for legume biomass (LM), total biomass (BM), 

n.d n.s. 0.1 0.05 0.01 0.001 0 0.3 0.6 1
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pGr and Δses.mntd included two highly correlated variables: Faith’s phylogenetic diversity (PD) 

and richness. We retained PD as it generated better individual regressions (higher r2) than 

richness. Also, precipitation variability was dropped from each individual regression as a 

predictor in the backward-step procedure, so we removed it from the final model. Conversely, 

tests of missing paths indicated that pGr increased with temperature range (TR), so we restored 

this path after it was dropped when removing predictors present in ancestor variables. After 

performing all the adjustments, the final model properly represented the observed data (Fisher’s 

C = 88.27, df = 78, p-value = 0.2 indicating good fit) and partially supported our original 

expectations: (1) legume biomass was positively related to total biomass (regression r2 = 0.47, 

coefficient p = 0.007), (2) total biomass was positively related to the proportion of graminoids 

but not significantly (regression r2 = 0.38, coefficient p = 0.135) and (3) the proportion of 

graminoid biomass was negatively related to Δses.mntd (regression r2 = 0.15, coefficient p = 0.003) 

which implies that higher graminoid prevalence was associated with more closely related 

dominant plants compared to non-dominant plants (Figure 15). Marginal paths (p < 0.1, Table 

S5) appeared between Δses.mntd and grazing (positive effect), productivity (positive effect), 

latitude (positive effect) and temperature range (negative effect). Other aspects of the final path 

model are discussed in the appendices 3 and 4. 

 

Figure 15: Causal paths between site location (latitude, Lat; elevation, Elev; hemisphere, 

Hem), climate (precipitation, P; temperature range, TR; mean temperature, T), tree 

topology (Faith’s PD, PD), management (anthropogenic, An; grazing, Gz), productivity 

(legume and total aboveground biomass, LM and BM, respectively) their effect on the 
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proportion of graminoids (pGr) and phylogenetic dissimilarity between dominants and 

non-dominants (Δ ses.mntd).  
Arrows are included for every path modelled, and point from the predictor to the response variable. Black arrows 
indicate positive impacts and gray arrows negative ones.  Dashed arrows are non-significant paths (p-value > 0.05) 
and solid ones are significant paths (p-value < 0.05). The letters in the boxes represent the variables modelled (see 
Table S6) and the numbers represent the proportion of variability explained by the linear model (R2). Overall fit of 
the model indicated that it was unlikely to be any paths not represented in the model and that directions of the paths 
are consistent with the data: Fisher’s C = 88.27, df = 78, p-value = 0.2 

 

When replacing Δses.mntd with dominant relatedness (Dses.mntd) in the final model, the model 

explained the observed variance (Fisher’s C = 76.33, df = 78, p-value = 0.532) indicating that the 

proportion of graminoids was the only modeled variable negatively affecting the dominant 

partition relatedness (regression r2 = 0.08, coefficient p-value = 0.033). A consistent pattern was 

observed when we replaced Δses.mntd with the non-dominant partition relatedness (NDses.mntd): the 

proportion of graminoids was the only variable directly affecting non-dominant dispersion 

(Fisher’s C = 89.32, df = 78, p-value = 0.179), with a positive impact (regression r2 = 0.12, 

coefficient p-value = 0.007). All together, these results indicate that the proportion of graminoids 

biomass is the key variable that controls the relatedness among species in the dominant and non-

dominant partitions, decreasing the former and increasing the latter. 

4.5 Discussion 

4.5.1 Dominant and non-dominant species follow different 
ecological mechanisms 

The relatedness disparity between dominant and non-dominant species suggests different 

mechanisms acting on each of these partitions of the community (Ricotta et al. 2008, Lennon et 

al. 2011, Chai et al. 2016, Norden et al. 2017). For dominant species, the environment might 

provide a selective pressure that resulted in a single optimal strategy in each site that outperforms 

other species (Webb et al. 2002, Mayfield and Levine 2010, Kraft et al. 2015a, Cadotte and 

Tucker 2017). Alternatively, species from the most common dominant lineage, the graminoids, 

could interact more positively (or less negatively) amongst themselves than with forbs, 

facilitating the presence of other species in the same lineage compared with species from other 

lineages. 
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The non-dominant overdispersion was detectable when using the relatedness metric sensitive to 

tip distances (mean nearest taxonomic distance, MNTD) but not the metric sensitive to the basal 

structure (mean phylogenetic distance, MPD). Recent studies suggest that competitive 

differences are mostly associated to fewer traits than niche differences (Kraft et al. 2015b, 

Cadotte 2017). If we assume that fewer traits can change between close relatives than between 

distantly related species, the difference between MPD and MNTD suggests non-dominant 

species are less constrained by their niche differences (random MPD), and more by their 

competitive differences (overdispersed MNTD). This pattern is not consistent with dominant 

species creating several smaller fragments with heterogeneous environmental conditions, each 

with different optimal combinations of traits that relatively few species can occupy (Huston 

1994, Aarssen et al. 2006). However, it is consistent with dominant species creating a new 

environment that equalizes the fitness of the non-dominant species, allowing species to coexist 

neutrally regardless of their ecological differences (Chesson 2000). This equalization is 

consistent with dominant plants engineering and homogenizing (but not depleting) the 

environment that non-dominants occupy (McIntire and Fajardo 2014).These results require to be 

further tested in local controlled conditions, and other derived implications tested more globally. 

Biogeographic constraints could explain the large turnover fraction among sites observed for 

non-dominant species (Figure 13a). However, if biogeographic patterns were important to 

explain the relatedness disparity, dominants should be cosmopolitan and non-dominants should 

always have more restricted range, as is the case for graminoids. However, the pattern does not 

hold true because some lineages are non-dominant and cosmopolitan (e.g. orchids) while others 

are dominant despite having a restricted distribution (e.g. goldenrods).  

4.5.2 Environmental drivers 

The main mechanism controlling the magnitude of the relatedness disparity (Δses.mntd) was the 

prevalence of graminoids, measured as the proportion of biomass of that group. This pattern 

contrasts to the large number of variables that affected legumes biomass, total biomass and the 

proportion of graminoids. This is surprising as we may have expected a positive direct path 

between productivity and Δses.mntd because facilitative interactions among distantly related 

species should become more important under harsh environmental conditions (Lortie and 

Callaway 2006). This path, as others, was only marginally significant (p-value = 0.071, Table 
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S5), which indicates that more research is needed to confirm that the proportion of graminoids is 

the only driver of Δses.mntd. We expect that descriptors relevant to species interaction at the plot 

level (e.g. soil nutrient availability, rooting depth, root structure, plant architecture) will explain 

the remaining variability in relatedness disparity, more than the site descriptors used here. It is 

also possible that the average phylogenetic distance between species in the dominant and the 

non-dominant partitions can provide more insights in the relatedness disparity between these 

partitions. 

4.5.3 Non-dominance as a strategy 

The more than a dozen clades with higher probability of being non-dominant than dominant 

species contrasts with classical formulations of theoretical ecology. Some classical life history 

frameworks, such as r-K (Reznick et al. 2002) and ruderal-competitor-stress tolerant (Grime 

1974), were often used to identify specific traits that would allow a species to become dominant 

under specific conditions. These widely used frameworks are not explicit about non-dominant 

species life history, giving the impression that non-dominant species are those in the wrong 

environment given a set of traits. Consistent with this approach, Rabinowitz (1981a) suggested 

that non-dominant (rare) species are either failing, growing or strongly limited by other species, 

but that non-dominance (rarity) cannot be an “adaptive strategy” because if successful the higher 

fitness should reduce the evolutionary advantage of rarity, and because species more likely to be 

dominant should drive the non-dominants to extinction. If this is the case, and non-dominance is 

a transient state no lineage should be more likely to be non-dominant than dominant, unless the 

lineage can be dominant in a different biome. In contrast, we found more than a dozen genera 

distributed around the world more likely to have non-dominant species than dominant species. 

We hypothesize that there could be sets of traits associated with non-dominance that could 

configure “non-dominance” as a successful ecological strategy, that could explain why non-

dominant lineages are geographically widespread and repeatedly occur in the phylogeny. A 

superb example are the orchids: the family is composed almost entirely of non-dominant species 

in any biome they occupy, yet they are present on every continent and it is the most speciose 

plant family (27,801 of the 304,419 identified angiosperm species, compared with 11,554 species 

in Poaceae, The Plant List 2013).  
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Non-dominant species face some specific challenges, such as finding viable partners if sexual 

reproduction is needed (Farnsworth 2007, Vermeij and Grosberg 2018); but can also benefit 

from a more stable microclimatic environment created by dominant plants, reduced pest pressure 

or some other trade-offs (Rabinowitz et al. 1984, Aarssen et al. 2006). Non-dominance could 

also have evolutionary implications: smaller and more isolated populations could increase 

speciation rates or increase the odds of gene fixation. Because dominant and non-dominant 

species differ in the characteristics of the environment they face and in the restrictions on sexual 

reproduction, the origin of intraspecific trait variability (genetically driven vs. plasticity) may 

also differ. More work is required to confirm the presence of species traits relevant for non-

dominant species and the importance of their role in the co-existence and evolution of non-

dominant and dominant species. 

4.5.4 Limitations and caveats 

Our study sites are located in herbaceously dominated areas around the world (Borer et al. 

2014a), which often has at least one graminoid dominant species, and frequently have several 

graminoid species. However, this bias in site selection cannot explain why in each site the 

dominant species tended to be more closely related among themselves, than expected under 

random assembly because under strong limiting similarity mechanisms we expect a single 

graminoid should outcompete most other graminoids from the dominant partition. The more 

parsimonious explanation is that the graminoids optimal conditions correspond to the local 

environmental conditions and, as a group, tend to be competitively superior to other life forms 

(sensu Mayfield and Levine 2010). Similarly, the selection bias cannot explain why the non-

dominants were more distantly related, as several outcompeted graminoids should be non-

dominant species. Our findings are supported by similar results in other plant communities 

(Lennon et al. 2011) and by random patterns observed in communities comprised of species with 

little capability to modify their environment (e.g. chironomids in Siqueira et al. 2012). 

Partitioning dominance in each site in two or three equally sized groups is simple but somewhat 

arbitrary (Umaña et al. 2017). Statistical criteria based on individual counts can distinguish core 

and resident animal species (Magurran and Henderson 2003, White and Hurlbert 2010), but they 

are difficult to apply to plants. A better approach could be to use traits to discriminate among 

plant species that are more likely to be dominants from those that are more likely to be non-



 

79 

dominants. Such an approach could help to distinguish, for instance, a low-cover species with a 

less viable strategy from a species with a viable non-dominant strategy. A preliminary test of the 

relationship between probability of dominance and proportion of C3/C4 photosynthetic pathways 

in graminoids provides no additional explanation (see Appendix 5). We hypothesized that root 

and stem architecture may be better predictors of dominance strategy. 

Furthermore, assigning species to dominant and non-dominant groups creates a dichotomy that 

may not reflect natural processes. Our results clearly suggest different dynamics operating in 

dominant and non-dominant species, but provides little information about the nature of the 

dynamics that drive the species in between these two extremes. Defining dominance and non-

dominance strategies using traits could also help to distinguish between a real fully stochastic 

dynamic of species with intermediate dominance (as suggested by our results) from an apparent 

stochastic dynamic caused by a mix of dominant and non-dominant species with opposite 

deterministic responses. 

4.5.5 Concluding remarks 

Dominant plants in herbaceous ecosystems are more closely related than non-dominant species, 

indicating an asymmetry in the community dynamic. Dominant species show phylogenetic 

clustering, suggesting an important role for environmental filtering, while non-dominants show 

substantial phylogenetic variation suggesting that biotic interactions play a greater role. Our 

results show that these relatedness disparity associated to the dominance of the species is 

pervasive globally, and expand previous work that suggested dominant and non-dominant 

species were different (Huston 1994, Magurran and Henderson 2003, Laland et al. 2016, Chai et 

al. 2016, Umaña et al. 2017). We also found evidence that species dominance tend to be 

phylogenetically constrained suggesting that the traits that make a species more likely to be 

dominant are conserved in the phylogeny, and also, unexpectedly, that the traits that would make 

a species more likely to be non-dominant are conserved as well. 
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Chapter 5  
Can partitioning plant communities by life history and scale 

dependent causality solve the productivity-biodiversity 
conundrum? 

5.1 Abstract  
Plant diversity and biomass production underpin our understanding of environmental 

functioning, and understanding their interaction is fundamental for managing natural systems and 

mitigating effects of global change. However, there is a wide diversity of theoretical and 

experimental studies with contrasting hypotheses about how diversity and productivity interact. 

In grasslands around the world we found that at the global scale, and after controlling for climate 

and human management, biodiversity appears to drive biomass and litter mass, two measures of 

annual productivity. However, at the smaller plot scale, the causality is reversed with biomass 

driving biodiversity. We show that these contrasting patterns are consistent with two different 

research questions relating biodiversity and biomass: how much biomass can be produced at a 

given locale given the biodiversity in the area vs. how much of this diversity is persisting locally 

given the biomass there. At both scales, these patterns were clearer when we partitioned the plant 

community into functional groups (legumes, forbs, graminoids). Different community assembly 

mechanisms among legumes, forbs and graminoids provide the basis for this dissimilar 

contribution. 

Keywords: species richness, phylogenetic information, community assembly, ecosystem 

processes, causality, litter, grasslands, Nutrient Network, biomass 

5.2 Introduction 
The correlation between species diversity (i.e. species richness) and community productivity has 

long been observed globally across latitudinal and altitudinal gradients (Rosenzweig 1995 and 

references therein). However, to what extent this correlation is observed at local scales has been 

the subject of debate, with experimental evidence supporting the existence of a correlation 

between diversity and productivity (Cardinale et al. 2006, Tilman et al. 2014), but with 

contrasting results from natural systems (Mittelbach et al. 2001, Grace et al. 2007, Adler et al. 

2011). One of the critical limitations in these correlations, is that not all species in a community 
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should be assumed to be equivalent, to the extent some species form coherent community 

subunits and are subject to different assembly rules (Grime 1998, Gibson et al. 1999). Therefore, 

acknowledging and characterizing the different groups of species comprising a community could 

describe ecosystem processes better than describing the diversity of the entire community as a 

single unit. 

Most researchers acknowledge that species richness is of limited value to describe the correlation 

between productivity and biodiversity because different species accumulate biomass and litter in 

different magnitudes and qualities, and yet there is not a consensus on which biodiversity metric 

is best. One approach is to categorize species into general functional groups defined by shared 

attributes that strongly influence their interactions with resources and other species, and use the 

number of functional groups in a community as a predictor of biomass (Tilman et al. 1997). 

However, there is no clear consensus on how functional groups should be defined or why these 

provide mechanistic explanation for biomass production (Petchey 2004, Wright et al. 2006). An 

alternative approach would be to measure the phylogenetic relatedness among species in the 

community, under the assumption that phylogenetic information can capture the overall 

similarity of species and therefore provide more valuable information on how well the species 

overlap in the niche space and thus compete (Cadotte 2013, Gerhold et al. 2015, cf. Venail et al. 

2015). A general limitation of these two approaches is that they assume that the community 

should be treated as a single combined unit. However, mounting evidence indicates that different 

species in a community can be subject to different assembly rules (Magurran and Henderson 

2003, Henderson and Magurran 2014, Chai et al. 2016, Umaña et al. 2017).  

There is also little consensus on the best way to represent the productivity of an ecosystem. 

Standing plant biomass is most commonly used for productivity estimates, but litter generated by 

deciduous plants and herbivory cause significant reductions in standing biomass and can bias 

productivity estimates. For that reason, some studies include litter mass in estimates of “total 

biomass” as drivers of diversity (Al-Mufti et al. 1977, Grace et al. 2016). However, the poor 

correlation between standing biomass and litter mass (O’Halloran et al. 2013) suggests that 

different mechanisms drive their accumulation. 

Another strategy to improve the understanding of the biodiversity-productivity relationship in 

natural systems is to test different causal links in natural conditions using statistical tools, such as 
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path analysis and structural equation models, complementing manipulative experiments (Shipley 

2016, Grace et al. 2016), to better understand how multiple factors influence productivity and 

diversity. Duffy et al. (2017) maintain that only with these statistical methods can we assess the 

impact of different mechanistic drivers of the biodiversity-productivity relationship. However, 

we argue that improving the statistical tools is not enough and that there is a need to formally 

distinguish two questions: the first is how much biomass and diversity can exist given the 

environmental conditions, that is the potential biomass-biodiversity relationship. The second 

question is how local interactions influence the correlation between biomass and diversity, 

namely the realized biomass-biodiversity relationship. For example, competitive interactions 

between species will cause a negative correlation between productivity and biodiversity (Huston 

1994 and references therein), while a positive correlation can occur either by facilitation 

(Cardinale et al. 2002) or by warmer and moister conditions. In these examples, the first two 

mechanisms correspond to realized biomass production, while only the last one to the potential 

biomass production dictated by the environment (Table S12). In practice, the selection of 

predictors and response variables, and the spatial scale being measured, will strongly affect 

which relationship is actually being studied (Whittaker 2010). 

Here we hypothesized that different functional groups do in fact follow different assembly rules 

and therefore convey different information about ecosystem processes and patterns. If this is the 

case, partitioning the community into functional groups should improve the understanding of the 

relation between diversity and ecosystem productivity, the latter represented as biomass and litter 

mass. Also, we hypothesized that the support from different theories to both directions in the 

causal links - biodiversity causes productivity and productivity causes biodiversity, are related to 

different spatial scales of the analysis (Whittaker 2010). We tested the partitioning of the 

community in functional groups and the potential scale-dependent-directionality using 

unmanipulated plots of a global grassland experiment, the Nutrient Network (NutNet, Borer et al. 

2014a). The NutNet experiment measures biomass in forb, legume, graminoid and other 

functional groups that we have previously shown follow distinctive community assembly 

patterns and can therefore be biologically meaningful (Chapter 4). We assumed that comparing 

multiyear average values of unmanipulated (control) plots should provide a good estimate of the 

global correlation between diversity and potential biomass that is set by species pool, climatic, 

grazing and human management constraints (coarse focal scale). In contrast, we used within-site 
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variation of a single pre-treatment year to better capture the proximate interactions among 

species and therefore the correlation between diversity and realized biomass (fine focal scale). At 

this within-site scale, we expect the realized biomass will drive plot diversity. In both cases, we 

described the diversity using species richness and phylogenetic diversity, and partitioned the 

biomass and the diversity descriptors into graminoids, legumes and forbs. In all the analyses, we 

started with the assumption that litter accumulation was controlled by biomass and diversity. The 

best models at both scales were later expanded to test them more thoroughly. 

5.3 Methods 

5.3.1 Community information 

Species percent cover, functional group biomass and litter mass was obtained from the Nutrient 

Network (NutNet) data repository on December 04th 2017. NutNet is a globally distributed 

grassland experiment, with almost a hundred sites around the world. At each site, plots are 

delimited and surveyed under natural conditions. Although many sites manipulate nutrients and 

grazing by large herbivores, here we focus on the unmanipulated plots, either control plots 

through time or pre-treatment plots in one year. First, we gathered data from sites with at least 3 

control plots and with 5 years of data to characterize site level average productivity (dataset #1). 

Second, we used data before treatments were applied at sites with 30 or more plots to 

characterize the effects of species interactions (dataset #2). 

To prevent bias in measurements, we (1) discarded sites with a large discrepancy in the ratio 

between graminoids biomass and cover (0.5 threshold difference) and (2) included only plots in 

which 95% of the total mass reported belonged to the key categories used in NutNet (i.e. litter, 

graminoid, woody, forb, bryophyte or legume). We focused on three functional groups for which 

biomass data was consistently available: legumes (family Fabaceae), graminoids (families 

Poaceae and Cyperaceae) and forbs (all other angiosperm species). Woody species and other 

tracheophytes were included for phylogenetic and richness estimates, but not for biomass 

because the sampling protocol was different. Of the 31 sites in dataset #1, only one had a large 

proportion of woody biomass (~40%) and one was intermediate (~12%); while all the other sites 

had less than 10% (correlation between total biomass and biomass of forbs, graminoids and 

legumes together was 0.99). In dataset #2, 10% of the 1892 plots (in 57 sites) had more than 10% 

woody biomass, and only one plot in an alpine grassland with scattered shrubs had a extreme 
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value of 92% woody biomass (overall correlation between total biomass and biomass without 

woody species was 0.99). We also found six sites with no within-site variability in litter 

production that we did not include in the dataset #2. 

For broad scale environmental and human drivers we used location (North-South dummy, 

distance from equator in degrees and elevation in meters), climatic (Worldclim v2, Fick and 

Hijmans 2017) and management variables (NutNet dataset describing if the grasslands have 

anthropogenic origin, active burning management and if they are regularly grazed) to describe 

site characteristics in a global context (Table S6). 

5.3.2 Phylogenetic information 

We adapted the Zanne et al. (2014) phylogenetic tree to obtain a tree with all the species 

observed in the Nutrient Network sites. Any species absent in the original tree were assigned to a 

species with the median tip-depth value of the genus. If the genus was not present in the tree, we 

assigned the species to the family node as reported in the Zanne et al. tree.  

We estimated Faith’s PD (Faith 1992) to represent the total evolutionary history in the site for 

the full community and for the community subsets. Therefore, a zero represents no species of 

that clade living there, the clade depth will represent any monoculture of that clade and more 

species will increase the diversity of the site proportional the divergence between them. Mean 

phylogenetic distance (MPD) and mean nearest taxonomic distance (MNTD) represent overall 

community dissimilarity and average dissimilarity of the closest relative, respectively. MPD and 

MNTD were zero for monocultures (a species is identical to itself). However, MPD and MNTD 

are meaningless for empty communities because the dissimilarity of an empty community is 

meaningless. We estimated PD, MPD and MNTD using the total list of species present in control 

plots during the first four years of each site for dataset #1. For dataset #2, we estimated PD, 

MPD and MNTD for pre-treatment conditions in each plot. We estimated the same indices for 

legumes, graminoids and forbs. Phylogenetic trees were manipulated with the package ape 

(Paradis et al. 2017) and the indices were estimated with the package picante (Kembel et al. 

2014). All the analyses were done in R (R Core Team 2017). 
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5.3.3 Statistical analysis 

5.3.3.1 Potential biodiversity-biomass-litter correlation 

We used the mean values of at least three control plots per site from 5-years (dataset #1) to 

estimate the effect of biodiversity and biomass on litter at a global scale. To assess the most 

likely causal direction in the correlation between diversity and biomass production we started 

building two models in which biomass was causally linked to diversity for each functional group, 

and litter biomass was caused by diversity and biomass (Figure 16b). Diversity was represented 

with species richness in the first model and with Faith’s PD in the second. We built two more 

similar models in which diversity was caused by biomass (Figure 16d). The models were fitted 

using the package piecewiseSEM (Lefcheck 2016) and compared using Fisher’s C. We also fitted 

the models in the package lavaan (Rosseel et al. 2017) using a bootstrap estimator, and 

compared the models with the robust χ2 and p-values obtained using Bollen-Stine Bootstrap 

method (1000 samples) and other fit statistics of SE models (CFI, RMSEA and SRMR). The 

piecewise approach is robust to low sample size, but does not work when underlying causal links 

create cycles. The second method is robust to causal cycles, but requires larger sample sizes.  
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a.	 b.	

	 	
c.	 d.	

	 	

Figure 16 Basic models representing a situation where (a,b) diversity influences biomass 

and (c,d) biomass influences diversity.  
Biodiversity and biomass are measured for the whole community in the left columns (a,c) and partitioned into 
functional groups on the right (b,d). In all cases litter is explained by the combination of diversity and biomass. Gray 
arrows are the only ones that change from one model to the other. Models a and c are fully saturated, and therefore 
the structural equation modelling cannot be used. 

 

To assess the validity of partitioning the community into functional groups as a useful strategy 

we started using the litter part of the models previously fitted using functional groups and the 

piecewise approach, one with Faith’s PD and the other with species richness, and compared them 

with models (1) using total PD and total biomass and (2) total richness and total biomass (Figure 

16a). We also contrasted these four models with models with and without partitioning species 

into functional groups that included PD, MPD, MNTD, to represent total evolutionary history as 

well as overall similarity among species. To reduce collinearity in this comparison, we removed 

uninformative variables using a step-backwards approach, and compared the resulting models 

using BIC.  
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Using the best causal link directions, we expanded the structural equation models to represent the 

effects of climate, management and diversity on biomass and litter accumulation (Figure 17). We 

fitted models with and without functional groups, using phylogenetic distance and species 

richness. We added the biomass of the functional groups and compared the predictions of each 

model using Pearson R2. Detailed specifications of this and other approaches, including one 

assuming the opposite causal connection between biomass and diversity, are described in the 

appendix.  

