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Abstract
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University of Toronto

2012

This thesis presents network design and operations algorithms suitable for use in

an autonomic management system for communication networks with emphasis on

network robustness. We model a communication network as a weighted graph and

we use graph-theoretical metrics such as network criticality and algebraic connectivity

to quantify robustness. The management system under consideration is composed of

slow and fast control loops, where slow loops manage slow-changing issues of the

network and fast loops react to the events or demands that need quick response.

Both of control loops drive the process of network management towards the most

robust state.

We first examine the topology design of networks. We compare designs obtained

using different graph metrics. We consider well-known topology classes including

structured and complex networks, and we provide guidelines on the design and sim-

plification of network structures. We also compare robustness properties of several

data center topologies. Next, the Robust Survivable Routing (RSR) algorithm is pre-

sented to assign working and backup paths to online demands. RSR guarantees 100%
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single-link-failure recovery as a path-based survivable routing method. RSR quanti-

fies each path with a value that represents its sensitivity to incremental changes in

external traffic and topology by evaluating the variations in network criticality of the

network. The path with best robustness (path that causes minimum change in total

network criticality) is chosen as primary (secondary) path.

In the last part of this thesis, we consider the design of robust networks with

emphasis on minimizing vulnerability to single node and link failures. Our focus

in this part is to study the behavior of a communication network in the presence

of node/link failures, and to optimize the network to maximize performance in the

presence of failures. For this purpose, we propose new vulnerability metrics based on

the worst case or the expected value of network criticality or algebraic connectivity

when a single node/link failure happens. We show that these vulnerability metrics

are convex (or concave) functions of link weights and we propose convex optimiza-

tion problems to optimize each vulnerability metric. In particular, we convert the

optimization problems to SDP formulation which leads to a faster implementation

for large networks.
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Chapter 1

Introduction

Network management and design is a major challenge in communication networks.

While the initial design of a communication network is a complicated task where

the network should be designed optimally for multiple related objectives, network

management is an ongoing process that allocates network resources to various de-

mands and generates options to modify the initial design of network to adapt to new

requirements. While management and evolution of communication networks today

is done with human intervention, the rapid growth of communication networks ne-

cessitates the eventual autonomous management of these networks. To respond to

this need, our solution approach to network management in this thesis is based on

autonomics that try to realize a network as a self-managed entity. Self-management

of a communication network in the autonomics framework has different aspects of

self-configuring, self-healing, self-protecting, and self-optimizing.

The focus of this thesis is to support the design of an autonomic management sys-

tem through the development of algorithms using graph-theoretical concepts. For this

purpose, we model the network with a weighted graph and use several metrics such

as network criticality, algebraic connectivity, and vulnerability metrics to quantify

1
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the robustness of the network, and develop algorithms and optimizations to realize

a self-managed communication network. In the rest of this chapter we first describe

various issues in network management which lead to the need of autonomics. Next

we explain the autonomic management as a solution approach for these issues. We

then give an introduction to the application of graph theory concepts in the auto-

nomic management of a communication network, and explain the contributions of

this thesis.

1.1 Design and Management Issues

Recently carriers have attempted to consolidate all the network needs into a single IP-

based network called the Next Generation Network (NGN). An all-IP packet network

that handles voice, video and data is an accepted framework for future communication

networks for both mobile and fixed communication. On the other hand, large-scale

Next Generation Data Centers (NGDCs) are becoming important in providing ap-

plications over the Internet. The design and management of the next generation

networks for service providers as well as data centers provides interesting challenges

that we consider next.

1.1.1 Design Issues

The first problem we face in developing a network is the design of the physical topol-

ogy. Many constraints and objectives should be considered in the physical topology

design. The geographical restrictions and physical location of the nodes as well as

budget and traffic demands between different nodes are the first considerations in

physical network design. We also should design topologies that are robust to failures

and do not lose connectivity easily. For structured networks such as data center net-
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works scalability is the next issue that should be addressed. Network planning which

is the assignment of the appropriate capacity to each link is the next step after the

initial design of the network.

The evolution of the network topology is a continuous process that should be

handled in long term. As the clients and applications that utilize the network change

over time, the network should adapt to these changes to be able to handle the new

requirements and new traffic demands. The evolution of the network can be in the

form of dimensioning (changing capacity of links), adding a link or a group of links,

and deleting some links (simplification). The management system should monitor

all the elements of the network, and make decisions on how to modify the network

according to traffic demands during the time. Here we note that design issues in

general are long term in nature, and should be performed through control loops that

act slowly.

1.1.2 Management Issues

After initial topology design and network planning, there come several issues that

should be addressed by the network management in future communication networks.

In this part we briefly explain some of these issues and challenges.

-Application Trends and Changing Requirements As the Internet has emerged

as a general information network, various applications have appeared with dif-

ferent requirements. While some of the applications like email need reliable

delivery of data and timeliness is not important for them, some other applica-

tions like telemedicine have timeliness requirements for their data, and delay

more than a certain limit is not tolerable for them. The TCP-IP protocol cannot

manage time sensitive applications since it is only designed for reliable transfer
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of data. Protocols for best effort delivery of data guarantee neither reliabil-

ity nor timeliness. Therefore more sophisticated methods and algorithms are

needed to handle diverse application types over the Internet. Since new appli-

cations may expand rapidly, network management should be able to adapt itself

to these changes fast enough.

-Resource Management Different requirements and specifications for various ap-

plications or clients of the network brings the need to assign guaranteed re-

sources to some of the applications or network clients to deliver the desired

Quality of Service (QoS) to them. Resource allocation for different clients should

be done based on their Service Level Agreement (SLA), and the rendered ser-

vice should be monitored and controlled through control loops that are faster

in nature than the ones we mentioned before in design section. Bandwidth

management is an important aspect of the resource management system.

- Reliability Concerns An important issue in resource management of next genera-

tion networks is addressing the reliability concerns in order to satisfy availability

requirements for the network clients or applications. The resources allocated to

each application should be restored rapidly and intelligently in case of node/link

failures. This is an important aspect of self-healing property in a self-managed

system.

- QoS Issues Different flows in a communication network have different QoS re-

quirements in terms of delay, jitter, and packet-loss. Future communication

networks should have mechanisms to realize the necessary QoS for each traffic

type and be able to monitor the QoS that is delivered to each flow.

- Cost of Management While the traditional management of communication net-



Chapter 1. Introduction 5

works is done with the human intervention through expert network adminis-

trators, this method of management is prone to errors, slow, and extremely

costly. These problems lead to the overall management cost of 70% of Infor-

mation Technology (IT) budget [1], and expansion of the network over time

adds to the cost and complexity in the network management. Automation of

the network management can significantly decrease the Operational Expenses

(OPEX) of network management, and increase the network scalability and its

ability to recover from failures from both cost and complexity points of view.

In addition, more efficient use of network infrastructure leads to decrease in

Capital Expenses (CAPEX) in turn.

1.2 Solution Approach: Autonomics

Future communication networks are growing in size and complexity with a variety

of clients and applications with different requirements running on them. Managing

these networks requires new management solutions. Network Management (NM) for

future networks should be able to manage the requirements of all applications and

clients and have the ability to adapt itself to the changing requirements of each client

over time. NM should also be able to handle faults and failures seamlessly without

performance degradation. It should be able to manage monitoring functions and

optimize resource utilization to bring down the cost of network operation. In addition,

NM should provide a secure environment for clients/applications and let them protect

themselves from possible attacks. Finally, NM should be self-managing and do all

these management functions intelligently with minimum human intervention.

The best solution to the abovementioned management requirements is autonomic

management system. The term autonomic comes from an analogy to the autonomic
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central nervous system which adjusts itself to many situations automatically without

any external help. Autonomic management system should have four attributes to

be considered self-managing. These attributes are self-configuring, self-healing, self-

optimizing, and self-protecting.

Self-Configuring - This attribute corresponds to the ability of the NM to configure

the network to provide applications/clients with their resource requirements

and adapt itself to changes in their needs.

Self-Healing - This attribute refers to the ability of NM to handle faults or internal

failures automatically without interruption or degradation in its services.

Self-Optimizing - NM should be able to maximize the usage of its active resources

and minimize its cost of operation automatically.

Self-Protecting - A self-protecting NM allows authorized people to access the right

data at the right time and can take appropriate actions automatically to make

itself less vulnerable to attacks on its run-time infrastructure and business data.

The realization of the attributes of self-managing systems happens through build-

ing blocks that collaborate using standard mechanisms such as web services. These

building blocks are in the form of control loops, and as the road map of IBM to the

autonomics [2] suggests, each control loop should include Monitor, Analyze, Plan,

and Execute (MAPE) parts, and is called a MAPE control loop [3]. Here is a brief

description of the functionalities of each part of a MAPE control loop:

Monitor - The monitor part provides the mechanisms that collect, aggregate, filter,

manage, and report details (metrics and topologies) collected from an element.
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Analyze - The analyze part provides the mechanisms that correlate and model

complex situations. These mechanisms allow the autonomic manager to learn

about the IT environment and help predict future situations.

Plan - The plan part provides the mechanisms that structure the action needed to

achieve goals and objectives. The planning mechanism uses policy information

to guide its work.

Execute - The execute part provides the mechanisms that control and enforce the

execution of a plan through effectors.

These four parts work together to provide the control loop function. In general, a

large number of autonomic managers cooperate to manage the whole system.

1.3 Utilizing Graph Theory Concepts

A key factor in design and management of a communication network is the robustness

of the network to the environmental changes. Robustness is considered as the ability

of the network to adapt itself to the environmental changes and continue to operate

efficiently in the presence of these changes. There are three main categories of the

environmental changes that may affect the operation of a communication network:

changes in network topology or the capacity of links, variations in the community of

interest (the set of active source-destination pairs), and changes in the traffic demand

for each active source-destination pair. We utilize graph theoretical concepts to define

robustness metrics that capture the environmental changes and provide algorithms

for design and management of communication networks based on these metrics. The

basic metrics of interest in our work are network criticality and algebraic connectivity,
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and vulnerability metrics are defined based on the variations of these metrics when a

failure happens in the network.

Network criticality is a graph-theoretical metric of network robustness to the vari-

ations in network topology and capacity as well as traffic shifts where the network is

modeled as a weighted graph [4]. Network criticality is a global metric that is equal

to the ratio of the betweenness to weight for any link/node in the network when a

random walker traverses the network from a random source to a random destination.

Therefore the lower network criticality results in lower betweenness in the network

which is more desirable. Network criticality is a convex function of link weights in

a weighted graph, and minimizing this metric can introduce a robust network de-

sign [4]. Algebraic connectivity is another graph-theoretical metric that quantifies

the connectivity of a network [5]. Algebraic connectivity is a concave function of

link weights, and its maximization can be considered as a method of robust weight

assignment in a communication network to optimize connectivity [6, 7]. We compare

algebraic connectivity with network criticality in various contexts in this thesis. The

last set of metrics examined in this thesis are vulnerability metrics which are defined

as the fluctuations or the expected value of some basic robustness metrics (such as

network criticality or algebraic connectivity) when a link or node failure happens in

the network. We use these metrics to design networks to have the best robustness

properties in case of failures.

1.4 Proposed Solution Overview

The main contribution of this thesis is to provide algorithmic solutions for an au-

tonomic management system for communication networks using graph theoretical

concepts and metrics. We consider a management system which is composed of two
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types of control loops as suggested in [4]. The first type are long-run control loops

that deal with issues that change slowly over time like network topology. The second

type of the control loops are short-run control loops that handle issues that change

with a fast pace and need quick response from the network management like online

routing of network demands or reacting to a failure. We try to maximize the ro-

bustness of the network when we design its topology or when we repeatedly modify

the topology or the link weights through slow control loops. These methods try to

realize the self-optimizing attribute of our autonomic management. We also present a

survivable routing solution by which we assign the paths to the various demands and

reserve backup paths for them in an optimal way in a fast control loop that reacts to

the incoming requests for the network. The backup paths help the management to

realize the self-healing aspect of the autonomic management system. Here we present

a brief description of the different parts of our proposed solution presented in this

thesis in the following chapters.

Robust Topology Design - To tackle this problem we examine the behavior of

network criticality and algebraic connectivity in a large number of structured

topologies and complex networks, and provide guidelines to compare and con-

trast different topologies and structures. We also investigate the variations of

network criticality and algebraic connectivity when the link and node connectiv-

ity changes in a complex network, and provide guidelines to design and simplify

complex networks such as ER random, small-world, and scale-free networks that

are the suggested models to describe the complex networks. Moreover, we com-

pare the robustness and vulnerability metrics of different topologies of interest

for the new generations of data centers such as Virtual Layer 2 (VL2), Port-

land, and BCube. Some parts of our contribution on network topology design
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are presented in [8].

Robust Survivable Routing (RSR) - We present survivable routing algorithm

based on the Weighted Random-Walk Path Criticality Routing algorithm (WRW-

PCR) WRW-PCR defines link cost to reflect its sensitivity to the changes in

traffic demand, network topology, and active source-destination pairs. We as-

sess the criticality of each link and attempt to choose the path with minimum

overall criticality. We use shared backup protection to provide survivability in

our algorithm. Shared backup protection permits bandwidth sharing among

backup paths to save resources while guaranteeing full failure recovery. Rout-

ing for shared protection involves identifying working and backup paths that

optimize the total bandwidth consumption. The shared backup path protec-

tion (SBPP)[9] problem can be divided in two parts. The first part deals with

assigning appropriate restoration bandwidth on each link to guarantee 100%

single-failure recovery, and the second part is to choose the best backup path

for any active (working) path to minimize the total cost. To address the first

problem, we consider three variables for each link, the working bandwidth,

the backup or restoration bandwidth, and the available bandwidth of the link.

When these variables are changing we check the new network condition and

apply appropriate changes to continue guaranteeing 100% failure recovery us-

ing WRW-PCR. Some parts of our contribution on robust survivable routing is

presented in [10].

Design for Minimum Vulnerability - The last method we have examined in this

thesis is design for minimum vulnerability [11]. The objective of vulnerability

analysis is to study the behavior of network when an unwanted link/node failure

happens or an intentional attack discontinues the operation of a part of network.



Chapter 1. Introduction 11

The important feature of the network here is its ability to operate efficiently

and optimally in case of node/link failures, and it is also an aspect of the

network robustness. Therefore, the main focus here is robust network design

with emphasis on robustness of network when different failures happen. In

order to quantify the vulnerability of a communication network to a failure, we

consider the changes in the network parameters, such as network criticality and

algebraic connectivity, due to the failure as a measure of network vulnerability

to that failure.

The first set of our metrics quantify the worst case (maximum possible value)

and expected value that network criticality may take after a single node/link

failure. We show that these metrics are convex functions of link weights and

we introduce and solve convex optimization problems to minimize these met-

rics. We note that each optimization problem can be useful depending on the

nature of the network under study and its possible failures. The second set of

our proposed metrics are defined based on the worst case (minimum possible

value) and expected value that algebraic connectivity may take after a single

node/link failure. We show that these metrics are concave functions of link

weights and introduce and solve convex optimization problems related to each

metric. Parts of our contribution on different aspects of vulnerability analysis

and its applications in network design are presented in [11, 12, 13, 14].



Chapter 2

Related Work

In this chapter we present the literature related to different aspects of our work. We

first start with a review of the works related to robustness in a communication net-

work. Next we review two robustness metrics that are compared in this thesis i.e.

network criticality and algebraic connectivity. Network criticality is the main robust-

ness metric in the following chapters and its interpretations justify its application as a

robustness metric. The works related to algebraic connectivity as another robustness

metric of interest are described afterwards. In the next part, we review the works

related to robust survivable routing. We first explain different routing methods stud-

ied in the literature and explore various approaches to survivable routing. A review

of complex networks and their different implementations as the basis for chapter 3

comes next. We then explain the literature around network vulnerability as the basis

for chapter 5, and finally the autonomic computing and its architecture are explained.

