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Generalized Kähler (GK) geometry is a generalization of Kähler geometry, which arises in the study

of supersymmetric sigma models in physics. In this thesis, we solve the problem of determining the

underlying degrees of freedom for the class of GK structures of symplectic type. This is achieved by

giving a reformulation of the geometry whereby it is represented by a pair of holomorphic Poisson

structures, a holomorphic symplectic Morita equivalence relating them, and a Lagrangian brane inside

of the Morita equivalence.

We apply this reformulation to solve the longstanding problem of representing the metric of a GK

structure in terms of a real-valued potential function. This generalizes the situation in Kähler geometry,

where the metric can be expressed in terms of the partial derivatives of a function. This result relies on

the fact that the metric of a GK structure corresponds to a Lagrangian brane, which can be represented

via the method of generating functions. We then apply this result to give new constructions of GK

structures, including examples on toric surfaces.

Next, we study the Picard group of a holomorphic Poisson structure, and explore its relationship to

GK geometry. We then apply our results to the deformation theory of GK structures, and explain how a

GK metric can be deformed by flowing the Lagrangian brane along a Hamiltonian vector field. Finally,

we prove a normal form result, which says that locally, a GK structure of symplectic type is determined

by a holomorphic Poisson structure and a time-dependent real-valued function, via a Hamiltonian flow

construction.
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Chapter 1

Introduction

1.1 History and Motivation

This thesis is about a new approach to the field of generalized Kähler (GK) geometry : using tools from

the theory of Poisson geometry, and the theory of Lie groupoids, we give a reformulation of GK geometry

which clarifies the nature of the underlying geometric structures, and allows us to solve a longstanding

problem in the field.

This subject has its origins in the work of physicists of the 1980s, who were then studying supersym-

metric non-linear sigma models. The basic idea is very simple: we start with a ‘space-time’ Σ (in our

case, a surface), equipped with a metric h, and consider mapping it into a Riemannian manifold (M, g).

These give the ‘fields’ of the theory. Then, to each field, that is to say, to each map φ : Σ → M , we

attach a number, the ‘action’, which very roughly has an expression of the form

S(φ) =

∫
Σ

||dφ||2, (1.1)

where ||dφ||2 uses the metrics h and g to measure the norm of dφ. This theory of maps is what is

known as the non-linear sigma model. This theory has for symmetries the isometries of (Σ, h), but

physicists often try look for even more symmetries. A theorem of Coleman and Mandula [23] puts a

strong limitation on where to look: in order to find interesting new symmetries extending the usual Lie

algebra of isometries, it is in fact necessary to consider super Lie algebras [52], which means that the

elements carry a degree grading, according to which they are either odd or even. This is the idea of

supersymmetry: the original algebra of isometries consists of even elements, and to these we add the

odd generators of supersymmetry. The sigma model in our story is the one with so-called N = (2, 2)

supersymmetry; this is where the connection with geometry emerges.

In 1979, Zumino [117] discovered that one source of supersymmetry for the sigma model comes from

the geometry of the target manifold. Specifically, he found that, after enlarging the field theory by

adding in new fields, the resulting model has N = (2, 2) supersymmetry if (M, g) is equipped with a

Kähler structure. Recall that a Kähler structure on (M, g) consists of a complex structure I, which

is compatible with the metric g, in the sense that g is Hermitian, and such that the corresponding

differential 2-form ω = gI is closed. The payoff of the extra symmetry is immediate: the action for this

theory can be written in terms of a single (locally defined) real function K on M . Because this theory

1



Chapter 1. Introduction 2

reduces to the one above, the metric g involved in the action 1.1 is a consequence of the function K.

Precisely, the components of g are given by

gi̄ =
∂2K

∂zi∂z̄j
,

where zi are complex coordinates associated to the complex structure I. Such a function K is well-

known to geometers; it is called the Kähler potential. Whereas a generic Riemannian metric g on an n

dimensional manifold involves 1
2n(n+ 1) independent component functions, a Kähler metric reduces to

the data of a single function. This represents an enormous simplification in the geometry. For example, it

is used in an essential way when looking for metrics with prescribed curvature properties, or in the study

of the Kähler-Ricci flow, because it allows the problems to be reduced to differential equations involving

a single function. The Kähler potential is also fundamental to our understanding of the independent

‘moving parts’ involved in a Kähler structure: the moduli of Kähler geometry consists of the underlying

complex manifold, and the data of a real function determining the metric.

In 1984, Gates, Hull, and Roček [37] discovered that there are more general structures on the target

which give rise to supersymmetry. They showed that for models with a B-field, the model admits

N = (2, 2) supersymmetry if the target (M, g) is equipped with a generalized Kähler structure. This

consists of a pair of complex structures I+ and I− on M , such that g is Hermitian with respect to both

complex structures, and such that the corresponding differential 2-forms ω± = gI± satisfy the following

integrability conditions:

dc+ω+ + dc−ω− = 0, ddc±ω± = 0,

where dc± = i(∂̄± − ∂±) are real operators determined by the complex structures. This is the geometry

which forms the focus of this thesis.

There is a natural question which immediately arises: does the metric g in a GK structure also reduce

to a single real function, as in the Kähler case? Such a function would be called a generalized Kähler

potential. From the outset, there has been much evidence in favour of this: in their original work, Gates,

Hull and Roček were able to formulate the sigma model, in the case that I+ and I− commute, so that

the action again involves a single real-valued function on M . Much later, Lindström, Roček, von Unge,

and Zabzine [71, 73] were able to extend this reformulation to the case where the commutator [I+, I−]

has constant rank. As in the Kähler case, such a formulation of the sigma model implies a description

of the metric in terms of the derivatives of a single function. A general account of the GK potential,

however, has remained out of reach.

A more fundamental question concerns the underlying degrees of freedom inherent in GK geometry.

We would like a description which clearly identifies what is the holomorphic geometry underlying a GK

structure, and what extra data is needed to specify the metric. A major obstruction to such a description

is the fact that we have 2 distinct complex structures I+ and I− on the same smooth manifold. We

need a description of the geometry that sees both these complex structures as emerging from a single

underlying holomorphic geometry.

Progress on understanding generalized Kähler geometry remained limited until the early 2000s. But

in 2003, Hitchin [55] introduced the field of generalized complex geometry, and Gualtieri [44] showed that

GK geometry admits a reformulation in terms of a pair of commuting generalized complex structures.

This development led to a renewed interest in the geometry, and a number of new advances were made.

Most notably for our story, Hitchin [56] made the surprising discovery that underlying a generalized
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Kähler manifold are two holomorphic Poisson structures. More precisely, what he observed was that the

tensor

Q = [I−, I+]g−1 : T ∗M → TM,

is the common imaginary part of two holomorphic Poisson structures σ±, with respect to I± respectively.

This observation gives an important clue to the question of determining the underlying holomorphic

structure of GK geometry, and it forms the starting point for this thesis.

In this thesis, we study the class of generalized Kähler structures of symplectic type, where I+ + I− is

assumed to be invertible, and solve the problem of determining the underlying degrees of freedom. This

is done by giving a reformulation of the geometry, whereby it is represented as a Lagrangian brane inside

of a holomorphic symplectic Morita equivalence, which relates the two holomorphic Poisson structures

described by Hitchin. This identifies the Morita equivalence as the underlying holomorphic structure,

and the Lagrangian brane as the extra data needed to describe the metric. As an application of this

approach, we solve the longstanding problem of describing the metric in terms of a single real valued

function, thereby providing a generalized Kähler potential even in the case where the commutator [I+, I−]

changes rank.

The main technical tool required by our approach is the notion of a Morita equivalence between

Poisson manifolds, which was developed by the Weinstein school of Poisson geometry [111, 108]. That

the theories of Poisson geometry, and Lie groupoids, are required in order to properly understand GK

geometry, is quite unexpected from the perspective of the original definition given by the physicists.

From the vantage point of this thesis, however, it becomes natural, and we can see in a precise way how

generalized Kähler geometry is a non-linear generalization of Kähler geometry. Much of this thesis is

devoted to exploring the ways in which the new groupoid theoretic approach can be fruitfully applied.

In particular, we explore the applications to the deformation theory of GK metrics, and give several new

examples of GK structures.

1.2 A taste of what’s to come

Before going further, let’s take a second look at ordinary Kähler geometry, and explore a reformulation

that was first considered by Donaldson in his study of the complex Monge-Ampère equation [33]. As it

turns out, this is the approach that must be generalized to GK geometry.

Let (M, I, g) be a Kähler manifold. The idea is to use the associated Kähler form ω = gI to deform

the holomorphic cotangent bundle T ∗M . Since ω is a real closed (1, 1) form, it can locally be expressed

in terms of a real valued potential function K as follows: ω = i∂∂̄K. This is the Kähler potential. Now,

choose a cover of the manifold M by open sets Ui on which potential functions Ki have been chosen.

On each double overlap Ui ∩Uj , the (1, 0) form µij = i∂(Ki−Kj) is closed and holomorphic, and so we

can define the following holomorphic affine transformation:

Aij : T ∗Ui|Ui∩Uj
→ T ∗Uj |Ui∩Uj

, αx 7→ αx + µij(x).

In fact, because µij is closed, Aij also preserves the canonical symplectic form Ω0 on the cotangent

bundle:

A∗ij(Ω0) = Ω0 + π∗µ∗ij(Ω0) = Ω0 + π∗dµij = Ω0,
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where π : T ∗M → M is the vector bundle projection. Incidentally, µij gives a Čech representative of

the Kähler class:

[ω] = [µij ] ∈ H1((M, I),Ω1).

But for our present purpose, we interpret this class as an affine deformation of the cotangent bundle.

Indeed, the Aij define a cocycle, which can be used to re-glue the pieces T ∗Ui into a manifold Z, in the

following way:

Z = (
∐
i

T ∗Ui)/ ∼, (αx)i ∼ (Aij(αx))j .

The space Z is a holomorphic affine bundle modelled on the holomorphic cotangent bundle T ∗M , and it

is equipped with a holomorphic symplectic structure Ω. In fact, something more is true: the symplectic

structure on Z is compatible with the additive action of T ∗M , in the sense that the graph of the addition

map

A : T ∗M ×M Z → Z, (αx, βx) 7→ αx + βx,

is a Lagrangian submanifold of the product (T ∗M,Ω0)×(Z,Ω)×(Z,−Ω). The space Z is our first example

of a Morita equivalence, and we can see from its construction that it encodes both the holomorphic

structure on M , and the cohomology class of ω.

To see where the metric g comes in, we need to take another look at the potential functions. If we

define Li = −∂Ki : Ui → T ∗Ui, then on double overlaps

Aij ◦ Li(x) = −i∂Ki + µij = −i∂Ki + i∂(Ki −Kj) = Lj ,

and so we get a global section L : M → Z. This section fails to be holomorphic, but if we use it to

pullback the form Ω, then we see from a local calculation that we get

L∗(Ω) = L∗i (Ω0) = d(−i∂Ki) = i∂∂Ki = ω.

Therefore, the section L allows us to recover the Kähler form, and hence also the metric g. Submanifolds

such as L are known as brane bisections; these are defined to be sections of the projection Z →M , which

are Lagrangian with respect to the imaginary part ImΩ. Brane bisections give a global meaning to the

Kähler potentials, and they are the extra data that allow us to encode the metric.

There is one more observation that we can make about the affine bundle Z. Using the section L and

the addition map, we get a diffeomorphism between the underlying smooth manifolds

ψ : T ∗M → Z, αx 7→ αx + L(x).

Then, using the compatibility between the symplectic structures and the addition map, we see that when

we pullback the form Ω, we get

ψ∗Ω = Ω0 + π∗L∗Ω = Ω0 + π∗ω.

Hence, the affine bundle (Z,Ω) is nothing but the twisted cotangent bundle (T ∗M,Ω0 + π∗ω), with the

brane bisection given by the zero section.

Using this model for the affine bundle, we can now study what happens when we deform L in a fixed

(Z,Ω). Let L′ be another brane bisection. Viewing it as a section of T ∗M , it is given by the graph of a
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(1, 0)-form α. Pulling back the symplectic form, we get

ω′ := (L′)∗Ω = α∗(Ω0 + π∗ω) = ω + dα.

The condition that L′ is a brane means that ω′ is real, and using the ∂∂̄-lemma, we conclude that

ω′ − ω = i∂∂̄f , for a real-valued function f . Hence, varying L in a fixed (Z,Ω) corresponds to varying

ω within its Kähler class.

Proposition 1.2.1. [33, Section 2.] On a Kähler manifold, the cohomology class [ω] of the Kähler

form determines a holomorphic symplectic affine bundle (Z,Ω) modelled on the cotangent bundle, and

the metric g determines a smooth section L of the bundle Z which is symplectic for Re(Ω) and La-

grangian for Im(Ω). Conversely, this data (Z,Ω,L) uniquely determines the Kähler structure. Under

this correspondence, deforming L is equivalent to varying ω within the Kähler class.

What emerges from this discussion is that the underlying holomorphic geometry of a Kähler structure

corresponds to the Morita equivalence (Z,Ω), and the extra data needed to specify the metric corresponds

to the brane bisection L. This is the picture that extends to generalized Kähler structures of symplectic

type. Note that a Kähler structure (M, I, g) gives a special example of a GK structure, where I+ =

I− = I. In this case, the Hitchin Poisson structure vanishes:

Q = [I, I]g−1 = 0,

and so we see that (Z,Ω) is a Morita self-equivalence of the zero Poisson structure on (M, I). A general

GK structure will also be represented by a Lagrangian brane inside of a holomorphic symplectic manifold,

and as we will see, this manifold is intimately related to the Hitchin Poisson structure.

1.3 Outline of the thesis

This thesis is organized as follows. Chapter 2 gives an introduction to the theory of Lie groupoids and

Poisson geometry, focussing on the important notion of Morita equivalence. This material is well-known

and many illustrative examples are discussed. Section 2.1 is on Lie groupoids, and covers many of

the basic features, including Lie algebroids, and bisections. Section 2.1.2 is about Morita equivalences,

and provides a short account of the use of Lie groupoids in the theory of differentiable stacks. Section

2.2 is about Poisson geometry, in both the smooth and holomorphic settings. This section discusses the

important definitions of symplectic groupoids, and symplectic Morita equivalences. Furthermore, several

detailed examples are worked out.

In Chapter 3, we give an introduction to Generalized Kähler (GK) geometry, focussing on GK

geometry of symplectic type. This material is also well-known, and all of the proofs are included. In

an effort to reduce prerequisites, the presentation avoids the use of Dirac geometry. The chapter starts

with a discussion of GK geometry from the bihermitian perspective, and moves on to GK geometry of

symplectic type in Section 3.1. The Hitchin Poisson structure is discussed in Section 3.1.1, degenerate

GK structures of symplectic type are discussed in Section 3.1.2, and the interpretation in terms of GC

geometry is discussed in Section 3.1.3.

Chapter 4 presents the first main results of this thesis, describing a new approach to generalized

Kähler geometry of symplectic type, which makes the underlying degrees of freedom explicit. In Section
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4.1, we describe the work of [4], allowing us to associate a holomorphic symplectic Morita equivalence to

a degenerate GK structure of symplectic type, which is then interpreted as the underlying holomorphic

geometry. In Section 4.2, we define brane bisections, and then prove Theorem 4.2.2, which gives an

equivalence between degenerate GK structures of symplectic type, and holomorphic symplectic Morita

equivalences equipped with a brane bisection. We then explain in Section 4.2.1 how a metric arises

from the geometry of a brane in a Morita equivalence. It follows from this that the brane bisection

corresponds to the choice of a metric. A few basic examples are then presented in Section 4.3. In Section

4.4, we define the notion of prequantization of a GK structure, and prove a quantization condition in

Theorem 4.4.5. Finally, in Section 4.5, we provide a Čech description of Morita equivalences with brane

bisections, generalizing the description of Kähler geometry from Section 1.2.

In Chapter 5, we solve the problem of describing a GK metric in terms of a real potential function

(Theorem 5.0.1). A brane bisection is, in particular, a Lagrangian submanifold of a real symplectic

manifold, and therefore it can be described using a generating function once a Darboux coordinate chart

has been chosen. We call this function the generalized Kähler potential, because of the correspondence

between brane bisections and GK metrics. The rest of the chapter is devoted to examples. We first check

that we recover the usual Kähler potential, as well as the known example from [114] where the Hitchin

Poisson structure is non-degenerate. Next, we use the generalized Kähler potential to construct new

examples of GK structures, where the Hitchin Poisson structure changes rank. In particular, Proposition

5.1.5 gives an example of a GK structure on R4 where the metric is complete, and Example 5.1.8 gives

a family of GK structures parametrized by 0 ≤ t ≤ 1, which is Kähler at t = 0, and complete for t < 1.

Finally, in Section 5.2 we use a Čech description to produce GK structures on toric surfaces. Theorem

5.2.3, which is similar to Corollary 1 in [10], shows that any toric Kähler surface deforms into a family

of degenarate toric GK surfaces for all t ∈ R, and gives an explicit bound for t, such that the metric is

positive-definite.

Chapter 6 is about the Picard groupoid, which is the category of holomorphic Poisson structures

and holomorphic symplectic Morita equivalences. This category is closely related to generalized Kähler

geometry. Indeed, GK structures of symplectic type may be interpreted as morphisms in an upgraded

version of this category. Real versions of this category have been studied in [15, 13], and in this chapter we

prove analogues of their results in the holomorphic setting. In Section 6.1, we investigate the infinitesimal

analogues, or Picard algebras, and construct the corresponding exponential maps.

In Chapter 7, we discuss two applications of our approach to GK geometry. First, in Section 7.1, we

explain how elements in the Picard group of a Poisson manifold can be used to deform generalized Kähler

structures. As a special instance of this construction, we show in Proposition 7.1.1 that GK structures can

be deformed by flowing the brane bisection via a Hamiltonian vector field. This construction specializes

to the deformation constructions of [2, 57, 46]. In Section 7.2, we prove Theorem 7.2.2, which states

that locally, any GK structure of symplectic type is obtained by applying the Hamiltonian flow of a

time dependent function to a brane in a canonical degenerate GK structure associated to a holomorphic

Poisson manifold. This gives an alternate generalization of the Kähler potential, and shows that a GK

structure of symplectic type is locally determined by the data of a holomorphic Poisson structure and a

time-dependent real-valued function.
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1.4 Context and literature

Generalized Kähler geometry, in the form of bihermitian geometry, was first discovered by Gates, Hull,

and Roček [37], following the work of Zumino [117] and Alvarez-Gaume and Freedman [1], which studied

the relationship between supersymmetric sigma models and the geometry of the target manifold. It was

rediscovered and studied from the perspective of twistor theory in [94, 87, 64, 2]. A significant develop-

ment was the introduction of Generalized Complex geometry by Hitchin [55], and the reformulation of

Generalized Kähler geometry by Gualtieri [44, 48].

There are several important questions in the study of Generalized Kähler geometry, many of which

go back to its inception. This includes the problem of generalizing known results and constructions

from Kähler geometry, such as Hodge theory [45, 19, 21, 20], generalized Kähler blow-ups [22, 102], and

generalized Kähler reduction [12, 70, 107].

Another important problem is the search for examples. In addition to the examples provided by the

methods just cited, important work in this direction includes [56], which uses a symmetry argument, and

[57, 46], which take advantage of the underlying Poisson geometry. An important source of examples

comes from deformations, due to the stability theorem of Goto [39, 38, 40].

A significant direction of research is the study of special metrics and their connection to algebraic

geometry. The Calabi-Yau equation was introduced in [44] and studied in [3], generalizations of the

scalar and Ricci curvature were studied in [10, 41], the Kobayashi-Hitchin correspondence was studied

in [59, 42, 43], and the generalized Kähler-Ricci flow was introduced in [100, 101], and further studied

in [97, 98, 99].

Finally, the problem of describing a generalized Kähler metric in terms of a potential function has

existed since the work of [37], which already deals with the case of commuting complex structures.

Further progress in this direction is contained in [71, 72, 73], and the relationship to gerbes is studied

in [61, 114].

This thesis contributes to the field of generalized Kähler geometry by developing a new reformulation

of the geometry. This allows us to address the problem of the generalized Kähler potential, covering the

new case where the Hitchin Poisson structure changes rank. It contributes to the search for examples,

providing a new method of construction. It contributes to the deformation theory, elucidating and

generalizing the constructions of [2, 57, 46]. And it contributes to our understanding of the local

structure of the geometry, via the normal form theorem (Theorem 7.2.2). The new perspective on GK

geometry provided by this thesis may also prove useful in some of the other areas of research outlined

above, such as the study of special metrics, where a description of the metric in terms of a single function

is sought after.

1.5 Overlap with previous work

This thesis has significant overlap with [6], which was written during the course of my PhD, and represents

joint work with M. Gualtieri and M. Zabzine. All of the text included in this thesis has been written by

myself, but some of it is copied directly from [6]. The precise areas of overlap are the following. Section

1.2 is copied almost directly. There is some overlap in Chapter 2, such as in the examples of Section

2.2, and Definition 2.2.21 and Theorem 2.2.23 are directly copied. Some of the material of Chapter

3 coincides with Section 1 of [6], but it is presented from a different perspective. Lemma 3.1.4 and
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Proposition 3.1.5 come from Lemma 1.6, and Theorem 3.1.10 corresponds to Theorem 1.5. In Chapter

4, Sections 4.2 and 4.3 are mostly copied directly from Section 4 of [6]. The beginning of Chapter 5, and

the material up to, but not including, Example 5.1.6, is copied from Section 5 of [6]. And most of the

material from Chapters 6 and 7 is copied directly from Sections 6, 7, and 8 of [6], although it has been

somewhat rearranged and expanded.



Chapter 2

Preliminaries

In this chapter, we recall the basic theory of Lie groupoids and Poisson geometry that will be required

in the thesis. Standard references for the theory of Lie groupoids are [76, 28, 79], and for the theory

of Poisson geometry are [34, 67, 36]. These theories have traditionally been developed in the smooth

category, but they carry over to the holomorphic category without much modification. A reference for

holomorphic Poisson geometry is the paper [86].

2.1 Lie Groupoids

A concise, but unenlightening definition of a groupoid is a category where all morphisms are invertible.

More precisely, a groupoid consists of a space of objects B, and a space of arrows G going between the

objects. Hence, an arrow g ∈ G goes between its source s(g) ∈ B and its target t(g) ∈ B, giving rise to

the source and target maps s, t : G → B. We think of an element g ∈ G as in the following picture:

t(g) s(g)

g

Given two arrows g and h, such that s(g) = t(h), there is a composition, or multiplication, denoted

m(g, h) = gh, and this defines a map m : G(2) → G, where G(2) is the collection of composable arrows

G(2) = {(g, h) ∈ G × G|s(g) = t(h)}.

This composition is required to be associative, in the sense that (gh)k = g(hk), whenever this is well-

defined. Next, for each object x ∈ B, there is an identity arrow εx ∈ G, going from x to x, with the

property that for any g ∈ G, we have εt(g)g = g = gεs(g), and this gives rise to a map ε : B → G, the

identity bisection. We often identify B with its image in G. Finally, there is an inverse map ι : G → G,

sending each arrow to its inverse. We will usually suppress notation and denote a groupoid by G ⇒ B,

or simply G, when the context is clear.

A Lie groupoid is a groupoid internal to the category of smooth manifolds.

Definition 2.1.1 (Lie groupoid). A Lie groupoid is a groupoid (G, B, s, t,m, ε, ι), where G and B are

smooth manifolds, all maps are smooth, and s and t are surjective submersions.

9
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A morphism of Lie groupoids from G to H is a smooth map Φ : G → H that intertwines all the

structure maps.

Remark 2.1.2. The manifold of arrows G may sometimes be non-Hausdorff, while still satisfying all other

axioms of a smooth manifold. However, the base and source fibres are always assumed to be Hausdorff.

There are two important special cases of the definition. First, a groupoid for which the base B is

a point is nothing but a Lie group. Second, a groupoid for which the space of arrows G contains only

identities (i.e. B ∼= G) is nothing but a smooth manifold. Therefore, both the categories of smooth

manifolds, and of Lie groups embed into the category Gpd of Lie groupoids. There are a few more

simple examples that we can consider.

Example 2.1.3. Given a manifold X, the pair groupoid Pair(X) ⇒ X, is the Lie groupoid over X whose

space of arrows is given by the product X×X, with source and target given by right and left projections,

respectively, and with multiplication given by m((a, b), (b, c)) = (a, c).

This example has the following generalization. Given a submersion f : X → Y , the submersion

groupoid Sub(f) ⇒ X is the subgroupoid of Pair(X) whose space of arrows is given by the fibre

product X×Y X. The pair groupoid is given by the submersion groupoid of the map from X to a point.

�

Example 2.1.4. Given a manifold X, the fundamental groupoid Π(X) ⇒ X is the Lie groupoid over X

whose arrows consist of paths in X modulo homotopies fixing the endpoints. The source and target

of a path γ are, respectively, the start and end points γ(0) and γ(1), and multiplication is given by

concatenation of paths. �

Example 2.1.5. A vector bundle π : E → X gives rise to a groupoid, where s = t = π, and where the

groupoid multiplication is given by fibre-wise addition. �

Example 2.1.6. Given a manifold X with a smooth right action of a Lie group G

θ : X ×G→ X,

we can form the associated action groupoid X oG⇒ X, whose space of arrows is given by the product

X × G, with target given by left projection, and source given by θ. The multiplication map is given

by the group product: m((x, g)(xg, h)) = (x, gh). There is a similar definition of the action groupoid

associated to a left action. �

Orbits and Isotropy

A groupoid G ⇒ B determines an equivalence relation on the space of objects. Namely, for x, y ∈ B,

we have that x ∼ y if and only if there is some g ∈ G such that s(g) = x and t(g) = y. Thinking of a

groupoid as a category, this is just the relation of isomorphism. The equivalence classes for this relation

are called the orbits of the groupoid. The orbit through x, denoted Gx, is given by t(s−1(x)), and is an

immersed submanifold of B.

The isotropy group of G, at a point x ∈ B, is the group G(x) = t−1(x) ∩ s−1(x), consisting of all

arrows going to and from the object x. It is an embedded submanifold of the space of arrows, and

furthermore, t|s−1(x) : s−1(x)→ Gx is a principal G(x)-bundle over the orbit.

The isotropy groups over the points of a fixed orbit are all isomorphic, although not in a canonical

way. To see this, choose two points x and y in a single orbit, and let g ∈ G be such that t(g) = x, and
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s(g) = y. Then conjugation by the element g establishes an isomorphism between G(x) and G(y).

Example 2.1.7. The pair and fundamental groupoids of a space X are transitive, meaning that they have

a single orbit. The orbits of the submersion groupoid of f : X → Y , are given by the fibres of f . The

orbits of the groupoid associated to a vector bundle are the points of the base X. Finally, the orbits of

the action groupoid X oG are simply the orbits of the group action.

