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The energy complexity of error control coding circuits is analyzed within the Thompson

VLSI model. It is shown that fully-parallel encoding and decoding schemes with asymp-

totic block error probability that scales as O (f (N)) where N is block length (called

f(N)-coding schemes) have energy that scales as Ω
(√

ln f (N)N
)
. As well, it is shown

that the number of clock cycles (denoted T (N)) required for any encoding or decoding

scheme that reaches this bound must scale as T (n) ≥
√

ln f (N). Similar scaling results

are extended to serialized computation.

Sequences of randomly generated bipartite con�gurations are analyzed; under mild

conditions almost surely such con�gurations have minimum bisection width proportional

to the number of vertices. This implies an almost sure Ω(N2/d2
max) scaling rule for

the energy of directly-implemented LDPC decoder circuits for codes with maximum

node degree dmax. It also implies an Ω(N3/2/dmax) lower bound for serialized LDPC

decoders. It is also shown that all (as opposed to almost all) capacity-approaching,

directly-implemented non-split-node LDPC decoding circuits, have energy, per iteration,

that scales as Ω
(
χ2 ln3 χ

)
, where χ = (1 − R/C)−1 is the reciprocal gap to capacity, R

is code rate and C is channel capacity.

It is shown that all polar encoding schemes of rate R > 1
2
of block length N imple-

mented according to the Thompson VLSI model must take energy E ≥ Ω
(
N3/2

)
. This

lower bound is achievable up to polylogarithmic factors using a mesh network topology

de�ned by Thompson and the encoding algorithm de�ned by Ar�kan. A general class of

circuits that compute successive cancellation decoding adapted from Ar�kan's butter�y
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network algorithm is de�ned. It is shown that such decoders implemented on a rectangle

grid for codes of rate R > 2/3 must take energy E ≥ Ω(N3/2), and this can also be reached

up to polylogarithmic factors using a mesh network. Capacity approaching sequences of

energy optimal polar encoders and decoders, as a function of reciprocal gap to capacity

χ = (1−R/C)−1, have energy that scales as Ω (χ5.3685) ≤ E ≤ O
(
χ7.071 log4 (χ)

)
.

It is shown that all su�ciently large communication graphs of algorithms of bounded

degree can be implemented on a mesh network with routing con�icts of size at most

log(N). This implies, conditioned on an assumption, that for all f(N) < e−O(N), and

f(N) encoding and decoding scheme can be constructed within a polylogarithmic factor

of the universal lower bounds for time and energy using a parallelized technique. Even

if the assumption is not true, the energy lower bounds can be reached up to a factor of

N ε polylog(N) using parallelized polar decoders, for any ε > 0.

The Grover information-friction energy model is generalized to three dimensions and

the optimal energy of encoding or decoding schemes with probability of block error Pe is

shown to be at least Ω
(
N (lnPe (N))

1
3

)
.
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When I heard the learn'd astronomer,

When the proofs, the �gures,

were ranged in columns before me,

When I was shown the charts and diagrams,

to add, divide, and measure them,

When I sitting heard the astronomer

where he lectured with

much applause in the lecture-room,

How soon unaccountable I became tired and sick,

Till rising and gliding out I wander'd o� by myself,

In the mystical moist night-air, and from time to time,

Look'd up in perfect silence at the stars.

Walt Whitman

Acknowledgments

As I �nish up my PhD I think back to my education; not just my graduate educa-

tion or my undergraduate education, but also the schooling I have done throughout my

life. As I think back on all of my teachers I remember a group of dedicated professionals

committed to the nurturing of knowledge and understanding. So the �rst group of people

I would like to thank are all my teachers from pre-school, elementary school, high school,

undergrad, masters and �nally PhD. I am also grateful to my Chinese teacher Hong

Laoshi and my piano teacher Mrs. Craig. From high school I am particularly grateful to

Ms. Werezak, my chemistry and geometry teacher, and Mr. Campbell, the person who

taught me calculus.

I want to also acknowledge and thank my fellow Kschischang-group colleagues. In

particular, I've been lucky to have the same group of labmates for a large portion of my

PhD, all of whom have been amazingly supportive and kind. I want to acknowledge, in

particular, Chen, Lei, Chunpo, Siddarth, and Siyu, who have been with me for most of my

PhD. I also want to acknowledge Christian Senger, a post-doc who has graciously given

me lots of advice and even helped me with the proofreading of some of my papers. As I

end my PhD all the people who were here when I started are now gone, and a new group

of students have arrived. I appreciate Frank's new students, Amir, Bo, Masoud, Reza,

and Susanna, and I am grateful to them for making our o�ce a warm and welcoming

place in the last few months of my PhD. I am also grateful to François Leduc-Primeau

for our discussions during his visits to U of T.

Throughout the PhD I have shared a lab with Professor Brendan Frey's students who

have all provided an enriching environment. In particular I'd like to thank Jeroen Chua,

my friend and machine learning guy who put particular e�ort into welcoming me into

v



the o�ce. I only wish that he was able to be my labmate for more than one year, but

I'm pretty sure that he'll eventually make an arti�cially intelligent �Jeroen robot� that

we can just download and have an awesome labmate whenever we want.

My thesis involves a weird combination of ideas from computer science, physics, com-

puter engineering, and information theory. But I never formally studied computer science,

even though it is something that has always interested me. Fortunately, the theoretical

computer science community has proven to be an extraordinarily open community to

interact with. The Theoretical Computer Science Stack Exchange, for example, has a

clearly dedicated community. I've posted a number of questions to this community and

almost instantly received high quality answers! There are also a number of computer

science blogs of the highest quality. Of particular note is the blog of Scott Aaronson,

called Shtetl-Optimized, which to me is one of the best science resources ever created.

I am grateful to Pulkit Grover at Carnegie Mellon for welcoming me into his research

group for a month long visit to begin a research collaboration that I hope lasts for many

years. I also am thankful Pulkit Grover's student Haewon Jeong for pointing out some

of the weaknesses in an earlier version of the polar coding paper that formed the polar

coding chapter of this thesis, and for our continued collaboration. I also want to thank

JP, Maddie, Shervin, Rosario, Sarah and Elliot for making my stay in Pittsburgh such a

great time and for being such amazing people.

I am grateful to Professor David Asano for hosting me for a short visit to Shinshu

University in Nagano. I appreciate Professor Ian Blake (no relation) for hosting a talk

at UBC, and to Professor Sidharth Jaggi for hosting a talk at the Chinese University of

Hong Kong. Visiting professors at other Universities has been a highlight of my PhD

education and I appreciate the e�ort all these professors have put into making my visits

enjoyable and ful�lling.

There have been many professors who have helped and guided me along the way. In

undergrad, I am particular grateful to Tarek Abdelrahman for taking me on as a research

volunteer in the summer after my �rst year. I am also grateful to Aleksandar Prodic for

taking me on as an undergraduate researcher after my second year. He also provided me

with a reference for my MIT application which must have been pretty good because I

got accepted! I am also grateful to Professor Jonathan Rose for calling me when I was

in high school and talking to me about ECE at U of T, and for continual encouragement

throughout my undergrad all the way to PhD. I also am thankful to Susan Grant for

providing such detailed answers to my questions when I was deciding whether to go to

U of T or other schools I got accepted to for undergrad.

Between my third and fourth year I worked at a company called Altera. I appreciated

vi



the experience working at what is a very successful company. In particular, I appreciate

Blair Fort for providing me with excellent mentorship and supervision. I also appreciate

the advice and guidance given by Stephen Brown and Zvonko Vranesic during this time.

I also want to thank Deshanand Singh for being an amazing cubicle neighbour during

most of my time at Altera and also providing me with a reference for my masters.

During my time at MIT I worked with Je�rey Shapiro in the �eld of quantum infor-

mation theory. I thank Professor Shapiro for giving me such an amazing opportunity to

work at what is clearly one of the best universities in the world. His guidance formed a

basis for my research skills that I took with me when I went back to Toronto. Also at

MIT I attended many excellent lectures. In particular, I want to thank Professors Muriel

Médard, Greg Wornell, and Alan Edelman for their wonderful lectures that I had the

privilege to attend. In particular I have made much use of Alan Edelman's observation

about the di�erence between how one reads a mathematical proof and an engineering

proof. I also want to acknowledge Alan Oppenheim for providing such dedicated guid-

ance and mentorship to both me and a large number of my MIT colleagues. Among my

MIT colleagues I am particularly grateful to Hung-Wen and Mansoo for being such great

language exchange partners.

I'd like to thank my thesis committee, including Glenn Gulak, Stark Draper, Wei Yu,

and Anant Sahai for their detailed reading of the thesis and challenging and interesting

discussions. I particularly appreciate Anant Sahai for coming all the way from Berkeley

for my defense and for his very positive review of my thesis.

The next person that I should acknowledge probably goes without saying. Of course,

this person is my advisor, Frank Kschischang. I �rst saw him more than twelve years ago

when I was in high school at a recruiting event for high school students. He presented an

introduction to the �eld of coding theory, and he did so by presenting a simple Hamming

code to a bunch of high school students and their parents. It was probably then that

I decided my �eld of research that I have continued studying to this day. When I was

accepted to MIT Frank met with me numerous times advising me about going to MIT

and his advice was useful. When I decided in my second year of my masters that I wanted

to spend my PhD back at the University of Toronto, Frank welcomed me into his group.

The choice to go back to Toronto was a unique choice, but in the last �ve years I am happy

to say I have no regrets. Frank's dedication to my professional development has gone far

beyond even my most optimistic of expectations. He has given me an extraordinary level

of freedom and trust in pursuing my research in my own way. In our discussions Frank

has consistently proven an amazing ability to almost always come up with surprising and

helpful insights. He is a scientist of the highest calibre, and it has been an honour to be

vii



his student.

I also want to thank my parents and my grandparents for their love and support

throughout my life. I'd also like to thank my brothers, Aaron and Raymond, my nephew

Jagger, my aunts, uncles, and cousins. In particular for this thesis I want to acknowledge

Aunt Korobi and Uncle Babu for all the academic encouragement throughout my life.

Also, I want to acknowledge my cousins Santanu and Sonali for being examples of what

life can be like if you spend a really, really long time doing school.

I want to say particular thanks to my friends with whom I have shared so many

amazing adventures during this PhD. Without all of you my thesis would have been

done more quickly, but it would have been much worse. There are many friends who �t

this category, but in particular, thank you to Keith, David, Tommy, David (yep, that's a

second David, I know a lot of Davids), Sandy, Tomoki, Yenson, Bill, Sina, Simon, Amer,

Matt, Jenn, Yijun, Palermo, Pickles, Fengyuan, Shilin, Galen, Mark, Will Li, Peng, Kyu,

Dmitry, and Daniel for all the amazing adventures.

As I write this last paragraph of my thesis on a cold December afternoon in Toronto,

thinking about what I'm going to do now that I have a PhD, I don't know what lies

ahead. Usually in these situations I just do the next thing you do to get a PhD, but now

my formal education has come to an end. For what I do next I can think of a universe of

possibilities, all of them interesting, but none of them certain. Thus, I choose to end this

section with a quote that seems relevant, which was presented by Anant Sahai in a talk

he gave at the University of Toronto the day after my �nal examination. It is a line from

a paper written by Claude Shannon, that, coincidentally perhaps, has some relevance to

my situation right now: �...we may have knowledge of the past but cannot control it; we

may control the future but have no knowledge of it.� I don't know what my future will

bring, but I thank all my educators for giving me the tools to control it.

viii



Contents

1 Introduction 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Thompson Model 4

2.1 The Thompson Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Discussion of Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Related Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Other Energy Models of Computation . . . . . . . . . . . . . . . . . . . . 15

3 General Lower Bounds 17

3.1 Prior Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 De�nitions and Lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3 Nested Bisections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.4 Main Lower Bound Results . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.5 Serial Decoding Scheme Scaling Rules . . . . . . . . . . . . . . . . . . . . 30

3.6 Encoder Lower Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.7 Asymptotic Probability of Error Approaching a Constant . . . . . . . . . 35

4 LDPC Codes 36

4.1 Prior Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.1.1 Related Work on Circuit Complexity and LDPC codes . . . . . . 37

4.1.2 Related Work on Graph Theory . . . . . . . . . . . . . . . . . . . 38

4.2 Directly-Implemented LDPC Decoders . . . . . . . . . . . . . . . . . . . 38

4.3 Serialized LDPC Decoders . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.4 Almost Sure Scaling Rule . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.5 Almost Sure Bounds on Su�ciently High Rate LDPC Decoder Circuits . 50

4.5.1 Energy Complexity of Directly-Implemented LDPC Decoders . . . 51

ix



4.5.2 Serialized Decoders . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.5.3 Applicability and Limitations of Result . . . . . . . . . . . . . . . 56

4.6 Bounds for All Directly-Implemented Non-Split-Node LDPC Decoder Cir-

cuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.7 Tight Upper Bound for Directly-Implemented LDPC Decoders . . . . . . 59

5 Polar Codes 62

5.1 Prior Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.2 Polar Encoders Lower Bound . . . . . . . . . . . . . . . . . . . . . . . . 64

5.2.1 Rectangle Pairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.2.2 Universal Polar Coding Generator Matrix Properties . . . . . . . 66

5.2.3 Encoder Circuit Lower Bounds . . . . . . . . . . . . . . . . . . . 68

5.3 Ar�kan Successive Cancellation Polar Decoding Scheme . . . . . . . . . . 70

5.3.1 Polar Decoding Lower Bound Preliminaries . . . . . . . . . . . . . 70

5.3.2 Decoder VLSI Lower Bounds . . . . . . . . . . . . . . . . . . . . 76

5.4 Upper Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.4.1 Mesh Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.4.2 Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.4.3 Analysis of Mesh Network Encoding Algorithm Complexity . . . . 80

5.4.4 Decoding Mesh Network . . . . . . . . . . . . . . . . . . . . . . . 81

5.5 Generalized Polar Coding on a Mesh Network . . . . . . . . . . . . . . . 81

5.6 Energy Scaling as Function of gap to Capacity . . . . . . . . . . . . . . . 82

6 Mesh Networks 84

6.1 Mesh Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.2 Communication Protocols with Low κmax Exist For Most Graphs . . . . . 87

6.2.1 LDPC Codes on a Mesh Network . . . . . . . . . . . . . . . . . . 96

6.3 Using Parallelization to Construct Close to Energy Optimal f(N)-coding

Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.3.1 Analyzing Area and Number of Clock Cycles . . . . . . . . . . . . 98

7 Information Friction in

Three-Dimensional Circuits 100

8 Is the Information Friction Model a Law of Nature? 107

8.0.2 The Spaceship Channel . . . . . . . . . . . . . . . . . . . . . . . . 108

8.0.3 The Vacuum Tube Channel (AKA the Hyper-loop Channel) . . . 108

x



8.0.4 Electromagnetic Radiation . . . . . . . . . . . . . . . . . . . . . . 109

8.0.5 Quantum Entanglement . . . . . . . . . . . . . . . . . . . . . . . 109

8.0.6 Adiabatic Computing . . . . . . . . . . . . . . . . . . . . . . . . . 109

8.0.7 Superconducting Channel . . . . . . . . . . . . . . . . . . . . . . 110

8.0.8 The Wormhole Circuit . . . . . . . . . . . . . . . . . . . . . . . . 110

9 Conclusion 111

A Appendices 115

A.1 Coding Schemes with Error Probability Less than 1/2 . . . . . . . . . . . 115

A.1.1 Bound on Block Error Probability . . . . . . . . . . . . . . . . . . 117

A.1.2 Fully Parallel Lower Bound . . . . . . . . . . . . . . . . . . . . . 119

A.1.3 Serial Computation . . . . . . . . . . . . . . . . . . . . . . . . . . 121

A.1.4 A General Case: Allowing the Number of Output Pins to Vary

with Increasing Block Length . . . . . . . . . . . . . . . . . . . . 124

A.2 De�nition of δ(L,R) in Terms of Node Degree Distributions . . . . . . . 129

A.3 Proof of Lemma 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

A.4 Proof of Lemma 9 Continued . . . . . . . . . . . . . . . . . . . . . . . . 131

A.5 Proof of Theorem 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

A.6 Proof of Lemma 13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

A.7 Proof Of Lemma 21 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

A.8 Mesh Network Polar Encoding Procedure . . . . . . . . . . . . . . . . . . 140

Bibliography 142

xi



�There is a fact, or if you

wish, a law, governing all

natural phenomena that are

known to date. There is

no known exception to this

law�it is exact so far as we

know. The law is called the

conservation of energy. It

states that there is a certain

quantity, which we call en-

ergy, that does not change in

the manifold changes which

nature undergoes.�

Richard Feynman 1
Introduction

1.1 Introduction

The central topic of this thesis is: what are the fundamental energy limits of communi-

cation of information in our universe? Traditionally, Shannon's channel coding theorem

has provided a satisfying answer: Channels through which we would like to communi-

cate information are associated with a probability distribution. From this distribution

a quantity called capacity can be computed. For a given channel, rates below capacity

can be achieved using a su�ciently clever error control coding scheme. Rates above this

capacity cannot be achieved reliably. Generally speaking, transmitting a message with

more energy changes the underlying channel statistics, and this increases the capacity.

This would be a satisfactory answer to the central topic of this thesis, except Shan-

non's channel coding theorem assumes an encoder and decoder, which in practice are

usually specialized circuits that compute error control coding functions. These circuits

consume energy. Thus, in this thesis we study the energy complexity of circuits that com-

pute error control encoding and decoding functions. In doing so, we will gain insights

into the fundamental energy limits of computation in general.

Thus, in Chapter 2 we present an adaptation of Thompson's VLSI model [1], which

we use to model the energy consumption of VLSI circuits. The model also allows us to

1



Chapter 1. Introduction 2

consider energy-time tradeo�s. We call this model the Thompson model.

Our �rst main technical results are presented in Chapter 3. In this chapter, we

use a simpli�cation of the approach of Grover et al. [2] to derive scaling rule lower

bounds for encoding and decoding schemes for binary erasure channels classi�ed according

to how their associated block error probability scales with increasing block length N .

In particular, we de�ne an f(N)-coding scheme as a sequence of codes, encoders, and

decoders for a particular channel that have block error probability that scales as O(f(N)).

In particular, we show that all fully-parallel f(N)-coding schemes have encoding and

decoding energy lower bounded by Ω(N
√

log(f(N))). Similar bounds are derived for

serial implementations. Having derived these universal complexity lower bounds, in the

chapters that follow we analyze existing decoding algorithms to see how their complexity

compares. The discussion eventually leads to Chapter 6 which shows how to construct

fully-parallel f(N)-coding schemes that almost reach the universal lower bounds.

The �rst class of codes we analyze in Chapter 4 are LDPC codes. Such codes utilize

the sparsity of a linear code's parity check matrix for e�cient decoding. In their anal-

ysis, graphs are often generated according to a uniform con�guration distribution. We

show, subject to some mild conditions, that the minimum bisection width of a randomly

generated bipartite con�guration asymptotically almost surely has minimum bisection

width proportional to the number of vertices. For degree distributions with maximum

node degree dmax, this implies an Ω(N2/d2
max) lower bound on the energy of directly-

implemented LDPC decoders (see De�nition 24) and a Ω(N3/2/dmax) lower bound on the

energy of serialized decoders (see De�nition 33). For dmax that does not increase with N ,

we show how to construct a directly-implemented circuit that reaches this lower bound in

this chapter. Later, in Chapter 6 we show that the serialized lower bound can be reached

using a mesh network up to a polylogarithmic factor.

The second class of codes that we analyze are polar codes [3]. In this section we

analyze polar codes of su�ciently high rate. We exploit the recursive structure of the

polar coding generator matrix to prove a property about the ranks of sets of submatrices

of the generator matrix called rectangle pairs. This is used to derive a Ω(N1.5) energy

lower bound on polar encoders. The encoding lower bound applies to any circuit that

computes a polar encoding function; for polar decoding, on the other hand, it is more

di�cult to de�ne a valid decoding method. However, Ar�kan [3] suggests a successive

cancellation decoding technique based on the butter�y network graph. Thus, the other

main result in this section proves an Ω(N1.5) lower bound on the energy complexity of

such decoders. We then show how the mesh network topology approach of [1] can be

adapted for polar encoding to reach this lower bound up to a polylogarithmic factor. For



Chapter 1. Introduction 3

polar decoding the energy lower bounds can also be reached with a mesh network up to

a polylogarithmic factor.

Having shown how to use the mesh network topology to perform polar encoding and

decoding, we further analyze the mesh network and show that, in fact, all algorithms

with communication graphs of bounded vertex degree can be implemented with a mesh

network. The main idea is to use the probabilistic method to show that there exists

a placement of nodes on the mesh network that avoids large con�icts. Conditioned on

an assumption about the iterative performance of LDPC codes, this implies there exists

e−Θ(N)-coding schemes that have energy that scales close to O(N1.5). We then show

how parallelization can be used to construct an f(N)-coding scheme that comes close

to the universal time and energy lower bounds. Even if the assumption is not true, we

also discuss how universal energy lower bounds (but not the time lower bounds) can be

almost reached using generalized polar codes of [4].

Up to this point our results involve planar circuits. In Chapter 7 we expand our

lower bound analysis to three dimensions. We adapt the two-dimensional information-

friction model of Grover [5] to three dimensions and prove lower bounds for encoders

and decoders in terms of block error probability. In particular, we show that encoders

and decoders have energy E ≥ Ω(N(− log(Pe)
1/3)) for codes of block length N and block

error probability Pe.

In Chapter 8 we examine the information friction model and build upon the discus-

sions of Grover [5] and analyze a number of communication schemes that may seem to

violate the assumptions of the model. However, we show that upon further analysis such

schemes have either have linear or worse energy per bit as a function of distance, or, for

one reason or another, they are utterly impractical.

Finally, in Chapter 9 we summarize the main scaling rule results and discuss some

areas of future work.

Notation: We use standard Bachmann-Landau [6, 7] notation in this thesis. The

statement f(x) = O(g(x)) means that for su�ciently large x, f(x) ≤ cg(x) for some

positive constant c. The statement f(x) = Ω(g(x)) means that for su�ciently large x,

f(x) ≥ cg(x) again for some constant c. The statement f(x) = Θ(g(x)) means that

there are two positive constants b and c such that b ≤ c and for su�ciently large x,

bg(x) ≤ f(x) ≤ cg(x).



�Now it would be very remarkable if any sys-

tem existing in the real world could be exactly

represented by any simple model. However,

cunningly chosen parsimonious models often

do provide remarkably useful approximations.

For example, the law PV = RT relating pres-

sure P, volume V and temperature T of an

"ideal" gas via a constant R is not exactly

true for any real gas, but it frequently provides

a useful approximation and furthermore its

structure is informative since it springs from a

physical view of the behavior of gas molecules.

For such a model there is no need to ask the

question �Is the model true?�. If �truth� is to

be the �whole truth� the answer must be �No�.

The only question of interest is "Is the model

illuminating and useful?.�

George Box

2
Thompson Model

2.1 The Thompson Model

The central mathematical object of this thesis is the circuit, which is adapted from the

work of Thompson [8] which we call the Thompson model. Note however that our model

is slightly di�erent from the models discussed in [8], but for the purposes of our lower

bound scaling rules, none of these di�erences matter. In this section we describe the

circuit mathematically, with little reference to the real-life circuits from which the model

is inspired. Then in Section 2.2 we discuss how the model relates to actual circuit design,

and address a number of possible objections to the model. The main idea of the model

is that a circuit is a set of nodes and wires laid out on a grid of squares, and energy

consumption comes from switching the values stored in these grid squares.

A circuit is a mathematical object {C, finput, foutput} consisting of a circuit grid C, an
input protocol finput, and an output protocol foutput which we de�ne below. After the

de�nition of a circuit, we will give two examples of a circuit, and then show how such

circuits compute functions.

• A circuit grid is a collection of nodes and wires laid out on a planar grid of squares.

Each grid square can be empty, can contain a computational node (sometimes

referred to more simply as a node), a wire, or a wire crossing. A circuit also

4
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Figure 2.1: Diagram of a possible VLSI circuit. Grid squares that are fully �lled in
represent computational nodes and the lines between them represent wires. Note that in
the upper-left quadrant of the grid there is a wire crossing.

Figure 2.2: The six types of wire-nodes drawn on a grid square. In the obvious way these
nodes can be placed together to connect to form paths between computational nodes in
a circuit.

has some special nodes called input nodes and also output nodes. We let there

be I input nodes in the circuit and J output nodes. The purpose of a circuit is

to compute a function f : (0, 1)Ninput → (0, 1)Noutput . Such a circuit is said to have

Ninput inputs and Noutput outputs. Note that the number of function inputs/outputs

may not be the same as the number of input/output nodes, since input/output can

be serialized. The computation is divided into T clock cycles, and the Ninput inputs

are to be injected into the I input nodes during some clock cycle, and the Noutput

outputs are to appear in the J output nodes during some clock cycle.

• Each grid that contains a wire may be either a horizontal, vertical, or bending wire.

Each wire grid has associated with it its connecting sides. In the diagrams of these

grid squares, these are simply the the sides of the square that the wire touches. See

Figure 2.2 for a diagram of the six types of wire nodes.

• Two grid squares containing wires are connected if the they have adjacent connecting

sides. Now, obviously, we see that adjacent wire nodes can form a path between

computational nodes in the natural way.
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• Conceptually, computational nodes are the �computing� parts of the circuit. There

are two types of computational nodes: logic nodes and register nodes.

• Each node has at most 4 wires connected to it, which are used to feed in bits into

the node and feed out the bits computed by the node. Each of the four sides of a

computational node is associated with either input or output. A wire may connect

to an input or output side of a computational node. A path starting at such a wire

may lead to another computational node. For a circuit to be valid wire paths may

only connect output sides to input sides.

• A register node has one input side and up to three output sides. Conceptually, the

purpose of a register node is to store information until the next clock cycle.

• A logic logic node is associated with a function. A logic node with κinput input sides

and κoutput output sides can compute any function g : {0, 1}κinput → {0, 1}κoutput .
So, for example, a possible logic node may have three input sides, associated with

input x1, x2, x3 and one output side associated with output y1. Then such a node

may compute the function which is the logical AND the three inputs. That is

g(x1, x2, x3) = x1 ∧ x2 ∧ x3.

• An input node is a special type of register node in the circuit which has no input

side. Conceptually, the value in this register depends on the current input to the

node at the most recent clock cycle. In the state update rule for the circuit (which

we de�ne below), after each clock cycle, the value on wires adjacent to the input

node shall be updated to the value of the input.

• An output node is another special type of register node in a circuit. The output

node is required to hold in its output bit some circuit output during pre-determined

clock cycles.

• Each wire and computational node is associated with a state. The wires and the

register nodes may be in state 0 or state 1. The state of a wire crossing is associated

with two bits: one for each wire in the wire crossing. We let the vector of all states

of the nodes be S, and the set of all possible states for a particular circuit be S.
We let the set of possible input node states beMinput.

• There is a natural update rule for the circuit. The update rule is a function fupdate :

S ×Minput → S that maps the current state of the circuit and circuit inputs to the

state of the circuit at the next clock cycle. The update rule function is the function
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induced by the natural evaluation of the circuit: each computational node computes

their functions and then alters the state of the wires at their output. Then, the

state of all wires that are adjacent are set equal. When wires are adjacent to the

inputs of logic nodes, the wires at the output of the logic nodes are changed to

the evaluation of their function. The wire values are updated until they reach the

input of a register node.

� Note that for a circuit to be valid, there should be no wires unconnected to

computational nodes. From this point on we will be discussing only �valid�

circuits; that is, those whose update rule is well de�ned.

• An input-output protocol is an ordered pair of functions (finput, foutput) where finput :

[Ninput] → [I] × N is a function called the input protocol, that takes in as input a

number representing the ith input bits, and the output is a an ordered pair (a, b)

where a is interpreted as the input node into which that input bit is to be inserted,

and b is the clock cycle of the computation that the input bit is to be inserted.

Similarly, foutput : [Noutput]→ [O]× N is a function called the output protocol. The

output protocol is de�ned similarly, mapping an output bit index to an output node

and clock cycle. The input/output protocols can be interpreted as a table.

In Example 1 we see an example of a fully parallel circuit with a table representing

its input/output protocol. We see another example of a circuit which computes

a similar function, but has a di�erent circuit layout and a serialized input-output

protocol in Example 2.

• Given a particular input, a circuit grid and an input-output protocol, one can

determine the output of the circuit given this input. This can be done for all

possible inputs to the function. Thus, associated with the circuit is the circuit

function that the circuit computes, which is the function mapping the set of all

possible input values to their output when the input-output protocol is used.

• The area of a circuit is the number of grid squares occupied by either a wire or a

node, denoted A.

• The number of clock cycles is the clock cycle number during which the last output

bit is to appear, which we denote T .

• The energy of a computation given a particular inputMinput, denoted Ecomp(Minput)

is proportional to the number of node state changes that occurred during the com-

putation. Note that the constant of proportionality relating these quantities is
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technology dependent, but since we are concerned with scaling rules in terms of

increasing circuit size, we simply set this constant of proportionality to unity.

• The worst case energy of a computation is E = maxx∈{0,1}Ni Ecomp(x). Note that

the results in this thesis are about worst case energy bounds.

• The switching activity factor is de�nes as q = E
AT

, and is the average fraction of

nodes or wires in the circuit that switch during the computation. Note that for

many of the proofs involving scaling rules as a function of block length N in this

thesis, a switching activity that is bounded below as a function of block length N

is assumed. With such an assumption the energy of a computation can be bounded

by E ≥ qAT .

2.2 Discussion of Model

In this section we discuss the justi�cation for this model, as well as address a number of

objections to and limitations of the model.

Energy Proportional to Area-Time Product

The main idea of the model is that in modern VLSI circuits, wires are charged or dis-

charged each clock cycle whenever their state changes. This process consumes energy,

because the wires have some capacitance. From electromagnetics, it is known that the

energy to charge a capacitor with capacitance Cc at voltage Vc is equal to E = 1
2
CcV

2
c .

Since wires are laid out essentially �at, they have a capacitance roughly proportional to

their area. Thus, in our model, the energy to charge and discharge a wire is proportional

to the number of grid squares it occupies. With switching activity factor q the number

of switches a circuit undergoes in a computation is proportional to qAT .

Time and Number of Clock Cycles

Note that our quantity T refers to number of clock cycles, which re�ects one of the main

�time costs� in a circuit computation. In real circuits, the �time cost� of a computation

involves two parameters: the number of clock cycles required, and the time it takes to

do each clock cycle. In our model, we do not consider the time per clock cycle. In real

circuits, this quantity often varies with wire lengths. Chazelle et al. [9] introduce a

re�nement of the Thompson model that considers wire length costs. We do not consider

this in this thesis.



Chapter 2. Thompson Model 9

Example 1 Parallel Circuit Example

j1 j2 j3 j4

⊕ ⊕

o1

⊕

An example of a circuit grid. The four input nodes of this circuit are labelled j1, j2, j3, j4,
two logic nodes are labelled with the ⊕ symbol, and the single output node is labelled
with an o1. In this particular circuit, information �ows from top to bottom in the wires.
The following table represents the input protocol of the circuit:

Input Input node Clock cycle

1 1 1
2 2 1
3 3 1
4 4 1

As well, the output protocol for this circuit is:
Output Output node Clock Cycle

1 1 1
The ⊕ node computes the XOR function. Note that this circuit is fully parallel.
To see how this circuit behaves, we simply follow the update rule. At the �rst clock cycle
the 4 input bits are loaded into the 4 input nodes. These values �ow into the two ⊕ logic
nodes, and then after the second clock cycle these values are stored in the single output
register. It is thus easy to see that the function that this circuit computes is the mod 2
sum of the 8 input bits. The area A of this circuit is 21, as this is how many grid squares
are occupied.
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Example 2 Serial Circuit Example

⊕ ⊕

j1 j2 j3 j4

⊕

⊕

>

R

o1

An example of a serialized circuit. The four input nodes of this circuit are labelled
j1, j2, j3, j4, two logic nodes are labelled with the ⊕ symbol, and the single output node
is labelled with an o1. The nodes labelled ⊕ compute the XOR of their inputs. The node
labelled > computes the �t-joint� function, and takes in as input the bit from the right
and outputs this bit at its left and the bottom. The node labelled with R is a register
node. This circuit computes a function of 8 inputs, but has only 4 input nodes.
To see how this circuit behaves, we simply follow the update rule. At the �rst clock cycle
the 4 input bits are loaded into the 4 input nodes. These values �ow into the two ⊕ logic
nodes, and then after the second clock cycle these values are stored in the single output
register. It is thus easy to see that the function that this circuit computes is the mod 2
sum of the 4 input bits.
The area A of this circuit is 34.
This circuit has the following input protocol:

Input Input node Clock cycle

1 1 1
2 2 1
3 3 1
4 4 1
5 1 2
6 2 2
7 3 2
8 4 2

The output protocol for this circuit is:
Output Output node Clock Cycle

1 1 2
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Leakage Current

In modern digital circuits, leakage current is an unavoidable e�ect where energy is con-

sumed when electrons or holes tunnel through insulated regions of the circuit. In circuit

design, sometimes this leakage current is factored into energy models of computation

(see [10] and [11]). However, we neglect leakage current in our model. To justify this

assumption, we can assume the frequency of computation is high enough so that the

energy used in charging and discharging the wires dominates.