12
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2.1 Robustness in a Communication Network

Robustness in a communication network is an important aspect of its design and

operation, and is studied extensively in the literature. Robustness can be examined

from two different points of views: robustness in network design and robustness in

routing. In the robust network design, the problem is finding the best topologies

for a communication network, and assign suitable capacities to the links to have

the maximum robustness in case of various changes in the network like failures or

malicious attacks. The robustness in routing, on the other hand, deals with presenting

traffic engineering algorithms that are not affected dramatically by environmental

changes, specifically variations in the traffic matrix, network topology and source-

destination pairs of interest. In this section we focus on the literature related to

robustness in network design, and examine robust routing later in section 2.3.1

In [15], the authors study the robustness of network topologies. They study graph-

theoretical metrics to find out which network topologies are the most robust. They

study the behavior of link and node connectivity as the major metrics that monitor

the network robustness. Link (node) connectivity is defined as the minimum possible

number of link (node) removals that makes the network disconnected. They argue

that node connectivity is the most useful metric to measure robustness. They ex-

amine the relationship between node connectivity and the degree of symmetry, and

conclude that node similarity and optimal connectivity are two conditions that lead

to topological robustness of the networks. Considering the fact that for any graph

node connectivity is less or equal to link connectivity and link connectivity is less

or equal to minimum node degree of the graph in turn, the optimal connectivity is

defined as a condition in which all these three are equal. Node similarity means that

for any two nodes of the network there is an automorphism that maps these nodes to
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each other. The authors of [15] introduce guidelines on how to construct this kind of

graphs.

The authors of [16] present symmetry ratio of a network as an important mea-

sure of robustness. Symmetry ratio is defined as the ratio of the number of distinct

eigenvalues of the network to its diameter. Symmetry ratio is used to quantify the

robustness of the network topology to targeted attacks. The works in [15, 16] have

discussed topology, but they have not considered role of the link weights in their

works.

[17] presents a design method for backbone networks that is not sensitive to the

traffic matrix and supports all the valid traffic matrices even in the presence of a

number of link or node failures. The authors suggest using Valiant Load Balancing

[18] for traffic routing. In this routing method, traffic from a source to a destination

is sent to an intermediate node first, and is routed to the destination from there.

The intermediate node is chosen uniformly randomly from all the network nodes,

other than source and destination. The problem of this method is that the packets

experience a longer delay to their destinations.

In [19] authors have optimized a graph-theoretical robustness metric called net-

work criticality to design a robust network. Network criticality is introduced in [4].

The authors define network criticality as a global measure for the network robustness

through combining of betweenness with the weight matrix. Because of the importance

of this metric in this thesis, we will discuss this metric and its interpretations later

in this chapter in section 2.2.1 in detail. They have considered a maximum budget

for designing the network as a linear combination of the link weights, and they have

obtained an optimum weight set for the network. They have formulated the optimum

weight set for several use cases such as complete graph, hypercube, and tree; and have

proposed an application of their work in capacity assignment for a communication
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network. This work has not considered the robustness of the network when failures

happen.

2.2 Robustness Metrics

Network criticality and algebraic connectivity are two major robustness metrics that

are compared in this thesis in various applications. Algebraic connectivity was first

introduced by Fiedler [5] [6] as a robustness metric for graphs, while network criticality

was first introduced in our research group as a more effective metric to quantify

robustness of a graph [4]. In this section, we first describe network criticality and its

interpretations that justify its usage as a robustness metric, then we explain algebraic

connectivity and the literature around it to explain why we have chosen it as a

comparison base to network criticality.

2.2.1 Network Criticality

Consider a weighted, undirected, connected graph, where the link weights show the

desirability of a link to contribute in data transfer. The link weights can be related to

QoS parameters in a way that larger beneficial QoS parameters (like link capacity or

available bandwidth) increase the link weights and larger detrimental QoS parameters

(like packet loss) decrease the link weights. We also assume that SLA’s can be mapped

to the link weights with an appropriate method. Some of these methods are discussed

in [4, 20, 21].

Network criticality is a robustness measure defined on a weighted graph to quantify

the sensitivity of the graph to the environmental changes. Conceptually, network

criticality is related to the definition of random-walk betweenness in graphs. Consider

a set of trajectories walked by a random walker, starting at s and terminating when
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the walk first arrives at destination d. The random walk betweenness of a node k

for the set of trajectories from s to d (denoted by bsk(d)) is defined as the average

number of visits to node k. It has been proved that for a generic random walk, where

the probability of transitioning along a link to a neighbor node is proportional to the

weight of that link , quantity bsk(d)+bdk(s)
Wk

, where Wk is the total sum of the link weights

incident to node k, is independent of k [4]. We refer to this quantity as point-to-point

network criticality and denote it by τsd. If we choose to define the link weight as

available capacity of a link, then point-to-point network criticality quantifies the risk

of sending a stream of packets via trajectories between s and d [4].

The total random walk betweenness of node k is the sum of the contributions for

all s − d trajectories. The normalized random walk betweenness of a node (i.e. the

node betweenness divided by the node weight) is a global measure on the graph and

it is independent of the node location [22]. We refer to this global graph metric as

network criticality and we denote it by τ .

Network criticality has some nice properties and interpretations, which explain

why it is an important robustness metric on graphs. Consider an equivalent electrical

circuit with the same graph as our original network graph, and with link conductances

(reciprocal of link resistances) equal to the link weights of the original weighted graph.

Point-to-point network criticality τsd can be interpreted as the resistance distance

(effective resistance) [23] between two end nodes s and d, and network criticality will

be the total resistance distance seen between different pairs of nodes in the electrical

circuit. A high network criticality is an indication of high resistance in the equivalent

electrical circuit; therefore, in two networks with the same number of nodes, the

one with lower network criticality is better connected, hence better positioned to

accommodate network flows.
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2.2.2 Algebraic Connectivity

The notion of algebraic connectivity of a graph was first introduced by Fiedler [5].

He defined algebraic connectivity as the second smallest eigenvalue of the Laplacian

matrix [24, 25, 26, 27, 28]. We know that all the eigenvalues of the Laplacian matrix

are nonnegative and the smallest one is always zero [5]. He proved that algebraic

connectivity of graph is a measure of the graph that increases when a link is added

to the graph. He also showed that algebraic connectivity is a lower bound to node

and link connectivity. Therefore higher algebraic connectivity can result in higher

connectivity, and it can be considered as a measure of robustness for a network. He

formulated algebraic connectivity for some well known graphs like complete graph,

path, ring, star, and hypercube.

While in [5] Fiedler introduced the concept of the algebraic connectivity in an un-

weighted graph, the problem of maximizing the algebraic connectivity in a weighted

graph with a constant sum of link weights is introduced in [6, 7]. In [6] Fiedler names

the maximum value of the algebraic connectivity that the graph can take as absolute

algebraic connectivity, and derives analytical formulation for the absolute algebraic

connectivity of some special graphs like trees. This problem is analyzed in [29] in

the context of finding the fastest mixing Markov process (FMMP) problem. Boyd et

al. show in this work that algebraic connectivity of a network determines the mixing

speed of the Markov process on a weighted graph when the weights show the transi-

tion rate between adjacent nodes. They show that the distribution of Markov process

converges to the uniform distribution in an exponential form at a rate determined by

algebraic connectivity. They consider a maximum for the linear combination of the

weights, and maximize algebraic connectivity to reach the maximum speed. They

show that FMMP problem is convex optimization problem, and its dual is equivalent
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to the maximum variance unfolding (MVU) problem. MVU has the interesting geo-

metric interpretation of choosing a set of points as far as possible, measured by their

variance, while limiting the Euclidean distance of each pair of the points.

Algebraic connectivity is also considered as a measure of network stability and

robustness in many system problems defined over networks [30, 31, 32, 33]. In all

of these works, it is observed that when there is a small perturbation of the system

parameters from equilibrium state, the system returns to the equilibrium with a rate

that is proportional to the algebraic connectivity. [33] provides a distributed algorithm

to maximize algebraic connectivity. None of these works has examined the behavior

of algebraic connectivity when failures happen like what we have done in this thesis.

We compare the behavior of algebraic connectivity as a topological robustness metric

with network criticality in the context of complex networks as well.

2.3 Survivable Routing

The first application discussed in this thesis is robust survivable routing. In this

section we first review the literature around routing methods, and works on robust

routing. Then we explain the WRW-PCR as the robust routing method we have used

in our work, and finally review the works related to survivable routing.

2.3.1 Routing Methods

Routing methods are the algorithms that deal with traffic engineering in order to

maximize the network utilization. Traffic engineering algorithms has gained a lot of

attention in the last few years [34, 35, 36, 37, 38]. The main focus of the routing

algorithms in this thesis are the core networks that use MPLS (Multi Protocol Label

Switching) [39] as their routing protocol or the optical networks with full wavelength
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conversion. The main task of routing algorithms in these networks is finding a path for

each traffic demand in a way that the networks get utilized maximally. There are well

known solutions for this purpose including MIRA (Minimum Interference Routing

Algorithm)[40], PBR (Profile-Based Routing) [41], and MATE ( MPLS Adaptive

Traffic Engineering)[42].

MIRA is one of most renowned routing algorithms which considers the effect of a

new LSP (Label Switched Path) on the existing LSPs in the network. MIRA computes

the maximum possible flow between every source-destination (sd) pair and chooses

a new LSP that maximizes a linear combination of these maximums for all sd pairs.

The problem of MIRA is its high complexity in addition to its weak performance

in some cases as reported in [41]. PBR is the other routing algorithm proposed

for MPLS networks. PBR performs the routing in offline and online phases. PBR

assumes that the traffic demand for each sd pair is known ahead of time. In offline

phase, it uses multicommodity flow assignment optimization to maximally assign

capacities on the network links to each class of traffic. In online mode it simply

routes the traffic using the assigned capacities in offline mode with shortest path

algorithm. PBR has less complexity compared to MIRA, but there are some cases in

which its performance is worse than WSP (Widest Shortest Path) as reported in [43].

Finally, MATE is a routing algorithm for MPLS networks that adaptively balances

the load along multipaths to lower congestion in the network links using the feedback

it gets about the packet loss and delay in destination nodes. MATE is based on

a quasi-static routing proposal by Gallagar [44]. MIRA, PBR, and MATE have a

better performance than WSP and SWP ( Shortest Widest Path) [45]; however low

complexity and near to optimal performance of WSP ( and SWP) makes it a proper

benchmark.

The other important class of routing algorithms are robust routing algorithms.
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The problem in robust routing is how to enable the network to support a varying

traffic matrix even when circumstances like failures happen in the network. A lot of

work has been done for this purpose, and we mention two main categories here. The

first category of robust routing is finding a robust solution to minimize the maximum

regret, which means the worst case scenario in the network [46, 47, 48, 49, 50, 51]. The

other category is of algorithms in the area of robust routing is oblivious routing [52,

53, 54, 55, 56, 57]. In oblivious routing the objective is to optimize the performance

in the worst case scenario over all traffic matrices, therefore the routing scheme can

support any dynamic changes in the traffic matrix. [58] proposes a framework for

robust routing in core networks based on the concepts of ”link criticality” and ”path

criticality”. [59] introduces a robust routing algorithm called Weighted Random-

Walk Path Criticality algorithm (WRW-PCR) which is based on the optimizing the

network criticality as a robustness metric of the network. This algorithm defines link

costs in a way that it reflects its sensivity to the changes in traffic demand, network

topology and active source-destination pairs.

2.3.2 Survivable Routing Methods

Fast restoration of network resources after a failure has been an important aspect

of the backbone networks, and has attracted a lot of attention in the last few years

[60, 9, 61]. Survivability of the network deals with the ability of the network to restore

its services after a failure without service interruption. There are different techniques

of protection or restoration for this purpose. While protection techniques reserve

fixed resources for protecting their active resources, restoration techniques provide

backup resources dynamically when a failure happens. Therefore, protection tech-

niques are generally faster, but consume more resources as backup. Shared Backup
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Path Protection (SBPP) is a protection technique that combines the backup resources

to lower the amount of backup resources while keeping the ability to recover quickly

from failures. SBPP has different flavors based on the available information of other

system routes and their backups.

In [9] the SBPP is discussed within the context of MPLS networks. The authors of

[9] consider three service provisioning cases: (1) No Sharing (NS), (2) Partial Sharing

of routing Information, and (3) Full Sharing of routing Information (FS). While in

NS it is assumed that only the available capacity of each link is known to make

decisions on backup path selection, in FS the assumption is that backup capacity

used on each link due to any link failure in the network is known. A spare provision

matrix (SPM) based SBPP method is also proposed in [62]. The major assumption

is that full routing information can be shared throughout the network. Based on this

information, a Successive Survivable Routing (SSR) algorithm is proposed, which can

provision survivable services in an online fashion.

Meanwhile [63] and [64] study the SBPP problem based on the assumption of full

routing information. Two complementary vectors (also called profiles) are specifically

maintained by the network control system, which has the information on how much

protection capacity on a span is used to protect the working capacity on other spans,

and how much working capacity on a span is protected by the spare capacity on other

spans. The routing information in [63] and [64] is mainly maintained in an aggregated

way, and it is suitable for the networks such as MPLS and optical networks with

full wavelength conversion capability, in which the bandwidth of each connection is

continuous or each capacity unit need not be explicitly discerned from one another.

In this paper we study the behavior of WRW-PCR in both NS and FS cases.



Chapter 2. Related Work 22

2.4 Complex Networks

Many of the real networks fall in the range of complex networks like the Internet,

social networks, transportation networks, infrastructural networks like water, elec-

tricity and gas, human brain, etc. Therefore it is very important to study complex

networks and learn about their behavior and characteristics. There is not a unique

and comprehensive definition for the complex networks, and they are mostly known

through their instantiations [65]. Complex networks have caught a lot of attention

during the last few years [66, 65, 67, 68]. Traditionally, most of the complex networks

have been be modeled as Erdos-Renyi random graphs [69]. However, the observation

that many of the real networks do not follow the properties of random graphs, e.g.

[70], motivated many researchers to propose new models for complex networks such

as small-world [71] and scale-free [72]. In fact, other than regular graphs, Erdos-

Renyi random graphs, small-world graphs, and scale-free graphs are the main classes

of complex network in the literature.

In addition to the modeling of the complex networks, analysis and study of statis-

tical properties have gained much attention. [73] by Newman, and [65] by Albert and

Barabasi are two good detailed and comprehensive references in this regard. There

are also a lot of work done on the spectral analysis of the complex networks and its

relation to the network robustness [67, 74, 75, 76]. In [74] the topological robustness

aspects of algebraic connectivity in the context of complex networks are investigated.

The authors sketch the curves for algebraic connectivity vs. node (link) connectivity

for different classes of complex networks through extensive simulations. They ob-

serve that within a specific class of random graphs algebraic connectivity increases

with increasing node connectivity, and it can be considered as a robustness measure

to node/link failures. However, although in ER random graphs algebraic connectivity
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is a relatively tight lower bound for node connectivity, for small-world and scale-free

graphs it is a loose lower bound, and for graphs with the same number of nodes, links

and node (link) connectivity there is no clear relation between algebraic connectivity

and node (link) connectivity. We will compare the topological behavior of algebraic

connectivity and network criticality in the three models of complex networks as well

as some structured graphs in chapter 3.

2.5 Vulnerability Analysis

There are many physical real-world events such as human attacks or natural disasters

[77, 78] that can disable parts of a communication network from normal operation.

Vulnerability analysis deals with finding the vulnerable and weak points of the net-

work, and try to strengthen them in order to make the network less vulnerable to

disasters or attacks. Vulnerability analysis of the networks has been examined in

several works [79, 80, 81].

In [79], similar to the the well-known ”network inhibition problem” [82], the au-

thors have considered a destruction cost for each link of the network and a fixed

budget to attack the network. They have also introduced four performance metrics

for the network such the maximum flow between a given pair of nodes. The authors

try to find circular or linear cuts that optimize their performance measures, and they

find the most vulnerable areas of the communication network using these kinds of

searches. The drawback of this work is that they have not optimized the network to

minimize its vulnerability to the correlated failures of their interest.

[81] examine the vulnerability of the complex networks to the attacks to the nodes

or links of the network. They have considered different classes of complex networks,

and have investigated which class of complex networks are less vulnerable to the at-
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tack to a certain percentage of the network nodes through the degradation of some

performance metrics such as the reciprocal of the average path length. Authors of

[80] have defined vulnerability functions of a graph in terms of number of nodes and

links, and minimum and maximum node degree to compare the vulnerability of dif-

ferent topologies to the random and international attacks. None of these works has

considered the effect of link weights in their analysis of the network vulnerability. In

this thesis we have a systematic approach to vulnerability analysis by introducing

vulnerability metrics based of the worst value or the expected value of basic robust-

ness metric such as network criticality or algebraic connectivity in case of link/node

failures.

