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Abstract 

P-glycoprotein (P-gp; encoded by Abcb1) at the blood-brain barrier (BBB) plays 

an important role in regulating the movement of exogenous and endogenous substrates 

into the developing brain. P-gp levels in brain endothelial cells (BECs), which form the 

capillaries of the BBB, increase dramatically in late gestation and early post-natal life. 

During this period, glial precursors differentiate into astrocytes and begin to ensheathe 

brain microvessels. However, little is known regarding the effect of astrocytes on 

Abcb1/P-gp at the developing BBB. This thesis investigated the effects of astrocyte-

derived factors on regulating Abcb1/P-gp at the developing BBB.  

In particular, the studies in this thesis demonstrated the upregulatory effect of 

transforming growth factor-beta1 (TGF-β1), a growth factor secreted by astrocytes in late 

gestation, on P-gp at the BBB. This effect was attenuated as gestation progressed.  During 

this time in pregnancy, it is common for women to receive synthetic glucocorticoids 

(sGC). This thesis has demonstrated that sGC treatment matures the BBB as it increases 

P-gp and tight junction function. These BECs also display attenuated responsiveness to 

TGF-β1 stimulation, an effect similar to that seen in post-natal guinea pig BECs obtained 

following normal pregnancies. 
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By utilizing a co-culture model using guinea pig BECs and astrocytes from two 

distinct time-points in gestation, the studies in this thesis have demonstrated that 

astrocytes enhance levels of Abcb1 mRNA and P-gp function in BECs via astrocyte-

derived factors. However, post-natal astrocytes induce a more prominent increase in P-gp 

at the developing BBB compared to fetal astrocytes. This effect was correlated with 

higher levels of secreted proteins by post-natal astrocytes compared to fetal astrocytes. 

Thus, compromised astrocyte maturation may dysregulate P-gp function and expression 

at the BBB, which may contribute to the pathogenesis of neurodevelopmental disorders. 

This new knowledge will be critical in the development of future therapies to counteract 

these effects.  
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CHAPTER 1:  
INTRODUCTION 
 

 

 

 

 

1.1  P-glycoprotein (P-gp) 

1.1.1 History 

 P-glycoprotein (P-gp) is a membrane-transporter belonging to the ATP-binding 

cassette (ABC) superfamily of transporters, which comprises a large number of 

functionally diverse transmembrane proteins. P-gp was the first “multidrug resistant” 

protein to be identified in cancer cells and so was deemed multidrug resistance protein 1 

(MDR1). It was initially discovered in 1976, by Juliano and Ling, as a 170-kilodalton 

(kDa) glycoprotein that conferred colchicine-resistance in cultured Chinese hamster 

ovary cells1. They named this protein “permeability-glycoprotein”, commonly referred to 
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as P-gp.  

 

1.1.2 Physiological Role 

 Since its discovery in cancer cells, P-gp was identified in many normal tissues, 

such as the surface of epithelial cells of the intestine, liver bile ductules and kidney 

proximal tubules2-4. Organs with specialized barriers, such as the blood-brain, blood-

testes and blood-placental barriers were also found to highly express P-gp5-7. The tissue 

localization of P-gp suggests that the protein plays a physiological role in the protection 

of vital organs, such as the brain and testis, and in the secretion of metabolites and 

xenobiotics into bile, urine and the lumen of the gastrointestinal tract. Evidence for the 

role of P-gp in normal physiology is highlighted by P-gp-deficient mice, as they display 

an increased susceptibility to ivermectin toxicity at doses that do not harm normal 

mice.8,9  

 

1.1.3 Protein Structure 

 P-gp is synthesized in the endoplasmic reticulum as a 150-kDa intermediate10. It 

is subsequently glycosylated in the Golgi apparatus before it is shuttled to the cell 

membrane. Human P-gp consists of 1276-1280 amino acids with a molecular mass of 

approximately 170 kDa. In the human, P-gp is encoded by a single gene ABCB1 while 

rats and mice have two genes, Abcb1a/Abcb1b. The Matthews’ lab, in collaboration with 

Moshe Syfe’s lab, has demonstrated that guinea pig P-gp is encoded by a single gene, 

Abcb1, and shares approximately 87% homology with human ABCB111. P-gp protein has 
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a duplicated structure, each half consisting of six transmembrane domains (TMD) and a 

nucleotide-binding domain (NBD) (Fig. 1-1)12. The two transmembrane regions are 

joined by a highly charged linker region.  

 P-gp is a post-translationally processed protein, yet the effects of these 

modifications on P-gp function are unclear. N-glycosylation occurs on 3 sites on the first 

extracellular loop13,14. Inhibiting glycosylation of P-gp leads to improper localization, 

folding or stability of P-gp protein 10,15-19. Yet some studies show that there is no effect on 

P-gp function. P-gp can also be phosphorylated by protein kinase A and C at 4 serine 

residues in the highly charged linker region20,21. However, the effect of phosphorylation 

on P-gp function is unclear as P-gp mutants lacking all phosphorylation sites exhibit 

normal P-gp transport function22,23.  

P-gp transports a wide variety of structurally unrelated substances, varying in size 

from small organic cations and carbohydrates to polysaccharides and proteins24. Most of 

these substrates are generally relatively hydrophobic, weakly amphipathic, and often 

contain aromatic rings and a positively charged nitrogen atom25. P-gp substrates include a 

wide variety of exogenous compounds, such as chemotherapeutics (e.g. etoposide, 

doxorubicin, and vinblastine), cardiac glycosides (e.g. digoxin) and antiretroviral drugs 

(e.g. ritonavir)24,26,27. P-gp is also responsible for the efflux of endogenous compounds 

such as steroids (e.g cortisol), chemokines (the chemokine [C-C motif] ligand 2 [CCL2]) 

and cytokines, interleukin (IL)-4, IL-1β, IL-2, IL-6, interferon (IFN)-γ, granulocyte 

macrophage colony stimulating factor (GM-CSF) and tumor necrosis factor (TNF)-α 

(Table 1-1)28-34. 



4 

 

The exact mechanism by which P-gp effluxes its substrates is not well-defined. 

These substrates are thought to pass though a funnel-shaped structure formed by the two 

transmembrane regions of P-gp from the inner leaflet of the lipid bilayer35. This funnel 

contains multiple substrate binding sites, some of which are involved in the direct 

transport of substrates, while others are thought to be binding sites for allosteric 

modulation of P-gp function36. The transport of these substrates is dependent on ATP 

binding to NBD regions, as its binding causes a conformational change in P-gp protein. 

This induces an “outward-facing” conformation in which there is low substrate-binding 

affinity and exposes the substrate-binding site to the extracellular environment37. 

Subsequent hydrolysis of ATP is assumed to “reset” the transporter into an “inward-

facing” conformation, with the high-substrate binding sites exposed to the cytoplasmic 

leaflet. However, the exact mechanism of how this energy is used to drive transport is 

unclear. Unlike most ATP-driven transporters, P-gp displays constitutive ATPase 

activity, even in the absence of substrate38. Upon substrate-binding, studies indicate that 

ATPase activity is upregulated 3-4 fold. Additionally, it is uncertain whether hydrolysis 

of one or two ATP molecules is required for transport of one substrate.  

 

1.1.4 Genomic and Epigenetic Regulation of Human ABCB1 

 The human ABCB1 promoter lacks the classical TATA-box upstream of the 

transcription start site (TSS) that majority of genes transcribed by RNA polymerase II 

contain. Constitutive expression of Abcb1 relies on the “GC” elements (GC-box) and the 

inverted CCAAT sequence (Y-box), which are found in the majority of TATA-less 

promoters39,40. Mutation or removal of these promoter elements leads to loss of 
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transcription, indicating that they are needed for constitutive expression of ABCB141. 

Each of these elements can interact with different transcription factor families, as shown 

in studies with epithelial and cancer cell lines. It has been proposed that transcription is 

initiated by NF-Y (nuclear factor Y) binding to the Y-box42 (Fig. 1-2). Assembly of 

RNA-polymerase II complex to the Y-box is facilitated by specificity-protein (Sp)-1 and 

-3 transcription factors, which bind to the GC-box in the ABCB1 promoter43. Two GC-

rich regions (GC-box) have been found in the human ABCB1 promoter. Recent studies 

have shown that Sp3 binds preferentially to the GC-box on the ABCB1 promoter in brain 

endothelium44. In contrast, Sp1 preferentially associates with the GC-box in the colon 

carcinoma cell line, Caco-2. Both NF-Y and Sp transcription factors are essential for 

constitutive expression of ABCB1.   

 Other promoter elements found in the ABCB1 promoter include a p53 element, an 

inverted mediator-1 element (invMED1), an activator protein-1 (AP-1) element, a heat 

shock element (HSE), and a steroid xenobiotic receptor (SXR) element45-48.  

Consequently, several transcription factors are associated with increased expression 

levels of ABCB1 (Fig. 1-2).  These include heat-shock transcription factor 1 (HSF-1), AP-

1, CCAAT/enhancer-binding protein beta (C/EBPβ or NF-IL-6, nuclear factor for IL-6 

expression), early growth response protein 1 (EGR-1), and Y-box binding protein 1 (YB-

1). Adding to this complexity, the regulation of Abcb1 expression by these transcription 

factors is species specific.  For example, the AP-1 site in the mouse has been shown to 

repress transcription of Abcb1a/b, while in the hamster and human the AP-1-binding 

elements were shown to activate transcription of Abcb149,50. 

 The level of ABCB1 mRNA expression can also be controlled through epigenetic 
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mechanisms. In particular, methylation and histone acetylation have been shown to 

regulate ABCB1 mRNA expression in various cancer cell lines and cancer tissues. 

Demethylation of the ABCB1 promoter was shown to be associated with increased 

ABCB1 mRNA expression in cancer cell lines, including promyelotic leukemia cell line 

HL-60 and breast cancer cell line MCF-751,52. Similar evidence was also found in human 

T-cell leukemia cells, acute myelogenous leukemia clinical samples, and adult acute 

lymphocytic leukemias compared to non-malignant tissue53,54. Additionally, histone 

acetylation can also modulate ABCB1 mRNA expression. The use of histone deactylase C 

inhibitor, trichostatin, was shown to regulate ABCB1 mRNA levels in human colon 

carcinoma cells, SW620, indicating a relationship between increased histone acetylation 

and increased levels of ABCB1 mRNA48. Further evidence for this stems from MES-SA 

cells, which were found to have a 20-fold increase in acetylated H3 in the nucleosomes 

within the 968-bp region of the ABCB1 promoter55. However, very little is known about 

how epigenetic processes regulate ABCB1 expression in normal tissues. 

 MicroRNAs (miRs) have also been shown to target ABCB1. MiRs are small non-

coding RNA molecules of 20-24 nucleotides and work in concert with transcriptional and 

epigenetic gene expression. The mechanism by which miRs regulate translation of 

proteins is by binding to 3’-untranslated region (UTR) of target mRNA to either degrade 

or inhibit translational process of target mRNA. The majority of studies investigating the 

interaction of miRs and ABCB1 have been conducted using cancer cell lines. For 

example, in doxorubicin-resistant human breast cancer cells (MCF-7/DOX), in which P-

gp expression is upregulated, the level of miR-451 was found to be almost undetectable. 

When these cells were transfected with miR-451, doxorubicin sensitivity was re-
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established in MCF-7/DOX cells56. However, more than one miR is able to regulate 

ABCB1, as similar results were associated with miR-27a, miR-145, miR-298 and miR-

1253 in other cancer cell lines57-59. MiRs can also indirectly modulate Abcb1 expression 

by binding to mRNA encoding for transcription factors that regulate ABCB1. For 

instance, miR-137 was shown to bind to transcription factor, YB-1 in MCF-7 cells. This 

was found to prevent YB-1 interactions with the promoter region of ABCB1, resulting in 

downregulation of ABCB1 compared to untransfected MCF-7/DOX cells60. Adding to the 

complexity of miRs, some are capable of increasing P-gp expression, as is the case with 

miR-138 and miR-29661,62. However, the mechanism by which these miRs interact with 

ABCB1 is currently unknown. It is also unclear if these miRs are expressed in normal 

tissues. 

 

1.2 Blood-Brain Barrier 

1.2.1 Overview  

The blood-brain barrier (BBB), composed primarily of brain endothelial cells 

(BECs), is an interphase that regulates movement of endogenous and exogenous 

molecules between blood and brain extracellular fluid compartments. BECs are extremely 

thin cells, measuring approximately one quarter of a micron, which is 40% less thick than 

endothelial cells (ECs) found in muscle63. Moreover, unlike the peripheral vasculature, 

BECs express specialized tight junctions that strictly limit movement of small hydrophilic 

molecules and even small ions within the paracellular space. BECs also have low rates of 

transcellular transport, such as endocytosis, and lack fenestrations. Low expression of 
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leukocyte-adhesion molecules (LAMs) prevents transcytosis of immune cells into the 

brain parenchyma. BECs also possess increased number of mitochondria compared to 

peripheral ECs, in order to support the activity of metabolizing enzymes and transporters. 

ABC-transporters are located on the luminal surface of BECs. Of these transporters, P-

glycoprotein (P-gp) is the highest expressed at the BBB64-66. BECs interact dynamically 

with surrounding glial cells (such as microglia and astrocytes), pericytes, and neurons67 

(Fig. 1-3). The basement membrane surrounding BECs is secreted by BECs themselves, 

pericytes and astrocytes. However, BECs in particular interact intimately with astrocytes 

as astrocytic-end feet ensheathe 99% of the abluminal surface of brain capillaries68. 

 

1.2.2 Development and Maturation of the BBB 

 The development of the BBB is categorized into three stages: angiogenesis, 

differentiation and maturation. The central nervous system (CNS) acquires its vasculature 

solely by the process of angiogenesis, as blood vessels arise from the primary vascular 

plexus, forming the perineural vascular plexus69. The perineural vascular plexus encases 

the surface of the developing brain70. At embryonic day (E)11 in the mouse71,72 and 

around gestational week (GW)8 in humans73-75, vascular sprouts of the perineural 

vascular plexus invade the CNS parenchyma. This process is initiated by neural precursor 

cells and radial glial cells, which produce a vascular endothelial growth factor (VEGF) 

gradient, guiding vascular sprouts from the pial surface of the brain to the ependymal cell 

layer76,77.  

 As these nascent vessels invade the CNS, they differentiate and begin to exhibit 
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characteristics of a primitive BBB, expressing P-gp and tight junctions proteins, claudin-5 

and claudin-3, and are capable of restricting the movement of blood-derived proteins in 

the developing CNS78. These BECs also lose vesicles and fenestrations. Using 

ultrastructural methods, it has been shown that tight junctions present very early in brain 

development resemble tight junctions in the adult. This was demonstrated as early as 

GW8 in human fetuses (term is 40 weeks), at 13 days gestation in fetal mice (term is 21 

days) and post-natal day (PND) 5 in Monodelphis opossums, when blood vessels first 

appear in the developing neocortex79-82. During this stage, tight junctions prevent the 

movement of serum proteins into the developing brain. Previous studies that concluded 

leakiness of the developing BBB to serum proteins were shown to have used large 

injection volumes or concentrations of tracer molecules, such as Evan’s Blue Dye83,84. 

Tight junction function has been shown to increase as gestation progresses and continues 

into post-natal life. In the developing rat brain, transendothelial electrical resistance 

(TEER), a measure of tight junction function, increased from 310 Ω�cm2 at E17 to 1462 

Ω�cm2 at PND785. Other aspects of the BBB, such as transporter and enzymatic activity, 

also display stage specific properties that vary with gestation. Generally, BBB specific 

properties are enhanced in late gestation and post-natal life, a stage termed BBB 

maturation. For example, the activity of gamma-glutamyl-transferase, a BBB-specific 

enzyme, continuously increases to birth and plateaus in post-natal life86. The level of 

Abcb1/P-gp at the BBB also displays a similar pattern through development, which is 

further discussed in the following section. 
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1.2.3 Expression and Function of P-gp at the BBB  

 In the mature BBB, P-gp is mainly localized to the luminal surface (blood-facing 

side) of BECs (Fig. 1-4). This allows P-gp to efflux blood-derived substances that move 

into BECs back into the blood circulation, as is the case for xenobiotics, drugs and toxins. 

Additionally, P-gp can also efflux brain-derived substances that are actively transported 

or diffuse into BECs. Recent studies indicate that this is the case for β-amyloid, a 

molecule associated with the cognitive decline and neuroinflammation in Alzheimer’s 

disease87. P-gp has also been implicated in trafficking of immune cells into the brain 

parenchyma by regulating BECs secretion of chemokine (C-C motif) ligand 2 (CCL2)88. 

 P-gp also plays a vital role in the protection of the developing brain. Specifically, 

P-gp at the BBB becomes essential in late gestation as levels of P-gp at the placenta 

dramatically decrease, which has been shown in mice, guinea pigs and humans (mouse 

placenta; Fig. 1-5) 89-91. Our research group has shown, in mice and guinea pigs, that in 

early gestation brain microvessels express very low amounts of P-gp that dramatically 

increases with advancing gestation (guinea pig microvessels; Fig. 1-6) 92,93. The presence 

of P-gp in the developing brain microvasculature is readily detectable early in gestation at 

the onset of brain angiogenesis82. However, immunohistochemical studies in brains of 

early human fetuses (approximately GW8) demonstrate that P-gp is diffusely expressed 

in the cytoplasm, indicating that early in gestation P-gp may not serve a role in brain 

protection94. As gestation progresses, levels of P-gp dramatically increase in late 

gestation and post-natal life, and its localization becomes predominantly on the luminal 

side of BECs. In collaboration with Dr. Koren, our lab has recently demonstrated that P-
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gp protein levels in the brain reach adult levels by post-natal age of 3-6 months in 

humans95.   

A number of studies have depicted the functional importance of P-gp at the 

developing BBB. Following administration of P-gp substrate, digoxin, our laboratory 

observed a greater digoxin brain accumulation at E15.5 in mice compared to E18.5, 

reflecting an increase in P-gp activity as gestation progressed93.  This is of clinical 

significance as drug use during pregnancy is a common occurrence in developed 

countries, with approximately 30-93% of pregnant women, depending on the country96. 

Prescribed drugs are used to treat chronic diseases, such as diabetes, systemic lupus 

erythematosus, depression and epilepsy. Drugs are also used to ease the symptoms 

associated with pregnancy, such as vomiting and nausea, and to aid in fighting 

infections97. However, many of these prescribed drugs are potentially teratogenic and can 

lead to fetal loss, congenital malformations or have effects on development later in 

childhood98. Moreover, numerous drugs are also substrates of P-gp and so risk of fetal 

exposure to these drugs are dependent on P-gp function at the placenta and BBB. A 

recent study among the mothers of children registered by EUROCAT Northern 

Netherlands (NNL), demonstrated that approximately 10% of drugs taken by these 

women during pregnancy were indeed P-gp substrates99. This study also showed a 

correlation between higher user rate of these drugs and increased rate of fetal anomalies. 

Thus, due to declining levels of P-gp at the placenta as gestation progresses, the 

importance of BBB P-gp becomes essential in protecting the developing brain. 
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1.3 Astrocytes 

1.3.1 Overview 

 Astrocytes are the most abundant cell type in the mammalian brain. Among their 

many functions, they are essential for many metabolic processes in the brain such as 

potassium buffering, release of gliotransmitters, release of glutamate by calcium 

signaling, and control of brain pH100,101. Astrocytes are also responsible for the 

metabolization of dopamine and other substrates by monoamine oxidases, uptake of 

glutamate and gamma-aminobutyricacid (GABA) by specific transporters and production 

of antioxidant compounds like, glutathione (GSH) and enzymes such as superoxide 

dismutases (SODs)102. Recent evidence indicates that astrocytes also regulate vascular 

perfusion to match neuronal activity, a process termed neurovascular coupling103,104. 

Additionally, BBB characteristics of the adult brain are reliant on the influence of 

astrocytes through astrocyte-derived factors, such as retinoic acid, transforming growth 

factor (TGF)-β and sonic hedgehog (shh)105,106. Astrocyte polarity and proper 

ensheathment of the brain microvasculature by astrocytic endfeet also contribute to the 

maintenance of the BBB phenotype107. However, far less is known about the role of 

astrocytes in regulation of the BBB properties, such as P-gp function and expression in 

the developing brain. 

 

1.3.2 Astrocyte Development 

 Astrocytes differentiate from neural stem cells originating from the 

neuroectoderm at E18 through to the first week of life in mice108. In contrast, astrocyte 
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differentiation is entirely an in utero process commencing at gestational day (GD) 45 and 

GW14 in the guinea pig and human, respectively109,110. Recent evidence suggests that 

astrocyte differentiation is regulated by early differentiated neurons or late-stage neural 

stem cells that have been shown to secrete signaling molecules such as, ciliary 

neurotrophic factor, cardiotrophin-1 and leukemia inhibitory factor111,112. These 

molecules activate important signaling pathways, such as the janus kinase 

(JAK)/STAT113, bone morphogenic protein (BMP)-SMAD114,115, notch116 and nuclear 

factor IA (NFIA)117, that initiate astrocyte differentiation in neural stem cells. These 

signals also induce epigenetic changes that open chromatin regions, allowing 

transcription factor binding to astroglial gene promoters glial fibrillary acidic protein 

(GFAP), S-100β and glutamate aspartate transporter (GLAST)114,115,117,118.   

 Subsequent to astrocyte differentiation is astrocyte maturation, whereby 

differentiated astrocytes form endfeet that extensively ensheathe microvessels of the 

BBB. This process occurs entirely during post-natal development in mice and rats starting 

at PND14119,120. In humans and guinea pigs, astrocytes begin to mature at approximately 

GW23 and GD55, respectively109,110. One of the hallmarks of astrocyte maturation is the 

formation of peripheral astrocyte process (PAPs). PAPs are ultra fine processes that allow 

insertion of various membrane proteins such as ion channels, ligand receptors and 

transporters. These include astroglial genes, aquaporin-4 (AQP4), GLAST121,122, 

connexin 30 and 43123 and inwardly rectifying potassium channel, Kir 4.1124,125, which 

were shown to be induced at PND21-28 in mice. However, the mechanisms underlying 

astrocyte maturation are unclear. Evidence suggests that this process is driven by 

surrounding neurons, as astrocytes express many neurotransmitter receptors, allowing 
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them to respond to neural signals126,127. Additionally, co-culture studies indicate that 

neurons induce the expression of many of these genes in astrocytes128-131.  

 

1.3.3 Astrocytes & BBB 
 In the mature BBB, 99% of the brain microvasculature is ensheathed by 

astrocytic-endfeet, which are in a poised position to modulate properties of the BBB132. 

As such, astrocyte-BEC interaction regulates vascular quiescence, angiogenesis, EC 

morphology and barrier conditions at the adult BBB. Conversely, less is known about 

how astrocytes regulate the developing BBB68,105,133-135. During fetal development, 

astrocyte maturation, a process by which astrocytic processes or endfeet ensheathe the 

brain endothelium, is temporally correlated with BBB maturation. This process is species 

specific. In rats and mice, astrocyte maturation occurs entirely post-natally, while it is 

mostly an in utero process in humans and guinea pigs. The upregulation in P-gp 

expression at the developing BBB follows this species-specific temporal pattern, 

providing strong evidence of an astrocyte-induced regulation of P-gp expression during 

development92,93,95. 

The first evidence demonstrating that BECs did not have intrinsic BBB properties 

was shown by an elegant study conducted by Stewart and Wiley136. In this study, 

avascular tissue from 3-day-old quail brain was transplanted it into the coelomic cavity of 

chick embryos. They found that chick endothelial cells that vascularized the quail brain 

grafts form a competent BBB. In contrast, when avascular embryonic quail coelomic 

grafts are transplanted into embryonic chick brain, the chick endothelial cells that invade 
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the mesenchymal tissue grafts form leaky capillaries and venules. Following this study, in 

1987, the first clear demonstrations of the BBB-inducing properties of astrocytes were 

provided by two independent groups, Raff and Brightman. These two groups utilized in 

vivo grafting and in vitro cell culture models, derived from adult animal tissues, to 

demonstrate that morphological and functional BBB-specific characteristics are 

dependent on perivascular astrocytes137,138. Further corroborating these studies, Rubin et 

al. demonstrated that isolated BECs lose their barrier capacity as measured by 

transendothelial electrical resistant (TEER) and tracer molecule assays139. However, the 

presence of astrocytes or astrocyte-conditioned (ACM) was able to rescue these 

properties in BECs106,107,140.  More recent studies have shown that rat astrocytes can 

induce BBB-specific properties, such as P-gp and tight junction expression, in human 

umbilical vein endothelial cells or non-neural endothelial cells in co-culture141. Similar 

results were found using an in vitro co-culture model utilizing immortalized human 

endothelial cells (ECV 304) and by rat astrocytes142. These results demonstrate that BBB-

specific properties are not an innate property of BECs, but are induced by surrounding 

perivascular astrocytes.  

