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Abstract 
Objective: To assess the cost-utility of telemonitoring compared to the current standard of care 

in the management of patients with heart failure over a 25-year time horizon from a public payer 

perspective. 

Methods: A microsimulation model was developed to analyze telemonitoring’s cost-utility by 

using data from the Medly Program Evaluation and literature. Scenario analyses were conducted 

in relation to HF severity and TM deployment models. A probabilistic sensitivity analysis (PSA) 

and one-way analyses were performed. 

Results: TM had an incremental cost of $16,478 and incremental Quality-Adjusted Life Year 

(QALY) of 0.671 resulting in ICER of $24,553/QALY. PSA showed 84.4% likelihood of cost-

effectiveness under $50,000/QALY willingness-to-pay. Scenario analyses did not show 

significant changes to ICERs. Results were sensitive to the reduction of hospitalizations by TM. 

Conclusion: The model demonstrates that TM is cost-effective compared to current standard of 

care. This study could be repeated when more follow up data becomes available. 
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Chapter 1  
Introduction 

 Introduction 

1.1 Problem Statement  
There is a growing social need and financial burden of preventing and managing heart 

failure (HF), including high rates of hospital readmission and mortality.(1–3) In Canada, 670,000 

people aged 40 years and older have HF, affecting 3% of all women and 4% of all men in this 

age range.(4) Direct HF costs to healthcare are estimated to be $2.8 billion per year, with 

hospitalizations being a major driver of this cost.(5) Furthermore, after a HF diagnosis, an 

estimated 50% of individuals will die within five years.(6–8) It has been recommended that 

disease management interventions that enable patient empowerment, education and clinical 

follow-up should be integrated within the system of care for patients with HF, as these 

interventions have been associated with improved hospitalization rates, quality of life (QoL) and 

survival.(9) In response, telemonitoring (TM) systems have been designed to shift traditional 

episodic care of HF to a more continuous paradigm where care is extended into the daily lives of 

patients rather than confined to health care institutions. TM systems enable patients to record 

biometrics, such as weight, blood pressure, heart rate, and symptoms, which are then transmitted 

to clinicians at a remote location via telecommunication technologies.(10) Meta-analyses have 

shown that TM in HF reduces all-cause mortality and hospitalizations when compared to the 

standard of care without TM.(11–15) However, other studies have shown null or mixed results 

for TM.(10,16–18)  Some of this uncertainty in effectiveness can be attributed to heterogeneity 

in evidence, such as in the patient population, characteristics of evaluated interventions and 

quality of the trial as the complexity of TM is often overlooked.(19) Furthermore, there is a lack 

of understanding of the long-term cost-effectiveness of TM for patients with HF within a 

publicly funded health system. Past studies have been conducted outside of a Canadian context 

and a majority focused on short-term outcomes. There are currently no long-term economic 

evaluations of TM interventions for patients with HF within a Canadian context.  
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1.2 Purpose of the Study 
From a clinical perspective, there is interest in understanding whether TM is a suitable 

intervention for patients with HF when used concurrently with the current standard of care in 

comparison to current standard of care alone. As mentioned above and further discussed in this 

study, there is mixed evidence in the literature as to whether TM can improve mortality and 

hospitalization rates compared to the current standard of care. This project analyses data from a 

specific TM system implemented at a local hospital to address some of these uncertainties and to 

present a clearer picture of its long-term clinical effectiveness.  

From a policy perspective, evaluating TM for patients with HF compared to the current 

standard of care within a cost-effectiveness framework will allow for all relevant data to be 

considered in order to capture the effect on health and cumulative costs. This framework also 

allows for the identification of areas where clinical or financial uncertainty may exist. Identifying 

these areas will help decision makers prioritize areas for future research while also informing 

resource allocation decisions.  

Given the potential benefits, the objective of this study was to evaluate the long-term 

economic impact of TM for patients with HF within a Canadian context from a public payer 

perspective, referencing costing data and concepts from a program implemented at the 

University Health Network, called Medly, and data from the literature. Specifically, the central 

research question is: What is the cost-utility of the Medly program for patients with HF 

compared to the current standard of care in Ontario? This question will be explored through the 

application of a microsimulation model. 

1.3 Background  
To provide context around the study, the following discusses the burden of HF, what 

telemonitoring is, how it can be integrated with multidisciplinary HF clinics, what is currently 

done in Ontario for TM in HF patients, the evidence and current status of the Medly technology, 

and the usefulness of health economic evaluation in the emerging field of health informatics. 

This section also describes the study design for the on-going Medly Program Evaluation, the data 

of which was used for this current study to analyze the effectiveness of Medly in reducing all-

cause hospitalizations and to calculate baseline patient healthcare utilization.  
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1.3.1 Burden of Heart Failure 

HF is a complex clinical syndrome that can result from any cardiac disorder that impairs 

the ability of the ventricle to fill with or eject blood.(20) It is also is a major public health issue 

with a worldwide prevalence of 26 million people and 669,600 in Canada.(4,21) HF is a common 

final stage of many heart diseases. Half of those diagnosed with HF will die within 5 years and 

up to 80% die within 10. (6–8) Its manifestation is often difficult to diagnose accurately as many 

of its features are nonspecific to any organs and there may be few signs or symptoms in its early 

stages. This has led to multiple signs and symptoms being used to define HF, including elevated 

jugular venous pressure, pulmonary rales, a third heart sound, peripheral edema, dyspnea on 

exertion, or hepatomegaly.(3)  

HF treatment requires lifelong management where improved health status can be 

obtained. This involves achieving the correct balance of medications, implantable cardioverter 

defibrillators and in some cases implantable mechanical circulatory devices.(3)  However, flare-

ups of HF symptoms occur frequently and can result in hospitalizations. It was estimated that HF 

hospital admissions costed the Canadian health care system $482 million in 2013, and that this 

cost will increase to $720 million by 2030.(22) These high costs can be largely attributed to high 

readmission rates after discharge for HF, as more than 50% of individuals are readmitted within 

six months.(23,24) Reasons for hospitalizations include incomplete treatment in hospital, poor 

coordination of services or communication of plans at discharge, inadequate access to services, 

poor patient education, unoptimized therapies, and lack of long-term monitoring for early signs 

of worsening health.(24) With this potential for exacerbations in HF patients’ symptoms, 

frequent contact with the health system is necessary via primary and outpatient care.  

1.3.2 What is Telemonitoring for Heart Failure 

TM technologies in the most general sense are remote patient monitoring systems which aim 

to improve the care and management of patients with HF. The remote monitoring of patients may 

allow for earlier detection in the deterioration of health and better adherence to lifestyle changes 

and medication titration (such as diuretic dosage), which prevents further exacerbations and 

reduces the need for hospitalization and emergency department visits.(25) This can include 

structured telephone support, cardiac implantable electronic devices, wearable technologies and 

standalone devices. Structured telephone support includes communication from a HF specialist 
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nurse as a part of a disease management program.(25) Cardiac implantable electronic devices are 

invasive interventions which can provide physiological data to aid HF care as a part of a 

monitoring system, or a device which serves as therapeutic purpose, such as pacemakers and 

implantable cardioverter defibrillators. (25) Wearables are sensors, such as patches or watchers, 

that patients wear to track various measures. This includes electrocardiogram, body temperature, 

and blood glucose concentration. (25) Standalone devices, which are the focus of this study, 

involves the use of telecommunication technologies (e.g. smartphone) and electronic devices 

(e.g. blood pressure cuff, weight scale, and sensors) to transmit physiological and questionnaire 

data of the patient to their health care provider. For this study, TM systems refers to interventions 

that enable remote monitoring.  

1.3.3 Heart failure disease management in Ontario multidisciplinary clinics 

Disease management for patients with HF is an important aspect in the continuum-of-care 

which has been highlighted in the Clinical Handbook for Heart Failure by Health Quality Ontario 

and a report on integrated heart failure care by CorHealth.(26,27) This is especially true for 

patients who are in their post-acute phase of HF where the majority of their care takes place 

outside of an acute care setting. However, a national study identified that there are gaps in the 

transition from an inpatient to outpatient setting with optimal treatment and management of HF 

in the community.(28) To move towards more effective disease management, addressing 

inadequate follow-ups, and lack of patient monitoring and self-care patient education is 

necessary.(9) Evidence shows that TM can address these gaps, as TM improves patient’s self-

care practices (29) and enable more frequent follow-ups and remote monitoring when 

implemented in a multidisciplinary HF clinic.  

Multidisciplinary HF clinics play a crucial role in disease management, and are 

recommended by guidelines for HF patients.(20,30) Multidisciplinary clinics provide a 

collaborative approach to treatment amongst cardiologists, nurses trained in HF and healthcare 

professionals from other disciplines, such as pharmacists, dieticians, psychologists and social 

workers.(31) Clinics also provide optimization of medical therapy, and compliance and lifestyle 

education, and diuretic titration. Though heterogeneity exists across studies, evidence shows that 

multidisciplinary clinics improve all-cause mortality and HF hospitalizations.(31) Specific to 

Ontario, Wijeysundera et al. (2012) identified 34 multidisciplinary HF clinics across the 
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province.(32) However, the study reported substantial regional disparity in access to care across 

the province and large differences in the complexity of services offered across clinics.(32) 

Furthermore, it noted the majority of clinics lacked remote monitoring, an important component 

of disease management.(32) Such gaps could be addressed with the implementation of TM in 

multidisciplinary clinics. 

1.3.4 Telemonitoring in Ontario 

 TM has shown to be potentially effective in reducing all-cause mortality and all-cause 

hospitalizations.(11–15) This evidence has led to some initiatives in Ontario where TM is used 

as a part of the disease management care provided to patients with HF. One program is The 

University of Ottawa Heart Institute’s Telehome Monitoring Program, which is a nurse led 

program where patients are provided with a scale, an automated blood pressure cuff, a pocket 

ECG (optional) and a home monitor that transmits vital signs and other pertinent data to cardiac 

nurses at the Heart Institute.(33) Patients are referred to the program prior to discharge from the 

Heart Institute based on the patient’s need for follow-up.  

Another program is offered by the Ontario Telemedicine Network where patients with HF or 

chronic obstructive pulmonary disorder (COPD) are provided with a tablet, blood pressure 

monitor, pulse oximeter and weight scale.(34) Nurses monitor the data recorded by the devices 

and communicate with patients accordingly. Services are offered by nine out of fourteen Local 

Health Integration Networks, who each are responsible for leading their respective programs. 

Patients can either be referred to the program by a clinician or by themselves.  

Future Health Services Incorporated also offers a TM service within the Community 

Paramedicine Remote Patient Monitoring Program specific for patients with HF or COPD in 

Southern Ontario.(35) Patients receive a combination of weight scale, blood pressure monitor, 

heart rate monitor, glucometer, and a Pod (connects devices to community paramedic hub) 

depending on the patient’s needs. Community paramedics then monitor the biometric data for 

deteriorating health and contacts patients when necessary while also alerts being sent to the 

patient. Both paramedic and patient then decide on the best plan of action based on the specific 

event.  
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In August 2016, the Medly program was deployed to augment the existing standard of 

care at the Ted Rogers Centre for Heart Research at the University Health Network (UHN). As 

of June 31, 2019, 326 patients have been enrolled onto the program based on a joint decision 

between the patient and cardiologist at a follow-up outpatient visit or after an inpatient hospital 

stay. Patients are trained to use the technology and the importance of taking daily readings is 

emphasized. They will then use the intervention as long as there are clinical benefits determined 

by both the clinician and patient. The program is led by a registered nurse coordinator who 

reviews and responds to alerts and serves as the first resource for patients’ clinical concerns or 

technical troubleshooting.  