It is also easy to compute the isotropy groups of our examples. For the pair and submersion groupoids,

they are all trivial. For the fundamental groupoid of X, the isotropy group at x coincides with the

fundamental group π1(X,x). For the groupoid associated to a vector bundle E → X, the isotropy

groups are given by the individual fibres. And finally, the isotropy groups of the action groupoid are

given by the stabilizer groups of the action. �

Bisections

An important notion in the theory of Lie groupoids is that of bisections.

Definition 2.1.8 (Bisection). A bisection of a groupoid G is a submanifold S ⊆ G, such that both s|S
and t|S are diffeomorphisms onto the base.

An equivalent way of expressing a bisection is as a morphism λ : B → G, which is a section of the

source, meaning that s ◦ λ = idB , and such that t ◦ λ is a diffeomorphism. The two formulations are

related by the identity S = Im(λ). Of course, it is also possible to formulate the definition in terms of

sections of the target, and in this thesis we will switch between all 3 formulations according to what is

most convenient.

Using the composition of arrows, we can multiply two bisections:

λ1 ∗ λ2(x) = λ1(t ◦ λ2(x))λ2(x).

Under this product, the bisections form a group, denoted Bis(G), with the identity element given by the

identity bisection ε. Note that Bis(G) is often an infinite dimensional Lie group.

Example 2.1.9. The group of bisections of the pair groupoid Pair(X) is isomorphic to the diffeomorphism

group of X. In order to see this, observe that a bisection of the pair groupoid is a map

λ : X → X ×X, x→ (f(x), g(x)),

such that g(x) = s ◦ λ(x) = x, and such that f(x) = t ◦ λ(x) is a diffeomorphism. Given bisections

λ1(x) = (f1(x), x) and λ2(x) = (f2(x), x), their product is given by (f1 ◦ f2(x), x), and so we see that

the product of bisections corresponds to the composition of diffeomorphisms.

The bisections of the submersion groupoid Sub(f) correspond to the diffeomorphisms φ of X which

commute with f , meaning that f ◦ φ = f . �

Example 2.1.10. The group of bisections of a vector bundle E → X, viewed as a groupoid, is given by

the space of global sections Γ(E). �

The group of bisections Bis(G) acts on G in several ways. There is a natural left action given by left

multiplication:

Lλ : G → G, g 7→ λ(t(g))g.



Chapter 2. Preliminaries 12

Similarly, there is a right action R on G given by multiplication on the right, and the two can be combined

to give a conjugation action Cλ = Lλ ◦ (Rλ)−1, which is here given as a left action. Of all these actions,

it is only conjugation which acts via groupoid morphisms.

It is often also useful to consider local bisections, which are submanifolds S ⊆ G with the property

that s|S and t|S are diffeomorphisms onto open subsets of the base. Alternatively, a local bisection is

a map λ : U → G, defined on an open subset U ⊆ B, such that s ◦ λ = idU , and such that t ◦ λ is a

diffeomorphism from U onto another open subset of B.

Groupoid Actions

Just as groups can act on manifolds, there is also a notion of action by Lie groupoids. Let G ⇒ B be a

Lie groupoid, and let X be a manifold. In order for G to act on X, we need first of all to relate X to

the base B of the groupoid, which is to say that we need a moment map φ : X → B. An element g ∈ G,

which is an arrow from s(g) to t(g), can then act on X by mapping φ−1(s(g)) to φ−1(t(g)). In other

words, an action of G on X is a way of lifting the arrows of G to the map φ : X → B. We can make this

precise as follows.

Definition 2.1.11 (Groupoid action). A left action of G on X is given by a map φ : X → B (the

moment map), and a map

θ : Gs×φBX → X, (g, x) 7→ g.x,

such that φ(g.x) = t(g), εφ(x).x = x, and g.(g′.x) = (gg′).x, whenever these are well-defined, for g, g′ ∈ G
and x ∈ X. A right action is defined similarly.

If G is a group, then we recover the notion of a group action. At the other extreme, if G corresponds

to a smooth manifold, so that G = B = M , then a G action on X is simply given by a map φ : X →M .

Every groupoid acts on its base in a tautological way: the moment map is the identity, and the action

map is given by the target t : G = Gs×idBB → B. The orbits for this action are precisely the orbits of

the groupoid.

Let us consider some more examples.

Example 2.1.12. A left action of the pair groupoid Pair(X) on a space M is given by the data of a map

φ : M → X, and a map θ : X×M →M , written as θ(x,m) = x.m, such that φ(x.m) = x, φ(m).m = m,

and y.(x.m) = y.m. This description simplifies considerably. Namely, the space M can always be taken

to have the form X×N , for some manifold N , with φ given by projection onto the first factor, and with

the action given by y.(x, n) = (y, n). We can see this as follows.

First, for every point m ∈ M , there is a section of φ which passes through this point. Namely, let

θ(m) : X → M , be defined by θ(m)(x) = x.m. Then φ(θ(m)(x)) = φ(x.m) = x, and θ(m)(φ(m)) =

φ(m).m = m. Hence φ is a surjective submersion. Next, choose some x ∈ X, and let N = φ−1(x), which

we know to be a smooth embedded submanifold. We claim that the restricted map θ : X × N → M

is a diffeomorphism. Indeed, the inverse is simply given by sending m ∈ M to (φ(m), x.m). It is then

routine to check that the action has the above specified form. �

Example 2.1.13. Let XoG be the action groupoid of a right G-action on X. Then a right action of this

groupoid on a space M is given by a map φ : M → X, and a right action of G on M , such that the map

φ is G-equivariant. �
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As a special case of a groupoid action, we have the notion of a groupoid representation: in this case,

the moment map is given by a vector bundle over the base, φ : E → B, and the groupoid acts by linear

transformations. If we apply this to the example of the action groupoid X o G, then we see that its

representations are given by G-equivariant vector bundles over X.

Finally, we can consider the notion of groupoid bundles and principal bundles.

Definition 2.1.14 (Groupoid bundle). A left G-bundle consists of a morphism π : P → M , and a left

action of G on P , such that the fibres of π are preserved by the action. The bundle is principal if π is a

surjective submersion, and the action is free and fiberwise transitive, meaning that the following map is

an isomorphism:

G ×B P → P ×M P, (g, p) 7→ (g.p, p)

There is a similar definition of a right (principal) G-bundle

A canonical example of a left principal G-bundle is given by the source map s : G → B, where the

G action is given by multiplication, with moment map given by the target t. Similarly, t : G → B is a

right principal G-bundle, with moment map given by s.

2.1.1 Lie Algebroids and Integration

We have seen that Lie groupoids give a generalization of the theory of Lie groups. Therefore, it is natural

to ask about their infinitesimal counterparts, and whether there is a corresponding generalization of the

theory of Lie algebras. This is indeed the case, as was first observed by Pradines [88].

Definition 2.1.15 (Lie algebroid). A Lie algebroid consists of a vector bundle A → B, a bracket

[ , ] : A⊗A → A on its sheaf of sections, and a vector bundle morphism ρ : A → TB, called the anchor

map, such that the anchor preserves brackets, and such that the following Liebniz rule is satisfied:

[a, fb] = f [a, b] + ρ(a)(f)b,

where a, b are sections of A, and f is a function.

Note that the definition reduces to that of a Lie algebra when the base B is a point. A Lie algebroid

can be thought of as a replacement for the tangent bundle, and indeed its sections act as derivations of

smooth functions via the anchor map.

Lie algebroids are the infinitesimal counterparts of Lie groupoids, and there is a Lie functor, which

associates a Lie algebroid in a canonical way to every Lie groupoid.

Proposition 2.1.16. [88] A Lie groupoid G ⇒ B determines a canonical Lie algebroid Lie(G). The

underlying vector bundle is given by

ker(ds)|B ⊆ TG|B ,

the anchor is given by the restriction of dt, and the bracket is given by the Lie bracket of vector fields on

G, restricted to the right-invariant vector fields which are tangent to ker(ds).

Remark 2.1.17. Note that in this proposition, we make use of the concept of right-invariant vector fields.

A vector field X on G, which is tangent to the source fibres, is said to be right-invariant, if it is invariant

under the right action of the group of bisections. Because each element of the groupoid is related to the
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identity bisection by multiplication by a unique element (i.e. itself), the right invariant vector fields are

in bijection with the sections of the Lie algebroid. It is this fact that allows us to define the Lie bracket.

Let us revisit the examples above.

Example 2.1.18. The Lie algebroid of a Lie group G is simply the Lie algebra of G. Given a manifold

M , viewed as a Lie groupoid, its Lie algebroid is given by the 0 vector bundle over M . �

Example 2.1.19. Both Pair(X) and Π(X) have the same Lie algebroid, which is equal to the tangent

bundle TX. The Lie algebroid of the submersion groupoid Sub(f) consists of the vector fields which are

tangent to the fibres of f : X → Y . More generally, any involutive distribution D ⊆ TX on X gives an

example of a Lie algebroid. �

Example 2.1.20. Consider a vector bundle E → X, viewed as a Lie groupoid. Then its Lie algebroid is

given by E itself, with zero anchor map, and zero bracket. �

Example 2.1.21. Consider again the action groupoid X o G associated to the right action of G on X.

Differentiating this action gives rise to a Lie algebra action ρ : g → X(X). The Lie algebroid of X oG

is given by the action algebroid X o g of ρ. This is given by the trivial bundle X × g, with anchor given

by the action map ρ, and with bracket obtained by using the Liebniz rule to extend the bracket on g,

viewed as the space of constant sections. �

A generalization of Lie’s second theorem holds for Lie groupoids.

Proposition 2.1.22. [75, 81] Let G ⇒ X and H ⇒ Y be Lie groupoids, such that the fibres of the

source map of G are connected and simply-connected, and let φ : Lie(G) → Lie(H) be a morphism of

their Lie algebroids over f : X → Y . Then there exists a unique morphism of Lie groupoids Φ : G → H
over f such that Lie(Φ) = φ.

Let us define an integration of a Lie algebroid A to be any Lie groupoid G, such that Lie(G) = A. The

generalization of Lie’s third theorem, namely whether every Lie algebroid admits an integration, fails in

general. A Lie algebroid which admits an integration is called integrable. The problem of determining

whether a given Lie algebroid is integrable is quite subtle, but it was solved by Crainic and Fernandes

[26], inspired by the work of Weinstein and of Cattaneo and Felder [18]. Partial results in this direction

were also given by Mackenzie [74], Debord [31], and Nistor [84]. In the holomorphic category, Laurent-

Gengoux, Stiénon and Xu [68] proved that a holomorphic Lie algebroid is integrable to a holomorphic

Lie groupoid if, and only if, its underlying real (or imaginary) Lie algebroid is integrable in the smooth

category. In this thesis, we will always assume that our Lie algebroids are integrable.

As we have seen in the example of the tangent bundle, an integrable Lie algebroid may admit several

different integrations. However, there is always a unique integration with the property that the fibres

of its source map are both connected and simply connected [79, Proposition 6.8]. This is the so-called

source simply connected (ssc) integration.

A sketch of integration

We will outline a very rough sketch of a construction of the source simply connected integration of a

Lie algebroid, following [26]. This construction was suggested by Weinstein, inspired by the work of

Duistermaat and Kolk [35]. A similar construction also appeared in the work of Cattaneo and Felder

[18]. Let A be an integrable Lie algebroid, with source simply connected integration G ⇒ B. Since the

source fibres of G are connected and simply connected, for every arrow g ∈ G, there is a path in the
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source fibre connecting x = s(g) to g, unique up to homotopies in s−1(x). So let P (G) = {g : [0, 1] →
G | g(0) = ε(x), s(g(t)) = x}, and let ∼ denote the equivalence through homotopies restricted to lie in

a single source fibre. Then G ∼= P (G)/ ∼. Let us now relate this to the algebroid A.

First, observe that a path g(t) ∈ P (G) maps to the path γ(t) = t ◦ g(t), which lies in a single orbit

of the groupoid. By itself this is not equivalent to g, but if we include the data of the derivative g′(t),

then we can recover g. More precisely, the speed of g at a given time, g′(t) ∈ ker(ds)g(t), can be right

translated to the identity bisection to give an element of the Lie algebroid

a(t) = g′(t)(g(t))−1 ∈ Aγ(t).

Therefore, we get a map a : [0, 1] → A, which lies above γ(t), and satisfies ρ(a(t)) = γ′(t). Maps such

as a are called A-paths, and we denote the collection of all such paths P (A). Then, there is a bijection

between P (G) and P (A). Note that the condition of being an A-path is consistent with the fact that

the tangent space to an orbit of the groupoid is given by the image of the anchor map.

It is also possible to translate the above notion of homotopy for groupoid paths to a definition of

A-homotopy between A-paths, which is defined purely in terms of the Lie algebroid. Then, we have the

following bijection

P (A)/ ∼ ∼= P (G)/ ∼ ∼= G.

But now note that we can define P (A)/ ∼, even without having an integrating groupoid, since it is

defined purely in terms of the algebroid. Therefore, this gives a method for constructing G. A priori, it

only defines a topological groupoid. The obstructions to endowing this space with a smooth structure,

making it into a Lie groupoid, were determined in [26].

It is very useful at this point to revisit the basic example of the tangent algebroid TM . In this case

there is a single orbit, and TM -paths and TM -homotopies coincide with the usual definitions of paths and

homotopies. Therefore, in this example, we recover the construction of the fundamental groupoid Π(M).

We can view the above construction as a vast generalization of the fundamental groupoid construction

to setting of Lie algebroids.

Bisections

The sections of a Lie algebroid Γ(A) form an (often infinite-dimensional) Lie algebra. Given a groupoid

G, one should think of Γ(Lie(G)) as the Lie algebra of the group of bisections Bis(G). Indeed, consider

a family λt of bisections, starting at the identity. At every point b ∈ B, λt(b) is a path in the source

fibre starting at ε(b), and therefore d
dt |0(λt) ∈ Γ(Lie(G).

There is also an exponential map exp : Γ(Lie(G)) → Bis(G), but it is only partially defined. It is

given as follows. Starting with a section a ∈ Γ(Lie(G)), we convert it to a right-invariant vector field

aR on the groupoid, which is tangent to the source fibres, and t-related to ρ(a). We then take the

time-t flow (if it exists), φat , and apply it to the identity bisection, giving rise to the family of bisections

exp(ta) = φat ◦ ε. The exponential map is then defined by setting t = 1. Note that t ◦ exp(ta) is given by

the time-t flow of the vector field ρ(a).

Lemma 2.1.23. The flow φat of aR is given by left-multiplication by the bisection exp(ta).

Proof. Consider the left multiplication action Lexp(ta). Given an arrow g, with target x = t(g), we get
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a curve

Lexp(tα)(g) = φat (x)g = Rg(φ
a
t (x)),

whose derivative is given by

d

dt
Rg(φ

a
t (x)) = dRg(a

R(φat (x))) = aR(φat (x)g) = aR(Lexp(tα)(g)).

Then, since both Lexp(tα) and φat agree at t = 0, we conclude that they are equal.

As an immediate corollary, we see that exp(t1a)∗exp(t2a) = exp((t1+t2)a), and hence the exponential

map defines a 1-parameter subgroup.

2.1.2 Morita equivalence

A fundamental notion in the theory of Lie groupoids is that of Morita equivalence. This defines an

equivalence relation between Lie groupoids that is weaker than isomorphism, and the study of Lie

groupoids, taken up to Morita equivalence, gives rise to the theory of differentiable stacks.

One way of introducing the idea goes as follows. A Lie groupoid is a way of formalizing the notion of

symmetry on a space, and as we have seen, every Lie groupoid acts on its own base in a tautological way.

The notion of Morita equivalence arises when we try to study the geometry of B which is invariant under

this action. Roughly, we want to do geometry on the space of orbits, B/G, but in a more sophisticated

way which remembers the isotropy groups. Thinking of Lie groupoids as categories suggests an obvious

way to implement this idea. Namely, two groupoids represent the same invariant geometry if they are

equivalent as categories, which we take to mean that there is a fully faithful, essentially surjective functor

relating them (see [79], section 5.4, for a precise definition). This is the notion of Morita equivalence.

However, as it stands, this fails to define an equivalence relation because it is not symmetric: unlike the

case for ordinary categories, such functors between Lie groupoids do not necessarily have quasi-inverses.

Therefore, we need to invert these functors by hand. There are different ways of doing this, and the

approach to Morita equivalence taken in this thesis is based on the use of principal bibundles. This

approach, and the bicategories of groupoids which result, were originally introduced in [54, 53, 89]. See

also, [11, 80], where the ideas were introduced independently in the context of topos theory. Other

important references are [82, 83].

Definition 2.1.24 (Morita equivalence). A Morita equivalence between groupoids G ⇒ B and H⇒ C

consists of a span

P

p
{{

q
##

B C

such that

1. q : P → C is a left principal G bundle with moment map p;

2. p : P → B is a right principal H bundle with moment map q;

3. the actions of G and H commute, in the sense that (g.p).h = g.(p.h), whenever this is well-defined.

In this case we say that the groupoids G and H are Morita equivalent.
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Example 2.1.25. As we have seen, G is both a left and right principal G-bundle. Since the left and

right multiplication actions commute by associativity of the product, G therefore defines a Morita self-

equivalence of itself. �

In this thesis, we will mainly be interested in doing geometry on the space P of a Morita equivalence

itself, and will not concern ourselves much with the interpretation in terms of the geometry of the orbit

space. However, since it is sometimes useful to think in this way, we end this section by sketching some

of the ideas involved in thinking of groupoids up to Morita equivalence as quotient stacks.

Example 2.1.26. An illuminating example to consider is that of a free group action which has a well-

defined quotient. So let π : P → B be a right principal G-bundle, and consider the action groupoid

P oG. As we have seen, the orbits of this groupoid coincide with the orbits of the group action, and so

the orbit space is given by P/G = B. Therefore, we expect P oG to be Morita equivalent to B. Indeed,

the Morita equivalence is given by P itself:

P

id
{{

π
##

P B,

where we use the fact that a B action on P is simply given by a map, such as π, and a P oG action is

inherited from the G action. �

We can really see the advantage of using Lie groupoids to represent quotients in the case where the

action is not free, even if the quotient is a well-defined smooth manifold. For example, given the trivial

action of a group G on a space X, the ‘naive’ quotient X/G = X is a smooth manifold, but the data of

the stabilizer groups, namely G, is completely lost. On the other hand, the Morita equivalence class of

X oG retains this data. This is a general fact about Morita equivalences.

Proposition 2.1.27. A Morita equivalence P between G ⇒ B and H ⇒ C induces a bijection between

the orbit spaces, and the isotropy groups over corresponding orbits are isomorphic.

Proof. Using the properties of principal bundles, we obtain the following set-theoretic bijection between

orbit spaces

B/G → C/H, Gb 7→ q(p−1(Gb)).

Next, choose two points b ∈ B and c ∈ C, whose orbits are related by this map. Then P (b, c) = p−1(b)∩
q−1(c) is an embedded submanifold of P , and defines a Morita equivalence between the isotropy groups

G(b) and H(c). Therefore, choosing some x ∈ P (b, c), we get a group isomorphism φx : G(b) → H(c),

defined by the property that x.φx(g) = g.x.

Remark 2.1.28. See Theorem 4.3.1 of [32] for a complete description, along these lines, of the Morita

invariant geometry of a Lie groupoid. In particular, it is shown that the above map of orbit spaces is a

homeomorphism.

Example 2.1.29. Recall that both Pair(X) and Π(X) are transitive, meaning that they have a single

orbit. For such groupoids, the only Morita invariant data is their isotropy groups. Therefore, Pair(X)

is Morita equivalent to a point (compare this fact to example 2.1.12), and Π(X) is Morita equivalent

to the fundamental group of X. In a similar vein, the submersion groupoid of f : X → Y is Morita

equivalent to Y . �
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One of the upshots of this discussion is that the Morita equivalence class of a groupoid encodes

the geometry of the orbit space. Therefore, structures on a groupoid which are invariant under Morita

equivalence should be thought of as representing structures on the quotient space. For example, one

can show that Morita equivalent groupoids have equivalent categories of representations; therefore,

representations of a groupoid correspond to vector bundles on the quotient. In the case that the quotient

is a smooth manifold, we can verify that this is actually the case.

Example 2.1.30. Consider again a right principal G-bundle π : P → B. We have seen in Example 2.1.26

that the action groupoid P o G is Morita equivalent to B. Representations of the action groupoid are

given by G-equivariant vector bundles over P . These are vector bundles which carry a linear G-action,

for which the bundle projection is equivariant. By taking G-equivariant sections of such a bundle, we

can produce a vector bundle over B. Conversely, the pullback to P of any vector bundle on B carries

a natural equivariant G-structure. This gives a correspondence between the representations of P o G,

and the vector bundles over B. �

A more sophisticated way of thinking about quotient spaces is via the theory of differentiable stacks.

And it turns out that Lie groupoids, taken up to Morita equivalence, give a model for differentiable

stacks. To make this precise requires a few more definitions. See [5, 8, 77, 66] for a more detailed

treatment of the following. First, we can extend the notion of Morita equivalence, and define a new

category dStack of ‘stacks’, whose objects are Lie groupoids, and whose morphisms are given by Morita

maps. A Morita map P from H to G is defined to be a G −H bibundle, but with the only requirement

being that the G action is principal. If P is a map from H⇒ C to G ⇒ B, and R is a map from G ⇒ B

to K ⇒ A, then their composition is given by (R ×B P )/G. In fact, this composition is not strictly

associative, and so dStack is really a bicategory, with 2-morphisms given by maps between bibundles

which intertwine all the structure. We can obtain a genuine category by taking isomorphism classes of

Morita maps. The equivalences in dStack are precisely the Morita equivalences. Therefore, whenever

we view a groupoid G as an object of dStack, we use the notation [B/G], in order to indicate that this

stack represents the orbit space quotient.

The category dStack can be embedded into a category of stacks over the site of smooth manifolds

and open coverings. Very roughly, a groupoid G is sent to the category of principal G-bundles, which is

fibered over the category of smooth manifolds. The image of this functor coincides with the category of

differentiable stacks, as it is traditionally defined. Hence, working with groupoids up to Morita equiva-

lence gives a concrete way of thinking about differentiable stacks, which avoids the abstract formalism

of fibered categories.

Note that there is a functor from the category of groupoids Gpd to the category dStack. Restricting

this functor gives an embedding of the category of smooth manifolds into dStack. However, this functor

is not full in general, as there are often many more Morita morphisms than groupoid morphisms.

Example 2.1.31. Let X be a smooth manifold, and G a Lie group. Viewed in the category of Lie

groupoids, there is a unique morphism from X to G, given by sending all points of X to the unit in

G. On the other hand, the Morita maps from X to G are given by G-principal bundles over X. This

example shows that even though we can embed manifolds and Lie groups into the same category of Lie

groupoids, there aren’t any interesting morphisms going between them. On the other hand, passing to

the bicategory dStack allows spaces and groups to interact in a rich way. �

The following example shows that the functor from Gpd to dStack also fails to be faithful.
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Example 2.1.32. Let G and H be Lie groups, and consider a Morita map P from H to G. This is a

left G-torsor, which also carries a right action of H. Choosing a point p ∈ P defines a homomorphism

φp : H → G, via the equality φ(h).p = p.h. Note that this only works to define a map from H to

G, because solving the equation g.p = q relies on the fact that P is a G-torsor. The homomorphism

depends on the choice of the point p up to conjugation in G, in the sense that φg.p = gφpg
−1. Since

an automorphism of the Morita map P has the effect of changing the choice of the reference point

p, we conclude that the isomorphism classes of Morita maps are given by the conjugacy classes of

homomorphisms from H to G. �

We end with a few more comments about dStack. The identity morphism of the object [B/G] in

dStack is given by the Morita equivalence G. Furthermore, given a groupoid G ⇒ B, there is a canonical

Morita map B → [B/G], given by G. Such a map is called a presentation of the stack, and allows us

to recover the groupoid as a fibre product: G = B ×[B/G] B. Note that it is the manifold of arrows

that is given by the fibre product, rather than the stack represented by the groupoid. In fact, it is

possible to recover the groupoid multiplication, and all other structure maps, from the presentation of

the stack. If H⇒ C is another groupoid, such that there is an isomorphism between the quotient stacks

[B/G] ∼= [C/H], then the fibre product B×[B/G]C gives the total space of a Morita equivalence between

G and H.

Example 2.1.33. We can combine the previous two examples. Given a manifold X, and a Lie group G,

the isomorphism classes of maps from [x/π1(X,x)] to [pt/G] are the conjugacy classes of homomorphisms

π1(X,x)→ G. Given any such map, we can pull it back along X → [X/π1(X)] ∼= [x/π1(X,x)] to get a

map from X to [pt/G], which is a principal G-bundle over X. In fact, a homomorphism π1(X,x) → G

corresponds to a flat G-bundle over X, and by pulling back along X → [X/π1(X)], we are simply

extracting the underlying bundle. �

Bisections

It makes sense to consider bisections of a Morita equivalence P . These are submanifolds S ⊆ P such

that the two projections p and q restrict to isomorphisms. Morita equivalences with bisections compose:

given S1 ⊆ R, and S2 ⊆ P , one simply takes the image of S1 ×B S2 in the quotient (R×B P )/G.

Note however, that a Morita equivalence with a bisection is in some sense trivial. Given a Morita

equivalence P between G and H, equipped with a bisection λ, which is here given by a section of q, we

construct an isomorphism of groupoids Φ : H → G, covering the map φ = p ◦ λ : C → B. It is given by

the following formula

Φ(h).λ(s(h)) = λ(t(h)).h.

The Morita equivalence is then isomorphic to the trivial Morita equivalence H, via the map

T : H → P, h 7→ λ(t(h)).h,

which sends the identity bisection to S, and satisfies q ◦ T = s, and p ◦ T = φ ◦ t, where s and t are,

respectively, the source and target maps of H. The right action of H is given by right multiplication,

and the left action of G is given by mapping an element into H via Φ−1, followed by left multiplication.
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2.2 Poisson Geometry

Definition 2.2.1 (Poisson bracket). A Poisson bracket on a manifold M is a Lie bracket on the smooth

functions

{−,−} : C∞(M)× C∞(M)→ C∞(M),

which satisfies the Leibniz rule

{f, gh} = {f, g}h+ g{f, h}.

The pair (M, {−,−}) is called a Poisson manifold.

A morphism of Poisson manifolds φ : (M, {−,−}M ) → (N, {−,−}N ) is a smooth map φ : M → N ,

such that for f, g ∈ C∞(N), we have φ∗{f, g}N = {φ∗f, φ∗g}M .

Note that the Liebniz rule implies that the operator {f,−} : C∞(M) → C∞(M) is a derivation,

and hence corresponds to a vector field Xf ∈ X(M), which is called the Hamiltonian vector field of f .