Logic Gates of Di�erent Size or Energy Consumption

Note that the restriction that each node has in total at most four inputs and outputs

is somewhat arbitrary; it is also arbitrary that each node is permitted to compute any

function of its inputs all at the same area and energy cost. In real VLSI implementations

it may be that an arrangement of transistors can compute some functions more e�ciently

than others. However, our model does not consider what gains could be made if certain

functions are cheaper in an energy sense to compute. However, models that vary the

size and energy consumption of di�erent logic gates can only change the circuit area

by a constant amount and so our model simply assumes any logic gate with up to four

input/output wires can be implemented in unit area.

Multiple Layer VLSI Circuits

Modern VLSI circuits di�er from the Thompson model in that the number of VLSI layers

is not one (or two if one counts a wire crossing as another layer). Modern VLSI circuits

allow multiple layers. Fortunately, it is known that if L layers are allowed, then this can

decrease the total area by at most a factor of L2 (see, for example, [1] or [12]). For the

purposes of our lower bounds, if the number of layers remains constant as input size N

increases, we can modify our energy lower bound results by dividing the lower bounds by

L2. If, however, the number of layers can grow with N our results may no longer hold.

Note also that this only holds for the purpose of lower bound. It may not be possible

to implement a circuit with an area that decreases by a factor of L2, and so the upper

bounds cannot be similarly modi�ed for multiple layer circuits.

Multiple Switches in Each Clock Cycle

In our model, we assume that at each clock cycle a wire can switch at most one time.

However, in real circuits, the inputs into a logic node may change multiple times each

clock cycle because di�erent inputs for each logic gate change at slightly di�erent times
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(owing to di�erences in wire lengths and logic gate delays). This motivated Aggarwal et

al. to introduce the multi-switch energy consumption model of [13]. The authors argue

that if a gate is at depth h in a circuit, and the circuit has fan-in c, the output of this

logic gate can switch up to ch times each clock cycle. This could be a signi�cant factor in

the energy of a computation but we do not consider this here in either our lower bounds

or upper bounds. A similar model was introduced by Kissin [14].

Multiswitching is a possible signi�cant source of energy consumption. However, I

conjecture that in real circuits the energy consumption caused by multiswitching cannot

grow too large (that is, it cannot grow signi�cantly quickly as a function of N) because

resistive-capacitive e�ects of the wires will slow down the charging and discharging of the

wires if the output of a gate is switched too frequently.

Using Memory Elements in Circuit Computation

The Thompson model does not allow for the use of special memory nodes in computation

that can hold information and compute the special function of loading and unloading from

memory. Such a circuit can be created using the Thompson model, but it may be that

a strategic use of a lower energy memory element can decrease the total energy of a

computation. However, the use of a memory element to communicate information within

a circuit is still proportional to the distance that information is communicated (See for

example the analysis of [15] where the main energy consumption of dynamic random

access memories �ows from charging and discharging capacitors as in the Thompson

model, or our discussion in Chapter 8 justifying the linear in distance energy assumption).

With only a linear-in-distance energy consumption assumption Grover in [5] proposed a

�bit-meters� model of energy computation and derives energy scaling rules similar to our

fully parallel results. We generalize the Grover bit-meters model to three dimensions in

Chapter 7.

Though the information friction analysis suggests that using memory will not change

the �rst order scaling results of this thesis, the proportionality constants relating distance

communicated to energy may be signi�cantly di�erent for memory usage compared to

energy consumed in wires and logic gates. Thus, in real circuit designs balancing wire

and memory energy consumption may be an area of signi�cant practical and theoretical

interest that is beyond the scope of this thesis.
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2.3 Related Literature

In [8] it was proven that the area-time complexity of any circuit implemented according

to this VLSI model that computes a Discrete Fourier Transform must scale as Ω (N1.5).

However, there exist algorithms that compute in O (N logN) operations (for example,

see [16]); Thompson's results thus imply that, for at least some algorithms, energy con-

sumption is not merely proportional to the computational complexity of an algorithm.

Related to the Thompson model is the computational problem of laying out a graph

on a plane. This problem has been shown to be NP-Complete by Dolev et al. in [17].

The Thompson model, in addition to being studied for sorting and discrete Fourier

transform by Thompson in [1] has also been studied for di�erent computational problems.

Vuilleman [18] shows how a number of computational problems, including cyclic shifts,

linear transforms, and cyclic convolution have analytical expressions for lower bounds on

their area-time complexity because the functions such circuits compute all have a similar

mathematical property.

Tyagi [19] de�nes a concept called information complexity of a function, which im-

plies lower bounds on a circuit's area-time complexity. The information complexity of

a function is the number of bits that have to be communicated between any two equal

sized partitions of the input bits. Tyagi's approach is very similar to our approach, and

in fact our lower bounds for polar encoding and decoding, as well as LDPC decoding can

be interpreted as �nding lower bounds on this information complexity parameter for the

functions that they compute. However, this information complexity measure does not

extend to our general lower bounds of Chapter 3, mainly because our lower bounding

technique uses the nested bisection technique used by Grover [2], as opposed to a single

bisection.

Related to the concept of information complexity is the widely studied computer

science concept of communication complexity [20]. The communication complexity is

de�ned for functions to be computed by two parties, where one party has one half of the

input bits and the other party has the other half. The communication complexity then

is the minimum number of bits that must be communicated between the two parties so

that either one of the parties can compute the function. The information complexity

discussed in the previous paragraph can then be de�ned as the minimum communication

complexity over all possible bisections of the input bits.

The earliest work on computational complexity lower bounds for good decoding comes

from Savage in [21] and [22], which considered bounds on the memory requirements and

number of logical operations needed to compute decoding functions. However, wiring
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area is a fundamental cost of good decoding and the authors do not consider this. More

recently, in [23], the authors use a model similar to our model, except the notion of �area�

the authors use is the size of the smallest rectangle that completely encloses the circuit

under consideration.

Another computational model that has proven more tractable than the Turing Time

complexity model is the constant depth circuit model (see [24] for a detailed description

of this model). Super-polynomial lower bounds on the size of constant depth circuits

that compute certain notions of �good encoding functions� (though not decoding) were

derived in [25]. In this case, the notion of �good� considered was the ability to correct

at least Ω (N) errors at rates asymptotically above 0. Similar related work exists in [26]

which discovered lower bounds on the formula-size of functions that perform good error

control coding; similar bounds were later discovered in [27].

Also in the �eld of coding theory, Grover et al. in [28] provided an example of

two algorithms with the same number of logical operations but di�erent computational

energies (due to wire length di�erences). The authors looked at the girth of the Tanner

graph of an LDPC code. The girth is de�ned as the minimum length cycle in the Tanner

graph that represents the code. They showed, using a concrete example, that for (3, 4)-

regular LDPC codes of girth 6 and 8 decoded using the Gallager-A decoding algorithm,

the decoders for girth 8 codes can consume up to 36% more energy than those for girth

6 codes. The girth of a code does not necessarily make the decoding algorithm require

more computations, but, for this example, it does increase the energy complexity. This

is because codes with greater girth require the interconnection between nodes to be more

complex, even though the same number of computational nodes and clock cycles may be

required. This drives up the area required to make these interconnections, and thus drives

up the energy requirements. Also in the �eld of coding theory, the work of Thorpe [29]

has shown that a measure of wiring complexity of an LDPC decoder can be traded o�

with decoding performance.

There has been some work to understand the tradeo� between computational com-

plexity and code performance. One such example is [30], in which the complexity of a

Gallager Decoding Algorithm B was optimized subject to some coding parameters. This

however does not correspond to the energy of such algorithms.

The mesh network topology that we analyze for error control coding was also proposed

to be used for the Viterbi algorithm by Gulak et al. in [31].
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2.4 Other Energy Models of Computation

There has been some work on energy models of computation di�erent from the Thompson

energy models and Grover information friction models, and herein we provide a short

review.

In [32], Bingham et al. classify the tradeo�s between the �energy� complexity of

parallel algorithms and �time� complexity for the problem of sorting, addition, and mul-

tiplication using a model similar to, but not the same as the model we use. In the grid

model used by these authors, a circuit is composed of processing elements laid out on a

grid, in which each element can perform an operation. In this model the circuit designer

has choice over the speed of each operation, but this comes at an energy cost. Real

circuits run at higher voltages can result in lower delay for each processing element but

higher energy [33]. The model used by the authors in [32] captures some of this funda-

mental tradeo�. Note that our model assumes constant voltage. Non-trivial results that

show how real energy gains can occur by lowering voltages in decoder circuits have been

studied in [34], but we do not study this here.

Another energy model of computation was presented by Jain et al. in [35]. This model

introduced an augmented Turing machine, a generalization of the traditional Turing ma-

chine [36]. The authors introduce a transition function, mapping the current instruction

being read, the current state, the next state and the next instruction to the �energy�

required to make this transition. This model (once the transition function is clearly de-

�ned for a speci�c processor architecture) would be good for the algorithm designer at

the software level. However, we do not believe this model informs the specialized circuit

designer. The Thompson model which we analyze, on the other hand, can include, as

a special case, the energy complexity of algorithms implemented on a processor, as our

model allows for a composition of logic gates to form a processor.

Landauer [37] derives that the energy required to erase one bit of information is

at least kT ln 2, where k is Boltzmann's constant, and T is the temperature. Thus, a

fundamental limit of computation comes from having to erase information. Of course,

it may be possible to do reversible computation in which no information is erased that

can use arbitrarily small amounts of energy, but such circuits must be run arbitrarily

slowly. This suggests a fundamental time-energy tradeo� di�erent from the tradeo�

discussed herein. Landauer [38], Bennett [39] and Lloyd [40] provide detailed discussions

and bibliographies on this line of work. Demaine et al. [41] extract a mathematical model

from this line of work and analyze the energy complexity of various algorithms within

this model. Note that the Thompson model we use is one informed by how modern VLSI
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circuits are created, even though they operate at energies far above ultimate physical

limits.



�There was another possibility, though. You

could calculate pi as accurately as you wanted.

If you knew something called calculus, you

could prove formulas for π that would let you

calculate it to as many decimals as you had

time for. The book listed formulas for pi di-

vided by four. Some of them she couldn't un-

derstand at all. But there were some that daz-

zled her: π/4, the book said, was the same as

1 - 1/3 + 1/5 - 1/7..., with the fractions con-

tinuing on forever... It seemed to her a miracle

that the shape of every circle in the world was

connected with this series of fractions. How

could circles know about fractions? She was

determined to learn calculus.�

Carl Sagan, in Contact

3
General Lower Bounds

In this Chapter we analyze the area, time and energy complexity of error control coding

circuits implemented within the Thompson model. We �rst de�ne:

De�nition 1. An f (N)-coding scheme is a sequence of codes of increasing block length

N , together with a sequence of encoders and decoders, in which the block error probability

associated with the code of block length N is less than f (N) for su�ciently large N .

We show, in terms of T (N) (the number of clock cycles of the encoder or decoder

for the code with block length N) that an f(N)-coding scheme that is fully parallel

has encoding and decoding energy (E) that scales as E ≥ Ω
(
N ln f(N)
T (N)

)
. We show that

the energy optimal number of clock cycles for encoders and decoder (T (N)) for an

f (N)-coding scheme scales as O
(√

ln f (N)
)
, giving a universal energy lower bound

of Ω
(√

ln f (N)N
)
. A special case of our result is that exponentially low probability

of error coding schemes thus have encoding and decoding energy that scales at least

as Ω
(
N

3
2

)
with energy-optimal number of clock cycles that scales as Ω

(
N

1
2

)
. This

approach is generalized to serial implementations.

In Section 3.1 we discuss prior work, and in particular we discuss existing results

on complexity lower bounds for di�erent models of computation for di�erent notions of

�good� encoders and decoders. We discuss preliminary de�nitions in Section 3.2 and

17
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introduce the notion of a nested-bisection of a circuit in Section 3.3. The main technical

results of this work are in Section 3.4, where we discuss lower bounds for fully-parallel

circuits. In Section 3.5 we extend our approach to serial circuits. In these sections we

present lower bounds for decoders, as the derivation for encoding lower bounds is almost

exactly the same. We provide an outline of the technique for encoder lower bounds

in Section 3.6. Finally, we consider the corner case when the coding schemes under

discussion have asymptotic probability of error approach a constant less than 1/2 (as

opposed to approaching 0) in Section 3.7.

3.1 Prior Related Work

In [2], Grover et al. considers the same model that we do, and �nds energy lower bounds

as a function of probability of block error probability for good encoders and decoders.

Our analysis of the Thompson model di�ers from the approach of Grover et al. in a

number of ways. Firstly, central to the work of Grover et al. is a bound on block error

probability if inter-subcircuit bits communicated is low (presented in Lemma 2 in the

Grover et al. paper), which is analogous to our result in (3.4) of the proof of Theorem 1.

Our result simpli�es this relationship using probability arguments. Secondly, the Grover

et al. paper does not present what energy-optimal number of clock cycles are in terms

of asymptotic probability of block error, nor do they present the fundamental tradeo�

between number of clock cycles, energy, and reliability within the Thompson model that

we present in this chapter. Moreover, the technique of [2] does not extend to serial

implementations.

In another paper, Grover [5] derives similar scaling rules to our scaling rules for a

di�erent model of computation: the information friction model. In Chapter 7 we gener-

alize Grover's approach to three dimensions. The central assumption of the information

friction model is that the cost of communicating one bit of information is at least pro-

portional to the distance communicated. Grover is able to derive an Ω(N
√
− log(f(N)))

energy lower bound for f(N)-decoding and encoding schemes within this model, which

does imply the energy lower bounds for fully parallel decoders that we derive in this

section. The approach does not, however, extend to energy lower bounds for serial im-

plementations, nor does it bound the number of clock cycles required to reach this energy

lower bound.
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3.2 De�nitions and Lemmas

To present the main results of this section we shall present a sequence of de�nitions and

lemmas similar to [2, 42].

Lemma 1. Suppose that X, Y , and X̂ are random variables that form a Markov chain

X → Y → X̂. Suppose furthermore that X takes on values from a �nite alphabet X
with a uniform distribution (i.e., P (X = x) = 1

|X | for any x ∈ X ) and Y takes on values

from an alphabet Y. Suppose furthermore that X̂ takes on values from a set X̂ such that

X ⊆ X̂ . Then,
P
(
X̂ = X

)
≤ |Y||X | .

Remark 1. As applied to our decoding problem, the random variable X can be thought

of as the input to a binary erasure channel, and Y can be any inputs into a subcircuit

of a computation, and X̂ can be thought of as a subcircuit's estimate of X. This lemma

makes rigorous the notion that if a subcircuit has fewer bits input into it than it is

responsible for decoding, then the decoder must guess at least 1 bit, and makes an error

with probability at least 1
2
. This scenario is actually a special case of this lemma in which

|Y| = 2m and |X | = 2k for integers k and m, where m < k.

Remark 2. Note that this result mirrors the result of Lemma 4 in [5]. In this lemma, the

author proves that if a circuit has r
3
bits to make an estimate X̂ of a random variable

X that is uniformly distributed over all binary strings of length r, then that circuit

makes an error with probability at least 1
9
. Our lemma presented here includes this

lemma as a special case by setting |Y| = 2
r
3 and |X | = 2r. In this case we can infer:

P
(
X̂ 6= X

)
≥ 1− 2

r
3

2r
≥ 1− 2−

2
3
r > 1

9
, where the last inequality is implied by r ≥ 1.

Proof. (of Lemma 1) Clearly, by the law of total probability,

P
(
X = X̂

)
=
∑

x∈X

∑

y∈Y

PX,Y,X̂ (x, y, x)

=
∑

x∈X

∑

y∈Y

PX (x)PY |X (y|x)PX̂|Y (x|y)

where we simply expand the term in the summation according to the de�nition of a

Markov chain. Using PX (x) = 1
|X | we get:

P
(
X = X̂

)
=

1

|X |
∑

x∈X

∑

y∈Y

PY |X (y|x)PX̂|Y (x|y)
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Figure 3.1: Example of two graphs with a minimum bisection labelled. Nodes are repre-
sented by circles and edges by lines joining the circles. A dotted line crosses the edges of
each graph that form a minimum bisection.

and using PY |X (y|x) ≤ 1 because it is a probability, and changing the order of summation

gives us:

P
(
X = X̂

)
≤ 1

|X |
∑

y∈Y

∑

x∈X

PX̂|Y (x|y) .

Since
∑

x∈X PX̂|Y (x|y) ≤ 1 (as we are summing over a subset of values that X̂ can take

on), we get:

P
(
X = X̂

)
≤ 1

|X |
∑

y∈Y

1 =
|Y|
|X | .

De�nition 2. Let G = (V,E) be a graph and let V ′ ⊆ V . A subset of the edges

Es ⊆ E bisects V ′ in G if removal of Es cuts V into unconnected sets V1 and V2 in which

||V1 ∩ V ′| − |V2 ∩ V ′|| ≤ 1. The sets V1 ∩ V ′ and V2 ∩ V ′ are considered the bisected sets

of vertices. A minimum bisection is a bisection of a graph whose size is minimum over

all bisections. The minimum bisection width of V ′ is the size of a minimum bisection of

V ′. The minimum bisection width of the graph is the minimum bisection width of all the

vertices V .

Note that since a circuit is associated with a graph, we can discuss such a circuit's

minimum bisection width, that is the minimum bisection width of the graph with which

it is associated. A diagram of two circuits with a minimum bisection width of their

vertices labelled is given in Figure 3.1

The following lemma adapted from Thompson [1] is important for our discussion:

Lemma 2. If a graph G has minimum bisection width φG(V ′) for a set V ′ of vertices,

then the area of a circuit implementing this graph is lower bounded by

Amin(G) ≥ φ2
G(V ′)

4
.
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Figure 3.2: A circuit next to its associated graph.

Proof. Thompson's proof for the minimum bisection width of all the vertices of the graph

([1], Theorem 2) applies just as well to the minimum bisection width of a subset of the

vertices.

3.3 Nested Bisections

We now discuss the notion of nested minimum bisection, a concept introduced by Grover

et al. in [2] and also used in [42].

In this section we specialize the notion of a circuit to that of a decoder circuit, as

de�ned below.

De�nition 3. An (N,K)-decoder is a circuit that computes a decoding function f :

{0, 1}N → {0, 1}K ; that is, the number of function inputs Ninput = N and the number

of function outputs is Noutput = K. It is associated with a codebook, (and therefore,

naturally, an encoding function, which computes a function g : {0, 1}K → {0, 1}N), a
channel statistic, P

(
yN |xN

)
(which we will assume herein to be the statistic induced by

N channel uses of a binary erasure channel), and a statistic from which the source is

drawn p
(
xK
)
(which we will assume to be the statistic generated by K independent fair

binary coin �ips). The quantity N is the block length of the code, and the quantity K

is the the number of bits decoded.

Note that the only di�erence between a general circuit and a decoder circuit is that

for a decoder circuit the number of function inputs is Ninput = N , the number of function

outputs is Noutput = K, and the circuit is associated with a codebook and channel.

Now suppose our circuit has K output nodes (as would be the case in a fully-parallel

(N,K)-decoder. If the output nodes of such a circuit are minimum bisected, this results in

two disconnected subcircuits each with, roughly, K
2
output nodes. These two subcircuits

can each have their output nodes minimum bisected again, resulting in four disconnected

subcircuits, now each with roughly K
4
output nodes.
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Figure 3.3: Example of a possible circuit undergoing two stages of nested minimum
bisections. The dotted line down the middle is a �rst nested bisection, and the other two
horizontal dotted lines are the bisections that divide the two subcircuits that resulted from
the �rst stage of the nested bisections, resulting in four subcircuits. We are concerned
with the number of bits communicated across r-stages of nested minimum bisections. In
these two stages of nested minimum bisections, we see that 8 wires are cut. Because we
assume wires are bidirectional, and thus two bits are communicated across these wires
every clock cycle, in the case of this circuit we have Br = 8×2×T , where T is the number
of clock cycles. It will not be important how to actually do these nested bisections, rather
it is important only to know that any circuit can undergo these nested bisections.

De�nition 4. This process of nested minimum bisections on a circuit, when repeated

r times, is called performing r-stages of nested minimum bisections. In the case of this

chapter, the set of nodes to be minimum bisected will be the output nodes. We may also

refer to this process as performing nested bisections, and a circuit under consideration in

which nested bisections have been performed as a nested bisected circuit. Note that we

will omit the term �minimum� in discussions of such objects, as this is implicit.

In Figure 3.3 we give an example of a circuit undergoing two stages of nested bisec-

tions.

Note that associated with an r-stage nested bisected circuit are 2r subcircuits. Note

as well that once a subcircuit has only one node, it does not make sense to bisect that

subcircuit again. Suppose we are nested-bisecting the K output nodes of a circuit. In

this case, one cannot meaningfully nested-bisect the output nodes of a circuit r times if

2r > K.

Note that each of the 2r subcircuits induced by the r-stage nested bisection may

have some internal wires, and also wires that were deleted and connect to nodes in other

subcircuits. We can index the 2r subcircuits with the symbol i.

De�nition 5. Let the number of wires attached to nodes in subcircuit i that were deleted

in the nested bisections be fi. This quantity is the fan-out of subcircuit i.
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We shall also consider the bits communicated to a given subcircuit.

De�nition 6. Let bi = fiT , where we recall that T is the number of clock cycles used in

the running of the circuit under consideration. This quantity is called the bits communi-

cated to the ith subcircuit.

Note that we have assumed, for the purpose of lower bound, that all wires connected

to a subcircuit are used to communicate information to that subcircuit each clock cycle.

In reality a wire will only be able to communicate a bit in one direction each clock cycle,

but for the purpose of lower bound we just assume that wires communicate a bit in both

directions each clock cycle.

We can now de�ne an important quantity.

De�nition 7. The quantity Br =
∑2r

i=1 bi is the inter-subcircuit bits communicated.

Note that each subcircuit induced by the nested bisections will each have close to K
2r

output nodes within them (a consequence of choosing to bisect the output nodes at each

stage), however, each may have a di�erent number of input nodes.

De�nition 8. This quantity is called the number of input nodes in the ith subcircuit and

we denote it Nin,i.

Note that
∑2r

i=1 Nin,i = N for all valid choices of r. That is, the sum over the number

of input nodes in each subcircuit is the total number of input nodes in the original circuit.

De�nition 9. A fully-parallel circuit is a circuit in which all function inputs are injected

into inputs at the �rst clock cycle and all outputs appear at an output node at the last

clock cycle.

This now allows us to present an important lemma.

Lemma 3. All fully-parallel circuits with inter-subcircuit bits communicated Br have

product AT 2 bounded by

AT 2 ≥
(√

2− 1
)2

32

B2
r

2r
= c1

B2
r

2r
(3.1)

where we recall A is circuit area and T is number of clock cycles, and where we de�ne

c1 =
(
√

2−1)
2

32
.

Proof. This result, from Grover et al. [2] �ows from applying Lemma 2 recursively on

the nested-bisected structure and optimizing.
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Lemma 4. All fully-parallel circuits with inter-subcircuit bits communicated Br and num-

ber of input nodes N have product AT bounded by:

AT ≥ c2

√
N

2r
Br

where we de�ne c2 =
√

2−1
4
√

2
.

Proof. See [2]. This result �ows from the observation that A ≥ N for a fully parallel

circuit and then combining this inequality with (3.1).

De�nition 10. The block error probability of a decoder, denoted Pe, is the probability

that the decoder's estimate of the original source is incorrect. Note that this probabil-

ity depends on the source distribution, the channel, and the function that the decoder

computes.

De�nition 11. A decoding scheme is an in�nite sequence of circuits D1, D2, . . . each of

which computes a decoding function, with block lengths N1 < N2 < . . . and bits decoded

K (N1) , K (N2) , . . .. They are associated with a sequence of codebooks C1, C2, . . . and a

channel statistic.

We assume throughout this chapter that the channel statistic associated with each

decoder is the statistic induced by N uses of a binary erasure channel. Our lower bound

results also apply to any channel that is a degraded erasure channel, including the binary

symmetric channel. Our results in terms of binary erasure probability ε can be applied

to decoding schemes for the binary symmetric channel with crossover probability p by

substituting p = 2ε.

De�nition 12. We let Pe (N) denote the block error probability for the decoder with

input size N . We let R (N) = K(N)
N

be the rate of the decoder with input size N .

We also classify decoding schemes in terms of how their probability of error scales in

the de�nition below.

De�nition 13. An f (N)-decoding scheme is a decoding scheme in which for su�ciently

large N the block error probability Pe(N) < f(N).

De�nition 14. The asymptotic-rate, or more compactly, the rate of a decoding scheme

is limN→∞R (N), if this limit exists, which we denote R.

Note that the rate of a decoding scheme may not be the rate of any particular code-

book in the decoding scheme.
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De�nition 15. An exponentially-low-error decoding scheme is an e−cN -decoding scheme

for some c > 0 with asymptotic rate R greater than 0.

We will also consider another class of decoding schemes, one which can be considered

less reliable.

De�nition 16. A polynomially-low-error decoding scheme is a 1
Nt -decoding scheme for

some t > 0 with asymptotic rate R > 0.

We will also need to de�ne a sublinear function, which will be used to deal with a

technicality in Theorem 1.

De�nition 17. A sublinear function f (N) is a function in which limN→∞
f(N)
N

= 0.

3.4 Main Lower Bound Results

We can now state the main theorem of this chapter.

Theorem 1. All fully-parallel f (N)-decoding schemes associated with a binary erasure

channel with erasure probability ε in which f (N) monotonically decreases to 0 and in

which − ln (f (N)) is a sublinear function have energy that scales as

E ≥ c3

√
− ln (2f (N))

ln(ε)
K (3.2)

where c3 = (
√

2−1)

16
√

2
and AT 2 complexity that scales as:

AT 2 ≥ c4
K2 ln (2f (N))

N ln(ε)
(3.3)

for another positive constant c4 =
(
√

2−1)
2

512
.

Proof. First, for the purposes of lower bounds we allow input nodes to accept an erasure

symbol (denoted ?) as input as well as either a 0 or 1. We also allow all computational

nodes the ability to compute �xed functions that take in either a 0, 1, or ? on each of

their input wires and can output any one of these symbols on an output wire. Lower

bounds derived for a circuit with this extra computing power also imply lower bounds

for the Thompson model where the circuit inputs have to be encoded using only 0 or 1.

We consider performing r stages od nested minimum bisections on each circuit in

the decoding scheme (we will strategically choose this value of r later in the proof).
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Associated with each decoder is its Br, the inter-subcircuit bits communicated. We can

choose r to be any function of N so long as 2r < NR (N) = K (N). From here on, we

will suppress the dependence of r (N), K (N), and R (N) on N . For ease of notation,

let Ns = 2r be the number of subcircuits induced by the r-stages of nested bisections.

Consider any speci�c su�ciently large circuit in our decoding scheme, and suppose that

Br <
K
2
. Then there exists at least Ns

2
subcircuits in which bi <

K
Ns

(where we recall

bi is the bits communicated to the ith subcircuit from De�nition 6). Suppose not, i.e.,

that there are ≥ Ns
2

subcircuits with bi ≥ K
Ns
. Then, Br ≥ K

Ns
Ns
2

= K
2
, violating the

assumption that Br <
K
2
. Let Q represent the set of at least Ns

2
subcircuits with bits

communicated to them less than K
Ns
. Using a similar averaging argument, we claim that

within Q there must be one subcircuit in which Ni ≤ 2N
Ns
. If not, if all Ns

2
subcircuits in

Q have greater than 2N
Ns

input bits injected into them, then the total number of inputs

nodes in the entire circuit is greater than 2N
Ns

Ns
2

= N , but there are only N input nodes

in the entire circuit. Thus, there is at least one subcircuit in Q in which bi <
K
Ns

and

Ni ≤ 2N
Ns
.

Suppose that all the input bits injected into this special subcircuit are erased. Then,

that subcircuit makes an error with probability at least 1
2
by Lemma 1, since it will have

to form an estimate of K
Ns

bits by only having injected into it fewer than K
Ns

bits. Thus,

if Br ≤ K
2
then:

Pe ≥ P (error|all Ni bits erased)P (all Ni bits erased)

≥ 1

2
εNi

where this �rst inequality �ows from summing one term in a law of total probability

expansion of the probability of block error, and the second from lower bounds on these

probabilities.

Combining this observation with the fact the Ni ≤ 2N
Ns

gives us the following obser-

vation:

if Br ≤
K

2
then Pe ≥

1

2
εNi ≥ 1

2
ε
2N
Ns (3.4)

This is true for any valid choice of r.

Now suppose that our decoding scheme is an f (N)-decoding scheme. We choose r to

be

r =

⌊
log2

2N ln(ε)

ln (2f (N))

⌋

so that

Ns = 2r ≈ 2N ln(ε)

ln (2f (N))
. (3.5)



Chapter 3. General Lower Bounds 27

This is a valid choice of r because Ns cannot grow faster than O (N) because we assumed

Pe (N) was monotonically decreasing (easily checked by inspection). Note as well that

Ns increases with N because of the sub-linearity assumption of − ln (f(N)). Then, if

Br ≤ K
2
, by directly substituting into (3.4),

Pe ≥
1

2
exp

(
ln(ε)2N ln (2f(N))

2N ln(ε)

)

=
1

2
exp (ln (2f(N))) = f (N) .

In other words, if Br ≤ K
2
then our decoding scheme is not an f(N)-decoding scheme.

Thus, for this choice of r, Br >
K
2
. Thus, by Lemma 4, energy E is bounded by:

E ≥ c2

√
N

2blog2
2N ln(ε)
ln(2f(N))c

K

2

≥ c2

√
N

2log2
2N ln(ε)
ln(2f(N))

+1

K

2

≥ c2

√√√√ N

2
(

2N ln(ε)
ln(2f(N))

)K
2

≥ c3

√
ln (2f(N))

ln(ε)
K

where we substituted the value for N in the �rst line, used the fact that bxc ≤ x + 1 in

the second, and simpli�ed the lines that followed, proving inequality (3.2) of the theorem.

As well, by Lemma 3, using Br >
K
2
for this choice of r, following a similar substitution
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as in the previous paragraph:

AT 2 ≥ c1
B2
r

2r
.

≥ c1
K2

4
(

2blog2
2N ln(ε)
ln(2f(N))c

)

≥ c1
K2

4
(

2log2
2N ln(ε)
ln(2f(N))

+1
)

= c1
K2

8
(

2N ln(ε)
ln(2) ln(f(N))

)

=
c1

16

K2 ln (2f(N))

ln(ε)

and the inequality in (3.3) �ows from substituting the appropriate value for c1 as de�ned

in Lemma 3.

Corollary 1. All exponentially low error decoding schemes have energy that scales as

E ≥ Ω

(
N

3
2

p (N)

)

for all functions p (N) that increase without bound. In other words, all exponential prob-

ability of error decoding schemes have energy at least that scales very close to Ω
(
N

3
2

)
.

Moreover, any such scheme that has energy that grows optimally, i.e. as AT = O
(
N

3
2

)
,

must have T (N) ≥ Ω (N0.5).

Proof. Note that an exponentially low error decoding scheme has Pe ≤ e−cN . Thus, such

a scheme is also an e−c
N
p(N) -decoding scheme, for any increasing p (N). The result then

directly �ows by substituting f (N) = e−c
N
p(N) into (3.2) of Theorem 1.

For the second part of the corollary, suppose that for some constant c, a decoding

scheme has

AT = Θ(N
3
2 ). (3.6)

We have as well from (3.3) and substituting f(N) = e−c
N
p(N)

AT 2 ≥ Ω

(
N2

p (N)

)
(3.7)

where we use the fact that K = RN (since by de�nition exponentially-low error decoding

schemes have asymptotic rate greater than 0).
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Suppose that

T < O

(
N

1
2

g (N)

)
(3.8)

for a g (N) that grows with N , i.e., that T asymptotically grows slower than O
(
N

1
2

)
.

Then, to satisfy (3.7) we need

AT 2 ≥ Ω

(
N2

p (N)

)
(3.9)

for all increasing p (N), implying

A ≥ Ω

(
ng (N)2

p (N)

)
.

To see this precisely, suppose otherwise and then it is easy to see that, combined with

(3.8) the inequality in (3.9) will be unsatis�ed. If this is true, however, then the product

AT ≥ Ω

(
ng (N)2

p (N)

N
1
2

g (N)

)
= Ω

(
N

3
2 g (N)

p (N)

)
.

Since this is true for all increasing p (N), it is true for, say, p (N) = ln g (N), implying

that the product AT grows strictly faster than Ω
(
N

3
2

)
, contradicting the assumption of

(3.6).

We generalize Corollary 1 to decoding schemes with di�erent asymptotic block error

probabilities below:

Theorem 2. All f(N)-decoding schemes with asymptotic rate greater than 0 in which

f(N) is sub-exponential with energy that scales as E = Θ
(√
− ln f(N)N

)
(that is, their

energy matches the lower bound of (3.2) of Theorem 1) must have number of clock cycles

T (N) = Ω
(√
− ln f(N)

)
. Moreover, for all decoding schemes in which T (N) is faster

than this optimal, E ≥ Ω
(
N ln f(N)
T (N)

)
.