 

1.3.4 Astrocyte-Derived Factors  
 Since co-culturing astrocytes and BECs in a non-contact manner induces BBB 

characteristics and ACM can mimic these effects, it is plausible that soluble astrocyte-

derived factor(s) are implicated in this interaction. The multifaceted levels of 

communication and signaling events that occur between astrocytes and BECs makes it a 

difficult task to identify these factors. Many factors have been implicated in the 
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regulation P-gp function and expression in the adult BBB, epithelial tissues and cancer 

cell lines, some of which are secreted by astrocytes during development. These molecules 

have been shown to activate signaling pathways including the sonic hedgehog (Shh), 

Wnt/β-catenin canonical pathway, retinoic acid (RA) and TGF-β superfamily106,143-149.  

RA has been proposed as an important molecule in the early induction of BBB 

characteristics in the developing vasculature149,150. Studies using human fetal brains 

indicate that radial glial cells express the final enzyme involved in retinoic acid 

biosynthesis, while endothelial cells express RA-receptor β (RARβ)149. Moreover, the 

importance of RA signaling in BBB development was highlighted by treatment of mice 

with RAR antagonist from E10.5 to E16.5 of gestation. This treatment led to 

downregulation of several BBB characteristics149. These results were corroborated by in 

vitro studies which demonstrated that activation of RARβ in mouse BECs upregulated 

TEER, and increased expression levels of VE-cadherin, P-gp and ZO-1, while 

permeability factor, VEGF, was reduced107.  

 The Shh signaling cascade is important in both the developing and adult CNS by 

regulating neuronal guidance and brain angiogenesis151. Astrocytes secrete Shh and BECs 

express the hedgehog (Hh) receptor, Patched-1, the signal transducer Smoothened (Smo), 

and transcription factors of the Gli family107. Activation of the Shh pathway upregulates 

TEER and expression of junctional proteins in human primary BECs. Moreover, blocking 

the Shh pathway in vivo disrupted the BBB, indicated by increased brain accumulation of 

serum proteins106. Mice lacking Smo also mimicked this phenotype107.  In cancer cells, 

activation of the Shh pathway is correlated with increased function and expression of P-
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gp and BCRP148. However, much less is known about how astrocyte-derived Shh affects 

BBB-properties in the developing brain. 

 The Wnt/β-catenin canonical pathway has also emerged as a prominent signaling 

pathway important in promoting angiogenesis and inducing hallmark characteristics of 

the BBB, including the expression and function of P-gp. The ABCB1 promoter contains 

binding sites for T-cell factor/lymphoid enhancer-binding factor (TCF/LEF), the 

downstream transcription factor activated by Wnt/β-catenin pathway152. Intestinal 

expression of the human ABCB1 and mouse Abcb1a genes have been associated with 

nuclear β-catenin accumulation. There is also evidence for the importance of Wnt/β-

catenin pathway activation in regulating P-gp and other ABC transporter levels in the 

adult BBB. Activation of β-catenin signaling, through inhibition of glycogen synthase 

kinase-3 (GSK-3), was shown to upregulate levels of ABCB1 mRNA and P-gp function 

in the human brain endothelial cell line hMEC/D3, as well as in adult rat BECs153. 

Expression of other ABC transporters at the BBB are also regulated by Wnt/β-catenin, as 

expression of ABCC4 (encodes MRP4 protein) and ABCG2 (encodes BCRP protein) were 

also upregulated in these cells. However, there is presently no evidence for the role of 

Wnt signaling in the development of the BBB in fetal and post-natal life.  

 Another major regulatory pathway that has been implicated in BBB development 

is TGF-β1. TGF-β1 is a multifunctional growth factor involved in many cellular 

processes, such as growth and differentiation, during embryogenesis154. In the CNS, 

TGF-β1 is secreted by astrocytes and has been shown to regulate BBB characteristics in 

BECs146. It was shown to attenuate leukocyte transmigration across adult mouse BECs by 

downregulating BECs expression of leukocyte adhesion molecules (LAMs)155. Moreover, 
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TGF-β1 was shown to enhance tight junction and P-gp function in mono-cultured adult 

rat BECs146. However, the role of astrocyte-derived TGF-β1 in protection and 

immunomodulation of the CNS remains controversial. Astrocytic expression of TGF-β1 

is increased in neurodegenerative disorders such as, Multiple Sclerosis, Alzheimer’s 

disease, stroke, tumors and neuro-AIDS156,157. Evidence also indicates that TGF-β1 has a 

role in the aberrant transformation of astrocytes in epilepsy158. Its highly pleiotropic 

nature may be due to the numerous signaling pathways activated, which depends upon 

which TGF-β receptors are expressed. For example, it is well established that TGF-β1 

can have opposite effects on the angiogenic state of ECs159. ECs express two isoforms of 

the TGF-β1 type I receptor, ALK1 and ALK5. Activation of the ALK1 pathway 

stimulates proliferation and migration of ECs, while the ALK5 pathway facilitates the 

opposite. Thus, the effect of astrocyte-derived TGF-β1 on the adult BBB is unclear and 

nothing is known about how it modulates characteristics of the developing BBB. 

 

1.3.5 Astrocyte Polarity and Extracellular Matrix 

 The extracellular space between BECs and astrocytes contains components of 

extracellular matrix (ECM) and matrix adhesion receptors required for appropriate 

interaction between cells132. Physical interaction between these cells is essential in 

regulation of the adult BBB. This is highlighted by pathological conditions such as, 

stroke and multiple sclerosis, in which BBB disruption is associated with reduction in 

astrocytic endfeet coverage of the brain microvasculature160-163. Additionally, tight 

junction and BBB-transporter expression is increased in BECs co-cultured with 

astrocytes in contact compared to those co-cultured in a non-contact manner164-166.  
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Evidence suggests that the mechanism by which this occurs is through maintenance of 

astrocyte polarity and proper composition of ECM.  

 The development of astrocyte polarity and formation of astrocyte endfeet is 

essential in regulating tight junction function at the adult BBB. The astrocyte endfeet 

membrane contains numerous square arrays or intramembranous orthogonal arrays of 

particles (OAPs), containing membrane proteins such as AQP4, Kir4.1 and connexins 30 

and 43167. The membrane structure of astroglial endfeet is maintained by the dystrophin–

dystroglycan complex, which is a molecular array of proteins in muscle and brain cells 

(Fig. 1-7) 168. Interestingly, the adaptor proteins of the dystrophin-dystroglycan complex, 

which are co-located with these membrane proteins, have also been implicated in BBB 

regulation. Mice lacking these scaffolding proteins demonstrate dysregulated astrocyte 

polarity, attachment of astrocyte endfeet to brain endothelium, decreased expression of 

AQP4 and leaky BBB169,170. Additionally, astrocyte endfeet contain connexin 30 and 43, 

which are gap junction proteins123,171. These proteins also appear to play a role in 

maintaining astrocyte polarity, as connexin30/43 knockout animals display loss of 

astroglial AQP4 and dystroglycan and consequently have permeable BBB134. 

 The structure and composition of the ECM surrounding astrocytes and BECs 

during CNS development is critical for interaction between these cells. Two basement 

membranes separate the endothelium from astrocytes. The endothelial basement 

membrane is composed of fibronectin, collagen type IV, perlecan, and laminin α4 and α 5 

chains, while the parenchymal or astroglial basement membrane contains fibronectin, 

agrin and laminin α1 and α2 chains85,172,173. The role of agrin in BBB maturation is of 

particular interest, as knockout animals display a compromised BBB174. However, the 
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mechanism by which agrin mediates this effect is unclear. Evidence suggests that agrin 

influences astrocyte polarity, as loss of agrin results in redistribution of AQP4 and 

disappearance of OAPs175. Alternatively, agrins may directly influence composition of 

tight junctions. A correlative study using microvessels extracted from human 

glioblastoma demonstrated that microvessels with the least agrin expression also had 

decreased expression of tight junction proteins107.  

 Astrocytes also secrete proteins involved in ECM regulation, which are implicated 

in BBB induction. Astrocytes secrete thrombospondins (TSP), matrix proteins that 

mediate cell-cell and cell-matrix interactions by binding with other ECM proteins and 

with an array of membrane receptors and cytokines176. In particular, astrocyte-derived 

TSP-1 and 2, have well-established roles in supporting synapse formation during brain 

development177,178. With respect to the BBB, these astrocyte-secreted TSPs have been 

shown to inhibit EC proliferation and have been suggested to promote vascular 

maturation179. The mechanism by which TSPs facilitate the anti-angiogenic state of BECs 

may be through regulation of matrix metalloproteinases (MMPs), as TSP-2 deficient 

animals display increased levels of MMPs and dysregulated ECM remodeling180.  

 In conclusion, it is clear that physical contact between astrocytes and BECs is 

essential in maintaining proper function of tight junctions at the adult BBB. Evidence 

suggests that astrocyte polarity and ECM components play significant roles in this 

regulation. However, very little is known about how these components regulate the 

developing BBB and how these factors may effect other BBB-specific characteristics, 

such as P-gp function and expression. 
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1.3.6 Astrocytes in Neurodevelopmental Disorders 

 Neurodevelopmental disorders encompass a wide range of pathologies associated 

with impaired growth and development of the CNS. Recent studies have implicated 

astrocytes in the pathogenesis of these disorders. In particular, disruption in astrocyte 

development may contribute to the pathogenesis of autism spectrum disorder (ASD), 

which represents a major category of neurodevelopmental disorders. Using post-mortem 

brain samples from autistic patients, immunohistochemical studies have shown 

dysregulation in expression of astrocyte markers. These findings include increased GFAP 

in cerebellar cortex, increased excitatory amino acid transporters (EAAT)1/2 in 

cerebellum, increased connexin 43 in superior frontal cortex and decreased AQP4 in 

cerebellum181-184. Moreover, mutations in astrocyte potassium channel, Kir4.1, have been 

found in a subset of autistic patients184. Recent studies have also highlighted the role of 

astrocytes in Rett Syndrome and Fragile X syndrome, both of which resemble typical 

autistic types. Due to monogenic nature of these neurodevelopmental disorders, mouse 

models have been generated and shown to display the cognitive and behavioral aspects of 

these disorders185-187.  

 Rett Syndrome is caused by a loss-of-function mutation in the gene encoding 

methyl CpG binding protein 2 (MeCP2)188. Co-culture studies using astrocytes from 

MeCP2-/- mice show that these astrocytes do not support growth of normal neurons189. 

ACM from these astrocytes mimicked these effects, indicating that a soluble factor is 

responsible for mediating these effects. Moreover, loss of MeCP2 has been shown to 

change expression of several astroglial genes, including Kir4.1, AQP4 and GFAP190. Re-
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expression of MeCP2 in astrocytes, via cre-loxP system, improves behavioral and 

cognitive function of MeCP2-/- mice191. Similar studies have been performed using 

Fragile X Mental Retardation Protein (FMRP)-/- mice, a model of Fragile X Syndrome, 

which is the most common inherited form of mental retardation. Astrocytes from FMRP-/- 

mice have been shown to induce developmental delays in normal hippocampal neurons, 

indicated by abnormal dendrite maturation and synaptic protein expression192,193. This 

was shown to be mediated by increased neuotrophin-3 secretion from FMRP-/- astrocytes. 

Additionally, dysregulated levels of genes strongly induced during maturational process 

of astrocytes, such as glutamate transporter GLAST, is reduced in brains of FMRP-/- 

mice194,195.  

 Alterations in astrocyte phenotype have also been associated with adult-onset 

psychiatric disease, such as depression. Reduction in GFAP levels in the prefrontal cortex 

and cortiolimbic areas were found in a rat model of depression196. Post-mortem samples 

of human patients with depression showed decreases in glial density in the amygdala197. 

Moreover, coverage of blood vessels by astrocytic endfeet markers, AQP4 and GFAP, 

was reduced in post-mortem samples of patients diagnosed with Major Depressive 

Disorder198. Dysregulated astrocyte phenotype has also been demonstrated in sporadic 

Amyotrophic Lateral Sclerosis. Post-mortem brain samples showed loss of up to 95% of 

astroglial EAAT2 expression, depending on the brain region analyzed199.  

 In summary, it is clear that the maturation of astrocytes, as indicated by alterations 

in astrocyte markers, is disrupted in neurodevelopmental disorders, such as Rett 

Syndrome and Fragile X Syndrome. Evidence from in vitro and in vivo studies 

demonstrate astrocytes may contribute to the pathogenesis of these disorders by stunting 
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the growth and development of surrounding neurons. However, currently nothing is  

known about the effect of disrupted astrocyte phenotype on P-gp function or expression 

at the developing BBB. 

 

1.4 Transforming Growth Factor-β1 

1.4.1 Overview 

 TGF-β1 is a member of the TGF-β superfamily, comprised of over 30 members 

including activins, nodals, bone morphogenetic proteins (BMPs), and growth and 

differentiation factors (GDFs). TGF-β1 was first discovered in 1981 in hepatic tissue and 

named due to its presence in transformed fibroblasts200. Generation of mice lacking TGF-

β1 demonstrated that it is essential in vasculogenesis in embryogenesis. Recent evidence 

suggests its importance in the formation and maturation of the CNS. As such, altered 

TGF-β1 levels are implicated in various neurodevelopmental disorders.  

 

1.4.2 TGF-β1 Synthesis and Bioavailability 

TGF-β1 is synthesized as a large precursor molecule containing a propeptide on 

its N-terminal, called latency associated peptide (LAP) (Fig. 1-8). Intracellular furin 

cleaves the propeptide into C-terminal pro-region, LAP and N-terminal peptide, mature 

TGF-β1 (25 kDa)201. However, LAP remains non-covalently bonded to mature TGF-β1 

to form a complex known as small latent complex (SLC). Still inside the cell, SLC will 

form a larger latent binding complex (LLC) with latent TGF-β binding protein (LTBP), 

which is then secreted from the cell202. This form of TGF-β1 cannot bind to its receptors, 
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so it is deemed latent. The majority of secreted LLCs bind to the extracellular matrix via 

LTBP203. The precise multistep activation of TGF-β1 has yet to be elucidated but requires 

the dissociation of TGF-β1 from its latent complex. A number of different processes have 

been proposed to activate latent TGF-β, including heat, acidic pH, reactive oxygen 

species, various proteases and thrombospondin-1204-206. 

 

1.4.3 TGF-β1 Signaling 

Typically, TGF-β1 binds to TGF-β receptor type 2 (TGFBR2), which 

phosphorylates and recruits a TGF-β receptor type 1 (TGFBR1) that is responsible for 

eliciting signal transduction207. These receptors are glycoproteins and belong to a class of 

transmembrane serine/threonine kinase receptors. Phosphorylation of the type 1 receptor 

occurs at a highly conserved region known as the GS domain, where there are clusters of 

serine and threonine residues. Endothelial cells express two TGFBR1 isoforms: ALK5, 

which is expressed in a variety of cell types and ALK1, which is expressed exclusively in 

endothelial cells159. These type 1 receptors phosphorylate SMAD2/3 and SMAD1/5 

respectively, which in turn form a complex with SMAD4 and translocate to the nucleus to 

effect gene transcription 208,209. There is a co-dependency between these TGFBR1 

isoforms as membrane-bound ALK5 is required for ALK1 signaling to occur210.  

In addition, there are transmembrane auxiliary receptors (type III receptors) of 

TGF-β signaling, betaglycan and endoglin, which are modulators of cellular 

responsiveness to TGF-β1. These receptors do not participate directly in signaling 

function but are involved in receptor complex formation and modulate ligand access to 
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receptors. Two isoforms exist, long (L) and short (S), which differ in the length of the 

intracellular domain, tissue distribution and degree of phosphorylation211. L-Endoglin is 

highly expressed by endothelial cells and has been shown to potentiate ALK1 

signaling212. The ALK1/endoglin route has also been shown to inhibit TGF-

β1/ALK5/Smad2,3 in endothelial cells213-215. Similarly, betaglycan regulates cellular 

responsiveness to TGF-β1. It has been shown to dampen cellular responsiveness to TGF-

β1 by disrupting the complex formed by TGFBR2 and TGFBR1216,217. 

Canonical TGF-β signaling occurs via SMAD proteins, latent cytoplasmic 

transcription factors that become directly activated by serine phosphorylation, described 

above. There are three groups of SMAD proteins: receptor (R)-SMADs, common (Co)-

SMAD, and inhibitory (I)-SMADs. R-SMADs (SMAD1-3, 5, 8) are those that are 

receptor regulated and become directly phosphorylated by type 1 receptors. I-SMADs 

(SMAD6, 7) are inhibitory SMADs that antagonize TGF-β/SMAD signaling via binding 

to TGFBR1 and preventing R-SMAD phosphorylation. Transcription of these I-SMADs 

is increased upon activation of TGF-β signaling and acts as a negative auto-regulatory 

feedback system. Lastly, co-SMAD or common SMAD is SMAD4, which forms a 

complex with SMAD 2/3 or SMAD 1/5. These complexes accumulate in the nucleus, 

where they regulate gene expression218. It is also well established that TGF-β1 can exert 

its biological effects through activation of SMAD-independent pathways, including the 

Notch, Wnt, Akt, mitogen-activated protein kinase (MAPK), and hippo signaling 

pathways219.  
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1.4.4 Role of TGF-β1 in Vascular and CNS Development 

The phenotypes of TGF-β1 knockout mice or mutations of the TGF-β1 pathway 

support the role of TGF-β1 in the development and maintenance of vasculature in fetal 

life. Transgenic mice lacking TGF-β1 die by midgestation due to deficient 

vasculogenesis220. Targeted deletion of alk1, alk5, TGFβR2, endoglin or smad 5 are  

embryonic lethal, as a result of cardiovascular defects221. In humans, heterozygous 

mutations of either endoglin or alk1 cause hereditary hemorrhagic telangiectasia (HHT)-1 

or HHT-2222. Both are characterized by vascular anomalies such as enlarged vessels, 

edema, and arterio-venous malformations, which lead to pulmonary, liver and 

neurological problems. 

Recent evidence suggests that glial-cell derived TGF-β1 has an essential role in 

the structure and function of developing synapses. In the periphery, Schwannn cells have 

been shown to secrete TGF-β1, which plays a critical role in the induction of 

synaptogenesis by regulating clusters of acetylcholine receptors at the neuromuscular 

junction223. The role of TGF-β1 as a mediator of the synaptogenic effects of glial cells in 

the CNS was confirmed by the generation of transgenic mice overexpressing TGF-β1 in 

astrocytes. These animals exhibited increased levels of AMPA and NMDA receptor 

subunits224. There is also compelling evidence for the role of TGF-β1 in the formation of 

excitatory synpases in the CNS. Rodent and human astrocytes were shown to increase the 

number of excitatory synpases in the cortex by increasing secretion of TGF-β1225. This 

effect was shown to be mediated by increased levels of d-serine amino acid, as 

pharmacological/genetic manipulation of the levels of d-serine completely inhibited the 

synaptogenic properties of the astrocyte-conditioned medium and TGF-β1226.  
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1.4.5 Role of TGF-β1 in Neurodevelopmental Disorders 

Studies utilizing human subjects have demonstrated that TGF-β1 levels are altered 

in various neurodevelopmental disorders, such as Down’s syndrome and ASD. However, 

the exact nature of its participation in these diseases is unknown. ASD are complex 

neurodevelopmental disorders that are characterized by impairments in social interaction, 

deficits in verbal and non-verbal communication, and restricted repetitive and stereotyped 

patterns of behavior and interests. Recent studies have demonstrated that children with 

ASD have significantly lower plasma TGF-β1 levels compared with age-matched 

controls and compared with children with developmental disabilities other than ASD227. 

There were also significant correlations between psychological measures and TGF-β1 

levels demonstrating that lower TGF-β1 levels were associated with decreased adaptive 

behaviors and worse behavioral symptoms227. Additionally, altered plasma levels of 

TGF-β1 may persist into adulthood as adult patients with autism were shown to have 

decreased levels compared to the control group228. Moreover, another study showed that 

TGF-β1 levels were also decreased in brain tissue of subjects with autism229.  
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Table 1-1. List of exogenous and endogenous P-gp substrates. 

Substrates	  of	  P-‐gp	  
Chemotheraputics	   Antiretroviral	  Drugs	  
Doxorubicin	   Indinavir	  
Etoposide	   Ritonavir	  
Mitomycin	  C	   Saquinavir	  
Paclitaxel	   	  	  
Tamoxifen	   Steroids	  
Vinblastine	   Cortisol	  
Vincristine	   Dexamethasone	  
	  	   	  	  
Antibiotics	   Cytokines/Chemokines	  
Cefazolin	   CCL2	  
Cefoperazon	   GM-‐CSF	  
	  	   IL-‐1beta	  
Immunosupressants	   IL-‐2	  
Cyclosporin	  A	   IL-‐4	  
Tacrolimus	   IL-‐6	  
	  	   INF-‐gamma	  
Calcium	  Blockers	   TNF-‐alpha	  
Diltiazem	   	  	  
Nicardipine	   Other	  Signaling	  Molecules	  
Verapamil	   Cholesterol	  
	  	   Phosphatidylcholine	  
Cardiacs	   Phosphatidylserine	  
Propafenone	   Platelet	  Activating	  Factor	  
Amiodaron	   Sphyngosine-‐1-‐phosphate	  
Quinidine	   	  	  
Digoxin	   	  	  
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Figure 1-1. Topological model of P-gp. P-gp is comprised of two homologous halves, 

each with one transmembrane domain (TMD) and one nucleotide binding domain (NBD) 

located on the cytoplasmic side of the membrane. Modified with permission from Silva R 

et al., Pharmacology and Therapeutics (2015). 

 

 

 

 

 

 

 

 

 

 

 

 

 



30 

 

Figure 1-2. Diagram of the human ABCB1 promoter with transcriptions factors 

known to regulate its expression. All factors displayed interact directly with DNA and 

some binding sites overlap. Adapted with permission from Scotto KD, Oncogene (2003). 
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Figure 1-3. Schematic of the cellular interactions at the blood-brain barrier. 

Astrocyte endfeet extensively ensheath the abluminal side of the brain microvaculature, 

while pericytes cover ~30% of the abluminal surface. In contrast, there is very little 

innervation of the brain microvasculature by neurons and contact by microglia. Adapted 

with permission from Obermeier  et al., Nature Medicine (2013). 
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Figure 1-4. Schematic of P-gp localization at the blood-brain barrier. P-gp is located 

on the luminal, blood-facing, surface of brain endothelial cells and substrates are effluxed 

into blood cirulcation.  
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Figure 1-5. Ontogenic expression of Abcb1 mRNA in mouse placenta. A dramatic 

decrease in Abcb1 mRNA is demonstrated with advancing gestation. Abcb1b is the 

predominant isoform expressed in the placenta. (*) P<0.05, (**) P<0.01 compared to 

embryonic day 12.5. Modified with permission from Kalabis GM et al., Biology of 

Reproduction (2005). 
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Figure 1-6. Developmental expression of P-gp protein in isolated guinea pig brain 

microvessels. Levels of P-gp protein dramatically increase in late gestation and post-

natal life in both male and female guinea pigs. A significant difference from GD40 of the 

same sex indicated by (*) P < 0.05; (**) P < 0.01; (***) P < 0.001. Modified with 

permission from Iqbal et al., Endocrinology (2011). 
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Figure 1-7. Schematic of the molecular organization of the dystrophin-dystroglycan 

complex at the astrocytic endfoot. Laminin and agrin of the basal lamina interact with 

the dystroglycan–dystrophin complex. The complex is also connected to AQPs and the 

inwardly rectifying potassium Kir4.1 channels via syntrophins and is located in lipid 

rafts. Dp71 is a glial form of dystrophin. These proteins are concentrated at astrocytic 

endfeet and contribute to astrocyte polarity. Adapted with permission from Dityatev et 

al., Trends in Neuroscience (2010). 
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Figure 1-8. Synthesis of latent TGF-β1. Pro-TGF-β1 is cleaved intracellularly by a 

furin protease, producing a noncovalently-bound dimeric complex of latency-associated 

propeptide (LAP) and TGF-β1, referred to as the small latent complex (SLC). These 

complexes are bound to latent TGF-β binding protein (LTBPs) forming the large latent 

complex (LLC) for secretion and subsequent incorporation into the matrix. (RDG; Arg–

Gly–Asp motif) Adapted with permission from Lafyatis, Nature Reviews Rheumatology 

(2014). 
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Figure 1-9. Schematic of TGF-β1/SMAD signaling. TGF-β1 binds to the TGFBR2 

which recruits and phosphorylates a TGF-β type I receptor. Endothelial cells express two 

isoforms, ALK1 and ALK5. ALK5 phosphorylates SMAD2/3, while ALK1 

phosphorylates SMAD1/5. These SMADs form a complex with SMAD4 and move into 

the nucleus. Modified with permission from Fonsatti et al., Cardiovascular Research 

(2009).  
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CHAPTER 2:   
OBJECTIVES & HYPOTHESES 
 

 

 

 

 

2.1 RATIONALE 

Astrocyte differentiation during fetal development is temporally correlated with 

the surge in P-gp function and expression at the developing BBB, suggesting a functional 

role of astrocytes in the establishment and maintenance of the developing BBB.  There is 

also extensive physical interaction between BECs and astrocytes in the mature brain 

microvasculature, as 99% of the abluminal surface is ensheathed by astrocyte-endfeet. 