 

Figure 17 Directed acyclic graph representing the effect of (1) location on climate; (2) 

climate, management and phylogenetic relatedness on functional group biomass 

production; and (3) management, phylogenetic relatedness and functional group biomass 

production on litter accumulation. 
The coefficients are presented in the Table 8. Arrows indicate variables retained by the step-backwards selection 
process. Arrows inside the box were not tested part of the step-backwards process. Dashed and solid lines represent 
non significant (p-value > 0.05) and significant relationships (p-value < 0.05), respectively. Green lines indicate 
positive impact, while red lines indicate negative impact. The number in the bottom indicate the proportion of 
variance explained (R2). Location variables: distance to equator (Lat), elevation (Elev), North-South hemisphere 
dummy (Hem). Climatic variables: precipitation, P, average temperature of the wettest quarter (TW), annual average 
temperature (T), and temperature range (TR). Management variables: grazed (Gz), burned (Br) and anthropic (An). 
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MNTDMPD MPDMPDMNTDPDl PD PD MNTD
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Biomass variables: legumes biomass (LM), graminoids biomass (GM) and forbs biomass (FM). Phylogenetic 
information was measured as Faith’s PD (PD), mean phylogenetic distance (MPD) and mean nearest taxonomic 
distance (MNTD) for each functional group: legumes (lg), graminoids (gr) and forbs (fr). 

 

5.3.3.2 Realized biodiversity-biomass-litter correlation  

We used pre-treatment biomass and cover data at the plot level to explore the correlations 

between biomass and diversity and the relevance of partitioning the community into functional 

groups (dataset #2). As in the potential biodiversity-biomass-litter correlation, we tested first the 

most efficient approach for the direction of the causal link (among the options represented in 

Figure 16b and d) and about the usefulness of the information provided by the partitions using 

litter. Then, we expanded the best models into a more detailed analysis. We added site as a 

random term to capture mean differences among sites for the piecewise path analysis and as 

fixed component for the structural equation model. We did not use MPD or MNTD to prevent 

losing plots when species of any functional group were absent (a common problem for legumes). 

Mixed-effects models were fitted in R with the package lme4 (Bates et al. 2014). 

We analyzed in detail the effect of biomass as a driver of diversity at the local scale, which was 

the more parsimonious causal link obtained in the first step and is consistent with the models of 

realized diversity-biomass correlation. We started assuming that the diversity of a focal 

functional group (FG) in a plot of a given site (!"#!",!"#$:!"#$) is a subset of the existent diversity 

in that site (!"#!",!"#$:!"#$). The first mechanism that can explain a reduction in diversity is space 

constraints that decrease the number of species that survive in an average plot of that site 

(!"#$!",!"#$). The second reason is related to intra-group species interactions: Increasing the 

biomass accumulated by the functional group should increase the diversity of the functional 

group that can co-occur in that plot unless some high productivity conditions make one species 

outcompete the others (ℎ !"!",!"#$:!"#$ ), forming a hump-shaped relation (Al-Mufti et al. 1977, 

cf. Oksanen 1996). Finally, other functional groups interact one with each other, and can either 

increase, decrease or have a more complex impact on the focal group. Together, these four 

aspects can be represented by 

!"#!",!"#$:!"#$ = !"#!",!"#$ + !"#$!",!"#$ + ℎ!",! !"!,!"#$:!"#$
!
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 (Eq. 1) 

where j is any functional group, including the focal one, and ℎ!",!(!"!,!"#$:!"#$) is the effect of 

the j-functional group biomass on the focal functional group. To capture a switch from positive 

to negative impact of biomass on diversity as predicted by hump-shaped diversity-productivity 

correlations we used linear and quadratic terms of the biomass after log(+1)-transforming the 

biomass. A site dummy captured the mean value which included !"#!",!"#$ + !"#$!",!"#$, so 

that we could recover the spatial effect on diversity by subtracting the estimated value for the 

dummy minus the observed site diversity of the functional group. This difference could be 

absorbing other site-specific conditions. To compare the effect of spatial sampling among groups 

we calculated the ratio of diversity lost by functional group in each site (!"#$!",!"#$/
!!"!",!"#$). 

We represented litter accumulation in a plot in a given site (!"##$%!"#$:!"#$) using the biomass and 

diversity descriptors used in diversity models. Litter results from the input provided by a 

functional group biomass from previous year that remains as litter until the next sampling season 

(! !"!",!"#$:!"#$ ), while moisture, precipitation, bacterial load and other site level conditions 

affect the decomposition and consumption rate (!!"#$). Also, plant species can differ in their 

decomposition and consumption rates (! !"#!",!"#$:!"#$ ). Together, we represented the litter in 

a plot by 

!"##$%!"#$:!"#$ = ! !"!,!"#$:!"#$
!∈!"

+ !!"#$ + ! !"#!,!"#$:!"#$
!∈!"

 

(Eq. 2) 

In correspondence with the biomass model, we assumed that the effect of biomass (k) was 

quadratic and the effect of diversity (d) was linear.  

The four resulting individual linear models estimated using Faith’s PD were combined in a single 

structural model and fitted using the package lavaan using a maximum likelihood (ML) 

estimator (Rosseel et al. 2017). Because of strong non-normality, we used bootstrap estimators 

(1000 replicates). We repeated the analysis using path analysis with the package piecewiseSEM 

(Lefcheck 2016) in R. We repeated the same analyses replacing Faith’s PD with species richness.  
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5.4 Results 

5.4.1 Biodiversity-productivity relationships among sites 

Across the Nutrient Network dataset we found 31 sites with three or more control plots measured 

for 5 years, with biomass partitioned into functional groups and with cover records of legumes, 

graminoids and forbs. Global scale basic models indicated that partitioning always improved the 

resulting model (Table 6), and that phylogenetic information outperformed species richness as a 

predictor of litter, particularly when species similarity indices (MPD and MNTD) were included 

(Table 6). Further, biodiversity was more likely to cause biomass production than the opposite, 

regardless how diversity was measured (Table 7). 

 

Table 6 Effect of richness and phylogenetic diversity metrics and of partitioning the 

community into functional groups on litter at a global and local scale.  
Diversity is described as either species richness (S), Faith’s PD (PD), mean phylogenetic distance (MPD) and/or 
mean nearest taxonomic distance (MNTD) (n=31 for the global scale, 1892 for the local). Model’s fit is described 
using Pearson’s R2, change in Akaike Information Criterion corrected for small sample size (∆AICc), degrees of 
freedom used by the model (d.f.) and Bayesian Information Criteria (BIC). Each model can have different final 
predictors (not shown) because of the step-backwards optimization criteria. All the models without partitions at the 
global scale dropped all the initial predictors. 

Partitions? Initial predictors R2 † ∆AICc d.f. BIC 
 Acceptance criteria Closer to 1 Closer to 0  Lower 

Global scale      
Whole community Biomass, S 0.000 8.56 2 134.49 

 
Biomass, PD 0.000 8.56 2 134.49 

 
Biomass, PD, MPD, MNTD 0.000 8.56 2 134.49 

Functional groups Biomass, S 0.365 5.57 6 134.16 

 
Biomass, PD 0.355 2.96 5 131.22 

 
Biomass, PD, MPD, MNTD 0.524 0.00 7 128.66 

Local scale      
Whole community Biomass, S 0.020 [0.855] 92.2 4 4088.86 

 
Biomass, PD 0.023 [0.851] 85.1 5 4103.76 

Functional groups Biomass, S 0.033 [0.862] 32.9 8 4078.16 

 
Biomass, PD 0.031 [0.870] 0.0 9 4082.87 

Notes: † R2 values of the local models represent marginal (fixed terms only) and conditional (fixed and random terms combined, 
inside square brackets) R2 values. 
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Table 7 Effect of the direction of the relationship between diversity and biomass 

descriptors with basic structural equation models of diversity, biomass and litter globally 

and locally. 
Diversity is described as either species richness (S) or Faith’s PD (PD). Models were tested using path analysis with 
Fisher’s C (with degrees of freedom, d.f. and p-value testing that the structural model fits the model) and SE model 
(p-value, comparative fit index, CFI, root mean square error of approximation, RMSEA, and standardized root mean 
square residual, SRMR). All the models partition biomass and diversity in three functional groups (legumes, forbs 
and graminoids). Litter is always a function of the biomass and diversity descriptors (n=31). 

Model Path analyses Structural Equation Models 
AIC AICc Fisher’s C d.f. p-value  χ2 p-value† CFI RMSEA SRMR 

Acceptance criteria Low Low Low  ≥ 0.05 Low ≥ 0.05 ≥ 0.9 < 0.08 < 0.08 
Global scale           
S  ← Biomass 87.2 244.9 41.2 6 0.000 36.6 0.000 0.318 0.601 0.147 
PD ← Biomass 76.5 234.2 30.5 6 0.000 23.8 0.013 0.392 0.473 0.137 
Biomass ← S 61.7 219.4 15.7 6 0.016 13.8 0.023 0.663 0.341 0.081 
Biomass ← PD 54.7 212.4 8.7 6 0.194 7.3 0.087 0.797 0.216 0.067 
Local scale           
S  ← Biomass 98.6 99.5 44.63 6 0.000 29.7 1.000 0.998 0.072 0.0006 
PD ← Biomass 73.9 74.8 19.88 6 0.003 11.9 1.000 0.999 0.042 0.0007 
Biomass ← S 111.7 112.6 57.72 6 0.000 51.1 1.000 0.995 0.097 0.0014 
Biomass ← PD 116.0 116.9 62.01 6 0.000 55.1 1.000 0.994 0.101 0.0015 

Note: † Estimated using Bollen-Stine Bootstrap method.  

 

The full structural equation model with partitions (Figure 17, Table 8) predicted total biomass 

(Figure 18, second row) and litter mass (Figure 18, third row) better than equivalent models 

without partitions (R2 was 0.76 and 0.43 for total biomass and litter mass, respectively, vs. 64 

and 40% in the second best model). The model shows that temperature range affected 

graminoids less than forbs or legumes, and only graminoids responded strongly to other climatic 

and management variables. We also found that once phylogenetic information was included, 

biomass of the competing groups provided no-extra information. In other words, the species 

relatedness was a better predictor of mean biomass of each of these functional groups than other 

group’s biomass. Finally, litter mass increased with graminoids, but forb biomass decreased 

litter, which was probably caused by contrasting decomposition rates. Similarly, we found that 

graminoid PD decreased litter mass, suggesting a positive correlation of plant diversity with litter 

decomposition. 
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Table 8 Structural equation model representing the effect of (1) location on climate; (2) 

climate, management and phylogenetic relatedness on functional group biomass 

production; and (3) management, phylogenetic relatedness and functional group biomass 

production on litter accumulation. 
Values represent coefficients; squared bracketed values represent standardized coefficients. 

Predictor Temp. 
(˚C) 

Precip. 
(mm/year)

† 

Temp. 
range 
(˚C) 

Temp. 
wet 

quarter 
(˚C) 

Legumes 
(gr)† 

Forbs 
(gr) † 

Graminoid
s (gr) † 

Litter 
(gr)† 

(Intercept) 32.07 ***  6.87 *** 32.24 *** 31.59 *** -3.95  6.99 *** -0.61 13.62 *** 

North-South -0.60  
[-0.09] 

 0.07  
[0.16] 

 1.37 * 
[0.51] 

-0.77  
[-0.08]         

Distance to 
equator 
(degrees) 

-0.44 *** 
[-0.69] 

-0.003  
[-0.08] 

-0.16 * 
[-0.59] 

-0.334 . 
[-0.33]         

Elevation -0.00 *** 
[-0.66] 

-0.00  
[-0.29] 

-0.00  
[-0.09] 

-0.006 
*** 

[-0.63] 
        

Temp. (˚C)           
-0.03  

[-0.15]   

Temp. range 
(˚C)         -0.19 * 

[-0.33] 
-0.12 * 
[-0.31] 

-0.10 ** 
[-0.22]   

Precip. (mm)†     -2.18 * 
[-0.36]    0.59  

[0.17]  
 0.85 *** 

[0.33]   

Temp. wet 
quarter              0.08 *** 

[0.69]   

Anthropogenic           
-0.95 *** 

[-0.41]   

Burned          
     

Grazed          1.43 * 
[0.39]     -1.29  

[-0.25] 

Forbs (gr)†               -0.97 ** 
[-0.46] 

Graminoids 
(gr)†                0.94 ** 

[0.51] 

Legumes (gr)†          
       

Graminoids: PD           
-0.007 

*** 
[-0.639] 

  -0.03 *** 
[-1.13] 

 MPD         -0.02 * 
[-0.42]  

-0.02 *** 
[-0.58] 

 0.03 * 
[0.64] 

 MNT
D          0.04 * 

[0.42] 
 0.02 . 
[0.31]     

Forbs:  PD          
 0.00 ** 

[0.53]    

 MPD          0.03 *** 
[0.61]  

 0.01 * 
[0.21]   

 MNT
D         -0.02 *** 

[-0.66]       

Legumes: PD  
             

 MPD           
-0.01 * 
[-0.45] 

 0.03  
[0.62] 

 MNT
D              0.01 * 

[0.48] 
-0.03  

[-0.56] 
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Predictor Temp. 
(˚C) 

Precip. 
(mm/year)

† 

Temp. 
range 
(˚C) 

Temp. 
wet 

quarter 
(˚C) 

Legumes 
(gr)† 

Forbs 
(gr) † 

Graminoid
s (gr) † 

Litter 
(gr)† 

SD 2.192 0.406 2.158 6.751 0.970 0.724 0.389 1.428 
R2 0.865 0.088 0.307 0.486 0.610 0.451 0.903 0.579 
Normality test 
(p-value) 0.060 0.249 0.632 0.005 0.735 0.904 0.200 0.140 

Notes: † variable were log-transformed or log+1 transformed if zeros present. Cells’ colors: Red: Variable not added. White: 
Included in the model, if no numbers, the variable was dropped by the step backwards algorithm. Orange: Variables fixed (not 
affected by step backwards algorithm). Green: Variables added after the piecewise SEM detected high correlation for the 
conditional variables. Model fit: Fisher's C = 182.48, d.f. = 184, p-value = 0.518.  
Significance: . : p-value < 0.05, *: p-value < 0.05, **: p-value < 0.01, ***: p-value < 0.001. 
 
 

 

 

Figure 18 Explanatory power of the different methods used in this study at the global scale.  
Solid line represents the 1:1 relationship. The first row presents the explanatory power of each functional group 
model independently. In the second row, from left to right, the total biomass was estimated (left) as the sum of the 
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three functional groups, (centre) using a single community approach with Faith’s PD and (right) without 
phylogenetic information. In the last two, species richness was dropped during the step-backwards procedure. In the 
third row, the studied variable is litter mass, and panels from left to right as in the second row. In this case, the litter 
model retained species richness in the right panel, but Faith’s PD provided more information (centre panel). 
Alternative biomass models used in the second row are described in Appendix D.3.2, and alternative litter mass 
models in the third row in the Appendix D.3.7. 

 

5.4.2 Local analysis 

We found 51 sites with at least 30 plots with pre-treatment data and with biomass information 

categorized by functional groups (1697 plots in total). As in the global models, splitting the 

community into functional groups considerably improved explanatory power when predicting 

litter mass (Table 6). In contrast with the global models, we found that biomass production was 

more likely to cause diversity than the opposite (lower Fisher’s C value, Table 7). Therefore, we 

analyzed in more detail the models with biomass causing diversity and partitioning the 

community. We fitted two models, one measuring diversity with Faith’s PD and the other with 

species richness. Given non-normality issues, the maximum-likelihood estimates were based on 

Bollen-Stine Bootstrap (species richness model: χ2 = 28.1, df = 3, p-value = 0.0, BSB p-value = 

1.0; Faith’s PD model: χ2 = 7.2, df = 3, p-value = 0.066, BSB p-value = 1.0). The path also 

indicated a good model fit (species richness model: Fisher’s C = 33.3, df = 6, p-value= 0.0; 

Faith’s PD model: Fisher’s C = 11.7, df = 6, p-value= 0.069). We did not add direct links 

between diversity indicators despite being identified as likely because it is not clear at this scale 

how diversity of a functional group can impact on another functional group diversity not 

mediated by a biomass change. The estimates obtained from the SE models and path analysis 

were similar, so we reported here only the ones obtained from the path analysis, but the ML 

results are detailed in the appendix D.3.1 of this chapter.  

At the local scale, we found support for an intra-group hump-shape relationship between biomass 

and diversity in all cases using Faith’s PD and but only for graminoids when using species 

richness (Figure S18). In all cases, the quadratic relation appears to be describing a plateau more 

than a hump-shaped relationship. Intergroup interactions were heterogeneous, often non-

significant (p-value > 0.05). However, there was some evidence of interference of legumes mass 

on graminoids richness, as well as a hump-shaped effect of graminoids biomass on legumes 

diversity (both PD and richness). All the regression models were adequate (R2 > 0.6), but the 
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largest part of the variance was captured by the site dummy, as expected given the global extent 

of the analysis. The spatial sampling effect was less predictable among sites for legumes 

compared to the other groups (wider range of values in Figure S19). Predictability of the spatial 

sampling effect changed considerably between species richness and Faith’s PD, and also 

between graminoids and forbs. 

Graminoid diversity and biomass increased litter mass, but forb and legume diversity decreased 

it, indicating a sharp contrast in the role of these groups (Figure S20). Legume biomass 

decreased litter mass too, but forb biomass had a quadratic response, first decreasing and then 

increasing litter accumulation.  

5.5 Discussion 
The global examination of natural herbaceous ecosystems provided strong support for our 

hypotheses related to causality, relatedness and partitioning. First, the direction of causality 

changed from the global to the local scale. Previous research has documented a change in the 

shape of the relationship between diversity and productivity, from linear at a large scale to no-

trend or hump-shaped at local scales (Chase and Leibold 2002, Gillman and Wright 2006, Bai et 

al. 2007). Here we found that not only does the shape of the relationship change, but also that 

changing the focal spatial scale of analysis reversed the actual direction of the underlying causal 

link. A general concern of the usage and interpretation of structural equation modelling is that 

other equivalent causal links are as likely to exist (Grace et al. 2010, Shipley 2016). However, 

we found consistency in our results in several tests of alternative models (see appendix D.3.9 for 

reversing the global model; local model expansion consistent with light availability mediating 

the effect of productivity on diversity (Borer et al. 2014b)). The change in directionality can be 

explained because the combination of several samples (averaging biomass or accumulation 

diversity) in time and space may disrupt the strong effect of short-scale interactions such as 

competition, allowing other processes as the portfolio effect (Figge 2004) to become apparent by 

increasing the odds of observing rare species for the current conditions. Even more, the two focal 

scales probably correspond to different research questions, that we have characterized as how 

much biomass/diversity can exist and how much actually occur, each of them related to different 

ecological processes (Whittaker 2010). For instance, the hump-shaped model proposed by 

Oksanen (1996) corresponds to the first question (richness is limited because no more individual 
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can exist in an area), while the one proposed by Al-Mufti et al. (1977) to the second one 

(richness is limited because species compete and some are excluded). 

Second, we showed that phylogenetic information would improve our understanding of different 

processes mostly when metrics that estimate the pairwise relatedness were used. The high 

conceptual and statistical correlation between species richness and Faith’s PD provides a basis 

for the similar and sometimes confusing results obtained when studies used one or the other 

(Cadotte 2013, 2015, Venail et al. 2015, Cadotte et al. 2017). However, phylogenetic information 

allows an indirect measure of similarity, something that species richness cannot provide. 

Therefore, phylogenetic information can outperform species richness because it can link 

community properties with theoretical expectation grounded in niche and evolutionary theories 

(Gerhold et al. 2015). 

And third, we found strong evidence that partitioning the community into functional groups 

improved considerably the predictive capability of the models and showed that not all functional 

groups responded in the same way to environmental conditions, neither they affected litter 

accumulation or other groups similarly. As expected, forb and legume biomass increased with 

diversity, but in contrast to our expectations, graminoid biomass decreased with diversity (Maire 

et al. 2012). Therefore, the number of functional groups would be unlikely to provide 

information about ecosystem processes (Wright et al. 2006). Despite the fact that the number of 

functional groups is uninformative, the information contained within them, including biomass, 

richness or relatedness, is very pertinent for understanding community processes because it is 

likely that species within the different functional groupings might be subject to different 

responses to environmental conditions and interspecific interactions. In contrast to previous 

studies (cf. Steinmann et al. 2009), we used functional groups that have different assembly 

dynamics in this global experimental setting: grasses and sedges are under-dispersed and more 

likely to be dominant species, compared with forbs being over-dispersed and more likely to be 

sub-dominant species (Chapter 4). It is not clear if the functional groups used here represent the 

best strategy for partitioning the plant community. For instance, the negative effect of diversity 

on graminoid biomass can be related to strong habitat filtering mechanisms driving competitive 

interactions among grasses, but also to a poorly defined functional group. The latter may happen 

because only the genus Carex among the sedges was more likely to be dominant, compared with 
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several lineages of grasses; therefore, a random replacement of one sedge species by a grass 

species will always decrease phylogenetic diversity but will likely increase biomass. 

Partitioning the community into functional groups also helped us to identify differences in their 

response to climatic and geographic drivers, despite the potential issues with the categories. 

Interestingly, graminoids were more affected by climatic conditions than forbs or legumes. 

Because graminoids are more likely to be dominants in this study system they are likely to 

modify local conditions, such as wind or evaporation losses, for the other species present on 

those ecosystems (Spasojevic and Suding 2012, Odling-Smee et al. 2013). It is also possible that 

the large diversity included in forbs hamper the identification of any climatic pattern, as different 

lineages could respond to different climatic drivers. The use of functional groups also improved 

the explanatory power of biomass-biodiversity models (cf. Grace et al. 2007, 2016), helped to 

find global trends in the relation between biomass productivity, diversity and litter accumulation 

that were not evident before (O’Halloran et al. 2013), and showed that interactions between 

functional groups is frequent, but sometimes better captured by phylogenetic information than by 

biomass. 

In our study we focused on two spatial scales to study the mechanisms that underlie the 

biodiversity-productivity correlation, the plot scale allowed to capture short-scale interactions in 

1m2 areas, and the site scale that by combining multiple plots allowed us capturing climatic and 

management gradients. A more comprehensive study could use continuous approaches (McGlinn 

et al. 2018) to identify the key aspects that drive the change in the directionality, and test if 

similar results are valid in more or less complex biomes, such as forests or deserts. The shifts in 

the directionality should also be placed in context of the macro gradient of productivity 

apparently driving diversity when different biomes are compared (Rosenzweig 1995). 

The different causal directions in the biomass-biodiversity relation indicate differences in the key 

mechanisms acting at different scales. Because different functional groups can be affecting but 

also be affected by the environment in different ways, we propose that identifying relevant 

functional groups will deeply increase our understanding of global trends in plant communities 

regardless the spatial and temporal scale of the analysis. Partitioning the communities and 

describing causal links properly will most likely prove also useful to better comprehend other 

community assembly mechanisms and ecosystem processes. 
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Chapter 6  

Conclusions 

Community assembly theory is concerned with the mechanisms that specify which group of 

species co-exist at a specific place (Weiher et al. 2011). As in other realms of science, these 

mechanisms can be either deterministic or stochastic, and a long debate in ecology exists around 

the deterministic nature of community assembly (Vellend et al. 2014). The debate is 

academically interesting, but it is unclear if it is relevant in the context of impending threats to 

the environment from climate change and land use transformation (Millennium Ecosystem 

Assessment 2005). In other terms, whether communities are deterministic or stochastic is a really 

important question for understanding the future of ecosystems and of ecosystem services in the 

Anthropocene, when massive environmental changes threaten to totally transform vast regions of 

the earth. 

I proposed two criteria that have to be met in order for community assembly studies to be 

important to predict ecosystem services. First, biodiversity information, the information 

contained in the genes and species in the world, has to be meaningful to predict ecosystem 

processes in general, and ecosystem services in particular. If biodiversity is meaningless for 

these purposes, then the deterministic or stochastic nature of the interactions among species is 

also meaningless in any practical sense. And second, to understand the future of diversity, the 

deterministic-stochastic nature of the interactions among species has to be as important, or more 

important, than current drivers of global change, such as climate change or land use change. 

These two problems are addressed in the fourth and first chapters of the thesis, respectively. 