1.3.5 The Medly Telemonitoring Program  

1.3.5.1 How Medly works 

Medly is a telemonitoring program implemented at UHN which enables patients to record 

and send their body weight, blood pressure and symptoms to their healthcare team, including a 

nurse practitioner and clinician, while also receiving self-care feedback from a validated 

algorithm. (Figure 1) The main component of the program is the Medly smartphone application. 

Patients use the application and associated equipment (Figure 2) to record their body weight, 

blood pressure and heart rate as well as to answer a short yes/no questionnaire about their 

symptoms. Patients are to take these readings daily right after they wake up. This data is then 

processed by a clinically validated algorithm to interpret the readings relative to the patient’s 

target thresholds set by the most responsible HF physician.(36) If the algorithm determines that 

the recordings are within the target range, patients are presented with a prompt stating their HF is 

in stable condition. If the algorithm deems the readings are outside the target range and/or 

identifies an abnormal trend in weight gain, the patient is prompted with self-care feedback such 

as taking prescribed diuretic medication and contacting their care provider or to visit the 

emergency department. Figure 3 shows screenshots of the various interfaces patients interact 

with. The registered nurse coordinator also receives the alert and triages the event. The nurse 

also responds to technical troubleshooting. Alerts are sent via email or the Medly clinical 

dashboard to clinicians for their patients when readings are outside the range. Other features of 

the Medly application include graphical trends of specific measurements and an automated phone 

call to remind patients to take their daily measurements if it’s past 10am (can be disabled per 

patient’s request).  
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Figure 1 Overview of the Medly Program and how data is transferred and interpreted. 
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Figure 2. All required equipment necessary for the Medly technology, including a weight scale, 

blood pressure cuff and a smartphone with the Medly application.   
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Screen 1            Screen 2                       Screen 3 

Figure 3. Medly app showing instructions for required readings (Screen 1), the symptoms 

questionnaire (Screen 2), and personalized self-care feedback (Screen 3). 

 

1.3.5.2 Mechanism of Action of Medly 

Several mechanisms of action are enabled with this transfer of data from patient to 

clinician, which can lead to improved QoL and reduced mortality and healthcare utilization rates. 

First, the act of regularly taking measurements instills in patients a sense of active participation 

in their care while obtaining information required for self-care.(37) Second, alerts automatically 

generated from parameters that are out of target ranges enables clinicians to intervene at the 

earliest signs of exacerbations.(38) Finally, the collection of longitudinal data collected provide a 

holistic landscape of patient’s conditions which could improve clinical decision making.(39)  

1.3.5.3 Previous Evaluations of Medly 

Over the course of Medly’s development and implementation, numerous studies have been 

conducted that leveraged both quantitative and qualitative research methods to explore Medly’s 

potential and impact on patients and clinicians. During its development and testing phase, a 

qualitative study by Seto et al. (2010) identified that patients and clinicians want to use mobile 
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phone-based remote monitoring but also have reservations on increased clinical workload and 

medicolegal issues, and had concerns around usability due to patients physical limitations.(40) 

Another study by Seto et al. (2011) looked at the perceptions and experiences of patients and 

clinicians that used Medly and identified that it improved patient self-care and allowed clinicians 

to manage their patient’s HF more effectively.(41) Furthermore, Seto et al. (2011) found that the 

success of TM is dependent on its features and design and ones used in Medly, such as 

immediate self-care and clinical feedback, should be considered when developing TM 

solutions.(41) A randomized control trial was also conducted and published by Seto et al. 

(2012).(29) This study found that TM improved patient’s QoL via self-care and clinical 

management. Also, patients using TM experienced improved b-type natriuretic peptide levels, 

left ventricular ejection fraction and self-care maintenance if patients were followed by the clinic 

for more than 6 months.(29)  

With initial evidence supporting the Medly TM program, its implementation in August 2016 

gave rise to on-going evaluations identifying its successes and areas of improvement. A mixed-

method study protocol published by Ware et al. (2018) described the research objectives for 

Medly’s implementation and evaluation.(42) The specific objectives were to: 1) evaluate the 

impact of Medly on health service utilization, patient outcomes and their ability to selfcare, 2) 

identify the degree to which the program was implemented as intended and to identify the 

contextual barriers and facilitators of implementation, 3) describe patient usage patterns to 

determine adherence in the program, and 4) evaluate the costs associated with the 

implementation of the TM program from the perspective of the health care system.(42) Based on 

the study design outlined in section 1.4.4.3 below and the current implementation of the Medly 

Program, multiple studies to date have been conducted to answer some of the objectives listed 

above. A study by Ware et al. (2018) found that Medly has been used as intended by patients and 

clinicians despite minor technical issues.(43) The study identified facilitators and barriers to 

successful implementation and found that the strongest facilitators were related to the 

implementation context.(43) Another qualitative study by Ware et al. (2018) addresses barriers 

specific to the cost of the equipment and supporting human resources, which was identified in 

the previous study, to understand how the Medly program can be adapted for sustainability and 

scalability.(44) It was found that opportunities for cost-reduction were based around patients’ 

bringing their own device, technical support, clinician role, duration of enrollment and the 
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intensity of monitoring.(44) A mixed-methods study specific to objective 3 by Ware et al. (2019) 

was also conducted that found that there was a decline in adherence rates over time, which were 

consistent with findings from other studies.(45) The study also found that adherence were the 

highest and most consistent in older age groups and progressively lower for younger age 

groups.(45) With early indication of successful implementation and identified strategies for cost-

saving to promote sustainability and scalability within the Medly program, conducting a cost-

utility analysis offers an extension to the work previously done to further understand Medly’s 

economic and clinical impact. 

1.3.5.4 Study Design for the Medly Program Evaluation 

One of the evaluations of the Medly Program referenced in this study includes a multiple 

pre-and post-test to analyse patient-level impacts, patient adherence and cost (Medly Program 

Evaluation). Quantitative data analyses leverage data that is collected as a part of standard of 

care, such as health care utilization and lab results from electronic patient records, while also 

using data from the TM system. Other data are collected via self-reported questionnaires 

deployed at baseline, 1 month, 6 months, 12 months and 24 months post-intervention. The 

qualitative component of the study is an embedded single case study, where patients and 

clinicians are interviewed on their adoption and use of Medly. Patients can be enrolled into the 

Medly Program if they: 1) are 18 years or older, 2) have been diagnosed with HF and are 

followed by a cardiologist at the HF clinic, 3) can speak and read English to adequately 

understand the prompts in the Medly app, 4) are able to comply with using Medly. Since Medly 

has been added to the existing standard of care in the ambulatory setting, exclusion criteria 

include patients who are not interested being enrolled onto the program and patients who are 

unlikely to benefit from the program, which is based on the discretion of the treating physician. 

Duration of the program is a joint decision between the patient and their following cardiologist. 

At the time of this study, there was data available for both baseline and 6 months post-

intervention measures for 185 patients. Analyses specific to the effect on all-cause 

hospitalizations and healthcare utilization was conducted based on this available data. 
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1.4 Health Economic Evaluation in Telemedicine 
The heterogeneity and complexity of telemedicine makes conducting economic 

evaluations a challenge, specifically with generalizability.(46,47) Diversity stemming from 

specialty, technology, applications, objectives and context make comparisons between 

telemedicine interventions difficult.(47) Determinants such as distance, local costs, 

organizational competence and incentives differ between the settings of the intervention and will 

affect the outcomes of an economic model. Local settings have an influence on important 

parameters within each economic model, such as travel costs, infrastructure and technology 

investments, how the intervention is deployed to meet the needs of local clinics and 

organizations and the type of health care professionals are involved with the delivery of care. 

Therefore, it is not feasible to conduct economic evaluations of all telemedicine interventions. 

Rather, studies should define an evaluation scope which balances both generalizability and 

internal validity.  

Bergmo et al. (2012) describes two approaches for economic evaluations in telemedicine 

to increase generalizability.(47)  The first is to modify the research protocols so they better 

reflect usual care in pragmatic study designs rather than a highly controlled environment.(47)  

Second is to use existing data (primary and secondary) to build a decision model which simulates 

a clinical trial.(47) The approach that is most appropriate is dependent on the objective and role 

of the evaluation itself. Decision modelling can provide a structure and offer insights for various 

scenarios specific to the decision problem.(48) Therefore, pursuing decision models as a part of 

economic evaluations are useful in the early stages of a novel telemedicine intervention.(47)  

As telemedicine becomes a more prevalent solution for health care problems, the 

importance for conducting robust health economic evaluations increases. As Medly continues to 

expand its services to a larger population and evaluate its clinical effectiveness, understanding its 

cost-utility within an Ontario-specific context by developing a decision model will assist 

decision makers in understanding Medly’s feasibility. The approach to apply a decision model to 

evaluate whether Medly is associated with reduced mortality and hospitalization in comparison 

to standard of care and whether it is a cost-effective intervention was chosen because it offered 

the appropriate framework to leverage primary and secondary data sources while maintaining the 

ability to evaluate long-term cost-effectiveness. 
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1.5 Review of Health Economic Evidence for Telemonitoring For 
Patients with Heart Failure 
A number of studies have been conducted that included evaluations of the economic 

impact of TM for patients with HF with many reporting positive benefits of TM in terms of 

improving health and financial outcomes. However, many did not conduct a full economic 

evaluation a cost-effectiveness, cost-utility, cost-benefit or cost-consequence.(49–60) (Table 1) 

Furthermore, a number of studies that included a full economic analysis did not evaluate its long-

term effect, as time horizons of 18 months or less were used.(61–63) Only three studies 

conducted a full economic evaluation of TM using a time horizon of 18 months or longer, which 

are described below. 

A study by Thokala et al. (2013) broadly evaluated TM by leveraging data from a 

network meta-analysis.(64)  The authors evaluated the cost-utility of TM compared to usual care 

for patients discharged from hospital after an HF exacerbation from the perspective of the NHS 

in England.(64) A two-state cohort Markov model was developed for a 30-year time horizon and 

did not stratify the cohort by HF severity. It was reported that TM was cost-effective at 

£11,873/Quality-adjusted Life Years (QALYs) gained in 2011 (equivalent to CAD 

$19,996/QALY gained in 2018 via Fxtop historical converter)(65) and was not sensitive to 

higher cost of care and changes in the cost of TM.(64) Furthermore, TM was deemed most likely 

to be cost-effective based on a probabilistic analysis, where 40% of their simulations resulted in 

an incremental cost-effectiveness ratio (ICER) below £20,000/QALY. 

A study by Liu et al. (2016) also broadly evaluated TM by leveraging data from a meta-

analysis.(66) The authors compared TM programs to usual care for patients with HF from the 

perspective of an American payer over a one to five year time horizon. Effectiveness was 

measured by life years (LY) rather than QALYs and HF severity was stratified by New York 

Health Association (NYHA) functional classes. A six-state cohort Markov model was developed 

based on the number of past hospitalizations. It was found that over five years, TM is cost-saving 

for populations who have intermediate or high HF severity, but not for low severity HF 

patients.(66) An ICER was not reported for scenarios that were cost-saving. The model was 

sensitive to patient risk, cost of hospital admission and TM effectiveness in reducing length of 

stay. However, a robust probabilistic analysis was also not performed.  
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A study by Grustam et al. (2018) evaluated a specific TM system and nurse telephone 

support to usual care within the Trans-European Network-Home-Care Management System 

using data from its original publication and other sources.(67) The analysis was conducted from 

the perspective of the public payer in Netherlands and was modeled for a time horizon of 20 

years. A five-state cohort Markov model was developed based on NYHA class. The study found 

that the ICER for TM compared to usual care was €12,479/QALY gained in 2015 (equivalent to 

CAD $18,145 in 2018 via Fxtop historical converter)(65). Authors also performed a probabilistic 

analysis and found that TM was likely to be cost-effective, but ultimately concluded that nurse 

telephone support was more cost-effective.  