Compelling evidence from co-culture studies, utilizing tissue from adult animals, have 

demonstrated that the presence of astrocytes enhances BBB characteristics in BECs. 
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Astrocytes have also been shown to induce BBB characteristics in non-neural endothelial 

cells. However, very little is known about how astrocytes modulate multidrug resistance 

via P-gp at the developing BBB.  

This is a clinically relevant question since astrocyte dysfunction is evident in 

brains of individuals diagnosed with neurodevelopmental disorders, such as Rett 

syndrome and Fragile X mental retardation. During these disease-states, astrocytes may 

release different factors or levels of these factors compared to normal astrocytes. This 

could ultimately lead to perturbed P-gp regulation at a critical time in brain development 

and result in substantial changes in fetal brain exposure to xenobiotics, such as 

prescription drugs and pesticides, and other P-gp substrates. Thus, it is critical to 

investigate the role of astrocytes in regulating multidrug resistance via P-gp, as it will 

provide insight into the possible link between brain protection and neurodevelopmental 

diseases.   

 

2.2 OBJECTIVES 

 The studies described in this thesis explore the effect of astrocyte-derived factors 

in the regulation of P-gp function and expression at the BBB during brain development.  

In Chapter 4, I investigated the effect of TGF-β1, an astrocyte-derived growth factor, on 

P-gp expression and function at the developing BBB. In Chapter 5, I examined how 

prenatal dexamethasone treatment altered TGF-β1-induced upregulation in P-gp activity 

and expression at the developing BBB. The second half of my thesis focused on 

establishing a co-culture model to investigate the role of astrocytes in modulating P-gp 
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function and expression at the developing BBB (Chapter 6). I also began to characterize 

the astrocyte-derived factors responsible for this effect. 

 

2.3 OVERALL HYPOTHESIS 

Factors released by astrocytes drive the developmental upregulation in P-gp 

function and expression at the developing BBB.  

 

2.4 SPECIFIC HYPOTHESES 

1. TGF-β1, a growth factor secreted by astrocytes, increases P-gp activity and 

levels of Abcb1 mRNA in brain endothelial cells. The magnitude of this effect 

will vary with gestational age.  

2. Prenatal dexamethasone treatment blunts responsiveness to TGF-β1-induced 

upregulation in P-gp activity and levels of Abcb1 mRNA. 

3. Astrocytes increase P-gp function and levels of Abcb1 mRNA in brain 

endothelial cells. The magnitude of this effect will vary with developmental stage 

of the astrocyte. 

 

 

 



41 

 

 

 

 

CHAPTER 3:  
GENERAL METHODS 
 

 

 

 

 

3.1 RATIONALE 

 The guinea pig is an ideal animal model for investigating the interaction of 

astrocytes and BECs in regulating BBB characteristics. The use of this animal model 

allowed me to derive primary BECs and astrocytes for monocultures and co-cultures. 

Utilizing this in vitro culture system, I determined the effect of astrocyte-derived factors 

in regulating P-gp function and levels of Abcb1 mRNA in BECs derived from fetal and 

post-natal guinea pigs. Isolation of BECs and astrocytes from different stages of brain 

development allowed for the characterization of regulatory mechanisms involved in the 

modulation of P-gp expression and activity. The isolation and characterization procedures 

used to establish these in vitro models are described below.  
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3.2 ANIMAL MODEL 

Our research group has utilized mouse and guinea pig models for previous 

studies, as human brain tissue is very limited. Using the mouse model allowed us to 

demonstrate the function of drug transporters through gestation at the placental and BBB 

interfaces89,90,92,93,230. Its relatively small body size permitted us to use radioactively 

labeled tracer molecules specific to these drug transporters, which demonstrated the 

importance of these transporters in fetal brain protection. However, there are challenges 

to using the mouse to develop an in vitro model. Fetal mouse brains are very small in 

size, making it challenging to derive both primary BECs and astrocyte cultures. 

Moreover, in the mouse, gliogenesis occurs mostly during the post-natal period, which 

makes it difficult to investigate the effect of in utero events on gliogenesis231-234. Also, 

unlike the human and the guinea pig, two genes encode for P-gp. Lastly, the gestation 

period of the mouse is relatively short in length (~19 days). This allows for limited 

windows for in vivo manipulation and time-points in gestation from which primary cells 

can be derived at. 

In contrast to the mouse, the guinea pig has a relatively long gestation period (~68 

days) and has similar placentation to humans. Our lab has shown that unlike other 

rodents, P-gp is encoded by a single gene, Abcb1 in the guinea pig. Moreover, guinea pig 

brain development follows a similar pattern to human brain development, such that the 

fetal brain growth spurt, due to rapid gliogenesis, occurs in utero110,235. As such, the 

effect of in vivo manipulation on astrocyte development can be investigated using the 

guinea pig. There are also many advantages to using guinea pigs for establishing an in 
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vitro co-culture model of the BBB. Guinea pigs give birth to large fetuses (~100 g at 

term) that provide sufficient brain tissue for in vitro analysis. Fetal brain tissue derived at 

mid-gestation is sufficient to yield both primary BECs and astrocyte cultures. These 

characteristics have allowed us to generate a co-culture model using primary BECs and 

astrocytes derived from guinea pigs at various stages of fetal and neonatal development. 

All studies were carried out in accordance with protocols approved by the Animal Care 

Committee at the University of Toronto and in accordance with the Canadian Council on 

Animal Care. 

 

3.3 BRAIN ENDOTHELIAL CELL CULTURE 

3.3.1 Overview 

 BECs were isolated from guinea pigs at different time points in gestation as 

previously described92. These cells were characterized using the endothelial marker, Von 

Williebrand Factor, via immunocytochemistry. BECs also express BBB-specific markers 

such as, ZO-1, occludin, glucose transporter-1 (Glut-1), P-gp and BCRP. Moreover, 

BECs derived from different stages of gestation retain their developmental 

characteristics. Since there were no sex-differences in the developmental pattern of P-gp 

protein levels, only cells from male guinea pigs were utilized in this thesis92. 

 

3.3.2 Procedure 

Isolation of BECs from GD50 and PND14 guinea pigs was carried out as 

previously described92. These time-points in development were chosen as our group has 
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found that P-gp expression is relatively low at GD50 and becomes upregulated at PND14 

at the BBB92. Briefly, guinea pigs were anesthetized using isoflurane (Baxter Corp 

Mississauga, Ontario, Canada). Once anesthetized, guinea pigs were decapitated and 

brain tissue was excised, meninges removed, and brain tissue halved. One half was used 

for BEC isolation, while the other half was used to isolate astrocytes as outlined below. 

All subsequent steps were completed in a biological safety cabinet. Brain tissue was 

minced and homogenized (Potter-Elvehjem Tissue Grinder; Sigma, St. Louis, Missouri, 

USA). Homogenate was suspended in dextran solution (17.5%; Sigma) and centrifuged 

(4000 g for 15 min).  The microvessel pellet was mixed with type I collagenase solution 

(1 mg/ml; Sigma) and digested for 30 min at 37°C. At the end of digestion, the solution 

was centrifuged at 1000 g for 10 minutes. The pellet was resuspended in Dulbecco’s 

Modified Eagle Medium (DMEM; Wisent Inc., Saint-Jean-Baptiste, Quebec, Canada) 

supplemented with 20% fetal bovine serum (Wisent Inc.) and plated on 0.5% gelatin-

coated 75 mm2 tissue culture flasks (Becton-Dickinson (BD) Biosciences, Franklin Lakes, 

New Jersey, USA) and grown at 37°C in 5% CO2/air. BECs were previously 

characterized92. BECs were frozen in liquid nitrogen.  

 

3.4 ASTROCYTE CULTURE 

3.4.1 Overview 

Astrocytes were extracted from GD50 and PND14 guinea pigs using a modified 

protocol236. These cells were characterized by expression of GFAP via 
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immunocytochemistry. Like BECs, astrocytes derived from different stages of brain 

development retain developmental characteristics as described in section 3.4.3.   

 

3.4.2 Procedure 

Brain tissue was cut into small pieces using scissors and digested in papain (2.5 

U/ml; Worthington Biochemical Corp., Lakewood, New Jersey, USA) at 37°C for 30 

min. The mixture was agitated every 10 min by pipetting up and down with a Pasteur 

pipette. After incubation, papain was removed by centrifuging the solution at 1000 g for 

10 minutes. The pellet was resuspended in Neurobasal A medium supplemented with B27 

(Invitrogen, Carlsbad, California, USA) and loaded onto a column containing glass beads 

(5 mm; Thermo Fisher Scientific, San Jose, CA, USA). The filtrate was plated on rat tail 

collagen-coated 75 mm2 tissue culture flasks (BD Biosciences) and grown at 37°C in 5% 

CO2/air. Phase-contrast images of astrocytes from GD50 and PND14 guinea pigs are 

shown in figure 3-1. Astrocytes were frozen in liquid nitrogen until use.  

 

3.4.3 Immunocytochemical characterization of astrocytes 

To validate astrocyte isolation, cells were characterized by positive expression of 

astrocyte markers and  lack of expression for markers of other CNS cells. Astrocytes 

from GD50 and PND14 guinea pigs were plated on 8-well tissue culture slides (BD 

Biosciences). At 80% confluence, media was removed and cells were washed with HBSS 

(Invitrogen). Cells were fixed by room temperature incubation with 4% 

paraformaldehyde (Sigma) for 30 min. Following fixation, cells were washed with in tris-
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buffered saline (0.01M, pH7.5; Sigma) containing Triton X-100 (0.1% TBS-Triton; 

Sigma) and blocked in normal goat serum (NGS; 5% in TBS Triton; Invitrogen) for 2h. 

Primary antibody (diluted in NGS/TBS-Triton) was added after blocking. Primary 

antibodies: rabbit anti-von Willebrand Factor (vWF; 1:200; Sigma), mouse anti-glial 

fibrillary acidic protein (GFAP; 1:100; Cell Signaling Technology, Inc., Danvers, 

Massachusetts, USA), rabbit anti-melanoma-associated chondroitin sulfate proteoglycan 

(Ng2; 1:100; Cell Signaling Technology, Inc.), mouse anti-nestin (1:200; abcam, 

Cambridge, United Kingdom), rabbit anti-aquaporin 4 (AQP4; 1:200; abcam), mouse 

anti-synaptophysin (1:100; Millipore, Billerica, Massachusetts, USA). After overnight 

incubation at 4°C, cells were washed and subsequently incubated with Alexa Fluor 488- 

or 555-conjugated goat secondary antibody (1:500 in NGS/TBS-Triton; Invitrogen) 

raised against respective primary antibody species. As a negative control, cells were 

incubated with mouse IgG or rabbit IgG followed by secondary antibody. After final 

washes, cells were mounted using mounting media with DAPI (Vector Laboratories, 

Burlingame, California, USA) and cover-slipped.  

The majority of cells (>95%) derived from GD50 and PND14 guinea pigs stained 

positive for astrocyte-marker, GFAP, with PND14 cells expressing more GFAP 

compared to GD50 cells (Fig. 3-2). In contrast to PND14 cells, cells from GD50 guinea 

pigs (>95%) expressed nestin, which is an intermediate filament expressed by immature 

astrocytes. Similarly, aquaporin-4 (AQP4), a marker for mature astrocytes, was expressed 

by PND14 cells but not in GD50 cells. Both populations of cells stained negative for 

markers for other cells in the CNS: synaptophysin (neuronal), von-willie brand factor 

(BECs) and NG2 (pericytes). 
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3.5 CO-CULTURE  

3.5.1 Overview 

 Co-cultures are commonly used as an in vitro BBB model.  I established co-

cultures to investigate the effect of astrocytes on P-gp function and expression in BECs 

by comparing to mono-cultured BECs. Our co-cultures are unique in that both primary 

astrocytes and BECs are derived from a single animal. This is in contrast to majority of 

studies that have utilized a mixture of cell lines, cells derived from different species or 

different aged animals to establish co-cultures.  However, since the cells are not in 

contact in this co-culture model, only soluble factors secreted by astrocytes were 

investigated.  

 

3.5.2 Procedure 

BECs and astrocytes were plated on 75 mm2 tissue culture flasks (BD 

Biosciences) and grown at 37°C in 5% CO2/air. Once confluent, cells were used for co-

cultures. To establish co-cultures using GD50 and PND14 BECs and astrocytes, 

astrocytes were plated in the basolateral compartment of Transwell plate (Corning, 

Corning, New York, USA) at a seeding density of 1 × 104 cells/cm2 and BECs were 

plated on the Transwell PET insert containing 0.45 µm pores (Corning) at a seeding 

density of 1 × 104 cells/cm2 (Fig. 3-3). 
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3.5.3 Characterization of co-culture 

 Tight junction and P-gp function and expression were analyzed in co-cultured 

BECs. These parameters were compared in mono-cultured BECs. The results of these 

experiments are found in Chapter 6.   

 

3.6 Quantification of mRNA expression 

Cells were washed twice with HBSS and total RNA was extracted using TRIzol 

reagent (Invitrogen) as per the manufacturer's protocol. Samples were digested with a 

ribonuclease-free deoxyribonuclease (Ambion-Austin, TX). RNA purity and 

concentration were assessed by the A260/A280 ratio via spectrophotometric analysis. 

RNA integrity was verified using gel electrophoresis. Total RNA was subjected to 

reverse-transcription using the High Capacity cDNA Reverse Transcription kit (Applied 

Biosystems, Hammonton, NJ) as per the manufacturer’s protocol. Samples were 

incubated at 25°C for 10 min, 37°C for 120 min, and 85°C for 5 min using the C1000 

Thermal Cycler (Bio-Rad, Hercules, CA). 

Primer sequences were designed using Autoprime (Gunnar Wrobel & Felix 

Kokocinski; Cambridge, United Kingdom) based on transcript ID (Ensemble Genome 

Browser; Guinea Pig) and synthesized by Integrated DNA Technologies (Coralville, 

Iowa; Table 3-1). For each primer set, a standard curve was generated by serial dilution 

of a pooled reference sample with an efficiency of 100% ± 10. Levels of mRNA were 

quantified using Real-time PCR. cDNA (100 ng) was mixed with respective primer 

probes and SsoFast EvaGreen Supermix (Bio-rad Laboratories, Inc., Hercules, California, 
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USA) and loaded onto CFX96 Real-Time System (Bio-Rad). All samples were run in 

triplicate. No-template and no-RT negative controls were included in all runs. Relative 

mRNA expression was calculated as gene of interest expression normalized [ΔΔc(t)] to 

reference gene expression. 

 

3.7 CONCLUSIONS 

 Using the guinea pig as our model enabled us to establish mono-cultured and co-

cultured BECs from different stages of development. Using BECs mono-cultures, we 

were able to determine the effect of a specific astrocyte-derived factor, TGF-β1, on P-gp 

function and expression in BECs derived from different developmental stages (Chapters 4 

& 5). Additionally, the utilization of co-cultures enabled us to investigate the differential 

effect of fetal and post-natal astrocyte-derived factors on P-gp function and expression 

(Chapter 6).  
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Figure 3-1. Phase-contrast images of brain endothelial cells (A, B) and astrocytes (C, 

D) derived from GD50 and PND14 male guinea pigs. Images were taken at 40X 

magnification. 
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Figure 3-2. Fluorescent immunocytochemical images of astrocytes derived from 

GD50 (A-C) and PND14 (D-F) male guinea pigs. Cells were stained for nestin (nes), 

GFAP and AQP4. Cell nuclei were stained by 4′,6-diamidino-2-phenylindole (blue). 
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Figure 3-3.  Schematic of co-culture model consisting of primary guinea pig BECs 

and astrocytes. On day 0, astrocytes are plated in the basolateral compartment. Two days 

later, BEC are plated on porous membrane.  
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Table 3-1. Primer details. Forward and reverse primer sequence and annealing 
temperature listed for each target gene.  

 

Target Primer Temperatu

re 

(Celsius) 

Ensembl Transcript ID 

P-

glycoprotein 

F. 5’-CAA TCT GGG CAA AGA TAC TG-3’ 

R. 5’-CAA GTT CTT TGC TTT GTC CTC-3’ 

 

51 ENSCPOT00000012540 

Occludin F. 5’-CCTGATGAATTCAAACCAAATC-3’ 

R. 5’-AAGGAATATGCTGGCTGAGAC-3’ 

61 
ENSCPOT00000005836 

 

VE-cadherin F. 5’-AGC ACT TTC TGG ATG TCT TTG-3’ 

R. 5’-AAG TTC TGC ATG TTT GGT CTC-3’ 

60 
ENSCPOT00000005821 

 

ZO-1 F. 5’-CGA ATT AAG CTT TAT CAG AGC 
AC-3’ 

R. 5’-GTT CCC ATA TAG CTG TTT CCT C-
3’ 

57 
ENSCPOT00000011029 

 

Βeta-actin F. 5’-TTT ACA ATG AAT TGC GTG TG-3’ 

R. 5’-ACA TGA TCT GGG TCA TCT TC-3’ 

 

58 ENSCPOT00000013600 

TGFBR2 F. 5’-GTA TGG CGG AAG AAT GAT G-3’ 

R. 5’-CAG GAG CAC ATA AAG AAG GTC-
3’ 

 

52 ENSCPOG0000001448

7 

ALK5 F. 5’-CGA AGG CAT TAC AGT GTT TC-3’ 

R  R. 5’-TGT GAT AGA GAC AAA GCA GAG 
G-3’ 

52 ENSCPOG0000001489

0 
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ALK1 F. 5’-ACA ACA TCC TAG GCT TCA TC-3’ 

R. 5’-CCT CTG CAG GAA GTC ATA GAG-
3’ 

60 ENSCPOG0000000166

0 

Endoglin F. 5’-TCC ATC TGG CCT ATG ACG-3’ 

R. 5’-GAA GGT AAA TGG TGG CAT CTC-
3’ 

60 ENSCPOG0000000043

6 

Betaglycan F. 5’-GGG AAG ATC AAG TGT TTC CTC-
3’ 

R. 5’-TGG CTG GAC ATC ACA CAC-3’ 

52 ENSCPOG0000000721

7 

Cadherin2 F. 5’-CCC TGC TCC AGG CAT CTG-3’ 

R. 5’-CTG CCC TTC ATG CAC ATC C-3’ 

58 ENSCPOG0000001239

1 

Nedd9 F. 5’-CTC CTA TGA AAG GGA TCT ATG-
3’ 

R. 5’-TGG AGG AGG GAA ATC ATAC-3’ 

55 
ENSCPOT00000012524 

 

SMAD7 F. 5’- AAC TGC AGA CTG TCC AGA TG-3’ 

R. 5’- GTC TTC TCC TCC CAG TAT GC-3’ 

55 
ENSCPOT00000021317 

 

 

 

 

 

 

 

 

 

 

 

 



55 

 

 

 

 

 

CHAPTER 4:   
TGF-β1 Regulation of Multidrug 
Resistance P-glycoprotein in the 
Developing Male Blood-Brain Barrier 
 

 

 

 

 

4.1 PUBLICATIONS (arising from studies presented in 
Chapter 4) 

Stephanie Baello, Majid Iqbal, Mohsen Javam, Enrrico Bloise, William Gibb 

and Stephen Matthews (2014). TGF-β1 Regulation of Multidrug Resistance P-

glycoprotein in the Developing Male Blood-Brain Barrier. Endocrinology 

155(2): 475-84. 
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4.2 INTRODUCTION 

Previous studies have implicated TGF-β1 in the regulation of P-gp expression in 

endothelial cells derived from the adult brain. In vitro, TGF-β1 was found to increase P-

gp activity in BECs derived from the adult mouse brain146.  TGF-β1 is secreted by 

differentiating astrocytes237,238 and plays an essential role in brain development239. Co-

culture studies of astrocytes and BECs have shown that there is an increase in Abcb1 

mRNA expression in co-cultured BECs compared to monocultured BECs164. This 

increase is most likely due to factors secreted by astrocytes since the BECs do not require 

physical contact with astrocytes for this upregulation to occur240-242.  

To date, it is not known whether TGF-β1 affects P-gp function in the developing 

BBB and, if so, which downstream TGF-β1 signaling pathway(s) mediates the effect of 

TGF-β1 on P-gp function. Therefore, the objectives of this study were to determine the 

effect of TGF-β1 on P-gp function and Abcb1 expression in BECs during fetal and 

neonatal development and to investigate the TGF-β1 signaling pathways involved. I 

hypothesized that TGF-β1 treatment would increase P-gp function and that the magnitude 

of this effect would vary with the developmental age at which the BECs were derived.  

 

4.3 MATERIALS AND METHODS 

4.3.1 Animals           

Twelve-week-old female Dunkin-Hartley-strain guinea pigs were purchased from 

Charles River Canada, Inc. (St. Constant, Quebec, Canada) and bred as described 

previously243. Pregnant females were untreated during pregnancy. Two-week-old male 
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guinea pigs were purchased from Charles River. All studies were carried out in 

accordance with protocols approved by the Animal Care Committee at the University of 

Toronto and in accordance with the Canadian Council on Animal Care.  

 

4.3.2 Guinea Pig Primary Brain Endothelial Culture  

BECs were isolated from GD40, GD50, GD65 male fetuses and PND14 male 

guinea pigs, as described in Chapter 3. Time-points were chosen as P-gp protein 

expression is detectable at GD40 in guinea pig brain microvasculature. As gestation 

progresses, P-gp protein expression dramatically increases, approximately 17- and 32-

fold at GD65 and PND14 compared to levels at GD4092. Cell viability following isolation 

was 99% as assessed by using trypan blue staining (Sigma).  Cells were then frozen in 

liquid nitrogen until use in the following experiments.  

   

4.3.3 TGF-β1 Treatment and P-gp Functional Assay     

BECs derived from GD40, GD50, GD65 and PND14 guinea pigs were plated on 

gelatin-coated 96-well culture plates (Becton Dickinson Biosciences) at a seeding density 

of 1x104 cells/cm2. Cells were grown 37°C in 5% CO2/air for 5 days. At confluence, 

media was replaced with phenol-red free DMEM (Wisent Inc.) containing 20% charcoal 

stripped FBS (Wisent Inc.). Twenty-four hours after media change, cells were treated 

with TGF-β1 (0.001-10ng/ml; Invitrogen, Carlsbad, California, USA) for 2, 4, 8, and 24h. 

Cell viability following TGF-β1 treatment was 99% as assessed by using trypan blue 

staining (Sigma). These TGF-β1 doses were selected as maternal plasma levels of TGF-
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β1 range from 1-30ng/ml244. After treatment, cells were washed twice with warm 

Tyrodes’ salt solution (Sigma) and P-gp activity was measured using an established 

Calcein-AM Assay92. Briefly, cells were incubated with calcein-AM (10-6 M; 1h). After 

incubation, cells were washed twice with ice-cold Tyrodes’ solution (Sigma), lysed and 

calcein was measured using a fluorescent plate reader (ex/em: 485/510 nm). Mean 

background fluorescence was subtracted from all control and treated readings.  

 

4.3.4 TGF-β1 Treatment and P-gp Specificity  

BECs derived from PND14 male guinea pigs were grown to confluence in 96-

well plates, as described above. Cells were treated with phenol red-free medium 

containing stripped fetal bovine serum and 10 ng/ml TGF-β1 (8h).  Cells were washed 

with Tyrodes’ solution and then subsequently incubated for 1h with either 10−6 M 

calcein-AM or 10−6 m calcein-AM with 10−4 m verapamil (VPL) (Sigma). Verapamil is 

an L-type calcium channel blocker that has been shown to be a competitive inhibitor of P-

gp245. Cells were then washed, lysed, and calcein was measured, as described above. 

 To further validate that the effects of TGF-β1 were specific to P-gp, an alternative 

P-gp substrate, rhodamine 123 (Sigma), was used. BECs were treated for 8h with either 

phenol red-free medium containing stripped fetal bovine serum and TGF-β1 (10ng/ml). 

Cells were washed before incubation with 10−5 M Rho123 for 30 min. After lysis, 

rhodamine123 accumulation was measured (Ex/Em: 485/528 nm).   
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4.3.5 Quantification of mRNA expression 

 To investigate whether functional changes in P-gp elicited by TGF-β1 

corresponded to changes to Abcb1 mRNA expression, PND14 BECs were cultured on 10 

cm2 gelatin-coated tissue dishes (Becton Dickinson Biosciences) at a seeding density of 

1x104 cells/cm2. Cells were grown at 37°C in 5% CO2/air for 5 days. At confluence, 

BECs were treated with TGF-β1 (10 ng/ml) for 2, 4, 8 and 24h. Total RNA was collected, 

reverse transcribed to cDNA and levels of specific transcripts were analyzed via real-time 

PCR as described in Chapter 3. In addition, RNA was isolated from cells at GD40, GD50, 

GD65 and PND14 to quantify TGF-β receptors (tgfbr2, alk1, alk5, endoglin, betaglycan). 