Mounting evidence indicates dominant and non-dominant species have systematic differences 

(Grime 1998, Magurran and Henderson 2003, Maire et al. 2012, Mariotte 2014), and therefore, 

can help to understand if communities are more deterministic or stochastic. I hypothesized that 

dominant species not only capture more resources than non-dominant species, but also change 

the environment where other species thrive more than non-dominant species. The effect of 

dominance in the determinism of herbaceous communities is studied in the second chapter using 

a local experiment, and in the third chapter with a global experiment. 
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6.1 Key results 
In the second chapter of my thesis, I explored the effect of the deterministic-stochastic nature of 

species interactions in a patchy landscape and extended the island species-area relationship 

(sensu Whittaker and Triantis 2012) to fragmented landscapes. With this model, I showed that 

the degree of determinism or stochasticity in assembly mechanisms controls species turnover rate 

among patches, subsequently controlling regional richness. I applied this model to the tropical 

Andes and showed that the degree of determinism or randomness in species survival was the 

single largest source of uncertainty in predicting species loss over the next 50 years, followed by 

dispersal ability. In general, these two aspects, dispersal and determinism in species survival, 

generate more uncertainty in the total richness than the uncertainty caused by land use change or 

climate change. 

Interestingly, purely stochastic and purely deterministic mechanisms can generate similar 

community patterns (McGill et al. 2007) and different deterministic mechanisms can generate 

very different communities (Weiher and Keddy 1995), making them difficult to distinguish. Yet, 

it is underappreciated that different species in the same community might be influenced by 

different mechanisms at the same time (Chalmandrier et al. 2013). Finally, it is not often 

considered that plants modify environmental conditions where other plants live (Jones et al. 

1997), and because dominant plants affect the community more than the non-dominant plants 

(sense mass-ratio-hypothesis Grime 1998), the dominant plants should be more affected by the 

environment than by interspecific interactions. Conversely, non-dominants should be more 

affected by interspecific interactions than the dominant species, and less by habitat filtering.  

Chapters three and four explore these asymmetries between dominant and non-dominant species 

in a meadow with a local and a global experiment. 

In the third chapter of my thesis I examined how dominance shapes communities with a four-

year dominant removal experiment in five meadows near Newmarket, Ontario, Canada. The 

results indicate that the non-dominant species were randomly assorted prior to the treatments, but 

exposure to environmental conditions or to random disturbance increased the similarity among 

them. My results are also consistent with (a) an asymmetry in the environmental conditions faced 

by dominant and non-dominant species that caused different assembly rules acting on them, (b) 

multiple traits influencing niche differences and therefore habitat filtering and (c) few traits 
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controlling fitness differences among species and therefore limiting similarity (Maire et al. 2012, 

Kraft et al. 2015b, Cadotte 2017). Trends for individual species ranged from being negatively to 

positively affected by the dominant species. Further, stochasticity was important, and temporal 

change in some species could be better explained by fluctuations in species abundance at the site 

level, but some apparently stochastic patterns could also be explained by deterministic assembly 

mechanisms acting simultaneously with opposite effects. All together I concluded that there is 

little support for neutral dynamics despite large stochasticity at the local level because of species-

specific and dominance-related responses.  

In my fourth thesis chapter I assessed the generality of the local experiment results of the second 

chapter using natural conditions data from 75 meadows and grasslands around the world from 

the Nutrient Network experiment (Borer et al. 2014a). This analysis confirmed a difference 

between dominant and non-dominant dynamics: dominant species were more phylogenetically 

clustered to one another, while non-dominants were over-dispersed. This pattern is consistent 

with dominant species being more affected by habitat filtering than limiting similarity, while the 

opposite is true for the non-dominants (Mariotte 2014). A couple of lineages were likely to 

contain dominants, but more than a dozen lineages scattered throughout the phylogeny were 

more likely to contain non-dominant species. This is not consistent with common understanding 

of evolutionary processes (Rabinowitz 1981b), in which the survival of rare species is seen as a 

conceptual difficulty (Aarssen et al. 2006). Our findings of several lineages more likely to be 

non-dominant suggest that remaining as a non-dominant species can be a successful evolutionary 

strategy. 

Finally, my fifth chapter explored how dominance influences two basic environmental functions, 

biomass productivity and litter decomposition, using data from un-manipulated plots in 51 sites 

obtained from the Nutrient Network (Borer et al. 2014a). First, I reviewed several proposed 

mechanisms that may explain the causal connections between diversity and productivity, and 

found that diversity drives productivity at a global scale, but productivity drives diversity locally. 

Then I used graminoid biomass as a proxy of dominant productivity and forbs and legumes as 

subdominants, and modeled how the plant community 1) responded to the environment and 2) 

influenced ecosystem functioning. Partitioning the community into functional groups 

(graminoids, forbs and legumes) always improved the performance of the models and provided 

other insights such as different responses of functional groups to temperature range, the role of 
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competitive interactions between and within functional groups, and the effects of plant diversity 

on decomposition rates.  

Together, the results show that biodiversity matters in meadows because it is an important 

predictor of biomass productivity, that disentangling the stochastic-deterministic nature of 

community assembly mechanisms is important to predict regional biodiversity, and that 

dominant species transform the habitat, decreasing the role of habitat filtering and increasing the 

role of limiting similarity of the non-dominant species. 

6.2 Moving forward 
These results put forth new questions and new ideas that can be used to solve old questions about 

the implications of stochasticity and determinism in natural systems, and how to use this basic 

conceptual knowledge to better understand two key aspects of ecosystem services: diversity and 

productivity. 

6.2.1 Ideas coming from a landscape perspective 

I found that species spatial-turnover rates are the most important unknown to predict landscape 

level extinctions of species. If this is the case, what are the turnover rates in natural conditions? 

Are there global trends? Several trends (e.g. latitudinal, real islands vs. naturally fragmented 

habitat vs. artificially fragmented habitat) have been reported for the slope of the species area 

relationship (Triantis et al. 2012), but the turnover rates have not been as thoroughly studied. 

The richness model presented in chapter two shows that the parameter describing determinism 

and turnover has a large impact on regional species richness. However, some values of the 

turnover parameter can be unrealistic (like assuming that every patch in a habitat have a different 

set of species), while specific theoretical models support other values. The model can be 

extended to identify the parameter value ranges that match observed turnover patterns (Wang et 

al. 2012), observed slopes of ISARs and SACs (Triantis et al. 2012), the tendency to find that 

several patches contain more diversity than a single large patch (Fahrig 2017) or to the test 

validity of some theories (Hubbell 2001a). 

Finally, a critical assumption of the landscape model is that the species in each habitat follow 

similar assembly rules. However, I have proven in chapters three and four that this assumption is 
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not true in meadows and grasslands, and is probably not true in other systems too (Aranda et al. 

2013, Mariotte 2014). Therefore, I need to critically assess the robustness of the model to that 

assumption and how to adapt it to multiple dispersal and turnover patterns occurring in the same 

habitat for different groups of species. 

6.2.2 Partitioning the community using a dominance criterion 

Partitioning the community in dominant and non-dominant species, or proxies for them, was 

useful to describe the dynamics of the meadows that I studied. However, it is not clear if this is a 

peculiarity of the grasslands and meadows. In particular, does this relation hold in other biomes? 

Does it hold at other spatial scales? Can fertilization change the differences in mechanisms 

organizing dominant and non-dominant species? 

As mentioned in this thesis, the asymmetry between dominants and non-dominant species can be 

caused, among others, by (1) similar random fluctuations acting on very abundant vs. non-

abundant species (Hanski 1982), (2) differences in the amount of resources available to smaller 

and larger plants (Grime 1998), (3) differences in the variability (Jones et al. 1997) or (4) 

predictability of those resources, or (5) changes in the rules that control the organization of the 

plants (from a single optimum constrained by the habitat conditions, to multiple optimums 

characterized by a large distance in any direction from a specific point) (Maire et al. 2012). Each 

hypothesis may have different implications in the generality of the asymmetry, and 

distinguishing among them can also help to identify better criteria than dominance to partition 

the communities in an informative way. 

The possibility of non-dominance as an evolutionary strategy is particularly interesting, and I 

think it could be confirmed if (1) across biomes similar clades are more likely to be non-

dominant and (2) some traits converge among non-dominant species. There is enough evidence 

to support that reproductive traits will converge (e.g. low abundance reduces the odds of non-

directional pollen dispersion) (Vermeij and Grosberg 2018), but this evidence points to common 

challenges of non-dominance, and not to common benefits. The existence of benefits is a 

potential hypothesis for multiple non-dominant lineages occurring in the phylogeny, and could 

explain why rarity is such common and predict effects of losing rare species in the wake of 

global changes. Differences in dominant and non-dominant species could also give us insights on 

the delivery of ecosystem services in a community. If non-dominant plants converge in a small 
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set of non-reproductive trait values, are those values related to particular ecosystem processes 

besides productivity? For instance, given that non-dominants potentially rely more heavily on 

pollinators, are non-dominants particularly important to support a more diverse community of 

pollinators (Garibaldi et al. 2016)? 

Mean phylogenetic distance (MPD), a measure of similarity among species sensitive to basal 

relatedness, provided a similar response consistent with habitat filtering for dominant plants in 

the local and global experiment. But an index more sensitive to recent relatedness, the mean 

nearest taxonomic distance (MNTD), indicated an impact of limiting similarity on the dominant 

species in chapter three, and detected an effect of habitat filtering, not of limiting similarity, in 

chapter four. The inconsistency can be related to the difference in the definition of dominant 

species in the two analyses (2 or more species needed to occupy at least 50% of volume in 

chapter three, the third of species with highest average cover in chapter four), or in the 

differences between the experimental setting in chapter three and the observational approach in 

chapter four.  

Differences between MPD and MNTD can also indicate a difference in the evolution of traits 

related to competition and those related to niche characteristics. If this is true, these two 

measures could be used simultaneously to identify the relative role of habitat filtering and 

limiting similarity in a community (Chalmandrier et al. 2013). To do so, it will have to be proven 

in different biomes that traits related to habitat filtering mechanisms are older in the phylogenies 

than traits related to limiting similarity mechanisms. 

6.2.3 From diversity to ecosystem processes and services 

I showed that the scale at which the productivity-diversity relationship is studied matters 

(Whittaker 2010), as it can actually capture different questions and different mechanisms. An 

immediate task should be to complete the characterization of the different mechanisms that could 

relate diversity and productivity started in chapter five, and assess how closely they match the 

reported patterns for herbaceous communities. Further, this analysis could be extended towards 

forests and other biomes to confirm the generality of these findings. 

I also showed that partitioning the communities into functional groups was a useful strategy to 

predict biomass and litter accumulation using biological information. In fact, once functional 
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group diversity information was included into models, climatic drivers of litter accumulation 

were either uninformative or had counter-intuitive impacts on litter. Clearly, temperature has an 

impact on decomposition rates (e.g. Zimmermann et al. 2009), but temperature also has an 

impact on litter production and on the decomposer community (Bardgett and Wardle 2010). I 

acknowledge that the lack of relation can be misleading or caused by sampling bias. However, 

disentangling if different functional groups, temperature or humidity are more likely to mediate 

the litter accumulation could be important to understand litter decomposition and can also 

provide further insights on other soil related processes, such as water retention and nutrient 

cycling. These mechanisms can be important to improve climate change impacts predictions. 

I suggest that a similar improvement in the understanding of other ecosystem processes and 

ecosystem services could be obtained by partitioning the communities into functional groups. 

The assumption that diversity can, and should, be reduced to the number of species or the 

number of years since divergence that underlies the use of “species richness” and “phylogenetic 

diversity” is probably misleading, as I found in chapter five. As previously indicated, finding the 

right scale and strategy to partition the communities and to characterize those partitions requires 

further research. 

6.3 Final remarks 
My thesis supports that understanding the deterministic-stochastic nature of community 

assembly is not only an interesting theoretical endeavor, but also an urgent task to better 

comprehend the ongoing global changes and their impacts. In my study I found that 

convergence, a simple deterministic rule, drives the most abundant species. Therefore, services 

closely related to biomass accumulation such as carbon sequestration should be more 

deterministic. Conversely, either purely stochastic mechanisms or divergence, a deterministic 

mechanism that creates multiple optimums, drive the non-dominant plants. Hence, services 

related to species diversity, such as pollination, should be more difficult to predict. I also found 

that dominant and non-dominant species are not randomly distributed in the phylogeny, and 

therefore the importance of deterministic and stochastic mechanisms should also differ among 

lineages. 

The studies presented here covered a large range of scales, from landscape to local interactions, 

and some assumptions have been used across different scales and were needed to integrate the 
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document. In particular, I assumed that determinism at a large scale in the form of the 

predictability of species survival is a function of the determinism or stochasticity of local species 

interactions. Similarly, I assumed that large-scale provision of ecosystem processes and 

ecosystem services is a cumulative function of local processes and services. These two 

assumptions should be thoroughly tested in different biomes and with different processes and 

services. 

Species contain different information acquired during millions of years of evolution and 

coexistence, and partitioning the community in ecologically meaningful units is a simple way to 

recover that information. This historically acquired information is useful to understand how the 

species respond to the environment as much as how the species change the environment. For 

instance, the changes in the environment caused by dominant plants change the relative 

importance of deterministic assembly rules from underdispersion to oversdispersion for the non-

dominant species. Together, these changes in the environment modify for good or for worse the 

conditions for other species not randomly, affect ecosystem processes such as productivity and 

litter accumulation in different and sometimes contrasting ways and are also the basis for the 

ecosystem services that we benefit from.
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Appendices 

 Appendices of chapter 2 A

Data and code descriptions available in FigShare (doi: 10.6084/m9.figshare.5466331) 

 

A.1 Supplementary table 

Table S1 Global climate models (GCMs) used in the study for each gas emission scenario 

Institution CMIP3 I.D. 
Gas emission scenarios 

A2 A1B 
Bjerknes Centre for Climate Research, Norway BCCR-BCM2.0 x x 
CSIRO Atmospheric Research, Australia CSIRO-MK3.0 x x 
CSIRO Atmospheric Research, Australia CSIRO-MK3.5 x x 
Institute for Numerical Mathematics, Russia INM-CM3.0 x x 
Center for Climate System Research (The University of 
Tokyo), National Institute for Environmental Studies, and 
Frontier Research Center for Global Change (JAMSTEC), 
Japan 

MIROC3.2 (medres) x x 

Center for Climate System Research (The University of 
Tokyo), National Institute for Environmental Studies, and 
Frontier Research Center for Global Change (JAMSTEC), 
Japan 

MIROC3.2 (hires)  x 

National Center for Atmospheric Research, USA CCSM3 x x 
US Dept. of Commerce / NOAA / Geophysical Fluid 
Dynamics Laboratory, USA GFDL-CM2.0 x x 

US Dept. of Commerce / NOAA / Geophysical Fluid 
Dynamics Laboratory, USA GFDL-CM2.1 x x 

NASA / Goddard Institute for Space Studies GISS-AOM  x 
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A.2 Supplementary figures 

 

Figure S1 Effect of individual dispersal and tolerance to human activities on the species 

perception of the landscape.  
In the top, the two maps represent the area as if human activities do not exist (left) and with human activities (right). 
If species are tolerant to human activities, their relevant space is the potential habitat. Intolerant species avoid 
transformed areas and will perceive their habitat as the remnant habitat only. Remnant habitats will always have less 
or equal total area than potential habitats, but the number of fragments can either increase (as in the example) or 
decrease. Groups of fragments can act as an individual patches according the dispersal capability of the individuals 
in the LEM-community. Therefore, the dispersal capability will define the size and number of patches in each of the 
habitats. Unrestricted dispersal implies that individuals move freely among fragments, and the habitat respond as a 
single patch. Restricted dispersal implies individuals are able to move freely in a non-contiguous patch (black solid 
arrows), but only partially among patches (gray dashed arrows). Therefore, fragments linked with black solid arrows 
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form discontinuous patches and their area should be pulled together before using the ISAR to estimate the species 
richness, while fragments linked with gray dashed arrows conform independent patches.  Meta-population 
dynamics, characterized by local extinctions and recolonizations, appear among the independent patches. Isolation 
happens when no dispersal is possible at all, preventing any recolonization event so that the boundaries of each 
patch can be represented as barriers. No meta-population dynamic occurs at unrestricted dispersal or isolated 
patches. 

 

Figure S2 From fragments to patches to habitat richness.  
a) First, individual dispersal capability and tolerance to human impact of the species inhabiting the green habitat 
(here shown only for tolerant species) define the habitat configuration, i.e. patch sizes and distances between them. 
In this example, we represent four levels of connectivity, each representing a different habitat configuration, as 
perceived by the species. Dark arrows connect fragments that act as a single patch (labelled A-D). Null dispersion 
(dashed borders in the patches) inhibits recolonization. b) Second, if the area of the patch controls the number of 
species in a patch, then the number of species expected for each patch can be estimated using an ISAR. c) Third, the 
identity of the species (here numbers 1-14) depends on the predictability of species survival and the recolonization 
odds. Recolonization odds are a function of the individual dispersal capability so it is represented on the vertical 
axis. The predictability of species survival is represented here with two extremes: Always the same species survive 
and always a different set of species survives. When dispersal is unrestricted the full area (all fragments) acts as a 
single patch, and species turnover is meaningless. We name this a “unitary community” and in this case the total 
habitat richness depends only on the species-area relationship. If there is more than one patch, the set of species that 
survives is always the same and recolonization is possible, then there is no species turnover and we observe a 
species nested pattern among patches; we call this case a “nested community”. However, if there is more than one 
patch, species can recolonize them but each patch has always a different set of species, the species turnover is total. 
We call this case a “disjoint community”. Similarly, if the patches are isolated, the long-term expectation is that 
species turnover will be total and a disjoint community forms, even when in the short-term the species extinction can 
be predictable. If survival is not predictable and dispersal is restricted, the expected community is intermediate (in 
terms of total richness) between a nested and a disjoint community. 
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a) Potential biomes b) Remnant biomes 

  

Figure S3 Map of the study area, showing the Andean biomes and the area of the lowland 

biomes that were modelled but not included in the analysis.  
The potential map (a) represents the expected distribution of biomes if there were not land use transformation. The 
remnant map (b) shows the distribution of the biomes excluding human transformed areas. The remaining areas can 
have extensive usage by humans living in their surroundings. 
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Figure S4 Estimated exponent (z-value) of power-law expressions that represent the 

number of species per unit of area (from Matthews et al. 2016) as a function of the ratio 

between the largest and the smallest patch in the study area. 
The blue and green vertical lines represent the ratio of the largest to smallest patch in different habitats in this study 
and the red dashed line represents the 0.25 exponent, often reported in several species-area relationship studies. 
Notice how the z-values range between 0.1 and 0.5 for the range of habitats in our study area, and converge towards 
0.25 when the ratio increases. 
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Figure S5 Patch-size profile for current potential (black lines) and remnant biomes (gray 

lines), assuming null dispersal.  
Patch size profiles show the cumulative area when the patches are sorted from the largest (order 1) to the smallest. 
Dots show the threshold between patches smaller and larger than 10 and 1 km2. Among these habitats, paramo (a) 
has the highest area loss caused by human impact, affecting particularly the largest patch (parallel lines, see Figure 3 
in the main document). In the humid puna (b), the largest patch has been reduced by human activities, and the 
slightly convergent profiles suggest that a section of the largest patch has been lost and another fragmented. Glacier 
and cryoturbated areas (c) show no impact of land use change (black line is covered by gray one). In contrast, 
seasonal forest (d) shows a reduction in the area of the second and other mid-size patches, leaving the largest patch 
almost unchanged. Finally, prepuna (e) has suffered a small reduction in the three largest patches, and is also 
showing a degree of fragmentation. 
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Figure S6 Patch size profile for projected biomes under different climate models for 

potential and remnant areas, assuming null dispersal.  
Black lines represent present patch size profile and gray lines different future climate models. Paramo (a) and glacier 
and cryoturbated areas (b) are projected to be the most threatened biomes by future climate change, with strong 
reductions in total habitat, largest patch size, mid-size patches and even in the amount of patches. (e) Humid puna 
shows a low overall uncertainty (most models predict a decrease in the area), but montane shrublands (c), and xeric 
puna (d) present high uncertainty (half the lines above, half below the present profile). 

 

●

●

●
●
●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

Potential Remnant

1 3 10 30 100 300 1 3 10 30 100 300

0

10

20

30

40

50

Patch order (log)

 C
um

ul
at
iv
e
ar
ea

(1
00
0
Km

2 )

a) Paramo

●

●

●
●
●

●●

●

● ●

●

●

●

●
●
●

●●

●

● ●

●

Potential Remnant

1 3 10 30 100 300 1 3 10 30 100 300

0

5

10

15

Patch order (log)

 C
um

ul
at
iv
e
ar
ea

(1
00
0
Km

2 )

b) Glacial and cryoturbated areas

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●
●

Potential Remnant

1 3 10 30 100 300 1000 3000 1 3 10 30 100 300 1000 3000

0

20

40

60

Patch order (log)

 C
um

ul
at
iv
e
ar
ea

(1
00
0
Km

2 )

Period
Present

2040−2069

 Marks (Km2)
●● 1.5

10.5

c) Montane shrublands



 

128 

a) 

 
b) 

 

Figure S7 Sensitivity analysis showing the proportion of variance explained by different 

variables in our richness calculation and how this variance changes with different 

exponents of the power-law expression (z-value).  
Assuming that (a) the proportion of new species decreases with each new patch (pi=pi-1) and (b) the largest patch has 
all new species (p1=1) and any other patch has the same proportion (pi>1=p). The vertical dashed and dotted lines 
represent z=0.25 and 0.4, respectively, to represent the most common range of observed z-values (Figure S4). In that 
range, dispersal, turnover and their interaction explain most of the variability in most of the cases. The order of the 
variables is sensitive to the change in the probability of finding a new species (pi), with dispersal increasing its 
importance when every patch has a similar proportion of new species. 
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A.3 ISAR curves in nature and models: the prevalence of power-
law 

The original studies that characterized the ISARs often focus on the shape of the function and the 

parameters that describes it, without explicitly discussing the spatial arrangement of the patches 

(e.g. Connor and McCoy 1979, Pimm and Askins 1995, Rosenzweig 1995 and references there). 

Therefore, although ISAR curves have been widely used to study habitat loss and fragmentation, 

only habitat loss is explicitly described by ISARs. However, the observed patterns of the species-

area relationship can implicitly capture other aspects such as fragmentation, isolation, species 

interactions, stochasticity and heterogeneity of the habitat where the species survive, and, at a 

different scale, possibly speciation and extinctions. These implicit natural aspects can be 

captured either as fitted parameters or as residual noise. For example, the exponent in the power-

law relationship, a fitted parameter, was often interpreted as a sign of fragmentation (Connor and 

McCoy 1979, Triantis et al. 2012). 

The simplicity and generality of the power-law ISARs was later used to predict long-term 

changes in species richness with mixed results, (Pimm et al. 1995, Ewers and Didham 2006 and 

references therein). These studies often assumed OF-SAR for one or more habitats (e.g. Thomas 

et al. 2004, Proença and Pereira 2013), which implies that individuals have a perfect dispersal 

capability in their current range and disregard the actual fragmented structure of the area. 

On the other hand, simulation models have also been used to understand the origin of ISARs and 

the impact of fragmentation. As expected, each of these simulation models simplified the natural 

processes and complexities in different ways. For instance, Hubbell’s (2001) model assumes that 

species interact identically in a homogeneous habitat where speciation occurs, while the Rybicki 

& Hanski (2013) model explicitly assumes non-interacting dissimilar species in a heterogeneous 

habitat without speciation. Interestingly, both models predict a power-law that describes the OF-

SAR, but with different exponents: 0.25 for Rybicki & Hanski’s model and 1 for Hubbell’s (see 

proof in Appendix A2.1). Rybicki & Hanski’s (2013) extended the ISAR to capture 

fragmentation patterns in highly fragmented habitats: the species-fragmented-area relationship 

(SFAR). As we show below, their proposed formula is consistent with the addition of a 

correction factor to the exponent of a power-law ISAR (Appendix A2.2). The correction factor is 
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itself a function of immigration and emigration rates, fragment shapes and distance among them. 

Unfortunately, this estimation requires a large amount of information about the species that is 

often unavailable. Also, the SFAR main application occurs when species dispersal among 

fragments is high. When species dispersal is heterogeneous, the fragments can be clustered in 

different subsets, as in Hanski et al. (2017). Therefore, each set of fragments, as defined by 

Rybicky and Hanski, corresponds to a patch in our proposed framework (fragments linked by 

black arrows in Appendix 1: Figure S1). 