Proof. Suppose that

AT = Θ
(√
− ln f(N)N

)
(3.10)

Note that from (3.3),

AT 2 ≥ Ω (N ln f(N)) . (3.11)

As well, suppose T (N) ≤ O

(√
− ln f(N)

g(N)

)
for some increasing g (N). Then, from the
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bound (3.11) A ≥ Ω
(
N
√
− ln f(N)g2 (N)

)
(to prove this, suppose otherwise and derive

a contradiction). This implies then that AT ≥ Ω
(√
− ln f(N)ng (N)

)
, contradicting

(3.10).

Moreover, for all T (N) growing slower than that required for optimal energy, this

implies that A ≥ Ω
(
N ln(f(N))
T 2(N)

)
, which implies E ≥ Ω

(
N ln f(N)
T (N)

)
.

Corollary 2. All polynomially-low error decoding schemes have energy that scales at

least as

E ≥ Ω
(
N
√

lnN
)
. (3.12)

If this optimal is reached, then T (N) ≥ Ω(
√

lnN).

Proof. This energy lower bound �ows from letting f(N) = 1
Nk and then substituting this

value into (3.2). The time lower bound �ows from directly applying Theorem 2.

3.5 Serial Decoding Scheme Scaling Rules

Let the number of output nodes in a particular decoder be denoted J .

De�nition 18. A serial decoding scheme is one in which J is constant.

In [42] we considered the case of allowing the number of output nodes J to increase

with increasing block length. We required an assumption that such a scheme be output

regular, which we de�ne below.

De�nition 19. [42] An output regular circuit is one in which each output node of

the circuit outputs exactly one bit of the computation at speci�ed clock cycles. This

de�nition excludes circuits where some output nodes output a bit during some clock

cycle and other output nodes do not during this clock cycle. An output regular decoding

scheme is one in which each decoder in the scheme is an output regular circuit.

De�nition 20. An increasing-output node decoding scheme is a scheme in which the

number of output nodes increases with increasing block length N .

Theorem 3. All constant-output-node serial f(N)-decoding schemes with switching ac-

tivity factor greater than q > 0 for each decoder in the scheme has energy that scales as

Ω (−N ln f(N)).

Proof. Let there be J output nodes in each circuit. We divide the circuit into epochs. By

examining the output protocol associated with the circuit, we can divide the computation
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into M epochs, each of which has between A+ 1 to A+ J + 1 circuit outputs. Thus we

can conclude that the number of epochs is bounded by:

RN

A+ J + 1
≤M ≤ RN

A+ 1

The average number of input bits injected during each of these epochs is N
M

and thus

bounded by:
N

M
≤ A+ J + 1

R

and thus, there must be at least one epoch (labelled i) in which the number of bits

injected into the circuit (Ni) is at most A+J+1
R

. At the beginning of this epoch, we

assume optimistically that the entire circuit area is used to inject A bits of information

into the next epoch. However, since each epoch is responsible for outputting at least

A + 1 outputs, if all the inputs injected into the circuit during this epoch are erased,

the circuit makes an error with probability at least 1
2
by Lemma 1. Thus, we consider

an epoch that has at most A+J+1
R

input bits injected during this epoch. The block error

probability is thus bounded by

Pe ≥
1

2
εNin

allowing us to conclude that

Pe ≥
1

2
ε
A+J+1
R (3.13)

Suppose that

A <
R log(2f(N))

log(ε)
− J − 1.

Substituting this into (3.13) gives us:

Pe >
1

2
ε
log(2f(N))

log(ε) = f(N).

Thus, such a scheme is not an f(N)-coding scheme. We must thus conclude that

A ≥ R log(2f(N))

log(ε)
− J − 1.

We note that

T ≥ RN

J
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so that there are enough clock cycles to output all the RN output bits. Thus,

E ≥ qAT ≥ q
RN

J

(
R log(2f(N))

log(ε)
− J − 1

)
= Ω(−N log(f(N)))

Theorem 4. All output regular increasing-output node f (N)-decoding schemes have en-

ergy that scales as Ω
(
N (ln f(N))

1
5

)
.

Proof. We divide the circuit into M = RN
4A

epochs and divide the subcircuits into Ns =
bA

− ln(2f(N))
subcircuits through nested bisections, for some constant b which we will choose

later, so that a typical subcircuit has

MNs =
bRN

−4 ln(2f(N))

outputs that it must produce during an epoch.

Now, consider a particular epoch. Since we divided the circuit into RN
4A

epochs, by

the output regularity assumption, during an epoch the circuit is responsible for decoding

4A bits, and a typical subcircuit during an epoch is responsible for decoding 4A/Ns bits.

We let the number of bits communicated across the bisections during this epoch be Br,i.

Suppose Br,i <
J
2
. The number of bits the circuit can carry over from the previous epoch

is at most A, and thus and averaging argument can show there must be a large fraction

of subcircuits during this epoch that has area less than A/Ns,

An averaging argument can then show that there exists a subcircuit of small area

during each epoch that has less than 2A/Ns + 2J/Ns < 4A/Ns bits communicated to it

(where we use A > J since J is the number of output nodes). That is, it has fewer bits

injected into it then it is responsible for decoding. If all it's input bits are erased, then it

makes an error with probability at least 1/2 by Lemma 1. In this case then block error

probability is bounded by:

Pe ≥
1

2
ε

N
MNs

so substituting our values for M and Ns we get:

Pe ≥
1

2
exp(ln ε

4 ln (2f(N))

b
)

so when b = 4 ln ε this implies

Pe ≥ f(N)

and thus the scheme is not an f(N)-coding scheme.
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Thus, we assume then that for each epoch Br,i ≥ J
2
.

We let Ti be the number of clock cycles for the ith epoch.

Applying Lemma 4 we get

ATi ≥ c

√
N

Ns

J

2

for some constant c.

This is true for each of the M epochs, and thus

AT ≥ c

√
J

Ns

J

2
M

which implies

AT ≥ c

√
J

Ns

J

2

RN

4A

We substitute our value for Ns to give us:

AT ≥ c

√
J ln(2f(N))

4 ln(ε)A

J

2

RN

4A

implying

A2.5T ≥ cJ1.5

√
ln(2f(N))

4 ln(ε)

RN

8

We also have

T ≥ RN

J

since the number of clock cycles has to at least be enough to output every one of its RN

output bits in its J output nodes. Thus:

T 1.5 ≥ R1.5N1.5

J1.5

and so:

A2.5T 2.5 ≥ c
R2.5N2.5

8

√
ln(2f(N))

4 ln(ε)

This allows us to conclude that:

AT ≥ Ω
(
N (− ln (f(N)))

1
5

)
.
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3.6 Encoder Lower Bounds

In terms of scaling rules, all the decoder lower bounds presented herein can be extended

to encoder lower bounds. The main structure of the decoder lower bounds (inspired

by [2, 5]) involves dividing the circuit into a certain number of subcircuits. Then, we

argue that if the bits communicated within the circuit is lower, then there must be one

subcircuit where the bits communicated to it are less than the bits it is responsible for

decoding. If all the inputs bits in that circuit are erased, the decoder must make an error

with probability at least 1/2.

In the encoder case, we also take inspiration from [2,5]. In this case, the N outputs of

the encoder circuit can be divided into a certain number of subcircuits. Then we consider

the bits communicated out of each subcircuit. This quantity must be proportional to the

number of output bits in each subcircuit. Otherwise, there will be at least one subcircuit

where the number of bits communicated out is less than the number of output nodes in

the subcircuit. Call these bits that were not fully communicated out of this subcircuit

Q. Suppose that once the output bits of the encoder are injected into the channel, all

the bits in Q are erased. Now, the decoder must use the other bits of the code to decode.

But, the subcircuit containing Q in the encoder communicated less than |Q| bits to the

other outputs of the encoder. By directly applying Lemma 1, we see that no matter what

function the decoder computes, it must make an error with probability at least 1/2. An

argument of this structure and following exactly the structure of Theorems 1, 2, 3, 4,

and 11 for the decoders gives us the following theorems, whose proofs are omitted.

Theorem 5. All fully-parallel f(N)-encoding schemes with number of clock cycles T (N)

have energy

E(N) ≥ Ω

(−N log(f(N))

T (N)

)

with optimal lower bound of E ≥ Ω
(
N
√
− log f(N)

)
when T (N) ≥

√
− log(f(N)).

All serial, f(N)-encoding schemes have energy that scales as

E(N) ≥ Ω (−N log f(N)) .

All increasing output node, output-regular f(N)-encoding schemes have energy that scales

as

E(N) ≥ Ω
(
N(− log (f(N)))1/5

)
.
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3.7 Asymptotic Probability of Error Approaching a

Constant

In this chapter, we discuss f(N)-coding schemes where f(N) approaches 0 as N increases.

However, our analysis does not quite extend to coding schemes in which error probability

approaches a constant, and not 0. In Appendix A.1 we analyze the corner case and show

that schemes with asymptotic error probability less than 1/2 have energy that scales as

(1) Ω(N
√

logN) for fully parallel decoders, (2) Ω(N logN) for serial decoders, and (3)

Ω(N log1/5(N)) for increasing-output node output-regular decoders. The proofs use a

similar approach to the proofs of this chapter.



�The fundamental prob-

lem of communication is

that of reproducing at one

point either exactly or ap-

proximately a message se-

lected at another point.�

Claude Shannon

4
LDPC Codes

In the previous chapter, we derived lower bounds on the energy complexity of general

encoding and decoding circuits. In this chapter, we consider the VLSI energy complexity

of low-density parity-check (LDPC) codes, an important family of error control codes

introduced by Gallager [43]. The complexity of LDPC decoder circuits depends on the

complexity of their underlying Tanner graph, which is often generated randomly in their

theoretical analysis. Thus, the scaling rules we derive in this chapter are of an �almost

sure� variety: that is, they are true for codes with a Tanner graphs that are in a set of

Tanner graphs with probability approaching 1. We derive tight upper bounds for the

energy complexity of directly-implemented Tanner graphs in this chapter, but defer the

discussion regarding upper bounds for serial LDPC decoders to Chapter 6.

The �rst result of this chapter is an �almost-sure� scaling rule for the energy com-

plexity of LDPC decoders. In particular, we analyze ensembles generated according to

a uniform con�guration distribution (see De�nition 36). We show, subject to some mild

conditions, that the minimum bisection width of a randomly generated bipartite con�g-

uration asymptotically almost surely has minimum bisection width proportional to the

number of vertices. This implies an Ω(N2/d2
max) lower bound on the energy of directly-

implemented LDPC decoders (see De�nition 24) and a Ω(N3/2/dmax) lower bound on the

energy of serialized decoders (see De�nition 33).

36
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We also show that a capacity-approaching sequence of �non-split-node directly-implemented�

LDPC decoders (see De�nition 27 must have energy that scales as Ω(χ2 ln3(χ)), where

χ = (1 − R/C)−1 is the reciprocal gap to capacity, where R is the code rate and C the

capacity of the channel over which the code is transmitted. This lower bound contrasts

with the universal lower bound of Ω(χ2
√

ln(χ)) of [42].

The Ω(χ2ln3(χ)) result applies to decoding circuits where messages are passed on

a Tanner graph induced by a parity check matrix of the underlying code. This lower

bound does not apply to decoding algorithms that use modi�ed Tanner graphs with

punctured variable nodes like those used for the non-systematic irregular repeat accumu-

late (IRA) codes of [44] or the compound low-density generator matrix (LDGM) codes

of [45]. However, computations show that the Ω(N2/d2
max) and Ω(N3/2/dmax) almost sure

lower bounds apply to the non-systematic IRA construction of [44] for many parameters.

We begin the chapter in Section 4.1 with a discussion of prior related work. In

Section 4.2 we de�ne directly-implemented LDPC decoders and in Section 4.3 we de�ne

serialized LDPC decoders. In Section 4.4, after de�ning some properties of node-degree

lists, we present the main theorem. We proceed to show how this theorem allows us

to �nd scaling laws for the energy of LDPC decoders in Section 4.5. In Section 4.6 we

derive a Ω
(
χ2 ln3 χ

)
scaling rule for capacity-approaching sequences of non-split-node

LDPC decoders.

4.1 Prior Work

4.1.1 Related Work on Circuit Complexity and LDPC codes

The work in [46] provides a discussion of techniques used to minimize energy consumption

in LDPC decoder circuit implementations. In contrast to this work, the results in this

chapter provide a theoretical asymptotic analysis of energy.

In [47], the authors assume that the average wire length in a VLSI instantiation of

a Tanner graph is proportional to the longest wire, and that the length of the longest

wire is proportional to the diagonal of the circuit upon which the LDPC decoder is

laid out. The implication of these assumptions is an Ω (N2) scaling rule for the area

of directly-implemented LDPC decoders, which is the same result as Corollary 4 of this

chapter. However, these assumption are taken as axioms without being fully justi�ed;

there certainly can exist bipartite Tanner graphs that can be instantiated in a circuit

without such area. We show that, in fact, the Ω (N2) scaling rule is justi�ed for almost

all directly-implemented Tanner graphs (so long as some mild conditions are satis�ed).
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More recently, Ganesan et al. [48] analyze the VLSI complexity of certain classes of

LDPC decoding algorithms, including analyzing how the number of iterations required

for such algorithms scales with block error probability. Moreover, the authors show

that a judicious choice of node degree distributions can optimize the total (transmit +

decoding) power for coded communication using LDPC codes by simulating real circuits

and their code performance. The Ganesan et al. paper complements this chapter; we do

not analyze how the number of iterations depends on target block error probability, nor

do we simulate any actual circuit performance. Neither the Ganesan et al. paper nor

this chapter consider the performance of LDPC codes whose interconnection complexity,

and not just degree distribution, is optimized.

4.1.2 Related Work on Graph Theory

We use a combinatorial approach to derive our almost sure lower bounds on the minimum

bisection width of randomly generated con�guration. This contrasts with a common

approach that considers a graph's Laplacian (See De�nition 8.6.15 in [49]). Fiedler [50],

shows that the second largest eigenvalue of a graph's Laplacian, λ2, can be used to �nd

a lower bound of λ2N
4

on the graph's minimum bisection width. In [51], the authors �nd

some bounds on the bisection width of graphs that are related to this λ2 value. The

authors in [52] provide almost sure upper bounds for the bisection width of randomly

generated regular graphs. Luczak et al. [53] also study the minimum bisection width

of graphs generated according to a distribution di�erent from ours. Furthermore, our

analysis is of random bipartite graphs, as opposed to random regular graphs. As well, our

result makes only weak assumptions on the node degree distribution, without requiring

a degree-regularity assumption, in contrast to previous work.

4.2 Directly-Implemented LDPC Decoders

The main result of this chapter involves the minimum bisection width (MBW) of a

randomly generated bipartite graph (See De�nition 2). For a graph G = (VG, EG) and a

subset of vertices V ′ ⊆ VG, we let φG(V ′) denote the minimum bisection width of V ′ in

G.

LDPC codes are linear codes �rst studied by Gallager in [43]. Given a parity-check

matrix H withM rows for a code of length N , the Tanner graph of H is a bipartite graph

where one part of the graph contains N vertices called variable nodes and the other part

is composed of M check nodes. Each check node is associated with a row of the parity
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check matrix and each variable node with a column. A check node is connected to a

variable node if and only if the row associated with the check node has a 1 in the column

corresponding to the variable node.

Since there are many possible parity-check matrices for a given linear code, there are

many possible Tanner graphs associated with that code. An LDPC decoding algorithm

for a code is a message-passing procedure where messages are passed over the edges of a

particular Tanner graph of the code.

We consider two possible paradigms to implement LDPC decoding algorithms with a

circuit: a directly-implemented and a serialized technique. To be precise, we will use the

following graph-theoretic terminology.

De�nition 21. [49] (De�nition 2.2.7) The contraction of an edge e connecting vertices

u and v is the removal of e and the replacement of u and v with a vertex whose incident

edges are the same edges incident on u and v, except of course e.

De�nition 22. The reverse of edge contraction is vertex splitting. This is a process that

replaces a vertex v with two vertices v1 and v2 with an edge between them. For every

edge incident on v there is exactly one edge either connecting to v1 or to v2. We say that

v1 and v2 are split from vertex v.

De�nition 23. [49, De�nition 6.2.13] A graph G is a minor of a graph G′ if the graph

G can be obtained by deleting vertices and edges of G′ and contracting edges of G′. We

say in this case that G′ contains G as a minor. Equivalently, G′ contains G as a minor

if there is a sequence of vertex splits of G that results in a subgraph of G′.

De�nition 24. A circuit is a directly-implemented LDPC decoder associated with an

LDPC code with a Tanner graph T if its graph contains T as a minor.

De�nition 24 allows Tanner graph computational nodes to be split and thus logic

gates associated with the computation for a single check or variable nodes can appear in

di�erent parts of the circuit.

De�nition 25. Let G′ be obtained by successively splitting the vertices of a graph G

with labelled vertices. When a labelled vertex is split, move the label arbitrarily to one

of the new vertices. The labelled vertices of G′ we term the vertices of G′ corresponding

to G, or the G-corresponding vertices.

De�nition 26. Let G′ be obtained by successively splitting the vertices of a graph G.

Consider a vertex v in the graph G. Then its v-descendants in G′ are those vertices that

were originally v, or split from v, or split from a vertex that was split from v, and so on.
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Consider a labelling of the G-corresponding vertices of G′. A particular labeled vertex v

is considered the parent of all those vertices descended from the vertex of G from which

v descended.

De�nition 27. Consider a circuit which contains Tanner graph T as a minor. Consider

each set of vertices descended from a vertex in T . If the wires connecting these vertices do

not cross any other wires in the circuit, then such a circuit is said to be a non-split-node

directly-implemented LDPC decoder.

Lemma 5. Let v be a G-corresponding vertex of G′, where G′ is obtained from G by

vertex splitting. Then the number of edges leading from the descendants of v to the rest

of the graph is not more than dmax (in fact, not more than the degree of the original

vertex).

Proof. This is easily observed by drawing a circle around a node and then successively

splitting this vertex. The number of edges exiting the circle does not increase as the

vertices are split.

De�nition 28. We let Amin(G) be the minimum circuit area of a circuit whose associated

graph is G.

Let G′ be a graph obtained by vertex splitting G. We let V ′G be the G-corresponding

vertices of G′ so that φG′(V
′
G) is the minimum bisection width of the G-corresponding

vertices of G′. This is of course dependent on how the nodes are labeled during the

splitting process. Thus to be more precise this represents the smallest MBW of the

nodes corresponding to G over all labellings.

The graph for a directly-implemented LDPC decoder is obtained by vertex splitting

and adding edges and vertices to the original Tanner graph. Adding edges and vertices

cannot decrease the MBW of V ′G, but vertex splitting might. However, vertex splitting

can only decrease the MBW of V ′G by a limited amount, as the following lemma proves.

Lemma 6. If G′ is obtained by a sequence of vertex splits of a graph G = (VG, EG) with

no isolated vertices, and G has maximum node degree dmax(G), then

φG′(V
′
G) ≥ φG(VG)

dmax(G) + 1
≥ φG(VG)

2dmax(G)
.

Proof. Suppose not, i.e., that φG′(V
′
G) < φ(G)

1+dmax(G)
. Note that G can be obtained by

contracting the vertices of G′. Consider a minimum bisection of the G-corresponding

vertices of G′, and place one side of the bisection on the left side and the other the right
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side. There will be some vertices on the left side that are descended from vertices on the

right side, and vice versa. We call such vertices bisection-crossing descendants.

If such a bisection of V ′G has ω′ edges crossing it, then there are at most ω′ G-

corresponding vertices ofG′ that have bisection-crossing descendants. To see this, observe

that the set of descendants of a vertex must be connected by paths using only their

vertices, so there must be at least one unique edge crossing the bisection for each G-

corresponding vertex of G′ that has a bisection-crossing descendant.

We shall now show how to construct a bisection of G with at most ω′(1 + dmax(G))

edges. Simply move all the bisection-crossing descendants of G to the side of their parent,

while keeping the G-corresponding vertices of G′ on the same side of the bisection. Then,

contract all the vertices that were split in obtaining G′ from G. By Lemma 5, for

each H-corresponding vertex of G, we observe that at most dmax edges will connect the

descendants of v to vertices on the opposite side of the bisection. Thus, moving the

vertices to the side of their descendant can at most add ω′dmax(G) edges crossing the

bisection, and the resulting bisection has width at most ω′ + ω′dmax

Thus, we have constructed a bisection ofG of width less than φG(VG)
1+dmax(G)

(1 + dmax(G)) =

φG(VG), a contradiction.

Note that if a graph G′′ contains G as a minor, then it contains a subgraph G′ that

is obtained by a sequence of vertex splits of G. This allows us to conclude:

Lemma 7. If a graph G′′ contains a graph G = (VG, EG) as a minor, then the minimum

bisection width of the nodes of G′ corresponding to G is at least φG(VG)/(1 + dmax(G)).

Thus, by applying Lemma 2, the circuit area of G′′ is at least

Amin(G′′) ≥ φ2
G(VG)

4(1 + dmax(G))2
≥ φ2

G(VG)

16d2
max(G)

4.3 Serialized LDPC Decoders

Not all LDPC decoders are directly-implemented. This motivates considering a more

general class of LDPC decoder. Our de�nition of a serialized circuit includes both serial-

ization of the message-passing step (for example, by introducing an interleaver that works

over multiple clock cycles to pass messages from node to node), and serializing compu-

tation steps (by having one computational node perform the computation for multiple

check or variable nodes, but at di�erent clock cycles). The key idea is that a serialized

circuit simulates a joined Tanner graph, which we will de�ne in this section.

To do so we �rst de�ne a computation's communication multi-graph.
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De�nition 29. The communication directed multigraph, or communication graph for a

circuit operated for T clock cycles is the graph obtained by replacing each computational

node with a vertex and replacing each wire between two computational nodes (u and v,

say) with 2T edges, T of them directed from u to v and T of them directed from v to u.

We place 2 edges per wire because we assume, for the purpose of lower bound, that a bit

is communicated in both directions each clock cycle.

De�nition 30. Two unconnected vertices v1 and v2 of a graph can be joined by removing

the two vertices and replacing them with a single vertex v. Each edge connecting v1 or

v2 to a vertex (denoted a) in the original graph is replaced with an edge connecting v to

a.

De�nition 31. A graph obtained by �rst splitting the nodes of a Tanner graph T and

then joining nodes that are not associated with variable node inputs is a joined Tanner

graph obtained from T .

For a joined Tanner graph T ′, we let jmax(T ′) be the maximum number of vertices

joined to form a single vertex. Often its dependence on T ′ will be suppressed.

De�nition 32. A communication graph Gcomm simulates a graph G if there is a subset

of vertices of Gcomm in a one-to-one correspondence with the vertices of G, and for each

edge in G, there is a path connecting the two corresponding vertices in Gcomm. Moreover,

these paths are mutually edge-disjoint.

We can now de�ne a serialized LDPC decoder.

De�nition 33. A serialized LDPC decoder for a Tanner graph T is a circuit that simu-

lates a joined Tanner graph obtained from T during each iteration.

Note that if a particular node of such a circuit corresponds to a vertex formed by

joining j nodes then there must be at least j clock cycles performed each iteration.

In the sections that follow, we prove an Ω(N2/d2
max) scaling rule for the energy of

directly-implemented LDPC decoder circuits in Corollary 4 and an Ω(N3/2/dmax) lower

bound for serialized LDPC decoders in Theorem 7.

4.4 Almost Sure Scaling Rule

Our main theorem is fundamentally graph-theoretic in nature and applies to graphs

generated according to a standard uniform random con�guration distribution.
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De�nition 34. Consider the set of bipartite graphs G = (VL t VR, EG) (where the

symbol t is the disjoint union symbol) in which |VL| = N , |VR| = M . Let VL be called

the left nodes and VR the right nodes. Order the left nodes and right nodes in terms of

increasing node degree. Let li be the degree of the ith left node in the graph, and let ri be

the degree of the ith right node in the graph. Then we say that L = (l1, l2, . . . , lN) ∈ (N)N

is the left node degree list and R = (r1, r2, . . . , rM) ∈ (N)M the right node degree list.

Note that the node degree lists are non-standard; often it is the node degree distri-

bution that is considered. However, in Appendix A.2 we show how to present our results

in terms of the more standard node degree distributions.

Given a list Z = {z1, z2, . . . , zN} with z1 ≤ z2 ≤ . . . ≤ zN , we de�ne

Stop (Z) =
N∑

i=bN2 c
zi. (4.1)

Note that implicitly this function takes as input the size of the input vector. This is the

sum of the half of the elements of the list with the greatest value.

Denote the set of bipartite graphs with left and right node degree lists L and R as

G(L,R). Note that the number of edges in each particular graph in G(L,R) is |EG| =∑N
i=1 li =

∑M
i=1 ri.

For convenience of counting, we will consider not the set of graphs with a particular

degree list, but rather the set of con�gurations with this degree list. We can associate

each node in a graph with a number of sockets equal to its degree. This node and socket

con�guration model is a standard way to consider the set of bipartite graphs that form

the Tanner graphs of LDPC ensembles, and in particular is discussed thoroughly in [54].

De�nition 35. A set of left nodes and right nodes with an ordered labeling of the sockets

of each node, together with a permutation mapping the left node sockets to the right

node sockets is called a con�guration.

Let the set of con�gurations with node degree lists L and R be denoted B (L,R).

Clearly, |B (L,R) | = |EG|!. Since a con�guration is merely a graph with a labeling

of sockets for each node, graph properties, including minimum bisection width, can be

extended to describe con�gurations in the natural way.

De�nition 36. The uniform con�guration distribution for �xed node degree lists is the

probability distribution in which the probability of each con�guration with these node

degree lists has uniform probability.
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Let

Ba = {G ∈ B (L,R) : ∃ a bisection KG ⊆ EG such that |KG| = a}

be the set of con�gurations that have a bisection of size a. Note that Ba does not represent

the set of con�gurations in B (L,R) with minimum bisection width a, but rather the set

of con�gurations with some bisection of size a.

Let B∗a be the set of con�gurations in B (L,R) that have a bisection of size a or less,

i.e.,

B∗a =
a⋃

i=0

Bi.

Given a left node node degree list L of length N and right node degree list R of length

M , where L and R are ordered by increasing degree and M ≤ N , we de�ne

δ (L,R) =
max (Stop (L) , Stop (R))

N
(4.2)

We also let

σ (L,R) =
|EG|
N
− δ (L,R) . (4.3)

For notational convenience we will abbreviate these two quantities as δ and σ and

their dependence on the node degree distribution under discussion is to be implicit. Note

that |EG| = δN + σN .

Consider a con�guration with left degree list L and right degree list R. For a given

subset of vertices V ′ we can divide this set into two disjoint sets, V ′L = V ′ ∩ VL and

V ′R = V ′ ∩ VR. Let Sleft (V ′) =
∑

v∈V ′L
deg (v) and Sright (V ′) =

∑
v∈V ′R

deg (v) denote the

number of left and right sockets in V ′, respectively.

Lemma 8. For any bipartite con�guration G = (VL t VR, EG) with left degree list L and

right degree list R, where |VL| = N and |VR| = M , for any collection V ′ of N+M
2

vertices,

min (Sleft(NV ), Sright(NV )) ≤ Nδ.

Proof. Suppose not. This implies that both Sleft(V
′) > Nδ and Sright(V

′) > Nδ. Divide

the vertices in V ′ into the left nodes V ′L and right nodes V ′R. It must be that |V ′L|+ |V ′R| =
N+M

2
. Thus, it must be that |V ′L| ≤ N

2
or |V ′R| ≤ M

2
(otherwise their sum would exceed

M+N
2

). Let us consider the case in which |V ′L| ≤ N
2
(the other case leads to an analogous

argument). If |V ′L| ≤ N
2
and Sleft(V

′) > Nδ then, in particular Sleft (V ′) > Stop(L). But

Stop(L) by (4.1) is the sum of the highest degree left nodes. A collection of at most half

these nodes cannot exceed this quantity, leading to a contradiction.
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We will need the following lemma for our proof:

Lemma 9. The quantity m!n!, subject to the conditions 0 ≤ n ≤ m ≤ Z ≤ m + n ≤ Y

and that Y , Z, m and n are all integers cannot exceed Z!(Y − Z)!.

Proof. See Appendix A.3.

We can now give the main technical lemma of this chapter, which states that the

set of con�gurations with a small bisection is small, which will imply that with high

probability a Tanner graph has MBW proportional to N .

Lemma 10. If a con�guration G = (VL t VR, EG) with |VL| = N and with degree lists L

and R is generated according to the uniform con�guration distribution, then the probability

that this con�guration is in the set B∗a when

0 ≤ a ≤ σ(L,R)N (4.4)

is upper bounded by

P (B∗a) ≤
(a+ 1)N2

(
N
N
2

)2(|EG|
a

)4
a! (δ(L,R)N)! (σ(L,R)N − a)!

(δ(L,R)N + σ(L,R)N)!
. (4.5)

Proof. This follows from a counting upper-bounding argument, where the key idea is to

over-count a set of objects that is larger than B∗a, namely the set of �quadrant con�gura-

tions� with a bisection of size a or less.

Let the set of con�gurations in B (L,R) having a bisection of size a be denoted by

Ba. Then we can say that, according to the uniform con�guration distribution, the

probability of the event of generating a con�guration with a bisection of size a is given

by:

P (Ba) =
|Ba|
|EG|!

,

recalling that |EG| is the number of edges in the con�gurations of B (L,R).

We will now bound the number of con�gurations in B (Λ, P ) with a bisection of size

a, and we will assume that a < σN . To do so, we will de�ne a �quadrant con�guration�,

show that the number of quadrant con�gurations with a bisection of size a is greater

than or equal to Ba, and then upper bound the number of quadrant con�gurations with

a bisection of size a or less.

A quadrant con�guration of a bipartite con�guration G = (VL t VR, EG) is an ordered-

tuple Q = (G, TL, TR, BL, BR) where the vertices are divided into 4 disjoint sets, the top
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Figure 4.1: An example of a particular quadrant con�guration associated with a left
node degree list L in which all the nodes have 2 sockets and a right node degree list
R = (2, 3, 4, 4, 5). The number of left nodes N = 9 and the number of right nodes
M = 5. The con�guration drawn is a quadrant con�guration in Q4,1

3 for the particular
degree lists. Recall that the superscript denotes that there are i = 4 top left nodes and
j = 1 edges leading from top left nodes to bottom right nodes. The subscript indicates
that there are a = 3 edges between top and bottom vertices. The edges forming the
bisection are solid lines. The horizontal dotted line indicates where the bisection occurs.
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left nodes (TL), the top right nodes (TR), the bottom left nodes (BL), and the bottom

right nodes (BR), in which TL, BL ⊆ VL, TR, BR ⊆ VR and ||TR ∪ TL| − |BR ∪BL|| ≤ 1.

Vertices in TL and TR are considered to be top nodes or and similarly for the bottom

nodes.

Note that every bipartite graph has at least one quadrant con�guration induced by

arbitrarily dividing the vertices in half, and denoting one half of these vertices top nodes

and the other half bottom nodes. Thus, the set of quadrant con�gurations with a par-

ticular degree distribution is at least as big as the set of con�gurations with a particular

degree distribution. Because a quadrant con�guration Q = (G, TL, TR, BL, BR) contains

a graph G, graph properties can be extended to describe a quadrant con�guration.

Denote the set of quadrant con�gurations with set node degree lists L and R in which

a is the number of edges connecting top nodes to bottom nodes as Qa. Note that the

dependence of Qa on a particular node degree distribution is implicit. Observe that every

con�guration with a bisection of size a has a corresponding quadrant con�guration in Qa

created in the natural way by denoting one bisected set of vertices as the top nodes, and

the other the bottom nodes. Thus |Ba| ≤ |Qa|.

For ease of discussion, we will assume that the total number of nodes M + N in the

set of con�gurations under discussion is even, so that M+N
2

is an integer.

Denote the set of quadrant con�gurations in Qa in which there are i top left nodes

and j edges connecting top left nodes to the bottom right by Qi,j
a . This of course implies

that there are M+N
2
− i top right nodes and a− j edges leading from the bottom left to

the top right nodes. We can see in Figure 4.1 an example of such an element that we are

counting for the case of N = 8 and a = 4, i = 4 and j = 2. Note then that

Qa =
N⋃

i=0

a⋃

j=0

Qi,j
a .