Skew-symmetry of the bracket implies that it is a derivation in each argument. Therefore, a Poisson

bracket corresponds to a bivector field Q ∈ Γ(∧2TM), which can be defined by the formula

Q(df, dg) = {f, g},

for smooth functions f, g ∈ C∞(M). In fact, this formula allows us to define a skew-symmetric bracket

satisfying the Leibniz rule for any bivector field. The Jacobi identity for the bracket then corresponds

to the following identity

[Q,Q] = 0,

where [−,−] is the Schouten bracket, a graded Lie bracket on multi-vector fields extending the Lie

bracket of vector fields. See section 1.8 of [34] for a definition of the Schouten bracket. The definition

of a Poisson morphism can also be stated in terms of bivector fields. Namely, given Poisson manifolds,

(M,QM ) and (N,QN ), a morphism φ : M → N is Poisson if φ∗(QM ) = QN . Such a morphism is called

anti-Poisson if instead φ∗(QM ) = −QN .

Using the bivector Q, we can define a map of vector bundles via interior product

Q : T ∗M → TM, α 7→ ιαQ,

and of course, the Poisson bracket can be recovered from this map. In general, the rank of this map is

unconstrained. If it is constant, then Q is said to be of constant rank, and if the map is invertible, then

Q is called non-degenerate. Note that the Hamiltonian vector field of f is given by Xf = Q(df).

Example 2.2.2. The canonical example of a Poisson manifold is R2n = {(q1, ..., qn, p1, ..., pn)}, with

bracket given by

{f, g} =

n∑
i

( ∂f
∂qi

∂g

∂pi
− ∂f

∂pi

∂g

∂qi

)
,

for f, g ∈ C∞(R2n). The bivector for this Poisson structure is given by

Q =

n∑
i

∂

∂qi
∧ ∂

∂pi
.

�
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Example 2.2.3. The choice of a skew-symmetric n × n matrix A defines a constant Poisson structure

on Rn, defined by {xi, xj} = Aij , for the standard coordinates x1, ..., xn. The Jacobi identity follows

immediately from the fact that A is constant, because {xk, {xi, xj}} = {xk, Aij} = 0. Furthermore, the

map from the cotangent to the tangent bundle is essentially given by −A, and so the Poisson structure

is of constant rank, with rank equal to the rank of A. �

Recall that a symplectic form on a manifold M is given by a closed 2-form ω ∈ Ω2(M), such that

the induced map

ω : TM → T ∗M, X 7→ ιXω,

is an isomorphism. Associated to a symplectic form ω, there is a naturally defined Poisson structure Q,

defined by inverting the above bundle map: Q = ω−1. The Jacobi identity for Q follows from the closure

of ω. Evidently, this Poisson structure is non-degenerate. In fact, all non-degenerate Poisson structures

arise in this way from symplectic forms.

Proposition 2.2.4. A Poisson structure Q is non-degenerate if and only if it is of the form Q = ω−1,

for a symplectic form ω.

The Darboux theorem for symplectic manifolds (M,ω) says that there is a choice of coordinates

(q1, ..., qn, p1, ..., pn) for M , such that the form can be written as

ω =

n∑
i=1

dpi ∧ dqi.

Computing the associated Poisson bracket, we find that

{qi, qj} = {pi, pj} = 0, {qi, pj} = δi,j ,

and hence we recover the expression for the Poisson structure of Example 2.2.2.

Example 2.2.5. The next obvious example of a Poisson manifold is the zero Poisson structure, defined

by setting Q = 0 on any smooth manifold. �

Example 2.2.6. There is a natural Poisson structure defined on the dual space g∗ of a Lie alebra (g, [−,−]).

The elements of g are linear functions on g∗, and we define their Poisson bracket to be given by the Lie

bracket, namely

{f, g} = [f, g],

where f, g ∈ g. The Poisson bracket is then defined by extending this bracket to all functions on g∗,

using the Leibniz rule. To be more explicit, choose a basis e1, ..., en of g, and let Ckij be the corresponding

structure constants, defined by

[ei, ej ] =

n∑
k=1

Ckijek.

This basis defines coordinates {xi} on g∗, via xi(α) = α(ei). Then, in terms of these coordinates, the

Poisson bivector can be written as

Q =
1

2

∑
i,j,k

Ckijxk
∂

∂xi
∧ ∂

∂xj
.

The Poisson structure of this example is linear, meaning that the linear functions are closed under
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the Poisson bracket. It turns out that linear Poisson brackets on a vector space V are equivalent to Lie

algebra structures on the dual space V ∗. Because of this fact, it is sometimes said that Poisson manifolds

give a non-linear generalization of Lie algebras. �

Holomorphic Poisson brackets

The definition of a Poisson bracket easily generalizes to the holomorphic setting. Namely, a holomorphic

Poisson bracket on a complex manifold X is a Lie bracket on the sheaf of holomorphic functions

{−,−} : OX ×OX → OX ,

which satisfies the Leibniz rule. It corresponds to a holomorphic bivector σ satisfying the identity

[σ, σ] = 0. Note that this implies in particular that σ is of type (2, 0), with respect to the (p, q)-

decomposition on bivectors, and can be written in terms of its real and imaginary parts as follows

σ = σR + iσI ,

for σR and σI real Poisson structures, satisfying σR = I ◦ σI , for I the complex structure on X.

The previous examples of Poisson structures all generalize to the holomorphic setting. In partic-

ular, a holomorphic linear Poisson structure is given by a complex Lie algebra, and a non-degenerate

holomorphic Poisson structure corresponds to a holomorphic symplectic form. Note that a holomorphic

symplectic form is given by a holomorphic, closed (2, 0)-form, which decomposes as

Ω = B + iω,

for real symplectic forms B and ω, satisfying B = ω ◦ I. Therefore, we see that I = ω−1 ◦ B: a

holomorphic symplectic form determines its own underlying complex structure.

Let’s consider more examples of Poisson structures.

Example 2.2.7. Consider C2 = {(x, y)}, and define the Poisson structure to be

σ = x
∂

∂y
∧ ∂

∂x
.

This is an example of a linear Poisson structure, corresponding to the Lie algebra g = spanC(x, y), with

[y, x] = x. �

Example 2.2.8. Another example of a Poisson structure on C2 is given by

σ = xy
∂

∂x
∧ ∂

∂y
.

This Poisson structure has many symmetries: for example, the scaling action by C∗×C∗ gives an action

by Poisson isomorphisms. Let us consider the subgroup Z ⊆ C∗ × C∗ generated by (2, 2). The Poisson

structure descends to the quotient X = (C2 \ {(0, 0)})/Z, which is an example of a Hopf surface. The

locus y = 0 in the quotient is given by C∗/Z, which is an elliptic curve, and the case for x = 0 is identical.

Therefore, we get a Poisson structure on the Hopf surface, which drops rank on the union of two elliptic

curves. �
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Example 2.2.9. Let X be a complex surface, and let σ ∈ Γ(∧2TX) be a holomorphic bivector. This

automatically defines a Poisson structure, because [σ, σ] is a 3-vector, and so must vanish for dimensional

reasons. In fact, ∧2TX = K−1
X , the anti-canonical line bundle, and the vanishing locus for σ is called the

anti-canonical class of X. Let us consider the concrete example of X = P2. In this case, K−1
X
∼= O(3),

and so σ vanishes on a cubic curve, which, for a generic choice of σ, is an elliptic curve. See [90] for

more details on Poisson surfaces. �

Note that examples 2.2.7 and 2.2.8 arise as restrictions of Poisson structures on P2 to affine open

subsets. Namely, x ∂
∂y ∧

∂
∂x extends to a Poisson structure on P2 which vanishes to order 1 along a

hyperplane, and to order 2 along another hyperplane. And xy ∂
∂x ∧

∂
∂y extends to a Poisson structure

which vanishes to order 1 along the three coordinate hyperplanes.

2.2.1 Poisson Lie algebroids and Symplectic groupoids

There is a natural Lie algebroid structure on the cotangent bundle of any Poisson manifold (M,Q),

which we will denote T ∗QM . The anchor map is given by Q : T ∗M → TM , and the bracket is given by

[α, β] = LQ(α)(β)− LQ(β)(α)− dQ(α, β),

for 1-forms α and β, where L denotes the Lie derivative. In the case of exact 1-forms, the bracket

simplifies to

[df, dg] = d{f, g}.

Since exact forms generate the cotangent bundle, checking the axioms of a Lie algebroid reduces to

checking them on exact forms, in which case they follow easily from the axioms of Poisson geometry.

The Poisson manifold giving rise to the Lie algebroid structure on T ∗M is genuinely extra data, and

not all Lie algebroid structures on the cotangent bundle arise in this way. It is therefore natural to ask

whether there is a corresponding integrated structure on the Lie groupoids integrating T ∗QM . This is

indeed the case: Poisson manifolds are the infinitesimal counterpart to symplectic groupoids, a notion

which is due to Karasëv, Weinstein and Zakrzewski [63, 109, 115, 116].

Definition 2.2.10 (Symplectic groupoid). A symplectic groupoid (G ⇒ M,Ω) is a Lie groupoid G
equipped with a multiplicative symplectic form Ω, which is a symplectic form satisfying the following

equation on the fibre product G ×M G

m∗Ω = p∗1Ω + p∗2Ω,

where m : G ×M G → G is the groupoid multiplication, and pi : G ×M G → G are the two projections.

Many of the fundamental properties of symplectic groupoids were established in the papers cited

above, as well as [24, 78]. We review some of these in the following.

There is a useful reformulation of the definition of a multiplicative symplectic form, which makes use

of the notion of Lagrangian submanifolds. Recall that a Lagrangian submanifold of a 2n-dimensional

symplectic manifold (M,ω), is an n-dimensional submanifold ι : L → M , such that ι∗ω = 0. A

symplectic form Ω on a Lie groupoid G is multiplicative if and only if the graph of the multiplication

map is a Lagrangian submanifold of (G,Ω)× (G,−Ω)× (G,−Ω).
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Let us note a few important properties which are satisfied by symplectic groupoids. First, (G,Ω)

determines a unique Poisson structure σ on the manifold of objects B, such that the target t is Poisson,

and the source s is anti-Poisson, where the Poisson structure on G is the one determined by Ω. The

Lie algebroid of G is then isomorphic to the cotangent Lie algebroid T ∗σB. Furthermore, the identity

bisection is Lagrangian, the inversion map is anti-Poisson, and the source and target fibres are symplectic

orthogonal, which means that they are orthogonal complements, with respect to the pairing on tangent

vectors given by Ω.

A Poisson structure σ is said to be integrable if its corresponding Lie algebroid is integrable. In this

case, the source-simply connected integrating groupoid inherits a unique multiplicative symplectic form,

such that the Poisson structure it determines on the manifold of objects coincides with σ [75, 27]. This

groupoid is called the Weinstein groupoid, and is denoted Σ(M). In this thesis, all Poisson structures we

consider are assumed to be integrable. Note that by the work of Laurent-Gengoux, Stiénon and Xu [68],

a holomorphic Poisson manifold is integrable if and only if either its real, or imaginary part is integrable.

The tangent spaces to the orbits of a symplectic groupoid are generated by the Hamiltonian vector

fields, and the orbits inherit a symplectic structure. Hence, they are called the symplectic leaves of the

Poisson manifold. In fact, the symplectic leaves exist, regardless of whether the Poisson manifold is

integrable. They are given by the equivalence classes of points related by Hamiltonian flows.

Bisections

For a symplectic groupoid, the natural bisections to consider are Lagrangian submanifolds, defining the

Lagrangian bisections. These form a subgroup of the group of bisections, LBis(G,Ω), and they act

on (G,Ω) via symplectomorphisms (i.e. diffeomorphisms preserving Ω). More precisely, we have the

following proposition.

Proposition 2.2.11. Let λ : B → (G,Ω) be a Lagrangian bisection, viewed as a section of the source

map. Then φ = t ◦ λ is a Poisson isomorphism of the base Poisson manifold, and the left, right and

conjugation maps preserve the symplectic form Ω.

Proof. First, note that the three properties listed above, namely that t is Poisson, s is anti-Poisson, and

the source and target fibres are symplectic orthogonal, imply that

(t× s) : (G,Ω)→ (M,σ)× (M,−σ),

is Poisson. Let L = im(λ) be the bisection viewed as a Lagrangian submanifold. The image (t× s)(L) ⊆
M ×M is the graph of the diffeomorphism φ, and, as one can check, it is Poisson as a result of L being

Lagrangian.

Consider now the left multiplication map Lλ : G → G. The map

G → (G,Ω)× (G,−Ω)× (G,−Ω), g 7→ (Lλ(g), λ(t(g)), g),

factors through the graph of the multiplication, and hence the symplectic form on the triple product

pulls back to 0. Therefore

0 = L∗λΩ− t∗λ∗Ω− Ω = L∗λΩ− Ω,

since λ is Lagrangian. This verifies that Lλ preserves Ω. The case of right multiplication and conjugation

follow analogously.
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Recall that the Lie algebra of the group of bisections is given by global sections of the Lie algebroid

Γ(T ∗QM) = Ω1(M). In this case, the construction of the exponential map is simplified by the presence

of the symplectic form Ω.

Lemma 2.2.12. Given a 1-form α ∈ Ω1(M), the associated right-invariant vector field on G is given

by Ω−1(t∗α).

Proof. We first of all show thatXα = Ω−1(t∗α) is tangent to the source fibres. Since the source and target

fibres are symplectic orthogonal, it follows that ds◦Ω−1 ◦dt∗ = 0, and hence ds(Xα) = 0. Next, we show

that Xα is right invariant, meaning that for composable pairs (h, g), we have dRg(Xα(h)) = Xα(hg).

Note that this is well-defined because Xα is tangent to the source fibres. Let µ be a local Lagrangian

bisection passing through g, viewed as a section of the target map. Then by proposition 2.2.11, right

multiplication by µ preserves Ω, and hence also its inverse. Therefore

dRg(Xα(h)) = dRµ|h(Ω−1(t∗α)|h) = Ω−1((t ◦Rµ−1)∗α)|hg = Xα(hg),

where we use the fact that t ◦ Rµ−1 = t. Finally, we show that Xα agrees with α along the identity

bisection. The identification between ker(ds) and T ∗M is provided by Ω. Since the identity bisection is

Lagrangian, Ω gives a perfect pairing between ker(ds)x and TMx, and hence defines an isomorphism

Ω|ker(ds)x : ker(ds)x → T ∗Mx.

Under this identification, we see that Xα and α agree.

Given a 1-form α ∈ Ω1(M), we obtain its 1-parameter subgroup by taking the flow φt of the vector

field Xα = Ω−1(t∗α), and applying it to the identity bisection ε. This gives the family of bisections

exp(tα) = φt ◦ ε. By lemma 2.1.23, the flow φt is then given by left multiplication by exp(tα). If α

is closed, then φt acts by symplectomorphisms, and so exp(tα) is a family of Lagrangian bisections.

Conversely, if the bisections are Lagrangian, then by proposition 2.2.11 the flow acts by symplectomor-

phisms, and hence α must be closed. We therefore obtain the Lie algebra of the group of Lagrangian

bisections.

Proposition 2.2.13. [109, 113] The Lie algebra of the group of Lagrangian bisections is given by the

closed 1-forms on M , with bracket determined by Q.

Lie(LBis(G,Ω)) = Ω1,cl(M).

Examples

Example 2.2.14. Consider the zero Poisson structure σ = 0 on a manifold M . The corresponding Poisson

Lie algebroid is given by T ∗M , with zero anchor and bracket. This is a special case of Example 2.1.20,

and hence, the symplectic groupoid is given by T ∗M , with its canonical symplectic form Ω0.

Let us recall how this form is defined. Given coordinates (xi) on M , we get natural coordinates

(xi, pi) on T ∗M , such that (xi, pi) corresponds to the 1-form
∑
i pidxi. The canonical symplectic form

is defined in these coordinates to be

Ω0 =
∑
i

dpi ∧ dxi.
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We can see that it is multiplicative in the following way. The space of composable arrows is given by

T ∗M ×M T ∗M , and so has coordinates (xi, p
(1)
i , p

(2)
i ). In these coordinates, the multiplication map is

given by

m(xi, p
(1)
i , p

(2)
i ) = (xi, p

(1)
i + p

(2)
i ),

and the two projection maps are given by

pk(xi, p
(1)
i , p

(2)
i ) = (xi, p

(k)
i ).

Therefore,

m∗(
∑
i

dpi ∧ dxi) =
∑
i

d(p
(1)
i + p

(2)
i ) ∧ dxi = p∗1(

∑
i

dpi ∧ dxi) + p∗2(
∑
i

dpi ∧ dxi).

�

Example 2.2.15. Let (M,ω) be a symplectic manifold, and consider the corresponding Poisson structure.

The anchor map of the Poisson Lie algebroid is given by ω−1, which is invertible. Therefore, the Poisson

Lie algebroid is isomorphic to the tangent algebroid TM , and so its source simply connected integration

is given by the fundamental groupoid Π(M).

Lets instead consider the pair groupoid Pair(M), which is another integration, and try to determine

its multiplicative symplectic form. This is a symplectic form Ω on the product M ×M , satisfying the

property that the two projection maps to M are respectively Poisson, and anti-Poisson. One possibility

for the symplectic form on the groupoid is therefore given by (ω,−ω) = t∗ω − s∗ω. Let us check that

this form is indeed multiplicative. First note that the diagonal embedding ∆ : M → (M,ω)× (M,−ω)

is Lagrangian, since the symplectic form pulls back to ω−ω = 0. Next, the space of composable arrows

is given by M ×M ×M , with multiplication and projection maps given by the 3 projections to M ×M .

It is then straightforward to compute that the graph of the multiplication map is given by 3 copies of

the diagonal embedding:

∆3 : M3 → ((M,ω)× (M,−ω))3,

and hence is Lagrangian.

Since the groupoid morphism (t× s) : Π(M) → Pair(M) is a covering space projection, we get the

multiplicative symplectic form on Π(M) simply by pulling back the form from Pair(M). It is therefore

given by Ω = t∗ω − s∗ω. �

Example 2.2.16. Let g be a Lie algebra, and consider the Poisson structure on the dual space g∗. The

cotangent bundle is given by T ∗(g∗) = g × g∗, and one can check that the Lie algebroid structure is

that of an action algebroid, for the coadjoint action ad∗ : g → End(g∗). Following Example 2.1.21, we

therefore see that the integrations are given by action groupoids, associated to the coadjoint actions of

any integrating Lie groups G. In order to see the symplectic structure, note that the space of arrows

of the action groupoid is given by G× g∗, which is isomorphic to the cotangent bundle T ∗G. One then

checks that the source and target maps are given by left and right trivialization respectively, and the

multiplication is given by the following formula:

ξg1 ? ηg2 = d(Rg−1
2

)∗g1g2(ξg1) = d(Lg−1
1

)∗g1g2(ηg2),

where Rg and Lg are right and left multiplication, respectively. The multiplicative symplectic form is
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then given simply by the canonical symplectic form on T ∗G. See [24] for further details. �

Example 2.2.17. Consider the Poisson structure given by σ = x∂y∧∂x on C2. As we noted before, this is

a linear Poisson structure associated to the Lie algebra g = spanC(x, y), with [y, x] = x. As such, we can

obtain the integration of this Poisson bracket as a special instance of the previous example. Indeed, the

Lie group integrating this algebra is the group G of affine transformations of C (or rather the universal

cover of this, if we want to produce the Weinstein groupoid). Therefore we can obtain the symplectic

groupoid integrating our Poisson structure as the action groupoid for the coadjoint action of G on g∗.

However, in the present case a more direct approach to integration is possible: note that the Hamil-

tonian vector fields corresponding to the coordinate functions are given by X−x = x∂y and Xy = x∂x.

The vector field x∂x generates the multiplicative action of C: (a, x) : x 7→ eax, and the vector field x∂y

generates the additive action of C rescaled by a factor of x: (b, y) : y 7→ y + xb. Combining the two

actions we get the action groupoid G = C2 nC2, with coordinates (a, b, x, y), with the source and target

maps given respectively by

s(a, b, x, y) = (x, y) t(a, b, x, y) = (eax, y + xb),

and with the multiplication given by

(a1, b1, x1, y1) ? (a2, b2, x2, y2) = (a1 + a2, b1e
a2 + b2, x2, y2).

Note that indeed G = Ãff(C) n C2: the action groupoid for the action of (the universal cover of) the

affine group on the dual of its Lie algebra.

To compute the symplectic form on G we make use of the following fact: the Poisson structure σ

is non-degenerate on an open dense subset of C2, given by the locus of points where x 6= 0. We can

therefore invert it to get a meromorphic symplectic form

ω =
1

x
dx ∧ dy.

Over the locus x 6= 0, we know from Example 2.2.15 that the multiplicative symplectic form on the

groupoid is given by Ω = t∗ω − s∗ω. And because this equation holds over a dense subset of G, it must

hold over the entire groupoid. Computing this form, we find

Ω = t∗ω − s∗ω

=
1

eax
d(eax) ∧ d(y + xb)− 1

x
dx ∧ dy

= da ∧ d(y + xb)− db ∧ dx.

See [92] for further discussion of this example in the smooth category. �

Example 2.2.18. Consider the Poisson structure given by σ = xy∂y ∧ ∂x on C2. This Poisson structure

is not linear, and its Lie algebroid does not arise from an action. However, it is still possible to integrate

this Poisson structure, using the spray construction [29, 17]. We will not explain this construction in

general, but will instead focus on this specific example. Note that this example is a special case of a

construction in [69].

Consider the cotangent bundle T ∗C2, which has coordinates (a, b, x, y) corresponding to the 1-form
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adx+ bdy, and consider the following Poisson spray vector field

X = ybx∂x − xay∂y − yba∂a + xab∂b.

The salient features of this vector field are that it is of weight 1 with respect to the scaling action on the

cotangent fibres, and it satisfies the following equation:

σ](α) = (dπ)α(Xα),

for α ∈ T ∗C2, where π : T ∗C2 → C2 is the bundle projection. It it straightforward to integrate this

vector field: the flow is given by

(a(t), b(t), x(t), y(t)) = (a0 exp(−ybt), b0 exp(xat), x0 exp(ybt), y0 exp(−xat)).

The flow construction gives a way of constructing a symplectic groupoid structure on T ∗C2 using the flow

of this vector field. In particular, the source map is given by the bundle projection s(a, b, x, y) = (x, y),

and the target map is given by the time 1-flow, followed by the vector bundle projection, so that

t(a, b, x, y) = (x exp(yb), y exp(−xa)). From this, it is possible to work out the multiplication, and we

see that it is given by

(a1, b1, x1, y1) ? (a2, b2, x2, y2) = (ey2b2a1 + a2, e
−x2a2b1 + b2, x2, y2).

The multiplicative symplectic form also follows from the flow construction, but in this case it is easier to

proceed as in the previous example, since σ is non-degenerate on an open dense subset of C2. Inverting

σ, we get the following meromorphic form

ω =
dx ∧ dy
xy

,

and hence the form on the groupoid is given by

Ω = t∗ω − s∗ω = da ∧ dx+ db ∧ dy + d(xa) ∧ d(yb).

�

Example 2.2.19. Consider the Poisson structure σ on CP2 which vanishes to order 1 on the three coor-

dinate hyperplanes. Lets us choose projective coordinates [x : y : z], such that these hyperplanes are

given by [0 : y : z], [x : 0 : z] and [x : y : 0]. The 0-dimensional symplectic leaves of this Poisson structure

are given by the points of these hyperplanes, and the unique 2-dimensional symplectic leaf is given by

the locus xyz 6= 0, which is isomorphic to C∗×C∗. The restriction of this Poisson structure to the com-

plement of each hyperplane coincides with the example above. Therefore, the symplectic groupoid of σ

can be constructed by gluing three copies of the groupoid of the previous example, along the symplectic

leaf C∗ × C∗. In Section 5.2, we will give a different description of this symplectic groupoid.

A generic Poisson structure on CP2 is an example of a log symplectic Poisson structure. In general,

a log symplectic Poisson structure is given by a Poisson structure σ on a 2n-dimension manifold, such

that the top exterior power σn vanishes transversely. A systematic method for constructing integrations

of these Poisson manifolds has been developed in [50]. �
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2.2.2 Symplectic Morita Equivalence

The definition of Morita equivalence can be upgraded to include the data of a symplectic form, thereby

giving rise to the notion of Morita equivalence between symplectic groupoids [112] and Poisson manifolds

[111], both due to Xu. These definitions generalize Morita equivalence between Lie groupoids considered

in Section 2.1.2, as well as the notions of symplectic realization, and symplectic dual pair, which are due

to Weinstein [108].

Definition 2.2.20 (Symplectic Morita equivalence). A symplectic Morita equivalence between symplec-

tic groupoids (G, ω1) ⇒ B and (H, ω2) ⇒ C is given by a symplectic manifold (S, ω), such that S is a

Morita equivalence between G and H, and ω is multiplicative with respect to the left and right actions.

More precisely, the graph of the left G action is a Lagrangian submanifold of (G,−ω1)× (S,−ω)× (S, ω),

and the graph of the right H action is a Lagrangian submanifold of (S, ω)× (S,−ω)× (H,−ω2).

Definition 2.2.21 (Morita equivalence of Poisson manifolds). A Morita equivalence between Poisson

manifolds (M1, Q1) and (M2, Q2) is a symplectic manifold (S, ω), together with a pair of surjective

submersions π1 : S →M1, π2 : S →M2, with connected and simply-connected fibres, such that

1. π1 is Poisson and π2 is anti-Poisson;

2. the vertical distributions ker(dπ1) and ker(dπ2) are symplectically orthogonal;

3. π1, π2 are complete in the sense that the pullback of any complete Hamiltonian vector field is

complete.

We view this as a morphism from (M2, Q2) to (M1, Q1).

Remark 2.2.22. This definition makes use of the notion of the pullback of a Hamiltonian vector field.

This is defined as follows. Let π : (S,Q) → (M,Q′) be a Poisson map. The pullback of a Hamiltonian

vector field Xf = Q′(df) is defined to be π∗Xf := Xπ∗f = Q(π∗df). Note that since π is Poisson, it

follows that π∗Xf is π-related to Xf .

The notion of Morita equivalence between Poisson manifolds has the advantage that it makes no

reference to symplectic groupoids. However, Xu has shown that in fact, the two definitions are very

closely related.

Theorem 2.2.23. [111, Theorem 3.2] Two integrable Poisson manifolds (M1, Q1) and (M2, Q2) are

Morita equivalent if and only if their Weinstein groupoids Σ(M1) and Σ(M2) are symplectically Morita

equivalent.

Similarly to the case of groupoids, we can define a bicategory sStack, whose objects are integrable

Poisson manifolds (or equivalently, source simply connected symplectic groupoids), 1-morphisms are

symplectic Morita equivalences, and 2-morphisms are isomorphisms of bibundles intertwining all the

structure. The composition of symplectic Morita equivalences is defined in the same way as for ordinary

Morita equivalences (see Section 2.1.2), and the symplectic form is obtained via symplectic reduction

[112]. An object (M,σ) of this category represents the quotient stack [M/Σ(M)], which is the space of

orbits, or symplectic leaves, of the Poisson structure. The Weinstein groupoid Σ(M) gives the identity

morphism of a Poisson manifold. See [15, 16, 66] for more details of this category.