A.3.1 Neutral theory 

Neutral theory predicts a tri-phasic species accumulation curve (SAC, also known as continental-

SAR) (Hubbell 2001). Also, neutral theory predicts that species richness, the number of species 

in equilibrium (S) in a neutral community without migration and perfect mixing, can be 

approximated by the Fisher formula S ≈ θ.ln(1+J/θ), where θ = 2Jv, with J the number of 

individuals and v the speciation rate. That creates a non-linear relationship between S and J for a 

given θ (Hubbell 2001). However, replacing θ by 2Jv, gives S=2Jv.ln(1+1/2v). Assuming a 

homogeneous individual density across the habitat d, J = dA, and S = cAz, with c=2vd.ln(1+1/2v) 

and z = 1. 

Because Fisher equation is only approximated for large number of individuals, this relation is 

asymptotic when J increases. To confirm that the species-area curve proposed by Hubbell 

predicts a z = 1 when the area of the metacommunity increases, we simulated 40 communities 

using different values of area and speciation rate with the package UNTB in R (Hankin 2007). 

As expected, the lines become almost parallel as the area increases even for the relatively small 

metacommunities (Figure S8). 
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Figure S8 Simulated number of species expected for a given area and speciation rate using 

Hubbell neutral model.  
The light blue lines represent the lines with exponent 1. Note how in the log-log space, the relation between area and 
richness converge towards a z=1 as the area increases for all the speciation rates. Density is 1 individual per area 
unit. The red line represents the richness for a given area when the product of speciation rate and area (θ) is fixed, as 
in Hubbell (2001). 

A.3.2 Species fragmented area relationship: An ISAR for highly fragmented 
habitats 

To combine the effects of fragmentation and area in a highly fragmented habitat where 

individuals can still disperse among fragments, Rybicky and Hanski (2013) proposed the 

following expression to calculate species richness:  

 

where z is the species-area-relationship, b is an estimated parameter and λM is the 

metapopulation capacity of the fragmented landscape. Defining b=b’log(A), the richness is 

. 

Framed in this way, b’ can be interpreted as the product of the effect of the fragmented landscape 

on z for the particular group of species under study times a unit standardization component for  

λM. Therefore, Rybicky and Hanski (2013) provide a strong theoretical argument for the change 
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in the exponent of a power-law regression in a fragmented landscape when individual dispersal 

among fragments is high.  
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A.4 Proof of maximum richness when a patch is symmetrically 
divided 

To study the effect of cutting a patch symmetrically (even sections) we used first an analytical 

approach for the case of two patches using a general form of a species-area relationship. Then, 

we assumed the Arrehnius SAR and generalize the results for multiple patches. 

A.4.1 General ISAR shape: Two even patches can foster more species 
than a single large one 

If A is the area of a patch, we assume that any species-area relationship, hereafter S(A), will have 

zero species when area is zero (S(0) = 0), will have more species when area increases (dS/dA = 

S'(A) > 0) and will have a decreasing slope, so that in a larger patch, more area is needed to add a 

new species (d2S/dA2 = S"(A) < 0). Under those conditions, we want to evaluate the difference 

between two habitat configurations, a single patch of area A and two patches of area qA and (1 – 

q)A, where q is any number between 0 and 1. In particular, we want to know if there is any value 

of q that minimizes the function F(q) = S(A) – [S(qA) + S(A – pA)]. 

The first and second derivative of F with respect to q are 

F'(q) = A[S'(A – pA) – S'(pA)] 

F"(q) = -A2[S"(A – pA) + S"(pA)] 

Since dS/dA > 0, F' will be zero when A = 0 and when S'(A – pA) = S'(pA). The second condition 

is the interesting one. In this case, the left and right hand terms will always be different because 

S’ is always decreasing (third condition), unless that A-pA = pA, which occurs when p = 0.5. 

Also, F” will always be positive because d2S/dA2 < 0, which proofs that for any given A, p = 0.5 

generates the minimum value for F. This implies that two patches of similar size have the larger 

number of species possible for a disjoint community regardless the specific shape of the SAR, as 

far as the SAR follows the three criteria previously outlined. 

A.4.2 Arrhenius ISAR: Several even patches can foster more species than 
uneven ones 

To study the effect of evenly cut patches on total richness for nested and disjoint communities 

we cut an area in a hundred of smaller pieces. The pieces were cut in different sizes according to 
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the parameter ω. When ω is 0, all the patches have the same area (Figure S9a). Larger ω values 

increase the asymmetry in the area of the patches, as represented by the colours. The minimum 

area of a patch is set to 0.1% of the total area. Then, we estimated the richness of disjoint and 

nested communities. Note that for any value of z the maximum richness of a disjoint community 

(Figure S9b) and the minimum richness of a nested community (Figure S9c) occurs when all the 

patches have the same area (ω = 0). 

 

Figure S9 Effect of patch size asymmetry on habitat richness for different exponents of the 

species-area relationship.  
 (a) Proportion of the area covered by each of 100 patches of a fictitious habitat characterized by ω, sorted vertically 
from smallest to largest. The species richness (S) of the habitat is a function of ω (representing different patch-size 
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profile), the exponent of the species-area relationship (z) and the species turnover among patches. If turnover is 
maximum (b, disjoint community) each patch has a different group of species (S = c ΣAi

z) and S is maximum, and if 
turnover is null (c, nested community), the largest patch (A1) has all the species (S = c A1

 z), and S is minimum. 
Notice that the maximum (minimum) richness in a disjoint (nested) community occurs when habitat area is evenly 
distributed among the patches (ω = 0). 
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 Appendices of chapter 3 B

B.1 Supplementary tables 

Table S2 Description of the experimental sites. 
The descriptions include the total number of species observed in each site during the experiment, the species 
originally identified as dominant species at the site level (and therefore removed in the dominant removal treatment), 
and the other species identified as dominant species at the plot level by the end of the experiment in the control plots 
and in the dominant removal plots. A general description of the site is also included. 

Site	 Species	
richness	

Dominant	species	
initial	definition	
(additions	at	the	end	
of	the	experiment)	

New	dominant	species	in	dominant	
removal	plots	base	on	volume,	and	
rank	change	base	on	frequency	
(initial	rank	→	final	rank)	

Description	

T	 13	 Poa	pratensis	
Solidago	altissima	

Asclepias	syriaca	(4	→	4)	
Bromus	inermis	(3	→	3)	
Linaria	vulgaris	(2	→	2)	
Vicia	cracca	(1	→	1)	

Slope	facing	west,	next	to	a	
horse	track,	and	probably	kept	
as	a	lawn	during	several	years.		
Management	stopped	15	years	
ago.	

F	 29	 Bromus	inermis		
Poa	pratensis	
	
(Solidago	altissima)	

Carex	sp.	(4	→	4)	
Hieracium	caespitosum	(3	→	1)	
Solidago	altissima	(2	→	2)	
Symphyotrichum	ericoides	(5	→	7)	
Symphyotrichum	novae-angliae	(6	
→	2)	
Vicia	cracca	(1	→	4)	

Flat	area.	Probably	used	as	a	
pasture	during	several	years.		
Management	stopped	15	years	
ago.	

C	 34	 Bromus	inermis	
Solidago	altissima	
	
(Poa	pratensis)	
(Vitis	riparia)	

Euthamia	graminifolia	(4	→	5)	
Poa	pratensis	(1	→	1)	
Symphyotrichum	novae-angliae	(7	
→	5) 

Protected	by	a	forested	creek	in	
the	South.	Probably	used	as	a	
pasture	during	several	years.		
Management	stopped	15	years	
ago.	

S	 35	 Bromus	inermis	
Solidago	altissima	
	
(Poa	pratensis)	
	

Asclepias	syriaca	(12	→	9)	
Cirsium	arvense	(5	→	7)	
Daucus	carota	(8	→	1)	
Monarda	fistulosa	(12	→	6)	
Poa	pratensis	(2	→	1)	
Symphyotrichum	novae-angliae	(7	
→	4) 

Slope	facing	South,	protected	by	
forests	and	hills	in	most	
directions.	Probably	used	as	a	
pasture	during	several	years.	
Management	stopped	15	years	
ago.		

N	 54	 Bromus	inermis	
Solidago	altissima		
	
(Crepis	sp.)		
(Monarda	fistulosa)	
(Poa	pratensis)	
(Symphyotrichum	
novae-angliae)	

Crepis	sp.	(†	→	20)	
Euthamia	graminifolia	(20	→	10)	
Monarda	fistulosa	(2	→	1)	
Poa	pratensis	(1	→	1)	
Symphyotrichum	lanceolatum	(14	→	
14)	
Symphyotrichum	novae-angliae	(5	
→	1)	
Vitis	riparia	(25	→	23)	

Slope	facing	North,	protected	by	
a	hill	by	the	west.	Probably	used	
for	hay	production	between	
1940	and	1995.		
Area	mowed	nearby	a	few	years	
before	the	beginning	of	the	
experiment.	

Note: † Species absent in the first visit in that site. 
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Table S3 New dominant species initial ranking and site trend. 
Rankings correspond to the rankings in Table 3, site trend compared with a reference site (R), as in Table 4. Arrows 
indicate average positive (↑) or negative (↓) effect of the treatment. Significance: *** < 0.001, ** < 0.01, * < 0.05, · 
< 0.1. 

Species	name	 T	site	 F	site	 C	site	 S	site	 N	site	
Rank	 Trend	 Rank	 Trend	 Rank	 Trend	 Rank	 Trend	 Rank	 Trend	

Vicia	cracca	 1	 R	 1	 ↓***	 	 	 	 	 	 	
Linaria	vulgaris	 2	 R	 	 	 	 	 	 	 	 	
Bromus	inermis	 3	 R	 	 	 	 	 	 	 	 	
Asclepias	syriaca	 4	 R	 	 	 	 	 11	 ↓·	 	 	
Solidago	altissima	 	 	 2	 R	 	 	 	 	 	 	
Hieracium	caespitosum		 	 	 3	 R	 	 	 	 	 	 	
Carex	sp.	 	 	 4	 R	 	 	 	 	 	 	
Symphyotrichum	ericoides	 	 	 5	 R	 	 	 	 	 	 	
Symphyotrichum	novae-angliae	 	 	 6	 R	 7	 ↑	 7	 ↑**	 5	 ↑***	
Poa	pratensis	 	 	 	 	 1	 R	 2	 ↑*	 1	 ↑	
Euthamia	graminifolia	 	 	 	 	 4	 R	 	 	 20	 ↓**	
Monarda	fistulosa	 	 	 	 	 	 	 12	 R	 2	 ↑***	
Cirsium	arvense	 	 	 	 	 	 	 5	 R	 	 	
Daucus	carota	 	 	 	 	 	 	 8	 R	 	 	
Symphyotrichum	lanceolatum	 	 	 	 	 	 	 	 	 15	 R	
Vitis	riparia	 	 	 	 	 	 	 	 	 25	 R	
Crepis	sp.	 	 	 	 	 	 	 	 	 32	 R	
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Table S4 Effect of treatments in new dominant species in the final visit of the experiment in 

comparison with the control plots.  
All models were fitted using generalized least squares with different variance per treatment, volume log+1 
transformed, and using only sites where the species became dominant. Despite not all models fitted properly, we 
kept a homogeneous approach for consistency among them. Control treatment variance is always 1. Arrows indicate 
average positive (↑) or negative (↓) effect of the treatment. Significance: *** < 0.001, ** < 0.01, * < 0.05, · < 0.1. 

Scientific	name	
Treatment	variance	rate	to	

control	variance	 Treatment	trend	
Regression	descriptors	

Obs.	
Res.	
d.f	

Normality	
test	

DR	 DM	 NDR	 NDM	 DR	 DM	 NDR	 NDM	
Symphyotrichum	novae-
angliae	 1.58	 0.83	 1.00	 0.85	 ↑***	 ↑	 ↑	 ↓	 117	 109	 <0.001	

Poa	pratensis†	 1.18	 1.43	 1.29	 0.77	 ↑**	 ↓·	 ↓	 ↓	 85	 70	 0.384	
Euthamia	graminifolia	 1.79	 0.95	 1.00	 0.94	 ↑*	 ↑	 ↑	 ↑	 60	 54	 0.043	
Bromus	inermis	 2.75	 1.15	 	 2.81	 ↑·	 ↓	 	 ↑	 25	 21	 0.014	
Daucus	carota	 1.78	 2.41	 1.88	 	 ↑·	 ↑·	 ↑	 	 25	 21	 <0.001	
Vitis	riparia	 ††	 	 	 ††	 ↑	 	 	 ↑	 20	 17	 <0.001	
Carex	sp.	 4.39	 1.80	 0.65	 0.94	 ↑	 ↑·	 ↓	 ↓	 30	 25	 0.008	
Monarda	fistulosa	 3.54	 2.11	 0.87	 0.50	 ↑	 ↑	 ↑	 ↓	 59	 53	 <0.001	
Symphyotrichum	ericoides	 3.10	 1.59	 	 3.67	 ↑	 ↑	 	 ↑	 25	 21	 <0.001	
Solidago	altissima	 2.32	 0.40	 0.42	 1.22	 ↑	 ↓*	 ↓	 ↑	 27	 22	 0.619	
Cirsium	arvense	 1.85	 0.81	 0.80	 0.55	 ↑	 ↑	 ↓	 ↓	 28	 23	 0.033	
Asclepias	syriaca	 1.58	 0.19	 0.29	 0.50	 ↑	 ↓·	 ↓	 ↓	 58	 52	 <0.001	
Symphyotrichum	
lanceolatum	 1.55	 0.21	 0.50	 0.36	 ↑	 ↓	 ↓	 ↓	 30	 25	 0.002	

Crepis	sp.	 1.37	 1.52	 1.94	 1.12	 ↑	 ↑	 ↑	 ↑	 30	 25	 <0.001	
Hieracium	caespitosum	 1.32	 0.09	 1.07	 0.94	 ↑	 ↓	 ↑	 ↑	 29	 24	 <0.001	
Linaria	vulgaris	 0.85	 1.01	 0.36	 0.68	 ↓	 ↓	 ↓**	 ↓·	 29	 24	 0.376	
Vicia	cracca	 0.67	 0.71	 	 1.40	 ↓*	 ↓	 	 ↑	 50	 45	 0.337	
Notes: †Poa pratensis was positively affected by DR treatment in every site but N.  †† The general approach used in this analysis 
generated an extremely large variance probably meaningless, caused by the presence of few large Vitis riparia in few plots in 
each treatment. 
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B.2 Supplementary figures 

 

Figure S10 Average change in volume and richness of the plots in each site and treatment. 
Site dominant species are the two species identified as dominants at the beginning of the experiment, new dominants 
are at least two species needed to occupy 50% of the volume of any plot in the dominant removal treatment at the 
end of the experiment, and non-dominant is any other species. In the x-axis, B indicates the volumes before 
treatments were applied, while ’14 to ’17 represent the four years of the experiment. 
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Figure S11 Bray-Curtis dissimilarity changes along time for each study site in control plots, 

using peak-season biomass only to assess site level trends. 
Values lower than the first-year peak-season dissimilarity indicate convergence (deterministic mechanisms driving a 
change in the community) while values higher indicates divergence (stochastic mechanisms driving a change in the 
community). Similarity values were measured using different sets of species: ‘All’ indicates all the species were 
included; ‘New’ indicates the dominant species defined in the last year in the control treatment in each site were 
used; ‘ND’ indicates that the species not flagged as dominants were used and ‘new in DR’ is like ‘new’, but using 
the dominant species defined in the dominant removal treatment. 
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Figure S12 Partial residuals (dots), confidence band (gray box), and prediction line (blue 

solid line) of the standardized effect size (z-scores) of the mean phylogenetic distance (SES 

MPD) and mean nearest taxon distance (SES MNTD) for each site. 
Dotted lines represent z-scores of ±1.96, and the dashed line the z-score of zero. Significance: *** < 0.001, ** < 
0.01, * < 0.05, · < 0.1. 
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 Appendices of chapter 4 C

C.1 Supplementary tables 

Table S5: Marginally significant missing paths in the final DAG.  
Abbreviations as in Table S6. Assuming that the DAG is valid, each missing path test identify the set of variables 
that have to be held constant in order to confirm that there is no statistical correlation between a pair of variables of 
interest. The missing path column indicates the pair of variables analysed in each case. In all the cases, the 
hypothesis is that the estimate value of the correlation is zero. The variables held constant are not shown. Only 
missing paths with p-value between 0.05 and 0.1 are shown. 

Missing	path	 Estimate	 Standard	error	 df	 p-value		
Δses	~	Gz	 0.9792	 0.4908	 54	 0.0511		
Δses	~	Lat	 0.0362	 0.0194	 54	 0.0677		
TR	~	T	 0.2253	 0.1135	 51	 0.0524		
BM	~	Δses	 0.0935	 0.0506	 49	 0.0707		
TR	~	Δses		 -0.3003	 0.1770	 50	 0.0960		

 



 

143 

Table S6: Variables used to model the difference in the dispersion of dominants and non-

dominant plants and the sources of information used to measure them. 
Variables Definition Source* 
Response variables 
Δses.mntd Difference in the phylogenetic dispersion (measured as the 

standardized effect size of the mean nearest taxonomic 
distance) of the third most dominant minus the third lest 
dominant plant species in each site. Dominance defined as 
the mean cover per plot. 

Based on NutNet cover and 
Zanne et al. 2014 

pGr Proportion of graminoid biomass in the site. Based on NutNet biomass 
BM Total aboveground annual net production by m2 (log 

transformed) 
Based on NutNet biomass 

LM Legume aboveground annual net production by m2 (log + 
1 transformation) 

Based on NutNet biomass 

Climatic variables* 
T Mean annual temperature. Worldclim 2 
TR Range of the annual temperature. Worldclim 2 
P Total annual precipitation (log transformed) Worldclim 2 
PV Variance of the monthly precipitation Worldclim 2 
Location variables 
Elev Altitude in meters above see level. Worldclim 2 
Lat Distance from the equator in degrees. NutNet description 
Hem North/South hemisphere dummy NutNet description 
Management 
Gz Is the site subject to grazing? NutNet description 
An Is the site of anthropogenic origin? (e.g. restored) NutNet description 
Fr Is the site subject to prescriptive fire? NutNet description 
Phylogenetic information 
Rec Proportion of the phylogenetic information of the tree 

contained in the tree tips. 
Based on NutNet cover and 
Zanne et al. 2014 

S Number of species present in the site. Based on NutNet cover 
PD Site level Faith’s Phylogenetic Diversity (Faith 1992), 

obtained as the sum of the branches of the site tree. 
Based on NutNet cover and 
Zanne et al. 2014 

Gm Site level Gamma statistics (Pybus and Harvey 2000), 
obtained as the mean of a hundred randomly generated 
binary trees based on the site tree. 

Based on NutNet cover and 
Zanne et al. 2014 

Bal Site level Colless statistics (Mooers and Heard 1997), 
obtained as the mean of a hundred randomly generated 
binary trees based on the site tree. 

Based on NutNet cover and 
Zanne et al. 2014 

Notes: * All Worldclim 2 (Fick and Hijmans 2017) variables were included in the model, but discarded because they 
(1) were correlated among each other or (2) they were poor predictors. Variables listed here but not present in the 
final model were discarded for similar reasons. 
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C.2 Supplementary figures 

 

Figure S13: Global distribution of the study sites. In blue, sites with cover information 

only, in red sites with cover and biomass info. 

 

 

Figure S14: Comparing the difference in dispersion between dominants and non-dominant 

plants when the community is divided in two or three partitions.  
The difference was assessed as the standardize effect size of the dominant minus the non-dominant partition (Δses). 
The first row shows the results when dispersion is measured using the mean nearest taxon distance (MNTD) and the 
second using mean pairwise distance (MPD). The columns represent different ways to measure the dominance of the 
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species: mean cover, frequency (proportion of plots where the species is present) and mean cover of the plots where 
the species is present only. 

 

 

Figure S15: Phylogenetic dissimilarities among sites when each site is partitioned in two or 

three dominance partitions.  
Two dominance partitions include dominant (D) and non-dominant (ND) species, each with half of the species. 
Three dominance partitions include also an intermediate dominance (ID), each with a third of the species in the site. 
The phylogenetic dissimilarity is measured as the multisite Sørensen (SOR – multi) and as the mean pairwise 
Sørensen dissimilarity (SOR – pairs). In both cases, the indices were decomposed in their turnover (SIM) and 
nestedness (SNE) fractions. Dashed lines represent the observed value when dominance is assigned base on 
observed mean species cover per plot, while the densities represent the expected value when the species are 
randomly distributed in the two or three partitions. Rows 1 and 3 include all sites (All), 2 and 4 exclude Australian 
sites (nAu), and 3 and 6 exclude sites in North America (nNA). 
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C.3 Alternative definitions of disparity in phylogenetic dispersion 

We used five different ways to estimate the difference on phylogenetic dispersion between 

dominants and non-dominants using mean-nearest taxonomic distance (MNTD). Here we 

describe the different ways we did the partitions and the analysis done to compare them. Because 

the partitions would be composed of different number of species, we estimated the standardized 

effect size of MNTD (SES.MNTD) for each of the partitions (Δses.mntd) in each site. In every case, 

we pruned the phylogenetic tree to the species present in each site before running the analysis. In 

that way, the standardized effect sizes for any dominance partition used the same species pool 

that only includes the species observed in that site at the beginning of the experiment, before 

nutrients were added to the site. Given that the SES estimates included only the species present, 

the Δses.mntd is a measure of the difference in how dominant and non-dominant plants’ 

performance correlate with the environment. 

C.3.1 Detecting Partition methods 

C.3.1.1 Partitions with similar number of species 

This method assumed that each partition is composed of a similar number of species. The 

partition with the most dominant species will be composed of the highest ranking species. The 

next partition will be composed by the next higher ranking species, etc. We define partitions for 

two and three groups of dominance. Δses was then the difference in the phylogenetic dispersion 

metric between the highest ranking minus the lowest ranking partition. Each site dispersion trend 

was then classified as either “DSES < NDSES”, “DSES > NDSES” or “NONE” if Δses was 

significantly less, more or equal to 0, respectively. 

C.3.1.2 Partitioning by Jenks criteria 

We used Jenks’ natural break optimization to find two classes of species, dominant and non-

dominant, in each site. Each class composed of species with similar abundance. The optimization 

algorithm cuts the community using an abundance criterion, minimizing the variability inside 

each class and maximizing the variability between the classes. The class with the largest 

abundance values corresponded to the dominant species. Δses and the site dispersion trend was 
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then estimated as when partitioning in groups with same number of species (see C.3.1.1). The 

underlying assumption of this method is that a variance criterion can effectively distinguish 

biologically meaningful processes. 

C.3.1.3 Thresholds 

Because different sites can have different number of dominant species, we explored several cut 

values in a community to test the hypothesis that at least in one of them Δses.mntd was higher or 

lower than zero. We defined dominant partitions in each site as a group of species that include 

either 10, 20, …, 90% (hereafter cutoffs) of the most dominant species in the site. For each one 

of these cutoffs we split the community in the dominant (D) and non-dominant partition (ND) 

assigning every species to one of these partitions.  

To decide if the dominant and non-dominant partitions were differently assorted, we estimated 

Δses.mntd for each combination of site, variable and cutoff. We assumed the Δses.mntd values were 

normally distributed with variance 2 and, if both partitions were equally dispersed, mean 0. At 

any cutoff, a value significantly lower (higher) than zero indicated dominants were more 

clustered (overdispersed) than non-dominants. In the absence of a meaningful way to identify a 

relevant cutoff for every site, we identify the site dispersion trend (either “DSES < NDSES”, “DSES 

> NDSES”, “NONE” or “BOTH”) if any difference between dominants and non-dominants was 

significant in any cutoff smaller or equal to a given threshold. For instance, at a 30% threshold, 

we assumed “D < ND” if any negative significant difference existed at a 10, 20, or 30% cutoff. 

If, for instance, “D < ND” at 10% and “D > ND” at 30%, we marked that trend as “BOTH”. The 

actual value Δses.mntd was then assumed to be the one at which the minimum difference existed, 

unless there was a significant positive difference only. In that case, we used the maximum value. 