2.6 Autonomic Management

Autonomic management refers to the characteristic of a network (or in general IT)

management system to be able to adapt itself to the changes in system conditions,

objectives and policies [2, 83]. The term ”autonomic” roots in the similarity of an

autonomous system to the central nervous system of human body to adapt itself and

react to the environmental changes in an automatic way without need to any external

help or a conscious effort. In a similar way, an autonomic management system for an

IT infrastructure should be able to adapt itself to its changing business objectives and

policies and also should have the ability to protect and heal itself automatically. The

autonomic systems are called self-managing systems as well. As we explained before,

an autonomic computing system should include four attributes of self-configuring,

self-healing, self-optimizing, and self-protecting which is illustrated in Fig. 2.1.
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Figure 2.1: Attributes of self-managing systems

Figure 2.2: The control loop in autonomic management system

2.6.1 Autonomic Computing Architecture
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Autonomic computing is implemented through five building blocks: Autonomic man-

agers, Knowledge source, Touchpoints, Manual managers and Enterprise service bus.

Autonomic computing architecture is composed of several layers. Managed resources

are at the lowest level of this architecture and are connected to the autonomic man-

agers through touchpoints. There are distinct autonomic managers for each attribute

of self-management, namely self-configuring, self-healing, self-optimizing, and self-

protecting for every managed resource. At the higher level, tthere are autonomic

managers that orchestrate autonomic managers at the lower levels based on the sys-

tem policies. At the highest level, the manual manager has a management interface

to the system, and all of the autonomic managers as well as manual manager use the

knowledge base to make decisions. All the components of the autonomic architecture

are integrated through the enterprise service bus that utilizes technologies such as

web services to communicate with all other components [2].

The main building block of the autonomic architecture is autonomic manager.

Every autonomic manager implements a control loop as shown in Fig. 2.2 to render

its management duty. This control loop has four distinct components of Monitor,

Analyze, Plan, and Execute which is called a MAPE loop in brief [3]. The monitor

part collects and processes the data from the system details such as various metrics

or the topology details from the managed element and reports them to the knowledge

base. The analyze block provides tools to correlate the data and model complicated

situations in order to learn about the system environment and be able to predict

future situations. The plan part uses policy information together with the results of

the analyze block to decide about the actions needed to achieve the system objectives.

Finally, the execute block provides mechanisms to realize and control the execution

of the plans.
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2.7 Control Loops for Communication Networks

We consider an autonomic management system for a communication network which is

composed of slow and fast control loops as suggested in [4]. We consider robustness as

the main property of interest for the communication networks, and conduct the design

and management process in a path to the most robust state for the network. Based

on the robustness definition, the autonomic management system as a self-managed

entity performs the initial topology design and plans it for the maximum robustness,

and over time it repeatedly examines the network from the robustness point of view,

and applies modifications to the system elements in the direction of maintaining the

system in the most robust state. We consider the network criticality as an important

choice to quantify robustness of the network, however, based on the design objectives,

other robustness metrics can be defined and optimized by the management system.

For example, in chapter 5 we have proposed vulnerability metrics as the robustness

metrics of interest. The robustness metric of interest can be defined based on the

nature or the functionality of the network under study.

2.7.1 Slow Control Loop

The slow control loop implements the functionalities such as topology design, network

planning, and high-level performance measurement, and produces suggestions to the

manual manager for modifying the topology or link weights in order to adapt the

system to the slow changes of the system requirements over time. Fig. 2.3 shows a

high-level view of the slow or long-term control loop. The main inputs to the slow

control loop are the traffic matrix, Service Level Agreement (SLA), physical con-

straints, budget constraints, and management policies. While the initial input data

are obtained through empirical studies from previous experiences, it gets modified
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Figure 2.3: Slow or Long-Run Autonomic Control Loop

and evolved over the time using feedback data from the network operation. Fig. 2.3

shows how the initial input data are used to design the initial physical topology of

the network.

In the long-run or slow control loop we have the aggregate performance mea-

surement box that performs high-level monitoring of the network to evaluate the

performance of the current topology and the assigned link weights. This box com-

bines the feedback data from various parts of the system or the autonomic managers

in lower levels. In the central part of the long-run control loop all the input data

including the current topology, link weights, and traffic matrix together with the ag-

gregate performance measurement data are filtered appropriately and get analyzed to

make decisions on high-level modifications in the system. These modifications can be

in the form of adding or removing a node or a link, or changing their specifications,

e.g., it can suggest to increase the capacity of a link.
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Figure 2.4: Fast or Short-Run Autonomic Control Loop

The important point here is that as the size of the large networks makes it difficult

and complicated to manage the whole network as a single entity, generally the network

gets divided to Virtual Networks (VNs) that are over-imposed on the same physical

(or substrate) network [84, 85]. Different VNs can be assigned to various network

clients or applications that have their own resource requirements. With VN approach

to the network architecture, every VN has a specific initial topology and would need

a separate slow loop to evolve its topology and resource needs based on its (changing)

traffic matrix and SLA over time, and then another slow loop at a higher management

level collects the information from all of the autonomic managers of the slow loops of

the network VNs and orchestrates them by dividing the network resources between

various VNs, or produce suggestions to modify the actual physical topology to provide

the ability to handle all the VNs’ requirements.

2.7.2 Fast Control Loop

Fast or short-run control loops respond to the system management needs that require

quick responses and remedies. Fig. 2.4 shows the fast loop associated to a specific
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demand. The input to this control loop is the demand specifications and SLA ( and

its interpretation in term of resources) as well as the current network (or the VN

related to the demand) topology and its available resources. The main block in the

center of the loop computes the working and backup paths (or VNs) for the demand

according to the input data. If it is not possible to provide enough resources for the

demand, a report is sent to the network (or VN) slow control loop unit to provide data

to help it make decisions based on the policies and the aggregate feedback from other

fast control loops. Again there is a performance measurement block that provides

feedback to the central box and the required information to modify the working or

backup resources assigned to the demand over time.



Chapter 3

Utilizing Graph metrics in Robust

Topology Design

Topology design is an important aspect of autonomic management of a communica-

tion network. Topology design appears in the implementation of the long-run control

loop we introduced in chapter 2 in both physical and logical layers. In physical layer

the main issue is to design a physical network with the best robustness and con-

nectivity properties that matches the physical constraints, budget constraints, and

management policies as well as make decision on how to modify the network to be

the most robust over time. In the logical layer, making decisions on the topology of

Virtual Networks (VNs), and how to evolve them over time is an ongoing process.

In this chapter we investigate and compare properties of algebraic connectivity

and network criticality, along with node degree and node betweenness, and provide

some guidelines for designing and simplifying different kind of networks based on

desired connectivity and robustness properties. In the first part, we present the

mathematical base related to network criticality and algebraic connectivity. Then

we compare and contrast robustness and connectivity properties of some structured

31
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networks, and investigate the usefulness of various metrics in this regard. Next we

investigate the behavior of network criticality in different models of complex networks

when node connectivity increases and compare the results to those of [74, 75]. We

believe that this gives an insight on designing complex networks that are both robust

and simple while providing a desired level of connectivity. In the last part, we study

the robustness properties of data center topologies as a practical application of our

approach.

3.1 Network Criticality

In this section we provide a brief summary of the network model and formulation of

network criticality.

3.1.1 Network Model

We model a network with an undirected weighted graph G = (N,E,W ) where N is

the set of nodes, E is the set of graph links, and W is the weight matrix of the graph.

Throughout this thesis we assume that G is a connected graph.

Consider a finite-state irreducible Markov Chain with transition probabilities pij

of transitioning from state i at time t to state j at time t + 1 (discrete time). The

Markov chain can be represented by a state transition diagram with states as nodes

in a graph and edges corresponding to allowable transitions, and labels associated

with the edges denoting the transition probabilities. The Markov chain can also be

viewed as a random walk on the n-node graph with next-step transition probabilities
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pij according to the following rule:

pij =


wij∑

k∈A(i)
wik

if j ∈ A(i)

0 otherwise

(3.1)

where A(i) is the set of adjacent nodes of i and wik ≥ 0 is the weight of link (i, k).

We are interested in quantifying the betweenness of a node in the random-walk

corresponding to a Markov chain. The original definition of random-walk betweenness

is given in [86], but here we use a modified version defined in [87]. Consider the set

of trajectories that begin at node s and terminate when the walk first arrives at node

d, that is, destination node d is an absorbing node. We define the betweenness bsk(d)

of node k for the s− d trajectories as the average number of times node k is visited

in trajectories from s to d.

Let Bd = [bsk(d)] be the n× n matrix of betweenness metrics of node k for walks

that begin at node s and end at node d. Further, let Pd be the matrix of transition

probabilities when the random walk is modified so that state d is an absorbing state.

We use P (i|j) to show the truncated (n − 1) × (n − 1) matrix that results from

removing ith row and jth column of matrix P . It is shown in [87] that:

Bd(d|d) = (I − Pd(d|d))−1 (3.2)

3.1.2 Definition of Network Criticality

We now introduce network criticality, the metric that we proposed in [87], to quantify

the robustness of a network. We start by defining node/link criticality.

Node criticality is defined as the ratio of the random-walk betweenness of a node

to its weight (weight of a node is defined as the sum of the weights of its incident

links). Link criticality is similarly defined as the ratio of the betweenness of a link to

its weight.



Chapter 3. Utilizing Graph metrics in Robust Topology Design 34

Let η(k) be the criticality of node k and ηij be the criticality of link l = (i, j). It

is shown in [87] that ηi and ηij can be obtained by the following expressions:

τsd = l+ss + l+dd − 2l+sd or τsd = utsdL
+usd (3.3)

τ =
∑
s

∑
d

τsd, τ̂ =
1

n(n− 1)
τ =

2

n− 1
Tr(L+) (3.4)

η(k) =
bk
Wk

=
1

2
τ =

n(n− 1)

2
τ̂ (3.5)

ηij =
bij
wij

= τ = n(n− 1)τ̂ (3.6)

bsk(d)

Wk

= l+sk − l+sd − l+dk + l+dd (3.7)

where L+ = [l+ij ] is the Moore-Penrose inverse of graph Laplacian matrix L, n is

the number of nodes, and uij = [0 ... 1 ... − 1 ... 0]t (1 and −1 are in ith and jth

position).

Observation 3.1.1. Equations 3.3 to 3.6 show that node criticality (ηk) and link

criticality (ηij) are independent of the node/link position and only depend on τ (or τ̂)

which is a global quantity of the network.

Definition 3.1.2. We refer to τ as the network criticality and τ̂ as normalized

network criticality. In this thesis our experiments are based on normalized network

criticality.

One can see that τ̂ is a global quantity on network graph G. Equations 3.5 and 3.6

show that node (link) betweenness consists of a local parameter (weight) and a global

metric (network criticality). τ̂ can capture the effect of topology and community of

interest via betweenness, and the effect of traffic via weight (by appropriate definition

of weight). The higher the betweenness of a node/link, the higher the risk of using

the node/link. Furthermore, one can define node/link capacity as the weight of a

node/link, then the higher the weight of a node/link, the lower the risk of using the
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node/link. Therefore network criticality can quantify the risk of using a node/link in

a network which in turn indicates the degree of robustness of the network.

Observation 3.1.3. It turns out that the value of pair-wise criticality, i.e. τsd for

pair s−d, is equal to the effective resistance between nodes s and d when the network

is considered as an electrical network with link conductances equal to the link weights

[88]. The total effective resistance of the network is also equal to the network crit-

icality τ . In this thesis we use the terms network criticality and effective resistance

interchangeably.

In order to simplify the structure of complex networks, one needs to have a good

understanding of connectivity properties of a network as well as its robustness. In

this chapter our goal is to investigate τ̂ as a function of the weight matrix (W ) and

compare it with algebraic connectivity of a graph.

Network criticality can be stated as a function of eigenvalues of the graph Lapla-

cian as follows:

τ̂ =
2

n− 1

n∑
i=2

1

λi
(3.8)

where 0 = λ1 ≤ λ2 ≤ ... ≤ λn are eigenvalues of the graph Laplacian L [4]. In [4]

it is also proved that τ̂ is an strictly convex function of the link weights. We state

this fact as theorem 3.1.1 for further reference.

Theorem 3.1.1. Network criticality (τ̂) is an strictly convex function of link weights.

Proof. See [4] for the detailed proof.
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3.2 Network Criticality and Algebraic Connectiv-

ity

Algebraic connectivity is defined as the second smallest eigenvalue (λ2) of the Lapla-

cian matrix of a connected graph. We recall that Laplacian matrix of a graph is a

positive-semidefinite matrix, and all its eigenvalues are nonnegative while its smallest

eigenvalue is always zero. Algebraic connectivity is a graph metric that increases

when a link is added to the graph. Fiedler showed in [5] that algebraic connectivity

is the lower bound to node and link connectivity in a graph. Therefore, the further

λ2 is from zero, the higher the node and link connectivity of a graph.

In addition, as it is shown in [4], network criticality is bounded by a multiple of

the reciprocal of algebraic connectivity:

2

(n− 1)λ2
≤ τ̂ ≤ 2

λ2
(3.9)

This means that increasing the connectivity of a network, decreases the upper bound

of network criticality, which potentially means more robustness.

An important characteristic of algebraic connectivity is that it is a concave func-

tion of link weights. We state this fact as theorem 3.2.1 for further reference.

Theorem 3.2.1. Algebraic connectivity (λ2) is a concave function of link weights.

Proof. See [29] for the proof.
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Figure 3.1: Extended Linear Graph (ELG) and Flat Grid Graph (FGG)

3.3 Deterministic Graphs

In this section, we provide an in-depth study of the behavior of algebraic connec-

tivity and network criticality in the structured networks. We use a diverse range of

structured topologies like linear graph, grid, Torus, etc. The quantities of interest for

us are: network criticality, algebraic connectivity, average degree, and average node

betweenness. In all of the experiments, we assume that all the link weights are equal.

In fact, without loss of generality we assume wij = 1 ∀(i, j) ∈ E. While a complex

network is not usually a regular or structured graph, frequently a large number of ex-

isting complex networks (for instance the network of proteins) can be built by joining

some structured topologies. Therefore, in this section we study the behavior of the

metrics of interest in deterministic and structured networks.
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3.3.1 Extended Linear Graph (ELG) and Flat Grid Graph

(FGG)

In the first experiment we consider extended linear graph (ELG), and flat grid graph

(FGG) (see Fig. 3.1). In Fig. 3.2 we compare the behavior of network criticality,

algebraic connectivity, average degree, and average node betweenness in ELG and

FGG for different network sizes.

Fig. 3.2-a shows the behavior of network criticality for ELG and FGG. The

criticality of ELG grows much faster than FGG. Fig. 3.2-b reveals that the algebraic

connectivity of FGG is always better than ELG, that is the flat grid has better

connectivity but the speed of decreasing algebraic connectivity of the graph is much

slower than increasing the network criticality. According to the Fig. 3.2-c, the average

node degree of ELG approaches 4, and the average node degree of FGG is between

3.5 and 4.0.

Finally, Fig. 3.2-d shows that the average node betweenness of ELG is higher than

that of FGG. The behavior of average node betweenness and network criticality in this

experiment are very close, because the variations of node degree for both networks

are small, therefore, according to equation 3.5 ,the average node betweenness and

network criticality are almost proportional.

This experiment reveals that while the changes in node degree and algebraic con-

nectivity of ELG and FGG are relatively similar, there is a huge change in the behavior

of network criticality, which means that network criticality captures some attributes

of the graph that cannot be found in node degree and algebraic connectivity.
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Figure 3.2: Comparison of Extended Linear (ELG) and Flat Grid (FGG) Topologies

Figure 3.3: Topology of Ladder (LAG) and Dense Flat Grid Graph (DFG)
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Figure 3.4: Comparison of Flat Grid and Dense Flat Grid Topologies

3.3.2 Ladder Graph (LAG) and Dense Flat Grid Graph (DFG)

Fig. 3.3 shows the ladder and dense flat grid graph (DFG), which are two other

topologies of interest. In Fig. 3.4, the behavior of FGG and DFG are compared.

Fig. 3.4-a verifies that the network criticality of DFG is smaller than the network

criticality of FGG with the same number of nodes. This is expected because the

number of links in DFG is more than FGG. Therefore, if the objective of designing a

network is to make it more robust in the sense that robustness is defined in this thesis,

we need to use DFG. According to Fig. 3.4-b the algebraic connectivity of FGG and
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DFG are very similar for all values of n. This means that if only the connectivity is

critical in a network, then it is preferred to use FGG. In other words, if connectivity

is the only concern, a DFG can be safely converted to a FGG.

Fig. 3.4-c shows the average node degree of FGG and DFG and Fig. 3.4-d shows

the behavior of average node betweenness. According to this figure the average node

betweenness for FGG and DFG are very similar. In other words, when the control

of average node betweenness is the main objective, then it makes sense to use FGG

with the same number of nodes. This will simplify the network significantly.

