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Abstract 

Selecting an appropriate treatment for patients with depression is challenging for several reasons. 

There is no clear understanding on (i) the pathophysiology of depression, (ii) heterogeneity in 

depression, and (iii) targets for successful treatment outcome. As such, although treatments for 

depression are effective, their average efficacy seems to be poor. It is widely accepted that 

seizures induced in the brain are highly effective for severe, treatment-resistant cases of 

depression. Seizures are also known to impact the dynamics of neural activity. Based on this 

knowledge, we investigated whether treatments for depression impact neural dynamics for 

therapeutic efficacy. We also evaluated whether measures of neural dynamics can predict 

response. Seizure therapy (electroconvulsive therapy and magnetic seizure therapy) and 

pharmacotherapy (escitalopram) were studied. It is hypothesized that modulations of neural 

dynamics in several frequencies, timescales, regions and networks, previously shown to be 

affected in depression, are associated with therapeutic outcome. These modulations are also 

hypothesized to be distinct from modulations associated with non-response. In this work, 

measures of neural dynamics were derived from power spectral density analysis, multiscale 

entropy analysis and microstate analysis of resting-state, eyes-closed EEG data. Results suggest 
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that successful seizure therapy potentially impacts several characteristics of neural dynamics for 

therapeutic efficacy. In responders of seizure therapy, modulation of neural dynamics was 

observed in regions (posterior cingulate cortex, precuneus, occipital pole) and networks 

(salience, fronto-parietal) previously known to be impaired in depression. In responders of 

escitalopram, modulation of neural dynamics was observed after 2 weeks into the 8-week course 

of escitalopram treatment. These changes were observed in regions known to be impaired in 

depression (posterior cingulate cortex, precuneus, posterior cingulate cortex) but not within 

networks. In non-responders of escitalopram, an early modulation of neural dynamics (i.e., 

baseline to 2 weeks) was observed. Finally, using measures of neural dynamics, prediction of 

response to escitalopram achieved an accuracy of 83.2%. Knowledge from this work will guide 

the development of antidepressant response prediction tools and potentially improve treatment 

efficacy in depression.   
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Chapter 1 - Insight into Depression and Current 
Treatments for Depression from Previous Literature 
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1.1 Motivating Problem 

Depression is the leading cause of years lost due to disability (World Health Organization 2009) 

and is ranked as the fourth medical condition with the greatest disease burden worldwide (Vos, 

Allen et al. 2016). This is expected to rise to second by 2020 (Murray, Lopez et al. 1996). One 

major cause for the social and economic burden of depression is the number of years it can take 

to find an ideal treatment. Currently, a wide range of treatments are available for depression 

including psychotherapy, medications and brain stimulation (Duval, Lebowitz et al. 2006). The 

Food and Drug Administration alone has approved 30+ drugs for the treatment of depression 

based on double-blind placebo-controlled studies (Food and Drug Administration 2013). Despite 

the availability of effective treatment, poor understanding on the pathophysiology of depression, 

the cause for heterogeneity in depression and targets for successful antidepressant response, have 

made it challenging for clinicians to identify an effective treatment for patients. As a result, 

patients undergo a trial-and-error process, receiving multiple courses of treatment, before 

noticing benefits. Some may never even reach remission (the complete disappearance of 

symptoms) (Paykel, Ramana et al. 1995, Rush, Trivedi et al. 2006, Souery, Papakostas et al. 

2006, Trivedi, Rush et al. 2006). To reduce the time spent in failed trials and avoid the 

debilitating impact of untreated depression, reliable predictors of treatment response must be 

identified. Although clinical scales are useful for diagnosis, they may not be sufficient for 

predicting treatment outcome (Serretti, Olgiati et al. 2007, Howland, Wilson et al. 2008, 

Chekroud, Zotti et al. 2016). In this thesis, we aim to identify potential neurophysiological 

targets of successful treatments for depression and predictors of treatment response. 

 

Patients who show similar symptoms at the behavioral level can have distinct sources at the 

biological level (Vuilleumier 2005). Therefore, we hypothesize that biological markers may be 

sensitive enough to reliably predict differences in benefits and/or adverse effects of a treatment 

for an individual patient. In this thesis, we focus on non-invasive measures of neural activity 

(mechanistic and predictive) for their accessibility and potential for clinical translation. We study 

these measures over the course of different treatments for depression (i.e., first line of treatment 

vs. treatments for severe depression) that vary in their clinical efficacy and side effects. The 

knowledge gained from this work is hoped to benefit the development of clinical decision-
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making tools for those who do not respond to standard treatments and improve the success rate 

of treatments for depression. 

 

1.2 Characterizing Depression 

Depression is a debilitating disorder with a significant negative socioeconomic and quality-of-

life impact (Üstün, Ayuso-Mateos et al. 2004, Lerner and Henke 2008, Olchanski, Myers et al. 

2013). For a majority of patients, depression is a reoccurring condition characterized by the 

persistence of symptoms over multiple episodes that may be months, or years apart (Keller and 

Boland 1998, Richards 2011). Two cases of depression are studied in this thesis: major 

depressive disorder and treatment-resistant depression. Clinical definitions are provided in the 

following sections. 

 

1.2.1 Major Depressive Disorder 

Major depressive disorder is a medical condition characterized by a wide range of symptoms. 

During a single major depressive episode, symptoms range from abnormalities in mood, 

cognition, psychomotor activity as well as sleep and appetite disturbances (Fava and Kendler 

2000, Belmaker and Agam 2008). Diagnosis criteria of major depressive disorder is specified in 

the 5th edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-5) (American 

Psychiatric Association 2013). It includes the presence of 5 or more symptoms listed in the 

manual during a 2-week period, where at least one symptom is depressed mood or loss of 

interest. The list of symptoms (taken from (American Psychiatric Association 2013)) may 

include: 

 

 “1. Depressed mood most of the day, nearly every day, as indicated by either subjective report 

(e.g., feels sad, empty, hopeless) or observation made by others (e.g., appears tearful). (Note: In 

children and adolescents, can be irritable mood.)  

2. Markedly diminished interest or pleasure in all, or almost all, activities most of the day, nearly 

every day (as indicated by either subjective account or observation.)  
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3. Significant weight loss when not dieting or weight gain (e.g., a change of more than 5% of 

body weight in a month), or decrease or increase in appetite nearly every day. (Note: In 

children, consider failure to make expected weight gain.)  

4. Insomnia or hypersomnia nearly every day.  

5. Psychomotor agitation or retardation nearly every day (observable by others, not merely 

subjective feelings of restlessness or being slowed down).  

6. Fatigue or loss of energy nearly every day.  

7. Feelings of worthlessness or excessive or inappropriate guilt (which may be delusional) 

nearly every day (not merely self-reproach or guilt about being sick).  

8. Diminished ability to think or concentrate, or indecisiveness, nearly every day (either by 

subjective account or as observed by others).  

9. Recurrent thoughts of death (not just fear of dying), recurrent suicidal ideation without a 

specific plan, or a suicide attempt or a specific plan for committing suicide.” 

 

Several clinical instruments are available for the quantitative measurement of illness severity, 

ranging from clinician-rated scales to self-report scales (Cusin, Yang et al. 2009). Some common 

scales used by clinicians are the Hamilton Rating Scale for Depression (HRSD) and the 

Montgomery-Ǻsberg Depression Rating Scale (MADRS). These scales measure multiple items 

across the domain of the illness to provide a better insight into the severity of major depression. 

One commonly used self-report scale is the Beck’s Depression Inventory (BDI). Self-report 

scales avoid potential clinician or researcher biases and provide a unique evaluation (Uher, Perlis 

et al. 2012). However, they may be confounded by cognitive impairment or thought disorder 

(Austin, Deary et al. 1998).  

 

Based on consensus from the literature and clinical practice, response is usually defined as a 50% 

or greater reduction in the clinical assessment score from baseline. Remission after treatment is 

defined as a full recovery (i.e., no symptoms) or a score below or equal to a certain number for 

each scale. For the HRSD-17 scale for example, remission is usually characterized by a score 

less than or equal to 6.   
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1.2.2 Treatment-Resistant Depression 

Approximately one third of the major depression patient population does not respond to standard, 

adequate treatments for depression (Fava 2003). An adequate dose is close to the maximum 

recommended dose. An adequate treatment length is at least 4 consecutive weeks, where an 

adequate dose is provided for at least 3 of those 4 weeks (Thase and Rush 1995). If a patient does 

not respond to 2 or more successive courses of adequate treatment (psychotherapy or 

medications), they are termed as treatment-resistant depression patients. It is estimated that the 

prevalence of treatment-resistance in primary care is 21.7% in Canada (Rizvi, Grima et al. 2014). 

In the STAR*D trial, the prevalence rate was estimated to be even higher at 30% (Warden, 

Trivedi et al. 2007). Studies that have examined clinical differences between resistant and non-

resistant depression (Fagiolini and Kupfer 2003) identified greater severity in risk factors 

associated with resistance such as high recurrence rates (up to 80%) (Fekadu, Wooderson et al. 

2009), psychiatric comorbidity (Souery, Oswald et al. 2007), undetected hypomania (Rush, 

Trivedi et al. 2006), and even mortality (Fekadu, Wooderson et al. 2009).  

 

1.3 Theories on the Pathophysiology of Depression 

The pathology of depression is not fully understood. In addition to the observable clinical 

characteristics associated with depression, several physiological abnormalities have been 

reported at the genetic level, at the cellular level, in functional brain network connectivity and in 

global brain function (Belmaker and Agam 2008). These abnormalities likely vary between 

patients and lead to the heterogeneity of depression.  

 

1.3.1 Genetic Level 

It is estimated that 40-50% of depression cases may be caused by genetic factors (Lohoff 2010). 

Due to the heterogeneity seen in clinical symptoms, multiple genes are hypothesized to be 

involved in depression. Here, we highlight two that have been more widely explored.  

(1) Serotonin Transporter Gene is involved in the regulation of serotonin re-uptake 

transporters. A high level of these transporters increases the reabsorption of serotonin and 

decreases the level of the serotonin neurotransmitter in the brain (Deakin 1991, Lucki 
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1998, Mann 1999, Parsey, Hastings et al. 2006). Low levels of serotonin have been 

widely associated with depression (explained in section 1.3.2). 

(2) Brain Derived Neurotrophic Factor (BDNF) Gene has an important role in 

neurogenesis and mood disorders (Lee and Kim 2010). Low levels of BDNF in the 

hippocampus have been associated with chronic stress and depressive personality traits 

(Karege, Perret et al. 2002). Specifically, the Val66Met polymorphism in the BDNF gene 

is observed in individuals with a history of depression (Chen, Jing et al. 2006). 

 

1.3.2 Cellular Neurotransmission 

Neurotransmitters are the chemical messengers of neuronal communication in the brain. The 

junction between two neurons is called the synapse. A message is transmitted when a presynaptic 

neuron releases a neurotransmitter (i.e., sends a message) and the postsynaptic neuron absorbs 

the neurotransmitter through receptors (i.e., receives the message). Excess molecules are 

reabsorbed by the presynaptic neuron (Kandel, Schwartz et al. 2012). Dysfunction in neuronal 

communication may result during different stages of this process and lead to: (1) low levels of 

the neurotransmitter in the presynaptic neuron, (2) reduced expression or availability of receptors 

at the postsynaptic neuron, (3) faster reabsorption by the presynaptic neuron than absorption by 

postsynaptic neurons, and/or (4) reduced availability of molecules guiding this process. Several 

neurotransmitters are thought to have a key role in the emergence of depressive symptoms 

(Belmaker and Agam 2008, Krishnan and Nestler 2008).  

(1) Serotonin is one neurotransmitter that is widely known to play a key role in depression 

(Owens and Nemeroff 1994). Several lines of evidence link serotonin with the regulation 

of mood, sleep, memory and other functions known to be impaired in depression (Owens 

and Nemeroff 1994). Specifically, low levels of serotonin are suggested to lead to 

depression. 

(2) Dopamine has a complex role in neurological and mental functions. Dopamine neurons 

extend (through dopaminergic pathways) from the midbrain to a number of other brain 

regions (Lindvall and Björklund 1978) including the basal ganglia (movement), 

prefrontal cortex (problem-solving, intelligence, complex thoughts), amygdala (emotional 

processing) and the hippocampus (memory) (Robbins 2003). Dopamine also plays a 
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major role in motivation and reward. Due to its wide range of effects, low levels of 

dopamine have been linked to several psychiatric illnesses including depression (Brown 

and Gershon 1993).    

(3) As a neurotransmitter, high levels of norepinephrine are associated with increased 

energy, alertness, concentration and cognitive ability (Ressler and Nemeroff 1999, 

Goddard, Ball et al. 2010). Reduced norepinephrine neurotransmission is associated with 

depressive symptoms (Moret and Briley 2011). Interestingly, modulation of serotonin 

levels may indirectly raise levels of norepinephrine and dopamine (Bymaster, Zhang et 

al. 2002).  

(4) Gamma-Aminobutyric Acid (GABA) plays a major role in inhibitory 

neurotransmission and is crucial for controlling brain excitability (Chebib and Johnston 

1999) or hyperconnectivity potentially seen in depression (Sheline, Price et al. 2010). 

Accumulating evidence suggests a specific GABAergic dysfunction in mood disorders 

(Kalueff and Nutt 2007). Low GABA levels seen in depression (Sanacora, Mason et al. 

1999, Sanacora, Gueorguieva et al. 2004, Hasler, van der Veen et al. 2007, Bhagwagar, 

Wylezinska et al. 2008) may lead to decreased neurogenesis in the hippocampus 

(Earnheart, Schweizer et al. 2007) and reduced GABA metabolism (Shelp, Bown et al. 

1999).  

To summarize, patients with depression reveal low levels of neurotransmitter concentrations in 

regions associated with mood and emotion. The symptoms of depression observed at the 

behavioral level may be linked to dysfunctions in neuronal communication at the cellular level. 

 

1.3.3 Brain Regions 

The pathophysiology of depression may also be described by investigating abnormalities in three 

subdivisions of the brain: 

(1) Cortical regions include the dorsal and medial prefrontal cortex, dorsal and ventral 

anterior cingulate cortex, subgenual cingulate cortex, orbital frontal cortex and the insula 

(Drevets, Price et al. 1997, Mayberg, Liotti et al. 1999, Bremner, Vythilingam et al. 2002, 

Kimbrell, Ketter et al. 2002, Anand, Li et al. 2005, Rigucci, Serafini et al. 2010, 

Sprengelmeyer, Steele et al. 2011). The prefrontal cortex is implicated in complex 
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cognitive behavior such as reasoning, planning and personality expression. Studies have 

shown that reduced metabolism in the prefrontal cortex, combined with the inclination to 

act on negative emotions, may result in suicidal behavior (Arango, Underwood et al. 

1995, Desmyter, Van Heeringen et al. 2011). Depression is also linked to reduced 

metabolism in the anterior cingulate cortex and the subgenual cingulate cortex, regions 

implicated in the cognitive aspects of emotional processing (Drevets, Price et al. 1997, 

Mayberg, Liotti et al. 1999). A reduced volume of the orbitofrontal cortex is also seen in 

depression, and this region is known to be implicated in mood regulation (Bremner, 

Vythilingam et al. 2002). Finally, increased activation of the insula and insular regions is 

linked to depression (Anand, Li et al. 2005). The insula has a crucial role in how 

emotional experiences are processed, assessed and responded to (Modinos, Ormel et al. 

2009, Lamm and Singer 2010).  

(2) Subcortical limbic regions include the hippocampus, amygdala, and dorsomedial 

thalamus (Sheline, Gado et al. 1998, Bremner, Narayan et al. 2000, Schweitzer, Tuckwell 

et al. 2001, MacQueen, Yucel et al. 2008, Lorenzetti, Allen et al. 2009). Depression is 

associated with decreased volume and activation in these regions suggesting 

neurodegeneration.  

(3) Basal ganglia and the brainstem (striatum) have an important role in reward and 

motivation (Balleine, Delgado et al. 2007). The brainstem contains the brain serotonergic 

neurons, norepinephrine neurons and the dopaminergic neurons. Some imaging studies 

have shown abnormalities in activation or metabolism in these regions. However, results 

are not consistent (Kumari, Mitterschiffthaler et al. 2003, Surguladze, Brammer et al. 

2005, Knutson, Bhanji et al. 2008, Remijnse, Nielen et al. 2009). 

 

1.3.4 Connectivity between Brain Regions 

Although abnormalities in several, distinct brain regions are associated with depression, findings 

of these local changes in neural activity are not consistent. Some studies show an increase while 

others show a decrease in the activity of any single brain region (Drevets, Videen et al. 1992, 

Andreasen, Paradiso et al. 1998, McIntosh and Gonzalez-Lima 1998, Friston 2002, Lawrie, 

Buechel et al. 2002, Anand, Mathews et al. 2003, Mayberg 2003). Recent insight from 
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neuroimaging studies suggests that depression may be linked to abnormalities in the connectivity 

of several brain regions rather than discrete brain regions. For example, in patients with 

depression, reduced metabolism in the prefrontal cortex is linked with increased metabolism in 

limbic regions (striatum and thalamus) (Mayberg, Liotti et al. 1999). In addition, reduced 

metabolism is observed in the subgenual cingulate cortex (Greicius, Flores et al. 2007) and this 

region is connected to several other brain regions implicated in depression including the anterior 

cingulate cortex, amygdala and the dorsomedial thalamus (i.e., amygdala-striatal-pallidial-

thalamic-cingulate cortex circuit) (Drevets, Price et al. 1997, Price and Drevets 2010).  

   

1.3.5 Large-Scale Neural Networks 

Evidence from functional magnetic resonance imaging (fMRI) studies suggests that 

abnormalities in three neural networks, and the relative activation between these networks, may 

be the facilitators of depressive symptoms: (1) the salience network, (2) the frontoparietal 

network, and (3) the default mode network.  

(1) The salience network includes the anterior insula and the dorsal anterior cingulate cortex 

(Seeley, Menon et al. 2007). It also includes three subcortical structures: the amygdala, 

the ventral striatum and the substantia nigra (Seeley, Menon et al. 2007). The salience 

network is involved in several complex brain functions such as communication, social 

behavior and self-awareness (Menon and Uddin 2010). In addition, it plays an important 

role in the integration of sensory, emotional and cognitive information. Abnormalities in 

this network may result in subjective and aberrant detection or processing of emotional 

information, potentially leading to symptoms of depression (Harrison, Pujol et al. 2008, 

Manoliu, Meng et al. 2014, Kaiser, Andrews-Hanna et al. 2015). 

(2) The frontoparietal network includes the inferior parietal lobe and the prefrontal cortex 

(Dosenbach, Fair et al. 2008, Zanto and Gazzaley 2013). Subcortical structures include 

the brainstem (Paus 2000). This network is involved in cognitive control and in the 

mediation of other regions/networks potentially impacted in depression (i.e., salience and 

default-mode network (Cole, Repovš et al. 2014, Kaiser, Andrews-Hanna et al. 2015). 

(3) The default-mode network includes the precuneus, posterior cingulate gyrus, inferior 

parietal lobule, angular gyrus, the frontal pole and parts of the medial and lateral temporal 
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cortex (Greicius, Krasnow et al. 2003, Fransson and Marrelec 2008). Subcortical 

structures include the amygdala, hippocampus and the parahippocampus (Greicius, 

Supekar et al. 2009). This network is activated during self-referential thought and shows 

high activity during resting-state (Sheline, Barch et al. 2009, Kaiser, Andrews-Hanna et 

al. 2015).  

 

A recent comprehensive meta-analysis of resting-state fMRI studies proposed a neurocognitive 

network model of depression (Kaiser, Andrews-Hanna et al. 2015). In this model, depression is 

associated with three aberrant network interactions: (i) default-mode network dominance over 

the frontoparietal network, (ii) abnormal switching between the default mode network and the 

frontoparietal network due to an impaired salience nnetwork, and (iii) ineffective frontoparietal 

network modulation of the default-mode network. 

 

1.4 Treatments for Depression 

Due to the complex pathophysiology of depression, no single treatment seems to show efficacy 

in all patients. For patients with mild to moderate severity of depression, initial treatment may 

include psychotherapy, medications or a combination of both. For patients with severe 

depression, antidepressants, antipsychotics, repetitive transcranial brain stimulation (rTMS) 

and/or electroconvulsive therapy (ECT) may be considered. For treatment-resistant depression, 

ECT is currently the most effective treatment.  

 

1.4.1 Psychotherapy 

Psychotherapy is often the first step in the treatment for depression (Cuijpers, van Straten et al. 

2008). It can be effective when clinical symptoms include the presence of psychosocial stressors, 

interpersonal or intrapsychic conflicts, and comorbidities including personality disorders as 

specified in DSM-5. Two main types of psychotherapy are available: interpersonal 

psychotherapy (Klerman and Weissman 1994) and cognitive therapy (Beck 1979). The focus and 

goal of interpersonal psychotherapy is to improve communication within relationships and help 

develop a network that can support the individual during depressive episodes. Cognitive therapy, 
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on the other hand, focuses on identifying abnormalities in information processing during the 

perception and interpretation of emotions. By identifying these fundamental distortions, 

treatment can be personalized to modify this behavior. Although psychotherapy shows a high 

acceptance rate, it has marginal efficacy for more severe types of depression (Thase, Greenhouse 

et al. 1997). 

 

1.4.2 Pharmacotherapy  

In general, pharmacotherapy has shown efficacy in the treatment of major depressive disorder 

and more severe depression (Fava 2003). In fact, the Food and Drug Administration has 

approved 30+ drugs for the treatment of depression with the support of several double-blind, 

placebo-controlled studies (Food and Drug Administration 2013). The challenge, however, is 

identifying which drug is best suited for a patient at any given time. Remission rates are around 

30% for the first trial and decline progressively with subsequent medication trials (Rush, Trivedi 

et al. 2006, Trivedi, Rush et al. 2006). Antidepressant medications can be categorized into 

different groups based on their effects at neuronal synapses.  

(1) Selective serotonin re-uptake inhibitors (SSRIs) are the most commonly prescribed 

antidepressants and often preferred for their favorable short-term side-effect profile 

(Goodwin 1996, Goldstein and Goodnick 1998). SSRIs show efficacy by blocking the re-

uptake (reabsorption) of serotonin and therefore boost the levels of serotonin in the brain 

(Stahl 1998). As mentioned before, low levels of serotonin in the brain have been 

associated with low mood and increasing the levels of serotonin is thought to elevate mood 

(Meltzer 1990). Although the short-term side effects are minimal, long-term side effects of 

SSRIs such as insomnia, weight gain, apathy, etc. may still be present (Masand and Gupta 

2002). Examples of SSRIs include escitalopram, citalopram, fluoxetine, paroxetine, 

sertraline and vilazodone. 

(2) Serotonin norepinephrine re-uptake inhibitors (SNRIs) block the uptake (absorption) of 

serotonin at lower doses and block the uptake of both serotonin and norepinephrine at 

higher doses (Stahl, Grady et al. 2005). Low levels of norepinephrine have been associated 

with low mood among other symptoms (Dell'Osso, Buoli et al. 2010). For efficacy, SNRIs 

may increase the levels of both serotonin and norepinephrine to elevate symptoms of 
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depression (Thase, Entsuah et al. 2001, Tran, Bymaster et al. 2003). Examples of SNRI 

medications include venlafaxine and duloxetine.    

(3) Atypical antidepressants are another class of medications that vary greatly in their effects 

on neurotransmitters. For example, some atypical antidepressants such as bupropion target 

levels of norepinephrine and dopamine (Ascher, Cole et al. 1995) while others like 

mirtazapine target serotonin and norepinephrine (Stimmel, Dopheide et al. 1997). 

Additional examples include nefazodone, trazodone and vortioxetine. 

(4) Tricyclic and tetracyclic antidepressants, identified by their distinct chemical structure, 

provide efficacy by blocking the re-uptake (absorption) of serotonin and norepinephrine. In 

the process, they increase the levels of these neurotransmitters in the brain (Gillman 2007). 

Although they were widely used before, due to side effects such as sedation, weight gain, 

hypotension, and effects on cardiac conduction, they are currently not the first choice for 

patients (Anderson 1998). Examples include amitriptyline, amoxapine, desipramine, 

doxepin, imipramine, nortriptyline etc. 

(5) Monoamine oxidase inhibitors (MAOIs) inhibit the monoamine oxidase enzymes 

involved in reducing the levels of norepinephrine, serotonin and dopamine in the brain 

(Livingston and Livingston 1996, Amsterdam and Chopra 2001). As a result, the levels of 

these neurotransmitters are increased (Youdim, Edmondson et al. 2006, López-Muñoz and 

Alamo 2009). Several side effects of MAOIs have prevented their wide use including 

nausea, drowsiness, low blood pressure and weight gain (Evans, Davidson et al. 1982, 

Fallon, Foote et al. 1988, Fava 2000). MAOIs also require a specific diet since certain 

foods and medications can cause severely high blood pressure (Sullivan and Shulman 

1984). Examples include isocarboxazid, phenelzine, selegiline and tranylcypromine. 

 

1.4.3 Repetitive Transcranial Magnetic Stimulation (rTMS) 

In rTMS, an electrical current is induced on the surface of the targeted brain region. The current 

is induced by a series of short magnetic pulses generated outside the brain but near the scalp 

(George, Wassermann et al. 1995). The dorsolateral prefrontal cortex is a common target based 

on evidence from neuroimaging studies suggesting impaired metabolism in this cortical region in 

depression (George, Wassermann et al. 1997). The stimulation of the left prefrontal cortex 
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through rTMS is currently approved for treatment-resistant depression by the Food and Drug 

Administration (Carpenter, Janicak et al. 2012, Connolly, Helmer et al. 2012) and by Health 

Canada in two provinces, Quebec and Saskatchewan. Although rTMS is a localized stimulation 

method, it is hypothesized to show therapeutic effect through top-down effects on the limbic 

system (striatum and amygdala) (George 2010, Fox, Buckner et al. 2012).  

 

1.4.4 Seizure Therapy 

The induction of seizures in the brain has proved to be highly effective in the treatment of severe 

depression with psychotic features and treatment-resistant depression. Yet its mechanism of 

action is not clearly understood (Fava 2003, Souery, Papakostas et al. 2006). Research suggests 

that the induction of seizures in brain regions and networks involved in depression may 

normalize their activity for therapeutic effect (Farzan, Boutros et al. 2014). Understanding the 

mechanism of action of successful seizure therapy could provide evidence towards the 

localization of depression. There are two types of seizure therapy. 

(1) Electroconvulsive therapy (ECT) is the most effective treatment for treatment-resistant 

depression with efficacy rates around 60-70% (Thase and Rush 1995). During ECT, 

electrodes are applied directly to the scalp to generate electrical currents and electric fields 

in the brain that can trigger a brief, generalized seizure. When the current propagates 

beyond the site of stimulation, it is hypothesized to impact the dynamics of distributed but 

functionally-connected brain regions (i.e., functional brain networks) disrupted in 

depression (Farzan, Boutros et al. 2014). However, such non-specific stimulation of the 

brain can also affect the dynamics of brain networks involved in cognition, leading to the 

most common adverse effect of this treatment: memory impairment (Devanand, Sobin et 

al. 1995).  

(2) Magnetic seizure therapy (MST) induces a seizure through magnetic fields. It is currently 

undergoing clinical trials to evaluate its efficacy and side effects relative to ECT.  

Although MST relies on the principles of seizure induction for therapeutic benefit, unlike 

ECT, the effect of MST stimulation is focal (Deng, Lisanby et al. 2011). In addition, based 

on the few clinical trials conducted to date, MST may improve depressive symptoms 

(Kayser, Bewernick et al. 2011) and suicidal ideation (Sun, Farzan et al. 2016) without the 
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cognitive side effects seen with ECT (Lisanby, Luber et al. 2003, Spellman, McClintock et 

al. 2008, Deng, McClintock et al. 2015). However, in its early stage of development, its 

efficacy relative to ECT requires further study (Kayser, Bewernick et al. 2011). 

Identifying the brain networks modified by ECT for therapeutic effect could allow the 

optimization of MST stimulation parameters. 

 

1.5 Optimizing Treatments for Depression 

As mentioned before, ECT has the highest efficacy for severe, treatment-resistant depression. 

Therefore, identifying the neurophysiological targets of ECT may help optimize other treatments 

for depression towards higher efficacy. Although the mechanism of action of ECT is unknown, 

seizures induced by ECT are known to have a significant impact on neural dynamics (Farzan, 

Boutros et al. 2014). In fact, the regularity (or irregularity) of neural activity is monitored in the 

ECT clinic to monitor seizure adequacy during treatment administration (Abrams 2002). Recent 

studies suggest that similar measures may also be used to characterize MST seizure 

characteristics (Lisanby, Luber et al. 2003, Kayser, Bewernick et al. 2011, Fitzgerald, Hoy et al. 

2013, Kayser, Bewernick et al. 2013, Backhouse, Noda et al. 2018). If modulations in neural 

dynamics following ECT are associated with improvement in depressive symptoms, it may be 

possible to develop targets for treatments based on these markers of neural dynamics.  

 

1.6 Understanding Depression and Treatments for 
Depression by Studying Neural Oscillations 

The heterogeneous nature of depression and individual variation of symptoms seen in depression 

may be due to dysfunction at any of the biological levels mentioned above (i.e., cellular, 

molecular, network) or a combination of several levels (Belmaker and Agam 2008). 

Furthermore, abnormalities at one level may translate to another level. For example, 

dysfunctional processes at the cellular level can influence cognitive and emotional information 

processing at the network level (i.e., bottom-up effects). Likewise, abnormalities at the network 

level can translate to the level of a single cell (i.e., top-down effect) to influence neural 

communication (Leuchter, Hunter et al. 2015). To optimize the prediction of treatment response, 
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it is important to understand how treatments can target these dysfunctions. In this thesis, we 

investigate whether treatments for depression impact neural dynamics at the large-scale network 

level for therapeutic efficacy. With recent technological advancements, it is possible to directly 

monitor neural activity using non-invasive methods that are also cost-effective and accessible. 

 

1.6.1 Neural Synchronization Mechanism of Action of Treatments for 
Depression 

It still unclear how the acute neurophysiological mechanisms of treatments for depression might 

translate to an improvement in mood, but one well-known hypothesis is an increase in 

neuroplasticity (D'sa and Duman 2002, Brunoni, Lopes et al. 2008, Pittenger and Duman 2008). 

Neuroplasticity is the ability of the brain to form new connections or reorganize existing 

connections to improve neural transmission. An increase in the expression and signaling of 

BDNF (involved in increasing neuroplasticity in the hippocampus and cortex) is associated with 

antidepressant medication response (Russo-Neustadt, Beard et al. 2000, D'sa and Duman 2002). 

An increase in BDNF levels is also reported following ECT in the hippocampus and the cortex 

(Zetterström, Pei et al. 1998, Bocchio-Chiavetto, Zanardini et al. 2006, Brunoni, Baeken et al. 

2014).  

 

As outlined in section 1.3, previous evidence suggests that depression is associated with 

abnormalities at multiple biological levels from genetic to large-scale functional networks. One 

overarching hypothesis has linked changes seen at the cellular level to the network level. This 

hypothesis suggests that depression may be the result of dysfunctions in neuroplastic processes 

responsible for regulating synchronized neural oscillations (Leuchter, Hunter et al. 2015). 

Treatments in depression are suggested to show therapeutic efficacy by normalizing dysfunctions 

in these neuroplastic processes leading to an improved regulation of neural oscillatory activity 

(D'sa and Duman 2002, Leuchter, Hunter et al. 2014). Neural synchronization is necessary for 

effective neural communication and can occur at the level of single neurons to form 

microcircuits, or at a larger scale where microcircuits show synchronized activations to form 

large-scale neural networks (Buzsáki and Draguhn 2004, Fox, Snyder et al. 2005). Moreover, 

disturbances in oscillatory activity at the cellular level can translate to the network level through 
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bottom-up processes (Xu, An et al. 2013) and also from the network level to the cellular level 

through top-down processes (Engel, Fries et al. 2001, Steriade 2001, Yatham, Liddle et al. 2010, 

Lanzenberger, Baldinger et al. 2013). This is because the summation of individual neurons firing 

together generates neural oscillations and the electric field generated by network oscillations can 

induce electrical activity at individual neurons (Wang 2010, Anastassiou, Perin et al. 2011, 

Buzsáki, Anastassiou et al. 2012).  

 

In this thesis, we focus on pharmacotherapy (escitalopram) and seizure therapy (ECT and MST) 

treatments for depression. Based on the above hypothesis for the mechanism of action of 

treatments for depression, pharmacotherapy may show therapeutic effect through the 

neurochemical regulation of bottom-up neuroplastic processes involved in synchronized 

oscillatory activity. Seizure therapy may show therapeutic effect through the neuro-electric 

regulation of top-down neuroplastic processes involved in synchronized oscillatory activity.  

 

At the cellular level, pharmacotherapy can modulate neural dynamics and regulate 

neuroplasticity through direct or indirect effects on voltage-gated ion channels (Salomon and 

Cowan 2013). These channels are responsible for maintaining membrane potentials, which 

extend to electrical activity at the scalp recorded by electroencephalography readings (see section 

1.6.2) (Buzsáki, Anastassiou et al. 2012). Therefore, factors affecting synaptic transmission at 

the cellular level may result in changes that modulate neuronal oscillations at the network level 

(Colwell 2011, Frederick, Bourget-Murray et al. 2014). Such factors may rely on the availability 

of presynaptic receptors for neurotransmitter re-uptake, the availability of postsynaptic receptors 

for signal transmission, and/or the levels of proteins and molecules that mediate synaptic 

transmission. At the network level, stimulation treatments such as seizure therapy are known to 

modulate neural dynamics (Arns, Drinkenburg et al. 2012, Olbrich and Arns 2013, Farzan, 

Boutros et al. 2014). The induction of a generalized seizure may significantly impact neural 

dynamics in the targeted region as well as other regions linked to the stimulated region 

(potentially associated with mood) for therapeutic effect (McNally and Blumenfeld 2004). In 

addition, induced neuronal oscillations are thought to modulate corticothalamic oscillations and 

facilitate the resetting of oscillatory network activity to regulate mood and other depressive 

symptoms (Paus, Sipila et al. 2001, Fuggetta and Noh 2013, Leuchter, Cook et al. 2013).   
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The role of neural dynamics in the mechanism of action of treatments for depression is 

speculative, but it is one of the few hypotheses that can bridge the effects of treatments at several 

levels of biological organization. Therefore, using this hypothesis as a framework, we studied 

several markers of neural dynamics to monitor the effects of pharmacotherapy for depression and 

seizure therapy for treatment-resistant depression. In addition, we evaluated whether these 

markers of neural dynamics can also predict response to pharmacotherapy.  

 

1.6.2 Studying Neural Oscillations using Electroencephalography 
Data 

The electrical potential of a single neuron or a group of neurons can fluctuate in a rhythmic 

pattern revealing synchronized activity (Llinás 1988, Hutcheon and Yarom 2000). When a large 

number of neurons oscillate together at a certain frequency, large-scale oscillations are generated 

(Varela, Lachaux et al. 2001, Buzsáki and Draguhn 2004) and can be detected by 

electroencephalography (EEG). EEG is a non-invasive recording of neural activity at the scalp 

and reflects cortical electrical activity (Kaiser 2007). EEG oscillations are measured at the 

cortex, but they are primarily generated by postsynaptic potentials (Creutzfeldt 1974). The signal 

intensity is extremely small and measured in microvolts. In addition, the high temporal 

resolution of EEG allows the proper investigation of fast-changing neural dynamics. Compared 

to fMRI, EEG is also affordable and accessible. For all the studies included within this thesis, 

EEG data was collected during the resting-state condition.  

 

1.6.3 Advantage of the Resting-State Condition 

Spontaneous neural activity is not a passive condition of the brain but rather a representation of 

the default functioning of the brain during the resting condition (Raichle and Snyder 2007). 

There are several advantages of studying neural activity during the resting-state condition. First, 

EEG data collected during the eyes-closed, resting-state condition allows for the examination of 

default neural activations without the bias and confounding effects associated with a task (Barry, 

Clarke et al. 2007, Van Diessen, Numan et al. 2015). In addition, since depression is associated 
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with internal biases in negative emotional information processing, studying neural activity during 

the resting-state condition can provide an assessment of self-referential neural activity (i.e., 

rumination and increased self-focus and self-critical nature) thought to underlie key symptoms of 

depression (Broyd, Demanuele et al. 2009). Such abnormalities in the default functioning of the 

brain may underlie the core symptoms of depression.          

 

1.6.4 Resting-State EEG Markers of Neural Dynamics in Depression 

In the following section, EEG measures of neural dynamics that were used in this thesis will be 

briefly introduced. 

 

1.6.4.1 Frequency Analysis 

According to Fourier’s theorem, a periodic signal can be decomposed into a discrete set of sine 

and cosine functions, each with a specific amplitude and frequency (Bracewell and Bracewell 

1986). Using this theorem, the EEG signal can be decomposed into frequency bands and the 

power at each of these frequency bands can be defined. The EEG signal has a bandwidth of 

approximately 1-50Hz, where anything <1Hz is usually voltage drift and anything >50Hz is 

often muscle or external noise (Malmivuo, Malmivuo et al. 1995, Niedermeyer and da Silva 

2005). Over the years, studies have identified that neural oscillations at specific frequency ranges 

reflect different biological functionalities or components of information processing. These 

include delta (1-4Hz), theta (4-8Hz), alpha (8-12Hz), beta (12-30Hz) and gamma (30-50Hz) 

(Malmivuo, Malmivuo et al. 1995, Niedermeyer and da Silva 2005). Through power spectral 

density analysis of EEG, several studies have identified differences between patients with 

depression and healthy subjects. These differences are detailed below. 

(1) Alpha oscillations are the most prominent oscillations seen in the resting-state, eyes-

closed condition. An increase in alpha power is assumed to be associated with decreased 

neural activity and vice versa. Studies have shown that depression is associated with high 

alpha activity (i.e., decreased neural activation) (Grin-Yatsenko, Baas et al. 2010), mainly 

in occipital sites (Bruder, Sedoruk et al. 2008), parietal and frontal sites (Grin-Yatsenko, 

Baas et al. 2009, Jaworska, Blier et al. 2012). Some studies have shown increases in 
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absolute power (von Knorring, Perris et al. 1983, Roemer, Shagass et al. 1992, Begić, 

Popović-Knapić et al. 2011, Jaworska, Blier et al. 2012) while others have shown 

increases in relative power (John, Prichep et al. 1988, Prichep and John 1992). Some 

studies however, did not find any differences in alpha between patients and healthy 

subjects (Flor-Henry 1979, Knott and Lapierre 1987). Finally, a decrease in alpha activity 

was shown in patients with treatment-resistant depression compared to patients with 

major depressive disorder (Price, Lee et al. 2008). Interestingly, increased alpha 

oscillations have been associated with BDNF polymorphism (Gatt, Kuan et al. 2008, 

Zoon, Veth et al. 2013). Slow alpha (8-10Hz) was previously associated with thalamo-

cortical activity and fast alpha (10-12Hz) was associated with cortico-cortical activity 

(Da Silva, Vos et al. 1980, Klimesch 1999).  

(2) Depression was also associated with frontal alpha asymmetry (Schaffer, Davidson et al. 

1983, Henriques and Davidson 1990, Henriques and Davidson 1991), where lower alpha 

was observed in the right prefrontal cortex (i.e., hyperactive) and higher alpha was 

observed in the left prefrontal cortex (i.e., hypoactive). However, not all studies have 

replicated this finding (Reid, Duke et al. 1998, Price, Lee et al. 2008, Carvalho, Moraes et 

al. 2011, Segrave, Cooper et al. 2011, Gold, Fachner et al. 2013). Asymmetry differences 

are suggested to be a result of abnormalities in functional connections in both the 

hemispheres (Fingelkurts, Fingelkurts et al. 2007).  

(3) A few studies observed increased delta and frontal-midline theta oscillations in patients 

with depression (Nystrom, Matousek et al. 1986, Lieber and Prichep 1988, Roemer, 

Shagass et al. 1992, Kwon, Youn et al. 1996, Bjørk, Sand et al. 2008, Gatt, Kuan et al. 

2008, Korb, Cook et al. 2008). Theta oscillations were previously associated with 

thalamo-cortical network activity (Klimesch 1999). Some studies have also reported 

decreased delta and occipital-parietal theta (Fingelkurts, Fingelkurts et al. 2006). 

(4) Some studies have shown increased beta oscillations in patients with depression (Lieber 

and Prichep 1988, Knott, Mahoney et al. 2001).  

 

Studies have also investigated differences between patients with depression and healthy subjects 

using frequency analysis in source space (i.e., current source density analysis). Current source 

density is an estimate on the current sources generating the electrical potentials measured by 
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EEG and is derived for each frequency band separately. Some studies associate depression with 

higher delta, theta, alpha and beta in bilateral frontal areas (Korb, Cook et al. 2008), higher theta 

in the anterior cingulate cortex (Pizzagalli, Pascual-Marqui et al. 2001), higher beta in the 

inferior and superior right frontal gyrus (Pizzagalli, Nitschke et al. 2002) and higher whole-brain 

delta (Pizzagalli, Oakes et al. 2003). Others show lower delta in the inferior and superior right 

temporal gyrus (Lubar, Congedo et al. 2003) and lower delta, theta and beta in the anterior 

cingulate cortex (Mientus, Gallinat et al. 2002).  

 

Coherence is used to show functional links between different recording sites (areas of the brain) 

at each relevant frequency band on a topographical scalp map (Nunez, Srinivasan et al. 1997, 

Nunez, Silberstein et al. 1999). Depression in male subjects was previously associated with 

decreased coherence in the delta, theta, alpha and beta bands in several regions of the brain 

(Knott, Mahoney et al. 2001). Another study also showed a decrease in coherence in the theta, 

alpha and beta bands, however, these changes were not significant (Suhhova, Bachmann et al. 

2009). Interhemispheric coherence was shown to be significantly lower in patients with 

depression in the delta, alpha, theta or beta bands during sleep (Armitage, Hoffmann et al. 1999, 

Knott, Mahoney et al. 2001). 

 

1.6.4.2 Time-Domain Analysis 

Variation in the pattern of neural oscillatory activity over time can be studied through linear or 

non-linear measures. Linear analysis methods for EEG data may include power spectral density 

analysis using the Fourier transform (outlined above). Although useful, linear measures may not 

be sufficient for the characterization of neural dynamics. Several lines of evidence suggest that 

the brain is a non-linear dynamical system and neural activity measured from the brain is 

complex, chaotic and unpredictable. Non-linear measures of the EEG signal may provide new 

insights into neural functions that are not seen with linear analysis methods. Studies that applied 

non-linear analysis to compare patients with depression with healthy controls used wavelet-chaos 

methodology (Ahmadlou, Adeli et al. 2012), wavelet entropy (Li, Li et al. 2007), Higuchi’s 

fractal dimensions (Ahmadlou, Adeli et al. 2012, Bachmann, Lass et al. 2013, Cukic, Pokrajac et 

al. 2018), largest Lyapunov exponents (Hosseinifard, Moradi et al. 2013), Lempel-Ziv 
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complexity (Bachmann, Kalev et al. 2015), detrended fluctuation analysis (Lee, Yang et al. 

2007), sample entropy (Cukic, Pokrajac et al. 2018), multiscale entropy (Méndez, Zuluaga et al. 

2012). In general, these studies revealed higher complexity of neural activity in patients with 

depression. 

 

1.6.4.3 Global Network Analysis 

Global neural network dynamics can be studied with resting-state EEG data through microstate 

analysis. Microstate analysis postulates that spontaneous neural activity (i.e., resting-state) is not 

random and the topographic distributions of this spontaneous activity can be clustered into a set 

of brain state maps (i.e., microstates). Each microstate is stable for a short duration of time (50-

120ms) before transitioning into another microstate. Microstates are thought to be generated by 

an underlying neuronal population. Therefore, the temporal characteristics of a microstate (such 

as rate of change or duration) can be considered as an expression of the dynamic stability of an 

underlying spatial network (Brodbeck, Kuhn et al. 2012). The duration of microstates is also 

consistent with the duration of high-level cognitive processes, as shown by evoked-potential 

studies (Kok 1997). Moreover, microstates were shown to be state-dependent, to vary across age, 

cognitive state (Koenig, Prichep et al. 2002, Brodbeck, Kuhn et al. 2012, Milz, Faber et al. 2016, 

Santarnecchi, Khanna et al. 2017) and in response to therapy (Kinoshita, Strik et al. 1995, 

Rodriguez, Vitali et al. 2002, Kikuchi, Koenig et al. 2007). Studies have also confirmed the 

reliability of microstates across repeated testing sessions (Khanna, Pascual-Leone et al. 2014). 

Microstates were previously linked with resting-state fMRI networks (Britz, Van De Ville et al. 

2010, Musso, Brinkmeyer et al. 2010, Yuan, Zotev et al. 2012); specifically with networks 

suggested to be impaired in depression such as the salience network and the frontoparietal 

network (Veer, Beckmann et al. 2010, Whitfield-Gabrieli and Ford 2012, Kaiser, Andrews-

Hanna et al. 2015, Fischer, Keller et al. 2016). To date, only one study examined and reported a 

decrease in duration of microstates in depression compared to healthy controls (Strik, Dierks et 

al. 1995). 
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1.6.5 Resting-State EEG Markers of Modulations in Neural Dynamics 
by Treatments of Depression 

Neural dynamics, as measured by resting-state EEG, are potentially modulated by treatments of 

depression. These are summarized below. 

1.6.5.1 Frequency Analysis 

In the EEG frequency domain, several studies investigated response to antidepressants using pre-

treatment neural dynamics.  

(1) High delta oscillations were linked with response to SSRI (imipramine), tricyclic 

(paroxetine) antidepressants (Knott, Telner et al. 1996, Knott, Mahoney et al. 2000).  

(2) High theta oscillations were linked with response to SSRI (paroxetine, venlafaxine, etc.) 

(Knott, Mahoney et al. 2000, Iosifescu, Greenwald et al. 2009) and tricyclic (imipramine) 

antidepressants (Knott, Telner et al. 1996). Specifically, high frontal midline theta was 

associated with response to several antidepressants (Spronk, Arns et al. 2011).  

(3) Theta cordance combines absolute and relative power from EEG signal into a single 

measure (Leuchter, Cook et al. 1994) and is thought to represent regional cerebral 

perfusion (Leuchter, Uijtdehaage et al. 1999). An early decrease in frontal theta cordance 

(2 days to 1 week after treatment) was observed in responders of SSRI (fluoxetine) and 

SNRI (venlafaxine) (Cook and Leuchter 2001, Cook, Leuchter et al. 2002, Bares, 

Brunovsky et al. 2008).   

(4) Studies have shown that high alpha oscillations were associated with tricyclic 

(clomipramine, imipramine) (Ulrich, Haug et al. 1988, Knott, Telner et al. 1996) and 

SSRI (paroxetine, fluoxetine) antidepressant response (Knott, Mahoney et al. 2000, 

Bruder, Stewart et al. 2001). High alpha in pre-treatment data is hypothesized to be a 

result of low levels of serotonin seen in depression (Bruder, Sedoruk et al. 2008). 

Antidepressants likely target this deficit by increasing levels of serotonin.    

(5) Interhemispheric alpha asymmetry was also observed in responders of tricyclic 

(amitriptyline and pirindol) (Ulrich, Renfordt et al. 1984) and SSRI (fluoxetine) 

antidepressants (Bruder, Stewart et al. 2001, Bruder, Sedoruk et al. 2008). Higher alpha 

activity was observed in the left hemisphere and lower alpha activity was observed in the 

right hemisphere, mainly in occipital sites for responders. Non-responders reveal the 
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opposite activation in frontal and parietal regions. Causes for this asymmetry may rise 

from the genetic level (serotonin receptor polymorphisms) (Bismark, Moreno et al. 2010) 

or from the cellular neurotransmitter level (lateralized distribution of serotonin in the 

brain in patients with depression) (Bruder, Stewart et al. 2001).  

 

Few studies have studied the long-term effects of antidepressant medications on resting-state 

EEG band power and provide conflicting results (Tarn, Edwards et al. 1993, Kwon, Youn et al. 

1996, Knott, Mahoney et al. 2002, Bruder, Sedoruk et al. 2008). Several longitudinal studies 

however, have quantified changes in EEG band power following ECT. Studies have shown an 

increase in delta and theta oscillations following ECT (Kriss, Halliday et al. 1978, Sackeim, 

Luber et al. 1996). 

 

Current source density analysis also revealed that increased theta activity in the rostral anterior 

cingulate cortex (Pizzagalli, Pascual-Marqui et al. 2001, Mulert, Juckel et al. 2007, Korb, Hunter 

et al. 2009, Korb, Hunter et al. 2011, Hunter, Korb et al. 2013) and medial orbitofrontal cortex 

(Korb, Hunter et al. 2009) at baseline was associated with response to medications such as SSRIs 

(Arns, Etkin et al. 2015) and tricyclic antidepressants (such as nortriptyline, citalopram, 

reboxetine, fluoxetine, or venlafaxine) (Korb, Hunter et al. 2009, Pizzagalli 2011) and also ECT 

(McCormick, Yamada et al. 2009). Specifically, increase in theta oscillations in the anterior 

cingulate cortex was shown to increase the activation of this region (Pizzagalli, Oakes et al. 

2003).  

 

1.6.5.2 Time-Domain Analysis 

Very few studies have evaluated the association between non-linear EEG features (e.g., 

complexity) and response to antidepressants such as citalopram, clomipramine, escitalopram, 

bupropion and mirtazapine (Thomasson, Pezard et al. 2000, Méndez, Zuluaga et al. 2012, 

Okazaki, Takahashi et al. 2013, Farzan, Atluri et al. 2017, Jaworska, Wang et al. 2018). 

Multiscale entropy is one method of complexity analysis. It provides information on short and 

long temporal scales at various regions of the brain revealing information on the complexity of 

local and global neuronal processing (Vakorin, Lippé et al. 2011, McIntosh, Vakorin et al. 2013, 
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McDonough and Nashiro 2014). To our knowledge, only two studies have investigated whether 

pre-treatment neural complexity can predict response to antidepressant medication in depression 

(Méndez, Zuluaga et al. 2012, Jaworska, Wang et al. 2018). In Mendez et al., a reduction in 

Lempel-Zev complexity of neural signals, as measured by magnetoencephalography, was shown 

to be associated with response to mirtazapine. Lower complexity at baseline was also associated 

with antidepressant response in their study. In comparison, Jaworski et al. used multiscale 

entropy on resting-state EEG data to predict response to escitalopram and/or bupropion in 36 

patients with major depressive disorder. Results from the study revealed that increased baseline 

complexity in mid-coarse timescales (frontal, central, parietal) and decreased complexity in fine 

timescales (fronto-central) was associated with improvement in depressive symptoms. Another 

study investigated changes in complexity following ECT in 3 patients and showed reduction in 

complexity (Okazaki, Takahashi et al. 2013).  

 

1.6.5.3 Global Network Analysis 

To the best of my knowledge, the effect on global network dynamics by treatments of depression 

using resting-state EEG has not been studied previously and is a novel contribution of this thesis.  

 

1.7 Review on the Performance of EEG Predictors for 
Antidepressant Response 

The following table (Table 1.1) summarizes studies that have investigated the predictive 

performance of resting-state EEG features for antidepressant response. Accuracy was reported to 

be 87.9% when linear (EEG power) and non-linear features (mutual information) were combined 

with machine learning methods (Khodayari-Rostamabad, Reilly et al. 2013). However, this study 

was performed with a very low sample size (n=22) and responders were defined to have ≥30% 

improvement in HRSD-17 scores rather than the usual ≥50%. In addition, the sample size was a 

combination of patients on 4 different medications (sertraline, citalopram, fluvoxamine and 

paroxetine). The study also includes multiple epochs from the same individual as separate 

samples in the feature matrix and this can significantly impact the prediction accuracy of the 

model (Saeb, Lonini et al. 2016). Accuracy was also high (85-92%) in Rabinoff et al., (2011) 
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(Rabinoff, Kitchen et al. 2011) using spectral EEG features with classification and regression 

tree analysis. The study combined trials for 2 antidepressants (fluoxetine and venlafaxine) to 

predict response in 51 patients with unipolar depression. The high accuracy values however, may 

be due to overfitting to the data and this is suggested by the 100% specificity in all treatment 

groups. Remaining studies revealed accuracies between 60-77%. Many of these studies 

evaluated the prediction performance of single marker.  
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Table 1.1 - Summary of Studies Evaluating the Prediction Performance of Pre-treatment Resting-State EEG markers for 
Antidepressant Response 
Citation Sample Size of 

Patients 

Treatment Model Features Validation 

Method 

Classification 

Performance 

Bruder et al., 

(2008). Biological 

Psychitatry 

(Bruder, Sedoruk 

et al. 2008) 

18 patients with 

major depressive 

disorder 

 

Response = “much 

improved” or “very 

much improved” on 

the Clinical Global 

Impression 

Improvement scale 

12 weeks of fluoxetine 

treatment 

ROC analysis/ 

Logistic regression 

Alpha power and 

alpha asymmetry at 

occipital sites 

none Alpha power 

Accuracy   = 65.1% 

Sensitivity = 72.7% 

Specificity = 57.5% 

Precision   = 72.7% 

 

Alpha asymmetry 

Accuracy   = 67.5% 

Sensitivity = 63.6% 

Specificity = 71.4% 

Precision   = 77.8% 

 

Combined alpha 

power and alpha 

asymmetry  

Accuracy   = 75.5% 

Sensitivity = 83.3% 

Specificity = 67.7% 

Precision   = 71.4% 

Iosifescu, et al., 

(2009). European 

Neuropsycho-

pharmacology 

(Iosifescu, 

Greenwald et al. 

2009) 

82 patients with 

major depressive 

disorder 

 

Response: ≥50% 

reduction in HRSD-

17 scores 

8-week treatment trial 

 

escitalopram (n=53), 

fluoxetine (n=7), 

paroxetine (n=7), 

citalopram (n=5), 

sertraline (n=5), 

venlafaxine (n=5) 

ROC analysis/ 

Logistic regression 

Antidepressant 

Treatment Response 

(ATR) index using 

EEG parameters 

assessed at baseline 

and week 1. 