Relative mRNA expression was calculated as gene of interest expression normalized 

[ΔΔc(t)] to reference gene expression (β-actin). β-actin was not differentially regulated 

across gestation or altered by TGF-β1, SIS3, BMP-9, dorsomorphin or SB-431542 

treatment (data not shown). 

 

4.3.6 Signaling Pathways involved in TGF-β1 regulation of P-gp 

To investigate signaling pathways mediating TGF-β1 effects on P-gp function, 

BECs derived at GD50 and PND14 were treated with various ALK1 and ALK5 inhibitors 

and agonists. We investigate signaling on GD50 and PND14 because levels of signal 

transducing receptor, alk1, varied with gestational age. To investigate the involvement of 

ALK5 signaling, BECs were pre-treated (1h) with SB-431541 (ALK5 antagonists; 10µM 

and 25µM; Sigma) or specific inhibitor of smad3 (SIS3; 30 µM; Sigma). Cells were then 

treated with TGF-β1 (10ng/ml) in the presence of the respective inhibitor for 8h. To 

investigate the role of ALK1 signaling, BECs were treated (2, 8 and 24h) with BMP-9 
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(ALK1 agonist; 0.001-10ng/ml; R&D Systems, Minneapolis, MN). In another 

experiment, BECs were also pre-treated (1h) with dorsomorphin (ALK1 inhibitor; 1, 8, 

and 40 µM; EMD Millipore, Billerica, MA) and subsequently treated with TGF-β1 (10 

ng/ml) and inhibitor for 8h. P-gp activity was assessed after treatment, using Calcein-

AM, as described above. The various treatments had no significant effect on cell 

viability, which was determined using trypan blue (Sigma; data not shown). Following 

treatment, Abcb1 mRNA levels were analyzed via qRT-PCR. SMAD3 activation 

upregulates cadherin2 mRNA and thus levels were quantified as a positive control.  

 

4.3.7 Statistical analysis         

All statistical analyses were performed using Prism (GraphPad Software, Inc., San 

Diego, CA). TGF-β1 associated receptors (tgfbr2, alk1, alk5, endoglin, betaglycan) and 

Abcb1 mRNA data were analyzed using one-way ANOVA, followed by Newman-Keuls 

post hoc test.  Samples were run in triplicates for RT-PCR experiments. Functional P-gp 

data were analyzed using one-way ANOVA, followed by Dunnett's (for comparisons 

against the control group) and Newman-Keuls (for comparisons against other treatment 

groups) post hoc analyses. Functional P-gp data are displayed as percent change in 

activity from controls. Significance was set at P < 0.05. Each treatment group consisted 

of 6-8 animals.  
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4.4 RESULTS 

4.4.1 TGF-β1 regulation of P-gp Function During Development   

TGF-β1 significantly increased P-gp function in BECs derived from fetal (GD40, 

GD50, GD65) and young (PND14) male guinea pigs (Fig. 4-1). This increase in function 

occurred within 2h of treatment. However, at 24h, no effect of TGF-β1 on P-gp activity 

was detected apart from at the highest concentration (10ng/ml) with BECs derived from 

GD40 fetuses. BECs derived from GD40 and GD50 male fetuses were more responsive 

to TGF-β1 treatment when compared with PND14 BECs (Fig. 4-1).  

 

4.4.2 Effect of TGF-β1 is P-gp Specific 

 In order to demonstrate that this effect of TGF-β1 was indeed specific to P-gp, 

BECs derived from PND14 BECs were exposed TGF-β1 in the presence of P-gp 

inhibitor, verapamil (VPL). Treatment of BECs derived at PND14 with TGF-β1in the 

presence of VPL attenuated the effects of TGF-β1 on P-gp function (Fig. 4-2A). To 

further demonstrate the effect of TGF-β1 is P-gp specific, we replicated the TGF-β1-

induced increase in P-gp function using an alternative substrate of P-gp, rhodamine 123 

(Fig. 4-2B).  

 

4.4.3 TGF-β1 regulates Abcb1 mRNA in BECs      

TGF-β1 increased Abcb1 mRNA levels in BECs derived from PND14 guinea pigs 

(Fig. 4-3).  The effect of TGF-β1 (10ng/ml) on Abcb1 mRNA was biphasic. Within 2h, 

Abcb1 mRNA increased 3-fold compared to control (P<0.001) and returned to baseline 
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levels at 4h. However, Abcb1 mRNA then increased by approximately 2-fold compared 

to control at 8h (P<0.01) returning to control levels by 24h. The changes in Abcb1 

mRNA at 8 and 24h mirrored the functional changes in P-gp (Fig. 4-1). 

 

4.4.4 Developmental expression of TGF-β1 associated receptors    

The relative expression of TGF-β type II receptor (tgfbr2) mRNA (GD40 

1.2±0.33, GD50 1.1±0.49, GD65 1.0±0.19, PND14 1.0±0.27), alk5 mRNA (GD40 

1.1±0.25, GD50 0.7±0.29, GD65 1.1±0.20, PND14 0.7±0.2), and the TGF-β1 type III 

receptor (endoglin) mRNA (GD40 1.4±0.54, GD50 1.5±0.7, GD65 1.1±0.32, PND14 

1.2± 0.28) did not change through development. In contrast, alk1 and betaglycan mRNA 

levels were significantly higher in BECs derived at GD65 and PND14 compared to those 

derived at GD40 (P<0.01; Fig. 4-4A and P< 0.001; Fig. 4-4B). Since the response to 

TGF-β1 significantly decreased in PND14 compared to BECs derived at GD50 (Fig. 4-2), 

while alk1 and betaglycan mRNA levels increased, we examined the signaling 

mechanisms involved in TGF-β1 regulation of P-gp function at GD50 and PND14. 

 

4.4.5 Role of ALK5 in TGF-β1-induced increase in P-gp     

BECs derived at GD50 and PND14 were treated with the ALK5 inhibitor SB-

431542 in order to examine if activation of ALK5 is required for P-gp regulation.  SB-

431542 is a small molecule that inhibits the intracellular kinase domains of ALK5246. 

Both doses of SB-431542 prevented the TGF-β1-induced increase in P-gp function in 
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BECs derived at GD50 and PND14 indicating that ALK5 is required for TGF-β1 

regulation of P-gp function (Fig. 4-5A, B). 

To further define the role of ALK5, BECs derived from PND14 male guinea pigs 

were treated with specific inhibitor of SMAD3 (SIS3). SMAD3 is a signal transduction 

molecule that is phosphorylated as a result of ALK5 activation, and SIS3 blocks this 

action247. Treatment of BECs derived at GD50 and PND14 with TGF-β1 in the presence 

of SIS3 did not reduce P-gp activity or Abcb1 mRNA compared to cells treated with 

TGF-β1 alone (Fig. 4-6A, B, D, E), indicating that SMAD3 was not involved in ALK5 

mediated regulation of P-gp. As a positive control, the effect of SIS3 on TGF-β1-

induction of cadherin 2 mRNA was determined since TGF-β1 acting via SMAD3 

increases cadherin 2 expression248. As expected, TGF-β1-induction of cadherin 2 mRNA 

was prevented by SIS3 treatment (Fig. 4-6C, F).   

 

4.4.6 Role of ALK1 in the TGF-β1-induced increase in P-gp    

The contribution of ALK1 activation to changes in P-gp function was 

investigated. ALK1 signals through SMAD1/5. BECs derived at GD50 and PND14 were 

treated with the ALK1 agonist BMP-9249,250. Treatment with BMP-9 caused an increase 

in P-gp activity in BECs derived at both GD50 and PND14 (Fig. 4-7A-D). However, 

there was a discrepancy between the effects of BMP-9 (Fig. 4-7) and TGF-β1 (Fig. 4-1). 

Treatment with BMP-9 (10ng/ml; 24h) stimulated an increase in P-gp function in cells 

derived at GD50 (P<0.001) and PND14 (P<0.05). In contrast, there was no effect of 

TGF-β1 on P-gp function at 24h in BECs derived from PND14 guinea pigs (Fig. 4-1). 
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One explanation is that TGF-β1 is no longer active after 24h, in contrast to the agonist 

BMP-9. To investigate this, BECs derived at PND14 were exposed to TGF-β1 for 24h. 

After 24 hours, this media was transferred to new BECs derived at PND14 and P-gp 

activity was accessed. After 2h treatment, p-gp activity remained unchanged.  

To confirm that activation of ALK1 is required for TGF-β1 mediated regulation 

of P-gp, BECs derived at GD50 and PND14 were treated with dorsomorphin (ALK1 

inhibitor)251.  Dorsomorphin antagonized the TGF-β1-induced increase in P-gp function 

in BECs derived at PND14 indicating that ALK1 is required for TGF-β1 regulation of P-

gp function (Fig. 4-8B). However, the same doses of dorsomorphin did not inhibit the 

TGF-β1-induced increase in P-gp function in BECs derived at GD50 (Fig. 4-8A). 

 

4.5 DISCUSSION  

 This is the first study to show that TGF-β1 is a potent modulator of P-gp function 

in BECs derived in late gestation and the early post-natal period.  Effects were greater in 

BECs derived at earlier stages of development. Moreover, we have shown that the effect 

of TGF-β1 on P-gp is dependent upon ALK5 activation. However, the regulatory effects 

of TGF-β1 on P-gp function and Abcb1 mRNA do not appear to involve classical 

ALK5/SMAD3 signaling. In addition, activation of the ALK1 pathway mimicked the 

TGF-β1-induced regulation of P-gp function and we have shown that this pathway is 

dependent on the maturity of BEC.  
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There was generally good correlation between P-gp function and Abcb1 mRNA 

following stimulation with TGF-β1. Abcb1 mRNA levels increased at 2h and 8h time 

points and decreased at 24h, correlating with respective functional data at these time 

points.  The biphasic effect of TGF-β1 on Abcb1 mRNA (indicated by the lack of effect 

of TGF-β1 on Abcb1 mRNA at 4h) may be due to both direct and indirect mechanisms. It 

is known that TGF-β1 modulates gene expression by affecting transcriptional activation 

and mRNA turnover rate252. TGF-β1 has been shown to enhance the stability of COX-2 

mRNA in intestinal epithelial cells and human lung fibroblasts253,254, and products of this 

enzyme have potent regulatory effects on P-gp function255. Moreover, TGF-β1 may 

stimulate endothelial cells to secrete various factors, potentially affecting P-gp 

function146. Thus, the biphasic effect of TGF-β1 on Abcb1 mRNA may also result from 

the production of TGF-β1-induced factors from the endothelium. 

The present study has identified the downstream signaling pathways by which 

TGF-β1 regulates Abcb1 mRNA levels and P-gp activity in the developing BBB. 

Through inhibition of the ALK5 intracellular kinase domain, we have shown that 

activation of ALK5 is required for TGF-β1 regulation of P-gp. Moreover, by inhibiting 

SMAD3, we demonstrated that ALK5-associated SMAD3 is not required for TGF-β1 

regulation of Abcb1 mRNA expression and P-gp function in BECs. However, it remains 

possible that P-gp is regulated through ALK5 non-SMAD signaling pathways such as, 

MAPK and PI3K 256,257. BECs also express ALK1, a type I receptor activated by TGF-β1. 

To our knowledge, this is the first study to demonstrate that activation of ALK1, with 

BMP-9, induces similar effects on P-gp function to those of TGF-β1. Also similar to 

TGF-β1, BMP-9-induced effects on P-gp were reduced in BECs derived near term 
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compared with those derived earlier in gestation. This decreasing cellular responsiveness 

to BMP-9 may be attributed to an increase betaglycan mRNA, as betaglycan has been 

shown to be a negative regulator of BMP signaling 216,217. Moreover, signaling through 

the ALK1 pathway is dependent on maturity of BEC since ALK1 inhibitor, 

dorsomorphin, markedly reduced the TGF-β1-induced increase in P-gp function in BECs 

derived at PND14, but not those derived at GD50. We speculate that this is may be due to 

low alk1 mRNA expression in BECs derived at GD50 compared to those derived at 

PND14, and that TGF-β1 affects in early development are primarily mediated by ALK5. 

These findings are consistent with studies demonstrating low alk1 mRNA expression in 

microvessels derived from mouse forebrain at embryonic day 9258.   

The balance between alk1 and alk5 mRNA expression is crucial for healthy brain 

development as aberrations in these receptor levels contribute to the pathogenesis of 

congenital conditions, such as brain arteriovenous malformations (BVM). The 

pathogenesis of BVM, the primary cause of intracranial hemorrhage, is poorly 

understood. Human studies have shown that there is a decrease in ALK1 mRNA 

expression and an increase in ALK5 mRNA expression in BVM259. This imbalance of 

receptor levels correlates with the lower expression of ABCB1 mRNA in BVM when 

compared to normal human brain samples260. Therefore, it is possible that compromised 

brain protection through reduced levels of P-gp activity may contribute to the 

pathogenesis observed in BVM.  

Expression of the TGF-β1 associated receptors, tgfbr2, alk5, and endoglin did not 

change in BECs derived from GD40 to PND14, suggesting that these receptors are not 

responsible for the decrease in BEC responsiveness to TGF-β1 with advancing gestation. 
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However, betaglycan mRNA, an accessory receptor to TGF-β1 signaling, dramatically 

increased in late gestation. Previous studies have demonstrated that betaglycan-mediated 

changes in TGF-β1 responsiveness vary with cell-type and state261. Mesenchyme-derived 

cells, including mesangial cells, are generally poorly responsive to TGF-β1 and express 

high levels of betaglycan 262. Studies have shown that membrane-bound betaglycan 

decreases cellular responsiveness to TGF-β1 by preventing TGFBR2 from recruiting and 

activating TGFBR1216,217. Betaglycan may function through a similar mechanism in 

BECs, which may explain why increasing levels of betaglycan in late gestation and post-

natal BECs, correlate with decreasing responsiveness to TGF-β1.  

The present study also demonstrated that alk1 mRNA levels were higher in BECs 

derived from GD65 and PND14 guinea pigs compared to those derived at GD40 and 

GD50. It has been shown that at earlier stages of development, TGF-β1 acting through 

the ALK5 receptor is provasculogenic. However, later in development when the 

endothelial cells have differentiated and both alk1 and alk5 are expressed, there is a shift 

towards an angiogenic state263. In terms of the brain vasculature of the developing guinea 

pig, the highest rate of brain growth occurs from GD40 to PND14110, which is 

accompanied by increasing oxygen demand by this tissue. This demand is met by 

increasing blood flow to the brain via angiogenesis. Thus, the rise in alk1 mRNA 

expression BECs derived at PND14 correlates with increasing rates of angiogensis in the 

brain vasculature of the neonatal guinea pig. Our studies have shown that TGF-β1, at 

least partially, mediates P-gp function through ALK1 and so it might be expected that 

TGF-β1 regulation of P-gp would be more potent in BECs derived from late gestation 

and neonatal guinea pigs. However, as discussed above, betaglycan expression increases 
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and has been shown to disrupt the interaction between TGFBR2 and TGFBR1.Therefore, 

an increase in betaglycan may counteract the expected increase in TGF-β1 responsiveness 

associated with an increase in ALK1 expression. However, the direct relationship 

between betaglycan and TGF-β1 signaling in BECs requires further investigation. 

Based on our data, we can conclude that the timing of TGF-β1 activation at the 

developing blood-brain barrier is likely important for brain homeostasis.  This activation 

can occur as a result of TGF-β1 derived from blood or brain extracellular fluid. Increased 

levels of TGF-β1 in maternal plasma levels have been described in gestational diabetes 

and preeclampsia 264,265. Since TGF-β1 can cross the placenta266, this will result in altered 

TGF-β1 levels in the fetal circulation.  Additionally, perturbations in TGF-β1 levels 

caused by delayed or early gliogenesis, such as that observed in fetal alcohol syndrome 

and autism 267,268, may effect brain protection and consequently contribute to disease 

pathogenesis. This may, in turn, result in substantial changes in fetal brain exposure to 

xenobiotics and other P-gp substrates, many of which have teratogenic properties and 

thus may contribute to disease progression. 

In vitro, we have shown that a single dose of TGF-β1 elicits rapid effects on 

Abcb1 mRNA expression and P-gp function, which disappear after 24 hours. Our results 

infer that TGF-β1 contributes to dynamic regulation of P-gp and that short-term 

perturbations in TGF-β1 do not result in permanent changes in P-gp function. However, 

in vivo, the release of many astrocyte-derived factors occurs in a pulsatile fashion in 

response to neuronal activation269. The release of TGF-β1 from astrocytes may occur in 

this manner, which may result in a constant regulation of P-gp. BECs and astrocyte co-

culture studies are required to further investigate this important relationship.  
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In conclusion, TGF-β1 potently regulates P-gp activity and Abcb1 mRNA at the 

developing BBB, but the magnitude of these effects is age-dependent. We have shown, 

for the first time, that ALK5 signaling through SMAD3 is not essential for TGF-β1 

regulated P-gp function in fetal BECs. Moreover, we have identified that TGF-β1 

signaling through the ALK1 pathway represents an important route in the regulation of P-

gp function in the developing BBB, particularly near term. P-gp in the fetal BBB protects 

the developing brain, preventing a wide spectrum of endogenous and exogenous factors 

from entering the fetal brain. Aberrations in TGF-β1 levels, either as a result of delayed 

or early glial cell differentiation, may lead to substantial changes in fetal brain exposure 

to P-gp substrates, triggering profound consequences with respect to brain development.  
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Figure 4-1. TGF-β1 increases P-gp activity in fetal and post-natal BECs. P-gp 
activity in brain endothelial cell (BEC) cultures derived at gestational day (GD)40 (A-D), 
GD50 (E-H), GD65 (I-L) and post-natal day (PND)14 (M-P) after treatment with TGF-β1 
(0.001-10 ng/ml) for 2, 4, 8 or 24h. Activity is displayed as percent change from 
untreated control cells mean ± SEM (N=6-8/group). A significant difference from control 
indicated by *, P < 0.05; **, P < 0.01; ***, P < 0.001. 
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Figure 4-2. Effect of TGF-β1 is specific to P-gp. P-gp activity after treatment with (A) 
TGF-β1 (10ng/ml for 8h) with or without inhibition of P-gp by 10−4 m verapamil (VPL); 
and (B) P-gp activity (using rhodamine 123 as a P-gp substrate) after an 8h treatment 
with TGF-β1 (10 ng/ml). P-gp activity is displayed as percent change from untreated 
control cells (zero line). Values displayed as mean ± SEM (N =6-8/group). A significant 
difference from control indicated by **, P < 0.01; ***, P < 0.001. 
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Figure 4-3. TGF-β1 increases Abcb1 mRNA in BECs. The effect of TGF-β1 (10ng/ml 
for 8h) treatment on Abcb1 expression in brain endothelial cell (BEC) cultures derived at 
post-natal (PND)14. Abcb1 mRNA expression shown relative to β-Actin. Values 
displayed as mean ± SEM (N =6-8/group). A significant difference from control indicated 
by **, P < 0.01; ***, P < 0.001. 
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Figure 4-4. Alk1 and betaglycan mRNA expression in BECs increases in late 
gestation. The developmental profile of (A) alk1 mRNA (type I receptor) (B) betaglycan 
mRNA (type III accessory receptor) in brain endothelial cells (BECs) derived at 
gestational (GD)40, GD50, GD65 and post-natal day (PND)14. Expression was 
normalized to β-actin. Values displayed as mean ± SEM (N =6-8/group). A significant 
difference from GD40 indicated by **, P < 0.01; ***, P < 0.001.  
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Figure 4-5. SB-431542 attenuates effect of TGF-β1 on P-gp function in BECs. P-gp 
activity in brain endothelial cell (BEC) cultures derived at (A) gestational (GD)50 and 
(B) post-natal day (PND)14 after treatment with TGF-β1 (10 ng/ml) and SB-431542 (SB) 
for 8h. P-gp activity is displayed as percent change from untreated control cells mean ± 
SEM (N=6-8/group). A significant difference from control indicated by ***, P < 0.001. 
Difference between treatments are indicated by †, P<0.001.  
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Figure 4-6. SIS3 has no effect on TGF-β1 mediated increase in P-gp function in 
BECs. P-gp activity in brain endothelial cell (BEC) cultures derived at gestational 
(GD)50 (A-C) and post-natal day (PND)14 (D-F) treated with TGF-β1 (10 ng/ml) and 
Specific Inhibitor of SMAD3 (SIS3) for 8 h. (A, D) P-gp activity is displayed as percent 
change from control cells. (B, E) Abcb1 mRNA shown relative to β-Actin. (C, F) 
Cadherin2 mRNA shown relative to β-Actin. Values displayed as mean ± SEM (N= 6-
8/group). Significant difference from control indicated by *, P < 0.05; **, P < 0.01; ***, 
P < 0.001. Difference between treatments are indicated by †, P<0.001.  
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Figure 4-7. BMP-9 increases P-gp activity in BECs. P-gp activity in brain endothelial 
cell (BEC) cultures derived at (A,B) gestational day (GD)50 and (C, D) post-natal day 
(PND)14 after treatment BMP-9 (0.001-10 ng/ml) for 8 or 24 h. P-gp activity is displayed 
as percent change from untreated control cells mean ± SEM (N=6-8/group). A significant 
difference from control indicated by *, P < 0.05; **, P < 0.01; ***, P < 0.001.  
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Figure 4-8. Age-specific effect of Dorsomorphin on TGF-β1 mediated increase in P-
gp function in BECs. P-gp activity in brain endothelial cell (BEC) cultures derived at 
(A) gestational day (GD)50 and (B) post-natal day (PND)14 treated with TGF-β1 (10 
ng/ml) and Dorsomorphin (DSM) for 8 h. P-gp activity is displayed as percent change 
from untreated control cells mean ± SEM (N=6-8/group). A significant difference from 
control indicated by *, P < 0.05; **, P < 0.01; ***, P < 0.001. Difference between 
treatments are indicated by †, P<0.05.  
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CHAPTER 5:                                                                          
Glucocorticoids Modify Effects of TGFβ1 
on Multidrug Resistance in the Fetal 
Blood-Brain-Barrier 
_________________________________ 
 

 

 

 

 

5.1 PUBLICATIONS (arising from studies presented in 
Chapter 5) 

Stephanie Baello, Majid Iqbal, Samantha Kearney, Shikha Kuthlia, Enrrico 

Bloise, William Gibb and Stephen Matthews (2015). Glucocorticoids Modify 

Effects of TGF-β1 on Multidrug Resistance in the Fetal Blood-Brain Barrier. 

Growth Factors (manuscript submitted). 

 



79 

 

5.2 INTRODUCTION 

P-gp expression at the BBB is low during the first half of gestation but 

dramatically increases in late gestation and post-natal life in mice, guinea pig and 

humans92,93,95. This upregulation in P-gp at the developing BBB coincides with the rapid 

phase of astrocyte differentiation in the fetal brain237,238,270. TGF-β1 is a multifunctional 

growth factor released by astrocytes that modulates vascular and neural cells of the CNS. 

Recently, it was shown that astrocyte-derived TGF-β1 induces inhibitory synapse 

formation in mouse cerebral cortex neurons, a crucial event occurring late in brain 

development226.  Moreover, we have also shown that TGF-β1 has a role in the developing 

BBB as it induces brain protection via P-gp in fetal and neonatal BECs - an effect that 

was attenuated with advancing age (Chapter 4).  

Pregnant women who are at risk of preterm birth (approximately 10% of all 

pregnancies) are prescribed sGC, to mature fetal lungs and reduce neonatal risk of 

respiratory distress syndrome. How such a treatment might influence P-gp function in the 

developing BBB and therefore protection of the late gestation fetal brain is largely 

unexplored. In rabbits, maternal sGC treatment decreased vascular endothelial growth 

factor (VEGF) and increased TGF-β levels in the fetal brain271. Prenatal sGC exposure 

has also been shown to increase expression of TJ proteins in the fetal brain 

microvasculature272,273.  We have recently shown that prenatal sGC exposure matures the 

BBB by increasing levels of Abcb1 mRNA and P-gp function in BECs (M Iqbal, S 

Baello, M Javam, M Audette, W Gibb & SG Matthews, manuscript submitted). However, 

very little is known as to how prenatal exposure to sGCs might impact TJ function and 

modulate the responsiveness of P-gp to astrocyte-derived factors such as TGF-β1 in fetal 
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BECs.  We hypothesized that prenatal exposure to sGC would mature (increase) TJ 

function in the developing BBB and decrease BECs responsiveness to TGF-β1. 