In the next experiment, we compare the behavior of extended linear graph (ELG)

and ladder graph (LAG). According to Fig. 3.5, network criticality of LAG is slightly

worse (larger) than the network criticality of ELG, while the algebraic connectivity

of ELG and LAG behave similarly for different values of n. Average degree of ELG

converges to to 4, while the average node degree of LAG converges to a value less than

2.5. As the total number of links in a graph is approximately the number of nodes

times the average node degree, we arrive at the result that when the networks grow

in node size, the number of links in ELG is much more than LAG, in other words, a

slight improvement in network criticality comes at the expense of a huge increase in

the number of links (while the number of nodes in both networks are the same).

Now by looking at the result for average node betweenness, we find that the

average node betweenness of ELG grows faster than LAG as n grows. A final result is

that in general by changing an ELG-like topology to a LAG, we do not lose too much,

as a matter of fact the average node betweenness even decreases, while the network

criticality (effective resistance) slightly increases. The average node betweenness has

an important role in developing traffic engineering algorithms for communication

networks [4].
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Figure 3.5: Comparison of Ladder (LAG) and Extended Linear Graph (ELG) Topolo-

gies

3.3.3 Square Torus Graph (STG) and Sparse Flat Graph

(SFG)

Now we study the behavior of square torus graph (STG) and sparse flat graph (SFG)

(Fig. 3.6). In Fig. 3.7 the behavior of STG and FGG are compared. Fig. 3.7-a shows

that up to a certain number of nodes (around 16 nodes), the network criticality of

STG decreases with increasing node number. It also reveals that for networks with

less than 90 nodes STG has smaller network criticality than FGG with the same
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(a) STG (b) SFG

Figure 3.6: Topology of Square Torus Graph (STG) and Sparse Flat Graph (SFG)

number of nodes. However, for larger networks FGG has better (smaller) network

criticality. Fig. 3.7-b shows that algebraic connectivity of STG for networks with less

than 80 nodes is better (larger) than that of FGG with the same number of nodes.

It also shows that after 80 nodes algebraic connectivity of FGG is slightly better.

However, the difference in the behavior of STG and FGG is more evident through

their network criticality and average node betweenness.

Fig. 3.7-c shows that average node degree of STG quickly approaches 4, while

average node degree of FGG is always less that 4 and goes to 4 very slowly. According

to the Fig. 3.7-d, this causes smaller average node betweenness for FGG networks

when 80 ≤ n ≤ 90, while the network criticality of STG is smaller for the networks

with 80 ≤ n ≤ 90 as shown in Fig. 3.7-a.

Finally, we study the robustness behavior of SFG and FGG. In Fig. 3.8 we

compare the behavior of SFG with FGG. Fig. 3.8-c shows that for networks with large

number of nodes, FGG has 45% more links than SFG. This increase in link density

leads to a considerable improvement in network criticality, algebraic connectivity, and

average node betweenness. Fig. 3.8-a shows that network criticality of FGG is much
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(a) (b)

(c) (d)

Figure 3.7: Behavior of STG and FGG

smaller than SFG. For n = 200, the network criticality of SFG is 1.406 while it is

0.747 for FGG.

There are also some interesting points in the comparison of behavior of FGG,

DFG and SFG using Fig. 3.8 and Fig. 3.4. These figures show that moving from

SFG to FGG generates more improvement in network metrics compared to moving

from FGG to DFG, although in both movements we should increase number of links

to the same extent.
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(a) (b)

(c) (d)

Figure 3.8: Behavior of SFG and FGG

Quantity SFG FGG DFG

Average Degree 2.55 3.71 5.43

Network Criticality 1.406 0.747 0.494

Table 3.1: Numerical Comparison of Robustness in SFG, FGG, and DFG
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Table 3.1 shows the average node degree and network criticality for these three

topologies when n = 200. According to this table moving from SFG to FGG needs

45% increase in average degree and leads to 47% decrease in network criticality while

moving from FGG to DFG needs an increase in average degree by 45% again but

network criticality decreases only 34%. In addition, comparison of Fig. 3.8-b with

Fig. 3.4-b and Fig. 3.8-d with Fig. 3.4-d show that by moving from SFG to FGG

we gain improvement in algebraic connectivity and average node betweenness, while

there is almost no gain in these metrics by moving from FGG to DFG.

3.4 Complex Networks

In this section, we investigate the robustness properties of three main categories of

complex networks. We examine the behavior of network criticality for each class of

random, small-world, and scale-free networks when node/link connectivity changes,

and compare it to that of algebraic connectivity.

3.4.1 ER Random Graphs

The simplest model for complex networks was first introduced by Errdos-Renyi (ER)[69].

The ER random graph has a simple structure in which each possible link of the net-

work exists with a probability of p. If n is the number of nodes and m is the number

of links for such a network then

E(m) = p
n(n− 1)

2

where E means the expected value. There is a threshold pt = log(n)
n

for a random

graph that if p > pt then the graph will be almost surely connected [69].
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(a)

(b)

Figure 3.9: Average Network Criticality and Algebraic Connectivity for ER Random

Networks
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We generated 10,000 samples of random graphs for each number of nodes for

n = 50, 100, 500. We set p = αpt and selected α as a uniformly random integer 1 ≤

α ≤ 10. Then we obtained the link connectivity, algebraic connectivity, and network

criticality for each one of the generated samples and calculated the average network

criticality and algebraic connectivity for the graphs with the same link connectivity

and number of nodes. Fig. 3.9 shows the variations of average network criticality and

average algebraic connectivity with link connectivity for different values of n.

Fig. 3.9-a shows that average network criticality decreases with increasing link

connectivity (remember that the smaller network criticality is better) and this justifies

the usage of network criticality as a robustness metric since networks with higher link

connectivity are more robust to link failures and the failure of more links makes them

disconnected. Fig. 3.9-b shows the similar result for average algebraic connectivity.

This figure shows that average algebraic connectivity increases almost linearly with

link connectivity. Comparison of Fig. 3.9-a and 3.9-b reveals that variations of

average network criticality and algebraic connectivity with link connectivity are in

harmony for ER random graphs in predicting the network robustness. However, as

we will see in the next parts, it is not the same for small-world and scale-free networks

that are more realistic models for complex networks and the Internet.

3.4.2 Small-World Networks

Small-world is a name for a subset of complex networks where despite the huge

size of the network, the average path length between any two nodes is relatively

small. The small-world model proposed by Watts-Strogatz is the most studied small-

world model [71]. Starting from a regular ring lattice, we connect each node with

2s neighbors (s neighbors in each side), then we rewire each link with probability
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p. In rewiring process, we keep the first node of each link and reconnect the other

end node (clockwise) with probability of p to another node which is chosen randomly

from the ring nodes in a way that self-loops and parallel edges are not permitted. For

0.01 ≤ p ≤ 0.1 small world characteristic appears (small average path length, large

clustering coefficient). If we continue increasing the randomness by increasing p, the

graph starts behaving more like a random graph. For p = 1 we get a pure random

graph (small average path length, small clustering coefficient).

In Fig. 3.10 variations of average network criticality and average algebraic con-

nectivity with link connectivity for different values of n are shown. Fig. 3.10-a and

3.10-b show the behavior of average network criticality and algebraic connectivity for

p = 0.01, and Figures 3.10-c and 3.10-d correspond to p = 0.1. For each combination

of n and p, we have generated 10, 000 graphs. The value of s is taken to be uniformly

distributed between 1 to 10 units (1 ≤ s ≤ 10). The results shown in Fig. 3.10 are

the average values over all generated graphs.

One can see that average algebraic connectivity in both cases (p = 0.01 and

p = 0.1) and for different values of n increases relatively smoothly with link connec-

tivity. However, Fig. 3.10-a and 3.10-c show a significant change in average network

criticality when link connectivity increases from 1 to 2. Therefore, if simplifying a

small-world network leads to decreasing edge connectivity from 2 to 1, this results in

a huge jump (increase) in average network criticality (losing robustness) which is not

desirable. This effect is not captured through average algebraic connectivity charts.

Furthermore, when the link connectivity is more than 4, the value of average

network criticality does not have a significant change even if the network grows from

n = 50 to n = 500. In other words, for small-world networks, if the connectivity is

fixed to a desirable value (this value depends on the probability p), increasing the

network size does not cause dramatic change in network criticality.
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(a) p = 0.01 (b) p = 0.01

(c) p = 0.1 (d) p = 0.1

Figure 3.10: Average Network Criticality and Algebraic Connectivity for Small-World

Networks with p = 0.01 and p = 0.1

3.4.3 Scale-Free Networks

Scale-free networks are networks for which node degree has a power-law distribution,

while node degree distribution is binomial for ER random graphs. Scale-free networks

represent many real-world networks including the Internet [70]. The Barbasi-Albert

(BA) scale-free complex networks [72] are the most studied scale-free networks, and

are generated through the process of preferential attachment. The degree distribution
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(a)

(b)

Figure 3.11: Average Network Criticality and Algebraic Connectivity for Scale-Free

Networks
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for BA scale-free networks has the form of:

P (d = k) = αk−β

where d is the node degree and β ≈ 3. Most of the nodes of these networks have

small node degree while a few of them have large node degree (greater than 10).

Barbasi and Albert proposed the process of preferential attachment to produce

scale-free networks, and we followed their method in our work. To generate a BA

scale-free network with n nodes we started with a full-mesh of n0 nodes (n0 < n),

and construct the network through n− n0 steps. In each step, we add one new node

to the network, and connect it to the previous nodes with k links (k < n0) using

preferential attachment. This means that the new node is connected to the previous

nodes with a probability proportional to their degrees at that step. The number of

links will be:

m =
n0(n0 − 1)

2
+ k(n− n0)

Depending on the initial number of nodes and k, the generated network will have

different number of links. In our experiments, we set n0 = 2k+1 which led to networks

with m = nk links. We generated 10,000 networks for each of n = 50, 100, 500 nodes,

and selected k as a uniformly random integer 1 ≤ k ≤ 10.

Fig. 3.11 shows the variations of average network criticality and algebraic con-

nectivity for different values of link connectivity. We observe that average network

criticality shows a huge drop when link connectivity increases from 1 to 2, while av-

erage algebraic connectivity increases almost linearly against link connectivity, and

does not show this effect. We note that the behavior of average network criticality for

scale-free networks resembles its behavior for small-world networks, while the behav-

ior of average algebraic connectivity is similar to that of ER random graphs. In other

words, Fig. 3.11-a shows that scale-free networks with link connectivity greater than
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1 are much more robust, and the algebraic connectivity curve (Fig. 3.11-b) does not

show this. In addition, similar to small-world networks, the value of average network

criticality does not change significantly when the link connectivity is more than 4

even if the network size increases from n = 50 to n = 500. Therefore, for scale-free

networks, if the connectivity is fixed to a desirable value (this value depends on n0

and k), increasing the network size does not cause a dramatic change in network

criticality.

3.5 Data Center Networks

There has recently been a great interest in data center design. A number of researchers

in academia and industry have tried to propose new techniques and architectures for

building and maintaining data centers [89, 90, 91]. The focus of all of the recent

works on data centers is on virtualization techniques to provide a flexible management

architecture on top of the existing physical topologies. Researchers have introduced

methods for imitating layer 3 functionalities (routing) in data layer to accelerate the

process and decrease the overhead.

In contrast, there is no serious study on existing physical data center topologies

and their effectiveness in providing services for data center costumers. Today’s data

centers mostly use a variation of tree-based topologies with some modifications to

increase reliability. For example, VL2 [89] uses a 3-level folded Clos network because

it is well suited for a type of oblivious routing mechanism which is used in VL2

to provide load balancing. PortLand [90] also exploits a Fat-Tree to provide path

multiplicity. In other words, in the present approaches to the design of data centers,

the physical topology is selected from a list of common existing architectures based

on some important goals of the design, but there is no explicit design methodology
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for the physical topology.

In this section we are concerned about the physical topology of data centers. We

investigate a few popular topologies that have been recently used in data centers

and compare their topological robustness with the help of some ideas from networks.

A data center topology consists of two major parts, containers, and a core network

interconnecting different containers. Using the idea of network criticality or effec-

tive resistance from graph theory, we will investigate alternative combinations of

container-core topologies (for example Tree topology for containers and Hyper-Cube

topology for the core network) and study the topological robustness of different com-

binations. We present an optimization to minimize network criticality and use it as

a planning method to allocate optimal capacity to the links of a specific topology.

We solve the optimization problem for Fat-Tree, Hyper-Cube, Clos, and Star config-

urations and compare the optimal network criticality of these topologies when initial

conditions are similar.

3.6 Data Centers Topologies

In this section we present a short review of three recent architectures for data centers

which have absorbed attention in academia and industry.

3.6.1 Virtual Layer 2 (VL2)

Today’s data centers with tens of thousands of servers must achieve the property

of agility to assign any server to any service. Existing architectures do not provide

enough bisectional throughputs between the servers. Furthermore, services are not

isolated from each other’s impact. In addition, fragmentation of the address space

limits the migration of virtual machines.
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Figure 3.12: Clos Network Used in VL2

One possible solution is to give each service the illusion that all the servers as-

signed to it are connected by a single Virtual Layer 2 (VL2) non-interfering Ethernet

switch [89]. VL2 is built from low-cost switches arranged into a Clos topology [92]

and Valiant Load Balancing [17] spreads traffic across all available paths; VL2 uses

Location Address and Application-specific Address to separate the host identity and

its topology location.

Up to recent years, most of the existing data center topologies were based on

Cisco’s conventional hierarchical topologies [93]. A major drawback of these topolo-

gies is that they have poor bisection bandwidth and are susceptible to major disrup-

tions due to device failures at the highest layers. Instead, VL2 uses a folded Clos

architecture with three layers (Intermediate or Core, Aggregation, and Edge), where

the links between the Intermediate and Aggregation switches form a complete bipar-

tite graph. Top-of-the -Rack switches connect to two Aggregation switches, and in
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general if there is k Intermediate switch at the highest level, there will be 2k aggre-

gation switches and k2 Top of Rack (ToR) switches in the Clos as shown in Fig. 3.12.

In this section we focus on the physical topology of VL2 architecture and investigate

the robustness properties of Clos networks.

3.6.2 PortLand

Another recent proposal for data center architecture is PortLand [90]. In [90], the

authors propose a scalable layer 2 protocol designed for data center environments.

The idea is quite simple: it leverages specific knowledge of the baseline topology and

growth model of data center networks to assign pseudo MAC addresses to servers

based on their location in the topology. The pseudo addresses internally encode

topological information of the server and this makes it simple to route traffic in

the data center fabric. In addition, the size of forwarding tables at each switch is

smaller and scales better than traditional solutions. The big underlying assumption

is that data center networks are built as Fat-Tree topologies. Similar to the Clos

network topology, Fat-Tree is also divided into three layers: Edge, Aggregation and

Intermediate or Core. This hierarchy is chosen as each switch relies upon it to discover

its own location in the network: a location discovery protocol is introduced for that

purpose and it is shown to support growing the network in a plug-and-play fashion.

Edge and aggregation switches are connected with some level of redundancy and are

grouped into pods. Each pod is then connected to all of the core switches. A typical

topology for PortLand data center (based on Fat-Tree) is shown in Fig. 3.13. The

Fat-Tree as a whole is divided into pods that use k-port switches, and each pod

supports non-blocking operation among k2

4
hosts.
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Figure 3.13: Fat-Tree Network used in PortLand

3.6.3 BCube

BCube [91], closely related to the generalized Hyper-Cube, is a high-performance and

robust network architecture for a modular data center. Both oblivious and source

routing are provided in the protocol suite. [91] presents a new network architecture

specifically designed for shipping-container based, modular data centers. At the core

of the BCube architecture is its server-centric network structure, where servers with

multiple network ports connect to multiple layers of commodity on-the-shelf mini-

switches. Servers act as not only end hosts, but also relay nodes for each other.

BCube supports various bandwidth-intensive applications by speeding- up one-to-

one, one-to-several, and one-to-all traffic patterns, and by providing high network

capacity for all-to-all traffic. BCube exhibits graceful performance degradation as

the server and/or switch failure rate increases. This property is of special importance

for shipping-container data centers, since once the container is sealed and operational,
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(a) Hyper-Cube Core (b) Hyper-Cube Node+Container

Figure 3.14: Hyper-Cube Topology

it becomes very difficult to repair or replace its components.

As stated in [91], BCube is a special case of generalized Hyper-Cube. In this

work, we are interested in a general Hyper-Cube core with container as tree topologies

connected to the nodes of Hyper-Cube core. Fig. 3.14-(a) shows the architecture of a

Hyper-Cube on 16 nodes. Each node of the Hyper-Cube is connected to a container

with Star architecture as shown in Fig 3.14-(b).