4-channel EEGs 

(F7-Fpz, F8-Fpz, 

A1-Fpz, A2-Fpz)  

none Baseline relative 

theta power  

Accuracy   = 63% 

Sensitivity = 64% 

Specificity = 62% 

 

Relative theta power 

at week 1  

Accuracy   = 60% 

Sensitivity = 57% 

Specificity = 61% 

 

ATR index 

Accuracy   = 70% 

Sensitivity = 82% 

Specificity = 54% 

Korb et al., 72 patients with Subjects randomized ROC analysis/ Theta current source none High theta in rACC 
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(2009). Clinical 

Neurophysiology 

(Korb, Hunter et 

al. 2009) 

 

major depressive 

disorder 

 

Response: ≥50% 

reduction in HRSD-

17 scores 

to receive 8-weeks of 

fluoxetine (n=13), 

venlafaxine (n=24), or 

placebo (n=35) 

Logistic regression density in rostral 

anterior cingulate 

cortex (rACC) and 

the medial 

orbitofrontal cortex 

(mOFC) 

Accuracy  = 65.5% 

Sensitivity = 64 %, 

Specificity = 67% 

 

High theta in mOFC 

Accuracy  = 66.5% 

Sensitivity = 73% 

Specificity = 60% 

Leuchter, et al., 

(2009). Psychiatry 

Research. 

(Leuchter, Cook et 

al. 2009) 

220 patients with 

major depressive 

disorder 

 

Response: ≥50% 

reduction in HRSD-

17 scores 

 

Remission: HRSD-17 

score <= 7 

 

Only escitalopram 

patients taken into 

model 

(n = 73)  

 

7 weeks of treatment 

ROC analysis/ 

Logistic regression 

Antidepressant 

Treatment Response 

(ATR) index 

in alpha and theta 

bands of frontal 

brain activity 

integrated and 

scaled from 0 (low 

probability of 

response or 

remission to the 

medication) to 100 

(high probability) 

ROC curve ATR Predicting 

Response 

Accuracy   = 74% 

Sensitivity = 58% 

Specificity = 91% 

Precision   = 88% 

 

ATR Predicting 

Remission 

Accuracy   = 74% 

Sensitivity = 61% 

Specificity = 82% 

Precision   = 68% 

Bares, et al., 

(2010). European 

Neuropsycho-

pharmacology 

(Bares, Brunovsky 

et al. 2010) 

18 patients with 

major depressive 

disorder 

 

Response: ≥50% 

reduction in MADRS 

scores 

4-week bupropion 

treatment for patients 

who had failed to 

respond to previous 

antidepressant 

treatments  

ROC analysis/ 

Logistic regression 

QEEG theta 

cordance computed 

at three frontal 

electrodes  

 

none Reduction of 

prefrontal theta 

cordance after one 

week of bupropion 

Positive predictive 

value = 0.9 

Negative predictive 

value = 0.75  

Rabinoff et al., 

(2011). Open 

Medical 

Informatics 

Journal 

(Rabinoff, Kitchen 

et al. 2011) 

51 patients with 

unipolar depression 

 

clinical response was 

defined as reduction 

in final HRSD score 

to ≤10  

 

 

8-weeks of fluoxetine 

or venlafaxine  

 

n=24: fluoxetine  

 

n=27: venlafaxine  

classification and 

regression tree 

analysis with cost-

complexity pruning 

Absolute power, 

relative power and 

cordance values in 

four frequency 

bands (0.5–4 Hz, 4–

8 Hz, 8–12 Hz, and 

12–20 Hz) 

10-fold cross-

validation 

Fluoxetine 

combined with 

Venlafaxine: 

Accuracy   = 92.5% 

Sensitivity = 85% 

Specificity = 100% 

Precision   = 100% 

 

 

 

Fluoxetine: 
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Accuracy   = 85.5% 

Sensitivity = 71% 

Specificity = 100% 

Precision   = 100% 

 

Venlafaxine: 

Accuracy   = 91.5% 

Sensitivity = 83% 

Specificity = 100% 

Precision   = 100% 

 

Placebo: 

Accuracy   = 82.5% 

Sensitivity = 90% 

Specificity = 75% 

Precision   = 69% 

 

Tenke et al., 

(2011). Biological 

Psychiatry 

(Tenke, Kayser et 

al. 2011)  

41 patients with 

major depressive 

disorder 

 

Response = “much 

improved” or “very 

much improved” on 

the Clinical Global 

Impression 

Improvement scale 

 

 

N=16 (SSRI only) 

N=15 (SSRI + NDRI) 

N=10 (SNRI) 

 

8-12 weeks of 

treatment 

ROC analysis/ 

Logistic regression 

Current source 

density in whole 

brain 

none Prominent alpha 

activity  

Accuracy  = 71.2% 

Sensitivity = 50% 

Specificity = 92.3% 

Precision   = 93.3% 

Khodayari-

Rostamabad, et 

al., (2013). 

Clinical 

Neurophysiology  

(Khodayari-

Rostamabad, 

Reilly et al. 2013) 

22 patients with 

treatment-resistant 

depression 

 

Response: ≥30% 

reduction in HRSD-

17 scores 

 

 

 

6 weeks of SSRI 

treatment 

 

Mainly Sertraline 

hydrochloride but 

other SSRIs also used. 

mixture of factor 

analysis (MFA) model 

EEG power spectral 

density 

 

Spectral coherence 

 

Mutual information 

‘‘leave-n-out’’ 

randomized 

permutation 

cross-validation  

Specificity = 80.9% 

Sensitivity = 94.9% 

Accuracy = 87.9% 

Baskaran et al., 44 patients with 8-week escitalopram ROC analysis/ EEG measures none Baseline whole-
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(2017). Journal of 

Affective 

Disorders 

(Baskaran, Farzan 

et al. 2017) 

major depressive 

disorder 

 

Response: ≥50% 

reduction in MADRS 

scores 

treatment Logistic regression assessed at baseline, 

2 weeks into 

treatment, and as an 

early change (from 

baseline to week 2) 

brain absolute alpha 

asymmetry 

Accuracy   = 70.7% 

Sensitivity = 72.2% 

Specificity = 69.2% 

Precision   = 61.9% 

 

Baseline parietal 

alpha asymmetry 

Accuracy   = 77.2% 

Sensitivity = 88.9% 

Specificity = 65.4% 

Precision   = 64.0% 

 

Baseline whole-

brain relative delta 

asymmetry 

Accuracy   = 73.3% 

Sensitivity = 88.9% 

Specificity = 57.7% 

Precision   = 59.3% 

 

2 week whole-brain 

absolute delta 

asymmetry 

Accuracy   = 67.8% 

Sensitivity = 77.8% 

Specificity = 57.7% 

Precision   = 56.0% 
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1.8 Summary 

In summary, the trial-and-error process of identifying treatments for patients with depression is 

ineffective and inefficient. As summarized in above sections, depression is characterized by 

dysfunctions at several levels of brain function. Given this understanding, neurophysiological 

markers of treatment response may improve the success rate of treatments for depression. In this 

thesis, we investigate changes in several characteristics of neural dynamics following seizure 

therapy (ECT and MST) and pharmacotherapy (escitalopram). We hypothesize both these 

treatments impact neural dynamics for therapeutic efficacy. Seizure therapy for example, may 

impact neural dynamics at the network level but may also affect other levels through top-down 

processes. In contrast, pharmacotherapy has an impact at the cellular level but, through bottom-

up processes, it may also affect neural dynamics at the network level. We specifically focus on 

EEG markers of neural dynamics during the resting-state condition for two reasons: (1) EEG 

signal has the high temporal resolution needed to monitor changes in neural dynamics following 

treatments of depression, and (2) EEG has high potential for clinical translation. In addition to 

investigating the mechanism of treatments, we evaluated the predictive value of neural dynamic 

markers for pharmacotherapy response. Identifying early markers of response to medications 

may reduce the time spent in failed trials and avoid the debilitating impact of untreated 

depression.  

 

This thesis is written as a multi-paper thesis. The results are split into three sections, each 

containing manuscript(s) that detail the work: Section II: Investigating the targets of seizure 

therapy using EEG markers of neural dynamics; Section III: Investigating the targets of 

pharmacotherapy using EEG measures of neural dynamics; and Section IV: Evaluating the 

predictive value of EEG measures of neural dynamics for response to pharmacotherapy. A 

general discussion and suggestions for future work are provided in Section V. 
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There are two main objectives. The first is to use measures of neural dynamics to investigate 

neurophysiological targets of successful treatments for depression using measures of neural 

dynamics. The second is to investigate whether measures of neural dynamics can also predict 

response to treatment. We consider two types of treatments (1) seizure therapy for severely-ill, 

treatment-resistant patients with depression, and (2) pharmacotherapy for patients with major 

depressive disorder.  

 

2.1 Study 1: Investigating Targets of Seizure Therapy 

2.1.1 Rationale 

Electroconvulsive therapy (ECT) is highly effective for treatment-resistant depression, yet its 

mechanism of action is still unclear. Magnetic seizure therapy (MST) (Lisanby, Luber et al.) also 

relies on the principles of seizure induction for therapeutic benefit but unlike ECT, the effect of 

MST is localized (Deng, Lisanby et al. 2011). Based on the few clinical trials conducted to date, 

MST improves depressive symptoms (Kayser, Bewernick et al. 2011, Cretaz, Brunoni et al. 

2015, Kayser, Bewernick et al. 2015) and suicidal ideation (Sun, Farzan et al. 2016), without the 

cognitive side effects seen with ECT (Lisanby, Luber et al. 2003, Moscrip, Terrace et al. 2006, 

Spellman, McClintock et al. 2008, Deng, McClintock et al. 2015). However, in its early stage of 

development, its efficacy relative to ECT requires further study (Kayser, Bewernick et al. 2011). 

Although the mechanism of action of ECT is unknown, seizures induced by ECT are known to 

have a significant impact on neural dynamics (Farzan, Boutros et al. 2014). Identifying how 

neural dynamics (i.e., neural communication) are affected by treatment-resistant depression and 

modified by ECT may allow the optimization of MST as well as the development of non-

invasive and non-seizure inducing treatments.  

2.1.2 Objectives 

The primary objective of the first study was to investigate the targets of successful seizure 

therapy using EEG measures of neural dynamics.  



34 

 

The secondary objective was to compare the targets of ECT and MST using EEG measures of 

neural dynamics. 

2.1.3 Hypothesis 

We hypothesize that seizure therapy will have a significant impact on neural dynamics for 

therapeutic efficacy. Further, we hypothesize that ECT will have a global effect on neural 

dynamics while MST will show specific effects on neural dynamics on networks and regions 

close to the area of stimulation (i.e., the dorsomedial prefrontal cortex). 

 

2.2 Study 2 – Investigating the Targets of Pharmacotherapy  

2.2.1 Rationale 

Pharmacotherapy is often the first line of treatment for patients with major depressive disorder, 

yet remission rates are around 30% for the first medication, and decline progressively with 

subsequent medication trials (Rush, Trivedi et al. 2006, Trivedi, Rush et al. 2006). A trial-and-

error process is implemented to identify the antidepressant medication best suited for each 

patient, but this process can take time and patients may spend months to years suffering from 

symptoms (Solomon, Keller et al. 1997).  The average efficacy of antidepressants may be 

improved with better insight into the long-lasting neurophysiological changes that occur 

following successful treatment.  

2.2.2 Objectives 

The primary objective of the second study was to investigate the targets of pharmacotherapy 

(specifically escitalopram) for major depressive disorder using EEG measures of neuronal 

dynamics. 

The secondary objective was to compare the targets of pharmacotherapy with seizure therapy. 

2.2.3 Hypothesis 

We hypothesize that pharmacotherapy will have specific effects on neural dynamics that will 

distinguish responders and non-responders. In responders, these effects will be seen in regions 

known to be impaired in depression such as the ACC, cingulate cortex, etc. (Pandya, Altinay et 
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al. 2012). Further, we hypothesize that the neural dynamics seen in non-responders of 

pharmacotherapy may be normalized by seizure therapy.  

 

2.3 Study 3 – Predicting Response to Pharmacotherapy 

2.3.1 Rationale 

To reduce the time spent in failed trials and avoid the debilitating impact of untreated depression 

(i.e., poor quality of life, economic burden), early predictors of pharmacotherapy must be 

identified. Implementing a personalized tool for the prediction of response to antidepressant 

medications may lead to increase in the efficacy of current treatments and the faster relief of 

symptoms.  

2.3.2 Objectives 

The objective of the third study is to evaluate EEG measures of neural dynamics for the 

prediction of response to pharmacotherapy (escitalopram). In this study, we aim to develop a 

model for antidepressant response prediction.  

2.3.3 Hypothesis 

We hypothesize that markers of neural dynamics will have high predictive value for the 

prediction of response to escitalopram.  
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In this chapter, we provide a general overview on data collection, data preprocessing and the data 

analysis methods used in this thesis. A brief overview of the machine learning method used to 

create a prediction model is also included. Detailed methods (including statistical analysis) for 

each project of the thesis are provided within each manuscript/chapter. In addition, details on the 

EEG measures of neural dynamics (frequency analysis, multiscale entropy analysis and 

microstate analysis) are also provided within each manuscript/chapter. 

3.1 Data Collection 

Two types of data were collected in the experiments: (i) clinical data and (ii) neurophysiological 

data. Clinical assessments on the severity of depression are performed by psychiatrists or 

medical professionals over the duration of the treatment. In some of the studies included in this 

thesis, behavioral data was also collected (i.e., cognitive outcomes). Clinical measures are used 

in the clinic to assess a patient’s mental health, monitor the effect of treatment and to make 

clinical decisions such as diagnosis, treatment selection or modifications to treatment dosage. 

Neurophysiological data can be used to monitor changes in neural activity with treatment. 

Understanding how changes in the severity of depression can be linked to changes in neural 

activity may help improve existing treatments for depression or develop novel personalized 

treatments. In this thesis, neurophysiological data refers to resting-state, eyes-closed 

electroencephalography (EEG) data. Patients were instructed to close their eyes for a short period 

of time (between 5-10 minutes for the studies) without falling asleep. Details on the equipment 

and equipment settings for data collection are included within each manuscript.  

 

Data for this thesis were provided by multiple studies. The following sections outline the 

research protocols for these studies as well as the specific data that was collected in each study. 

Details on the demographics and clinical data of the patients included in our analysis are 

provided within each manuscript and are therefore not discussed here. 
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3.1.1 Data for Study 1: Investigating the Targets of Seizure Therapy 

EEG data was collected from two studies, each administering different seizure therapy 

treatments: electroconvulsive therapy and magnetic seizure therapy. Eyes-closed rest EEG data 

was collected within a week prior to the first treatment session and again within 2 weeks after the 

completion of the last treatment. Healthy subject data was pooled from several other studies. 

Details are provided below.  

 

3.1.1.1 Electroconvulsive Therapy Trial (Open-Label) 

Data used from this trial was collected from 2009 to 2014. A total of 60 patients with treatment-

resistant depression/bipolar disorder were recruited for this trial. However, not all of these 

patients completed the treatment trial and neurophysiological data could not be collected from all 

of these patients. We also only included subjects with treatment-resistant depression in our 

analysis. The following information was taken directly from the research protocol of this trial. 

3.1.1.1.1 Participants 

Patients were included if they: (1) were voluntary and competent to consent to treatment, (2) had 

a Structured Clinical Interview for DSM-IV (SCID) (American Psychiatric Association 2000) 

confirmed DSM-IV diagnosis of major depressive disorder (3) were between the ages of 18 and 

65, (4) had treatment-resistant depression (i.e., failed to achieve a clinical response, or did not 

tolerate, at least 2 separate antidepressant trials of sufficient dose for at least 6 weeks according 

to Stage II criteria outline by (Thase and Rush 1995), (5) had a score of greater than or equal to 

20 on a HRSD-17 scale and (6) had no increase or initiation of new antidepressant (or other 

psychoactive) therapy in the 4 weeks prior to screening. A careful medical and neurological 

history was taken to ensure that subjects had no unstable conditions that would preclude them 

from entering into the study. This history focused on conditions such as seizures, stroke, 

hypertension, diabetes, coronary artery disease, thyroid problems, respiratory illness, allergies 

and presence of metal implants. 

 

Patients were excluded if they: (1) had a history of DSM-IV substance dependence in the last 6 

months, and have DSM-IV substance abuse in the last month, (2) had a concomitant major 
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unstable medical or neurologic illness or have had a history of seizures, (3) were acutely suicidal, 

(4) were pregnant, (5) had metal implants, (6) had a co-morbid borderline personality disorder 

and/or antisocial personality disorder as confirmed by the Structured Clinical Interview for 

DSM-IV Axis II Disorders (SCID-II), which may prevent the patient from completing the 

procedures required for the study; (7) positive urine toxicology screen for drugs of abuse. With 

respect to concomitant medications patients were excluded if during the time of treatment (or in 

the last 4 weeks before treatment) they received: (1) more than 2 mg daily dose of lorazepam (or 

equivalent). 

3.1.1.1.2 Clinical Measures 

Demographic variables and potential covariates were recorded at baseline following a clinical 

interview. These included the duration of the current episode, years from first diagnosis, number 

of previous episodes, type and dose of current and previous treatment and family history of mood 

disorder. Clinical measures were collected at baseline and at the end of treatment. The primary 

outcome variable was the 17-item HRSD scale. Other outcome measures included the 

Montgomery-Asberg Depression Rating Scale (MADRS), Beck Depression Inventory (BDI). 

3.1.1.1.3 Treatment  

ECT was administered with a square-wave, constant-current, brief-pulse device (MECTA 

Corporation, Lake Oswego, OR). ECT was administered open-label three times per week on 

Mondays, Wednesdays and Fridays. First, seizure threshold was determined at the first treatment 

using the previously published titration procedure (Sackeim, Decina et al. 1987). For all 

subsequent treatments, stimulus intensity was delivered at either 1.5 times the seizure threshold 

(bilateral ECT) or 6 times the seizure threshold (right unilateral ECT). Patients either received 

right unilateral ECT or bilateral ECT, and the electrodes were placed according to guidelines 

outlined by the American Psychiatric Association (American Psychiatric Association 2001). 

Thiopental and succinylcholine were the typical anaesthetic medications used, at doses 

determined by the anesthetist. Treatment termination was based solely on clinical factors and/or 

if the patient expressed wish to discontinue. Subjects were free to withdraw consent for treatment 

at any time. 
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3.1.1.2 Magnetic Seizure Therapy Trial (Open-Label) 

Data used from this trial was collected from 2012 to 2017. A total of 154 patients with major 

depressive disorder were recruited for this trial till date (we only included subjects with major 

depressive disorder in our analysis). However, not all of these patients completed the treatment 

trial or neurophysiological data could not be collected.  

 

The following information was taken directly from the research protocol of this trial.  

3.1.1.2.1 Participants 

Participants were included if they: (1) had a DSM-IV diagnosis of a major depressive episode 

with or without psychotic features in the context of major depressive disorder, (2) were within 

the age range from 18-85, (3) had a 24-item HRSD score of >21 (depression patients, moderate–

severe), and (4) were on a medically acceptable form of birth control (if a woman of child-

bearing potential). 

 

Participants were excluded from the trial if they: (1) had an unstable medical and/or neurological 

condition, (2) were pregnant or lactating, (3) were not considered sufficiently well to undergo 

general anesthesia, (4) had a cardiac pacemaker, cochlear implant, implanted electronic device or 

non-electric ferrometallic implant in the head only, (5) were taking a benzodiazepine at a dose 

greater than lorazepam 2mg or equivalent, (6) were taking any non-benzodiazepine 

anticonvulsant, (7) had active substance misuse or dependence within the past 3 months, (8) had 

a diagnosis of delirium, dementia or another cognitive disorder secondary to a general medical 

condition, (9) had other significant Axis I co-morbidity, (10) had a co-morbid borderline 

personality disorder and/or antisocial personality disorder as confirmed by the Structured 

Clinical Interview for DSM-IV Axis II Disorders (SCID-II), or (11) had a history of any suicide 

attempts in the past 6 months. 

3.1.1.2.2 Clinical Measures 

Demographic variables were recorded at baseline following a clinical interview. These included 

the duration of the current episode, years from first diagnosis, number of previous episodes, type 

and dose of current and previous treatment and family history of mood disorder. Diagnosis was 
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assessed with the SCID (DSM-IV). Clinical rating measures included the 24-item HRSD for 

consistency with most prior ECT studies. The Beck Scale for Suicide Ideation (BSS) (Beck, 

Kovacs et al. 1979) was used to evaluate suicidal ideation, which is a common symptom in 

depression.  

 

Remission was defined as a 24-item HDRS score ≤ 10, and a greater than 60% decrease in scores 

from baseline. Response was defined as a ≥50% reduction in 24-item HDRS score from baseline. 

The Montreal Cognitive Assessment (MoCA) was administered at baseline and every 6 

treatments during acute treatment. The MoCA was also administered before the last treatment. 

3.1.1.2.3 Treatment  

The frequency of stimulation was between 20 Hz and 100Hz, with a duration range between 2 

and 20 seconds depending on the frequency used. Furthermore, the anatomical location of 

stimulation was either the frontal or vertex region of the brain. The MST determination of 

seizure threshold was done at 100% stimulator output applied at the selected treatment frequency 

with progressively escalating train durations until an adequate seizure was produced. During an 

ECT treatment an adequate seizure is described as generalized tonic-clonic activity > 20 seconds 

on the EMG recording or > 25 seconds of EEG seizure activity. However, little data is available 

on the characteristics of MST induced seizures therefore the adequacy of the seizure was 

determined at each session by the treating MST psychiatrist. During titration, a maximum of 

three stimulations were given at the same session, provided the coil temperature allowed for a 

third stimulation. If an adequate seizure was not produced by the third stimulation, titration was 

continued at the next treatment session until threshold was reached.  

 

Six treatment sessions, at a frequency of two or three times per week were administered. Patients 

did not have treatments on consecutive days. Remission was assessed every 3rd treatment, and if 

the pre-defined remission rate was not met 3 additional treatments were provided. This was 

repeated a total of 5 times (i.e., maximum number of treatment was 24). Furthermore, response 

during the acute treatment course was monitored and the dose adjusted accordingly. That is, if 

the patient failed to achieve an equal to or greater than 30% decrease from baseline following 

treatment 3, the dose was increased on their 4th treatment. After treatment 6, if the patient failed 
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to achieve further response, that is an equal or greater than 30% decrease from the score after 

treatment 3, the dose was increased on their 7th treatment. Treatment continued in this manner up 

to a maximum of 24 total treatments. If the patient was already at maximum stimulation (20 

seconds or 1000 pulses), the treatment continued with the dose unchanged. 

 

3.1.1.3 Healthy Subjects 

Healthy subject data was pooled from several trials conducted at the Temerty Centre for 

Therapeutic Brain Stimulation (Centre for Addiction and Mental Health, Toronto, ON). Healthy 

subjects in all these trials were screened and only included if they did not have a previous history 

of psychosis. 

 

3.1.2 Data for Study 2: Investigating the Targets of Pharmacotherapy 

Data was provided by phase 1 of the Canadian Biomarker Integration Network in Depression 

(CAN-BIND) study. The following information is taken from our manuscript in Journal of 

Affective Disorders (Baskaran, Farzan et al. 2017):  

3.1.2.1 Participants 

“Participants were outpatients aged 18–60 years of age, and met DSM-IV-TR criteria for major 

depressive episode, confirmed by the Mini International Neuropsychiatric Inventory (MINI) 

(Sheehan, Lecrubier et al. 1997). Study procedures were approved by research ethics institutional 

review boards at each centre and all participants signed written informed consent prior to 

participation. At study enrollment, all participants were experiencing a major depressive episode 

duration ≥ 3 months with a Montgomery Asberg Depression Rating Scale (MADRS) score ≥ 24; 

and were free of psychotropic medications for at least 5 half-lives before baseline visit. 

Participants were excluded if they had any Axis I diagnosis, other than major depressive 

disorder, that was considered the primary diagnosis or if they had a diagnosis of Bipolar Disorder 

Type I or II. Presence of a significant Axis II diagnosis (borderline, antisocial) was also 

exclusionary, along with high suicidal risk, substance dependence/ abuse in the past 6 months, 

and presence of significant neurological disorders, head trauma or other unstable medical 
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conditions. Female participants who were pregnant or breastfeeding were also excluded. Other 

exclusionary criteria included having failed four or more adequate pharmacological 

interventions, having started psychological treatment within the past 3 months with the intent of 

continuing the treatment, previously having failed escitalopram treatment or showing intolerance 

to escitalopram, and being at risk for hypomanic switch (i.e. with a history of antidepressant 

induced hypomania).”  

3.1.2.2 Clinical Measures 

“Participants were assessed every 2 weeks throughout the study period (8 weeks) including 

baseline (before administration of study medication). The primary outcome measure was the 

change in MADRS from baseline to week 8 of the study. Response was defined as a ≥ 50% 

decrease in MADRS score.” 

3.1.2.3 Treatment  

“Escitalopram was administered in an open-label manner, starting at 10 mg daily, which was 

increased to 20 mg daily at week 2 or later if clinically necessary. For patients who were unable 

to tolerate the 20 mg dose, the dose could be reduced to 10 mg at the discretion of the treating 

psychiatrist.” 

3.1.2.4 EEG Recording 

“Three compatible EEG acquisition systems were used across study sites. At UHN, recordings 

were performed using a Biosemi Active-Two amplifier system (Biosemi, Amsterdam, The 

Netherlands) from 64 channels using Ag/AgCl electrodes (active electrodes) mounted on an 

elastic cap. Eight additional electrodes were placed below the hairline (both mastoids, both pre-

auricular points, outer canthus of each eye, and inferior orbit of each eye). Eye movements were 

recorded with the electrodes placed at the outer canthi (horizontal electrooculogram (EOG)) and 

at the inferior orbits (vertical EOG). Two further electrodes (Common Mode Sense [CMS] active 

electrode and Driven Right Leg [DRL] passive electrode) were used as reference and ground 

electrodes, respectively (cf. www.biosemi/faq/cms&drl.htm). Data were collected with a 

sampling rate of 512 Hz with a low-pass cut-off 102.4 Hz. At CAMH, EEG was recorded with a 

64-channel electrode cap with Ag/AgCl electrodes using a Neuroscan Synamps RT amplifier 
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system (Compumedics Neuroscan USA, Ltd. Charlotte, North Carolina, USA). Data were 

digitized at 1000 Hz. Electrodes on the supra-orbital ridges and external eye canthi monitored 

EOG activity. The electrode posterior to Cz served as the reference electrode. Data were 

recorded with an online filter of 0.05–100 Hz. At UBC, EEG was recorded using a QuickAmp 

amplifier (Brain Products, Gilching, Germany) from a 64-channel electrode cap with Ag/ AgCl 

electrodes. Data were digitized at 1000 Hz. Electrodes on the supra-orbital ridges and external 

eye canthi monitored EOG activity. A common average of electrodes was used as the reference. 

Data were recorded with an online filter of 0.01–499 Hz.” At QNS, EEG was recorded using a 

Geodesic sensor net (EGI, Eugene, USA) from a 128-channel electrode cap. Data were digitized 

at 1000 Hz. A common average of electrodes was used as the reference. For all sites, electrode 

placement was in accordance with the International 10–10 System. Impedance levels were set at 

less than 5 kOhm. When examining the electrode montages across data acquisition sites, 58 

common electrodes were identified. 

3.1.2.5 EEG Data Standardization 

As mentioned, data from the CAN-BIND study was collected at multiple sites with different 

acquisition systems. Prior to analysis of this data, it was important to ensure that the data was 

standardized between all sites. An overview of the standardization process was included in our 

Scientific Reports manuscript (Farzan, Atluri et al. 2017):  

 

“Preprocessing Module 1. The aim of the first data preprocessing module is to minimize raw 

data heterogeneity across sites and prepare the data for integration. If unique acquisitions 

systems are used between CAN-BIND sites it is crucial that the raw data files be re-configured 

into the same file format and composition. This can be done in MATLAB (The Mathworks, Inc., 

Natick, MA, USA) via the open-source EEGLAB toolbox. During this process, the data is also 

downsampled (e.g., sampling rate and electrode montages are reduced) and re-referenced such 

that data from all sites are converted to have equivalent sampling rate, bandwidth, electrodes, 

reference, and event matrix. In CAN-BIND, this preprocessing step has thus far been conducted 

by dedicated research personnel and the converted data files are in EEGLAB format (*.set) 

which are shared on the Brain-CODE EEG platform. An important step in this preprocessing 

stage is to address the variety of recording channels and their associated layouts. There are 
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currently no established guidelines in place for integrating data between acquisition systems. 

When standard systems are used across acquisition systems (e.g., 10-10 EEG system), one way 

to address this issue is to find the closest equivalent electrodes between layouts (approach 

currently adapted in CAN-BIND projects). This approach has a downside when a standard 

montage (e.g., 10-10 EEG system) is not used across all or most sites. In such a case, a large 

proportion of electrodes may not have equivalents thereby resulting in a loss of spatial resolution 

and potentially impacting the types of EEG analyses that can be performed. For added accuracy, 

investigators may also choose to digitize the three-dimensional representation of the electrode 

layout and skull shape for every EEG recording session through commercially available 

digitizers (e.g. Polhemus Patriot digitizer). Including this information with each EEG recording 

could also provide a means to account for issues related to human error in proper EEG cap 

placement and improve accuracy in the interpretation of EEG outcomes.” 

 

3.1.3 Data for Study 3: Predicting Response to Pharmacotherapy 

Data from study 2 was used to create the prediction models.  

 

3.2 Data Preprocessing (All Studies) 

Prior to data analysis, EEG data was manually inspected and processed to extract sources of 

noise from the data. In all the studies, 58 or 60 EEG channels were used for data analysis (all 

other non-EEG channels or channels not common to all the data acquisition systems were 

deleted). Electrode names are listed in Appendix I. The data was downsampled to 512Hz or 

1000Hz (for faster processing of data) and bandpass filtered between 1-80Hz to remove voltage 

drift (<1Hz) and high frequency noise (>80Hz) that is not brain electrical activity. A notch filter 

(55-60Hz) was also applied to remove power line noise at 60Hz. Data was then split into 2 

second windows and independent component analysis was used to extract noise components 

including eye movements, muscle activity, bad electrode activity, etc. Channels were deleted if 

they contained noise for >40% of the recorded time and later interpolated using spherical 

interpolation. Finally, data was re-referenced to an average reference. To make this process more 

efficient, an in-house preprocessing pipeline (ERPEEG) 
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(http://www.tmseeg.com/multisiteprojects/) was modified from our original pipeline for 

preprocessing TMS-EEG data (Atluri, Frehlich et al. 2016)). A brief outline of ERPEEG was 

included in our Scientific Reports manuscript (Farzan, Atluri et al. 2017):  

 

“Preprocessing Module 2. The aim of the second preprocessing module is to standardize and 

track EEG data through the noise removal procedure. For this purpose, to streamline the process 

of EEG data cleaning, we developed an open-source MATLAB application, ERPEEG toolbox, 

depicted in Figure 3.1. This toolbox is developed in MATLAB (R2013a) and built using the 

EEGLAB platform (v.12.0.2.6b). A copy of this toolbox can be downloaded from 

www.tmseeg.com/multisiteprojects. The ERPEEG toolbox is created following the same 

framework as TMSEEG toolbox. TMSEEG toolbox enables processing of EEG collected during 

Transcranial Magnetic Stimulation (TMS-EEG) (e.g., standardized processing of TMS evoked 

potentials or TEPs), while ERPEEG is intended for processing of resting-state EEG and ERPs 

(Event-related potentials). This toolbox has a main interactive graphical user interface (GUI) 

(Figure 3.1A) that allows users access to the dataset working folder, a sequential list of 

preprocessing procedures, and the settings menu. Clicking on each step opens another interactive 

GUI with several data visualization suites designed for each specific processing step. The order 

of data processing steps in ERPEEG is standardized, and is optimized towards improving 

performance of each processing step. For example, random and large amplitude artifacts are 

processed early in the pipeline in order to increase the performance of the independent 

component analysis (ICA) step later in the pipeline. Following the initial step to load data and 

segment it into trials (Step 1), the workflow provides a GUI for removing data segments that are 

contaminated with random noise and cannot be easily de-noised. This step is particularly targeted 

towards the removal of channels and trials contaminated with large-amplitude or random noise 

sources that cannot be extracted easily through blind source estimation technique or filtering. 

The GUI permits interactive deletions of trials, channels and specific trials in a channel (Step 2) 

and keeps a log of deleted segments. Filtering can then be applied to exclude low and high 

frequency noise (Step 3). After these initial cleaning steps, blind source separation techniques 

such as ICA can then be used (Step 4, 5) to extract eye movements, eye blinks, 

electromyography artifacts, electrode discontinuity, and cardiac signals in order to recover the 

desired brain signals. At the completion of this step, a further interactive GUI enables a final data 

http://www.tmseeg.com/multisiteprojects/
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review and removal of trials and channels still contaminated with random noise (Step 6). Finally, 

the GUI provides users the options to interpolate the deleted channels and re-reference the data 

(Step 7).” 

 

“The ERPEEG toolbox contains several important features for standardized EEG data 

preprocessing. First, it incorporates interactive data visualization capabilities (Figure 3.1B), 

allowing the user to visualize the data at each step of the workflow and verifying the 

effectiveness of the data cleaning procedure. Second, intermediate datasets are saved after each 

processing step along with other important meta-information such as the deleted trials and 

channels, and the removed artifacts (Figure 3.1C, File Directory). This enables the user to easily 

revert to a previous step in the workflow, check the output of each step, and create a database of 

selected artifacts. Third, ERPEEG is a flexible platform. It allows for basic customization 

through the settings menu while providing a modular structure for advanced users to modify the 

order of processing or incorporate additional steps to accommodate processing of different EEG 

projects. Finally, parameters selected through the setting menu are saved in a separate MATLAB 

file. This enables future replication or assessment of the data preprocessing steps.” 
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Figure 3.1 - A Streamlined Toolbox for Multi-site EEG Data Processing and Archiving 

(taken from (Farzan, Atluri et al. 2017)).  

(A) The main graphical user interface (GUI) of the ERPEEG toolbox, with 7 preprocessing steps. 

Through this main interface, users select the data (by clicking on Working Folder, and Dataset), 

and navigate through each preprocessing step. Clicking on a processing step open a new GUI 

associated with that step, or runs that processing step. Steps that are completed turn green, and 

uncompleted turn green, and uncompleted steps remain red. (B) The view button (corresponding 

to each step) provides a visual summary of data cleaning processing (e.g., plots the power 

spectrum). This enables monitoring of data cleaning progress or detecting any major errors and 

data distortions. (C) The setting tab allows for selection of user-defined parameters for each step. 

(D) All intermediate steps (files created in completion of each step) are saved in the working 

folder following a standardized naming convention.  
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3.3 Statistical Analysis: Cluster-Based Permutation Tests 

Neural signals, as measured by EEG, are characterized over several dimensions (e.g., frequency, 

time) across space (i.e., sensors, regions of interest). Statistical analysis of such multidimensional 

data must evaluate the significance of measured neural activations. Elements (voxels) of these 

large datasets are considered “active” if they meet a certain threshold of statistical significance 

(i.e., t-score or z-score) compared to other voxels in the dataset. Due to the large number of 

comparisons in this high-dimensional data, uncorrected voxel-wise comparisons can lead to Type 

I errors (false positives). Correction methods such as Bonferroni and others (Shaffer 1995) can 

be applied but they are highly conservative and result in Type II (false negative) errors. To 

address these issues, cluster-based thresholding frameworks (Poline and Mazoyer 1994, 

Bullmore, Suckling et al. 1999, Maris and Oostenveld 2007) were introduced and were shown to 

effectively control Type I errors while minimizing Type II errors (Pernet, Latinus et al. 2015). 

Cluster-based frameworks group active neighbouring voxels into clusters that represent neural 

activation patterns and rely on the continuity of the EEG signal across one or more dimensions 

for correction (Groppe, Urbach et al. 2011). In the spatial dimension for example, EEG data 

collected from sensors that are spatially close to each other are highly correlated because of 

volume conduction. Therefore, significant voxels that are spatially close are likely to represent 

significant neural activations. Cluster-based correction involves two steps: 1) setting a threshold 

statistic (i.e., p<0.05) and grouping neighbouring active voxels into clusters, and 2) calculating a 

p-value for each cluster, based on a measure of the size of activation (Cluster P). Cluster-mass is 

the measure of activation used in this thesis and is defined as the sum of original test statistics 

values within each cluster (Bullmore, Suckling et al. 1999, Maris and Oostenveld 2007). As 

such, it is considered to be a sensitive measure of neural activations since it accounts for cluster 

size and the intensity of the values contained within each cluster. For future studies, threshold-

free methods of correction are recommended (Smith and Nichols 2009, Mensen and Khatami 

2013, Frehlich, Dominguez et al. 2016). 
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3.4 Machine Learning 

For machine learning (study 3), it was important to ensure that features were extracted over the 

same length of time for each participant. Pre-processed EEG data was split into segments. The 

length of each segment was the maximum epoch length of clean data that could be derived from 

participants. Each feature was extracted at every segment and averaged over all segments to 

increase the signal-to-noise ratio of the measure. For more details on the features used to train 

the machine learning models, please refer to Chapter 8. 

3.4.1 Feature Selection 

To avoid overfitting and increase the speed of computations, filter methods were chosen to 

remove uninformative features from the dataset (Saeys, Inza et al. 2007). Three different filter 

methods were compared in this study: (1) t-test method for equal variances, (2) F-test method for 

equal variances, and (3) Spearman correlation method. The performance of the prediction model 

for each of the three methods was calculated using balanced accuracy (average of sensitivity and 

specificity).  

 

3.4.2 Machine Learning Algorithm: Support Vector Machines 

Support vector machines (SVMs) were used with the radial basis function (RBF) kernel using the 

LIBSVM toolbox (Chang and Lin 2011). Support vector machines select a hyperplane (linear) or 

hypersurface (non-linear) that best separates the input data space into the two (or more) pre-

defined groups (i.e., responder and non-responder) (Hearst, Dumais et al. 1998). An RBF kernel 

uses nonlinear mapping to transform data into a higher dimension and determine an optimal 

separating hypersurface (Hsu, Chang et al. 2003). An optimal hypersurface that separates the two 

groups is one that has the largest margin (distance between the hypersurface and the closest data 

points). Two model parameters can be optimized for RBF kernel. The first is the cost parameter, 

associated with misclassification error. A high cost parameter leads to a hypersurface with a 

smaller margin therefore better classification accuracy. However, this may also lead to 

overfitting. The second parameter, gamma, is associated with the influence of a single training 
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example. A high gamma value suggests a close influence (Hsu, Chang et al. 2003). Default value 

for cost is 1 and gamma is 0. Therefore, the range for cost was specified to be around 1 and for 

gamma, the range was close to 0. Cost was specified as 2C (where C = -3, -1, 1, 3), and gamma 

was specified as 2G (where G = (-12, -10, -8, -6).    

 

To optimize the parameters for the SVM model, a grid search (Chang and Lin 2011) with 10-fold 

cross validation was performed. Model performance is evaluated for all possible combinations of 

the specified values for cost and gamma and the combination that provides the best performance 

is returned. In this study, values of parameters were chosen to maximize balanced accuracy. It 

was important to use balanced accuracy since the number of responders and non-responders was 

not equal in our study.    

 

3.4.3 Cross Validation 

Cross validation was implemented to: (i) optimize model parameters for support vector 

machines, and (ii) evaluate the performance of the classifier. In the k-fold cross-validation 

method (Figure 3.2), the dataset is divided into k equal-sized segments or folds and k-repetitions 

of training and testing is performed. For each repetition, a 1/k parts of the data is held-out for 

testing while the remaining (k-1)/k parts are used for training the classifier model. In this thesis, 

a 10-fold randomized permutation cross validation technique was used (similar to the Monte-

Carlo cross validation procedure). At each permutation, data was randomly split into 80% 

training set and 20% test set (ratio of responders and non-responders was ensured to equal in 

both sets). A feature selection method was applied to the training set and using the selected 

features, a 10-fold cross validation was performed to optimize model parameters for balanced 

accuracy. Finally, features identified in the feature selection process and the parameters 

identified using cross-validation were used to evaluate model performance on the separate 

independent test set. In this study, 100 permutations were used and overall classification 

performance was evaluated as an average over these 100 permutations. Please refer to Chapter 8 

for more details. 
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1st fold 

Training  Training Training Training Testing 

2nd fold 

Training Training Training Testing Training 

3rd fold 

Training Training Testing Training Training 

4th fold 

Training Testing Training Training Training 

5th fold 

Testing Training Training Training Training 

 

Figure 3.2 - K-fold cross-validation structure (for k=5) 

 

3.4.4 Model Evaluation Metrics 

The performance metrics reported in this study are accuracy, balanced accuracy, sensitivity (or 

recall), specificity and precision. A true positive (TP) is a responder who was correctly predicted 

to be a responder and a true negative (TN) is a non-responder who was correctly predicted to be 

a non-responder. False positive (FP) means non-responders were incorrectly identified as 

responders and false negative (FN) means responders were incorrectly identified as non-

responders. The metrics are therefore defined as below: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑆𝑎𝑚𝑝𝑙𝑒𝑠
 

𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  

𝑇𝑃
𝑇𝑃 + 𝐹𝑁 +  

𝑇𝑁
𝑇𝑁 + 𝐹𝑃

2
 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
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Section II: Investigating the Targets of Seizure Therapy using 

EEG Measures of Neural Dynamics 
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Chapter 4 – Brain Temporal Complexity in Explaining 
the Therapeutic and Cognitive Effects of Seizure 

Therapy 
4  

 

 

In this chapter, we apply EEG frequency analysis and multiscale entropy analysis to extract 

power and complexity measures of neural oscillations. We aim to identify whether these 

measures can provide insight into mechanism of action of ECT and MST. 

 

Contents of this chapter have been reprinted by permission from Oxford University Press: Brain. 

Faranak Farzan, Sravya Atluri, Ye Mei, Sylvain Moreno, Andrea J. Levinson, Daniel M. 

Blumberger, and Zafiris J. Daskalakis. "Brain temporal complexity in explaining the therapeutic 

and cognitive effects of seizure therapy." Brain 140, no. 4 (2017): 1011-1025. 
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4.1 Abstract 

Over 350 million people worldwide suffer from depression, a third of whom are medication 

resistant. Seizure therapy remains the most effective treatment in depression, even when many 

treatments fail. The utility of seizure therapy is limited due to its cognitive side effects and 

stigma. The biological targets of seizure therapy remain unknown, hindering design of new 

treatments with comparable efficacy. Seizures impact the brains temporal dynamicity observed 

through electroencephalography. This dynamicity reflects richness of information processing 

across distributed brain networks subserving affective and cognitive processes. We investigated 

the hypothesis that seizure therapy impacts mood (depressive symptoms) and cognition by 

modulating brain temporal dynamicity. We obtained resting-state EEG from thirty-four patients 

(age = 46.0 ± 14.0, 21 females) receiving two types of seizure treatments - electroconvulsive 

therapy or magnetic seizure therapy. We used multiscale entropy to quantify the complexity of 

brain's temporal dynamics before and after seizure therapy. We discovered that reduction of 

complexity in fine time scales underlined successful therapeutic response to both seizure 

treatments. Greater reduction in complexity of fine time scales in parieto-occipital and central 

brain regions was significantly linked with greater improvement in depressive symptoms. 

Greater increase in complexity of coarse time scales was associated with greater decline in 

cognition including the autobiographical memory. These findings were region- and time-scale 

specific. That is, change in complexity in occipital regions (e.g., O2 electrode or right occipital 

pole) at fine time-scales was only associated with change in depressive symptoms, and not 

change in cognition, and change in complexity in parieto-central regions (e.g., Pz electrode or 

intra and transparietal sulcus) at coarser time-scale was only associated with change in cognition, 

and not depressive symptoms. Finally, region and time-scale specific changes in complexity 

classified both antidepressant and cognitive response to seizure therapy with good (80%) and 

excellent (95%) accuracy, respectively. In this study, we discovered a novel biological target of 

seizure therapy: complexity of the brain resting-state dynamics. Region and time-scale dependent 

changes in complexity of the brain resting-state dynamics is a novel mechanistic marker of 

response to seizure therapy that explains both the antidepressant response and cognitive changes 

associated with this treatment. This marker has tremendous potential to guide design of the new 

generation of antidepressant treatments. 
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4.2 Introduction 

Major depression is a leading cause of disability affecting over 350 million people globally 

(Murray and Lopez 1996). Over a third of these patients fail responding to medications. Dating 

back to 1700s, the induction of seizures has been used to treat severe psychiatric conditions such 

as depression. Introduced in 1930s, seizure therapy administered through electroconvulsive 

therapy (ECT) still remains the most effective treatment for depression (Carney, Cowen et al. 

2003) even when many other antidepressant treatments have failed. However, the cognitive side 

effects of ECT (Lisanby, Maddox et al. 2000, McClintock, Choi et al. 2014) limit its widespread 

use. Magnetic seizure therapy (MST) is an emerging antidepressant treatment that involves the 

induction of seizure through the administration of transcranial magnetic stimulation (TMS) 

(Moscrip, Terrace et al. 2006, Hoy and Fitzgerald 2010, McClintock, DeWind et al. 2013). This 

approach to seizure induction causes less memory impairment than ECT (McClintock, DeWind 

et al. 2013) and early treatment studies report efficacy in depression (Kayser, Bewernick et al. 

2015). Despite decades of research, the biological targets of seizure therapy for depression 

remain unclear. This has hindered the progress in development of new antidepressant 

interventions that have comparable efficacy to ECT without the cognitive side effects. Here, we 

propose a novel approach in examining the biological target of seizure therapy by assessing the 

impact of seizure on the temporal fluctuations (i.e., dynamics) of brain signals. 

  

Seizure is a biological phenomenon that significantly impacts brain dynamicity visualized 

through electroencephalography (EEG). It is increasingly evident that temporal fluctuations and 

variability observed in biological systems such as brain signals have a fundamental role in 

shaping the brain's capacity for information processing (Tononi, Sporns et al. 1994, Tononi and 

Edelman 1998, Sporns, Tononi et al. 2000, Costa, Goldberger et al. 2005). This temporal 

fluctuation, occasionally referred to as biological "noise", is distinct from random noise and 

structurally rich (Costa, Goldberger et al. 2005) exhibiting varying degree of recurring patterns 

(Costa, Goldberger et al. 2005). The less recurring temporal patterns, the more complex and 

unpredictable the signal is. In the brain, the complexity of signals at fine (smaller time 

increment) and coarse (larger time increments) time-scales is proposed to arise from transient 

increases and decreases in correlated activity among local and distributed brain regions, 
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subserving integration and segregation of information at different spatiotemporal scales (Sporns, 

Tononi et al. 2000, McIntosh, Vakorin et al. 2014). While majority of existing experiments have 

quantified the strength of functional coupling between brain regions and its disturbance in 

disorders of mood and consciousness (Fox, Buckner et al. 2012, Kaiser, Andrews-Hanna et al. 

2015, Sale, Mattingley et al. 2015), emerging evidence points to the abnormalities in the 

temporal complexity of brain signals in disorders of affect and cognition (McIntosh, Vakorin et 

al. 2014).  

 

We hypothesized that seizures impact both mood and cognition by modifying the temporal 

complexity of brain signals in a time-scale dependent manner. We obtained resting-state EEG 

from two independent cohorts of patients undergoing either MST (n = 15) or ECT (n = 19). 

Depressive symptoms were rated through the Hamilton Rating Scale for Depression (HAMD). 

General cognition and autobiographical memory were obtained through the Montreal cognitive 

assessment scale (MoCA) and autobiographical memory interview (AMI) (Table 4.1).  

 

4.3 Methods 

Patients. A total of 34 subjects (age = 46.0 ± 14.0, 21 females) diagnosed with treatment-

resistant depression patients participated in either of two parallel open-label seizure therapy 

research protocols at Centre for Addiction and Mental Health (19 ECT and 15 MST). The 

demographic and clinical characteristics are in (Table 4.1). 

 

Seizure Therapy. ECT was administered with MECTA spECTrum 5000Q (Corporation, Lake 

Oswego, OR) according to standards of practice (Sackeim, Prudic et al. 2008). Sixteen patients 

received right unilateral ultra brief (RUL-UB) pulse width ECT, one received bitemporal (BT) 

brief pulse width ECT, and two started on RUL-UB and were switched to BT due to lack of 

efficacy (Table 4.1). Treatment sessions occurred twice or three times per week.  Seizure 

threshold titration was used to determine stimulus intensity: RUL-UB was delivered at 

6xthreshold with a pulse width of 0.3 to 0.37msec and BT was delivered at 1.5x threshold with a 

pulse width of 1.0msec. ECT treatments were continued until depressive symptoms was in 

remission or improvement had plateaued (refer to Table 4.1 for number of treatments).  
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Finally, methohexital was administered for sedation and succinylcholine as neuromuscular 

blocker. In general, the target dosage was 0.75 mg/kg of methohexital and 0.5mg/kg of 

succinylcholine. MST was administered with Magpro MST using a Twin Coil (Magventure, 

Denmark). The centre of each circular coil was placed over F3 and F4 respectively, using the 

EEG international 10-20 system.  This induces the highest electric field strength between the two 

coils roughly corresponding to Fz (Deng, Lisanby et al. 2013). The orientation of the magnetic 

fields was posterior-anterior.  Subjects underwent a dose titration procedure to establish 

convulsive stimulation threshold. At 100Hz and 50Hz an initial train of 200 pulses was used 

followed by increments of 200 pulses with a maximum train of 1000 pulses.  At 25Hz an initial 

train of 100 pulses was used with increments of 100 pulses up to a maximum of 500 pulses.  

Twelve subjects received 100Hz, two subjects received 50Hz and one subject received 25Hz 

(Table 4.1). All stimulations occurred at the maximum stimulator output of 100%. Threshold 

seizure was defined as a generalized tonic-clonic activity > 20s of visual motor activity or > 25s 

of EEG seizure activity. Subsequent treatments occurred three times per week, and were initially 

delivered with a train 400 pulses longer in the 100Hz and 50Hz group and 200 pulses longer in 

the 25Hz group. In subjects that had not achieved a 50% reduction in HAMD after three 

treatments, the dose was increased by 100 pulses (25Hz), or 200 pulses (50Hz, 100Hz) up to a 

maximum of 500 or 1000 pulses, respectively. A maximum of 24 sessions were allowed in the 

acute course. Methohexital (n = 9), methohexital with remifentanil (n = 5), and ketamine (n = 1) 

were administered for sedation and succinylcholine was used as the neuromuscular blocker.  

 

EEG. Ten minutes of resting-state eyes closed EEG data were recorded within one week prior to 

the start and within 48 hours after the completion of a course of seizure therapy in both ECT and 

MST protocols. Subjects were instructed to sit in an armchair with eyes closed. EEG recording 

was through a 64-channel NeuroScan EEG system. The reference electrode was behind CZ 

electrode, and ground was behind FZ.  The sampling rate was 10 kHz. The online filter setting 

was 0.05 to 1 kHz.  The skin/electrode impedance was kept below 5 kOhm. 

 

Mood. Changes in depressive symptoms were assessed by HAMD within one week prior to the 

start and within 48 hours after the completion of a course of seizure therapy in both ECT and 

MST protocols. Response to treatment was defined as 50% change in HAMD from baseline.  
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Cognition. 19 patients (6 ECT and 13 MST) completed the MoCA within 48 hours prior to and 

within a week after a course of seizure therapy in both protocols. In addition, the 

autobiographical memory interview short form (AMI-SF) was completed in 12 MST patients 

before and after a course of seizure therapy.  

 

EEG Preprocessing. Data were imported into MATLAB (The MathWorks. Inc. Natick, MA, 

USA) for preprocessing.  The open source signal processing functions in EEGLAB toolbox 

version 12.0 (Delorme and Makeig 2004) were used for data import and preprocessing. The EEG 

signals were epoched into segments of two seconds duration and down sampled to 1 kHz.  A 

notch filter (band-stop: 55–65 Hz) was used to remove the 60 Hz noise.  EEG signals were band 

passed filtered 1–50 Hz to further minimize contamination by high frequency artifact. The 

infinite impulse response (IIR) Butterworth filter of second order and forward and backward 

filtering were applied to maintain a zero phase shift.  All epochs were manually reviewed and 

trials and channels containing eye movements, muscle or any other non-physiological artifact 

were discarded.  The data was average re-referenced. 

 

Power. The EEGLAB function spectopo was used to obtain the power spectrum for each 

electrode.  The relative power was obtained for 1 to 50 Hz frequencies. Relative power was 

calculated as the ratio in the power of each frequency relative to the sum of power across all 

frequencies.  

 

Multiscale Entropy. MSE was examined across all electrodes using two steps (Costa, 

Goldberger et al. 2005): The coarse-graining process and the calculation of the sample entropy 

(SampEn) for each coarse-grained time series. First, for a given time series {𝑥1, 𝑥2, … 𝑥𝑁}, the 

multiple coarse-grained time series {𝑦1
(𝜏)

, 𝑦2
(𝜏)

, … , 𝑦𝑁
(𝜏)

} at scale factor  (in this paper referred to 

as time scale)were calculated by averaging the data points within non-overlapping windows of 

increasing length . Each element of the coarse-grained time series 𝑦𝑗
(𝜏)

, was calculated 

according to the equation: 

𝑦𝑗
(𝜏)

=
1

𝜏
∑ 𝑥𝑖

𝑗𝜏
i=(j−1)𝜏−1  (1) 
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where  represents the scale factor (i.e., time scale) and 𝑗 (1 ≤  j ≤  
𝑁


) represents the time 

index of the element. The length of each coarse-grained time series was M, where M = floor (
𝑁


). 

At scale factor (or time scale)  =1, the coarse-grained time series was the original time series. 

Second, the degree of predictability was measured for each of the multiple coarse-grained time 

series {𝑦1
(𝜏)

, 𝑦2
(𝜏)

, … , 𝑦𝑁
(𝜏)

} using SampleEn. SampleEn was calculated according to the equation: 

SampleEn(r, m, M) = −ln (𝐶(𝑚 + 1) 𝐶(𝑚)⁄ ) (2) 

where C(m) is the total number of pairs of m consecutive similar data points, C(m+1) is the total 

number of pairs of m+1 consecutive similar data points in the multiple coarse-grained time 

series. SampleEn quantifies the variability of time series by estimating the predictability of 

amplitude patterns across a time series. In our experiments, two consecutive data points were 

used for data matching (i.e. m = 2) and data points were considered to match if their absolute 

amplitude difference was less than 15% (i.e., r = 0. 15) of standard deviation of time series. MSE 

was calculated for a 30 second continuous epoch. 