 

5.3 MATERIALS AND METHODS 

5.3.1 Animals, Breeding and Synthetic Glucocorticoid Treatment    

Twelve-week-old female Dunkin-Hartley-strain guinea pigs were purchased from 

Charles River Canada, Inc. (St. Constant, Quebec, Canada). Female guinea pigs were 

bred as described previously.92 Pregnant guinea pigs were treated with dexamethasone 

(DEX; 1mg/kg; Vetoquinol Lavaltrie, Quebec, Canada) or saline (vehicle; VEH) on 

GD48 and GD49 and euthanized on GD50 (term approximately 68-70 days) (N=5 per 

treatment group) as described in (M Iqbal, S Baello, M Javam, M Audette, W Gibb & SG 

Matthews, manuscript submitted). The dosing regimen was based on clinical situations 

wherein mothers presenting with threatened preterm labor receive two injections of 

synthetic glucocorticoids, 24 hours apart. Pregnant women usually receive a dose of 

synthetic glucocorticoids of approximately 0.25 mg/kg274. However, in guinea pigs, the 

glucocorticoid receptor has 4-fold lower affinity to DEX275. Thus, a dose of 1 mg/kg was 

used in the current study.  All studies were carried out in accordance with protocols 

approved by the Animal Care Committee at the University of Toronto and in accordance 

with the Canadian Council on Animal Care.  
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5.3.2 Guinea Pig Primary Brain Endothelial Culture     

Pregnant guinea pigs (N=6-8 per treatment group) were anaesthetized  (isoflurane; 

Baxter Corp., Mississauga, Ontario, Canada) and euthanized on GD50 and BECs were 

isolated from male fetal guinea pigs, as described in Chapter 392,276. Cell viability was 

assessed by trypan blue (Sigma) staining and was determined to be >95%.  Cells were 

frozen in liquid nitrogen until use in the following experiments.  

 

5.3.3 TGF-β1 Treatment and P-gp Functional Assay  

 BECs derived from DEX-exposed and control male GD50 guinea pigs were 

plated on gelatin-coated 96-well culture plates (Becton Dickinson Biosciences) at a 

seeding density of 1x104 cells/cm2. Cells were grown until confluent (37°C; 5% CO2/air) 

and the media was changed to phenol-red free DMEM with charcoal stripped FBS (20%, 

Wisent Inc.). Cells were treated with TGF-β1 (1-10ng/ml for 8h; Invitrogen) and P-gp 

function was assessed using the calcein-AM assay, as we have previously described in 

Chapter 492. TGF-β1 doses and treatment duration were selected based on previous 

studies that had demonstrated upregulation of P-gp activity and Abcb1 mRNA levels in 

fetal- and post-natally-dervied BECs276. Cell viability was >95% as assessed by trypan 

blue (Sigma) staining following TGF-β1 treatment.  

 

5.3.4 TGF-β1 Treatment and Tight Junction Function  

BECs derived from DEX and VEH-exposed male GD50 guinea pigs were plated 

on gelatin-coated 24-well CoStar Transwell Membrane (0.4 µm pore; Fisher Scientific, 
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Hampton, New Hampshire, USA) at a seeding density of 1x104 cells/cm2. Once cells 

were confluent and treated with TGF-β1 (10 ng/ml, 8h; Invitrogen), tight junction 

function was measured using FITC-dextran permeability assay. BECs were washed with 

HBSS (Invitrogen) and incubated with HBSS (0.5ml) containing FITC-Dextran (70 kDa, 

1.0 mg/mL, Sigma), which was placed into upper chamber and 1.5 mL of HBSS into the 

lower chamber. After incubation (37°C; 1h) the FITC-Dextran concentration in the lower 

chamber was assessed at excitation and emission wavelengths of 485 nm and 530 nm, 

respectively.  

 

5.3.5 Quantification of mRNA expression 

 Abcb1 mRNA expression (P-gp), expression of genes that encode tight junction 

proteins (Ocln and Tjp1) and TGF-β1-inducible genes (Smad7, Cdh2 and Nedd9)248,277 

were assessed in BECs following TGF-β1 treatment. Expression of TGF-β associated 

receptors (Tgfbr2, Alk1, Alk5, Endoglin, Betaglycan) were also measured in BECs from 

VEH- and DEX-exposed fetuses. For mRNA analysis, BECs were cultured on 10 cm2 

gelatin-coated tissue dishes (Becton Dickinson Biosciences) at a seeding density of 1x104 

cells/cm2. BECs at confluence were treated with TGF-β1 (10 ng/ml; 8h) and total RNA 

extracted, converted to cDNA and level of specific transcripts were quantified using real-

time PCR as described in Chapter 3. Relative mRNA expression was calculated as gene 

of interest expression normalized [ΔΔc(t)] to reference gene expression (β-actin). β-actin 

was not altered in BECs following in vivo DEX or saline exposure or in vitro TGF-β1 

treatment (data not shown). 
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5.3.6 Statistical analysis         

All statistical analyses were performed using Prism (GraphPad Software, Inc., San 

Diego, CA). Two-way ANOVA followed by Bonferonni’s test was utilized to compare 

the effect of TGF-β1 on P-gp and tight junction function, as well as Abcb1, Tjp1, Ocln, 

Smad7, Nedd9 and Cdh2 mRNA levels in BECs derived from DEX-exposed and control 

fetuses. TGF-β associated receptors (Tgfbr2, Alk1, Alk5, Endoglin, Betaglycan) mRNA 

data were analyzed between BECs from DEX-exposed and control fetuses using an 

unpaired t-test. Significance was set at P < 0.05. Each treatment group consisted of 6-8 

male fetuses from independent pregnancies.  

 

5.4 RESULTS 

5.4.1 TGF-β1 effects on Abcb1 mRNA and P-gp function in BECs 

An 8h exposure to TGF-β1 (10 ng/ml) significantly increased P-gp function in 

BECs derived from control fetuses (Fig. 5-1A, P<0.001). However, there was no increase 

in P-gp activity after TGF-β1 treatment of BECs derived from DEX-exposed fetuses (Fig. 

5-1B). Abcb1 mRNA was significantly higher (P<0.05) in BECs derived from DEX-

exposed fetuses compared to controls (Fig. 5-1C). Exposure to TGF-β1 (10ng/ml; 8h) 

resulted in a significant increase (P<0.01) in Abcb1 mRNA in BECs derived from control 

fetuses but not those derived from DEX-exposed fetuses (Fig 5-1C).  
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5.4.2 TGFB1 effects on tight junction function and related mRNA 
expression in BECs 

TGF-β1 significantly decreased FITC-dextran permeability in BECs derived from 

control fetuses (Fig. 5-2A; P<0.001), indicating an increase in TJ function. BECs derived 

from DEX-exposed fetuses displayed decreased baseline FITC-dextran permeability 

compared to controls indicating increased TJ function (Fig. 5-2A; P<0.001). TGF-β1 

caused no further decrease in FITC-dextran permeability in this group. TGF-β1 had no 

effect on Ocln or Tjp1 mRNA levels in BECs derived from control fetuses (Fig. 5-2B, C). 

Prenatal DEX-treatment resulted in significant increases in baseline Ocln and Tjp1 

mRNA levels (P<0.001) but TGF-β1 did not significantly modify the levels of these 

transcripts (Fig. 5-2B, C). 

 

5.4.3 Effects of Prenatal Dexamethasone on TGFB-Associated 
Receptors in BECs 

  As BECs derived from DEX-exposed fetuses displayed decreased responsiveness 

to TGF-β1 compared to BECs from control fetuses (Fig. 5-1B), expression of TGF-β1-

associated receptors was assessed. TGF-β receptor 2 (tgfbr2) and Alk1 mRNA levels 

were significantly higher in BECs derived from the DEX-exposed fetuses compared to 

controls (Fig. 5-3A & B; P<0.01). In contrast, the expression of Alk5, Betaglycan and 

Endoglin mRNA was not different between BECs derived from the treatment groups 

(Fig. 5-3C-E).  
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5.4.4 Prenatal Dexamethasone Effects on TGF-β1-Associated 
Intracellular Signaling   

SMAD7 transcription is induced by TGF-β family members and is an established 

marker of cellular responsiveness to TGF-β1277. TGF-β1 treatment (10ng/ml; 8h) resulted 

in an approximate 3-fold increase in Smad7 mRNA levels in BECs derived from the 

control fetuses  (Fig. 5-4A; P<0.01). However, there was no increase in Smad7 mRNA 

levels in response to TGF-β1 treatment in BECs derived from the DEX-group.  

Levels of Cdh2 and Nedd9 mRNA, TGF-β1 responsive genes, were also assessed 

in BECs248. Treatment with TGF-β1 (10ng/ml; 8h) upregulated Cdh2 (P<0.05) and Nedd9 

(P<0.001) mRNA levels in BECs derived from the control fetuses (Fig. 5-4B and 4C). 

Nedd9 mRNA levels were higher in BECs derived from the DEX-exposed fetuses 

compared to the controls but was not altered by TGF-β1 treatment.   

 

5.5 DISCUSSION 

We have shown that a single course of maternal sGC treatment appears to 

decreases responsiveness of fetal BECs to TGF-β1. P-gp and TJ function are increased in 

BECs derived from control fetuses but not those from DEX-exposed fetuses. This 

insensitivity to TGF-β1 was associated with failure to upregulate the TGF-β1 responsive 

genes, Smad7, Nedd9 and Cdh2 mRNA levels in BECs derived from DEX-exposed 

fetuses. Together, these results suggest that prenatal exposure to sGC modifies the effect 

of TGF-β1 on multidrug resistance at the developing BBB. The implications of these 
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findings for the developing fetal brain are profound and yet complex as P-gp effluxes 

drugs and toxins but also endogenous compounds, such as hormones and cytokines. 

A major finding in this study is the differential effect of TGF-β1 on P-gp function 

and Abcb1 mRNA levels in BECs derived from DEX-exposed and control fetuses. TGF-

β1 may not have had an effect on P-gp function and Abcb1 mRNA levels due to the 

upregulatory effect that sGC has on Abcb1/P-gp, which we have recently demonstrated 

(M Iqbal, S Baello, M Javam, M Audette, W Gibb & SG Matthews, manuscript 

submitted). Thus, our findings demonstrate that there is no synergistic effect of in vitro 

treatment of TGF-β1 and in vivo prenatal DEX on Abcb1/P-gp. Additionally, this 

decrease in the responsiveness of BECs to TGF-β1 is similar to that which we have 

previously shown in BECs derived from juvenile guinea pigs compared to those derived 

from GD50 fetuses. The effect of TGF-β1 on P-gp activity was considerably greater in 

BECs derived from GD50 fetuses compared to those derived on PND14276. Thus, 

prenatal DEX treatment appears to mature the fetal BBB by increasing levels of Abcb1 

mRNA and P-gp activity and decreasing responsiveness to TGF-β1.  

We also demonstrated that prenatal DEX treatment may mature the BBB by 

increasing the expression of genes that encode TJ proteins, occludin and ZO-1 in BECs, 

which was correlated with an increase in TJ function. Our results are consistent with 

previous studies which demonstrated that a single course of prenatal DEX increased 

occludin and ZO-1 protein levels in the cortex and cerebellum of fetal sheep 272,273. These 

effects may vary within brain regions as prenatal betamethasone treatment has been 

shown to decrease TJ function in the paraventricular nucleus of post-natal mice 278. 

However, it is difficult to compare these studies due to the utilization of different animal 
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models, prenatal sGC dosing regime and different sGCs. Future studies should investigate 

whether the effect of prenatal sGC treatment on P-gp in the brain is also region specific. 

We found that TGF-β1 intracellular signaling may be aberrant in BECs derived 

from DEX-exposed fetuses. Baseline levels of Smad7 mRNA in BECs were unchanged 

with prenatal DEX treatment. However, when BECs were exposed to TGF-β1 for 8h, 

those from DEX-exposed fetuses failed to upregulate Smad7 mRNA levels. This is 

indicative of a blunted response to TGF-β1 as Smad7 mRNA is expressed by most cell 

types and is upregulated in response to TGF-β1. This may be due to an interaction 

between glucocorticoid and TGF-β signaling pathways since recent investigations have 

shown that glucocorticoids regulate TGF-β-induced SMAD signaling pathways. High 

levels of cortisol inhibited the SMAD2/3 pathway in immortalized human fetal 

hippocampal progenitor cell line, which was mediated by glucocorticoid receptor 

(GR)279. DEX is a potent activator of GR and may be acting in a similar fashion in the 

present study, resulting in failure of BECs exposed to prenatal DEX to upregulate Smad7 

mRNA levels. 

In the present study, the expression of TGF-β1-associated receptors, Tgfbr2 and 

Alk1 mRNA was increased in BECs derived from DEX-exposed fetuses. This is 

somewhat counterintuitive given that TGF-β1 failed to upregulate Smad7 mRNA in 

BECs derived from DEX-exposed fetuses. However, it is tempting to speculate that these 

receptors may be upregulated in order to compensate for the blunted response to TGF-β1. 

It is well established that TGF-β1 is involved in the regulation of cell growth and 

proliferation. Further, there is evidence of blunted responsiveness to TGF-β in fibroids 

and cancer cells280-282. These cells also express increased levels of various TGF-β-
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associated receptors283-285.  Moreover, malignant cells generally express higher levels of 

ABCB1 mRNA and P-gp protein compared to normal tissue. Further studies are required 

to elucidate the intracellular mechanisms that cause the decrease in responsiveness to 

TGF-β1 in BECs following prenatal DEX expsure. 

Prenatal sGC exposure has been linked to peripheral microvascular dysfunction. 

Femoral microvessels from fetal sheep prenatally exposed to sGC showed increased 

sensitivity to vasoactive agents, such as nitric oxide, endothelin-1 and bradykin286. 

Another study in fetal sheep reported a single-course of DEX to decrease myosin light 

chain isoform expression and alter contractile dynamics in the carotid artery287. These 

studies hypothesize that prenatal exposure to sGC makes the fetus more susceptible to 

cardiovascular disease in adult life. Less is known about the impact of prenatal sGC 

exposure on cerebrovasculature and its long-term effect. Interestingly, TGF-β1 levels 

have been shown to be elevated in the cortex of rabbit pups that received a single course 

of betamethasone271. TGF-β1 is important in development of vasculature and surrounding 

extracellular matrix. Blunted responsiveness to TGF-β1 may explain some of the adverse 

effects of prenatal sGC on the developing vasculature. It was recently shown that rabbit 

pups exposed to a single-course of prenatal sGC exhibited decreased angiogenesis and 

enhanced pericyte coverage of the cerebrovasculature. An altered ratio of Alk1 to Alk5 

expression in endothelial cells has been shown to affect the migration and proliferation 

ability in these cells159. In accordance with this, we found that Alk1 mRNA expression 

was increased in BECs derived from DEX-exposed fetuses.  

An impairment of the TGF-β1 signaling pathway has also been implicated in 

Alzheimer’s Disease, particularly, to the early phase of the disease288. Several animal and 
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cellular investigations have indicated that β-amyloid elimination from the brain is 

partially mediated through active transport by P-gp at the level of the BBB289. Lowered 

P-gp function at the BBB is observed in patients with neurodegenerative diseases, such as 

Alzheimer's disease and Parkinson's disease290-292. Analysis of P-gp expression and β-

amyloid deposition in the cerebral vessels of 243 non-demented, elderly adults found that 

vessels with low P-gp contained increased β-amyloid whereas there was no β-amyloid 

accumulation in vessels with high P-gp 293. Since prenatal sGC alters responsiveness to 

TGF-β1 and levels of Abcb1 mRNA and P-gp protein at the BBB, future studies should 

investigate whether sGC-exposed fetuses are more likely to suffer from 

neurodegenerative disease, such as Alzheimer’s disease, later in life. 

In conclusion, this study is the first to show that single-course of prenatal DEX 

treatment alters the effect of TGF-β1 on Abcb1 mRNA and P-gp activity at the 

developing BBB. TGF-β1 increased Abcb1 mRNA and P-gp function as well as TJ 

proteins in BECs derived from control fetuses. However, these effects did not occur in 

BECs derived from sGC-exposed fetuses. TGF-β1 associated receptors Alk1 and Tgfbr2 

mRNA expression were upregulated in BECs following prenatal sGC exposure, but TGF-

β1 treatment failed to upregulate Smad7 mRNA in these BECs. Insensitivity to TGF-β1 

may have implications on the developing cerebrovasculature as TGF-β1 is a prominent 

regulator of angiogenesis. This study has also identified novel mechanisms by which 

antenatal sGC exposure matures the fetal BBB. These alterations may lead to substantial 

changes in fetal brain exposure to P-gp substrates, triggering profound consequences with 

respect to brain development and subsequent life-long brain function.  
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Figure 5-1. TGF-β1 increases P-gp activity in BECs derived from VEH but not DEX 
fetuses. P-gp activity in BECs derived from fetuses prenatally exposed to either saline 
(VEH; A) or dexamethasone (DEX; B) following TGF-β1 treatment for 8 hours (N=6-
8/gp). P-gp activity is displayed as percent change from untreated control cells (zero 
line). (C) Levels of Abcb1 mRNA in BECs derived from VEH- and DEX-exposed fetuses 
after treatment with TGF-β1 (10ng/ml; 8h; N=6-8). Open bars represent non-TGF treated 
BECs and solid bars represent TGF-β1 treated BECs. Abcb1 mRNA expression shown 
relative to β-Actin. Values displayed as mean ± S.E.M. A significant effect of TGF-β1 
treatment is indicated by (**) P<0.01; (***) P<0.001. A significant difference between 
non-TGF treated VEH- and DEX BECs represented by (#) P<0.05.  
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Figure 5-2. TGF-β1 increases tight junction function and expression in BECs from 
VEH but not DEX exposed fetuses. (A) Tight junction function in BECs derived from 
VEH and DEX-exposed fetuses with and without TGF-β1 stimulation (10 ng/ml; 8h; 
N=6-8). Expression of genes that encode tight junction proteins B) occludin (Ocln) and 
C) ZO-1 (Tjp1) in BECs derived from VEH and DEX-exposed fetuses in the presence or 
absence of TGF-β1 treatment (10 ng/ml; 8h; N=6-8). Values displayed as mean ± S.E.M. 
Open bars represent non-TGF treated BECs and solid bars represent TGF-β1 treated 
BECs. Expression was normalized to β-actin. A significant effect of TGF-β1 treatment is 
indicated by (***) P<0.001. A significant difference between non-TGF treated VEH- and 
DEX BECs represented by (#) P<0.001. 
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Figure 5-3. Prenatal sGC exposure increases Alk1 and Tgfbr2 mRNA in BECs. 
Effect of prenatal DEX exposure on mRNA levels for TGF-β1 associated receptors in 
BECs. Levels of (A) TGFB receptor type 2 (Tgfr2), (B) Alk1, (C) Endoglin, (D) 
Betaglycan, and (E) alk5 mRNA in BECs derived from VEH and DEX-exposed fetuses 
(N=6-8). Expression was normalized to β-actin (n=6-8 per treatment group). All values 
are displayed as mean ± S.E.M. A significant difference from VEH indicated by (**) 
P<0.01.  
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Figure 5-4. BECs from DEX-exposed fetuses display decreased cellular 
responsiveness to TGF-β1. Levels of (A) Smad7, (B) Cdh2 and (C) Nedd9 mRNA in 
BECs derived from VEH and DEX-exposed fetuses in the presence or absence of TGF-
β1 treatment (10 ng/ml) for 8h (N=6-8). Open bars represent non-TGF treated BECs and 
solid bars represent TGF-β1 treated BECs. Expression was normalized to β-actin. Values 
displayed as mean ± S.E.M. A effect of TGF-β1 treatment is indicated by (*) P<0.05; 
(**) P<0.01; (***) P<0.001. A significant difference between non-TGF treated VEH- and 
DEX BECs represented by (#) P<0.05. 
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CHAPTER 6:  
Astrocyte-Derived Factors Differentially 
Regulate Multidrug Resistance at the 
Developing Blood-Brain Barrier: Age-
Dependent Effects 
 

 

 

 

 

6.1 PUBLICATIONS (arising from studies presented in 
Chapter 6) 

Stephanie Baello, Majid Iqbal, William Gibb and Stephen Matthews (2015). 

Astrocyte-Derived Factors Differentially Regulate Multidrug Resistance at the 

Developing Blood-Brain Barrier: Age-Dependent Effects. The FASEB Journal 

(manuscript submitted). 
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6.2 INTRODUCTION 

In this study, we investigated the effect of astrocytes on P-gp function and 

expression at the developing BBB.  As described in Chapter 3, we have developed an in 

vitro BBB model comprised of BECs and astrocytes derived from fetal and post-natal 

guinea pigs. We utilized this model to investigate and characterize astrocyte-derived 

factors responsible for upregulating P-gp at the developing BBB. We hypothesized that 

astrocytes would enhance P-gp function and expression in BECs, but that the magnitude 

of this effect would vary with developmental age. 

 

6.3 METHODS 

6.3.1 Animals 

Twelve week-old female Dunkin-Hartley-strain guinea pigs were purchased from 

Charles River Canada Inc. (St. Constant, Quebec, Canada) and were bred as described 

previously 243. Two-week old male Dunkin-Hartley-strain guinea pigs were also 

purchased from Charles River Canada Inc. Animal protocols used in the following studies 

were approved by the Animal Care Committee at the University of Toronto and in 

accordance with the Canadian Council on Animal Care. 

 

6.3.2 Isolation and culture of guinea pig primary brain endothelial cells 

Isolation of BECs from GD50 and PND14 guinea pigs was carried out as 

described in Chapter 392. These time-points in development were chosen as our group has 

found that P-gp expression is low at GD50 and high at PND14 at the BBB92. BECs were 
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frozen in liquid nitrogen. BECs isolated and cultured in this way have been previously 

characterized 92. 

 

6.3.3 Isolation and culture of guinea pig primary astrocytes 

 Astrocytes were extracted from GD50 and PND14 guinea pigs using a protocol as 

described in Chapter 3 236. Astrocytes were frozen in liquid nitrogen until use. 

 

6.3.4 Guinea pig co-culture and measurement of tight junction function 

 BECs and astrocytes were plated on 75 mm2 tissue culture flasks (BD 

Biosciences) and grown at 37°C in 5% CO2/air. To establish co-cultures using GD50 and 

PND14 BECs and astrocytes, astrocytes were plated in the basolateral compartment of 

Transwell plate (Corning, Corning, New York, USA) at a seeding density of 1 × 104 

cells/cm2 and BECs were plated on the Transwell insert containing 0.45 µm pores 

(Corning) at a seeding density of 1 × 104 cells/cm2. TEER measurements were 

undertaken every 24h using Millipore Millicell ERS probe MERSSTX01 and ERS-2 

Epithelial volt-ohm meter (Millipore, Billerica, Massachusetts, USA). Cells were washed 

twice with tyrode solution (Sigma). Chopstick electrodes were inserted in the donor and 

receiver chambers. Final resistance was calculated by subtracting the resistance of blank 

filters. Cell number between treatments was constant as measured by a hemocytometer.  

TJ function was also assessed using a permeability assay with FITC-dextran (70 

kDa; Sigma). Cells were washed twice with HBSS (Invitrogen). FITC-dextran was added 
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to the apical compartment (1 mg/ml) and after 1h at 37°C, FITC-dextran concentration 

was assessed in the basolateral compartment (Ex/Em: 485/530 nm). 

 

6.3.5 P-gp functional assay 

 P-gp activity was measured using calcein-AM as described in Chapter 492,276. 

BECs were washed twice with Tyrode solution (Sigma) incubated at 37°C. BECs plated 

on inserts were transferred to new 24-well tissue culture plates (BD Biosciences) and 

washed. Subsequently, BECs were incubated with calcein-AM (10-6 M calcein-AM; 

Sigma) for 1h at 37°C in 5% CO2/air. After incubation, BECs were placed on ice, washed 

twice with tyrode solution (Sigma), and lysed with ice-cold 1% Triton X-100 (Sigma) 

lysis buffer. Intracellular calcein was measured using a spectrophotometer (Ex/Em: 

485/510 nm). 

 

6.3.6 Quantification of mRNA expression 

 BECs were mono-cultured or co-cultured on 24-well Transwell inserts as 

described above (Corning). On Day 3 of co-culture, BECs were trypsinized (0.05% 

trypsin-EDTA (Invitrogen)) and centrifuged (1000 g, 5 min). Total RNA was extracted, 

reverse transcribed to cDNA and levels of specified transcripts were measured via real-

time PCR as described in Chapter 3. Relative mRNA expression was calculated as gene 

of interest expression normalized [ΔΔc(t)] to reference gene expression, β-actin, and 

expressed as fold-change from control. Expression levels of β-actin did not change with 

age or co-culturing conditions. 
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6.3.7 Collection of astrocyte-conditioned medium 

 Astrocytes from GD50 and PND14 guinea pigs were plated on 150 mm2 petri 

dishes at a seeding density of 1 × 104 cells/cm2. Once confluent, astrocytes were washed 

twice with HBSS (Invitrogen) and media was changed to phenol-red free Neurobasal A 

medium (Invitrogen). After 24h, astrocyte conditioned medium (ACM) was collected, 

centrifuged at 1000 g for 10 minutes and passed through a 0.22 µM filter. ACM was 

frozen at -80°C until use.  