3.7 Optimization of Network Criticality for Data

Center Networks

The ultimate goal is to find a method to minimize network criticality. Hence, we

consider the minimization of τ under some constraints. We assume a fixed total

capacity (or link weights in a more general sense) for the links of the network. In



Chapter 3. Utilizing Graph metrics in Robust Topology Design 59

Figure 3.15: A General 3-Layer Form of Data-Center with Weights

order to have a non-blocking service from any server in the data center topology to

the other servers, we add another constraint to keep the total bisection capacity fixed

in all three layers of our data center topology.

More specifically, consider Fig. 3.15 as the general form of the data center with

three major layers, Edge, Aggregation, and Intermediate or Core layers. The ratio-

nale behind this model is that in general large scale data centers are organized as a

hierarchy of racks and containers where a rack contains a certain number of servers,

a container is composed of a number of racks, and data center is made of several con-

tainers in turn. See [94] for more details of this structure. Therefore the switches in

the Edge layer are switches in (or top of) the racks that are connected to the servers

directly, the switches in the Aggregation layer are switches that are used to connect

Edge switches inside a container, and the Intermediate or Core switches are used to

connect the containers to each other. It can be easily seen that this model conforms
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with three switch layers used in VL2 and Portland as well.

We define the following notation to specify the capacities (weights) of different

layers. We denote the link capacities (weights) between Edge layer and lowest level

with w(e)
p , the link capacities (weights) between Aggregation layer and the lower layer

with w(a)
q , and the link capacities from Intermediate layer to the lower layer with w(i)

r .

We also denote the cost of having link weights w(e)
p , w(a)

q , and w(i)
r with z(e)p , z(a)q , and

z(i)r respectively. Then the the first constraint (fixed total weight or capacity) can be

written as:
s∑

p=1

z(e)p w(e)
p +

s′∑
q=1

z(a)q w(a)
q +

s”∑
r=1

z(i)r w
(i)
r = C

where C is the fixed total budget, and s, s′, and s” are the number of links from edge,

Aggregation, and Intermediate layers to the lower layers respectively. The second

constraint regarding the bisection capacity between different layers can be written in

the following form:
s∑

p=1

w(e)
p =

s′∑
q=1

w(a)
q =

s”∑
r=1

w(i)
r

The optimization problem is then:

Minimize τ̂ (3.10)

Subj. to
∑s
p=1 z

(e)
p w(e)

p +
∑s′

q=1 z
(a)
q w(a)

q +
∑s”
r=1 z

(i)
r w

(i)
r = C

∑s
p=1w

(e)
p =

∑s′

q=1w
(a)
q =

∑s”
r=1w

(i)
r

w(e)
p ≥ 0 1 ≤ p ≤ s

w(a)
q ≥ 0 1 ≤ q ≤ s′

w(i)
r ≥ 0 1 ≤ r ≤ s”

Optimization problem 3.10 can be converted to a semidefinite programming prob-

lem. First we note that

τ̂ =
2

n− 1
Tr(L+) =

2

n− 1
Tr((L+ J/n)−1)− 2

n− 1
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[4] where I is the identity matrix and J is a matrix with all of its elements equal

to 1. Now we consider the matrix Θ =

Γ I

I L+ J
n

 where Γ is an n × n variable

matrix. The necessary and sufficient condition for positive-semidefiniteness of Θ is

that its Schur complement [28] be positive- semidefinite. The Schur complement of

Θ is Γ − (L + J/n)−1 and its positive-semidefiniteness leads to Tr(Γ) ≥ Tr((L +

J/n)−1). Considering this inequality, optimization problem 3.10 can be converted to

the following semidefinite program:

Minimize 2
n−1Tr(Γ)− 2

n−1 (3.11)

Subj. to
∑s
p=1 z

(e)
p w(e)

p +
∑s′

q=1 z
(a)
q w(a)

q +
∑s”
r=1 z

(i)
r w

(i)
r = C

∑s
p=1w

(e)
p =

∑s′

q=1w
(a)
q =

∑s”
r=1w

(i)
rΓ I

I L+ J
n

 � 0

3.8 Evaluation of Data Center Networks

Study of recent data center architectures in section 3.6 reveals that Clos (Fig. 3.12),

Fat-Tree (Fig. 3.13), and Hyper-Cube (Fig. 3.14) topologies are popular. We add

Star topology as the fourth well-structured topology to this list and investigate the

robustness properties of these four different topologies in this section. Fig. 3.16 shows

Star topology for constructing a data center. All these topologies fall into the general

3-layer architecture of Fig. 3.15.

In this section we evaluate the behavior of network criticality as a measure of

topological robustness in Clos, Fat-Tree, Hyper-Cube and Star. We consider two

cases. First, we assume that total number of servers in all topologies are the same
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Figure 3.16: Star Network Topology for Data-Centers

and all of them have the same connection capacity to the edge switches. We also

assume that we need to have maximum non-blocking traffic from each server to the

other servers in all four topologies. Second, we add the constraint of having equal

total capacity in all the networks, and find the optimal capacity allocation to minimize

network criticality.

3.8.1 Performance Analysis of Data Center Architectures

Suppose we have 4096 servers with 1 GB (gigabytes) connection to the rack switches.

Now we construct Aggregation and Intermediate layers in Clos, Fat-Tree, Hyper-Cube

and Star in such a way to have non-block traffic from each server to the others. Table

3.2 shows the specification of all these network topologies when there exists a total

number of 4096 servers in each one. The third, fourth, and fifth column of the table

show the number of nodes (other than server nodes), links (other than leaf nodes),

and total capacity in each topology respectively.
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Servers Nodes Links Capacity

Star 4096 273 272 8192

Clos 4096 304 1024 8192

Fat-Tree 4096 640 8192 8192

Hyper-Cube 4096 272 288 12288

Table 3.2: Specifications of different Network Topologies

We observe in Table 3.2 that the number of nodes and links for the Fat-Tree

topology is much higher than other topologies since it only uses 1GB links all over

the system. The Clos network that uses aggregate links (8GB links in our example)

in addition to 1GB links has lower number of nodes and links compared to Fat-Tree

but it has remarkably larger number of links compared to Star and Hyper-Cube. The

other point is that the total capacity of Hyper-Cube is higher than other topologies.

The reason is that for 4096 servers, there should be 16 switches in the core Hyper-

Cube, and each one should be connected to 4 other switches with 256GB links in

order to maintain the constant bisectional capacity property (see Fig. 3.14-b). This

increases the total capacity used in this topology compared to other ones.

Fig. 3.17 shows the comparison of network criticality for different data center

topologies. The number of servers was 8, 64, 512, or 4096 in each experiment. We

observe in Fig. 3.17 that Fat-Tree topology is the most robust topology (the lowest

criticality) while the Star topology is the least robust one, and Clos and Hyper-Cube

are in the middle. In fact, Hyper-Cube topology makes the Star more robust by

replacing the central node with a Hyper-Cube, and eliminates the problem of single

point of failure which is the weak point of the Star topology. Clos on the other hand
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Figure 3.17: Network Criticality for Different Topologies

sacrifices the robustness of Fat-Tree to some extent but lowers the number of the

network elements, and makes the network easier to manage.

3.8.2 Capacity Planning for Fixed Total Capacity

In this part, we applied the condition of the the fixed total capacity to our opti-

mizations in addition to the constant bisectional capacity which is needed for the

non-blocking routing capacity, and compared the robustness of the resulting net-

works. Fig. 3.18 shows the comparison of network criticality for various data center

networks for 8, 64, 512, and 4096 servers. What we observe here is that similar to the

last experiment, Fat-Tree has the lowest network criticality and is the most robust

topology. However, the Hyper-Cube for high number of servers (512 and 4096) has

become the least robust. The reason is that in previous experiment the total capacity

of Hyper-Cube was higher than the other topologies (see Table 3.2) but the condition
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Figure 3.18: Optimal Network Criticality Subject to Having Constant Bisection Ca-

pacity and Fixed Total Capacity

of the constant total sum of capacities brings down the capacity of core links and

increases the network criticality of the Hyper-Cube network.
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Robust Survivable Routing

The main elements of the autonomic management system under consideration in this

thesis are in the form of control loops some of which are fast in nature, while others are

slow. In this chapter we present our Robust Survivable Routing (RSR) algorithm that

implements a fast control loop for online routing of the incoming demands with the

orientation of fulfilling the self-optimizing and self-healing attributes of our autonomic

management system.

4.1 Robust Survivable Routing (RSR)

Shared backup protection permits bandwidth sharing among backup paths to save re-

sources while guaranteeing full failure recovery. Routing for shared protection involves

identifying working and backup paths that optimize the total bandwidth consump-

tion. The shared backup path protection (SBPP)[9][95][60] problem can be divided in

two parts. The first part deals with assigning appropriate restoration bandwidth on

each link to guarantee 100% single-failure recovery, and the second part is to choose

the best backup path for any active (working) path to minimize the total cost. To

66
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address the first problem, we consider three variables for each link, the working band-

width, the backup or restoration bandwidth, and the available bandwidth of the link.

When these variables are changing we check the new network condition and apply

appropriate changes to continue guaranteeing 100% failure recovery. To solve the sec-

ond problem we use the Weighted Random-Walk Path Criticality Routing algorithm

(WRW-PCR) which is proposed in [59].

WRW-PCR defines link cost to reflect its sensitivity to the changes in traffic de-

mand, network topology, and active source-destination pairs. We assess the criticality

of each link and attempt to choose the path with minimum overall criticality. This

method is examined for networks with bandwidth-guaranteed connections such as

MPLS [39] or optical networks with full wavelength conversion capability.

4.1.1 WRW-PCR

Weighted Random-Walk Path Criticality Routing algorithm (WRW-PCR) is a rout-

ing algorithm that tries to minimize network criticality to maximize the network

robustness. Minimization of network criticality has been investigated in detail in

[88, 59] and references therein. Here, we provide a very brief introduction. Assume

that there is a per-unit cost zij for link (i, j) with weight wij, and assume we have a

total budget of C for all the links. One general optimization problem is then:

Minimize τ̂

Subject to
∑

(i,j)∈E wijzij ≤ C ,C is fixed (4.1)

wij ≥ 0

Let w∗ij be the optimal weight of link (i, j) and τ̂ ∗ be the minimum value of τ̂ , then

for any sub-optimal solution of the convex optimization problem (τ̂), the deviation
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from the optimal solution (optimality gap) in optimization problem (4.1) has the

upper bound:

τ̂ − τ̂ ∗

τ̂
≤ 1 +

τ̂

C min(i,j)∈E
1
zij

∂τ̂
∂wij

(4.2)

In [59] a path selection method is designed using the upper bound for the opti-

mality gap in inequality (4.2). Without loss of generality, we assume that zij = 1 for

all links, then the upper bound becomes

1 +
τ̂ /C

min(i,j)∈E
∂τ̂
∂wij

= 1− τ̂ /C

max(i,j)∈E | ∂τ̂∂wij
|

Here we have used the fact that network criticality is a decreasing function of the

link weight. Therefore, the upper bound is determined by the link with the highest

sensitivity of τ̂ (i.e. the derivative of τ̂) with respect to weight . This suggests that

the path selection algorithm should avoid links with high sensitivity. WRW-PCR is

based on this fact, and it selects the shortest path (using Dijkstra or other shortest

path algorithm) where the link metric is given by

1− τ̂ /C

| ∂τ̂
∂wij
|

The length of a path is then:

∑
(1− τ̂ /C

| ∂τ̂
∂wij
|
) = h− (τ̂ /C)

∑ 1

| ∂τ̂
∂wij
|

where the sum is over all the links in the path and h is the number of hops in the path.

We note that this path selection algorithm can be viewed as a modified minimum hop

algorithm using a correction term based on link sensitivities.
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4.2 RSR Formulation

Consider a network of nodes and links that specifies a graph G(V,E). All links are

directed. We characterize a request for a path by a triple (sk, dk, bk). For request k,

sk specifies the ingress node, dk specifies the egress node, and bk is the amount of

bandwidth required (or unit bandwidth per wavelength for wavelength routing with

identical wavelength capacities). For each request, both active path and backup path

needs to be determined. By a path we mean a sequence of the network nodes that

starts with sk, ends with dk, there is a link from each node to the next node in the

sequence, and no node appears more than once. Even though it may not be necessary

to protect every path, in our work, we only consider demands that require protection

by pre-established backup paths. Since all paths are to be protected, the active path

and the backup path cannot share a common link for any path. If we want to protect

paths against node failures then the active and backup paths should not share a

common node.

4.2.1 RSR Notations and Assumptions

Backup path selection can be considered in different contexts and based on different

assumptions. The first factor is the level of protection an algorithm provides. This

can be protection against link and/or node failure. In this regard, our algorithms

provide protection against single link failure, based on the assumption that nodes are

stable enough or are protected against failures through redundancies. Thus we make

the following assumptions:

• A request is blocked if one cannot find either active or backup path.

• Every active path must be completely protected against single link failure.
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• If a link disjoint path cannot be found, the request is blocked.

The other factor is the level of information that path selection can be based on.

In this context, we propose two kinds of algorithms: backup path selection with Full

Sharing (FS) of the information of link backup capacities, and backup path selection

with No Sharing (NS) of this information. In FS, the information of backup capacity

which is used on a link due to failure on all other links of the network is used in

computing the backup paths for arriving demands, while in NS, available bandwidth

of the links is the only information used for this purpose. In fact, no backup capacity

is shared between various demands in NS.

Table 4.1: Notation

Notion Description

Cij capacity of link (i, j)

Wij total bandwidth used in working paths on link (i, j)

Rij total bandwidth used for backup(reserve) on link (i, j)

Fij Free capacity on link (i, j)

Ak active path for demand k

Bk backup path for demand k

S(ij, pr) Backup capacity used on link (i, j) due to failure of link (p, r)

The notation we use in our algorithms is shown in TABLE 4.1. Clearly, Fij =

Cij −Wij − Rij in both algorithms, and S(ij, pr) is used to prevent reserving repet-

itive capacity on each link related to simultaneous multiple link failures in the FS

algorithm. Since we have considered one link failure at a time, we have:

Rij = maxpr(S(ij, pr)) over every link (p, r) ∈ E (4.3)
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The reason for this equation is that each link should have backup capacity for the

worst case in which the most backup capacity is needed on it.

4.3 RSR Algorithms

In this section, we propose algorithms for FS and NS. In both algorithms, we first

compute the active path Ak using WRW-PCR algorithm, and then try to find a link

disjoint path Bk for the backup. Finally, we update states of the links on both active

and backup paths. The main difference between the two algorithms is in updating

link states after finding backup and working paths. In NS, the available bandwidth

of the links on both working and backup paths is decreased by bk while in FS, values

of S(ij, pr) are used to combine the backup capacities used on the links of backup

path.

4.3.1 NS Algorithm

The pseudo code for NS algorithm is as follows:

1- Wait for the next demand

2- Receive next demand specs (sk, dk, bk)

3- Prune links with residual capacities less than bk

4- Use WRW-PCR to choose the least critical path between (sk, dk)

as active path Ak

5- If no active path is found, block the demand; Go to step 1

6- If active path Ak is found, prune every link of it from G

7- Use WRW-PCR to find the least critical path between (sk, dk)

as backup path Bk

8- If no backup path is found, block the demand; go to step 1
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9- If backup Bk is found, update link states for links on Ak

and Bk as follows

- For every link (i, j) in Ak , Wij = Wij + bk ; Fij = Fij − bk

- For every link (i, j) in Bk , Rij = Rij + bk ; Fij = Fij − bk

10- Go to step 1

In step 9 of the algorithm, after finding working and backup paths, for links on

the working path the link working capacity is increased by bk, while for links on the

backup path the link backup capacity is increased by bk. Free capacity for links on

both paths is decreased by bk.