Viewing a symplectic groupoid (G, ω) as an object of dStack, it is natural to ask how the symplectic

form ω should be interpreted. The answer, according to [104, 93], is that the symplectic form ω gives



Chapter 2. Preliminaries 30

rise to a degree +1 symplectic form on [B/G]. In the language of [85], the quotient stack [B/G] is

1-shifted symplectic, and the natural map B → [B/G] carries a Lagrangian structure, which gives rise to

the Poisson structure σ [91]. Furthermore, the intersection of two Lagrangians in a 1-shifted symplectic

structure gives rise to a usual (0-shifted) symplectic structure, which in the case of G = B ×[B/G] B is

the symplectic form ω on the total space of the groupoid. See also [103] for another account of the stack

associated to a symplectic groupoid.

Examples

Example 2.2.24. The trivial Morita self-equivalence of a Poisson manifold (M,σ) is the Weinstein

groupoid Σ(M). It has a Lagrangian bisection given by the identity bisection. �

Example 2.2.25. Let (S1, ω1) and (S2, ω2) be simply connected symplectic manifolds. Then

(S1, ω1)× (S2,−ω2)

ww ''
S1 S2

defines a Morita equivalence.

More generally, consider a symplectic manifold (S, ω). It’s Weinstein groupoid is the fundamental

groupoid Π(S), with symplectic form t∗ω − s∗ω. The Morita equivalence between Π(S) and the fun-

damental group, π1(S, s), can be upgraded to include the symplectic data. It is given by the universal

cover π : S̃ → S, with symplectic form π∗ω. Because Morita equivalence is an equivalence relation,

it then follows that two symplectic manifolds are Morita equivalent if and only if they have the same

fundamental group. See [111] for details. �

Example 2.2.26. Morita equivalences can be composed with Poisson diffeomorphisms [15]. Let φ : M2 →
M1 be a Poisson diffeomorphism and let M2

π2←− S
π3−→ M3 be a Morita equivalence. Then we get the

following Morita equivalence

S
φ◦π2

~~

π3

  
M1 M3

In particular, by composing Poisson diffeomorphisms with the trivial Morita equivalence, we get a map

from Poisson diffeomorphisms to Morita equivalences. This corresponds to a functor from the category

of Poisson manifolds, and Poisson diffeomorphisms, to the bicategory sStack. �

Example 2.2.27. Let (M,Q) be a real Poisson manifold. If B ∈ Ω2,cl(M) is a closed 2-form such that

id+B ◦Q : T ∗M → T ∗M is invertible, then we can define a new Poisson structure

QB := Q ◦ (id+B ◦Q)−1,

which is called the B-field transform of Q [95]. Bursztyn and Radko show in [14] that in this case (M,Q)
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and (M,QB) are Morita equivalent in the following way

(Σ(M),Ω + t∗B)

t

ww

s

''
(M,QB) (M,Q)

where (Σ(M),Ω) is the Weinstein groupoid of (M,Q) and s and t are the source and target maps,

respectively. Note that the identity bisection of the Weinstein groupoid gives rise to a non-Lagrangian

bisection of the equivalence. Bursztyn and Radko also show that the Weinstein groupoid of (M,QB) is

given by Σ(M), but with the symplectic form modified to be Ω + t∗B − s∗B.

If we apply this construction to the zero Poisson structure (M,Q = 0) then we get a Morita self-

equivalence given by (T ∗M,Ω0 + p∗B), where Ω0 is the canonical symplectic form and p : T ∗M →M is

the projection. �

Bisections

It makes sense to consider both ordinary bisections, as well as Lagrangian bisections of symplectic Morita

equivalences. We can compose Morita equivalences equipped with bisections, and the equivalences with

Lagrangian bisections are closed under this operation. Generalizations of the following proposition will

play an important role in this thesis. Various versions appear in [24, 92, 13].

Proposition 2.2.28. Let (S, ω) be a Morita equivalence between source simply connected symplectic

groupoids (G, ω1) ⇒ (B,P ) and (H, ω2) ⇒ (C,Q), and let b : C → S be a bisection, viewed as a section

of q : S → C. Let φ = p ◦ b : C → B, where p : S → B, and F = b∗ω. Then

1. φ is a Poisson isomorphism between QF , the B-field transform of Q, and P ;

2. the induced isomorphism of groupoids Φ : H → G is the morphism which integrates dφ, via Propo-

sition 2.1.22, and it satisfies

Φ∗ω1 = ω2 + t∗F − s∗F ;

3. the induced isomorphism T : H → S satisfies T ∗ω = ω2 + t∗F .

In particular, if b is Lagrangian, then φ is a Poisson isomorphism between (C,Q) and (B,P ), and the

symplectic groupoids (G, ω1) and (H, ω2) are isomorphic.

Proof. The bisection b induces two diffeomorphisms

T :H → S, h 7→ b(t(h))h,

R :G → S, g 7→ gb(φ−1 ◦ s(g)).

Then since

H → S × S ×H, h 7→ (T (h), bt(h), h)

factors through the graph of the action, which is Lagrangian, we see that T ∗ω = ω2 + t∗F . Similarly

R∗ω = ω1 +s∗(φ−1)∗F . Then since the induced groupoid isomorphism Φ : H → G satisfies Φ = R−1 ◦T ,
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we have that Φ∗(ω1 + s∗(φ−1)∗F ) = ω2 + t∗F , which we can rearrange to give

Φ∗ω1 = ω2 + t∗F − s∗F.

Note that since ω is invertible, it follows that ω2 + t∗F must also be invertible. Following [14], this

implies that id+ F ◦Q is invertible, and that t∗(ω2 + t∗F )−1 = QF , the B-field transformation of Q by

F . The relation p ◦ T = φ ◦ t then implies that φ∗(Q
F ) = P .

Recall from [14] that the symplectic groupoid integrating QF is given by H, with symplectic form

modified to ω2 + t∗F − s∗F . Hence, Φ is a morphism of symplectic groupoids between (H, ωF =

ω2 + t∗F − s∗F ) and (G, ω1), and it covers the Poisson isomorphism φ : (C,QF )→ (B,P ). The map φ

induces an isomorphism of the corresponding cotangent Lie algebroids, and we need to check that this

morphism agrees with the one induced by Φ. To see this, consider a 1-form α ∈ Ω1(B), and its pullback

φ∗ ∈ Ω1(C). The right invariant vector field on G induced by α is given by Y = ω−1
1 (t∗α), and the right

invariant vector field on H induced by φ∗α is given by X = ω−1
F (t∗φ∗α). Then

Φ∗(X) = Φ∗ω
−1
F t∗φ∗(α) = Φ∗ω

−1
F Φ∗t∗α = ω−1

1 (t∗α) = Y.

Therefore Lie(Φ) = dφ.
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Generalized Kähler geometry

In this section, we review Generalized Kähler (GK) geometry, and more specifically GK structures

of symplectic type, which are the main object of study in this thesis. There is a dizzying variety of

formulations of this geometry (see for example, [44, 48, 46, 49]), and the goal of this chapter is to quickly

get from the original bihermitian formulation of [37], to the formulation introduced in [46], in terms

of the data (I+, I−, Q, F ), consisting of a pair of complex structures I±, a Poisson structure Q, and

a symplectic form F . In order to keep the prerequisites minimal, we omit from the presentation the

calculus of Dirac geometry, and we do not discuss the B-field symmetries. For an equivalent exposition

that includes these aspects, see [6, Section 1].

Definition 3.0.1 (Generalized Kähler Geometry). A Generalized Kähler structure consists of a Rie-

mannian manifold (M, g), and a pair of complex structures I+ and I−, such that

1. the metric g is Hermitian with respect to I+ and I−, meaning that

g(I±v, I±u) = g(v, u),

for tangent vectors v, u ∈ TM ;

2. the associated Hermitian forms ω± = gI± (which are of type (1, 1) with respect to their respective

complex structure) satisfy the following integrability condition

dc+ω+ + dc−ω− = 0, ddc±ω± = 0, (3.1)

where dc± = i(∂̄± − ∂±) are the real operators determined by the de Rham operator d and the

complex structures.

The closed 3-form H = dc+ω+ is known in the physics literature as the Wess–Zumino–Witten (WZW)

term of the non-linear sigma model.

Remark 3.0.2. A few technical comments about the operators I± and dc±. The complex structures I±

interact with differential forms in several ways. So far, we have seen that it is possible to compose the

vector bundle morphism associated to a metric, or a 2-form, with a complex structure, as in ω+ = gI+.

However, a complex structure may also act on the graded algebra of differential forms as both a derivation

33
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and an automorphism. Let us denote by Ia±, the automorphism action of the complex structure on

differential forms, which satisfies

Ia±(α ∧ β) = (Ia±α) ∧ (Ia±β),

and by Id±, the derivation action, which satisfies

Id±(α ∧ β) = (Id±α) ∧ β + α ∧ (Id±α).

It is then straightforward to check that in terms of these two actions, the dc± operators have the following

expressions

dc± = (Ia±)−1dIa± = [d, Id±].

As a special case of the definition of a GK structure, we can set I+ = I− = I. The integrability

condition 3.1 then reduces simply to dω = 0, and hence (g, I, ω) defines an ordinary Kähler structure.

As is well-known, an equivalent description of this integrability condition, expressed in terms of the

complex structure, says that

∇I = 0,

where ∇ is the Levi-Civita connection, which is the unique torsion free connection preserving the metric.

We would like a similar reformulation of equation 3.1 for the general case. However, the complex

structures I± in a generalized Kähler structure are usually not preserved by the Levi-Civita connection.

Instead, we consider the connections

∇± = ∇∓ 1

2
g−1H,

which have skew torsion given by ∓g−1H.

Lemma 3.0.3. The connections ∇± preserve the metric g.

Proof. The lemma is equivalent to the statement that for vector fields X,Y, Z ∈ X(M), the following

equation is satisfied

Xg(Y,Z) = g(∇±X(Y ), Z) + g(Y,∇±XZ).

Expanding the right hand side, and using the fact that ∇ preserves the metric, and H is skew-symmetric,

we get

g(∇±X(Y ), Z) + g(Y,∇±XZ) = g(∇X(Y ), Z) + g(Y,∇XZ)∓ 1

2
(H(X,Y, Z) +H(X,Z, Y )) = Xg(Y,Z).

Before proving the next result, we state the following identity, which holds for any Hermitian manifold

(g, I), with corresponding (1, 1) form ω = gI:

2g((∇XI)Y, Z) = dω(X,Y, Z)− dω(X, IY, IZ), (3.2)

where ∇ is the Levi-Civita connection. Note also that a 3-form H, of type (2, 1) + (1, 2), as in the

definition of a GK structure, satisfies the following identity

H(X,Y, Z) = H(IX, IY, Z) +H(IX, Y, IZ) +H(X, IY, IZ),
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for vectors X,Y, Z.

Lemma 3.0.4. The connections ∇± preserve the respective complex structures I±.

Proof. We only show that ∇+ preserves I+, as the other case works identically. The pair (g, I+) is

Hermitian, with Hermitian form ω+, and so equation 3.2 implies the following identity for ∇+(I+)

2g((∇+
XI+)Y, Z) = 2g((∇XI+)Y,Z)− (H(X, I+Y,Z) +H(X,Y, I+Z))

= dω+(X,Y, Z)− dω+(X, I+Y, I+Z)−H(X, I+Y,Z)−H(X,Y, I+Z),

for vectors X,Y, Z. Next, since ω+ is of type (1, 1), we have that Ia+ω+ = ω+, and therefore dω+ =

Ia+d
c
+ω+ = Ia+H. Substituting this into the above equation, and using the fact that H is of type

(2, 1) + (1, 2) with respect to I+, we find

2g((∇+
XI+)Y, Z) = H(I+X, I+Y, I+Z)−H(I+X,Y, Z)−H(X, I+Y,Z)−H(X,Y, I+Z) = 0.

We conclude that ∇± are the Bismut connections for (g, I±), which are the unique connections with

skew torsion, and which preserve both the metric and the complex structure (see [7] for more details).

Equation 3.1 can be reformulated in terms of the Bismut connections of (g, I+, I−) as follows.

Proposition 3.0.5. [44, Section 6] Given a metric g, which is Hermitian with respect to two complex

structures I±, equation 3.1 is equivalent to the condition that the Bismut connections of (g, I±) have the

form ∇± = ∇∓ 1
2g
−1H, for a closed 3-form H, where ∇ is the Levi-Civita connection.

3.1 Symplectic Type.

Let us now restrict to the special case of GK structures of symplectic type.

Definition 3.1.1 (Generalized Kähler Geometry of Symplectic Type). A GK structure (g, I+, I−) is of

symplectic type if I+ + I− is invertible.

Remark 3.1.2. We will denote the inverse of I+ + I− by U .

The terminology of symplectic type comes from the fact that, as we will presently show, we can

define a symplectic form, via the equation

g = −1

2
F (I+ + I−). (3.3)

Lets start by establishing the main properties of F .

Lemma 3.1.3. The tensor F is a closed 2-form, and satisfies the identity

FI+ + I∗−F = 0. (3.4)

Since F is invertible by definition, it therefore defines a symplectic form on M .
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Proof. Proving skew-symmetry of F amounts to showing that

g(X, (I+ + I−)X) = 0,

for X ∈ TM , and this follows from the bihermitian property of g. To prove 3.4, we use the commutation

relation (I+ + I−)I+ = I−(I+ + I−), which also holds for U , and the fact that g is Hermitian:

FI+ = −2gUI+ = −2gI−U = 2I∗−gU = −I∗−F.

To prove the closure of F , we first express dF in terms of the Levi-Civita connection ∇, and then use

equation 3.3 to express it in terms of the metric, U , and the complex structures

dF (X,Y, Z) = (∇XF )(Y,Z) + c.p.

= −2g(∇X(U)Y,Z) + c.p.

= −2g((∇X(I+ + I−))UY,UZ) + c.p.,

where c.p. means that we take cyclic permutations. Now using equation 3.2, and the type decompositions

for ω± and H, we find that

−2g((∇XI±)Y,Z) = ∓(H(I±X, I±Y, I±Z)−H(I±X,Y, Z))

= ∓(H(X,Y, I±Z) +H(X, I±Y,Z)),

so that

dF (X,Y, Z) = −H(X,UY, I+UZ)−H(X, I+UY,UZ) +H(X,UY, I−UZ) +H(X, I−UY,UZ) + c.p.,

and using the identity X = I+UX + I−UX, we get

H(I+UX, I−UY,UZ) +H(I−UX, I−UY,UZ) +H(I+UX,UY, I−UZ) +H(I−UX,UY, I−UZ)

−H(I+UX, I+UY,UZ)−H(I−UX, I+UY,UZ)−H(I+UX,UY, I+UZ)−H(I−UX,UY, I+UZ) + c.p..

Now focus on the mixed terms involving both complex structures. Using the cyclic permutation, we can

trade H(I−UX, I+UY,UZ) for H(I−UZ, I+UX,UY ), which cancels H(I+UX,UY, I−UZ), and we can

trade H(I−UX,UY, I+UZ) for H(I−UY,UZ, I+UX), which cancels H(I+UX, I−UY,UZ). This leaves

us with only the terms involving a single complex structure. Summing up all the terms involving only

I−, and using the type decomposition of H, we get

2(H(I−UX, I−UY,UZ) +H(I−UX,UY, I−UZ) +H(UX, I−UY, I−UZ)) = 2H(UX,UY,UZ),

and doing the same for the terms involving I+, we get the same result, but with opposite sign. Therefore,

we conclude that dF = 0.

All of the tensors involved in a GK structure can in fact be expressed, using the two complex

structures, in terms of the symplectic form F .

Lemma 3.1.4. The Hermitian forms ω± = gI± coincide with the (1, 1) components of the symplectic
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form F , relative to the complex structures I±:

ω± = F (1,1)± ,

and therefore, we obtain the following expression for the metric:

g = −F (1,1)±I±.

Furthermore, dc±ω± = 1
2d
c
±F , so that H = 1

2d
c
+F .

Proof. Using expression 3.3 for the metric, and identity 3.4, we see that

ω± = gI± = −1

2
F (I+ + I−)I± =

1

2
(F + I∗±FI±) = F (1,1)± .

Next, using the fact that F is closed, and ω± is of type (1, 1), we get

dc±ω± = (Ia±)−1dω± =
1

2
(Ia±)−1dIa±F =

1

2
dc±F.

It turns out that the symplectic type condition on a GK structure imposes a strong restriction on the

cohomology class of the WZW form H, forcing it to be trivial. Indeed, there is a canonical trivialization,

given by

b = −1

2
F (I+ − I−), (3.5)

and which is known as the B-field potential.

Proposition 3.1.5. The B-field b is given by the following expression involving F and either I+ or I−

b = ∓F (2,0)+(0,2)±I±.

Therefore, b is of type (2, 0) + (0, 2) with respect to both complex structures. Furthermore, db = − 1
2d
c
+F ,

so that H = −db.

Proof. Using identity 3.4, the definition of b can be rewritten as

b = ∓1

2
(FI± + I∗±F ) = ∓(iF (2,0)± − iF (0,2)±) = ∓F (2,0)+(0,2)±I±.

Note also that b = ∓ 1
2 (FI± + I∗±F ) = ∓ 1

2I
d
±F , and hence

db = ∓1

2
dId±F = ∓1

2
[d, Id±]F = ∓1

2
dc±F,

where we have used the fact that F is closed.

3.1.1 Hitchin Poisson structure

A surprising result of Hitchin [56] is that a GK structure (g, I+, I−) gives rise to two Poisson structures

σ±, which are holomorphic for the respective complex structure I±, and have the same imaginary part.
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They are given by

σ± = −1

4
(I±Q+ iQ),

for Q defined by the following map from the cotangent to the tangent bundle

Q =
1

2
[I−, I+]g−1.

Evidently, these Poisson structures measure the failure of commutativity between I+ and I−. In the

example of a Kähler structure, therefore Q = 0. Furthermore, the symplectic leaves of the two Poisson

structures coincide, with tangent space given by the image of the commutator [I−, I+].

We will presently prove that σ± are indeed holomorphic Poisson in the case of GK geometry of

symplectic type. In order to do this, we use the following identity

[I−, I+] = (I− − I+)(I+ + I−),

which allows us to express Q in terms of F as

Q =
1

2
(I− − I+)U−1g−1 = (I+ − I−)F−1,

which we can write as the following compatibility condition

I+ − I− = QF. (3.6)

Using identity 3.4, we can then write σ± in terms of F as follows

σ± = −1

4
(I±(I+ − I−)F−1 + i(I+ − I−)F−1)

= ±1

4
(F−1 − I±F−1I∗± − iI±F−1 − iF−1I∗±)

= ±1

4
(1− iI±)F−1(1− iI∗±)

= ±(F−1)(2,0)± ,

Hence, the Hitchin Poisson structures σ± are given by the (2, 0) component, with respect to I±, of the

Poisson structure associated to F .

Proposition 3.1.6. [56, Proposition 5] The bivectors σ± define holomorphic Poisson structures, with

respect to I± respectively.

Proof. We will only prove the result for σ+, as the other case works identically. We are also working

under the assumption that our GK structure is of symplectic type. Since σ+ is given by the (2, 0)

component of F−1, it follows that for I+-holomorphic functions f, h, we have

{f, h}σ+ = {f, h}F .

It therefore suffices to show that the bracket induced by F preserves the I+-holomorphic functions. If

this is satisfied, then the Jacobi identity for σ+ follows immediately from the fact that F is symplectic.
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So let f and h be holomorphic functions. Using equation 3.3, we can rewrite their bracket as follows:

{f, h} = F−1(df, dh) =
1

2
g−1((I+ + I−)df, dh) =

1

2
g−1(idf + I−df, dh) =

1

2
g−1(I−df, dh),

where the last equality follows from the fact that g is of type (1, 1). We will show that this expression

is holomorphic. Differentiating with respect to a (0, 1) vector field X, we get

X(g−1(I−df, dh)) = g−1(∇+
X(I−)df, dh) + g−1(I−∇+

Xdf, dh) + g−1(I−df,∇+
Xdh), (3.7)

where ∇+ is the Bismut connection of (g, I+). Using the relation, ∇+ = ∇− − g−1H, between the

Bismut connections of (g, I±), we find that

g−1(∇+
X(I−)df, dh) = H(X, I−g

−1(df), g−1(dh)) +H(X, g−1(df), I−g
−1(dh)).

To evaluate the last two terms of the sum 3.7, we write the de Rham differential in terms of the Bismut

connection

0 = d(df)(X,Y ) = (∇+
Xdf)(Y )− (∇+

Y df)(X) +H(X, g−1df, Y ),

where Y is some test vector field, and the last term comes from the torsion −g−1H. The connection ∇+

preserves the type decomposition for I+, and hence the second term vanishes, and we are left with the

following identity

∇+
Xdf = −H(X, g−1df).

Plugging this into the last two terms of equation 3.7, we get

−H(X, g−1(df), I−g
−1(dh)) +H(X, g−1(dh), I−g

−1(df)),

which cancels the first term.

3.1.2 Degenerate GK structures of Symplectic type

The upshot of the discussion so far is that a GK structure of symplectic type, (g, I+, I−), gives rise to

a symplectic form F , and a pair of holomorphic Poisson structures σ±, which satisfy equations 3.4 and

3.6, and we can recover the GK structure from this data via equation 3.3. However, it is clear that data

such as (F, σ±), satisfying equations 3.4 and 3.6, may fail to define a GK structure, if the tensor defined

by equation 3.3 fails to be positive definite. We will find it useful to relax this positivity condition, and

consider degenerate GK structures.

Definition 3.1.7 (Degenerate Generalized Kähler Structures). A degenerate GK structure of symplectic

type consists of the data (I+, I−, Q, F ) of a closed 2-form F ∈ Ω2,cl(M,R), a real Poisson structure Q,

and two complex structures I±, such that Q is the common imaginary part of holomorphic Poisson

structures for I±

σ± = −1

4
(I±Q+ iQ),
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and such that the following two equations are satisfied

I+ − I− = QF, (3.8)

FI+ + I∗−F = 0. (3.9)

Remark 3.1.8. This way of encoding a GK structure via equations 3.8 and 3.9 was first considered in

[46]. This system of equations was also studied in [62].

Example 3.1.9. Associated to any holomorphic Poisson structure (I, σ = − 1
4 (IQ + iQ)), there is a

canonical degenerate GK structure given by (I, I,Q, 0). The associated symmetric tensor is g = 0, and

so this does not define a GK structure. �

Given a degenerate GK structure (I+, I−, Q, F ) it is possible to define a symmetric Hermitian tensor

g via equation 3.3, and a 2-form b via equation 3.5. It is then easy to check that lemma 3.1.4, and

proposition 3.1.5 remain valid in this setting, and hence the associated Hermitian forms ω± satisfy

the integrability condition 3.1. In other words, the data (g, I+, I−) satisfy all the conditions of GK

geometry, except for the positive definiteness of g. We say that the form F is positive if g is a positive-

definite Riemannian metric. Note that this is really a condition on (I+, I−, F ): in particular, F must be

symplectic, and (I+ + I−) must be invertible.

Summarizing the discussion, we have proved the following equivalence.

Theorem 3.1.10. [46, Theorem 6.2] There is a bijection between Generalized Kähler structures of

symplectic type (g, I+, I−) and degenerate GK structures of symplectic type (I+, I−, Q, F ) such that the

2-form F is positive.

In this thesis, we will actually work with the wider class of degenerate GK structures, applying the

condition of positivity of F when we want to make contact with GK geometry.

3.1.3 Generalized Complex geometry

In this section we recall the observations made in [46] about the meaning of equations 3.8 and 3.9 in

terms of generalized complex geometry. To this end, we introduce some basics of the theory (see [44, 47]

for a general treatment).

In its most basic form, generalized complex geometry involves doing geometry on the generalized

tangent bundle TM ⊕T ∗M , which is equipped with a natural non-degenerate split-signature symmetric

pairing

〈X + ξ, Y + η〉 =
1

2
(ξ(Y ) + η(X)),

and the Courant bracket

[[X + ξ, Y + η]] = [X,Y ] + LX(η)− ιY (dξ),

where X + ξ and Y + η are sections of TM ⊕ T ∗M . This bracket satisfies the Jacobi identity, but is

skew-symmetric only up to a term involving the pairing. Closed 2-forms B provide natural symmetries

of these structures, via the following automorphism

eB =

(
1 0

B 1

)
.
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An almost generalized complex (GC) structure J is an orthogonal endomorphism of the generalized

tangent bundle, which squares to −1. When we pass to the complexification, this endomorphism has ±i
eigenbundles, and these are Lagrangian for the symmetric pairing, as a result of J being orthogonal. A

generalized complex structure J is then defined to be an integrable almost GC structure, which means

that its +i eigenbundle is closed under the Courant bracket. Basic examples of GC structures are given

by complex structures I, and symplectic structures ω, for which the endomorphisms are given by(
−I 0

0 I∗

)
,

(
0 −ω−1

ω 0

)
.

Consider an almost GC structure, Jσ, whose matrix is upper triangular. It is routine to check that it

must have the form

Jσ =

(
−I Q

0 I∗

)
,

for I an almost complex structure, and Q a bivector field of type (2, 0) + (0, 2). The +i eigenbundle of

such an almost GC structure is given by

Lσ = {X + σ(ζ) + ζ | X ∈ T 0,1M, ζ ∈ T ∗1,0M},

where σ = − 1
4 (IQ+ iQ). Analyzing the condition that Lσ is closed under the Courant bracket, we see

that Jσ defines a GC structure if and only if I defines a complex structure, and σ defines a holomorphic

Poisson bracket.

Equations 3.8 and 3.9 can be repackaged in terms of the GC structures associated to (I±, σ±) to give(
−I+ Q

0 I∗+

)
=

(
1 0

F 1

)(
−I− Q

0 I∗−

)(
1 0

−F 1

)
,

or more compactly, Jσ+
= eF Jσ−e−F . Now since the closed 2-form F defines a symmetry of TM⊕T ∗M ,

with its pairing and bracket, this relation implies the following non-trivial consequence: the integrability

of one of the pair (I±, σ±) follows from the other. This means that it suffices to include a single

holomorphic Poisson structure in the definition of a degenerate GK structure. More precisely, the

defining equations 3.8 and 3.9 of a degenerate GK structure can be combined into a single equation,

involving only I−, F , and Q:

FI− + I∗−F + FQF = 0. (3.10)

The other complex structure can then be defined to be I+ = I− + QF , and the integrability of the

pair (I+, σ+) follows from the integrability of (I−, σ−) and the closure of F . We therefore obtain the

following result.

Proposition 3.1.11. Let (I−, Q) define a holomorphic Poisson structure, and let F be a real closed

2-form, such that equation 3.10 is satisfied. Then with I+ = I− +QF , the data (I+, I−, Q, F ) defines a

degenerate GK structure of symplectic type.