As expected, the probability of detecting a difference increased with threshold. We opted for the 

50% threshold as a compromise between detection capability and error prone of the criteria 

(Figure S16). We found no evidence of both trends acting simultaneously. 
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Figure S16: Proportion of sites with different dispersion trends at different thresholds that 

capture any partition of species in dominants and non-dominants at a cut-off equal or 

lower than the given threshold.  
Each panel represents a different dominance measure. We consider four potential dispersal trends: At least in one 
cut-off lower than the threshold: the dominants are less dispersed than non-dominants (D < ND), the dominants are 
more dispersed than non-dominants (D > ND), both conditions hold (D < ND at one cut-off and D > ND at another 
cut-off) and none conditions hold at any cut-off. 

 

C.3.1.4 Extremes 

In this method to partition the communities we defined the dominant and non-dominant 

partitions as the ones that would create a minimum or a maximum Δses.mntd. We started with the 

ses.mntd values for each site, partition and cutoff generated in C.3.1.3. Then, we obtained the 

difference between each combination of the dominant and non-dominant partitions. While doing 

so, each species was assigned to either the dominant or the non-dominant partition, or to none of 

them. We choose the minimum and maximum Δses.mntd, and estimated their significance. We 

identified the site trend as either “DSES > NDSES”, “DSES < NDSES”, “NONE” or “BOTH” 

according the rules in Table S7. The final Δses.mntd used to compare with the other partitioning 

methods was estimated base on the observed trend (Table S7). We opted to focus in in the 

min(Δses.mntd) unless strong evidence against it existed because the minimum curved seems 

farther from zero, indicating it is less likely to be randomly generated (Figure S17). 
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Table S7: Criteria used to define the site level dispersion trend and the measure of Δ ses.mntd 

used to compare with the other partitioning methods. 
Criteria	 Both	 DSES	<	NDSES	 DSES	>	NDSES	 None	

Min(Δses.mntd)	 <	0	 <	0	 =	0	 =	0	
Max(Δses.mntd)	 >	0	 =	0	 >	0	 =	0	

Δses.mntd	 Min(Δses.mntd)	 Min(Δses.mntd)	 Max(Δses.mntd)	 Min(Δses.mntd)	

 

 

Figure S17: Observed density of the Δ ses.mntd globally when obtaining the maximum (max) 

and minimum (min) difference in the dominant and non-dominant dispersion.  
Each panel represents a different dominance measure. 

 

C.3.2 Comparison among partition methods 

To compare the different partition methods we estimated the correlation between the Δses.mntd 

obtained in each site with each method and compared the number of sites classified in each trend 

(Table S8). 
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Table S8: Comparison between the different partition methods in terms of the trends in the 

partitions detected (a) and the correlation between Δ ses.mntd values (b).  
The dominants dispersion can either be lower, equal or higher than non-dominants (D < ND, None, D > ND). Two 
partition methods (thresholds and extremes) can also detect that a site has a dominant/non-dominant partition which 
is less than zero and another one that is more than zero simultaneously (Both). The numbers in the trends table (a) 
indicate the number of sites classified in each trend by each method. The numbers in the correlations table (b) 
indicate the Pearson’s correlation value (**: p-value < 0.01, ***: p-value < 0.001, n=75 sites). 

a. Trends      

 
Eq.rich3 Eq.rich2 Jenks Thresholds Extremes 

Both - - - 0 2 
D<ND 16 17 13 33 50 
D>ND 0 1 0 3 7 
None 59 57 62 39 16 
      
b. Correlations 
 Eq.rich3 Eq.rich2 Jenks Thresholds Extremes 
      Eq.rich2 0.720 *** 

    Jenks 0.412 *** 0.342 ** 
   Thresholds 0.630 *** 0.720 *** 0.620 *** 

  Extremes 0.714 *** 0.745 *** 0.528 *** 0.760 *** 
 

All the partition methods were positively correlated (p-value < 0.01, most p-value < 0.001). 

Despite it was not the most sensitive partition method; we used the partitioning in groups of 

similar species richness because it had fewer assumptions. 

 

C.4 Testing other legumes’ proportion, biomass and their 
interaction with climatic variables 

The naïve interpretation of legumes biomass as a predictor of total biomass relies in the 

assumption that nitrogen fixation provides proportional benefits to every group of plants 

independent of climatic conditions and of the total biomass. However, the benefits provided by 

nitrogen fixers (legumes) could be strongly limited under dry conditions because of limited 

amount of water could deter the nitrogen from being transferred from one plant to another. 

Similarly, given a general positive correlation between productivity of different plants, we may 

expect the proportion of legumes in the community to be more informative of the benefits 

provided by the legumes than the total legume’s biomass. 

To test those alternative hypothesis we: (1) compared the amount of variance that could be 

explained of the proportion of legumes and of the legume’s biomass by the step-backwards 

model using richness and Faith’s phylogenetic diversity, (2) compared the amount of variance of 
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the total biomass that could be explained using the proportion and total amount of legumes and 

(3) added interaction terms between total (or proportion of) legumes biomass and temperature 

and precipitation (linear and quadratic terms). When doing the final test with legumes’ 

proportions, we started with the total biomass model that use the legumes biomass as a predictor 

and replaced it with the legumes’ proportion because the step-backwards regression dropped the 

proportion in the test (2). 

C.4.1 Legumes as a response variable 

Total legume’s biomass and proportion of legumes biomass were predicted by a similar set of 

variables, but the total biomass model was able to explain almost a third of the variance, almost 

three times more than the proportion’s model. None of the global climatic drivers of productivity 

were significant to explain any of the variables, but the AIC criterion retained temperature range 

as an informative variable for total biomass. The variable better explained was  the total 

legume’s biomass, when using Faith’s phylogenetic distance 

Table S9: Linear models explaining legumes’ biomass and proportion of legumes’ biomass. 
Response Total† Proportion 

Predictor Using S Using PD Using richness Using PD 
(Intercept) 0.810604 0.265321 -0.00303 -0.009081 
Temperature range -0.079506 -0.07996  

 Anthropogenic 1.375766 *** 1.537756 *** 0.030968 * 0.033062 * 
Richness (S) 0.029419 *** 

 
0.000614 * 

 Faith’s PD (PD)  0.000793 ***  0.000014 . 
R2 0.341 0.3453 0.1376 0.1189 
Note: † Log+1 transformed 

 

C.4.2 Legumes as a predictor variable 

Legumes biomass was consistently a better predictor of total biomass than proportion of 

legumes. Further, in contrast with previous research, the interaction of precipitation and legumes 

was non-significant (p-value = 0.1636), indicating that in this global grasslands experiment 

legumes increased biomass independently of the effect of total precipitation. 
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Table S10: Total biomass as predicted by (a) legumes’ biomass and (b) proportion of 

legumes’ biomass with and without interaction with climatic variables (either temperature 

or precipitation). 
a) Legumes biomass as predictor of total biomass 

 

Predictor Legumes Legumes: 
Temperature 

Legumes: 
Precipitation 

Legumes: 
Precipitation2 

(Intercept) 4.996335 ** 4.891114 ** 4.271493 * 3.826916 * 
Temperature -0.068356 * -0.061714 . -0.072713 * -0.063571 . 
Abs(Latitude) -0.040978 * -0.039633 * -0.041824 * -0.033921 . 
Elevation -0.000530 *** -0.000522 ** -0.000555 *** -0.000506 ** 
Precipitation 0.458931 ** 0.455071 ** 0.583355 *** 0.586930 *** 
Precipitation2 

   
-0.869553 

Legumes BM† 0.150338 ** 0.195818 . 0.172979 ** 0.149878 * 
Legumes BM†:Temperature 

 
-0.004281 

  Legumes BM†:Precipitation 
  

-0.672958 -0.572446 
Legumes BM†:Precipitation2 

   
0.035304 

R2 0.4691 0.4712 0.4895 0.5126 
AIC 93.62 95.38 93.38 94.75 
Shapiro (p.value)†† 0.689 0.6125 0.941 0.937 
Note: † Log+1 transformed. †† Residuals’ normality test. 

 
b) Legumes proportion as predictor of total biomass 

Predictor Legumes Legumes: 
Temperature 

Legumes: 
Precipitation 

Legumes: 
Precipitation2 

(Intercept) 4.376173 * 4.395525 * 3.946231 * 3.286491 . 
Temperature -0.063070 . -0.063886 -0.069071 . -0.058535 . 
Abs(Latitude) -0.037602 . -0.037868 . -0.039599 * -0.029064 
Elevation -0.000501 ** -0.000503 ** -0.000532 ** -0.000475 ** 
Precipitation 0.544424 *** 0.544599 *** 0.633340 *** 0.648190 *** 
Precipitation2 

   
-1.358582 * 

Legumes prop. 1.329392 1.13414 2.424481 2.130696 
Legumes prop.:Temperature 

 
0.020637 

  Legumes prop.:Precipitation 
  

-22.256797 -21.023972 
Legumes prop.:Precipitation2 

   
7.643273 

R2 0.393 0.3931 0.4084 0.4632 
AIC 101.2 103.2 101.8 100.2 
Shapiro(p.value)† 0.4767 0.4799 0.7181 0.593 
Note: † Residuals’ normality test. 

 

C.4.3 Conclusions 

Overall, these analyses support the selection of legumes’ biomass as an independent predictor of 

total biomass.  
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C.5 Other aspects of the structural equation model 

Here we expand the interpretation of other aspects of the final model that are relevant to interpret 

it, but were not directly related to the relatedness disparity between dominant and non-dominant 

plants. To do this, we start with the final path model and assessed the paths present, but also the 

absent ones as the absence of a path between two variables suggest that those variables are not 

causally related. We also identified variables that can have opposite effects on a descendent 

variable, and for each pair of ancestor and descendant variables we estimated the partial residuals 

of the former onto the latter (which include both direct and indirect links) and estimated the 

overall effect of the ancestor onto the descendant using Pearson’s correlation. More detailed 

analyses of these interactions are warranted, but are beyond the scope of this study. 

C.5.1 Results 

We found that Northern hemisphere sites have higher precipitation than the Southern hemisphere 

sites, while proportion of graminoids was higher in the South. Management (anthropogenic and 

grazing) and tree topology descriptors had mostly non-significant relations with the other 

variables of the model. 

We found a counterintuitive negative effect of temperature on total biomass. We also found that 

biomass decreased in sites located farther from the equator (r = -0.31) and at higher elevations (r 

= -0.44), ant that the proportion of graminoids decreased with elevation (r = -0.42). Given that 

temperature is also affected by elevation and latitude, the negative effect of temperature on 

biomass is likely a confounding covariate effect. In fact, removing either elevation or latitude 

results in the temperature effect on biomass becomes positive, though not significant (p > 0.1 in 

both cases, results not shown). 

C.5.2 Discussion 

In the sites sampled we found that graminoids performance improved under some environmental 

conditions, in particular wider temperature ranges and lower elevations, consistent with a 

grassland biome or habitat (e.g. Olson et al. 2001). However, we did not find a correlation 

between success of graminoids (measured as proportion of graminoids biomass) and total site 

biomass, probably because woody (and heavier) species could outcompete grasses under more 
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productive climatic conditions and controlling by herbivory pressure (Figure 15) (Olson et al. 

2001).  

Other paths the model show that higher productivity occurs at sites that are at lower latitude, 

lower elevation and have greater precipitation, consistent with Grace et al. (2007, 2016). The 

hemisphere effect on different variables likely captures asymmetric distribution of some plant 

families at either side of the equator, or perhaps the more extensive historical deforestation in the 

Northern hemisphere which, in turn, may result in more NutNet sites established in areas that 

previously supported forests or another type of biome. The uneven representation of the samples 

along the latitudinal gradient, and the fact that it may actually capture very different pattern and 

processes (light availability, temperature seasonality, biogeography) deter any further 

interpretation of the mechanisms underlying of this relationship. 

 

C.6 Are C3/C4 pathways relevant to characterize graminoids 
prevalence? 

We did a brief test of trait relevance to distinguish among dominant and non-dominant graminoid 

species. Using the information already recorded by the Nutrient Network we compared the 

phylogenetic signal of the dominance in graminoids, with the phylogenetic signal of 

photosynthetic path as represented by the proportion of C3 species. A strong link between 

dominance and either C3 or C4 photosynthetic path should appear as dominant branches (green 

in the right panel) being either red or green in the left panel. A visual inspection of both 

phylogenetic trees does not suggest any correlation between them, as some C3 lineages are more 

likely to be dominant than to be in any other dominance category (green lineages in the left 

panel), and the same lack of pattern can be seen for the C4 lineages (red lineages in the left 

panel). Other traits available in the Nutrient Network dataset were either variable by location, 

and therefore more likely to be biased towards dominant species only, or have no internal 

variation in graminoids (i.e. life form and legumes). 
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 Appendices of chapter 5 D

D.1 Supplementary tables 

Table S11: Variables used to model the difference in the dispersion of dominants and non-

dominant plants and the sources of information used to measure them. 
Variables Definition Source* 
Functional group suffix 
Gr Graminoids, plants in the families Poaceae and Cyperaceae  
Lg Legumes, plants in the family Fabaceae  
Fr Forbs, any tracheophyte which is not in a legume or a graminoid  
Plant community biomass descriptors 
GM Graminoids aboveground annual net production by m2 (log + 1 

transformation) 
Based on NutNet biomass 

FM Forbs aboveground annual net production by m2 (log + 1 
transformation) 

Based on NutNet biomass 

LM Legume aboveground annual net production by m2 (log + 1 
transformation) 

Based on NutNet biomass 

Litter Litter mass by m2 (log + 1 transformation) Based on NutNet biomass 
Plant community biodiversity metric 
SR Species richness Based on cover biomass 
PD Faith’s PD (Faith 1992) Based on NutNet biomass 
MPD Mean pairwise phylogenetic distance (Cadotte and Davies 2016) Based on NutNet biomass 
MNTD Mean nearest taxonomic distance (Cadotte and Davies 2016) Based on NutNet biomass 
Climatic variables* 
T Mean annual temperature. Worldclim 2 
TR Range of the annual temperature. Worldclim 2 
P Total annual precipitation (log transformed) Worldclim 2 
TW Average temperature of the wettest quarter Worldclim 2 
Location variables 
Elev Altitude in meters above see level. Worldclim 2 
Lat Distance from the equator in degrees. NutNet description 
Hem North/South hemisphere dummy NutNet description 
Management 
Gz Is the site subject to grazing? NutNet description 
An Is the site of anthropogenic origin? (e.g. restored) NutNet description 
Fr Is the site subject to prescriptive fire? NutNet description 
Notes: * All Worldclim 2 (Fick and Hijmans 2017) variables were included in the model, but discarded because they (1) were 
correlated among each other or (2) they were poor predictors. Variables not present in the final model were discarded for similar 
reasons. 
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Table S12 Conceptual mechanisms describing the relation between productivity and 

diversity.  
Models are organized according the expected pattern created, the causal direction of the mechanism and if the 
mechanism relate to the potential or the realized biomass or diversity. Potential models focus on biomass/diversity 
relationships in the absence of species interactions, while realized models focus on those interactions. 

Model	
#	

Expected	
pattern	

Mechanism	 Causal	
direction	

Potential/	
Realized	

References	 Comment	

1. 	Positive	 Productivity	
èOdds	of	survival	
èRichness		

P	→	D	 Realized	 Grime	1973	in	
Grace	et	al.	

	

2. 		 Productivity	
èDensity	
èRichness	

P	→	D	 Potential	 (Hubbell	2001a)	 Can	be	
interpreted	in	
the	frame	of	
neutral	theory.	
		

3. 		 Richness	
èPhylogenetic	
information/functional	
groups	
èOdds	of	complete	
resource	exploitation	
èProductivity	

D	→	P	 Potential	 (Loreau	and	
Hector	2001)	

Name:	
Complementarity	
effect	
	

4. 		 Richness	
èPhylogenetic	
information/functional	
groups	
èOdds	of	high	
efficiency	
èProductivity	

D	→	P	 Potential	 (Loreau	and	
Hector	2001)	

Name:		
Selection	effect	

5. 		 Richness	
èOdds	of	facilitation	
èProductivity	

D	→	P	 Realized	 (Cardinale	et	al.	
2002)	

	

6. 		 Productivity	
èSpecies	pool	
èRichness	

P	→	D	 Potential	 Gillman	and	
Wright	in	2006	
in	Grace	et	al.	

“Importance	of	
species	pools	
typically	
predominates	
over	local	
interactions	in	
shaping	
observed	
patterns”	

7. 	Negative	 Productivity	
èCompetitive	
asymmetry	
àRichness	

P	→	D	 Realized	 (Huston	1994)	 Name:	Dynamic	
equilibrium	
model	
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Model	
#	

Expected	
pattern	

Mechanism	 Causal	
direction	

Potential/	
Realized	

References	 Comment	

8. 		 Productivity	
àspatial	
heterogeneity	in	the	
ratios	of	limiting	
resources	
ècoexistence	via	
exploitation	of	unique	
resource	ratios	
èRichness	

P	→	D	 Realized	 (Tilman	1977)	
Tilman	1982	in	
Grace	et	al.	

Name:	Resource	
ratio	model	

9. 		 (Negative	correlation:	
Productive	sites,	
Area	for	evolution)	
Area	available	for	
evolution	
èSpecies	pool	

P	→	D†	 Potential	 Taylor,	Aarssen,	
and	Loehle	in	
Grace	et	al.	

Name:	Habitat	
templet	model	

10. 	Hump-shaped	 Productivity	
èCompetitive	
asymmetry	
		àRichness		
èOdds	of	survival	
		èRichness		
Together:	Richness	is	
hump-shaped	

P	→	D	 Potential/	
Realized	

Grime	1973	in	
Grace	et	al.	

Name:	Humped-
back	model	
	
Combination	of	1	
and	7	

11. 		 Productivity	
èIncrease	in	average	
individual	size	
èIncrease	in	density		
Condition:	Density	x	
average	individual	size	
is	capped.	
Together:	Density	is	
hump-shaped	
Density	
èRichness	

P	→	D	 Potential	 (Oksanen	1996)	 Based	on	2	

Notes: Mechanism descriptors: AèB: A increases B. AàB: A decreases B. Green arrows (è) indicate a causal variable 
simultaneously causes more than one dependent variable (e.g. AèB èC: A increases B and increases C). If the dependent 
variables have themselves more dependent variables, the later ones are indented. Other operators are described in italics (i.e. 
correlation: correlation between variables; condition: extra condition imposed in the model; together: the combined result of 
parallel green arrows or of their dependent variables). Causal direction indicates the overall direction of the productivity-diversity 
relationship: P >> D, productivity drives diversity; D >> P, diversity drives productivity. † Given that a correlation between 
productive sites and area for evolution drives the model, there is no real causal link between productivity and diversity. 
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D.2 Supplementary figures 

 

Figure S18. Average effect of each functional group on diversity for the species richness 

(top three rows) and Faith’s PD (bottom three rows) models.  
Vertical dashed lines indicate the location of the maximum in the estimated fitted curve for the internal effect of a 
functional group biomass in its own diversity, when present in the observed mass range. A solid line indicates that 
linear and quadratic terms were significant in the model (p-value < 0.05). Dot-dashed line indicates that only the 
linear terms were significant while dotted lines indicate that none term was significant. Mass values were log(+1) 
transformed. 
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a. 

 
 
b. 

 
 

Figure S19 Effect of the spatial sampling process in each site on each functional group 

diversity estimated from the Faith’s PD and the species richness models. 
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Figure S20 Effect of each functional group diversity and biomass on litter mass for the 

species richness (top row) and Faith’s PD (bottom row) models.  
A solid line indicate that linear and quadratic terms were significant in the model (p-value < 0.05). Dot-dashed line 
indicates that only the linear terms were significant while dotted lines indicate that none term was significant. Mass 
values were log(+1) transformed. 

 

D.3 Detailed description of structural equation models: potential 
biodiversity-biomass correlation 

We fitted several models to test for different directions of causal links, as well as to assess if 

other variables used to predict similar models could improve the predictions. Because different 

models included different response or predictor variables a single metric to compare among all 

them is not feasible. Instead, we compare each one with the final models used in the main 

document, which we present in detail first here. 

D.3.1 Final model 

Our metamodel (Figure S21) represents our general expectation that the constraints created by 

the environment (location, climate, management) will set the conditions where species pool 

relatedness will modify biomass production, which in turn controls litter accumulation. Because 

only 31 sites were available we used path analysis, fitting first independent models and 
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combining them later (Shipley 2016). To facilitate the interpretation, we pre-identified 

uncorrelated climatic variables and used them without combining them (Table S11), only 

precipitation was log transformed.  

 

Figure S21 Scheme of the basic relation expected between the location, climate, 

management, phylogenetic biodiversity, biomass and litter.  
Litter depended on legume (LM), forb (FM) and graminoid (GM) biomass. Each biomass was expected to be a 
function of climate (described as precipitation, P, average temperature of the wettest quarter, TW, annual average 
temperature, T, and temperature range, TR), species phylogenetic relatedness and local management. Site location 
(described as a North-South hemisphere dummy, Hem, distance to equator, Lat, and elevation, Elev). In turn, site 
location controlled the climatic conditions. Except for the links between location and climate, all the other links 
could be dropped. 

 

We used a step-backwards regression to identify the most important drivers that better describe 

the metamodel. To capture the sequential role of environmental drivers followed by diversity 

ones we first regressed biomass using climate and management descriptors, and identified the 

most important drivers using step-backwards regression. Then, we added the phylogenetic 

information and run a second step-backwards linear regression to refine the biomass models. We 

compared these models with models using a single step-backwards step. Then, we confirmed that 

no one other climatic variable from the Worldclim v2 dataset could improve the functional 

TRTP TW

LM FM GM

Litter

Climate

Relatedness

Management

Site location

Hem Lat Elev
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groups biomass models. First, we described litter as a function of biomass of each functional 

group only. Finally, site location variables were included as descriptors of climatic variables to 

capture the original way climatic variables have been interpolated (Fick and Hijmans 2017).  

The independent models were placed together in a single structural equation model (SEM) using 

the package piecewiseSEM (Lefcheck 2016) and tested for missing links. We added missing 

links if significant and logical (Shipley 2016). Once we obtained the final model, we re-fitted the 

model using structural equation models in the package lavaan (Rosseel et al. 2017). This second 

approach fits all the parameters of each partial regression in a single step using maximum 

likelihood. In contrast to the piecewise approach it is robust to circularities in the model, but it 

requires many more observations. 

The main missing links that we found were related to a negative impact of precipitation on 

temperature range and of the several functional group diversity descriptors on litter. 

Interestingly, temperature range was originally dropped as a predictor of legumes by the first 

step-backwards process, but we added later to the model as the d-separation tests suggested that 

there was a missing link between them. 

The piecewise approach provided a good fit of the model (Fisher's C = 182.48, d.f. = 184, p-

value = 0.518), but when fitting the same model with the maximum likelihood approach, the fit 

measures of the model were not as good as expected (robust p-value = 0.902, CFI = 0.722, 

RMSEA = 0.167, SRMR = 0.088). That problem was mostly caused by the low predictability 

associated to the climatological descriptors, because when the models that aimed to capture their 

correlation were dropped the model met the expected criteria (robust p-value = 0.989 > 0.05, CFI 

= 0.988 > 0.9, RMSEA = 0.037 < 0.08, SRMR = 0.035 < 0.08). These descriptors are not 

required in the maximum likelihood method used by lavaan, because the model is robust to 

correlations between independent (exogenous) variables. 

The d-separation test identified some missing paths (p-value < 0.1) that we decide to not include 

in the model, because the actual mechanism was hard to explain (Table S13). Interestingly, five 

of the seven missing paths suggest correlations between climatic and phylogenetic variables. 

Further research is needed to validate the logic of those relations and incorporate them properly 

in a model. 
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Table S13 Missing paths identified by d-separation tests with p-value less than 0.1 in the 

final model. 