 

EEG Source Localization. EEG source localization was performed using an open-source 

application, Brainstorm (Tadel et al., 2011). First, the electrode locations of our 68-channel 

Neuroscan Quik Cap EEG electrode sites were co-registered to the ICBM152 MRI template in 

Brainstorm. The forward solution was then calculated using the OpenMEEG BEM head model 

(Gramfort et al., 2010) and the inverse solution was derived using sLORETA (Pascual-Marqui 

2002), with the solution space constrained to the cortex surface. To localize the dynamics of 

neural activity, we used the Destrieux Atlas, which provides 148 regions of interest (ROIs) in the 

MNI co-ordinate space (Destrieux et al., 2010). After the EEG data was mapped to the 148 

ROIs, MSE and power spectrum measures were calculated for all subjects at these sources.  

 

Statistics. In addition to two intervention groups of ECT and MST, subjects were grouped into 

two groups of antidepressant responders and non-responders: subjects were grouped as 

responders if there was a 50% or higher change in HAMD relative to baseline, and non-

responders otherwise. Analysis of variance was used to 1) examine the effect of seizure therapy 

on MSE (1-70 time-scales) and relative power (1-50 Hz frequencies) for the main effect of 

Seizure Therapy Intervention (ECT, MST) and Time (Pre, Post), as well as 2) Antidepressant 
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Response (Responder, Non-Responder) and Time (Pre, Post) across 60 electrodes in sensor space 

and 148 ROIs in source space. Bootstrapping was used to correct for multiple comparisons in the 

analysis of variance. For the post-hoc t-test comparisons, cluster-based non-parametric 

permutation test (Maris and Oostenveld 2007)  was used to correct for the multiple comparisons 

in this multi-dimensional dataset (60 channels (or 148 ROIs) x 50 frequencies, 60 channels (or 

148 ROIs) x 70 scales) by assigning significance statistics to the probability of size of clusters 

formed by pooling adjacent pixels with original test statistics p<0.05. The significance of 

original clusters was defined against probably distribution of clusters obtained through 1000 

permutations of the shuffled data labels. Identical parameters were used across the cluster-based 

permutations: threshold statistics of p<0.05, identical neighborhood, 1000 permutation using 

Monte Carlo approach with cluster test statistics computed as the maximum of the cluster-level 

summed values. Analysis of variance, and post-hoc paired t-test and independent sample t-test 

analyses were used to calculate the original test statistics. Spearman correlation coefficient was 

used to examine the association between change in complexity and symptom severity or 

cognitive score. Similarly, cluster-based non-parametric permutation test was applied to the 

behavioral scores to correct for the multiple comparisons in the correlation analyses.  

In addition to correlation analysis, it was examined if change in complexity classified patients 

based on antidepressant and cognitive response. Subjects were grouped to have had cognitive 

decline if the percent change in MoCA was negative. For AMI-SF, median performance was 

used to divide the patients into two groups. The level of prediction was quantified by the receiver 

operating characteristic (ROC) curve, plotting the sensitivity and specificity of the predictor 

(change in complexity) across all possible threshold values. To determine the significance of the 

prediction, the area under the curve (AUC), standard error of the AUC and confidence intervals 

were quantified for each electrode and source.  

Throughout the paper, except otherwise noted, reported statistics are corrected p values, and 

descriptive values indicate mean and standard deviation unless otherwise stated. Percent change 

(i.e., %) in outcome variables is calculated as: (post treatment score - baseline score/baseline 

score) x 100, except for HAMD which is calculated as (baseline score - post treatment/baseline 

score) x 100. 
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4.4 Results 

4.4.1 The Impact of Seizure on Neural Oscillations  

There was a significant (p < 0.05) main effect of Intervention (df = 72, mean F = 14.7 (4.8 to 

53.2)), Time (df  = 72, mean  F = 7.3 (4.8 to 19.9)) and Intervention x Time interaction effect (df  

= 72, mean  F = 7.1 (4.3 to 18.4)) across several frequencies and electrodes. There was also a 

significant main effect of Antidepressant Response (mean F = 5.10 (3.98 to 6.83)), Time (mean 

F = 24.63 (4.07 to 80.16)), and Antidepressant Response x Time interaction effect (mean F = 

5.98 (4.01 to 11.97)). In source space, there was a significant main effect of Time (mean F = 

13.79 (4.02 to 61.86)) across multiple scales and ROIs, however the main effect of Intervention 

or Intervention x Time interaction effect were not significant. Finally, there was a main effect of 

Antidepressant Response (mean F = 5.14 (3.61 to 9.58)), Time (mean F = 27.42 (4.00 to 

111.14)) and an interaction effect of Antidepressant Response x Time (mean F = 6.00 (3.96 to 

14.53)) across multiple scales and ROIs.  

 

Post-hoc analyses replicated the findings of prior studies that ECT induces an increase in relative 

power of slow cortical oscillations (Nobler and Sackeim 2008). This effect was spatially global 

and present regardless of the ECT therapeutic outcome. It was significant for frequencies less 

than 8Hz in responders (Figure S 4.1A) and was between 2 to 7Hz in non-responders (Figure S 

4.1B). However, the slowing of oscillations was not significant in MST (Figure S 4.1C-D). 

Consistently, we replicated the previous finding (Nobler and Sackeim 2008) that the spatially 

global increase of slow oscillations (e.g., 1Hz) is associated with decline in general cognition 

(Figure S 4.3A). We found no association between change in slow oscillations and change in 

depressive symptoms (Figure S 4.2A).  

 

We discovered that common to ECT and MST responders there was a global reduction in 

relative power of oscillations above 18Hz (Figure S 4.1A, C). ECT non-responders also had a 

global decrease in oscillations between 10 to 35 Hz (Figure S 4.1B). No changes were observed 

in MST non-responders (Figure S 4.1D). Comparing ECT with MST intervention group, we 

identified that ECT treatment led to higher increases in slow oscillations and higher decreases in 
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high frequency oscillations (Figure S 4.4A). This finding was also spatially global. Furthermore, 

comparing antidepressant responders with non-responders revealed that responders exhibited 

higher reduction in the power of 22 Hz oscillations and also higher frequency oscillations 

(Figure S 4.4B). This finding was spatially global at ~22Hz, but more local in higher frequencies 

(30-50Hz). Specifically in 30-50Hz, the reduction in power is observed in regions such as the 

inferior frontal sulcus, left orbital part of the frontal inferior gyrus, bilateral preocciptial notch, 

orbital gyri, lateral orbital sulcus, lateral occi-temporal sulcus, medial orbital sulcus, bilateral 

parieto-occiptial sulcus, or bilateral superior parietal lobule. 

 

The results of correlation analysis revealed that the reduction in high frequency oscillations 

(gamma, e.g., 45Hz) correlated with improvement in depressive symptoms (Figure S 4.2A). This 

effect was localized to fronto-central (e.g., AF4, F1, FZ, F2, F4, FC2) and parieto-occipital (e.g., 

P7, P5, PO7, PO5, PO4, PO6, PO8, O1, OZ) brain regions in sensor space. In source space, there 

were significant negative clusters in brain areas including the orbital sulci and gyri, bilateral 

posterior-dorsal part of the cingulate gyrus (dPCC), ventral PCC (vPCC), precuneus, parieto-

occipital sulcus, occipital pole, inferior temporal gyrus, and lateral occi-temporal sulcus in 

frequencies higher than 30Hz (Figure S 4.5A).  

 

Finally, a spatially widespread decrease in low frequency oscillation (< 9 Hz) correlated with a 

change in cognition (Figure S 4.3A). Source analysis also revealed that this effect was spatially 

global. Finally, reduction in high frequency oscillations (e.g., > 40Hz) in parieto-central regions 

(e.g., C1, C3, CZ, CP3, P1, PZ, P2, P4, POZ) correlated to change in cognition. In source space, 

this effect was identified primarily in brain regions including the central sulcus, angular gyrus, 

and subparietal sulcus (Figure S 4.5B).  

 

4.4.2 The Impact of Seizure on Temporal Complexity  

We then employed multiscale entropy (MSE) (Costa, Goldberger et al. 2005) to quantify the 

change in complexity of dynamics across multiple time-scales. In sensor space, there was a 

significant (p <0.05) main effect of Intervention (df  = 72, mean F = 10.5 (4.7 to 27.2)), Time (df  

= 72, mean F = 6.7 (4.6 to 14.4)) and Intervention x Time interaction effect (df  = 72, mean F = 
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7.2 (4.5 to 18.6)) across multiple time-scales and electrodes. There was also significant main 

effect of Antidepressant Response (mean F = 5.1 (4.5 to 6.8)), Time (mean F = 13.7 (4.1 to 

46.5)), and Antidepressant Response x Time interaction effect (mean F = 6.3 (4.3 to 11.2)). 

Similarly, in source space, we found a significant main effect of Intervention (mean F = 14.84 

(4.33 to 46.52)), Time (mean F = 6.74 (4.20 to 17.4), and Intervention x Time interaction effect 

(mean F = 5.76 (4.16 to 11.20)) across multiple scales and ROIs. Finally, there was a main effect 

of Antidepressant Response (mean F = 5.59 (3.87 to 10.43)), Time (mean F = 16.07 (4.02 to 

61.19)), and interaction effect of Antidepressant Response x Time (mean F = 5.92 (4.04 to 

17.09)) across multiple scales and ROIs.  

 

Post-hoc analysis revealed that, change in temporal complexity was only significantly modified 

in responders of both seizure therapies. Common to ECT and MST responders, there was a 

decrease in time-scales finer than 20 factors (Figure 4.1A, C). ECT responders showed a 

significant (cluster p = 0.003) global decrease in time-scales less than 30 and a significant 

(cluster p = 0.002) global increase in coarser time-scales (spatially global changes are seen in 

time scales > 50). Source-space analysis (Figure 4.5B) confirmed the spatially global extent of 

this finding. By contrast, in MST responders, a wide spread reduction in time-scales less than 20 

was observed (cluster p = 0.033). In MST responders, the reduction of MSE in fine time-scales 

(e.g., scale factor 4) was found in the parieto-occipital (P1, P3, P2, P4, POZ, PO3, PO5, PO7, 

PO4, PO6, PO8, O1, OZ) and fronto-central regions (F4, FC1, FC2, FCZ, CZ, C1, CZ) in sensor 

space. Similarly, in source space, this change was observed across several tempro-parieto-

occipital regions (e.g., cuneous, precuneus, posterior-dorsal part of the cingulate gyrus (dPCC), 

parieto-occipital sulcus, occipital pole, etc) and fronto-central regions (e.g., opercular part of the 

inferior frontal gyrus, central sulcus, pre and post central gyrus, etc) (Figure 4.5A). No 

significant changes were observed in either ECT or MST non-responders (Figure 4.1B, D).  

 

Finally, comparing ECT with MST intervention group, we identified MSE in fine time scales 

(e.g., < 10) was significantly lower post treatment in ECT compared to MST group, and 

increases in coarse time scales (e.g, > 28) were significantly higher in ECT compared to MST 

intervention group (Figure 4.2A). This effect was spatially global. Comparing antidepressant 
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responders with non-responders (Figure 4.2B) identified significant differences between groups; 

however this finding did not survive the cluster-based correction for multiple comparisons. The 

comparison revealed that responders may have a larger reduction in MSE post treatment at finer 

time scales in brain regions such as the precuneus, bilateral cuneus, bilateral parieto-occiptial 

sulcus, bilateral occipital pole, bilateral lateral occi-temporal gyrus, calcarine sulcus, and 

bilateral posterior transverse collateral sulcus. Responders also appeared to have increased MSE 

post treatment in coarser time scales (e.g., > 40) mainly in the left inferior, middle and superior 

frontal sulcus, middle and superior frontal gyrus, and orbital part of inferior frontal gyrus. This 

latter observation is likely related to the higher number of ECT responders (compared to MST 

responders) who exhibited significant increases in complexity of coarse time scales (e.g., Figure 

4.1A).   

 

4.4.3 The Impact of Change in Temporal Complexity on Mood and 
Cognition   

We then determined whether change in complexity was linked with the impact of seizure on 

mood and cognition. We found a negative association between percent changes in MSE 

(%MSE) and percent change in HAMD (%HAMD). This effect was selective to fine time-

scales in parieto-occipital and fronto-central regions (Figure 4.3A). Specifically, a negative 

association (p<0.01) was identified in tempro-parieto-occipital (TP7, P7, P5, P8, PO7, PO5, 

PO6, PO8, O1, O2, Oz) and fronto-central regions (AF4, F1, FZ, F2, F4, FC1, FC2, FC4, FCZ, 

C1, C4, CZ) in time-scales less than 30. Source space analysis localized this effect to several 

regions including the dPCC, cuneus, precuneus, parieto-occipital sulcus, occipital pole, temporal 

sulci, and lateral occi-temporal sulcus as depicted in Figure 4.5C. This association illustrated 

that a spatially specific decrease in complexity of fine time-scales was linked with a greater 

improvement in depressive symptoms.   

 

Moreover, we found a negative association between %MSE and percent change in general 

cognition (%MoCA). This effect was spatially global in coarse time-scales (e.g., > 66) and 

included a wide range of time-scales in parieto-central regions (e.g., PZ, POZ, P1, P2) (Figure 

4.3B). Source-space analysis (Figure 4.5D) confirmed that this effect was spatially global across 
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coarse time scales and included brain regions such as intraparietal sulcus and transverse parietal 

sulci. This negative association was replicated for change in autobiographical memory (%AMI) 

(Figure S 4.6A) and was prominent in bilateral frontoparietal brain regions. Likewise, source 

space analysis revealed a spatially global effect in coarse time scales with many brain areas 

involved including the bilateral superior parietal sulcus, and superior temporal sulcus (Figure S 

4.7A). Collectively, this negative association illustrated that an increase in MSE, in particular 

globally in coarser time-scales, was linked with a greater decline in cognition.  

 

These findings were region- and time-scale specific. That is, change in complexity in occipital 

regions and fine time-scales was only associated with change in HAMD (e.g., O2 electrode, 

time-scale 4, r = -0.52, p = 0.0017), and not change in MoCA (Figure 4.3C), and change in 

complexity in parieto-central regions at coarser time-scale (e.g., PZ electrode, time-scale 70, r = -

0.63, p = 0.0038) was only associated with change in cognition, and not HAMD (Figure 4.3D). 

 

4.4.4 Classifying Antidepressant and Cognitive Response to Seizure 
Therapy 

Finally, we examined whether change in temporal complexity could classify patients based on 

cognitive and antidepressant response to seizure therapy. We found that %MSE classified the 

antidepressant response to seizure therapy with good performance and cognitive response with 

excellent performance as illustrated with the area under the curve (AUC) property of the receiver 

operating characteristic (ROC) curve (Figure 4.4). Specifically, change in complexity of low 

time-scales (e.g., 4-6,8) in right parieto-occipital brain regions (OZ, O2, PO8) offered good 

(AUC ≥ 0.8) prediction performance of antidepressant response ((e.g., AUC (OZ electrode, time-

scale 5) = 0.83, p<0.0001; Figure 4.4A, B)) and a fair (0.7 < AUC < 0.8)  prediction 

performance was observed across low time-scales (e.g., 1-22) in bilateral fronto-central (e.g., 

FC1, FC2, FCZ, F1) and bilateral parieto-occipital (e.g., O1, PO3, PO5, PO7, PO4, PO6, P7, P8) 

brain regions. In source space, similar prediction accuracy was identified for the right occipital 

pole at similar time scale (AUC (right occipital pole, time-scale 5) = 0.79, p<0.0001; Figure 

4.6A, B). Moreover, change in complexity of time-scales 14 and higher in parieto-central (e.g., 

PZ) and then globally in coarser time-scales provided excellent (e.g., AUC ≥ 0.9) prediction 
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performance for change in cognition (e.g., AUC (P2 electrode, time-scale 23) = 0.98, p<0.0001; 

Figure 4.4C, D). In source space, similar prediction accuracy was identified for the intraparietal 

sulcus and transverse parietal sulci at similar time scale (AUC (intraparietal sulcus transverse 

parietal sulci, time-scale 22) = 0.97, p<0.00001; Figure 4.6C, D). 

 

These findings were region- and time-scale specific. That is, change in complexity in occipital 

regions and fine time-scales (e.g., OZ, time-scale 5; Figure 4.4B) only classified antidepressant 

response, and did poorly in classifying cognitive response (AUC (OZ, time-scale 5) = 0.55, p = 

0.35), and change in complexity in parieto-central regions at coarser time-scale (e.g., P2, scale 

23; Figure 4.4D) only classified cognitive response and did poorly in classifying antidepressant 

response (AUC(P2, time-scale 23) = 0.47, p = 0.63).  

 

Moreover, the seizure therapy induced changes in autobiographical memory (%AMI) could 

also be accurately (e.g., AUC range: 0.9 to 1.00; Figure S 4.6B) classified by change in 

complexity in coarse time-scales (e.g.,>47) in frontoparietal regions (Figure S 4.6B). Likewise, 

source space analysis revealed a spatially global effect in coarse time scales with many in frontal 

parietal brain regions (Figure S 4.7B). Finally, our results showed that change in complexity had 

better accuracy than neural oscillations in predicting antidepressant or cognitive response to 

seizure therapy (Figure S 4.2B, Figure S 4.3B).  

 

4.5 Discussion 

This study presented a novel biological target – i.e., complexity of the brain resting-state 

dynamics - whose modulation in specific brain regions explained the antidepressant efficacy and 

cognitive consequences of seizure therapy in depression. In contrast to neural oscillations, 

significant changes in the complexity of brain dynamics were only present in responders of 

seizure therapy. Specifically, complexity of fine time-scales was significantly reduced following 

successful ECT and MST. Across groups, the greater reduction in complexity of fine time-scales 

in fronto-central and parieto-occipital regions (e.g., right occipital pole) was associated with 

greater improvement of depressive symptoms. In ECT, the complexity of coarse time-scales was 
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also significantly increased. Across groups, the greater global increase in complexity of coarse 

time-scales was linked with the greater decline in general cognition. Finally, region- and time-

scale dependent changes in complexity classified patients based on antidepressant efficacy (e.g., 

in right occipital pole, scale 5) and cognitive consequences (e.g., intraparietal sulcus and 

transverse parietal sulci, scale >22), of seizure therapy with good (≥80%) and excellent (≥90%) 

accuracy, respectively. 

 

ECT remains the most effective treatment in depression. Several hypotheses have attempted to 

explain the mechanism of action of ECT (reviewed in (Farzan, Boutros et al. 2014)). We recently 

proposed a unifying connectivity-resetting hypothesis, stating that ECT resets aberrant neural 

connectivity by activating the brain's major oscillatory pacemaker, thalamus and subsequently 

multiple thalamic loops (Farzan, Boutros et al. 2014). The significant impact of seizure therapy 

on neural oscillations has been quantified since early studies of ECT (reviewed in (Farzan, 

Boutros et al. 2014)). The most replicated finding is the general slowing of oscillations in ECT 

(Small, Small et al. 1978) linked with improvement in mood (Fink and Kahn 1957, Sackeim, 

Luber et al. 1996). While we replicated previous findings demonstrating that ECT induces 

increase in power of slow oscillations, this effect was present in both ECT responders and non-

responders. Moreover, we found no correlation between change in slow oscillations and 

improvement in symptoms. Most previous studies focused on limited and predefined frequency 

bands, using a few electrodes placed near the site of stimulation, or utilized statistical approaches 

that limited multidimensional analysis. The present study used non-parametric statistical 

approaches and two distinct modalities of seizure induction to comprehensively assess changes 

common to seizure therapy without a priori hypothesis or limiting analysis to regions and 

frequencies of interest. Our comprehensive analysis revealed that it is the reduction in relative 

power of frequencies 18Hz and above, particularly higher than 35Hz, rather than increase in slow 

oscillations, that is linked with response to seizure therapy across ECT and MST. The 

observation that successful MST modulated high frequencies without significantly impacting 

slow oscillations further confirms that successful seizure therapy may be achieved without 

impacting the slow oscillations that are linked with the adverse effects of ECT as reported 

previously (Sackeim, Luber et al. 2000, Nobler and Sackeim 2008) and replicated in our study.  
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The peri-ictal characteristic of seizure reflects a rapid modification of the brain dynamicity. It 

seems intuitive that modulation of the brain dynamics would be a mechanism by which seizure 

exerts its therapeutic action. Yet this has been only minimally investigated. In an ECT case study 

in three patients with depression, reduction in MSE in fine time-scales was reported (Okazaki, 

Takahashi et al. 2013). Our results are also in line with a previous study that showed an 

abnormal enhancement in complexity of frontal brain regions in depression which was 

normalized by antidepressant medication (Mendez, Zuluaga et al. 2012). Complexity, as indexed 

by Lempel-Ziv Complexity, was increased as a function of age in healthy subjects, a relationship 

not found in depression. Furthermore, six months of treatment with the antidepressant 

mirtazapine normalized the excess complexity in depression specifically in younger adults 

(Mendez, Zuluaga et al. 2012). Such findings may suggest that both medications and seizure 

therapy act on reducing complexity in depression, while the higher efficacy of seizure therapy 

may be linked to direct stimulation of oscillatory pacemakers. We found that antidepressant 

efficacy of seizure therapy was linked with local changes in complexity. Our findings and these 

previous studies encourage design of non-seizure interventions that target the same biological 

targets as seizure therapy toward eliminating the risk and complications of seizure induction.  

 

Complexity of time series in biological systems is suggested to reflect plasticity to an ever 

changing environment and adaptability to stressors (McIntosh, Vakorin et al. 2014). When 

examined across brain regions and time-scales, the complexity of brain dynamics can arise from 

transient increases and decreases in correlated activity across brain regions reflecting rate of 

information generation (McIntosh, Vakorin et al. 2014). Induction of seizure could reset 

integration and synchronization of information across brain regions, through activation of 

thalamus and multiple thalamic loops and interconnected brain regions, significantly impacting 

rate of information generation across distributed brain networks. The association between 

reduction in complexity and improvement in symptoms is in line with imaging findings that have 

shown that depression is associated with states of hyperconnectivity between frontoparietal and 

default mode network (Kaiser and Pizzagalli 2015). The clinically relevant reduction of 

complexity in fronto-central and parieto-occipital regions adds to the resting-state functional 

connectivity findings in fMRI literature.  
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A recent study using fMRI data from Human Connectome Project showed differential 

association between functional connectivity of resting-state networks and complexity of fMRI 

time signals in fine versus coarse time-scales (McDonough and Nashiro 2014). The time-scales 

in this fMRI study are coarse in comparison to the present high resolution EEG study, hindering 

direct interpretation. Yet, it provides evidence that there may be a link between seizure-induced 

changes in complexity and aberrant neural connectivity in depression. We suggest that a change 

in dynamics of functional connectivity between distributed brain regions may be a mechanism by 

which seizure therapy exerts its impact on behavior. Design of non-invasive interventions that 

can selectively modify the complexity of the brain dynamics will enable careful examination of 

the consequence of region- and network-specific modification of MSE on human behavior. 

 

Moreover, the finding that seizure induced changes in the occipital lobe (e.g., occipital pole) 

were linked to mood improvement and predicted therapeutic response is also in line with several 

lines of emerging evidence that have linked depression with impairment in this brain region 

(reviewed in (Koch and Schultz 2014)). For example, as reviewed by Koch et al., a recent meta-

analysis reported the right occipital lobe, with the inferior fronto-occipital fibre tract, to be 

among the most consistently reported site of decreased white matter integrity in this population. 

Furthermore, in addition to the changes in white matter structure, changes in resting-state 

connectivity and gray matter volume have been previously shown in this brain region in 

depression (e.g., (Grieve, Korgaonkar et al. 2013, Meng, Brandl et al. 2014)). Moreover, a recent 

study has reported that occipital bending is more common in depression (Maller, Thomson et al. 

2015). Finally, a prior study in post-stroke depression have identified that post-stroke depression 

was closely linked with the right hemisphere lesion volume and its proximity to the occipital 

pole (Shimoda and Robinson 1999). Therefore, our finding that seizure therapy may exert its 

antidepressant efficacy by impacting the dynamics of the occipital region, particularly source 

localized to the occipital pole, not only complements these prior findings, but also provides a 

direction for development of novel antidepressant treatments. 

 

This study also adds new insight about the link between region- and time-scale dependent 

changes of complexity and human behavior. We illustrated a region-specific reduction of MSE in 

fine time-scales that was linked with improvement in mood, and a more spatially-distributed 
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(e.g., bilateral frontoparietal) increase of MSE in coarse time-scales that was linked with 

cognitive decline. Previous studies have reported both global and region-specific modulation in 

complexity, such as during development (Misic, Mills et al. 2010) and aging (McIntosh, Vakorin 

et al. 2014), respectively. Indeed, the observed link between increase in MSE in coarse time-

scales and cognitive decline is consistent with findings in Alzheimer's disease (Mizuno, 

Takahashi et al. 2010). Our findings also extend previous studies that revealed significant 

modifications in this marker during adolescence (Vakorin, McIntosh et al. 2013), when the 

prevalence rate of depression peaks, and in disorders of cognition and affect with overlapping 

symptoms with depression including autism spectrum disorder (Bosl, Tierney et al. 2011) or 

schizophrenia (Takahashi, Cho et al. 2010) in which seizure therapy is also indicated.   

 

MST treatment frequency may be an important dimension involved in production of a seizure. 

The majority of prior MST trials have applied MST at 100Hz frequency to achieve seizure 

induction. However, it was proposed that the optimal frequency for seizure induction may be in 

the vicinity of 22 Hz (Peterchev, Rosa et al. 2010). In our sample, the most common MST 

frequency used was 100Hz (in 12/15 subjects), while a few patients who also took part in the 

resting-state EEG assessments received lower frequency of stimulation to induce seizure. 

Nevertheless, the present EEG study was not designed to evaluate the impact of different 

frequency of stimulation on therapeutic outcome. We propose that the markers presented in this 

study have the potential to be used to protect against any potential cognitive adverse effects 

through neurophysiological monitoring that may predate any cognitive deterioration. 

 

4.6 Conclusions 

Our findings support a focal antidepressant target for seizure therapy. First, the association 

between change in MSE and depressive symptoms was identified in fronto-central and parieto-

occipital electrodes and source localized to several parieto-occipital brain regions including the 

occipital pole. Second, the reduction in MSE was observed more localized to these brain regions 

in fine time-scales in responders in MST which is a more focal method of seizure induction. 

Consistently, the association between change in neural oscillations and depressive symptoms was 

also localized to fronto-central and parieto-occipital brain regions and high frequency 
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oscillations that correspond to fine time-scales. Fourth, the classification performance of the 

change in complexity was region- and time-scale specific. Brain regions at which change in 

complexity classified antidepressant response with good accuracy failed to classify cognitive 

response, and brain regions at which change in complexity classified cognitive response failed to 

classify antidepressant response. Recent evidence indicates the possibility of modulating the 

temporal complexity of brain signals by network guided rTMS (Farzan, Pascual-Leone et al. 

2016). Therefore, treatment of depression may benefit from design of more localized seizure 

induction strategies or non-seizure treatments (e.g., rTMS) that could focally modulate 

complexity.  
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4.7 Tables 

Table 4.1 - Demographics and Clinical Characteristics 

 

 ECT 

Responders 

[n=12] 

ECT Non-

responders 

[n=7] 

MST 

Responders 

[n=5] 

MST Non-

responders 

[n=10] 

Age (years) 43.3 ± 16.3 

 

57.7 ± 9.2 45.8 ± 8.01 40.1 ± 15.5 

Sex, M/F 4/8 

 

2/5 2/3 5/5 

Illness 

Duration, 

Years 

[n] 

19.9 ± 11.5 

[11] 

 

19.3 ± 13.6 

 

 

25.4 ± 14.6 18.3 ± 14.2 

Number of 

Treatments 

12.5 ± 4.0 

 

14.4 ± 3.2 

 

18.6 ± 7.5 21.5 ± 5.8 

Site of 

Treatment,[n] 

right unilateral 

ultra brief pulse 

[12] 

 

right unilateral 

ultra brief pulse 

[4] 

bitemporal 

standard pulse 

(2) 

unilateral 

followed by 

bitemporal (1) 

Midline Frontal 

[5] 

 

Midline Frontal 

[10] 

Stimulation 

Frequency, 

[n] 

NA 

 

 

NA 

 

100Hz [4] 

50Hz [0] 

25Hz [1] 

100Hz [8] 

50Hz [2] 

25Hz [0] 

% Change in 

HAMD 

65.20 ± 7.8 

 

13.5 ± 23.4 70.5 ± 16.0 13.6 ± 21.4 

% Change in 

MoCA, [n] 

-13.0 ±11.9 

[4] 

 

-7.69 ± 10.9 

[2] 

12.3 ± 24.2 

[5] 

0.9 ± 11.8 

[8] 
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4.8 Figures 

 

Figure 4.1 - Effect of Seizure Therapy on Complexity of Temporal Dynamics   

Top. Waveforms depict multiscale entropy (MSE) pre (black line) and post (red line) 

electroconvulsive therapy (ECT) and magnetic seizure therapy (MST) in responders (A, C) and 

non-responders (B, D). The lines represent the average MSE (y-axes) across electrodes (dots) for 

time-scales 1 to 70 (x-axes). Middle. Images show the original post-hoc test statistics comparing 

MSE post to pre-treatment across all electrodes (1 to 60) and all time-scales (1 to 70) (blue: 

decreases; red: increases following treatment) for responders and non-responders to ECT (A,B) 

and MST(C,D). Bottom. Each topography reflects the significant t-maps following correction 

for multiple comparison, using cluster-based non-parametric permutation test, depicting only the 
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significant clusters p<0.05 and setting to 0 non-significant pixels. Topographies highlight the 

spatial characteristics of the reduction of MSE in fine time-scales common to both  ECT and 

MST responders (A, C) and the increase in MSE in coarse time-scales following ECT alone (A). 

In ECT responders, there was a significant (cluster p = 0.003) global decrease in time-scales less 

than 30 and a significant (cluster p = 0.002) global increase in coarser time-scales. By contrast, 

in MST responders, only a wide spread reduction in time-scales less than 20 was observed 

(cluster p = 0.033). In MST responders, the reduction of MSE in fine time-scales (e.g., scale 

factor 4) was localized to parieto-occipital (P1, P3, P2, P4, POZ, PO3, PO5, PO7, PO4, PO6, 

PO8, O1, OZ) and fronto-central regions (F4, FC1, FC2, FCZ, CZ, C1, CZ). No significant 

changes were observed in either ECT or MST non-responders.  
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Figure 4.2 - Effect of Seizure Therapy on Complexity in the Source Space.  

In all images, X-axis represents the time scale (1 to 70) and y-axis represents Regions of Interest (ROIs) of the Destrieux Atlas (1 to 

148). The ROIs are grouped into brain regions in the left (L: the upper half the images) and right (R: the lower half of the images) 

hemisphere separated by the horizontal black line. A. Image show the post-hoc independent sample t-test statistics following cluster-

based permutation test correction for multiple comparison, depicting only the significant clusters p<0.05, labeling only the significant 

corresponding ROIs, and setting to 0 non-significant pixels. Image shows the t-test statistics comparing the change in MSE (Post-

Pre/Pre) between participants who received ECT and MST interventions (red: higher increases in ECT; blue: higher decreases in 

ECT). This image depict that MSE in fine time scales (e.g., < 10) was significantly lower post treatment in ECT compared to MST 
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group, and increases in coarse time scales (e.g, > 28) were significantly higher in ECT compared to MST intervention group. B. Image 

shows the independent sample t-test statistics comparing the change in MSE (Post-Pre/Pre) between participants who were considered 

responders to seizure therapy (>= 50% reduction in HAMD from baseline) and non-responders (red: higher increases in responders; 

blue: higher decreases in responders). The regions of significance did not survive the cluster-based correction for multiple 

comparisons at cluster p <0.05, thereby, this image depicts the outcome of bootstraping statistics only. Responders may have more 

reduction in MSE post treatment in fine time scales in brain regions such as precuneus, bilateral cuneus, bilateral parieto-occiptial 

sulcus, bilateral occipital pole, bilateral lateral occi-temporal gyrus, calcarine sulcus, and bilateral posterior transverse collateral 

sulcus. Responders may also have more increases post treatment in coarser time scales (e.g., > 40) mainly in the left inferior, middle 

and superior frontal sulcus, middle and superior frontal gyrus, and orbital part of inferior frontal gyrus.  
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Figure 4.3 - Association between Modulation of Temporal Complexity and Mood and 

Cognition. 

A. Topographies illustrate all the significant (original p <0.05) spearman correlation coefficients 

(rho) between percent change in HAMD and MSE in 34 patients receiving seizure therapy.  

Cluster-based correction for multiple comparison resulted in significant negative clusters 

(p<0.01) in parieto-occipital (TP7, P7, P5, P8, PO7, PO5, PO6, PO8, O1, O2, Oz) and fronto-

central regions (AF4, F1, FZ, F2, F4, FC1, FC2, FC4, FCZ, C1, C4, CZ) in time-scale less than 

30 factors. B.  Topographies illustrate all the significant (original p <0.05) spearman correlation 

coefficients (rho) between percent change in MoCA and MSE across time-scales in 19 patients 

receiving seizure therapy.  Cluster-based correction for multiple comparison revealed a 

significant negative cluster (p<0.01) in parieto-central region (e.g., PZ, POZ, P1, P2) across 
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time-scales and globally in coarser (higher) time-scales. C, D. Scatter plots highlight the time-

scale and region-specific association between percent change in MSE (y-axes) and percent 

change in HAMD (x-axis in C), and percent change in MoCA (x-axis in D).  C. Scatter plots 

show that change in MSE was significantly associated with change in HAMD in the occipital 

region in fine time-scale (O2, time-scale 4, r = - 0.52, p = 0.0017) but not coarse time-scale (O2, 

time-scale 70, r =0.07, p = 0.71). D. Scatter plots show that change in MSE was significantly 

associated with change in MoCA in the parieto-central region in coarse time-scale (PZ, time-

scale 70, r = -0.63, p = 0.0038) but not fine time-scales (PZ, time-scale 4, r = -0.28, p = 0.24). 
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Figure 4.4 - Region-Specific Change in Temporal Complexity Predicts Change in Mood 

and Cognition  

A, C. Topographies depict area under the curve (AUC) of the receiver operating characteristic 

(ROC) curve of change in multiscale entropy (MSE) in predicting antidepressant (A), and 

cognitive change (C) in response to seizure therapy at every electrode and time-scale. The hot 

colors illustrate higher AUC and better prediction. Change in complexity of low time-scales 

(e.g., 4-6,8) in right parieto-occipital brain regions (OZ, O2, PO8) offered good (AUC ≥ 0.8)  

prediction performance of antidepressant response and a fair (0.7 < AUC < 0.8)  prediction 
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performance was observed across low time-scales (e.g., 1-22) in bilateral fronto-central (e.g., 

FC1, FC2, FCZ, F1) and bilateral parieto-occipital (e.g., O1, PO3, PO5, PO7, PO4, PO6, P7, P8) 

brain regions (A). Change in complexity of time-scales 14 and higher in parieto-central (e.g., PZ) 

and then globally in coarser time-scales provided excellent (e.g., AUC ≥ 0.9) prediction 

performance for change in cognition. B, D. Figures depict the ROC curve across all possible 

threshold values of the predictor for an electrode and time-scale with best prediction 

performance for antidepressant response (OZ, scale 5) (B) and change in cognition (e.g., AUC 

(P2 electrode, time-scale 23) = 0.98, p <0.0001). (D). X-axes represent false positive rates (1-

specificity), y-axes the true positive values (sensitivity). The red circle shows the optimum 

operating point of the ROC curve. B. At optimum point, this electrode and scale has 82% 

sensitivity and 77% specificity (good classification). D. At optimum point, this electrode and 

scale has 89% sensitivity and 100% specificity (excellent classification). 
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Figure 4.5 - Seizure Induced Modulation of Complexity and Its Association with Mood and Cognition in the Source Space 

In all images, X-axis represents the time scales (1 to 70) and y-axis represents Regions of Interest (ROIs) of the Destrieux Atlas (1 to 

148). The ROIs are grouped into left (L: the upper half the images) and right (R: the lower half of the images) hemisphere brain 

regions separated by the horizontal red line in each figure. Images show the post-hoc test statistics following cluster-based 

permutation test correction for multiple comparison, depicting only the significant clusters p<0.05, labeling only the significant 

corresponding ROIs and setting to 0 non-significant pixels. Top: Images show the t-test statistics comparing MSE post to pre-

treatment (blue: decreases; red: increases following treatment). A. In MST responders, a wide spread reduction in time-scales less than 

20 was observed (cluster p <0.05). B. By contrast, in ECT responders, there was significant (cluster p <0.01) global decrease in time-

scales less than 30 and significant (cluster p <0.01) global increase in coarser time-scales. In MST responders, the reduction of MSE 

in fine time-scales was found in several tempro-parieto-occipital (e.g., cuneous, precuneus, posterior-dorsal part of the cingulate gyrus 

(dPCC),  parieto-occipital sulcus, occipital pole, etc) and fronto-central brain regions (e.g., opercular part of the inferior frontal gyrus, 

central sulcus, pre and post central gyrus, etc). No significant changes were observed in either ECT or MST non-responders. Bottom: 

C. Image illustrate the significant (p<0.05) spearman correlation coefficients (rho) between percent change in HAMD and MSE in 34 

patients receiving seizure therapy.  There was significant negative clusters (p<0.01) in time-scale less than 20 factors in tempro-

parieto-occipital regions including the bilateral dPCC, bilateral vPCC, bilateral cuneus, precuneus, parieto-occipital sulcus, occipital 

pole, temporal sulci, bilateral inferior temporal sulcus, bilateral lateral occi-temporal sulcus, bilateral calcarine sulcus, bilateral 

anterior and posterior transverse collateral sulcus. D.  Image illustrates spearman correlation coefficients (rho) between percent change 

in MoCA and MSE across time-scales in 19 patients receiving seizure therapy.  There was significant negative clusters (p<0.005) in 

several central, parieto-central, parieto-occipital, occi-temporal, and temporal brain regions (as labeled on the image) across primarily 

coarser (>30) time-scales.   
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Figure 4.6 - Prediction of Change in Mood and Cognition in the Source Space 

Images depict area under the curve (AUC) of the receiver operating characteristic (ROC) curve of change in multiscale entropy (MSE) 

in predicting antidepressant (A), and cognitive change (C) in response to seizure therapy at every Region of Interest (ROI) of the 

Destrieux Atlas (1 to 148) and each time-scale (1 to 70). Hot colors illustrate higher AUC and better prediction. Change in complexity 

of low time-scales (1 to 20) in parieto-occipital regions (e.g., parieto-occipital sulcus, occipital pole, calcarine sulcus) offered 

moderate to good (e.g., AUC of 0.75 to 0.80) prediction performance for change in antidepressant response (A). Change in complexity 

of higher time-scales in parietal brain regions and then spatially globally across time-scales provided excellent (e.g., AUC > 0.9) 

prediction performance for change in cognition. B, D. Figures depict the ROC curve across all possible threshold values of the 

predictor for an ROI and time-scale for antidepressant response (AUC (right occipital pole, time scale 5) = 0. 79, p <0.0001) (B) and 

change in cognition (e.g., AUC (intra and trans-parietal sulcus, time-scale 22) = 0.97, p <0.00001). (D). X-axes represent false 

positive rates (1-specificity), y-axes the true positive values (sensitivity). The red circle shows the optimum operating point of the 

ROC curve. B. At optimum point, this brain region and scale has 70% sensitivity and 94% specificity. D. At optimum point, this ROI 

and scale has 100% sensitivity and 90% specificity.  
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4.9 Supplementary Material 

 

Figure S 4.1 -  Effect of Seizure Therapy on Cortical Oscillations  

Top. Waveforms depict the relative power spectrum of resting-state eyes-closed EEG pre (black 

waveforms) and post (red waveforms) electroconvulsive therapy (ECT) and magnetic seizure 

therapy (MST) in responders (A, C) and non-responders (B, D). The x-axes are frequency in Hz 

and the y-axes the relative power in dB. Middle. Images show the original post-hoc test statistics 

maps comparing the relative power across frequency bands (x-axes) and channels (y-axes) post 

compared to pre-treatment (blue: decreases; red: increases following treatment) for responders 

and non-responders. Bottom. Each topography reflects the significant t-map depicting only the 

significant clusters p<0.05, setting to 0 non-significant pixels. Topographies highlight the spatial 

characteristics of a global increase in relative power of frequencies < 8Hz (cluster p = 0.018) and 
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a significant (cluster p<0.001) global decrease in frequencies > 9 Hz in ECT responders, but a 

wide spread reduction in relative power of frequencies > 18 Hz (cluster p<0.001) in MST 

Responders. Significant (cluster p = 0.042) but less pronounced wide spread increase of 2 to 7Hz 

and decrease (cluster p=0.017) of 10 to 35Hz were observed in ECT non-responders. No 

significant changes were observed in MST non-responders.  
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Figure S 4.2 - The Association between Cortical Oscillations and Mood 

A. Topographies illustrate all the significant (original p<0.05) spearman correlation coefficients 

(rho) between percent change in HAMD and change in power. All electrodes and frequencies 

that did not survive the correction for multiple comparisons were set to 0 (green colors). Cluster-

based permutation test correction for multiple comparison revealed significant negative clusters 

(p<0.01) in high frequencies (e.g., > 30Hz) in parieto-occipital regions (e.g., P7, P5, PO7, PO5, 

PO4, PO6, PO8, O1, OZ) and fronto-central regions (e.g., AF4, F1, FZ, F2, F4, FC2) B. 

Topographies depict area under the curve (AUC) of the receiver operating characteristic (ROC) 

curve of change in relative power of cortical oscillations in predicting change in depressive 

symptoms in response to seizure therapy at every electrode and frequency. The hot colors 

illustrate higher AUC and better prediction. Change in cortical oscillations did not provide good 

accuracy (i.e., AUC > 0.8) in predicting change in depressive symptoms.  
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Figure S 4.3 - The Association between Cortical Oscillations and Cognition 

A. Topographies illustrate all the significant (original p <0.05) spearman correlation coefficients 

(rho) between percent change in MoCA and change in power. All electrodes and frequencies that 

did not survive the correction for multiple comparisons were set to 0 (green colors). Cluster-

based non-parametric correction for multiple comparison revealed a significant global negative 

cluster (p<0.01) in slow oscillations (e.g., 1 and 3Hz) and in parieto-central regions (e.g., C1, 

C3, CZ, CP3, P1, PZ, P2, P4, POZ) in high frequencies (e.g., > 40Hz). B. Topographies depict 

area under the curve (AUC) of the receiver operating characteristic (ROC) curve of change in 

relative power of cortical oscillations in predicting cognitive change in response to seizure 

therapy at every electrode and frequency. The hot colors illustrate higher AUC and better 

prediction.  Change in power of low frequency oscillations (e.g., 1-3Hz) a provided good 

prediction value (0.8 < AUC < 0.9) such as in parieto-central regions (e.g., PZ, P2). Power of 

high frequency oscillations in the left motor cortex (i.e., C3 electrode, 47Hz) provided the best 

prediction value (AUC = 0.9). 
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Figure S 4.4 - Effect of Seizure Therapy on Cortical Oscillations in Source Space  

In all images, x-axis represents the frequency (1 to 50) in Hertz and y-axis represents Regions of Interest (ROIs) of the Destrieux Atlas 

(1 to 148). The ROIs are grouped into brain regions in the left (L: the upper half the images) and right (R: the lower half of the 

images) hemisphere separated by the horizontal black line. Images show the post-hoc independent sample t-test statistics following 

cluster-based permutation test correction for multiple comparison, depicting only the significant clusters p<0.05, labeling only the 

significant corresponding ROIs, and setting to 0 non-significant pixels. A. Image shows the t-test statistics comparing the change in 

power between participants who received ECT and MST interventions (red: more increase in ECT; blue: more reduction in ECT). This 

image depicts a significantly greater increase in slow oscillations (<10 Hz) and greater decrease in power of frequencies 20-50 Hz in 

the ECT group. This effect is spatially global. B. Image shows the independent sample t-test statistics comparing the change in power 
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between participants who were considered responders to seizure therapy (>=50% reduction in HAMD from baseline) and non-

responders. This image depicts a greater reduction in power of frequencies 20-50Hz in responders. This finding is spatially global at 

~22Hz, but more local in higher frequencies (30-50Hz). Specifically in 30-50Hz, the reduction in power is observed in regions such as 

the inferior frontal sulcus, left orbital part of the frontal inferior gyrus, bilateral preocciptial notch, orbital gyri, lateral orbital sulcus, 

lateral occi-temporal sulcus, medial orbital sulcus, bilateral parieto-occiptial sulcus, or bilateral superior parietal lobule.  
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Figure S 4.5 - The Association between Cortical Oscillations and Mood and Cognition in Source Space 

A. Image illustrate the significant (p <0.05) spearman correlation coefficients (rho) between percent change in HAMD and power in 

34 patients receiving seizure therapy. All sources and frequencies that did not survive the correction for multiple comparisons were set 

to 0 (green colors). Only sources that are significant have been listed.  There were significant negative clusters in tempro-parieto-

occipital regions (e.g., orbital sulci and gyri, bilateral dPCC, vPCC, precuneus, parieto-occipital sulcus, occipital pole, inferior 

temporal gyrus, lateral occi-temporal sulcus, etc.) in frequencies higher than 30Hz. B.  Image illustrates spearman correlation 

coefficients (rho) between percent change in MoCA and power across time-scales in 19 patients receiving seizure therapy. There was 

a global negative cluster in slow oscillations and a global positive association at 10 Hz frequency.   
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Figure S 4.6 - The Association between Change in Complexity and Autobiographical 

Memory 

A. Topographies illustrate all the significant (original p<0.05) spearman correlation coefficients 

(rho) between percent change in autobiographical memory interview (AMI) and multiscale 

entropy (MSE) across all time-scales for each electrode.  Cluster-based permutation test 

correction for multiple comparison revealed a significant negative cluster in time-scales higher 

than 40 across brain regions including the frontoparietal regions. B. Topographies depict area 

under the curve (AUC) of the receiver operating characteristic (ROC) curve of change in MSE in 

predicting change in AMI in response to seizure therapy at every electrode and time-scale. The 

hot colors illustrate higher AUC and better prediction. Change in complexity of coarse time-

scales (e.g.,>47) in frontoparietal regions had excellent (AUC range: 0.9 to 1.00) prediction 

performance.  
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Figure S 4.7 - The Association between Change in Complexity and Autobiographical Memory in Source Space 

A. Image illustrates the significant (p <0.05) spearman correlation coefficients (rho) between percent change in autobiographical 

memory interview (AMI) and multiscale entropy (MSE) at every Region of Interest (ROI) of the Destrieux Atlas (1 to 148) and each 

time-scale (1 to 70). All sources and scales that did not survive the correction for multiple comparisons were set to 0 (green colors). 

Only sources that are significant have been listed.  B. Image depicts the area under the curve (AUC) of the receiver operating 

characteristic (ROC) curve of change MSE in predicting change in AMI in response to seizure therapy at every ROI and each time-

scale (1 to 70). Hot colors illustrate higher AUC and better prediction. Change in complexity of higher time-scales in several bilateral 

frontal and parietal regions provided excellent (AUC range: 0.9 to 1.00) prediction performance for change in AMI. 
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Chapter 5 – Selective Modulation of Brain Network 
Dynamics by Seizure Therapy in Treatment-Resistant 

Depression 
5  

 

 

In this chapter, we apply EEG frequency analysis and microstate analysis to extract power and 

global brain-network measures of neural oscillations. We aim to identify whether these measures 

can provide insight into mechanism of action of ECT and MST. 

 

Contents of this chapter have been reprinted by permission from Elsevier: NeuroImage Clinical. 

Sravya Atluri, Willy Wong, Sylvain Moreno, Daniel M. Blumberger, Zafiris J. Daskalakis, and 

Faranak Farzan. "Selective Modulation of Brain Network Dynamics by Seizure Therapy in 

Treatment-Resistant Depression." NeuroImage Clinical. Accepted (Oct 2018). 
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5.1 Abstract 

Electroconvulsive therapy (ECT) is highly effective for treatment-resistant depression, yet its 

mechanism of action is still unclear. Understanding the mechanism of action of ECT can 

advance the optimization of magnetic seizure therapy (MST) towards higher efficacy and less 

cognitive impairment. Given the neuroimaging evidence for disrupted resting-state network 

dynamics in depression, we investigated whether seizure therapy (ECT and MST) selectively 

modifies brain network dynamics for therapeutic efficacy. EEG microstate analysis was used to 

evaluate resting-state network dynamics in patients at baseline and following seizure therapy, 

and in healthy controls. Microstate analysis defined four classes of brain states (labelled A, B, C, 

D). Source localization identified the brain regions associated with these states. An increase in 

duration and decrease in frequency of microstates was specific to responders of seizure therapy. 

Significant changes in the dynamics of States A, C and D were observed and predicted seizure 

therapy outcome (specifically ECT). Relative change in the duration of States C and D was 

shown to be a strong predictor of ECT response. Source localization partly associated C and D to 

the salience and frontoparietal networks, argued to be impaired in depression. An increase in 

duration and decrease in frequency of microstates was also observed following MST, however it 

was not specific to responders. This study presents the first evidence for the modulation of global 

brain-network dynamics by seizure therapy. Successful seizure therapy was shown to selectively 

modulate network dynamics for therapeutic efficacy. 

 

5.2 Introduction 

Over one third of patients with major depressive disorder are treatment-resistant and fail to 

respond to two or more antidepressant medications or psychotherapy (Fava 2003, Berlim and 

Turecki 2007). This trial-and-error approach can be overbearing for patients in terms of cost, as 

well as the emotional trauma associated with the prolonged treatment process (Fekadu, 

Wooderson et al. 2009). Such cases of treatment-resistant depression are also challenging for 

clinicians. Through the process of identifying an optimal treatment, patients may receive several 

courses of medication and each treatment course can significantly impact brain circuitry, 
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regardless of clinical outcome (Mayberg, Brannan et al. 1997, Kennedy, Evans et al. 2001, 

Mayberg 2003, Fu, Steiner et al. 2013). The complexity of these individual differences can 

further complicate the process of identifying an appropriate treatment for these patients. To date, 

electroconvulsive therapy (ECT) remains the most effective treatment for patients with 

treatment-resistant depression (Kho, van Vreeswijk et al. 2003, Heijnen, Birkenhäger et al. 

2010). Yet its mechanism of action is still not known.  

 

It is hypothesized that the brief, generalized seizure triggered by ECT impacts the dynamics of 

brain networks disrupted in depression (Farzan, Boutros et al. 2014) but also networks involved 

in cognition, leading to its most common adverse effect: memory impairment (Devanand, Sobin 

et al. 1995). Magnetic seizure therapy (MST) (Lisanby, Luber et al.) also relies on the principles 

of seizure induction for therapeutic benefit but unlike ECT, the effect of MST is localized (Deng, 

Lisanby et al. 2011). Based on the few clinical trials conducted to date, MST improves 

depressive symptoms (Kayser, Bewernick et al. 2011, Cretaz, Brunoni et al. 2015, Kayser, 

Bewernick et al. 2015) and suicidal ideation (Sun, Farzan et al. 2016), without the cognitive side 

effects seen with ECT (Lisanby, Luber et al. 2003, Moscrip, Terrace et al. 2006, Spellman, 

McClintock et al. 2008, Deng, McClintock et al. 2015). However, in its early stage of 

development, its efficacy relative to ECT requires further study (Kayser, Bewernick et al. 2011). 

Identifying brain networks affected by treatment-resistant depression and modified by ECT may 

allow the optimization of MST as well as the development of non-invasive and non-seizure 

inducing treatments.  

 

Evidence from neuroimaging studies suggests that specific patterns of brain network dysfunction 

at rest may contribute to core deficits in cognitive and affective functions underlying 

neuropsychiatric disorders (Bassett and Bullmore 2006, Garrity, Pearlson et al. 2007, Greicius 

2008, Buckner, Sepulcre et al. 2009, Wang, Zhu et al. 2009, Zhang, Wang et al. 2011). It has 

also been shown that the resting-state of the brain can predict physiological consequences of 

brain stimulation and treatment outcome (Mayberg 2003, Greicius, Flores et al. 2007, Fox, 

Buckner et al. 2014). Collectively, the temporal variation in resting-state brain network dynamics 

may be a significant marker of illness and therapeutic outcome (Honey, Kötter et al. 2007, Chang 

and Glover 2010, Hutchison, Womelsdorf et al. 2013). To advance the development of novel and 
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targeted treatments, it is critical to characterize the disruption and changes in brain network 

dynamics in treatment-resistant depression and by successful treatments such as ECT (Nobler, 

Oquendo et al. 2001, Perrin, Merz et al. 2012, Abbott, Gallegos et al. 2014).  

 

Using electroencephalography (EEG), functional brain networks and their dynamics can be 

examined through microstate analysis, a data-driven approach used to measure the spatial 

stability of brain network dynamics over time (Lehmann, Ozaki et al. 1987, Pascual-Marqui, 

Michel et al. 1995, Michel and Koenig 2017). Microstate analysis clusters the topographical 

distributions of spontaneous EEG activity into a set of four classes (A, B, C and D as described 

in the method) of brain states (i.e., microstates) that each remain stable over a short period of 

time before transiting into another state (50-120ms) (Strik, Dierks et al. 1995). An increase in the 

duration of a microstate implies an increase in the probability of that microstate to be followed 

by itself. Since each microstate is generated by an underlying neuronal population, the temporal 

characteristics of a microstate (such as rate of change or duration) may be considered as an 

expression of the dynamic stability of underlying spatial networks (Brodbeck, Kuhn et al. 2012). 

The duration of microstates is also consistent with the duration of high-level cognitive processes, 

as shown by evoked-potential studies (Kok 1997). Moreover, microstates were shown to be 

state-dependent, to vary across age, cognitive state (Koenig, Prichep et al. 2002, Brodbeck, Kuhn 

et al. 2012, Milz, Faber et al. 2016, Santarnecchi, Khanna et al. 2017) and in response to therapy 

(Kinoshita, Strik et al. 1995, Rodriguez, Vitali et al. 2002, Kikuchi, Koenig et al. 2007). Studies 

have also confirmed the reliability of microstates across repeated testing sessions (Khanna, 

Pascual-Leone et al. 2014).  

 

Microstates were previously linked with brain networks identified through resting-state 

functional magnetic resonance imaging (fMRI) (Britz, Van De Ville et al. 2010, Musso, 

Brinkmeyer et al. 2010, Yuan, Zotev et al. 2012) some suggested to be impaired in depression 

(Veer, Beckmann et al. 2010, Whitfield-Gabrieli and Ford 2012, Kaiser, Andrews-Hanna et al. 