Chapter 4

Branes in Morita equivalences

In this chapter, we present the main reformulation of generalized Kähler geometry of symplectic type,

and thereby explain the inherent degrees of freedom in GK geometry. More precisely, we answer the

following two questions.

1. What is the holomorphic structure underlying a Generalized Kähler manifold of symplectic type?

2. What additional data is needed to specify the Riemannian metric?

4.1 Holomorphic symplectic Morita equivalences

In this section, we provide an answer to the first question, explaining that the underlying holomorphic

structure of a (degenerate) GK structure of symplectic type consists of a holomorphic symplectic Morita

equivalence between the two underlying holomorphic Poisson structures.

Let (I+, I−, Q, F ) be a degenerate GK structure of symplectic type on a manifold M , and let

σ± denote the two holomorphic Poisson structures. We also denote the two complex manifolds by

X± = (M, I±). Our goal is to construct a holomorphic symplectic Morita equivalence between (X−, σ−)

and (X+, σ+). Following [4], we first prove, as a preliminary step, that the integration of σ+ can be

constructed from the integration of σ−, by choosing a closed 2-form on the groupoid which satisfies

equation 3.10. Indeed, note that since these two Poisson structures have the same imaginary parts, it

follows that their integrations have the same underlying ‘imaginary’ symplectic groupoid (G, ω), which

is an integration of Q.

Proposition 4.1.1. [4, Proposition 6.3] Let Σ(X−) be the holomorphic symplectic groupoid of σ−,

with complex structure I−, and holomorphic symplectic form Ω− = B− + iω, and let (G, ω) denote

the underlying ‘imaginary’ smooth symplectic groupoid integrating (M,Q). The holomorphic symplectic

groupoid of σ+, denoted Σ(X+), is then given by G, with complex structure I+ = I− + ω−1C, and

holomorphic symplectic form Ω+ = Ω−+C, where C = t∗F−s∗F . Furthermore, the data (I+, I−, ω
−1, C)

defines a multiplicative degenerate GK structure of symplectic type on the groupoid G.

Proof. The strategy of the proof is to first show that I−, ω, and C satisfy equation 3.10, which by

Proposition 3.1.11 implies that Ω+ and I+ define a holomorphic symplectic structure on G. We then have

to show that these structures are multiplicative, and hence define a holomorphic symplectic groupoid,

and that the induced Poisson structure on the base is σ+.

42
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Let’s start by setting notation, and making a few observations. We denote the pullback of a form,

such as the pullback of F via t, by t∗(F ). This is to distinguish it from t∗F , which is the composition of

the bundle map induced by F , and the pullback t∗ : T ∗M → T ∗G. The bundle map associated to t∗(F )

is therefore given by t∗Ft∗, where t∗ : TG → TM . The source and target maps are holomorphic, and

hence satisfy t∗I− = I−t∗, and s∗I− = I−s∗. And since the underlying imaginary part of Σ(X−) is the

symplectic groupoid (G, ω) integrating (M,Q), we have that

t∗ω
−1t∗ = Q, s∗ω

−1s∗ = −Q, t∗ω
−1s∗ = s∗ω

−1t∗ = 0,

reflecting the fact that t is Poisson, s is anti-Poisson, and the source and target fibres are symplectic

orthogonal, respectively.

We are now ready to check equation 3.10 for I−, ω, and C. Indeed, using the above identities, and

FI− + I∗−F + FQF = 0

on M , we find that

CI− + I∗−C + Cω−1
− C = (t∗Ft∗ − s∗Fs∗)I− + I∗−(t∗Ft∗ − s∗Fs∗)

+ (t∗Ft∗ − s∗Fs∗)ω−1(t∗Ft∗ − s∗Fs∗)

= t∗(FI− + I∗−F + FQF )t∗ − s∗(FI− + I∗−F + FQF )s∗

− t∗F (t∗ω
−1s∗)Fs∗ − s∗F (s∗ω

−1t∗)Ft∗

= 0.

This shows that (Ω+, I+) is holomorphic symplectic by Proposition 3.1.11.

Next, we check that source and target maps are holomorphic, with respect to the complex structure

I+ on G, and I+ = I− +QF on M :

t∗I+ = t∗I− + t∗ω
−1(t∗Ft∗ − s∗Fs∗) = I−t∗ + (t∗ω

−1t∗)Ft∗ − (t∗ω
−1s∗)Fs∗ = (I− +QF )t∗ = I+t∗,

the case with s being similar.

A straightforward calculation on the space G(2) of composable arrows shows that C = t∗(F )− s∗(F )

is multiplicative. Therefore Ω+ = Ω− + C, a sum of multiplicative forms, is also multiplicative. Since

I+ is determined by Ω+, in the sense that I+ = (ImΩ+)−1(ReΩ+), it then immediately follows that it

is also multiplicative. For example, showing that the multiplication map is holomorphic is equivalent to

showing that its graph is a complex submanifold of G × G × G, and this is implied by the fact that the

graph is an Ω+-Lagrangian submanifold.

Finally, we need to show that t∗(Ω
−1
+ ) = σ+, and s∗(Ω−1

+ ) = −σ+. But since σ+ is determined by Q

and I+, this follows immediately from what we have already shown.

Let us record the following simple observation.

Lemma 4.1.2. Let R ⇒ M
∐
N be a Lie groupoid, whose base is the disjoint union of M and N .

Then G = s−1(M) ∩ t−1(M) ⇒ M and H = s−1(N) ∩ t−1(N) ⇒ N are Lie groupoids over M and N ,

respectively, P = t−1(M) ∩ s−1(N) is a Morita equivalence from H to G, and Q = t−1(N) ∩ s−1(M)

is the inverse Morita equivalence from G to H. Furthermore, all Morita equivalences between G and H
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arise in this way. This result remains true if we work with symplectic groupoids and symplectic Morita

equivalences.

We are now ready to construct the Morita equivalence between σ− and σ+. Start with the symplectic

groupoid (Σ(X−),Ω−) ⇒ X− integrating σ−. Now construct the symplectic groupoid (R,Ω) over the

disjoint union (Y, σ) = (X
(2)
− , σ−)

∐
(X

(1)
− , σ−), whose space of arrows, R, is defined by setting

(t−1(X
(i)
− ) ∩ s−1(X

(j)
− ),Ω) = (Σ(X−),Ω−),

and whose multiplication is defined in the obvious way. Hence, this is the groupoid which corresponds,

via Lemma 4.1.2, to the trivial Morita self-equivalence of Σ(X−). Now consider the closed 2-form

F̃ on Y , defined to be F on X
(2)
− and 0 on X

(1)
− . This defines a degenerate GK structure, where

the new holomorphic Poisson structure is (Ỹ , σ̃) = (X+, σ+)
∐

(X−, σ−). Hence by Proposition 4.1.1,

(R,Ω + t∗F̃ − s∗F̃ ) defines a holomorphic symplectic groupoid over Ỹ , and as one can check t−1(X+)∩
s−1(X+) = (Σ(X+),Ω+), and t−1(X−) ∩ s−1(X−) = (Σ(X−),Ω−). Then, by Lemma 4.1.2, t−1(X+) ∩
s−1(X−) provides a holomorphic symplectic Morita equivalence between these two subgroupoids. We

have therefore proven:

Proposition 4.1.3. [4, Proposition 6.4] Let (I+, I−, Q, F ) be a degenerate GK structure of symplectic

type, and let σ± = − 1
4 (I±Q + iQ) denote the corresponding holomorphic Poisson structures on the

complex manifolds X± = (M, I±). Then (X+, σ+) and (X−, σ−) are holomorphically symplectically

Morita equivalent in a canonical way.

Unpacking the construction of the Morita equivalence, we see that it is given by

(Z,Ω)

π+

yy

π−

%%
(X+, σ+) (X−, σ−)

where

(Z,Ω) = (Σ(X−),Ω− + t∗F ), (4.1)

with π+ = t, and π− = s, the target and source maps of Σ(X−), respectively. Recall that since Ω is a

holomorphic symplectic form, it uniquely determines its own complex structure, and hence specifying

this form is enough. This Morita equivalence represents the underlying holomorphic structure of the

degenerate GK structure of symplectic type.

4.2 Generalized Kähler metrics as brane bisections

So far, we have shown how to extract an underlying holomorphic symplectic Morita equivalence (Z,Ω)

from the data of a (degenerate) GK structure of symplectic type (I+, I−, Q, F ). In this section, we

consider the question of how to represent the metric. In order to recover the GK structure from Z, we

need some real (i.e. non-holomorphic) data. To see how this arises, observe that since Z was obtained by

deforming the holomorphic symplectic groupoid Σ(X−) by t∗F , it contains a distinguished submanifold

L coming from the identity bisection. This submanifold is neither holomorphic nor Lagrangian in (Z,Ω).

It is, however, characterized by the following two properties:



Chapter 4. Branes in Morita equivalences 45

1. The submanifold L ⊂ Z is a smooth bisection. This defines a diffeomorphism between the un-

derlying smooth manifolds of X+ and X−, which is required because a GK structure involves two

complex structures living on the same real manifold.

2. The bisection L is Lagrangian with respect to ω = Im(Ω): from the point of view of generalized

complex geometry, this is known as a brane in (Z,Ω). Notice that equation 4.1 implies that

Ω|L = F , so that we recover the real closed 2-form F .

We record the above properties satisfied by L in the following definition.

Definition 4.2.1 (Brane bisection). A brane bisection in the Morita equivalence (Z,Ω) is a smooth

submanifold of Z which is Lagrangian for Im(Ω) and which is a section of both π− and π+.

Theorem 4.2.2. [6, Theorem 4.3] A degenerate GK structure of symplectic type (I+, I−, Q, F ) is equiv-

alent to a holomorphic symplectic Morita equivalence with brane bisection (Z,Ω,L) between the holo-

morphic Poisson structures σ± = − 1
4 (I±Q+ iQ).

Proof. One direction of the theorem follows from Proposition 4.1.3 and the above remarks. For the

converse direction let us start with a holomorphic symplectic Morita equivalence with brane bisection

(Z,Ω = B + iω,L) and construct a degenerate GK structure. Such a Morita equivalence goes between

two holomorphic Poisson manifolds (X±, σ± = − 1
4 (I±Q± + iQ±)). Now observe that (Z, ω) defines a

real smooth symplectic Morita equivalence between the real Poisson structures (X+, Q+) and (X−, Q−).

The fact that L is a brane bisection means precisely that it defines a Lagrangian bisection in this Morita

equivalence, and therefore that it defines a Poisson diffeomorphism between the two Poisson structures.

The upshot of this is that when we use the bisection to identify X− = L = X+, then Q− = Q+. We

denote this real Poisson structure by Q and the underlying smooth manifold by M .

Now that we have made these identifications (Z, ω) defines a self-Morita equivalence of (M,Q) and

L is a Lagrangian bisection inducing the identity diffeomorphism on M . The symplectic groupoid

(Σ(X−),Ω− = B− + iω−) of (X−, σ−) acts principally on (Z,Ω), and so the brane L induces the

following isomorphism of smooth symplectic Morita equivalences

φ : (Σ(X−), ω−)→ (Z, ω), g 7→ λ(t(g)) ∗ g,

where λ : M → Z is the section of π− induced by L. Using φ to compare the real parts of Ω− and Ω we

see that

φ∗(B) = B− + t∗(B|L). (4.2)

Let F := B|L. Then we see that under this isomorphism

φ∗(Ω) = Ω− + t∗(F ).

On the manifold M , we now have the data of the two complex structures I± coming from the spaces

X±, the real Poisson structure Q, which is the common imaginary part of the holomorphic Poisson

structures σ±, and a closed 2-form F . We then show that (I+, I−, Q, F ) satisfy equations 3.8 and 3.9.

For simplicity, we use φ to identity (Z, ω) with (Σ(X−), ω−). On this space, we have complex structures

I and I− coming from Z and Σ(X−), respectively. Note that the complex structure I satisfies

t∗I = I+t∗, s∗I = I−s∗.
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In order to verify equations 3.8 and 3.9, we show that they hold for (I, I−, ω
−1, t∗(F )) on Σ(X−) and

therefore on M by push-forward. First we note that since B = ωI and B− = ωI−, we have from equation

4.2 that ω(I − I−) = t∗(F ), which we can rearrange to equation 3.8:

I − I− = ω−1t∗(F ).

Applying the target projection we get

(I+ − I−)t∗ = t∗ω
−1t∗Ft∗ = QFt∗,

which implies equation 3.8 on M since t∗ is surjective. Note that we write t∗(F ) for the pullback of the

2-form, which gives rise to the bundle map t∗Ft∗ : T → T ∗. Equation 3.9 on the groupoid follows from

a direct computation:

I∗t∗(F ) + t∗(F )I− = I∗ω(I − I−) + ω(I − I−)I− = 0,

where we have used the identities t∗(F ) = ω(I − I−) and I∗ω = ωI. But this implies the corresponding

equation on M since

t∗(I∗+F + FI−) = I∗t∗(F ) + t∗(F )I− = 0,

and t∗ is injective on differential forms. This establishes equations 3.8 and 3.9 on M . It is clear that the

two constructions outlined are inverse to each other, so we get the desired equivalence.

Remark 4.2.3. In the statement of Theorem 4.2.2, the Morita equivalence is assumed to go between

Poisson manifolds, and hence by Theorem 2.2.23, it is a Morita equivalence between the source simply

connected integrations. However, nowhere in the proof of this theorem is the integration required to be

source simply connected, and in fact, we can omit this assumption. Hence, fixing an integration G− of

σ−, there is a bijection between degenerate GK structures of symplectic type, and Morita equivalences

with brane bisection between G− and some integration of σ+.

Definition 4.2.4. A brane bisection L in the Morita equivalence (Z,Ω) is positive if F = Ω|L is positive.

Corollary 4.2.5. There is a bijection between generalized Kähler structures of symplectic type, and

holomorphic symplectic Morita equivalences with positive brane bisection.

Theorem 4.2.2 answers the main questions raised at the beginning of this chapter, identifying the

Morita equivalence (Z,Ω) as the underlying holomorphic data of a GK manifold of symplectic type, and

showing how the additional data of a brane bisection L specifies the GK metric.

4.2.1 Induced metric

We now discuss how the metric and B-field potential of the GK structure arise from the holomorphic

symplectic Morita equivalence with brane bisection (Z,Ω,L). From the equivalence established in The-

orem 4.2.2, we know that a Morita equivalence with brane bisection gives rise to a degenerate GK

structure, and from this we can extract the data of a (possibly degenerate) metric and B-field potential.

In this section, we detail how to determine the metric and B-field directly from the geometry of the

Morita equivalence.
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Given a real 2-form F and a complex structure I, the tensor FI decomposes into symmetric and

anti-symmetric parts: FI = S +A, where

S = F (1,1)I, A = F (2,0)+(0,2)I.

Given a Morita equivalence with brane bisection (Z,Ω,L), we have two induced complex structures I±

on the brane, as well as the real 2-form F = Ω|L. Therefore the tensors FI± give rise to symmetric

tensors S± = F (1,1)±I± and anti-symmetric tensors A± = F (2,0)+(0,2)±I±. From the theory of GK

structures we know to expect that S+ = S− and A+ = −A−. Indeed, from Lemma 3.1.4 we know that

g = −S±, and from Lemma 3.1.5 we know that b = ∓A±. Here we explain these facts directly.

Proposition 4.2.6. Let (Z,Ω,L) be a holomorphic symplectic Morita equivalence with brane bisection,

let I± denote the complex structures induced on the brane, and let F = Ω|L denote the real 2-form on

the brane obtained by pulling back the symplectic form. If S± = F (1,1)±I± and A± = F (2,0)+(0,2)±I±,

then

S+ = S− and A+ = −A−.

Proof. Let Ω = B + iω be the holomorphic symplectic form on Z, so that F = B|L. Writing A± and

S± as the (anti-)symmetrizations of FI±, we have

2S±(u, v) = B(I±u, v) +B(I±v, u), 2A±(u, v) = B(I±u, v)−B(I±v, u),

for u, v ∈ TL. Using the two direct sum decompositions of TZ along L determined by the fibres of the

projections π±,

TZ|L = TL ⊕K±, K± = ker(dπ±),

we can write the following expressions for I±:

Iu = I±u+ k±u, I±u ∈ TL, k±u ∈ K±,

for u ∈ TL. Then using the fact that K± are ω-symplectic orthogonal, TL is ω-Langrangian, and

ωI = I∗ω, we get the following identity

0 = ω(k+u, k−v) = ω(Iu− I+u, Iv − I−v) = ω(Iv, I+u)− ω(Iu, I−v),

for u, v ∈ TL. Using the relation B = ωI, this gives the following identity:

B(I+u, v) = B(I−v, u),

which implies the two identities above for S± and A±.

The upshot of the present discussion is as follows: when we pullback the holomorphic (2, 0)-form

Ω along a brane we get a real 2-form F which is no longer (2, 0) with respect to either of the induced

complex structures I±. As such, it gives rise to symmetric and anti-symmetric tensors on the brane.

The fact that F was obtained by pulling back the symplectic form of a holomorphic Morita equivalence

implies that we end up with a single symmetric and anti-symmetric tensor; these give rise to the metric

and B-field potential of the GK structure. The positivity or non-degeneracy of the metric arises from
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the configuration of the brane in the Morita equivalence. For example, g is non-degenerate if and only if

I(TL)∩K = 0 = I(TL)∩ TL, where K is the average of K± with respect to TL. Indeed, the condition

I(TL) ∩ TL = 0 is equivalent to invertibility of F and I(TL) ∩K = 0 is equivalent to invertibility of

I+ + I−. Recall that these two conditions imply that we get a GK structure with non-degenerate but

possibly indefinite metric.

4.3 Examples

Lets provide a few examples of (degenerate) generalized Kähler structures of symplectic type and their

corresponding holomorphic symplectic Morita equivalences with brane bisection.

Example 4.3.1 (Holomorphic Poisson structure). Let (M, I, σ) be a Poisson manifold, and let Q =

−4Im(σ). As in Example 3.1.9, the associated degenerate GK structure is given by the data (I, I,Q, 0).

The associated Morita equivalence with brane bisection is given by the holomorphic symplectic groupoid

(Σ(X),Ω) integrating σ, viewed as the trivial Morita self-equivalence, with brane bisection given by the

identity bisection ε. �

Example 4.3.2 (Kähler Manifold). Lets revisit the construction considered in Section 1.2. Recall that a

Kähler manifold (M, I, g, ω) defines a generalized Kähler structure of symplectic type for which I± = I,

Q = 0, and F = ω. Therefore the Morita equivalence is given by the holomorphic cotangent bundle of

X = (M, I) twisted by ω:

(Z,Ω) = (T ∗X,Ω0 + π∗ω),

where π : T ∗X → X is the projection and Ω0 is the canonical symplectic form. The brane bisection L
is given by the zero section viewed inside of Z. As discussed in Section 1.2, (Z,Ω) is an affine bundle

modelled on the holomorphic cotangent bundle of X, and the brane bisection is both symplectic with

respect to Re(Ω) and Lagrangian with respect to Im(Ω). Conversely, any such affine bundle A → X gives

a Morita equivalence and any section L of π = π+ = π− which is symplectic for Re(Ω) and Lagrangian

for Im(Ω) automatically defines a non-degenerate bilinear form on M . This is due to the fact that

K = ker(dπ) is a complex Lagrangian, which implies that I(TL) ∩ ker(dπ) = 0. �

Example 4.3.3 (Hyper-Kähler Manifold). Let (M, I, J,K, g) be a hyper-Kähler structure, and let

(ωI , ωJ , ωK) = (gI, gJ, gK)

be the corresponding triple of Kähler forms. This data defines the GK structure of symplectic type

(I+, I−, Q, F ) = (I, J, ω−1
K , ωI + ωJ).

The induced holomorphic Poisson structures are non-degenerate, with corresponding holomorphic sym-

plectic forms

Ω+ = ωJ + iωK , Ω− = −ωI + iωK .

Let X± = (M, I±). Then, assuming that M is simply-connected (or using a non source-simply connected

integration), we have a holomorphic Morita equivalence given by

(Z,Ω) = (X+,Ω+)× (X−,−Ω−),
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with π+ and π− given by the projections onto the first and second factors respectively. The brane

bisection L is then given by the diagonally embedded copy of M :

L = {(m,m) | m ∈M} ⊆ Z.

�

4.4 Prequantization

In this section, we describe what it means to prequantize a GK structure (I+, I−, Q, F ). This consists of

two main ingredients: a prequantization of the real 2-form F , and a ‘prequantization’ of the holomorphic

Poisson geometry.

Definition 4.4.1. Let F be a real closed 2-form. Then a prequantization consists of a complex line

bundle U , equipped with a connection ∇, such that the curvature ∇2 = −2πiF .

Recall the classical theorem of Kostant [65] and Souriau [96], which says that a closed 2-form F

is prequantizable if and only if F is integral in cohomology. In the literature, it is often conventional

to require U to be equipped with a Hermitian metric, such that the connection is unitary. We do

not impose this condition. Note that we will abuse notation, and use U also to denote the associated

principal C∗-bundle.

Given a Poisson structure, the correct notion to consider is a multiplicative prequantization of its

symplectic groupoid. This was introduced by Weinstein and Xu in [110].

Definition 4.4.2 (Multiplicative prequantization). Let (G ⇒ B,Ω) be a symplectic groupoid. A mul-

tiplicative prequantization is a prequantization (U,∇) of Ω, such that U is a multiplicative line bundle,

and ∇ is a multiplicative connection. This means that there is a flat isomorphism of line bundles with

connection µ : p∗1(U,∇)⊗ p∗2(U,∇) → m∗(U,∇), over the space of composable arrows G(2), such that µ

makes the associated C∗-principal bundle U into a Lie groupoid over B. In this case, U defines a central

extension of Lie groupoids

C∗ ×B → U → G.

Conditions for the existence of multiplicative prequantizations in the smooth category were studied

in [110, 25, 30, 9]. A source simply connected symplectic groupoid (G ⇒ B,Ω) admits a multiplicative

prequantization if and only if the restriction of Ω to the source-fibres has integral periods, and in this

case it is unique. This condition says that for each map σ̃ : S2 → s−1(x), for x in the base, the integral∫
σ̃

Ω must be an integer. Let us call this condition integrality of the induced Poisson structure Q on the

base of the groupoid.

It is possible to formulate this condition purely in terms of the Poisson structure Q. Recall that the

Poisson structure induces a decomposition of B into immersed submanifolds L ⊆ B, which inherit a

symplectic form ωL. These are the symplectic leaves. Next, a map σ̃ from the 2-sphere into a source

fibre is equivalent to a Lie algebroid morphism φ : TS2 → T ∗QB, covering the map σ = t ◦ σ̃, which lies

entirely in a symplectic leaf L. Then σ̃∗(Ω) = σ∗(ωL). Hence, the Poisson structure is integral if and

only if for each Lie algebroid morphism φ : TS2 → T ∗QB, covering a base map σ which necessarily lies

in a symplectic leaf L, the integral
∫
σ
ωL ∈ Z. In particular, a Poisson structure is integral if all of its

symplectic leaves have integral periods.
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These structures were studied in the smooth category, however, all the above definitions make sense

in the holomorphic category as well. By a holomorphic prequantization of a closed holomorphic 2-form

Ω, we mean a holomorphic line bundle L, equipped with a holomorphic connection ∇, whose curvature

is given by −2πiΩ. Note that this is a slightly disturbing concept: the holomorphic line bundle L can

always be equipped with a hermitian metric, and the associated Chern connection has curvature given

by a closed (1, 1)-form. Hence the (2, 0)-form Ω is cohomologous to a (1, 1)-form. If we are in the setting

of a compact Kähler manifold, this can only happen if Ω is cohomologically trivial, and by the ∂∂̄-

lemma, this implies that Ω = 0. In particular, there is no holomorphic prequantization of a holomorphic

symplectic form on a compact Kähler manifold. Nevertheless, we make the following definition.

Definition 4.4.3 (GK prequantization). A prequantization of a GK structure (I+, I−, Q, F ) consists of

a holomorphic multiplicative prequantization of the holomorphic symplectic groupoid associated to the

Morita equivalence of Theorem 4.2.2 via Lemma 4.1.2. More precisely, this consists of

1. multiplicative prequantizations (U±,∇±) of the holomorphic symplectic groupoids (Σ(X±),Ω±)

integrating the holomorphic Poisson structures σ±;

2. a holomorphic prequantization (U,∇) of the Morita equivalence (Z,Ω), which is compatible with

the prequantizations U± in the sense that U provides a Morita equivalence between U±, and the

action maps

(U+,∇+)⊗ (U,∇)→ (U,∇), (U,∇)⊗ (U−,∇−)→ (U,∇),

are flat.

Remark 4.4.4. Based on the observations preceding this definition, it might appear that multiplicative

prequantizations are very difficult to find. However, symplectic groupoids are often non-compact, and

so a (2, 0)-form can in fact be cohomologous to a (1, 1)-form.

Theorem 4.4.5. A degenerate GK structure of symplectic type (I+, I−, Q, F ) is prequantizable if and

only if F is integral in cohomology and the holomorphic Poisson structure σ− is integral.

Remark 4.4.6. For simplicity, we assume that the integration of Q is Hausdorff.

Proof. One direction is obvious: if (I+, I−, Q, F ) is prequantizable, then by definition, the symplectic

groupoid (Σ(X−),Ω−) is prequantizable, which implies that σ− is integral. And restricting the pre-

quantization of (Z,Ω) to the brane L induces a prequantization of F , which forces it to be integral in

cohomology.

The other direction is essentially a corollary of Theorem 5.1 from [25], and Proposition 4.1.3 above.

First, since σ− is integral, the periods of Ω− on the source fibres of the groupoid are integers. This

breaks up into two conditions: the periods of B = Re(Ω−) are integer, and those of ω = Im(Ω−)

are zero. By Corollary 5.2 of [25], we can find a prequantization (U1,∇1) of B, and a multiplicative

R-line bundle with connection (U2,∇2), such that (∇2)2 = 2πω. Taking the tensor product, we get

a complex multiplicative line bundle (U−,∇−) with curvature given by −2πiΩ−. The curvature is a

holomorphic (2, 0)-form. Hence, the (0, 1)-component of ∇− defines a holomorphic structure on U−,

and the (1, 0)-component defines a holomorphic connection. Hence, we get a holomorphic multiplicative

prequantization of Ω−.

Next, choose a prequantization (L,D) of F on the base B (with complex manifold structures X±).

We will construct the full prequantization in a similar way to the construction of the Morita equivalence
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in Proposition 4.1.3. Recall that we first consider the groupoid (R,Ω) over the doubled base X
(2)
−
∐
X

(1)
− ,

coming from the trivial Morita self-equivalence of (Σ(X−),Ω−). Since this groupoid consists of 4 copies of

Σ(X−), with the same multiplication, it inherits a multiplicative prequantization (U ′,∇′) from (U−,∇−).