Response Predictor Conditional Estimate SD df Critical 
value p-value 

lgram_mass slatitude mpd_fr  
+ mpd_gr  
+ anthropogenic  
+ mpd_lg  
+ mntd_lg  
+ MAT_v2  
+ lMAP_v2  
+ TEMP_WET_Q_v2  
+ MAT_RANGE_v2 

-0.2632 0.1317 20 -1.9986 0.0594 

llitter_mass elevation grazed  
+ mpd_gr  
+ pd_gr  
+ mpd_lg  
+ mntd_lg  
+ lforb_mass  
+ lgram_mass 

-0.0009 0.0004 22 -2.3002 0.0313 

MAT_v2 mpd_gr slatitude  
+ alatitude  
+ elevation 

-0.0423 0.0106 26 -3.9828 0.0005 

TEMP_WET_Q_v2 mpd_gr slatitude  
+ alatitude  
+ elevation 

0.0804 0.0384 26 2.0941 0.0461 

TEMP_WET_Q_v2 pd_fr slatitude  
+ alatitude  
+ elevation 

0.0040 0.0021 26 1.9337 0.0641 

TEMP_WET_Q_v2 pd_gr slatitude  
+ alatitude  
+ elevation 

0.0459 0.0158 26 2.9033 0.0074 

lMAP_v2 mpd_lg slatitude  
+ alatitude  
+ elevation 

0.0037 0.0018 26 1.9890 0.0573 

 

Table S14 Final model summary 
lavaan (0.5-23.1097) converged normally after 197 iterations 
 
  Number of observations                            31 
 
  Estimator                                         ML 
  Minimum Function Test Statistic               35.440 
  Degrees of freedom                                34 
  P-value (Chi-square)                           0.400 
  P-value (Bollen-Stine Bootstrap)               0.989 
 
Parameter Estimates: 
 
  Information                                 Observed 
  Standard Errors                            Bootstrap 
  Number of requested bootstrap draws             1000 
  Number of successful bootstrap draws             819 
 
Regressions: 
                   Estimate    Std.Err   z-value  P(>|z|)   Std.lv    Std.all 
  llegu_mass ~                                                                
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    grazed              1.432     0.873    1.640    0.101      1.432    0.388 
    lMAP_v2             0.557     0.601    0.927    0.354      0.557    0.163 
    mpd_fr              0.025     0.007    3.586    0.000      0.025    0.599 
    mntd_fr            -0.019     0.006   -3.245    0.001     -0.019   -0.673 
    mpd_gr             -0.016     0.008   -1.932    0.053     -0.016   -0.437 
    mntd_gr             0.040     0.016    2.434    0.015      0.040    0.443 
    MAT_RANGE_v2       -0.204     0.108   -1.889    0.059     -0.204   -0.356 
  lforb_mass ~                                                                
    MAT_RANGE_v2       -0.117     0.048   -2.419    0.016     -0.117   -0.311 
    pd_fr               0.001     0.000    3.451    0.001      0.001    0.532 
    pd_gr              -0.007     0.002   -4.233    0.000     -0.007   -0.639 
    mntd_gr             0.018     0.010    1.785    0.074      0.018    0.308 
  lgram_mass ~                                                                
    anthropogenic      -0.951     0.261   -3.647    0.000     -0.951   -0.405 
    lMAP_v2             0.854     0.232    3.687    0.000      0.854    0.330 
    MAT_v2             -0.028     0.022   -1.266    0.205     -0.028   -0.154 
    MAT_RANGE_v2       -0.095     0.034   -2.807    0.005     -0.095   -0.221 
    TEMP_WET_Q_v2       0.081     0.017    4.779    0.000      0.081    0.691 
    mpd_fr              0.007     0.004    1.696    0.090      0.007    0.209 
    mpd_lg             -0.012     0.005   -2.246    0.025     -0.012   -0.446 
    mntd_lg             0.013     0.006    2.285    0.022      0.013    0.483 
    mpd_gr             -0.017     0.003   -5.290    0.000     -0.017   -0.584 
  llitter_mass ~                                                              
    lgram_mass          1.040     0.473    2.198    0.028      1.040    0.568 
    lforb_mass         -1.030     0.539   -1.910    0.056     -1.030   -0.490 
    mpd_lg              0.029     0.019    1.474    0.141      0.029    0.602 
    mntd_lg            -0.029     0.023   -1.269    0.204     -0.029   -0.587 
    pd_gr              -0.026     0.007   -3.750    0.000     -0.026   -1.150 
    mpd_gr              0.035     0.017    1.990    0.047      0.035    0.672 
    grazed             -1.293     1.430   -0.904    0.366     -1.293   -0.253 
 
Covariances: 
                   Estimate    Std.Err   z-value  P(>|z|)   Std.lv    Std.all 
 .llegu_mass ~~                                                               
   .llitter_mass        0.247     0.263    0.942    0.346      0.247    0.239 
  grazed ~~                                                                   
    lMAP_v2             0.015     0.027    0.547    0.584      0.015    0.100 
    mpd_fr             -0.304     2.168   -0.140    0.888     -0.304   -0.026 
    mntd_fr             7.183     4.357    1.648    0.099      7.183    0.410 
    mpd_gr             -5.827     2.081   -2.800    0.005     -5.827   -0.436 
    mntd_gr            -1.534     0.658   -2.332    0.020     -1.534   -0.275 
    MAT_RANGE_v2       -0.211     0.134   -1.578    0.114     -0.211   -0.241 
    pd_fr             -69.141    35.998   -1.921    0.055    -69.141   -0.332 
    pd_gr             -12.172     4.512   -2.698    0.007    -12.172   -0.399 
    anthropogenic       0.120     0.039    3.081    0.002      0.120    0.744 
    MAT_v2              0.379     0.330    1.150    0.250      0.379    0.185 
    TEMP_WET_Q_v2       0.397     0.432    0.920    0.358      0.397    0.123 
    mpd_lg             -2.227     1.982   -1.123    0.261     -2.227   -0.154 
    mntd_lg            -1.459     1.990   -0.733    0.464     -1.459   -0.105 
  lMAP_v2 ~~                                                                  
    mpd_fr              1.909     2.141    0.892    0.373      1.909    0.150 
    mntd_fr            -0.155     3.185   -0.049    0.961     -0.155   -0.008 
    mpd_gr             -2.164     2.244   -0.964    0.335     -2.164   -0.150 
    mntd_gr            -1.272     1.218   -1.044    0.297     -1.272   -0.211 
    MAT_RANGE_v2       -0.319     0.157   -2.035    0.042     -0.319   -0.339 
    pd_fr              14.011    31.951    0.439    0.661     14.011    0.062 
    pd_gr               0.236     3.790    0.062    0.950      0.236    0.007 
    anthropogenic       0.038     0.029    1.323    0.186      0.038    0.222 
    MAT_v2              0.152     0.400    0.380    0.704      0.152    0.069 
    TEMP_WET_Q_v2       0.868     0.707    1.227    0.220      0.868    0.249 
    mpd_lg              5.502     2.762    1.992    0.046      5.502    0.353 
    mntd_lg             4.807     2.492    1.929    0.054      4.807    0.321 
  mpd_fr ~~                                                                   
    mntd_fr           639.723   367.586    1.740    0.082    639.723    0.419 
    mpd_gr            136.036   155.003    0.878    0.380    136.036    0.117 
    mntd_gr            39.803    55.349    0.719    0.472     39.803    0.082 
    MAT_RANGE_v2        5.937     9.479    0.626    0.531      5.937    0.078 
    pd_fr            2678.580  2945.597    0.909    0.363   2678.580    0.148 
    pd_gr             687.842   404.619    1.700    0.089    687.842    0.259 
    anthropogenic       0.527     3.098    0.170    0.865      0.527    0.038 
    MAT_v2             38.908    23.402    1.663    0.096     38.908    0.218 
    TEMP_WET_Q_v2       8.249    41.410    0.199    0.842      8.249    0.029 
    mpd_lg           -149.293   217.568   -0.686    0.493   -149.293   -0.118 
    mntd_lg          -309.155   202.438   -1.527    0.127   -309.155   -0.255 
  mntd_fr ~~                                                                  
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    mpd_gr           -262.540   293.059   -0.896    0.370   -262.540   -0.152 
    mntd_gr            19.651   102.837    0.191    0.848     19.651    0.027 
    MAT_RANGE_v2      -26.138    18.581   -1.407    0.160    -26.138   -0.231 
    pd_fr          -15888.008  5645.448   -2.814    0.005 -15888.008   -0.590 
    pd_gr           -1188.106   657.754   -1.806    0.071  -1188.106   -0.301 
    anthropogenic       6.925     4.548    1.522    0.128      6.925    0.332 
    MAT_v2             12.699    39.679    0.320    0.749     12.699    0.048 
    TEMP_WET_Q_v2      -7.928    59.899   -0.132    0.895     -7.928   -0.019 
    mpd_lg           -551.138   278.319   -1.980    0.048   -551.138   -0.294 
    mntd_lg          -239.955   270.411   -0.887    0.375   -239.955   -0.133 
  mpd_gr ~~                                                                   
    mntd_gr           373.805   151.505    2.467    0.014    373.805    0.678 
    MAT_RANGE_v2       -0.297    15.722   -0.019    0.985     -0.297   -0.003 
    pd_fr            4607.583  3249.016    1.418    0.156   4607.583    0.224 
    pd_gr            2069.005   365.329    5.663    0.000   2069.005    0.687 
    anthropogenic      -5.210     2.407   -2.165    0.030     -5.210   -0.328 
    MAT_v2           -102.813    39.603   -2.596    0.009   -102.813   -0.508 
    TEMP_WET_Q_v2     -33.699    78.556   -0.429    0.668    -33.699   -0.106 
    mpd_lg            -71.885   224.209   -0.321    0.749    -71.885   -0.050 
    mntd_lg           -12.988   189.054   -0.069    0.945    -12.988   -0.009 
  mntd_gr ~~                                                                  
    MAT_RANGE_v2       -1.856     6.048   -0.307    0.759     -1.856   -0.052 
    pd_fr            -160.883  1426.237   -0.113    0.910   -160.883   -0.019 
    pd_gr             417.410   150.315    2.777    0.005    417.410    0.332 
    anthropogenic      -1.770     0.813   -2.176    0.030     -1.770   -0.267 
    MAT_v2            -35.702    23.661   -1.509    0.131    -35.702   -0.422 
    TEMP_WET_Q_v2     -44.309    46.814   -0.946    0.344    -44.309   -0.332 
    mpd_lg            -92.949    98.429   -0.944    0.345    -92.949   -0.156 
    mntd_lg           -60.426    82.353   -0.734    0.463    -60.426   -0.105 
  MAT_RANGE_v2 ~~                                                             
    pd_fr              92.583   253.384    0.365    0.715     92.583    0.069 
    pd_gr              -4.298    28.524   -0.151    0.880     -4.298   -0.022 
    anthropogenic      -0.219     0.158   -1.382    0.167     -0.219   -0.211 
    MAT_v2              2.652     2.164    1.225    0.220      2.652    0.201 
    TEMP_WET_Q_v2      -1.278     3.286   -0.389    0.697     -1.278   -0.061 
    mpd_lg            -15.043    13.875   -1.084    0.278    -15.043   -0.161 
    mntd_lg           -18.487    11.996   -1.541    0.123    -18.487   -0.206 
  pd_fr ~~                                                                    
    pd_gr           18894.317  7667.203    2.464    0.014  18894.317    0.403 
    anthropogenic     -67.867    37.784   -1.796    0.072    -67.867   -0.274 
    MAT_v2            242.857   687.174    0.353    0.724    242.857    0.077 
    TEMP_WET_Q_v2    1295.473   913.367    1.418    0.156   1295.473    0.261 
    mpd_lg           6270.238  3202.960    1.958    0.050   6270.238    0.282 
    mntd_lg          -170.792  3109.931   -0.055    0.956   -170.792   -0.008 
  pd_gr ~~                                                                    
    anthropogenic     -12.234     4.982   -2.456    0.014    -12.234   -0.337 
    MAT_v2             13.155    72.106    0.182    0.855     13.155    0.028 
    TEMP_WET_Q_v2     177.145    86.734    2.042    0.041    177.145    0.243 
    mpd_lg            976.365   545.595    1.790    0.074    976.365    0.299 
    mntd_lg           648.826   408.453    1.588    0.112    648.826    0.207 
  anthropogenic ~~                                                            
    MAT_v2              0.194     0.363    0.535    0.592      0.194    0.080 
    TEMP_WET_Q_v2       1.068     0.494    2.164    0.030      1.068    0.278 
    mpd_lg             -1.947     2.787   -0.699    0.485     -1.947   -0.113 
    mntd_lg            -0.309     2.725   -0.114    0.910     -0.309   -0.019 
  MAT_v2 ~~                                                                   
    TEMP_WET_Q_v2      26.717    13.816    1.934    0.053     26.717    0.546 
    mpd_lg             69.697    36.249    1.923    0.055     69.697    0.318 
    mntd_lg            46.035    34.312    1.342    0.180     46.035    0.219 
  TEMP_WET_Q_v2 ~~                                                            
    mpd_lg            123.989    64.217    1.931    0.054    123.989    0.359 
    mntd_lg           117.803    58.479    2.014    0.044    117.803    0.355 
  mpd_lg ~~                                                                   
    mntd_lg          1343.070   269.567    4.982    0.000   1343.070    0.903 
 
Intercepts: 
                   Estimate    Std.Err   z-value  P(>|z|)   Std.lv    Std.all 
   .llegu_mass         -3.444     4.728   -0.728    0.466     -3.444   -2.539 
   .lforb_mass          6.990     1.019    6.859    0.000      6.990    7.812 
   .lgram_mass         -0.614     1.679   -0.366    0.714     -0.614   -0.599 
   .llitter_mass       13.434     4.022    3.340    0.001     13.434    7.148 
    grazed              0.161     0.064    2.514    0.012      0.161    0.439 
    lMAP_v2             6.678     0.070   95.488    0.000      6.678   16.849 
    mpd_fr            230.283     5.693   40.450    0.000    230.283    7.179 
    mntd_fr           104.258     8.420   12.382    0.000    104.258    2.188 
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    mpd_gr             43.525     6.567    6.628    0.000     43.525    1.198 
    mntd_gr            12.940     2.795    4.629    0.000     12.940    0.853 
    MAT_RANGE_v2       12.112     0.397   30.527    0.000     12.112    5.102 
    pd_fr            1645.574    95.946   17.151    0.000   1645.574    2.909 
    pd_gr             480.095    14.625   32.827    0.000    480.095    5.789 
    anthropogenic       0.258     0.075    3.458    0.001      0.258    0.590 
    MAT_v2             12.110     0.988   12.262    0.000     12.110    2.175 
    TEMP_WET_Q_v2      14.006     1.502    9.325    0.000     14.006    1.594 
    mpd_lg             47.463     7.232    6.563    0.000     47.463    1.206 
    mntd_lg            36.666     6.865    5.341    0.000     36.666    0.970 
 
Variances: 
                   Estimate    Std.Err   z-value  P(>|z|)   Std.lv    Std.all 
   .llegu_mass          0.701     0.197    3.561    0.000      0.701    0.381 
   .lforb_mass          0.439     0.089    4.939    0.000      0.439    0.549 
   .lgram_mass          0.103     0.026    3.935    0.000      0.103    0.097 
   .llitter_mass        1.525     0.477    3.197    0.001      1.525    0.432 
    grazed              0.135     0.043    3.132    0.002      0.135    1.000 
    lMAP_v2             0.157     0.034    4.559    0.000      0.157    1.000 
    mpd_fr           1029.053   240.848    4.273    0.000   1029.053    1.000 
    mntd_fr          2269.742   785.744    2.889    0.004   2269.742    1.000 
    mpd_gr           1319.625   221.073    5.969    0.000   1319.625    1.000 
    mntd_gr           230.241   102.426    2.248    0.025    230.241    1.000 
    MAT_RANGE_v2        5.635     1.168    4.825    0.000      5.635    1.000 
    pd_fr          320027.535 71533.406    4.474    0.000 320027.535    1.000 
    pd_gr            6878.124  2268.107    3.033    0.002   6878.124    1.000 
    anthropogenic       0.191     0.036    5.331    0.000      0.191    1.000 
    MAT_v2             31.014     7.550    4.108    0.000     31.014    1.000 
    TEMP_WET_Q_v2      77.201    26.492    2.914    0.004     77.201    1.000 
    mpd_lg           1548.598   231.155    6.699    0.000   1548.598    1.000 
    mntd_lg          1427.598   304.298    4.691    0.000   1427.598    1.000 
 
R-Square: 
                   Estimate   
    llegu_mass          0.619 
    lforb_mass          0.451 
    lgram_mass          0.903 
    llitter_mass        0.568 
 

  

 

D.3.2 Building a full community model 

We followed a similar approach but using full community biomass and biodiversity descriptors. 

First, we fitted the total of forbs, legumes and graminoids biomass as a function of 

environmental site conditions using a step-backwards approach. Then we created three models 

and added site richness to the first; site level Faith’s PD to the second; and site level Faith’s PD, 

mean phylogenetic distance (MPD) and mean nearest taxonomic distance (MNTD) to the third. 

We run a second step-backwards model with each of them and compared the three models using 

AIC and choose the one with lowest AIC (Table S15). The models with richness and PD only 

dropped those variables, so we added those variables again to explore the information that they 

can provide. Separately, we fitted the litter model as a function of biomass and combined with 
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the PD-MPD-MNTD model, which was the best in the previous step. We used path analysis to 

assess the model quality and identify potential missing links. 

Table S15 Model selection process to represent the effect of diversity on biomass.  
Only MPD provided relevant information to improve the expected biomass model. 

Model	 Initial	 Final	 R2	 AIC	 dAIC	
Basic	 T,	TR,	P,	TW,	Elev,	Lat,	Hem,	Gz,	An,	Fr	 T,	TR,	P,	TW,	Fr	 0.741	 38.9	 1.39	
Richness	 T,	TR,	P,	TW,	Fr,	SR	 T,	TR,	P,	TW,	Fr,	SR†	 0.746	 40.3	 2.74	
PD	 T,	TR,	P,	TW,	Fr,	PD	 T,	TR,	P,	TW,	Fr,	PD†	 0.745	 40.4	 2.84	
PD,	MPD,	MNTD	 T,	TR,	P,	TW,	Fr,	PD,	MPD,	MNTD		 T,	TR,	P,	TW,	Fr,	MPD	 0.767	 37.5	 0	
Note: † Variable dropped and added again 

The combined model (PD, MPD and MNTD) was a good descriptor of the causal links (Fisher’s 

C = 39.4, df = 40, p-value = 0.497). We included missing links identified by the d-separation test 

that were useful to improve litter mass prediction, which decreased AIC but increased AICc. 

Only one link had p-value < 0.1 and was not included because of unclear interpretation (Table 

S16).  
 

Table S16 Missing paths identified by d-separation tests with p-value less than 0.1 in the 

model with total estimates of biomass and biodiversity. 

Response	 Predictor	 Conditional	 Estimate	 SD	 df	 Critical	
value	 p-value	

TEMP_WET_Q_v2	 burned	 slatitude		
+	alatitude	
+	elevation	

6.466	 3.5632	 26	 1.81	 0.081	

In comparison with this model, the final model that partitioned the community in functional 

groups was able (1) to explain a larger proportion of litter accumulation and standing biomass 

and (2) provide more insight in the mechanisms that could be driving biomass and litter 

accumulation. 
 

D.3.3 Single step step-backwards regression 

This approach was used to validate if splitting the variables in two groups when running the step-

backwards regressions generated any improvement to the biomass models compared with a 

single step step-backwards regression (Table S17).  
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Table S17 Comparing single two double step step-backwards approach. 
Step-backwards		
approach	

Legumes	 Graminoids	 Forbs	
df	 AIC	 df	 AIC	 df	 AIC	

Single	step	 10	 102.4	 11	 53.3	 13	 100.8	
Double	step	 9	 103.4	 11	 53.3	 6	 78.0	

Resulting graminoid models were identical, forb model was better with the double step and 

legume model with a single step. The only difference between the legume model with a single 

step and the double step, was that the single step included a negative effect of temperature on 

legumes. Because that negative trend was hard to explain in the absence of interactions with 

other species, we opted to keep the double step model in all the regressions. 

D.3.4 Other climatic variables 

Once the biomass models were fitted we compared the models with models fitted using climatic 

variables only, and tested in particular if adding average insolation of the site improved the 

biomass estimates of the functional groups. We used the Insolation Incident On A Horizontal 

Surface (kWh/m2/day) estimated and made available by NASA Surface meteorology and Solar 

Energy (SSE) Release 6.0 Data Set (Jan 2008) which average monthly data over a 22-year 

period. (http://eosweb.larc.nasa.gov/sse/). 

Purely climatic variables always had higher AICc values (Table S18) and models including 

insolation did not improve the biomass predictions (Table S19). 

Table S18 Comparing single two double step step-backwards approach 

Type	of	predictor	variables	 Legumes	 Graminoids	 Forbs	
df	 AICc	 df	 AICc	 df	 AICc	

Climate	only	 20	 189.3	 15	 86.9	 16	 112.0	
Climate+Management+Diversity	 9	 103.4	 11	 53.3	 6	 78.0	

 

Table S19 Log-likelihood ratio test of the final model against the model including insolation 
Model	 Res.Df	 RSS	 Df	 Sum	of	Sq	 F	 Pr(>F)	
Legumes	 23	 21.7	 	 	 	 	
	 22	 20.3	 1	 1.339	 1.450	 0.241	
Graminoids	 26	 13.6	 	 	 	 	
	 25	 13.5	 1	 0.111	 0.205	 0.655	
Forbs	 21	 3.2	 	 	 	 	
	 20	 3.2	 1	 0.001	 0.005	 0.942	
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D.3.5 Including phylogenetic descriptors and species richness together 

We re-did the step-backwards selection process for the biomass models to test if adding species 

richness (besides PD, MPD and MNTD) could improve the models. Models that included species 

richness were not better than the models with phylogenetic information only (Table S20). 

Table S20 Comparing the use of species richness besides phylogenetic information. 

Type	of	predictor	variables	 Legumes	 Graminoids	 Forbs	
df	 AICc	 df	 AICc	 df	 AICc	

Including	SR,	PD,	MPD	and	MNTD	 8	 105.1	 11	 91.5	 11	 53.2	
Final	model	(including	PD,	MPD	and	MNTD)	 9	 103.4	 6	 78.0	 11	 53.2	

 

D.3.6 Using PD but not MPD or MNTD 

We re-fitted the model to test the relevance of the information provided by phylogenetic 

similarity (MPD and MNTD). We followed similar steps, using the double step approach but 

without MPD or MNTD, adding missing climatic links and diversity-litter links. The resultant 

model was good (Fisher’s C=117.72, df=124, p-value=0.642). However, the d-separation test 

detected a potential missing link between forbs and legumes biomass (Table S21) . We fitted 

models adding the link in both directions (forbs ← legumes and legumes ← forbs) and found 

that the AIC and the AICc were lower when forbs affected legumes than the opposite direction 

(Table S22). That direct link is lost in the final model, which includes MPD and MNTD. Another 

interesting result of this model is that graminoid diversity has a negative impact on graminoid 

biomass, but the trend is positive in forbs and legumes (Table S23). 
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Table S21 Missing paths identified by d-separation tests with p-value less than 0.1 in the 

model with diversity described by PD only. 

Response	 Predictor	 Conditional	 Estimate	 SD	 df	 Critical	
value	 p-value	

MAT_v2	 pd_lg	 slatitude	
	+	alatitude	
	+	elevation	

0.0166	 0.0075	 26	 2.1985	 0.037	

TEMP_WET_Q_v2		 pd_fr	 slatitude		
+	alatitude	
+	elevation	

0.004	 0.0021	 26	 1.9337	 0.0641	

TEMP_WET_Q_v2		 pd_gr	 slatitude	
	+	alatitude	
	+	elevation	

0.0459	 0.0158	 26	 2.9033	 0.0074	

llitter_mass	 MAT_v2	 slatitude	
	+	alatitude	
	+	elevation	
	+	grazed	
	+	pd_gr	
	+	lforb_mass	
	+	lgram_mass	

-0.2937	 0.1218	 22	 -2.4119	 0.0247	

lforb_mass	 llegu_mass	 grazed	
	+	pd_lg	
	+	lMAP_v2	
	+	pd_fr	
	+	pd_gr	
	+	MAT_RANGE_v2	

0.2588	 0.1239	 23	 2.0888	 0.048	

 

Table S22 Comparing PD-only models with and without direct link between forb and 

legume biomass. 
Model	 AIC	 AICc	 K	 n	
PD-only	model	 209.72	 -60.53	 46	 31	
PD-only	model	+	(forbs	←	legumes)	 208.74	 -56.67	 47	 31	
PD-only	model	+	(legumes	←	forbs)	 204.61	 -60.80	 47	 31	
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Table S23 Structural equation model using only Faith’s PD as a descriptor of biodiversity.  
The model represents the effect of (1) climate, management and phylogenetic relatedness on functional group 
biomass production; and (2) management, phylogenetic relatedness and functional group biomass production on 
litter accumulation. The part of the model that captures the effect of location on climate is identical to the climate 
part in the final model. Values represent coefficients; squared bracketed values represent standardized coefficients. 