 Based on the studies described above, there are gaps in the understanding of TM cost-

effectiveness for patients with HF. The study by Liu et al. (2016) did not conduct a robust 

probabilistic analysis.(66) Not doing such analyses limits the usefulness of study results, as 

understanding the uncertainty in the results is equally important as the discrete results.(68–70) 

Furthermore, studies by Thokala et al. (2013) and Liu et al. (2016) did not evaluate a specific 

TM intervention, but rather TM for HF patients in general. This broad type of evaluation is 

useful to understand TM collectively but does not offer insights on how TM for HF patients can 

differ between technologies. Especially since the cost-effectiveness of TM is influenced by 

context-specific factors. In addition, the settings of the studies mentioned above were outside a 

Canadian jurisdiction. Therefore, it is unknown whether TM is cost-effective within a Canadian 

context.  

Table 1. Characteristics of the identified studies where the economic impact of TM for 

patients with HF was evaluated. 
Author Was incremental 

cost and 
consequence 
calculated? 

Was uncertainty 
introduced into the 
analysis? 

Follow-up period Decision 
Model? 

Noel et al.  No No 6 months pre, 6 
months post 

No 

Myers et al. No No 6 months pre, 2 
months post 

No 

Hudson et al. No No 6 months No 
Giordano et al. No No 1 year No 
Scalvini et al. No No 1 year No 
Vaccaro et al.  No No 6 months No 
Galbreath et al. No No 18 months No 
Schwarz et al. No No 3 months No 
Soran et al.  No No 6 months No 
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Tompkins et al. No No 6 months No 
Kenealy et al. No No 6 months No 
Paré et al.  No No 21 months No 
Smith et al.  Yes Yes 18 months No 
Klersy et al. Yes No 1 year  Yes 
Cui et al. Yes Yes 1 year No 

 

1.6 Theoretical Framework 

1.6.1 Description of Cost-Utility Analysis 

Cost-utility analysis (CUA) enables the evaluation of both costs and outcomes of health 

interventions. This is done by calculating a ratio of total healthcare costs to total health benefits 

with the goal of comparing the costs and consequences of alternative courses of action.(69,70) 

This ratio is known as the Incremental Cost-Effectiveness Ratio (ICER) where: 

𝐼𝐶𝐸𝑅 =
𝑇𝑜𝑡𝑎𝑙	𝐶𝑜𝑠𝑡	𝑜𝑓	𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡	𝐴	 − 𝑇𝑜𝑡𝑎𝑙	𝐶𝑜𝑠𝑡	𝑜𝑓	𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡	𝐵
𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠	𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡	𝐴	 − 𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠	𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡	𝐵 

This type of analysis is useful for decisions around resource allocation when trying to achieve 

efficient use of limited resources.(70)  

 To allow for comparisons between CUAs, a measure of effectiveness that is universal 

across interventions is used. This can either be any outcome in a natural health state, such as life 

expectancy (cost-effectiveness analysis), or the more common quality-adjusted life years 

(QALY) (cost-utility analysis). QALYs are a preferred measure as it captures both life 

expectancy and QoL by multiplying the duration of life by a utility value. Utilities are a measure 

of preference for various health states which is described by a value between 0 and 1.(70) 

Therefore: 

𝑄𝐴𝐿𝑌 = 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛	𝑜𝑓	𝑙𝑖𝑓𝑒 ∗ 𝑈𝑡𝑖𝑙𝑖𝑡𝑦	𝑜𝑓	ℎ𝑒𝑎𝑙𝑡ℎ	𝑠𝑡𝑎𝑡𝑒 

Where total QALYs are summed over the entire time horizon (ideally entire life expectancy). 

The intervention that reduces the amount of time spent in less preferred health states results in 

greater total QALYs.  
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  Furthermore, the analysis is sensitive to the perspective that is chosen for the evaluation 

defining which costs and benefits to include. Economic analyses may choose a societal 

perspective where all costs and benefits that are experienced by all members of society are 

captured. An analysis could be conducted from the perspective of a third-party payer where the 

costs and benefits to the patient are considered irrelevant, which is common in publicly funded 

systems.(68)  It could also be conducted solely from the perspective of the patient themselves. 

With that said, selecting a perspective is dependent on the purpose of the study, the stakeholders 

involved and the health system the intervention is being considered in.  

 It is worth highlighting that these types of analyses not only quantify the total cost and 

effectiveness of interventions into a ratio, but, equally important, provide a framework for the 

gathering of information regarding effectiveness and costs of alternative courses of action.(70) 

This allows for areas of uncertainty and gaps in knowledge to be identified while making 

inferences on cost-effectiveness. Health economic evaluations confront the reality that decisions 

are made with uncertainty and it is crucial to understand the nature of this uncertainty.  

  

Chapter 2  
Methods 

 Methods 
The methodology of this study was based on Guidelines for the Economic Evaluation of 

Health Technologies: Canada- 4th Edition published by The Canadian Agency for Drugs and 

Technologies in Health.(68) The use of the guidelines allows comparability across other 

Canadian health economic evaluations and confidence that a consistent decision framework is 

being used.  

2.1 Decision Problem 
What is the incremental cost-utility of the Medly Program for patients with HF compared 

to the current standard of care in Ontario? 
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2.2 Type of Economic Evaluation 
A CUA was performed. Specifically, the outcome used in this analysis were costs and 

QALYs.  

2.3 Target Population 
The target population was a cohort of ambulatory HF patients. This was created by 

leveraging a consolidated representative sample of 7,125 HF patients from the University of 

Washington, Prospective Randomized Amlodipine Survival Evaluation, Valsartan Heart Failure 

Trial and Italian Hearty Failure Registry (Reed et al. cohort).(71)  This population was also used 

to develop a web-based cost-effectiveness model for a CUA which evaluated HF disease 

management programs within the US.(72) This larger cohort was used to simulate virtual patient 

profiles instead of the cohort of patients seen at the HF clinic at UHN because the sample size 

was underpowered (n=185) for a covariance matrix to converge of all variables needed to 

generate a patient profile. Furthermore, since the purpose of this study was to project long-term 

effects and that data collection from the Medly Program Evaluation was on-going, the sample 

size of available patient data was not representative of the potential long-term scalability of the 

program. With this said, both cohorts are similar in baseline characteristics and was deemed a 

suitable substitute for this analysis. (Table 2) The proportion of patients in each NYHA 

functional class are shown in Appendix 1.  

The Seattle Heart Failure Model (SHFM) was used to calculate the average survival 

curve for the UHN and Reed et al. cohorts to visually compare how different the projected 

survival was between the populations.(73) Specifically, for the UHN population, baseline values 

from the Medly Program Evaluation (i.e. prior to using Medly), were used to calculate a SHFM 

score for each patient. The same was done for the Reed et al. cohort, where a SHFM score was 

calculated for each virtual patient. Details on how virtual profiles were generated and how 

SHFM scores were calculated are provided in Section 2.7. The average SHFM score for each 

cohort was used to derive the average survival curves. Figure 4 shows that the average survival 

curve for both cohorts were shown to be similar. UHN’s cohort at baseline (before the use of 

TM) projected to have a slightly shorter lifespan. Specifically, at year 2, 5, 10, UHN’s cohort had 

a survival probability of 81.7%, 60.5% and 36.6%, compared to Reed et al. of 83.9%, 64.5%, and 

41.6%, respectively. This shorter predicted lifespan can be explained by UHN’s patient’s higher 
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diuretic dose (150.56 mg/day vs 71.78 mg/day). Daily diuretic dose was the most powerful 

univariate predictor for mortality in the SHFM.(73)  

Table 2. Patient characteristics of the consolidated sample of heart failure patients from the   

University of Washington, Prospective Randomized Amlodipine Survival Evaluation, Valsartan 

Heart Failure Trial, and Italian Heart Failure Registry compared to Medly’s patient population. 

Covariate Name Reed et al. 
cohort Mean 
(sd) or 
Proportion 

Medly’s Mean 
(sd) or 
Proportion  

Number of missing 
values for Medly’s 
population 
(proportion) 

Units 

Number of 
patients 

7125 185  count 

Age 63.03 (11.28) 57.54 (15.91) 0 (0) years 

Male 0.79 0.80 0 (0) proportion 

Ischemic etiology 0.57 0.35 11 (0.06) proportion 

Ejection fraction 26.77 (8.47) 32.06 (13.35) 3 (0.02) percentage 

NYHA class 2.58 (0.68) 2.33 (0.57) 0 (0) continuous (converted 
to categorical in 
analysis) 

Systolic blood 
pressure 

123.02 (19.19) 110.17 (14.22) 43 (0.23) mmHg 

Beta blocker 0.30 0.87 10 (0.054) proportion 

Aldosterone 
blocker 

0.04 0.70 10 (0.054) proportion 

ARB 0.37 0.25 10 (0.054) proportion 

ACE-inhibitor 0.93 0.44 10 (0.054) proportion 

Allopurinol 0.04 0.15 10 (0.054) proportion 

Lymphocytes 25.11 (8.58) 21.51 (2.14)  170 (0.92) percentage 

Sodium 139.43 (3.28) 137.98 (2.86) 18 (0.097) mEq/L 

Cholesterol 201.86 (47.76) 155.29 (45.42) 49 (0.27) mg/dL 

Hemoglobin 13.72 (1.54) 13.40 (1.76) 29 (0.157) g/dL 

Uric Acid 7.634 (2.28) 7.84 (2.08) 52 (0.28) mg/dL 

Creatinine 1.30 (0.41) 1.23 (0.52) 18 (0.10) mg/dL 
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Weight 78.90 (16.01) 83.34 (17.81) 32 (0.17) kg 

Furosemide-
equivalent dose 

71.78 (91.62) 150.56 (222.00) 5 (0.027) mg/day 

Implantable 
Cardioverter-
Defibrillator 

0.40 0.63 19 (0.10) proportion 

 

Figure 4. Average survival curve for both populations with Medly’s cohort at baseline projected 

to have a shorter lifespan.  

 

2.4 Comparators 
In this analysis, the intervention group assumed the virtually generated cohort of patients 

with HF used Medly concurrently with the current standard of care. The control group assumed 

the same virtually generated cohort was cared for according to current standards not including 

use of Medly. It was assumed that standard care was conducted according to typical care 

practices in Ontario which involves specialized multidisciplinary HF clinics, though care models 

may vary between clinics.(32)  
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2.5 Perspective 
This analysis was conducted from the perspective of the public payer, the provincial 

Ministry of Health and Long-Term Care since Medly is currently implemented in a publicly 

funded healthcare system.  

2.6 Time Horizon and Discounting 
A time horizon of 25 years was adopted in order to capture all potential differences in cost 

and outcomes associated with Medly. Having a longer horizon is preferable because the effect of 

Medly will be realized for many years while patient baseline survival trajectory decreases over 

time. Costs and outcomes were discounted at a rate of 1.5%, as recommended by CADTH.(68)  

2.7 Model Framework 
All analysis and model construction were conducted in RStudio. Model development in R 

was informed by a tutorial published by Krijkamp et al. (2018).(74)  

2.7.1 Modeling Conceptualization and Technique 

Patients with HF can alternate between state of decompensation (or symptoms 

exacerbation or impair functional capacity) and state of clinical stability. To capture this, the 

model stratified by and allowed for transitions between NYHA functional classes. Furthermore, 

hospitalizations mark a fundamental change in the natural history of HF with subsequent 

increased rehospitalizations and higher mortality rates in the patient’s disease 

progression.(75,76)  Such events were also considered important and were captured in the model. 