4.3.2 FS Algorithm

The pseudo code for FS algorithm is as follows:

1- Wait for the next demand

2- Receive next demand specs (sk, dk, bk)

3- Prune Links with residual capacities less than bk

4- Use WRW-PCR to choose the least critical path between (sk, dk)

as active path Ak

5- If no active path is found, block the demand; Go to step 1

6- If active path Ak is found, prune every link of it from G

7- Add links pruned in step 3

8- For every link (i, j) in (E|Ak), compute Hij = maxpr(S(ij, pr))

over all (p, r) in Ak ;Hij is the maximum backup bandwidth

used on link (i, j) due to a failure on Ak without counting

the current demand

9- Prune every link (i, j) in (E|Ak) for which Cij −Hij −Wij < bk
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10- Use WRW-PCR to find the least critical path between (sk, dk)

as backup path Bk

11- If no backup path is found, block the demand; go to step 1

12- If backup Bk is found, adjust link parameters of links on

Ak and Bk as follows

- For every link (i, j) in Ak , Wij = Wij + bk;

Fij = Fij − bk

- For every link (i, j) in Bk and every link (p, r) in Ak ,

S(ij, pr) = S(ij, pr) + bk

- For every link (i, j) in Bk update Rij as

Rij = maxpr(S(ij, pr)) over every (p, r) in E

13- Go to step 1

Note that in step 12, after finding working and backup paths, updating of the

link parameters of working path links is done similarly to NS algorithm. However,

for links on the backup path, first the values of S(ij, pr) are updated so that links on

the backup path have enough reserved capacity to support failure of any link on the

working path and then their backup capacity is adjusted using equation (3).

4.4 RSR Evaluation

In order to assess the proposed backup method both in NS and FS algorithms, we

developed several test scenarios. Our test network is shown in Fig. 4.1 which is

borrowed from [96], and it consists of 22 nodes and 45 full-duplex links. We considered

two different cases, the static case where each demand stays in the network forever

(no departures), and the dynamic case with arrivals and departures based on the

specified distributions. Demands in the static scenarios are chosen from a uniform
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Figure 4.1: Test Network Topology

random number generator which selects integer numbers between 1 to 3 units. In the

dynamic case the time of the demands is generated using a Poisson random number

generator with rate λ, again from integer numbers between 1 to 3, and the service

time is an exponential random variable with mean of µ where λ/µ is fixed in each of

the scenarios to an appropriate number.

4.4.1 Static Traffic

In the first scenario, we consider the network of Fig. 4.1, and assume the bandwidth

of the thin links is 1000 units while thick links have 2000 and 5000 units of bandwidth.

The demands are chosen randomly among all possible source-destination pairs. In

Fig. 4.2 we show the percentage of demands rejected using the NS method under
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Figure 4.2: NS Static Scenario

three different path selection strategies; WRW-PCR, Shortest Path (SP), and Widest

Shortest Path (WSP) [97]. SP is a well-known routing algorithm which is the base of

OSPF and WSP is the improved version of it. In our implementation of SP and WSP,

we first prune the links without enough available bandwidth to route the demand, and

then compute min-hop path(s) between source and destination. In this experiment, we

applied 9000 demands to the network each time and measured the blocking percentage

in each trial.

Fig. 4.3 shows the result for the same scenario in the case of full sharing. Since

in FS the network can accommodate more requests, 13000 requests are applied to

the network in each trial. Again WRW-PCR outperforms SP and WSP considerably,

while WSP has marginally better performance than SP.
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Figure 4.3: FS Static Scenario

4.4.2 Dynamic Traffic

We then conducted a dynamic scenario, where the incoming traffic has a finite life-

time. The traffic obeys the Poisson traffic with λ/µ = 900 for the NS scenario and

λ/µ = 1400 for the FS scenario. We measured the blocking percentage for 10000

demands in each trial. In all the dynamic scenarios the link capacities are scaled

down to 100, 200, and 500 units in order to reach the working point of the network

more rapidly. The results are shown in Fig. 4.4 and Fig. 4.5. Once again the results

indicate that WRW-PCR outperforms SP and WSP in both static and dynamic cases.

The reason of WRW-PCR’s superior performance is that it looks at more diversified

paths to choose the primary and backup paths based on their criticality (PCI) while

SP and WSP only look at the shortest path.
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Figure 4.4: NS Dynamic Scenario

4.4.3 No Share vs. Full Share

Finally, we compare the NS and FS methods for backup selection in another scenario.

Fig. 4.6 illustrates the comparison of no-share and full-share methods in a static

scenario, where we load the network of Fig. 4.1 with 13000 bandwidth requests.

As it is seen in this figure, for full-share method 96.5% of requests are accepted in

average while the average acceptance rate for no-share method is 67.9% which means

an improvement of 42.1 percent in FS compared to NS.

Fig. 4.7 summarizes the results for the second scenario when the traffic requests

have finite life time (λ/µ = 1400). Again in this case, we see similar results to

static case; in FS method 94.4% of requests are accepted in average while the average

acceptance rate for NS method is 71.1% which means an improvement of 32.7 percent

in FS compared to NS.
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Figure 4.5: FS Dynamic Scenario

Figure 4.6: Comparison of NS with FS in Static Scenario
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Figure 4.7: Comparison of NS with FS in Dynamic Scenario



Chapter 5

Network Design for Minimum

Vulnerability

We introduced our autonomic management system as a combination of slow and fast

control loops in chapter 2. As it can be seen in Fig. 2.3, one of the main functionalities

of the slow control loop is network planning that means assigning weights to network

links to have the most robust network. Robustness to the environmental changes is

a key factor in planning a communication network and it is considered as the ability

of the network to adapt itself to the environmental changes and continue to operate

efficiently in the presence of these changes.

An important aspect of robustness in a communication network is its vulnerability

to unwanted node/link failures or any malicious attack to nodes/links of the network.

A network is less vulnerable to the failures or attacks if it can handle them in the

best way. Vulnerability analysis studies the behavior of the network when a link/node

failure discontinues the operation of a part of the network. The important feature

of the network here is the ability of the network to operate efficiently and optimally

in case of node/link failures. Therefore, the main focus of this chapter is robust

80
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network design with emphasis on the robustness of the network when different failures

happen. In order to quantify the vulnerability of a communication network to a

failure, we consider the changes in the network parameters such as network criticality

and algebraic connectivity due to a failure, as a measure of network vulnerability to

that failure.

The methodology followed in this chapter is to optimize the weights of the net-

work to force it to have the best performance when failures happen. For this purpose,

we propose new vulnerability metrics based on the network criticality and algebraic

connectivity of the network when a single node/link failure happens. The first set

of our metrics quantify the worst case (maximum possible value) and expected value

that network criticality may take after a single node/link failure. We show that these

metrics are convex functions of link weights and we introduce and solve convex op-

timization problems to minimize these metrics. We will note that each optimization

problem can be useful depending on the nature of the network under study and its

possible failures. The second set of our proposed metrics are defined based on the

worst case (minimum possible value) and expected value that algebraic connectivity

may take after a single node/link failure. We show that these metrics are concave

functions of link weights and introduce and solve convex optimization problems re-

lated to each metric.

The main communication networks of interest in this chapter are core networks.

Therefore, we apply the proposed optimizations on Rocketfuel networks which are

the most trustable publicly available dataset for real ISP networks. We present the

results of applying each optimization problem on these networks, and compare the

results to introduce practical guidelines on using our metrics and optimizations.
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5.1 Vulnerability Analysis

In this section we present the vulnerability analysis of a communication network. We

define the vulnerability metrics of the network as functions of the variations of basic

metrics in case of failures. We define vulnerability metrics based on two base metrics

which are network criticality and algebraic connectivity.

5.1.1 τ̂-based vulnerability metrics

We model a communication network with an undirected weighted graph G(N,E,W )

where N and E are the set of nodes and links respectively, and W is the symmetric

link weight matrix. After the failure of a link (i, j), the network topology changes to

a new network. We assume that G is a connected graph, and it remains connected

after a single link or node failure. The new network after the failure of link (i, j) has

a new network criticality which we denote it as τ̂ (ij). In [22] it is proved that τ̂ is a

monotone decreasing function of link weights:

∂τ̂

∂wij
< 0 (5.1)

Therefore, failing a link that is equivalent to reducing wij from a positive value to

zero increases the quantity of network criticality and we have:

τ̂ (ij) > τ̂ (5.2)

for all the links in E. We can sort all of the network links based on their corre-

sponding τ̂ (ij). If the value of τ̂ (ij) corresponding to the link (i, j) is more, the network

is more vulnerable to the failure of that link. The link (i, j) is called the most critical



Chapter 5. Network Design for Minimum Vulnerability 83

link of the network if its τ̂ (ij) is the largest among all τ̂ (ij)’s. In a similar way, we

denote the τ̂ of the network after the failure of the node i as τ̂ (i). Once more, we sort

all of the network nodes by their τ̂ (i), and we call the network to be more vulnerable

to the failure of node i if τ̂ (i) corresponding to that node is more. The most critical

node of the network is the node for which τ̂ (i) is the most compared to all of the other

nodes.

Now we define four vulnerability metrics of the network as the worst case and

expected value of τ̂ (ij)’s and τ̂ (i)’s over all the links/nodes of the network. We denote

these vulnerability metrics as max(τ̂ (ij)), E(τ̂ (ij)), max(τ̂ (i)), and E(τ̂ (i)). The first

metric, max(τ̂ (ij)), is defined as the maximum value (worst value) of τ̂ (ij)’s over all

the links of the network, and is equal to τ̂ (ij) correspond to the most critical link of

the network.

max(τ̂ (ij)) = max{τ̂ (ij)|(i, j) ∈ E} (5.3)

Similarly, we define max(τ̂ (i)) as the maximum value (worst value) of τ̂ (i)’s over all

the nodes. In the following section we explain the details about the probabilistic

approach to failures and definition of other two metrics, i.e. E(τ̂ (ij)) and E(τ̂ (i)).

5.1.2 Probabilistic Approach to Failures

In this section we consider different failure probability for various links and nodes

of the network, and define vulnerability metrics which take this into account. The

first metric is the expected value of τ̂ (ij) when a single link failure happens which we

denote it by E(τ̂ (ij)). If we denote the failure probability of link (i, j) in case of a
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single link failure with πij, then:

E(τ̂ (ij)) =
∑

(i,j)∈E
πij τ̂

(ij) (5.4)

We define E(τ̂ (i)) as the expected value of τ̂ (i)’s over all the nodes of the network in

a similar way. If we denote the failure probability of node i in case of a single node

failure with πi, then:

E(τ̂ (i)) =
∑
i∈N

πiτ̂
(i) (5.5)

We notice that smaller values of these vulnerability metrics make the network less

vulnerable to failures corresponding to that metric.

Generally we do not have πij’s (πi’s) directly and we should formulate them in

terms of link (node) failure probabilities. For this purpose, let αij be the probability

of the failure of link (i, j), βi be the probability of the failure of node i and assume that

all the link or node failures are independent events. We denote the event of the single

failure of link (i, j) while all the other links and nodes of the network are working

normally with Fij, the event of the single failure of node i while all the other nodes

and links are working normally with Fi, the event of happening a Single Link (SL)

failure in the network with FSL and the event of happening a Single Node (SN)failure

in the network with FSN . We note that Fij’s and Fi’s are mutually exclusive events

since each event is related to the failure of a single link or node while all the other

network elements operate normally. Now we can calculate πij’s (πi’s) in terms of αij’s

and βi’s using the following formulation:
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Pr(Fij) = αij
∏

(k,p)∈E−(i,j)
(1− αkp)

∏
k∈N

(1− βk) (5.6)

Pr(Fi) = βi
∏

(k,p)∈E
(1− αkp)

∏
k∈N−i

(1− βk)

Pr(FSL) =
∑

(k,p)∈E
Pr(Fkp)

Pr(FSN) =
∑
k∈N

Pr(Fk)

πij = Pr(Fij|FSL) =
Pr(FijFSL)

Pr(FSL)
=

Pr(Fij)

Pr(FSL)

πi = Pr(Fi|FSN) =
Pr(FiFSN)

Pr(FSN)
=

Pr(Fi)

Pr(FSN)

Here by Pr(e) we mean the probability of the event e. We note that the first two

lines of this formulation is based on the assumption that the link and node failures

are independent events.

5.1.3 λ2-based vulnerability metrics

Now we develop similar concepts based on the algebraic connectivity as the base

metric of interest. Algebraic connectivity (λ2) is defined as the second smallest eigen-

value of the Laplacian matrix, where the smallest eigenvalue of the Laplacian matrix

is always zero, and λ2 > 0 if the graph is connected. In [4] it is shown that λ2 is a

monotone non-decreasing function of link weights:

∂λ2
∂wij

≥ 0 (5.7)

and it can be considered as a connectivity metric for a weighted graph. Now we

consider λ2 of the graph when a link or node fails in the network. We denote the λ2

of the network when the link (i, j) fails as λ
(ij)
2 . Since failing a link is equivalent to



Chapter 5. Network Design for Minimum Vulnerability 86

decreasing its weight to zero from a positive value, we have:

λ
(ij)
2 ≤ λ2 (5.8)

We note here that the larger values of λ2 or λ
(ij)
2 are more desired. Therefore, we can

sort all the links of the network based on their λ
(ij)
2 , and the link with the least λ

(ij)
2

is called the most λ2-critical link in the network. In a similar way, we define λ
(i)
2 as

the algebraic connectivity of the network when the node i fails. Again, we can sort

the network nodes based on their λ
(i)
2 ’s. The node with the lowest λ

(i)
2 is called the

most λ2-critical node of the network.

Now we define four λ2-based vulnerability metrics of the network as the worst case

and expected value of λ
(ij)
2 ’s and λ

(i)
2 ’s when a single link/node failure happens. The

first metric is min(λ
(ij)
2 ) which is the minimum (the worst value) of λ

(ij)
2 over all links

of the network. This value corresponds to the value of λ
(ij)
2 for the most λ2-critical

link, and shows the worst value that algebraic connectivity may take after a single

link failure. The next metric is E(λ
(ij)
2 ) which is the expected value of λ

(ij)
2 ’s when a

single link failure happens:

E(λ
(ij)
2 ) =

∑
(i,j)∈E

πijλ
(ij)
2 (5.9)

We define vulnerability metrics related to a single node failure in a similar way. The

first metric is min(λ
(i)
2 ) which is the worst value that λ2 may take through a single

node failure. This metric is equal to the λ
(i)
2 correspond to the most λ2-critical node

in the network. The next metric is E(λ
(i)
2 ) which is the expected value of λ

(i)
2 ’s over

all the links of the network:

E(λ
(i)
2 ) =

∑
i∈N

πiλ
(i)
2 (5.10)
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Table 5.1: summary of the definition of the metrics

τ̂ Network Criticality

max(τ̂ (ij)) Maximum of τ̂ in case of a single link failure

E(τ̂ (ij)) Expected value of τ̂ in case of a single link failure

max(τ̂ (i)) Maximum of τ̂ in case of a single node failure

E(τ̂ (i)) Expected value of τ̂ in case of a single node failure

λ2 Algebraic Connectivity

min(λ
(ij)
2 ) Minimum of λ2 in case of a single link failure

E(λ
(ij)
2 ) Expected value of λ2 in case of a single link failure

min(λ
(i)
2 ) Minimum of λ2 in case of a single node failure

E(λ
(i)
2 ) Expected value of λ2 in case of a single node failure

Table 5.1 shows a summary of the metrics we defined in this part. We can optimize

each of these metrics in planning a communication network. In the following subsec-

tions, we first prove that all of the defined metrics are convex or concave functions of

link weights. Then we introduce convex optimization problems to optimize each of

them, and explain methods to convert all the optimization problems to semidefinite

programs (SDPs).

5.1.4 Convex and Concave Vulnerability Metrics

In the previous section we showed that τ̂ is a convex function of link weights, while

λ2 is a concave one. Here we prove that all of the τ̂ -based metrics in Table 5.1 are

convex functions of link weights and all of the λ2-based one’s are concave.

Proposition 5.1.1. τ̂ (ij) and τ̂ (i) (λ
(ij)
2 and λ

(i)
2 ) are convex (concave) functions of
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link weights.

Proof. In theorem 3.1.1 it is proved that τ̂ is a convex function of link weights. Since

τ̂ (ij) = τ̂ |wij=0 , τ̂
(ij) is also a convex function of link weights. In addition, τ̂ (i) is equal

to τ̂ when the weights of all the links incident to node i are set to zero, so τ̂ (i) is also

a convex function of link weights. With a similar reasoning, it can be easily proved

that λ
(ij)
2 and λ

(i)
2 are concave functions of link weights.

Proposition 5.1.2. max(τ̂ (ij)), E(τ̂ (ij)), max(τ̂ (i)), and E(τ̂ (i)) are convex functions

of link weights. Furthermore, min(λ
(ij)
2 ), E(λ

(ij)
2 ), min(λ

(i)
2 ), and E(λ

(i)
2 ) are concave.

Proof. According to proposition 5.1.1, τ̂ (ij)’s are convex functions of link weights.

Therefore, max(τ̂ (ij)) which is the maximum of a number of convex functions (eq.