We bound the size of Qi,j
a by counting all quadrant con�gurations with a bisection of

size a that are the edges connecting top nodes to bottom nodes. In the following, for
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compactness, we let δ = δ(L,R) and σ = σ(L,R). We have

∣∣Qi,j
a

∣∣ ≤
(
N

i

)

︸ ︷︷ ︸
a

(
M

M+N
2
− i

)

︸ ︷︷ ︸
b

·
(|EG|

j

)(|EG|
j

)( |EG|
a− j

)( |EG|
a− j

)

︸ ︷︷ ︸
c

·(j)! (a− j)!︸ ︷︷ ︸
d

(δN)! (σN − a)!︸ ︷︷ ︸
e

, (4.6)

where

a. Represents a choice of i top left nodes.

b. Represents a choice of M+N
2
− i top right nodes.

c. The quantity
(|EG|

j

)
is an upper bound on the number of choices of j sockets that

will have edges that cross the bisection line chosen from the top variable nodes, and(|EG|
j

)
is an upper bound on the number of choices for the bottom right sockets to which

these edges will be connected. For a con�guration in Bi,j
a there must also be a− j edges

leading from the bottom left to the top right. The quantity
(|EG|
a−j

)
is an upper bound

on the number of choices of sockets in the bottom left that can have edges crossing the

middle bisection, and similarly
(|EG|
a−j

)
is an upper bound on the number of choices for the

sockets connected in the top right.

d. Counts the number of permutations of edges that join the top half to the bottom

half (�rst counting the j connections from the top left nodes to the bottom right nodes,

then the a− j connections from the bottom left nodes to the top right nodes).

e. This step involves permuting the connections of the remaining sockets in the

top half and the bottom half. However, at this point it is not clear how many sockets

are in the top half or the bottom half. However, we can upper bound the number of

permutations possible. The number of sockets available in the top left nodes must equal

the number of sockets available in the top right nodes (because in order to construct a

valid con�guration this must be true). By construction, the total number of nodes in the

top left and top right is M+N
2

, and thus the number of sockets available cannot exceed

δN , by Lemma 8. Suppose the number of sockets available for all the top left nodes is

Ms and the sockets available in the bottom left nodes is Ns. Then there are at most

Ms!Ns! ways to permute these. We also know that Ms + Ns = |EG| − a (since the total

number of sockets available on one side of the constructed quadrant con�guration is |EG|
and a have been used to cross between top nodes and bottom nodes), and that Ms ≤ δN
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and Ns ≤ δN . Subject to these restrictions, a direct application of Lemma 9 implies

Ms!Ns! ≤ (δN)! (|EG| − δN − a)! = (δN)! (σN − a)!

The proof mostly follows from simpli�cation of these bounds and the details of the

rest of the proof are given in Appendix A.4.

Consider a sequence of random con�gurations G1, G2, . . . where each Gi in the se-

quence is a con�guration generated according to the uniform con�guration distribution,

in which the ith con�guration is drawn according to node degree lists Li and Ri. Note

that the randomness for each element of such a sequence does not come from the degree

lists: we are assuming that these lists are �xed. It is the interconnections between nodes

that is random. We speci�cally concern ourselves with a sequence in which the number

of left nodes N increases without bound. For such a sequence, denote the number of

left nodes of the ith con�guration as Ni. We will abbreviate the quantities δ (Li, Ri) and

σ (Li, Ri) with the symbols δi and σi respectively (see lines (4.2) and (4.3). We let B∗a,i
be the set of con�gurations with node degree lists (Li, Ri) with a bisection of size a or

less.

Theorem 6. Consider a sequence of right and left node degree lists (Li, Ri), and a

sequence bipartite con�gurations Gi where Gi is generated according to the random con-

�guration distribution with node degree list (Li, Ri). If

lim sup
i→∞

[
2 ln(2) + δi

(
ln

(
δi

δi + σi

))
+

σi

(
ln

(
σi

δi + σi

))]
< 0 (4.7)

then there exists some β > 0 in which

lim
i→∞

P
(
{Gi ∈ B∗βNi,i}

)
→ 0

where {Gi ∈ B∗βNi,i} is the event that the ith con�guration has a bisection of size βNi or

less. In particular, this is true for any 0 < β < σ that satis�es:

lim
i→∞

2 ln(2) + 4H
(

β

δi + σi

)
+ β

(
ln

(
β

σi − β

))

+δi

(
ln

(
δi

δi + σi

))
+ σi

(
ln

(
σi − β
δi + σi

))
< 0. (4.8)

Remark 3. Stated less precisely, this theorem says that in the limit, a random bipartite

con�guration will, with high probability, have no small bisections.
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Proof. This proof involves algebraic manipulation of the expression in Lemma 10 and

showing that if the conditions of the theorem are satis�ed, the limit evaluates to 0. The

details of this computation are given in Appendix A.5.

In the corollaries that follow, we consider a sequence of con�gurations generated

according to the uniform con�guration distribution. Let φi be the minimum bisection

width of the ith con�guration. Note that this symbol is a random variable. Theorem 6

now has an obvious corollary.

Corollary 3. If there is a sequence of con�gurations as described in Theorem 6, in which

the condition in (4.7) is satis�ed then limi→∞ P (φi ≥ βNi) = 1 for some β > 0.

Proof. Note that B∗a is the event that a random con�guration has a bisection of size a

or less. The complement of this event is the event that a random con�guration has no

bisection of size a or less, and thus equal to the event that a random con�guration has

minimum bisection width greater than or equal to a. The corollary �ows directly from

this observation.

Remark 4. This Corollary and the results that follow can be slightly strengthened, be-

cause we know that the probability that a bisection exists with size less than βN ap-

proaches 0 exponentially quickly. Let Iφi/Ni<β be the event that the graph with Ni left

nodes has a bisection less than βN . We easily observe that
∑

n P (φi/Ni > β) <∞ and

so by the Borel-Cantelli Lemma [55,56], the probability that a bisection of size less than

βNi occurs in�nitely often is 0. Thus, P (lim infi→∞ φi/Ni ≥ β) = 1 for some β > 0.

4.5 Almost Sure Bounds on Su�ciently High Rate LDPC

Decoder Circuits

To apply our results to LDPC decoder circuits, we �rst de�ne a few terms in order to

make our claims precise.

De�nition 37. [57] For a given parity check matrix H for a code of block length N and

rate R, we de�ne ∆(H) as the number of 1s in the matrix divided by NR, and call this

quantity the density of the matrix H.

De�nition 38. For a code of rate R associated with a channel with capacity C, let

χ = (1−R/C)−1 be the reciprocal gap to capacity.
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De�nition 39. Consider a sequence of codes and decoders for a particular channel. We

let the block error probability of the ith code in the sequence be Pe,i. Then such a

sequence is vanishing-error-probability if limi→∞ Pe,i = 0.

The following result, which is a simple implication of Sason and Urbanke [57] which

we present using our notation shows that as capacity is approached the density of a code's

parity check matrix must approach in�nity. We will use this result in Corollary 4 and

Theorem 8.

Lemma 11. [57, Theorem 2.1] Consider a sequence of parity check matrices {Hi} for
a channel with capacity C. Let {χi} denote the reciprocal gap to capacity of the ith code.

Let the density of the ith parity matrix be ∆(Hi). Suppose that there is a decoder for each

of these codes, and thus each code for matrix Hi has an associated block error probability

(Pe,i). Suppose as well that in the limit of increasing i Pe,i approaches 0. Then, there is

some constant K1 such that, for su�ciently large i,

∆(Hi) > K1 ln (χi) .

4.5.1 Energy Complexity of Directly-Implemented LDPC De-

coders

Corollary 4. Consider a vanishing-error-probability LDPC coding scheme where each

code in the scheme is generated according to a uniform con�guration distribution. Suppose

that each decoder in the scheme is a directly-implemented LDPC decoder. If such a scheme

has asymptotic rate su�ciently close to capacity, then for this scheme

lim
i→∞

P
(
Ai ≥ cN2

i /d
2
max

)
= 1

for some constant c > 0, where dmax is the maximum node degree (possibly a function of

N). Energy is bounded similarly.

Proof. Note that Lemma 11 implies that as rate approaches capacity, the parity-check

matrix density must approach in�nity. But this implies that the associated Tanner graph

has number of edges per node approach in�nity. Then obviously the quantity δ must

approach in�nity. We can use this observation that for codes of su�cient closeness to

capacity the expression

2 ln(2)− (δ + σ)H
(

δ

δ + σ

)
< 0 (4.9)

must be satis�ed.
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To see this, note that δ approaches∞ for a capacity-approaching code. What happens

to σ is either (a) limN→∞
δ

δ+σ
< 1 or (b) limN→∞

δ
δ+σ

= 1, or (c) this limit does not exist.

Note that this value cannot exceed 1 because necessarily σ ≤ δ.

In the case of (c), it must be that the value of σ alternates and no limit can be de�ned.

In this case, however, we should consider the speci�c subsequence of decoders in which

either (a) or (b) applies. It will be clear that since for each subsequence the appropriate

scaling rule holds, thus it must be true for the entire sequence.

In case (a): in the limit, ln
(

δ
δ+σ

)
< 0 and so δ

(
ln
(

δ
δ+σ

))
→ −∞, as δ approaches

∞. Since σ
(
ln
(

σ
δ+σ

))
< 0 in any case (a consequence of σ ≤ δ), thus in the limit the

inequality (4.9) will be satis�ed.

For case (b), in which ln
(

σ
δ+σ

)
→ −∞, note that σ is positive, so σ

(
ln
(

σ
δ+σ

))
→ −∞

, and thus in the limit (4.9) will also be satis�ed.

If the scheme has asymptotic rate su�ciently close to capacity, then for su�ciently

large block lengths in this scheme the node degree list satis�es the su�cient condition of

Theorem 6, and the code's Tanner graph has MBW at least βNi for some β > 0 with

probability approaching 1. In this case, the decoder, which contains a subgraph obtained

by splitting the vertices of the Tanner graph, but have MBW at least βNi/(2dmax) by

Lemma 6. In this case, Lemma 7 implies Ai ≥ (βNi)
2 /(16d2

max) and thus:

lim
i→∞

P

(
Ai ≥

(βNi)
2

16d2
max

)
= 1

as expressed in the theorem statement. A similar bound is obviously then true for the

energy per iteration of such circuits.

4.5.2 Serialized Decoders

In this section we generalize our results to serialized circuits. To develop this theory,

however, we need to de�ne some new terminology. In particular, we will generalize the

notion of minimum bisection width by considering collections of bipartitions of the nodes

of a graph.

De�nition 40. A bipartition of a set X is the partition of the set into two disjoint sets

X1 and X \X1.

We will represent a bipartition by a single set contained within it.
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De�nition 41. Given a set of vertices VF of a graph G, a bisection of VG is a bipartition

of VG into V1 and V2 such that ||V1| − |V2|| ≤ 1.

We see that a bisection is an example of a bipartition. What we will be interested

in is collections of bipartitions that are �zig-zaggable�. It is the zig-zaggable property of

the bisections of a graph that allows Thompson to prove in [1] that A ≥ φ2
G(VG)/4 for a

circuit with graph G = (VG, EG) with MBW φG(VG).

De�nition 42. Let X be a nonempty �nite set. If ∅ ⊆ A ⊂ B ⊆ X, a simple chain from

A to B is a sequence S1 ⊂ S2 ⊂ . . . ⊂ SL with S1 = A and SL = B and |Si+1 \ Si| = 1

for i = 1, 2, . . . , L− 1.

Consider a subset (denoted C) of the bipartitions of a set X.

De�nition 43. A subset of the bipartitions of a set X is zig-zaggable if the following

conditions hold:

1. All simple chains from ∅ to X contain an element of C.

2. If A and B are subsets of X such that A ⊆ B, and there is a set D in C such that

A ⊆ D ⊆ B, then all simple chains from A to B contain an element of C.

Lemma 12. The collection of bisections of a set are zig-zaggable.

Proof. A set C induces a bisection of X if an only if |C| = b|X|/2c or |C| = d|X|/2e. A
simple chain from ∅ to X results in a sequence of bipartitions where the size of one of

the sets of the bipartitions increases by 1 each time. One of these bipartitions must thus

be a bisection. For property 2, suppose that a simple chain from A to B contains a set

C that induces a bisection. Then, either A or B are bisections, or they are not and then

|A| < b|X|/2c and |B| > d|X|/2e, and then any simple chain from A to B will include a

bisection.

We will show however that a more general collection of bipartitions is zig-zaggable.

De�nition 44. The width of a bipartition of a set of vertices of a graph is the number

of edges connecting the vertices between the two sets of the bipartition.

De�nition 45. The C-bipartition width of a graph with respect to a collection of bipar-

titions C is the minimum width of all bipartitions in C.

Using the de�nition of zig-zaggable (De�nition 43), we can now easily adapt Thomp-

son's proof [1] and derive the following lemma:
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Lemma 13. Let C be a zig-zaggable collection of bipartitions of a graph G, and let ωC be

the C-bipartition width of the graph. Then,

Amin(G) ≥ ω2
C

4
.

Proof. A detailed proof is given in Appendix A.6 that essentially follows the proof of

Thompson [1, Theorem 2]. The author constructs on the order of ωC bisections of the

nodes by drawing zig-zags across the circuit, each of which have on the order of ωC wires

crossing them. These bisections must exist precisely because of the zig-zaggable property

of the bisections of the graph. Thus, this proof extends to any zig-zaggable collection of

bipartitions.

Consider a joined Tanner graph as in De�nition 31. Such a graph is obtained by

splitting a Tanner graph T to obtain T ′ and then joining vertices. We can assign to each

vertex of the joined Tanner graph a number equal to the number of T -corresponding

vertices of T ′ that were joined in forming it. Each of these values is the weight of the

vertex. The weight of T -corresponding vertices that were not joined are assigned the

value 1, and the others are given weight 0. For a vertex vi we let w(vi) be its weight.

De�nition 46. A κ-weighted bisection of a collection of positive weighted nodes VG is a

bipartition {V1, V2} of the vertices such that
∣∣∑

v∈V1 w(vi)−
∑

v∈V2 w(vi)
∣∣ ≤ κ. That is,

it is a bipartition where the sum of the weights of their nodes is within κ of being equal.

Lemma 14. The collection of κ-weighted bisections of a graph with non-negative weighted

vertices with maximum weight less than or equal to κ is zig-zaggable.

Proof. This proof follows essentially the same form as Lemma 12. The key idea is that

the maximum weight of a vertex is κ, so any simple path between subsets of the vertices

has the weight of the subsets increase by at most κ each step.

Lemma 15. Let T be a Tanner graph with maximum node degree dmax, let T
′ be a split

Tanner graph obtained from T , and let T ′′ be a joined Tanner graph obtained by joining

vertices of T ′. Let the maximum number of vertices joined in a single vertex be jmax.

Let the minimum bisection width of T be ω. Then, the minimum jmax-weighted bisection

width of T ′′ is at least ω/(2dmax)− jmaxdmax.

Proof. Suppose not, i.e., that there is a jmax-weighted bisection of width ω′ such that

ω′ < ω/(2dmax)− jmaxdmax. Note that, by Lemma 6, T ′ has MBW of its T -corresponding

vertices at least ω/(2dmax). We shall show how to construct a bisection of T ′ with width

less than this. Firstly, consider the jmax-weighted bisection of T ′. Then, unjoin all the
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vertices, resulting in a bipartition of T ′. Form a bisection of the T -corresponding vertices

of T ′ by moving T -corresponding nodes one by one from the side with the most vertices

to the side with the least vertices until a bisection is formed. Each time a vertex is moved

it increases the edges crossing the bisection by at most dmax. A bisection is formed by

moving no more than jmax nodes (since the original bipartition had di�erence in number

of nodes at most jmax). This constructs a bisection of T ′ with width less than ω/(2dmax),

a contradiction.

Theorem 7. If a sequence of Tanner graphs is generated uniformly according to the

conditions of Theorem 6 and dmax(N) <
√
N for su�ciently large N , then a sequence of

serialized LDPC decoders based on these Tanner graphs have

lim
i→∞

P

(
AiTi ≥

cN1.5
i

dmax(Ni)

)
= 1

for some c > 0.

Remark 5. In Chapter 6 we show how this bound can be reached up to a polylogarithmic

factor on a mesh network for constant dmax, and is thus close to tight.

Proof. From De�nition 33, a serialized LDPC decoder must have a single node for each

node of its joined Tanner graph. Consider a particular decoder of su�ciently large block

length N . We consider two cases, that (a) jmax ≥
√
N and (b) jmax <

√
N .

Case (a): The area of the circuit is at least N because there must be at least one

node for each variable node. Consider the node that joined jmax nodes. Then T ≥
√
N

because at least
√
N outputs must appear at that node. Thus AT ≥ N1.5.

Case (b): We consider the event that the Tanner graph of this code has MBW ω = cN .

By Lemma 15, the jmax-weighted bisection width of the joined Tanner graph is at

least c′N −
√
Ndmax, where c

′ = c/(2dmax)

Let the jmax-weighted bisection width of the circuit (and not the associated Tanner

graph) be W . Now consider a minimum jmax-weighted bisection of that circuit. Thus,

there must be at least

T ≥ c′N −
√
Ndmax

2W

clock cycles per iteration to communicate c′N −
√
Ndmax bits across the bisection (where

the factor of 2 comes from assuming that a bit is transferred in each direction each clock

cycle by each wires). By Lemma 13 we have

A ≥ W 2

4
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implying

AT 2 ≥

(
c′N −

√
Ndmax

)2

16
.

As well, because there are at least N check nodes,

A ≥ N

and so we get:

A2T 2 ≥
N
(
c′N −

√
Ndmax

)2

16

which implies

AT ≥
N1/2

(
c′N −

√
Ndmax

)

4
≥ Ω

(
N3/2

dmax

)

where we have substituted c′ = c/2dmax to obtain the last inequality. The theorem is then

implied by Corollary 3 which shows that the MBW of the Tanner graph is proportional

to N with probability approaching 1.

4.5.3 Applicability and Limitations of Result

According to the de�nition of the uniform con�guration distribution, it is possible that

two or more edges can be drawn between the same two nodes. This type of con�ict is

usually dealt with by deleting even multi-edges and replacing odd multi-edges with a

single edge [54, De�nition 3.15]. This leads to a potential problem with the applicability

of our theorem: what happens if the edges that we delete form a minimum bisection of the

induced graph? In that case it is possible that the graph we instantiate on the circuit has

a lower minimum bisection width than that which we calculated, and thus could possibly

have less area. However, in the limit as N approaches in�nity for a standard LDPC

ensemble, the graph is locally tree-like [54, Theorem 3.49] with probability approaching

1. This implies that the probability that the number of multi-edges in a randomly

generated con�guration is some fraction of N must approach 0 (or else the probability

that a randomly selected node has a multi-edge would not approach 0). Hence, even if

we did delete these multi-edges from the randomly generated con�guration, this could at

most decrease the minimum bisection width by the number of deletions, but this number

of deletions, with probability 1, cannot grow linearly with N . Hence, the minimum

bisection width must still, with probability 1, grow linearly with N , and our scaling rules

are still applicable.
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In this chapter we have considered Tanner graphs generated according to the uniform

random con�guration distribution, a commonly used method to analyze the performance

of LDPC codes [54]. This does not mean that there do not exist good LDPC coding

schemes with slower scaling laws. The scaling rule might be avoided if a di�erent ran-

dom generation rule for the Tanner graph is used. For example, perhaps the variable

nodes and check nodes could be placed uniformly scattered through a grid and then the

randomly placed edges, instead of being chosen uniformly over all possible edges, are

chosen uniformly over a choice of edges connecting variable and check nodes that are

�close� to each other. Whether or not such a sequence of LDPC codes would have good

performance is unclear. However, in the following section we can obtain scaling rules

that are true for all directly-implemented capacity-approaching LDPC decoders with

vanishing error probability, not just almost all.

4.6 Bounds for All Directly-Implemented Non-Split-

Node LDPC Decoder Circuits

De�nition 47. A sequence of codes and decoders in which the ith code has rate Ri for a

channel with capacity C is vanishing-error-probability capacity-approaching if limi→∞Ri =

C and block error probability approaches 0 as i is increased.

De�nition 48. The crossing number of a graph is the minimum number of edges that

cross in any planar embedding of that graph.

Note that since a crossing takes at least one grid square in any circuit, the crossing

number obviously is a lower bound on circuit area.

Ganesan et al. [48] used the following lemma from Pach et al. [58] to understand the

complexity of LDPC decoding. We will also use this result to understand a scaling rule

for all, as opposed to almost all, directly implemented LDPC decoders.

Lemma 16. [58] Let G be a graph with |EG| > 4|V | edges and girth greater than 2r for

some integer r > 0. Then the crossing number of such a graph is bounded by

cr(G) ≥ cr
|EG|r+2

|VG|r+1
(4.10)

for some constant cr.

This leads to the following theorem relating energy per iteration to gap to capacity

for non-split-node directly-implemented LDPC decoders:



Chapter 4. LDPC Codes 58

Theorem 8. The energy, per iteration, of any vanishing-error-probability capacity-approaching

sequence of non-split-node directly-implemented LDPC decoders must have asymptotic

energy per iteration lower bounded by

E ≥ χ2 ln3(χ).

Proof. Lemma 11 implies that the number of edges in a Tanner graph, per bit, scales as

Ω(lnχ). From [59,60] note that the minimum block length of any code must scale as

N ≥ c3χ
2 (4.11)

for a constant c3 > 0. We then use Lemma 16, and the observation that a Tanner graph

has girth at least 2, to conclude that a non-split-node directly-implemented decoder must

have at least Ω(N ln3(χ)) wire crossings.

Note that if LDPC codes are constrained to have girth greater than 2r then this

argument can be extended to show that a sequence of such decoders must have area

bounded by Ω(χ2 lnr+2 χ).

It may be that directly-implemented LDPC decoders can improve upon this lower

bound by splitting up check and variable node subcircuits (and not localizing these com-

putations in one area of the circuit). In actual VLSI design this may happen automatically

by circuit design software, so this limits the applicability of this theorem.

The lower bound of Theorem 8 is applicable to all non-split-node directly-implemented

LDPC decoding schemes. However, using a punctured code construction, P�ster et

al. [44] construct a capacity-approaching ensemble of codes that avoids the complexity

blowup of Lemma 11. Theorem 8 does not apply to such constructions. We considered the

check-regular ensemble of [44, Theorem 2] and computed whether this ensemble satis�es

the conditions of Theorem 6. By varying the parameters ε from 0.05 to 0.3 in increments

of 0.05 and the parameter p from 0.05 to 0.95 in increments of 0.05, computations show

that the only values of these parameters that did not satisfy the conditions were p = 0.05

when ε = 0.15, 0.2, 0.25, 0.3. Thus, for most parameters checked we conclude that de-

coders based on these ensembles satisfy the almost-sure scaling rules of Corollaries 4 and

Theorem 7.

Comparison to Universal Lower Bounds

We note that this lower bound on directly-implemented Tanner graphs contrasts with the

lower bounds in [42], which show an Ω(χ2 ln1/2(χ)) lower bound for the energy complexity
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Figure 4.2: An example of an implementation of an LDPC code Tanner graph. There
are |EG| edges that correspond to interconnections that must be made. Going left to
right, starting at the top left circuit, the six parts of this diagram show the progressive
addition of each additional �edge� in the circuit implementation of the Tanner Graph.
Each wire has a unique column that it is allowed to run along, and each output has a
unique row, ensuring that no two wires ever need to run along the same section. The
only time when the wires need to intersect is during a wire crossing, which is explicitly
allowed by our circuit axioms. This method can be used to draw any arbitrary bipartite
graph with |EG| edges.

of fully-parallel decoding algorithms as a function of gap to capacity. This result means

that non-split-node directly-implemented LDPC decoders are necessarily asymptotically

worse than this lower bound. Of course, it is not known whether the lower bounds of [42]

are tight. It may also be that splitting check nodes in the circuit could overcome this

lower bound and get closer to the universal lower bound, but our result does not address

this case.

4.7 Tight Upper Bound for Directly-Implemented LDPC

Decoders

We now provide a simple circuit placement algorithm that results in a circuit whose area

scales no faster than O
(
|EG|2

)
where |EG| is the number of edges in the circuit. For
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LDPC codes with bounded maximum node degree, this implies that the area as well

as energy per iteration scales as O (N2), thus reaching the almost-sure lower bounds of

Corollary 4.

The placement algorithm proposed involves actually instantiating the Tanner Graph

of the LDPC code with wires, where each edge of the Tanner graph corresponds to

a wire connected to N subcircuits that perform variable node computations and the

N − K subcircuits that perform check node computations. Our concern is not about

the implementation of the variable and check nodes in this circuit. In the diagram, we

treat these as �black boxes� whose area is no greater than proportional to the square

of the degree of the node. Of course, the actual area of these nodes is implementation

speci�c, but the important point is that the area of each node should only depend on

the particular node degree and not on the block length of the entire code. Our concern

is actually regarding how the area of the interconnecting wires scales. The wires leading

out of each of these check and variable node subcircuits correspond to edges that leave

the corresponding check or variable node of the Tanner graph. The challenge is then to

connect the variable nodes with the check nodes with wires as they are connected in the

Tanner graph in a way consistent with our circuit axioms. We lay out all the variable

nodes on the left side of the circuit, and all the subcircuits corresponding to a check node

on the right side of the circuit, and place the outputs of each of these subcircuits in a

unique row of the circuit grid (see Fig. 4.2). Note that the number of outputs for each

variable and check node subcircuit will be equal to the degree of that corresponding node

in the Tanner graph of the code. The height of this alignment of nodes will be 2 |EG|,
twice the number of edges in the corresponding Tanner graph (as there must be a unique

row for each of the |EG| edges of the variable nodes and also for the |EG| edges leading
from the check nodes.

The distance between these columns of check and variable nodes is |EG|. Each output

of the variable nodes is assigned a unique grid column that will not be occupied by any

other wire (except in the case of a crossing, which according to our model is allowed).

A horizontal wire is drawn until this column is reached, and then the wire is drawn up

or down along this column until it reaches the row corresponding to the variable node

to which it is to be attached. A diagram of the procedure to draw such a circuit for a

case of 6 edges is shown in Fig. 4.2. Since each output of the variable and check node

�black boxes� takes up a unique row, and each wire has a unique column, no two wires in

drawing this circuit can ever run along the same section of the grid; they can only cross,

which is permitted in our model.

The total area of this circuit is thus bounded by: Ac ≤ Anodes + Aw, where Anodes is
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the area of the nodes and Aw is the area of the wires. Now it is su�cient that there is a

grid row for each output of the variable nodes and the check nodes, and that there is a

column for each edge. Hence

Aw ≤ 2 |EG| · |EG| = 2 |EG|2 .

We assume that the area of the subcircuits that perform the computational node opera-

tions can complete their operation in a constant (in terms ofN) area and constant number

of clock cycles. This means that the area occupied by the nodes scales as O(N). If we

assume our LDPC decoder has maximum node degree dmax then we have |EG| ≤ dmaxN

and so we conclude that the area of this circuit scales as

A ≤ Ω(N2)

and the energy, per iteration, scales similarly.



�For any given B-DMCW and �xed R < I(W ), block error proba-

bility for polar coding under successive cancellation decoding sat-

is�es Pe(N,R) = O(N−1/4)....

For the class of GN -coset codes, the complexity of encoding

and the complexity of successive cancellation decoding are both

O(N logN) as functions of code blocklength N.�

Erdal Ar�kan. Combined, these two theorem statements imply

that polar codes are the �rst computationally e�cient, provably

capacity achieving codes for binary symmetric channels.

5
Polar Codes

In the previous chapter we discussed upper and lower bounds on the energy complexity

of LDPC decoders. In this chapter we study the energy complexity of another class of

codes called polar codes.

Polar codes are a class of codes that are provably capacity-achieving for symmetric

channels (including the binary symmetric channel). It was recently discovered that the

general technique of polar coding was �rst discovered by Stolte in [61], though these

results were never published and the author did not prove nor conjecture that this con-

struction reaches capacity. Ar�kan [3] independently discovered this technique and proved

that such codes can reach capacity. Our work in Sections 5.3 and 5.4 take inspiration

from polar encoding and decoding graphs presented in the Ar�kan paper.

In this chapter, we show that all polar encoding schemes of switching activity factor

bounded away from 0 for codes of rate R > 1/2 have energy that scales at least as

Ω
(
N3/2

)
. We describe a class of circuits based on the polar decoding algorithm suggested

by Ar�kan [3]. We show that circuits of this type for polar codes of rate R > 2/3 must take

at least Ω(N3/2) energy when its output nodes are arranged on a rectangular grid. The

mesh network topology can also reach this lower bound up to polylogarithmic factors by

using circuits with switching activity factor that decreases with increasing block length.

For sequences of circuits with variable switching activity factor, Grover [5] showed

62
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similar scaling rules for the energy of encoders and decoders as a function of block er-

ror probability. In particular, these results show that coding schemes with block error

probability that scales exponentially in block length N must have energy that scales as

Ω(N3/2). For the Thompson model, in Chapter 3 we show that schemes with switching

activity factor bounded away from 0 that reach this lower bound must have number of

clock cycles T ≥ Ω(
√
N). There exist generalized polar decoders with asymptotic block

error probability that scale as Θ(e−cN
1−ε

) for any ε > 0 and some c > 0 [4] (that is,

very close to O(e−cN)), and in this chapter we discuss how the energy of polar decoders

for such codes implemented on a mesh network can get very close to the Ω(N3/2) energy

lower bound implied by Grover [5], implying that the energy lower bound is close to tight.

However, this requires decoders with switching activity factor that scales as Θ(1/N), and

number of clock cycles that scales close to Θ(N3/2), in contrast to the clock cycle lower

bound of Theorem 2. This is because of the di�culty of parallelization of the successive

cancellation decoding algorithm.

In Section 5.1 we discuss how the results of this chapter build upon prior work.

In Section 5.2 we present one of the main technical results of this chapter, showing a

lower bound on the VLSI energy complexity of polar encoding. We discover a similar

lower bound for the complexity of decoding using VLSI circuits derived from Ar�kan's

successive cancellation decoding algorithm in Section 5.3. Upper bounds that reach the

lower bounds of the previous two sections are presented in Section 5.4 where the mesh

network used by Thompson for sorting and fast Fourier transform is applied to the polar

encoding and decoding algorithms. In Section 5.5 we study how some of these results can

be extended to polar coding with more general generating matrices. In Section 5.6 we

show how these upper and lower bound results, when combined with �nite length analysis

of polar coding, results in upper and lower bounds for the energy of polar decoding as a

function of gap to capacity.

Notation: We let the symbol [N ] = {1, 2, . . . , N} denote the set of integers from 1 to

N .

Given a set of indices X, Y ⊆ [N ], and a vector V of length N , we de�ne the notation

V (X) to be the subvector of V formed by the indices in X. As well, given an N × N
matrix A, the notation A(X, Y ) refers to the submatrix formed by the rows with indices

in X and columns with indices in Y . The notation A(X) refers to the submatrix of A

formed by the rows with indices in X and all the columns.
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5.1 Prior Related Work

Our work in Section 5.2 involves a lower bound for circuits that compute polar-encoding

functions. The lower bounding technique comes from Thompson [1]. The key lemma

needed is Lemma 18, which is analogous to a property of the discrete Fourier transform

(DFT) matrix proved by Valiant in [62, Lemma 4] and by Tompa in [63, Lemma 3],

though we use a di�erent technique to derive this property.

In Section 5.3 we study the butter�y network graph proposed by Ar�kan [3] for polar

decoding. Our key lemma shows that the minimum bisection width of this graph's output

nodes is N . This result is similar to the result of [64] which shows that the minimum

bisection width of all the nodes the butter�y network graph is 2(
√

2 − 1)N + o(N) ≈
0.82N . Because of our circuit lower bounding technique, the minimum bisection width of

the output nodes is required, and not all the nodes of the graph, motivating our approach.

In Section 5.4 we show how a mesh network can achieve our encoding and decoding

energy lower bounds up to polylogarithmic factors. A mesh network DFT algorithm was

proposed by Stevens [65] and shown by Thompson [1] to reach the DFT VLSI complexity

lower bounds.

There have been a number of papers on practical VLSI implementations of polar

encoders and decoders [66�69], though a theoretical analysis of how the energy of such

circuits scale has not been performed. However, these results show that practical polar

coding circuits compete well with other error control codes, motivating our theoretical

analysis.

5.2 Polar Encoders Lower Bound

In this section we will prove that all polar encoders of rate greater than 1/2 must have

energy that scales as Ω
(
N3/2

)
. The main technical result will be Lemma 18, in which

we show a property about the rank of rectangle pairs of the polar encoding generator

matrix.

5.2.1 Rectangle Pairs

We will consider an N ×N matrix G. We let R,C ⊆ [N ].

De�nition 49. Let G(R,C) be the submatrix of G formed by selecting the rows with

indices in R and the columns with indices in C. We call such an object a rectangle of G.



Chapter 5. Polar Codes 65

Example 3. Let

G =




1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16



, R = {1, 3} , C = {2, 4}

then

G (R,C) =

[
2 4

10 12

]
.

De�nition 50. If A ⊆ [N ], we let the relative complement of A be Ā = [N ]\A, that is,
those elements in {1, 2, . . . N} that are not in A. The relevant value of N will depend on

context, and when in doubt will be speci�ed clearly.

Again, let R,C ⊆ {1, 2, . . . , N} and G be an N ×N matrix.

De�nition 51. A rectangle pair is an ordered pair of submatrices of a given matrix G,

associated with two sets R and C, de�ned as
(
G(R,C), G(R̄, C̄)

)
.