A cycle length of 1 month was chosen to account for 30-day readmission rates common in the 

HF population.(77) As recommended by Naimark et al. (2013) for models that are relatively 

simple and have a cycle length of a month or less, a half-cycle correction was omitted.(78)  

The modelling technique chosen was a patient-level state-transition model, also known as 

a first-order Monte Carlo microsimulation. This model is appropriate as it can capture patient 

heterogeneity that is common in HF patients and while also being the favourable option for 

modelling chronic disease.(69) Figure 5 shows the conceptualization of the Markov model that 

was developed to represent an individual’s progression of HF. States 1 to 4 represent a patient 

living with heart failure in NYHA classes I-IV. State 5 represents all-cause hospitalizations. 

State 6 represents all-cause 30-day readmissions. State 7 captures all-cause mortality. All 
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patients start in states 1, 2, 3 or 4. They can transition to the dead state from any state in the 

model.  Patients transition to state 5 if hospitalized from state 1-4. From state 5, patients can 

either be readmitted and transition to state 6, be discharged and return to state 1-4, or transition 

to the dead state. In state 6, patients can be readmitted again and remain in that state, be 

discharged and transition to state 1-4, or transition to the dead state. Based on expert opinion, it 

was assumed that when a patient is discharged from a hospitalization, they would not return to 

the their original NYHA state as it is unlikely that their HF severity would return to the level it 

was prior to admission. As a consequence, the model assumes that the patient transitions to a 

level of HF severity that corresponds to the average severity associated with the NYHA classes 

above the patient’s original NYHA class.  

 

Figure 5. Conceptual representation of the microsimulation model structure. States 1 to 4 

represent the transitions between NYHA classes. States 5 and 6 show transitions into and 

between hospitalization states. State 7 is an absorbing state representing death, where all states 

can transition into it. Transition probabilities between states are shown in Tables 7 and 8. 

2.7.2 Parameter Estimates 

Values used in the model were based on literature review. The values inputted into the 

model are conditional on patient characteristics. Patients with a higher NYHA class have a 

higher risk for hospitalization.(79–83) In addition, risk for re-admission are the highest within 30 

days of discharge.(75) Hospitalization rates were derived based on this. In addition, since 
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patients’ NYHA functional class can change over time, the probability of transitioning between 

classes was derived from a large scale international study.(84,85). All-cause mortality while 

hospitalized was based on the study by Yeung et al. (2012).(86)  

The SHFM was used to derive a survival curve for each patient, which is a multivariate 

Cox hazard model that has been validated on multiple cohorts of patients with HF.(72,73,87,88)  

The SHFM consists of eighteen independent variables that relate to clinical, pharmacological, 

device and laboratory data. These variables are inputted into a regression model to yield a score 

value (Table 3). This score is applied to a survival function and returns a probability of survival 

for a given patient according to the specified year. The baseline survival function used to derive 

the output was based on the large PRAISE1 study (n=1125), which was also used to develop the 

SHFM. The survival function is:  

 

where t is the time of estimated survival, l is a constant derived from PRAISE1 (l=0.0405), and 

SMFH score is the output of the SHFM regression.  

Since time passes over the simulation period, the time parameter can be used to adjust 

various transitions probabilities that would change over time. Specifically, the probability of 

mortality increases over time. To capture this increase, an updated transition probability for 

death is derived from the SHFM after each 1-month iteration. This value is based on the updated 

age value and NYHA functional class, and then extrapolated from the updated survival curve.  
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Table 3. Beta coefficients used in the SHFM to calculate survival curves per patient. For the 

probabilistic analysis, a log normal distribution was applied to each coefficient. ρ represents the 

variable in the correlation matrix below.  

Variable Description ρ  Beta Coefficient (sd) from Levy et al. 
(2006) 

Age (Decade) 1 1.09 (1.053) 

Gender 2 1.089 (1.142) 

NYHA class 3 1.6 (1.259) 

100/(Ejection fraction) 4 1.03 (1.010) 

Ischemic etiology 5 1.354 (1.125) 

min(Systolic blood pressure, 160)/10 6 0.877 (1.033) 

Diuretic dose/weight 7 1.178 (1.037) 

Allopurinol Use 8 1.571 (1.162) 

max(138-Sodium, 0) 9 1.05 (1.023) 

100/Cholesterol 10 2.206 (1.464) 

max(16-Hemoglobin, 0) 11 1.336 (1.034) 

max(Hemoglobin-16, 0) 12 1.124 (1.153) 

min(% Lymphocytes, 47)/5 13 0.897 (1.030) 

max(Uric acid, 3.4) 14 1.064 (1.021) 

ACE-inhibitor and/or ARB 15 0.77 (1.074) 

Beta blocker 16 0.66 (1.068) 

Aldosterone blocker 17 0.76 (1.109) 

Implantable Cardioverter-Defibrillator 18 0.74 (1.052) 
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2.7.3 Generating Virtual Patient Profiles 
To create a comparable control group, hypothetical patients were simulated based on the 

consolidated dataset of 7,125 HF patients, as described above.(72) To generate virtual patient 

profiles, a Cholesky decomposition was performed based on a correlation matrix, which 

describes the interdependence between patient characteristics.(69) (Table 4) Values for each 

patient characteristic were sampled from a multivariate normal distribution, defined by the 

cohort’s mean and standard deviation using the R-package “PoisBinOrdNonNor” (Table 

2).(89)(90) Patient characteristics included clinical, pharmacological, device and laboratory data, 

based on the SHFM developed by Levy et al. (2006).(73)  

Table 4. The correlation matrix (in tabular format) that was used for generating patient profiles. 

The definitions for P1 to P18 can be found in Table 3.  

 
 

2.8 Effectiveness 

2.8.1 Effectiveness Evidence  
The two primary outcomes that TM for patients with HF aim to improve are all-cause 

mortality and all-cause hospitalization rates. Effectiveness estimates, described below, were 

 Ρ,1 ρ,2 ρ,3 ρ,4 ρ,5 ρ,6 ρ,7 ρ,8 ρ,9 ρ,10 ρ,11 ρ,12 ρ,13 ρ,14 ρ,15 ρ,16 ρ,17 ρ,18 

ρ1, 1.000 -0.056 0.238 0.040 0.118 0.190 -0.165 -0.044 -0.042 -0.083 0.020 -0.173 0.140 -0.048 -0.146 0.056 -0.280 -0.021 

ρ2, -0.056 1.000 0.157 -0.016 -0.059 -0.056 0.033 -0.001 0.012 0.070 0.033 -0.059 -0.036 -0.108 0.280 0.112 0.321 -0.006 
ρ3, 0.238 0.157 1.000 0.016 0.073 -0.019 0.006 -0.023 0.004 -0.027 -0.011 -0.080 -0.032 -0.062 0.001 0.045 -0.034 0.007 

ρ4, 0.040 -0.016 0.016 1.000 -0.334 0.236 0.127 -0.033 0.009 -0.143 0.033 0.061 0.102 0.036 -0.019 -0.204 -0.011 -0.196 

ρ5, 0.118 -0.059 0.073 -0.334 1.000 -0.158 -0.225 0.023 -0.202 0.051 0.076 -0.066 -0.090 -0.049 -0.058 0.268 -0.010 0.287 
ρ6, 0.190 -0.056 -0.019 0.236 -0.158 1.000 0.009 -0.081 0.016 -0.043 -0.016 0.069 0.205 0.134 0.065 -0.140 0.029 -0.177 

ρ7, -0.165 0.033 0.006 0.127 -0.225 0.009 1.000 0.044 0.077 -0.035 -0.017 0.069 -0.010 0.007 -0.009 -0.053 0.086 -0.101 

ρ8, -0.044 -0.001 -0.023 -0.033 0.023 -0.081 0.044 1.000 0.029 -0.037 -0.015 -0.061 -0.145 0.031 -0.042 0.032 0.012 0.083 
ρ9, -0.042 0.012 0.004 0.009 -0.202 0.016 0.077 0.029 1.000 -0.077 -0.131 0.006 -0.021 0.017 -0.024 -0.040 0.032 -0.055 

ρ10, -0.083 0.070 -0.027 -0.143 0.051 -0.043 -0.035 -0.037 -0.077 1.000 -0.012 0.052 -0.011 0.025 0.062 0.051 0.072 0.020 

ρ11, 0.020 0.033 -0.011 0.033 0.076 -0.016 -0.017 -0.015 -0.131 -0.012 1.000 -0.039 -0.007 -0.058 -0.001 0.029 0.032 0.097 

ρ12, -0.173 -0.059 -0.080 0.061 -0.066 0.069 0.069 -0.061 0.006 0.052 -0.039 1.000 0.101 0.126 0.130 -0.115 0.048 -0.155 
ρ13, 0.140 -0.036 -0.032 0.102 -0.090 0.205 -0.010 -0.145 -0.021 -0.011 -0.007 0.101 1.000 0.002 0.018 -0.076 -0.003 -0.158 

ρ14, -0.048 -0.108 -0.062 0.036 -0.049 0.134 0.007 0.031 0.017 0.025 -0.058 0.126 0.002 1.000 0.175 0.005 -0.013 -0.037 

ρ15, -0.146 0.280 0.001 -0.019 -0.058 0.065 -0.009 -0.042 -0.024 0.062 -0.001 0.130 0.018 0.175 1.000 -0.002 0.194 -0.084 
ρ16, 0.056 0.112 0.045 -0.204 0.268 -0.140 -0.053 0.032 -0.040 0.051 0.029 -0.115 -0.076 0.005 -0.002 1.000 0.122 0.349 

ρ17, -0.280 0.321 -0.034 -0.011 -0.010 0.029 0.086 0.012 0.032 0.072 0.032 0.048 -0.003 -0.013 0.194 0.122 1.000 0.108 

ρ18, -0.021 -0.006 0.007 -0.196 0.287 -0.177 -0.101 0.083 -0.055 0.020 0.097 -0.155 -0.158 -0.037 -0.084 0.349 0.108 1.000 
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based on evidence from the Medly Program Evaluation and a meta-analysis of the effectiveness 

of TM for HF patients by Yun et al. (2018).(12) This meta-analysis only included randomized 

controlled trials which defined TM as the transmission of biological information, such as body 

weight, heart rate and blood pressure, via telecommunication technologies. Due to this strict 

inclusion criteria, it was deemed comparable evidence for the expected benefits that Medly users 

could experience. The estimate for reduction in all-cause hospitalizations, based on the Medly 

Program Evaluation, and mortality, based on literature review, were applied to transition 

probabilities for each patient when progressing through the model when using Medly. Methods 

of derivation are described below.  

2.8.1.1 All-cause hospitalizations 
Using data from the Medly Program Evaluation, the risk of all-cause hospitalization was 

compared using a pre-post approach, where the risk of hospitalization 6 months prior to baseline 

was compared to the risk at 6 months post-intervention. All-cause hospitalizations were used due 

to limitations in identifying HF-specific events stemming from the commonality of patients 

having comorbidities.(91) Some patients died post-intervention without being hospitalized. This 

could lead to underestimation of hospitalization. Thus, a conservative approach was taken for 

this analysis to account for this bias. A composite endpoint was used where it was assumed that 

patients who died would have been hospitalized. Table 5 shows the two-by-two table of patients 

who experienced a hospitalization 6 months prior to baseline and 6 months after baseline. The 

McNemar test was used to calculate the odds ratio, which is a non-parametric test for paired 

nominal data, which evaluates the magnitude of the difference between the discordant cells (i.e. 

number of patients who were not hospitalized 6 months prior to baseline to number of patients 

who were hospitalized 6 months after baseline).(92) The odds ratio was then converted to a 

relative risk, based on the following equation(93): 

 

 

 

Where RR is the relative risk, OR is the odds ratio from McNemar’s test and P is the prevalence 

of the outcome in the reference group 

 

𝑅𝑅 =
𝑂𝑅

(1 − 𝑃) + (𝑃	 ∗ 𝑂𝑅) 
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Based on this, the relative risk (RR) for hospitalization in the Medly group used in the 

Markov model was 0.857 (0.703 – 1.014). For reference, this was comparable to 0.94 (0.85 – 

1.03) RR reported by the meta-analysis conducted by Yun et al. (2018), which compared HF 

patients using TM to HF patients not using TM with study follow-up ranging from 3 months to 

15 months, with one study having a 4 year follow-up.(12)  

Table 5. McNemar’s odds ratio for a hospitalization event prior to using Medly compared to the 

period when patients were using Medly. 