2015, Fischer, Keller et al. 2016). For example, microstates C and D were linked to the salience 

and frontoparietal networks (Britz, Van De Ville et al. 2010) and the relative activation of these 

networks is hypothesized to be impaired in depression (Hamilton, Furman et al. 2011, Mulders, 

van Eijndhoven et al. 2015). However, to date, there has been only one study that examined and 
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reported a decrease in duration of microstates in depression compared to healthy controls (Strik, 

Dierks et al. 1995). This study was not in treatment-resistant patients and may not extend to 

treatment-resistant depression (Guo, Sun et al. 2011, Wu, Li et al. 2011, de Kwaasteniet, Rive et 

al. 2015, Yamamura, Okamoto et al. 2016). 

 

Collectively, the evidence in support of resting-state network abnormalities in depression (Veer, 

Beckmann et al. 2010, Whitfield-Gabrieli and Ford 2012, Kaiser, Andrews-Hanna et al. 2015, 

Fischer, Keller et al. 2016), the sensitivity of microstates in detecting intervention-related 

changes in resting-state networks (Kinoshita, Strik et al. 1995, Rodriguez, Vitali et al. 2002, 

Kikuchi, Koenig et al. 2007), and the consistency of microstates across repeated testing sessions 

(Khanna, Pascual-Leone et al. 2014), motivated the utility of EEG microstates in this study. 

Using the high temporal resolution of EEG to an advantage, we aimed to investigate the 

therapeutic impact of seizure therapy on network dynamics and the temporal stability of brain 

network dynamics between patients with treatment-resistant depression and healthy subjects. 

 

Our primary hypotheses were two-fold: (a) microstates C and D, previously associated with the 

salience and frontoparietal networks implicated in depression, will be modulated by successful 

seizure therapy; (b) baseline and seizure therapy-induced changes in microstates will be 

associated with therapeutic outcome, and could explain changes in cognition and suicidal 

ideation. Our secondary hypothesis was that patients with treatment-resistant depression will 

present different microstate dynamics compared to healthy controls. These dynamics will be 

modulated by seizure therapy towards the healthy group dynamics.  

 

5.3 Methods 

Subjects. Data was collected from 75 patients (Age: µ=45.7, σ=14.4; 44 females) with a 

Structured Clinical Interview for the Diagnostic and Statistical Manual of mental disorders 

(DSM-IV) diagnosis of Major Depressive Disorder who previously did not respond to 2 or more 

antidepressants (i.e., treatment-resistant depression), and 55 healthy controls (Age: µ=39.2, 

σ=17.4; 29 females) with written informed consent. Of the 75 patients, follow-up assessments 
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were conducted for 22 patients receiving ECT and 24 receiving MST. The remaining 29 patients 

either did not provide their consent for follow-up or withdrew from the study. There were no 

significant differences in clinical scores, age or sex between the group of patients that did the 

follow-up assessment and the group of patients that did not.  

 

Seizure Therapy. ECT was administered with spectrum 500Q (MECTA Corporation) according 

to standards of practice (Sackeim, Prudic et al. 2008). Of the 22 patients who completed ECT 

treatment, 14 patients received right unilateral ultra-brief (RUL-UB) pulse width ECT, 2 

received bitemporal brief pulse (BL) ECT and the rest (6 patients) started on RUL-UB and then 

switched to BL ECT due to the lack of efficacy. Treatments were administered 2-3 times a week 

and continued until patients were in remission or improvement plateaued. MST was administered 

using the MagPro MST using a Twin Coil (MagVenture). The centre of each circular coil was 

placed over F3 and F4 respectively, using the international 10-20 system for EEG electrode 

placement. The highest electric field strength roughly corresponds to Fz (Deng, Lisanby et al. 

2013) or the dorsomedial prefrontal cortex. Of the 24 patients who received MST, 12 patients 

received 100Hz MST, 1 patient received 60Hz, 2 received 50Hz and 9 received 25Hz. 

Treatments were administered 2-3 times per week until remission or up to a maximum of 24 

sessions. Please see Table 5.1 for additional details. 

 

Clinical Assessments. Prior to and following a course of ECT, the 17-scale Hamilton Rating 

Scale for Depression (HRSD) and Montreal Cognitive Assessment (MoCA) v7.1-7.3 were used 

to clinically assess severity of depression and global cognition. Montgomery-Åsberg Depression 

Rating Scale (MADRS) and Beck’s Depression Inventory (BDI-II) scale were also used to assess 

clinical severity of depression and self-rated depression symptoms, respectively. Prior to and 

following a course of MST, the 24-scale HRSD and Montreal Cognitive Assessment (MoCA) 

v7.1-7.3 were used to clinically assess severity of depression and global cognition. Severity of 

suicidal thoughts and overall risk for suicide was assessed using the Scale for Suicidal Ideation 

(SSI). For all SSI-related analyses, only participants who showed suicidal ideation at baseline 

were included. The criterion for treatment response was a minimum of 50% improvement in 

HRSD (final scores were less than 17). Response for BDI, MADRS and SSI was also defined as 
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a minimum of 50% improvement in score. Demographic and clinical characteristics are 

presented in Table 5.1.  

 

Data Recording and Preprocessing. Eyes-closed rest EEG data was collected within a week 

prior to the first treatment session and again within 2 weeks after the completion of the last 

treatment. Data was recorded with the Compumedics (Charlotte, NC, USA) Neuroscan SynAmps 

2/RT 64-channel EEG system at 10kHz. During preprocessing, EEG data was downsampled to 

1000Hz, divided into 2-second epochs, bandpass-filtered between 1-80Hz, and notch-filtered at 

60Hz. With the removal of eye electrodes and other unused channels, the total number of EEG 

channels used for analysis was 60. Using EEGLAB (Delorme and Makeig 2004), independent 

component analysis was used to extract eye, muscle and electrode artifacts. Deleted EEG 

channels were interpolated using spherical spline interpolation (Perrin, Pernier et al. 1989) and 

data was re-referenced to an average reference. This preprocessing pipeline is currently made 

available as ERPEEG (http://www.tmseeg.com/multisiteprojects/). Channels were deleted if: (1) 

they were disconnected during collection for a significant amount of the data collection time 

(>40%), or (2) heavily contaminated with noise (muscle or spurious artifacts) for a significant 

part of the data collection time (>40%). On average, 6±3 independent components were removed 

and 3±1 channels were deleted and interpolated in the data collected from healthy subjects. In the 

data collected from patients at baseline, 9±5 independent components were removed and 3±1 

channels were deleted and interpolated. In the data collected from patients following treatment, 

10±5 independent components were removed and 3±2 channels were deleted and interpolated.  

 

Microstate Analysis. Microstate analysis followed the standard procedure outlined in seminal 

work (Figure S 5.1) (Lehmann, Ozaki et al. 1987, Pascual-Marqui, Michel et al. 1995) and was 

implemented using CARTOOL (Brunet, Murray et al. 2011). Prior to the application of 

microstate analysis, four minutes of the pre-processed EEG data was bandpass-filtered from 1-30 

Hz.   

 

Global field power is a measure of the electric field strength over the scalp and is defined as the 

variance in electrical activity across EEG electrodes at each time point (Eq. 1). The 

topographical maps at the local maxima peaks of the global field power curve are clustered to 

http://www.tmseeg.com/multisiteprojects/
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derive the four prototypical microstate classes (Koenig, Prichep et al. 2002). Using a data-driven 

approach, the optimal number of clusters for the data used in this study was found to be four 

(Figure S 5.2). 

 

Equation 1: 

𝐺𝐹𝑃(𝑡) =  √[∑ (𝑉𝑖(𝑡)− 𝑉𝑚𝑒𝑎𝑛(𝑡))𝑁
𝑖 ]

2

𝑁
, 

where N represents the number of EEG electrodes (i = 1:60 electrodes) and v represents the 

electrical potential measured over the scalp. In addition, vi represents the electrical potential 

measured at electrode (i) and time (t), and vmean represents the average electrical potential over all 

electrodes at time (t). 

 

In this study, the topographical atomize–agglomerate hierarchical clustering algorithm 

(Tibshirani and Walther 2005) was applied across all subjects and conditions (global approach). 

By recalculating microstate classes for each subject or condition, minor differences may be 

introduced in the microstate topographies. The global clustering approach provides low within-

subject error and high test-retest reliability in resting-state microstate analysis (Khanna, Pascual-

Leone et al. 2014). Clustered microstates were labelled A, B, C and D as seen in seminal work 

(Koenig, Prichep et al. 2002) and explained 83% of variance in our data. In the final step, 

topographical maps at each local maxima point of the global field power curve were assigned to 

the microstate class of highest correlation using spatial Pearson’s product-moment correlation 

coefficient (Eq. 2) (Brandeis, Naylor et al. 1992). Three features were calculated for each of the 

four microstate classes: (i) average duration, (ii) frequency, and (iii) coverage. Average duration 

is the amount of time a microstate class remains stable when it appears, in milliseconds; 

frequency refers to the occurrence of each microstate class per second; and coverage is the 

percent of recording covered by each microstate class.  

 

Equation 2: 

𝑟𝑠𝑝𝑎𝑡𝑖𝑎𝑙 = 1 −
1

2
 [

1

𝑁
∑ {

𝑢𝑖− 𝑢𝑚𝑒𝑎𝑛

√∑ (𝑢𝑖− 𝑢𝑚𝑒𝑎𝑛)2/𝑁𝑁
𝑖=1

− 
𝑣𝑖− 𝑣𝑚𝑒𝑎𝑛

√∑ (𝑣𝑖− 𝑣𝑚𝑒𝑎𝑛)2/𝑁𝑁
𝑖=1

}

2

𝑁
𝑖=1 ] , 
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where N represents the number of EEG electrodes (i=1:60 electrodes) and u and v represent the 2 

different spatial topographies (maps) being correlated. In addition, ui, vi represent the electrical 

potential measured at electrode i of the 2 maps and umean, vmean represent the average electric 

potential over all electrodes. 

 

Statistical Analysis. To examine the effect of treatment response (≥50% improvement in HRSD) 

on microstate characteristics following seizure therapy (ECT and MST), a 2x2x4 repeated-

measures ANOVA (Lehmann, Faber et al. 2005, Tomescu, Rihs et al. 2014) was conducted for 

each microstate feature (Duration, Frequency and Coverage) with RESPONSE (Responder, Non-

responder) as a categorical factor, and TIME (Pre, Post) and MICROSTATE CLASS (A, B, C, D) 

as the repeated-measures factors. These ANOVAs were performed on the ECT and MST group 

data separately as well. 

 

For each microstate feature (Duration, Frequency and Coverage), a 2x4 repeated-measured 

ANCOVA (Lehmann, Faber et al. 2005, Tomescu, Rihs et al. 2014) was conducted between (2 

GROUPS) healthy controls and patients with treatment-resistant depression prior to seizure 

therapy using MICROSTATE CLASS (A, B, C and D) as the repeated-measure. For each of the 

three microstate features, an ANCOVA was performed again between (2 GROUPS) healthy 

controls and patients following seizure therapy using MICROSTATE CLASS (A, B, C and D) as 

the repeated-measure. Age was used as a covariate. There were no significant effects of gender.  

 

Based on our hypothesis that seizure therapy modulates global neural dynamics, planned 

comparisons were performed to determine whether changes in microstate characteristics were 

associated with treatment response. For each of the three microstate characteristics (duration, 

frequency, coverage), paired t-tests were performed to compare the characteristic before and 

after treatment for each of the four states. The results were corrected for multiple comparisons 

using the Bonferroni correction method (for the 4 microstates). 

 

A significance level of α<0.05 was used for all statistical tests. Pairwise post-hoc comparisons 

were performed using Tukey-HSD. All planned comparisons were corrected using the 

Bonferroni method (4 comparisons for the 4 microstate classes).   
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Correlation and Predictive Analysis. Associations between microstate characteristics and 

clinical assessments (HRSD, MADRS, BDI, MoCA, SSI) were evaluated with a non-parametric 

spearman rank-order correlation test and corrected for multiple-comparisons using permutation 

tests. Receiver operating characteristic (ROC) curves were used to assess predictive value of 

significant spearman rank-order correlations (i.e., correlations with p<0.05). Significance of 

prediction for the ROC curves was quantified through area under the curve (AUC). Only AUC 

values greater than or equal to 0.7 (i.e., fair, good, or excellent predictors) are reported in this 

manuscript. For ROC curves with HRSD, MADRS or BDI, subjects were grouped to be 

responders (>= 50% improvement in symptoms) or non-responders. For ROC curves with 

MoCA, subjects were grouped to have cognitive decline if the percent change in MoCA was 

negative.  

 

Microstate features were correlated with the percent change in clinical scores following therapy. 

Raw clinical scores (e.g., HRSD) were not used for correlation analysis. Change in microstate 

features was calculated as (Post-Pre)/Pre*100 where a higher percentage represents an increase 

in the feature value; change in HRSD, MADRS and BDI were calculated as (Pre-Post)/Pre*100 

where a higher percentage represents improvement in depressive symptoms; and lastly change in 

MoCA and SSI were calculated as (Post-Pre) where a higher value represents improvement in 

cognition or suicidal ideation symptoms.  

 

Source Localization. The eLORETA algorithm was used to localize the four global-clustered 

microstates in the source domain. Using LORETA-KEY (Pascual-Marqui, Lehmann et al. 1999), 

the co-ordinates of the 60 electrodes were identified according to the 10-10 system. A 

transformation matrix (60x6239) was then derived with a relative regularization parameter of 1.  

 

Power Spectral Density Analysis. The EEGLAB function spectopo was used to obtain the power 

spectrum for each electrode. Relative power was obtained for 1 to 30 Hz (to be consistent with 

microstate analysis) and was calculated as the ratio of the power at each frequency relative to the 

sum of power across all frequencies. In addition, relative power was calculated as an average 

over the following bands: Delta: 1-4Hz; Theta: 4-8Hz; Alpha: 8-14Hz; Low Beta: 14-20Hz; 

High Beta: 20-30Hz. Spearman rank-order correlations were performed between power in each 
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band and the characteristics of microstate analysis (duration, frequency and coverage). The 

results are reported as a correlation matrix. Correlation p-values were also calculated and were 

Bonferroni-corrected for multiple comparisons (12 comparisons: 4 microstate classes by 3 

features).   

 

5.4 Results 

A significant improvement in HRSD score was observed following ECT (paired t=−6.6; df=21; 

p<0.0001; Cohen’s d=2.2), following MST (paired t=−4.62, df=23; p=0.0001; Cohen’s d = 1.3) 

and when both the groups were combined as seizure therapy (paired t=−7.8, df=45; p<0.0001; 

Cohen’s d=1.6). In addition, there was a significant improvement in BDI score (paired t=−5.8, 

df=16; p<0.0001; Cohen’s d=1.9) and a decrease in MoCA score (cognition) approaching 

significance (paired t=−2.5; df=5; p=0.05; Cohen’s d=1.2) following ECT. Suicidal ideation 

(paired t=−4.5, df=19; p=0.0002; Cohen’s d=1.3) and cognition scores (paired t=2.7, df=20; 

p=0.01; Cohen’s d=0.48) significantly changed following MST. 

 

5.4.1 Effect of Seizure Therapy on EEG Microstate Dynamics 

5.4.1.1 Seizure Therapy (ECT and MST) 

A main effect of Time (F=15.9; df=1,44; p=0.0003; ƞp
2=0.27) and Microstate Class (F=13.2; 

df=3,132; p<0.0001; ƞp
2=0.23) were observed in the duration of microstates. The interaction of 

Time x Microstate Class was not significant (F=1.2; df=3,132; p=0.3; ƞp
2=0.026). An effect of 

response (≥50% improvement in HRSD) was not observed (F=0.57; df=1,44; p=0.5; ƞp
2=0.013). 

Since all the states increased in duration following seizure therapy (ranging between 3.3 to 8.2 

ms), paired t-tests were performed to identify which states revealed a statistically significant 

increase in duration. These were corrected using the Bonferroni method for 4 comparisons (4 

microstates). State A (paired t=5.0; df=45; Bonferroni-corrected p<0.0001; Cohen’s d=0.77) 

showed a significant increase in duration following seizure therapy (left panel of Figure 5.1A). 

There was no significant change in the duration of State B (paired t=2.4; df=45; Bonferroni-

corrected p=0.08; Cohen’s d=0.33), State C (paired t=2.2; df=45; Bonferroni-corrected p=0.1; 
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Cohen’s d=0.32), or State D (paired t=1.4; df=45; Bonferroni-corrected p=0.7; Cohen’s d=0.15) 

(left panels of Figure 5.1B-D). 

 

A main effect of Time (F=12.4; df=1,44; p=0.001; ƞp
2=0.22) and Microstate Class (F=3.5; 

df=3,132; p=0.02; ƞp
2=0.07) were observed in the frequency of microstates. The interaction of 

Time x Microstate Class approached significance (F=2.4; df=3,132; p=0.06; ƞp
2=0.052). Post-

hoc Tukey-HSD tests revealed that State B (HSD=4.7; df=132; p=0.03; Cohen’s d=0.65) (left 

panel of Figure 5.2B), State C (HSD=5.6; df=132; p=0.004; Cohen’s d=0.78) (left panel of 

Figure 5.2C) and State D (HSD=6.2; df=132; p=0.0008; Cohen’s d=0.87) (left panel of Figure 

5.2D) significantly decreased in frequency following seizure therapy. There was no significant 

change in the frequency of State A (HSD=1.3; df=132; p=0.99; Cohen’s d=0.19) (left panel of 

Figure 5.2A). An effect of response was not observed (F=0.54; df=1,44; p=0.5; ƞp
2=0.012).  

 

Apart from the main effect of Microstate Class (F=8.6; df=3,132; p<0.0001; ƞp
2=0.16), no 

significant effects were observed in the coverage of microstates (Figure S 5.3). 

 

Planned comparisons were conducted to investigate the effect of response based on our 

hypotheses. The increase in State A duration was specific to responders of seizure therapy (t=6.3; 

df=19; p<0.0001; Bonferroni-corrected p<0.0001; Cohen’s d=1.1) (middle panel of Figure 

5.1A). This effect was not observed in non-responders for State A (t=2.2; df=25; p=0.03; 

Bonferroni-corrected p=0.1; Cohen’s d=0.48) (right panel of Figure 5.1A). The decrease in 

frequency of State B (t=−3.3; df=19; p=0.004; Bonferroni-corrected p=0.01; Cohen’s d=0.56), 

State C (t=−4.9; df=19; p=0.0001; Bonferroni-corrected p=0.0004; Cohen’s d=0.80) and State D 

(t=−2.8; df=19; p=0.01; Bonferroni-corrected p=0.04; Cohen’s d=0.53) was specific to 

responders of seizure therapy (middle panels of Figure 5.2B-D). This effect was not observed in 

non-responders for State B (t=−1.1; df=25; p=0.3; Cohen’s d=0.15), State C (t=−1.3; df=25; 

p=0.19; Cohen’s d=0.31) or State D (t=−1.5; df=25; p=0.2; Cohen’s d=0.28) (right panels of 

Figure 5.2B-D). 
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5.4.1.2 Electroconvulsive Therapy  

A main effect of Time (F=8.3; df=1,20; p=0.009; ƞp
2=0.29) and Microstate Class (F=5.9; 

df=3,60; p=0.001; ƞp
2=0.23) were observed in the duration of microstates. The interaction of 

Time x Microstate Class was not significant (F=0.71; df=3,60; p=0.6; ƞp
2=0.034). An effect of 

response was not observed (F=0.002; df=1,20; p=0.97; ƞp
2=0.00008). Since all the states 

increased in duration following ECT (ranging between 6.1 to 11.1ms), paired t-tests were 

performed to identify which states revealed a statistically significant increase in duration. These 

were corrected using the Bonferroni method for 4 comparisons (4 microstates). State A (paired 

t=5.7; df=21; Bonferroni-corrected p<0.0001; Cohen’s d=1.08) showed a significant increase in 

duration following ECT (left panel of Figure 5.3A). There was no significant change in the 

duration of State B (paired t=1.7; df=21; Bonferroni-corrected p=0.4; Cohen’s d=0.36), State C 

(paired t=1.7; df=21; Bonferroni-corrected p=0.4; Cohen’s d=0.43) or State D (paired t=2.3; 

df=21; Bonferroni-corrected p=0.1; Cohen’s d=0.35) (left panels of Figure 5.3B-D). 

 

A main effect of Time (F=7.3; df=1,20; p=0.01; ƞp
2=0.27), and an interaction effect of Time x 

Microstate Class (F=3.4; df=3,60; p=0.02; ƞp
2=0.15) were observed in the frequency of 

microstates. The main effect of Microstate Class was not significant (F=1.3; df=3,60; p=0.3; 

ƞp
2=0.06). All states decreased in frequency following seizure therapy. Post-hoc Tukey-HSD 

tests revealed that State B (HSD=4.4; df=60; p=0.03; Cohen’s d=1.0) (left panel of Figure 

5.4B), State C (HSD=5.7; df=60; p=0.002; Cohen’s d=1.24) (left panel of Figure 5.4C) and 

State D (HSD=6.6; df=60; p=0.0003; Cohen’s d=1.46) (left panel of Figure 5.4D) significantly 

decreased in frequency following ECT. There was no significant change in the frequency of 

State A (HSD=0.54; df=60; p=0.99; Cohen’s d=0.11) (left panel of Figure 5.4A). An effect of 

response was not observed (F=0.04; df=1,20; p=0.8; ƞp
2=0.002).  

 

Apart from the main effect of Microstate Class (F=3.1; df=3,60; p=0.03; ƞp
2=0.13), no 

significant effects were observed in the coverage of microstates (Figure S 5.4).  

 

Planned comparisons revealed that the increase in State A duration was specific to responders of 

ECT (t=8.5; df=12; p<0.0001; Bonferroni-corrected p<0.0001; Cohen’s d=1.60) (middle panel of 

Figure 5.3A). This effect was not observed in non-responders for State A (t=1.7; df=8; p=0.1; 
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Cohen’s d=0.52) (right panel of Figure 5.3A). A decrease in the frequency of State B (t=−3.1; 

df=12; p=0.008; Bonferroni-corrected p=0.03; Cohen’s d=0.67) (middle panel of Figure 5.4B), 

State C (t=−4.0; df=12; p=0.002; Bonferroni-corrected p=0.008; Cohen’s d=0.90) (middle panel 

of Figure 5.4C) and State D (t=−2.9; df=12; p=0.01; Bonferroni-corrected p=0.04; Cohen’s 

d=0.71) (middle panel of Figure 5.4D) was specific to responders of ECT. This effect was not 

observed in non-responders for State B (t=−0.78; df=8; p=0.5; Cohen’s d=0.24), State C (t=−2.0; 

df=8; p=0.08; Cohen’s d=0.67) or State D (t=−1.6; df=8; p=0.2; Cohen’s d=0.71) (right panels of 

Figure 5.4B-D).  

 

5.4.1.3 Magnetic Seizure Therapy 

Similar to ECT, there was an increase in duration and decrease in frequency of microstates 

following MST. A main effect of Time (F=6.8; df=1,22; p=0.01; ƞp
2=0.24) and Microstate Class 

(F=6.4; df=3,66; p=0.0007; ƞp
2=0.23) were observed in the duration feature. The interaction 

effect of Time x Microstate Class was not significant (F=0.11; df=3,66; p=0.96; ƞp
2=0.005). An 

effect of response was not observed (F=2.3; df=1,22; p=0.2; ƞp
2=0.094). In addition, a main 

effect of Time (F=4.4; df=1,22; p=0.04; ƞp
2=0.16) and a main effect of Microstate Class (F=4.0; 

df=3,66; p=0.01; ƞp
2=0.15) were observed in the frequency feature. The interaction effect of 

Time x Microstate Class was not significant (F=0.075; df=3,66; p=0.97; ƞp
2=0.003). An effect of 

response was not observed (F=2.4; df=1,22; p=0.1; ƞp
2=0.10). Apart from the main effect of 

Microstate Class (F=5.8; df=3,66; p=0.001; ƞp
2=0.21), no significant effects were observed in the 

coverage of microstates. See supplementary figures (Figure S 5.5, Figure S 5.6 and Figure S 

5.7). Planned comparisons were not significant (see supplementary Table 5.2).  

 

5.4.2 Correlation and Prediction Analysis Results 

5.4.2.1 Seizure Therapy (ECT and MST) 

An increase in the duration of State A correlated with improvement in depressive symptoms 

(HRSD) (r = 0.33, 95% CI 0.044 to 0.57, p-corrected=0.02). The increase was also a fair 

predictor of improvement in depressive symptoms (HRSD) (AUC=0.71, p=0.003) (Figure 5.5). 
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5.4.2.2 Electroconvulsive Therapy 

A decrease in State D duration following ECT treatment significantly correlated with 

improvement in self-rated depressive symptoms (BDI) (r = −0.55, 95% CI −0.82 to −0.09,  p-

corrected=0.02) (left panel of Figure 5.6B). The decrease was also a good predictor of 

improvement in self-rated depressive symptoms (BDI) (AUC=0.83, p=0.0007) (right panel of 

Figure 5.6B). Based on the association of State C to the salience and State D to the 

frontoparietal network (Britz, Van De Ville et al. 2010) and based on research indicating that the 

salience network facilitates the activation of the frontoparietal network (Menon and Uddin 

2010), we hypothesized that the change in State D duration relative to the change in State C 

duration will also significantly correlate with clinical outcome. The log ratio between change in 

State D duration and change in State C duration correlated with improvement in self-rated 

depressive symptoms (BDI) (r = −0.67, 95% CI −0.87 to −0.28, p=0.003) (left panel of Figure 

5.6C) and clinical depression scores (MADRS) (r = −0.50, 95% CI −0.78 to −0.04, p=0.03). The 

ratio was also an excellent predictor of improvement in self-rated depressive symptoms (BDI) 

(AUC=0.97, p<0.0001) (right panel of Figure 5.6C).  

 

Furthermore, an increase in State A coverage correlated with the improvement in self-rated 

depressive symptoms (BDI) (r = 0.57, 95% CI 0.12 to 0.82, p-corrected=0.02) (left panel of 

Figure 5.6A). The increase was also a fair predictor of improvement in self-rated depressive 

symptoms (BDI) (AUC=0.79, p=0.005) (right panel of Figure 5.6A). 

 

5.4.2.3 Magnetic Seizure Therapy 

Changes in microstate dynamics following MST were not associated with change in depressive 

symptoms (see supplementary Table 5.3). Baseline characteristics of all microstates were also 

shown to predict suicidal ideation response (right panels of Figure 5.7A). At baseline, a shorter 

duration of State A (r = −0.57, 95% CI −0.81 to −0.17, p-corrected=0.01), State B (r = −0.49, 

95% CI −0.77 to −0.06, p-corrected=0.03), State C (r = −0.49, 95% CI −0.77 to −0.06, p-

corrected=0.03) and a higher frequency of State D (r = 0.52, 95% CI 0.10 to 0.78, p-

corrected=0.02) predicted suicidal ideation response. Furthermore, a decrease in State B 

frequency was shown to be correlated with improvement in cognition (r = −0.50, 95% CI −0.77 
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to −0.09, p-corrected=0.01) (middle panel of Figure 5.7B) and was a good predictor of 

improvement in cognition (AUC=0.80, p=0.002) (right panel of Figure 5.7B). 

 

5.4.3 Microstate Dynamics in Patients with Treatment-Resistant 
Depression vs Healthy Controls 

Patients revealed an increased duration and decreased frequency of microstates compared to 

healthy subjects (left panels of Figure 5.8A, C). By comparing healthy subjects with patients 

before treatment, a significant main effect of Group (F=4.9; df=1,127; p=0.03; ƞp
2=0.04), 

Microstate Class (F=12.2; df=3,381; p<0.0001; ƞp
2=0.09) and an interaction effect of Group x 

Microstate Class approaching significance (F=2.1; df=3,381; p=0.09; ƞp
2=0.02) was observed in 

the duration of microstates. A main effect of Group (F=4.4; df=1,127; p=0.03; ƞp
2=0.03), 

Microstate Class (F=7.6; df=3,381; p=0.01; ƞp
2=0.06) and an interaction effect of Group x 

Microstate Class (F=3.8; df=3,381; p=0.01; ƞp
2=0.03) was observed in the frequency of 

microstates.  

 

A significant main effect of Microstate Class (F=1.0; df=3,381; p<0.0001; ƞp
2=0.08) and a 

significant interaction of Group x Microstate Class (F=3.5; df=3,381; p=0.01; ƞp
2=0.03) was 

observed with the coverage feature between healthy subjects and patients at baseline (Figure 

5.8E). The main effect of Group was not significant (F=2.1; df=1,127; p=0.2; ƞp
2=0.02). 

 

5.4.4 Microstate Dynamics in Patients with Treatment-Resistant 
Depression following Seizure Therapy vs Healthy Controls   

The longer duration and lower frequency of microstates in patients persisted following treatment 

(Figure 5.8B, D). Comparing healthy subjects with patients after seizure therapy, there was a 

main effect of Group (F=19.4; df=1,98; p<0.0001; ƞp
2=0.17) and Microstate Class (F=12.1; 

df=3,294; p<0.0001; ƞp
2=0.11)  in the duration feature. The interaction of Group x Microstate 

Class was not significant (F=1.1; df=3,294; p=0.36; ƞp
2=0.01).  In the frequency feature, there 

was a significant main effect of Group (F=16.3; df=1,98; p=0.0001; ƞp
2=0.14) and Microstate 

Class (F=6.1; df=3,294; p=0.0005; ƞp
2=0.06). The interaction of Group x Microstate Class was 

not significant (F=1.5; df=3,294; p=0.22; ƞp
2=0.02). 
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The main effect of Microstate Class was significant in the coverage feature (F=8.8; df=3,294; 

p<0.0001; ƞp
2=0.08). The main effect of Group (F=1.4; df=1,98; p=0.24; ƞp

2=0.003) and the 

interaction effect of Group x Microstate Class (F=1.2; df=3,294; p=0.32; ƞp
2=0.01) were not 

significant (Figure 5.8E).  

 

5.4.5 Source Localization of the Global-Clustered Microstates 

In Figure 5.9, the global-clustered microstates are shown alongside their corresponding 

eLORETA images. All states show a common neural generator in the posterior cingulate and 

cingulate gyrus. This has been shown in previous literature(Pascual-Marqui, Lehmann et al. 

2014). State A was associated with the left superior and middle temporal gyrus (Figure 5.9A). 

State B with the cuneus and precuneus of the occipital lobe (Figure 5.9B). State C was best 

associated with the anterior cingulate, insula and cuneus and precuneus of the occipital lobe 

(Figure 5.9C). Finally, State D with the paracentral lobe of the frontal lobe, the precuneus of the 

parietal lobe, the parahippocampal gyrus of the limbic lobe, and the lingual gyrus of the occipital 

lobe (Figure 5.9D). See Figure S 5.8, Figure S 5.9, Figure S 5.10, and Figure S 5.11 for more 

detailed images of source localization. 

 

5.4.6 Power Spectral Density Analysis 

5.4.6.1 Neuronal Oscillations in Patients vs Healthy Controls 

No significant differences were observed in relative power between the healthy and patient 

groups after cluster-based permutation correction for multiple comparisons (Figure S 5.12). 

 

5.4.6.2 Effect of Seizure Therapy on Neuronal Oscillations 

Following cluster-based permutation correction, both ECT responders and non-responders 

revealed an increase in relative power of slow cortical oscillations (1-7Hz) and a decrease in 

relative power of oscillations above 10Hz (Figure S 5.13A-B). The increase in relative power of 

slow cortical oscillations was not observed in responders or non-responders of MST (Figure S 
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5.13C-D). Common to ECT and MST however, was a decrease in relative power above 17Hz. In 

responders of MST a decrease in relative power was observed above 17Hz. In non-responders of 

MST, a decrease in relative power was observed above 11Hz. 

 

5.4.7 Microstate Dynamics and Neuronal Oscillations 

In the ECT group, the increase in slow oscillations was not correlated with microstate 

characteristics (Figure S 5.14). Only changes in the low beta and high beta power bands 

correlated with change in duration and frequency of microstates. A significant change in duration 

of microstates following ECT was specific to State A. However, changes in low beta and high 

beta were correlated with changes in duration of States B and C. Significant change in frequency 

of microstates following ECT was specific to States B, C and D. Yet, change in low beta 

correlated with change in frequency of States A and D and change in high beta correlated with 

change in frequency of States A, B and D. In the MST group, none of the power bands 

significantly correlated with microstate characteristics (Figure S 5.15). 

 

5.5 Discussion 

This study presents the first evidence for the modulation of resting-state EEG microstate 

dynamics by seizure therapy in patients with treatment-resistant depression. First, several 

changes in microstate dynamics following seizure therapy suggested that ECT selectively 

modifies global brain-network dynamics. An increase in the duration of State A and a decrease in 

the frequency of States B, C and D were associated with response to seizure therapy (specifically 

ECT). Although there was a change in network dynamics following MST, it was not network-

specific and it was not specific to responders. However, a decrease in the frequency of State B 

was associated with improvement in cognition following MST. In addition, baseline microstate 

dynamics were shown to predict suicidal ideation response to MST (shorter duration of States A, 

B, C and a higher frequency of State D). Finally, patients revealed increased duration and 

decreased frequency of microstates compared to healthy subjects. Following seizure therapy, this 

difference was greater between patients and healthy subjects. Collectively, these findings provide 
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insight into the role of global network dynamics in the potential mechanism of action of seizure 

therapy for treatment-resistant depression. 

 

Although the most effective treatment for treatment-resistant depression is ECT, its underlying 

mechanism of action is not clearly understood. In this study, a significant increase in the duration 

of State A and decrease in the frequency of States B, C and D was observed in responders of 

seizure therapy (specifically ECT). We hypothesize that this might reflect a relative stabilization 

(or reduction) of microstate dynamics since it infers that the microstate occurs for a longer 

duration of time and is less variable (i.e., more stable). This finding may support one of the main 

theories on the efficacy of ECT, the anticonvulsant hypothesis (Coffey, Lucke et al. 1995, 

Sackeim 1999). The anticonvulsant hypothesis suggests that an activation of inhibitory 

mechanisms initially occurs to inhibit seizures caused by ECT but eventually leads to the 

inhibition of hyperactive networks in depression, which may lead to reduced global network 

dynamics. There is a large amount of accumulating evidence for the anticonvulsant hypothesis, 

such as increased cortical GABA (Sanacora, Mason et al. 2003), decreased regional brain 

metabolism (Hoy, Thomson et al. 2013), increased slow-wave EEG activity as well as decreased 

seizure duration and increased seizure threshold over the course of ECT (Sackeim 1999). The 

potential stabilization of microstate (i.e., global network) dynamics following seizure therapy 

further adds to this line of evidence.  

  

In a recent comprehensive meta-analysis of resting-state fMRI studies (Kaiser, Andrews-Hanna 

et al. 2015), depression was associated with aberrant interactions between the salience, 

frontoparietal and default-mode networks, argued to be the facilitators of depressive symptoms. 

With recent progress in the integration of fMRI and EEG data, a few studies have explored the 

association between cortical microstate activity and resting-state fMRI networks (Jann, Kottlow 

et al. 2010, Musso, Brinkmeyer et al. 2010, Schwab, Koenig et al. 2015). In Britz et al. (Britz, 

Van De Ville et al. 2010), the salience and frontoparietal networks were associated with States C 

and D. As hypothesized in this study, the frequency of States C and D decreased following 

seizure therapy and these changes were associated with treatment response (specifically ECT). In 

addition, change in State D duration relative to the change in State C duration correlated with 

improvement in depressive symptoms following ECT. This suggests that the interaction between 
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the neural generators underlying these microstates may be impaired in patients with treatment-

resistant depression, and may be linked to the role of State C as a dynamic “switching network”. 

This role of State C has been widely postulated in schizophrenia-related microstate research 

(Rieger, Hernandez et al. 2016).  

 

As an alternate to ECT, MST was proposed to minimize cognitive side effects while maintaining 

antidepressant efficacy. A few studies have even associated MST with improvement in cognition 

including visual-spatial learning, memory and phonological tasks (Lisanby, Luber et al. 2003, 

Kayser, Bewernick et al. 2011, Kayser, Bewernick et al. 2015). The association between change 

in State B frequency and improvement in cognition with MST may be in line with these findings 

since State B has been associated with the parietal and occipital-parietal areas of spatial-

visualization and verbalization (Britz, Van De Ville et al. 2010, Milz, Pascual-Marqui et al. 

2016). In addition to cognition, MST was previously associated with remission of suicidal 

ideation. Baseline markers of inhibitory neurotransmission were shown to predict therapeutic 

efficacy of MST in reducing suicidal ideation (Sun, Farzan et al. 2016). In our study, baseline 

microstate dynamics (of all four states) predicted the therapeutic efficacy of MST in reducing 

suicidal ideation. Source localization revealed that all four microstates had in common the 

posterior cingulate cortex and the precuneus, regions linked with the default-mode network. This 

suggests that MST may be able to target the impaired default-mode network in treatment-

resistant depression (Kaiser, Andrews-Hanna et al. 2015). The coil position of MST in this study 

supports this hypothesis as the greatest induced electrical field was over one of the hubs of the 

default-mode network, the dorsomedial prefrontal cortex. We suggest that MST modulates 

neural networks impaired in treatment-resistant depression but may not be as robust as ECT due 

to the sub-optimal induced electric field potentials.  

 

As mentioned, patients that have previously received two or more courses of antidepressants 

with no clinical outcome are treatment-resistant. Detailed fMRI studies between healthy subjects 

and patients with and without treatment-resistant depression have indicated that different 

functional connectivity patterns may be associated with treatment-resistance (Guo, Sun et al. 

2011, Wu, Li et al. 2011, Yamamura, Okamoto et al. 2016), potentially due to the previous 

antidepressant exposure in treatment-resistant depression. Several neuroimaging studies have 
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shown that treatment can change resting-state brain dynamics regardless of clinical outcome 

(Mayberg, Brannan et al. 1997, Kennedy, Evans et al. 2001, Mayberg 2003, Fu, Steiner et al. 

2013). In this study, a longer duration and lower frequency of microstates were observed in 

patients with treatment-resistant depression compared to healthy subjects. We link this effect to 

the neurotropic medications previously taken by these patients. Although the patients in this 

study did not respond to their previous treatments, we hypothesize that each treatment they 

received may have had an effect on global brain dynamics. It has been shown that 

benzodiazepines and antipsychotics can modulate microstate dynamics (Kinoshita, Strik et al. 

1995). Following seizure therapy, a larger increase in duration and decrease in frequency of 

microstates was observed in our study, suggesting that antidepressants and seizure therapy may 

modulate global brain dynamics in a similar manner. Considering the association of these 

changes to therapeutic outcome in seizure therapy, we hypothesize that seizure therapy 

overcomes the inadequacy of medications in treatment-resistant depression through a stronger 

impact on network dynamics. However, in the absence of a control group (i.e., patients without 

treatment-resistant depression) and longitudinal assessments, it remains to be investigated 

whether this is an effect of treatment-resistance, medication, or both.  

 

The higher efficacy of seizure therapy in treatment-resistant depression has been linked with the 

stimulation of thalamic oscillatory pacemakers and re-setting of neural dynamics (Farzan, 

Boutros et al. 2014). Studies have also highlighted the importance of temporal variability in 

affective and cognitive brain functions (Tononi, Sporns et al. 1994, Stam, Jones et al. 2006, 

Rubinov and Sporns 2010). A recent study showed a link between timescale-dependent and 

region-specific modulation of temporal complexity and the affective and cognitive impacts of 

seizure therapy (Farzan, Atluri et al. 2017). For example, association between change in 

complexity and improvement in depressive symptoms was localized to the fronto-central and 

parieto-occipital regions (Farzan, Atluri et al. 2017). In the current study, by observing the 

temporal stability of brain network dynamics rather than temporal complexity, we provide 

complimentary evidence suggesting that the therapeutic impact of seizure therapy is network-

specific. States C and D were consistently associated with response to seizure therapy and these 

states were in part localized to the frontal, parietal and occipital regions.  
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There is strong evidence suggesting that seizure therapy impacts neuronal oscillations. 

Traditional power spectral density analysis has shown that the slowing of EEG oscillations 

following ECT is associated with improvement in depressive symptoms (Sackeim, Luber et al. 

1996). Power spectral density analysis in our study also revealed increased slow wave activity 

following ECT. However, this effect was observed in both responders and non-responders. In 

comparison, microstate analysis illustrated that ECT responders show significant changes in 

certain microstates (A in duration and B, C, & D in frequency) while non-responders do not. In 

addition, changes in microstate dynamics were not associated with the increase in power of slow 

oscillations. Microstate analysis also demonstrated that patients with treatment-resistant 

depression reveal different global brain dynamics compared to healthy subjects and also that 

microstate D may play an important role in this difference. While we identified differences in 

microstate characteristics, no significant differences were observed in power between patients 

with treatment-resistant depression and healthy subjects. These findings suggest that microstate 

analysis provide additional and perhaps independent information compared to power spectral 

density analysis.  

 

There are some limitations to this study. First, treatment-resistant depression may be too broad 

and heterogeneous to be treated in a homogenous manner. Although patients are grouped 

together under the definition of treatment-resistant depression (i.e., failed to respond to two or 

more antidepressants), as seen in this study, they still show heterogeneity in their response to 

treatments such as seizure therapy. This suggests that there is still considerable heterogeneity in 

the population of treatment-resistant depression which can translate to variability in the derived 

neurophysiological markers such as microstate characteristics. Results of this study will therefore 

need validation with a larger sample size. In addition, due to the small sample size, treatment 

parameters such as stimulation location (bilateral or unilateral for ECT) and frequency (for MST) 

could not be controlled. The potential effects these parameters may have on microstate 

characteristics need to be explored and validated by larger samples in future work. 

Preregistration of such future studies in advance of data collection and analysis is encouraged. 
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5.6 Conclusions 

The present study provides insight into the mechanism of action of successful seizure therapy for 

treatment-resistant depression using resting-state EEG microstate analysis. First, an increased 

duration and decreased frequency of microstates was observed in responders of seizure therapy, 

specifically ECT. This provides complementary evidence to recent neuroimaging studies which 

suggest that seizure therapy may stabilize global network dynamics in treatment-resistant 

depression. In MST, this modulation was a trend-level effect, implying that ECT may have a 

stronger impact on global neural networks than MST. Second, baseline microstate dynamics 

were indicative of MST-related improvement in cognition and suicidal ideation. Third, contrary 

to our hypothesis, we showed reduced global network dynamics in treatment-resistant depression 

when compared with healthy subjects. We hypothesized that this may be caused by previous 

antidepressants taken by these patients. Seizure therapy was shown to further reduce these 

dynamics and this reduction was associated with clinical response. This suggests that 

antidepressant medications and seizure therapy may have an analogous effect on network 

dynamics. However, only the modulation of global network dynamics by seizure therapy may be 

associated with clinical response. Finally, state-specific changes in microstate dynamics were 

observed in responders of seizure therapy. Microstates previously linked to resting-state 

networks known to be disrupted in depression (C and D), were associated with seizure therapy 

response. Further work is required to evaluate microstates as a therapeutic target in developing 

novel antidepressant treatments.  
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5.7 Tables 

Table 5.1 - Clinical Data Table 

 
 

TRD  

n 

ECT Pre & Post  

n 

MST Pre & Post 

n 

Demographic Characteristics       

Age, years: mean (std) 45.7 (14.4) 75 46.8 (15.8) 22 42.0 (13.4) 24 

Sex, M/F 31/44 75 8/14 22 12/12 24 

Clinical Characteristics       

Illness Duration: mean (std) 20.3 (13.2) 74 19.0 (12.0) 22 20.3 (13.7) 24 

On Medications (Antidepressants or Benzodiazepines)  
(Yes/No) 60/10 70 20/2 22 20/4 24 

Avg. No. of Treatment Sessions: mean (std) - - 14.2 (5.2) 22 20.2 (6.19) 24 

Site of Treatment a 

 

 

- 
 
 

- 
 
 

RUL UB 
RUL UB then BL 

BL 

 
14 
6 
2 

DMPFC 
 
 

24 
 
 

Stimulation Frequency: a 

 

 

 

- 
 
 
 

- 
 
 
 

- 
 
 
 

- 
 
 
 

 
100 Hz 
60 Hz 
50 Hz 
25 Hz 

12 
1 
2 
9 

Clinical Assessments       

HRSD, % change following Seizure Therapy: mean (std) 36.7 (30.0) 46 44.8 (28.6) 22 29.3 (29.9) 24 

Initial HRSD scores, mean(std) 26.6 (4.44) 74 24.5 (3.81) 22 28.1 (4.73) 24 

Post HRSD scores, mean(std) - - 13.0 (6.19) 22 19.3 (7.96) 24 

HRSD, Responders/Nonresponders b 20/26 46 13/9 22 7/17 24 

MoCA, change following seizure therapy: mean (std) 0.56 (3.32) 46 -3 (2.97) 6 1.57 (2.69) 21 

MoCA: # patients with improvement > 0 12 27 0 6 12 21 

BDI, % change: mean (std) - - 49.2 (31.2) 17 - - 
BDI,  

Responders/Nonresponders b - - 9/8 17 - - 

MADRS, % change: mean (std) 
 

MADRS, Responders, Nonresponders b 

- 
 
- 

- 
 
- 

50.0 (32.6) 
 

11/7 

18 
 

18 

- 
 
- 

- 
 
- 

SSI, change: mean (std) - - - - 6.4 (6.4)  20 

SSI, Responders/Nonresponders b - - - - 16/4 20 

 

ECT: electroconvulsive therapy; MST: magnetic seizure therapy 
a RUL UB: Right Unilateral Ultra-Brief Pulse Width; BL: Bitemporal (brief pulse width); DMPFC: Dorsomedial Prefrontal Cortex 
b Response for HRSD/BDI/MADRS/SSI defined as >=50% improvement in score 
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5.8 Figures 

 
 

Figure 5.1 - Effect of seizure therapy (ECT and MST) on the average duration of all four 

microstates.  

In each subplot, the raw data is plotted on top of a boxplot showing the mean (red line), 95% 

confidence interval (red area) and 1 standard deviation (blue area). Significant comparisons are 

marked with a green (*). (A) Left panel: Following seizure therapy (ECT and MST), there was a 

significant increase in the duration of State A (y-axis) (p<0.0001). Middle panel: This increase 

was specific to responders of seizure therapy (p<0.0001). (B) No significant changes were 

observed in the duration of State B. (C) No significant changes were observed in the duration of 

State C. (D) No significant changes were observed in the duration of State D. 
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Figure 5.2 - Effect of seizure therapy (ECT and MST) on the frequency of all four 

microstates.  

In each subplot, the raw data is plotted on top of a boxplot showing the mean (red line), 95% 

confidence interval (red area) and 1 standard deviation (blue area). Significant comparisons are 

marked with a green (*). (A) No significant changes were observed in the frequency of State A. 

(B) Left panel: A decrease in the frequency of State B (y-axis) was observed following seizure 

therapy (p=0.03). Middle panel: This decrease in frequency of State B was specific to 

responders of seizure therapy (p=0.01). (C) Left panel: A decrease in the frequency of State C 

(y-axis) was observed following seizure therapy (p=0.004). Middle panel: This decrease in 

frequency of State C was specific to responders of seizure therapy (p=0.0004). (D) Left panel: A 

decrease in the frequency of State D (y-axis) was observed following seizure therapy (p=0.0008). 

Middle panel: This decrease in frequency of State D was specific to responders of seizure 

therapy (p=0.04).  
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Figure 5.3 - Effect of electroconvulsive therapy (ECT) on the average duration of all four 

microstates.  

In each subplot, the raw data is plotted on top of a boxplot showing the mean (red line), 95% 

confidence interval (red area) and 1 standard deviation (blue area). Significant comparisons are 

marked with a green (*). (A) Left panel: Following ECT, there was a significant increase in the 

duration of State A (y-axis) (p<0.0001). Middle panel: This increase was specific to responders 

of ECT (p<0.0001). (B) No significant changes were observed in the duration of State B. (C) No 

significant changes were observed in the duration of State C. (D) No significant changes were 

observed in the duration of State D. 
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Figure 5.4 - Effect of electroconvulsive therapy (ECT) on the frequency of all four 

microstates.  

In each subplot, the raw data is plotted on top of a boxplot showing the mean (red line), 95% 

confidence interval (red area) and 1 standard deviation (blue area). Significant comparisons are 

marked with a green (*). (A) No significant changes were observed in the frequency of State A. 

(B) Left panel: A decrease in the frequency of State B (y-axis) was observed following ECT 

(p=0.03). Middle panel: This decrease in frequency of State B was specific to responders of 

ECT (p=0.03). (C) Left panel: A decrease in the frequency of State C (y-axis) was observed 

following ECT (p=0.002). Middle panel: This decrease in frequency of State C was specific to 

responders of ECT (p=0.008). (D) Left panel: A decrease in the frequency of State D (y-axis) 

was observed following ECT (p=0.0003). Middle panel: This decrease in frequency of State D 

was specific to responders of ECT (p=0.04).  
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Figure 5.5 - Change in the duration of State A following seizure therapy (ECT+MST) 

correlated with improvement in depressive symptoms (HRSD).  

For the receiver operating characteristic (ROC) curve (right panels), the x-axes represents the 

false positive rate (1-specificity) and the y-axes represents the true positive rate (sensitivity). The 

red circle depicts the optimum operating point of the ROC curve. The area under the curve 

(AUC) at this optimum point is specified on the graph. (A) An increase in the duration of State A 

significantly correlated with improvement in depressive symptoms (x-axis), Hamilton Rating 

Scale for Depression (HRSD) (r=0.33, p=0.02). X-axis represents change in HRSD (pre-

post)/pre*100). Y-axis represents change in coverage of State D (post-pre)/pre*100). (B) Change 

in State A duration was also a fair predictor of response to seizure therapy (AUC=0.71, 

p=0.003). 
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Figure 5.6 - Changes in microstate characteristics following electroconvulsive therapy 

(ECT) correlated with improvement in self-rated depressive symptoms.  

For the receiver operating characteristic (ROC) curves (all right panels), the x-axes represents the 

false positive rate (1-specificity) and the y-axes represents the true positive rate (sensitivity). The 

red circle depicts the optimum operating point of the ROC curve. The area under the curve 

(AUC) at this optimum point is specified on the graph. (A) Left panel: An increase in the 

coverage of State A significantly correlated with improvement in self-rated depressive symptoms 

(x-axis), Beck’s Depression Inventory scale (BDI) (r=0.57, p=0.02). X-axis represents change in 

BDI (pre-post)/pre*100). Y-axis represents change in coverage of State D (post-pre)/pre*100). 

Right panel: Change in State A coverage was also a strong predictor of response to ECT (BDI) 

(AUC=0.79, p=0.005). (B) Left panel: A decrease in the duration of State D was significantly 

correlated with improvement in BDI (r= −0.55, p=0.02). X-axis represents change in BDI (pre-

post)/pre*100). Y-axis represents change in duration of State D (post-pre)/pre*100). Right 

panel: Change in State D duration was also a strong predictor of response to ECT (BDI) 

(AUC=0.83, p=0.0007). (C) Left panel: The correlation between State D duration and BDI 

remained significant when the change in duration of State D was presented relative to the change 
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in duration of State C (r= −0.66, p=0.003). X-axis represents change in BDI (pre-post)/pre*100). 

Y-axis represents the log of the absolute ratio between change in duration of State D (post-

pre)/pre*100) over the change in duration of State C (post-pre)/pre*100). Right panel: Ratio of 

change in State D duration over the change in State C duration was an excellent predictor of self-

rated response to ECT (BDI) (AUC=0.97, p<0.0001). 

 

 
 

Figure 5.7 - Effect of magnetic seizure therapy (MST) on microstate characteristics.  

(A) Left panel: Following MST, patients showed a significant improvement in scale for suicidal 

ideation (SSI). Middle and right panels: Reduction in SSI was significantly associated with 

baseline resting-state microstate characteristics of all microstate classes. X-axes represents 

change in SSI score (Post-Pre) and y-axes represents baseline characteristics of each microstate 

A, B, C and D. (B) Left panel: Following MST, patients showed a significant improvement in 

cognition scores (Montreal Cognitive Assessment (MoCA)). Middle panel: A decrease in the 

frequency of State B following MST correlated with improvement in cognition scores. X-axis 

represents change in MoCA (Post-Pre) and y-axis represent change in State B frequency ((post-

pre)/pre*100). Right panel: This decrease in frequency was also a strong predictor of cognitive 

score outcome. The x-axis represents the false positive rate (1-specificity) and the y-axis 

represents the true positive rate (sensitivity). The red circle depicts the optimum operating point 

of the receiver operating characteristic curve. The area under curve (AUC) at this optimum point 

is specified on the graph (AUC=0.80, p=0.002). 
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Figure 5.8 - Microstate characteristics of treatment-resistant depression compared to 

healthy (HLT) subjects before and after seizure therapy.  

In each subplot, the raw data is plotted on top of a boxplot showing the mean (red line), 95% 

confidence interval (red area) and 1 standard deviation (blue area). All comparisons shown in 

(A) to (D) were significant. (A) & (B) Patients showed a longer duration (p=0.03) and lower 

frequency (p=0.03) of microstate dynamics than healthy subjects. (C) & (D) Following seizure 

therapy, patients showed a much longer duration (p < 0.0001) and lower frequency (p = 0.0001) 

of microstates than healthy subjects. In all plots of (A-D, x-axes represents the subject group. In 

(A-B), y-axis represents the duration of all microstates in milliseconds (main effect of group in 

ANCOVA). In (C-D), y-axis represents the frequency of all microstates per second (main effect 

of group in ANCOVA).  (E) Seizure therapy (ECT and MST) was shown to normalize the high 

coverage of State D in patients compared to healthy subjects (p=0.01). X-axis represents each 

microstate class. Y-axis represents the percent coverage of all microstates, and each line in the 

graph represents a subject group (interaction effect of Microstate Class x Group in ANCOVA). 
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Figure 5.9 - Global microstate classes clustered over all groups and all subjects with their 

source (eLORETA) images.  