Now consider the line bundle (L′, D′) on the base which is equal to (L,D) on X
(2)
− , and the trivial bundle

(X
(1)
− × C, d) on X

(1)
− . Then

t∗(L′, D′)⊗ s∗(L′, D′)−1 ⊗ (U ′,∇′)

is automatically multiplicative, and its curvature exactly coincides with the new holomorphic symplectic

form. It is therefore of type (2, 0) with respect to the new complex structure. The connection then

induces a holomorphic structure, and a holomorphic connection prequantizing the symplectic form.

Hence we get a prequantization of the GK structure.

Remark 4.4.7. Suppose (U−,∇−) is a holomorphic multiplicative prequantization of (Σ(X−),Ω−), and

(L,D) is a prequantization of F on the base. Then the prequantization of the Morita equivalence (Z,Ω)

is given by

(U,∇) = t∗(L,D)⊗ (U−,∇−),

and the holomorphic multiplicative prequantization of (Σ(X+),Ω+) is given by

(U+,∇+) = t∗(L,D)⊗ s∗(L,D)−1 ⊗ (U−,∇−).

Example 4.4.8 (Kähler Manifold). Consider a Kähler manifold (M, I, g, ω), and the corresponding Morita

equivalence

(Z,Ω) = (T ∗X,Ω0 + π∗ω).

The symplectic groupoid of the zero Poisson structure is given by T ∗X, with the canonical symplectic

form Ω0, and this has a multiplicative primitive given by the tautological 1-form θ. Hence, the trivial

bundle T ∗X ×C, with the connection d− 2πiθ gives a holomorphic multiplicative prequantization. Now

let (L,D) be a prequantization of ω. The GK quantization is then given by

(π∗L, π∗(D)− 2πiθ)

on the Morita equivalence. Notice that since π : Z → X is holomorphic, π∗ω is a real (1, 1)-form, which

is cohomologous to the holomorphic (2, 0)-form Ω. �

4.5 Čech description

Recall that in Section 1.2, the construction of the Morita equivalence was given first via a Čech de-

scription. It is also possible to do this in the more general case, describing GK structures in terms of

a non-linear cohomology theory. In Section 5.2, we give an explicit example of such a construction. In

order to do this in general, we preference the holomorphic Poisson structure (X−, σ−), and describe the

GK structure relative to this.

Definition 4.5.1. Let (Σ(X−),Ω−) be the holomorphic symplectic integration of σ−. We define

BisL(Σ(X−)) to be the group of brane bisections, and LBis(Σ(X−)) to be the subgroup of holomor-

phic Lagrangian bisections. We also use the same notation to denote the corresponding presheaves of
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local bisections, expressed as sections of the source map.

Choose a cover of X− by open sets Wi, and for each i, choose a brane bisection γi ∈ BisL(Σ(X−))(Wi).

These consist of maps γi : Wi → Σ(X−), such that

1. s ◦ γi = idWi
,

2. t ◦ γi = φi, a diffeomorphism onto its image,

3. the image of γi is a brane with respect to Ω−.

Define Vi = φi(Wi), and let Fi = γ∗i Ω−, a real-closed 2-form. The map φi : Wi → Vi only preserves

the imaginary part of σ−, but we can use it to pullback the complex structure. By Theorem 4.2.2,

(I+,i = φ∗i (I−), I−, Q, Fi) defines a degenerate GK structure of symplectic type on Wi.

Let Wij = Wi ∩ Wj , denote V
(i)
ij = φi(Wij), and define δ(γ)ji = γj ∗ γ−1

i . Since, for y ∈ Wij ,

s(γj(y) ∗ γi(y)−1) = φi(y), and t(γj(y) ∗ γi(y)−1) = φj(y), it follows that δ(γ)ji ∈ BisL(Σ(X−))(V
(i)
ij ),

and this bisection induces the diffeomorphism t ◦ δ(γ)ji = φj ◦ φ−1
i : V

(i)
ij → V

(j)
ij .

Now assume that δ(γ)ji ∈ LBis(Σ(X−))(V
(i)
ij ), a holomorphic Lagrangian bisection. Then, by Propo-

sition 2.2.11, φj ◦ φ−1
i is holomorphic Poisson, and hence I+,j |Wij

= I+,i|Wij
. Furthermore, since

γj |Wij
= δ(γ)ji ∗ γi|Wij

, we have that Fj |Wij
= Fi|Wij

. Therefore, the local GK structures glue to-

gether to form a global degenerate GK structure of symplectic type (I+, I−, Q, F ) on X−.

It is easy to describe the corresponding Morita equivalence with brane bisection in terms of the

Čech data. First, using the holomorphic Poisson maps φj ◦φ−1
i , we glue together the open sets Vi into a

holomorphic Poisson manifold X+ =
∐
Vi/ ∼, which is isomorphic via φi to X−, equipped with (I+, σ+).

Next, we construct the Morita equivalence (Z,Ω), by gluing together the right-principal Σ(X−)-

bundles t−1(Vi)→ Vi using the holomorphic Lagrangian bisections δ(γ)ji. More precisely, by Proposition

2.2.11, left multiplication by δ(γ)ji defines a holomorphic symplectic isomorphism of right-principal

Σ(X−)-bundles:

Lji : t−1(V
(i)
ij )→ t−1(V

(j)
ij ), g 7→ δ(γ)ji(t(g)) ∗ g.

These maps satisfy s ◦ Lji = s, and t ◦ Lji = φj ◦ φ−1
i ◦ t, as well as the cocycle condition:

Lkj ◦ Lji = Lki.

Hence, we can use them to glue {t−1(Vi)} into a holomorphic symplectic bundle (Z,Ω) as follows:

Z = (
∐
i

t−1(Vi))/ ∼, gi ∼ Lji(g)j .

This has a surjective Poisson submersion π+ : Z → X+, defined locally by t, and a surjective anti-Poisson

submersion π− : Z → X−, defined locally by s. A priori, this is only a right-principal Σ(X−)-bundle.

But the local bisections γi glue together into a global brane bisection γ : X− → Z, and this induces an

isomorphism between (Z,Ω) and the Morita equivalence (Σ(X−),Ω− + t∗F ).

Note that we actually obtain more than the Morita equivalence with brane bisection (Z,Ω, γ). We

also get a cover of X+ by the open sets Vi, and local holomorphic Lagrangian bisections Λi : Vi → Z,

such that π+ ◦Λi = idVi
, defined by the identity bisections in t−1(Vi). It is this extra data that allows us

to extract the Čech description. And by ‘modding out’ this choice of holomorphic Lagrangian bisections,

we obtain a classification of GK structures.
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Definition 4.5.2. A GK Čech cocycle for (X−, σ−) consists of an open cover X− = ∪Wi, and a collection

of brane bisections γi ∈ BisL(Σ(X−))(Wi), such that δ(γ)ji ∈ LBis(Σ(X−))(V
(i)
ij ). We say that two Čech

cocycles γ and η are equivalent if, after passing to a common refinement of their covers, they are related

by holomorphic Lagrangian bisections:

ηi = li ∗ γi,

for li ∈ LBis(Σ(X−))((t ◦ γi)(Wi)).

Theorem 4.5.3. There is a bijection between degenerate GK structures of symplectic type, with fixed

holomorphic Poisson manifold (X−, σ−), and equivalences classes of GK Čech cocycles for (X−, σ−).

Proof. The preceding discussion shows that there is a GK structure associated to every GK Čech cocycle,

and it is straightforward to see this assignment is invariant under refinement of covers. Now suppose

that we have two GK Čech cocycles, γ and η, over the same cover, such that η = l ∗ γ, for holomorphic

Lagrangian bisections li. Then, since t ◦ li is holomorphic, η and γ induce the same complex structure

I+, and furthermore

η∗i Ω− = (t ◦ γi)∗l∗iΩ− + γ∗i Ω− = γ∗i Ω−.

Hence, γ and η give rise to the same GK structure, and so there is a well-defined map from equivalence

classes of GK Čech cocycles to GK structures on X−. We will show that this is a bijection.

First, we show injectivity. So let γ and η be two GK Čech cocycles giving rise to the same GK

structure. After taking a common refinement, we have γi, ηi : Wi → Σ(X−), such that γ∗i Ω− = η∗i Ω−.

Therefore ηi ∗ γ−1
i is holomorphic Lagrangian, and so γ and η are equivalent.

Next, we show surjectivity. Let (Z,Ω,L) be a holomorphic symplectic Morita equivalence with brane

bisection between (X+, σ+) and (X−, σ−). We think of L as a section of π−, and let φ = π+ ◦L : X− →
X+. Now choose an open cover of X+ = ∪Vi, such that over each Vi, there is a holomorphic Lagrangian

bisection Λi : Vi → Z, viewed as a section of π+, and let Wi = φ−1(Vi). Note that the Wi give an open

cover of X−, since φ is a diffeomorphism.

Because the action of Σ(X−) is principal, for each index i, there is a unique map γi : Wi → Σ(X−),

such that

L(x) ∗ γi(x)−1 = Λi(φ(x)),

for all x ∈Wi. One can then check that s ◦ γi = idWi
, t ◦ γi = (π− ◦Λi) ◦φ, and γ∗i Ω− = L∗Ω, so that γi

define brane bisections γi ∈ BisL(Σ(X−))(Wi). It also follows that δ(γ)ji are holomorphic Lagrangian,

since

δ(γ)∗jiΩ− = γ∗jΩ−|Wij
− γ∗i Ω−|Wij

= 0,

or, from the relation Λi = Λj ∗ δ(γ)ji. Hence, γi define a GK Čech cocycle, which gives rise to the same

GK structure as (Z,Ω,L). This finishes the proof of surjectivity.

We can give a more sheaf-theoretic description of this result. Consider the separated presheaf of sets

G̃KS, whose sections over an open set W are the elements of
(

BisL(Σ(X−))/LBis(Σ(X−))
)

(W ), i.e. the

right cosets of LBis(Σ(X−)) over W . Thus, for a brane bisection γ over W , the element [γ] ∈ G̃KS(W ) is

set of bisections λ∗γ, where λ runs over all holomorphic Lagrangian bisections in LBis(Σ(X−))(t◦γ(W )).

We define GKS to be its sheafification, and GKS+ to be the subsheaf of sections represented by positive

brane bisections.
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Corollary 4.5.4. There is a bijection between H0(X−,GKS+) (resp. H0(X−,GKS)), and the set of

(resp. degenerate) GK structures of symplectic type, with fixed holomorphic Poisson manifold (X−, σ−).

Example 4.5.5. Let us revisit the Kahler case, where Q = 0, and I+ = I− = I. Then LBis(Σ(X−)) =

Ω1,cl, the sheaf of closed holomorphic 1-forms, and BisL(Σ(X−)) = Ω1,cl
R , the sheaf of real, closed 1-

forms. The sheaf Ω1,cl includes into Ω1,cl
R as the sheaf of d and dc-closed forms, by taking the imaginary

part. �

We see that in the Kähler case, we only deal with sheaves of abelian groups, whereas in the general

case, the sheaves are highly non-commutative. This gives a precise sense in which GK geometry is a

non-linear generalization of Kähler geometry.



Chapter 5

The generalized Kähler potential

In this chapter, we discuss an application of our main result to the problem of locally describing a

generalized Kähler structure in terms of a real-valued function analogous to the Kähler potential. There

is evidence in the physics literature for the existence of such a generalized Kähler potential (see for

example [114, 71, 60, 73]). However, all previous constructions only work in a neighbourhood where the

Poisson structure Q is regular (i.e. has constant rank). As we will see, by viewing a GK structure as a

brane in a holomorphic symplectic Morita equivalence, one can describe the geometry in terms of a real-

valued function even in a neighbourhood where the Poisson structure changes rank. The fundamental

reason for this is that the brane L is a Lagrangian submanifold of the real symplectic manifold (Z, Im(Ω)),

and so may be described using a generating function.

Our generalized Kähler potential is obtained in the following way. Let (Z,Ω,L) be a holomorphic

symplectic Morita equivalence with brane bisection. Choose a Darboux chart of (Z,Ω), i.e. a local

holomorphic symplectomorphism

(T ∗L,Ω0)→ (Z,Ω),

where L ⊂ Z is a holomorphic Lagrangian submanifold and Ω0 is the canonical holomorphic symplectic

form on the holomorphic cotangent bundle T ∗L. Using the identification of T ∗L with the bundle of

(1, 0)-forms, the brane L can be viewed as a smooth submanifold of T ∗1,0L. We require that the Darboux

chart be generic in the sense that L is the graph of a (1, 0)-form η ∈ Ω1,0(L). Then, since

dη = η∗Ω0 = Ω|L = F

is a real closed 2-form, we have that d(Im(η)) = 0, which locally implies that Im(η) = − 1
2dK, for

K ∈ C∞(L,R) a smooth real-valued function on L, uniquely determined up to a real constant. And

since η is a (1, 0)-form, its real part is determined by its imaginary part, so that η = −i∂K and, finally,

F = i∂∂̄K.

Therefore we call K the generalized Kähler potential for the GK structure, and we record these obser-

vations in the following theorem.

Theorem 5.0.1. Let (Z,Ω,L) be a holomorphic symplectic Morita equivalence with brane bisection.

Given a generic Darboux chart (T ∗L,Ω0)→ (Z,Ω), there is a smooth real-valued function K ∈ C∞(L,R),

55
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unique up to an additive real constant, such that L = Gr(−i∂K). Furthermore, the real 2-form F = Ω|L
is given by F = i∂∂̄K. We call K the generalized Kähler potential.

5.1 Examples

In the first example, we see that the generalized Kähler potential does indeed specialize to the classical

Kähler potential.

Example 5.1.1 (Kähler potential). Suppose the Poisson structure vanishes: Q = 0. Then a GK structure

of symplectic type is automatically Kähler, and as we saw in Example 4.3.2, the Morita equivalence is

given by a twist of the holomorphic cotangent bundle by the Kähler form ω:

(Z,Ω) = (T ∗X,Ω0 + π∗ω),

and the brane bisection L is given by the zero section of T ∗X viewed as a brane in Z. Now choose a

local holomorphic Lagrangian section λ of π : Z → X with domain U ⊂ X and image L. The projection

π defines a holomorphic isomorphism from L to U , and so we can use the natural action of T ∗X on Z

to define the following holomorphic Darboux chart:

(T ∗U,Ω0)→ (Z,Ω), αx 7→ αx + λ(x),

where αx ∈ T ∗xU . Theorem 5.0.1 then tells us that L = Gr(−i∂K) and ω = i∂∂̄K, for a real-valued

function K ∈ C∞(U,R), recovering the usual notion of Kähler potential. �

In the case where the underlying Poisson structure Q is regular, it is possible to choose the Darboux

chart in such a way as to recover the GK potentials occurring in the physics literature:

Example 5.1.2 (Non-degenerate Poisson structure). If the Poisson structure Q = ω−1 is non-degenerate,

then both of the holomorphic Poisson structures σ± are as well, with corresponding holomorphic sym-

plectic forms

Ω± = ωI± + iω.

The Morita equivalence between the resulting holomorphic symplectic manifolds is then

(Z,Ω) = (X+,Ω+)× (X−,−Ω−),

with π+ and π− the projections onto the first and second factors, respectively. The brane bisection L
is given by the diagonally embedded manifold. We now construct a holomorphic Darboux chart on Z

from a pair of holomorphic Darboux charts for (X±,Ω±): let (qα, pα)nα=1 define a holomorphic Darboux

chart on X+ so that Ω+ = dpα ∧ dqα, and let (Qα, Pα)nα=1 define a holomorphic Darboux chart on X−

so that Ω− = dPα ∧ dQα. Then (qα, pα, Q
α, Pα)nα=1 defines a holomorphic chart on Z with respect to

which the form Ω has the following expression:

Ω = dpα ∧ dqα + dQα ∧ dPα.

A natural choice for the complex Lagrangian in (Z,Ω) is given by L = {Qα = pα = 0}, so that

(qα, pα, Q
α, Pα)nα=1 define a holomorphic Darboux chart with qα and Pα coordinates along L and pα
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and Qα the fibre coordinates. Theorem 5.0.1 then tells us that in the generic situation, the brane is

given in these coordinates by the graph of −i∂K for a real-valued function K(qα, Pα, q̄
α, P̄α):

L = {(qα, pα, Qα, Pα)nα=1 | pα = −i ∂K
∂qα

, Qα = −i ∂K
∂Pα
},

and the symplectic form is given by F = i∂∂̄K. Using qα and Pα as coordinates on this brane, we

can then express all of the remaining data in terms of the GK potential K as follows. First, the two

projection maps π± have the following coordinate expressions

π+|L(qα, Pα) = (qα,−i ∂K
∂qα

), π−|L(qα, Pα) = (−i ∂K
∂Pα

, Pα),

and therefore the holomorphic symplectic forms Ω± can be expressed as follows

Ω+ = i
( ∂2K

∂q̄β∂qα
dqα ∧ dq̄β +

∂2K

∂Pβ∂qα
dqα ∧ dPβ +

∂2K

∂P̄β∂qα
dqα ∧ dP̄β

)
Ω− = i

( ∂2K

∂P̄β∂Pα
dP̄β ∧ dPα +

∂2K

∂qβ∂Pα
dqβ ∧ dPα +

∂2K

∂q̄β∂Pα
dq̄β ∧ dPα

)
.

Since these forms are holomorphic symplectic, they determine the complex structures I±. The symplectic

form ω is the common imaginary part of Ω±:

ω =
1

2

( ∂2K

∂Pβ∂qα
dqα ∧ dPβ +

∂2K

∂P̄β∂qα
dqα ∧ dP̄β + c.c.

)
.

In this way, we recover the expressions found in [114, Section 4.2]. �

We now use our notion of GK potential to construct new examples of 4-dimensional GK structures

for which the Hitchin Poisson structure is not of constant rank, dropping from full rank to zero along a

codimension 2 submanifold.

Example 5.1.3. Recall from Example 2.2.17 that the Poisson structure Π = x∂y∧∂x on C2 has symplectic

groupoid G = C4, with source and target maps

t(a, b, x, y) = (eax, y + xb), s(a, b, x, y) = (x, y),

and symplectic form Ω = da∧ d(y+xb)− db∧ dx. Viewing this as the trivial Morita equivalence we can

upgrade this to an example of a GK structure by the appropriate choice of a brane bisection. In order

to apply Theorem 5.0.1 we choose a Darboux chart for the groupoid as follows:

(p1, p2, q1, q2) = (a,−b, y + xb, x).

This puts the symplectic form into the standard form

Ω = dp1 ∧ dq1 + dp2 ∧ dq2.

We take q1, q2 to be coordinates on the Lagrangian and p1, p2 the cotangent fibre coordinates. The
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source and target maps then have the form

t(p1, p2, q1, q2) = (ep1q2, q1), s(p1, p2, q1, q2) = (q2, q1 + p2q2).

According to Theorem 5.0.1, to define a brane it suffices to choose a real-valued function of q1 and q2.

We take

K(q1, q2) = q1q̄1 + q2q̄2.

Then the brane is given by the graph of the (1, 0)-form −i∂K = −i(q̄1dq1 + q̄2dq2). That is, the brane

is given by

L = {(p1, p2, q1, q2) | p1 = −iq̄1, p2 = −iq̄2}.

Using q1 and q2 as coordinates on L, the source and target maps (restricted to L) are

t(q1, q2) = (e−iq̄1q2, q1), s(q1, q2) = (q2, q1 − i|q2|2).

Because these are diffeomorphisms, L is a bisection of s and t. Hence the triple (G,Ω,L) defines a

degenerate GK structure of symplectic type. By Theorem 5.0.1, the 2-form is given by

F = i∂∂̄K = i(dq1 ∧ dq̄1 + dq2 ∧ dq̄2).

In these coordinates, the Hitchin Poisson structure is given by

Q = 2i(q2∂q1 ∧ ∂q2 − q̄2∂q̄1 ∧ ∂q̄2),

and the complex structures I± can be specified by their holomorphic coordinate functions: the I+-

holomorphic functions are given by t∗x = e−iq̄1q2 and t∗y = q1, while the I−-holomorphic functions are

given by s∗x = q2 and s∗y = q1 − i|q2|2.

In order to see that this defines a GK structure, we must determine whether, and where, the induced

metric g is positive definite. First we determine where g is invertible: by Lemma 3.1.4 this happens

precisely where ω− = gI− = F (1,1)− is invertible, where F (1,1)− is the (1, 1)-component of F with respect

to the I− complex structure. We have

F (1,1)− = idq1 ∧ dq̄1 + i(1− 2|q2|2)dq2 ∧ dq̄2 + q̄2dq2 ∧ dq1 + q2dq̄2 ∧ dq̄1,

so that

F (1,1)− ∧ F (1,1)− = −2(1− |q2|2)dq1 ∧ dq̄1 ∧ dq2 ∧ dq̄2.

Hence g is invertible whenever |q2| 6= 1. Along q2 = 0, we have s∗(dx∧dy) = dq2∧dq1, so that I− coincides

with the standard complex structure in coordinates (q1, q2), and F (1,1)− = idq1 ∧ dq̄1 + idq2 ∧ dq̄2. Since

these formulas coincide with the standard Kähler structure on C2, we know that g is positive definite

when q2 = 0 and therefore in the region |q2| < 1. Therefore this defines a generalized Kähler structure

on C×D, where D = {q2 | |q2| < 1}. The metric has the explicit form

g = 2(dq1dq̄1 + dq2dq̄2 + iq̄2dq1dq2 − iq2dq̄1dq̄2).

Note that if we restrict to the disc {q1 = c} ×D the metric pulls back to 2dq2dq̄2, and so this disc has
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finite volume. Therefore the metric is not complete by the Hopf-Rinow theorem. �

Example 5.1.4. We now generalize the previous example by choosing a different generalized Kähler

potential K, of the following form:

K(q1, q2) = a(q1, q̄1) + b(q2, q̄2),

for real-valued functions a and b. The brane is then given by

L = {(p1, p2, q1, q2) | p1 = −i∂q1a, p2 = −i∂q2b}.

Again, t and s restrict to L to be diffeomorphisms, and hence L defines a brane bisection, defining a

degenerate GK structure. In terms of the real-valued functions

α(q1, q̄1) =
∂2a

∂q1∂q̄1
, β(q2, q̄2) =

∂2b

∂q2∂q̄2
,

we have

F = i(αdq1 ∧ dq̄1 + βdq2 ∧ dq̄2),

which has (1, 1) component with respect to I− given by

F (1,1)− = iαdq1 ∧ dq̄1 + iβ(1− 2αβ|q2|2)dq2 ∧ dq̄2 + αβq̄2dq2 ∧ dq1 + αβq2dq̄2 ∧ dq̄1,

so that

F (1,1)− ∧ F (1,1)− = −2αβ(1− αβ|q2|2)dq1 ∧ dq̄1 ∧ dq2 ∧ dq̄2.

Furthermore, the induced metric is given by

g = 2(αdq1dq̄1 + βdq2dq̄2 + iαβq̄2dq1dq2 − iαβq2dq̄1dq̄2).

We want the metric to be positive definite. Setting q2 = 0 shows that we must have α, β > 0. The

expression for F (1,1)− ∧ F (1,1)− shows that g will be invertible precisely when

1 6= αβ|q2|2.

Setting q2 = 0 shows that we must therefore require that αβ|q2|2 < 1. Finally, because α and β depend

only on q1, q̄1 and q2, q̄2 respectively, α must be bounded by a constant and β must be bounded by C
|q2|2 ,

for C a positive constant. Under these assumptions, we obtain examples of generalized Kähler structures

of symplectic type. �

Proposition 5.1.5. In the context of the previous example, choose the generalized Kähler potential to

be

K(q1, q2) =
|q1|2

C
− Li2(−|q2|2),

for C > 1 a constant, where Li2(z) = −
∫ z

0
log(1 − u)duu is the dilogarithm. Then we get α = 1

C and
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β = 1
1+|q2|2 , and hence the metric is given by

g = 2(
1

C
dq1dq̄1 +

1

1 + |q2|2
(dq2dq̄2 +

i

C
q̄2dq1dq2 −

i

C
q2dq̄1dq̄2)).

This gives a generalized Kähler structure on R4 for which the metric is complete.

Proof. After the argument of Example 5.1.4, we need only show the completeness of the metric. Note

that the metric is translation invariant in the q1 direction. Quotienting by a Z2 lattice, we obtain a

metric on S1×S1×C. Completeness of this metric is equivalent to completeness of the original. To show

completeness, we need only investigate geodesics escaping to infinity in the q2-direction. In coordinates

q1 = x+ iy and q2 = sinh(s)eiθ, the metric has the following form:

g =
2

C
(dx2 + dy2) + 2(ds2 + tanh2(s)dθ2 − 2

C
tanh2(s)dxdθ − 2

C
tanh(s)dyds).

For any geodesic γ(t) = (x(t), y(t), s(t), θ(t)), we have

√
g(γ̇, γ̇) ≥

√
2(C − 1)

C
ṡ,

from which it follows that the length of the curve over the interval [t0, t1] is bounded below in the

following way:

L(γ) ≥
√

2(C − 1)

C
(s(t1)− s(t0)).

Therefore the length of a curve that escapes to infinity is unbounded and so the metric is complete.

Example 5.1.6. We now construct GK metrics for the Poisson structure σ = xy∂y ∧ ∂x on C2. Recall

from Example 2.2.18 that this Poisson structure has symplectic groupoid G = C4, with source and target

maps

t(a, b, x, y) = (x exp(yb), y exp(−xa)), s(a, b, x, y) = (x, y),

and symplectic form Ω = da ∧ dx + db ∧ dy + d(xa) ∧ d(yb). We again view this as the trivial Morita

equivalence. A Darboux chart is given by

(p1, p2, q1, q2) = (a exp(−yb), b, x exp(yb), y),

so that the form is given in these coordinates by

Ω = dp1 ∧ dq1 + dp2 ∧ dq2.

The source and target maps are then given by

t(p1, p2, q1, q2) = (q1, q2 exp(−q1p1)), s(p1, p2, q1, q2) = (q1 exp(−q2p2), q2).

We now add a slight twist: we scale the Poisson structure by a real number t: tσ. The only thing that

changes in our description of G is the source, target and multiplication maps. The deformed source and
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target maps are given by

t(p1, p2, q1, q2) = (q1, q2 exp(−tq1p1)), s(p1, p2, q1, q2) = (q1 exp(−tq2p2), q2).

Notice that when t = 0, the source and target maps are just projection onto the q-coordinates, which is

what we expect for the zero Poisson structure.

We now construct a GK metric by choosing a potential function according to Theorem 5.0.1. As

before, q1, q2 are coordinates along the holomorphic Lagrangian, and p1, p2 are the cotangent fibre

coordinates. Therefore, we must choose a real-valued function of q1 and q2. Let us choose a potential

function which only depends on the radial components:

K(q1, q2) = f(|q1|2, |q2|2),

for a real-valued function f . The brane is given by

L = {(p1, p2, q1, q2) | p1 = −iq̄1f1, p2 = −iq̄2f2},

where fi denotes the derivative of f with respect to the ith-coordinate. Using q1, q2 as coordinates on

L, the restricted source and target maps are then

t(q1, q2) = (q1, q2 exp(it|q1|2f1)), s(q1, q2) = (q1 exp(it|q2|2f2), q2).