 

2.8.1.2 All-cause mortality 
Due to the lack of an interdependent comparative group and small sample size of the 

Medly Program Evaluation, it was not possible to evaluate its effectiveness in reducing mortality. 

Therefore, effectiveness was referenced from Yun et al.’s (2018) meta-analysis where 24 studies 

reported all-cause mortality. It was reported that TM users had a RR of 0.81 (0.70 – 0.94) for all-

cause mortality comparing 416 events out of 3724 patients in the TM group to 483 events out of 

3733 patients in the control group.(12) Study follow-up periods ranged from 3 months to 15 

months, with one study having a 4 year follow-up.  

2.8.2 Adjusting mortality and hospitalization probabilities for treatment 
effects 

Based on the evidence presented above, there was indication that the Medly Program 

should be effective in reducing mortality and hospitalization rates, though a statistically non-

significant trend towards reduced hospitalizations was observed. Sensitivity analysis was 

conducted to explore this uncertainty. It was assumed that the magnitude of effect that Medly 

would have would be at least equivalent to those reported in literature. The transition 

probabilities specific to hospitalization and mortality within the model were imputed with this 

  Hospitalized or death Not 
hospitalized 

Total 
Number of 
Patients 

McNemar’s Odd 
Ratio for paired 
data (95% CI) 

6 months 
prior to 
baseline 

97 89 186 
 

6 months 
after 
baseline 

66 120 186 0.742 (0.531 – 1.03) 
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treatment effect. This was done by assuming a constant risk over time and by converting the 

transition probability into an instantaneous rate using the following equation:(94)  

𝑅𝑎𝑡𝑒 = 	− [HI(JKLMNOPOQRQST)]
SQVW

      Equation 1 

With the instantaneous rate calculated, it was adjusted by a RR as follows: 

											𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑	𝑅𝑎𝑡𝑒 = 𝑅𝑎𝑡𝑒 ∗ 𝑅𝑅     Equation 2 

Then, the adjusted rate can be converted back into a probability as follows: 

									𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑	𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 1 − exp	(−𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑	𝑟𝑎𝑡𝑒 ∗ 𝑡𝑖𝑚𝑒)      Equation 3 

These equations were used to adjust all transition probabilities related to mortality and 

hospitalizations for each patient that entered the model when using Medly. Furthermore, it was 

assumed that the effect of TM was constant across patient characteristics. 

2.9 Measurement and valuation of health 

Each state in the model has an associated utility value between 0 and 1. Deriving utility 

values for health state was based on values from other health economic evaluations of HF 

interventions. NYHA classes are commonly used to categorize HF patients based on severity of 

symptoms and studies have estimated utility values for each class.(82,84,95,96) All utilities were 

presented in Tables 7. To adjust for the decrease in QoL patients experience when hospitalized 

(97), the patient’s utility value in the model were decreased by 0.059 in the hospitalization state, 

consistent with Sandhu et al. (2016).(98) 

2.10 Resource use and costs 

All costs were converted to 2018 Canadian dollars using Statistics Canada’s Consumer Price 

Index data to adjust for inflation.(99)  

2.10.1 Healthcare utilization and costs 

Healthcare utilization was based on data from the Medly Program Evaluation and unit costs 

were based on literature review. Specifically, hospitalization costs were derived from the Ontario 

Case Costing Initiative (OCCI) for 2017-2018 using diagnosis codes I500, I509 and I501.(100) 
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(Appendix 2) As patients do not spend the entire 1-month cycle length in hospital, proportion of 

the costs for living with HF were incurred in this state depending on length of stay. Unit costs per 

emergency department (ED) visit was based on OCCI using diagnosis codes I500, I509, I501.(100) 

(Appendix 2) Unit cost per outpatient visit were based on a paper outlining healthcare utilization 

for HF patients over the last 6 months of their lives by Kaul et al. (2006) in a similar healthcare 

system in Alberta.(101) This was based on the provincial ambulatory care case mix group which 

captures supply and drug costs, and direct and indirect functional centre costs.(102) Physician fees 

for general practitioner (GP) visits were based on billing code A005 in Ontario’s Schedule of 

Benefits (SOB).(103)  

The unit costs were then multiplied by utilization data from the Medly Program Evaluation to 

calculate the monthly costs of living with HF (Table 6 & 7). It was found from the Medly Program 

Evaluation that the number of outpatient visits patients experienced did not change between 6 

months prior to using Medly and 6-month follow-up. Median values for utilization were used 

because the distribution of healthcare utilization is typically left-skewed.(104) Monthly drug costs 

were incurred by patients who are 65 years and older, specific to qualifications for the Ontario 

Drug Benefit program. The monthly drugs costs were calculated based on the costs reported in 

Kaul et al. (2006), where it was assumed that the patients in this study were NYHA class IV since 

patients were in their last 6 months of life. NYHA functional class I-III drug costs were computed 

relative to the costs reported in Kaul et al. (2006). The proportions were derived using ratios from 

a systematic review in which authors reported comparisons of patient costs between NYHA 

classes, where NYHA class I and II were 25.0% and NYHA class III was 38.2% of the drug cost 

for NYHA class IV.(105,106) Since data on NYHA class IV patients was unavailable at the time 

of the analysis from the Medly Program Evaluation, it was assumed that healthcare utilization in 

NYHA class IV patients had the same utilization as NYHA class III patients.  

 

Of note, the number of outpatient visits were limited to those that occurred at UHN because 

information outside of UHN’s services was unavailable at the time of the study. Furthermore, self-

reported emergency department visits were used because UHN patient records under-report the 

true number of ED visits since patients may live away from UHN and visit a community hospital 

for an emergency. Self-reported general practitioner visits were used also because UHN data does 

not record this information.  
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Table 6. Median healthcare utilization over 6 months prior to using Medly, unit costs per service 

and associated distribution stratified by NYHA classes.  

Type of 
Resource 

Unit Cost 
(sd) 

Source 
for Unit 
Cost 

NYHA I 
(sd) 

N = 26 

NYHA 
II (sd) 

N = 101 

NYHA 
III (sd) 

N = 57 

NYHA 
IV (sd) 

N = 0 

Distribution 

Emergency 
Department 
(self-
reported) 

$377.00 
($374.00) 

OCCI 0 0 1 -  Negative 
Binomial 

Outpatient 
visit 

$291.33 
($161.11) 

Kaul et 
al. 
(2011) 

2 2 2 -  Negative 
Binomial 

General 
Practitioner 
visit (self-
reported) 

$77.20 Schedule 
of 
Benefits 

0 0 1 - Negative 
Binomial 

Drug Costs 
over 6 
months 

$1,248.96 
($2,233.52) 

Kaul et 
al. 
(2011) 

- - - - Gamma 

N = number of patients  

2.10.2 Medly Costs and Deployment Models 

Costs related to development, implementation and maintenance of Medly were provided by 

the Medly project management and development team at UHN (Table 8). The fixed costs 

associated with implementation was based on a system that delivers care to 1,000 patients. The 

operational cost per patient includes costs associated with asset management (technical and 

application support) and on-site frontline support for patients and clinicians, which was delivered 

via two registered nurse coordinators hired by the Medly program. Two registered nurses were 

included according to the Medly project management team’s cost projections for 1,000 patients 

(i.e. projected that two registered nurse coordinators would be required to manage 1,000 

patients). The variable cost per patient included the cost of the device and equipment, depending 

on the equipment that was loaned to the patient. The cost of the device and equipment was based 

on a rental model. These costs were adjusted for monthly costs as per the cycle length of the 

model. 
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 The variable cost was based on a mix of models where users can fall into 1 of 3 categories 

of user type: Full Kit (FK), Bring your own phone (BYOP), and Bring your own everything 

(BYOE). FK is a user who is provided with all necessary equipment for the technology, which is 

currently funded by the Medly program, including a smartphone with a data plan, blood pressure 

cuff, weight scale and a licensing fee. A BYOP user brings their own phone and pays for their 

own data plan while the blood pressure cuff, weigh scale and licensing fee are provided by the 

Medly program. The BYOE user brings their own equipment and is provided with just the 

licensing fee by the program. The reference case analysis uses a ratio of 2 FK:1 BYOP:2 BYOE, 

based on the number of each category of users in Medly’s current implementation.  
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Table 7. Model parameters conditional on NYHA class including living with HF costs, utilities, 

probability of hospitalization, and transitions between NYHA classes. 

Description NYHA I NYHA II NYHA III NYHA IV*  Source Distribution 

Healthcare Costs 

 

ED costs $0.00 $0.00 $52.17 $57.90 Medly Program 
Evaluation (Table 6) 

Gamma 

GP visit costs $0.00 $0.00 $12.87 $12.87 Medly Program 
Evaluation (Table 6) 

Fixed 

Drug costs (only if 
patient age 65+) 

$52.00 $52.00 $79.43 $79.43 Kaul et al. (2011), 
Delgado et al. 
(2014) 

Gamma 

Outpatient costs  $97.00 $97.00 $97.00 $97.00 Medly Program 
Evaluation (Table 6) 

Gamma 

Total cost of living 
with heart failure  

$187.92 $187.92 $247.20 $247.20 OCCI, SOB, Kaul et 
al. (2011) 

- 

Utilities (range) 

 

Living with heart 
failure 

0.81 (0.81 – 0.90) 0.72 (0.72 – 
0.83) 

0.59 (0.59 – 
0.74) 

0.508 (0.508 
– 0.59) 

Yao et al. (2008) Beta 

Probability of All-
cause 
Hospitalization 

0.0152 (0.008 – 
0.023) 

0.024 (0.012 
– 0.036) 

0.024 (0.012 
– 0.036) 

0.154 (0.077 
– 0.231) 

Ford et al. (2012), 
Borisenko et al. 
(2015) 

Beta 

Transition Probabilities between NYHA classes 

 

NYHA I 0.977 0.019 0.004 0 Flather et al. (2005), 
Yao et al. (2008) 

Dirichlet 

NYHA II 0.008 0.981 0.01 0.001 Flather et al. (2005), 
Yao et al. (2008) 

Dirichlet 

NYHA III 0 0.034 0.96 0.006 Flather et al. (2005), 
Yao et al. (2008) 

Dirichlet 

NYHA IV 0 0 0.055 0.945 Flather et al. (2005), 
Yao et al. (2008) 

Dirichlet 

* Monthly costs assumed same as NYHA III 
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Table 8. Parameter estimates not conditional on NYHA class including hospitalization costs and 

disutility, readmission rates, Medly costs and Medly effectiveness estimates. 