All microstates show activation in the posterior cingulate gyrus (A) Microstate A was shown to 

be associated with the left superior and middle temporal gyrus. (B) Microstate B was associated 

with the cuneus and precuneus of the occipital lobe. (C) Microstate C was associated with the 

anterior cingulate, insula and cuneus and precuneus of the occipital lobe. (D) Microstate D was 

associated with the paracentral lobe of the frontal lobe, the precuneus of the parietal lobe, the 

parahippocampal gyrus, and the lingual gyrus of the occipital lobe. 
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5.9 Supplementary Material 

Table 5.2 - Planned Comparison Results for MST Group 

 

Average Duration 

 

 State A State B State C State D 

Responders t=2.00; df=7; 

p=0.09;  

Cohen’s d=0.51 

t=1.14; df=7;  

p=0.30;  

Cohen’s d=0.31 

t=0.80; df=7;  

p=0.45;  

Cohen’s d=0.19 

t=1.64; df=7;  

p=0.15;  

Cohen’s d=0.55 

Non-responders t=1.39; df=17; 

p=0.18;  

Cohen’s d=0.45 

t=1.44; df=17; 

p=0.17;  

Cohen’s d=0.35 

t=1.16; df=17; 

p=0.26;  

Cohen’s d=0.22 

t=0.48; df=17; 

p=0.64;  

Cohen’s d=0.09 

Frequency 

 

 State A State B State C State D 

Responders t=-0.56; df=7;  

p=0.60;  

Cohen’s d=0.15 

t=-1.26; df=7;  

p=0.25;  

Cohen’s d=0.35 

t=-2.97; df=7;  

p=0.02;  

Cohen’s d=0.70 

t=-0.79; df=7;  

p=0.46;  

Cohen’s d=0.24 

Non-responders t=-0.62; df=17;  

p=0.54;  

Cohen’s d=0.08 

t=-0.70; df=17;  

p=0.49;  

Cohen’s d=0.08 

t=-0.29; df=17;  

p=0.78;  

Cohen’s d=0.08 

t=-0.52; df=17;  

p=0.61;  

Cohen’s d=0.11 

Coverage 

 

 State A State B State C State D 

Responders t=0.32; df=7;  

p=0.76;  

Cohen’s d=0.11 

t=-0.35; df=7;  

p=0.74;  

Cohen’s d=0.13 

t=-0.25; df=7;  

p=0.81;  

Cohen’s d=0.07 

t=0.19; df=7;  

p=0.86;  

Cohen’s d=0.07 

Non-responders t=0.24; df=17;  

p=0.81;  

Cohen’s d=0.06 

t=0.54; df=17;  

p=0.60;  

Cohen’s d=0.12 

t=0.45; df=17;  

p=0.66;  

Cohen’s d=0.14 

t=-0.77; df=17;  

p=0.45;  

Cohen’s d=0.21 

p-values are un-corrected; p-values are not significant after correction for 4 comparisons (4 

states) 

 

Table 5.3 - Correlation Results for MST Group 

 

 State A State B State C State D 

Duration r = -0.20; p=0.35  r = -0.02; p=0.94 r = -0.16; p=0.46 r = 0.09; p=0.66 

Frequency r = -0.13; p=0.56  r = 0.23; p=0.28 r = -0.12; p=0.59 r = 0.02; p=0.93 

Coverage r = -0.11; p=0.60  r = 0.28; p=0.19 r = -0.16; p=0.45 r = 0.03; p=0.87 
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Figure S 5.1 - Overview of Microstate Analysis Procedure (Adapted from Khanna et al., 

PloS one, 2014).  

The above figure highlights the three main steps of microstate analysis. (1) The global field 

power over the entire scalp at each time point is calculated. The topographical maps at the peaks 

of this global field power signal are passed on to the clustering algorithm. (2) Four prototypical 

microstate classes (i.e., states) are defined through the clustering algorithm. (3) Each of the 

topographical maps at the peaks of the GFP signal are correlated with each of the four 

prototypical microstate classes. The class with the highest correlation is assigned to each peak. 

Finally, characteristics such as duration, frequency and coverage are defined for each microstate 

class. 
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Figure S 5.2 - A data-driven approach to defining the optimum number of clusters for 

microstate analysis.  

The x-axis represents the number of microstate clusters derived from the data (1 to 20). The left 

y-axis represents the Krzanowski-Lai (KL) criterion, which is based on global explained 

variance and is a measure of the quality of clustering. KL must be maximized for optimal 

clustering. The right y-axis represents the cross-validation (CV) criterion, which is based on the 

predictive residual variance (i.e., mean-squared error) and must be minimized for optimal 

clustering. The number of clusters that minimized CV and maximized KL, as shown on the 

figure, was 4.  
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Figure S 5.3 - Effect of seizure therapy (ECT and MST) on the coverage of all four 

microstates.  

In each subplot, the raw data is plotted on top of a boxplot showing the mean (red line), 95% 

confidence interval (red area) and 1 standard deviation (blue area). Significant comparisons are 

marked with a green (*). (A-D) No significant changes were observed in the duration of State A-

D. 
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Figure S 5.4 - Effect of electroconvulsive therapy (ECT) on the coverage of all four 

microstates.  

In each subplot, the raw data is plotted on top of a boxplot showing the mean (red line), 95% 

confidence interval (red area) and 1 standard deviation (blue area). Significant comparisons are 

marked with a green (*). (A-D) No significant changes were observed in the duration of State A-

D. 
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Figure S 5.5 - Effect of magnetic seizure therapy (MST) on the average duration of all four 

microstates.  

In each subplot, the raw data is plotted on top of a boxplot showing the mean (red line), 95% 

confidence interval (red area) and 1 standard deviation (blue area). Significant comparisons are 

marked with a green (*). (A-D) No significant changes were observed in the duration of State A-

D. 
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Figure S 5.6 - Effect of magnetic seizure therapy (MST) on the frequency of all four 

microstates.  

In each subplot, the raw data is plotted on top of a boxplot showing the mean (red line), 95% 

confidence interval (red area) and 1 standard deviation (blue area). Significant comparisons are 

marked with a green (*). (A-D) No significant changes were observed in the duration of State A-

D. 
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Figure S 5.7 - Effect of magnetic seizure therapy (MST) on the coverage of all four 

microstates.  

In each subplot, the raw data is plotted on top of a boxplot showing the mean (red line), 95% 

confidence interval (red area) and 1 standard deviation (blue area). Significant comparisons are 

marked with a green (*). (A-D) No significant changes were observed in the duration of State A-

D. 
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Figure S 5.8 - Global-Clustered “Microstate A” was localized to regions reported in previous work (i.e., superior temporal 

gyrus).  

 
Figure S 5.9 - Global-Clustered “Microstate B” was localized to regions reported in previous work (i.e., occipital lobe).   
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Figure S 5.10 - Global-Clustered “Microstate C” was localized to regions reported in previous work (i.e., anterior cingulate 

cortex and insula).  

 

  
Figure S 5.11 - Global-Clustered “Microstate D” was localized to regions reported in previous work (i.e., frontal and parietal 

regions). 
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Figure S 5.12 - Power analysis was performed between the healthy (HLT) subjects (n=55) 

and treatment-resistant depression (TRD) patients (n=75). Top. Relative power spectrum is 

shown across all 60 electrodes for the healthy and TRD groups (black and red lines, 

respectively). Middle. Parametric unpaired t-test map illustrates the t-statistic comparing relative 

power between the healthy and TRD groups (blue: reduced power in TRD group compared to 

healthy subjects; red: increased power). Bottom. Topographic plots illustrate significant t-map 

clusters (P < 0.05) following correction for multiple comparisons, using a cluster-based 

nonparametric permutation test.  
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Figure S 5.13 - Power analysis was performed on resting-state EEG collected before and after treatment for responders (n=13) 

and non-responders (n=9) of electroconvulsive therapy (ECT) (A-B) and responders (n=7) and non-responders (n=17) of 

magnetic seizure therapy (MST) (C-D). Top. Relative power spectrum is shown across all 60 electrodes before and after a course of 

treatment (black and red lines, respectively). Middle. Parametric paired t-test maps illustrate the t-statistic comparing relative power 

between the healthy and TRD groups (blue: reduced power in TRD group compared to healthy subjects; red: increased power). 

Bottom: Topographic plots illustrate significant t-map clusters (P < 0.05) following correction for multiple comparisons using a 

cluster-based nonparametric permutation test.  
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Figure S 5.14 – Correlation between Change in Microstate Characteristics and Change in 

EEG Power following ECT. 
Bonferroni-corrected correlation matrix (Spearman’s correlation) (4 maps x3 features = 12 

comparisons) between the change in microstate map temporal parameters following 

Electroconvulsive therapy only (Top: average duration; Middle: frequency; Bottom: coverage) 

and change in EEG band power following treatment. Power bands were defined as follows: delta 

– 1:4Hz, theta – 4:8Hz; alpha – 8:12Hz; low beta – 12:15Hz; and high beta 15:30Hz.  
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Figure S 5.15 – Correlation between Change in Microstate Characteristics and Change in 

EEG Power following MST. 

Bonferroni-corrected correlation matrix (Spearman’s correlation) (4 maps x3 features = 12 

comparisons) between the change in microstate map temporal parameters following Magnetic 

Seizure Therapy only (Top: average duration; Middle: frequency; Bottom: coverage) and change 

in EEG band power following treatment. Power bands were defined as follows: delta – 1:4Hz, 

theta – 4:8Hz; alpha – 8:12Hz; low beta – 12:15Hz; and high beta 15:30Hz.  
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Figure S 5.16 – Correlation between Change in Microstate Characteristics and Change in 

EEG Power (ECT + MST). 

Combining both the Electroconvulsive Therapy (ECT) and the Magnetic Seizure Therapy (MST) 

groups together (i.e., seizure therapy), we show the Bonferroni-corrected correlation matrix 

(Spearman’s correlation) (4 maps x3 features = 12 comparisons) between the change in 

microstate map temporal parameters following seizure therapy (Top: average duration; Middle: 

frequency; Bottom: coverage) and change in EEG band power following treatment. Power bands 

were defined as follows: delta – 1:4Hz, theta – 4:8Hz; alpha – 8:12Hz; low beta – 12:15Hz; and 

high beta 15:30Hz.  
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Figure S 5.17 - Global map dissimilarity (GMD) values. 

Shown for each comparison between subject groups (i.e., healthy (HLT), treatment-resistant 

depression (TRD), electroconvulsive therapy (ECT) and magnetic seizure therapy (MST)) or 

between conditions within a subject group (pre, post, responders, non-responders). Global 

microstate classes clustered over all subjects are shown at top. Global map dissimilarity 

quantifies the variation in scalp electrical potential configuration of two microstate topographies 

from different groups or conditions. It can provide insight on whether different (or similar) 

neuronal generators are implicated within the two compared groups. GMD values (shown inside 

the matrix) are modified to range from 0 to 1, where 0 represents identical microstates 

(regardless of polarity) and 1 represents highly dissimilar microstates. In general, high global 

map dissimilarity values were observed between the groups/conditions that displayed the most 

significant differences in microstate characteristics.  
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Section III: Investigating the Targets of Pharmacotherapy 

using EEG Measures of Neural Dynamics 
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Chapter 6 – Characterizing the Modulation of Neural 
Dynamics during Escitalopram Treatment in Major 

Depressive Disorder: A CAN-BIND Study 
6  

 

 

In this chapter, we apply EEG frequency analysis and multiscale entropy analysis to extract 

power and complexity measures of neural oscillations. We aim to identify whether these 

measures can provide insight into targets of escitalopram for successful treatment outcome. 

 

 

Contents of this chapter were prepared for publication. Please note that during the publication 

process, errors may be discovered which could affect the content. 

Sravya Atluri, Willy Wong, Yasaman Vaghei, Andrey Zhdanov, Zafiris Daskalakis, Daniel 

Blumberger, Benicio N. Frey, Peter Giacobbe, Raymond Lam, Glenda M. MacQueen, Roumen 

Milev, Daniel J Müller, Sagar V. Parikh, Susan Rotzinger, Claudio N. Soares, Colleen A. 

Brenner, Fidel Vila-Rodriguez, Steven C. Strother, Mary Pat McAndrews, Killian Kleffner, 

Esther Alonso, Stephen R. Arnott, Rudolf Uher, Jane A. Foster, Sidney H. Kennedy and 

Faranak Farzan. "Characterizing the Modulation of neural dynamics during escitalopram 

treatment in major depressive disorder: A CAN-BIND Study." 
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6.1 Abstract 

A wide range of antidepressant mediations are currently available for the treatment of major 

depressive disorder. However, they seem to show a delayed onset of action and the average 

efficacy of antidepressants is low. It is suggested that antidepressants have a delayed onset of 

action because adaptive changes in brain regions linked to mood and emotion need to occur for 

therapeutic effect. We hypothesized that such adaptive changes can be characterized by non-

invasive measures of neural dynamics. To test this hypothesis, we used resting-state, eyes-closed 

EEG data collected from 107 patients (age = 36.3+/-12.5; 70 females) through the Canadian 

Biomarker Integration Network in Depression (CANBIND-1) study. Patients received 8 weeks 

of escitalopram treatment and EEG assessments were performed at baseline, week 2 and week 8. 

Power spectral and multiscale entropy analyses were performed. Results from this study suggest 

that escitalopram potentially modulates neural activity in a frequency- and spatio-temporal 

specific manner for therapeutic effect. A decrease in alpha and beta oscillations (baseline to 

week 8) and an increase in complexity in mid-coarse timescales (week 2 to week 8) were 

observed in responders to escitalopram. These changes were source-localized to regions 

associated with the default-mode network and the cingulate cortex, both known to be impaired in 

depression. Non-response to escitalopram was predicted by early changes in neural dynamics 

(baseline to week 2) prior to any clinical record of improvement in symptoms. Specifically, non-

response was linked to a widespread decrease in delta, theta and beta oscillations and a decrease 

in complexity in mid-coarse timescales in the left fronto-central regions (approaching 

significance) from baseline to week 2, potentially suggesting an early medication-induced 

perturbance of neural dynamics in non-responders. From week 2 to week 8 of therapy no 

changes were observed in non-responders.  With further evaluation, these characteristics of 

neural dynamics may have the potential to be reliable treatment targets and can potentially guide 

the development of faster-acting, more effective drugs for major depression.  
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6.2 Introduction 

Major depressive disorder is one of the most prevalent health disorders (Andrade, Caraveo‐

Anduaga et al. 2003, Kessler, Berglund et al. 2003, Hardeveld, Spijker et al. 2010) yet treatment 

selection approaches are still rudimentary. Due to a poor understanding on the pathophysiology 

of depression and the wide variety of antidepressants available for treatment, patients with major 

depression undergo a trial-and-error process to identify the best medication. As a result, 

symptoms might last for months or even years (Solomon, Keller et al. 1997). Furthermore, over a 

third of all patients with major depression do not respond to two or more of the standard 

antidepressant medications and are termed treatment-resistant (Fava 2003, Berlim and Turecki 

2007). Treatment efficacy may be improved with better insight into the long-lasting effects 

associated with therapeutic efficacy of antidepressants. 

 

The therapeutic efficacy of antidepressant medications is well-recognized and their acute 

mechanisms are relatively well-understood (Stahl 1998). However, it is still unclear how the 

short-term neuropharmacological actions of antidepressant medications might translate to a long-

term improvement in mood. With recent technological advancements in non-invasive methods 

for investigating neurophysiological changes, it may be possible to provide insight into the 

targets of successful treatments for depression. We hypothesized that measures of these 

neurophysiological changes may be sensitive enough to monitor the effects of treatment and 

treatment response over the course of an antidepressant. Given that several weeks of treatment 

are needed before patients exhibit clinical benefits (Quitkin, Rabkin et al. 1984, Gelenberg and 

Chesen 2000, Frazer and Benmansour 2002), antidepressants are suggested to induce adaptive 

changes in brain regions linked to mood and emotion (Harmer, Goodwin et al. 2009, Davidson, 

Irwin et al. 2003).  

 

Several studies have investigated neurophysiological changes in the brain following a course of 

antidepressant treatment using electroencephalography (EEG) measures. Most of these studies 

focused on monitoring changes in EEG oscillatory activity between responders and non-

responders of antidepressants. Response to antidepressants was associated with baseline EEG 

oscillations including high alpha (Ulrich, Renfordt et al. 1986, Ulrich, Haug et al. 1988, Ulrich, 
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Haug et al. 1994), occipital alpha asymmetry (Bruder, Stewart et al. 2001, Bruder, Sedoruk et al. 

2008) and high prefrontal theta (Knott, Telner et al. 1996, Pizzagalli, Pascual-Marqui et al. 2001, 

Mulert, Juckel et al. 2007). Few studies studied the long-term effects of antidepressants on EEG 

oscillations but provided conflicting or insignificant results (Tarn, Edwards et al. 1993, Kwon, 

Youn et al. 1996, Knott, Mahoney et al. 2002, Bruder, Sedoruk et al. 2008). However, frequency 

measures do not encapsulate all the information contained in the EEG signal and may overlook 

other important properties. For example, it may be important to consider other aspects of the 

EEG signal such as the spatial and temporal dynamics of neural activity, and especially the non-

linear properties of these dynamics such as complexity, to provide a broader view into the 

neurological mechanisms of successful treatments for depression.  

 

Complexity analysis is one approach for studying the complex, non-linear dynamics of neural 

signals. The theoretical background of complexity analysis and its application to physiological 

systems has been previously discussed (Tononi, Sporns et al. 1994, Tononi and Edelman 1998, 

Sporns, Tononi et al. 2000, Costa, Goldberger et al. 2005). In addition, abnormalities in the 

complexity of neural signals were associated with developmental changes and mood disorders 

(McIntosh, Vakorin et al. 2013, Yang and Tsai 2013). A few studies have also shown that 

complexity analysis of neural signals offers a unique approach to understanding the 

pathophysiology of depression (Nandrino, Pezard et al. 1994, Li, Tong et al. 2008, Méndez, 

Zuluaga et al. 2012) as well as predicting response to treatment in depression (Thomasson, 

Pezard et al. 2000, Méndez, Zuluaga et al. 2012, Okazaki, Takahashi et al. 2013, Farzan, Atluri 

et al. 2017, Jaworska, Wang et al. 2018). Of the various methods available for complexity 

analysis, multiscale entropy investigates complexity at small and large temporal scales to reveal 

information on both local and global neuronal processing (Vakorin, Lippé et al. 2011, McIntosh, 

Vakorin et al. 2013, McDonough and Nashiro 2014). 

 

In this study, we investigated changes in spectral content as well as in complexity of neural 

signals using power spectral density and multiscale entropy analysis of resting-state, eyes-closed 

EEG data. Data was collected over an eight-week course of escitalopram treatment at three time 

points (baseline, end of week 2, and end of week 8). We hypothesized that EEG measures of 

frequency and complexity will provide distinct information on the effects of antidepressant 
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treatment. In addition, we hypothesized that antidepressants will modulate both EEG neural 

oscillations and complexity of neural dynamics in a frequency and timescale dependent manner 

and that these changes will be specific to regions previously shown to be impaired in depression. 

Finally, we hypothesized that these frequency and spatio-temporal dynamics at baseline and the 

early change in these dynamics (2 weeks into treatment) may predict response to escitalopram.  

 

6.3 Methods 

Patients and data. In the CAN-BIND-1 study, 211 participants aged 18-60 years who met the 

DSM-IV requirements for major depressive disorder were recruited and completed the baseline 

visit. Of this group, 180 patients received 8 weeks of standardized escitalopram treatment (10-

20mg).  At the 8 week visit, responder or non-responder status was determined as ≥ 50% 

decrease in Montgomery–Åsberg Depression Rating Scale (MADRS) score from baseline. There 

were 85 responders and 95 non-responders at week 8 (see (Kennedy, Lam et al. In Press, 2018) 

for further details). Detailed descriptions on the clinical data, research protocol and data 

acquisition have been published previously (Lam, Milev et al. 2016, Baskaran, Farzan et al. 

2017, Farzan, Atluri et al. 2017, Kennedy, Lam et al. In Press, 2018). In a subset of patients that 

were recruited at four sites participating in EEG acquisition, eight minutes of resting-state, eyes-

closed EEG data was collected. The participating sites included: University of British Columbia 

(UBC), Toronto General Hospital (TGH), Queens University (QNS), and the Centre for 

Addiction and Mental Health (CAMH). The demographic and clinical characteristics are 

presented in Table 6.1.  

 

EEG data was collected at baseline (within 3 days before the start of the treatment trial), at the 

end of week 2 (i.e., two weeks after the beginning of the trial) and at the end of week 8 (i.e., 

eight weeks after the beginning of the trial). Of the 180 patients, 124 patients were recruited to 

participate in EEG assessments. Fifteen patients were excluded because data from one or more of 

the visits was missing. Two patients were excluded because data from at least one or more visits 

were noisy. Therefore, this study included resting-state, eyes-closed EEG data collected from 

107 patients at baseline, at the end of week 2, and at the end of week 8.  
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Treatment. Escitalopram was administered in an open-label manner, starting at 10 mg daily, 

which was increased to 20 mg daily at week 2 or later if clinically necessary. For patients who 

were unable to tolerate the 20 mg dose, the dose could be reduced to 10 mg at the discretion of 

the treating psychiatrist. Participants were clinically assessed every 2 weeks throughout the study 

period (8 weeks) including baseline (before administration of study medication). As mentioned, 

primary outcome measure was ≥ 50% decrease in MADRS from baseline to week 8. Of the 107 

patients included in this study, 50 were responders and 57 were non-responders. 

 

Inter-site Data Harmonization. All EEG datasets were standardized to the following parameters: 

58 EEG electrodes common to all sites (excludes eye electrodes), 0.05-100Hz bandpass filter, Cz 

reference, 512Hz sampling rate. The EEG files were then exported as an EEGLAB (Delorme and 

Makeig 2004) dataset. Data was standardized using MATLAB R2012b-R2016a with the 

EEGLAB toolbox (v12.0.2.6b). Complete descriptions on the standardization of EEG data across 

sites in the CAN-BIND-1 study were recently published (Farzan, Atluri et al. 2017).  

 

Data Preprocessing. During pre-processing, the 8-minutes of EEG data was divided into 2-s 

continuous epochs, bandpass-filtered between 1-80Hz, and notch-filtered at 60Hz. Using 

EEGLAB, independent component analysis was used to extract eye, muscle and electrode 

artifacts. Deleted EEG channels were interpolated using spherical spline interpolation (Perrin, 

Pernier et al. 1989) and data was re-referenced to an average reference. This preprocessing 

pipeline is currently made available as ERPEEG (http://www.tmseeg.com/multisiteprojects/). 

 

EEG Power Spectral Density Analysis. The EEGLAB function spectopo was used to obtain the 

power spectrum for each electrode from 1 to 50Hz.  

 

Multiscale entropy analysis was performed using the methods outlined in (Costa, Goldberger et 

al. 2005, Farzan, Atluri et al. 2017). Using the sample entropy equation, multiscale entropy was 

examined across all 58 electrodes with the coarse-graining process (for 70 scales). Sample 

entropy quantifies the variability of time series by estimating the predictability of amplitude 

patters across a time series. In our analysis, two consecutive data points were used for data 

http://www.tmseeg.com/multisiteprojects/)
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matching (m=2) and data points were considered to match if their absolute amplitude difference 

was less than 15% (i.e., r =0.15) of the standard deviation of the time series. Multiscale entropy 

was calculated for a 30-s continuous epoch.  

 

EEG source localization was performed using an open-source application, Brainstorm (Tadel, 

Baillet et al. 2011). First, the locations of our 58 EEG electrode sites were co-registered to the 

ICBM152 MRI template in Brainstorm. The forward solution was then calculated using the 

OpenMEEG BEM head model (Gramfort, Papadopoulo et al. 2010) and the inverse solution was 

derived using sLORETA (Pascual-Marqui 2002), with the solution space constrained to the 

cortex surface. To localize the neural activity, we used the Destrieux Atlas, which provides 148 

reconstructed sources in the MNI co-ordinate space (Destrieux, Fischl et al. 2010). After the 58-

channel EEG data was mapped to the 148 reconstructed sources, multiscale entropy and power 

spectrum measures were calculated for all subjects at these sources.  

 

Statistics. Subjects were grouped into two groups of antidepressant responders and non-

responders: subjects were grouped as responders if there was a 50% or higher change in MADRS 

relative to baseline, and non-responders otherwise. Analysis of variance was used to (i) examine 

the effect of antidepressant response on multiscale entropy (1–70 timescales), absolute power (1– 

50Hz frequencies) for the main effect of Response (Responder, Non-Responder) and Time 

(Baseline; Week 2 and Week 8), and the interaction effect of Response x Time; and (ii) to 

examine the effect of site on multiscale entropy (1–70 timescales), absolute power (1– 50Hz) in 

responders and non-responders for the main effect of Site (UBC; TGH; QNS; CAM) and Time 

(Baseline; Week 2 and Week 8) across 58 electrodes in sensor space and 148 reconstructed 

sources in source space. Bootstrapping was used to correct for multiple comparisons in the 

analysis of variance. For post-hoc t-test comparisons, cluster-based non-parametric permutation 

tests were used to correct for multiple comparisons (Maris and Oostenveld 2007). In this multi-

dimensional data [58 channels (or 148 reconstructed sources); 70 timescales; 50 frequencies], 

significance is assigned to the probability of clusters formed by pooling significant t-test results 

(p<0.05) adjacent along all dimensions of the data. The significance of each cluster is evaluated 

against the probability distribution of all clusters obtained over 1000 permutations. Identical 

parameters were used across all cluster-based permutation tests: threshold statistic of P<0.05, 
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identical channel (or reconstructed source) neighborhood matrices, and 1000 permutations using 

the monte-carlo approach where cluster statistics where computed as the maximum sum of 

cluster values. 

 

Analysis of variance, post-hoc paired t-test and independent sample t-test analyses were used to 

calculate the original test statistics. Spearman correlation coefficient was used to examine the 

association between change in complexity and symptom severity or cognitive score. Similarly, 

cluster-based non-parametric permutation test was applied to correct for the multiple 

comparisons in the correlation analyses.  

 

Throughout the paper, except otherwise noted, reported statistics are corrected p-values, and 

descriptive values indicate mean and standard deviation unless otherwise stated. Percent change 

(i.e. %) in multiscale entropy is calculated as: [(post treatment value - baseline value)/baseline 

value] *100; change in power is calculated as: [post treatment value - baseline value]; and 

percent change in MADRS was calculated as [(baseline score - post treatment)/baseline score] 

*100.  

 

6.4 Results 

6.4.1 Changes in neural oscillations following escitalopram treatment 

There was a significant main effect of Time [mean F=11.5 (5.75 to 36.8)], Response [mean 

F=3.77 (3.59 to 3.94)] and a significant interaction effect of Time x Response [mean F=4.98 

(3.51 to 9.13)] across several frequencies and channels. In addition, there was a significant main 

effect of Time [mean F=11.3 (5.33 to 36.8)], Site [mean F=4.62 (2.49 to 11.2)], and a significant 

interaction effect of Site x Time [mean F = 3.52 (2.42 to 6.77)]. In source space, there was a 

significant main effect of Time [mean F = 10.4 (5.62 to 34.6)], Response [mean F = 4.64 (3.30 

to 6.09)] and a significant interaction effect of Time x Response [mean F = 5.08 (3.44 to 9.95)] 

and across several frequencies and ROIs. In addition, there was a significant main effect of Time 

[mean F = 10.3 (5.46 to 34.6)], Site [mean F = 5.40 (2.39 to 19.0)], and a significant interaction 

effect of Site x Time [mean F = 3.84 (2.30 to 11.8)].  
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All post-hoc tests are summarized below and were controlled for site. Post-hoc tests, comparing 

responders and non-responders at each time point (baseline, week 2 and week 8), were not 

significant.  

 

6.4.1.1 Changes in neural oscillations over the course of treatment (baseline to 
week 8) 

Post-hoc analyses for responders revealed a significant decrease in the high alpha, low beta and 

gamma bands (p=0.003, controlled for site: p=0.009) (left panel of Figure S 6.1). The significant 

decrease in high-alpha oscillations (10-12Hz) was shown to be widespread. The significant 

decrease in beta oscillations (12-30Hz) was observed in frontal (FP1, FP2, FPZ, AF3, AF4, F5, 

F3, FZ, F2, F8, FT7, FT8), fronto-central (FC5, FCZ, FC4, FC6), central (C1, C2, C5, C6), 

centro-parietal (CPZ, CP2, CP3, CP4, CP5, CP6), temporal (T7, T8, TP8), all parietal, all 

parieto-occipital and all occipital electrodes. Finally, the significant decrease in gamma 

oscillations (30-50Hz) was observed in the parietal (P1, P2, P3, P7), parieto-occipital (POZ, 

PO4), and occipital (O1, O2) electrodes. In source space (left panel of Figure S 6.2), a 

significant decrease in alpha, beta and gamma oscillations was also observed (p=0.008, 

controlled for site: p=0.02). The decrease in high-alpha oscillations (10-12Hz) was observed in 

the superior frontal gyrus and sulcus, left ACC, aMCC, pMCC, dPCC, vPCC, insular and insula 

regions, subcentral gyrus and sulci, subparietal sulcus, parieto-occipital sulcus, occipital gyrus 

and sulcus, occi-temporal gyrus, temporal gyrus and sulcus regions and the right occipital pole. 

The decrease in beta (12-30Hz) oscillations was observed in the aMCC, vPCC, insular regions, 

post-central gyrus, subparietal sulcus, inferior and lat-occipital gyrus and sulcus, temporal gyrus 

and sulcus, right occipital pole and the orbital gyri regions. Finally, the decrease in gamma (30-

50Hz) oscillations was associated with the aMCC, paracentral lobule and sulcus, inferior 

occipital gyrus and the right temporal pole.  

 

Post-hoc analysis for non-responders revealed a significant decrease in delta, theta, alpha, beta 

and gamma bands (p=0.006, controlled for site: p=0.01) (right panel of Figure S 6.1). A 

decrease in delta oscillations (1-4Hz) was observed in the central (C4) and centro-parietal (CP2) 
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electrodes. A decrease in the theta oscillations (4-8Hz) was observed in the frontal (FP1, FP2, 

AF3, AF4, F1, F2, F3, F5, F6, F8), fronto-central (FCZ, FC1, FC3, FC6), central (CZ, C2, C4, 

C5), centro-parietal (CPZ, CP1, CP2, CP3, CP5, CP6), parietal (P1, P3, P4, P5, P6, P7), parieto-

occipital (PO3, PO7, PO8), and the occipital (OZ, O1, O2) electrodes. At the 10Hz alpha 

frequency, significant electrodes included frontal (FP1, AF3, F7, F3, F1), fronto-central (FC3, 

FC5), central (CZ, C3, C5), and parietal (P4, P6) regions. Across the alpha band (8-12Hz), 

significant electrodes included centro-parietal (CP2, CP5), parieto-occipital (PO3, PO7) and 

occipital (O1, OZ) regions. A decrease in beta oscillations (12-30Hz) was observed in the frontal 

(FP1, FP2, AF3, AF4, F1, F2, F3, F4, F5, F6, F7, FT7, FT8), fronto-central (FCZ, FC1, FC3, 

FC4, FC5, FC6), all central, centro-parietal (CP1, CP2, CP3, CP5, CP6), all parietal except P2, 

parieto-occipital (PO3, PO4, PO7, PO8), and all occipital electrodes. Finally, the decrease in 

gamma oscillations (30-50Hz) was observed in centro-parietal (CP5, CP6), parietal (P4, P6, P8), 

parieto-occipital (PO8) and occipital (OZ, O2) electrodes. In source space (right panel of Figure 

S 6.2), the decrease in delta, theta, alpha and beta oscillations was also significant (p=0.03, 

controlled for site: p=0.04). In delta-theta oscillations (1-8Hz), significant regions included the 

aMCC, insular regions, central sulcus occipital gyrus and sulcus, lat occi-temporal gyrus, and the 

right pre-occipital notch regions. Across the alpha band (8-12Hz), significant regions included 

the sup occipital gyrus (left) and the lat occi-temporal gyrus. In beta (12-30Hz) oscillations, 

significant regions were the transverse frontopolar gyri, inferior frontal sulcus (left), aMCC, 

insular regions, some occipital gyrus and sulcus, some temporal gyrus and sulcus, the middle and 

superior frontal sulcus (right), occi-temporal, and the right occipital pole.  

 

Correlation analysis in sensor space (left panels of Figure S 6.3) revealed that a significant 

increase in theta oscillations (4-8Hz) was correlated with improvement in depressive symptoms 

(p=0.001) in frontal (F6, F7, FT8), fronto-central (FC4, FC6), central (C4), centro-parietal (CP2, 

CP5, CP6), tempro-parietal (TP8), and parietal (P6) electrodes. In addition, a significant decrease 

in the alpha, beta and gamma oscillations correlated with improvement in depressive symptoms 

(p=0.001). In the high-alpha band (10-12Hz) the effect was observed in frontal (FCZ, FC1, FC3), 

central (CZ, C1, C2, C6), centro-parietal (CPZ, CP2, CP4), parietal (P2, P4) and parieto-occipital 

(POZ) electrodes. In the beta band (12-30Hz), the effect was observed in centro-parietal (CP4), 

parietal (PZ, P2, P3) and parieto-occipital (POZ, PO4) electrodes and lastly, in the gamma band 
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(30-50Hz) the effect was observed in P2 and POZ. In source space (right panel of Figure S 6.3), 

significant correlations were observed in the delta, theta, alpha, beta and gamma bands 

(p=0.001). Significant regions in the delta band (1-4Hz) included the marginal cingulate cortex, 

dPCC, precuneus, cuneus, paracentral lobule and sulcus, central sulcus, parieto-occipital sulcus, 

pre-occipital notch, middle occipital sulcus and the superior temporal sulcus. In alpha 

oscillations, significant regions were global. In theta oscillations (4-8Hz), significant regions 

included the marginal cingulate sulcus, dPCC, precuneus, cuneus, paracentral lobule and sulcus, 

postcentral gyrus & sulcus, precentral gyrus, central sulcus, superior parietal lobule, preoccipital 

notch, subparietal sulcus, parieto-occipital sulcus, the left vPCC, left lat occ-temporal gyrus & 

sulcus and the right occipital pole. In beta oscillations (12-30Hz), significant regions included 

the dPCC, vPCC, precuneus, cuneus, short insular gyri, insula sup-circular sulcus, angular gyrus, 

intra&trans-parietal sulcus, subparietal sulcus, parieto-occipital sulcus, med occi-temp parahip 

gyrus, med occi-temp lingual sulcus, inferior temporal sulcus and the right occipital pole and 

preoccipital notch. Finally, regions identified in the gamma band (30-50Hz) were the left fronto-

marginal gyrus, left transverse frontopolar gyri, left superior frontal sulcus, and the right straight 

gyrus.  

 

6.4.1.2 Early changes in neural oscillations (baseline to week 2) 

Post-hoc analyses for responders showed a decrease in mid-high beta and low gamma 

oscillations (18-42Hz) (p=0.03, controlled for site: p=0.07) in central (C1, C4), centro-parietal 

(CP1, CP2, CP3, CPZ), parietal (P7, P5, P3, P1, PZ, P2, P8) and parieto-occipital (PO7, PO3, 

POZ, PO4, PO8) and occipital (O1, OZ, O2) electrodes (left panel of Figure S 6.4). In source 

space (left panel of Figure S 6.5), this translated to the temporal pole, occi-temporal sulcus, 

occi-temporal gyrus, inferior occipital gyrus and sulcus, superior occipital gyrus, precentral 

gyrus, postcentral gyrus, superior precentral gyrus, paracentral lobule and sulcus, temporal pole, 

aMCC, vPCC, pMCC, short insular gyrus and other regions (p=0.04, controlled for site: p=0.08). 

In addition to the central-parieto-occipital cluster, another cluster was found only in the source 

space (p=0.04, controlled for site: p=0.08) showing an increase in high beta and gamma 

oscillations (25-50Hz). The regions in this cluster include fronto-inferior orbital, middle frontal 

gyrus, precentral gyrus, postcentral gyrus, superior precentral sulcus, occipital pole, orbital sulci, 
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lateral orbital sulcus, medial orbital sulcus, suborbital sulcus, short insular gyri, long insular 

gyrus, central sulcus of insula, postcentral sulcus, superior precentral sulcus, middle occipital 

sulcus, lateral-superior temporal gyrus, inferior temporal sulcus, superior temporal sulcus, 

straight gyrus and subcallosal gyrus.  

 

Post-hoc analyses for non-responders revealed a significant global decrease in delta and theta 

oscillations (1-8Hz) (p=0.03, controlled for site: p=0.05). In addition, there was a significant 

decrease in beta (12-30Hz) and low-gamma (30-40Hz) oscillations (p=0.01, controlled for site: 

p=0.02) in all frontal electrodes, fronto-central (FC1, FCZ, FC2, FC4, FC6), central (CZ, C4, C6, 

C1, C3, C5), all centro-parietal, all parietal, parieto-occipital (PO7, PO3, PO4, PO8) and 

occipital (O1, OZ, O2) electrodes. Significant regions in low-gamma band (30-40Hz) include 

parietal (P3, P1, PZ, P2) and centro-parietal (CP5, CP6) electrodes (right panel of Figure S 6.4). 

In source domain (right panel of Figure S 6.5), the two clusters approached significance: delta-

theta (1-8Hz) (p=0.09, controlled for site: p=0.10) and beta-gamma: 12-50Hz (p=0.08, controlled 

for site: p=0.09). Regions in the delta-theta cluster (1-8Hz) included the inferior frontal sulcus, 

superior frontal sulcus, ACC, aMCC, pMCC, marginal cingulate sulcus, insula regions, 

postcentral gyrus and sulcus, inferior precentral sulcus, superior precentral sulcus, intra and 

trans-parietal sulcus, occipital regions including the occipital pole, lateral occi-temporal gyrus 

and sulcus, temporal regions, lateral, medial and suborbital sulcus. Regions in the beta cluster 

(12-30Hz) include the inferior frontal sulcus, middle frontal sulcus, parieto-occipital sulcus, 

lateral occi-temporal gyrus and sulcus, plan-tempo superior temporal gyrus, and orbital gyri.  In 

gamma (30-50Hz), regions included the right middle frontal sulcus, right superior frontal sulcus 

and the right pMCC.  

 

Correlation analysis revealed that an increase in delta-theta (1-8Hz) and beta (18-30Hz) 

oscillations significantly correlated with improvement in depressive symptoms (left panels of 

Figure S 6.6). For the delta-theta (1-8Hz) cluster (p=0.001), this effect was observed in the 

frontal (AF3, F7, F5, FZ, F4, F6), fronto-central (FC1, FC5, FCZ, FC2, FC4, FC6), central (C3, 

C4, C5, C6), centro-parietal (CP2, CP3, CP4, CP5, CP6), tempro-parietal (TP7, TP8), parietal 

(P1, P3, PZ, P2, P4), parieto-occipital (PO3, PO7) and occipital (O1, OZ, O2) electrodes. In beta 

(18-30Hz) oscillations (p=0.001), this effect was observed in the frontal (AF3, F7, F5, FZ, F4, 
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F6, F8), fronto-central (FC1, FC4, FC5, FC6), central (C5, C6), centro-parietal (CP3, CP5, CP6), 

parietal (P2, P4, P6) and parieto-occipital (PO3, PO7) electrodes. In source space (right panel of 

Figure S 6.6) significant regions in the delta-theta cluster (p=0.001) included the middle frontal 

gyrus, inferior and superior frontal sulcus, ACC, central sulcus, pre and post-central gyrus, 

postcentral sulcus, paracentral lobule and sulcus, superior parietal lobule, superior parietal 

lobule, superior occipital gyrus, middle occipital sulcus, lateral orbital sulcus, middle occipital 

sulcus, lat-sup temporal gyrus, subparietal sulcus, preoccipital notch and the lateral orbital sulcus 

regions. In source space for beta oscillations, significant regions (p=0.001) in the left hemisphere 

were the front-inf orbital & triangular, pMCC, marg-cingulate sulcus, paracentral lobule & 

sulcus and the subparietal sulcus. Significant regions in the right hemisphere were the pMCC, 

vPCC, precentral gyrus, central sulcus and the preoccipital notch. In gamma oscillations, 

significant regions (p=0.001) included the pMCC and the dPCC. In the right hemisphere, 

significant regions included the vPCC, postcentral gyrus, precentral gyrus, central sulcus, 

postcentral sulcus, and the inferior & superior precentral sulcus.  

 

6.4.1.3 Changes in neural oscillations over latter time course of treatment 
(week 2 to week 8) 

 

Post-hoc analyses for responders showed a decrease (p=0.006, controlled for site: p=0.06) in the 

high-alpha and beta bands (left panel of Figure S 6.7). In the high-alpha band (10-12Hz), this 

effect was observed in the fronto-central (FC1, FC3), temporal (T7), central (C3, C5), centro-

parietal (CP3), parietal (P1), parieto-occipital (PO3, PO7) and occipital (O1) electrodes. In the 

beta band (12-30Hz), this effect was observed in the frontal (FP1, AF3, AF4, F5, F3, F1, FZ, F2, 

F4, F6, F8, FT7, FT8), fronto-central (FCZ, FC1, FC3, FC4, FC5, FC6), temporal (T7), central 

(C5, C6), centro-parietal (CP3, CP4, CP5, CP6), parietal (P1, P2, P3, P6) and parieto-occipital 

(PO3, PO7) electrodes. Results were not significant in the source space. Post-hoc analysis for 

non-responders did not show any significant results (right panel of Figure S 6.7). 

 

Correlation analysis in sensor space revealed that a decrease in neural oscillations (delta, theta, 

alpha, beta and gamma) was significantly correlated with improvement in depressive symptoms 

(p=0.001) (left panels of Figure S 6.8). In the delta band (1-4Hz), the effect was observed in 



158 

 

frontal (AF3, FZ, F5), fronto-central (FC5), centro-parietal (CP4, CP6), parietal (P1, P2) and 

parieto-occipital (PO3, PO7) electrodes. In the theta band (4-8Hz), the effect was observed in 

frontal (FP1, AF3, F5, F7, FT7), fronto-central (FC1, FC5), parietal (P1, P3) and parieto-

occipital (PO3, PO7) electrodes. In the high-alpha band (10-12Hz), the effect was observed in 

frontal (F5), central (C3, C5) and centro-parietal (CP3, CP4, CP5) electrodes. In the beta band 

(12-30Hz), the effect was observed in frontal (mostly in AF3, FZ, F4, F5), fronto-central (mostly 

FC1, FC4, FC5, FC6), central (C5, C6), centro-parietal (CP3, CP4, CP6), parietal (PZ, P1, P2, 

P3, P7,) and parieto-occipital (POZ, PO3, PO7) electrodes. Finally, in the gamma band (30-

50Hz), the effect was observed in frontocentral (FC6), central (C6), parietal (P2) and parieto-

occipital (POZ) electrodes. In the source space (right panel of Figure S 6.8), the correlation 

effect was observed across all bands. An increase in delta, theta, high beta, gamma and a 

decrease in high-alpha & mid-beta oscillations were significantly correlated with improvement in 

depressive symptoms (p=0.001 for both). For the increase in delta power (1-4Hz), significant 

regions included the left preoccipital notch, left & right superior temporal sulcus, right insula inf-

circular sulcus, right intra- & trans-parietal sulcus and the right temporal gyrus. For the increase 

in theta band power (4-8Hz), significant regions in the right hemisphere included the dPCC, 

precuneus, insula inf- & sup-circular sulcus, long insular gyrus & central sulcus of insula, 

postcentral sulcus, angular gyrus, superior parietal lobule, intra- & trans-parietal sulcus, med 

occi-temp parahip gyrus and the temporal gyrus. For the decrease in high-alpha band power (10-

12Hz), significant regions included the insula circular sulcus, central & post-central sulcus, 

temporal gyrus, med occi-temp lingual sulcus, left dPCC, left precuneus, left pre- & postcentral 

gyrus, right superior frontal sulcus and the right long insular gyrus & central sulcus of insula. For 

the decrease in mid-beta band power (18-22Hz), significant regions included the left parieto-

occipital sulcus, left straight gyrus, right front-inf-opercular, right cuneus, right subcentral gyrus 

& sulci, right temporal gyrus & sulcus and the right orbital sulcus. For the increase in high-beta 

band power (22-30Hz), significant regions included the left dPCC, left precuneus, left precentral 

gyrus, left postcentral sulcus, left subparietal sulcus, right mid-occipital gyrus, right med occi-

temp lingual & parahip gyrus and the right lat occi-temporal sulcus. Finally, the increase in 

gamma band power (30-50Hz) was observed in the dPCC, paracentral lobule & sulcus, 

precentral gyrus, central sulcus, left superior frontal gyrus & sulcus, left pMCC, left marg-
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cingulate sulcus, left precuneus, left long insular gyrus & central sulcus of insula and the left 

subparietal sulcus.  

   

6.4.2 Changes in temporal complexity of neural dynamics following 
escitalopram treatment 

There was a significant main effect of Time [mean F = 8.27 (5.67 to 19.8)]], Response [mean F 

= 4.20 (3.67 to 4.63)] and the interaction effect of Time x Response [mean F = 6.13 (3.30 to 

22.1)] and across several frequencies and channels. In addition, there was a significant main 

effect of Time [mean F = 8.22 (5.75 to 19.8)], Site [mean F = 3.89 (2.57 to 8.64)], and Site x 

Time [mean F = 3.71 (2.40 to 8.38)] interaction effect. In source space, there was a significant 

main effect of Time [mean F = 8.24 (5.52 to 19.1)], Response [mean F = 4.75 (3.54 to 9.25)] and 

the interaction effect of Time x Response [mean F = 5.76 (3.52 to 19.3)] and across several 

frequencies and ROIs. In addition, there was a significant main effect of Time [mean F = 8.39 

(5.60 to 19.1)], Site [mean F = 5.74 (2.45 to 19.9)], and Site x Time [mean F = 3.78 (2.40 to 

8.93)] interaction effect.    

 

Post-hoc test and correlation results are presented below. All post-hoc tests were controlled for 

site. Post-hoc tests, comparing responders and non-responders at each time point (baseline, week 

2 and week 8), were not significant.  

 

6.4.2.1 Changes in temporal complexity over the course of treatment (baseline 
to week 8) 

Post-hoc analysis did not show any significant results for responders and non-responders. 

Correlation analysis revealed that an increase in complexity in mid-high timescales (15-55) 

correlated with improvement in depressive symptoms (p=0.001). This effect was observed in the 

parietal (PZ, P2, P3, P5, P7) and parieto-occipital (PO3, PO7) electrodes (left panel of Figure 

6.1). Highest correlations were seen in channel P7/scale 34 (r = 0.358, p = 0.0002) and in 

channel P7/scale 47 (r = 0.384, p < 0.0001) (right panels of Figure 6.1). In source space, this 

effect (p=0.001) was observed in the left: precuneus, vPCC, dPCC, superior parietal lobule and 

subparietal sulcus; and the right: precuneus, vPCC, insula inf-circular sulcus, superior parietal 
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lobule, parieto-occipital sulcus, preoccipital notch, med occi-temp lingual gyrus and sulcus, plan-

tempo sup temporal gyrus and the inferior temporal sulcus (left panel of Figure 6.2). Highest 

correlation was seen in the dPCC at scale 22 (r = 0.270, p = 0.0049) (right panel of Figure 6.2). 

 

6.4.2.2 Early changes in temporal complexity (baseline to week 2) 

Post-hoc analysis for responders did not show any significant results (left panels of Figure 6.3). 

Post-hoc analysis for non-responders revealed a decrease in complexity in mid-coarse scales (20-

65) approaching significance (p=0.08, controlled for site: p=0.09). This effect was observed in 

the frontal (AF3, FZ, F1, F3, F5, F7, FT7), fronto-central (FC1, FC3, FC5), temporal (T7), and 

the central (C1, C3) electrodes. Source analysis did not reveal any significant effects (right 

panels of Figure 6.3). 

 

Correlation analysis in sensor space did not reveal any significant effects. However, in source 

space there was significant correlation between decrease in complexity in low timescales (5-20) 

and improvement in depressive symptoms (p=0.001). This effect was seen in left inferior frontal 

sulcus, left ACC, left insula ant-circular sulcus, left orbital gyri and sulci, left suborbital sulci 

and the right straight gyrus (left panel of Figure 6.4). Highest correlations were seen in the ACC 

at scale 11 (r = -0.250, p = 0.0093) (right panels of Figure 6.4). 

 

6.4.2.3 Changes in temporal complexity over the latter time course of treatment 
(week 2 to week 8) 

Post-hoc analysis for responders revealed a significant increase in complexity in mid-coarse 

scales (20-70) (p=0.03, controlled for site: p=0.04). This effect was observed in the frontal (FP2, 

AF3, AF4, FZ, F1, F2, F3, F4, F5, F6, F7, F8 FT7, FT8), all fronto-central except FC1, temporal 

(T7, T8, TP7, TP8), all central except C5, all centro-parietal except CPZ and CP4, all parietal 

except PZ, all parieto-occipital except PO4 and occipital (O1, OZ) electrodes (left panels of 

Figure 6.5). Source analysis did not reveal any significant effects. Post-hoc analysis for non-

responders also did not show any significant results (right panels of Figure 6.5). 
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Correlation analysis revealed that an increase in complexity in fine (1-10), mid-high (15-50) and 

coarse (60-70) timescales was significantly correlated with improvement in depressive symptoms 

(p=0.001). In fine timescales (1-10), this effect was observed in the frontal (AF4, F4, F6), fronto-

central (FC3, FCZ), temporal (T7, TP7), central (CZ, C2, C5), centro-parietal (CP3, CP4, CP6), 

parietal (P5, P6, P7, P8) and parieto-occipital (PO7) electrodes. In mid-high timescales (15-50), 

this effect was observed in the centro-parietal (CP5, CP6), parietal (P5, P6, P7, P8), and parieto-

occipital (PO7) electrodes. In the coarser timescales (60-70), the effect was observed in the 

parietal (P5, P7) and parieto-occipital (PO7) electrodes (left panels of Figure 6.6). Highest 

correlations were seen in channel P7/scale 18 (r = 0.353, p = 0.0002) and channel P7/scale 41 (r 

= 0.343, p = 0.0003) (right panels of Figure 6.6). The effect was also significant in source space 

(p=0.001) (left panel of Figure 6.7). In fine timescales (1-10), significant regions included the 

dPCC, vPCC, precuneus, central sulcus, subparietal sulcus and the mid occipital gyrus. In the left 

hemisphere, additional regions included the pMCC, cuneus, superior frontal gyrus and sulcus, 

paracentral lobule and sulcus, angular gyrus, superior parietal lobule, mid-occipital gyrus, inf 

occipital gyrus & sulcus, preoccipital notch and the lat occi-temporal gyrus & sulcus. In the right 

hemisphere, regions included the middle frontal gyrus & sulcus, precentral gyrus, superior 

precentral sulcus, and the med occi-temp parahip gyrus. In mid-timescales (15-50), significant 

regions included the vPCC, left preoccipital notch, left lat occi-temporal sulcus and the left 

inferior temporal gyrus. Finally, in coarse timescales (60-70), significant regions were the left 

preoccipital notch and the left lat occi-temporal sulcus. Highest correlations were seen in the 

subparietal sulcus at scale 3 (r = 0.357, p = 0.0002) and in the lat occi-temporal sulcus at scale 23 

(r = 0.339, p = 0.0003) (right panels of Figure 6.7).   

 

6.4.3 Association between neural oscillations and mood  

6.4.3.1 Association between baseline neural oscillations and mood 

Correlation analysis in sensor space revealed that high power in alpha, mid-beta and gamma 

oscillations correlates with improvement in symptoms (p=0.001). In the alpha band (8-12Hz), the 

effect was observed in frontal (AF3, F3, F5), fronto-central (FCZ, FC3), central (CZ, C2, C3), 

centro-parietal (CP1, CP2, CP4), and parietal (P1, P2) electrodes. In the mid-beta band (18-

22Hz), the effect was observed in the frontal (F5, F7), central (C1, C3), centro-parietal (CP1), 
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parietal (P1, P2, P3, P4) and parieto-occipital (POZ, PO4) electrodes. In the gamma band (30-

50Hz), the effect was observed in parietal electrodes (P1, P3) (left panels of Figure S 6.9). This 

effect was also significant in the source space (p=0.001). Results in the alpha band corresponded 

to the superior frontal sulcus, subcentral gyrus and sulci, parieto-occipital sulcus and the orbital 

gyri. Results in the mid-beta band corresponded to several regions including the precentral gyrus, 

superior parietal lobule, parieto-occipital sulcus and the right occipital pole. No significant 

regions were observed in the gamma band (right panel of Figure S 6.9).  

 

6.4.3.2 Association between neural oscillations 2 weeks after treatment and 
mood 

Correlation analysis in sensor space revealed that high power in the alpha, beta and gamma 

oscillations correlates with improvement in symptoms (p=0.001) In the alpha band (8-12Hz), the 

effect was seen in frontal (AF3, FZ, F5, F6, F7), fronto-central (FC3), central (C3, C4, C5), 

temporal (T7, TP8), centro-parietal (CP2, CP3, CP4, CP5, CP6) and parietal (P1, P2) electrodes. 

In the low-beta band (12-18Hz), the effect was seen in frontal (F5, F6, F7) and parietal (P1) 

electrodes. In the mid-beta band (18-22Hz), the effect was seen in frontal (AF3, FZ, F5, F6, F7, 

F8), fronto-central (FC1, FC4, FC6), central (C3, C4, C5, C6), centro-parietal (CP3, CP5, CP6), 

parietal (P1, P2, P3) and parieto-occipital (POZ, PO4) electrodes. In the high-beta band (22-

30Hz), the effect was seen in frontal (F5, F6, F7), fronto-central (FC1), central (C6), centro-

parietal (CP6) and parietal (P1) electrodes. In the gamma band (30-50Hz), the effect was seen in 

frontal (F3, F5, F6, F7), fronto-central (FC1, FC4, FC6), central (C3, C6), centro-parietal (CP5), 

parietal (P1, P3) and parieto-occipital (PO4) electrodes (left panels of Figure S 6.10).  

 

This cluster effect was also significant in source space in the alpha, beta and gamma oscillations 

(p=0.001). In the alpha band (8-12Hz), significant regions included the inferior frontal sulcus, 

aMCC, central sulcus, temporal pole, orbital gyri, medial orbital sulcus, and the right ACC and 

right occipital pole. In the low and high-beta bands (12-18Hz, 22-30Hz), significant regions 

included the inferior frontal sulcus, aMCC, and the orbital sulci. In the mid-beta band (18-22Hz), 

significant regions included the inferior frontal sulcus, aMCC, temporal pole, orbital gyri and 

sulci, the left parieto-occipital sulcus, right ACC, and the right occipital pole. Finally, in the 
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gamma band (30-50Hz), significant regions included the inferior frontal sulcus, aMCC, orbital 

gyri and sulci, pericallosal sulcus, and the right ACC (right panel of Figure S 6.10).  