 

6.3.8 Heat-inactivation, protease treatment and crude exosome-
depletion of astrocyte-conditioned medium 

 ACM was subjected to heat-inactivation at 100°C for 4h. For protease treatment, 

ACM was incubated with trypsin (200 µg/ml; Sigma) at 37°C for 1h and subsequently 

incubated with trypsin inhibitor (400 µg/ml; Sigma) at 37°C for 30 minutes. As a control, 

trypsin and trypsin inhibitor were mixed and incubated at 37°C for 1h and 30 minutes and 

then added to ACM. Crude exosome-depletion was carried out by centrifuging ACM at 

100000 g for 6h and the supernatant collected. 

 

6.3.9 Fractionation of astrocyte-conditioned medium 

 To obtain fractions of ACM containing soluble factors of varying molecular 

weights, ACM was fractionated using Centrifugal Filter Devices with different MWCO 

(Molecular Weight Cut-Offs) Ultracel membranes (Millipore). First, 15 mL of ACM was 
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loaded onto Centrifugal Filter Device with Ultracel membranes with a 100 kDa cut-off 

and centrifuged at 2700 x g for 35 min. The retentate was collected and resuspended in in 

the same volume of Neurobasal A medium (Invitrogen) as the loaded sample. The filtrate 

was collected and resuspended in in the same volume of Neurobasal A medium as the 

loaded sample and subsequently loaded onto a column with a 30 kDa membrane cut-off 

and centrifuged at 2700 x g for 35 min. The retentate and filtrate were again collected and 

resuspended in the same volume of medium as loaded sample. The filtrate was loaded 

onto a column with a 3 kDa membrane cut-off and centrifuged at 2700 x g for 35 min. 

BECs were then treated with these fractions of ACM containing proteins of varying 

molecular weights and P-gp function was assessed. 

 

6.3.10 In-solution digestion  
 ACM was sent to the SickKids Proteomics, Analytics, Robotics & Chemical 

Biology Centre (SPARC BioCentre) for in-solution digestion. The SPARC BioCentre 

protocol for in-solution digestion is described. Proteins in ACM were denatured, reduced 

and alkylated prior to digestion and LC-MS/MS. Briefly, protein (10 mg) was incubated 

with urea (8M, Sigma), 50mM Tris-HCl (Sigma; pH 8), and 4mM DTT (Sigma) at 60°C 

for 30 minutes and then incubated with  iodoacetamide (100mM; Sigma, 22C, 15 mins). 

The samples were subsequently diluted five times with 0.1 M Tris–HCl pH 8.3 (Sigma) 

and digested using trypsin (1:50 w/w; Sigma; 37°C, 16 h). Samples were desalted using 

Pierce C18 Spin Tips (Thermo Fisher Scientific) as per manufacturer’s protocol. 
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6.3.11 LC-MS/MS analysis 

 ACM was sent to the SickKids SPARC BioCentre for LC-MS/MS. Tryptic 

digests were analyzed on an Orbitrap analyzer (Q-Exactive, Thermo Fisher Scientific) 

outfitted with a nanospray source and EASY-nLC nano-LC system (Thermo Fisher 

Scientific).  Lyophilized peptide mixtures were dissolved in 0.1% formic acid and loaded 

onto a 75µm x 50cm PepMax RSLC EASY-Spray column filled with 2µM C18 beads 

(Thermo Fisher Scientific) at a pressure of 800 Bar. Peptides were eluted over 60 min at a 

rate of 250nl/min using a 0 to 35% acetonitrile gradient in 0.1% formic acid. Peptides 

were introduced by nano-electrospray into the Q-Exactive mass spectrometer (Thermo 

Fisher Scientific).  The instrument method consisted of one MS full scan (400–1500 m/z) 

in the Orbitrap mass analyzer with an automatic gain control (AGC) target of 1e6, 

maximum ion injection time of 120 ms and a resolution of 70,000 followed by 10 data-

dependent MS/MS scans with a resolution of 17,500, an AGC target of 1e6, maximum 

ion time of 120 ms, and one microscan. The intensity threshold to trigger a MS/MS scan 

was set to 1.7e4.  Fragmentation occurred in the HCD trap with normalized collision 

energy set to 27. The dynamic exclusion was applied using a setting of 10 seconds.  

 

6.3.12 Protein Identification 

 Raw data generated by LC-MS/MS (peaklists generated by Xcalibur 2.2) were 

analyzed using Xcalibur (Thermo Fisher Scientific) for ion current analysis, and were 

searched against the guinea pig SwissProt UniProt protein-database (containing 20392 

entries) at the SickKids SPARC BioCentre. Database searching was undertaken using 
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SEQUEST version 1.4.0.288 (through Proteome Discoverer, Thermo Fisher 

Scientific).  The data was then imported into Scaffold 4.3.4 (Proteome Software, 

Portland, OR, USA) and X!Tandem CYCLONE (2010.12.01.1) database searching was 

performed.  These databases were searched with a parent ion tolerance of 10.0 PPM, and 

a fragment mass tolerance of 0.6Da.  Peptide identifications were accepted if they could 

be established at greater than 95% probability by the Scaffold Local FDR algorithm. 

Protein identifications were accepted if they could be established at greater than 95% 

probability and contained at least 3 identified peptides.  Protein probabilities were 

assigned by the Protein Prophet algorithm 294.  

 

6.3.13 Protein Quantification 

 Proteins were quantified based on the average MS signal response for the three 

most intense tryptic peptides for each protein and expressed as percentage of total 

protein. Briefly, the MS files were searched as listed above and the SEQUEST result files 

were used to generate a spectral library in Skyline 2.1.0.4936 295 using the guinea pig 

sequences from SwissProt as background proteome. Employing the same parameters as 

for the SEQUEST search, the three most abundant peptides for each protein were 

manually chosen from all peptides available in the spectral library. After data import, the 

chromatographic traces (extracted ion chromatograms) were manually inspected and 

adjusted where needed to correct wrongfully assigned peaks. Proteins identified with less 

than two peptides were not included in the quantification. The relative abundance of 

proteins quantified in three samples was calculated as the average MS intensity for the 

two peptides for each protein divided by the sum of the average signal for all quantified 
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proteins in the sample. Relative abundance of protein displayed as fold change from 

protein levels found in GD50 ACM. 

 

6.3.14 Statistics 

 Statistical analyses were performed using Prism (GraphPad Software, Inc., San 

Diego, CA). Effect of co-culture or ACM on TJ function and Abcb1/P-gp was analyzed 

using Student’s Unpaired T-test. Effect of heat-inactivated and exosome-depleted ACM 

was also analyzed via Student’s Unpaired T-test. Effect of age-match and different-aged 

co-culture, protease-treated ACM and fractionation of ACM data were analyzed using 

one-way ANOVA, followed by Newman-Keuls post hoc analyses. Significance was set at 

P<0.05. Each treatment group consisted of 6-8 animals.  

 LC-MS/MS data were analyzed using MSstats (3.1.4; Vitek Lab, Purdue 

University). Three biological replicates of ACM were collected at each gestational age. 

Proteomic differences between GD50 and PND14 ACM were evaluated for statistical 

significance (P<0.05) by Student Unpaired T-Tests, and corrected for multiple testing 

using the Benjamini–Hochberg correction. 

 

6.4 RESULTS 

6.4.1 Effect of astrocytes on tight junction function in BECs 

Co-culture of age-matched cells increased TEER in GD50 (P<0.01) and PND14 

(P<0.05) BECs compared to mono-cultured cells after 48h and 72h (Fig. 6-1A, B). After 
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72h in culture, co-cultured PND14 BECs attained a TEER of approximately 452 Ω�cm2 

while co-cultured GD50 BECs displayed a TEER of 109 Ω�cm2 (Fig. 6-1A, B). These 

results were corroborated with FITC-dextran permeability assay. Co-cultured GD50 and 

PND14 BECs also demonstrated decreased permeability to FITC-dextran after 72h in 

culture compared to mono-cultured BECs, approximately 60% and 30% respectively 

(P<0.05, P<0.001) (Fig. 6-1C, D).  

 

6.4.2 Effect of astrocytes on P-gp activity and levels of Abcb1 mRNA in 
BECs 

Since TJ function was maximal after 72h in culture, P-gp activity and levels of 

Abcb1 mRNA were measured in mono-cultured and co-cultured BECs at this time-point. 

P-gp activity in GD50 and PND14 BECs co-cultured with age-matched astrocytes 

increased by approximately 2-fold (P<0.01) and 7-fold (P<0.001) respectively, 

compared to mono-cultured BECs (Fig. 6-2A, B). This corresponded to a 3-fold increase 

in Abcb1 mRNA (P<0.05) in co-cultured PND14 BECs compared to mono-cultured 

PND14 BECs (Fig. 6-2D). However, there was no statistically significant change in 

Abcb1 mRNA levels in co-cultured GD50 BECs compared to mono-cultured GD50 BECs 

(Fig. 6-2C).  

 

6.4.3 Effect of age of astrocytes on P-gp activity and levels of Abcb1 
mRNA in BECs 

  Co-culture induced more dramatic changes in P-gp activity and levels of Abcb1 

mRNA in PND14 cultures compared to GD50 cultures. Therefore GD50 BECs were co-
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cultured with PND14 astrocytes and vice versa. Co-culturing GD50 BECs with PND14 

astrocytes induced a greater increase in P-gp function compared to co-culturing with 

GD50 astrocytes (P<0.01; Fig. 6-3A). However, despite the enhancement in P-gp activity 

in GD50 BECs after co-culturing with PND14 astrocytes, there was no statistically 

significant increase in levels of Abcb1 mRNA compared to GD50 BECs that were mono-

cultured or co-cultured with GD50 astrocytes (Fig. 6-3C). Moreover, co-culturing PND14 

BECs with GD50 astrocytes did not increase in P-gp function or levels of Abcb1 mRNA 

in PND14 BECs (Fig. 6-3B, D).  

 

6.4.4 Effect of astrocyte-secreted factors on P-gp function in BECs 

 To determine if the effects of co-culture on P-gp function were due to soluble 

astrocyte-derived factors, we exposed PND14 BECs to ACM from PND14 astrocytes. P-

gp activity was increased in PND14 BECs after 24h of exposure compared to control 

BECs exposed to unconditioned medium (UNM) (P<0.05; Fig 6-4A). Surprisingly, the 

effects of ACM on P-gp activity were not observed at the 48h or 72h time-points (Fig. 6-

4B, C). However, when ACM was changed every 24h, the effects were rescued at the 48h 

and 72h time-points (P<0.001, P<0.001; Fig. 6-4D, E). 

 To investigate whether the astrocyte-secreted factors responsible for increasing P-

gp activity were proteins, ACM was subjected to heat-inactivation and trypsin (protease) 

treatment. Heat-inactivated ACM did not increase P-gp activity in PND14 BECs after 

24h of exposure compared to BECs exposed to UNM (Fig. 6-5A). Treatment of ACM 

with trypsin also prevented the increase in P-gp activity and the stimulatory-effect was 
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restored by inhibiting the protease (P<0.001; Fig. 6-5B). We also determined the 

potential role of exosome-mediated communication between astrocytes and BECs (Fig. 6-

5C). Exosome-depletion of ACM did not affect its stimulatory affect on P-gp activity 

(P<0.001) indicating that exosome protein cargo is not responsible for the stimulatory 

effect.  

 

6.4.5 Effect of ACM fractions on P-gp function in BECs 

 To determine the approximate size of the protein(s) responsible for upregulating 

P-gp function in BECs, ACM was fractionated using successive filtration (molecular 

weight ranges: < 3kDa, 3-30 kDa, 30-100 kDa, >100 kDa). P-gp activity was increased in 

PND14 BECs that were exposed to ACM containing 3-30 kDa and 30-100 kDa proteins, 

by approximately 4-fold (P<0.001, P<0.001; Fig. 6-6) but was not significantly altered 

by ACM containing <3kDa or >100 kDa protein fractions. 

 

6.4.6 Differential expression of proteins in GD50 and PND14 ACM 

Using LC-MS/MS, 467 proteins were identified in conditioned medium from 

GD50 and PND14 astrocytes. Of these proteins, 85 were found to be differentially 

secreted by PND14 and GD50 astrocytes, all of which were elevated in PND14 ACM 

compared to GD50 ACM (P<0.05; Table 6-1). The five principal proteins were Y-box 

binding protein-1 (YB-1), high-density lipoprotein binding protein, melanoma 

differentiation-associated gene 20, SERPINE1 MRNA Binding Protein 1 and Actin, 

Beta-Like 2. 
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We further analyzed the differentially secreted proteins using GO Term Finder 

based on cellular component (Fig. 6-7A). Of these 85 proteins, 59 were identified as 

being extracellularly located and 54 were associated with extracellular exosomes. GO 

analysis also associated 74 proteins with cytoplasmic localization, with some proteins 

related to cytoskeletal and cell-junction related proteins. Proteins were also analyzed 

based on GO function (Fig. 6-7B). Most proteins (~92%) were classified as ligand 

proteins, capable of binding to other molecules, such as small molecules (i.e. 

monosaccharaides), organic cyclic compounds, actin, nucleic acids, and macromolecules.  

 

6.5 DISCUSSION 

This is the first study to establish a co-culture model using BECs and astrocytes 

from two distinct developmental ages. Using this co-culture model, we demonstrated that 

astrocytes enhance TJ and P-gp function in BECs. However, post-natal astrocytes can 

upregulate P-gp function in fetal BECs, while fetal astrocytes had no significant effect on 

P-gp activity in post-natal BECs. Thus, the BBB-inducing properties of astrocytes are 

dependent on developmental stage at which astrocytes were derived. We also found that 

ACM could mimic these effects on P-gp function, suggesting a mechanism that involves 

soluble astrocyte-derived factors. Using heat-inactivation and protease treatment, we 

demonstrated that these astrocyte-derived factors are dependent upon proteins. 

Fractionation of ACM indicated that these factors are in the molecular weight range of 3-

100 kDa. Moreover, LC/MS-MS identified 85 proteins that were significantly 

upregulated in PND14 ACM compared to GD50 ACM. 
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 We have previously shown that isolated BECs retain their developmental 

characteristics. In the present study, we demonstrate that astrocytes also maintain 

properties appropriate to the age at which they were derived. Astrocytes derived at GD50 

and PND14 express astrocyte-markers appropriate for their developmental age. Nestin is 

expressed by GD50 astrocytes but not PND14 astrocytes. This is consistent with astrocyte 

development in vivo as nestin is expressed by immature, developing CNS cells 296,297. 

Nestin expression is downregulated and is transiently co-expressed with GFAP during 

astrocyte differentiation 298. Astrocytes derived at PND14 but not GD50 express AQP4. 

AQP4 is the major water channel expressed in brain perivascular astrocyte processes and 

its expression is upregulated in vivo as differentiating astrocytic endfeet make contact 

with the brain microvasculature 299. GFAP was expressed in both GD50 and PND14 

astrocytes. GFAP may be important in astrocyte-mediated upregulation of P-gp 

expression and function at the BBB since GFAP KO mice exhibit a structurally and 

functionally impaired BBB 300.   

 The majority of published studies that have investigated the effects of astrocytes 

on the BBB have utilized co-culture models composed of BECs and astrocytes from 

different ages, usually from adult tissues, or cells from different animal species. These 

studies demonstrated that astrocytes enhanced many BBB characteristics in co-cultured 

BECs compared to mono-cultured BECs 141,143,164. However, our study highlights the 

importance of the maturational status of astrocytes in the regulation of P-gp developing 

BBB. We utilized a novel co-culture model using BECs and astrocytes derived from the 

same animal at two precise time-points in development to show that post-natal and fetal 

astrocytes can enhance P-gp function in age-matched BECs. However, post-natal 
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astrocytes increased P-gp function in fetal BECs but fetal astrocytes had no effect on 

post-natal BECs. Other studies have shown that the maturational state of astrocytes also 

affects neuronal development. Astrocytes derived from newborn and adult rats were 

shown to differ in their capacity to sustain neurite outgrowth in retinal ganglion cells in 

co-culture 301,302. Thus, the maturational status of astrocytes appears to influence both 

neuronal and BBB development. 

 A novel finding of our study was that PND14 astrocytes exhibit different effects 

on P-gp function and levels of Abcb1 mRNA in GD50 and PND14 BECs. There was 

strong correlation between Abcb1 mRNA levels and P-gp function in PND14 co-cultures. 

However, in GD50 BECs, enhancement in P-gp activity in GD50 BECs as a result of co-

culturing with age-matched or different-aged astrocytes, did not correspond to 

statistically significant increases in Abcb1 mRNA levels. This indicates that there may be 

different mechanisms involved in upregulation of P-gp function in GD50 and PND14 

BECs. It is well-established that P-gp function can be enhanced without changes at the 

level of mRNA. This includes post-translational modifications to P-gp protein, such as 

glycosylation and phosphorylation, both of which lead to an increase in P-gp function 

16,21,23. P-gp function can also be increased by the recruitment of intracellular storage of 

P-gp in vesicles to the cell membrane 10. Additionally, the epigenetic status of the Abcb1 

promoter may vary between GD50 and PND14 BECs. The density of methylation in the 

Abcb1 promoter is negatively correlated with Abcb1 expression in cancer cells 303,304. Our 

lab has shown that global DNA methylation in brain microvessels significantly decreases 

from GD50 to PND14 (M. Iqbal, J. Pappas, S.G. Matthews; unpublished observations). 

However, it has yet to be determined if these global changes in methylation include 
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specific changes in promoter methylation of the Abcb1 gene. Early in gestation, increased 

methylation of the Abcb1 promoter may prevent binding of transcription factors, 

activated by astrocytes-derived molecules, from increasing Abcb1 mRNA levels in GD50 

BECs. Moreover, GD50 and PND14 BECs may respond differently to astrocyte-derived 

signals from PND14 astrocytes simply because they express different types or levels of 

receptors. 

 Utilizing ACM protease treatment and heat-inactivation, we demonstrated that the 

astrocyte-derived factor(s) is indeed a protein or dependent on a protein. We also showed 

that 3-30 kDa and 30-100 kDa PND14 ACM fractions can upregulate P-gp function in 

PND14 BECs. These data indicate that more than one factor is likely responsible for this 

effect. Moreover, of the 85 proteins that were found to be significantly upregulated in 

PND14 ACM compared to GD50 ACM, 63 proteins fall into these molecular weight 

ranges. This suggests that astrocytes may regulate P-gp function and Abcb1 mRNA levels 

via multiple signaling pathways, which are activated by various astrocyte-secreted 

proteins.  Consistent with this hypothesis, studies have implicated many astrocyte-derived 

factors in regulation of P-gp at the adult BBB. These pathways include sonic hedgehog 

(shh), Wnt/β-catenin canonical pathway, retinoic acid and transforming growth factor-β 

(TGF-β) superfamily 68,106,107,145,146,149,276. However, our studies do not conclusively rule 

out the role of lipid or fatty acid derivatives in regulating P-gp. For example, the stability 

of retinol, from which retinoic acid is derived, is dependent on proteins 305,306 and retinol-

binding protein was identified in conditioned media from GD50 and PND14 astrocytes. 

Moreover, GO analysis classified most of the significantly upregulated proteins in 

PND14 ACM (Table 6-1) as ligand proteins, capable of binding to small molecules, 
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nucleic acids, macromolecules and organic cyclic compounds.  Further studies are needed 

to elucidate the identity of the factor(s) involved in astrocyte-mediated upregulation in P-

gp function and expression at the fetal and post-natal BBB. 

 The most differentially expressed protein between GD50 and PND14 astrocytes 

was Y-box binding protein (YB-1), which was secreted approximately 18-fold more by 

PND14 astrocytes compared to GD50 astrocytes. YB-1 is a transcription factor that 

regulates genes such as Abcb1 307,308. However, recent studies indicate that many cell 

types release YB-1 into the extracellular space 309,310. Nanomolar concentrations were 

shown to stimulate proliferation and migration of rat mesangial cells and human kidney 

cells 309. This effect was mediated by YB-1 interaction with EGF-repeats of the Notch3 

receptor, consequently activating canonical Notch signaling 311,312. Currently, very little is 

known about how Notch signaling regulates P-gp function and expression. The only 

evidence of such regulation stems from cancer cells, in which Notch signaling is 

generally over-activated and is associated with increased P-gp function 313,314.  For 

example, knockdown of Notch1 receptor leads to decreased ABCB1 and ABCC1 mRNA 

in cultured intrahepatic cholangiocarcinoma cells 313. Moreover, overexpression of 

Notch1 resulted in an increase in ABCB1 mRNA in gastric human cancer cell lines 315. 

Future studies are needed to investigate the role of Notch signaling in regulating P-gp in 

normal tissues.   

 High-density lipoprotein binding protein (HDLBP) was also found to be increased 

by approximately 16-fold in PND14 ACM compared to GD50 ACM. HDLBP binds 

high-density lipoprotein (HDL), which transports cholesterol, phospholipids and 

triglycerides. A positive association between cellular cholesterol content and P-gp 
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function has been demonstrated in various cancer cell lines 316,317. However, the 

mechanism by which this occurs is unclear. HDLBP may mediate this effect as it is a 

secreted protein that can become anchored to the cell membrane through 

glycosylphosphatidylinositol-enriched domains 318. Binding of cholesterol to HDLBP via 

HDL may elicit various signaling pathways 319. Consistent with this hypothesis, brain 

cholesterol content is maximal in late gestation and post-natal life, which is coincident 

with the surge in P-gp at the BBB 320. Additionally, HDLBP can bind to RNA and 

prevent its degradation 319. PND14 astrocytes may secrete more HDLBP, resulting in the 

stabilization of Abcb1 mRNA in BECs. The link between cholesterol and P-gp warrants 

further investigation, especially in the context of the developing BBB. 

` We demonstrated that exosome-mediated communication may not be responsible 

for the astrocyte-mediated effect on P-gp function in co-culture. We attempted to remove 

exosomes from ACM by centrifuging ACM for 100000 g for 6h. However, a limitation of 

this technique is that smaller exosomes may not have been pelleted as efficiently as larger 

exosomes. Thus, future studies should use optimized exosome capturing techniques, such 

as nanoparticle tracking analysis, to rule out the role of exosomes in the communication 

between astrocytes and BECs. 

 We also found that ACM has short-term effects on P-gp function in BECs, as 

these effects disappear at 48h and 72h.  However, when ACM was replaced every 24h, 

the effect was rescued at 48h and 72h, indicating that BECs are responsive to these 

signals and that these soluble factors may be labile or metabolized. However, the in vivo 

induction of P-gp at the BBB by astrocytes is constant, as the release of many astrocyte-

secreted factors are dependent on neuronal activity 103. Recently, astrocytes have been 
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shown to be responsible for neurovascular coupling, a process by which blood flow is 

matched to neuronal activity 321. This coupling may regulate BBB properties through 

development. However, very little is known about how this process occurs in the 

developing brain or how it may affect BBB development.    

 It is clear that disruptions in astrocyte-neuron interaction contribute to the 

pathogenesis of neurodevelopmental disorders 193,322. However, this study highlights the 

importance of astrocyte-BBB interaction. Disruptions in astrocyte development may also 

dysregulate P-gp at the developing BBB, which may contribute to the CNS dysfunction 

in neurodevelopmental disorders. Moreover, many conditions have been shown to alter 

the timing of astrocyte maturation. Prenatal chronic hypoxia and inflammation can delay 

the maturation of astrocytes in the fetal brain – an effect that has been shown to persist 

later in life 323,324. Further investigation is needed to determine the effect of compromised 

astrocyte maturation on P-gp function at the developing BBB. 

 In conclusion, astrocytes are key regulators of P-gp expression and function at the 

developing BBB, but the magnitude of this effect is dependent on maturational state of 

astrocytes. Aberrations in astrocyte maturation may alter levels of astrocyte-derived 

factors and dysregulate P-gp at the BBB. It is common for women to take prescribed 

drugs during pregnancy, many of which are P-gp substrates. Altered levels of P-gp at the 

developing BBB may result in increased fetal brain exposure to drugs and xenobiotics. 

Understanding how events during fetal life compromise astrocyte maturation and 

consequently P-gp at the BBB will be critical in the development of future therapies to 

counteract these effects.  
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Table 6-1. List of proteins found to be upregulated in PND14 ACM compared to 

GD50 ACM (n=3/group). 