Example 4. IfG,R, and C are de�ned as in Example 3, then the rectangle pair associated

with R and C is:

([
2 4

10 12

]
,

[
5 7

13 15

])

We shall also de�ne:

De�nition 52. A k-row-reduced rectangle pair of a matrix G is an ordered pair of ma-

trices (X, Y ). It is formed by starting with any rectangle pair (A,B) of G and deleting

a rows from A to form X and b rows from B to form Y such that a+ b = k.

Example 5. A 1-row-reduced rectangle pair of the matrix G from Example 4 is

([
10 12

]
,

[
5 7

13 15

])
.

which is formed by deleting a row from the �rst matrix in the rectangle pair

([
2 4

10 12

]
,

[
5 7

13 15

])

of G.
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We will consider the structure of the polar encoding matrix by considering its rectangle

pairs.

5.2.2 Universal Polar Coding Generator Matrix Properties

De�nition 53. The universal polar coding generator matrix Gn is a matrix de�ned

recursively by Ar�kan [3]. Let:

F1 =

[
1 0

1 1

]

and

Fn =

[
Fn−1 0

Fn−1 Fn−1

]
.

Then

Gn = BnFn

where Bn is a permutation matrix interpreted as the bit-reversal operator.

The structure of Bn (other than it being a matrix that permutes the rows of Fn) will

not matter in the proofs that follow.

We will prove a theorem showing that the sum of the ranks (over the �eld F2) of the

entries of any rectangle pair of GN is at least N/2. This will imply high VLSI complexity

for su�ciently high rate VLSI polar encoders.

We will �rst consider the ranks of rectangle pairs of Fn. Note that Fn and Gn are

N ×N matrices, where N = 2n.

Lemma 17. Let X be a matrix with entries in a �eld partitioned as

X =

[
A 0

C B

]
,

where 0 is a zero submatrix.

Then rank(X) ≥ rank(A) + rank(B).

Proof. There are rank(A) linearly independent rows of A, and rank(B) linearly indepen-

dent rows of B. The rank(A) + rank(B) rows of X corresponding to these rows are also

linearly independent.

Lemma 18. All rectangle pairs (An, Bn) of Fn have rank(An) + rank(Bn) ≥ N
2
.
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Proof. We will use mathematical induction. Note that

F1 =

[
1 0

1 1

]
,

and checking all the possible rectangle pairs (A1, B1) of F1 we have that rank(A1) +

rank(B1) ≥ 1 = N
2
. Now, we assume that for all k ≤ n− 1, for all rectangle pairs of Fk

denoted (Ak, Bk):

rank(Ak) + rank(Bk) ≥
2k

2
. (5.1)

Consider a rectangle pair (An, Bn) of Fn. Note that An can be written as:

An =

[
P 0

Q S

]
. (5.2)

and Bn can be written as:

Bn =

[
L 0

M J

]
.

where (P,L) and (S, J) are rectangle pairs of Fn−1.

Observe that, by Lemma 17

rank(An) ≥ rank(P ) + rank(S) (5.3)

and

rank(Bn) ≥ rank(L) + rank(J). (5.4)

Since (P,L) and (S, J) are rectangle pairs of Fn−1, by the induction hypothesis (5.1):

rank(P ) + rank(L) ≥ N

4
(5.5)

and

rank(S) + rank(J) ≥ N

4
. (5.6)

Thus, by combining (5.3) and (5.4):

rank(An) + rank(Bn) ≥
rank(P ) + rank(S) + rank(L) + rank(J)

By rearranging the right side of this inequality and directly substituting the bounds of
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(5.5) and (5.6) we get:

rank(An) + rank(Bn) ≥ N

4
+
N

4
=
N

2
.

Corollary 5. For any rectangle pair of Gn denoted (A,B):

rank(A) + rank(B) ≥ N

2
.

Proof. This Corollary follows by observing that [3] Gn = BnFn where Bn is a permutation

matrix that permutes the rows of Fn. For every rectangle pair of Fn there is an equivalent

rectangle pair of Gn, selected by choosing the same columns and choosing the rows as

permuted by Bn. The rectangles forming such a rectangle pair will have the same rows,

simply permuted. Thus they have the same row space and thus the same rank.

5.2.3 Encoder Circuit Lower Bounds

We consider below a circuit that computes a polar encoding function. Such a function

is associated with a set A of free indices. We denote the vector of free indices u(A) ∈
{0, 1}|A|. It is also associated with a vector of frozen indices u(Ā) ∈ {0, 1}N−|A|.

De�nition 54. [3] A polar encoding function f : {0, 1}|A| → {0, 1}N associated with

free indices A and frozen vector u(Ā) is de�ned as

f(u(A)) = u(A)Gn(A) + u(Ā)Gn(Ā)

where Gn(A) is the submatrix of Gn formed by the rows with indices in A, and addition

is performed in FN2 . Such a function is an encoding function for a code with block length

N = 2n and rate R = |A|
N
.

Theorem 9. The area A and the number of clock cycles T for a circuit that computes a

polar encoding function of rate R greater than 1
2
has area A and number of clock cycles

T bounded by

AT 2 ≥ N2 (1− 2R)2

64
= Ω

(
N2
)

(5.7)

and, if such a circuit has switching activity factor q, its energy is bounded by

E ≥ q
N3/2(1− 2R)

8
= Ω

(
N3/2

)
. (5.8)
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Proof. We will follow a similar line of reasoning used by Thompson in analyzing the

complexity of Fourier transform circuits [8]. There are N output bits of the encoder. We

label the indices of the output nodes on one side of the bisection L (the left side), and

the others R (the right side). The subcircuit containing the output nodes L will have

some inputs bits, labelled Li. Similarly, label the input bits on the right side Ri. We

denote the vector of inputs on the left side u(Li), on the right side u(Ri), and the frozen

vector u(Ā). By simply expanding the vector matrix multiplication, we see that the left

side of the circuit must compute the vector:

y(L) = u(Li)Gn(Li, L) + u(Ri)Gn (Ri, L)

+u(Ā)Gn

(
Ā, L

)

and similarly the right side must compute the vector:

y(R) = u(Li)Gn(Li, R) + u(Ri)Gn (Ri, R)

+u(Ā)Gn

(
Ā, R

)
.

The subcircuits must compute these values only with the input bits injected into their

own input nodes and the bits communicated to them from the other subcircuit (which

of course has access to the other input nodes). Note that (Gn (Ri, L) , Gn(Li, R)) is an∣∣Ā
∣∣-row-reduced rectangle pair of Gn. Observe from Corollary 5 that the sum of the

ranks of these matrices must be at least N
2
−
∣∣Ā
∣∣ = N

2
− (1−R)N , which is greater than

0 because R > 1/2. Thus, at least N
2
− (1−R)N bits must be communicated across this

bisection during the computation. If the circuit has MBW of output bits ω, since at each

clock cycle at most 2ω bits can be communicated across the bisection:

T ≥
N
2
− (1−R)N

2ω
. (5.9)

By Lemma 2, we have A ≥ ω2

4
and thus, combining this with (5.9) implies

AT 2 ≥ N2 (2R− 1)2

64
. (5.10)

Also note that

A ≥ N
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and thus, combining this inequality with (5.10) and taking the square root we get

E = qAT ≥ q
N1.5(2R− 1)

8
.

5.3 Ar�kan Successive Cancellation Polar Decoding Scheme

In Ar�kan's original paper on polar coding [3], the author presented a Turing-time com-

plexity O(N logN) algorithm for computing successive cancellation decoding of polar

codes. In this section, we provide a de�nition of a polar decoder based on Ar�kan's [3]

paper, and show that such circuits, when implemented with output nodes arranged in a

rectangular grid, take energy at least Ω(N3/2).

5.3.1 Polar Decoding Lower Bound Preliminaries

Below we consider a generalization of the minimum bisection width of a set of vertices,

where instead of dividing the set of vertices into two sets of equal size, instead we divide

the vertices of a set into two sets, where the size of one of these sets is �xed.

De�nition 55. Given a graph G = (V,E), an m-partition of a set of vertices X ⊆ V is

an ordered pair (A, V \A) in which A ⊆ V and |A ∩X| = m. The width of this partition

is the size of the set of edges connecting the vertices in A with V \A. The m-section

width of a set X of vertices of a graph G is the minimum width over all the graph's

m-partitions of X.

In Figure 5.1 we give an simple example of a 2-partition of a subset of edges of a

graph.

Note that if a graph G = (V,E) has 2m vertices, then the m-section width of V is

the same as the graph's minimum bisection width.

De�nition 56. An n-polar decoding graph, denoted Pn, is a generalization of the graph

presented by Ar�kan in [3] describing the communication graph of a polar decoding al-

gorithm. It is de�ned recursively in Figures 5.2 and 5.3. For the base case, the 1-polar

decoding graph is the bow-tie shaped graph given in Figure 5.2. An n-polar decoding

graph consists of 2n nodes called symbol nodes connected to two copies of the (n− 1)-

polar decoding graphs as shown in Figure 5.3.
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1

2

3 4

5

6

7

Figure 5.1: Example of a graph with a 2-partition of the shaded nodes. The labelled
partitioning line is also a 1-partition of the white nodes. Inspection shows that such
m-partitions are minimal. Therefore, the 2-section width of the shaded nodes in this
graph is 2, as is the 1-section width of the white nodes.

Figure 5.2: The base case: the decoding graph P1.

We shall study the structure of an m-partition of a polar decoding graph.

We call the nodes in the left-most column in the graph of Figure 5.3 symbol nodes.

Note that for any n-polar decoding graph, there exist 2n symbol nodes, as well as symbol

nodes of the two (n − 1)-polar decoding subgraphs that form the graph. Let the set of

symbol nodes of the larger graph be labelled A, the symbol nodes of one of the subgraphs

be B, and the other symbol nodes C. This labelling of sets is visible in Figure 5.3.

Note by inspection that that the bipartite subgraph connecting the nodes of A with

B ∪ C consists of bow-ties, subgraphs containing two vertices from A and a vertex from

B and C. An example bow-tie is labelled in Figure 5.3. A bow-tie object is a subgraph

of the polar decoding graph associated with a particular partition. We classify these

bow-ties according to how the particular partitioning line divides the nodes in the graph.

We now consider a minimum m-partition of A. Such a partition divides the set of

vertices into two subsets, which we will call the top half and the bottom half. We can

consider how the 2n−1 bow-ties connecting A with B and C are split by the m-partition.

We divide such bow-ties into three categories: split bow-ties, contained bow-ties, and

crossing bow-ties.

De�nition 57. A split bow tie is a bow-tie in which one element of A is in the upper

half, and one in the lower half. Two examples are given in Fig. 5.4a.

Note that a split bow-tie has 2 edges crossing the m-partition.
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A B

C

. . . . . .

. . . . . .

Pn−1

Pn−1

2n−1

2n−1

Figure 5.3: A diagram of the recursive structure of a polar decoding graph Pn. The
vertices on the left (outlined in a shaded ellipse and labelled A) indicate the symbol
nodes of the graph. The vertices on the right in the two boxes indicate the symbol
nodes of the two subgraphs (outlined and labelled B and C) which are the smaller polar
decoding graphs Pn−1. An example of a subgraph that is a bow-tie is indicated with
edges drawn with a thick, dashed line.
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a1

a2

b1

c1

a1

a2 b1

c1

(a) Two examples of split bow-ties.

Split bow-ties are bow-ties in which

the two nodes in A are on opposite

sides of the partition line. It does

not matter where the other nodes lie.

a1

a2

b1

c1

(b) An example of a contained bow-

tie. Such a bow-tie occurs when all

the nodes of a bow-tie are on the

same side of the partition.

a1

a2

b1

c1

a1

a2

b1

c1

(c) Two examples of crossing bow-

ties. In such bow-ties the two nodes

in A are on the same side of the par-

tition, and at least one of the other

nodes in the bow-tie is on the other

side.

Figure 5.4: Diagrams of split, contained, and crossing bow-ties. Note that a bow-tie is an
object associated with a polar decoding graph and a particular partition. In each �gure,
the nodes labelled a1 and a2 are nodes from the set A. Similarly, the nodes labelled b1 are
nodes from the set B and those labelled c1 are from the set C. The dashed line indicates
the relative position of the partitioning line.
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De�nition 58. A contained bow-tie is one in which all vertices are either in the top or

bottom half. An example is given in Figure 5.4b.

Note that a contained bow-tie has no edges crossing the m-secting cut.

De�nition 59. A crossing bow-tie has two nodes of A on one side of the partition line,

and at least one of the nodes in B or C on the other side of the partition line.

It should be clear that for any partition of the polar decoding graph, all bow-ties are

either split, contained, or crossing bow-ties.

We let G be an arbitrary polar decoding graph.

Lemma 19. Consider an n-polar decoder graph, and let 0 ≤ m ≤ 2n−1. Such a graph

has a minimum m-section partition of the symbol nodes of G which contains only split

bow-ties and contained bow-ties.

Proof. We provide an exchange argument. For a particular minimalm-partition, we argue

that nodes in a crossing bow-tie can be moved to another side, resulting in a contained

bow-tie without increasing the number of edges crossing the partition line. By examining

the left side of Figure 5.4c, there are 4 edges crossing the partition line. For crossing

bow-ties of this type, moving vertices b1 and c1 to the side containing the vertices in A

decreases the edges of this bow-tie crossing the partitioning line by 4. The degree of any

vertex in this graph is at most 4, thus this can, at worst, result in 4 new edges crossing

the partition (which would result from the two extra edges each on vertices b1 and c1

now crossing the partition line). A similar argument can be made for crossing bow-ties

like those in the right side of Figure 5.4c. Thus, any minimum m-section partition of

the output nodes containing crossing bow-ties can be modi�ed to one that contains no

crossing bow-ties.

We shall prove a lemma regarding the m-section width of an N -polar decoding com-

munication graph.

Lemma 20. Let 0 ≤ m ≤ 2n−1. Then the m-section width of the symbol nodes of an

n-polar decoding graph is at least 2m.

Proof. We shall prove this by induction. For the base case, the n = 1 polar decoding

graph given in Figure 5.2 can be shown by inspection to satisfy the lemma by simply

checking the width of all 0 and 1-partitions.

We shall assume that the m-section width, where 0 ≤ m ≤ 2k−2 , of a (k − 1)-polar

decoding graph is 2m.
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We consider a minimal m-partition that contains only split and contained bow-ties

that exists by Lemma 19. Denote one half of the partition the upper half and the other

the lower half. Without loss of generality we assume the upper half contains m nodes of

A. Let the number of contained bow-ties in the upper half be Cupper, and the number

in the lower half Clower. Let the number of split bow-ties be S. Since the upper half

contains m nodes of A, then

2Cupper + S = m. (5.11)

Note that the number of contained bow-ties on the lower half must at least equal the

number on the upper half, since the number of symbol nodes on the lower half must equal

or exceed the number in the upper half. Thus, there must be at least m elements of B

and m elements of C on both side of the partition. As well, at least one of these sides

cannot have more than N/4 elements (since each of these sets contains only N/2 elements

in total). Thus, there is an x-partition of both B and C induced by the partition, where

Cupper ≤ x ≤ N/4. Thus, each of these partitions must have at least 2Cupper edges crossing

the partition line by the induction hypothesis. In addition, there are 2 edges crossing the

partition line for each split bow-tie (easily observed by inspecting Figure 5.4a). Thus,

the number of edges crossing the partition line is at least

Edges crossing ≥ 4Cupper + 2S = 2m

where we have applied (5.11), proving the theorem.

We will consider algorithms whose communication graph is based on the polar de-

coding graph. However, bits corresponding to certain symbol nodes which are frozen

obviously do not need to have their own node in a communication graph. Thus we

consider a frozen-bit polar decoding graph.

De�nition 60. An n-frozen bit polar decoding graph associated with frozen bit indices

Ā is a graph obtained by deleting the symbol nodes corresponding to Ā from Pn and

also the edges to which they are connected. The symbol nodes that remain are called

the unfrozen nodes. Such a graph is a decoding graph for a rate R = 1− |Ā|
N

code.

Note that this is a natural simpli�cation of the polar decoding graph once frozen bits

are considered. However, this is not the only possible simpli�cation. In this chapter

we only consider simpli�cations that involve deletion of the nodes corresponding to the

frozen bits.

Once the symbol nodes corresponding to frozen bits are deleted, we then consider the

bisection width of the remaining symbol nodes.
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Corollary 6. The minimum bisection width ω of the unfrozen nodes of any n-frozen bit

polar decoding graph in which R > 2/3 is at least:

ω ≥ N(3R− 2)

Proof. Suppose not. Then, consider the unfrozen symbol nodes minimal bisection with

W < N(3R − 2) nodes crossing it. Now, add the frozen symbol nodes and their edges

back to this graph. There are at most (1 − R)N such nodes to be added, and thus

they can increase the number of edges in the graph by at most 2(1− R)N . At most all

these edges can cross the partition line, and thus this partition line can have at most

W + 2(1−R) < RN edges crossing it. Note that the partition line forms an m-partition

of all the symbol nodes, where m ≥ RN/2, But, by Lemma 20, any such m-partition

must have at least RN edges crossing it, resulting in a contradiction.

5.3.2 Decoder VLSI Lower Bounds

Note that a Thompson circuit is associated with a graph. In the course of a computation,

messages will be passed from node to node in the circuit. Each binary message passed

corresponds to another edge in the computation's communication graph. We will de�ne

a polar decoder (a type of circuit) in terms of a circuit's communication graph. We

will adapt our approach from the de�nition of a serialized LDPC decoder circuit from

Section 4.5.2.

De�nition 61. A joined polar decoding communication graph is a graph obtained by

splitting the nodes of polar decoding graph of Figure 5.3 and then joining nodes that are

not both symbol nodes.

Recall the notion of a circuit �simulating� a graph from De�nition 32

De�nition 62. An Ar�kan polar decoding circuit is a circuit that simulates a joined polar

decoding communication graph.

We weight each node of a joined polar decoding communication graph by the number

of vertices they joined. We let Jmax denote the maximum number of nodes joined in the

joined polar decoding communication graph.

Remark 6. We observe that the Jmax-weighted bipartition width of a joined polar decod-

ing communication graph is at most N(3R−2)
4
−4Jmax by the same arguments as Lemma 15,

recognizing that the polar decoding graph has maximum node degree 4.
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Note that in our model, a Thompson circuit is created by placing nodes and edges

each in a grid of squares of side length 1. Consider placing a grid of (possibly larger)

squares with integer side length on top of any Thompson circuit and with sides aligned

to the smaller grid of squares de�ning the VLSI circuit. Then each square in the grid

will contain some output nodes.

De�nition 63. A rectangle grid output circuit with N output nodes is a circuit in which

there is a grid of squares that can be placed upon the circuit, and there is a
√
N ×

√
N

array of larger grid squares, each which contains exactly one output node.

Example 6. The mesh network de�ned in Section 5.4 is an example of a rectangle grid

output circuit.

We suspect that our scaling rule lower bounds for polar decoders would extend to

implementations that are not necessarily rectangle grid output circuits, however for sim-

plicity we only present our results for such circuits. A generalization of the following

lemma to a broader class of circuits would be su�cient:

Lemma 21. All rectangle grid output circuits with Θ(N) output nodes that simulates a

graph with weighted-bisection width ω have energy E ≥ Ω
(
ω
√
N
)
.

Proof. See Appendix A.7.

Note that the above lemma does not assume a bounded switching activity factor (and

thus the switching activity factor could approach 0 as N gets larger).

Theorem 10. All rectangle grid output, Ar�kan polar decoding circuits with R > 2/3

have energy that scales at least as Ω
(
N3/2

)
.

Proof. This �ows directly from Remark 6 and Lemma 21.

It is now trivial to observe that this lower bound can be reached up to a polyloga-

rithmic factor on a mesh network which we discuss in the Section 5.4.4.

5.4 Upper Bounds

5.4.1 Mesh Network

We will show that, up to polylogarithmic factors, the lower bounds on the energy of polar

encoding and decoding complexity can be reached. The mesh network topology that we

present to meet these bounds derives from Thompson [1].
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Figure 5.5: Diagram of a mesh network. A mesh network consists of a grid of
√
N ×
√
N

processor nodes, each with area that scales as Θ(log2N). Each node is connected to its
at most 4 neighbors with Θ(logN) wires.

A mesh network consists of a grid of processor nodes. Each processor node is capable

of sending and receiving messages to and from its adjacent nodes. As shown in Figure

5.5, each node has area that scales as Θ(log2N), and consists of a processor and memory.

The processor takes area that remains constant with increasing circuit size, so the amount

of memory in each node can scale as Θ(log2N). Each processor node must also contain

instructions on what each node is to compute. The length of the instructions obviously

cannot be longer than O(log2N). As is clear from the diagram, each processor node is

connected to up to 4 other processor nodes with Θ(logN) wires.

A computation on a mesh network consists of a sequence of communication steps

that alternate between computation steps. At the beginning of a computation, inputs are

injected into some subset of the nodes. Some computation is performed on these inputs

in each of the processor nodes, and then messages are passed between nodes on the circuit

(this step is called the communication step). Then, the nodes perform a computation on

their received messages. Afterwards, messages again are passed between computational

nodes. This process continues until the computation is carried out.

A typical message consists of an address, an encoding of the node to which the message

is to be sent, and its content, the information meant to be sent. This collection of

information is called a message-address pair. Since there are Θ(N) processor nodes, an

addressing scheme with Θ(logN) bits per address is su�cient. This is why the width

of the wires between two processor nodes scales as Θ(log(N)): in a single clock cycle a

message-address pair can be sent between adjacent nodes.

Multiple messages may be sent simultaneously in a mesh network, but in order for

an algorithm to be valid for a mesh-network, it must be that no computational node is
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Figure 5.6: Example of an encoding graph for N = 23 = 8 taken directly from Ar�kan [3].
The leftmost column of nodes are the input bits, sending their bits to to their adjacent
nodes. Upon receiving these bits, the nodes in the second column compute the mod 2
sum of their inputs, and then pass this result to their adjacent nodes. This procedure
naturally suits implementation on a mesh network. Such encoding reaches the energy
complexity lower bounds in polar encoding up to polylogarithmic factors.

required to store more than O(log2N) bits in its memory. As well, for an algorithm to

be valid, it must also avoid large message-passing con�icts: too many messages cannot

be passed to the same node at the same time. Thus, given a mesh-network algorithm,

we must show that its message passing order does not result in large con�icts.

In the section below we provide a message-passing procedure for computing polar

encoding, and show that by dividing the communication step into two separate steps, we

can avoid any node receiving more than two messages at once.

In Chapter 6 we continue discussing mesh networks and show that any su�ciently

large communication graph of bounded node degree can be implemented on a mesh

network.

5.4.2 Encoding

Ar�kan provides a method for computing polar encoding that naturally lends itself to

implementation on a mesh network. See Figure 5.3 for a graphical representation of the

Ar�kan method. In the Ar�kan method, the input nodes are on the left side of the graph.

As well, for polar encoding, some of these nodes represent frozen bits. In the encoding

algorithm, messages move left to right. The input nodes (and frozen bit nodes) �rst pass
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their bits to the node to which they are connected in the adjacent column of nodes. The

nodes in this column proceed to compute the modulo 2 sum of their inputs, and pass

the result to their adjacent nodes on the right. This continues until the �nal column is

reached, resulting in the codeword.

In our proposed mesh-network implementation, each of the N processor nodes corre-

sponds to a row of nodes in the encoding graph of Figure 5.6. Obviously, if each message

(which corresponds to an edge in the graph) is to be sent one-by one, such an order of the

message-passing procedure would avoid con�icts and would be easily be implementable

on a mesh network. (In fact, this is the way we propose to do decoding). However, much

of the computation for encoding can be done in parallel. We show in Appendix A.8 how

a constant fraction of the messages corresponding to edges connecting nodes in adjacent

columns can be sent simultaneously in a way that avoids con�icts.

5.4.3 Analysis of Mesh Network Encoding Algorithm Complex-

ity

Note that there at Θ(log2N) stages of the encoding algorithm (easily seen from Fig-

ure 5.6). Suppose the number of clock cycles used by an individual node for reading an

address and computing which direction to send its message is TR. Suppose that the com-

plexity for computing parity of the received bit with the current bit is TP . At each stage,

the number of hops between processor nodes is at most O(
√
N). There are Θ(logN)

stages. Thus, the number of clock cycles required is

T = Θ
(

logN
(√

NTR + TP

))

The computation of parity can obviously be done in time Θ(1). The routing requires

computing which direction to �send� the message: up, right, or left. This can easily be

accomplished in Θ (logN) time (that is, proportional to the length of the address).

The proposed algorithm also uses roughly the same fraction of node each clock cycle,

so we can assume for scaling rules the switching activity factor (q) is constant. The area

of such a circuit scales as A = Θ(log2N). Thus:

E = qAT = Θ(N3/2 log4N)
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5.4.4 Decoding Mesh Network

Clearly, because of the requirement of successively computing each estimate in polar

decoding, asymptotically the number of clock cycles for a polar decoding scheme must

scale at least as Ω(N). A fully parallel polar decoder thus must have area-time complexity

at least Ω(N2).

However, the algorithm proposed by Ar�kan [3] that takes time complexity O(N logN)

can easily be implemented on a mesh network. Each node of the mesh network corre-

sponds to a row of nodes of the graph in Figure 5.3. As described by Ar�kan [3], a depth

�rst message-passing procedure between the nodes of the graph can compute the polar

decoding in Turing time complexity O(N logN). The distance between any two nodes in

a mesh network is not greater than O(N1/2). Thus, decoding on a mesh network takes

A = Θ
(
N log2N

)
and T = Θ(N3/2 log2N), where the algorithm takes O(N logN) steps,

and O(N1/2 logN) time to do the message passing. Since a fully parallel decoding algo-

rithm requires only a single processing node to be active at a given time, the switching

activity factor of this scheme scales as Θ (1/N). Thus the energy of the computation

scales as E = O
(
N3/2 log4N

)
.

5.5 Generalized Polar Coding on a Mesh Network

Ar�kan [3] proposes a generalization of polar codes in which the generator matrix is no

longer G1 as de�ned in Section 5.2. Korada et al. [4] analyze such schemes and show that

there exist generating matrices in which for su�ciently large N , PN ≤ e−Θ(N1−ε) for any

ε > 0. That is, they are e−n
1−ε

-coding schemes. By [5, Theorem 1], such circuits must

have bit-meters energy that scales as E ≥ Ω(N3/2−ε/2). Both [3] and [4] argue that such

schemes have O(N logN) time complexity algorithms for decoding. When implemented

on a mesh network, such algorithms would take energy complexity Θ(N3/2 log4N) for

the same reasons described in Section 5.4.4. Thus, we can say that the general lower

bounds can be almost reached for such close-to-exponential coding schemes (that is,

within a factor of N εpolylog(N)). Such a scheme would have a switching activity factor

q that scales as Θ(1/N). Such a circuit would take number of clock cycles that scales

as T = Θ(N3/2 log2N). Note however that Theorem 2 suggests a lower bound T (N)

of Ω(N1/2), and thus this method does not simultaneously reach these energy and time

lower bounds.

Thompson model lower bounds for time and energy of Chapter 3 for f(N)-encoder

energy and time complexity can be reached with polar encoding up to an N εpolylog(N)
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factor for small ε by using an appropriately chosen generator matrix for the construction

of [4]. This is because parallelization of the encoding procedure is possible. For any �xed

ε, the communication graphs of such encoders will have constant node degree, so we can

naturally apply the results of Chapter 6 and use the one-hop communication step passing

procedure of this chapter to implement encoding on a mesh network with energy close

to the universal lower bounds.

5.6 Energy Scaling as Function of gap to Capacity

In this section, we consider how the energy of polar codes scales as capacity is approached.

De�nition 64. For a particular code, let χ = 1
1−R

C

be the reciprocal gap to capacity.

Note that as rate approaches capacity, χ approaches in�nity.

Guruswami et al. [70] show that as a function of reciprocal gap to capacity, the

block length required to achieve a set probability of block error Pe for polar codes scale

as N = O (χµ) for some value µ; that is, the block length scales polynomially in the

reciprocal gap to capacity. A line of research by Hassani et al. [71], Goldin et al. [72]

and Mondelli et al. [73] show that 3.579 ≤ µ ≤ 4.714. These bounds, combined with

Theorems 9 and 10 and the discussion in Section 5.4 that bound energy of encoding and

decoding in terms of N by:

Ω
(
N1.5

)
≤ Ecomp ≤ O

(
N1.5 log4N

)

imply an obvious corollary.

Corollary 7. The energy for polar encoders with reciprocal gap to capacity χ and a set

probability of block error, in which C > 1
2
, is bounded by:

Ω
(
χ5.3685

)
≤ Ecomp ≤ O

(
χ7.071 log4 (χ)

)
(5.12)

with decoding energy bounded similarly.

Note that polar codes are e−N
1
2−ε-codes [74] for any ε > 0. We can apply the well

known general lower bound on block length of any code as a function of fraction of

capacity [60] of N ≥ Ω(χ2) and the general lower bound of [75, Theorem 1] to show that

all e−N
1
2−ε-encoding and decoding schemes have energy bounded by:

E ≥ Ω
(
N

5
4
−ε
)
≥ χ2.5
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When contrasted with the lower bounds of (5.12), this illuminates a gap between general

lower bounds and that which is achievable through polar coding.



6
Mesh Networks

In this chapter, we expand on the analysis of the mesh network that we showed could be

used to perform polar encoding and decoding in Chapter 5. The polar encoding analysis

involved showing that the message passing steps of polar encoding could be carried out

on a mesh network.

In Section 6.2, we show that a large class of communication graphs of algorithms can

also be implemented on a mesh network with only a logarithmic overhead in number of

clock cycles. This implies in particular that the Ω(N1.5) lower bound for serialized LDPC

decoders of Theorem 7 is tight up to a polylogarithmic factor.

In Section 6.3, we show that, for each valid f(N), conditioned on an assumption re-

garding the iterative decoding performance of LDPC codes, our E ≥ Ω(N
√
− log(f(N))

energy lower bound of Theorem 1 and number of clock cycles lower bound of T ≥√
− log(f(N)) of Theorem 2 for codes that reach the energy lower bound can be reached

up to a polylogarithmic factor. Even if the assumption is not true, the parallel construc-

tion of Section 6.3 can reach the energy lower bounds up to a N ε polylog(N) factor by

using generalized polar codes of [4] that we discussed in Section 5.5.

Placing many decoders in parallel, as we suggest in the construction of Section 6.3 is

a common technique for code design. In the literature, placing polar decoders in parallel

was analyzed in [76] and such circuits had good performance, providing some practical

84
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justi�cation for the theoretical results of this chapter.

In Section 6.1 we discuss how the mesh network communication step can be broken

into one-hop communication steps. In Section 6.2 we prove the main technical result of

this chapter, namely that with high probability a random orientation does not result in

a high number of con�icts. Finally, in Section 6.3 we show how parallelization of polar

codes and LDPC codes can be used to construct close to energy optimal f(N)-decoders.

6.1 Mesh Network

Recall the discussion of the mesh network from Chapter 5, Section 5.4, in which we showed

that polar encoding can be done on a mesh network with no large con�icts. We considered

placing the nodes in a raster-scan ordering and showed that by dividing the message-

passing steps into two separate message-passing steps, no single node has to process more

than one message in a single step. In this section, we modify the message-passing step by

dividing it into �one-hop communication steps� and show that this technique can be used

to implement all su�ciently large communication graphs of bounded node degree on a

mesh network. To do so, we will use the probabilistic method and consider randomly

placing the vertices of the graph onto the mesh network.

Recall that a computation on a mesh network consists of communication steps and

computation steps. In a communication step, the processor nodes are to send messages

to other processor nodes in parallel. Associated with such a step is a communication

graph. A communication graph is a directed graph, where each vertex corresponds to

a processor node and an edge directed from vertex a to vertex b exists if and only if,

during the communication step, node a sends a message to node b. In such a scenario

we call node a the source of the message and node b the target of the message. In LDPC

decoding, the nodes of the mesh network may correspond to check and variable nodes,

and the communication graph associated with one iteration would be the Tanner graph

of the underlying code.

De�nition 65. The orientation of a graph with N nodes on a mesh network of N nodes

is an assignment of the graph nodes to the nodes of the mesh network.

Note that there are N ! possible orientations for a given graph.

We divide the communication step of an algorithm into multiple one-hop commu-

nication steps. Before every such step, we assume that each processor node contains

message-address pairs in their memory that are to be sent to another node in the circuit.

We let κmax be the maximum number of message-address pairs contained in the memory
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of any processor node during the execution of an algorithm. By dividing the one-hop

communication step into κmax clock cycles, all the messages stored in the memory of each

processor can be communicated from one adjacent node to another during each one-hop

communication step. When κ messages are received by a single processor node in a single

one-hop communication step, such an event is called a κ-con�ict and κ is the size of the

con�ict. Note that the size of κmax cannot exceed O(log(N)) because each node is to

hold all the size Θ(log(N)) message-address pairs in its memory at the beginning of each

one-hop communication step, and only has Θ(log2(N)) memory.