Parameters Value (range/sd) Source Distribution 

Costs 

 

Hospitalization cost per 
admission 

$8,908 ($16,867) OCCI Gamma 

Hospitalization Length of Stay 5.9 (11.2) OCCI Log Normal 

Medly fixed costs for site 
implementation 

$102,500 Medly Fixed 

Medly operational cost per patient 
(cost per month) 

$44.67 Medly Fixed 

Medly Full Kit cost per patient 
(cost per month) 

$67.56 Medly Fixed 

Medly Bring-Your-Own-Phone 
cost per patient (cost per month) 

$18.87 Medly Fixed 

Medly Bring-Your-Own-
Everything cost per patient (cost 
per month) 

$3.80 Medly Fixed 

Hospitalization  

 

30-day readmission probability 0.159 (0.089 – 0.159) Yeung et al. (2012) Beta 

Disutility for hospitalization 0.059 (0 – 0.11) Sandhu et al. (2015) Beta 

Medly Treatment Effect 

   

RR for Hospitalization 0.857 (0.703 – 1.014) Medly  Log Normal 

RR for Morality  0.81 (0.70 – 0.94)  Yun et al. (2018) Log Normal 
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2.11 Reference case analysis 
All analyses calculated the ICER when comparing Medly to the current standard of care. 

Patient characteristics of the simulated cohort are reported in Table 9. 

Table 9. Patient characteristics of the simulated cohort for the reference case analysis. 
n 1000 

Male  (%) 78.3 
Ischemic Etiology  (%) 60.7 

Beta Blocker (%) 28.9 
Aldosterone Blocker  (%) 4.6 
Angiotensin Receptor Blocker (%) 37.9 

ACE Inhibitor (%) 92.1 
Allopurinol (%) 3.3 
Age (mean (sd)) 62.88 (3.33) 

Ejection Fraction (mean (sd)) (%) 26.05 (2.90) 
NYHA class (mean (sd)) 2.59 (0.82) 

Systolic Blood Pressure (mean (sd)) (mmHg) 123.05 (4.27) 
Lymphocytes percent (mean (sd)) (%) 25.19 (2.83) 
Sodium (mean (sd)) (mEq/L) 139.40 (1.77) 

Cholesterol (mean (sd)) (mg/dL) 201.82 (6.93) 
Hemoglobin (mean (sd)) (g/dL) 13.70 (1.25) 
Uric Acid (mean (sd)) (mg/dL) 7.64 (1.51) 

Body Weight (mean (sd)) (kg) 78.86 (3.97) 
Diuretic (mean (sd)) (mg/day) 71.80 (9.81) 

Implantable cardioverter-defibrillator (%) 40.0 

 

2.11.1 Deterministic reference case analysis 

The expected values for all model parameters were used for the deterministic analysis. 

The cohort size was assumed to be 1,000 patients, which is the number of patients for which the 

current Medly system can deliver care, as per opinion from project managers. Identical patients 

were simulated, and each progressed through the model twice until death; once as a patient using 

Medly and again as a patient not using Medly. Each patient incurred costs and QALYs depending 

on the health state they were in. Total costs and QALYs was summed for both the Medly 

simulations and standard of care simulations. From this, the average ICER per patient was 
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computed. Monte Carlo standard errors (MCSE) were also reported to show how the results vary 

due to patient heterogeneity and randomness introduced from patients transitioning to each state. 

2.11.2 Probabilistic Reference Case Analysis 
A second-order probabilistic analysis was also conducted to characterize the uncertainty 

in the deterministic results. In this analysis, each parameter in the model was assigned a 

distribution based on the nature of the input parameter.(69) Lognormal distributions were 

defined by the log of the mean and standard deviation of the parameter. Negative binomial 

distributions were defined by a dispersion and mean of the parameter. Gamma distributions were 

defined by a shape and scale derived from the mean and standard deviation of the parameter. 

Beta distributions were defined by an alpha and beta value derived from the upper and lower 

limits of the parameter. 

 R-package “fitdistrplus” was used to fit negative binomial distributions for the healthcare 

utilization data from the Medly Program Evaluation via maximum likelihood estimation.(107) 

Details on how distributions were chosen based on Akaike Information Criteria (AIC) and 

Bayesian Information Criteria (BIC) scores are available in Appendix 3. Values were then 

randomly selected from respective distributions and assigned as the input parameter. The virtual 

patient then progresses through the model. This process was repeated 1,000 times. Results for 

each iteration were plotted on a cost-utility plane to visualize which each simulation were cost-

effective, cost-saving, cheaper or dominated. The simulations were also plotted onto a cost-

effectiveness acceptability curve (CEAC), where the proportion of simulations that resulted in an 

ICER under a range of willingness-to-pay (WTP) thresholds are plotted. Commonly cited WTP 

thresholds are $50,000/QALY and $100,000/QALY and were referenced in this analysis as 

achieving cost-effectiveness.(108,109) However, cost-effectiveness is ultimately decided by the 

decision maker. It is a challenge to identify an optimal generalizable threshold for any given 

society because of the variation that exists between them. In Canada, based on approved health 

technology assessments by the Common Drug Review, the general acceptable threshold is about 

$50,000/QALY with a grey zone extending up to $80,000/QALY.(108)  

2.12 Scenario analyses 
All probabilistic analyses used the same parameters used in the reference case 

probabilistic analyses to ensure comparable results. 
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2.12.1 Stratification by New York Health Association functional classes 

Currently, the majority of patients who are enrolled onto the Medly program at UHN are 

patients in NYHA class II and III. As the program continues to scale, understanding the type of 

patient this technology could be most cost-effective for can help inform decisions on the patients 

that should be enrolled onto the program. NYHA classes are a common way clinicians classify 

the severity of symptoms in HF patients, where higher classes indicate worse health.(110) For 

this scenario analysis, hypothetical cohorts of 1,000 patients were generated for NYHA classes I-

III and simulated deterministically and probabilistically. Tables describing patient characteristics 

for each simulated class are presented in Appendix 4. NYHA IV class was not included in this 

scenario analysis because of the assumptions made on healthcare utilization since no patients in 

NYHA class IV was enrolled into the Medly Program Evaluation. Average ICERs per NYHA 

class was calculated in the deterministic and probabilistic model and CEAC curves were 

presented on a plot to visualize which classes were the most likely to be cost-effective.  

2.12.2 Different deployment models for Medly 

Ware et al. (2018) identified adaptations for TM programs which may help ensure 

sustainability and scalability by reducing costs.(44) One of the identified adaptations was to shift 

programs from being fully publicly-funded to encouraging patients to bring their own devices. 

This shifts costs from the public payer to the individual user, thus decreasing the burden on 

public funding. As mentioned in section 2.9.2, the Medly program currently offers three types of 

kits where the ratio of types of user is 2:1:2 for FK, BYOP and BYOE, respectively. As the 

Medly program expands, understanding how the ICER changes when costs are shifted from the 

public dollar to the individual is informative to decision makers. Therefore, this analysis 

explored various proportions of types of users. Specifically, each patient in the reference case 

cohort was randomly assigned FK, BYOP and BYOE according to pre-defined ratios. The ratios 

of interest were 1:0:0 (100% FK), 1:4:5 (40% BYOP, 50% BYOE) and 0:0:1 (100% BYOE). 

These were identified as All FK, Mixed Deployment and All BYOE, respectively. Analyzing the 

extreme cases where either the program provides all necessary equipment or provides only the 

license offers the upper and lower limits of what the Medly program could entail. The 1:4:5 ratio 

was chosen to analyze an optimistic scenario for the Medly program where the majority of 

patients are either bringing their own equipment or smartphone. The program still provides some 

FKs to patients who do not have the financial means to pay out-of-pocket for the technology, 
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ensuring equitable access to care. All analyses used the same simulated cohort in the reference 

case.  

2.13 Effectiveness uncertainty  
All analyses used the same simulated cohort in the reference case to ensure comparable 

results. 

2.13.1 On mortality effect  

The effectiveness of Medly in reducing mortality was based on literature review. The 

uncertainty in this evidence was partially addressed in the probabilistic analysis. However, it is 

unknown how the ICER would change if the mortality estimate was adjusted individually. To 

address this, a one-way sensitivity analysis was conducted based on the interval reported by Yun 

et al. (2018).(12) This was done by altering the point estimate between RR 0.7 and 0.94 and 

running the deterministic analysis with 1,000 patients. The range of ICERs were plotted onto a 

tornado diagram.  

2.13.2  On hospitalization effect 

The effectiveness in reducing hospitalization rates was based from the Medly Program 

Evaluation. However, there was also uncertainty in this estimate where non-statistical 

significance was observed. Similarly, the point estimate was altered between RR 0.7 and 1.01 

where deterministic analyses with 1,000 patients were conducted. The range of ICERs were also 

plotted onto a tornado diagram.  

2.14 Time horizon and discounting effect 
A 25-year time horizon was used in our study to capture the long-term effects of the 

Medly program. This led to various assumptions in long-term effectiveness of Medly and 

trajectory of patient outcomes. To understand the effect time horizon had on the results, 

deterministic analyses of the reference case were conducted with 1,000 patients for time horizons 

of 5, 10, 15 and 20 years.  

In addition, discounting was applied in our study to adjust the value of costs and QALYs 

for the time at which they occur because the value of future costs and QALYs is generally lower 
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than the present. Therefore, discounting rates of 1.5% was also used in our study, as per CADTH 

guidelines.(68) To explore the effect discounting rates had on the results, deterministic analyses 

of the reference case were conducted at discount rates of 0% and 3%. 

 Results 
Below are the results for all of the analyses described in the last chapter. MCSE in each 

table describes the variability around the mean model estimate due to the stochastic variation in 

microsimulations.(74)  

3.1 Reference case analyses 

3.1.1 Deterministic results 

Table 10. Deterministic results of the reference case. 
Reference Costs MCSE QALYs MCSE Incremental 

Cost 
MCSE QALYS 

Gained 
MCSE ICER ($/QALY) 

Control  $  127,169   $  5,037  3.949 0.095      
Medly  $  143,647   $  5,074  4.62 0.105  $ 16,478   $ 3,272  0.671 0.049  $  24,553  

Based on the reference case of 1,000 patients described in section 2.11 over a 25-year time 

horizon, the average total costs were $127,169 (MCSE $5,037) for the control group and 

$143,647 (MCSE $5,074) for patients using Medly. Average total QALYs were 3.949 (MCSE 

0.095) and 4.62 (MCSE 0.105) for the control group and Medly patients, respectively. When 

comparing the two groups, there was an incremental cost of $16,478 (MCSE $3,272) with a 

positive incremental QALYs gained of 0.671 (MCSE 0.049). This resulted in an ICER of 

$24,553/QALYs gained. (Table 10) 

3.1.2 Probabilistic results 

Figure 6. A cost-utility plane of the 1,000 simulations from the probabilistic analysis of the 

reference case. The y-axis measures the incremental cost and x-axis the incremental QALY for 

each simulation. The black line that intercepts the points represents the average ICER 

($24,553/QALY) from the deterministic analysis.  
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Figure 7. CEAC of the reference case analysis. The black vertical line represents the 

$50,000/QALY WTP threshold.  



 

 

 39 

  

Based on 1,000 simulations of the reference case scenario where each parameter was 

sampled from their respective distribution, 79.8% of the simulations showed that Medly was 

more costly and more effective (Figure 6). Furthermore, some of the simulations were also less 

costly and more effective (Figure 6). These simulations were then plotted onto a CEAC to 

observe how the proportion simulations that are cost-effective change as WTP increases. Figure 

7 showed that 84.4% of the simulations resulted in an ICER below the $50,000/QALY threshold 

and 95.5% at $100,000/QALY. Also, 20.2% of the simulations were cost saving, where the 

ICER was less than $0/QALY.  

 

3.2 Scenario Analyses 

3.2.1 Stratify by New York Health Association classes 

Hypothetical cohorts of 1,000 patients of NYHA classes I-III were simulated 

deterministically and probabilistically through the model and the results are presented below.  
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3.2.1.1 Deterministic results 

 Table 11. Deterministic results for each NYHA class simulated patient cohorts. NYHA class II 

was the most cost-effective and NYHA class III was the least. 

Over a 25-year time horizon, as NYHA class increased, so did the average total costs. 