Accession Protein Molecular 

Weight 

(kDa)  

Fold 

Change 

B5ABI3 

H0V7G7 

H0UW86 

H0VZ48 

H0VI92 

H0VDC5 

H0WE19 

H0W4Y4 

H0UTU8 

H0UZV6 

H0VA39 

H0V1C6 

H0VAU1 

H0UU38 

H0W7U7 

H0V7E4 

H0VP81 

H0V318 

H0V795 

H0VP72 

H0UWQ4 

H0V0S9 

H0V880 

Y box binding protein 1  

High density lipoprotein binding protein 

Melanoma Differentiation-Associated Gene 20 

SERPINE1 MRNA Binding Protein 1 

Actin, Beta-Like 2 

Enolase 2 (Gamma, Neuronal) 

KH Domain Containing, RNA Binding, Signal Transduction Associated  

C-Myc-binding protein 

Tropomyosin 2  

Calsyntenin 2 

Fructose-bisphosphate aldolase 

Reticulocalbin 3 

MARCKS-Like1 

Profilin 

Heat Shock 27kDa Protein 1 

Galectin 

Von Hippel-Lindau Binding Protein 1 

Neuropilin 2 

Microtubule-associated protein 1B 

Tropomyosin alpha-4 chain 

Nestin 

radixin 

GTPase Activating Protein (SH3 Domain) Binding Protein 1 

36 

141 

18 

45 

42 

47 

48 

40 

33 

107 

39 

37 

20 

15 

23 

15 

23 

105 

271 

50 

177 

69 

52 

18.75 

16.92 

14.09 

8.51 

6.26 

6.17 

6.1 

5.79 

5.78 

5.5 

5.14 

5.04 

5.02 

4.75 

4.56 

4.49 

4.45 

4.18 

4.11 

4 

3.99 

3.96 

3.89 
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H0UT42 

H0W1R5 

H0VUB7 

H0VRJ3 

H0VUC2 

H0WBK0 

H0W469 

H0VTP6 

H0VGT2 

H0VHL2 

H0VBB2 

H0VVN0 

H0VN17 

H0VR64 

H0VKC2 

H0VDQ3 

H0VPA8 

H0W7J9 

H0V5Q1 

H0VSD7 

H0VP94 

H0UYE7 

H0V2K4 

H0VBD5 

H0UYD2 

H0VG97 

H0VL04 

Transketolase 

Small Nuclear Ribonucleoprotein 70kDa  

Calponin 

ATPase Inhibitory Factor 1 

Heat Shock 10kDa Protein 1 

14-3-3 protein beta/alpha 

Myosin, Light Chain 4 

Lipoma-Preferred Partner 

Ependymin Related 1 

Phosphoribosylaminoimidazole Carboxylase 

Dihydropyrimidinase-Like 3 

Actin-Related Protein 2 

Proteasome subunit alpha type 

Eukaryotic Translation Elongation Factor 1 Beta 2 

Thioredoxin Reductase 1 

Septin 11 

Septin 2 

Ribosomal Protein L30 

A kinase (PRKA) anchor protein 12 

Splicing Factor Proline/Glutamine-Rich 

Proteasome subunit alpha type 

Alanyl-TRNA Synthetase 

Peroxiredoxin 4 

Fascin actin-bundling protein 1 

PDZ And LIM Domain 7 (Enigma) 

14-3-3 protein gamma 

Protein disulfide-isomerase 

68 

52 

34 

12 

11 

28 

22 

66 

25 

47 

62 

45 

26 

25 

71 

49 

41 

13 

191 

76 

26 

107 

31 

55 

50 

28 

57 

3.86 

3.86 

3.85 

3.72 

3.7 

3.65 

3.46 

3.46 

3.46 

3.41 

3.37 

3.31 

3.21 

3.18 

3.16 

3.12 

3.04 

3 

2.98 

2.91 

2.88 

2.84 

2.83 

2.71 

2.69 

2.68 

2.67 
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H0VRR0 

H0UTV0 

H0UW91 

H0VH33 

H0VL82 

H0UUL6 

H0VLN5 

H0VIH6 

H0UZ34 

H0VLM3 

H0UVL7 

H0VQH8 

H0W6M2 

H0VLM1 

H0VHD0 

H0W8N8 

H0VBS1 

H0UZG7 

H0UTQ3 

H0VL30 

Q8CHK7 

H0V758 

H0VL18 

H0VSU2 

H0V2J1 

H0VBA9 

H0VCZ6 

PDZ and LIM domain 5 

Talin-1 

Proteasome subunit beta type 

Endoplasmic Reticulum Protein 29 

Triosephosphate isomerase 

Fibromodulin  

Dachsous Cadherin-Related 1 

Calcium Activated Nucleotidase 1 

Filamin A, alpha 

Binding Immunoglobulin Protein  

Serine/Threonine Kinase Receptor Associated Protein 

Phospholipase B domain containing 2 

Immunoglobulin Superfamily Containing Leucine-Rich Repeat 

Septin 7 

Collagen, Type I, Alpha 2 

Zyxin 

Protein disulfide-isomerase 

Tropomodulin-3 

Myosin, Heavy Chain 9, Non-Muscle 

Collagen Triple Helix Repeat Containing 1 

NAD(P)H dehydrogenase [quinone] 1 

Adenosine Deaminase 

SH3 domain-binding glutamic acid-rich-like protein 

Proteasome subunit beta type 

Lipopolysaccharide-Associated Protein 1 

Capping Protein (Actin Filament), Gelsolin-Like 

Guanine Nucleotide Binding Protein (G Protein), 

64 

270 

25 

29 

31 

43 

346 

45 

281 

72 

38 

65 

46 

51 

129 

61 

57 

40 

227 

26 

31 

41 

128 

29 

71 

38 

35 

2.61 

2.61 

2.6 

2.6 

2.6 

2.59 

2.55 

2.54 

2.53 

2.52 

2.5 

2.5 

2.49 

2.45 

2.44 

2.43 

2.4 

2.39 

2.37 

2.36 

2.34 

2.25 

2.24 

2.22 

2.2 

2.18 

2.17 
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H0W2A1 

H0VW15 

H0VSV5 

H0W6T7 

H0VAZ3 

H0VHL7 

H0VEJ5 

H0VCE7 
  

Nucleoside Diphosphate Kinase 

14-3-3 protein zeta/delta 

Proteasome subunit alpha type 

Microtubule-associated protein RP/EB family member 1 

Cartilage Acidic Protein 1 

Malate dehydrogenase 

Chaperonin Containing TCP1, Subunit 8 (Theta) 

UDP-glucose pyrophosphorylase 2 
 

17 

28 

30 

30 

71 

36 

60 

57 
 

2.16 

2.15 

2.08 

1.95 

1.9 

1.87 

1.83 

1.78 
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Figure 6-1. Astrocytes increase tight junction function in BECs. Tight junction 

function in monocultured (MONO) or co-cultured (CO) BECs derived from gestational 

day (GD) 50 and post-natal day (PND) 14 guinea pigs (n=6-8/group). Tight junction 

function was assessed using transendothelial electrical resistance (TEER) after 24h, 48h, 

and 72h in culture (A, B). Data from TEER experiments is displayed as mean ± SEM. 

After 72h in culture, FITC-dextran was also used to measure tight junction function (C, 

D). Data are expressed as % dextran accumulation from control (mono-cultured BECs). 

A significant difference from mono-cultured cells is indicated by (*) P < 0.05; (**) P < 

0.01; (***) P < 0.001. 

 

 



118 

 

Figure 6-2. Astrocytes increase P-gp activity and Abcb1 mRNA in BECs. P-gp activity 

(A, B) and levels of Abcb1 mRNA (C, D) in mono-cultured or co-cultured BECs derived 

at gestational day (GD) 50 and post-natal day (PND) 14 (n=6-8/group). P-gp activity is 

displayed as fold change from control (mono-cultured BECs). Abcb1 mRNA expression 

was normalized to β-Actin and shown as fold change from mono-cultured BECs. Data is 

displayed as mean ± SEM. A significant difference from mono-cultured cells is indicated 

by (*) P < 0.05; (**) P < 0.01; (***) P < 0.001. 
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Figure 6-3. Post-natal astrocytes increase P-gp function in fetal BECs while fetal 

astrocytes have no effect on post-natal BECs. P-gp activity (A, B) and levels of Abcb1 

mRNA (C, D) measured in gestational day (GD) 50 and post-natal day (PND) 14 BECs 

after mono-culture, co-culture with age-matched astrocytes or co-culture with different-

aged astrocytes (n=6-8/group). P-gp activity is displayed as fold change from control 

(mono-cultured BECs). Abcb1 mRNA expression was normalized to β-Actin and shown 

as fold change from mono-cultured BECs. Data is displayed as mean ± SEM. A 

significant difference from mono-cultured BECs is indicated by (*) P < 0.05; (***) P < 

0.001. A significant difference between two co-culture treatments is indicated by (#) P < 

0.01. 
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Figure 6-4. ACM increases P-gp activity in BECs. P-gp activity in post-natal day 

(PND) 14 BECs exposed to unconditioned (UCM) or astrocyte conditioned media (ACM) 

for 24h (A), 48h (B) and 72h (C). P-gp activity was also measured in PND14 BECs to 

UCM or ACM, with the media being changed every 24h (D, E). P-gp activity is displayed 

as fold change from control (mono-cultured BECs) (n=6-8/group). Data is displayed as 

mean ± SEM. A significant difference from control is indicated by (*) P < 0.05; (***) P 

< 0.001. 
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Figure 6-5. Astrocyte secreted factor is dependent on a protein(s) and is not 

mediated by exosomes. P-gp activity in post-natal day (PND) 14 brain endothelial cells 

(BECs) exposed to heat-inactivated (A), protease-treated (B), or exosome-depleted (C) 

astrocyte-conditioned medium (ACM). ACM was subjected to heat-inactivation at 100°C 

for 4h. For protease treatment, ACM was incubated with trypsin (200 µg/ml; Sigma) at 

37°C for 1h and subsequently incubated with trypsin inhibitor (400 µg/ml; Sigma) at 

37°C for 30 minutes. As a control, trypsin and trypsin inhibitor were mixed and incubated 

at 37°C for 1h and 30 minutes and then added to ACM. To eliminate exosomes, ACM 

was centrifuged at 100000 g for 6h and the supernatant collected. P-gp activity is 

displayed as fold change from control (BECs exposed to unconditioned medium [UCM]) 

(n=6-8/group). Data is displayed as mean ± SEM. A significant difference from control is 

indicated by (***) P < 0.001. 
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Figure 6-6.  Molecular weight of astrocyte-secreted factor is between 30-100 kDa. P-

gp activity in post-natal day (PND) 14 BECs exposed astrocyte-conditioned medium 

(ACM) containing soluble factors of varying molecular weights. ACM was fractionated 

using Centrifugal Filter Devices with different MWCO (Molecular Weight Cut-Offs) 

Ultracel membranes. P-gp activity is displayed as fold change from control (mono-

cultured BECs) (n=6-8/group). Data is displayed as mean ± SEM. A significant 

difference from control is indicated by (***) P < 0.001. 
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Figure 6-7. Bioinformatic analysis of differentially secreted proteins. Proteins were 

clustered based on gene ontology (GO) cellular component (A) and GO Function (B) 

using GO Term Finder. GO terms with P < 0.01 are listed in the figure. 
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CHAPTER 7:  
GENERAL DISCUSSION 

 

 

 

 

 

7.1 Overview 

 The studies outlined in this thesis contribute significantly to our understanding of 

the role of astrocytes in the regulation of P-gp at the fetal and post-natal BBB. The first 

studies of this thesis focused on investigating the effect of TGF-β1, an astrocyte-derived 

factor, on P-gp function in monocultured BECs and how prenatal synthetic glucocorticoid 

exposure may attenuate this effect. The studies in the second-part of this thesis explored 

the differences in fetal and post-natal astrocytes in regulating P-gp at the BBB. I also 
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began to elucidate the identity of the astrocyte-derived factor(s) that could be responsible 

for this regulation.  

7.2 Astrocyte-Derived Factors and P-gp 

Data from this thesis has demonstrated that astrocytes have a profound effect on 

P-gp activity and levels of Abcb1 mRNA in BECs, and that this effect depends on 

maturational state of astrocytes. To our knowledge, this is the first report of the age-

specific effect of astrocytes on Abcb1/P-gp at the BBB, using a co-culture system 

comprised of cells from the same species at two specific time-points in development. The 

mechanism by which this occurs is at least partially dependent on a protein(s) secreted by 

astrocytes, as these effects are mimicked by ACM and prevented by protease treatment or 

heat-inactivation. Previous studies have attempted to identify BBB-inducing molecules 

secreted by astrocytes325-327. The majority of these studies have used mouse or rat 

astrocytes isolated from one time-point in development, specifically during post-natal life 

as astrocyte differentiation begins just before birth (~E18) in these species. In contrast to 

these studies, this was the first study to identify differentially secreted proteins by guinea 

pig astrocytes derived at two distinct time-points in development. By comparing ACM at 

two developmental time-points that elicit different effects on Abcb1/P-gp in BECs, I was 

able to identify 85 proteins in ACM from PND14 astrocytes that were at a higher 

concentration compared to the ACM of GD50 astrocytes. However, identification of the 

specific factor(s) or pathways implicated in upregulating Abcb1/P-gp at the BBB by 

astrocytes warrants further investigation.  

 Studies in this thesis have also demonstrated that BECs responsiveness to 

astrocyte-derived factors changes with developmental age. Co-culturing GD50 BECs 
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with PND14 astrocytes led to a higher increase in P-gp activity compared to co-culturing 

these cells with GD50 astrocytes. In contrast, co-culturing PND14 BECs with GD50 

astrocytes led to no significant increase in P-gp activity. Since astrocytes express 

increased levels of TGF-β1 as they mature, these data suggest that TGF-β1 could be one 

of the factors secreted by PND14 astrocytes. However, TGF-β1 was not identified in 

ACM from GD50 or PND14 guinea pigs via LC-MS/MS. This discrepancy may be due to 

the stability of TGF-β1 in ACM. In Chapter 4, I found that the effect of TGF-β1 on P-gp 

function in BECs was acute, maximal at 8h of exposure but disappeared by 24h. Since 

ACM was only collected at one time-point, it is possible that degradation of TGF-β1 had 

occurred before identification via LC-MS/MS. There is evidence suggesting the presence 

of TGF-β1 in ACM as TGF-β binding proteins were identified in ACM from PND14 

astrocytes. To resolve this discrepancy, ACM could have been collected at multiple-time 

points and proteins at these time-points identified by LC-MS/MS. However, due to 

resource contraints, this was not possible.    

Our findings regarding the effect of astrocyte-derived factors on P-gp at the 

developing BBB is clinically relevant as astrocytes are implicated in numerous 

neurodevelopmental and neurodegenerative disorders108,171.  In particular, recent evidence 

suggests that astrocytes contribute to neuronal dysfunction observed in Rett’s Syndrome 

and Fragile X Syndrome, which are monogenic neurodevelopmental disorders. Rett’s 

Syndrome is caused by a mutation in the gene encoding the methyl binding CpG protein 

(MeCP2), while Fragile X Syndrome is caused by a mutation in the gene encoding the 

fragile X mental retardation protein (FMRP)185,328. Co-culturing mutant mouse astrocytes, 

derived from mice that lack either of these proteins, with wild-type mouse neurons stunts 
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axonal and dendritic growth in these neurons compared to co-culturing with wild-type 

mouse astrocytes190,191,193,195. However, nothing is known about the effect of astrocyte 

dysfunction observed in these disorders on Abcb1/P-gp levels at the BBB. Based on the 

studies in this thesis, it is plausible that astrocyte dysfunction seen in these disorders, 

could dysregulate Abcb1/P-gp at the developing BBB. P-gp effluxes a wide variety of 

exogenous molecules, such a xenobiotics, drugs and pesticides. However, it also regulates 

the entry of endogenous molecules, including cytokines, chemokines and hormones, into 

the brain. Thus, future studies should investigate the contribution of altered Abcb1/P-gp 

at the developing BBB to the pathogenesis seen in neurodevelopmental disorders. 

  

7.3 Prenatal Synthetic Glucocorticoids  

 Prenatal synthetic glucocorticoids are commonly administered to pregnant women 

at risk of pre-term delivery (~10% of pregnancies). Previous studies in our lab have 

shown that prenatal sGC matures the BBB by increasing P-gp function and levels of 

Abcb1 mRNA in BECs (Fig. 7-1). The studies in this thesis further support this 

hypothesis. In Chapter 5, it was demonstrated that tight junction function and expression 

of genes that encode for tight junction proteins, ZO-1 and occludin, were upregulated in 

BECs derived from dexamethasone-exposed fetuses compared to vehicle-exposed 

fetuses. Moreover, these BECs show decreased responsiveness to astrocyte-derived 

factor, TGF-β1, which is similar to the response seen in BECs derived from GD65 and 

PND14 guinea pigs. Thus, exposure to prenatal sGC appears to mature the fetal BBB.  
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 Glucocorticoids are powerful transcriptional regulators that signal through two 

types of receptors, the mineralocorticoid receptor (MR) and the glucocorticoid receptor 

(GR). Astrocytes are highly responsive to glucocorticoids as they express high levels of 

MR and GR329. A number of glucocorticoid responsive genes, those that contain a 

glucocorticoid responsive element (GRE), have been identified in astrocytes, including 

glutamine synthetase and GFAP330,331. Since prenatal sGC seem to mature the BBB, it is 

temping to hypothesize that prenatal sGC can also speed up the maturation of astrocytes. 

Astrocytes are derived from neural precursor cells, which have the ability to differentiate 

into glial and neurons. Glucocorticoids have been shown to regulate the rate of 

proliferation and differentiation of these neural precursor cells, which is mediated by GR. 

Studies using human neural precursor cells demonstrated that dexamethasone inhibits 

neural differentiation in these cells and instead facilitates glial formation (GFAP positive 

cells)332. Thus, antenatal sGC may facilitate astrocyte maturation at an earlier time-point 

in gestation. This may contribute to the increase in Abcb1/P-gp in microvessels and in 

BECs derived from dexamethasone-exposed fetuses described in Chapter 5. The 

consequence of a premature upregulation in Abcb1/P-gp at the BBB on brain 

development is unclear. From a toxicology perspective, an increase in Abcb1/P-gp is 

beneficial to the developing brain as it would protect the brain from various drugs, 

pesticides and toxins present in the environment. P-gp also effluxes hormones, 

chemokines and cytokines, many of which have essential roles in normal brain 

development. Ultimately, our in vitro findings must be validated in vivo to determine the 

consequence of a premature enhancement in Abcb1/P-gp at BBB on brain development. 
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7.4 Limitations 

7.4.1 Co-culture Model 

 The studies described in this thesis were conducted using a novel monoculture 

and co-culture system comprised of BECs and astrocytes to model the fetal and post-natal 

guinea pig BBB. The strengths of these systems were highlighted throughout this thesis. 

However, as with any in vitro model of the BBB, there are limitations to this model. 

 We have demonstrated that astrocytes retain characteristics appropriate for the 

developmental stage at which they were derived. Fetal astrocytes express high levels 

nestin and lower levels of GFAP compared to post-natal astrocytes (Fig. 3-2). In contrast, 

post-natal astrocytes are characterized by increased expression of GFAP and high 

expression of AQP4. However, our co-culture model assumes that astrocytes are a 

homogenous population of cells.  Recent evidence suggests that astrocytes are a 

heterogeneous population of cells. There are at least 11 classes of astrocytes, 8 of which 

make contact with the BBB in vivo105. Astrocytes across brain regions as well as within 

the same brain region show major differences in gene expression333,334. This translates 

into functional differences in electrophysiological properties, calcium dynamics and gap 

junction coupling335-337. This heterogeneity has been shown to affect surrounding neurons 

in vitro. Cultured astrocytes from different brain regions varied in capacity to stimulate 

neurite growth and branching in co-cultured neurons338,339. However, very little known 

about the consequence of astrocyte heterogeneity on the BBB. There is some evidence for 

BBB heterogeneity across brain regions. Enzymatic assays in homogenates of different 

regions from adult rat brain showed that gamma-glutamyl transpeptidase (GGTP), a 

highly enriched BBB enzyme, activity varies considerably in different areas of rat 
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brain340. Future studies should investigate whether P-gp function and expression at the 

BBB demonstrates this heterogeneity and to what extent astrocytes influence this 

property. 

 This experimental model also lacks the influence of physical contact in regulating 

BBB characteristics. In vivo, astrocytes and BECs share a surrounding ECM, composed 

of fibronectin, agrin and various laminins173,341.  Astrocytes establish close interaction 

with the brain microvasculature through their endfeet which express high levels of 

anchoring transmembrane proteins, AQP4 and KIR4.1 and adaptor molecules, 

syntrophin, dystrphin and dystrobrevin167. Astrocytes are polarized cells as these proteins 

are highly expressed by astrocyte endfeet and to a lesser extent in astrocyte body342. 

Studies have shown that deletion of any of these proteins results in disrupted astrocyte 

polarity, as evidenced by redistribution of many of these proteins and subsequent tight 

junction dysfunction175,299,343. Moreover, co-culture studies utilizing adult rat BECs and 

astrocytes demonstrate the importance of this physical interaction, as BBB characteristics 

are upregulated in contact co-culture models compared to non-contact co-culture 

models165.  However, we have not been able to optimize a contact co-culture model due 

to limited adhesion of astrocytes to the basolateral side of a Transwell Insert.  

Another limiting factor to this experimental model is the absence of other CNS 

cell types. Endothelial cells of the BBB are influenced by a number of cell types. The 

focus of this thesis was the interaction between BECs and astrocytes because astrocyte 

maturation is temporally correlated with the upregulation in Abcb1/P-gp at the BBB92,270. 

Moreover, 99% of the abluminal surface of brain microvasculature is ensheathed my 

astrocyte-endfeet in the adult BBB. However, studies have shown that neurons and 
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pericytes also influence characteristics of the BBB, especially tight junction function and 

expression. Subsequently, a limitation of our co-culture model is that BECs do not attain 

the same tight junction function in vitro compared to in vivo measurements. of As stated 

in Chapter 6, co-cultured PND14 BECs attained a TEER of approximately 452 Ω�cm2 

while co-cultured GD50 BECs displayed a TEER of 109 Ω�cm2. In the developing rat 

brain, in vivo TEER measurements increase from E17 to PND7, from 310 Ω�cm2 to 1462 

Ω�cm285.  

 

7.4.2 Guinea Pig  

 The guinea pig is an excellent animal model to study CNS and BBB development 

as described in Chapter 3. However, genomic and proteomic databases for the guinea pig 

are not as well established compared to those available for mice and humans. Due to the 

lack of guinea pig protein and cDNA resources, the majority of the gene models are 

based on Genewise alignments of proteins from mammals. These gene models were 

assessed by generating sets of potential orthologs to genes from other mammalian 

species. As such, attaining antibodies specific to a protein of interest in the guinea pig is a 

challenge since most of the commercially available antibodies are designed and validated 

for human and mouse tissues. Currently, we have not been able to optimize these 

commercially available antibodies specific for P-gp in BECs derived from guinea pig.  
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7.4.3 Other Transporters at the BBB  

 P-gp is the one of the highest expressed efflux transporters at the BBB. However, 

P-gp has been shown to work in concert with other groups of ABC transporters expressed 

at the BBB. In particular, breast cancer resistance protein (BCRP) and the transporters 

belonging to the multidrug resistance protein (MRP) family have been shown to 

significantly contribute to brain protection.  

 BCRP is a “half-transporter” composed of 665 amino acids with a molecular 

weight of approximately 72-kDa. BCRP has one transmembrane region along with a 

single nucleotide binding-domain and there is evidence that homodimerization of BCRP 

is essential for function344. Like P-gp, BCRP is highly expressed by BECs on the luminal 

side and has a significant role in brain protection27,345. Studies indicate that BCRP and P-

gp work synergistically, as demonstrated by brain accumulation of Lapatinib in knockout 

mice346. Abcb1a/b knockout mice display 4-fold higher brain accumulation of Lapatinib 

compared to wild-type controls, while bcrp knockout mice display 3-fold higher 

compared to wild-type controls. However, double knockout of transporters results in 40-

fold increase in brain accumulation of Lapatinib compared to control mice. Later, it was 

found that this discrepancy was due to a compensatory mechanism, in which knockout of 

one transporter led to the upregulation of the other transporter347. Future studies should 

investigate whether changes in Abcb1/P-gp in co-cultured BECs also affects levels of 

BCRP in these cells.  

 BECs of the developing BBB also express MRPs, though the presence and 

distribution of these transporters seem to vary with species. MRPs represent a large 

subfamily of ABC-transporters, composed of 13 members encoded by ABCC1-13 
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respectively. MRPs transport small organic anions, some of which are also transported by 

P-gp and BCRP348. The expression and localization of MRPs at the BBB may be species 

specific. In capillary enriched fractions of bovine brain, it was found that mRNAs coding 

for MRP1, MRP4, MRP5, and MRP6 were highly expressed, as well as low levels of 

MRP3 mRNA, whereas MRP2 mRNA was absent349. However, studies using isolated 

capillaries from rat and pig brain, demonstrated immunohistochemical staining of P-gp 

and MRP2 on the luminal surface of the brain endothelium350. In human BECs, high 

expression levels of mRNAs coding for MRP1 and low expression levels of mRNAs 

coding for MRP2, MRP3, and MRP5 were found using microarray351. Thus, at least six 

MRPs are expressed at the BBB of different species. However, the exact subcellular 

localization and functional significance of most of these MRP transporters in BECs 

remains to be elucidated. Furthermore, there have been few studies undertaken to 

investigate the localization and expression of these transporters in the developing brain. 