Notice that the arguments of the exponents only depend on the radial components. Furthermore, the

arguments are purely imaginary, so that s and t do not distort the radial components. Hence, it is easy

to invert these maps, and so they are diffeomorphisms. It then follows by Theorem 5.0.1 that (G,Ω,L)

defines a degenerate GK structure of symplectic type. The 2-form F is given by

F = iAdq1 ∧ dq̄1 + iBdq2 ∧ dq̄2 + iCdq1 ∧ dq̄2 + iC̄dq2 ∧ dq̄1,

where

A =
∂2K

∂q1∂q̄1
= f1 + |q1|2f11, B =

∂2K

∂q2∂q̄2
= f2 + |q2|2f22, C =

∂2K

∂q1∂q̄2
= q̄1q2f21.

This structure has a high-degree of symmetry. Indeed, the group S1 × S1 acts on C2 by rotating each

coordinate. It is easy to see that tσ and K and F are invariant, and that the source and target maps

are equivariant. Therefore we get an S1 × S1-invariant degenerate GK structure of symplectic type.

Let us now investigate the positivity of the metric. Appealing again to Lemma 3.1.4, which allows

us to express ω− = gI− = F (1,1)− , we can determine whether the metric is non-degenerate by studying

the invertibility of the (1, 1)-component of F with respect to I−. We have

ω− =iAdq1 ∧ dq̄1 + iB(1− 2t2|q1|2|q2|2D)dq2 ∧ dq̄2

+iC(1− t2|q1|2|q2|2D)dq1 ∧ dq̄2 − iC̄(1− t2|q1|2|q2|2D)dq̄1 ∧ dq2

+tq̄1q̄2D(1 + itq̄1q2C̄)dq1 ∧ dq2 + tq1q2D(1− itq1q̄2C)dq̄1 ∧ dq̄2,
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where D = AB − |C|2, so that

V olgt =
ω2
−
2

= D(1− t2|q1|2|q2|2D)(idq1 ∧ dq̄1) ∧ (idq2 ∧ dq̄2).

First set t = 0, so that the Poisson structure vanishes. Then I+ = I− = I0, the complex structure of the

holomorphic Lagrangian, F = ω− = ω+, and

V olg0 = D(idq1 ∧ dq̄1) ∧ (idq2 ∧ dq̄2),

so that D is the determinant of the complex Hessian of K, with respect to the complex structure I0. We

therefore see that metric is non-degenerate if and only if D 6= 0, and is positive definite if and only if K

has positive definite Hessian. In this case, we get a Kähler structure on C2.

For general t, the condition for non-degeneracy is that D(1 − t2|q1|2|q2|2D) 6= 0, which breaks up

into the two conditions

D 6= 0, D <
1

t2|q1|2|q2|2
,

which must hold for all values of q1, q2. Note that if the second condition holds for some value of t, then

it also holds for all values with smaller norm, and hence for the path from 0 to t. Since the signature of

a non-degenerate family of symmetric tensors is constant, this means that gt has the same signature as

g0.

Lemma 5.1.7. The metric gt of the degenerate GK structure is positive definite if and only if K has

positive definite Hessian with respect to I0 and

D <
1

t2|q1|2|q2|2
, (5.1)

for all q1, q2.

If the condition of the lemma is satisfied for t = 1, then we get a family of GK structures, interpolating

between a Kähler structure at t = 0, and a GK structure with non-trivial Hitchin Poisson bracket

σ = xy∂y ∧ ∂x at t = 1. Note that condition 5.1 will eventually be violated for large enough finite t:

the family only exists for a finite range of t. Finally, it is possible to write an explicit expression for the

metric, in terms of K:

1

2
gt = (1 + 2t2|q1|2|q2|2|C|2)(Adq1dq̄1 +Bdq2dq̄2)

+(1 + t2|q1|2|q2|2(AB + |C|2))(Cdq1dq̄2 + C̄dq̄1dq2)

−itq̄1q̄2(1 + itq̄1q2C̄)(ACdq2
1 +BC̄dq2

2 + (AB + |C|2)dq1dq2)

+itq1q2(1− itq1q̄2C)(AC̄dq̄2
1 +BCdq̄2

2 + (AB + |C|2)dq̄1dq̄2).

�

Example 5.1.8. Let us consider a special case of the previous example, where we choose the potential to

be

K(q1, q2) = −Li2(−|q1|2)− Li2(−|q2|2),

for Li2(z) = −
∫ z

0
log(1− u)duu , the dilogarithm function. This example will proceed in a similar way to
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Proposition 5.1.5. We find that

A =
1

1 + |q1|2
, B =

1

1 + |q2|2
, C = 0,

so that

F = i
dq1 ∧ dq̄1

1 + |q1|2
+ i

dq2 ∧ dq̄2

1 + |q2|2
,

and
1

2
gt =

dq1dq̄1

1 + |q1|2
+

dq2dq̄2

1 + |q2|2
+ it

q1q2dq̄1dq̄2 − q̄1q̄2dq1dq2

(1 + |q1|2)(1 + |q2|2)
.

We see that g0 is positive definite, and condition 5.1 holds if and only if t2 ≤ 1. Hence we have a family

of GK metrics for 0 ≤ t ≤ 1. Choosing coordinates q1 = sinh(s1)eiθ1 and q2 = sinh(s2)eiθ2 , the metric

has the form

1

2
gt = ds2

1 + tanh2(s1)dθ2
1 +ds2

2 + tanh2(s2)dθ2
2 + 2t tanh(s1) tanh(s2)(tanh(s1)dθ1ds2 + tanh(s2)ds1dθ2).

For small values of s1, s2, the metric looks approximately Euclidean, whereas for large s1 and s2, it is

approximately given by

1

2
gt ≈ (ds2

1 + dθ2
2 + 2tds1dθ2) + (ds2

2 + dθ2
1 + 2tdθ1ds2),

which is a product of two flat cylinders.

Proposition 5.1.9. The metric gt is complete for 0 ≤ t < 1, and non-complete for t = 1.

Proof. First, for t = 1, we will show that the metric is non-complete by giving an example of a finite-

length path escaping to infinity. Consider the path γ(τ) given by

(s1(τ), s2(τ), θ1(τ), θ2(τ)) = (τ, τ,−log(cosh(τ)),−log(cosh(τ))),

for 1 ≤ τ ≤ ∞. Then g1(γ̇, γ̇) = 4(1− tanh4(τ)), so that the length is

L(γ) = 2

∫ ∞
1

√
1− tanh4(τ)dτ <∞.

Next, for t < 1, we show that the metric is complete by giving a lower bound on the length of any path.

Given a path

γ(τ) = (s1(τ), s2(τ), θ1(τ), θ2(τ)),

we have √
gt(γ̇, γ̇) ≥

√
2(1− t2 tanh2(s1) tanh2(s2))(ṡ1

2 + ṡ2
2)

≥
√

2(1− t2)
1
2

√
ṡ1

2 + ṡ2
2,

from which it follows that the length of the curve over the interval [a, b] is bounded below in the following



Chapter 5. The generalized Kähler potential 64

way:

L(γ) ≥
√

2(1− t2)
1
2

∫ b

a

√
ṡ1

2 + ṡ2
2dτ ≥

√
2(1− t2)

1
2

√
(s1(b)− s1(a))2 + (s2(b)2 − s2(a)2).

Therefore, the length of any path escaping to infinity is unbounded.

�

5.2 Toric GK surfaces

We can apply the calculations of Example 5.1.6 to give constructions, in the spirit of Section 4.5, of

generalized Kähler deformations of toric Kahler surfaces. See [51] for an introduction to toric geometry.

Let (X, I, ω, g) be a toric Kahler surface: X is a compact connected complex 2-dimensional Kähler

manifold, with an effective action of T2 = S1 × S1, which is Hamiltonian for ω, and which preserves I.

This action then complexifies to give an effective holomorphic action of C∗ × C∗. X can be covered by

holomorphic charts, which are isomorphic to C2, with the action of (C∗)2 given by

(µ, ν) ∗ (x, y) = (µn1νm1x, µn2νm2y),

where (n1, n2) and (m1,m2) give a basis of Z2. This means that n1m2 − n2m1 = ±1, and by flipping

the coordinates, we can assume that this value is 1. We can furthermore assume that one of the charts

U0 is given by C2 = {(q1, q2)}, with the standard action of (C∗)2. The (C∗)2 action is generated by 2

holomorphic vector fields, V1, V2, given in the U0 chart by

V1 = q1∂q1 , V2 = q2∂q2 .

The bivector σ = V2 ∧V1 defines a holomorphic Poisson structure. In each of the charts, it has the form

σ = xy∂y ∧ ∂x, and we can see that it vanishes precisely where the action fails to be free.

Symplectic groupoid

We now construct the symplectic groupoid integrating tσ. The orbits of the groupoid are given by the

symplectic leaves of the Poisson structure. For t 6= 0, there is a single 2-dimensional open symplectic

leaf, isomorphic to C∗×C∗, where the action is free, and infinitely many 0-dimensional symplectic leaves

where σ vanishes. We can see that each of the above charts are unions of orbits. Lets first restrict to

U0, where σ = tq1q2∂q2 ∧ ∂q1 . We are now in the setting of Examples 2.2.18 and 5.1.6. The groupoid

is given by G0 = C4 = T ∗U0, with its canonical symplectic form Ω0, and with source and target maps

given by

t(p1, p2, q1, q2) = (q1, q2 exp(−tq1p1)), s(p1, p2, q1, q2) = (q1 exp(−tq2p2), q2).

We can write these in a more invariant way: the vector fields V1 and V2 define holomorphic functions Ṽ1

and Ṽ2 on T ∗X. In terms of these functions, we see that

t(α) = (1, exp(−tṼ1(α))) ∗ π(α), s(α) = (exp(−tṼ2(α)), 1) ∗ π(α),
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where α denotes an element of the cotangent bundle, π is the bundle projection, and ∗ denotes the action

of (C∗)2 on X. Furthermore, the multiplication is given by

m(β, α) = (1, exp(tṼ1(α))) ∗ β + (exp(tṼ2(β)), 1) ∗ α,

the identity bisection is given by the zero section, and the inverse of an element α is given by

ι(α) = (exp(−tṼ2(α), exp(−tṼ1(α)))) ∗ (−α).

In these expressions, ∗ denotes the action of (C∗)2 on T ∗X. But now note that all the above formulas

are well-defined on all of T ∗X. Hence, this defines the symplectic integration of tσ.

If we switch into another chart V , where the action is given by weights (n1, n2), (m1,m2), then

V1 = n1x∂x + n2y∂y, V2 = m1x∂x +m2y∂y,

and so the source and target maps now have the form

t(px, py, x, y) = (exp(−tm1(n1xpx + n2ypy))x, exp(−tm2(n1xpx + n2ypy))y),

s(px, py, x, y) = (exp(−tn1(m1xpx +m2ypy)x, exp(−tn2(m1xpx +m2ypy))y).

Generalized Kähler potentials

The symplectic groupoid T ∗X comes equipped with extra data: i.e. it is a cotangent bundle. Therefore,

we can use potential functions to define brane bisections.

Lemma 5.2.1. Let V be a toric chart, isomorphic to C2, with (C∗)2 action given by weights (n1, n2) and

(m1,m2), and let T ∗V be the restriction of the symplectic groupoid to this chart. Let K be a real-valued

T2-invariant function. Then L = Gr(−i∂K) defines a brane bisection.

Proof. The potential function has the form

K(x, y) = f(|x|2, |y|2),

for a real-valued function f . The submanifold L = Gr(−i∂K) is given by

px = −ix̄f1(|x|2, |y|2), py = −iȳf2(|x|2, |y|2),

where fi denotes the derivative with respect to the ith-coordinate. L is automatically a brane, and

therefore we only need to check that it is a bisection, which means that the source and target maps

restrict to diffeomorphisms. Using the coordinates (x, y) as coordinates on L, we see that the restricted

source and target maps are given by

t(x, y) = (exp(itm1(n1|x|2f1 + n2|y|2f2))x, exp(itm2(n1|x|2f1 + n2|y|2f2))y),

s(x, y) = (exp(itn1(m1|x|2f1 +m2|y|2f2)x, exp(itn2(m1|x|2f1 +m2|y|2f2))y).

The key point here is that the arguments of the exponential functions are purely imaginary, and only

depend on the radial components. Therefore, they can be inverted.
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Lemma 5.2.2. Consider a toric Kähler structure ω on C2. There exists a T2-invariant Kähler potential

K, which is unique up to a real additive constant.

Proof. The action is given by a map

ρ : T2 → Symp(C2, ω).

If K is a Kähler potential, we can average it over T2 to get

K̃ =

∫
T2

ρ∗θ(K)dθ,

which is manifestly T2-invariant. Then since ρθ preserves the complex structure,

i∂∂̄K̃ =

∫
T2

ρ∗θ(i∂∂̄K)dθ =

∫
T2

ρ∗θ(ω)dθ = ω.

Now suppose that K1 and K2 are two T2-invariant Kähler potentials. Then

K1 −K2 = φ+ φ̄,

for a holomorphic function φ. Hence, K1 −K2 is a T2-invariant harmonic function, and hence constant

by the maximum principle.

Theorem 5.2.3. Let (X, I, ω, g) be a toric Kähler surface, let V1 and V2 be the generators of the (C∗)2-

action, and let σ = V2 ∧ V1 be a holomorphic Poisson structure. There is a family of T2-invariant

degenerate GK structures (X,ω, I+,t, I−,t, Qt), for t ∈ R, deforming the Kähler structure, such that

d

dt
|t=0(I−,t) = iV2ω ⊗ V1 ∈ H1(TX),

d

dt
|t=0(I+,t) = iV1ω ⊗ V2 ∈ H1(TX).

The metric is invertible if and only if

t2 <
2

maxX(〈ω2, σ ∧ σ̄〉)
,

in which case it is positive-definite, defining a GK structure of symplectic type.

Proof. Let Ui be a cover by toric open sets isomorphic to C2. Over each Ui, we choose a T2-invariant

Kähler potential and consider the brane bisection Li = Gr(−i∂Ki). Note that this brane is uniquely

determined by ω, since Ki is unique up to a constant. By Theorem 4.2.2, each brane Li inherits a

degenerate GK structure of symplectic type. Using the bundle projection, these induce GK structures

on each of the open sets Ui. We claim that these glue together to define a global degenerate GK structure

on X. First of all, the 2-form is just given by

Fi = i∂∂̄Ki = ω,

which is globally defined. Next, we show that the complex structures glue together. Lets move into the

chart U0 = C2. The potential functions Ki are given in this chart by

Ki(q1, q2) = f (i)(|q1|2, |q2|2),
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and these are defined on an open set containing (C∗)2. The source and target maps associated to Li are

given by

ti(q1, q2) = (q1, exp(it|q1|2f (i)
1 (|q1|2, |q2|2))q2),

si(q1, q2) = (exp(it|q2|2f (i)
2 (|q1|2, |q2|2))q1, q2).

We need to show that s∗i (I) = s∗j (I), or equivalently, that sj ◦ s−1
i is holomorphic, and similarly for the

target maps. One checks that

sj ◦ s−1
i (q1, q2) = (exp(it|q2|2(f

(j)
2 − f (i)

2 )(|q1|2, |q2|2))q1, q2)

= (exp(itq2∂q2(Kj −Ki)(q1, q2))q1, q2)

= (exp(itV2(Kj −Ki))q1, q2).

But V2(Kj − Ki) is holomorphic, since ∂̄∂(Kj − Ki) = 0. Therefore sj ◦ s−1
i is holomorphic. In fact,

V2(Kj −Ki) is a holomorphic real-valued function on (C∗)2, and therefore it is a constant. Similarly,

tj ◦ t−1
i (q1, q2) = (q1, exp(itV1(Kj −Ki))q2),

where V1(Kj −Ki) is a real-valued constant. This shows that the complex structures glue together, and

hence we get a family of degenerate GK structures (ω, I+,t, I−,t) on X. Since the maps ti and si are

T2-equivariant, it follows that this GK structure is T2-invariant.

The deformation I−,t is given infinitesimally by the Čech cocycle 〈i∂(Kj − Ki), V2〉V1, which is

equivalent to the class iV2
ω ⊗ V1 ∈ H1(TX). Similarly, the deformation I+,t is given infinitesimally by

iV1
ω ⊗ V2 ∈ H1(TX).

Finally, we need to determine for which values of t the metric is positive-definite. Recall from Example

5.1.6 the expression for the volume form of the metric in the chart U0:

V olgt =
ω2
−
2

= D(1− t2|q1|2|q2|2D)(idq1 ∧ dq̄1) ∧ (idq2 ∧ dq̄2).

This can be written invariantly as

V olgt = (1− t2〈V olg0 , σ ∧ σ̄〉)V olg0 =
1

2
(1− t2

2
〈ω2, σ ∧ σ̄〉)ω2.

In order for gt to remain invertible, this quantity must be non-zero. Since σ vanishes where the action

is not free, we therefore have the condition that

t2

2
〈ω2, σ ∧ σ̄〉 < 1,

over all X. Hence, gt is invertible if and only if

t2 <
2

maxX(〈ω2, σ ∧ σ̄〉)
.

In this case, gt and g0 have the same signature, which implies that gt is positive-definite.

Remark 5.2.4. This construction is slightly different from the construction outlined in Section 4.5. In
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particular, both Poisson structures get deformed in this construction. The advantage is that the 2-form

ω does not vary. In fact, it is also possible to cary out the Čech construction of Section 4.5 for a toric

Kähler surface (X, I, ω, g) since, as one can check, for a pair of invariant Lagrangian branes Li,Lj , one

has Li ∗ (Lj)−1 = Li − Lj . In this case, I− remains fixed, and I+ changes in the direction

σ(ω) = iV2
ω ⊗ V1 − iV1

ω ⊗ V2,

which gives the deformation of the holomorphic Poisson structure described by Hitchin [58]. Hence we

see that the deformations of Theorem 5.2.3 split the Hitchin deformation into two components.

Remark 5.2.5. Theorem 5.2.3 is similar to a result of Boulanger [10, Corollary 1], which gives a method,

based on generalized symplectic potentials, for deforming a toric Kähler structure into a toric GK struc-

ture using a ‘small enough’ Poisson structure. Such results are realizations of the general unobstruct-

edness result of Goto [39]. The toric GK structures considered by Boulanger are anti-diagonal, but the

GK structures of Theorem 5.2.3 are not. One important difference is that the Hitchin Poisson struc-

tures of Theorem 5.2.3 are of the form tσ for t real, whereas for anti-diagonal toric GK structures, t

must be imaginary. It seems that generalized symplectic potentials are optimized for anti-diagonal GK

structures where t is imaginary, while generalized Kähler potentials are optimized for the case where t

is real. Recently, Wang [105, 106] has extended the work of Boulanger, giving a description of general

toric GK structures in terms of a symplectic potential, and a pair of anti-symmetric constant matrices.

The special case of symmetric toric GK structures seems to recover the examples of this section. In

particular, Section 7 of [106] seems closely related to Example 5.2.7 below.

Corollary 5.2.6. A toric GK surface (I+, I−, Q, ω) is prequantizable if and only if ω is integral in

cohomology.

Proof. By Theorem 4.4.5 we only need to check that the holomorphic Poisson structures are integral.

But the symplectic leaves consist of 0-dimensional points and an open leaf isomorphic to (C∗)2, and

both have trivial second homotopy group.

Example 5.2.7. Consider P1 × P1 with Kähler form ω = nωFS,1 + mωFS,2, where ωFS,i is the Fubini-

Study form on the ith copy of P1. In a chart C2, with standard T2 action, the Kähler potential is given

by

K(q1, q2) =
n

2π
log(1 + |q1|2) +

m

2π
log(1 + |q2|2).

This defines a GK deformation by Theorem 5.2.3. In order to determine the possible values of the

deformation parameter t, we compute

〈ω2, σ ∧ σ̄〉 =
2nm|q1|2|q2|2

(2π)2(1 + |q1|2)2(1 + |q2|2)2
,

whose maximum value is nm
8(2π)2 . Therefore, the family of GK structures exists for |t| < 8π√

nm
. �

Example 5.2.8. Consider P2, with Fubini-Study form ωFS . In a chart C2, with standard T2 action, the

Kähler potential is given by

K(q1, q2) =
1

2π
log(1 + |q1|2 + |q2|2).

One computes that

〈ω2, σ ∧ σ̄〉 =
2|q1|2|q2|2

(2π)2(1 + |q1|2 + |q2|2)3
,



Chapter 5. The generalized Kähler potential 69

which has maximum value 2
27(2π)2 . Hence, we get a family of GK structures for |t| < 6

√
3π. �



Chapter 6

The Picard group

In this chapter we focus on generalized Kähler structures where the two holomorphic Poisson structures

are isomorphic. In this case, by choosing an isomorphism, we can assume that the two holomorphic

Poisson structures coincide and then study the self-Morita equivalences of the given Poisson structure.

This leads to the notion of the Picard group of a Poisson structure (X,σ), first introduced by Weinstein

and Bursztyn in the smooth category in [15]. Recall from section 2.2.2 that integrable Poisson manifolds

are the objects of a bicategory sStack, with 1-morphisms given by holomorphic symplectic Morita

equivalences. Taking isomorphism classes of 1-morphisms, we obtain a category where all morphisms

are invertible.

Definition 6.0.1. The holomorphic Picard groupoid PG is the category whose objects are integrable

holomorphic Poisson manifolds and whose morphisms are isomorphism classes of holomorphic symplectic

Morita equivalences. The Picard group of a holomorphic Poisson manifold (X,σ) is the automorphism

group of (X,σ) in PG:

Pic(X,σ) = HomPG((X,σ), (X,σ)) .

Since Morita equivalences equipped with bisections also compose, it is possible to upgrade the above

groupoid so that the morphisms are holomorphic symplectic Morita equivalences with brane bisections.

Definition 6.0.2. The Picard groupoid with branes PGL is the category whose objects are integrable

holomorphic Poisson manifolds and whose morphisms are isomorphism classes of holomorphic symplectic

Morita equivalences equipped with brane bisections. The automorphism group of the object (X,σ) is

denoted by

PicL(X,σ) = HomPGL((X,σ), (X,σ)) .

Remark 6.0.3. Morphisms between two fixed Poisson manifolds HomPGL((X+, σ+), (X−, σ−)) corre-

spond, by Theorem 4.2.2, to degenerate GK structures of symplectic type.

There is a natural forgetful functor from PGL to PG which drops the data of the brane bisection.

This gives rise to a homomorphism

PicL(X,σ)→ Pic(X,σ), [(Z,Ω, λ)] 7→ [(Z,Ω)].

The kernel of this map consists of objects where the underlying Morita equivalence is trivial, i.e.

isomorphic to the Weinstein groupoid (Σ(X),Ω). Therefore, the kernel is given by the image of the

70
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following natural homomorphism

BisL(Σ(X))→ PicL(X,σ), λ 7→ [(Σ(X),Ω, λ)],

where BisL(Σ(X)) is the group of brane bisections in (Σ(X),Ω). Note that here we are viewing a brane

bisection as a map λ : X → Z such that π− ◦ λ = idX , the map φλ := π+ ◦ λ is a diffeomorphism, and

λ∗Im(Ω) = 0.

Using Theorem 4.2.2, we are able to give a concrete description of PicL(X,σ), as follows. An object

[(Z,Ω, λ)] of this group is a Morita self-equivalence with brane bisection of the holomorphic Poisson

structure (X,σ). Let M denote the underlying smooth manifold of X, I its complex structure, and

Q = −4Im(σ). By Theorem 4.2.2, this self-equivalence with brane corresponds to a degenerate GK

structure of symplectic type, i.e. a solution (I+, I−, Q, F ) of equations 3.8 and 3.9. Since we are viewing

the brane as a section λ of π− in this correspondence, we obtain I− = I, F = λ∗Ω, and I+ = (φ−1
λ )∗(I),

where φλ = π+ ◦ λ. Therefore, given the holomorphic Poisson structure, the remaining data is encoded

by the real 2-form F and the diffeomorphism φλ. Using equation 3.8, we express I+ as IF := I + QF .

Then equation 3.9 can be replaced by equation 3.10:

FI + I∗F + FQF = 0,

and the relation between φλ, I+ and I− can be expressed as

(φλ)∗(I
F ) = I.

Based on these observations, we define the following subgroup of DiffQ(M) n Ω2,cl(M), the semi-direct

product of the group of diffeomorphisms preserving Q with the group of real closed 2-forms:

AutC(I, σ) = {(φ, F ) ∈ DiffQ(M)× Ω2,cl(M) | FI + I∗F + FQF = 0 and φ∗(I
F ) = I},

with multiplication defined as follows:

(φ1, F1) ∗ (φ2, F2) = (φ1 ◦ φ2, φ
∗
2F1 + F2). (6.1)

This is the group of Courant automorphisms of (I, σ) when the holomorphic Poisson structure is viewed

as a generalized complex structure, as in section 3.1.3. See [46] for a study of this group. An upshot of

the present discussion is the existence of a map between PicL(X,σ) and AutC(I, σ), and a consequence

of Theorem 4.2.2 is the fact that these two groups are isomorphic.

Corollary 6.0.4. There is an isomorphism of groups

χ : PicL(X,σ)→ AutC(I, σ), [Z,Ω, λ] 7→ (π+ ◦ λ, λ∗Ω).

Proof. The above discussion shows that the map χ is well-defined. Hence it remains to show that χ is

a homomorphism and a bijection.

Step 1: χ is a group homormophism. Let (Z1,Ω1, λ1) and (Z2,Ω2, λ2) be Morita equivalences with
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brane bisections. The product of the bimodules is given by the quotient

Z1 ∗ Z2 = (Z1 ×X Z2)/Σ(X),

with symplectic form Ω defined via symplectic reduction, and the product of the bisections is given by

λ1 ∗ λ2(x) = [λ1 ◦ π+,2 ◦ λ2(x), λ2(x)].

Therefore π+ ◦ (λ1 ∗ λ2) = (π+,1 ◦ λ1) ◦ (π+,2 ◦ λ2), and

(λ1 ∗ λ2)∗Ω = (λ1 ◦ π+,2 ◦ λ2)∗Ω1 + λ∗2Ω2

= (π+,2 ◦ λ2)∗(λ∗1Ω1) + λ∗2Ω2,

which, according to equation 6.1, is the product of (π+,1 ◦ λ1, λ
∗
1Ω1) and (π+,2 ◦ λ2, λ

∗
2Ω2).

Step 2: χ is an isomorphism. We show this by defining an explicit inverse ζ : AutC(I, σ)→ PicL(X,σ).