The internal circuitry of each processor node can determine to which adjacent node

each of its messages should be sent. A very natural method to implement this we call the

up-down left-right protocol. In this protocol, in determining where to send a message, if

the current node is not in the same row as the target node, the node sends the message-

address pair in the direction (up or down) that gets closer to the target node. If the

node and target are on the same row, then the node sends the message left or right,

whichever is closer to the target. Note that once an orientation is chosen for the nodes

with a particular communication graph, the up-down left-right protocol can be carried

out, so long as there are no con�icts bigger than O(log(N)).

Note that a one-hop communication step takes on the order of κmax clock cycles,

and since the Manhattan distance between any two nodes in a mesh network is at most

2
√
N , we conclude that such a communication step takes number of clock cycles T =

Θ(κmax
√
N). For a communication protocol to be valid for a mesh-network, it must be

that no computational node is required to store more than O(log2N) bits in its memory,

and thus κmax cannot exceed O(log(N).

In the following section, we show that algorithm with a communication graph of

maximum degree dmax can be implemented with κmax < log(N). The key idea is that for

su�ciently large graph with bounded maximum node degree, there exists an orientation

of the graph such that the up-down left-right protocol results in no more than Θ(log(N))

message-address pairs to be processed by any single node during any one-hop communi-

cation step. To do so we will use the probabilistic method to show that asymptotically,

almost all orientations have no con�icts bigger than log(N) when the up-down left-right

protocol is used.



Chapter 6. Mesh Networks 87

6.2 Communication Protocols with Low κmax Exist For

Most Graphs

We consider a particular node labelled i. There are two types of con�icts: same-column

con�icts, and di�erent-column con�icts. Con�icts occur at one-hop communication step

τ when a message originating at a node (called the source node) at a Manhattan distance

τ away from node i is received at node i at the τth one-hop communication step. Con�icts

that occur at the τ -th one-hop communication step are called τ -distant con�icts.

De�nition 66. A same-column con�ict occurs when a source node is above the node of

interest and has an edge connected to a node below the node of interest.

For each τ , there are at most 2dmax τ -distant same-column con�icts (because there

are only at most 2 nodes distance τ away from any given node on the same column, each

of which sends at most dmax messages.

De�nition 67. A di�erent-column con�ict occurs when nodes that do not share the

same row are connected to a node on the same row as node i.

We divide the di�erent-column con�icts into two types: those whose message starts

from the right and those whose message starts from the left of node i.

De�nition 68. We call those starting on the right the right-origin con�icts and those

that start on the left the left-origin con�icts.

Consider a particular node i. Let the set of nodes that are τ -distant from node i and

to its right be denoted SR. Let the set of nodes in the same column as node i to its left

be TL. We give an illustration of a circuit with the sets SR and TL labelled in Figure 6.1.

Note that all con�icts originating from the right τ -distant slots must have a target in

TL.

Remark 7. Observe that SR forms a half-diamond pattern as in Figure 6.1. Observe then

that the size of SR can be no greater than
√
N because each node in SR must occupy a

di�erent row, and there are only
√
N rows in a mesh network.

Remark 8. Observe that a row has at most
√
N nodes in a mesh network. Thus, it is

obvious to see that TL ≤
√
N for all mesh nodes i.

De�nition 69. For a graph G = (V,E) and a given subset of vertices X ⊆ V , we can

de�ne a minimal κ-connected set which is a set of vertices in V \ X that have exactly

κ edges connected to the vertices in X, and in which each node has at least one edge
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iTL
SR

Ss

Figure 6.1: Image of an N = 49 mesh network with a particular node i labelled. Also
labelled at the left-target nodes (labelled TL) and the right-source nodes of distance τ = 3
away from node i. Observe that for τ = 3 all right-origin con�icts must originate in the
SR right-source nodes as labelled. The key idea of the proof is that for the up-down left-
right protocol to result in right-originating con�icts at node i at one-hop communication
step τ , nodes in SR must be connected to nodes in TL. The nodes labelled Ss are the
possible source nodes of a same-column con�ict.
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connected to a vertex in X. For a set X we denote the set of all minimal-κ-connected

sets as Mκ(X)

We will bound the number of orientations that result in size κ right-origin con�icts.

The number of orientation that result in κ-left origin con�icts is bounded exactly the

same way.

We �rst prove some preliminary lemmas.

Lemma 22. The number of right-originating con�icts of a graph with maximum node

degree dmax at a particular one-hop communication step at a particular node is at most

dmax

√
N .

Proof. We conclude this by observing there are at most
√
N nodes to the right of any

node in the circuit that are a constant Manhattan-distance away from this node.

Lemma 23. The expression

bi =

(
c
√
N

i

)(√
N

i

)
i!(N − i− Z)!

decreases with increasing i when i < X, N − i − Z > 0, logN < i < c
√
N , c > 0 for

su�ciently large N .

Proof. Observe that:

(√
N

i

)(√
N

i

)
i!(N − i− Z)! =

(c
√
N)!(
√
N)!

i!(
√
N − i)!(

√
N − i)!

(N − i− Z)!

and thus
bi+1

bi
=

(c
√
N − i)(

√
N − i)

(i+ 1)(N − i− Z)

Applying the bound on i that logN < i < c
√
N we have

bi+1

bi
≤ (c
√
N − logN)(

√
N − logN)

(logN + 1)(N − c
√
N − Z)

Note that the denominator grows as Θ(N logN) while the numerator grows as Θ(N).

Thus, for su�ciently large N this quantity is less than 1, and so bi decreases with in-

creasing i.

Lemma 24. The quantity

bk =

(
N

k

)
(k)!(N − c− k)!
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increases with k when 0 < k < N , c > 0, and N − c−k ≥ 0, and N , c, k are all integers.

Proof. Observe that

bk+1

bk
=

N !
(N−k−1)!

(k + 1)!(N − c− k − 1)!

N !
(N−k)!

(k)!(N − c− k)!

=
(k + 1)(N − k)

(N − c− k)

which is greater than 1, because N − k ≥ N − c− k (a consequence of c > 0).

For a given graph of N nodes, and a particular mesh network computational node i,

we let Rκ
i,τ be the number of orientations of the nodes such that the up-down left-right

protocol results in a size κ right-originating con�ict at node i at communication step τ .

Similarly, we let Lκi,t be the number of orientations that result in a left-originating con�ict

at node i at communication step τ .

Lemma 25. Consider a graph with N vertices and maximum node degree dmax ≥ 1 and

place these nodes uniformly randomly on a mesh network of size N . If N is su�ciently

large, then the probability that this orientation combined with the up-down left-right proto-

col results in a κ right-originating con�ict at mesh node i at communication step τ ≤ 2
√
N

is bounded by

P (Rκ
i,τ ) ≤ exp(−Θ(log logN logN))

when logN ≤ κ ≤ dmax

√
N .

Proof. We will count the number of orientations of the nodes that results in at least a size

κ con�ict originating from the right. To do so we will sum up over all choices of left target

nodes and all minimum-κ-connected sets of these left target nodes (which will form the

source nodes of the messages that con�ict at node i). Note that if there is a size κ right-

originating con�ict then there is a set of nodes in SR that are connected to TL by exactly

κ edges. Thus, there must be a set of nodes in SR that form a minimal-κ-connected set

of TL.

Thus, we observe that:

Rκ
i,τ ≤

∑

X⊆V ||X|=|TL|

∑

Y∈Mκ(X)

|TL|!
(|SR|
|Y |

)
|Y |!(N − |Y | − |TL|)! (6.1)

This is the sum over all choices of |TL| nodes to be places in the |TL| target node position
and all and all choices of minimal-κ-connected sets Y for that set X. For each such choice
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of target nodes and minimal-κ-connected set, the term |TL|! is the number of ways to

permute the |TL| left target nodes,
(
SR
|Y |

)
the number of ways to place the |Y | source nodes

in the SR right τ -distant mesh node locations, and |Y |! the number of ways to permute

these nodes. (N − |Y | − |TL|)! is the number of ways to permute the remaining nodes.

We now bound this quantity.

Note that for every subset of X nodes of our graph and Y ∈ Mκ(X) (that is, for all

sets Y that are minimal κ-connected to a set of vertices X) dmax|Y | ≥ κ because there

must be at least κ edges connected to the elements of Y . Thus:

|Y | ≥ κ/dmax (6.2)

Moreover, for all X ⊆ V and Y ⊆Mκ(X),

|Y | ≤ κ (6.3)

because in a minimally κ-connected set at least every node must be connected to a node in

X; if there were more than κ such nodes then the set would be at least (κ+1)-connected.

As well, from Remark 7 the number of right source nodes of distance τ from node i

is bounded by:

|SR| ≤
√
N. (6.4)

Also, from Remark 8 the number of left targets of these nodes is bounded by:

|TL| <
√
N (6.5)

Now, consider any particular X ⊆ V . Let Mk,i(X) denote the minimal κ-connected

neighborhoods of X of size i.

For compactness we de�ne

S1 =
∑

Y∈Mκ(X)

(|TL|)!
(|SR|
|Y |

)
|Y |!(N − |Y | − |TL|)!

which is the second summation in the expression in (6.1).

We then note that for a particular X ⊆ V where |X| = |TL|,

S1 =
κ∑

i= κ
dmax

|Mk,i(X)|(|TL|)!
(|SR|

i

)
|i|!(N − i− |TL|)!
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Note that there are at most dmax

√
N possible neighbours of the vertices in X. Thus,

number of the κ-connected sets of a set X of size i is upper bounded by

|Mκ,i(X)| ≤
(
dmax

√
N

i

)

since each element of a κ-connected set must have at least one edge connected to a vertex

in X. So then, applying as well (6.4)

S1 ≤
κ∑

i= κ
dmax

(
dmax

√
N

i

)
(TL)!

(|SR|
i

)
i!(N − i− |TL|)!

We have that |SR| ≤
√
N for all τ ≤ 2

√
N and so:

S1 ≤
κ∑

i= κ
dmax

(
dmax

√
N

i

)
(TL)!

(√
N

i

)
i!(N − i− |TL|)!

If logN < κ < dmaxN
1
2 for ε > 0, then the expression to the right of the summation

decreases with increasing i by Lemma 23 . Thus, for su�ciently large N , the expression

is maximized when i = κ
dmax

. This allows us to conclude:

S1 ≤
κ∑

i= κ
dmax

(
dmax

√
N

κ
dmax

)
(|TL|)!

(√
N
κ

dmax

)
i!(N − κ

dmax

− |TL|)!

≤
(
κ− κ

dmax

+ 1

)(
dmax

√
N

κ
dmax

)
(|TL|)!

(√
N
κ

dmax

)(
κ

dmax

)
!(N − κ

dmax

− |TL|)!

Substituting the above bound in (6.1) gives us:

Rκ
i,tτ ≤

∑

X∈V ||X|=TL

(
κ− κ

dmax

+ 1

)(
dmax

√
N

κ
dmax

)
(|TL|)!

(√
N
κ

dmax

)(
κ

dmax

)
!(N − κ

dmax

−|TL|)!

We then conclude that:

Rκ
i,τ ≤

(
N

|TL|

)(
κ− κ

dmax

+ 1

)(
dmax

√
N

κ
dmax

)
(|TL|)!

(√
N
κ

dmax

)(
κ

dmax

)
!(N − κ

dmax

− |TL|)!.

Note that the size of TL depends on the location of node i. Lemma 24 shows this

expression increases with TL. Combining this with the observation that TL ≤
√
N for all
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nodes i, we can show that:

Rκ
i,tτ ≤

(
κ− κ

dmax

+ 1

)(
N√
N

)
(
√
N)!

(
dmax

√
N

κ
dmax

)(√
N
κ

dmax

)(
κ

dmax

)
!(N − κ

dmax

−
√
N)!.

This is an upper bound on the number of permutations of the nodes of a graph that

will results in a right originating κ-con�ict at communication step τ . Since there are N !

permutations, the probability of this event is given by:

P
(
Rκ
i,tτ

)
≤

(
κ− κ

dmax
+ 1
) (

N√
N

)
(
√
N)!
(
dmax

√
N

κ
dmax

)( √
N
κ

dmax

) (
κ

dmax

)
!(N − κ

dmax
−
√
N)!

N !

≤

(
κ− κ

dmax
+ 1
)
N
√
N
(
dmax

√
N

κ
dmax

)( √
N
κ

dmax

) (
κ

dmax

)
!

(
N − κ

dmax
−
√
N
) κ
dmax

+
√
N

≤

(
κ− κ

dmax
+ 1
)
N
√
N
(
dmax

√
N

κ
dmax

)( √
N
κ

dmax

) (
κ

dmax

)
!

(
N − κ

dmax
−
√
N
)√N (

N − κ
dmax
−
√
N
) κ
dmax

Using
(
n
k

)
≤ nk

k!
on the

(
dmax

√
N

κ
dmax

)(
3
√
N
κ

dmax

)
terms and simplifying, we get:

P
(
Rκ
i,τ

)
≤

(
κ− κ

dmax
+ 1
)
N
√
N
(
dmax

√
N
) κ
dmax

(√
N
) κ
dmax

(
N − κ

dmax
−
√
N
)√N (

N − κ
dmax
−
√
N
) κ
dmax

(
κ

dmax

)
!

Continuing to simplify this expression we get:

P
(
Rκ
i,τ

)
≤ N

√
N

(
N − κ

dmax
−
√
N
)√N

N
κ

dmax

(
N − κ

dmax
−
√
N
) κ
dmax

(dmax)
κ

dmax

(
κ− κ

dmax
+ 1
)

(
κ

dmax

)
!

.

As N approaches in�nity, the �rst two quotients in the above product approach 1, so in

particular for su�ciently large N :

N
√
N

(
N − κ

dmax
−
√
N
)√N

N
κ

dmax

(
N − κ

dmax
−
√
N
) κ
dmax

≤ 1 + ε
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for any ε > 0 and thus, for su�ciently large N :

P
(
Rκ
i,τ

)
≤

(1 + ε) (dmax)
κ

dmax

(
κ− κ

dmax
+ 1
)

(
κ

dmax

)
!

From Stirling's approximation we know that:

N ! ≥
(
N

e

)N

and so:

P
(
Rκ
i,τ

)
≤

(dmax)
κ

dmax

(
κ− κ

dmax
+ 1
)

(
κ

edmax

) κ
dmax

Observe that this decreases with increasing κ. Thus if κ > log(N) this implies:

P
(
Rκ
i,τ

)
≤ exp(−Θ(log logN logN)).

Note that this is less than cN−k for any k > 0 and su�ciently large N .

Let R∗κ be the event that a random orientation of the nodes has a right-originating

con�ict of size κ or greater.

Corollary 8. The probability that there is a con�ict of size logN or greater from nodes

originating from the right at any one-hop communication step and at any node is bounded

by:

P
(
C∗logN

)
≤ exp(−Θ(log logN logN))

Proof. Observe that

R∗logN =
N⋃

i=1

√
N⋃

j=logN

2
√
N⋃

τ=1

Rτ
i,j

that is, the set of permutations of nodes resulting in right-originating con�icts of size

dmax logN or greater is the union of all the events Rτ
i,j, where we recall Rτ

i,j is the set

of permutations that results in a right originating con�icts of size j at node i during
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computation step t. Thus:

P
(
R∗logN

)
≤

N∑

i=1

√
N∑

j=logN

2
√
N∑

t=1

exp(−Θ(log logN logN))

≤ 2N2 exp(−Θ(log logN logN))

≤ exp(−Θ(log logN logN)). (6.6)

Lemma 26. Consider a sequence of communication graphs with maximum node degree

dmax and increasing number of vertices N . If the nodes of a such a graph are uniformly

randomly placed on a mesh network, then the probability that for this orientation the up-

down left-right protocol results in a κ-con�ict where κ > 2dmax logN + 2dmax approaches

0 with increasing N .

Proof. Note that by a symmetrical argument the probability of collision originating from

left nodes of size greater than logN (denoted by event L∗logN) is bounded by:

P
(
L∗logN

)
≤ exp (−Θ(log logN logN)) (6.7)

We let the event that the random orientation results in a con�ict of size 2 logN+2dmax or

greater as X∗2 logN+2dmax
. Note that, if a permutation has a collision of size 2 logN+2dmax,

then, necessarily either there exists a right-originating collision of size logN or greater

or a left-originating collision of size logN or greater (Otherwise their sum cannot exceed

2 logN + 2dmax since at most 2dmax collisions at a particular location are same-column

con�icts).

Thus:

X∗2 logN+2dmax
⊆ R∗logN ∪ L∗logN

Applying (6.6 and ), (6.7 ) and union bounds gives us:

P
(
X∗2 logN+2dmax

)
≤ 2 exp(−Θ(log logN logN))

which approaches 0 with increasing N .

Corollary 9. All sequences of communication graphs with bounded maximum node degree

can be implemented on a mesh network with A = Θ(N log2N), and T = N1/2 log2(N).

Proof. First, since the probability that a random permutation has a 2 logN + 2dmax

con�ict approaches 0, then, for large enough N , there just exists at least one orientation
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of the nodes of the graph on a mesh network with a con�ict less than 2 logN+2dmax when

the up-down left-right protocol is used. Consider this orientation, and then divide each

one-hop communication step into at most 2 logN + 2dmax = Θ(logN) clock cycles. The

number of one-hop communication steps needed is at most 2
√
N . When implementing

the up-down left-right protocol, at most O(log(N)) clock cycles are needed to process

each address. Combining these observations leads to the bound on T in the corollary

statement. The bound on A is simply the area of the mesh network.

An obvious corollary of Corollary 9 is that all sequences of LDPC codes with bounded

node degree can be implemented on a mesh network with energy that scales as A =

Θ(N log2N), and T = niterN
1/2 log2(N) where niter is the number of iterations. This

reaches the lower bound scaling rule for serialized LDPC decoders of Theorem 7 for

sequences of LDPC codes of constant maximum node degree.

6.2.1 LDPC Codes on a Mesh Network

Remark 9. (On notation) In what follows, we let polylog(N) denote a function that grows

no faster than logα(N) for some α > 0; that is, this represents a function that grows at

most polylogarithmically in N .

In this section we will show how to construct an f(N)-coding scheme that reaches

the information-friction energy bound of [5] up to an N ε polylog(N) factor for any ε > 0.

The construction can also reach our energy lower bounds of Theorem 1 and number of

clock cycles lower bound of Theorem 2 up to polylogarithmic factors, conditioned on an

assumption. The assumption we make is as follows:

Assumption 1. There exists a sequence of LDPC codes and decoders for the BEC

with bounded maximum Tanner graph node degree, number of iterations that scales as

polylog(N), and probability of error that scales as e−Θ(N).

One approach that exists in the literature to analyze iterative LDPC code performance

involves analyzing the probability of stopping sets. With the assumption of in�nite

number of iterations, Burshtein et al. [77] show that there exist LDPC codes with error

probability that scales as e−cN , consistent with part of our assumption. However, this

encounters a problem because the stopping set approach must assume an in�nite number

of iterations. Of course, since when decoding for the BEC each iteration must correct at

least one error (or else a stopping set has been encountered) there can be at most O(N)

iterations. However, this is more than polylogarithmically in N and thus this does not

prove our assumption.
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Another method used to analyze error probability performance in terms of number of

iterations is by Lentmaier et al. [78]. This method involves showing that a random Tanner

graph is, with high probability, locally tree-like, allowing for independent iterations, and

thus bit error probability can be analyzed recursively. The problem with this method is

that after the graph is no longer locally tree-like, the independent iteration assumption

breaks down. The authors show that if Θ(log(N)) iterations are carried out for some

regular LDPC codes, then bit error probability is bounded as e−Θ(Nα) for some 0 < α ≤ 1,

but it is not proven that α = 1 is achievable.

However, if Assumption 1 is true, we can use such codes to construct f(N)-decoding

schemes that are energy and time optimal (within the Thompson model) up to polylog-

arithmic factors for any f(N) ≤ e−Θ(N). Even if the assumption is not true, generalized

polar decoders can also be used to construct close to energy optimal decoders for each

f(N) ≤ e−Θ(N1−ε) for any ε > 0. We show how to construct such decoders in the next

section.

6.3 Using Parallelization to Construct Close to Energy

Optimal f (N)-coding Schemes

The following analysis works for both encoders or decoders in parallel. Without loss of

generality, we assume we are constructing decoders.

We begin by assuming we can construct an e−cN -decoding scheme with energy that

scales as E(N) ≤ O(N1.5 polylogN), for some c > 0. If Assumption 1 is true, then this

can be an LDPC decoder implemented on a mesh network. If not, then this can be a

generalized polar decoder as discussed in Section 5.5, requiring only a slight modi�cation

of the derivation below (which we discuss in Section 6.3.1.

Consider placing N/M of such circuits in parallel, where each circuit has block length

M , thus creating a circuit with total block length N .

The energy of such a parallel scheme is simply the sum over all the individual energy

consumptions of each of the individual subcircuits in parallel. Thus:

E ≥ c′NM
1
2 polylog(M)

for some c′ > 0. An error occurs if any of the decoders make an error, and so by union

bound:

Pe ≤
N

M
e−cM
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Consider a function f(N) that approaches 0 with increasing N and f(N) ≤ e−cN for

some c > 0 and su�ciently large N . To construct an f(N)-coding scheme, we simply

then choose M to scale with N appropriately. So, we let

M = −1

c
log

(
f(N)

N

)
(6.8)

implying that the parallel circuit will have probability of error bounded as

Pe ≤
1

−1
c

log (f(N)/N)
f(N) ≤ f(N)

and thus we have an f(N)-coding scheme.

The energy of such a scheme scales as:

E ≤ N

√
−1

c
log

(
f(N)

N

)
polylog

(
−1

c
log

(
f(N)

N

))

Noting that − log(f(N))/N < N for su�ciently large N by our assumption on f(N) and

simplifying:

E ≤ N

√
1

c

√
− log(f(N)) + log(N) polylog(N)

Using
√
x+ y ≤ √x+

√
y and letting c′′ =

√
1
c
:

E ≤ c′′N
[√
− log(f(N)) +

√
log(N)

]
polylog(N) = Θ(N

√
− log(f(N)) polylog(N)

This construction is thus a polylogarithmic factor away from the universal information

friction lower bounds implied by Grover [5].

6.3.1 Analyzing Area and Number of Clock Cycles

We can also analyze this parallel construction in terms of how T and A scale with N . If

the decoders placed in parallel are LDPC codes consistent with Assumption 1, then:

T ≤M0.5 polylog(M)

and so as a function of block length N

T ≤
√
− log(f(N)) polylog(N)
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that is, a polylogarithmic factor away from the lower bound on number of clock cycles

for energy optimal decoders of Theorem 2 in Chapter 3.

Of course, the construction of this time and energy optimal f(N)-coding scheme

depends on Assumption 1. Whether this is possible remains an open question.

Nonetheless, we can still easily construct a close to energy optimal f(N)-coding

scheme by using a generalized polar code with error probability that scales as e−cN
1−ε

as

discussed in Chapter 5. This reaches the information-friction lower bounds of up to an

N ε polylog(N) factor; however, it does not reach our time lower bounds of Theorem 2.

To show this, we can simply modify our choice of M as a function of N in (6.8) above

by choosing

M = −
(

1

c
log

(
f(N)

N

))( 1
1−ε)

which will have energy that scales as

E ≤ O
(
N [− log(f(N))](

1
2
− ε

2
) polylog(N)

)

which for all f(N) < e−cN is an N ε polylog(N) factor away from the energy optimal lower

bound.



�A poet once said, `The whole universe is in a

glass of wine.' We will probably never know

in what sense he meant it, for poets do not

write to be understood. But it is true that if

we look at a glass of wine closely enough we

see the entire universe... If our small minds,

for some convenience, divide this glass of wine,

this universe, into parts � physics, biology, ge-

ology, astronomy, psychology, and so on � re-

member that nature does not know it! So let

us put it all back together, not forgetting ulti-

mately what it is for. Let it give us one more

�nal pleasure; drink it and forget it all!�

Richard Feynman 7
Information Friction in

Three-Dimensional Circuits

So far our discussions have been of planar circuits. However, circuits implemented in

three-dimensions exist [79], and so we generalize the recent information friction (or bit-

meters) model introduced by Grover in [5] to circuits implemented in three-dimensions

and extend the technique of Grover to show that, in terms of block length N , a bit-meters

coding scheme in which block error probability is given by Pe(N) has encoding/decoding

energy that scales as Ω
(
N (− lnPe (N))

1
3

)
. We show how this approach can be general-

ized to an arbitrary number of dimensions.

The �information friction� computational energy model, introduced by Grover in [5],

was further studied by Vyavahare et al. in [80] and Li et al. in [81].

The information-friction model is very similar to the Thompson model. In fact, the

Ω(N
√
− log(f(N))) lower bound on energy for f(N)-coding schemes derived for fully-

parallel decoders in Chapter 3 is also implied by Theorem 1 in [5] (although no bounds

on number of clock cycles are derived using this technique like we derive in Chapter 3).

Nonetheless, the Grover result is stronger in one sense: it does not require an assumption

on bounded switching activity factor.

We generalize (and slightly modify) this model to three dimensions and use a similar

100
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approach to Grover to obtain some non-trivial lower bounds on the energy complexity of

three dimensional bit-meters decoder circuits, in terms of block length and probability

of error. We will discuss how this approach can be generalized to models in arbitrary

numbers of dimensions. We present the model below and then prove our main complexity

result.

• A circuit is a grid of computational nodes at locations in the set Z3, where Z is the

set of integers. Some nodes are inputs nodes, some are output nodes, and some are

helper nodes. Note that Grover [5] considers this model in terms of a parameter

characterizing the distance between the nodes, but since we are concerned with

scaling rules, we will assume that they are placed at integer locations, allowing us

to avoid unnecessary notation. The Grover paper considered scaling rules in which

nodes are placed on a plane, in which the number of dimensions d = 2. In our

results we will discuss the case of d = 3 and afterwards discuss how the approach

can be generalized to an arbitrary number of spatial dimensions.

• A circuit is to compute a function of N binary inputs and K binary outputs.

• At the beginning of a computation, the N inputs to the computation are injected

into the input nodes. At the end of the computation the K outputs should appear

at an output node. A node can be both input and output.

• A node can communicate messages along its links to any other node, and can receive

bits communicated to them from any other node.

• Each node has constant memory, and can compute any computable function of

all the inputs it has received throughout the computation that is stored in their

memory, to produce a message that it can send to any other node.

• We associate a computation with a directed multi-graph, that is, a set of edges

linking the nodes. For every computation, there is one edge per bit communicated

along a link in the computation's associated multi-graph. The �cost� of an edge in

such a multi-graph is the Euclidean distance between the two nodes that it connects.

Note that if a node communicates m bits to another node in a computation, then

that computation's associated multi-graph must have m edges connecting the two

nodes. This multi-graph is called a computation's communication multi-graph.

• The energy, or the bit-meters, denoted β of a computation is the sum of the costs

of all the edges in the computation's associated multi-graph (that is, the sum of

the Euclidean distances of all the edges).
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Figure 7.1: A diagram of one nested cube in an (L, λ)-nested cube grid, with the edge
lengths labeled. A nested cube grid is an in�nite grid of such nested cubes. The outer
cubes each have side length L and the inner cubes each have side length L(1− 2λ) at a
distance Lλ from the faces of the outer cube.

We consider a grid of three-dimensional cubes, with �inner cubes� nested within them.

This object is a generalization of the �stencil� object de�ned by [5].

De�nition 70. An (L, λ)−nested cube grid is an in�nite grid of cubes, with side length

L and inner cube side length L (1− 2λ). Note that the inner cubes are centered within

the outer cubes. Fig. 7.1 shows a diagram of one cube in a (L, λ)−nested cube grid, to

which the reader can refer to visualize this nested cube structure. A set of nested cube

grid parameters is valid if L > 0 and 0 < λ < 1
2
.

Note that a nested cube grid can be placed conceptually on top of a bit meters circuit.

We will consider placing a nested cube grid in parallel with the Cartesian 3-space that

de�nes our circuit. We can specify the position of a nested cube grid that is parallel to

a set of Cartesian coordinates by calling one of the corners of an outer cube the origin,

and then specify the location of its origin. A particular set of parameters for a nested

cube grid and a location for its origin (called its orientation) induces a set of subcircuits,

de�ned below.

De�nition 71. A subcircuit, associated with a particular orientation of a nested cube

grid, is the part of a bit-meters circuit within a particular outer cube.

Nodes in any subcircuit can thus be considered to be either inside an inner cube or

outside an inner cube. For any circuit with �nite number of nodes there will thus be

some cubes that contain computational nodes, and some that do not. We can label the

subcircuits that contain nodes with the index i. The number of input nodes in cube i we
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denote ni. The number of output nodes in subcircuit i we denote ki. Furthermore, we

denote the number of input nodes within the inner cube of subcircuit i as kin,i.

De�nition 72. We de�ne kin =
∑
kin,i, which is the the number of output nodes within

inner cubes, which we will often simply refer to with the symbol kin.

We will show in Lemma 28 that there exists a nested cube grid orientation in which

kin is high.

De�nition 73. The internal bit meters of a subcircuit i is the length of all the commu-

nication multigraph edges completely within subcircuit i, plus the length of the parts of

the edges within subcircuit i. This quantity is denoted with the symbol βi. Note that

β =
∑

all subcircuits j βj (where we may have to sum over some subcircuits that do not

contain any nodes).

Since a computation has associated with it its communication multi-graph, for a given

subcircuit we can consider the subgraph formed by all the paths that start outside of the

cube and end inside the inner cube. We can group all the vertices of this graph that start

outside the outer cube and call this the source, and group all vertices inside an inner

cube and call it the sink. For this graph we can consider its min-cut, the minimum set

of edges that, once removed, disconnects the source from the sink.

De�nition 74. The number of bits communicated from outside a cube to within an inner

cube, or, bits communicated, is the size of this minimum cut. For a particular subcircuit

i we refer to this quantity with the symbol bi.

Remark 10. This quantity is analogous (but not the same) as the quantity bi for the

Thompson circuit model from De�nition 6, and thus we use the same symbol. The reader

should not confuse these symbols; the Thompson model de�nition applies to discussions

in Chapter 3, and the bit-meters model de�nition applies to this chapter.

If the ni internal bits of a subcircuit are �xed, then the subcircuit inside an inner cube

will compute a function of the messages passed from outside the outer cube. Clearly, the

size of the set of possible messages injected into this internal cube is 2bi (since bi is the

min cut of the paths leading from outside to inside.)

Lemma 27. All subcircuits with bits communicated bi have internal bit meters at least

biλL.

Proof. This result �ows from Menger's Theorem [82, 83], which states that any network

with min-cut bi has at least bi disjoint paths from source to sink. Each of these paths

must have length at least λL from the triangle inequality.



Chapter 7. Information Friction in Three-Dimensional Circuits 104

Remark 11. This lemma makes rigorous the idea that to communicate bi bits from outside

a subcircuit to within its inner square, the bit-meters this takes is proportional to the

distance from outside an outer square to within an inner square (λL) and the number of

bits communicated.

In the lemma below we show that there exists an orientation of any nested cube grid

such that kin is high.

Lemma 28. For all three dimensional bit-meters circuits with K output nodes, all valid

nested cube grid parameters L and λ, there exists an orientation of an (L, λ)-nested cube

grid in which the number output nodes within inner cubes (kin) is bounded by:

kin ≥ (1− 2λ)3K

Remark 12. Note that the relative volume of the inner cubes is (1− 2λ)3 . This lemma

says there exists an orientation of any nested cube grid in which the fraction of output

nodes within inner cubes is at least this fraction, so this result is not surprising.

Proof. This is a natural generalization of the Grover result (See Lemma 2 of [5]), which

uses the probabilistic method. We consider placing the origin of an (L, λ)-nested cube

grid uniformly randomly within a cube of side length L centered at the origin in the

Cartesian 3-space. We index the K output nodes by i. Let 1in,i be the indicator random

variable that is equal to 1 if output node i is within an inner cube. Then, given the

uniform measure on the position of the cube, the quantity kin is a random variable. We

observe:

kin =
K∑

i=1

1in,i, thus

E (kin) = E

(
K∑

i=1

1in,i

)

=
K∑

i=1

E (1in,i)

=
K∑

i=1

(1− 2λ)3 (7.1)

= K (1− 2λ)3

where in (7.1) we use the observation that, for each output node, the probability that it

is in an inner square is proportional to the relative area of the inner square. Thus, the
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expected value of kin is K (1− 2λ)3 and so there must be at least one nested cube grid

orientation in which kin is greater than or equal to that value.

Lemma 29. For all valid nested cube parameters L and λ, ni ≤ (L+ 1)3 and thus for

su�ciently large L ni ≤ 2L3.

Proof. Intuitively, there cannot be more than on the order of L3 inner nodes in a cube of

volume L3. The (L+ 1)3 bound comes from considering the corner case of a cube whose

sides exactly touch output nodes.

We can now state the main results of this section.

Theorem 11. All 3D-bit-meters decoders for a binary erasure channel with erasure prob-

ability ε of su�ciently large block length with block error probability Pe have bit-meters β

bounded by:

β >
27

512

(
ln (4Pe)

2 ln(ε)

) 1
3

K.