5.3) is a convex function of link weights [98]. Moreover, E(τ̂ (ij)) is a convex function

of link weights since it is a weighted sum of a number of convex functions with

non-negative coefficients (eq. 5.4). With a similar reasoning, it can be proved that

max(τ̂ (i)), and E(τ̂ (i)) are convex functions of link weights as well. A similar proof is

valid for concavity of λ2-based metrics.

Here we note that although τ̂ is an strictly convex function of link weights, it can

be easily verified that τ̂ (ij) and τ̂ (i) are not strictly convex, and as a result, τ̂ -based

vulnerability metrics are not strictly convex. In addition, non of the λ2-based metrics

(including λ2 itself) is strictly concave.
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5.1.5 Optimizing the Vulnerability Metrics

Consider a weighted graph G(N,E,W ) with a symmetric cost matrix Z = [zij] where

zij is the cost of assigning a unit of weight to the link (i, j). Then the total cost of

the planning for the network would be
∑

(i,j)∈E zijwij. If Φ(W ) is a convex metric of

the Table 5.1, the following optimization problem minimizes this metric:

Minimize Φ(W ) (5.11)

Subject to
∑

(i,j)∈E
zijwij ≤ C, C is fixed

wij ≥ 0 ∀(i, j) ∈ E

This is a convex optimization problem since it has a convex objective function and

linear constraints, and the optimum value obtained from it is a global optimum. It is

also noteworthy that at optimum
∑

(i,j)∈E zijwij = C, and we can relax the inequality∑
(i,j)∈E zijwij ≤ C to equality.

If Φ(W ) is an strictly convex function of link weights (which happens only when

Φ(W ) = τ̂), then the optimum weight matrix W ∗ is unique. Since the metrics in Table

5.1 are not strictly convex (except for τ̂), the optimum weight set corresponding to

the optimum value for (5.11) may not be unique. We pick the weight matrix with

the smallest (most desirable) τ̂ from the set of solutions to (5.11) as the most robust

solution through a second optimization. If ζ is the optimum value obtained from

(5.11), then the second optimization problem is:
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Minimize τ̂ (5.12)

Subject to Φ(W ) ≤ ζ∑
(i,j)∈E

zijwij ≤ C

wij ≥ 0 ∀(i, j) ∈ E

Since the minimum value that Φ(W ) can take is ζ, the feasible set of (5.12) is the

solution set of (5.11). However, as the solution set of a convex optimization problem

is a convex set [98], optimization problem (5.12) is a convex optimization problem

in turn. There is a practical point here that because of the rounding problem, when

optimization (5.12) is solved numerically, inequality: Φ(W ) ≤ ζ should be relaxed to:

Φ(W ) ≤ ζ + ε, where ε is a very small number (e.g. n× 10−8).

We denote the result of optimizations (5.11) and (5.12) based on metric of interest

as follows:

mT ( minimize τ̂ ) if Φ(W ) = τ̂ ;

mMTL (minimize Maximum τ̂ in case of Link failures) if Φ(W ) = max(τ̂ (ij));

mMTN (minimize Maximum τ̂ in case of Node failures) if Φ(W ) = max(τ̂ (i));

mETL (minimize Expected value of τ̂ in case of Link failures) if Φ(W ) = E(τ̂ (ij));

mETN (minimize Expected value of τ̂ in case of Node failures ) if Φ(W ) =

E(τ̂ (i)).

In order to optimize λ2-based metrics which are concave functions of link weights,

we change the first optimization problem to a maximization problem, and we do a

similar second optimization to obtain the most robust weight matrix from the solution

set of the first optimization. We have five new optimization problems which we denote

as follows:
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ML ( Maximize λ2) if Φ(W ) = λ2;

MmLL (Maximize minimum λ2 in case of Link failures) if Φ(W ) = min(λ
(ij)
2 );

MmLN (Maximize minimum λ2 in case of Node failures) if Φ(W ) = min(λ
(i)
2 );

MELL (Maximize Expected value of λ2 in case of Link failures) if Φ(W ) =

E(λ
(ij)
2 );

MELN (Maximize Expected value of λ2 in case of Node failures) if Φ(W ) =

E(λ
(i)
2 ).

A summary of our naming convention for the optimization problems is shown in

Table 5.2.

5.2 Semidefinite Programming (SDP) Formulation

We can convert all the optimization problems introduced above to SDPs [99, 100] that

can be solved numerically faster and more efficiently. Here we show the derivation

for a few cases, and the rest can be obtained similarly.

5.2.1 SDP formulation of mT

Similar to what we did to obtain 3.11, the SDP equivalent of mT can be obtained as

follows:

Minimize
2

n− 1
(Tr(Γ)− 1) (5.13)

Subject to
∑

(i,j)∈E
zijwij ≤ C

Γ I

I L+ J
n

 � 0

Diag(V ec(W )) � 0
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where Diag(V ec(W )) is a diagonal matrix with all the elements of weight matrix W

on its main diagonal and
−→
1 is a n× 1 vector with all of its elements equal to 1. This

optimization problem is a semidefinite program since its objective is a linear function

and its constraints are linear matrix inequalities (LMI) [98].

5.2.2 SDP Formulation of mETL

We denote the Laplacian of the remaining graph when link (i, j) fails with L(ij). It is

easily seen that L(ij) = L|wij=0 and we can state τ̂ (ij) as:

τ̂ (ij) =
2

n− 1
Tr(L(ij)+) =

2

n− 1
Tr(L(ij) + J/n)−1 − 2

n− 1

Please see [4] for more explanation about this equation. Now we can rewrite first

optimization problem of mETL as follows:

Minimize
2

n− 1
(t− 1) (5.14)

Subject to
∑

(i,j)∈E
zijwij ≤ C

Tr(L(ij) + J/n)−1 ≤ tij ∀(i, j) ∈ E∑
(i,j)∈E

πijtij ≤ t

Diag(V ec(W )) � 0

If we consider Θij =

Γ(ij) I

I L(ij) + J
n

, the Schur complement [28] of Θij is

Γ(ij)−(L(ij)+J/n)−1. Θij is positive-semidefinite iff its Schur complement is positive-

semidefinite, i.e.:

Θij =

Γ(ij) I

I L(ij) + J
n

 � 0⇔ Γ(ij) � (L(ij) + J/n)−1 (5.15)
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and the inequality Γ(ij) � (L(ij) + J/n)−1 results in Tr(Γ(ij)) ≥ Tr(L(ij) + J/n)−1.

Therefore we can reformulate (5.14) as the following semidefinite program:

Minimize
2

n− 1
(t− 1) (5.16)

Subject to
∑

(i,j)∈E
zijwij ≤ C

Γ(ij) I

I L(ij) + J
n

 � 0 ∀(i, j) ∈ E

Tr(Γ(ij)) ≤ tij ∀(i, j) ∈ E∑
(i,j)∈E

πijtij ≤ t

Diag(V ec(W )) � 0

where Γ(ij)’s are m variable n×n matrices, and tij’s are m real variables. The second

optimization problem for mMTL can be converted to an SDP similarly.

5.2.3 SDP formulation of mMTN

The process of converting mMTN to an SDP is a little different since the network

will have n−1 nodes after a node failure. If we denote the Laplacian, weight matrix ,

and diagonal matrix of weighted node degrees of the network after failure of the node

i with L(i), W (i) and D(i) respectively, then:

W (i) = I(i)n W I(i)tn

L(i) = D(i) −W (i)

τ̂ (i) =
2

n− 2
Tr(L(i)+)

L(i)+ = (L(i) +
J

(n− 1)
)−1 − J

(n− 1)
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where I(i)n is an (n− 1)× n matrix obtained by removing ith row from n× n identity

matrix In. The SDP formulation of mMTN can be formulated as follows similar to

the optimization problem (5.16):

Minimize
2

n− 2
(t− 1) (5.17)

Subject to
∑

(i,j)∈E
zijwij ≤ C

 Γ(i) In−1

In−1 L(i) + J
n−1

 � 0 ∀i ∈ N

Tr(Γ(i)) ≤ t ∀i ∈ N

Diag(V ec(W )) � 0

where Γ(i)’s are n variable (n − 1) × (n − 1) matrices, and In−1 is (n − 1) × (n − 1)

identity matrix.

5.2.4 SDP Formulation of ML

In this part we convert optimization ML to an SDP. For this purpose we rewrite the

first optimization problem of ML as follows:

Maximize t (5.18)

Subject to λ2 ≥ t∑
(i,j)∈E

zijwij ≤ C

wij ≥ 0
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It can be easily proved that the inequality constraint λ2 ≥ t is equivalent to the

following:

L � t(I − J/n) (5.19)

The reason is that the eigenvalues of the matrix L− t(I −J/n) are 0, λ2− t, ..., λn− t

and positive-semidefiniteness of this matrix leads to λ2 ≥ t and vice versa. Therefore

we can convert (5.18) to the following:

Maximize t (5.20)

Subject to
∑

(i,j)∈E
zijwij ≤ C

L � t(I − J/n)

Diag(V ec(W )) � 0

which is an SDP.

5.3 Evaluations

In section 5.1, we introduced 10 metrics for a network when modeled as a weighted

graph (see table 5.1), and we introduced 10 optimization problems corresponding to

these metrics. In this section we apply these optimizations on different networks to

observe the behavior and effects of each optimization problem. We use CVX [101],

which is a package for specifying and solving convex programs, to solve the convex

optimization problems formulated in the previous section. In order to provide a

better sense of results, we start with a simple network and discuss the consequence

of applying different optimization problems, and then we study the behavior of real

networks (Rocketfuel and Abilene). We also compare our results for optimum weight
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Table 5.2: List of the abbreviations for weight assignment methods

Method Description Optimized Metric

EW Equal Weights -

IW Initial Weights -

mT minimize τ̂ τ̂

mMTL minimize Maximum τ̂ in case of Link failures max(τ̂ (ij))

mETL minimize Expected value of τ̂ in case of Link failures E(τ̂ (ij))

mMTN minimize Maximum τ̂ in case of Node failures max(τ̂ (i))

mETN minimize Expected value of τ̂ in case of Node failures E(τ̂ (i))

ML Maximize λ2 λ2

MmLL Maximize minimum λ2 in case of Link failures min(λ
(ij)
2 )

MELL Maximize Expected value of λ2 in case of Link failures E(λ
(ij)
2 )

MmLN Maximize minimum λ2 in case of Node failures min(λ
(i)
2 )

MELN Maximize Expected value of λ2 in case of Node failures E(λ
(i)
2 )
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assignment using optimization problems with two more weight sets. The first weight

set is Initial Weights (IW), in which the link weights are proportional to the link

capacities of the real networks under study. We use the initial link weights and the

link costs zij’s, to obtain the total cost of the planning for the initial network, i.e. C,

using the equation: C =
∑

(i,j)∈E zijwij, and use equal value in all of the optimization

problems we apply on the network. The other weight set is Equal Weights (EW),

in which we assign equal weight to all the network links. We hold the equation∑
(i,j)∈E zijwij = C by assigning the same weight to all of the network links as follows:

wij = C/(
∑

(i,j)∈E
zij) ∀(i, j) ∈ E

Then there are 12 weight assignments for every network in total. Table 5.2 presents a

review of all the proposed methods and the corresponding optimized metric for each

of them.

5.3.1 mT, mMTL and mMTN

We first start our evaluations with mT, mMTL, and mMTN methods. We apply

these methods on the networks, and observe the effect of each method on the relevant

metrics and compare them to IW and EW. Then we compare the routing performance

for these methods in the presence of single link/node failures.

Fish Network

The topology of the Fish network for EW method is shown in Fig. 5.1-a. In this

part we assume the total cost of planning to be equal to be C = 30, and all the links

have equal planning cost equal to 1, i.e., zij = 1 ∀(i, j) ∈ E. This network has 18

directed links and 7 nodes, and therefore the weight of all the links using EW method

is wij = 30
18

= 1.667 as it is indicated in Fig. 5.1-a. The original Fish network used in
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(a) EW (b) mT

(c) mMTL (d) mMTN

Figure 5.1: Weight Sets for Fish Network using EW, mT, mMTL, and mMTN Meth-

ods

[4] does not include any link between nodes 1 and 5 ; however, we add it here to the

fish network to make it more asymmetric. The numerical value for network criticality

in this case is: τ̂ = 0.5854. Now by calculating the value of network criticality after

different single link failures, we find that in case of failure of link (1, 5) or (3, 4) (in

both directions) network criticality changes to τ̂ (15) = τ̂ (34) = max(τ̂ (ij)) = 0.9095,

and since this is the maximum value max(τ̂ (ij)) can take in this network, links (1, 5)

and (3, 4) are the most critical links of the network. The corresponding value of

network criticality for a single node failure is max(τ̂ (i)) = 1.1200 which occurs with

the failure of the node 5 or 4, i.e., τ̂ (5) = τ̂ (4) = max(τ̂ (i)) = 1.1200. Since the failure

of a node effectively is equivalent to the failure of the set of links incident to that

node, it affects the network more severely, and increases the network criticality more

than link failures.

Now we examine the optimized weight sets for mMTL and mMTN methods.
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Once more, in both of these optimizations for Fish network, we assume zij = 1

for ∀(i, j) ∈ E and C =
∑

(i,j)∈E zijwij = 30. Fig. 5.1-b to Fig. 5.1-d illustrate

the computed weight sets for mT, mMTL, and mMTN methods for Fish network.

According to this figure, the weight matrix is different for each optimization, and as

an example, for mMTL method the weight matrix for the network is as follows:

WmMTL =



0 1.273 1.475 0 2.095 0 0

1.273 0 1.273 0 0 0 0

1.475 1.273 0 2.095 0 0 0

0 0 2.095 0 1.755 1.707 0

2.095 0 0 1.755 0 0 1.707

0 0 0 1.707 0 0 1.617

0 0 0 0 1.707 1.617 0



Fig. 5.1-b indicates that to minimize network criticality in mT method, more

weight is assigned to links (3, 4) and (1, 5) since they are more critical, and weights

of the links (1, 3) and (4, 5) are significantly decreased. Table 5.3 shows the network

criticality and vulnerability metrics of mT, mMTL, and mMTN methods. For mT

method, we have τ̂ = 0.5600 which is the best attainable network criticality value for

the network, and is 4.33% less than τ̂ in EW case. Comparison of the vulnerability

metrics of EW and mT shows that max(τ̂ (i)) for mT is also better (less), however,

max(τ̂ (ij)) is better for EW. This shows that minimizing τ̂ does not neccesarily opti-

mize all vulnerability metrics. The third and fourth rows of the Table 5.3 show that
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the best attainable value for max(τ̂ (ij)) for Fish network is 0.8807, and takes place

with mMTL wieght set. Moreover, the best possible value of max(τ̂ (i)) is 0.9945, and

corresponds to mMTN weight set. The other interesting point we observe in Table

5.3 is that the changes of max(τ̂ (ij)) and max(τ̂ (i)) in different methods is more than

the changes of τ̂ in various weight assignments.

Table 5.3: Parameters of Fish Network for Various Weight sets

EW mT mMTL mMTN

τ̂ 0.5853 0.5600 0.5762 0.5726

max(τ̂ (ij)) 0.9095 0.9221 0.8807 0.9861

max(τ̂ (i)) 1.1200 1.0782 1.1015 0.9945

Rocketfuel Networks and Abilene

Table 5.4: Rocketfuel Dataset ISPs

ISP Routers Links Reduced Reduced Weight Total

Cities Links per Link Weight

1755 87 322 18 33 0.7822 51.628

3967 79 294 21 36 0.6743 48.551

1239 315 1944 30 69 0.7231 99.784

Table 5.5: Parameters of 1755 Network for Various Weight sets

EW IW mT mMTL mMTN

τ̂ 1.9408 1.1977 1.1013 1.1239 1.1257

max(τ̂ (ij)) 3.6802 1.5478 1.3774 1.3277 1.4190

max(τ̂ (i)) 3.6557 1.7525 1.6188 1.7070 1.4997
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(a) 1239 Network (b) 1755 Network

(c) Abilene Network (d) 3967 Network

Figure 5.2: Comparison of IW and EW with optimized Weight Sets for Abilene and

Rocketfuel Networks

Rocketfuel topologies [102] are the most important ISP networks that their dataset

are publicly available. In this part, we apply the first set of our optimizations on Rock-

etfuel topologies [102]. We obtained the maps of Rocketfuel ISPs from their available

dataset and adopted a method from [52] to collapse and simplify the topologies. Ac-

cording to this method, we considered each city of the initial network as a single node
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(a) 1239 Network (b) 1755 Network

(c) Abilene Network (d) 3967 Network

Figure 5.3: Parameters of Different Optimized Weight Sets for Abilene and Rocketfuel

Networks

of the final network with a single link between nodes in the final network, and summed

up the capacity of all the links between cities in the initial network to obtain the to-

tal capacity of the equivalent link between corresponding nodes in the final network.