 

7.4.4 Other Barriers in the Developing Brain 

 Many of these ABC-transporters are also expressed at the blood-cerebrospinal 

fluid (CSF) barrier and meningeal barriers (Fig. 7-2). The blood-CSF barrier is found at 

the level of the epithelial cells of the choroid plexus, while the meningeal barrier is 

located at the epithelial cells of the arachnoid membrane. Compared to the BBB, there 

have been few studies on the contribution of the blood-CSF and meningeal barriers to 

brain protection.  
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In the rat choroid plexus tissue, mRNA analysis and western blotting revealed a 

strong expression for MRP1, which is encoded by Abcc1352. Using functional and 

immunohistochemical analysis, MRP1 was found to be located on the basolateral side 

(brain-facing side) of epithelial cells of the choroid plexus353. In contrast, 

immunohistochemical and western blot analysis have demonstrated relatively low 

expression of P-gp at the choroid plexus compared to the BBB5. Its basolateral 

localization on epithelial cells of the choroid plexus suggests that it does not act in a 

similar fashion to P-gp at the BBB353. However, very little is known about the 

contribution of either MRP1 or P-gp at the choroid plexus to brain protection. 

Even less is known about ABC transporters at the meningeal barrier. To date, only 

one study has investigated the expression of ABC transporters at the arachnoid barrier. 

This recent study has identified expression of P-gp and BCRP in primary rat arachnoid 

barrier cells using immunohistochemical analysis354. Using fluorescent substrate assays, it 

was also demonstrated that these cells express functional levels of P-gp and BCRP. 

However, the functional significance of ABC transporters at the arachnoid barrier in vivo 

is unknown. The function and developmental expression of these ABC transporters at the 

choroid plexus and meningeal barriers should be investigated in future studies.   

 

7.5 Potential Mechanisms 

7.5.1 Astrocyte-Secreted Factors 

Evidence from literature suggests that the astrocyte-mediated effect on Abcb1/P-

gp is not caused by a single protein, but perhaps is dependent on a signaling pathway 
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activated by multiple proteins. Many signaling molecules are capable of enhancing 

Abcb1/P-gp, such as retinoic acid, TGF-β1, Wnts, and shh144,148,276,355. These molecules 

activate various signaling pathways such as mitogen-activated protein kinase 

(MAPK)/extracellular-signal-regulated kinases (ERK), SMAD, Wnt/β-catenin, and 

Hedgehog/Patched-Gli pathways356. In Chapter 6, I found that proteins upregulated in 

PND14 ACM were potentially capable of activating multiple signaling pathways and 

most of them were able to elicit more than one pathway. Furthermore, P-gp function was 

enhanced by ACM fractions containing 3-30 kDa and 30-100 kDa proteins. 

To add to this complexity, there is extensive crosstalk between these signaling 

pathways. During embryonic development, there is complex but delicate interactions 

between the TGF-β, Wnt, Hedgehog, Notch, MAPK, and other pathways crucial for stem 

cell maintenance, cell differentiation, body axis patterning, and organogenesis. In Chapter 

4, I highlight the importance of the TGF-β1 signaling pathway in the regulation of 

Abcb1/P-gp at the developing BBB. Typically, TGF-β1 binds to the TGF-β type II 

receptor, the ligand binding receptor and it will subsequently recruit a TGF-β type I 

receptor. In endothelial cells, there are two isoforms of the type I receptor, ALK1 and 

ALK5, which are responsible for signal transduction159. These type I receptors activate 

the canonical TGF-β signaling pathway involving SMADs. In Chapter 4, we demonstrate 

that both ALK5 and ALK1 essential in TGF-β1 increase in Abcb1/P-gp. However, using 

an inhibitor for SMAD3, we found that signaling through the SMAD3 pathway is not 

essential for this effect. Thus, non-canonical TGF-β signaling may be involved in 

regulating Abcb1/P-gp at the developing BBB.  
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One of the most extensively studied signaling crosstalk is between TGF-β and 

Wnt pathways, which occurs at multiple levels. First, TGF-β and Wnt reciprocally 

regulate the production and secretion of their ligands357. Additionally, activation of TGF-

β/Smad pathway leads to nuclear translocation of Wnt/β-catenin358. Perhaps these 

pathways all contribute to the astrocyte-mediated upregulation in Abcb1/P-gp in BECs. 

The redundancy in these pathways may be a defense mechanism, allowing one pathway 

to compensate for another in times of environmental stress.  

 

7.5.2 Pericytes and the BBB 

 Other cells of the CNS heavily influence BBB-characteristics in BECs. Neurons 

may have an indirect effect on BECs, perhaps by influencing pericytes and astrocytes, as 

there is very little innervation of the BBB by neurons359,360. In contrast, pericytes make 

extensive contact with the brain microvasculature, covering up to 30% of the abluminal 

surface132,361.  Pericytes are found adjacent to nascent blood vessels as they invade the 

brain parenchyma early in gestation120. Thus, pericytes are thought to be involved in the 

initial induction of BBB-characteristics in brain endothelium362-364. However, pericytes 

may indirectly influence the upregulation in Abcb1/P-gp at the developing BBB as 

studies demonstrate that pericytes can influence the function and morphology of 

astrocytes. Astrocytes that have been co-cultured with pericytes show enhanced polarity, 

as they display increased expression levels of ligand-receptors and ion channels localized 

to their endfeet365. This increase in polarity may affect astrocytes’ capability to influence 

Abcb1/P-gp at the BBB, since alterations in astrocyte polarity affect tight junction 
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function in BECs170,299,300,343. Thus, future studies should investigate the role of pericytes 

in regulating Abcb1/P-gp at the developing BBB. 

 

7.5.3 Epigenetics and miRNAs 

 Studies in cancer cell lines and malignant tissue have made it increasingly 

apparent that epigenetic mechanisms modulate transcriptional changes in Abcb1 mRNA. 

These studies show that methylation status of the Abcb1 gene inversely correlates with 

gene expression51,55,303. Moreover, histone acetylation has been correlated with increase 

Abcb1 mRNA expression48,55. However, currently it is unknown whether these epigenetic 

processes affect Abcb1 mRNA expression at the fetal or adult BBB. 

The upregulation in P-gp function and expression by astrocytes may be attributed 

to epigenetic changes at the level of the Abcb1 promoter. Preliminary evidence from our 

lab, in collaboration with Moshe Syzfe’s lab at McGill University, has shown significant 

changes in global methylation status in brain microvessels derived from GD50 and 

PND14 guinea pigs (Fig. 7-3). We found that global methylation is decreased by 7% in 

brain microvessels from GD50 to PND14. However, it is unclear if methylation of the 

Abcb1 promoter is specifically altered during these time-points. Decreased methylation in 

the promoter region of Abcb1 would allow for increased transcription factor binding and 

subsequent increase in Abcb1 mRNA expression. Moreover, signaling pathways 

implicated in BBB development such as TGF-β1 have been shown to elicit epigenetic 

modifications in various cell types. For example, TGF-β1 secreted by surrounding 

neurons, has been shown decrease methylation status of promoter regions of GFAP, S-
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100β and other genes important for astrocyte function in neural precursor cells366,367. This 

allows for the transcription of these genes and facilitates the differentiation of astrocytes 

from neural precursor cells. A similar interaction may occur between astrocytes and the 

developing BBB, whereby signals from astrocytes elicit demethylation of the Abcb1 

promoter in BECs, allowing increased transcription of Abcb1 and subsequently increased 

P-gp function.  

 The rise in Abcb1 expression in BECs elicited by astrocytes may also be mediated 

by miRs. miRs can increase or decrease expression of target mRNAs. A number of miRs 

have been shown to regulate Abcb1 expression. In Caco-2 cells, an intestinal epithelial 

cancer cell line, deletion of the miR-145 binding site within ABCB1 3'-UTR led to an 

increase in ABCB1 mRNA expression and P-gp function368. Overexpression of either 

miR-200c or miR-451 attenuated levels Abcb1 mRNA expression in colorectal cancer 

cells369,370.  Preliminary studies in our lab indicate that these miRs may regulate 

developmental levels of ABCB1 mRNA in human placenta (Fig. 7-4). In human placenta, 

levels of ABCB1 mRNA decreases from first trimester to third trimester91,371. We found 

that this is correlated with increase in expression of miR-145, miR-451 and miR-200c in 

third trimester placenta tissue compared to first trimester. Astrocytes may also regulate 

Abcb1/P-gp via miRs at the BBB. A recent study has demonstrated that ACM can affect 

levels of numerous miRs in human BECs372. However, the mechanism of action and 

specific mRNA targets of these miRs in BECs warrants further investigation. 

 



139 

 

7.6 Significance to Current Knowledge 

 The studies presented in this thesis have greatly advanced our understanding of 

the regulation of fetal brain protection via Abcb1/P-gp at the developing BBB. Levels of 

Abcb1/P-gp surge at the BBB in late gestation and post-natal life of the guinea pig. This 

is temporally correlated with astrocyte maturation, a process in which astrocyte endfeet 

begin to ensheathe the abluminal surface of developing brain microvessels. Utilizing a 

co-culture model of guinea pig BECs and astrocytes from two distinct time-points in 

gestation, the studies in this thesis demonstrate how astrocyte maturation may regulate 

Abcb1/P-gp at the developing BBB. Prior to the studies presented in this thesis, little was 

known regarding the astrocyte-mediated effect on the developing BBB. 

In particular, this thesis provides evidence that TGF-β1, an astrocyte-derived 

factor essential in neurogenesis and angiogenesis, is capable of enhancing Abcb1/P-gp at 

the fetal and post-natal BBB. Preceding this thesis, little was known regarding the effect 

of TGF-β1 on Abcb1/P-gp at the fetal or post-natal BBB. The first evidence indicating a 

possible link between multidrug resistance and TGF-β1 stemmed from studies with 

cancer cells, which generally display over activated TGF-β signaling and demonstrate 

high levels of P-gp activity207. Subsequently, Dohgu et al. (2004) demonstrated the 

stimulatory effect of TGF-β1 on P-gp and tight junction function at the adult rat BBB146. 

Data from this thesis also demonstrates that prenatal dexamethasone exposure may 

reduce BBB responsiveness to TGF-β1. This was the first study to show the effect of 

prenatal sGC exposure and altered cerebrovascular response to an essential factor 

involved in vascular development. Prior studies had shown a link between prenatal sGC 

and altered peripheral vasculature responsiveness to vasoactive agents, such as nitric 



140 

 

oxide, endothelin-1 and bradykin286. These factors are important in regulating blood 

pressure in peripheral vasculature and thus led to the hypothesis that prenatal sGC may 

lead to cardiovascular disease in adulthood. Much less is known about the effect of 

prenatal sGC on the cerebrovasculature. In sheep and mice, prenatal sGC exposure has 

been shown to decrease vascular density in various regions of the CNS. This may be 

attributed to decreased responsiveness to TGF-β1 as proper activation of the TGF-β1 

pathway is essential in vascular development. Moreover, TGF-β1 has been shown to 

work in concert with other vascular factors such as, vascular endothelial growth factor 

(VEGF) and plasminogen activator inhibitor-1 (PAI-1), to regulate angiogenesis in the 

brain and peripheral organs373,374. Moreover, very little is known regarding the effects of 

prenatal sGC on astrocyte development. Since our studies indicate the crucial role of 

astrocytes in regulating the developing BBB, future studies should investigate how 

prenatal sGC may alter astrocyte maturation and how this may affect astrocyte secretome. 

The majority of published studies investigating the effects of astrocytes on the 

BBB have utilized co-culture models composed of BECs and astrocytes from different 

ages, usually from adult, or cells from different animal species. Overall, these studies 

demonstrated that astrocytes enhanced many BBB characteristics in co-cultured BECs 

compared to moncultured BECs141,143,164. Our findings led to similar conclusions, but 

highlight the importance of the maturational state of astrocytes in the regulation of 

Abcb1/P-gp at the developing BBB, as astrocytes from fetal and post-natal age have 

different effects on Abcb1/P-gp in BECs. Moreover, this thesis is the first to demonstrate 

that the astrocyte secretome profile changes with maturational state. In accordance with 

the age-specific effects of astrocytes on P-gp function, we found that ACM from post-
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natal astrocytes contained increased levels of astrocyte-derived proteins. However, more 

work is needed to elucidate which factor(s) or pathway(s) may be important in this 

astrocyte-mediated upregulation in Abcb1/P-gp.  

 

7.7 Conclusions 
We now know that astrocytes are key regulators of Abcb1/P-gp at the developing 

BBB and likely contribute to the surge in P-gp in late gestation and post-natal life. The 

mechanism by which this may occur is through astrocyte-derived factors, which are 

secreted at different levels depending on the maturational state of astrocytes. In late 

gestation, the fetal brain is more dependent on P-gp levels at the BBB, as placental 

expression and function of P-gp decrease. It is common for women take prescription 

drugs during pregnancy, many of which are P-gp substrates and have teratogenic 

potential. The studies in this thesis indicate that aberrations in astrocyte function, 

associated with neurodevelopmental disorders such as Rett’s Syndrome and Fragile X 

Syndrome, may dysregulate P-gp at the BBB in late gestation, making the brain more 

susceptible to P-gp substrates. Thus, future studies should focus on understanding how 

compromised astrocyte maturation may dysregulate Abcb1/P-gp at the BBB, which may 

contribute to the pathogenesis of neurodevelopmental disorders. This new knowledge will 

be critical in the development of future therapies to counteract these effects.  
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7.8 Future Studies 

7.8.1 Identifying astrocyte-secreted factor 

 Our studies indicate that astrocytes induce Abcb1/P-gp in BECs via a soluble 

factor(s). The studies in this thesis have begun to characterize this factor(s). We have 

demonstrated that it is a factor(s) secreted at higher levels by PND14 astrocytes compared 

to GD50 astrocytes. The factor(s) is a protein or its stability relies on a protein with an 

approximate molecular size of 3-100 kDa. Bioinformatics pathway analysis of these 85 

significantly upregulated implicated signaling pathways such as Wnt and Notch. 

Pharmacological inhibition or small-interfering (si) RNA could be used to antagonize 

these pathways in BECs in co-culture. After treatment, P-gp function could be assessed 

using the calcein-AM assay. This study would determine which signaling pathways 

upregulate P-gp function in BECs that have been co-cultured with astrocytes. 

 Recent evidence suggests that astrocytes are a heterogenous population of cells, 

varying in morphology and function across brain regions. Since the studies in this thesis 

have highlighted in the importance of astrocytes on P-gp function and expression at the 

BBB, future studies should investigate whether levels Abcb1/P-gp in brain microvessels 

varies across brain regions and how this is regulated through development. To investigate 

this, brain microvessels could be collected from different regions of the brain, such as the 

cortex, cerebellum and brain stem, from GD40, GD50, GD65 and PND14 guinea pigs. 

Protein and RNA could be extracted from these microvessels in order to measure P-gp 

protein levels and Abcb1 mRNA via qRT-PCR. Additionally, P-gp function could be 

measured in vivo using radio-labeled substrates. This would entail injecting pregnant or 

PND14 guinea pigs with 50 µg/kg [3H]-digoxin (10 µCi/dam) 1h prior to euthanasia to 
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assess P-gp function. Digoxin is considered the ‘gold standard’ substrates to assess P-gp 

function. It is not readily metabolized and the recovery rate of intact [3H]digoxin in the 

mouse is 95% after 4 hours375. Fetal plasma, amniotic fluid and fetal brains can be 

collected and homogenized. To assess regional brain levels of P-gp function, brains can 

be separated into cortex, cerebellum and brain stem prior to homogenization. Tissue 

homogenate can then be counted using a beta-radiation scintillation counter, and 

normalized to fetal plasma or amniotic fluid93. By comparing accumulation of [3H]-

digoxin in different regions of the brain, we could determine if P-gp function varies 

across brain regions. 

 

7.8.2 Compromised astrocyte maturation  

The data from this thesis indicates that the extent of astrocyte maturation, 

determined by markers nestin, AQP4 and GFAP, affects the astrocyte-mediated effect on 

Abcb1/P-gp at the developing BBB. Thus, aberrations in astrocyte maturation may 

dysregulate P-gp at the developing BBB. Prenatal chronic inflammation and hypoxia 

have been demonstrated to cause changes in astrocyte markers in the fetal brain. Previous 

studies demonstrate that chronic hypoxia delays astrocyte maturation, as demonstrated by 

an increase in nestin expression and decreases in GFAP and GLAST (glutamate 

transporter) expression - resembling a more immature phenotype323. Similarly, nestin 

expression was increased in astrocytes of rats exposed to prolonged systemic 

inflammation in utero. Also, hypoxia-ischemia was shown to downregulate AQP4 

expression in cultured astrocytes from neonatal rats. However, very limited information 

currently exists about how prenatal chronic inflammation or hypoxia may regulate P-gp 
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at the developing BBB. This is clinically relevant as these conditions are common during 

pregnancy, such as obesity, smoking and diabetes. 

To investigate this, co-cultures could be exposed to lipopolysaccharide (LPS), 

which elicits inflammatory signaling pathways, or hypoxia via an oxygen controlled 

incubator. Once BECs reach confluence, co-cultures could be exposed to control media 

or media containing LPS (1-1000 µg/ml) for 24 h, 48 h or 72 h. Previous studies have 

shown that these doses of LPS do not have effect on BBB properties in BEC but cause 

astrogliosis and release of pro-inflammatory cytokines in primary cultures of 

astrocytes376,377. To model chronic hypoxia, co-cultures could be exposed to 0.1%, 0.5%, 

2% O2 and normoxic conditions for 24, 48 and 72 hours. Normal oxygen concentrations 

in the fetal brain range from 2-5% oxygen378. These conditions were chosen as exposing 

astrocytes to 0.5% O2 for 48 h was shown to decrease GFAP expression and increase 

nestin expression, which resembles an immature astrocyte phenotype323. Following each 

treatment, P-gp function in BECs can be assessed by measuring cellular accumulation of 

calcein-AM. RNA can also be collected to measure levels of Abcb1. Astrocyte phenotype 

can be analyzed before and after treatment using immunocytochemistry.  

In vivo, chronic inflammation could be modeled by injecting pregnant guinea pigs 

with LPS (Fig. 7-5). Pregnant guinea pigs at GD50 or 65 would be euthanized 24 h 

following multiple injections (1 dose/day for 5 days; chronic infection) of 100 ug/kg LPS 

or saline (VEH). This dosing regime was shown to increase pro-inflammatory cytokine 

levels in fetal guinea pig brain and resulted in fetal brain injury without significant 

alterations to fetal blood gases or mean arterial pressure.379-381. Chronic hypoxia could be 

simulated by performing maternal uterine artery ligation (Fig. 7-6). Unilateral ligation of 
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the maternal uterine artery could be done at GD30 and GD45. Briefly, pregnant guinea 

pigs would be anesthetized. The mesometrium of the right uterine horn would be exposed 

via a midline incision and the uterine artery would be ligated with silk sutures near the 

cervical end of the arterial cascade. This model was shown to induce white matter 

damage in fetal guinea pigs, with near-term insults resulted in less brain damage382,383. 

Fetuses could be delivered twenty days after hypoxic insult, at GD50 and GD65 by 

cesearan section. Subsequently, brain microvessels could be collected to measure P-gp at 

the mRNA level. At time points that yield significant changes in Abcb1 mRNA, P-gp 

function could be evaluated via fetal brain accumulation of P-gp substrate, [3H]digoxin as 

described in the section above. These studies will determine the effect of disturbed 

astrocyte maturation, specifically by prenatal chronic inflammation and hypoxia, on 

regulation of P-gp at the fetal BBB. 

 

7.8.3 Long-term effect  

Emerging evidence suggests that early insults during fetal life, such as chronic 

inflammation or chronic hypoxia, can downregulate P-gp function and expression at the 

BBB384,385. These effects have been correlated with an increased risk of 

neurodevelopmental disorders and neuropathology in adult life, such as schizophrenia 

and Alzheimer's disease386,387. The mechanism by which this occurs may be through 

disturbed astrocyte maturation, by chronic inflammation or hypoxia, in the developing 

fetal brain, as these effects can persist to adult life. Studies have shown that adult mice 

treated with E.coli as neonates have decreased astrocytes compared to controls388. Fetal 

guinea pigs that were exposed to in utero hypoxia also had decreased astrocyte density 
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compared to controls, an effect that occurred acutely during fetal development and that 

persisted into adulthood389. However, no study has considered whether these early insults 

that cause astrocyte loss or dysfunction in adulthood also affect P-gp function and 

expression at the BBB. 

To determine the long-term effect of prenatal chronic inflammation and hypoxia, 

levels of Abcb1 could be measured in brain microvessels derived from offspring at 

PND14, 4 months and 12 months of age following fetal insults (chronic inflammation or 

hypoxia; Fig. 7-7). The timing in pregnancy in which fetal insults would be undertaken 

would be based on time-points that yield significant changes on P-gp expression and 

function in short-term studies as outlined above.  We can also assess β-amyloid brain 

accumulation and astrocyte morphology using immunohistochemistry in brain slices. β-

amyloid is the main component of extracellular deposits found in the brains of patients 

with Alzheimer's disease and there is growing evidence that P-gp mediates the efflux of 

β-amyloid from the brain. If P-gp function is decreased as a result of these prenatal 

insults, we would expect there to be more β-amyloid accumulation compared to control 

animals. To investigate how these effects are propagated later in life, we would 

investigate transcription factor binding (via chromatin-immunoprecipitation-sequencing) 

and methylation status of Abcb1 promoter (via Na-bisulfite sequencing). These proposed 

studies would provide a mechanism by which fetal brain insults, by inflammation and 

hypoxia, may alter P-gp at the BBB and make the brain more susceptible to 

neurodegenerative disorders later in life. Understanding how events during fetal life 

compromise astrocyte maturation and consequently P-gp at the BBB will be critical in the 

development of future therapies to counteract these effects.  
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Figure 7-1.  Effect of prenatal dexamethasone on Abcb1/P-gp levels at the developing 

guinea pig blood-brain barrier. Characterization of Abcb1/P-gp at the blood-brain 

barrier Levels of Abcb1 mRNA expression in brain endothelial cells (A) and P-gp 

protein levels brain microvessels (B) in gestational day 50 guinea pigs prenatally exposed 

to either saline (VEH) or dexamethasone (DEX). Both Abcb1 mRNA and P-gp protein 

levels are elevated in BECs derived from DEX-exposed fetuses. A significant difference 

from VEH indicated by (*) P < 0.05. (Iqbal et al., manuscript in submission 2015) 
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Figure 7-2. Schematic of barrier interfaces in the developing brain. Note the barrier 

forming cellular layers at each interface are coloured purple. Adapted with permission 

from Ek et al., Neurotoxicology (2012).  
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Figure 7-3. Developmental levels of global DNA methylation in guinea pig brain 

microvessels. Global DNA methylation decreases with development in isolated brain 

microvessels. Luminometric methylation assay (LUMA), a method to assess global DNA 

methylation, was performed on brain microvessels derived from GD50 and 65, and 

PND14 male and female guinea pigs. Data is expressed as mean percent global 

methylation ± S.E.M. Significant differences from GD50 of the same sex indicated by 

(**) P<0.01; (***) P<0.001. (Iqbal et al., unpublished data) 
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Figure 7-4. Placental levels of miRNAs known to regulate Abcb1. Levels of miR-451 

(A), miR-145 (B) and miR-200c (C) are elevated in third trimester human placental 

explants compared to first trimester explants. (Imperio et al., unpublished data) 
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Figure 7-5. Paradigm for the experiments outlined to investigate effect of 

compromised astrocyte maturation, induced by inflammation, on Abcb1/P-gp at the 

BBB. Pregnant guinea pigs will either be treated with multiple doses of either VEH or 

LPS, prior to GD50 or 65. Pregnant guinea pigs will receive injections every day for 5 

days, prior to euthanasia. Mothers will be injected with [3H]-digoxin (P-gp substrate) 1h 

prior to euthanasia. Fetal microvessels will be collected to measure mRNA expression of 

various genes of interest. Fetal brains will be collected to measure accumulation of [3H]-

digoxin in order to assess changes in drug transporter function. 
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Figure 7-6. Paradigm for the experiments outlined to investigate the effect of 

compromised astrocyte maturation, induced by hypoxia, on Abcb1/P-gp at the BBB. 

Pregnant guinea pigs will undergo unilateral ligation of maternal uterine artery 20 days 

prior to GD50 or 65. Mothers will be injected with [3H]-digoxin (P-gp substrate) 1 h 

prior to euthanasia. Fetal microvessels will be collected to measure mRNA expression of 

various genes of interest. Fetal brains will be collected to measure accumulation of [3H]-

digoxin in order to assess changes in drug transporter function. 
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Figure 7-7. Paradigm for the experiments outlined to investigate long-term effect of 

dysregulated astrocyte maturation on Abcb1/P-gp at the BBB. Following prenatal insult 

described in short-term studies, microvessels will be collected at PND14. RNA will be 

extracted to assess changes in Abcb1 mRNA. If changes are seen, the latter will be 

repeated on offspring at 4 months and 12 months of age. β-amyloid will also be assessed 

as a measurement of P-gp activity and neurodegeneration. 
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