Patients in NYHA class I had the lowest average total costs and NYHA class III had the highest 

costs. However, NYHA class II had the lowest incremental cost while NYHA class III patients 

had the highest. In addition, total average QALYs decreased as NYHA class increased. Patients 

with NYHA class I resulted the highest total QALYs where NYHA class III had the lowest. 

Furthermore, incremental QALYs increased as NYHA functional class increased. This led to 

patients with NYHA class II having the lowest ICER and NYHA class III with the highest. All 

results are reported in Table 11 above. 

 

 

 

 

 
Costs MCSE QALYs MCSE Incremental cost MCSE QALYS 

gained 
MCSE ICER 

($/QALY) 
NYHA I 

         

Control 
$  112,846  $  4,484  5.305 0.102      

Medly 
$  126,703  $  4,539  5.980 0.11  $   13,857  $   3,127  0.675 0.049 $  20,535  

NYHA II 
         

Control 
$  126,640  $  5,011  4.397 0.093      

Medly 
$  139,874  $  4,975  5.113 0.104  $    13,234  $   3,313  0.716 0.051 $  18,479  

NYHA III 
         

Control 
$  131,541  $  5,282  3.465 0.084      

Medly 
$  149,269  $  5,338  4.079 0.094  $    17,727  $   3,558  0.614 0.047 $  28,881  
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3.2.1.2 Probabilistic results 

CEAC curves for each NYHA class were plotted (Figure 8).  At a WTP threshold of 

$50,000, the probability of cost-effectiveness for NYHA class I, II and III was 88.3%, 86.4% and 

81.6%, respectively. At a WTP threshold of $100,000, this increased to 97.1%, 96.1% and 

94.2%, respectively. 

Figure 8. CEAC of the scenario analysis for NYHA classes I, II and III. The black vertical line 

represents the $50,000/QALY WTP threshold.  

 

 

3.2.2 Various deployment models of Medly 

The All FK, Mixed Deployment and All BYOE deployment models were also simulated 

deterministically and probabilistically and the results are presented below. 
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3.2.2.1 Deterministic results  

Table 12. Deterministic results for each deployment model of Medly. The models with the 

highest proportions of patients bringing their own equipment resulted in higher cost-

effectiveness. 

Various deployment models were simulated through the model. Since the only difference 

between scenarios were the total costs incurred by the Medly intervention over a 25-year time 

horizon, all control groups had the same average total costs and average total QALYs, which is 

the same as the control group in the reference case. Average total QALYs for patients using 

Medly were also the same for all scenarios and identical to the Medly group from the reference 

case, as the effectiveness of care did not change. Intuitively, as the proportion of FK increased, 

so did the average total costs for patients using Medly. This led to the ICERs following the same 

trend. All results are reported in Table 12 above. 

3.2.2.2 Probabilistic results 

Each deployment model was also analyzed probabilistically. Each CEAC curve was 

plotted in Figure 9. The BYOE model had the highest probability for cost-effectiveness at 86.4% 

and 96.3% of the simulations being under the WTP thresholds of $50,000/QALY and 

$100,000/QALY, respectively. The Mixed Deployment had the second highest probability for 

cost-effectiveness with 85.6% and 95.8%. The FK model had the lowest probability of cost-

effectiveness at 80.6% and 93.9% respectively.  

Reference Costs MCSE QALYs MCSE Incremental 
cost 

MCSE QALYS 
gained 

MCSE ICER 

All BYOE 
         

Control 
$ 
127,169  

$  
5,037  3.949 0.095      

Medly 
$ 
140,896  

$  
5,021  4.62 0.105 $  13,727  $   3,253  0.671 0.049 $  20,453  

Mixed Model          

Control 
$ 
127,169  

$  
5,037  3.949 0.095      

Medly 
$ 
142,084  

$  
5,044  4.62 0.105 $   14,915  $   3,263  0.671 0.049 $  22,224  

All FK 
         

Control 
$ 
127,169  

$  
5,037  3.949 0.095      

Medly 
$ 
146,970  

$  
5,138  4.62 0.105 $   19,801  $   3,285  0.671 0.049 $   29,503  
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Figure 9. CEAC of the scenario analysis for deployment models FK, Mixed and BYOE. The 

black vertical line represents the $50,000/QALY WTP threshold.  

 

3.3 Effectiveness uncertainty  
The uncertainty in the evidence for reduction in mortality and hospitalizations was 

addressed via one-way analyses. Since the effectiveness of Medly was varied, the results of the 

control group did not change and were the same as the reference case. The results presented 

below were described relative to the results from the reference case. 
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 Table 13. Deterministic results for the upper and lower limits of effectiveness in reducing 

mortality and hospitalization rates. The ICER was most sensitive to the uncertainty in RR for 

hospitalizations.   

3.3.1 On mortality effect 

When RR for mortality was adjusted to its lower limit of 0.70, the average total costs for 

patients using Medly increased to $164,734 (MCSE $5,514). Average total QALYs also 

increased to 5.040 (MCSE 0.11). This led to a higher incremental cost of $37,656 (MCSE 

$2,067) and incremental QALYs gained of 1.091 (MCSE 0.028). Based on this, the ICER 

increased to $34,441/QALY gained. When RR for mortality was adjusted to its upper limit of 

0.94, the average total costs for patients using Medly decreased to $123,578 (MCSE $4,677). 

Average total QALYs also decreased to 4.209 (MCSE 0.099). This led to a negative incremental 

cost of -$3,591 (MCSE 2,067) and incremental QALYs gained of 0.259 (MCSE 0.028). This led 

to a cost-saving ICER of -$13,843/QALY gained. (Table 13) The magnitude in the change in 

ICER was plotted on a tornado diagram (Figure 10). 

3.3.2 On hospitalization effect 

With adjustments to the RR of hospitalizations, the lower limit of 0.70 resulted in a decrease in 

average total costs to $122,572 (MCSE $4,291) and an increase in average total QALYs of 4.770 

(MCSE 0.108). This led to a negative incremental cost, representing cost-savings, of -$4,597 

(MCSE $3,457). Incremental QALYs gained also increased to 0.821 (MCSE 0.054). This led to 

RR for 
Mortality 

Costs MCSE QALYs MCSE Incremental 
cost 

MCSE QALYS 
gained 

MCSE ICER 

RR = 0.70 
         

Control  $  127,169  $  5,037  3.949 0.095      
Medly  $  164,734  $  5,514  5.04 0.11  $ 37,565  $  4,209  1.091 0.063  $  34,441  
RR = 0.94 

         

Control  $  127,169  $  5,037  3.949 0.095      
Medly  $  123,578  $  4,677  4.209 0.099 - $ 3,591 $  2,067  0.259 0.028 - $ 13,843 
RR for 
hospitalization 

         

RR = 0.70 
         

Control  $  127,169   $ 5,037  3.949 0.095      
Medly  $  122,572   $ 4,291  4.77 0.108 - $ 4,597 $  3,457  0.821 0.054 - $  5,602 
RR = 1.014 

         

Control  $  127,169   $  5,037  3.949 0.095      
Medly  $  167,031   $  5,900  4.491 0.103  $  39,862  $  3,347  0.541 0.046  $ 73,635  
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a cost-saving ICER of -$5,602/QALY gained, where Medly was cost-saving while also 

improving health outcomes. When RR of hospitalizations was adjusted to its upper limit of 

1.014, average total costs increased to $167,031 (MCSE $5,900) and average total QALYs 

decreased to 4.491 (MCSE 0.103). Incremental costs and incremental QALYs gained were 

$39,862 (MCSE $3,347) and 0.541 (MCSE 0.046), respectively. An increased ICER of $73,635 

resulted. (Table 13) The magnitude in the change in ICER was plotted on a tornado diagram 

(Figure 10). 

Figure 10. Tornado diagram displaying the one-way analyses conducted for the mortality and 

hospitalization effectiveness parameters. RR for hospitalizations had the largest influence on the 

ICER, while RR for mortality had the lowest.  
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3.4 Time horizon and discounting effect 
Table 14. Deterministic results for time horizons on 5, 10, 15 and 20 years.  

 
Costs * QALYs * Incremental 

Costs 
* QALYs 

Gained 
* ICER 

5 years 
         

Control $  44,473  $  1,604  2.357 0.032      
Medly $  44,244  $  1,439  2.487 0.031 -$  230 $  953  0.13 0.013 -$  1,768 
10 
years 

         

Control $  85,468  $  2,903  3.303 0.061      
Medly 

$  87,980  $  2,712  3.646 0.062  $  2,512  
$ 
1,858  0.343 0.026 $   7,318  

15 
years 

         

Control $ 108,443  $  3,926  3.682 0.078      
Medly 

$ 117,103  $  3,771  4.199 0.083  $       8,660  
$ 
2,503  0.518 0.036 $  16,732  

20 
years 

         

Control $ 120,918  $  4,620  3.864 0.089      
Medly 

$ 134,725  $  4,570  4.486 0.097  $     13,807  
$ 
2,968  0.622 0.044 $  22,195  

 The effect of the time horizon was analyzed by simulating the reference case for time 

horizons of 5, 10, 15 and 20 years. As the time horizon decreased, total costs and QALYs did 

also. This decrease was also seen in the QALYs gained and incremental costs. These all resulted 

in ICERs that were less than the reference case which was simulated for 25 years, and a cost-

saving ICER for 5 years. All results are presented in Table 14.  

 

Table 15. Deterministic results for discount rates of 0% and 3%.  
 

Costs * QALYs * Incremental 
Costs 

* QALYs 
Gained 

* ICER 

0% 
         

Control $ 144,445 5,998 4.295 0.11 
 

 
   

Medly $ 165,094 6,106 5.083 0.124 $  20,649 $ 3,928 0.788 0.058 $ 26,200 

3% 
         

Control $  112,991  $  4,292  3.657 0.083      
Medly $  126,244  $  4,280  4.234 0.091  $  13,253  $ 2,767  0.577 0.041 $ 22,969  
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The effect of discounting rates was analyzed by simulating the reference case with 0% 

and 3% discount rates. Intuitively, 0% discount rate resulted in higher costs and QALYs leading 

to a higher ICER. At 3% discount rate, there was a decrease in costs and QALYs relative to the 

reference case, leading to a lower ICER. Results are presented in Table 15. 

 

 Discussion 
Few TM systems have been implemented across Ontario, and the evidence around its 

cost-effectiveness is sparse. As TM systems begin to scale up and strategies for its sustainability 

are identified, as with the Medly program, the importance to evaluate such technologies from 

both economic and clinical perspective becomes crucial.  

This chapter discusses the results of the CUA of the Medly Program for patients with HF 

compared with the standard of care. The limitations are also presented, and the results are 

compared with available evidence. Furthermore, an external model validation was conducted by 

comparing survival and hospitalization rates to longitudinal studies. This chapters also discusses 

the implications these results may have for healthcare decision makers, physicians and patients. 

Recommendations for future research were also made.  

4.1 Cost-utility analysis of telemonitoring for patients with heart 
failure 
The purpose of this study was to assess the cost-utility of the Medly Program for patients 

with heart failure compared to the current standard of care. Its incremental costs were evaluated 

relative to the QALYs gained from the healthcare system’s perspective. The reference case 

showed that, over a 25-year time horizon, the average total costs and QALYs for using Medly for 

patients with HF were $143,647 (MCSE $5,074) and 4.620 (MCSE 0.105). In comparison, the 

current standard of care showed an average total cost and QALY of $127,169 (MCSE $5,037) 

and 3.949 (MCSE 0.095). Therefore, TM was associated with incremental costs of $16,478 

(MCSE $3,272) and incremental QALYs gained of 0.671 (MCSE 0.049), leading to an ICER of 

$24,553/QALY gained. Results of the probabilistic analysis showed that 84.4% of the 

simulations were cost-effective at a WTP threshold of $50,000/QALY. This increased to 95.5% 

at $100,000/QALY. Furthermore, 20.2% of the simulations were cost saving. This means that 
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Medly is likely to be cost-effective over a 25-year time horizon, with some potentials for cost-

savings.  