Proof. We consider the number of bits communicated from outside a subcircuit i to

within the inner cube of subcircuit i (bi). It must at least be kin,i to overcome the case

that all the input nodes in the entire cube are erased. If this does not happen, then one

of the output nodes must guess at least one bit, making an error with probability at least
1
2
, formally justi�ed by Lemma 1. This allows us to argue that:

Pe ≥ P (error|all ni output bits are erased)

P (all ni output bits are erased)

≥ 1

2
εni . (7.2)

If β < λLkin then there exists a subcircuit indexed by i in which bi < kin,i. Suppose

otherwise, i.e. that bi ≥ kin,i for all i, then:

β ≥
∑

all subcircuits i

λLbi = λL
∑

bi ≥ λL
∑

kin,i = λLkin

where we apply Lemma 27 after the �rst inequality, and for convenience suppress the

subscript on the summation sign after the �rst instance. This contradicts our assumption

that β < λLkin.
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We choose the parameter L in terms of probability of error in order to derive a

contradiction if a circuit does not have high enough bit-meters. Speci�cally, we choose

L =

(
ln (4Pe)

2 ln(ε)

) 1
3

. (7.3)

Consider the nested cube structure that has kin ≥ (1− 2λ)3K that must exist by

Lemma 28. If β ≤ λLkin then there must exist a subcircuit i that has less than kin,i bits

injected into it from outside the subcircuit to within its inner cube. Thus:

if β ≤ λLkin then Pe

(a)

≥ 1

2
εni

(b)

≥ 1

2
ε2L

3
(c)

≥ 2Pe

where (a) �ows from (7.2), (b) from Lemma 29, and (c) from the evaluation of this

expression by substituting (7.3). This is a contradiction. Thus, all bit meters decoders

must have

β > λLkin

β > λ (1− 2λ)3 LK

≥ λ (1− 2λ)3

(
ln (4Pe)

2 ln(ε)

) 1
3

K.

The second inequality �ows from the fact that we are considering the nested cube struc-

ture in which kin ≥ (1− 2λ)3K that must exist by Lemma 28. We may choose any valid

λ to maximize this bound, and letting λ = 1
8
gives us:

β >
27

512

(
ln (4Pe)

2 ln(ε)

) 1
3

K.

Remark 13. Note that this argument naturally generalizes to d-dimensional space, in

which all d-dimensional bit-meters decoders have energy that scales as β ≥ Ω
(

(ln (Pe))
1
d K
)
.

The key step in the proof to be altered is in a modi�cation of Lemma 29 and a choice of

L = c
(

ln(4Pe)
ln(ε)

) 1
d
in line 7.3 of the proof for some constant c that may vary depending on

the dimension. This implies, among other things, that exponentially low probability of

error decoding schemes implemented in d-dimensions have bit-meters energy that scales

as Ω
(
N1+ 1

d

)
. Obviously, the most engineering-relevant number of dimensions d for this

type of analysis are d = 2 and d = 3.



�If you take just one piece of information from this blog: Quantum

computers would not solve hard search problems instantaneously

by simply trying all the possible solutions at once.�

Scott Aaronson

8
Is the Information Friction Model a Law of

Nature?

In the previous chapter, we derived some universal lower bounds for the energy complex-

ity of three-dimensional circuits using a natural generalization of Grover's information-

friction model [5]. Can the linear-in-distance assumption be beaten using clever engineer-

ing? Is the information-friction model inaccurate for some other reason? In this Chapter

we discuss this question. If the assumptions of the model cannot be overcome in our

Universe, then our information friction lower bounds are not merely engineering claims:

they are fundamental energy scaling rules for reliable communication in our Universe.

The main assumptions of the three-dimensional information-friction model of Chap-

ter 7 are (1) each input of a computation is injected into a computational node in three-

dimensional Euclidean space, each of which takes up some volume, and (2) the energy

cost of communicating information in this space is linear in distance. The conjecture that

these assumptions capture fundamental practical engineering limitations in our universe

we call the information-friction hypothesis. Below we discuss a few techniques that may

seem to overcome these assumptions, and we also point out how these techniques, upon

closer inspection, fail for some practical reason.
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8.0.2 The Spaceship Channel

In [84], the authors argue that communicating long distances using inscribed matter

is more energy e�cient for large distances than communicating using electromagnetic

radiation. The idea is to accelerate the matter (in a spaceship perhaps) pointed in some

direction, letting the message hurtle through space. Examining Equation (1) of [84], it

seems to suggest this can be done with an energy that does not change with distance.

However, absent from the analysis is a discussion of friction in interstellar space. Though

friction is very small in space, it is not 0 because space is not a perfect vacuum (see [85]

and the resources referenced, which show that the density of particles in outer space is

somewhere between 0.06−1000 atoms per cm2). Thus, in the limit of very large distances,

the amount of energy needed would still be roughly proportional to distance (or else the

spaceship would be eventually slowed down by friction before reaching its destination).

Thus, the �space-ship channel� does not seem to be able to overcome assumption 2 of

the information-friction hypothesis.

8.0.3 The Vacuum Tube Channel (AKA the Hyper-loop Chan-

nel)

Another natural objection to the �information friction hypothesis� is that, why can't

we create a vacuum tube to remove all friction, in a way similar to the �Hyper-loop�

promoted by Elon Musk (this proposal has been widely covered in the media, see, for

example, [86]). The obvious objection to this technique is that, even if you could suck

out most of the air from the vacuum tube, engineering limitations would prevent you

from sucking out all of the air. And if the tube is anything but a perfect vacuum, the

energy cost of sending a bit would still be at least proportional to the distance the bit

travelled.

But is this merely an engineering limitation? Is it feasible to suck more and more

air out of longer and longer tubes, so that even though there is some air in them, the

state of the tubes gets arbitrarily closer to being a vacuum? Could this technique be

used to violate the information-friction hypothesis? Or is it fundamentally impossible to

create a perfect vacuum? Modern quantum �eld theory suggests, however, that even in

a vacuum state virtual particles spontaneously spring into existence [87]. This suggests

that maintaining a vacuum may be impossible in our Universe, although whether virtual

particles cause friction in communicating information is beyond the scope of this thesis, so

we cannot conclude that this technique would be impossible to overcome the information

friction assumption.
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8.0.4 Electromagnetic Radiation

Using electromagnetic radiation is a widely used communication technique. However, it

is subject to a 1
R2 energy density loss as a function of distance R. However, this may be

avoided by capturing the radiation with larger and larger receiving antennas as distance

increases. Though terribly impractical at large distances, at �rst glance this may seem to

overcome the linear-in-distance energy cost of communication. However, the fact that a

perfect vacuum may be impossible to obtain, attenuation that is exponential in distance

may cause this technique to fail as well, regardless of how big the receiving antennas are.

8.0.5 Quantum Entanglement

Our results model physical limits of classical computers, but of course we live in fun-

damentally quantum world, and so one may conjecture that using phenomenon like en-

tanglement may be used to communicate information over arbitrary distances with little

energy. However, as Eberhart et al. show [88], communicating information by observing

one part of an entangled quantum system cannot be used to communicate information

to receivers observing another part.

However, quantum mechanics suggests it is possible to communicate more information

than is intuitively obvious using super-dense coding [89]. The idea of super-dense coding

is to �rst have Alice and bob share one of two entangled qubits. Alice applies appropriate

unitary operations to her bit which evolves the qubit pair into one of four orthogonal

states. She then sends this bit to Bob, who then observe the qubit pair. Alice sends only

one qubit but Bob in e�ect receives two bits of information because the qubit pair is in one

of four orthogonal states (which, with an appropriate measurement can be determined

exactly). As surprising as this result is, it does not contradict the information friction

hypothesis, because on qubit still needs to be sent over the channel, so there is a factor

of 2 energy savings at most.

8.0.6 Adiabatic Computing

An area of active research is called adiabatic computing (see [90] for a review). Instead

of charging and discharging the wires each clock cycle, the energy is re-used by the

circuit. Because power dissipation to charge a resistor is proportional to I2R where

I is current and R is resistance (that is, non linearly in I) if current is slowed down

then the power consumption can be made arbitrarily small. If run arbitrarily slowly

then theoretically these devices can consume an arbitrarily small amount of energy per
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operation. The problem with this is that if such a scheme was scaled with N , to overcome

energy scaling losses the circuit would have to be run increasingly slowly to the point of

being impractical.

8.0.7 Superconducting Channel

Superconductors are materials that have zero electrical resistance. So a computer made

out of superconducting material would avoid resistive energy consumption. As well, if

wires in a circuit were replaced entirely by superconductors, there would still be energy

consumption due to charging and discharging the capacitance of the wires (which is a

property of the superconductor's geometry, and not the material that it is made from).

However, I cannot rule out the possibility of adiabatic computations using supercon-

ducting material to avoid energy consumption that scales proportionally with distance.

However, any imperfections in the superconductor would result in some power dissipa-

tion caused by resistance, and this e�ect would still scale linearly in distance (but the

proportionality constant may be much less than in regular conducting wires).

8.0.8 The Wormhole Circuit

One assumption central to the bit-meters model is that computational nodes are packed

within a Euclidean topology. However, Einstein's general theory of relativity predicts that

space-time can bend in the presence of massive objects. Thus in reality, the Universe

is not actually a Euclidean space. In fact, the existence of Einstein-Rosen bridges (or

wormholes) that connect to otherwise distant points in space are consistent with general

relativity [91]. If it were possible to construct a wormhole, not only would it be possible

to communicate information quickly across such a wormhole, it may also be that the

distance that the information travels would be less, and thus not subject to frictional

e�ects as we assume in our Theorems.

So does the hypothetical Einstein-Rosen Bridge computer violate the information

friction hypothesis? If we could actually construct a wormhole, and the energy to main-

tain that wormhole was sublinear in the distance between the points that the wormhole

connects, then it seems like yes, general relativity seems to contradict the �Euclidean-

space� assumption of the information-friction model. However, as far as I am aware no

one knows how to actually construct such a wormhole. Though constructing a circuit

�lled with wormholes may be utterly impractical, for this reason I am hesitant to claim

that the hypothesis is a law of nature, rather than just a pretty universal engineering

principle.



�The important thing is not to stop questioning; curiosity has its

own reason for existing. One cannot help but be in awe when

contemplating the mysteries of eternity, of life, of the marvelous

structure of reality. It is enough if one tries merely to comprehend

a little of the mystery every day. The important thing is not to

stop questioning; never lose a holy curiosity.�

Albert Einstein

9
Conclusion

The main idea of the thesis is this: we can classify error control coding schemes in

terms of how their block error probability scales. We have universal lower bounds on

the energy and time complexity of such circuits. We analyze LDPC and polar codes and

show close-to-tight upper and lower bounds on a large class of LDPC and polar encoding

and decoding circuits. By analyzing the mesh network and placing mesh network LDPC

decoders in parallel, conditioned on an assumption, we can reach the universal decoding

lower bounds that use a minimum number of clock cycles. On the other hand, generalized

polar decoding can, without requiring any unproven assumptions, reach universal lower

bounds on energy. However, asymptotically they take signi�cantly more clock cycles. In

Table 9.1 we summarize the main scaling rule results of this thesis.

There are still some unanswered questions related to the computational complexity of

LDPC decoding, and error control coding in general. We discuss some of these problems

below.

• Theoretically constructing serialized encoding and decoding schemes that are close

to the lower bounds is an area of future work.

• Finding upper bounds for three-dimensional circuits is also an open question,

though I suspect a natural generalization of the mesh-network technique to three
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Type of Circuit
Lower Bound on

Energy
Technique to construct

Achievable upper bound
on Energy

Number of Clock
Cycles with this

scheme

Fully-parallel
f(N)-Decoder

Ω
(
N
√
− log(f(N))

) Parallel generalized
polar codes,
Section 6.3

Õ
(
N1+ε

√
− log(f(N)))

)
,

for ε > 0
Õ (− log (f(N)))

Conditioned on
assumption, parallel
LDPC codes on mesh
network, Section 6.3

Õ
(
N
√
− log(f(N)))

)
Õ
(√
− log (f(N))

)

Fully parallel
f(N)-Encoder

Ω
(
N
√
− log(f(N))

) Parallel generalized
polar codes,
Section 6.3.1

Õ
(
N1+ε

√
− log(f(N)))

)
,

for any ε > 0
Õ(
√
− log(f(N)))

Constant output
node serial f(N)-
encoder/decoder

Ω (−N log(f(N)) ? ? ?

Increasing output
node serial f(N)-
encoder/decoder

Ω
(
N (− log(f(N))

1/5
)

? ? ?

Directly
implemented LDPC

decoder

Almost surely Ω(N2)
per iteration

Directly-implemented
technique of Section

4.7
O(N2) per iteration O(1) per iteration

Serialized LDPC
decoder

Almost surely
Ω(N1.5) per iteration

LDPC decoding on
mesh network,
Section 6.2.1

Õ(N1.5)
Õ(
√
N) per

iteration

Polar Encoder with
R > 1/2

Ω(N1.5)
Mesh network,
Section 5.4.2

Õ(N1.5) Õ(
√
N)

Polar decoder with
R > 2/3

Ω(N1.5)
Mesh network,
Section 5.4.4

Õ(N1.5) Õ(N)

3-D Bit-meters
Encoder/Decoder
with Pe ≤ f(N)

Ω
(
N(− log(f(N)))1/3

)
? ? ?

Table 9.1: Table summarizing some of the main scaling rule results in this thesis. The
�rst column shows the class of circuits considered. The second column shows the lower
bound derived for this class of circuits. The third column gives the technique we an-
alyze to get close to these lower bounds. The fourth column shows the energy scaling
rules for this technique, and the �nal column shows how the number of clock cycles
scales for this technique. We use the notation that a function is in Õ(f(N)) if it is in
O(f(N) polylog(N)). A question mark indicates that this remains an area of future work.
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dimensions would likely be e�ective.

• Proving, (or disproving) Assumption 1 would strengthen, or, respectively, weaken

the results of this thesis.

• Constructing or simulating the mesh network circuits that theoretically have good

asymptotic result is an obvious area of further research. When circuits for a par-

ticular problem size are constructed, I suspect there would require many more

energy minimization techniques employed to make mesh network implementations

comparable to state-of-the art circuits, but this is an open question.

• We've analyzed LDPC and polar codes in this thesis. A theoretical energy analysis

for almost any other type of error control code also remains generally unexplored.

Spatially coupled codes [92] may be particularly suitable for this type of analysis.

• Our asymptotically close to optimal construction of Chapter 6 for f(N)-coding

schemes itself may not be a very useful construction (in particular, putting many

identical decoders in parallel can't possibly decrease the energy per bit costs of

decoding). However, communicating a small amount of information between ad-

jacent parallel decoders may come at only a small energy cost but could possibly

increase code performance. Consider, for example, the staircase codes of [93]. Such

codes have an iterative decoding algorithm whose communication graph for each

iteration may require only a small amount of communication across the circuit.

Constructing energy e�cient, high performance staircase codes circuits thus may

be possible, and remains an area of future work.

• For LDPC codes, the �almost sure" scaling rule for the energy of VLSI LDPC

decoders does not exclude the possibility that there are good LDPC codes whose

decoding energy scales more slowly than this (they may simply occur with vanishing

probability). Thus, there may be some good LDPC codes with �lower energy"

Tanner graphs that still provide good code performance. Intuition suggests that

for a given channel a code with a �lower energy" LDPC decoder may have higher

probability of error. A general analysis of this fundamental tradeo� is an open

question.

• In our LDPC coding lower bounds, the dependence on maximum node degree of

our scaling rules is somewhat surprising. In our de�nitions of LDPC decoders, we

consider a graph that contains the Tanner graph as a minor. It may be that high

degree nodes can be split to decrease the minimum bisection width of a graph and
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thus possibly decrease circuit area. A formal analysis of how vertex splitting might

decrease circuit area remains an open question.

• For LDPC codes, it may be that edges of a Tanner graph that connect vertices

that are too far away on the decoder can be modi�ed to connect closer nodes,

with a small cost in error probability. As well, there exist some algorithmic level

modi�cations [94] that may allow energy savings. A theoretical analysis of such

techniques may be informative.

• Extending the polar encoding and decoding lower bounds to all rates is an obvious

area of future work.

• Our decoding lower bounds are for algorithms based on graphs obtained from the

butter�y network decoding graph suggested by Ar�kan [3]. Our lower bound does

not necessarily include all decoders based on successive cancellation decoding for

polar codes. A particular challenge for generalizing this result is in de�ning precisely

what a circuit that performs a polar decoding algorithm actually is, and thus this

remains an area of future work.

• More generally, for a given application, what technique can be used to choose the

�energy-optimal" error control code? Can this analysis improve the energy of real

communication systems? Ganesan et al. [48] discuss this question and show how,

for a reasonable system model, the performance optimal code depends on the circuit

technology used and the nature of the channel.

• All of our results in this thesis are asymptotic. However, real circuits are designed

for a �xed problem size. Using energy as a parameter to be traded o� with error

probability and rate in the design of real, physical circuits is a little studied problem,

though [48] begins studying this question. In particular, the design of code libraries

with parameters that can be varied that trade o� energy and reliability is a natural

extension of this work.

• The decoding problem for communication systems is a special case of the more gen-

eral problem of inference. Well known algorithms used for inference, for example

the Sum-Product Algorithm [95] and variational methods [96], include Gallager's

low-density parity-check decoding algorithms as a special case [43]. Thus, we con-

jecture that there may be similar tradeo�s between energy, latency, and reliability

in circuits that perform inference. Analyzing the energy complexity of more general

inference problems is thus an obvious area of future work.



A
Appendices

A.1 Coding Schemes with Error Probability Less than

1/2

Recall the de�nition of an r-stage nested bisection, the quantity bi, and the quantity Br,

and Ni Ki from Chapter 3, Section 3.3.

In this section, we will be dividing a circuit up into pieces and then we will let N

grow larger. Technically, a circuit can only be divided into an integer fraction of pieces.

However, this rounding to an integer number of subcircuits does not change our scaling

rules. To make this notion rigorous, we will need to use the following lemma:

Lemma 30. Let h : R→ R be a function such that |h (x)− x| ≤ a for su�ciently large

x and some positive constant a. If there are functions f, g : R→ R, and g is continuous

for su�ciently large x, and if limx→∞ f (g (x)) = c for some constant c ∈ R, and if

limx→∞ g (x) =∞ then limx→∞ f (h (g (x))) = c.

Proof. Suppose

lim
x→∞

f (g (x)) = c.

To show that limx→∞ f (h (g (x))) = c we need to construct, given some ε, a particular

x0 such that for all x > x0, |f (h (g (x)))− c| < ε. Since g grows unbounded, and is
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continuous for su�ciently large x, then there must be a particular value of x (call it x′)

such that g (x) takes on all values greater than g (x′) for some x > x′. As well, for any

ε > 0 there exists some x′′ such that for all x > x′′, |f (g (x))− c| < ε. In particular

this is true for some x′′ > x′. Thus, choose x0 to be the least number greater than x′′

in which g (x0) = g (x′′) + a (this must exist because g takes on all values greater than

g (x′′)). Thus, for x > x0 h (g (x)) only takes on values greater than g (x′′) (because

|h (x)− x| ≤ a). Since |f (g (x))− c| < ε for all x > x′′, thus |f (h (g (x)))− c| < ε for all

x > x0, since h (g (x)) can only take on values that g (x) takes on for x > x′′.

Corollary 10. This result applies when h (·) is the �oor function, denotedb·c, since

|bxc − x| ≤ 1.

We will need to make one observation that will be used in the three main theorems

of this section, which we present in the lemma below.

Lemma 31. If ε > 0 and N1, N2, . . . , Nm are positive integers subject to the restriction

that
∑m

i=1Ni ≤ N then:
m∏

i=1

(
1− εNi

)
≤
(

1− εNm
)m

Proof. The proof follows from a simple convex optimization argument.

The main theorems in this chapter rely on the evaluation of a particular limit, which

we present as a lemma below.

Lemma 32. For any constant c, 0 < c < 1, and any constant c′ > 0:

lim
N→∞

(1− exp (−c logN))
c′N
logN = 0. (A.1)

Proof. This result follows simply from taking the logarithm of the expression in (A.1)

and using L'Hôpital's rule to show that the logarithm approaches −∞.

Grover et al. in [2] uses a nested bisection technique to prove a relation between

energy consumed in a circuit computation and bits communicated across the r-stages of

nested bisections which we present as a series of two lemmas, the second which we will

use directly in our results.

Lemma 33. For a circuit undergoing r-stages of nested bisections, in which the total

number of bits communicated across all r-stages of nested bisections is Br, then

AT 2 ≥
(√

2− 1
)2

16

B2
r

2r+1
.
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Proof. See [2] for a detailed proof. Here we provide a sketch. To accomplish this proof,

r-stages of nested minimum bisections on a circuit are performed and then a principle due

to Thompson [8] is applied that states that the area of a circuit is at least proportional

to the square of the minimum bisection width of the circuit. Also, the number of bits

communicated to a subcircuit cannot exceed the number of wires entering that subcircuit

multiplied by the number of clock cycles. The area of the circuit (related to the size of the

minimum bisections performed) and the number of clock cycles (more clock cycles allow

more bits communicated across cuts) are then related to the number of bits communicated

across all the edges deleted during the r-stages of nested bisections.

Lemma 34. If a circuit as described in Lemma 33 in addition has at least β nodes, then

the AT complexity of such a computation is lower bounded by:

AT ≥
√

2− 1

4
√

2

√
β

2r
Br

Proof. Following the same arguments of Grover et al. in [2] (which we reproduce to get

the more general result we will need), note that if there are at least β computational

nodes, then

A ≥ β

which, when combined with Lemma 33 results in:

A2τ 2 ≥
(√

2− 1
)2

16

B2
r

2r+1
β

which yields the statement of the Lemma upon taking the square root.

Remark 14. In terms of our energy notation, the result of Lemma 34 implies that for such

a circuit with at least β computational nodes, the energy complexity is lower bounded

by:

Eproc ≥
√

2− 1

4
√

2

√
β

2r
Br = Ktech

√
β

2r
Br

where Ktech =
√

2−1
4
√

2
.

A.1.1 Bound on Block Error Probability

The key lemma that will be used in the �rst theorem of this section is due to Grover et

al. [2]. We modify the lemma slightly.
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Lemma 35. All decoder circuits for a BEC with erasure probability ε, for any r <

log2

(
K
2

)
,

either Pe ≥
1

2
−
(

1− ε
Ni

2r−1

)2r−1

or Br ≥
K

2
.

The proof uses the same approach as Grover et al. in [2] but we modify it slightly to

ease the use of our lemma for our theorem and to conveniently deal with the possibility

that a decoder can guess an output of a computation.

Let si be the number of input bits erased in the ith subcircuit after r-stages of nested

bisections. Furthermore, recall from De�nition 6 that bi is the number of bits injected

into the ith subcircuit during the computation. Also, recall from De�nition 8 that ni is

the number of input nodes located within the ith subcircuit. We use the principle that if

K

2r
< Ni − si + bi

for any subcircuit then the probability of block error is at least 1
2
. This is a very intuitive

idea; if the number of bits that are not erased, plus the number of bits injected into a

circuit is less than the number of bits the circuit is responsible for decoding, the circuit

must at least guess 1 bit. This argument will be made formal in the proof that follows.

Proof. (of Lemma 35) Suppose that all the ni input bits injected into the ith subcircuit

are the erasure symbol. Then, conditioned on this event, the distribution of the ki bits

that this subcircuit is to estimate is uniform (owing to the symmetric nature of the

binary erasure channel). Furthermore, if bi <
K
2r

then the number of bits injected into

the subcircuit is less than the number of bits the subcircuit is responsible for decoding.

Combining these two facts allows us to apply Lemma 1 directly to conclude that, in the

event all the inputs bits of a subcircuit are erased, and the number of bits injected into

the subcircuit is less than K
2r
, then the subcircuit makes an error with probability at least

1
2
. Denote the event that all inputs bits in subcircuit i are erased as W r

i . The probability

of this event is given by

P (W r
i ) = εNi .

Suppose that Br < K/2 where we recall Br is the total number of bits communicated

across all edges cut in r-stages of nested minimum bisections). Let S =
{
i : bi <

K
2r

}
be

the set of indices i in which bi (the bits communicated to the ith subcircuit) is smaller

than K
2r
. We �rst claim that |S| > 2r−1. To prove this claim, let S̄ =

{
i : bi ≥ K

2r

}
and

note that K
2
> Br =

∑
bi ≥

∑
i∈S̄

K
2r

=
∣∣S̄
∣∣ K

2r
, from which it follows that

∣∣S̄
∣∣ < 2r−1.

Since |S|+
∣∣S̄
∣∣ = 2r, the claim follows.
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Hence, in the case that Br ≤ K/2, because of the law of total probability:

P (correct) = P
(
∩i∈SW̄ r

i

)
P
(
correct| ∩i∈S W̄ r

i

)

+ P (∪i∈SW r
i )P (correct| ∪i∈S W r

i )

≤
∏

i∈S

(
1− εNi

)
+

1

2
(A.2)

where the event ∩i∈SW̄ r
i is the event that each of the subcircuits indexed in S, after r-

stages of nested bisections, do not have all their Ni input bits erased. We then note that,

in this case, the probability of the circuit being decoded correctly is at most 1. For the

second term, we note that conditioned on the event that at least one of the subcircuits

indexed in S has all their input bits erased, since the circuit must at least guess 1 bit,

the probability of the circuit decoding successfully is at most 1
2
, by Lemma 1.

Since
∑

i∈S Ni ≤
∑2r

i=1Ni = N , subject to this restriction, Lemma 31 shows the

expression in (A.2) is maximized when Ni = N
|S| for each subcircuit in S. Hence,

P (correct) ≤
(

1− ε N|S|
)|S|

+
1

2
.

Thus, either Br ≤ K
2
or |S| ≥ 2r−1 which implies

P (correct) ≤
(

1− ε N
2r−1

)2r−1

+
1

2

and so

Pe = 1− P (correct)

≥ 1

2
−
(

1− ε N
2r−1

)2r−1

.

A.1.2 Fully Parallel Lower Bound

We will consider in the following theorem coding schemes in which each decoder in the

sequence forming the scheme is fully parallel which we will naturally call fully-parallel

coding schemes. Recall that, in this thesis, any decoding scheme has associated with

it the binary erasure channel that each of its decoders is to decode, and thus we can

de�ne the quantity PN
e associated with the decoding scheme, which is the block error

probability of the decoder with block length N in the scheme.
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Theorem 12. For every increasing-block-length fully-parallel coding scheme, if limN→∞ P
N
e <

1
2
, then for su�ciently large N ,

Edec > Ktech

√
(log2N)

log2

(
1
ε

) RN
2

(A.3)

where Edec is the energy used in the decoding and Ktech =
(
√

2−1)
4
√

2
.

Proof. The theorem follows from an appropriate choice for r, the number of nested bi-

sections we perform. We can choose any nonnegative integer r so that r < log2

(
K
2

)
.

Note that K = NR is the number of bits the decoder is responsible for decoding. As K

gets large, we can thus choose any r so that 1 ≤ 2r ≤ K
2
. Thus, we choose an r so that,

approximately, 2r =
2 log( 1

ε )N
K logN

, for a value of K which we will choose later. In particular,

we will choose r =

⌊
log2

(
2 log( 1

ε )N
K logN

)⌋
.

This is valid so long as N is su�ciently large, for some 0 < K < 1. Note that log 1
ε
> 0

since 0 < ε < 1. Since K
2

= RN
2

, this is a valid choice for r so long as

2 log
(

1
ε

)
N

K logN
<
R

2

which must occur as the left side of the inequality approaches 0 as N gets large. We can

plug this value for r into Lemma 35, but we will simplify the expression by neglecting the

�oor function, as application of Lemma 1 will show that this does not alter the evaluation

of the limit that we will compute, as we can see our choice for r grows unbounded with

N . Thus, either

PN
e ≥

1

2
− (1− exp (−K logN))

1
K

log( 1
ε )N

logN (A.4)

or, applying Lemma 34 by recognizing that there are at least β = N nodes,

Edec > Ktech

√
(K logN)

log
(

1
ε

) RN

2
. (A.5)

By a direct application of Lemma 32, so long as K < 1, the bound in (A.4) approaches
1
2
which we can see as follows:

lim
N→∞

PN
e ≥

1

2
− lim

N→∞
(1− exp (−K (logN)))

Kn
(logN)

=
1

2
.
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This implies that, in the limit of large block sizes, the probability of block error must be

lower bounded by 1
2
, unless Br ≥ K

2
. But then by (A.5), it must be that

Edec > Ktech

√
(logN)

log
(

1
ε

) RN
2

(A.6)

which is the result we are seeking to prove.

A.1.3 Serial Computation

Our result in Section A.1.2 applies to decoders implemented entirely in parallel; however,

this does not necessarily re�ect the state of modern decoder implementations.

De�nition 75. A serial decoding scheme is one in which the number of output pins of

the ith decoder stays constant.

Remark 15. The number of clock cycles T must at least be enough to output all the

bits the decoder is responsible for outputting. Suppose there are J output nodes and

K outputs of the function being computed, then there must be at least K
J
clock cycles.

If all the inputs into the computation are being used, then there must also be at least
N
p
clock cycles, though it is technically possible for some functions to have inputs that

�don't matter� so this is not a strict bound for all functions. Hence, a lower bound on

the energy complexity for this computation is:

Eproc ≥ Ac
K

J

where Ac is the area of the circuit.

We will be concerned in the following theorem with increasing-block-length serial

decoding schemes with number of output pins J . Recall that in such a scheme we can

label the block error probability of the decoder with block length N with the symbol PN
e .

Theorem 13. For any increasing-block-length serial decoding scheme with number of

output pins J , if limN→∞ P
N
e < 1

2
then for su�ciently large N :

Edec ≥
R2n

J log
(

1
ε

) (logN − J) = Ω (N logN) .

To prove this theorem, instead of dividing the circuit into subcircuits, we will divide

the computation conceptually in time, by dividing the computation into epochs. More
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precisely, consider dividing the computation outputs into chunks of size m (with the ex-

ception of possibly one chunk ifm does not evenly divide K), meaning that there are
⌈
K
m

⌉

such chunks. Hence, the outputs, which can be labeled (k1, k2, . . . , kK) can be divided into

groups, or a collection of subvectors
(
K1, K2, . . . , KdKme

)
in which K1 = (k1, k2, . . . km),

K2 = (km+1, km+2, . . . k2m) and so on, until KdKme =
(
kmbKmc, kmbKmc+1, . . . , kK

)
.

De�nition 76. The set of clock cycles in the computation in which the bits in Ki are

output is considered to be the ith epoch.

In our analysis, we are interested in analyzing the decoding problem for chunks of

the output as de�ned above for an m that we will choose later for the convenience of our

theorem. We are also interested in another set of quantities: the input bits injected into

the circuit between the time when the last of the bits in Ki are output and the �rst of the

bits in Ki+1 bits are output. Label the collection of these bits as
(
N1, N2, . . . , NdKme

)
.

Label the size of each of these of these subvectors as
(
N1, N2, . . . , NdKme

)
, so that the

number of bits injected before all of the bits in K1 are computed is N1, and the number

of those injected after the �rst N1 bits are injected and until the clock cycle when the

last of the bits in K2 are output is N2, and so on. Let si be the number of erasures that

are injected into the circuit during the ith epoch. Note that by Lemma 1 an error occurs

when

m ≤ Ni + A− si

since a wire in the circuit at any given time in the computation can hold only the value

1 or 0.

Proof. (of Theorem 13) Suppose we divide the circuit into chunks each of size A + J , J

more than the normalized circuit area. Then, if all the bits Ni are erased, the probability

that at least one of the bits of Ki is not decoded must at least be 1
2
, because there are

simply not enough non-erased inputs for the circuit to infer the m bits it is responsible

for decoding in that window of time. Note that we choose m = A + J so that an error

event occurs with probability at least 1
2
when all the Ni bits are erased, because it is

technically possible that in a clock cycle that outputs the last of the bits of Ki, J − 1

bits of Ki+1 are output. Then, the number of bits required to be computed for the next

chunk of outputs is at least Ki+1−J + 1. Let the size of each Ki (except possibly KdKme)
be A + J . Similar to what we did for in Section A.1.1, denote the event that all input

bits in Ni are erased as Wi. Thus:
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P (correct) = P

(
∩d

K
me

i=1 W̄i

)
P

(
correct| ∩d

K
me

i=1 W̄i

)

+ P

(
∪d

K
me

i=1 Wi

)
P

(
correct| ∪d

K
me

i=1 Wi

)

≤
bKmc∏

i=1

(
1− εNi

)
+

1

2
.

The �rst term is simpli�ed by recognizing the independence of erasure events in the

channel and the second term is simpli�ed by the fact that, conditioned on the event that

at least one subcircuit has input nodes being all erasure symbols, Lemma 1 applies and

at least one subcircuit must make an error with probability at least 1
2
. Thus:

PN
e = 1− P (correct)

≥ 1−
bKmc∏

i=1

(
1− εNi

)
. (A.7)

It must be that
∑dKme

i=1 Ni = N , and thus
∑bKmc

i=1 Ni ≤ N , where again N is the total

number of inputs.