Given (φ, F ) ∈ AutC(I, σ), Proposition 4.1.3 implies that we get the following element of the Picard

(Σ(X),Ω + t∗F )

φ◦t

ww

s

''
(X,σ) (X,σ)

where the brane bisection is given by the identity bisection ε. We therefore take this to define ζ(φ, F ).

Theorem 4.2.2 then implies that ζ and χ are inverse to each other.

As a result of this isomorphism, we immediately see that the kernel of the map BisL(Σ(X)) →
PicL(X,σ) is given by the subgroup IsoLBis(Σ(X)) of holomorphic Lagrangian bisections of (Σ(X),Ω)

which induce the identity diffeomorphism on M . Collecting these facts we get the following exact

sequence of groups

1→ IsoLBis(Σ(X))→ BisL(Σ(X))→ AutC(I, σ)→ Pic(X,σ). (6.2)

We define the image of the last map to be the real Picard group, denoted PicR(X,σ).

Remark 6.0.5. A central claim of this thesis has been that the holomorphic substructure underlying

GK manifolds of symplectic type consists of holomorphic symplectic Morita equivalences, and that the

additional real data needed to determine the metric consists of a brane bisection. This is reflected in the

sequence 6.2 by the fact that AutC(I, σ) is an extension of the real Picard group by the group of brane

bisections.

Remark 6.0.6. Bursztyn and Fernandes studied a sequence similar to 6.2 in [13, Theorem 1.1] in the

setting of real smooth Poisson geometry. The above may be seen as a generalization of their results to

the case of holomorphic Poisson structures.

Note that the sequence 6.2 has the following exact subsequence

1→ IsoLBis(Σ(X))→ LBis(Σ(X))→ Aut(I, σ)→ Pic(X,σ), (6.3)

where LBis(Σ(X)) is the group of holomorphic Lagrangian bisections, and Aut(I, σ) is the group of
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holomorphic Poisson isomorphisms of (I, σ). The group Aut(I, σ) sits inside AutC(I, σ) as the subgroup

of elements of the form (φ, 0). The image of the last map is known in [15] as the group of Outer

automorphisms, denoted OutAut(Σ(X)).

Remark 6.0.7. There is a version of the above exact sequence 6.3 in the setting of real smooth Poisson

geometry. This was studied by Bursztyn and Weinstein in [15, Proposition 5.1] and then by Bursztyn

and Fernandes in [13, Corollary 3.6].

Trivial Poisson structure

The Picard group of the zero Poisson structure on a smooth manifold was computed in [15]. We derive

here the analogue in the holomorphic category.

Proposition 6.0.8. Let (X, I) be a complex manifold, equipped with the zero Poisson structure. Then

its Picard group is given by

Pic(X, 0) = Diff(X, I) nH1(Ω1,cl
X ),

where H1(Ω1,cl
X ) is the first cohomology group of the sheaf of closed holomorphic 1-forms, which can be

expressed as follows

H1(Ω1,cl
X ) =

(Ω(1,1) ⊕ Ω(2,0)) ∩ ker(d)

d(Ω(1,0))
.

Furthermore, the real Picard group is given by the elements where the cohomology class has a real

representative, namely

PicR(X, 0) = Diff(X, I) n
Ω(1,1)(X,R) ∩ ker(d)

dΩ(1,0)
.

Proof. Let (Z,Ω) be a holomorphic symplectic Morita equivalence, with π± denoting the two projection

maps. The fibres of π± are Lagrangian, and therefore, they must coincide since they are also symplectic

orthogonal to each other. There is a well-defined bijection φ : X → X, defined by sending a point x to

π+(π−1
− (x)), and we can check that it is holomorphic by using local holomorphic Lagrangian bisections

to represent it locally. It then follows that the map π+ factors as φ ◦ π−, and the left and right actions

of T ∗X are related by φ, in the sense that for z ∈ π−1
− (x), and αx ∈ T ∗xX, we have

φ∗(αx) + z = z + αx,

where we are using + to denote the groupoid action. The Morita equivalence Z therefore consists of

the data of a symplectic affine bundle for T ∗X, and an isomorphism φ of X. Isomorphisms of Morita

equivalences do not change the isomorphism of X, and are just given by isomorphisms of affine bundles.

Affine bundles for T ∗X are classified by the sheaf of holomorphic 1-forms, and in order for the bundle to

respect the symplectic structure, these forms must be closed. Therefore, we see that the Picard group

is given by

Pic(X, 0) = Diff(X, I)×H1(Ω1,cl
X ).

The Dolbeault representation of an element of the Picard comes from choosing a global smooth bisection,

and the group structure can be determined by studying the composition of Morita equivalences, as in

the proof of Corollary 6.1.

If we are on a compact Kähler manifold, then Pic(X, 0) = Diff(X, I)n (H(1,1)⊕H(2,0)), with the real

Picard group given by PicR(X, 0) = Diff(X, I) nH(1,1)(R). This suggests a definition of the generalized
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Kähler cone of a holomorphic Poisson structure. First, the analogue of H(1,1)(R) is given by the right

coset space

PicR(X,σ)/OutAut(Σ(X)).

Note that the set of degenerate GK structures of symplectic type, which arise from self-Morita equiva-

lences with brane bisection, corresponds to the right coset space

AutC(I, σ)/Aut(I, σ).

We then define the generalized Kähler cone to be the subset of PicR(X,σ)/OutAut(Σ(X)) consisting of

elements which admit a positive representative.

6.1 The Picard algebra and integration

We now turn to the infinitesimal versions of the groups considered above, and the corresponding ex-

ponential maps. The Lie algebra of AutC(I, σ) is the following subalgebra of XQ(M) n Ω2,cl(M), the

semi-direct product of the Lie algebra of vector fields preserving Q, with the vector space of closed

2-forms:

autC(I, σ) = {(V, ω) ∈ XQ(M)× Ω2,cl(M) | ωI + I∗ω = 0 and LV I = Qω}.

This is the Lie algebra of infinitesimal Courant symmetries of the holomorphic Poisson structure (I, σ).

The bracket is given by

[(V, ω), (W, η)] = ([V,W ],LV η − LWω).

Let (V, ω) ∈ autC(I, σ) be an element of this Lie algebra. This defines an infinitesimal automorphism of

the Courant algebroid T ⊕ T ∗ and therefore it integrates to the following family of automorphisms of

T ⊕ T ∗:

(φt, Ft =

∫ t

0

(φ∗sω)ds),

where φt is the flow of the vector field V . In [46, Section 7] it is shown that this family lies in AutC(I, σ)

for all t (where it is defined), and therefore this family defines the 1-parameter subgroup integrating

(V, ω). Hence we have the following result.

Lemma 6.1.1. The exponential map

exp : autC(I, σ)→ AutC(I, σ) ∼= PicL(X,σ)

is given by flowing the above family of automorphisms to t = 1:

(V, ω) 7→ (φ1, F1 =

∫ 1

0

(φ∗sω)ds).

Now consider the group BisL(Σ(X)) of brane bisections. Since these are really just the Lagrangian

bisections for the groupoid integrating Q, we know from Proposition 2.2.13 that its Lie algebra is given

by the space of real closed 1-forms Ω1,cl(M), with Lie bracket induced by Q:

[α, β] = dQ(α, β).
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Let’s recall the description of the exponential map exp : Ω1,cl(M) → BisL(Σ(X)) from Section 2.2.1.

Given α ∈ Ω1,cl(M), we can consider the vector field induced by t∗α on the Weinstein groupoid with

respect to the imaginary part of the symplectic form ω = Im(Ω):

Vt∗α = ω−1(t∗α).

This is the right-invariant vector field associated to α when it is viewed as a section of the Lie algebroid

T ∗QM of (Σ(X), ω). It is t-related to the vector field Q(α) on X. Let φt be the flow of Vt∗α. Then

the 1-parameter subgroup integrating α is given by the family λt = φt ◦ ε of bisections, where ε is the

identity bisection, so that

exp(α) = λ1.

Mapping the 1-parameter subgroup λt to AutC(I, σ) and taking the derivative at t = 0 determines

the induced Lie algebra morphism Ω1,cl(M) → autC(I, σ): λt ∈ BisL(Σ(X)) gets sent to the fam-

ily [Σ(X),Ω, λt] ∈ PicL(X,σ) of Morita equivalences with brane bisections, and this corresponds in

AutC(I, σ) to the family of Courant automorphisms given by (ψt,
∫ t

0
(ψ∗sd

cα)ds), where ψt is the flow of

Q(α) and dc = i(∂̄ − ∂). Therefore the map of Lie algebras is given by

Ω1,cl(M)→ autC(I, σ), α 7→ (Q(α), dcα).

One upshot of the present discussion is that the exponential map for AutC(I, σ) has a particularly nice

description when it is applied to elements in the image of Ω1,cl(M).

Proposition 6.1.2. Let α ∈ Ω1,cl(M) be a real closed 1-form and let (Q(α), dcα) ∈ autC(I, σ) be the

infinitesimal Courant symmetry that it determines. Exponentiating this symmetry yields a family of

holomorphic symplectic Morita equivalences with brane bisections. This family has the following simple

form:

[(Σ(X),Ω, φt ◦ ε)],

where (Σ(X),Ω) is the Weinstein groupoid viewed as a trivial Morita equivalence, φt is the flow of the

vector field (ImΩ)−1(t∗α) on the groupoid, and φt ◦ ε is the result of applying this flow to the identity

bisection.

Another upshot is the infinitesimal version of the sequence 6.2:

0→ Ω
(1,0),cl
bas (X)→ Ω1,cl(M)→ autC(I, σ)→ picR(I, σ)→ 0,

which is a generalization of [13, Theorem 1.2] to the setting of holomorphic Poisson structures. In this

sequence

Ω
(1,0),cl
bas (X) = {η ∈ Ω(1,0)(X) | dη = 0, σ(η) = 0},

the vector space of closed holomorphic 1-forms which are in the kernel of σ, and hence are basic, meaning

that they descend to the space of symplectic leaves. This maps injectively to Ω1,cl(M) by taking the

real part. The space picR(I, σ) is the real Picard algebra, and is defined so that the above sequence is

exact. We view it as the Lie algebra of the real Picard group.
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Hamiltonian flows

In this chapter we give two applications of the ideas of Chapter 6. First we explain how to deform GK

structures using the flow of Hamiltonian vector fields, and then we show that locally, all GK structures

arise in this way by deforming away from a standard degenerate GK structure.

7.1 Generalized Kähler metrics via Hamiltonian flows

In this section we apply the ideas of Chapter 6 to give a method of construction and deformation of

generalized Kähler metrics. The basic idea is as follows: Theorem 4.2.2 allows us to view GK structures

of symplectic type as Morita equivalences with brane bisection, which are morphisms in the groupoid

PGL. So, it is possible to compose them. More precisely, if (Z1,Ω1,L1) and (Z2,Ω2,L2) are degenerate

GK structures of symplectic type going between holomorphic Poisson structures (X1, σ1), (X2, σ2) and

(X2, σ2), (X3, σ3) respectively, then we may compose them to get a degenerate GK structure going

between (X1, σ1) and (X3, σ3). In particular, there is an action of the group PicL(X+, σ+) on the space

of morphisms PGL((X+, σ+), (X−, σ−)) and we can use this to deform GK structures of symplectic type.

Indeed, all of the constructions of GK metrics contained in [57, 56, 46] are special cases of this.

So let (Z,Ω,L) ∈ PGL((X+, σ+), (X−, σ−)) be a GK structure viewed as a Morita equivalence with

brane bisection

(Z,Ω,L)

π+

xx

π−

&&
(X+, σ+) (X−, σ−)

and let ζ(φ, F ) be an element of PicL(X+, σ+) corresponding to the Courant automorphism (φ, F ) ∈
AutC(I+, σ+). Composing with the above Morita equivalence, we obtain ζ(φ, F ) ∗ (Z,Ω,L) = (Z,Ω +

π∗+F,L), again a morphism in PGL((X+, σ+), (X−, σ−)) as depicted below.

(Z,Ω + π∗+F,L)

φ◦π+

ww

π−

''
(X+, σ+) (X−, σ−)

Since the positivity of the induced metric is an open condition, this will define a new GK structure if

76
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(φ, F ) is ‘close enough’ to the identity.

Now the idea of the construction in [46] is to obtain the element ζ(φ, F ) ∈ PicL(X+, σ+) by integrating

an infinitesimal symmetry via the exponential map of Lemma 6.1.1. So given (V, ω) ∈ autC(I+, σ+), we

exponentiate it to the family ζ(exp(t(V, ω))) in PicL(X+, σ+). Then ζ(exp(t(V, ω)) ∗ (Z,Ω,L) defines a

family of degenerate GK structures deforming the initial structure, and the metric will remain positive-

definite for sufficiently small t.

Proposition 6.1.2 explains that exponentiating the infinitesimal symmetries in the image of Ω1,cl(M)→
autC(I+, σ+) simply amounts to applying a flow to the identity bisection. The GK deformations that

arise from these symmetries are similarly simple.

Proposition 7.1.1. Let (Z,Ω,L) be a GK structure of symplectic type, viewed as a holomorphic symplec-

tic Morita equivalence with brane bisection going between the holomorphic Poisson structures (I±, σ±).

Let α ∈ Ω1,cl(M) be a real closed 1-form, and let (Q(α), dcα) ∈ autC(I+, σ+) be the infinitesimal Courant

symmetry that it determines. Exponentiating this symmetry, we get a 1-parameter family of Courant

automorphisms which act on (Z,Ω,L) to produce a family of degenerate GK structures of symplectic type

deforming the given one. This family has the following simple form:

[(Z,Ω,Lt = ηt(L))],

where ηt is the flow of the vector field Vπ∗+α = (ImΩ)−1(π∗+α), and Lt = ηt(L) is the result of applying

this flow to the brane bisection L.

Proof. Let λt = φt ◦ ε be the 1-parameter subgroup corresponding to α in BisL(Σ(X+)), where φt is

the flow of Vt∗α = ω−1(t∗α) on Σ(X+). By Proposition 6.1.2, the family of degenerate GK structures

obtained by exponentiating (Q(α), dcα) and acting on the given GK structure is given by the composition

of (Σ(X+),Ω+, λt) and (Z,Ω,L). This gives (Z,Ω,Lt = λt ∗ L), where

(λt ∗ L)(x) = λt(π+ ◦ L(x)) ∗ L(x),

and where we are using the action ∗ of Σ(X+) on Z. Note that we are abusing notation by using L to

denote both the section of π− and its image in Z. Now let Vπ∗+α = Im(Ω)−1(π∗+α), a vector field on Z,

and let ηt be its flow. We claim that Lt = ηt(L). This can be seen as follows. Using the brane L we

define a smooth symplectomorphism

Φ : (Σ(X+), Im(Ω+))→ (Z, Im(Ω)), g 7→ g ∗ (r ◦ s)(g),

where r : X+ → Z is the section of π+ induced by L, and s is the source map of the Weinstein groupoid.

This map satisfies the relation π+◦Φ = t, and therefore dΦ(Vt∗α) = Vπ∗+α. This implies that Φ intertwines

the flows φt and ηt of the vector fields Vt∗α and Vπ∗+α, respectively. Then, by the definitions of Φ and

Lt we see that on the one-hand

Φ ◦ λt ◦ π+ ◦ L(x) = λt(π+ ◦ L(x)) ∗ L(x) = Lt(x),

and by the property that Φ intertwines φt and ηt we see that on the other hand

Φ ◦ λt ◦ π+ ◦ L(x) = ηt ◦ Φ(1π+◦L(x)) = ηt(L(x)).
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Remark 7.1.2. In Propositions 6.1.2 and 7.1.1, we may specialize to the case of exact 1-forms α = dK,

in which case the families we obtain are given by flowing the brane bisections by Hamiltonian vector

fields.

Example 7.1.3. Recall from Example 4.3.3 that the Morita equivalence of a hyper-Kähler structure

(M, I, J,K, g) is given by

(Z,Ω) = (X+,Ω+)× (X−,−Ω−),

with brane bisection L given by the diagonally embedded copy ofM . It was observed in [2] that such a GK

structure may be deformed to a new GK structure which is not hyper-Kähler using a real-valued function

f . In the present setting we can view this as a deformation obtained by flowing the brane bisection using

a Hamiltonian vector field of f . More precisely, given a real valued-function f , Proposition 7.1.1 says that

the brane is flowed by the Hamiltonian vector field of π∗+f , using the imaginary part of the symplectic

form on Z, namely, Im(Ω+,−Ω−) = (ωK ,−ωK). Therefore, the brane is given by the flow of

(ω−1
K (df), 0),

and so if φt is the flow of the Hamiltonian vector field of f with respect to ωK , then the deformed brane

is given by

Lt = {(φt(m),m) | m ∈M},

which is the graph of φt. �

7.2 Universal local construction via time-dependent flows

Let (M, I, σ) be a holomorphic Poisson structure, which determines a degenerate GK structure as in

Example 3.1.9. As explained in Example 4.3.1, the corresponding Morita equivalence provided by The-

orem 4.2.2 is the symplectic groupoid (Σ(X),Ω, ε) integrating σ, with the identity bisection ε as its

brane bisection. Propositions 6.1.2 and 7.1.1 tell us that given a real-valued function f we can construct

a family of degenerate GK structures deforming the given one by deforming the identity bisection ε

using the Hamiltonian vector field of t∗f on the groupoid: Vt∗df = ω−1(dt∗f), where here we decompose

Ω = B + iω into its real and imaginary parts. In this section, we show that, locally, all degenerate

GK structures of symplectic type arise in this way if we allow the function f to depend on time. This

gives a universal local construction (similar to the one using a generalized Kähler potential) which

places a greater emphasis on the underlying holomorphic Poisson geometry. In effect, it tells us that

locally a GK structure of symplectic type is determined by a holomorphic Poisson structure and a single

time-dependent real-valued function.

Let (Z,Ω,L) be a GK structure viewed as a Morita equivalence with brane bisection, and let z ∈ L
be a point on the brane. Choose a local holomorphic Lagrangian bisection Λ passing through the point z

and let U := π−(Λ) ⊆ X−, and V := π+(Λ) ⊆ X+. Note first that this bisection induces a holomorphic

Poisson isomorphism φ : (U, σ−) → (V, σ+); this means that the two holomorphic Poisson structures

underlying a GK structure of symplectic type are always locally isomorphic, although not in a canonical

way. Now consider the local Morita equivalence π−1
+ (V ) ∩ π−1

− (U) going between (U, σ−) and (V, σ+).

Using the Lagrangian Λ, we can identify this Morita equivalence with the trivial Morita equivalence
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t−1(U) ∩ s−1(U) ⊆ Σ(X−). That is to say, we have a holomorphic symplectomorphism

Φ : t−1(U) ∩ s−1(U)→ π−1
+ (V ) ∩ π−1

− (U), g 7→ Λ(t(g)) ∗ g, (7.1)

satisfying π+ ◦ Φ = φ ◦ t, as well as π− ◦ Φ = s and Φ ◦ ε = Λ. We view this as a groupoid chart, in the

sense that it identifies a neighbourhood of z in Z with a neighbourhood of the zero section in Σ(X−).

The chart is adapted to the groupoid structure, unlike the Darboux charts considered in Chapter 5.

In this chart, the brane L intersects the identity bisection at the point z. Our goal is to describe L
as a Hamiltonian flow applied to the zero section: for this, we require a family of brane bisections Lt
interpolating between L and Λ. First we show that such a family exists.

Proposition 7.2.1. There is a local family of brane bisections interpolating between a given brane L
and a holomorphic Lagrangian bisection Λ.

Such a family of brane bisections consists of a family of Lagrangian submanifolds for ω = Im(Ω)

which is transverse to both K± = ker(dπ±) at all times. Note that since K+ and K− are symplectic

orthogonal, a Lagrangian L which is transverse to K+ is automatically transverse to K−:

L ∩K− = Lω ∩Kω
+ = (L+K+)ω = TZω = 0.

The linear version of this problem has an immediate solution: let (V, ω) be a 2n-dimensional (real)

symplectic vector space and let K be an arbitrary n-dimensional subspace. Let MV,K denote the space

of Lagrangians in V which are transverse to K; this is a connected open subset of the Lagrangian

Grassmannian, showing that the linear version of such an interpolation is available.

Proof of Proposition 7.2.1. Choose a holomorphic Darboux chart centred at the point z : (TZz,Ωz) ∼=
(Z,Ω), and let Λ be a holomorphic Lagrangian subspace of TZz which is transverse to K±. This defines a

(local) holomorphic Lagrangian bisection Λ. The tangent space L = TzL defines a Lagrangian subspace

of (TZz, ωz) which is also transverse to K±. Since MTZz,K+ is connected, we choose a family Lt of

Lagrangian subspaces of (TZz, ωz) which remain transverse to K± for all time interpolating between Λ

and L. We can view this as a family of brane bisections going from Λ to the brane L. Hence it remains

to find a path going from L to L. For this choose a Weinstein neighbourhood of L: (T ∗L,Ω0) ∼= (Z, ω).

In this chart, L is given by the graph of a closed 1-form α ∈ Ω1(L). Then Lt = Gr(tα) defines a family

of Lagrangians interpolating between L and L. Since TLz = TLz it follows that T (Lt)z = TLz for all

t implying that this family is transverse to K± at all times. Combining the two families, we obtain a

family of branes interpolating between the holomorphic Lagrangian Λ and the brane bisection L. This

family fixes the point z, and at all times the tangent space at z is transverse to K±. Thus we obtain the

required interpolation on a (possibly smaller) neighbourhood of z.

Having the interpolating family of branes, we wish to describe it as a Hamiltonian flow. For this, we

return to the groupoid chart t−1(U) ∩ s−1(U) where we have the following data:

1. A holomorphic symplectic groupoid (Σ(U),Ω−) integrating (U, σ−), with underlying imaginary

part the smooth real symplectic groupoid (Σ(U), ω);

2. Over a fixed neighbourhood of z, W ⊆ U , we have a family of Lagrangian bisections of (Σ(U), ω),
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viewed as sections of the source s,

λt : W → (Σ(U), ω),

such that λ0 is the identity bisection and λ1 is the given brane bisection L viewed in the groupoid

chart. Note that λt(z) = z for all time t.

Now let ψt := t ◦ λt denote the resulting family of Poisson diffeomorphisms (for the Poisson structure

Q), and let Wt = ψt(W ). Left multiplication by the bisection defines the following family of symplecto-

morphisms:

τt : t−1(W )→ t−1(Wt), g 7→ λt(t(g)) ∗ g,

which satisfy s ◦ τt = s and t ◦ τt = ψt ◦ t, as well as τt ◦ ε = λt. This family of symplectomorphisms

defines a time-dependent vector field Yt ∈ X 1(t−1(Wt)) via the equation

Yt(τt(g)) =
d

dt
τt(g).

As explained in [113] this family of vector fields is Hamiltonian for a t-basic closed 1-form:

ιYt
ω = t∗(αt),

where αt ∈ Ω1(Wt) is a closed time-dependent 1-form. In fact, the restriction of Yt to the bisection gives

the following vector field along λt:

Xt(x) := Yt(λt(x)) =
d

dt
λt(x).

Since λt is a section of s, Xt ∈ ker(ds) and hence ω(Xt) is in the image of t∗, defining the form αt. Note

that since t is a Poisson map we have

t∗(Yt) = Q(αt),

and so ψt is the flow of this Hamiltonian vector field. The time-dependent form αt : [0, 1] → Ω1
cl is the

infinitesimal version of the family of branes λt : [0, 1]→ BisL(Σ).

Now choose a neighbourhood W ′ of z such that W ′ ⊆ Wt for all time t. Restricting to this neigh-

bourhood, we have αt ∈ Ω1,cl(W ′), and if we assume that W ′ is contractible then αt are exact. Choose

a primitive: let ft ∈ C∞(W ′) be a time-dependent function such that dft = αt. We conclude that it is

now possible to describe the GK structure purely in terms of this function and the holomorphic Poisson

structure (I−, σ−):

Theorem 7.2.2. Let (Z,Ω,L) be a Generalized Kähler structure of symplectic type, viewed as a holomor-

phic symplectic Morita equivalence with brane bisection going between holomorphic Poisson structures

(X±, σ±) with common imaginary part − 1
4Q. Let z ∈ L be a chosen point on the brane. Then

1. It is possible to choose a family of local brane bisections Lt such that L1 = L, L0 = Λ, a holomorphic

Lagrangian bisection, and such that z ∈ Lt for all t ∈ [0, 1].

2. There is a (locally defined) time-dependent real-valued function ft ∈ C∞(X−,R) such that in a

neighbourhood of z the family of brane bisections Lt is given by τ̃t(Λ), where τ̃t is the flow of the

Hamiltonian vector field of (φ−1π+)∗ft with respect to the symplectic form Im(Ω).
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3. In a neighbourhood of π−(z) the GK structure is given by the data (I+, I−, Q, F ), where I− is the

given complex structure on X−, I+ = ψ∗1(I−) and

F =

∫ 1

0

ψ∗t (dc−dft)dt,

for ψt the flow of the Hamiltonian vector field Xft = Q(dft), and where dc− = i(∂̄I− − ∂I−).

In other words, in a neighbourhood of any point, a GK structure of symplectic type is determined by a

holomorphic Poisson structure, together with a time-dependent real-valued function, via the Hamiltonian

flow construction of Section 7.1.

Proof. It remains only to prove the formula for F = λ∗1Ω−. Differentiating the pullback λ∗tΩ− gives

d

dt
(λ∗tΩ−) = λ∗tLYtΩ− = λ∗t dI

∗ω(Yt) = λ∗t dI
∗t∗αt = ψ∗t dI

∗
−αt = ψ∗t d

c
−αt = ψ∗t (dc−dft).

Therefore λ∗1Ω− =
∫ 1

0
d
dt (λ

∗
tΩ−)dt =

∫ 1

0
ψ∗t (dc−dft)dt.

Example 7.2.3. Example 5.1.1 of a Kähler structure showed how the generalized Kähler potential of

Chapter 5 generalizes the usual Kähler potential. However, another look at this example shows that

what we were doing is actually an instance of what is described in the present section. Namely, given

a holomorphic Lagrangian L, viewed as a section λ, we used the groupoid structure to induce a local

isomorphism of Morita equivalences:

(T ∗X,Ω0)→ (Z,Ω), αx 7→ αx + λ(x),

so that our Darboux chart in this case is actually a groupoid chart in the sense of (7.1). Now we view

the brane bisection L in this chart as the graph of a (1, 0)-form η = I∗α+ iα, where α is a closed 1-form.

For our interpolating family of branes, we may choose Lt = Gr(tη). Then the induced family of closed

1-forms on X is given by the time-independent form α. As in example 5.1.1, we choose a real-valued

function K on X such that α = − 1
2dK. Then noting that the Hamiltonian vector field XK = 0, and

appealing to Theorem 7.2.2, we see that the Kähler form is given by

ω = −1

2
dcdK = i∂∂̄K.

Therefore the construction of Theorem 7.2.2 provides an alternate generalization of the Kähler potential

which is more closely adapted to the underlying groupoid structure. �
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