Predictor Legumes 
(gr)† 

Forbs  
(gr) † 

Graminoi
ds (gr) † 

Litter 
(gr)† 

(Intercept) -9.657 *  6.768 
*** 0.345 11.583 *** 

Temp. (˚C)   
0.034 . 
[0.185]  

Temp. range (˚C)  
-0.121 * 
[-0.321] 

-0.111 * 
[-0.256]  

Precip. (mm)† 0.831  
[0.246]  

1.087 *** 
[0.420]  

Temp. wet quarter   
0.077 *** 

[0.663]  

Anthropogenic   
-0.841 ** 
[-0.359]  

Burned     
Grazed 0.961  

[0.264]   
-1.886 * 
[-0.366] 

Forbs (gr)† 0.476 * 
[0.318]   

-0.747 * 
[-0.353] 

Graminoids (gr)†    
0.523 . 
[0.283] 

Legumes (gr)†     
Graminoids: PD  

-0.006 ** 
[-0.515] 

-0.004 ** 
[-0.315] 

-0.015 *** 
[-0.652] 

Forbs:  PD  
0.001 ** 
[0.477] 

-0.000  
[-0.150]  

Legumes: PD 0.009 * 
[0.331]    

SD 1.1204 0.7613 0.4782 1.5120 
R2 0.4125 0.3695 0.839 0.4663 
Normality test 
(p.value) 0.6123 0.5983 0.704 0.1614 

Notes: † variable were log-transformed or log+1 transformed if zeros present. Cells’ colors: Red: Variable not added. White: 
Included in the model, if no numbers, the variable was dropped by the step backwards algorithm. Orange: Variables fixed (not 
affected by step backwards algorithm). Green: Variables added after the piecewise SEM detected high correlation for the 
conditional variables. Model fit: Fisher's C = 182.48, d.f. = 184, p-value = 0.518. 

 

D.3.7 Alternative litter models 

We compared the final litter model with models without partitions using species phylogenetic 

descriptors (Faith’s PD, MPD and MNTD) and richness only. The last two models were built 

using a similar process by doing first a step-backwards model to reduce the set of variables in the 

models to those that provide relevant information. We compared the models using AIC and AICc 

(Table S24). 
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Table S24 Comparing litter models using partitions and without partitions with different 

diversity descriptors 

Type	of	predictor	variables	 Litter	(log+1	transformed)	
n	 R2	 AIC	 AICc	

Final	model	with	partitions	 31	 0.579	 118.8	 0	
Phylogenetic	model	without	partitions	 31	 0.250	 130.7	 11.89	
Species	richness	model	without	partitions	 31	 0.252	 130.6	 11.81	
 

D.3.8 Building the step-backwards models without diversity info 

We tested fitting the models without diversity information, using a single step-backwards 

regression. The combined model was good (Fisher’s C=96.25, df=90, p-value=0.307) but the 

biomass models were poorer predictors than the models including diversity information (Table 

S25). 

Table S25 Comparing the use of species richness besides phylogenetic information 

Type	of	predictor	variables	 Litter	 Legumes	 Graminoids	 Forbs	
df	 AICc	 df	 AICc	 df	 AICc	 df	 AICc	

Models	without	diversity	 4	 132.0	 4	 108.2	 7	 67.6	 3	 85.5	
Final	models	 9	 127.4	 9	 103.4	 11	 53.3	 6	 78.0	

 

D.3.9 Productivity as a driver of diversity 

We tested the directionality of the causal link by reversing the metamodel and repeating the 

algorithm that we used to build the final model: Running first step-backwards models for 

biomass using climate and management, then for phylogenetic diversity (relatedness) descriptors 

using biomass and for litter using biomass only. Then we combined the individual models and do 

a path analysis test, and added the missing links that were significant and logic. As before, we 

did not add direct links between phylogenetic diversity descriptors and climate or site location 

predictors, and we only added predictors if the sign was consistent with some biological 

expectation. The final reversed model was unlikely to be a good model to explain the observed 

data (Fisher’s C=318.2, df=264, p-value=0.012), and it was worst than the final model (ΔAICc = 

168.5, Table S26). 
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Figure S22 Scheme of the basic relation between the location, climate, management, 

phylogenetic biodiversity, biomass and litter when assuming that biomass drive diversity. 
Litter depended on legume (LM), forb (FM) and graminoid (GM) biomass. Each biomass was expected to be a 
function of climate (described as precipitation, P, average temperature of the wettest quarter, TW, annual average 
temperature, T, and temperature range, TR) and local management. Species relatedness was caused by biomass. Site 
location (described as a North-South dummy, Hem, distance to equator, Lat, and elevation, Elev). In turn, site 
location controlled the climatic conditions. Except for the links between location and climate, all the other links 
could be dropped. The red arrows represent the arrows reversed compared to Figure S21. 

 

Table S26 Comparing the use of species richness besides phylogenetic information. 

Metamodel	 Fisher’s	C	 AIC	
Fisher.C	 df	 p.value	 AIC	 AICc	 K	 n	

Diversity	is	caused	by	biomass	 318.2	 264	 0.012	 474.2	 217.4	 78	 31	
Biomass	is	caused	by	diversity	 182.5	 184	 0.518	 294.5	 48.9	 56	 31	

 

 

D.4 Details of the realized biomass-biodiversity models 

We represented functional group diversity as a function of functional groups biomass, litter mass 

as a function of each functional group diversity and biomass. We used equation 1 to represent 

TRTP TW

LM FM GM

Litter

Climate

Relatedness

Management

Site location

Lat ElevHem
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functional group diversity, and equation 2 to represent litter mass and linked them using the 

packages lavaan (Rosseel et al. 2017) and piecewiseSEM (Lefcheck 2016). Biomass was 

represented using quadratic terms. As before, we used a step-backwards approach using AIC to 

drop variables that were not needed. Linear terms were always kept if the quadratic terms were 

retained by the step-backwards approach. We started fitting the model with piecewiseSEM and 

testing for missing links. If a link was needed (p-value < 0.1), we added if biologically logical. 

We found in several cases that a direct link between functional groups diversity metrics was 

required, but we did not include those links in the absence of a conceptual model that support 

them (for instance, graminoid PD significantly decreased legume PD even after controlling for 

the effect of above ground biomass, which was non-significant p-value > 0.15 for the linear and 

the quadratic term). 

D.4.1 Final Faith’s PD model 
lavaan (0.5-23.1097) converged normally after 1191 iterations 
 
  Number of observations                          1697 
 
  Estimator                                         ML 
  Minimum Function Test Statistic                7.190 
  Degrees of freedom                                 3 
  P-value (Chi-square)                           0.066 
  P-value (Bollen-Stine Bootstrap)               1.000 
 
Parameter Estimates: 
 
  Information                                 Observed 
  Standard Errors                            Bootstrap 
  Number of requested bootstrap draws             1000 
  Number of successful bootstrap draws            1000 
 
Regressions: 
                   Estimate   Std.Err  z-value  P(>|z|)   Std.lv   Std.all 
  pd_lg ~                                                                  
    arch.us         -305.208   18.553  -16.451    0.000  -305.208   -0.196 
    azi.cn            -5.048   14.566   -0.347    0.729    -5.048   -0.003 
    barta.us        -189.969   34.285   -5.541    0.000  -189.969   -0.122 
    bnch.us         -100.077   32.520   -3.077    0.002  -100.077   -0.064 
    bogong.au       -303.214   17.940  -16.901    0.000  -303.214   -0.194 
    bttr.us         -106.608   30.402   -3.507    0.000  -106.608   -0.068 
    bunya.au        -180.438   37.590   -4.800    0.000  -180.438   -0.116 
    burrawan.au     -302.907   18.085  -16.749    0.000  -302.907   -0.194 
    burren.ie         -5.027   13.928   -0.361    0.718    -5.027   -0.003 
    cbgb.us         -212.007   27.732   -7.645    0.000  -212.007   -0.181 
    cdcr.us         -236.828   27.111   -8.735    0.000  -236.828   -0.195 
    cdpt.us         -201.511   29.686   -6.788    0.000  -201.511   -0.181 
    chilcas.ar      -173.516   36.942   -4.697    0.000  -173.516   -0.111 
    cowi.ca          130.672   17.091    7.646    0.000   130.672    0.084 
    doane.us        -151.863   30.894   -4.916    0.000  -151.863   -0.136 
    gall.it         -139.300   35.239   -3.953    0.000  -139.300   -0.092 
    gilb.za           19.744   11.262    1.753    0.080    19.744    0.014 
    glac.us         -106.129   32.320   -3.284    0.001  -106.129   -0.068 
    glcr.us         -179.097   35.436   -5.054    0.000  -179.097   -0.115 
    hall.us         -293.756   22.876  -12.841    0.000  -293.756   -0.188 
    hast.us          -32.676   32.407   -1.008    0.313   -32.676   -0.021 
    hnvr.us          -35.527   19.082   -1.862    0.063   -35.527   -0.023 
    kibber.in       -182.124   46.805   -3.891    0.000  -182.124   -0.117 
    kidman.au        -76.634   28.811   -2.660    0.008   -76.634   -0.063 
    kirik.ee          -0.943   12.453   -0.076    0.940    -0.943   -0.001 
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    koffler.ca       -29.994   19.554   -1.534    0.125   -29.994   -0.021 
    konz.us           12.367   38.358    0.322    0.747    12.367    0.008 
    lead.us         -322.895   21.739  -14.853    0.000  -322.895   -0.207 
    look.us         -272.335   31.183   -8.733    0.000  -272.335   -0.175 
    marc.ar         -200.210   44.354   -4.514    0.000  -200.210   -0.128 
    mcla.us         -279.749   19.212  -14.562    0.000  -279.749   -0.179 
    mtca.au         -234.875   31.773   -7.392    0.000  -234.875   -0.173 
    ping.au          -26.647   15.896   -1.676    0.094   -26.647   -0.017 
    pinj.au         -116.921   39.015   -2.997    0.003  -116.921   -0.075 
    potrok.ar       -140.270   44.535   -3.150    0.002  -140.270   -0.090 
    sage.us           18.512   30.672    0.604    0.546    18.512    0.012 
    sedg.us         -313.472   18.631  -16.826    0.000  -313.472   -0.201 
    sereng.tz        -81.449   36.144   -2.253    0.024   -81.449   -0.052 
    sgs.us          -300.238   20.071  -14.959    0.000  -300.238   -0.192 
    sier.us          -32.595   19.674   -1.657    0.098   -32.595   -0.021 
    smith.us          -5.798   11.546   -0.502    0.616    -5.798   -0.004 
    spin.us          -29.564   23.915   -1.236    0.216   -29.564   -0.019 
    spv.ar          -281.364   28.890   -9.739    0.000  -281.364   -0.180 
    sval.no         -328.181   23.420  -14.013    0.000  -328.181   -0.210 
    tyso.us           51.448   20.623    2.495    0.013    51.448    0.038 
    ukul.za           -7.752   30.396   -0.255    0.799    -7.752   -0.005 
    unc.us           -76.002   31.007   -2.451    0.014   -76.002   -0.049 
    uwo.ca           -24.238   19.977   -1.213    0.225   -24.238   -0.016 
    valm.ch           -6.354   16.735   -0.380    0.704    -6.354   -0.004 
    yarra.au        -278.781   25.139  -11.089    0.000  -278.781   -0.203 
    llegu_mass        87.495   12.545    6.975    0.000    87.495    0.575 
    llegu_mass2      -13.635    2.723   -5.007    0.000   -13.635   -0.328 
    lgram_mass        46.267   19.356    2.390    0.017    46.267    0.259 
    lgram_mass2       -6.049    2.256   -2.682    0.007    -6.049   -0.292 
    lforb_mass         2.695    8.153    0.331    0.741     2.695    0.023 
    lforb_mass2        0.734    1.482    0.495    0.620     0.734    0.035 
  pd_gr ~                                                                  
    arch.us          126.265    7.261   17.388    0.000   126.265    0.255 
    azi.cn           103.595    3.415   30.339    0.000   103.595    0.209 
    barta.us          84.251    7.450   11.308    0.000    84.251    0.170 
    bnch.us           90.642    5.537   16.369    0.000    90.642    0.183 
    bogong.au         94.987    4.785   19.852    0.000    94.987    0.192 
    bttr.us           65.027   15.481    4.200    0.000    65.027    0.131 
    bunya.au          17.074    7.374    2.315    0.021    17.074    0.035 
    burrawan.au       74.050    7.175   10.321    0.000    74.050    0.150 
    burren.ie         93.729    3.628   25.836    0.000    93.729    0.189 
    cbgb.us           -2.851    3.980   -0.716    0.474    -2.851   -0.008 
    cdcr.us           58.341    7.221    8.080    0.000    58.341    0.151 
    cdpt.us           97.962    4.102   23.883    0.000    97.962    0.277 
    chilcas.ar        96.958    7.609   12.743    0.000    96.958    0.196 
    cowi.ca           -8.906    3.480   -2.559    0.010    -8.906   -0.018 
    doane.us          38.964    6.078    6.411    0.000    38.964    0.110 
    gall.it           31.053    8.401    3.696    0.000    31.053    0.065 
    gilb.za          233.868    9.111   25.669    0.000   233.868    0.517 
    glac.us           46.714    7.930    5.890    0.000    46.714    0.094 
    glcr.us           11.637    3.270    3.558    0.000    11.637    0.024 
    hall.us           -1.820    6.465   -0.282    0.778    -1.820   -0.004 
    hast.us           -0.987    4.392   -0.225    0.822    -0.987   -0.002 
    hnvr.us           15.321    7.448    2.057    0.040    15.321    0.031 
    kibber.in         69.491   32.627    2.130    0.033    69.491    0.140 
    kidman.au         16.387    5.563    2.946    0.003    16.387    0.042 
    kirik.ee          86.382    3.101   27.853    0.000    86.382    0.175 
    koffler.ca        -1.239    7.029   -0.176    0.860    -1.239   -0.003 
    konz.us           93.292    3.874   24.079    0.000    93.292    0.189 
    lead.us          -12.122    6.229   -1.946    0.052   -12.122   -0.024 
    look.us           84.104    6.788   12.391    0.000    84.104    0.170 
    marc.ar           45.519   10.127    4.495    0.000    45.519    0.092 
    mcla.us           -6.364    3.722   -1.710    0.087    -6.364   -0.013 
    mtca.au           58.037    4.776   12.151    0.000    58.037    0.135 
    ping.au           -4.910    3.945   -1.245    0.213    -4.910   -0.010 
    pinj.au            7.660    3.979    1.925    0.054     7.660    0.015 
    potrok.ar         98.880    5.353   18.473    0.000    98.880    0.200 
    sage.us           -4.578   25.598   -0.179    0.858    -4.578   -0.009 
    sedg.us           -9.386    4.103   -2.288    0.022    -9.386   -0.019 
    sereng.tz        139.500    6.845   20.380    0.000   139.500    0.282 
    sgs.us            70.555    5.270   13.388    0.000    70.555    0.143 
    sier.us           -4.796    2.453   -1.955    0.051    -4.796   -0.010 
    smith.us           0.982    2.419    0.406    0.685     0.982    0.002 
    spin.us            0.041    3.600    0.011    0.991     0.041    0.000 
    spv.ar            29.834    5.836    5.112    0.000    29.834    0.060 
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    sval.no            9.443    8.507    1.110    0.267     9.443    0.019 
    tyso.us           16.759    3.053    5.489    0.000    16.759    0.039 
    ukul.za           25.976    5.493    4.729    0.000    25.976    0.052 
    unc.us            54.150    3.353   16.149    0.000    54.150    0.109 
    uwo.ca            71.494    5.882   12.154    0.000    71.494    0.144 
    valm.ch           65.894    8.077    8.158    0.000    65.894    0.133 
    yarra.au          27.816    7.580    3.670    0.000    27.816    0.064 
    llegu_mass         1.448    2.863    0.506    0.613     1.448    0.030 
    llegu_mass2       -0.711    0.670   -1.062    0.288    -0.711   -0.054 
    lgram_mass        60.370   16.221    3.722    0.000    60.370    1.064 
    lgram_mass2       -5.999    1.625   -3.691    0.000    -5.999   -0.912 
    lforb_mass        -1.311    1.926   -0.681    0.496    -1.311   -0.035 
    lforb_mass2        0.455    0.368    1.237    0.216     0.455    0.069 
  pd_fr ~                                                                  
    arch.us          127.521   54.333    2.347    0.019   127.521    0.043 
    azi.cn           918.200   62.714   14.641    0.000   918.200    0.310 
    barta.us        -202.805   50.516   -4.015    0.000  -202.805   -0.068 
    bnch.us         -315.646   53.835   -5.863    0.000  -315.646   -0.107 
    bogong.au        362.926   57.345    6.329    0.000   362.926    0.122 
    bttr.us          172.306   70.970    2.428    0.015   172.306    0.058 
    bunya.au        -288.973   50.419   -5.731    0.000  -288.973   -0.098 
    burrawan.au      -74.968   61.663   -1.216    0.224   -74.968   -0.025 
    burren.ie        681.302   69.974    9.736    0.000   681.302    0.230 
    cbgb.us         -307.515   44.943   -6.842    0.000  -307.515   -0.138 
    cdcr.us         -254.072   55.103   -4.611    0.000  -254.072   -0.110 
    cdpt.us            4.627   51.923    0.089    0.929     4.627    0.002 
    chilcas.ar      -127.715   58.442   -2.185    0.029  -127.715   -0.043 
    cowi.ca         -625.668   60.962  -10.263    0.000  -625.668   -0.211 
    doane.us        -430.319   45.488   -9.460    0.000  -430.319   -0.204 
    gall.it          143.470   64.852    2.212    0.027   143.470    0.050 
    gilb.za          302.551   50.035    6.047    0.000   302.551    0.112 
    glac.us         -294.911   58.852   -5.011    0.000  -294.911   -0.100 
    glcr.us         -426.728   55.381   -7.705    0.000  -426.728   -0.144 
    hall.us         -277.841   54.830   -5.067    0.000  -277.841   -0.094 
    hast.us         -291.048   56.756   -5.128    0.000  -291.048   -0.098 
    hnvr.us          -47.572   51.830   -0.918    0.359   -47.572   -0.016 
    kibber.in       -449.213   62.642   -7.171    0.000  -449.213   -0.152 
    kidman.au       -294.409   45.831   -6.424    0.000  -294.409   -0.128 
    kirik.ee         616.929   55.247   11.167    0.000   616.929    0.208 
    koffler.ca      -285.460   51.414   -5.552    0.000  -285.460   -0.105 
    konz.us         -129.964   47.085   -2.760    0.006  -129.964   -0.044 
    lead.us         -262.759   55.161   -4.764    0.000  -262.759   -0.089 
    look.us         -261.636   54.244   -4.823    0.000  -261.636   -0.088 
    marc.ar         -394.407   54.082   -7.293    0.000  -394.407   -0.133 
    mcla.us         -517.366   61.967   -8.349    0.000  -517.366   -0.175 
    mtca.au           -2.199   52.771   -0.042    0.967    -2.199   -0.001 
    ping.au         -292.183   48.877   -5.978    0.000  -292.183   -0.099 
    pinj.au         -364.769   56.976   -6.402    0.000  -364.769   -0.123 
    potrok.ar        128.742   54.985    2.341    0.019   128.742    0.043 
    sage.us          139.045   66.544    2.090    0.037   139.045    0.047 
    sedg.us         -339.543   48.202   -7.044    0.000  -339.543   -0.115 
    sereng.tz       -238.109   48.451   -4.914    0.000  -238.109   -0.080 
    sgs.us          -275.616   50.366   -5.472    0.000  -275.616   -0.093 
    sier.us         -290.215   50.227   -5.778    0.000  -290.215   -0.098 
    smith.us         130.131   50.847    2.559    0.010   130.131    0.044 
    spin.us         -307.133   41.642   -7.376    0.000  -307.133   -0.104 
    spv.ar          -386.775   48.058   -8.048    0.000  -386.775   -0.131 
    sval.no          -92.041   56.003   -1.644    0.100   -92.041   -0.031 
    tyso.us         -284.182   54.761   -5.190    0.000  -284.182   -0.110 
    ukul.za          406.380   57.857    7.024    0.000   406.380    0.137 
    unc.us          -142.191   57.944   -2.454    0.014  -142.191   -0.048 
    uwo.ca          -362.321   53.545   -6.767    0.000  -362.321   -0.122 
    valm.ch          858.360   67.527   12.711    0.000   858.360    0.290 
    yarra.au        -238.978   47.710   -5.009    0.000  -238.978   -0.092 
    llegu_mass        15.023   16.687    0.900    0.368    15.023    0.052 
    llegu_mass2       -4.301    4.016   -1.071    0.284    -4.301   -0.054 
    lgram_mass        -4.608   23.052   -0.200    0.842    -4.608   -0.014 
    lgram_mass2       -3.705    2.696   -1.374    0.169    -3.705   -0.094 
    lforb_mass        42.396   11.848    3.578    0.000    42.396    0.190 
    lforb_mass2       -4.741    2.202   -2.153    0.031    -4.741   -0.120 
  llitter_mass ~                                                           
    arch.us           -1.988    0.173  -11.500    0.000    -1.988   -0.130 
    azi.cn            -1.323    0.155   -8.527    0.000    -1.323   -0.086 
    barta.us          -0.484    0.157   -3.092    0.002    -0.484   -0.032 
    bnch.us           -1.236    0.151   -8.206    0.000    -1.236   -0.081 
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    bogong.au         -2.119    0.176  -12.021    0.000    -2.119   -0.138 
    bttr.us           -0.620    0.169   -3.672    0.000    -0.620   -0.040 
    bunya.au          -0.272    0.286   -0.951    0.342    -0.272   -0.018 
    burrawan.au       -2.720    0.278   -9.775    0.000    -2.720   -0.178 
    burren.ie         -0.459    0.152   -3.030    0.002    -0.459   -0.030 
    cbgb.us            0.669    0.134    5.009    0.000     0.669    0.058 
    cdcr.us           -2.021    0.154  -13.090    0.000    -2.021   -0.169 
    cdpt.us           -5.490    0.169  -32.584    0.000    -5.490   -0.502 
    chilcas.ar         0.467    0.129    3.627    0.000     0.467    0.031 
    cowi.ca           -1.870    0.176  -10.635    0.000    -1.870   -0.122 
    doane.us          -0.282    0.139   -2.022    0.043    -0.282   -0.026 
    gall.it           -2.161    0.287   -7.521    0.000    -2.161   -0.146 
    gilb.za           -5.829    0.181  -32.271    0.000    -5.829   -0.416 
    glac.us           -0.653    0.132   -4.953    0.000    -0.653   -0.043 
    glcr.us            0.449    0.125    3.602    0.000     0.449    0.029 
    hall.us            0.115    0.167    0.689    0.491     0.115    0.008 
    hast.us           -0.643    0.170   -3.771    0.000    -0.643   -0.042 
    hnvr.us           -1.102    0.199   -5.534    0.000    -1.102   -0.072 
    kibber.in         -4.418    0.253  -17.434    0.000    -4.418   -0.288 
    kidman.au         -1.784    0.262   -6.810    0.000    -1.784   -0.149 
    kirik.ee          -0.698    0.191   -3.654    0.000    -0.698   -0.046 
    koffler.ca        -0.146    0.148   -0.987    0.324    -0.146   -0.010 
    konz.us           -5.825    0.223  -26.176    0.000    -5.825   -0.380 
    lead.us            0.394    0.158    2.491    0.013     0.394    0.026 
    look.us           -1.689    0.212   -7.949    0.000    -1.689   -0.110 
    marc.ar            0.196    0.198    0.990    0.322     0.196    0.013 
    mcla.us            0.118    0.137    0.865    0.387     0.118    0.008 
    mtca.au           -5.310    0.153  -34.739    0.000    -5.310   -0.399 
    ping.au           -2.318    0.195  -11.874    0.000    -2.318   -0.151 
    pinj.au           -0.569    0.145   -3.926    0.000    -0.569   -0.037 
    potrok.ar         -1.624    0.163   -9.962    0.000    -1.624   -0.106 
    sage.us           -1.099    0.215   -5.120    0.000    -1.099   -0.072 
    sedg.us           -0.076    0.150   -0.503    0.615    -0.076   -0.005 
    sereng.tz         -3.777    0.153  -24.766    0.000    -3.777   -0.247 
    sgs.us            -5.669    0.201  -28.209    0.000    -5.669   -0.370 
    sier.us           -1.138    0.216   -5.263    0.000    -1.138   -0.074 
    smith.us          -1.202    0.128   -9.366    0.000    -1.202   -0.078 
    spin.us           -0.571    0.118   -4.846    0.000    -0.571   -0.037 
    spv.ar            -0.697    0.189   -3.679    0.000    -0.697   -0.045 
    sval.no           -1.305    0.191   -6.834    0.000    -1.305   -0.085 
    tyso.us           -2.937    0.188  -15.642    0.000    -2.937   -0.221 
    ukul.za           -5.220    0.174  -30.017    0.000    -5.220   -0.341 
    unc.us            -1.241    0.216   -5.754    0.000    -1.241   -0.081 
    uwo.ca            -1.336    0.146   -9.169    0.000    -1.336   -0.087 
    valm.ch           -3.332    0.245  -13.613    0.000    -3.332   -0.218 
    yarra.au          -0.524    0.144   -3.626    0.000    -0.524   -0.039 
    pd_fr             -0.000    0.000   -2.717    0.007    -0.000   -0.052 
    pd_gr              0.003    0.000    6.191    0.000     0.003    0.096 
    pd_lg             -0.000    0.000   -2.007    0.045    -0.000   -0.031 
    llegu_mass        -0.141    0.070   -2.001    0.045    -0.141   -0.094 
    llegu_mass2        0.024    0.016    1.508    0.132     0.024    0.059 
    lgram_mass         0.248    0.125    1.978    0.048     0.248    0.141 
    lgram_mass2       -0.001    0.015   -0.087    0.931    -0.001   -0.006 
    lforb_mass        -0.098    0.043   -2.290    0.022    -0.098   -0.085 
    lforb_mass2        0.027    0.008    3.312    0.001     0.027    0.130 
 