We can apply Lemma 31 to show that the product term in (A.7) is maximized when

each Ni is equal to Ni = N

bKmc . Thus, we show that:

Pe ≥ 1−
(

1− ε
N

bKmc
)bKmc

.

For the sake of the convenience of calculation, we replace
⌊
K
m

⌋
with K

m
, which will not

alter the evaluation of the limit by Lemma 30, giving us:

PN
e ≥ 1−

(
1− εmnK

)K
m (A.8)

Since we have assumed m = A + J , suppose that A ≤ cR
log 1

ε

logN − J , and recognizing

that K = RN , and that m = A+ J , substituting into (A.8) and simplifying gives us:

Pe ≥
1

2
− (1− exp (−c logN))

log( 1
ε )RN

logN .
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Thus, if c < 1 and applying Lemma 32:

lim
N→∞

Pe ≥
1

2
− lim

N→∞
(1− exp (−c logN))

log( 1
ε )RN

logN

=
1

2
.

Hence, either in the limit block error probability is at least 1
2
, or A > cR

log 1
ε

logN − J and

thus

Edec ≥ A
K

J
≥ R2n

J log
(

1
ε

) (logN − J)

= Ω (N logN) ,

where we have used the fact that the number of clock cycles is at least K
J
as well as our

bound on A.

A.1.4 A General Case: Allowing the Number of Output Pins to

Vary with Increasing Block Length

To accomplish this super-linear lower bound, we divide how the number of output pins J

scales with N , the block length, into cases. We suppose that J ≥ √logK. If not, using

our result from Theorem 13, for codes with asymptotic block error probability less than
1
2
,

Edec ≥
ξtechλ

2
wR

2N

log
(

1
ε

)
(

logN

J
− 1

)
,

if J <
√

logK then we can show that

AT ≥ ξtechλ
2
wR

2N

log
(

1
ε

)
(√

logK − 1
)

= Ω
(
N
√

logN
)
≥ Ω

(
N (logN)

1
5

)

and we are done.

Remark 16. Technically, the statement that either J ≥ √logK or J <
√

logK does not

fully specify all possible sequences of output pins. However, for any sequence, we can

divide the sequences into separate subsequences, speci�cally the sequences of codes in

which J ≥ √logK and in which J <
√

logK. For each of those subsequences we can

prove our lower bound.
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Let Ā = A
λ2

be the normalized circuit area. Suppose also that Ā
J
≤ log0.9N . Otherwise,

if Ā
J
> log0.9N and from our simple bound in Remark 15, we can see that

ĀT ≥ A
K

J
> K log0.9N ≥ Ω

(
N (logN)

1
5

)

and we are done.

Note again that, just as in Remark 16, if the area alternates between log0.9N with

increasing block length, we can simply divide the sequence of decoders into two subse-

quences and prove that the necessary scaling law holds for each subsequence.

Hence, we consider the case that we have a sequence of serial decoding algorithms in

which the area of the circuit grows with the block length N and the number of output

nodes on the circuit grows with N . We consider the case in which

Ā

J
≤ log0.9N (A.9)

and

J ≥
√

logK (A.10)

We will now choose a way to divide the computation intoM epochs andNs subcircuits.

For each of the M epochs we want the number of bits responsible on average for each

decoder to decode to be four times the area. This will mean that, even if we optimistically

assume that before the beginning of each epoch a circuit had already computed the future

outputs, a typical subcircuit can only store a fraction of the bits it is responsible for

decoding in the next epoch. Note that the number of bits that a subcircuit is responsible

for in total over the entire computation must be K
Ns

and hence, if the computation is to

be divided into M epochs, during each epoch, an average subcircuit must be responsible

for decoding K
MNs

bits. We seek to choose an M such that

K

MNs

≥ 4Asubckt,avg

where Asubckt,avg is the average normalized area of a subcircuit. This will be true if
K

MNs
≥ 4 A

Ns
or equivalently if M ≤ K

4A
so we choose

M =
K

4A
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We also want NsM = cN
logN

for a constant c which we will choose later, so we choose

Ns =
cn4A

K logN
=

c4A

R logN
.

We need to show that this is a valid choice for Ns. The restriction on the choice of

Ns is that Ns ≤ J (we can't subdivide the circuit into more subcircuits than there are

output pins). By applying the assumption on the scaling of the area of the circuit in

(A.9) we can see that

4A

R logN
≤ 4cj log0.9N

R logN
= J

(
4c

R

)
log0.9N

logN

is asymptotically less than J , and hence this choice of Ns is valid. Our choice ofM is K
4A
.

The restriction on the choice of M is that M ≤ K
J
(there must be at least one output per

pin per epoch). Thus K
4A
≤ K

J
, which will be true when J ≤ 4A. But since the J output

pins form part of the area of the circuit, this must always be satis�ed.

On a minor technical note, we can only choose integer values of M . Hence, we can

decide to choose the �oor of M . But, as argued in Lemma 30 if the function for choosing

M grows with N then the evaluation of a limit where we neglect this �oor function is the

same. So, our other requirement, that limN→∞
A
N

= 0 means that our choice forM grows

as N increases. We consider the case when area of the computation remains proportional

to N at the end of this section.

Since we have divided the circuit into M epochs we may consider the number of bits

communicated across all edges deleted after the r-stages of nested minimum bisections

during epoch i. Denote this quantity Br,i.

Consider the set of epochs (denoted Q) in which Br,i <
J
2
. These can be thought of

as the low inter-subcircuit communication epochs. Either (a) |Q| > M
2
or (b) |Q| ≤ M

2
.

We will consider case (a) �rst and show in this case the block error probability is high.

In the other case, we will show the energy of computation is high, proving the theorem.

Note that each subcircuit induced by the nested bisections will have some area (equal

to the number of grid squares occupied by its wires and computational nodes). There are

Ns such subcircuits. Denote the set of indices denoting subcircuits with area less than
2Ā
Ns

as F . Observe that |F | ≥ Ns
2
, otherwise, if |F | < Ns

2
then there are more than Ns

2

subcircuits with area at least 2Ā
Ns
, resulting in a total area greater than Ā, a contradiction.

The set F can be thought of as the set of low area subcircuits.

We now consider case (a) above, the case in which there are many low inter-subcircuit

communication epochs. Because of the output regularity assumption and by our choice of
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M and Ns, each subcircuit epoch is responsible for decoding 4Ā
Ns

bits. Consider a speci�c

epoch q in Q. During this epoch, let the number of bits injected into the ith circuit be bi.

Let the set of subcircuits in F in which bi <
2j
Ns

be denoted Sq. Observe that |Sq| ≥ Ns
4
,

otherwise F has at more than Ns
4

subcircuit epochs with at least 2j
Ns

bits injected into

them, and thus in total there are more than Ns
4

2j
Ns

= J
2
bits communicated during this

epoch, which we assumed is not the case.

Observe that a particular subcircuit epoch in Sq has area at most 2A
Ns

and has less

than 2j
Ns

bits communicated to it from outside the subcircuit during the epoch. Thus, it

has less than 2A
Ns

+ 2j
Ns

< 4A
Ns

bits communicated to it from outside the epoch, where we

applied the obvious fact that A ≥ J because the normalized area must at least be greater

than the number of output pins. In the event that all of the input bits injected into that

subcircuit epoch are erased then the subcircuit epoch must guess at least 1 bit.

Since, by assumption (a) |Q| > M
2
, for convenience denote a particular subset of of

Q of size exactly M
2
as Q∗. Since for all q ∈ Q, |Sq| ≥ Ns

4
, for convenience we denote an

arbitrary subset of this set of size exactly Ns
4
as S∗q .

Using the same argument as in Theorems 12 and 13, we can show that, subject to

the assumption (a),

P blk
e ≥ 1

2
−
∏

q∈Q∗

∏

i∈S∗q

(
1− εNi,q

)
(A.11)

where we note as well that
M
2∑

q=1

Ns
4∑

i=1

Ni,q ≤ N.

Subject to those restrictions, Lemma 31 implies that the expression in (A.11) is minimized

when each of the Ni,q are equal to
8N
NsM

. Hence

Pe,blk ≥
1

2
−
(

1− ε 8n
NsM

)NsM
8

≥ 1

2
−
(
1− ε8c logN

) logN
8n ,

which, by applying Lemma 32, can easily be shown to approach 1
2
when N gets larger, if

c is chosen to be
log 1

ε

8
. Hence, either in the limit block error probability is greater than

1
2
or case (b) is true and the size of Q is greater than M

2
.

From Lemma 34, by recognizing that for the circuit under consideration there are at

least J nodes, if there are Br,i bits injected across all the r-stages of nested minimum
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bisections, then

AT ≥ K ′Br,i

√
J

2r

where K ′ =
√

2−1
4
√

2
and 2r = Ns, the number of subcircuits into which the circuit was

divided. Thus, combining this bound with our choice for Ns and our assumption that

there are at least J
2
bits communicated across all the bisections for a large number of

epochs, we get that either

ATi ≥ K ′
J

2

√
J

Ns

for at least M
2
epochs, or limN→∞ P

blk,N
e ≥ 1

2
. Hence, in total,

AT ≥ K ′
J

2

√
J

Ns

M

2

= K ′
J

2

√
J

Ns

K

8A

= K ′
J1.5

2

√
R logN

4cA

K

8A
implying

Ā2.5T ≥ K ′

32
kj1.5

√
R logN

c
(A.12)

We also have the bound from Remark 15:

T ≥ K

J
, which implies

T 1.5 ≥ K1.5

J1.5

and hence, combining this with (A.12), we get

A2.5T 2.5 ≥ K ′

32
K2.5

√
R logN

c
, implying

AT ≥ (K ′)
2
5

4
K

(
8R logN

log
(

1
ε

)
) 1

5

= Ω
(
K (logN)

1
5

)
.

Finally, we must consider a case when the area of the circuit scales with N . This must

be treated separately because in this case our choice for M in the above argument does

not necessarily grow with N and so we can't assume that our rounding approximation is
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valid. Thus, suppose that A = cN . Suppose also that j ≤ K
(logN)0.9

. Then

T ≥ K

j
≥ (logN)0.9

from Remark 15, and therefore the total area-time complexity of such a sequence of

decoders scales as

AT ≥ cN (logN)0.9 = Ω
(
N (logN)0.9) .

In the other case, when j ≥ K
(logN)0.9

then we can subdivide the circuit into N
logN

pieces,

and make the same argument that has been made in Theorem 12 that the number of bits

communicated across all cuts during the course of the computation must be proportional

to K/2. Recognizing that we have assumed there are at least cN nodes in the circuit

and applying Lemma 34, and also substituting 2r =
log 1

ε
N

logN
we get:

AT ≥
√

2− 1

8
√

2

√
cR logN

log
(

1
ε

) N = Ω
(
N
√

logN
)

which of course is asymptotically faster than Ω
(
N (logN)

1
5

)
.

A.2 De�nition of δ(L,R) in Terms of Node Degree Dis-

tributions

In the discussions in this chapter, we de�ne a quantity δ in (4.2) in terms of node degree

lists. Given a bipartite graph G and number of left nodes N , number of right nodes M ,

and node degree lists R and L, one can easily construct the more standard node degree

distribution. This de�nition is adapted from [54].

De�nition 77. For a bipartite graph G, let ρi be the fraction of right nodes in G of

degree i and let λi be the fraction of left nodes of degree i. Then P = {ρ1, . . .} is the
right node degree distribution and Λ = {λ1, . . .} is the left node degree distribution.

We note that the sum of the entries of both P and Λ de�ned above must be 1, and that

Λ and P are functions of the left and right node degree lists. Since it is more common

to consider distributions in terms of their node degree distributions, we will state the

quantity δ(L,R) of (4.2) used in Theorem 6 in terms of Λ and P , the left and right node

degree distributions.
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Consider a sequence X = {x1, x2, . . .}, such that
∑
xi = 1 and 0 ≤ xi ≤ 1 for each i.

De�ne:

M(X) = max

{
m :

∞∑

i=m

xi ≥
1

2

}

Note that for a graph with right node degree distribution P , there are at least half the

right nodes with degree M(P ) or greater.

We de�ne

ξ(X) =
1

2
−

∞∑

i=M(X)+1

Xi

so that ξ(X) +
∑∞

i=M(X)+1 Xi = 1
2
. We let:

S ′top(X) = M(X)ξ(X) +
∞∑

i=M(X)+1

ixi.

Then it is obvious to see that the quantity δ from (4.2) can be computed in terms of the

graph's node degree distribution as:

δ (L,R) = max
(
S ′top (λ) , S ′top (P )

)
.

A.3 Proof of Lemma 9

Proof. Since m < Z, n < Z, the product m!n! < Z!Z!, so if Y − Z > Z then obviously

m!n! < Z!(Y − Z)! Thus we consider the case that Y − Z ≤ Z. Since m!n! is increasing

in m and n, we shall also assume that m + n = Y . We now argue that Z!(Y − Z)!

maximizes m!n! and is achieved when m = Y − Z and n = Y .

Suppose that c ≥ d ≥ 1 for positive integers c and d. We have

c+ 1

d
> 1 (A.13)

implying
(c+ 1)! (d− 1)!

c!d!
> 1.

This implies:

c!d! < (c+ 1)!(d− 1)!.

Thus, any product m!n! in which n ≤ m < Z and m + n = Y can be increased by

increasing m by 1 and decreasing n by 1 (which still preserves m+ n = Y ).
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A.4 Proof of Lemma 9 Continued

For the sake of simplicity, we will further loosen these bounds by upper bounding each

of the factors a, b, c, and d. Each of these bounds is easily veri�ed:

a. We note that
(
N
i

)
≤
(
N
N
2

)
.

b. Since M ≤ N , thus
(

M
M+2

2
−i

)
≤
(
N
N
2

)
.

c.
(|E|
j

)( |E|
a−j

)(|E|
j

)( |E|
a−j

)
≤
(|E|
a

)4
which is implied by a ≤ σN ≤ |E|

2
.

d. (j)! (a− j)! ≤ a! which �ows directly from the observation that
(
a
j

)
≥ 1.

Combining these gives us the following bound:

∣∣Qi,j
a

∣∣ ≤
(
N
N
2

)2(|E|
a

)4

a! (δN)! (σN − a)!.

We can bound |Qa| by summing over our upper bound on |Qi,j
a |:

|Qa| ≤
N∑

i=1

N∑

j=1

∣∣Qi,j
a

∣∣

≤ N2

(
N
N
2

)2(|E|
a

)4

a! (δN)! (σN − a)!. (A.14)

We of course are not concerned with the probability of a bisection of size a, but rather

with the probability of a bisection of size a or less. We denote the set of con�gurations

with a bisection of size a or less by Q∗a and since Q∗a =
⋃a
i=0Qa:

|Q∗a| ≤
a∑

i=0

|Qi| .

We will now show that the expression in (A.14) is an non-decreasing function of a for

0 < a ≤ |E|−1
2

. Let the right side of the expression be denoted da, then it is easy to show

that da+1

da
is greater than or equal to 1. It is easy to show that

da+1

da
=

( |E|
a+1

)4
(a+ 1)

(|E|
a

)4
(σN − a)

.

Expanding the binomial coe�cients in the numerator and denominator and simplifying

gives us
da+1

da
=

(|E| − a)4

(a+ 1)3 (σN − a)
.
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This quantity will be greater than or equal 1 if |E| − a ≥ a + 1 and |E| − a ≥ σN − a
. Note that a < σN (an assumption of our lemma) implies 2a < 2σN ≤ |E|. Since a

and |E| are both integers, this implies 2a ≤ |E| − 1, from which we can see that the

�rst inequality is satis�ed. The second is satis�ed by the fact that σN ≤ |E|. We thus

observe that,

|B∗a| ≤ |Q∗a|

≤
a∑

i=0

|Qi|

≤
a∑

i=0

N2

(
N
N
2

)2(|E|
a

)4

a! (δN)! (σN − a)!

≤ (a+ 1)N2

(
N
N
2

)2(|E|
a

)4

a! (δN)! (σN − a)!. (A.15)

We note that the number of possible multi-graphs with our given node degree distribution

is at least (δN + σN)!. We can now bound the probability of the event B∗a with:

P (B∗a) ≤
|B∗a|

(δN + σN)!
(A.16)

≤
(a+ 1)N2

(
N
N
2

)2(|E|
a

)4
a! (δN)! (σN − a)!

(δN + σN)!
(A.17)

where we have simply applied the upper bound for the size of B∗a of (A.15) .

A.5 Proof of Theorem 6

We �rst prove a simple lemma:

Lemma 36. Suppose g (N) = O
(
Nk
)
for some k > 0 and is positive for su�ciently

large N , and there is a sequence N1, N2, . . . that increases without bound. Then:

lim
i→∞

g (Ni) exp (Nif (Ni)) = 0 if

lim sup
N→∞

f (N) < 0.

Proof. Since lim supN→∞ f (N) < 0 and the sequence Ni increases without bound, then
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for su�ciently large i, f (Ni) < −c for some c > 0. Then, for su�ciently large i,

g (Ni) exp (Nif (Ni)) ≤ g (Ni) exp (−cNi) .

Clearly, limi→∞ g (Ni) exp (−cNi) = 0 and because g (N) is positive for large enough N ,

g (Ni) exp (−Nif (Ni)) > 0

for large enough i. The limit thus follows from the squeeze theorem.

Consider �rst a speci�c random con�guration in the sequence with block length N

and node degree distributions that result in values for δ and σ. We will use the bounds

of Lemma 10 and then apply well known approximations. Firstly, we use the well-known

bounds derived from Stirling's approximation that [59, Question 5.8]

e(1+N ln(Ne )) ≤ N ! ≤ e(1+(N+1) ln(N+1
e ))

and that (
N

k

)
≤ exp

(
NH

(
k

N

))

where H (x) = −x log x− (1− x) log (1− x). We use base e as opposed to base 2 in order

to conveniently simplify the expressions that follow. Applying these bounds appropriately

to the bound in Lemma 10, and grouping terms that grow polynomially into an arbitrary

polynomial term g (N) we get that:

P (B∗a) ≤ g (N) (a+ 1) exp

[
2NH

(
1

2

)
+ 4NH

(
a

|E|

)

+ a ln

(
a+ 1

e

)
+ δN ln

(
δN + 1

e

)

+ (σN − a) ln

(
σN − a+ 1

e

)

− (δN + σN) ln

(
δN + σN

e

)]
.

We now let a = βN , which will satisfy the condition speci�ed in (4.4) for β < σ. We

substitute H(1/2) = ln 2 and |E| = δN + σN , and combine polynomial terms into g(N),
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and then use algebraic manipulation to give us:

P
(
B∗βN

)
≤ g (N) exp

[
2N ln(2) + 4NH

(
β

δ + σ

)

+ βN ln

(
β + 1

N

σ − β + 1
N

)

+ σN ln

(
σ − β + 1

N

δ + σ

)

+δN ln

(
δ + 1

N

δ + σ

)]
.

By factoring the N term and by applying Lemma 36, we see that the above expression

will approach 0 if

lim sup
i→∞

2 ln(2) + 4H
(

β

δ + σ

)

+ β ln

(
β + 1

N

σ − β + 1
N

)
+ σ ln

(
σ − β + 1

N

δ + σ

)

+ δ ln

(
δ + 1

N

δ + σ

)
≤ 0

where we recall again that the dependence on i in this expression comes from the N

terms and the δ and σ terms (whose dependence on i we have suppressed). This is true

if

lim sup
i→∞

2 ln(2) + 4H
(

β

δ + σ

)
+ β ln

(
β

σ − β

)

+σ ln

(
σ − β
δ + σ

)
+ δ ln

(
δ

δ + σ

)
≤ 0.

Also note that this is the condition on β given in (4.8). To derive the condition in (4.7),

we �nd the limit as β approaches 0 of this expression, and treating the other terms as

constants, giving us:

2 ln(2) + σ

(
ln

(
σ

δ + σ

))

+δ

(
ln

(
δ

δ + σ

))
≤ 0

where we have applied the easily veri�able facts that limx→0H
(
x
c

)
= 0 and limx→0 x

(
ln
(

x
σ−x

))
=

0 to get rid of the second and third terms in the expression. Thus, if this condition
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is satis�ed, by the de�nition of a limit, there exists a su�ciently small β in which

limi→∞ P
(
B∗βN

)
= 0.

A.6 Proof of Lemma 13

In this proof, adapted with only slight di�erences from Thompson's proof [1, Theorem

2], we show that if a circuit's graph has a C-bipartition width ω, then at least ω2/4

grid squares of the circuit are occupied. To do so, we adapt the zig-zag argument of

Thompson and construct on the order of ω curves that C-bipartition the circuit, each

which must have ω connections crossing the curve, implying that there are close to ω

uncounted nodes adjacent to the curve. The details require de�ning sequences of curves

which increase the number of nodes on their left side by 1 each step, which we call the

�initial sweep� sequences and the �zig-zag raise� sequences.

Let the grid of a circuit form a Cartesian coordinate system so that all nodes occupied

are in the top left quadrant. Draw the smallest rectangle aligned with the circuit grid

that encloses the circuit. All points outside this rectangle are considered outside the

circuit. The top of this rectangle is the top of the circuit, and the bottom is the bottom

of the circuit.

De�nition 78. A zig-zag of width a is a curve drawn on a circuit composed of a vertical

line starting outside the circuit leading to coordinate (x, y), a horizontal line connecting

(x, y) to (x + a, y), and then a vertical line from this point to below the circuit. The

point (x, y) is called the left corner of the zig-zag. The vertical line on the left is called

the left line and on the right the right line. An example of a zig-zag with its left corner,

left line, and right line labelled is given in Figure A.1.

De�nition 79. A curve with a left corner at coordinate (x, y) can be indented at this

coordinate by replacing the curve with a new curve where the edges connecting coordi-

nates (x, y + 1) to (x, y) and then to (x + 1, y) are replaced with two edges connecting

(x, y + 1) to (x + 1, y + 1) and (x + 1, y + 1) to (x + 1, y). The point (x + 1, y) is the

bottom corner of the indentation.

The reader should refer to Figure A.1 to see an example of a curve that is indented,

and a labelling of the bottom corner of the resulting indented curve.

De�nition 80. An initial sweep of a circuit is a sequence of curves beginning with

a width 1 zig-zag with left corner at location (0, 0). The left corner of the zig-zag is

successively indented until a zig-zag with left corner at the top of the circuit is obtained.
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bottom corner
left-corner

left line

right line

Figure A.1: An example of a zig-zag of a zig-zag (on the left) with its left corner, left
line, and right line labelled, and the curve resulting when its left corner is indented (on
the right). Note that indenting a curve at most adds one more node to the left side.

Then, this process is repeated starting with a width 1 zig-zag with left corner at (1, 0).

This process is continued until a zig-zag in which all occupied grid squares are to its left

is obtained. Figure A.2 show an example of the sequence of curves in an initial sweep for

a small circuit.

The idea of an initial sweep is that the �rst curve has no circuit nodes to its left, and

eventually the curve has all nodes to its left; in between the amount of nodes to the left of

the curve increases by at most 1 each time. This means that there will be a C-bipartition
of the circuit induced by one of the curves in the initial sweep, a consequence of property

1 of a zig-zaggable set of bipartitions.

De�nition 81. A curve that C-bipartitions the circuit in an initial sweep is the initial

curve.

We let the left line of the initial curve have x-coordinate `.

Note that the left-corner (at location (x, y) of a width a zig zag can be indented,

resulting in a new curve. The resulting bottom corner can be indented again in total

a times, and the end result is a new zig-zag of width a (where a is positive integer),

this time with left-corner at (x, y + 1) (one unit higher than the initial zig-zag). The

indenting process can be performed on this new zig-zag. This can be done repeatedly

until a zig-zag with left-corner at the top of the circuit is obtained.

De�nition 82. We call a curve resulting from such a sequence of indentations an indented

zig-zag.

De�nition 83. The sequence of curves generated by this sequence of indentations is

called a zig-zag raise. The curves corresponding to a zig-zag raise for a small circuit are

given in Figure A.3.
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Figure A.2: An example of the curves, in order from left to right, top to bottom, of an
initial sweep of a circuit of height 4 and width 3. On each row each successive curve
is created by indenting the previous curve's left corner. Each curve of an initial sweep
has at most one more circuit node on its left side. We see that an initial sweep must
eventually bisect the nodes of the circuit. For the same reason, at least one curve of the
initial sweep must C-bipartition the nodes for any zig-zaggable set of bipartitions C, a
consequence of property 1 of zig-zaggable sets of bipartitions.

Figure A.3: An example of the curves, in order from left to right, top to bottom, of a
zig-zag raise of width 3 for a circuit of height 3.
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De�nition 84. Given an indented zig-zag, the column to the right of the left line and

to the left of the right line are called the boundary columns.

De�nition 85. The computational nodes to the left of the indented zig-zag are called

the left nodes and the nodes to its right are called the right nodes.

Now, consider performing a zig-zag raise starting from a zig-zag of width 3 with left-

corner at (0, ` − 1). Let S1 be the left-nodes of the �rst curve of the zig-zag raise and

S3 be the left-nodes of the last curve of the zig-zag raise. We let S2 be the left-nodes

of the initial curve. Since obviously S1 ⊆ S2 ⊆ S3 and S2 ∈ C, applying Property 2 of

zig-zaggable bipartitions (See De�nition 43) means that there must be some curve of the

zig-zag raise that is a C-bipartition.
By the same argument, for any j, we can construct a width 2j + 1 indented zig-zag

that C-bipartitions the circuit, by starting with a zig-zag with left line at x = `− j and
performing a zig-zag raise. A possible indented zig-zag that results from this process for

j = 2 is given in Figure A.4b.

De�nition 86. Two grid squares of a circuit are connected across a grid edge if they are

adjacent at the grid edge and either they contain wires that are connected or one square

contains a node attached to a wire in the other square. Such a pair of grid squares is

called a connection.

Since each of these curves C-bipartitions the circuit, there must be at least ω connec-

tions across the curve.

Figure A.4a shows that the initial curve must have at least ω−1 grid squares occupied

in its boundary column.

As well, Figure A.4b shows a width 5 indented zig-zag and shows that if ω edges must

cross the indented zig-zag, then there must be at least ω−4 grid squares in the boundary

column occupied. This is because for all but 4 of the possible connections, if they are

connected then this implies a unique grid square in the boundary column is occupied. It

is then easy to generalize that an indented zig-zag of width 2k + 1 must have at least

ω − 2k occupied nodes in its boundary columns.

Since the boundary columns of each of the bipartitions constructed do not intersect,

summing up the lower bound on the number of grid squares occupied implies that the
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(a) (b)

Figure A.4: (a) This �gure is adapted from [1, Figure 3-4]. An example of an initial
curve with arrows crossing grid edges that could form possible connections between
the left side and the right side. For all but the gray arrow, we can conclude that if
a connection exists across the edge the arrow crosses, there is a unique grid square
(which in the diagram contains a circle) occupied in the boundary column. Thus, if ω
edges must cross the curve, at least ω−1 nodes in the boundary column must be occupied.

(b) An example of an indented zig-zag obtained from a zig-zag raise. The grid
squares with circles in them are the grid squares in the boundary columns that are
adjacent to an edge of the curve. Arrows cross edges where a connection between the
left side and the right side can be made. For each black arrow, if a connection is there
in the circuit, then the circle to which the arrow points must contain an occupied node.
Note that there are at most 4 crossings that do not involve a node with an boundary
column (which are denoted by gray arrows). Thus, if ω crossing must exist across the
indented zig-zag, there must be at least ω − 4 circles occupied.
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number of grid squares occupied in the circuit is bounded as:

ω − 1 +

bω2 c∑

i=1

ω − 2i (A.18)

≥ ω − 1 + ω
⌊ω

2

⌋
−
⌊ω

2

⌋(⌊ω
2

⌋
+ 1
)

(A.19)

≥ ω − 1 +
⌊ω

2

⌋(
ω −

⌊ω
2

⌋
− 1
)

(A.20)

≥ ω2

4

The last inequality �ows from the fact that either ω
2
is an integer and

⌊
ω
2

⌋
= ω

2
or⌊

ω
2

⌋
= ω

2
− 1

2
. We see in both cases that the expression in A.19 is greater than ω2/4

for ω > 2. As Thompson observed in his proof of the theorem, the case when ω = 1 is

trivial.

A.7 Proof Of Lemma 21

Proof. (Of Lemma 21) Note that across any bisection of the communication graph of a

given circuit, there are at least ω edges that cross that bisection, with total length at

least ω. We can construct a single bisection with a line through the middle of the nodes.

Then we can construct another bisection by shifting this line left one unit, and sweeping

in a parallel line from the right. Such a bisection has half the nodes in between the two

lines and half the nodes outside the two lines. We can then shift these two lines left one

unit again. We can do this on the order of
√
N times and each time the edges crossing

the bisecting lines must be at least ω, and each time the bisecting lines are in a di�erent

position, thus for each bisection the parts of the lines that cross the bisecting lines are

di�erent. In total there must be at least Ω
(√

Nω
)
total distance of the lines and thus

this amount of total energy.

A.8 Mesh Network Polar Encoding Procedure

We implement the message-passing procedure on a mesh network using n = logN stages,

one stage for each pair of adjacent columns in the encoding graph of Figure 5.6. Label

the input nodes of the encoding graph in order, starting from the top, from 1 to N .

For each input node i of the encoding graph, associate a mesh network processor node

i. This processor node is to perform all the computations and message passings of the
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Figure A.5: The "raster-scan ordering" proposed for the nodes i = 1 to 16 for an N = 16
polar encoding circuit. Note that for general N these may not �t perfectly on a square.
In that case, we propose using dimensions that are as close to square-like as possible. In
Appendix A.8 we show that labelling nodes like this and applying our proposed message-
passing procedure for polar encoding avoids con�icts and thus is valid.

graph nodes in the same row as its associated input node. Place the processor nodes

on the
√
N ×

√
N mesh network in the order shown in Figure. A.5. We call such an

ordering a raster scan ordering. Note that by inspecting Figure 5.6, in the jth stage of

the procedure, each processor node i must pass messages to node i− 2n−j.

There is some ambiguity in our de�nition of the operation of the mesh network: when

a message is received by a processor node, in which direction should the message be sent?

It is clear that if the message is located "above and to the left" of the node, the message

should be passed either to the left or above. We shall adopt the convention that a node

shall choose the relevant up or down direction before deciding to send the node left or

right, which occurs at what we will call the target row (that is, the row containing the

computational node to which the message is sent).

We can label each row of the mesh network, and thus some nodes will be on even

rows, and some nodes will be on odd rows. In our proposed procedure, each stage of the

encoding will be divided into two message-passing steps: the "even-row" passing step and

the "odd-row" passing step. More precisely, at the jth stage of the encoding procedure,

only nodes i on even rows that are to send their bits to node i−2n−j−1 shall do so. Then,

the appropriate nodes on odd rows are to do the same. We claim this procedure avoid

con�icts (that is, no two messages will be sent to the same node simultaneously).

De�nition 87. A constant send-back procedure is a message passing procedure de�ned

on a mesh network with nodes labelled according to the raster-scan ordering in which

a set of nodes, indexed i, each simultaneously send a message to node i −m, for some

m > 0.
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The "even row" sending step and the "odd row" sending step of the procedure we

propose for polar encoding is obviously a special case of this procedure.

Lemma 37. In any constant send-back procedure, con�icts can only occur with messages

originating on di�erent rows.

Proof. Consider two messages originating on the same row. Since our convention is to

send nodes "up" until deciding to send them left or right, a con�ict between these two

messages can only occur on the target row in which one message is sent left, and the

other sent right. However, because of the ordering of the processor nodes, and the fact

that we are considering a constant send-back procedure, upon reaching the target row,

these messages must be sent in the same direction, otherwise they are not addressed to

nodes a constant value less than their index. If these nodes do not have the same target

rows, then the lemma �ows trivially.

Lemma 38. Messages originating on rows spaced at least 2 rows apart cannot have the

same target rows and can not con�ict.

Proof. Let x be the number of processor nodes in each row. Clearly, the spacing between

two nodes at least 2 rows apart is at least x+ 1 (occurring when the lesser indexed node

is at the far right, and the greater indexed node is on the far left). Suppose their target

node was on the same row. The spacing between these two target indices must at least

be x + 1, but there are only x elements on each row. Those, messages on rows spaced

two or more apart cannot con�ict in their target rows. It may be possible for them to

con�ict where one message has reached a target row, and is travelling left or right, and

another is travelling up. However, the message travelling up must have originated on a

row below the left or right-going node. In a constant send-back procedure such a message

cannot have a target row at the same level or higher than the other node, so this cannot

occur.

Since in each step, at each stage of our proposed procedure, no two simultaneously

sent messages originating on adjacent rows, combining Lemmas 37 and 38 con�rms that

our proposed procedure has no con�icts.

This particular message passing ordering is done entirely to prove that the area-time

complexity scaling of this mesh scheme is close to the lower bound. It is likely that in

any practical implementation a more e�cient message passing procedure exists (though

it will likely be more e�cient only up to some constant factor).
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