 

6.4.4 Association between temporal complexity of neural dynamics 
and mood  

6.4.4.1 Association between baseline temporal complexity and mood 

Correlation analysis revealed that a low complexity value at baseline correlates with 

improvement in depressive symptoms (p=0.001) across coarser timescales (30-70) (left panels of 

Figure 6.8). This effect was observed in the frontal (mostly FPZ, F5, F6, F7), fronto-central 

(FC1, FC3, FC4, FC5, FC6), temporal (T8), central (C1, C2, C3, C4, C6), centro-parietal (CPZ, 

CP1, CP2), parietal (PZ, P1, P2), parieto-occipital (POZ, PO4) and occipital (OZ, O2) 

electrodes. Highest correlations were seen in channel F5/scale 40 (r = -0.364, p = 0.0001), 

channel F6/scale 66 (r = -0.309, p = 0.0012), channel C1/scale 54 (r = -0.335, p = 0.0004) and 

channel O2/scale 58 (r = -0.302, p = 0.0016) (right panels of Figure 6.8). In source space (left 

panels of Figure 6.9), this effect was significant (p=0.001) in coarser timescales in brain regions 

including the aMCC, pMCC, middle frontal sulcus, insular regions, temporal pole, occipital and 

temporal regions as well as the left central regions and the right occipital pole. A positive cluster 

was also found to be significant (p=0.004) in fine timescales (12-15) in the postcentral gyrus and 

sulcus, intra- & trans-parietal sulcus, plan-tempo sup temporal gyrus, transverse temporal sulcus, 

orbital gyri, suborbital sulcus and the lat-fis posterior regions (all in left hemisphere). Highest 

correlations were seen in the superior precentral sulcus at scale 56 (r = -0.381, p = 0.0001) and in 

the orbital gyri at scale 14 (r = 0.253, p = 0.0086) (right panels of Figure 6.9). 

 

6.4.4.2 Association between temporal complexity 2 weeks after treatment and 
mood 

Correlation analysis revealed that a low complexity value at week 2 in coarser timescales (30-70) 

(p=0.001) and a high complexity value at week 2 in finer timescales (12-17) (p=0.001) correlates 

with improvement in depressive symptoms (left panels of Figure 6.10). The cluster in the 

coarser timescales was observed in frontal (mostly in FP1, FP2, FPZ, AF3, AF4, FZ, F4, F5, F6), 

fronto-central (FCZ, FC4, FC6), central (CZ, C1, C2), centro-parietal (CPZ, CP5, CP6), parietal 
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(PZ, P2), parieto-occipital (PO4, PO8), and occipital (OZ, O1) electrodes. Highest correlations 

were seen in channel FC2/scale 18 (r = 0.246, p = 0.01), channel CP6/scale 54 (r = -0.288, p = 

0.0026), channel F6/scale 68 (r = -0.294, p = 0.0021) and channel FC6/scale 66 (r = -0.294, p = 

0.0021) (right panels of Figure 6.10). The cluster in the finer timescales was observed in frontal 

(F2, F4), fronto-central (FC2, FC4) and central (CZ) electrodes. In source space (left panels of 

Figure 6.11), the cluster in the coarser timescales was significant (p=0.001) in several brain 

regions including the inferior frontal sulcus, superior frontal gyrus, ACC, aMCC, pMCC, dPCC, 

vPCC, short insular gyri, long insular gyrus and the central sulcus of insula, central sulcus, 

superior and inferior precentral sulcus, parieto-occipital sulcus, occipital pole, lat-sup temporal 

gyrus, and the temporal pole. Highest correlations were seen in the plan-polar sup temporal gyrus 

at scale 61 (r = -0.333, p = 0.0005), temporal pole at scale 65 (r = -0.301, p = 0.0016), ACC at 

scale 61 (r = -0.306, p = 0.0013) and med occi-temp lingual sulcus at scale 66 (r = -0.320, p = 

0.0008) (right panels of Figure 6.11). 

 

6.5 Discussion 

Results from frequency and complexity analysis revealed a distinct pattern of early (baseline to 

week 2) and long-term (week 2 to week 8, or baseline to week 8) changes in patterns of neural 

activity with escitalopram treatment. In responders, early changes were local and frequency-

specific. Subsequent to these early changes, over the next 6 weeks of treatment (week 2 to week 

8), there were significant changes in frequency and complexity scores that correlated with 

improvement in depressive symptoms. In non-responders, early significant changes (baseline to 

week 2) were seen in several regions, frequencies and timescales and these early significant 

changes negatively correlated with improvement of depressive symptoms following the eight-

week course of escitalopram. Following this early change, we observed no further significant 

changes in neural activity in non-responders from week 2 to week 8. These findings potentially 

reveal a differential effect of antidepressant medications on neural dynamics in responders and 

non-responders. In addition, these findings also provide evidence in support of using baseline 

markers of neural dynamics and early changes in neural dynamics with treatment to predict 

treatment outcome, and potentially inform individualized treatment.   
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Changes in neural oscillations following a course of antidepressant treatment have been reported 

in previous studies. Through this study, we replicated several of these results. For example, 

higher alpha at baseline was previously shown to be correlated with antidepressant response 

(Ulrich, Renfordt et al. 1986, Ulrich, Haug et al. 1988, Ulrich, Haug et al. 1994). Through our 

correlation analysis, we also showed that higher values of alpha at baseline and two weeks after 

treatment were correlated with antidepressant response (see Figure S 6.9 and Figure S 6.10). 

Alpha asymmetry at baseline was also shown to differentiate responders and non-responders in 

previous studies (Bruder, Stewart et al. 2001, Bruder, Sedoruk et al. 2008) with largest 

differences in occipital sites in the right hemisphere. In this study, alpha power in the right 

hemisphere (frontal and occipital) at baseline and at week 2 was associated with treatment 

response. This was not observed in the left hemisphere (right panels of Figure S 6.9, Figure S 

6.10).  

 

In addition to the replication of some previous findings, this study provides additional insights on 

the longitudinal effect of antidepressants (over 8 weeks) on neural dynamics. Reports on 

longitudinal effects of antidepressants on neural dynamics are sparse and inconsistent for EEG 

frequency analysis (Tarn, Edwards et al. 1993, Kwon, Youn et al. 1996, Knott, Mahoney et al. 

2002, Bruder, Sedoruk et al. 2008) and sparse for complexity analysis (Méndez, Zuluaga et al. 

2012). In this study, we observed a decrease in alpha oscillations specific to responders and a 

decrease in theta oscillations specific to non-responders of escitalopram. We also demonstrated 

significant changes in beta oscillations associated with antidepressant response. Previous studies 

have shown that severity of depressive symptoms may be associated with increased alpha 

(Pollock and Schneider 1990, Bruder, Tenke et al. 2005, Korb, Cook et al. 2008), increased theta 

(Kwon, Youn et al. 1996) and dominant beta oscillations (Fingelkurts, Fingelkurts et al. 2006). 

Using source localization analysis in this study, responders also revealed significant changes in 

alpha oscillations (left panel of Figure S 6.2) in regions previously associated with mood 

regulation and the pathophysiology of depression such as the ACC (Mayberg, Brannan et al. 

1997, Wu, Buchsbaum et al. 1999), cingulate cortex (Mayberg, Brannan et al. 1997, Greicius, 

Flores et al. 2007), orbitofrontal cortex (Greicius, Flores et al. 2007, Frodl, Bokde et al. 2010), 

occipital pole (Koch and Schultz 2014, Maller, Thomson et al. 2014), precuneus (Greicius, 
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Flores et al. 2007, Peng, Liddle et al. 2015) and the superior temporal cortex (Steele, Currie et al. 

2007). Given these results, we suggest that antidepressants (such as escitalopram) do target 

regions associated with abnormal neural activity in depression for therapeutic response. 

 

Measures from frequency analysis provide interesting insight into the mechanism of action of 

antidepressants and may also predict therapeutic outcome. However, as mentioned before, 

another aim of our study was to investigate whether other properties of the EEG signal might 

provide unique insight not provided by frequency analysis, such as complexity. To our 

knowledge, only two studies investigated whether pre-treatment neural complexity can predict 

response to antidepressant medication in depression (Méndez, Zuluaga et al. 2012, Jaworska, 

Wang et al. 2018). In Mendez et al., a reduction in Lempel-Zev complexity of neural signals as 

measured by MEG was shown to be associated with response to mirtazapine. Lower complexity 

at baseline was also associated with antidepressant response in the current study. However, 

results cannot be easily compared to the current study because complexity was not calculated at 

multiple timescales in Mendez et al. In comparison, similar to our study, Jaworski et al. used 

multiscale entropy on resting-state EEG data to predict response to 12-weeks of escitalopram or 

bupropion plus placebo, or escitalopram and bupropion treatment in 36 patients with major 

depressive disorder. Of the 36 patients, 20 were responders. They showed that increased baseline 

complexity in mid-coarse timescales (frontal, central, parietal regions) was positively associated 

with treatment response and decreased complexity in fine timescales (fronto-central regions) was 

negatively associated with treatment response. In our study, decreased baseline complexity was 

associated with improvement in depressive symptoms in the same regions as Jaworska et al., 

(frontal, central, parietal) (Figure 6.8). However, timescales and parameters for multiscale 

entropy analysis vary between our study and Jaworska et al., and therefore, direct comparisons 

of results are not possible.  

 

The trajectory of neural dynamics over the course of escitalopram treatment was shown to vary 

between responders and non-responders in the current study. While responders revealed transient 

changes in neural dynamics (from baseline to week 2 and then from week 2 to week 8), non-

responders did not reveal any significant changes after 2 weeks of treatment (in frequency and 

complexity). We hypothesize that this differential effect may, in part, be attributed to variations 
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in: (i) neural transmission in the serotoninergic system, and/or (ii) neural plasticity in molecular 

systems between responders and non-responders known to be associated with the mechanism of 

action of selective serotonin re-uptake inhibitors (SSRIs) such as escitalopram (Zhong, Haddjeri 

et al. 2012). Previous studies have provided evidence that serotonin-receptor mediated shifts can 

be inferred from the EEG frequency spectrum (Saletu, Grünberger et al. 1986, McAllister-

Williams and Massey 2003). A molecular marker of neural plasticity (polymorphism of the 

brain-derived neurotrophic factor (BDNF) Val66Met gene) was also previously associated with 

EEG alpha frequency oscillations (Gatt, Kuan et al. 2008, Zoon, Veth et al. 2013). In addition, at 

the level of large-scale neural circuits, plasticity was suggested to be reflected in the complexity 

of cortical neural signals. More specifically, transient increases and decreases in correlated 

activity at various timescales across brain regions are thought to reflect the rate of information 

generation and processing in the brain (McIntosh, Vakorin et al. 2013). The potential relationship 

between the modulation of these receptor-level, gene-level and circuit-level markers by 

antidepressants and changes in neural dynamics following antidepressant treatment may provide 

insight into the targets of successful antidepressants. 

 

The mechanism of action of SSRIs (such as escitalopram) is generally assumed to be mediated 

by the binding of the drug to serotonin transporters resulting in increased extracellular 

concentrations of serotonin across the serotonergic pathways. However, a recent PET study in 

humans (Nord, Finnema et al. 2013) reported that a single dose of escitalopram may lead to an 

initial decrease in serotonin concentrations in occipital and temporal regions. Over the course of 

the medication, there may be a desensitization of inhibitory serotonin receptors and serotonin 

concentrations increase as expected. We hypothesize that the neurobiological effects of this 

initial decrease in serotonin concentrations may differ between responders and non-responders. 

Initial changes in neural oscillations (i.e., baseline to week 2) in responders were mainly seen in 

the occipital and also the temporal regions of the brain (left panel of Figure S 6.5). Non-

responders revealed more widespread changes in neural oscillations leading to the hypothesis 

that perhaps the initial effect of escitalopram on serotonin receptors is local (occipital and 

temporal) in responders but may be more global in non-responders.  
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At the gene level, BDNF is known to be involved in neural cell proliferation and synaptic 

plasticity (Katz and Shatz 1996, Duman and Monteggia 2006). Reduced secretion of BDNF by 

the genetic polymorphism BDNF Val66Met, was previously reported to be associated with 

severity of depression (Jiang, Xu et al. 2005, Verhagen, Van Der Meij et al. 2010, Molendijk, 

Bus et al. 2011, Czira, Wersching et al. 2012) and normalization of BDNF levels was associated 

with antidepressant response (Sen, Duman et al. 2008, Zou, Ye et al. 2010, Molendijk, Bus et al. 

2011). In addition, reduced secretion of BDNF was hypothesized to be associated with reduced 

functional connectivity and oscillatory activity in neuronal systems impaired in depression 

(Thomason, Yoo et al. 2009). Specifically, polymorphism of BDNF Val66Met was shown to be 

mediated by parieto-occipital alpha (Gatt, Kuan et al. 2008, Zoon, Veth et al. 2013) and 

increased parieto-occipital alpha was previously shown to be higher in depression (Pollock and 

Schneider 1990, Bruder, Tenke et al. 2005). In the current study, responders of escitalopram 

revealed a reduction in alpha oscillations after eight weeks of escitalopram treatment (left panel 

of Figure S 6.1) while non-responders revealed no changes in alpha power. Based on these 

results and the work from the previous studies, we hypothesize that non-responders may show 

impairments in the biological pathway including BDNF Val66Met, the neural networks 

generating EEG alpha oscillations and the resulting depressive symptoms underlying severity of 

depression.  

 

Functional connectivity of resting-state neural networks was previously associated with 

complexity of (fMRI) neural signals (McDonough and Nashiro 2014). Although it has not been 

studied as extensively as receptor-level effects of antidepressants, studies have investigated 

changes in large-scale neural circuits following antidepressant treatment. In a recent meta-

analysis (Kaiser, Andrews-Hanna et al. 2015), depression was associated with functional brain 

network dysfunction, specifically, hypoconnectivity in the frontoparietal network and 

hyperconnectivity in the default-mode network. Longitudinal studies monitoring the effect of 

antidepressants reported that antidepressants may normalize connectivity in the frontoparietal 

network (Alexopoulos, Hoptman et al. 2012) and also in the default-mode network (Andreescu, 

Butters et al. 2009, Wu, Andreescu et al. 2011, Li, Liu et al. 2013). In the current study, reduced 

complexity and neural oscillations were observed in regions associated with the DMN 

(precuneus, PCC) as well as the cingulate cortex (ACC, PCC). In addition, baseline complexity 
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and neural oscillations in these regions were associated with antidepressant response. Together, 

these results further add to the current line of neuroimaging evidence for the disruption and 

modulation of large-scale neural networks by antidepressants. The identification and future 

assessment of such markers are important for clinical translation.   

 

6.6 Conclusions 

In conclusion, several frequency and spatiotemporal-specific changes in neural dynamics were 

associated with response to escitalopram in patients with major depressive disorder. Results from 

prior studies associating baseline neural dynamics with antidepressant response were replicated 

and new insights into the longitudinal effects of antidepressants on neural dynamics were 

revealed. Responders to escitalopram were associated with reduced alpha and beta oscillations in 

the fronto-central and parieto-occipital regions (baseline to week 8) and increased complexity in 

mid-coarse timescales in fronto-central and centro-parietal regions (week 2 to week 8). These 

were source-localized to regions associated with the DMN (precuneus, PCC) and the cingulate 

cortex (ACC, PCC), known to be impaired in depression. Non-responders were associated with 

early changes in neural dynamics (baseline to week 2). Specifically, widespread effects were 

observed in high-delta, theta and beta oscillations and decreased complexity approached 

significance in mid-coarse timescales in the left fronto-central regions. No changes were 

observed in non-responders following 2 weeks of escitalopram treatment suggesting an early, 

potentially medication-induced perturbance of neural dynamics by medications. This perturbance 

was hypothesized to rise from potential abnormalities in the serotonergic and/or neuroplasticity 

mechanism of action of escitalopram specific to non-responders. Future work should investigate 

extended longitudinal effects of antidepressants on neural dynamics in patients (i.e., following 

the completion of a treatment and over several treatment trials) to better understand the transition 

from non-response to treatment-resistance. The combination of genetics and neuroimaging in the 

future is expected provide better insight into the specific targets of antidepressants. Uncovering 

reliable targets of treatment can improve the efficacy of current treatments for depression and 

potentially contribute towards to the development of novel treatments with improved targets for 

high efficacy. 
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6.7 Tables 

Table 6.1 - Demographic and Clinical Characteristics 

 
 UBC 

 

TGH QNS CAM 

 

ALL 

 

Responders  Non-

responders 

N 49 36 15 7 107 50 57 

Age  

(mean, std) 

35.5 +/- 

11.4 

34.2 +/- 

12.2 

46.9 +/- 

11.7 

30.4 +/- 

13.0 

36.3 +/- 12.5 36.4 +/- 13.0 36.2 +/- 12.0 

Gender  

(M/F) 

17/32 12/24 8/7 0/7 37/70 16/34 21/36 

MADRS 

Baseline  

(mean, std) 

28.3 +/- 

5.93 

32.6 +/- 

5.71 

29.3 +/- 

4.38 

28.0 +/- 

5.16  

29.9 +/- 5.90 29.5 +/- 6.00 30.2 +/- 5.85 

MADRS week2  

(mean, std) 

21.5 +/- 

7.43 

24.8 +/- 

11.2 

22.9 +/- 

5.13 

21.1 +/- 

3.98  

22.8 +/- 8.53 19.8 +/- 8.38 25.4 +/- 7.83 

MADRS week8 

(mean, std) 

13.8 +/- 

8.70 

18.1 +/- 

11.7 

17.3 +/- 

9.56 

15.7 +/- 

6.01 

15.8 +/- 9.90 7.7 +/- 5.06 22.9 +/- 7.22 

Change in 

MADRS 

(baseline to 

week8)  

(mean, std) (%) 

51.4 +/- 

31.1 

44.8 +/- 

31.9 

40.0 +/- 

35.9 

44.5 +/- 

16.9 

47.1 +/- 31.3 73.8 +/- 16.3 23.0 +/- 20.8 

Responders / 

Nonresponders 

24 / 25 17 / 19 6 / 9 3 / 4 50 / 57 - - 
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6.8 Figures 

 

 

Figure 6.1 – Association between Modulation of Complexity (Baseline to Week 8) and 

Improvement in Mood  

Left Top. Image shows significant (original p <0.05) spearman correlation coefficients (rho) 

between percent change in MADRS and MSE in 107 patients receiving escitalopram (blue: 

negative correlation; red: positive correlation). Cluster-based correction for multiple comparisons 

was performed. Left Bottom. Topographies illustrate all the significant (original p <0.05) 

spearman correlation coefficients (rho) between percent change in MADRS and MSE. Right. 

Scatter plots highlight the time-scale and region-specific association between percent change in 

MSE (y-axes) and percent change in MADRS (x-axis) with highest correlations.  
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Figure 6.2 – Association between Modulation of Complexity (Baseline to Week 8) and Improvement in Mood in Source Space. 

Left. Image shows significant (original p <0.05) spearman correlation coefficients (rho) between percent change in MADRS and MSE 

in 107 patients receiving escitalopram (blue: negative correlation; red: positive correlation). Cluster-based correction for multiple 

comparisons was performed. Right. Scatter plot highlights the time-scale and region-specific association between percent change in 

MSE (y-axes) and percent change in MADRS (x-axis) with highest correlation.  
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Figure 6.3 - Effect of Escitalopram on Complexity of Neural Dynamics (Baseline to Week 

2).  

Top. Waveforms depict multiscale entropy (MSE) at baseline (black line) and 2 weeks (blue 

line) into escitalopram treatment in responders (A) and non-responders (B). The lines represent 

the average MSE (y-axes) across electrodes (dots) for time-scales 1 to 70 (x-axes). Middle. 

Images show the original post-hoc test statistics comparing MSE post to pre-treatment across all 

electrodes (1 to 58) and all time-scales (1 to 70) (blue: decreases; red: increases following 

treatment) for responders (A) and non-responders (B) to escitalopram. Bottom. Each topography 

reflects the significant t-maps following correction for multiple comparison, using cluster-based 

non-parametric permutation test, depicting only the significant clusters p<0.05 and setting to 0 

non-significant pixels.  
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Figure 6.4 – Association between Modulation of Complexity (Baseline to Week 2) and Improvement in Mood in Source Space. 

Left. Image shows significant (original p <0.05) spearman correlation coefficients (rho) between percent change in MADRS and MSE 

in 107 patients receiving escitalopram (blue: negative correlation; red: positive correlation). Cluster-based correction for multiple 

comparisons was performed. Right. Scatter plot highlights the time-scale and region-specific association between percent change in 

MSE (y-axes) and percent change in MADRS (x-axis) with highest correlations.  
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Figure 6.5 – Effect of Escitalopram on Complexity of Neural Dynamics (Week 2 to Week 

8).  

Top. Waveforms depict multiscale entropy (MSE) at week 2 (blue lines) and 8 weeks (red lines) 

into escitalopram treatment in responders (A) and non-responders (B). The lines represent the 

average MSE (y-axes) across electrodes (dots) for time-scales 1 to 70 (x-axes). Middle. Images 

show the original post-hoc test statistics comparing MSE post to pre-treatment across all 

electrodes (1 to 58) and all time-scales (1 to 70) (blue: decreases; red: increases following 

treatment) for responders (A) and non-responders (B) to escitalopram. Bottom. Each topography 

reflects the significant t-maps following correction for multiple comparison, using cluster-based 

non-parametric permutation test, depicting only the significant clusters p<0.05 and setting to 0 

non-significant pixels.  
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Figure 6.6 – Association between Modulation of Complexity (Week 2 to Week 8) and 

Improvement in Mood.  

Left Top. Image shows significant (original p <0.05) spearman correlation coefficients (rho) 

between percent change in MADRS and MSE in 107 patients receiving escitalopram (blue: 

negative correlation; red: positive correlation). Cluster-based correction for multiple comparisons 

was performed. Left Bottom. Topographies illustrate all the significant (original p <0.05) 

spearman correlation coefficients (rho) between percent change in MADRS and MSE. Right. 

Scatter plots highlight the time-scale and region-specific association between percent change in 

MSE (y-axes) and percent change in MADRS (x-axis) with highest correlations.  
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Figure 6.7 – Association between Modulation of Complexity (Week 2 to Week 8) and Improvement in Mood in Source Space. 

Left. Image shows significant (original p <0.05) spearman correlation coefficients (rho) between percent change in MADRS and MSE 

in 107 patients receiving escitalopram (blue: negative correlation; red: positive correlation). Cluster-based correction for multiple 

comparisons was performed. Right. Scatter plot highlights the time-scale and region-specific association between percent change in 

MSE (y-axes) and percent change in MADRS (x-axis) with highest correlations.  
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Figure 6.8 – Association between Baseline Complexity and Improvement in Mood. 

Left. Image shows significant (original p <0.05) spearman correlation coefficients (rho) between percent change in MADRS and 

baseline MSE in 107 patients receiving escitalopram (blue: negative correlation; red: positive correlation). Cluster-based correction for 

multiple comparisons was performed. Right. Scatter plots highlight the time-scale and region-specific association between percent 

baseline MSE (y-axes) and percent change in MADRS (x-axis) with highest correlations.  
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Figure 6.9 – Association between Baseline Complexity and Improvement in Mood in Source Space. 

Left. Image shows significant (original p <0.05) spearman correlation coefficients (rho) between percent change in MADRS and 

baseline MSE in 107 patients receiving escitalopram (blue: negative correlation; red: positive correlation). Cluster-based correction for 

multiple comparisons was performed. Right. Scatter plots highlight the time-scale and region-specific association between baseline 

MSE (y-axes) and percent change in MADRS (x-axis) with highest correlations. 
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Figure 6.10 – Association between Complexity at Week 2 and Improvement in Mood. 

Left. Image shows significant (original p <0.05) spearman correlation coefficients (rho) between percent change in MADRS and MSE 

(at Week 2) in 107 patients receiving escitalopram (blue: negative correlation; red: positive correlation). Cluster-based correction for 

multiple comparisons was performed. Right. Scatter plots highlight the time-scale and region-specific association between MSE at 

Week 2 (y-axes) and percent change in MADRS (x-axis) revealing highest correlations.  
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Figure 6.11 - Association between Complexity at Week 2 and Improvement in Mood in Source Space. 

Left. Image shows significant (original p <0.05) spearman correlation coefficients (rho) between percent change in MADRS and MSE 

(at Week 2) in 107 patients receiving escitalopram (blue: negative correlation; red: positive correlation). Cluster-based correction for 

multiple comparisons was performed. Right. Scatter plots highlight the time-scale and region-specific association between MSE at 

Week 2 (y-axes) and percent change in MADRS (x-axis) revealing highest correlations.  
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6.9 Supplementary Material 
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Figure S 6.1 – Effect of Escitalopram on Cortical Oscillations (Baseline to Week 8). 

Top. Waveforms depict the absolute power spectrum of resting-state eyes-closed EEG at 

baseline (black waveforms) and week 8 (red waveforms) into escitalopram treatment in 

responders (A) and non-responders (B). The x-axes are frequency in Hz and the y-axes the 

relative power in dB. Middle. Images show the original post-hoc test statistics maps comparing 

the relative power across frequency bands (x-axes) and channels (y-axes) post compared to pre-

treatment (blue: decreases; red: increases following treatment) for responders and non-

responders. Bottom. Each topography reflects the significant t-map depicting only the significant 

clusters p<0.05, setting to 0 non-significant pixels.  
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Figure S 6.2 – Effect of Escitalopram on Cortical Oscillations in Source Space (Baseline to Week 8). 

In all images, x-axis represents the frequency (1 to 50) in Hertz and y-axis represents Regions of Interest (ROIs) of the Destrieux Atlas 

(1 to 148). The ROIs are grouped into brain regions in the left (L: the upper half the images) and right (R: the lower half of the 

images) hemisphere separated by the horizontal black line. Images show the post-hoc independent sample t-test statistics following 

cluster-based permutation test correction for multiple comparison, depicting only the significant clusters p<0.05, labeling only the 

significant corresponding ROIs, and setting to 0 non-significant pixels. A. Image shows the t-test statistics comparing the change in 

power in responders of escitalopram (red: increase; blue: reduction). B. Image shows the t-test statistics comparing the change in 

power in non-responders of escitalopram (red: increase; blue: reduction). 
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Figure S 6.3 – Association between Modulation of Cortical Oscillations (Baseline to Week 8) and Improvement in Mood in 

Sensor Space (A) and Source Space (B). 

(A) Top. Image shows significant (original p <0.05) spearman correlation coefficients (rho) between percent change in MADRS and 

relative power in 107 patients receiving escitalopram (blue: negative correlation; red: positive correlation). Cluster-based correction 

for multiple comparisons was performed. Bottom. Topographies illustrate all the significant (original p <0.05) spearman correlation 

coefficients (rho) between percent change in MADRS and relative power. (B) Image shows significant correlation coefficients in 

source.  
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Figure S 6.4 – Effect of Escitalopram on Cortical Oscillations (Week 2 to Week 8). 

Top. Waveforms depict the absolute power spectrum of resting-state eyes-closed EEG at week 2 

(blue waveforms) and 8 weeks (red waveforms) into escitalopram treatment in responders (A) 

and non-responders (B). The x-axes are frequency in Hz and the y-axes the relative power in dB. 

Middle. Images show the original post-hoc test statistics maps comparing the relative power 

across frequency bands (x-axes) and channels (y-axes) post compared to pre-treatment (blue: 

decreases; red: increases following treatment) for responders (A) and non-responders (B). 

Bottom. Each topography reflects the significant t-map depicting only the significant clusters 

p<0.05, setting to 0 non-significant pixels.  
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Figure S 6.5 – Effect of Escitalopram on Cortical Oscillations in Source Space (Baseline to Week 2). 

In all images, x-axis represents the frequency (1 to 50) in Hertz and y-axis represents Regions of Interest (ROIs) of the Destrieux Atlas 

(1 to 148). The ROIs are grouped into brain regions in the left (L: the upper half the images) and right (R: the lower half of the 

images) hemisphere separated by the horizontal black line. Images show the post-hoc independent sample t-test statistics following 

cluster-based permutation test correction for multiple comparison, depicting only the significant clusters p<0.05, labeling only the 

significant corresponding ROIs, and setting to 0 non-significant pixels. A. Image shows the t-test statistics comparing the change in 

power in responders of escitalopram (red: increase; blue: reduction). B. Image shows the t-test statistics comparing the change in 

power in non-responders of escitalopram (red: increase; blue: reduction). 
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Figure S 6.6 – Association between Modulation of Cortical Oscillations (Baseline to Week 2) and Improvement in Mood in 

Sensor Space (A) and Source Space (B). 

(A) Top. Image shows significant (original p <0.05) spearman correlation coefficients (rho) between percent change in MADRS and 

relative power in 107 patients receiving escitalopram (blue: negative correlation; red: positive correlation). Cluster-based correction 

for multiple comparisons was performed. Bottom. Topographies illustrate all the significant (original p <0.05) spearman correlation 

coefficients (rho) between percent change in MADRS and relative power. (B) Image shows significant correlation coefficients in 

source.  
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Figure S 6.7 – Effect of Escitalopram on Cortical Oscillations (Week 2 to Week 8). 

Top. Waveforms depict the absolute power spectrum of resting-state eyes-closed EEG at week 2 

(blue waveforms) and 8 weeks (red waveforms) into escitalopram treatment in responders (A) 

and non-responders (B). The x-axes are frequency in Hz and the y-axes the relative power in dB. 

Middle. Images show the original post-hoc test statistics maps comparing the relative power 

across frequency bands (x-axes) and channels (y-axes) post compared to pre-treatment (blue: 

decreases; red: increases following treatment) for responders (A) and non-responders (B). 

Bottom. Each topography reflects the significant t-map depicting only the significant clusters 

p<0.05, setting to 0 non-significant pixels.  
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Figure S 6.8 – Association between Modulation of Cortical Oscillations (Week 2 to Week 8) and Improvement in Mood in 

Sensor (A) and Source Space (B). 

(A) Top. Image shows significant (original p <0.05) spearman correlation coefficients (rho) between percent change in MADRS and 

relative power in 107 patients receiving escitalopram (blue: negative correlation; red: positive correlation). Cluster-based correction 

for multiple comparisons was performed. Bottom. Topographies illustrate all the significant (original p <0.05) spearman correlation 

coefficients (rho) between percent change in MADRS and relative power. (B) Image shows significant correlation coefficients in 

source.  
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Figure S 6.9 – Association between Baseline Cortical Oscillations and Improvement in Mood in Sensor (A) and Source Space 

(B). 

(A) Top. Image shows significant (original p <0.05) spearman correlation coefficients (rho) between percent change in MADRS and 

baseline relative power in 107 patients receiving escitalopram (blue: negative correlation; red: positive correlation). Cluster-based 

correction for multiple comparisons was performed. Bottom. Topographies illustrate all the significant (original p <0.05) spearman 

correlation coefficients (rho) between percent change in MADRS and baseline relative power. (B) Image shows significant correlation 

coefficients in source.  
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Figure S 6.10 – Association between Cortical Oscillations (at Week 2) and Improvement in Mood in Sensor (A) and Source 

Space (B). 

(A) Top. Image shows significant (original p <0.05) spearman correlation coefficients (rho) between percent change in MADRS and 

relative power at week 2 in 107 patients receiving escitalopram (blue: negative correlation; red: positive correlation). Cluster-based 

correction for multiple comparisons was performed. Bottom. Topographies illustrate all the significant (original p <0.05) spearman 

correlation coefficients (rho) between percent change in MADRS and relative power at week 2. (B) Image shows significant 

correlation coefficients in source.  
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Chapter 7 – Characterizing the Modulation of Global-
Network Dynamics during Escitalopram Treatment in 

Major Depressive Disorder: A CAN-BIND-1 Study 
7  

 

 

In this chapter, we apply EEG microstate analysis to extract global brain-network measures of 

neural oscillations. We aim to identify whether these measures can provide insight into targets of 

escitalopram for successful treatment outcome. Introduction section is omitted as it is a repeat of 

introduction from chapters 5 and 6. 
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7.1 Methods 

Patients and data. In the CAN-BIND-1 study, 211 participants aged 18-60 years who met the 

DSM-IV requirements for major depressive disorder were recruited and completed the baseline 

visit. Of this group, 180 patients received 8 weeks of standardized escitalopram treatment (10-

20mg).  At the 8 week visit, responder or non-responder status was determined as ≥ 50% 

decrease in Montgomery–Åsberg Depression Rating Scale (MADRS) score from baseline. There 

were 85 responders and 95 non-responders at week 8 (see (Kennedy, Lam et al. In Press, 2018) 

for further details). Detailed descriptions on the clinical data, research protocol and data 

acquisition have been published previously (Lam, Milev et al. 2016, Baskaran, Farzan et al. 

2017, Farzan, Atluri et al. 2017, Kennedy, Lam et al. In Press, 2018). In a subset of patients that 

were recruited at four sites participating in EEG acquisition, eight minutes of resting-state, eyes-

closed EEG data was collected. The participating sites included: University of British Columbia 

(UBC), Toronto General Hospital (TGH), Queens University (QNS), and the Centre for 

Addiction and Mental Health (CAMH). The demographic and clinical characteristics are 

presented in Table 6.1.  

 

EEG data was collected at baseline (within 3 days before the start of the treatment trial), at the 

end of week 2 (i.e., two weeks after the beginning of the trial) and at the end of week 8 (i.e., 

eight weeks after the beginning of the trial). Of the 180 patients, 124 patients were recruited to 

participate in EEG assessments. Fifteen patients were excluded because data from one or more of 

the visits was missing. Two patients were excluded because data from at least one or more visits 

were noisy. Therefore, this study included resting-state, eyes-closed EEG data collected from 

107 patients at baseline, at the end of week 2, and at the end of week 8. Detailed descriptions on 

the clinical data, research protocol and data acquisition have been published previously (Lam, 

Milev et al. 2016, Baskaran, Farzan et al. 2017, Farzan, Atluri et al. 2017) and are summarized in 

Chapters 3, 6 and 8 of this thesis.  

 

Treatment. Escitalopram was administered in an open-label manner, starting at 10 mg daily, 

which was increased to 20 mg daily at week 2 or later if clinically necessary. For patients who 

were unable to tolerate the 20 mg dose, the dose could be reduced to 10 mg at the discretion of 
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the treating psychiatrist. Participants were clinically assessed every 2 weeks throughout the study 

period (8 weeks) including baseline (before administration of study medication). The primary 

outcome measure was the change in Montgomery-Ǻsberg Depression Rating Scale (MADRS) 

from baseline to week 8 of the study. Response was defined as a ≥50% decrease in MADRS 

score. 

 

Inter-Site Data Harmonization. All EEG datasets were standardized to the following 

parameters: 58 electrodes common to all sites, 0.05-100Hz bandpass filter, Cz reference, 512Hz 

sampling rate. The EEG files were then exported as an EEGLAB (Delorme and Makeig 2004) 

dataset. Data was standardized using MATLAB R2012b/MATLAB R2016a with the EEGLAB 

toolbox (v12.0.2.6b). Complete descriptions on the standardization of EEG data across sites in 

the CANBIND study were recently published (Farzan, Atluri et al. 2017).  

 

Data Preprocessing. Data was analyzed at the Temerty Centre for Therapeutic Brain Stimulation 

at CAMH. During preprocessing, EEG data was divided into 2-second epochs, bandpass-filtered 

between 1-80Hz, and notch-filtered at 60Hz. With the removal of eye electrodes and other 

unused channels, the total number of EEG channels used for analysis was 58. Using EEGLAB, 

independent component analysis was used to extract eye, muscle and electrode artifacts. Deleted 

EEG channels were interpolated using spherical spline interpolation (Perrin, Pernier et al. 1989) 

and data was re-referenced to an average reference. This preprocessing pipeline is currently 

made available as ERPEEG (http://www.tmseeg.com/multisiteprojects/). 

 

Microstate Analysis. Microstate analysis followed the standard procedure outlined in seminal 

work (Lehmann, Ozaki et al. 1987, Pascual-Marqui, Michel et al. 1995) and was implemented 

using CARTOOL (Brunet, Murray et al. 2011). Prior to the application of microstate analysis, 4 

minutes of the pre-processed EEG data was bandpass-filtered from 1-30Hz. The topographical 

maps at the local maxima peaks of the global field power curve are clustered to derive the four 

prototypical microstate classes (Koenig, Prichep et al. 2002). In this study, the topographical 

atomize–agglomerate hierarchical clustering algorithm (Tibshirani and Walther 2005) was 

applied to cluster the data for each visit (baseline or week 2) separately into four states 

http://www.tmseeg.com/multisiteprojects/)
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(microstate maps). Finally, topographical maps at each local maxima point of the global field 

power curve were assigned to the microstate class of highest correlation using Pearson’s spatial  

product-moment correlation coefficient (Brandeis, Naylor et al. 1992). Three features were 

calculated for each of the four microstate classes: (i) average duration, (ii) frequency, and (iii) 

coverage. Average duration is the amount of time a microstate class remains stable when it 

appears, in milliseconds; frequency refers to the occurrence of each microstate class per second; 

and coverage is the percent of recording covered by each microstate class.  

 

Statistical Analysis. To examine the effect of treatment on microstate characteristics following 

escitalopram, a 2x3x4 repeated-measures ANOVA (Lehmann, Faber et al. 2005, Tomescu, Rihs 

et al. 2014) was conducted for each microstate feature (Duration, Frequency and Coverage) with 

RESPONSE (Responder, Non-responder; Response: ≥50% improvement in MADRS) as a 

categorical factor, and TIME (Baseline, Week 2, Week 8) and MICROSTATE CLASS (A, B, C, 

D) as the repeated-measures factors. Age was included as a covariate.  

 

Based on our hypothesis that seizure therapy modulates global neural dynamics, planned 

comparisons were performed to determine whether changes in microstate characteristics were 

associated with treatment response. For each of the three microstate characteristics (duration, 

frequency, coverage), paired t-tests were performed to compare the characteristic before and 

after treatment for each of the four states. The results were corrected for multiple comparisons 

using the Bonferroni correction method (for the 4 microstates). 

 

A significance level of α<0.05 was used for all statistical tests. Pairwise post-hoc comparisons 

were performed using Tukey-HSD. All planned comparisons were corrected using the 

Bonferroni method (4 comparisons for the 4 microstate classes).   

 

Correlation and Predictive Analysis. Associations between baseline (week 0 or week 2) 

microstate characteristics or an early change (change from week 0 to week 2) in microstate 

characteristics with clinical assessments (change in MADRS score) were evaluated with multiple 

regression models. The four microstates (A, B, C and D) and age were included in the model. 
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Change in microstate characteristics were calculated as (Post-Pre)/Pre*100 where a higher 

percentage represents an increase in the microstate characteristic. Change in MADRS was 

calculated as (Pre-Post)/Pre*100 where a higher percentage represents improvement in 

depressive symptoms.  

 

7.2 Results 

A significant change in MADRS score was observed following 8 weeks of escitalopram 

treatment (t=13.8; df=105; p<0.0001; Cohen’s d=2.69). 

7.2.1 Effect of Escitalopram on EEG Microstate Characteristics 

7.2.1.1 Average Duration 

A main effect of AGE (F=5.87; df=1,98; p=0.02; ƞp
2=0.057), TIME (F=4.87; df=2,196; p=0.009; 

ƞp
2=0.05), MAPS (F=4.09; df=3,294; p=0.007; ƞp

2=0.04), and an interaction effect of TIME x 

MAPS (F=5.41; df=6,588; p<0.0001; ƞp
2=0.05), MAPS x SITE (F=6.61; df=9,294; p<0.0001; 

ƞp
2=0.17), and TIME x MAPS x SITE (F=3.78; df=18,588; p<0.0001; ƞp

2=0.10) was seen in the 

duration of microstates. An effect of RESPONSE (≥50% improvement in MADRS) was not 

observed (F=0.37; df=1,98; p=0.55; ƞp
2=0.004). Post-hoc results are summarized in Table 7.1. 

Planned comparisons were conducted to investigate the effect of response based on our 

hypotheses. Significant results from planned comparisons are summarized in Table 7.2. All 

significant results are also shown in Figure 7.1. 

 

7.2.1.2 Frequency 

A main effect of AGE (F=5.64; df=1,98; p=0.02; ƞp
2=0.05), TIME (F=5.36; df=2,196; p=0.005; 

ƞp
2=0.05), MAPS (F=4.11; df=3,294; p=0.007; ƞp

2=0.04), and an interaction effect of TIME x 

MAPS (F=5.36; df=6,588; p<0.0001; ƞp
2=0.05), TIME x SITE (F=2.19; df=6,196; p=0.04; 

ƞp
2=0.06), MAPS x SITE (F=4.77; df=9,294; p<0.0001; ƞp

2=0.13), and TIME x MAPS x SITE 

(F=4.4.; df=18,588; p<0.0001; ƞp
2=0.12) was seen in the duration of microstates. An effect of 

RESPONSE (≥50% improvement in MADRS) was not observed (F=0.08; df=1,98; p=0.77; 
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ƞp
2=0.0009). Post-hoc results are summarized in Table 7.3. Planned comparisons were 

conducted to investigate the effect of response based on our hypotheses. Significant results from 

planned comparisons are summarized in Table 7.4. All significant results are also shown in 

Figure 7.2. 

 

7.2.1.3 Coverage 

A main effect of AGE (F=5.33; df=1,98; p=0.02; ƞp
2=0.05), MAPS (F=4.30; df=3,294; p=0.005; 

ƞp
2=0.04), and an interaction effect of TIME x MAPS (F=5.45; df=6,588; p<0.0001; ƞp

2=0.05), 

MAPS x SITE (F=6.67; df=9,294; p<0.0001; ƞp
2=0.17) and TIME x MAPS x SITE (F=4.36; 

df=18,588; p<0.0001; ƞp
2=0.12) was seen in the duration of microstates. An effect of 

RESPONSE (≥50% improvement in MADRS) was not observed (F=1.67; df=1,98; p=0.99; 

ƞp
2=0.01). Post-hoc results are summarized in Table 7.5. Planned comparisons were conducted 

to investigate the effect of response based on our hypotheses. Significant results from planned 

comparisons are summarized in Table 7.6. All significant results are also shown in Figure 7.3. 

 

7.2.2 Correlation and Prediction Analysis Results 

Change in microstate characteristics from baseline to week 8 did not correlate with improvement 

in depressive symptoms. 

 

Microstate characteristics at baseline (i.e., week 0) did not correlate with improvement in 

depressive symptoms. However, at week 2, a long duration and a high frequency of State B were 

correlated with improvement in depressive symptoms (Table 7.7). In addition, an early increase 

in coverage of State B from baseline to week 2 correlated with improvement in depressive 

symptoms (Table 7.7).  

 

7.3 Discussion 

Significant changes in microstate characteristics were observed in both responders and non-

responders of escitalopram following 8 weeks of treatment. However, the trajectory of these 



204 

 

changes was observed to be different between the two groups. Responders revealed a gradual 

change in duration, frequency and coverage of microstates over the entire treatment course (i.e., 

changes in microstate characteristics from baseline to week 2 were usually in the same direction 

as changes from week 2 to week 8). On the other hand, non-responders showed a significant 

early change (i.e., from baseline to week 2) in microstate characteristics that were not significant 

in responders. Specifically, non-responders revealed an early decrease in the duration, frequency 

and coverage of State B and an early increase in the duration, frequency and coverage of State D. 

No significant changes in early microstate characteristics were only specific to responders. If 

early changes were significant, they were significant in both responders and non-responders or 

only in non-responders. Results from correlation analysis revealed that a long duration and a 

high frequency of State B at week 2, and an increase in the coverage of State B after 2 weeks of 

treatment, may predict treatment outcome. In light of these findings, microstates may be a 

promising marker for the early evaluation of antidepressant efficacy.  

 

With the highest efficacy for treatment-resistant depression, electroconvulsive therapy (ECT) is 

perhaps the benchmark to which other treatments can be compared to. Although the exact 

mechanism of action of ECT is unclear, several studies have made hypotheses based on their 

findings. In our previous work (Chapter 4), state-specific modulation of global brain dynamics 

was observed in responders of ECT. Specifically, responders revealed an increase in the duration 

of State A and a decrease in the frequency of States B, C and D suggesting that ECT may impact 

global network dynamics for therapeutic efficacy. In comparison, results from this study revealed 

significant changes in the dynamics of all states (from baseline to week 8) following 

escitalopram treatment. But, these changes were not specific to responders or non-responders 

suggesting that the mechanism of action of escitalopram may not include the modulation of 

global network dynamics for therapeutic effect. However, changes in global-network dynamics 

by escitalopram may have a negative impact on treatment outcome. As mentioned, early changes 

(baseline to week 2) in global network dynamics following escitalopram were associated with 

non-response to treatment.   

 

Investigating the predictive value of microstate characteristics, baseline global brain dynamics 

were not correlated with response to ECT, but significant correlations were observed with 
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response to escitalopram. Baseline or early changes in the global dynamics of States B and D 

were specific to non-responders only. In addition, State B characteristics significantly correlated 

with improvement in depressive symptoms following the 8-week course of escitalopram. This 

suggests that, unlike seizure therapy, which potentially shows therapeutic effect by impacting the 

dynamics of neural networks regardless of the initial configuration of the network, the 

effectiveness of antidepressant medications is highly dependent on the baseline brain state.  

 

Changes in States B, C and D were observed in non-responders of escitalopram. Previous studies 

have shown that an increase in the occurrence of microstate B was associated with psychotic 

symptoms (Lehmann, Faber et al. 2005, Irisawa, Isotani et al. 2006, Nishida, Morishima et al. 

2013). With recent progress in the integration of fMRI and EEG data, a few studies have also 

explored the association between cortical microstate activity and resting-state fMRI networks. 

State B was associated with the parietal and occipital-parietal areas of spatial-visualization and 

verbalization. In (Britz, Van De Ville et al. 2010) States C and D were associated with the 

salience and frontoparietal networks argued to be the facilitators of depressive symptoms. 

Decreased frequency of occurrence of microstate C was also associated with panic disorder 

(Kikuchi, Koenig et al. 2011). Taken together, changes in microstate characteristics seen in non-

responders of escitalopram may indicate worsening of symptoms in these patients. However, 

further research is needed to elucidate this hypothesis. Future work could investigate the 

neurophysiological underpinnings of microstates and how they might be associated with 

response to escitalopram.  

 

7.4 Conclusions 

In this chapter, we provided insight into the effects of escitalopram on resting-state global-brain 

network dynamics through EEG microstate analysis. Results suggested that antidepressant 

medications have a significant impact on global brain dynamics but they may not impact global 

brain dynamics for therapeutic effect. However, initial changes in global brain-network 

dynamics were associated with non-response to escitalopram. Therefore, medications might 

potentially cause an early perturbance in global-network dynamics that eventually leads to non-
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response. Future studies including data at several time points (i.e., 2 days, 1 week, 4 weeks 

following treatment) would improve our current understanding of antidepressant medications and 

their mechanism of action at the network level of biological organization. Finally, mapping 

global neural dynamics and their modulation by several other antidepressant medications is 

highly recommended. This would provide useful information on the effects of different 

medications and may even help guide the treatment selection process for patients with 

depression.  
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7.5 Tables 

 

Table 7.1 - Average Duration Feature ANOVA Post-Hoc Results (Tukey-HSD) 

 
Interaction Effect Post-hoc Result 

 Comparison State Stats 

Time x Maps Week 2 vs Week 0  State C HSD=-9.66; df=588; p=0.0005; Cohen’s d=0.53 

Week 2 vs Week 0  State D HSD=11.6; df=588; p<0.0001; Cohen’s d=0.73 

Week 8 vs Week 2 State A HSD=-6.47; df=588; p<0.0001; Cohen’s d=0.31 

Week 8 vs Week 2 State B HSD=7.20; df=588; p<0.0001; Cohen’s d=0.48 

Week 8 vs Week 0 State A HSD=-8.35; df=588; p<0.0001; Cohen’s d=0.56 

Week 8 vs Week 0  State C HSD=-11.4; df=588; p=0.03; Cohen’s d=0.64 

Week 8 vs Week 0  State D HSD=9.56; df=588; p=0.02; Cohen’s d=0.66 

Maps  x Site CAM vs QNS State C HSD=3.23; df=287.8; p=0.04; Cohen’s d=0.52 

CAM vs TGH State A HSD=-5.74; df=287.8; p=0.007; Cohen’s d=0.92 

TGH vs UBC State A HSD=5.24; df=287.8; p=0.02; Cohen’s d=0.45 

Time x Maps x Site TGH vs UBC - Week 0 State A HSD=7.04; df=416.1; p=0.0005; Cohen’s d=1.05 

 

 

Table 7.2 - Average Duration Feature - Planned Comparisons for Response  

 
Time Map Group Planned Comparison Results 

Week 2 vs Week 0 State A Responders t = -2.42; df=50; Bonferroni-corrected p=0.08;  

Cohen’s d=0.20 

Non-responders N.S. 

State B Responders N.S. 

Non-responders t = -2.88; df=57; Bonferroni-corrected p=0.02;  

Cohen’s d=0.41 

Week 8 vs Week 2 State B Responders N.S. 

Non-responders t = 5.05; df=57; Bonferroni-corrected p<0.0001;  

Cohen’s d=0.83 

State C Responders N.S. 

Non-responders t = -2.84; df=57; Bonferroni-corrected p=0.02;  

Cohen’s d=0.24 

 

 

Table 7.3 - Frequency Feature ANOVA Post-Hoc Results (Tukey-HSD) 
 

Interaction Effect Post-hoc 

 Comparison State Stats 

Site x Time none   

Time x Maps Week 2 vs Week 0 State D HSD=12.9; df=588; p<0.0001; Cohen’s d=0.68 

Week 8 vs Week 0  State A HSD=-8.75; df=588; p<0.0001; Cohen’s d=0.49 

Week 8 vs Week 0  State D HSD=14.4; df=588; p<0.0001; Cohen’s d=0.87 

Week 8 vs Week 2 State A HSD=-6.05; df=588; p=0.004; Cohen’s d=0.36 

Week 8 vs Week 2 State B HSD=9.90; df=588; p=0.0002; Cohen’s d=0.65 

Maps  x Site CAM vs QNS State A HSD=-3.98; df=252.8; p=0.01; Cohen’s d=0.64 

TGH vs UBC State A HSD=4.04; df=252.8; p=0.009; Cohen’s d=0.33 

Time x Maps x Site none   
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Table 7.4 - Frequency Feature - Planned Comparisons for Response  

 
Time Map Group Planned Comparison Results 

Week 2 vs Week 0 State B Responders N.S. 

Non-responders t = -5.62; df=57; Bonferroni-corrected p<0.0001;  

Cohen’s d=0.57 

State D Responders N.S. 

Non-responders t = 4.72; df=57; Bonferroni-corrected p<0.0001;  

Cohen’s d=0.84 

Week 8 vs Week 2 State C Responders N.S. 

Non-responders t = -2.92; df=57; Bonferroni-corrected p=0.02;  

Cohen’s d=0.29 

State D Responders t = 3.57; df=50; Bonferroni-corrected p=0.003;  

Cohen’s d=0.49 

Non-responders N.S. 

 

 

Table 7.5 - Coverage Feature ANOVA Post-Hoc Results (Tukey-HSD) 

 
Interaction Effect Post-hoc 

 Comparison State Stats 

Time x Maps Week 2 vs Week 0 State D HSD=12.5; df=588; p<0.0001; Cohen’s d=0.92 

Week 8 vs Week 0  State A HSD=-9.08; df=588; p<0.0001; Cohen’s d=0.65 

Week 8 vs Week 0  State C HSD=-8.51; df=588; p=0.001; Cohen’s d=0.62 

Week 8 vs Week 0 State D HSD=11.7; df=588; p<0.0001; Cohen’s d=0.99 

Week 8 vs Week 2 State A HSD=-5.30; df=588; p=0.01; Cohen’s d=0.42 

Week 8 vs Week 2 State B HSD=8.33; df=588; p=0.005; Cohen’s d=0.67 

Maps  x Site CAM vs QNS State A HSD=-4.70; df=294; p=0.02; Cohen’s d=0.72 

CAM vs QNS State C HSD=4.53; df=294; p=0.001; Cohen’s d=0.73 

CAM vs TGH State A HSD=-7.69; df=294; p<0.0001; Cohen’s d=1.11 

CAM vs TGH State C HSD=6.20; df=294; p=0.0003; Cohen’s d=0.94 

CAM vs UBC State C HSD=4.58; df=294; p=0.02; Cohen’s d=0.68 

TGH vs UBC State A HSD=8.21; df=294; p<0.0001; Cohen’s d=0.63 

Time x Maps x Site CAM vs TGH - Week 0 State A HSD=-6.47; df=588; p=0.005; Cohen’s d=1.59 

CAM vs TGH - Week 2 State A HSD=-5.87; df=588; p=0.02; Cohen’s d=1.78 

TGH vs UBC - Week 0 State A HSD=9.52; df=588; p<0.0001; Cohen’s d=1.25 

TGH vs UBC - Week 0 State D HSD=-5.44; df=588; p=0.06; Cohen’s d=0.86 

TGH vs UBC - Week 2 State A HSD=6.94; df=588; p=0.001; Cohen’s d=1.13 
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Table 7.6 - Coverage Feature - Planned Comparisons for Response  

 
Time Map Group Planned Comparison Results 

Week 8 vs Week 0 State B Responders t = 2.88; df=50; Bonferroni-corrected p=0.006;  

Cohen’s d=0.59 

Non-responders N.S. 

Week 2 vs Week 0 State A Responders N.S. 

Non-responders t = -2.53; df=57; Bonferroni-corrected p=0.05;  

Cohen’s d=0.38 

State B Responders N.S. 

Non-responders t = -4.00; df=57; Bonferroni-corrected p=0.0007;  

Cohen’s d=0.59 

State D Responders N.S. 

Non-responders t = 5.72; df=57; Bonferroni-corrected p<0.0001;  

Cohen’s d=1.15 

Week 8 vs Week 2 State B Responders N.S. 

Non-responders t = 5.27; df=57; Bonferroni-corrected p<0.0001;  

Cohen’s d=0.94 

State C Responders N.S. 

Non-responders t = -3.18; df=57; Bonferroni-corrected p=0.009;  

Cohen’s d=0.32 

 

 

Table 7.7 - Results from Multiple Regression Model Analysis 
  

 
Week 2  

 

Average Duration 

Week 2 

 

Frequency 

Change from Baseline to 

Week 2  

Coverage 

R 0.289 0.293 0.338 

Adjusted 

R2 

0.038 0.041 0.070 

ANOVA F(5,101)=1.85, p=0.11 F(5,101) = 1.90, p = 0.10  F(5,101) = 2.60, p = 0.03  

State A b* = -0.002, p = 0.98 b* = -0.16, p = 0.22 b* = -0.03, p = 0.75 

State B b* = 0.27, p = 0.006 b* = 0.28, p = 0.03 b* = 0.25, p = 0.04 

State C b* = -0.006, p = 0.96 b* = -0.07, p = 0.56 b* = -0.14, p = 0.18 

State D b* = -0.066, p = 0.52 b* = -0.15, p = 0.19 b* = -0.14, p = 0.49 

Age b* = -0.05, p = 0.62 b* = -0.09, p = 0.42 b* = -0.09, p = 0.33 
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7.6 Figures 

 
 

Figure 7.1 - Effect of escitalopram on the duration of all four microstates.  