Intercepts: 
                   Estimate   Std.Err  z-value  P(>|z|)   Std.lv   Std.all 
   .pd_lg            212.688   49.512    4.296    0.000   212.688    1.034 
   .pd_gr            254.527   39.560    6.434    0.000   254.527    3.903 
   .pd_fr            927.532   71.115   13.043    0.000   927.532    2.376 
   .llitter_mass       3.564    0.319   11.158    0.000     3.564    1.765 
 
Variances: 
                   Estimate   Std.Err  z-value  P(>|z|)   Std.lv   Std.all 
   .pd_lg          16158.872  683.122   23.654    0.000 16158.872    0.382 
   .pd_gr           1452.190  220.964    6.572    0.000  1452.190    0.342 
   .pd_fr          32655.664 1406.937   23.210    0.000 32655.664    0.214 
   .llitter_mass       0.492    0.043   11.433    0.000     0.492    0.121 
 
R-Square: 
                   Estimate  
    pd_lg              0.618 
    pd_gr              0.658 
    pd_fr              0.786 
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    llitter_mass       0.879 
 
 
Fit measures: 
  cfi rmsea  srmr  
1.000 0.029 0.000  
 

 

D.4.2 Final species richness model 
lavaan (0.5-23.1097) converged normally after 460 iterations 
 
  Number of observations                          1697 
 
  Estimator                                         ML 
  Minimum Function Test Statistic               28.114 
  Degrees of freedom                                 3 
  P-value (Chi-square)                           0.000 
  P-value (Bollen-Stine Bootstrap)               1.000 
 
Parameter Estimates: 
 
  Information                                 Observed 
  Standard Errors                            Bootstrap 
  Number of requested bootstrap draws             1000 
  Number of successful bootstrap draws            1000 
 
 
Regressions: 
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all 
  sr_lg ~                                                                
    arch.us          -1.554    0.082  -18.866    0.000   -1.554   -0.165 
    azi.cn            0.957    0.141    6.793    0.000    0.957    0.102 
    barta.us         -1.313    0.099  -13.276    0.000   -1.313   -0.140 
    bnch.us          -0.970    0.117   -8.307    0.000   -0.970   -0.103 
    bogong.au        -1.574    0.083  -18.876    0.000   -1.574   -0.167 
    bttr.us          -1.176    0.106  -11.131    0.000   -1.176   -0.125 
    bunya.au         -1.181    0.120   -9.822    0.000   -1.181   -0.126 
    burrawan.au      -1.557    0.082  -18.933    0.000   -1.557   -0.166 
    burren.ie         1.817    0.204    8.895    0.000    1.817    0.193 
    cbgb.us          -1.291    0.108  -11.931    0.000   -1.291   -0.183 
    cdcr.us          -1.346    0.099  -13.601    0.000   -1.346   -0.184 
    cdpt.us          -1.285    0.106  -12.088    0.000   -1.285   -0.191 
    chilcas.ar       -1.241    0.112  -11.090    0.000   -1.241   -0.132 
    cowi.ca           1.082    0.167    6.476    0.000    1.082    0.115 
    doane.us         -1.160    0.112  -10.370    0.000   -1.160   -0.173 
    gall.it          -1.122    0.131   -8.575    0.000   -1.122   -0.123 
    gilb.za           0.709    0.122    5.826    0.000    0.709    0.082 
    glac.us          -1.182    0.108  -10.944    0.000   -1.182   -0.126 
    glcr.us          -1.189    0.118  -10.076    0.000   -1.189   -0.126 
    hall.us          -1.561    0.090  -17.339    0.000   -1.561   -0.166 
    hast.us          -0.552    0.148   -3.737    0.000   -0.552   -0.059 
    hnvr.us          -0.545    0.137   -3.975    0.000   -0.545   -0.058 
    kibber.in        -1.167    0.149   -7.854    0.000   -1.167   -0.124 
    kidman.au        -0.900    0.120   -7.499    0.000   -0.900   -0.123 
    kirik.ee          2.161    0.204   10.607    0.000    2.161    0.230 
    koffler.ca       -1.053    0.094  -11.138    0.000   -1.053   -0.122 
    konz.us          -0.539    0.162   -3.336    0.001   -0.539   -0.057 
    lead.us          -1.676    0.100  -16.732    0.000   -1.676   -0.178 
    look.us          -1.486    0.106  -13.992    0.000   -1.486   -0.158 
    marc.ar          -1.376    0.147   -9.356    0.000   -1.376   -0.146 
    mcla.us          -1.429    0.083  -17.114    0.000   -1.429   -0.152 
    mtca.au          -1.389    0.108  -12.868    0.000   -1.389   -0.170 
    ping.au          -0.276    0.119   -2.317    0.020   -0.276   -0.029 
    pinj.au          -0.785    0.191   -4.116    0.000   -0.785   -0.083 
    potrok.ar        -1.041    0.147   -7.098    0.000   -1.041   -0.111 
    sage.us          -0.747    0.106   -7.035    0.000   -0.747   -0.079 
    sedg.us          -1.604    0.084  -19.054    0.000   -1.604   -0.171 
    sereng.tz        -0.922    0.123   -7.505    0.000   -0.922   -0.098 
    sgs.us           -1.519    0.085  -17.835    0.000   -1.519   -0.161 
    sier.us          -0.578    0.126   -4.597    0.000   -0.578   -0.061 
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    smith.us          1.495    0.196    7.623    0.000    1.495    0.159 
    spin.us          -0.560    0.118   -4.730    0.000   -0.560   -0.060 
    spv.ar           -1.486    0.103  -14.389    0.000   -1.486   -0.158 
    sval.no          -1.689    0.102  -16.609    0.000   -1.689   -0.180 
    tyso.us          -0.599    0.096   -6.260    0.000   -0.599   -0.073 
    ukul.za           0.576    0.251    2.296    0.022    0.576    0.061 
    unc.us           -1.034    0.095  -10.852    0.000   -1.034   -0.110 
    uwo.ca           -0.399    0.160   -2.489    0.013   -0.399   -0.042 
    valm.ch           0.593    0.188    3.160    0.002    0.593    0.063 
    yarra.au         -1.458    0.094  -15.543    0.000   -1.458   -0.176 
    llegu_mass        0.315    0.061    5.166    0.000    0.315    0.343 
    llegu_mass2      -0.037    0.016   -2.364    0.018   -0.037   -0.147 
    lgram_mass        0.189    0.057    3.317    0.001    0.189    0.175 
    lgram_mass2      -0.025    0.007   -3.511    0.000   -0.025   -0.196 
    lforb_mass        0.017    0.034    0.497    0.619    0.017    0.024 
    lforb_mass2       0.004    0.007    0.666    0.506    0.004    0.035 
  sr_gr ~                                                                
    arch.us           2.390    0.466    5.127    0.000    2.390    0.127 
    azi.cn            3.935    0.360   10.920    0.000    3.935    0.209 
    barta.us          2.418    0.365    6.630    0.000    2.418    0.129 
    bnch.us           0.106    0.354    0.299    0.765    0.106    0.006 
    bogong.au         0.969    0.306    3.165    0.002    0.969    0.052 
    bttr.us          -0.770    0.377   -2.043    0.041   -0.770   -0.041 
    bunya.au         -2.189    0.321   -6.825    0.000   -2.189   -0.116 
    burrawan.au       0.940    0.349    2.693    0.007    0.940    0.050 
    burren.ie         4.262    0.369   11.553    0.000    4.262    0.227 
    cbgb.us          -2.173    0.280   -7.765    0.000   -2.173   -0.154 
    cdcr.us           0.510    0.311    1.641    0.101    0.510    0.035 
    cdpt.us           0.361    0.299    1.205    0.228    0.361    0.027 
    chilcas.ar        3.429    0.589    5.821    0.000    3.429    0.182 
    cowi.ca          -3.175    0.256  -12.400    0.000   -3.175   -0.169 
    doane.us         -1.527    0.263   -5.803    0.000   -1.527   -0.114 
    gall.it           0.142    0.331    0.429    0.668    0.142    0.008 
    gilb.za           5.242    0.337   15.542    0.000    5.242    0.305 
    glac.us          -2.019    0.289   -6.982    0.000   -2.019   -0.107 
    glcr.us          -1.655    0.269   -6.150    0.000   -1.655   -0.088 
    hall.us          -1.770    0.287   -6.170    0.000   -1.770   -0.094 
    hast.us          -1.329    0.309   -4.295    0.000   -1.329   -0.071 
    hnvr.us          -2.019    0.285   -7.073    0.000   -2.019   -0.107 
    kibber.in        -1.900    0.387   -4.907    0.000   -1.900   -0.101 
    kidman.au        -1.880    0.273   -6.896    0.000   -1.880   -0.128 
    kirik.ee          2.412    0.421    5.734    0.000    2.412    0.128 
    koffler.ca       -2.860    0.280  -10.218    0.000   -2.860   -0.166 
    konz.us           3.642    0.351   10.389    0.000    3.642    0.194 
    lead.us          -3.231    0.308  -10.504    0.000   -3.231   -0.172 
    look.us          -1.079    0.324   -3.329    0.001   -1.079   -0.057 
    marc.ar           2.345    0.377    6.223    0.000    2.345    0.125 
    mcla.us          -1.779    0.310   -5.735    0.000   -1.779   -0.095 
    mtca.au          -0.571    0.288   -1.983    0.047   -0.571   -0.035 
    ping.au          -1.117    0.328   -3.411    0.001   -1.117   -0.059 
    pinj.au          -1.612    0.298   -5.404    0.000   -1.612   -0.086 
    potrok.ar         1.122    0.339    3.312    0.001    1.122    0.060 
    sage.us          -2.158    0.333   -6.485    0.000   -2.158   -0.115 
    sedg.us          -1.153    0.298   -3.875    0.000   -1.153   -0.061 
    sereng.tz         4.731    0.327   14.473    0.000    4.731    0.252 
    sgs.us           -1.344    0.315   -4.262    0.000   -1.344   -0.072 
    sier.us          -0.744    0.323   -2.305    0.021   -0.744   -0.040 
    smith.us          1.480    0.275    5.387    0.000    1.480    0.079 
    spin.us          -1.492    0.224   -6.668    0.000   -1.492   -0.079 
    spv.ar            0.676    0.319    2.117    0.034    0.676    0.036 
    sval.no          -2.737    0.314   -8.730    0.000   -2.737   -0.146 
    tyso.us          -0.301    0.274   -1.100    0.272   -0.301   -0.018 
    ukul.za           2.041    0.371    5.496    0.000    2.041    0.109 
    unc.us            0.751    0.345    2.174    0.030    0.751    0.040 
    uwo.ca           -0.074    0.320   -0.231    0.817   -0.074   -0.004 
    valm.ch           0.804    0.345    2.328    0.020    0.804    0.043 
    yarra.au         -0.604    0.312   -1.934    0.053   -0.604   -0.037 
    llegu_mass        0.218    0.121    1.790    0.073    0.218    0.119 
    llegu_mass2      -0.043    0.029   -1.480    0.139   -0.043   -0.086 
    lgram_mass        0.669    0.163    4.112    0.000    0.669    0.311 
    lgram_mass2      -0.068    0.018   -3.708    0.000   -0.068   -0.271 
    lforb_mass        0.125    0.077    1.636    0.102    0.125    0.089 
    lforb_mass2      -0.007    0.014   -0.483    0.629   -0.007   -0.027 
  sr_fr ~                                                                
    arch.us           1.500    0.523    2.871    0.004    1.500    0.040 



 

181 

    azi.cn           16.873    0.661   25.521    0.000   16.873    0.453 
    barta.us         -1.173    0.494   -2.376    0.017   -1.173   -0.032 
    bnch.us          -1.885    0.472   -3.991    0.000   -1.885   -0.051 
    bogong.au         5.369    0.577    9.302    0.000    5.369    0.144 
    bttr.us           1.804    0.725    2.489    0.013    1.804    0.048 
    bunya.au         -2.825    0.487   -5.806    0.000   -2.825   -0.076 
    burrawan.au      -2.015    0.437   -4.611    0.000   -2.015   -0.054 
    burren.ie         6.008    0.701    8.574    0.000    6.008    0.161 
    cbgb.us          -0.614    0.481   -1.277    0.202   -0.614   -0.022 
    cdcr.us          -1.056    0.482   -2.190    0.029   -1.056   -0.036 
    cdpt.us           1.119    0.503    2.225    0.026    1.119    0.042 
    chilcas.ar       -1.052    0.554   -1.899    0.058   -1.052   -0.028 
    cowi.ca          -4.239    0.452   -9.380    0.000   -4.239   -0.114 
    doane.us         -3.385    0.415   -8.148    0.000   -3.385   -0.127 
    gall.it           1.265    0.609    2.078    0.038    1.265    0.035 
    gilb.za           4.668    0.594    7.860    0.000    4.668    0.137 
    glac.us          -3.133    0.451   -6.950    0.000   -3.133   -0.084 
    glcr.us          -3.272    0.444   -7.373    0.000   -3.272   -0.088 
    hall.us          -0.920    0.525   -1.752    0.080   -0.920   -0.025 
    hast.us          -2.960    0.502   -5.899    0.000   -2.960   -0.080 
    hnvr.us          -0.219    0.512   -0.427    0.669   -0.219   -0.006 
    kibber.in        -4.047    0.573   -7.068    0.000   -4.047   -0.109 
    kidman.au        -2.834    0.413   -6.862    0.000   -2.834   -0.098 
    kirik.ee         14.019    0.647   21.673    0.000   14.019    0.377 
    koffler.ca       -1.109    0.563   -1.968    0.049   -1.109   -0.033 
    konz.us           1.317    0.476    2.769    0.006    1.317    0.035 
    lead.us          -3.211    0.507   -6.327    0.000   -3.211   -0.086 
    look.us          -1.741    0.525   -3.315    0.001   -1.741   -0.047 
    marc.ar          -3.224    0.548   -5.884    0.000   -3.224   -0.087 
    mcla.us          -3.679    0.397   -9.263    0.000   -3.679   -0.099 
    mtca.au           3.314    0.504    6.578    0.000    3.314    0.103 
    ping.au          -3.744    0.448   -8.360    0.000   -3.744   -0.101 
    pinj.au          -3.049    0.420   -7.256    0.000   -3.049   -0.082 
    potrok.ar         2.222    0.534    4.165    0.000    2.222    0.060 
    sage.us           1.183    0.603    1.964    0.050    1.183    0.032 
    sedg.us          -3.081    0.460   -6.693    0.000   -3.081   -0.083 
    sereng.tz        -2.285    0.430   -5.314    0.000   -2.285   -0.061 
    sgs.us           -2.256    0.442   -5.103    0.000   -2.256   -0.061 
    sier.us          -2.924    0.460   -6.361    0.000   -2.924   -0.079 
    smith.us          4.955    0.564    8.791    0.000    4.955    0.133 
    spin.us          -2.721    0.392   -6.940    0.000   -2.721   -0.073 
    spv.ar           -3.221    0.434   -7.430    0.000   -3.221   -0.087 
    sval.no          -1.759    0.521   -3.373    0.001   -1.759   -0.047 
    tyso.us          -2.387    0.432   -5.521    0.000   -2.387   -0.074 
    ukul.za           6.487    0.671    9.671    0.000    6.487    0.174 
    unc.us           -1.198    0.507   -2.365    0.018   -1.198   -0.032 
    uwo.ca           -2.046    0.557   -3.676    0.000   -2.046   -0.055 
    valm.ch          10.409    0.645   16.127    0.000   10.409    0.280 
    yarra.au         -2.215    0.424   -5.224    0.000   -2.215   -0.068 
    llegu_mass        0.261    0.166    1.573    0.116    0.261    0.072 
    llegu_mass2      -0.043    0.041   -1.061    0.289   -0.043   -0.043 
    lgram_mass       -0.025    0.205   -0.123    0.902   -0.025   -0.006 
    lgram_mass2      -0.029    0.024   -1.195    0.232   -0.029   -0.058 
    lforb_mass        0.433    0.109    3.963    0.000    0.433    0.154 
    lforb_mass2      -0.026    0.023   -1.160    0.246   -0.026   -0.053 
  llitter_mass ~                                                         
    arch.us          -1.587    0.166   -9.574    0.000   -1.587   -0.104 
    azi.cn           -0.888    0.194   -4.585    0.000   -0.888   -0.058 
    barta.us         -0.251    0.157   -1.602    0.109   -0.251   -0.016 
    bnch.us          -0.902    0.147   -6.154    0.000   -0.902   -0.059 
    bogong.au        -1.675    0.170   -9.874    0.000   -1.675   -0.109 
    bttr.us          -0.320    0.180   -1.777    0.076   -0.320   -0.021 
    bunya.au         -0.061    0.282   -0.215    0.830   -0.061   -0.004 
    burrawan.au      -2.471    0.288   -8.581    0.000   -2.471   -0.161 
    burren.ie        -0.392    0.163   -2.405    0.016   -0.392   -0.026 
    cbgb.us           0.913    0.142    6.449    0.000    0.913    0.079 
    cdcr.us          -1.742    0.149  -11.688    0.000   -1.742   -0.146 
    cdpt.us          -5.094    0.165  -30.818    0.000   -5.094   -0.466 
    chilcas.ar        0.669    0.141    4.751    0.000    0.669    0.044 
    cowi.ca          -1.784    0.182   -9.805    0.000   -1.784   -0.116 
    doane.us         -0.026    0.146   -0.180    0.857   -0.026   -0.002 
    gall.it          -2.007    0.312   -6.439    0.000   -2.007   -0.135 
    gilb.za          -5.322    0.166  -31.971    0.000   -5.322   -0.380 
    glac.us          -0.392    0.139   -2.817    0.005   -0.392   -0.026 
    glcr.us           0.641    0.130    4.928    0.000    0.641    0.042 
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    hall.us           0.355    0.173    2.047    0.041    0.355    0.023 
    hast.us          -0.585    0.171   -3.414    0.001   -0.585   -0.038 
    hnvr.us          -0.935    0.211   -4.422    0.000   -0.935   -0.061 
    kibber.in        -4.063    0.272  -14.938    0.000   -4.063   -0.265 
    kidman.au        -1.624    0.260   -6.251    0.000   -1.624   -0.136 
    kirik.ee         -0.283    0.222   -1.274    0.203   -0.283   -0.018 
    koffler.ca        0.052    0.155    0.337    0.736    0.052    0.004 
    konz.us          -5.633    0.231  -24.429    0.000   -5.633   -0.368 
    lead.us           0.600    0.170    3.528    0.000    0.600    0.039 
    look.us          -1.267    0.206   -6.138    0.000   -1.267   -0.083 
    marc.ar           0.303    0.207    1.462    0.144    0.303    0.020 
    mcla.us           0.308    0.138    2.236    0.025    0.308    0.020 
    mtca.au          -4.900    0.157  -31.278    0.000   -4.900   -0.368 
    ping.au          -2.316    0.204  -11.373    0.000   -2.316   -0.151 
    pinj.au          -0.426    0.145   -2.931    0.003   -0.426   -0.028 
    potrok.ar        -1.280    0.165   -7.772    0.000   -1.280   -0.084 
    sage.us          -0.999    0.230   -4.344    0.000   -0.999   -0.065 
    sedg.us           0.062    0.155    0.400    0.689    0.062    0.004 
    sereng.tz        -3.557    0.160  -22.240    0.000   -3.557   -0.232 
    sgs.us           -5.280    0.198  -26.610    0.000   -5.280   -0.345 
    sier.us          -1.118    0.214   -5.236    0.000   -1.118   -0.073 
    smith.us         -1.162    0.149   -7.793    0.000   -1.162   -0.076 
    spin.us          -0.491    0.125   -3.915    0.000   -0.491   -0.032 
    spv.ar           -0.533    0.193   -2.763    0.006   -0.533   -0.035 
    sval.no          -1.052    0.209   -5.037    0.000   -1.052   -0.069 
    tyso.us          -2.882    0.185  -15.543    0.000   -2.882   -0.217 
    ukul.za          -5.135    0.185  -27.761    0.000   -5.135   -0.335 
    unc.us           -1.075    0.203   -5.304    0.000   -1.075   -0.070 
    uwo.ca           -1.078    0.131   -8.205    0.000   -1.078   -0.070 
    valm.ch          -3.058    0.235  -13.036    0.000   -3.058   -0.200 
    yarra.au         -0.312    0.153   -2.036    0.042   -0.312   -0.023 
    sr_fr            -0.034    0.009   -3.788    0.000   -0.034   -0.083 
    sr_gr             0.047    0.014    3.293    0.001    0.047    0.058 
    sr_lg             0.019    0.032    0.599    0.549    0.019    0.012 
    llegu_mass       -0.174    0.071   -2.439    0.015   -0.174   -0.116 
    llegu_mass2       0.029    0.016    1.742    0.081    0.029    0.070 
    lgram_mass        0.378    0.126    3.013    0.003    0.378    0.215 
    lgram_mass2      -0.014    0.014   -0.943    0.346   -0.014   -0.067 
    lforb_mass       -0.105    0.044   -2.367    0.018   -0.105   -0.091 
    lforb_mass2       0.028    0.008    3.411    0.001    0.028    0.139 
 
Intercepts: 
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all 
   .sr_lg             1.148    0.158    7.249    0.000    1.148    0.926 
   .sr_gr             2.520    0.462    5.457    0.000    2.520    1.018 
   .sr_fr             5.550    0.630    8.809    0.000    5.550    1.132 
   .llitter_mass      4.056    0.346   11.722    0.000    4.056    2.009 
 
Variances: 
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all 
   .sr_lg             0.324    0.017   18.803    0.000    0.324    0.211 
   .sr_gr             1.344    0.066   20.293    0.000    1.344    0.219 
   .sr_fr             3.431    0.149   22.977    0.000    3.431    0.143 
   .llitter_mass      0.503    0.042   12.032    0.000    0.503    0.123 
 
R-Square: 
                   Estimate 
    sr_lg             0.789 
    sr_gr             0.781 
    sr_fr             0.857 
    llitter_mass      0.877 
 
Fit measures: 
  cfi rmsea  srmr  
0.998 0.070 0.001 
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D.4.3 Using the same set of sites as for the global model 

These models were intended to confirm that the difference in the directionality was not related to 

different sites included in each dataset. The models confirm that using the 31 sites included in 

the dataset #1 directionality patterns do not change: at the local scale, biomass is more likely to 

explain diversity than the opposite (Table S27). 

Table S27 Effect of the direction in the relation between diversity and biomass descriptors 

on basic structural equation models of diversity, biomass and litter globally and locally 

using only sites used for the global analysis. 
Diversity is described as either species richness (S) or Faith’s PD (PD). Models were tested using path analysis with 
Fisher’s C (with degrees of freedom, d.f. and p-value testing that the structural model fits the model). For all the 
models, the number of parameters K=27 and the number of observations n=876. 

Model Path analyses 
AIC AICc Fisher’s C d.f. p-value 

Acceptance criteria Low Low Low  ≥ 0.05 
Local scale      
S  ← Biomass 68.2 69.9 14.2 6 0.028 
PD ← Biomass 76.7 78.5 22.7 6 0.001 
Biomass ← S 94.9 96.7 40.9 6 0.000 
Biomass ← PD 98.7 100.4 44.7 6 0.000 

 
 