There were links between routers inside each city in the initial networks that were

eliminated by considering each city as a node of the final network. We also eliminated
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leaf nodes of the final network in a few iterations to reach the topologies with nodes

of degree two or more. Table 5.4 indicates the final data for the Rocketfuel networks

after our processing. We also performed our tests on Abilene [103] network. Abilene

includes with 11 undirected links and 9 nodes. Since the networks under experiment

in this part are real networks, they already have an initial weight (IW) set, and the

weights are considered to be proportional to the link capacity of the real networks.

EW weight sets for Rocketfuel networks are different from IW since the initial links

have different capacities, however, just for Abilene network, EW and IW are the same

as all the links have equal capacities. The link costs (z′ijs) are considered to be 1 for

all links in these series of experiments.

(a) No Failure (b) Single Link Failure

Figure 5.4: Comparison of Cumulative Link Utilization for Three Weight Sets: EW,

mT, and mMTL; Before and After a Link Failure

Network criticality and vulnerability metrics of Rocketfuel networks and Abilene

for mT, mMTL, and mMTN methods are shown in Fig. 5.2. As it is easily seen in

this figure, there is a large difference between the parameters of the initial weight

(IW) and optimized weight assignments for Abilene and Rocketfuel networks. This
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(a) No Failure (b) Single Node Failure

Figure 5.5: Comparison of Cumulative Link Utilization for Three Weight Sets: EW,

mT, and mMTN; Before and After a Node Failure

indicates that our proposed optimizations lead to a significant improvement in the

vulnerability metrics for these networks. As an example, looking at Table 5.5 shows

that the optimal metrics of 1755 network, i.e. τ̂ , max(τ̂ (ij)), and max(τ̂ (i)), improve

42%, 61.4%, and 60% in optimum cases respectively compared to IW case.

Finally, the comparison of the metrics of Rocketfuel networks and Abilene for op-

timized weight assignments of interest in this section, i.e., mT, mMTL, and mMTN is

shown in Fig. 5.3 while IW and EW are excluded. Similar to what we observed about

the Fish network, we see that network criticality changes much less than vulnerability

metrics max(τ̂ (ij)) and max(τ̂ (i)) in different optimization methods. Our experiments

in the next subsection, confirms that this effect results in an improvement in the traffic

routing performance after a failure happens.
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Routing Performance

In the previous section we compared the metrics of different weight sets but we did

not compare their performance when the traffic is applied to them. Here, we apply

traffic to the networks under experiment with various weight sets and examine their

routing performance. The dataset of Rocketfuel topologies does not include traffic

matrices (TMs), so we synthesized traffic matrices for Rocketfuel topologies using

Gravity model [53] [104]. This model is based on the assumption that real networks

are designed based on the real expectations of traffic demand. Similar to [53] we

assumed that the volume of external outgoing and incoming traffic for each of the

nodes in the final Rocketfuel networks is proportional to the total capacity of the

links attached to those nodes. Then we divided the external incoming traffic to each

node between all nodes of the network proportional to the capacity of their incident

links and in this way we calculated the full-mesh TM.

We used IGP-WO method in the TOTEM package [105] to measure the link

utilization for the network links. IGP-WO is a tool which optimizes routing weights

for intradomain Internet routing protocols like OSPF and IS-IS. It uses Tabu search

meta-heuristic method [106] to obtain the routing weights of the links (which are

different from link capacities) to utilize network in an optimum way. We set the link

capacities equal to the weights we obtained from our optimizations or equal (initial)

weights for EW (IW), and let the TOTEM calculate its routing weights and route

the full-mesh gravity traffic matrix.

The cumulative distribution of the link utilization for the Abilene network for

three different weight sets EW, mT, and mMTL before any failure is indicated in Fig.

5.4-a . As this figure shows link utilization for mT method has the best distribution

as no link is utilized more than 60% in this case while there are links with high
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utilization for mMTL and EW methods. In the next experiment, we compare the

link utilization of these networks after the failure of the most critical link of the

network. Again we measured the cumulative distribution of link utilzation for each

method and the results are shown in Fig. 5.4-b. In this figure, we can clearly observe

that mMTL has a better routing performance than mT and EW after the link failure

because there is no link with a higher utilization than 90%, while mT and EW do

include such heavy-loaded links.

The next series of our tests examine the routing performance of mMTN after a

single node failure. For this purpose, we compare the link utilizations of Abilene net-

work for EW, mT, and mMTN methods before and after a node failure. Cumulative

distribution of link utilization for each of the three weight sets is shown in Fig. 5.5-a

when no failure has happened. We observe in this figure that mT has a better link

utilization distribution as it does not have any link with a utilization higher than

60% but mMTN and EW have such links. Now we measure the link utilizations in all

three methods after the failure of the most critical node of the network. Cumulative

link utilization for each case is indicated in Fig. 5.5-b. We can clearly observe in

this figure that the routing performance after the node failure for mMTN is better

because there is no link with a utilization higher than 60% for this method; however,

there are such highly utilized links for mT and EW methods.

5.3.2 Optimizing Expected Value of τ̂ after failures

In this part we apply mETL and mETN on the networks to observe the effect of them.

The difference here is that mETL and mETN consider different failure probability

for network nodes or links but two previous optimizations, i.e. mMTN and mMTL,

do not. As an example consider Fish network when the failure probability for node
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(a) mT (b) mETN

(c)

Figure 5.6: Comparison of mT with mETL for Fish Network When Failure of Node

5 is 3 Times More Probable Compared to the Other Nodes (MCN = Most Critical

Node(s))

5 is 3 times more compared to the other nodes (Fig 5.6). As a numerical example,

we assume the failure probability of node 5 is β5 = 3 × 10−6 , for all other nodes

βi = 10−6 , and for all links αij = 10−4 (see Eq. 5.6). First we look at Fig. 5.6-a

which displays the weight assignment for mT. We notice mT has not considered the

node failure probabilities, and link weights are equal to what we saw before for mT

method (Fig. 5.1-b). In addition, by looking at Fig. 5.6-c we observe that both

nodes 4 and 5 are Most Critical Nodes (MCN) of the network for mT, and there is

a symmetry for these nodes in this case. Now comparing mETN in Fig. 5.6-b with

mT, we observe that METN has given less weights to the links incident to node 5

due to its unreliability, and node 5 is not MCN anymore (Fig. 5.6-c). Comparison

of the other parameters of the two methods in Fig. 5.6-c shows that mETN has a

better expected value for τ̂ (i) while mT has a better τ̂ , which is a natural result of the
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objective functions for each optimization problem. However, τ̂ (5) is lower (better) for

mETN that shows this method is more robust against failure of the most unreliable

node of the network, i.e node 5.

5.3.3 Optimizing λ2

Figure 5.7: Comparison of ML with mT for Various Networks

In this part we maximize λ2 for the networks and compare them with previous

optimized graphs. Fig. 5.7 shows a brief comparison between ML (Maximize λ2)

against mT for all the networks under investigation. Comparison of λ2 and τ̂ for each

network in two methods shows that λ2 is better (larger) for ML while τ̂ is better

(smaller) for mT. This is what we naturally expected due to the objective function

of each optimization problem. However, comparison of min(λ
(ij)
2 ) for ML and mT

shows that even though ML maximizes λ2 for the network, ML does not have a good

performance in case of failures, and this parameter is better for mT in all of the

networks. In extreme cases for 1239 and 3967 networks, min(λ
(ij)
2 ) = 0 for ML,

and it means that there is a link that its failure make the network disconnected.

This motivate us to go for maximizing min(λ
(ij)
2 ) and min(λ

(i)
2 ) in the next part, i.e.

MmLL, and MmLN methods, as ML does not seem to be a robust weight assignment
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in case of failures. Here we note that the reason that we may go after algebraic

connectivity instead of network criticality, in spite of its sub-optimality, can be the

complexity. According to eq. (3.8), calculation of τ̂ is more computationally intensive

than λ2 since we should know all the Laplacian eigenvalues to calculate τ̂ , while λ2

is simply the second smallest one.

5.3.4 Optimizing λ2-Based Vulnerability Metrics

(a) 1239 Network (b) 1755 Network

(c) Abilene Network (d) 3967 Network

Figure 5.8: λ2-Based Parameters for ML, MmLL, and MmLN
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In this part we maximize the λ2-based vulnerability metrics, i.e. min(λ
(ij)
2 ) in

MmLL and min(λ
(i)
2 ) in MmLN, and compare the results with ML. Fig. 5.8 shows

the comparison of the parameters of Abilene and Rocketfuel networks for optimized

weight assignments ML, MmLL, and MmLN. What we observe here is that vulner-

ability metrics min(λ
(ij)
2 ) and min(λ

(i)
2 ) for MmLL and MmLN have a tangible im-

provement over ML for all of the networks. Specially for 1239 and 3967, we observe

that ML has vulnerability metrics equal to zero which means failure of some links or

nodes makes the ML network disconnected; however; this problem does not exist for

MmLL and MmLN anymore. We also notice that this improvement is obtained by a

decrease in λ2 for MmLL and MmLN compared to ML which is naturally expected

due to the objective functions of these optimizations.
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Conclusions

Design and management of communication networks in today’s world is a challenging

task. While the initial design of a communication network should be able to respond

to the initial requirements of the network and match different restrictions such as

physical and financial constraints, the management system should be able to adapt

itself to the varying needs and applications, and render the desired quality of ser-

vice for each client according to its service level agreement and provider’s policies.

In addition, creation and evolution of virtual networks within the existing physical

infrastructure is an ongoing responsibility of the management system. All these tasks

should be performed with minimum human intervention since it is the main origin of

errors and imposes a high expense on the system. In response to this need, we have

provided algorithmic solutions in the direction of realizing an autonomic management

system for a communication network with emphasis on robustness in design and man-

agement. The management system under consideration designs a robust network by

optimizing some robustness metrics and continuously optimizes the robustness met-

rics to keep the network in the most robust state over time.

111
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6.1 Contributions

The main contribution of this thesis is providing algorithms and optimizations to

implement different blocks of the autonomic management system under consideration.

We present here a brief description of different parts of our proposed solution and

explain the contributions of each part.

6.1.1 Robust Topology Design

We tackled the problem of robust topology design as an important aspect of the slow

control loop of our proposed autonomic management system. We investigated the

behavior of different graph theoretic measures on some well-known graph topologies

including structured graphs as well as different classes of complex networks including

ER random, small-world, and scale-free networks [8]. More specifically, we examined

the effect of network size on network criticality, algebraic connectivity, average degree,

and average node betweenness. We observed that in both structured and complex

networks, network criticality reveals more information about the network structure

compared to algebraic connectivity. However, we found that there is no unique graph

metric to satisfy both connectivity and robustness objectives while keeping a reason-

able complexity. Each metric captures some attributes of the graph. It turns out

that in order to design or simplify a network, we need to study the effect of all these

graph metrics and choose the best network topology according to the requirements

of the problem at hand.

In addition, we investigated the robustness properties of various data center

topologies as an application of our approach to the topology design. We examined the

robustness behavior of four different data center topologies, including Clos, Fat-Tree,

Hyper-Cube, and Star using the network criticality as the robustness metric and con-
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sidering that each topology should provide non-blocking connectivity between all the

servers. Considering the fact that network criticality is a strictly convex function of

link weights, we proposed a convex optimization problem of minimizing the network

criticality under some constraints on the weight matrix. We also found a semi-definite

programming representation of this problem which permits us to use available liter-

ature on semi-definite programming to solve the optimization problem and find the

optimal weights.

6.1.2 Robust Survivable Routing Algorithm

We proposed Robust Survivable Routing (RSR) algorithm [10] as a method to imple-

ment the fast loop of our proposed autonomic management system with emphasis on

realizing self-optimizing and self-healing attributes of a self-managing system. The

main contribution of this method is to present the routing strategy to create the paths

both in primary and backup selection. RSR guarantees 100% single-link-failure re-

covery as a path-based survivable routing method. The main idea is to quantify each

path with a value to quantify its sensitivity to the incremental changes in external

traffic and topology by evaluating the variations in network criticality of the network.

The path with best robustness (path that causes minimum change in total network

criticality) is chosen as primary (secondary) path.

We assigned a working path and a link-disjoint backup path to each demand

using WRW-PCR algorithm [59], and combined the back-up paths for different active

demands using Shared Backup Path Protection (SBPP) techniques. We implemented

two methods of No Share (NS) and Full Share (FS) to combine backup resources.

We evaluated RSR through extensive simulations and in different scenarios. We

conducted experiments in both static and dynamic cases of incoming traffic, and
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showed that our algorithm leads to a remarkable lower blocking ratio compared to

the methods based on SP and WSP. We also compared NS and FS in both static

and dynamic scenarios and showed that the amount of backup resources gets reduced

considerably in FS compared to NS.

6.1.3 Design for Minimum Vulnerability

We proposed robust network design with emphasis on minimum vulnerability to single

node and link failures [11, 12, 13]. In vulnerability analysis, our focus was to study the

behavior of a communication network in case of node/link failures, and optimize the

weights of the network to design it to have the best performance when failures happen.

For this purpose, we proposed new vulnerability metrics based on the variations of

network criticality or algebraic connectivity of the network when a single node/link

failure happens. We defined two sets of vulnerability metrics based on two basic

metrics, network criticality and algebraic connectivity. The first metric set captures

the worst or the expected value of the network criticality after a single link or node

failure. We showed that these metrics are convex functions of link weights. The second

set quantifies the worst or the expected value of the network algebraic connectivity

after a single link/node failure. We proved that the metrics of the second set are

concave functions of link weights. We proposed convex optimization problems to

optimize each vulnerability metric, and converted the optimization problems to SDP

formulation to have a faster implementation for large networks.

We compared and contrasted the vulnerability metrics and their related optimiza-

tion problems by applying them on some well-known networks including Abilene and

ISP topologies from Rocketfuel dataset. We found optimum values for the metrics

of these networks and discussed the application of these optimizations in robust net-
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work planning. We observed that the robustness metrics of the network after failures

can be improved a lot by sacrificing a little bit of network robustness in the normal

operation by optimizing τ̂ -based vulnerability metrics. We also applied traffic to the

networks derived from different optimizations, and showed how optimizing the vul-

nerability metrics improves the routing performance in case of link or node failures.

In addition, we showed through some examples how the probabilistic approach to

failures can give different roles to the more reliable nodes or links. We also found

that designing the network with optimizing algebraic connectivity did not lead to a

robust weight assignment, but the robustness properties improved considerably when

we optimized λ2-based vulnerability metrics.

6.2 Future Work

We have covered many aspects of our proposed autonomic management system for

a communication network in this dissertation. In terms of future work, there are

many possible research avenues to extend our work. The first area for the future

work is to extend the proposed algorithms for working and backup path selection to

more general algorithms for assigning multipath or virtual network to the demands

in order to improve the performance of the whole system. We have started this by

introducing joint optimizations for resources and routes at the same time in [14]. In

this work we have introduced algorithms to plan a network for a specific traffic matrix

and route the traffic inside the network at the same time. The RSR algorithm can

also be extended to cover multiple failures such as dual failures [107] and more.

Our work on vulnerability analysis can be extended in several possible interesting

ways since our approach to vulnerability is a systematic approach. The first extension

is defining similar vulnerability metrics to monitor the network behavior when more
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than one failure is possible in the communication network. The other approach can

be defining the vulnerability metrics based on other robustness metrics than those

we have done in this thesis. For example, traffic aware network criticality [108] can

be a proper basic robustness metric in a communication network. The other research

avenue would be to extend the results of deterministic link (node) failure scenario

to a set of correlated link (node) failures such as multiple failures that happen in

the network as a result of geographical disasters. These kinds of failures can have a

specific pattern, e.g., all of the failures can be on a line or inside a circle [79].

While we have examined robust flow assignment and capacity planning in our

works, a natural generalization of our work is considering network resources other

than the link capacity in dividing the communication network to virtual networks.

These resources can be computing power or the memory of a network node. This

problem is studied as the virtual network embedding problem [109] in the literature.

The similar problem is how to assign the jobs to the network nodes or data center

servers based on the available resources on them in order to maximize the network

utilization or minimize the power consumption. To tackle these problems one can

start with examining the dual of the network in which each link of the initial network

becomes a node of the dual network [110]. The job assignment problem, studied in

[111, 112] in which the goal is to balance the load among a network of processors, is

another good start point.
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