In each subplot, the raw data is plotted on top of a boxplot showing the mean (red line), 95% 

confidence interval (red area) and 1 standard deviation (blue area). Significant comparisons are 

marked with a green (*). (A-D) Plots of duration of microstates A-D. 
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Figure 7.2 - Effect of escitalopram on the frequency of all four microstates.  

In each subplot, the raw data is plotted on top of a boxplot showing the mean (red line), 95% 

confidence interval (red area) and 1 standard deviation (blue area). Significant comparisons are 

marked with a green (*). (A-D) Plots of frequency of microstates A-D. 
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Figure 7.3 - Effect of escitalopram on the coverage of all four microstates.  

In each subplot, the raw data is plotted on top of a boxplot showing the mean (red line), 95% 

confidence interval (red area) and 1 standard deviation (blue area). Significant comparisons are 

marked with a green (*). (A-D) Plots of coverage of microstates A-D. 
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Section IV: Predicting Response to Pharmacotherapy Using 

EEG Measures of Neural Dynamics 
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Chapter 8 – Supervised Machine Learning for the 
Early Prediction of Response to Escitalopram in Major 

Depressive Disorder: An EEG Study  
8  

 

 

In this chapter, we integrate EEG measures of neural dynamics from frequency analysis, 

multiscale entropy analysis and microstate analysis and evaluate their performance for predicting 

response to escitalopram.  

 

 

Contents of this chapter were prepared for publication. Please note that during the publication 

process, errors may be discovered which could affect the content.  
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8.1 Abstract 

One major cause for the social and economic burden of depression is the number of years it can 

take to find an ideal treatment. Antidepressants are often the first line of treatment for major 

depression. However, with several different types of medication available, the challenge is in 

identifying which medication is best suited for each patient. To reduce the time spent in failed 

trials and avoid the debilitating impact of untreated depression, objective predictors of treatment 

response must be identified. In this study, machine learning methods were applied to evaluate 

resting-state neural dynamics for the prediction of escitalopram response. As part of phase 1 of 

the Canadian Biomarker Integration Network in Depression (CANBIND-1) study, patients 

received 8 weeks of open-label escitalopram treatment. Resting-state, eyes-closed 

electroencephalography data was included from 114 patients at baseline, and 107 patients two 

weeks into the treatment trial. Four prediction models were derived using support vector 

machines: (i) baseline, (ii) week 2, (iii) ‘change from baseline to week 2’, and (iv) a combined 

model using data from (i) and (iii). Performance was evaluated with feature sets derived from a 

feature polling combined with randomized permutation cross-validation. Classification accuracy 

was 72.8% for the baseline model, 69.2% for the week 2 model, 70.1% for the ‘change from 

baseline to week 2’ model, and 83.2% for the combined model. The integration of markers 

representing baseline neural activity with markers associated with early changes in neural 

activity was shown to augment the prediction of antidepressant response. With further validation, 

results from this study can potentially contribute towards the development of a personalized 

treatment selection tool for patients with depression.   

 

8.2 Introduction 

Antidepressants are an effective course of treatment and the first line of treatment for patients 

with major depressive disorder. Yet, remission rates are around 30% for the first trial and decline 

progressively with subsequent medication trials (Trivedi, Rush et al. 2006; Rush et al. 2006). 

Due to the heterogeneity of depression and the absence of tools that can identify the best 

treatment target for each patient, matching patients to an appropriate treatment has been a 
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daunting task for clinicians. Currently, a trial-and-error process is implemented to identify the 

antidepressant best suited for each patient, but this process can take time and patients may spend 

months to years suffering from symptoms (Solomon, Keller et al. 1997). Although clinical 

interviews and scales are available to confirm diagnosis and severity of symptoms, they are not 

sufficient for selecting an appropriate treatment for each patient (Winokur 1997, Chekroud, Zotti 

et al. 2016). One solution that might help to reduce the time spent in failed trials and avoid the 

debilitating impact of untreated depression (i.e., poor quality of life, economic burden), is 

identifying early biological predictors of response to an antidepressant. A personalized tool for 

the prediction of response to antidepressants can increase treatment efficacy rate and lead to the 

faster relief of symptoms.   

 

Converging lines of evidence suggest that spontaneous fluctuations in neural activity at baseline, 

as measured by electroencephalography (EEG), may predict subsequent clinical response to 

antidepressants (Hunter, Cook et al. 2007, Kemp, Gordon et al. 2008, Iosifescu 2011, Baskaran, 

Milev et al. 2012, Olbrich and Arns 2013). Studies have also shown that evidence of symptom 

reduction, as early as two weeks after treatment, may be predictive of treatment outcome 

(Szegedi, Jansen et al. 2009, de Vries, Roest et al. 2018). For example, several EEG studies have 

reported that resting-state neural oscillations, especially in the alpha and theta band, may predict 

response to antidepressants (Ulrich, Renfordt et al. 1986, Ulrich, Renfordt et al. 1986, Knott, 

Telner et al. 1996, Leuchter, Cook et al. 1997, Cook, Leuchter et al. 2005, Bares, Brunovsky et 

al. 2008, Rabinoff, Kitchen et al. 2011). Posterior alpha activity has been associated with 

response to fluoxetine and amitriptyline (Ulrich, Renfordt et al. 1984, Bruder, Sedoruk et al. 

2008), theta activity with response to imipramine, venlafaxine and several SSRIs (Knott, Telner 

et al. 1996, Iosifescu, Nierenberg et al. 2005, Iosifescu, Greenwald et al. 2009), delta activity 

with response to imipramine and paroxetine (Knott, Telner et al. 1996, Knott, Mahoney et al. 

2000), alpha asymmetry with response to fluoxetine (Bruder, Stewart et al. 2001), and increased 

activity in the rostral anterior cingulate cortex with response to nortriptyline, fluoxetine and 

venlafaxine (Pizzagalli, Pascual-Marqui et al. 2001, Korb, Hunter et al. 2009). A few studies 

have also evaluated the association between non-linear measures of EEG signals (e.g., 

complexity) and response to antidepressants such as citalopram, clomipramine, escitalopram, 

bupropion and mirtazapine (Thomasson, Pezard et al. 2000, Méndez, Zuluaga et al. 2012, 
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Jaworska, Wang et al. 2018). However, EEG measures have not been adopted routinely into 

clinical practice for treatment outcome prediction. This may be because: (i) some measures were 

identified in small sample sizes and therefore, may not be reproducible, (ii) no evaluation was 

conducted on generalizability to an independent dataset (either through held-out data or cross-

validation), and/or (iii) poor predictive performance was reported. As such, it is not clear 

whether features derived from resting-state EEG data can be used in clinical practice to predict 

response to treatment and ultimately match patients to interventions. In this study, we aim to 

build a model for antidepressant response prediction while addressing these limitations.  

 

The main objective of this study is to investigate whether baseline or early changes (2 weeks into 

treatment) in resting-state neural dynamics can predict response to escitalopram treatment in 

patients with major depressive disorder. We hypothesize that the inclusion of a second time point 

(2 weeks into treatment) and also the integration of multiple EEG measures (linear and non-

linear) would increase the predictive value of the model. 

 

Several characteristics of EEG dynamics can be integrated into the prediction model. In addition 

to traditional frequency analysis, we considered power spectral features in the source domain 

(Pizzagalli, Pascual-Marqui et al. 2001, Pizzagalli 2011), spatiotemporal complexity (Costa, 

Goldberger et al. 2005, Farzan, Atluri et al. 2017), and global brain-network dynamics (Pascual-

Marqui, Michel et al. 1995), previously shown to have predictive value for antidepressant 

response. With this approach, the resulting feature set can be extremely large in size, so feature 

reduction methods were applied to improve the efficiency of the feature selection process and 

identify the feature set that can best discriminate responders and non-responders. For the 

machine learning method, support vector machines were used due to their wide use and success 

in previous neuropsychiatric studies (Orru, Pettersson-Yeo et al. 2012).  

 

8.3 Methods 

Participants. In Phase 1 of the CAN-BIND study, 211 participants aged 18-60 years who met the 

DSM-IV requirements for major depressive disorder were recruited and completed the baseline 
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visit (Kennedy, Lam et al. In Press, 2018). Of this group, 180 patients completed 8 weeks of 

standardized escitalopram treatment (10-20mg). At the 8 week visit, responder or non-responder 

status was determined as ≥ 50% decrease in MADRS score from baseline. There were 85 

responders and 95 non-responders at week 8 (Kennedy, Lam et al. In Press, 2018). Resting-state, 

eyes-closed EEG data was collected from four of the six sites: University of British Columbia 

(UBC), Toronto General Hospital (TGH), Queens University (QNS) and the Centre for 

Addiction and Mental Health (CAMH). At each visit, approximately eight minutes of EEG data 

was collected. EEG data was collected at baseline (within 3 days before the start of the treatment 

trial), at the end of week 2 (i.e., two weeks after the beginning of the trial) and at the end of week 

8 (i.e., eight weeks after the beginning of the trial). This study included resting-state, eyes-closed 

EEG data collected from 114 patients at baseline, and 107 patients at the end of week 2 of 

treatment. Remaining patients either did not complete EEG assessments or the data was too 

noisy to include. Data was excluded prior to feature extraction. Clinical data for each visit is 

summarized in Table 8.1 and Table 8.2. For a detailed description of the clinical data, research 

protocol and data acquisition at each site, see (Lam, Milev et al. 2016, Baskaran, Farzan et al. 

2017, Farzan, Atluri et al. 2017, Kennedy, Lam et al. In Press, 2018).  

 

Inter-site Data Harmonization. All EEG datasets were standardized to the following parameters: 

58 electrodes common to all sites, 0.05-100Hz bandpass filter, Cz reference, 512Hz sampling 

rate. The EEG files were then exported as an EEGLAB (Delorme and Makeig 2004) dataset. 

Data was standardized using MATLAB R2012b-R2016a with the EEGLAB toolbox 

(v12.0.2.6b).  Complete descriptions on the standardization of EEG data across sites in the CAN-

BIND study were recently published (Farzan, Atluri et al. 2017).  

 

Data Preprocessing. During pre-processing, EEG data was divided into two second continuous 

epochs, bandpass-filtered between 1-80Hz (2nd order Butterworth), and notch-filtered at 60Hz 

(2nd order Butterworth). EEGLAB implementation of independent component analysis was used 

to extract eye, muscle and electrode artifacts. Deleted EEG channels were interpolated using 

spherical spline interpolation (Perrin, Pernier et al. 1989) and data was re-referenced to an 

average reference. This preprocessing pipeline is currently made available as ERPEEG 

(http://www.tmseeg.com/multisiteprojects/).  

http://www.tmseeg.com/multisiteprojects/
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Feature Extraction. The EEG data of each of the channels was divided into ten windowed 

segments of 20 seconds each (i.e., 20 seconds was the longest continuous epoch length we could 

extract from the data; a minimum of 10 segments were available from the data). The segments 

were used to calculate each of the metrics below. These results were then averaged across all 

windows. Averaging reduces variance in the data as well as the effect of outliers. Each EEG 

channel is represented by a single metric for single-electrode features (e.g., power, complexity) 

or a single metric may represent all 58 EEG channels for a global feature (e.g., microstates). 

These features are then passed onto the machine learning method.   

(i) Frequency analysis. The EEGLAB function spectopo was used to obtain the power spectrum 

for each electrode. The log-transformed absolute power was obtained for each channel for each 

of the specified frequency bands: delta (1-3.5Hz); theta (4-8Hz); low-alpha (8.5-10Hz); high-

alpha (10.5-12Hz); low-beta (12.5-18Hz); mid-beta (18.5-21Hz); and high-beta (21.5-30Hz). 

Asymmetry between left and right hemispheres was also considered. The absolute power in the 

left hemisphere was divided by the absolute power in the right hemisphere for all possible 

channel pairs in the 58 electrode montage: FP1/FP2, AF3/AF4, F7/F8, F5/F6, F3/F4, F1/F2, 

FT7/FT8, FC5/FC6, FC3/FC4, FC1/FC2, T7/T8, C5/C6, C3/C4, C1/C2, TP7/TP8, CP5/CP6, 

CP3/CP4, CP1/CP2, P7/P8, P5/P6, P3/P4, P1/P2, PO7/PO8, PO3/PO4, and O1/O2.  

 

(ii) Current source density analysis. Data was analyzed using the LORETA-KEY software 

using the eLORETA algorithm (Pascual-Marqui, Lehmann et al. 1999). The transformation 

matrix (58 channels to 6239 voxels) was derived by co-registering electrode co-ordinates (10-10 

international system) to the MNI152 MRI template (i.e., the head model) (Pascual-Marqui 2002) 

and a relative regularization parameter of 1. The solution space of eLORETA is restricted to 

cortical and some hippocampal and amygdala grey matter. The MNI152 template brain volume 

is divided into 6239 cortical gray matter voxels at 5-mm3 resolution (Pascual-Marqui 2002). 

From scalp-recorded electrical potential distribution, LORETA computes the three dimensional 

intracerebral distributions of current density for each of the specified bands of frequency: delta 

(1-3.5Hz); theta (4-8Hz); low-alpha (8.5-10Hz); high-alpha (10.5-12Hz); low-beta (12.5-18Hz); 

mid-beta (18.5-21Hz); and high-beta (21.5-30Hz). Regions were selected based on previous 
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literature: the anterior cingulate cortex (ACC), rostral ACC (rACC), and the medial orbitofrontal 

cortex (mOFC) (Pizzagalli, Pascual-Marqui et al. 2001, Korb, Hunter et al. 2009).  

 

(iii) Multiscale entropy. Multiscale entropy analysis was performed using the methods outlined 

in (Costa, Goldberger et al. 2005, Farzan, Atluri et al. 2017). Using the sample entropy equation, 

multiscale entropy was examined across all 58 electrodes with the coarse-graining process (for 

70 scales). Sample entropy quantifies the variability of time series by estimating the 

predictability of amplitude patterns across a time series. In our analysis, two consecutive data 

points were used for data matching (m=2) and data points were considered to match if their 

absolute amplitude difference was less than 15% (i.e., r =0.15) of the standard deviation of the 

time series (similar to (Costa, Goldberger et al. 2005, Farzan, Atluri et al. 2017)). 

 

Asymmetry between left and right hemispheres was also considered. Multiscale entropy in the 

left hemisphere was divided by the multiscale entropy in the right hemisphere for the following 

25 channel pairs: FP1/FP2, AF3/AF4, F7/F8, F5/F6, F3/F4, F1/F2, FT7/FT8, FC5/FC6, 

FC3/FC4, FC1/FC2, T7/T8, C5/C6, C3/C4, C1/C2, TP7/TP8, CP5/CP6, CP3/CP4, CP1/CP2, 

P7/P8, P5/P6, P3/P4, P1/P2, PO7/PO8, PO3/PO4, and O1/O2. 

 

(iv) Microstate analysis. Microstate analysis followed the standard procedure outlined in 

(Lehmann, Ozaki et al. 1987, Pascual-Marqui, Michel et al. 1995) and was implemented using 

CARTOOL (Brunet, Murray et al. 2011) . Prior to the application of microstate analysis, the pre-

processed EEG data was bandpass-filtered from 1-30 Hz. The topographical maps at the local 

maxima peaks of the global field power curve are clustered to derive the four prototypical 

microstate classes (Koenig, Prichep et al. 2002). In this study, the topographical atomize–

agglomerate hierarchical clustering algorithm (Tibshirani and Walther 2005) was applied to 

cluster each individual EEG data into four states (microstate maps). Finally, topographical maps 

at each local maxima point of the global field power curve were assigned to the microstate class 

of highest correlation using Pearson’s spatial product-moment correlation coefficient (Brandeis, 

Naylor et al. 1992) . Three features were calculated for each of the four microstate classes: (i) 

average duration, (ii) frequency, and (iii) coverage. Average duration is the amount of time a 

microstate class remains stable when it appears, in milliseconds; frequency refers to the 
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occurrence of each microstate class per second; and coverage is the percent of recording covered 

by each microstate class.  

 

Machine Learning Algorithm. In this study, support vector machines (SVMs) were used with 

the radial basis function (RBF) kernel using the LIBSVM toolbox (Chang and Lin 2011). 

Support vector machines select a hyperplane (linear) or hypersurface (non-linear) that best 

separates the input data space into two (or more) pre-defined groups (i.e., responder and non-

responder) (Hearst, Dumais et al. 1998). An RBF kernel uses nonlinear mapping to transform 

data into a higher dimensional space and determine an optimal hypersurface for classification 

(Hsu, Chang et al. 2003). The optimal hypersurface separates two groups with the largest margin 

(i.e., distance between the hypersurface and the closest data points).    

 

Two model hyperparameters can be specified for the RBF kernel: cost and gamma. To avoid 

overfitting and ensure the model is well-fit to the given data, a small and restricted range of cost 

and gamma were used during model optimization. Default value for cost is 1 and gamma is 0. 

Therefore, the range for cost was specified to be around 1 and for gamma, the range was close to 

0. Cost was specified as 2C, where C = {-3, -1, 1, 3} and gamma was specified as 2G, where G = 

{-12, -10, -8, -6}. Model optimization was performed using the grid search method (Chang and 

Lin 2011) and balanced accuracy was used as the outcome measure. Balanced accuracy (i.e., 

average of sensitivity and specificity) was used because the number of responders and non-

responders was not equal in this study. Therefore, unlike accuracy, balanced accuracy would not 

be biased to the performance of the group with the larger sample size.   

 

Prediction Models. Four models were created for prediction: (i) baseline model using features 

derived from the data collected during baseline, (ii) week 2 model using features derived from 

data collected 2 weeks after treatment, (iii) early change model including change in features from 

baseline to week 2, and (iv) a combined model using data from (i) and (iii). 

 

Feature Set. For the baseline and week 2 model, the total feature set consisted of 6424 features: 

406 features from frequency analysis (7 bands x 58 channels), 175 features from considering 

asymmetry in frequency features (7 bands x 25 channel pairs between left and right hemisphere), 



222 

 

4060 features from multiscale entropy analysis (70 scales x 58 channels), 1750 features from 

multiscale entropy across both hemispheres (70 scales x 25 channel pairs between left and right 

hemisphere), 12 features from microstate analysis (4 maps x 3 features) and 35 features  from 

current source density analysis (7 bands x 3 regions).  

 

Features for the ‘change from baseline to week 2’ model were calculated as (post-pre)/pre*100 

for multiscale entropy, microstate and current source density features and (post-pre) for power 

features. Asymmetrical features for the change model were calculated as: 

 

(𝑊𝐸𝐸𝐾2𝐿𝑒𝑓𝑡 − 𝐵𝐴𝑆𝐸𝐿𝐼𝑁𝐸𝐿𝑒𝑓𝑡) 𝐵𝐴𝑆𝐸𝐿𝐼𝑁𝐸𝐿𝑒𝑓𝑡 ∗ 100⁄

(𝑊𝐸𝐸𝐾2𝑅𝑖𝑔ℎ𝑡 − 𝐵𝐴𝑆𝐸𝐿𝐼𝑁𝐸𝑅𝑖𝑔ℎ𝑡) 𝐵𝐴𝑆𝐸𝐿𝐼𝑁𝐸𝑅𝑖𝑔ℎ𝑡 ∗ 100⁄
 

 

Therefore, the total number of features for the change model was also 6424. For the combined 

model (baseline + change from baseline to week 2), the total number of features was 

(6424+6424) 12,848. 

 

Feature Selection Method. Identifying the  optimal feature set for machine learning is an 

unsolved problem (Blum and Langley 1997, Guyon and Elisseeff 2003). One common approach 

is to use wrapper methods like greedy algorithms. However, such methods may be prone to over-

fitting and can still be quite computationally intensive (Saeys, Inza et al. 2007). In this study, 

filter methods are used as a means of removing uninformative features (t-test, F-test and 

Spearman’s correlation). Filter methods can be less prone to over-fitting and are easy to compute 

(Saeys, Inza et al. 2007). The methods were compared using balanced accuracy (average of 

sensitivity and specificity).  

 

Model Performance Evaluation. Each of the four models (i.e. baseline model; week 2 model; 

change from baseline to week 2 model; and combined model using baseline and change from 

baseline to week 2 features), was evaluated using one of three filtering methods (t-test, F-test or 

Spearman’s correlation). A randomized permutation cross-validation method similar to the 

Monte-Carlo cross-validation procedure (Molinaro, Simon et al. 2005) was used. We then 

followed steps 1-5 listed below, repeating them over H iterations. In this study, H=100. 
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Step 1: For each of the four models, the entire dataset was randomly split into a training set (80% 

of responders and 80% of non-responders) and a testing set (remaining 20% of responders and 

20% of non-responders). In other words, a test set was selected such that it is independent from 

the training set. The 80:20 ratio was fixed to avoid iterations with an unequal ratio of responders 

to non-responders. SVMs show poor performance with unequal class sizes.    

 

Step 2: One of the filtering methods was applied to select features from the training set only. A 

statistical threshold of α<0.05 was applied to all methods. The training set was normalized by 

subtracting each feature by the mean of the feature across subjects and dividing by the standard 

deviation of each feature across subjects (z-score normalization). 

 

Step 3: Optimal values of cost and gamma parameters for RBF SVM classifier were estimated 

from the training data using 10-fold cross-validation. Model optimization was conducted using 

the grid search method (Hsu, Chang et al. 2003). Balanced accuracy was used as the outcome 

measure for optimization.  

 

Step 4: Only features identified in Step 2 were used for the test set. The test set was normalized 

using the same mean and standard deviation values as the training set (z-score normalization as 

in Step 2).  

 

Step 5: The optimum model derived in Step 3 was used to classify the test data.  

Steps 1-5 were performed for each of the filtering methods for feature reduction. The filtering 

method that provided the best performance was chosen for the next steps. 

 

Estimating Model Performance with Reduced Feature Sets. To identify a subset of potentially 

robust features, we apply the following procedure. During each of the permutations Hi (i = 

1,2,…,100), the total feature set (Xj, where j is the feature index from 1 to total number of 

features for the model) is reduced to a smaller subset using a filtering method (filtering method is 

only applied to the randomly selected training set – 80% of data). In other words, in each 

permutation i, feature j may or may not be selected. If the feature j is selected, it gains a vote. 
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This feature polling method is applied over all 100 permutations. At the end of 100 permutations, 

the number of votes for each feature may vary from 0 to 100. We evaluated and compared model 

performance over several thresholds (T = 50, 60, 70, 80, 90). Using features with T or more 

votes, the final classification model was built on the entire dataset. The entire dataset was 

normalized together. A 10-fold cross-validation was applied to evaluate the model. Cost and 

gamma were optimized for maximum balanced accuracy. A low value of cost (close to 1) 

suggests a lower chance of overfitting to the data. Results from this procedure are summarized in 

Table 8.3. 

 

Classification Evaluation Metrics. The performance metrics reported in this study are accuracy, 

balanced accuracy, sensitivity (or recall), specificity and precision. The metrics are therefore 

defined as: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑜𝑡𝑎𝑙𝑁𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑆𝑎𝑚𝑝𝑙𝑒𝑠
 

𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =

𝑇𝑃
𝑇𝑃 + 𝐹𝑁 +

𝑇𝑁
𝑇𝑁 + 𝐹𝑃

2
 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 

Pooled, Within-Site and Between-Site Classification. To evaluate whether pooling data from all 

sites was valid, classifier performance was evaluated and compared using three tests: (i) pooled 

classification: randomized permutation cross-validation (100 permutations) was performed on 

data pooled from 3 of the 4 sites. Features with 70 or more votes were chosen for the final model 

(70 was arbitrarily chosen to ensure all comparisons were consistent). Using this reduced feature 

set, 10-fold cross validation was performed on the same data from 3 of the 4 sites to evaluate the 

performance of the model when one site is excluded. (ii) within-site classification: randomized 

permutation cross-validation was performed within sites with larger sample sizes (UBC and 
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TGH only) to identify features with 70 or more votes. Using this reduced feature set, 10-fold 

cross validation was performed to evaluate the performance of the model within each site. (iii) 

between-site classification: randomized permutation cross-validation was performed using data 

from one site and features with 70 or more votes were identified. Using this reduced feature set, 

10-fold cross validation was performed to evaluate the performance of the model on another site. 

These tests were conducted to evaluate the generalizability of the classifier to data collected from 

different locations, scanners, etc. Methods for these tests were modified from (Rozycki, 

Satterthwaite et al. 2017). 

 

8.4 Results 

8.4.1 Model Evaluation: Comparing Filtering Methods 

Using the randomized (100) permutation cross-validation method, models were evaluated with 

different feature selection (filter) methods. All the filter methods were comparable. However, the 

t-test method showed slightly better performance for most of the models, specifically in 

identifying non-response (good specificity). It also provided a low feature-to-subject ratio. 

Therefore, the t-test method was chosen to be the feature selection method for the final 

classification model.  

8.4.2 Model Performance with Reduced Feature Sets  

Each of the four models was evaluated with a reduced feature set derived using the (t-test) 

feature polling method outlined above. Depending on the threshold selected for the feature 

polling method (50, 60, 70, 80 or 90 votes), the predictive performance of the model will also 

vary. In addition, the choice of the threshold may also impact the bias-variance trade-off. Results 

for these tests are presented in detail in Table 8.3. In the following text, we compare model 

performance at a threshold of 70 or votes. 

 

For the baseline model, features with 70 or more votes yielded an accuracy of 72.8%, sensitivity 

of 51.0%, specificity of 90.5% and precision of 81.3%. For the week 2 model, features with 70 
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or more votes yielded an accuracy of 69.2%, sensitivity of 65.3%, specificity of 72.4% and 

precision of 66.7%. For the change from baseline to week 2 model, features with more than 70 

votes yielded an accuracy of 70.1%, sensitivity of 59.2%, specificity of 79.3% and precision of 

70.7%. Lastly, for the combined model, features with 70 or more votes yielded an accuracy of 

83.2%, sensitivity of 73.5%, specificity of 91.4% and precision of 87.8%. In the next section, we 

describe the features included in these reduced feature sets that yielded highest performance.  

 

8.4.3 Discriminating Features for Response Classification 

For the baseline model, features with 70 or more votes that yielded an accuracy of 72.8% (Table 

8.3) are illustrated in Figure 8.1, where red indicates that the feature value is greater in 

responders than non-responders and blue indicates that the feature is smaller in responders than 

non-responders. To summarize, the descriptive features of response were: complexity in mid-

timescales (35-45) in central (C1) regions; asymmetry in complexity in fine timescales (21, 31) 

in frontal (F7/F8) and centro-parietal (CP3/CP4) regions; asymmetry in complexity in coarse 

timescales (35-70) in frontal (F1/F2), fronto-central (FC1/FC2), central (C3/C4), centro-parietal 

(CP1/CP2, CP3/CP4), parietal (P3/P4, P5/P6) and temporal regions (T7/T8, TP7/TP8); mid-beta 

power (18.5-21Hz) in a parieto-occipital region (POZ); and frontal asymmetry (AF3/AF4) in 

low-beta power (12.5-18Hz). From current source density analysis, features included high-alpha 

band power (10.5-12Hz) in the ACC. Finally, coverage of Map A was identified from microstate 

analysis.  

 

For the week 2 model, features with 70 or more votes that yielded an accuracy of 69.2% (Table 

8.3) are illustrated in Figure 8.2. These features included: asymmetry in complexity in fine 

timescales (5-7) in central (C1/C2) and centro-parietal regions (CP1/CP2); asymmetry in 

complexity in coarse timescales (40-70) in central (C5/C6), centro-parietal (CP3/CP4) and 

occipital (O1/O2) regions; mid-beta power (18.5-21Hz) in frontal (F4, F6, F5), fronto-central 

(FC4), and parieto-occipital regions (POZ); high-beta power (21.5-30Hz) in frontal (F4) regions; 

and parietal (P3/P4) asymmetry in low-alpha power (8.5-10Hz). No features from current source 

density and microstate analysis were identified.  
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For the ‘change from baseline to week 2’ model, features with 70 or more votes that yielded an 

accuracy of 70.1% (Table 8.3) are illustrated in Figure 8.3. These included: complexity in fine 

timescales (5-25) in frontal (F5, F6, F8, FT7), fronto-central (FC2, FC4, FC5) and parietal (P4) 

regions; asymmetry in complexity in a fine timescale (6) in the temporal (T7/T8) region; 

asymmetry in complexity in coarse timescales (35, 61, 69) in central (C3/C4) and frontal (F1/F2, 

F7/F8) regions respectively; delta (1-3.5Hz) and theta (4-8Hz) power in frontal (F7, F5, F4, F6), 

fronto-central (FC4, FC5) regions; low-beta power (12.5-18Hz) in frontal (F2, F4, F6), fronto-

central (FC4, FC5) and centro-parietal (CP6) regions; mid-beta power (18.5-21Hz) in the frontal 

(F4, F6) and fronto-central (FC4) regions; high-beta power (21.5-30Hz) in the frontal (F4, F6) 

regions; and mid-beta band power (18.5-21Hz) in the ACC. No features from microstate analysis 

were identified.  

 

For the combined model, features with 70 or more votes that yielded an accuracy of 83.2% 

(Table 8.3) are illustrated in Figure 8.4. From the baseline data (left panel of Figure 8.4), these 

features included: complexity in fine timescales (15-20) in a parietal (P3) region; asymmetry in 

complexity in fine timescales (1-35) in frontal (F1/F2, F7/F8), fronto-central (FC1/FC2) regions; 

asymmetry in complexity in coarse timescales (35-70) in fronto-central (FC1/FC2), temporal 

(TP7/TP8) and parietal (P3/P4, P5/P6) regions; asymmetry in high-alpha power (10.5-12Hz) in 

parietal (P5/P6) region; asymmetry in low-beta power (12.5-18Hz) in centro-parietal (CP1/CP2, 

CP5/CP6) regions; and high-alpha power (10.5-12Hz) in the ACC. No features from microstate 

analysis were identified.  

 

For the combined model again, features from the ‘change from baseline to week 2’ data (right 

panel of Figure 8.4) included: complexity in fine timescales (1-25) in frontal (F5, F6, F8, FT7), 

fronto-central (FC2, FC4, FC5), and parietal (P4) regions; asymmetry in fine timescales (6, 34) 

in complexity in temporal (T7/T8) and central (C3/C4) regions; asymmetry in complexity in 

coarse timescales (59, 69) in frontal (F1/F2, F7/F8) regions; delta (1-3.5Hz) and theta (4-8Hz) 

power in frontal (F7, F5, F4, F6), fronto-central (FC4, FC5) regions; low-beta power (12.5-

18Hz) in frontal (F2, F4, F6), fronto-central (FC4, FC5) and centro-parietal (CP6) regions; mid-

beta power (18.5-21Hz) in the frontal (F4, F6) and fronto-central (FC4) regions; high-beta power 
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(21.5-30Hz) in the frontal (F4, F6) regions; and mid-beta band power (18.5-21Hz) in the ACC. 

No features from microstate analysis were identified. 

 

8.4.4 Classification is Valid Using Data Pooled across Sites 

Pooled, within-site and between-site analysis results are detailed in Table 8.4, Table 8.5, Table 

8.6 and Table 8.7. Pooled classification with leave-one-site-out (green) was shown to have 

similar classification accuracy to within-site classification (blue) indicating that pooling across 

sites is valid. The exclusion of any single site has little effect on results across all models. 

Between-site analysis results are also reported for completeness (highlighted in red).  

 

8.5 Discussion 

The aim of this study was to evaluate the feasibility of predicting response to escitalopram using 

EEG measures of neural dynamics. Specifically, we integrated several EEG measures of neural 

dynamics to evaluate their cumulative predictive value. Using randomized permutation cross-

validation combined with the feature polling method (threshold of ≥ 70), we showed that 

classification accuracy was 72.8% using baseline data (sensitivity = 51.0%, specificity = 90.5%), 

69.2% using week 2 data (sensitivity = 65.3%, specificity = 72.4%) and 70.1% using ‘change 

from baseline to week 2’ data (sensitivity = 59.2%, specificity = 79.3%). In addition, as 

hypothesized, combining baseline neural dynamics with early changes in neural dynamics 

(change in response to 2 weeks of treatment) increased the accuracy of prediction to 83.2% 

(sensitivity = 73.5%, specificity = 91.4%). Results from pooled, within-site and between-site 

analysis also demonstrated that the large-scale analysis of data pooled across multiple sites does 

not have a significant impact on classifier performance. This is an important finding as it 

suggests that data can be integrated regardless of scanner and equipment differences, and that the 

predictive markers identified in this work may have potential for clinical translation.  

 

Our primary discriminatory features, identified through randomized permutation cross-validation 

combined with the feature polling method, were the asymmetry features (both power and 



229 

 

complexity). Asymmetry in neural activity across the two hemispheres was previously shown to 

be a marker of depression (Bruder, Stewart et al. 2001). Through our method, we were also able 

to identify the regions associated with this asymmetry in frequency (power) and time (multiscale 

entropy). The identified features were specific to the fronto-central and parieto-occipital regions 

potentially suggesting a relationship to the default-mode network. However, further investigation 

(e.g., via fMRI data) is needed to better elucidate this relationship. 

 

Among the four models (baseline; week 2; ‘change from baseline to week 2’; and the 

combination of baseline and ‘change from baseline to week 2’), the combined model yielded the 

highest accuracy. This may suggest an early impact of antidepressants on neural circuits. 

Furthermore, it demonstrates that early changes in neural dynamics with treatment (i.e., 2 weeks) 

can contribute useful information towards the prediction of an 8-week treatment outcome. When 

evaluating the effect of study site in all four models, we found that the exclusion of any single 

site does not have a significant effect on classification performance. Therefore, pooling data 

across sites is recommended as it can improve the generalizability of the prediction model for 

this population.  

 

A number of features identified through the feature selection process in this study have been 

previously shown in the literature to be reliable predictors of antidepressant response in major 

depressive disorder. These include parieto-occipital alpha (Ulrich, Renfordt et al. 1984, Bruder, 

Sedoruk et al. 2008, Tenke, Kayser et al. 2011), ACC activity (Mayberg, Brannan et al. 1997, 

Brody, Saxena et al. 1999, Pizzagalli, Pascual-Marqui et al. 2001, Pizzagalli, Oakes et al. 2003, 

Saxena, Brody et al. 2003, Korb, Hunter et al. 2009, Pizzagalli 2011, Spronk, Arns et al. 2011), 

medial and middle frontal cortex activity (Gonul, Kitis et al. 2006, Chen, Ridler et al. 2007), 

frontal alpha (Suffin and Emory 1995) and theta (Knott, Telner et al. 1996, Iosifescu, Greenwald 

et al. 2009), and frontal delta (Knott, Telner et al. 1996, Knott, Mahoney et al. 2001). In the 

literature, prediction accuracy varies for each feature and is between 60-77%. However, since 

most of these studies did not validate their results and/or used fairly small datasets, accuracies 

may be inflated and may decrease significantly when applied to a new independent dataset. In 

our study, we were able to confirm the predictive value of the previously reported features as 
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well as discover additional features that were not previously reported. Asymmetry in complexity 

of neural activity between the two hemispheres for example, is a novel marker of antidepressant 

response identified in this study.    

 

Machine learning studies using resting-state EEG measures for antidepressant response 

prediction are scarce. In (Knott, Mahoney et al. 2001), resting-state EEG measures were used 

with a mixture of factor analysis classifier to predict antidepressant response. An accuracy of 

87.9% was reported (sensitivity=94.9%; specificity=80.9%). However, the study had some 

limiting factors: (i) the study was performed with a low sample size (n=22), (ii) responders were 

defined with ≥30% improvement in clinical scores instead of the usual ≥50%, and (iii) training 

and testing dataset combined patients on 4 different medications (sertraline, citalopram, 

fluvoxamine, paroxetine). Accuracy was also high (85-92%) in (Rabinoff, Kitchen et al. 2011) 

using spectral EEG features with classification and regression tree analysis. The study combined 

trials for 2 antidepressants (fluoxetine and venlafaxine) to predict response in 51 patients with 

unipolar depression. The high accuracy however, may be due to overfitting to the data and this is 

suggested by the 100% specificity in all treatment groups.  

 

Some of the preliminary findings published on the eyes-closed EEG data from the CANBIND 

phase 1 project were replicated when the threshold for the feature polling method was reduced 

(i.e., ≥ 50 votes) (Baskaran, Farzan et al. 2017). This included significant differences between 

responders and non-responders in absolute delta power at week 2. Furthermore, similar to the 

previous study, there was no difference in theta cordance (Leuchter, Cook et al. 1994) between 

responders and non-responders. On the other hand, some EEG measures that were not significant 

in the previous study (for example, alpha power, alpha asymmetry, theta power and theta 

asymmetry) were shown to have predictive value in this study, potentially due to the higher 

sample size. Four markers were evaluated in the previous study for their predictive value. 

Whole-brain absolute delta asymmetry at week 2 yielded an accuracy of 67.8% 

(sensitivity=77.8%; specificity=57.7%; precision=56.0%), baseline whole-brain absolute alpha 

asymmetry yielded an accuracy of 70.7% (sensitivity=72.2%; specificity=69.2%; 

precision=61.9%), baseline parietal alpha asymmetry yielded an accuracy of 77.2%  
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(sensitivity=88.9%; specificity=65.4%; precision=64.0%) and baseline whole-brain relative delta 

asymmetry yielded an accuracy of 73.3% (sensitivity=88.9%; specificity=57.7%; 

precision=59.3%). In the current study, our integrated and multi-feature approach (the combined 

model) yielded a classification accuracy of 83.2% (sensitivity=73.5%; specificity=91.4%; 

precision=87.8%) further supporting the integration of markers for more accurate prediction of 

treatment outcome.  

 

Feature selection is a key step in classification models. In this study, three filtering approaches to 

feature reduction were applied and compared (t-test, F-test, and correlation). In general, these 

filtering approaches to feature reduction have advantages and limitations. One main advantage is 

that they are less prone to overfitting, but this is at the risk of providing low accuracy. Another 

key advantage is that they are far less computationally expensive than other feature selection 

methods (Saeys, Inza et al. 2007). One disadvantage of filtering methods, however, is that they 

may select features that are contaminated by noise (i.e., a feature with high measurement noise or 

artifacts) and this may lead to reduced generalizability of the model. We aimed to reduce this 

effect by performing randomized permutation cross-validation.     

  

Validation of performance with an independent dataset is another important aspect of 

classification models. Yet, it was not implemented in several previous studies. It should be noted 

that by excluding validation, results on the predictive performance of a marker or a model are 

potentially inflated and highly unlikely to generalize to a new data set that is independent from 

the original data set. In this study, cross-validation was applied to select hyperparameters for the 

machine learning algorithm as well as to estimate the predictive performance of the model. 

Despite the advantages of cross-validation, it still only provides an estimate on the 

generalizability of the model. It is important to further validate each model on a larger 

independent data set for accurate estimates of prediction performance. 

 

Our study has several limitations. First, due to the absence of an independent test data set, 

reported model performance estimates may not be accurate. To obtain an unbiased estimate of 

our model’s predictive performance, future studies should validate it against an independent 
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dataset (i.e., measures of neural dynamics from a different group of patients receiving 

escitalopram treatment) that was not used for model construction. Second, prediction models 

reported in this study may not be generalizable to other antidepressants. Model evaluation should 

be performed independently with several other types of treatments to evaluate the 

generalizability of our prediction models. This may also provide insight into whether the features 

identified in this study were specific to escitalopram response or if they can be used to predict 

general response to antidepressants. Finally, the inclusion of multivariate EEG features should 

also be explored in future work. Performance may also be improved with the addition of clinical 

or behavioural variables, genetic measures and other imaging-based measures (fMRI, DTI, etc.) 

with patient-reported data. These investigations will be conducted by future CAN-BIND studies. 

 

8.6 Conclusions 

This work provides a proof-of-concept pipeline for the prediction of escitalopram response and 

should be further augmented in the future for clinical prediction. For large datasets that include 

several groups of patients, each receiving a different treatment option (pharmacological and non-

pharmacological antidepressants), an approach similar to the one taken by this study may be 

useful in developing a model that can match each patient to the most effective treatment. The 

feasibility of such an approach will in part depend on the collection and sharing of large-scale, 

clinically-reliable data sets, as done by CAN-BIND. These investigations will contribute towards 

the development of a clinical decision-making tool for data-driven, personalized optimization of 

antidepressant treatment selection for patients.  
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8.7 Tables 

Table 8.1 - Demographics and Clinical Data for Subjects Included from the Baseline Visit 

 

 UBC 

 

TGH QNS CAM 

 

All 

 

All 

Responders 

(Week 8) 

All Non-

responders 

(Week 8) 

N 51 38 18 7 114 51 63 

Age  

(mean,std) 

35.4 +/- 11.8 37 +/- 12.8 42.7 +/- 14.4 30.4 +/- 13.0 36.8 +/- 12.8 36.1 +/- 13.0 37.4 +/- 12.7 

Gender  

(M/F) 

18 / 33 17 / 21 9 / 9 0 / 7 44/70 18 / 33 26 / 37 

MADRS Baseline  

(mean,std) 

28.5 +/- 5.94 32.0 +/- 6.23 30.0 +/- 4.74 28.0 +/- 5.16 29.9 +/- 5.90 29.1 +/- 5.89 30.5 +/- 5.87 

MADRS week 2  

(mean,std) 

21.9 +/- 7.41 24.9 +/- 11.1  23.1 +/- 5.36 21.1 +/- 3.98  23.0 +/- 8.47 19.6 +/- 8.08 25.8 +/- 7.77 

MADRS week 8 

(mean,std) 

14.7 +/- 9.30 19.6 +/- 12.6 18.1 +/- 10.2 15.7 +/- 6.02 16.9 +/- 10.6 7.80 +/- 4.99 24.3 +/- 7.83 

Change in 

MADRS (baseline 

to week 8)  

(mean,std) (%) 

48.6 +/- 33.2 39.2 +/- 33.7 39.2 +/- 35.9 44.5 +/- 16.9 43.7 +/- 33.0 73.1 +/- 16.1 19.9 +/- 22.2 

Responders / 

Non-responders 

(After 8 weeks) 

24 / 27 17 / 21  7 / 11 3 / 4 51 / 63  - - 
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Table 8.2 - Demographics and Clinical Data for Subjects Included from the Week 2 Visit 

 

 UBC 

 

TGH QNS CAM 

 

All 

 

All 

Responders 

(Week 8) 

All Non-

responders 

(Week 8) 

N 50 34 17 6 107 49 58 

Age  

(mean,std) 

35.7 +/- 11.7 36.3 +/- 12.8 42.9 +/- 14.8 26.0 +/- 6.23 36.5 +/- 12.7 35.4 +/- 12.8 37.4 +/- 12.7 

Gender  

(M/F) 

18 / 32 14 / 20 8 / 9 0 / 6 40 / 67 17 / 32 23 / 35 

MADRS Baseline  

(mean,std) 

28.5 +/- 6.00 32.4 +/- 6.06 30.3 +/- 4.71 28.8 +/- 5.12 30.1 +/- 5.97 29.3 +/- 5.90 30.7 +/- 6.02 

MADRS week 2  

(mean,std) 

21.9 +/- 7.49 24.9 +/- 11.3 23.0 +/- 5.50 21.8 +/- 3.87 23.0 +/- 8.53  19.7 +/- 8.22 25.8 +/- 7.80 

MADRS week 8 

(mean,std) 

14.3 +/- 8.93 19.2 +/- 12.6  16.9 +/- 9.08 17.0 +/- 5.44 16.4 +/- 10.2 7.73 +/- 5.07 23.7 +/- 7.32 

Change in 

MADRS (baseline 

to week 8)  

(mean,std) (%) 

50.1 +/- 31.6 41.2 +/- 33.6 44.8 +/- 27.8 41.1 +/- 15.6 45.9 +/- 30.9 73.7 +/- 16.2  22.5 +/- 18.5 

Responders / 

Non-responders 

(After 8 weeks) 

24 / 26 16 / 18 7 / 10 2 / 4 49 / 58 - - 
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Table 8.3 - Final Classification Model Performance with Reduced Feature Sets 

MODEL 
Features With … T-TEST 

(Accuracy/Precision/Sensitivity/Specificity) 

Meta Data 

(# Features Selected by Filter Method 

with ≥X votes; Cost and Gamma for 

SVM RBF kernel) 

B
a
se

li
n

e 

M
o
d

el
 

≥ 50 votes 74.6/80.6/56.9/88.9 # Feats = 79; C = 2; Gamma = 0.0039 

≥ 60 votes 75.4/84.8/54.9/92.1 # Feats = 52; C = 2; Gamma = 0.0039  

≥ 70 votes 72.8/81.3/51.0/90.5 # Feats = 35; C = 0.5; Gamma = 0.0156 

≥ 80 votes 72.8/81.3/51.0/90.5 # Feats = 20; C = 2; Gamma = 0.0039 

≥ 90 votes 71.1/71.4/58.8/81.0 # Feats = 10; C = 2; Gamma = 0.0156 

W
ee

k
 2

 

M
o
d

el
 

≥ 50 votes 74.8/77.5/63.3/84.5 # Feats = 57; C = 2; Gamma = 9.77e-4 

≥ 60 votes 72.0/74.4/59.2/82.8 # Feats = 37; C = 2; Gamma = 9.77e-4 

≥ 70 votes 69.2/66.7/65.3/72.4 # Feats = 20; C = 2; Gamma = 0.0156 

≥ 80 votes 70.1/67.3/67.3/72.4 # Feats = 14; C = 2; Gamma = 0.0156 

≥ 90 votes 73.8/70.6/73.5/74.1 # Feats = 4; C = 2; Gamma = 0.0156  

C
h

a
n

g
e 

(B
a
se

li
n

e 
to

 

W
ee

k
 2

) 

M
o
d

el
 

≥ 50 votes 72.9/72.7/65.3/79.3 # Feats = 152; C = 2; Gamma = 9.77e-4 

≥ 60 votes 67.3/65.2/61.2/72.4 # Feats = 111; C =0.5; Gamma = 0.0039 

≥ 70 votes 70.1/70.7/59.2/79.3 # Feats = 79; C = 0.5; Gamma = 0.0039 

≥ 80 votes 65.4/63.6/57.1/72.4 # Feats = 55; C = 2; Gamma = 0.0039 

≥ 90 votes 68.2/68.3/57.1/77.6 # Feats = 33; C = 2; Gamma = 0.0156 

C
o
m

b
in

ed
 M

o
d

el
 (

B
a
se

li
n

e 

+
 C

h
a
n

g
e 

in
 B

a
se

li
n

e 
to

 

W
ee

k
 2

) 

≥ 50 votes 83.2/87.8/73.5/91.4 # Feats = 242; C = 2; Gamma = 0.0039 

≥ 60 votes 85.0/92.3/73.5/94.8 # Feats = 170; C = 2; Gamma = 0.0039 

≥ 70 votes 83.2/87.8/73.5/91.4 # Feats = 110; C = 2; Gamma = 0.0039 

≥ 80 votes 80.4/86.8/67.3/91.4 # Feats = 69; C = 2; Gamma = 0.0156 

≥ 90 votes 81.3/82.2/75.5/86.2 # Feats = 39; C = 2; Gamma = 0.0156 



236 

 

Table 8.4 - Pooled, Within-Site and Between-Site Classification Results for Baseline Model   

 

 

Train Sitea 

Test Site (Blue and Red) 

Excluded Site (Green) 

UBC 

(n = 51) 

TGH 

(n = 38) 

QNS 

(n = 18) 

CAM 

(n = 7) 

UBC BAC =  79.9% 

Accu = 80.4% 

Prec = 85.0% 

Sens = 70.8% 

Spec = 88.9% 

BAC =  55.7% 

Accu = 57.9% 

Prec = 54.5% 

Sens = 35.3% 

Spec = 76.2% 

BAC =  50% 

Accu = 61.1% 

Prec = 0% 

Sens = 0% 

Spec = 100% 

BAC =  25% 

Accu = 28.6% 

Prec = 0% 

Sens = 0% 

Spec = 50% 

TGH BAC =  44.7% 

Accu = 45.1% 

Prec = 40.9% 

Sens = 37.5% 

Spec = 51.9% 

BAC =  92.3% 

Accu = 92.1% 

Prec = 88.9% 

Sens = 94.1% 

Spec = 90.5% 

BAC =  67.5% 

Accu = 66.7% 

Prec = 55.6% 

Sens = 71.4% 

Spec = 63.6% 

BAC =  50% 

Accu = 57.1% 

Prec = 0% 

Sens = 0% 

Spec = 100% 

Other sitesb   BAC =  50% 

Accu = 61.1% 

Prec = 0% 

Sens = 0% 

Spec = 100% 

BAC =  37.5% 

Accu = 42.9% 

Prec = 0% 

Sens = 0% 

Spec = 75% 

Pool UBC and 

TGH; no test 

set 

BAC =  70.2% 

Accu = 71.9% 

Prec = 83.3% 

Sens = 48.8% 

Spec = 91.7% 

  

Pool Train Sites 

(exclude test 

site) 

BAC =  66.2% 

Accu = 66.7% 

Prec = 60.7% 

Sens = 62.9% 

Spec = 69.4% 

BAC =  75.6% 

Accu = 77.6% 

Prec = 90.5% 

Sens = 55.9% 

Spec = 95.2% 

BAC =  75.9% 

Accu = 77.1% 

Prec = 84.4% 

Sens = 61.4% 

Spec = 90.4% 

BAC =  73.7% 

Accu = 75.7% 

Prec = 86.7% 

Sens = 54.2% 

Spec = 93.2% 

 
Blue    = Within-site classification  

Red     = Classification with separate train and test set  

Green = Classification with pooled data from 3 sites (test set is left-out) 

 

Training: randomized permutation cross-validation with 100 permutations 

Testing: Performed using features found to be significant using the T-test Filtering Method and with >=70 votes 

(from training) 

 

BAC = balanced accuracy; Accu = accuracy; Prec  = precision; Recall = sensitivity; Spec   = specificity 
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Table 8.5 - Pooled, Within-Site and Between-Site Classification Results for Week 2 Model 

 

 

Train Sitea 

Test Site (Blue and Red) 

Excluded Site (Green) 

UBC 

(n = 51) 

TGH 

(n = 38) 

QNS 

(n = 18) 

CAM 

(n = 7) 

UBC BAC =  69.6% 

Accu = 70.0% 

Prec = 73.7% 

Sens = 58.3% 

Spec = 80.8% 

BAC =  43.8% 

Accu = 44.1% 

Prec = 40.0% 

Sens = 37.5% 

Spec = 50.0% 

BAC =  66.4% 

Accu = 70.6% 

Prec = 75.0% 

Sens = 42.9% 

Spec = 90.0% 

BAC =  50% 

Accu = 66.7% 

Prec = 0% 

Sens = 0% 

Spec = 100% 

TGH BAC =  34.8% 

Accu = 36% 

Prec = 10% 

Sens = 4.17% 

Spec = 65.4% 

BAC =  78.8% 

Accu = 79.4% 

Prec = 84.6% 

Sens = 68.8% 

Spec = 88.9% 

BAC =  50% 

Accu = 58.8% 

Prec = 0% 

Sens = 0% 

Spec = 100% 

BAC =  50% 

Accu = 66.7% 

Prec = 0% 

Sens = 0% 

Spec = 100% 

Other sitesb   BAC =  50% 

Accu = 58.8% 

Prec = 0% 

Sens = 0% 

Spec = 100% 

BAC =  50% 

Accu = 66.7% 

Prec = 0% 

Sens = 0% 

Spec = 100% 

Pool UBC and 

TGH; no test 

set 

BAC =  74.8% 

Accu = 75% 

Prec = 75.7% 

Sens = 70% 

Spec = 79.5% 

  

Pool Train Sites 

(exclude test 

site) 

BAC =  76.0% 

Accu = 78.9% 

Prec = 100% 

Sens = 52% 

Spec = 100% 

BAC =  69.5% 

Accu = 71.2% 

Prec = 77.3% 

Sens = 51.5% 

Spec = 87.5% 

BAC =  73.9% 

Accu = 74.4% 

Prec = 75.7% 

Sens = 66.7% 

Spec = 81.3% 

BAC =  72.9% 

Accu = 73.3% 

Prec = 72.7% 

Sens = 68.1% 

Spec = 77.8% 

 
Blue    = Within-site classification  

Red     = Classification with separate train and test set  

Green = Classification with pooled data from 3 sites (test set is left-out) 

 

Training: randomized permutation cross-validation with 100 permutations 

Testing: Performed using features found to be significant using the T-test Filtering Method and with >=70 votes 

(from training) 

 

BAC = balanced accuracy; Accu = accuracy; Prec  = precision; Recall = sensitivity; Spec   = specificity 
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Table 8.6 - Pooled, Within-Site and Between-Site Classification Results for the ‘Change 

from Baseline to Week 8’ Model 

 

 

Train Sitea 

Test Site (Blue and Red) 

Excluded Site (Green) 

UBC 

(n = 51) 

TGH 

(n = 38) 

QNS 

(n = 18) 

CAM 

(n = 7) 

UBC BAC =  80.1% 

Accu = 80.0% 

Prec = 76.9% 

Sens = 83.3% 

Spec = 76.9% 

BAC =  51.7% 

Accu = 52.9% 

Prec = 50.0% 

Sens = 31.3% 

Spec = 72.2% 

BAC =  50% 

Accu = 58.8% 

Prec = 0% 

Sens = 0% 

Spec = 100% 

BAC =  50% 

Accu = 66.7% 

Prec = 0% 

Sens = 0% 

Spec = 100% 

TGH BAC =  54% 

Accu = 54% 

Prec = 52% 

Sens = 54.2% 

Spec = 53.8% 

BAC =  84.7% 

Accu = 85.3% 

Prec = 92.3% 

Sens = 75.0% 

Spec = 94.4% 

BAC =  50% 

Accu = 58.8% 

Prec = 0% 

Sens = 0% 

Spec = 100% 

BAC =  50% 

Accu = 66.7% 

Prec = 0% 

Sens = 0% 

Spec = 100% 

Other sitesb   BAC =  52.1% 

Accu = 58.8% 

Prec = 50% 

Sens = 14.3% 

Spec = 90% 

BAC =  50% 

Accu = 66.7% 

Prec = 0% 

Sens = 0% 

Spec = 100% 

Pool UBC and 

TGH; no test 

set 

BAC =  79.8% 

Accu = 79.8% 

Prec = 78.1% 

Sens = 80% 

Spec = 79.5% 

  

Pool Train Sites 

(exclude test 

site) 

BAC =  79.8% 

Accu = 80.7% 

Prec = 81.8% 

Sens = 72.0% 

Spec = 87.5% 

BAC =  87.2% 

Accu = 87.7% 

Prec = 90.0% 

Sens = 81.8% 

Spec = 92.5% 

BAC =  80.9% 

Accu = 81.1% 

Prec = 80.5% 

Sens = 78.6% 

Spec = 83.3% 

BAC =  70.5% 

Accu = 71.3% 

Prec = 73.7% 

Sens = 59.6% 

Spec = 81.5% 

 
Blue    = Within-site classification  

Red     = Classification with separate train and test set  

Green = Classification with pooled data from 3 sites (test set is left-out) 

 

Training: randomized permutation cross-validation with 100 permutations 

Testing: Performed using features found to be significant using the T-test Filtering Method and with >=70 votes 

(from training) 

 

BAC = balanced accuracy; Accu = accuracy; Prec  = precision; Recall = sensitivity; Spec   = specificity 
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Table 8.7 - Pooled, Within-Site and Between-Site Classification Results for the Combined 

Model (Baseline + ‘Change from Baseline to Week’)    

 

 

Train Sitea 

Test Site (Blue and Red) 

Excluded Site (Green) 

UBC 

(n = 51) 

TGH 

(n = 38) 

QNS 

(n = 18) 

CAM 

(n = 7) 

UBC BAC =  90.1% 

Accu = 90% 

Prec = 88% 

Sens = 91.7% 

Spec = 88.5% 

BAC =  55.2% 

Accu = 55.9% 

Prec = 53.8% 

Sens = 43.8% 

Spec = 66.7% 

BAC =  50% 

Accu = 58.8% 

Prec = 0% 

Sens = 0% 

Spec = 100% 

BAC =  50% 

Accu = 66.7% 

Prec = 0% 

Sens = 0% 

Spec = 100% 

TGH BAC =  55.9% 

Accu = 56% 

Prec = 54.2% 

Sens = 54.2% 

Spec = 57.7% 

BAC =  91.3% 

Accu = 91.2% 

Prec = 88.2% 

Sens = 93.8% 

Spec = 88.9% 

BAC =  75.7% 

Accu = 76.5% 

Prec = 71.4% 

Sens = 71.4% 

Spec = 80% 

BAC =  75% 

Accu = 83.3% 

Prec = 100% 

Sens = 50% 

Spec = 100% 

Other sitesb   BAC =  50% 

Accu = 58.8% 

Prec = 0% 

Sens = 0% 

Spec = 100% 

BAC =  50% 

Accu = 66.7% 

Prec = 0% 

Sens = 0% 

Spec = 100% 

Pool UBC and 

TGH; no test 

set 

BAC =  86.7% 

Accu = 86.9% 

Prec = 89.2% 

Sens = 82.5% 

Spec = 90.9% 

  

Pool Train Sites 

(exclude test 

site) 

BAC =  82.6% 

Accu = 82.5% 

Prec = 77.8% 

Sens = 84.0% 

Spec = 81.3% 

BAC =  81.6% 

Accu = 82.2% 

Prec = 83.3% 

Sens = 75.8% 

Spec = 87.5% 

BAC =  89.6% 

Accu = 90.0% 

Prec = 94.6% 

Sens = 83.3% 

Spec = 95.8% 

BAC =  87.8% 

Accu = 88.1% 

Prec = 90.7% 

Sens = 82.9% 

Spec = 92.6% 

 
Blue    = Within-site classification  

Red     = Classification with separate train and test set  

Green = Classification with pooled data from 3 sites (test set is left-out) 

 

Training: randomized permutation cross-validation with 100 permutations 

Testing: Performed using features found to be significant using the T-test Filtering Method and with >=70 votes 

(from training) 

 

BAC = balanced accuracy; Accu = accuracy; Prec  = precision; Recall = sensitivity; Spec   = specificity 
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8.8 Figures 
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Figure 8.1 - Baseline features discriminating responders and non-responders with ≥ 70 

votes following the randomized permutation cross-validation method.  

 

Red indicates that the feature value is greater in responders than non-responders and blue 

indicates that the feature is smaller in responders than non-responders. (A) Features taken from 

multiscale entropy analysis. X-axis represents time scales from 1 to 70 and y-axis represents 

EEG channels. (B) Asymmetry features from multiscale entropy analysis. X-axis represents time 

scales from 1 to 70 and y-axis represents the channels used to calculate asymmetry. (C) Features 

taken from EEG power analysis. X-axis represents frequency: delta (1-3.5Hz); theta (4-8Hz); 

low-alpha (8.5-10Hz); high-alpha (10.5-12Hz); low-beta (12.5-18Hz); mid-beta (18.5-21Hz); 

and high-beta (21.5-30Hz). Y-axis represents EEG channels. (D) Asymmetry features from 

power analysis. X-axis represents the frequency bands and y-axis represents the channels used to 

calculate asymmetry. (E) Features taken from current source density analysis. X-axis represents 

the frequency bands. Y-axis represents the regions of interest: the anterior cingulate cortex 

(ACC), rostral ACC (rACC), superior frontal gyrus (SFG), middle frontal gyrus (MiddleFG) and 

the medial frontal gyrus (MedialFG). (F) Features taken from microstate analysis. X-axis 

represents the characteristics of microstates: duration, frequency and coverage. Y-axis represents 

the microstate map: A, B, C and D.  
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Figure 8.2 - Features from week 2 discriminating responders and non-responders with ≥ 70 

votes following the randomized permutation cross-validation method.  

 

Red indicates that the feature value is greater in responders than non-responders and blue 

indicates that the feature is smaller in responders than non-responders. (A) Features taken from 

multiscale entropy analysis. X-axis represents time scales from 1 to 70 and y-axis represents 

EEG channels. (B) Asymmetry features from multiscale entropy analysis. X-axis represents time 

scales from 1 to 70 and y-axis represents the channels used to calculate asymmetry. (C) Features 

taken from EEG power analysis. X-axis represents frequency: delta (1-3.5Hz); theta (4-8Hz); 

low-alpha (8.5-10Hz); high-alpha (10.5-12Hz); low-beta (12.5-18Hz); mid-beta (18.5-21Hz); 

and high-beta (21.5-30Hz). Y-axis represents EEG channels. (D) Asymmetry features from 

power analysis. X-axis represents the frequency bands and y-axis represents the channels used to 

calculate asymmetry. (E) Features taken from current source density analysis. X-axis represents 

the frequency bands. Y-axis represents the regions of interest: the anterior cingulate cortex 

(ACC), rostral ACC (rACC), superior frontal gyrus (SFG), middle frontal gyrus (MiddleFG) and 

the medial frontal gyrus (MedialFG). (F) Features taken from microstate analysis. X-axis 

represents the characteristics of microstates: duration, frequency and coverage. Y-axis represents 

the microstate map: A, B, C and D.  
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Figure 8.3 - ‘Change from Baseline to Week 2’ features discriminating responders and non-

responders with ≥ 70 votes following the randomized permutation cross-validation method.  

 

Red indicates that the feature value is greater in responders than non-responders and blue 

indicates that the feature is smaller in responders than non-responders. (A) Features taken from 

multiscale entropy analysis. X-axis represents time scales from 1 to 70 and y-axis represents 

EEG channels. (B) Asymmetry features from multiscale entropy analysis. X-axis represents time 

scales from 1 to 70 and y-axis represents the channels used to calculate asymmetry. (C) Features 

taken from EEG power analysis. X-axis represents frequency: delta (1-3.5Hz); theta (4-8Hz); 

low-alpha (8.5-10Hz); high-alpha (10.5-12Hz); low-beta (12.5-18Hz); mid-beta (18.5-21Hz); 

and high-beta (21.5-30Hz). Y-axis represents EEG channels. (D) Asymmetry features from 

power analysis. X-axis represents the frequency bands and y-axis represents the channels used to 

calculate asymmetry. (E) Features taken from current source density analysis. X-axis represents 

the frequency bands. Y-axis represents the regions of interest: the anterior cingulate cortex 

(ACC), rostral ACC (rACC), superior frontal gyrus (SFG), middle frontal gyrus (MiddleFG) and 

the medial frontal gyrus (MedialFG). (F) Features taken from microstate analysis. X-axis 

represents the characteristics of microstates: duration, frequency and coverage. Y-axis represents 

the microstate map: A, B, C and D.  
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Figure 8.4 - Combined model (Baseline + ‘Change from Week 0 to Week 2’) features 

discriminating responders and non-responders selected in ≥ 70 permutations of the 

randomized permutation cross-validation method.  
Red indicates that the feature value is greater in responders than non-responders and blue indicates 

that the feature is smaller in responders than non-responders. Left panel represents baseline features. 

Right panel represents ‘Change from Week 0 to Week 8’) features. (A) Features taken from 

multiscale entropy analysis. X-axis represents time scales from 1 to 70 and y-axis represents EEG 

channels. (B) Asymmetry features from multiscale entropy analysis. X-axis represents time scales 

from 1 to 70 and y-axis represents the channels used to calculate asymmetry. (C) Features taken from 

EEG power analysis. X-axis represents frequency: delta (1-3.5Hz); theta (4-8Hz); low-alpha (8.5-

10Hz); high-alpha (10.5-12Hz); low-beta (12.5-18Hz); mid-beta (18.5-21Hz); and high-beta (21.5-

30Hz). Y-axis represents EEG channels. (D) Asymmetry features from power analysis. X-axis 

represents the frequency bands and y-axis represents the channels used to calculate asymmetry. (E) 

Features taken from current source density analysis. X-axis represents the frequency bands. Y-axis 

represents the regions of interest: the anterior cingulate cortex (ACC), rostral ACC (rACC), superior 

frontal gyrus (SFG), middle frontal gyrus (MiddleFG) and the medial frontal gyrus (MedialFG). (F) 

Features taken from microstate analysis. X-axis represents the characteristics of microstates: 

duration, frequency and coverage. Y-axis represents the microstate map: A, B, C and D.  

 



247 

 

Section V: Discussion and Future Work 
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Chapter 9 – General discussion and Suggestions for 
Future Work  
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There were two main aims in this thesis. One was to investigate the neurophysiological targets of 

treatments for depression (seizure therapy and antidepressant medications) to understand (a) why 

seizure therapy is effective for severe, treatment-resistant depression, and (b) why patients might 

fail to respond to an antidepressant medication, i.e., usually the first line of treatment for 

depression. The second aim was to build a predictive model to identify responders and non-

responders of antidepressant medication, early in the treatment trial. This can reduce the time 

spent in failed trials and minimize the effect of untreated depression. Studies included in this 

thesis provided evidence for the modulation of neural dynamics following seizure therapy 

(electroconvulsive therapy and magnetic seizure therapy – ECT and MST) and antidepressant 

medication (escitalopram). To characterize neural dynamics, we derived resting-state EEG 

measures from the frequency domain using power spectral density analysis (seizure therapy: 

Chapter 4; escitalopram: Chapter 6), spatio-temporal measures of complexity using multiscale 

entropy analysis (seizure therapy: Chapter 4; escitalopram: Chapter 6), and global brain-network 

measures using microstate analysis (seizure therapy: Chapter 5; escitalopram: Chapter 7). 

Prediction models were built to predict response to escitalopram using machine learning methods 

(Chapter 8).  

 

Results from this thesis suggest that both antidepressant medications and seizure therapy may 

modulate cerebral oscillatory activity for therapeutic effect. Markers associated with 

antidepressant efficacy were identified to be distinct from markers of cognitive decline seen with 

ECT using multiscale entropy analysis. In addition, changes in neural dynamics were widespread 

in frequency, timescales and regions following ECT. Changes following MST were focal and 

were observed in high frequency, fine timescales, and fronto-central and parieto-occipital 

regions. Finally, the trajectory of changes in neural dynamics following eight weeks of 

escitalopram treatment (i.e., baseline to week 2 and week 2 to week 8) was shown to be different 

between responders and non-responders of escitalopram. Several measures of neural dynamics at 

baseline and as early as 2 weeks into treatment, were shown to predict response to escitalopram. 

The mechanistic and predictive markers identified through this work are summarized in 

Appendices II-III.   
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This chapter is organized to first summarize and discuss the results of studies included in this 

thesis that aimed to investigate the targets of treatments for depression (ECT, MST and 

escitalopram). Then, predictive markers of escitalopram response are summarized and discussed. 

Next, based on the lessons learned from our work, recommendations for future intervention trials 

are provided. Finally, limitations, novel findings and implications of this thesis are also 

discussed.  

 

9.1 Insight into the Mechanism of Action of Treatments for 
Depression 

9.1.1 Summary of Results 

Considering the complex pathophysiology of major depression (Tardito, Perez et al. 2006, 

Belmaker and Agam 2008, Krishnan and Nestler 2010, Duman and Aghajanian 2012, Pandya, 

Altinay et al. 2012), the mechanism of action of successful treatments is also likely to be 

complex. For the scope of this thesis, we focused on resting-state neural dynamics at the cortex 

level, as monitored by EEG, for several reasons. First, EEG neural dynamics are considered to be 

intermediate measures that can capture changes at both the neuronal and network level of the 

brain (Zoon, Veth et al. 2013, Leuchter, Hunter et al. 2014). In addition, predictive markers 

derived from the EEG signal have clinical potential because unlike other neuroimaging methods 

(i.e., fMRI), EEG is inexpensive and accessible. Finally, seizure therapy is known to impact 

neural dynamics through the induction of a seizure and this impact was clearly shown with 

resting-state EEG data (Krystal, Weiner et al. 1993, Krystal, Greenside et al. 1996, Sackeim, 

Luber et al. 1996, Krystal, Coffey et al. 1998, Perera, Luber et al. 2004, Okazaki, Takahashi et 

al. 2013). In our work, we investigated whether the modulation of neural dynamics by seizure 

therapy is associated with its therapeutic effect and if other non-seizure therapies (i.e., 

antidepressant medications) also show therapeutic effect by modulation of neural dynamics. 

Results are summarized below. Please see Appendix II for a summary of the mechanistic 

markers of escitalopram, ECT and MST identified through all the studies included in this thesis.  
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9.1.1.1 Summary of Resting-State Neural Dynamics Associated with Response 
to Seizure Therapy (Chapters 4-5) 

Seizure therapy was shown to have a significant impact on resting-state neural dynamics as 

measured by EEG. This impact on neural dynamics was also shown to be different between 

responders of ECT and responders of MST. The widespread changes in frequency of neural 

oscillations observed following ECT were not specific to responders of ECT. In other words, 

changes were observed in both responders and non-responders. In comparison, an increase in 

high frequency oscillations was observed in only responders of MST. However, changes in the 

frequency of neural oscillations were not correlated with improvement in depressive symptoms. 

Studying the complexity of neural dynamics, responders of both ECT and MST revealed spatio-

temporal specific changes in complexity. A decrease in the complexity of fine timescales (1-30) 

was observed in responders of ECT and MST, and this decrease in complexity was linked to 

improvement in depressive symptoms. In addition, an increase in complexity of coarse 

timescales (35-70) was observed in responders of ECT and this increase in complexity was 

linked with cognitive decline associated with ECT. Finally, through the examination of global 

network dynamics, only ECT responders revealed significant network-specific changes 

associated with treatment response. The effect on global network dynamics by MST was shown 

to be in the same direction as ECT but the effect was not network-specific and was not seen in 

responders or non-responders of the treatment.  

 

9.1.1.2 Summary of Resting-State Neural Dynamics Associated with Response 
to Escitalopram (Chapters 6-7) 

Significant changes in resting-state neural dynamics were observed following an eight week 

course of escitalopram, as measured by EEG. Results from frequency and complexity analysis 

revealed a distinct pattern of early (baseline to week 2) and late (week 2 to week 8) changes. In 

responders, early changes in the frequency of neural oscillations were localized to the parieto-

occipital regions and were frequency-specific (13-30Hz). Over the remaining course of treatment 

(week 2 to week 8), responders revealed changes in frequency and complexity that correlated 

with improvement in depressive symptoms. In non-responders, early changes were seen in 

several regions, frequencies and timescales and these changes negatively correlated with 

improvement of depressive symptoms. Following this early change, there was no effect of 
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treatment on neural dynamics in non-responders from week 2 to week 8. Results from microstate 

dynamics suggested that escitalopram may have an impact on global brain dynamics. Initial 

changes in global brain-network dynamics by escitalopram were associated with non-response 

towards the treatment. Together, results suggested that a potential early perturbance of neural 

activity and the dynamics of neural activity by escitalopram (that is frequency, spatio-temporal 

and network specific) may have a positive effect on responders over the course of treatment and 

an early negative effect on non-responders.  

 

9.1.2 How are Neural Dynamics Related to the Mechanism of Action of 
Treatments for Depression? 

Before speculating on the role of dynamic neural activity in mediating the mechanisms 

underlying treatments for depression, it is important to highlight the importance of neural 

dynamics in the complex functions of the brain. Effective neural communication and potentially 

neuroplasticity rely on the efficient transmission of information through both bottom-up and top-

down processes (Rolls, Treves et al. 1998, Buzsáki and Draguhn 2004, Eytan and Marom 2006, 

Grillner 2006, Rojas 2013). Bottom-up processes are involved in neural communication from the 

level of neurons to networks, where the summation of individual neurons firing together can 

generate neural oscillations at the network level. In comparison, top-down processes are involved 

in neural communication from the level of networks to neurons, where the electric field 

generated by network oscillations can induce electrical activity at individual neurons (Leuchter, 

Hunter et al. 2015). Neural dynamics are characteristics of such bi-directional processes 

responsible for regulating brain functions (Laughlin and Sejnowski 2003, Buzsáki and Draguhn 

2004, Schnitzler and Gross 2005) including neuroplasticity (Leuchter, Hunter et al. 2015). 

Modulation of neuroplasticity is one of the most common findings in studies investigating the 

impact of treatments for depression on the brain (D'sa and Duman 2002, Brunoni, Lopes et al. 

2008, Pittenger and Duman 2008).  

 

Through the results of this work, we suggest that treatments for depression may modulate the 

dynamics of neural communication. Specifically, we suggest that successful treatments for 

depression, such as ECT, impact dynamics at the large-scale network level of the brain for 
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antidepressant response. In a recent meta-analysis (Kaiser, Andrews-Hanna et al. 2015), 

depression was associated with functional brain network dysfunction, specifically, 

hypoconnectivity in the frontoparietal network and hyperconnectivity in the default-mode 

network. In our work, modulation of complexity and frequency of neural oscillations were 

observed in regions associated with the default-mode network (precuneus, posterior cingulate 

cortex) as well as the frontoparietal network (anterior cingulate cortex, prefrontal and parietal 

cortex). Together, these results add to the current line of neuroimaging evidence for the 

disruption and modulation of large-scale neural networks following treatments of depression for 

therapeutic efficacy.  

 

Pharmacotherapy may also modulate neural dynamics at the network level for therapeutic 

efficacy through its effects at the cellular level. Based on the results from our work, this may 

take more than 2 weeks. In addition, genetic factors may delay the effects of pharmacotherapy at 

the cellular level (Evans and Relling 1999) and further delay the effect of pharmacotherapy at the 

network level. In our results, we repeatedly observed that escitalopram does not show an early 

effect on responders for therapeutic effect. This has also been shown in previous studies, where 

the effects of pharmacotherapy on depressive symptoms are delayed for 4-6 weeks (Quitkin et 

al., 1984; Gelenberg and Chesen, 2000; Frazer and Benmansour, 2002). We hypothesize that this 

delay may be associated with the time it might take cellular effects to translate to the network 

level.  

 

A novel finding of our work was that pharmacotherapy may have an initial impact in non-

responders suggesting that the initial effect of pharmacotherapy may be different between 

responders and non-responders. One possible explanation may be interpreted from the known 

effects of pharmacotherapy. The mechanism of action of SSRIs (such as escitalopram) is 

generally assumed to be mediated by the binding of the drug to serotonin transporters resulting in 

increased extracellular concentrations of serotonin across the serotonergic pathways (Stahl 

1998). However, a recent PET study in humans (Nord, Finnema et al. 2013) reported that a 

single dose of escitalopram leads to an initial decrease in serotonin concentrations in occipital 

and temporal regions. Over the course of the medication, there may be a desensitization of 

inhibitory serotonin receptors and serotonin concentrations increase as expected. We hypothesize 
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that the neurobiological effects of this initial decrease in serotonin concentrations may differ 

between responders and non-responders.  

 

At the gene level, brain-derived neurotrophic factor (BDNF) is known to be involved in neural 

cell proliferation and synaptic plasticity (Katz and Shatz 1996, Duman and Monteggia 2006). 

Reduced secretion of BDNF by the genetic polymorphism BDNF Val66Met, was previously 

reported to be associated with severity of depression (Jiang, Xu et al. 2005, Verhagen, Van Der 

Meij et al. 2010, Molendijk, Bus et al. 2011, Czira, Wersching et al. 2012) and normalization of 

BDNF levels was associated with antidepressant response (Sen, Duman et al. 2008, Zou, Ye et 

al. 2010, Molendijk, Bus et al. 2011). In addition, reduced secretion of BDNF was hypothesized 

to be associated with reduced functional connectivity and oscillatory activity in neuronal systems 

impaired in depression (Thomason, Yoo et al. 2009). Specifically, polymorphism of BDNF 

Val66Met was shown to be mediated by parieto-occipital alpha (Gatt, Kuan et al. 2008, Zoon, 

Veth et al. 2013) and increased parieto-occipital alpha was shown to be higher in patients with 

depression (Pollock and Schneider 1990, Bruder, Tenke et al. 2005). In our work, responders of 

escitalopram revealed a reduction in alpha oscillations after 8 weeks of escitalopram treatment 

while non-responders revealed no changes in alpha power. Based on these results and the 

previous literature, we hypothesize that non-responders may show impairments in the biological 

pathway including BDNF Val66Met, that are not seen in responders, resulting in differences in 

their response to escitalopram. 

 

Complexity and oscillatory power are important measures of neural dynamics used in this thesis. 

Previous studies have suggested that these measures may provide insight into neuroplastic 

processes. High alpha oscillatory power at rest and during cognitive tasks has been correlated 

with BDNF Val66Met polymorphism that affects BDNF secretion (Gatt, Kuan et al. 2008, Zoon, 

Veth et al. 2013). Complexity of time series in biological systems is suggested to reflect 

plasticity (i.e., adaptability) to a changing environment (McIntosh, Vakorin et al. 2013). Recent 

work suggests that the transfer of information from one neural network to another (i.e., effective 

neural transmission) requires that the two networks have matching complexities (West and 

Grigolini 2010, Marmelat and Delignières 2012, Mafahim, Lambert et al. 2015). In general, the 
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dynamic activity of neurons and neuronal populations, i.e., networks and circuits, plays a key 

role in regulating neural functions such as neuroplasticity. The observation of such dynamics has 

proved to be useful in understanding the targets of successful treatments for depression.  

 

If all treatments for depression modulate neural dynamics, why do some treatments show 

efficacy when others fail?  

Due to the heterogeneity of depression, regions affected by depression may vary between each 

individual patient (Pandya, Altinay et al. 2012). With the current trial-and-error approach to 

treatment selection, the selected treatment may not be able to target the specific impaired 

region(s), or the impact on the region(s) affected by depression by the selected treatment may not 

be sufficient enough to generate a long-lasting change in neuroplasticity required for therapeutic 

response. For example, ECT has the highest efficacy for patients with severe, treatment-resistant 

depression (Kellner, Greenberg et al. 2012). It has a very strong impact on global neural 

dynamics, affecting regions impaired in depression (Farzan, Boutros et al. 2014) but also other 

regions associated with cognition resulting in cognitive side effects (Devanand, Sobin et al. 

1995). On the other hand, MST has a focal effect (Deng, Lisanby et al. 2011). Although MST 

has the potential to only impact regions impaired in depression (Lisanby, Luber et al. 2003, 

Spellman, McClintock et al. 2008, Deng, McClintock et al. 2015), selecting an appropriate 

treatment target (region or network) can be challenging without clear knowledge on the 

pathophysiology of depression. Finally, antidepressant medications may also have a region-

specific effect rather than the widespread effects seen with ECT (Altar, Whitehead et al. 2003). 

In other words, they may not be able to target impaired connectivity between these regions for 

therapeutic efficacy. 

 

9.2 Predicting Response to Escitalopram Treatment using 
Markers of Neural Dynamics 

9.2.1 Summary of Results (Chapter 8) 

Predictive markers, that can provide insight into therapeutic effectiveness prior to the start of the 

treatment course, could potentially assist in the clinical decision-making process of treatment 

selection. In Appendix III, the predictive markers of pharmacotherapy (escitalopram) identified 
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through this thesis are summarized. In the future, the treatment selection process is hoped to be 

improved through the use of an EEG-based clinical decision-making tool integrating such 

markers. As a first step towards the development of this tool, we evaluated the feasibility of 

predicting response to escitalopram treatment using measures of resting-state neural dynamics, as 

obtained from EEG data. 

 

To recap, prediction models were built using data from patients with major depressive disorder 

who received 8 weeks of escitalopram treatment. Four models were created for prediction: (1) 

baseline model using only features derived from the data collected during baseline, (2) week 2 

model using only features derived from the data collected during week 2, (3) early change model 

including change in features from baseline to week 2, and (4) a combined model using data from 

(1) and (3). 

  

Balanced classification accuracy was approximately 72.8% using baseline data, 69.2% using 

week 2 data and 70.1% using ‘change from baseline to week 2’ data. In addition, as 

hypothesized, combining baseline neural dynamics with early changes in neural dynamics 

(change in response to 2 weeks of treatment) increased the accuracy of prediction to 83.2%. 

Please see Chapter 8 for a detailed report.  

 

9.2.2 Comparing Prediction Performance with Previous Studies 

Given the large amount of clinical, behavioral and demographic data collected during a treatment 

trial, there has been interest in whether this data can be used in the clinic to guide treatment 

decisions. Studies have shown that patient characteristics at baseline may be associated with 

treatment outcome (Trivedi, Rush et al. 2006, Rush, Wisniewski et al. 2008). However, their 

predictive performance was shown to be low. The sequential treatment alternatives to relieve 

depression (STAR*D) was the largest trial to evaluate the predictive value of patient 

characteristics. In this trial, prediction using a logistic regression model achieved an AUC of 

0.71 (Perlis 2013). Prediction using machine learning methods and external validation with an 

independent dataset yielded an accuracy of 59.6% (Perlis 2013). 
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In Chapter 1, a table was provided (Table 1.1) to summarize studies evaluating the prediction 

performance of pre-treatment resting-state EEG markers for antidepressant response. Of those 

studies, only two studies provided accuracy higher than our study (83.2%). An accuracy of 

87.9% was reported (sensitivity=94.9%; specificity=80.9%) in (Khodayari-Rostamabad, Reilly 

et al. 2013). However, this study had several limitations: (i) the study was performed with a low 

sample size (n=22), (ii) responders were defined with ≥30% improvement in clinical scores 

rather than the usual ≥50%, and (iii) patients on 4 different medications were combined 

(sertraline, citalopram, fluvoxamine, paroxetine). Accuracy was also high (85-92%) in (Rabinoff, 

Kitchen et al. 2011) using spectral EEG features with classification and regression tree analysis. 

The study combined trials for 2 antidepressants (fluoxetine and venlafaxine) to predict response 

in 51 patients with unipolar depression. The high accuracy values however, may be due to 

overfitting to the data and this is suggested by the 100% specificity in all treatment groups. Apart 

from these studies, most of the literature focused on the evaluation of single marker for 

predictive value. The accuracy of prediction varies using single features varies between 60-77%. 

However, since most of these studies did not perform validation, or performed analysis on fairly 

low sample sizes, accuracies may be inflated and may decrease significantly when applied to a 

new dataset.  

 

9.3 Importance of Validation for Generalizability of Results 

The mechanistic and predictive markers identified in this work as well as the developed 

predictive models require validation for several reasons. First, the reliability of the markers and 

the models is yet to be determined. Replication of results would be an important step towards as 

assessment of reliability. Second, it is important to determine whether the studied changes in 

neural dynamics are truly associated with treatment or if they may be a result of other 

confounding effects. For this, future studies should consider the use of a randomized design with 

a placebo patient group. Studies should also aim to investigate the physiological meaning and 

implications of these results for depression and for treatment outcome. Finally, the pipeline used 

to derive prediction models in this work also needs to be validated before its use and application. 

All these validation tests serve to evaluate the generalizability of the markers and the models.  
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Validation of performance with an independent dataset is another important aspect of 

classification models. Yet, it was not implemented in several previous studies. It should be noted 

that by excluding validation, results on the predictive performance of a marker or a model are 

potentially inflated and highly unlikely to generalize to a new data set that is independent from 

the original data set. In this study, cross-validation was applied to select hyperparameters for the 

machine learning algorithm as well as to estimate the predictive performance of the model. 

Despite the advantages of cross-validation, it still only provides an estimate on the 

generalizability of the model. It is important to further validate each model on a larger 

independent data set for accurate estimates of prediction performance. 

 

One important reason to validate results is the potential sources of bias from the patient sample 

size. Given the heterogeneity of depression, any size of sample used in research trials suffers 

from selection bias. Patients may vary in demographics (age, education, previous history of 

mental illness), severity of illness and/or genetic differences that could potentially affect an 

individual’s response to treatment. In addition, most research trials do not account for the large 

portion of individuals that do not seek medical attention and therefore, do not receive treatment. 

Patients could also drop out of the study or not provide consent to participate in 

neurophysiological assessments. The effect of excluding these subjects can have a severe impact 

on the generalizability of study results and must be considered when interpreting results.  

 

Therefore, several factors need to be considered in future validation studies.  First, efforts should 

be made for a comprehensive inclusion of the patient group. If possible, patients in the treatment 

group should be matched with patients in the placebo group. The allocation of patients in either 

group should be based on a random process and a strict implementation of this random 

assignment must be followed. Next, the same methodology for data collection, pre-processing 

and analysis should be followed to ensure there is no bias in the study design. Documentation of 

deviations to the methodology is highly recommended for transparency. 
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9.4 Importance of Integrating Markers from Multiple Time 
Points in Prediction Models 

The investigation of predictive markers for escitalopram response over multiple time points 

proved to be an advantage in our work. In our second project (Chapters 6-7), the trajectory of 

neurophysiological changes over time was observed to be different between responders and non-

responders. This difference in trajectory was also crucial for the identification of early predictors 

of response and non-response. In our third project (see Chapter 8), prediction models that 

included measures of changes in neural dynamics from baseline to week 2 were shown to yield 

higher performance.  

 

In general, frequent neurophysiological assessments are highly recommended to better 

understand treatments for depression and to improve prediction for treatment outcome in 

depression. The inclusion of data from several time points would allow for a powerful statistical 

design that can better detect the effect of time and the interaction between time and other factors, 

the most important being response. In addition to this advantage, longitudinal studies would also 

provide a better basis for causal inference. If assessments are performed over several time points 

during the course of a treatment, we can better understand which effects are specific to treatment 

and which effects may be associated with confounding factors. 

 

For prediction, it is important to identify the earliest time point at which response or non-

response can be detected. As a general guideline and based on the results from this work, 

neurophysiological assessments should be conducted at least 2 weeks into treatment if the 

detection of non-response is of priority. If possible, future studies may include assessments 1 

week into the treatment course to investigate whether markers of response/non-response can be 

detected earlier than 2 weeks as suggested by some previous studies (Katz, Koslow et al. 1996, 

Stassen, Angst et al. 1999). Other studies agree with our results, suggesting that medications may 

require a minimum of 2-3 weeks to show some improvement (Quitkin, Rabkin et al. 1984, 

Gelenberg and Chesen 2000). The inclusion of neurophysiological assessments at regular time 

points after 2 weeks however, could also inform on the gradual changes that occur with 

treatment. The frequency of these data collection time points would also depend on the 
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availability of resources (cost and personnel), patient consent and comfort, reliability of data 

collection procedures, etc. 

 

9.5 Importance of Standardization of Data for Future Work 

The feasibility of identifying reliable mechanistic and predictive markers of treatments and the 

development of a clinical decision-making tool for treatment selection will in part depend on the 

collection and sharing of large-scale, clinically-reliable data sets, as done by CAN-BIND. Prior 

to the collection of these large data sets, a systematic procedure must be set in place for proper 

standardization of data collection, analysis, and handling. With the involvement of several sites, 

investigators and project initiatives, data may be collected over several modalities as well. 

Reproducibility of results and combination of data from different modalities (clinical, 

neuroimaging, genetic) will also largely depend on this standardization procedure as well as the 

data collection and data sharing procedures. In case the standardization procedure cannot be 

followed, investigators should at least document all deviations from the standardization protocol. 

With proper standardization and documentation, results derived from these large-scale studies 

are more likely to be reproducible and generalizable to a large portion of the patient population.     

 

9.6 Suggestions for Future Intervention Trials 

Several recommendations are listed here and are based on the lessons learned from studies 

included in this thesis. 

1) As mentioned, to investigate the targets of successful treatments for depression, clinical 

and neurophysiological assessments may need to be conducted at frequent time points. It 

is recommended that for an initial pilot study or for an early portion of a large clinical 

trial, these assessments should be conducted regularly (e.x., every treatment session). The 

frequency of assessments may be reduced after initial analysis of the collected data. The 

main aim would be to identify the earliest time point at which we may be able to detect 

differences between responders and non-responders. Another aim would be to monitor 

the variability of neural measures between each time point. This could determine the 
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maximum time interval that should be set in trials for neurophysiological assessments so 

that reliable changes associated with treatment outcome can be detected rather than noise.    

2) In addition to EEG neurophysiological assessments, it could be highly valuable to 

conduct additional physiological assessments to include markers from different levels of 

biological organization (such as genetic, molecular) in future prediction models. It is 

likely that these factors are linked to different bio-types of patients with depression 

(Wager and Woo 2017) and how they respond to treatment. 

3) If possible, a double-blind, placebo-controlled trial should be considered. The inclusion 

of a patient group receiving a placebo may reduce the confounding effects of bio-types of 

depression in evaluating clinical efficacy (Wager and Woo 2017) and also validating the 

measures of neural dynamics that were associated with clinical outcome in our work.  

4) To provide the best treatment for each individual patient and move towards personalized 

medicine for depression, there is a need to first identify neurophysiological markers that 

can reliably predict whether a patient will respond to one type of treatment over another. 

These markers may be different or similar to the ones identified in this work. A future 

multi-intervention trial must be conducted to elucidate these relationships. Such a trial 

should also include a patient placebo group. 

5) Several steps need to be taken to test the feasibility of translating the predictive markers 

of pharmacotherapy from this thesis into the clinic. First, as mentioned, results from this 

thesis should be validated on a large, independent patient dataset and also data collected 

from a patient placebo group. Then, the test-retest reliability of all these markers must be 

evaluated with a healthy subject group. Finally, for a portable clinical solution, the test-

retest reliability study should also investigate the minimum of number of EEG electrodes, 

and the best montage of the electrodes, required for a reliable measure of neural 

dynamics. Based on results from this thesis, a fronto-parietal montage may work best. 
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9.7 Suggestions for Improving the Performance of 
Prediction Models for Treatment Outcome 

Several future directions can be explored to increase the accuracy of treatment outcome 

prediction.  

1) Future studies should consider integrating measures from several different modalities 

(i.e., genetic, fMRI, PET) as well as from additional time points during the course of the 

treatment. In this thesis, we chose to focus on resting-state EEG for its potential towards 

clinical translation. However, a clinical assessment tool that only uses EEG measures 

may also have limited accuracy. For example, EEG data has high temporal resolution, but 

it is limited in spatial resolution. Measures derived from EEG data represent high-level 

neural activity seen at the cerebral cortex. Source localization methods for EEG can 

estimate activity at lower levels, but it may also be confounded by other sources of noise. 

Combining markers from different modalities (each with a unique advantage) may help 

bring together several lines of evidence to effectively predict treatment response.   

2) In this thesis, measures of neural dynamics were found to predict general treatment 

response to each type of treatment individually: seizure therapy (ECT and MST) or 

pharmacotherapy (escitalopram). Future studies should consider using these measures, or 

potentially identify new measures, to predict whether one treatment can provide greater 

response compared to another. This differential prediction would be the next challenge in 

the development of personalized tools for treatment selection.  

3) Future development of treatment prediction models is strongly suggested to include non-

linear measures of neural dynamics (Natarajan, Acharya et al. 2004, Stam 2005). As 

detailed in previous sections, the neurophysiological mechanisms underlying the efficacy 

of treatments for depression are highly complex. An understanding of normal or 

disturbed neural processes responsible for high-level brain functions perhaps cannot be 

provided solely by reductionist approaches (i.e., linear measures). The successful 

integration of complexity analysis in our work also provides supports the investigation of 

additional measures of nonlinear dynamics. Examples may include measures from graph 
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theory analysis (Smit, Stam et al. 2008, Bullmore and Sporns 2009) or may be based on 

information theory (Pereda, Quiroga et al. 2005). 

 

9.8 Thesis Limitations  

The EEG modality provides excellent temporal resolution needed to record the dynamics of 

neural activity, on the order of milliseconds to micro-seconds. However, its spatial resolution is 

poor and potentially not sufficient for differentiating activity between regions or between neural 

circuits in the brain. Source localization with EEG data also has limitations. The electrical 

distribution measured over the scalp by EEG, at any given time point, could theoretically be 

generated by an infinite number of possible sources in the brain. Several methods attempt to 

solve this inverse problem (including the LORETA method used in this work) but each method 

has assumptions and limitations (Pascual-Marqui 1999, Grech, Cassar et al. 2008). Therefore, all 

results in this study should be checked and validated by future studies. An alternative approach is 

to combine EEG markers with markers from different neuroimaging methods such as PET, 

fMRI, etc. to compensate for the poor spatial resolution of EEG.   

 

Measures of neural dynamics used in this thesis were informative and successful for the scope of 

the aims defined in this thesis. However, all of these measures were derived as an average over 

several segments of the data. Although this provided a good signal-to-noise ratio for each 

measure, it failed to account for variability over time. In other words, an assumption of 

stationarity of the neural signal was made for all the analyses. We hope that future work can 

investigate dynamic transitions in neural states using data collected over a longer length of time.  

 

The dichotomization of patients into responders (i.e., greater than or equal to 50% improvement 

in a clinical rating scale) or non-responders is also a major limitation of this thesis. In a clinical 

setting, the binary divide between response and non-response is a common practice and can be 

useful when defining clinical outcomes but in the study of neurophysiology, defining response as 

a continuous outcome may be a better approach. Although a bimodal distribution of response 

was observed in the studies included in this thesis, the lack of a bimodal distribution could lead 
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to inflated Type-1 errors (Cohen 1983, Irwin and McClelland 2003, Owen and Froman 2005, 

Van Walraven and Hart 2008, Bennette and Vickers 2012, Barnwell‐Ménard, Li et al. 2015). 

Understanding how minute changes in neurophysiology might be associated with changes in 

depressive scores is crucial for understanding how treatments for depression might show 

efficacy.  

 

Another limitation is that much of the work in this thesis only included data collected before and 

after treatment. For the CAN-BIND study, data from an early time point was also included (i.e., 

2 weeks into the treatment trial). To study the neurophysiological targets of treatments, 

modulation of neural dynamics should be monitored consistently over the course of the treatment 

(i.e., every week or every 2nd or 3rd treatment session) but unfortunately this was not done in the 

studies included in this thesis. Future research is necessary to address this limitation. 

 

The work included in this thesis also does not account for confounding effects that may result 

from different bio-types of depression. A recent resting-state fMRI study suggests that there may 

be four different bio-types of depression (Wager and Woo 2017), where patients in each bio-type 

reveal distinct symptoms and neural connectivity. The study also predicted that treatment 

efficacy is different for each bio-type. In future studies, the inclusion of markers designed to 

identify these bio-types in treatment outcome prediction models is likely to yield a much 

improved classification performance.  

 

Our results also do not demonstrate causality. Findings from this work demonstrate correlations 

between changes in neural dynamics (or baseline neural dynamics) and therapeutic outcome. 

Studies suggest that the combination of EEG with transcranial brain stimulation might help 

elucidate causal influences that neural units exert over another (Friston 1994, Massimini, 

Ferrarelli et al. 2005). Previous studies have used measures of complexity (Casali, Gosseries et 

al. 2013, Sarasso, Rosanova et al. 2014) or the phase of alpha oscillations (Thut and Miniussi 

2009) with TMS-EEG to investigate the functionality of brain regions.  

 

Finally, although machine learning methods have shown success in several clinical applications 

including diagnosis and prediction of treatment outcome, accuracy of these algorithms can 
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always be improved by training with larger datasets. Predictive features identified through our 

machine learning work (see Chapter 8) must also be tested on an independent dataset to assess 

the generalizability of the models. 

 

9.9 Novel Contributions 

There are several novel contributions in this thesis. Results from the seizure therapy project 

(Chapters 4-5) were the first to show the modulation of neural complexity and global brain-

network dynamics, via multiscale entropy and microstate analysis, following a course of ECT or 

a course of MST. These studies were also the first to show differential impact on neural 

dynamics following ECT or MST. This is an important novel contribution since MST is still in 

the clinical trial phase. This thesis also provided evidence towards a common mechanism of 

action of treatments for depression: the modulation of specific frequency and/or spatio-temporal 

neural dynamics for treatment response (seizure therapy) or non-response (escitalopram). 

Variations in therapeutic impact between treatments were hypothesized to arise from potential 

differences in the modulation of specific frequency, temporal and spatial characteristics of neural 

dynamics. Additional causational evidence is still required to extend these results and to 

investigate whether changes in neural dynamics are associated with changes in neuroplasticity. 

 

9.10 Clinical Implications 

With further evaluation and development, markers similar to the ones identified in this thesis, 

may be integrated at several critical decision points of the treatment course. This includes 

optimizing treatment parameters, validating novel treatment targets, clinical screening of patients 

for a treatment, and even accelerating the approval process of a treatment by regulating 

administrations. In addition, the identification of early predictive markers for antidepressant 

response can contribute towards the development of a clinical decision-making tool for 

individualized treatment selection and may also provide rationale for optimal combinations of 

treatments for maximum therapeutic outcome. We hope that the knowledge gained from this 

work will help guide the development of personalized treatment for depression and potentially 

other brain disorders.   
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Appendix I: List of EEG Electrodes Used for Analysis 
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List of the 60 EEG channels included in the 

analysis for Study 1 

List of the 58 EEG channels included in the 

analysis for Studies 2 and 3 

FP1 FP1 
FPZ FPZ 
FP2 FP2 
AF3 AF3 
AF4 AF4 
F7 F7 
F5 F5 
F3 F3 
F1 F1 
FZ FZ 
F2 F2 
F4 F4 
F6 F6 
F8 F8 

FT7 FT7 
FC5 FC5 
FC3 FC3 
FC1 FC1 
FCZ FCZ 
FC2 FC2 
FC4 FC4 
FC6 FC6 
FT8 FT8 
T7 T7 
C5 C5 
C3 C3 
C1 C1 
CZ CZ 
C2 C2 
C4 C4 
C6 C6 
T8 T8 

TP7 TP7 
CP5 CP5 
CP3 CP3 
CP1 CP1 
CPZ CPZ 
CP2 CP2 
CP4 CP4 
CP6 CP6 
TP8 TP8 
P7 P7 
P5 P5 
P3 P3 
P1 P1 
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PZ PZ 
P2 P2 
P4 P4 
P6 P6 
P8 P8 

PO7 PO7 
PO5 PO3 
PO3 POZ 
POZ PO4 
PO4 PO8 
PO6 O1 
PO8 OZ 
O1 O2 
OZ  
O2  
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Appendix II: Summary of Mechanistic Markers for Treatments 

of Depression Studied in this Thesis 
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 ELECTROCONVULSIVE 

THERAPY 

MAGNETIC SEIZURE THERAPY ESCITALOPRAM 

 

Frequency 

Analysis 

 

(Relative 

Power) 

 

 

 

 

 

Responders showed widespread 

increases in delta and theta oscillations 

(<8Hz). In addition, widespread 

decreases were also observed in high 

alpha (10-12Hz), beta (12-30Hz) and 

gamma oscillations (30-50Hz). 

 

 

Responders and non-responders revealed 

a significant decrease in high beta and 

gamma oscillations (16-50Hz). 

 

~ Decrease in high beta oscillations was 

shown to be widespread.  

~ Decrease in gamma oscillations was 

observed in frontal, fronto-central, central 

and centro-parietal regions.  

 

Baseline to Week 8 

Responders reveal significant widespread 

increases in delta and theta oscillations 

(<8Hz). Increase in gamma (33-50Hz) 

oscillations approached significance 

(p=0.06). 

 

~ Increase in alpha and beta oscillations 

was shown to be widespread.  

~ Increase in gamma oscillations was 

observed in left frontal and left fronto-

central regions. 

 

 

Week 2 to Week 8 

Responders did not reveal any significant 

changes. 

 

 

Non-responders revealed a widespread 

increase in delta and theta oscillations 

(<7Hz) and a widespread decrease in 

high alpha, beta and low gamma 

oscillations (10-35Hz). 

 

 

Non-responders also showed a decrease 

in high alpha (10-12Hz), beta (16-20Hz; 

24-30Hz) and gamma (30-50Hz) 

oscillations. 

 

~ Decrease in alpha oscillations was 

Baseline to Week 8 

Non-responders did not reveal any 

significant changes. 

 

 

Week 2 to Week 8 

Non-responders did not reveal any 



271 

 

shown to be widespread  

~ Decrease in beta oscillations was shown 

to be widespread 

~ Decrease in low gamma (30-40Hz) 

oscillations was shown to be widespread. 

~ Decrease in high gamma (40-50Hz) 

oscillations was observed in left frontal, 

fronto-central and right parieto-occipital 

regions.  

significant changes. 

 

 

 

Correlation analysis revealed that a decrease in gamma oscillations (30-50Hz) was 

associated with improvement in depressive symptoms following seizure therapy.  

~ Decrease in (30-45Hz) gamma oscillations was observed in parieto-occipital regions. 

~ Decrease in (45-50Hz) gamma oscillations was observed in fronto-central and parieto-

occipital regions. 

 

 

Correlation analysis revealed that a decrease in delta+theta (<9Hz) & gamma 

oscillations (>40Hz) was associated with improvement in cognition following 

seizure therapy.  

~ Decrease in delta and theta oscillations was global 

~ Decrease in gamma oscillations was observed in centro-parietal regions. 

 

 

Baseline to Week 8 

 

Correlation analysis revealed that the 

widespread increases in theta power are 

associated with improvement in depressive 

symptoms. In addition, decrease in alpha 

(11-12Hz) and beta (21-22Hz) oscillations 

was associated with improvement in 

symptoms. 

 

Week 2 to Week 8 

 

Correlation analysis revealed that an 

increase in theta (~7Hz), decrease in alpha 

(11-12Hz), changes in beta (20-25Hz) and 

increase in gamma (30-50Hz) oscillations 

were associated with improvement in 

symptoms.  
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~ Increase in theta oscillations was observed 

in the right centro-parietal regions. 

~ Decrease in alpha oscillations was 

observed in left central and occipital 

regions. 

~ Decrease in beta oscillations (20-22Hz) was 

observed in right temporal regions 

~ Increase in beta oscillations (23-25Hz) was 

observed in left central and left centro-

parietal regions. 

~ Increase in gamma oscillations (30-50Hz) 

was observed in central and centro-parietal 

regions. 

 

Complexity 

Analysis 

 

Responders showed a significant global 

decrease in fine timescales (<30) and a 

global increase in coarse timescales 

(>50). 

 

 

Responders showed a significant 

decrease in complexity in fine timescales 

(<20).  

 

~ This decrease was specific to fronto-

central and parieto-occipital regions.  

 

 

Baseline to Week 8 

Responders did not reveal any significant 

changes in complexity.  

 

Week 2 to Week 8 

Responders revealed a significant increase 

in complexity in mid-coarse scales (20-

70).  

 

~ This effect was observed in fronto-central, 

temporal, centro-parietal and parieto-

occipital regions. 

 

 

Non-responders did not reveal any 

 

Non-responders did not reveal any 

Baseline to Week 8 

Non-responders did not reveal any 
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significant changes in complexity.  

 

significant changes in complexity. 

 

significant changes in complexity.  

 

Week 2 to Week 8 

Non-responders did not reveal any 

significant changes in complexity.  

Correlation analysis showed that a decrease in complexity in fine timescales (<30) 

following seizure therapy correlated with improvement in depressive symptoms. 

 

~ This effect was observed in fronto-central and parieto-occipital regions.  

 

 

Correlation analysis also showed that an increase in complexity in coarse timescales 

(>66) following seizure therapy was linked with greater decline in cognition. 

 

~ This effect was spatially global. 

Baseline to Week 8 

Correlation analysis revealed that an 

increase in complexity in mid-high 

timescales (15-55) correlated with 

improvement in depressive symptoms. 

~ This effect was observed in left parietal 

and left parieto-occipital regions. 

 

Week 2 to Week 8 

Correlation analysis revealed that an 

increase in complexity in fine (1-10), mid 

(15-50) and coarse (60-70) timescales was 

significantly correlated with improvement 

in depressive symptoms.  

~ In fine timescales, this effect was observed 

in fronto-central, temporal, centro-parietal 

and parieto-occipital regions. 

~ In mid-high timescales, this effect was 

observed in the centro-parietal, and 

parieto-occipital regions.  

~ In coarser timescales, the effect was 

observed in the left parietal and left parieto-

occipital regions. 
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Microstate 

Analysis 

 

Responders revealed a significant 

increase in the duration of State A and a 

significant decrease in the frequency of 

States B, C and D.  

 

 

An increase in the duration and decrease 

in the frequency of microstates was 

observed following MST. However, 

these effects were not specific to 

response or to any single microstate. 

 

In other words, changes in microstate 

characteristics were not specific to 

responders. 

Baseline to Week 8 

 

Responders revealed a significant increase 

in the coverage of State B.  

 

 

Week 2 to Week 8 

  

Responders revealed a significant increase 

in the frequency of State D.  

 

Non-responders did not reveal any 

significant changes in microstate 

characteristics.  

 

 

Changes in microstate characteristics 

were not specific to non-responders. 

 

Baseline to Week 8 

 

Non-responders did not show any 

significant changes from baseline to week 

8. 

 

Week 2 to Week 8 

 

Non-responders revealed a significant: 

~ increase in the duration and coverage of 

State B 

~ decrease in the duration, frequency & 

coverage of State C 

~ decrease in the frequency of State D 

 

  Baseline to Week 8  
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Correlation analysis revealed that an 

increase in the coverage of State A and 

an increase in the duration of State D 

following ECT is associated with 

improvement in self-rated depressive 

symptoms.  

 

In addition, the ratio between the 

“change in duration of State C” and the 

“change in duration of State D” 

significantly correlated with 

improvement in self-rated depressive 

symptoms. This suggested an interaction 

between States C and D. 

Correlation analysis between change in 

microstate characteristics (from baseline 

to end of treatment) and change in 

clinical scores did not reveal any 

significant associations. 

 

Correlation analysis did not reveal 

significant associations.  

 

Week 2 to Week 8 

 

Correlation analysis did not reveal 

significant associations.  

 

 

 

 



276 

 

Appendix III: Summary of Predictive Markers for Response to 

Escitalopram



277 

 

 

Baseline Markers Week 2 Markers Early Change Markers (Baseline to Week 2) 

 

Frequency 

Analysis 

 

 

 

 

 

Correlation analysis revealed that high 

alpha (9-12Hz), beta (19-23Hz) and gamma 

(30-50Hz) oscillations at baseline is linked 

with improvement in depressive symptoms.   

 

~ In the alpha band, the effect was observed 

in fronto-central and centro-parietal regions.  

~ In the beta band, the effect was observed 

in frontal-central, centro-parietal, and 

parieto-occipital regions. 

~ In the gamma band, regions were 

significant in the parietal regions. 

Correlation analysis in sensor space revealed 

that high power in the alpha (8-12Hz), beta 

(12-30Hz) and gamma (30-45Hz) oscillations 

correlates with improvement in symptoms.  

 

~ In the alpha band, the effect was seen in 

fronto-central, temporal and centro-parietal 

regions.  

~ In the low-beta band (12-18Hz), the effect was 

seen in frontal and parietal regions.  

~ In the mid-beta band (18-22Hz), the effect was 

seen in fronto-central, centro-parietal and 

parieto-occipital regions.  

~ In the high-beta band (22-30Hz), the effect was 

seen in fronto-central and centro-parietal 

regions. 

~ In the gamma band (30-45Hz), the effect was 

seen in fronto-central, centro-parietal and 

parieto-occipital regions. 

 

 

An increase in delta-theta (1-8Hz) and beta-

gamma (18-35Hz) oscillations significantly 

correlated with improvement in depressive 

symptoms. 

 

~ For the delta-theta cluster, this effect was 

observed in fronto-central, centro-parietal, 

tempro-parietal (TP7, TP8), parietal (P1, P3, PZ, P2, 

P4), parieto-occipital (PO3, PO7) and occipital 

(O1, OZ, O2) electrodes. 

~ For the beta cluster, this effect was observed in 

the fronto-central, centro-parietal, and parieto-

occipital electrodes. 

~ For the low gamma cluster, the effect was seen 

in right parietal and right centro-parietal regions. 

 

 

Complexity 

Analysis 

Correlation analysis revealed that a low 

complexity value at baseline correlates with 

improvement in depressive symptoms 

across coarse timescales (30-70). 

Correlation analysis revealed that a low 

complexity value at week 2 in coarser 

timescales (30-70) and a high complexity value 

at week 2 in finer timescales (12-17) correlates 

Correlation analysis in sensor space did not 

reveal any significant effects. 
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~ This effect was observed in the fronto-

central, centro-parietal and parieto-occipital 

regions. 

 

with improvement in depressive symptoms. 

 

~ The cluster in the coarser timescales was 

observed in fronto-central, centro-parietal and 

parieto-occipital regions. 

~ The cluster in the finer timescales was observed 

in fronto-central regions. 

 

 

Microstate 

Analysis 

None A long duration and high frequency of State B 

at week 2 correlated with improvement in 

depressive symptoms.  

 

An increase in the coverage of State B (from 

baseline to week 2) correlated with 

improvement in depressive symptoms.  
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