These results suggest that the Medly Program for HF patient is cost-effective based on a 

WTP of $50,000/QALY. However, cost-effectiveness is ultimately dependent on the WTP of 

decision makers who are willing to spend money in order to improve patient outcomes and their 

appetite for risk in adopting an intervention that could possibly be cost saving. This is an 

important finding regarding early-stage evidence for the cost-effectiveness associated with the 

implementation of TM systems for HF. Its potential is further validated by to the use of 

conservative assumptions within the model. 

4.1.1 NYHA classes  

As HF patients vary in health status, so do their trajectories of healthcare costs and life 

expectancy. Analyzing cost-utility specific to HF severity allowed for insights on how cost-

effectiveness can differ between NYHA classes. Results showed that NYHA class II had the 

lowest ICER and NYHA class III the highest. However, none of the classes resulted in any 

ICERs above $50,000/QALY. This was further confirmed by the probabilistic analysis, though 

differences in the likelihood of cost-effectiveness for each class were marginal. Nonetheless, 

understanding the factors that influenced respective ICERs explains how HF severity can affect 

cost-effectiveness.  

The first factor was the lifespan of the population. This is especially relevant for 

interventions with upfront costs, such as Medly, where capital investment into infrastructure and 

equipment is needed. For the intervention to be cost-effective, the cost of the initial setup must 

be spread over a long enough period to justify the investment.(46) This requires the population to 

live long enough for costs to be amortized over an ample amount of time. When comparing 

NYHA class II to III, class III lived a shorter life span which influenced a higher incremental 

cost, since the capital investment had less time to distribute its cost. However, lifespan was not 

the only factor in different incremental costs between groups, as noted by NYHA class I higher 

incremental cost compared to NYHA class II, though NYHA class I had a longer lifespan. 

Healthcare utilization differences between NYHA classes also influenced ICERs. It has 

been reported that healthcare costs increase as NYHA class increases.(105,111) Furthermore, the 
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amount by which healthcare utilization decreases due to an intervention may also affect the 

difference in ICERs. As mentioned, patients with NYHA class II experienced a lower ICER than 

NYHA class I. Though both classes had the same healthcare utilization when not admitted to the 

hospital, patients with NYHA class II experienced higher hospitalization rates overall. This led 

to a higher total healthcare cost. Since Medly decreased the risk for hospitalization, there was a 

larger offset in costs in patients with NYHA class II than in NYHA class I, leading to a lower 

incremental cost and higher incremental QALYs gained. When comparing patients with NYHA 

class II to NYHA class III, patients with NYHA class III resulted in a higher ICER, which was 

partially explained above by shorter lifespan. In addition to that, patients with NYHA class III 

also have higher healthcare utilization compared to NYHA class II when not admitted to the 

hospital, which means patients with NYHA class III incurred more costs when alive. This led to 

a higher incremental cost than patients with NYHA class II.  

4.1.2 Various deployment models 

Currently, the majority of the Medly Program is funded through the hospital and 

philanthropy. It has been identified that having the Medly Program being fully supported by 

these funds was not a sustainable model for its scalability.(43,44) Overtime, the Medly program 

shifted to a model where patients would use their own equipment for the technology, as this was 

identified as a strategy to promote sustainability.(44) This shift has led to the current program 

having a ratio of 2:1:2 for FK, BYOP and BYOE users. Though lowering the costs of 

interventions is advantageous for organizations, understanding how these lower-cost deployment 

models change the cost-effectiveness of the intervention is crucial to decision makers.  

As seen in the results, as absolute costs between models decreased according to the shift 

in proportion of FK to BYOP or BYOE users, the ICER also decreased. This is intuitive, as costs 

would be lower when more patients use their own equipment for the technology, thus increasing 

cost-effectiveness. This is further confirmed by the probabilistic analysis where there was an 

increasing likelihood of cost-effectiveness when more patients used their own equipment, though 

differences between the BYOE and Mixed models were marginal. Furthermore, all hypothetical 

deployment models resulted in an ICER under $50,000/QALY. Therefore, depending on a 

decision makers WTP, the difference in ICERs between deployment models could be deemed 

minimal when viewed from the perspective of a patient’s lifetime.  
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 However, decision makers are often hesitant about investing in interventions that require 

large upfront capital investments.(112,113) This is because the return in investment occurs over 

a longer period of time, which increases risk for the decision maker. Thus, there is value in 

reducing initial capital investments. For example, decision makers may be more inclined to use 

TM at another hospital if implementation costs are lowered by having patients bring their own 

equipment rather than the hospital buying them upfront.  

There are also considerations when shifting Medly from a program that provides all 

necessary equipment to a program where patients are required to bring their own. First, it is not 

known how much of the patient population already have the required equipment for the 

technology and how many would need to purchase out-of-pocket to access this technology. This 

includes any combination of smartphone, blood-pressure cuff and weight scale. Furthermore, 

little is known on an individual’s willingness-to-pay out-of-pocket for TM for HF. Seto et al. 

(2012) reported that fourteen out of thirty study participants would not pay for a TM system, 

with many not having the financial means to do so, and eight participants willing to pay between 

$25 and $49 per month.(41) Ware et al. (2018) also reported concerns expressed by patients and 

clinicians for equitable access to the program, and that kits need to be available for patients who 

cannot afford it.(44) There are also concerns related to the interoperability between the patient’s 

own equipment and the Medly app, as the program provided kits are Bluetooth-enabled. Patients 

would have to manually enter their data daily if the equipment does not integrate with the app, 

which could lead to incorrect values being entered.(44) Currently, software developers are 

implementing features to the Medly application to protect against inaccurate data entry.  

With this said, shifting deployment models to one where patients provide some or all of 

the technology, or a BYOE model, may not be crucial for the long-term sustainability of the 

program, as the costs saved by a patient bringing their own device are minimal compared to the 

costs incurred by a patient’s healthcare utilization over a lifetime. Concerns around accessibility 

and interoperability further complicate this transitioning. However, the upfront costs that are 

saved could incentivize decision makers to implement Medly as a part their HF standard of care 

since lowering this initial cost is appealing. 
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4.1.3 Uncertainty – effectiveness 

The primary outcome in this analysis was QALYs, which was affected via the 

improvement in all-cause mortality and all-cause hospitalization rates in patients with HF when 

using Medly. However, since uncertainty existed in Medly’s effectiveness in reducing mortality 

and hospitalization rates, understanding how influential these parameters are to the model was 

crucial in framing Medly’s cost-effectiveness.  

As the Medly Program Evaluation did not evaluate mortality differences, the alternative 

approach was to inform the model with the best available evidence from published literature. 

Taking this approach was identified as useful for the economic evaluation of early stage TM 

interventions.(47) With that said, the ICER was relatively sensitive to this uncertainty. When 

adjusting the RR for mortality to its upper limit, the ICER decreased to a cost-saving situation of 

where the incremental cost was negative and incremental QALY remained positive. When 

adjusted it to its lower limit, the ICER increased with a positive incremental most. This may 

seem counter-intuitive, as improved mortality rates should generally produce more favourable 

results. However, from the perspective of a cost-utility analysis, there was a monetary cost 

associated with extending life years. Though there was an increase in ICER with improved 

mortality rates, more importantly, the ICER was still well below a $50,000/QALY WTP 

threshold. This is because the additional cost associated with the Medly intervention in 

combination with the decrease in hospitalization rates allowed for additional QALYs to be 

relatively affordable.  

Uncertainty in the effectiveness of reducing hospitalizations, which was evaluated by the 

Medly Program Evaluation, had a more significant impact on the ICER when adjusted to its 

upper and lower limits. When adjusted to the upper limit, which saw an increase in 

hospitalization rates for patients using Medly, the ICER increased over the $50,000/QALY WTP 

threshold due to higher incremental costs and lower incremental QALYs gained. When adjusted 

to the lower limit, the ICER became cost-saving. Here, a negative incremental cost and higher 

incremental QALYs gained was observed. This showed that hospitalizations were a significant 

contributor to costs and in turn, influential to Medly’s cost-effectiveness. A cost-of-illness study 

by Lesyuk et al. (2018) for HF reported that the costs for hospital admission contributed 

significantly to direct healthcare costs, ranging from 44% to 96% of the total costs.(106) Since 
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the majority of HF healthcare costs are attributed to hospitalizations, the cost-effectiveness of 

Medly was sensitive to how many hospitalizations were prevented, ranging from potentially not 

being cost-effective depending on a decision makers WTP, to being cost-saving.  

Though several comprehensive meta-analyses have been published on the effectiveness 

of TM for patients with HF, there still exists inconsistencies.(11,13–15,114–116) One can point 

to the lack of generalizability since development and implementation is context-specific, and 

areas of heterogeneric evidence since technologies are deployed to different patient populations 

with varying characteristics.(19) Therefore, implementing strategies that leverage evidence that 

is specific to the intervention of interest, rather than prioritizing comprehensive review articles, 

may prove beneficial to the production of representative results. When faced with the need to 

make inferences of effectiveness, as with Medly’s effect on mortality rates, then reviewing 

technologies that are most similar to the intervention of interest can serve as a placeholder until 

that evidence is available.  

As the Medly program continues to evaluate its impact on patient outcomes, more robust 

evidence on its effect on mortality and hospitalization rates will become available. Updating this 

model accordingly, especially around its impact on hospitalization rates, will confirm that the 

Medly program is cost-effective, or even cost-saving.  

4.2 Time horizon and discounting effect 
For economic evaluations, time horizons are chosen based on capturing all meaningful 

differences in costs and effects between alternatives, which in many cases is the lifetime of the 

cohort modelled.(117) However, models that extend this far into the future may require 

assumptions due to lack of long-term data to inform parameter estimates. This can be seen in the 

assumptions made in our study, such as the duration of Medly’s effect and constant risk for 

hospitalization over time. Therefore, analyzing ICERs at shorter time horizons can address some 

of the uncertainty associated with long-term modelling. 

The time horizons analyzed had an impact on the ICERs, where shorter time horizons led 

to more favourable ICERs, including a cost-saving scenario at 5 years. This decreasing trend in 

ICERs was observed because shorter time horizons limit patients from progressing to sicker 

health states where they would incur more healthcare costs. An extended time horizon captures 



 

 

 53 

the costs and effects associated with patients that live longer, relative to their trajectory not using 

Medly. During these extended life years, patients may become sicker and incur more healthcare 

costs, which was seen in our results. Since patients in our model were able to transition between 

NYHA functional classes and patients that were hospitalized were conservatively assumed to be 

in a higher NYHA class when discharged, given they did not die during their hospitalization, 

their extended life was associated with more costs. However, in real clinical practice, patients 

could be discharged in a better NYHA functional class than when they were admitted if they 

were provided with the necessary care to address their reason for the visit.  

The discounting rates also are used to adjust future costs and benefits relative to the 

timing these costs and benefits happen, as people generally value current costs and benefits more 

than ones experienced in the future.(118) This is especially relevant for long term models where 

costs and benefits are experienced over many years. In our model, the discount rate of 1.5% was 

used according to CADTH guidelines to ensure comparability to other economic evaluations in 

Canada.(68) With that said, when the discount rate was changed between 0% and 3%, the ICER 

did not significantly change ($22,969 and $24,553, respectively). 

4.3 Comparison to other economic evaluations  

4.3.1 Economic evaluations of telemonitoring interventions 

A search was conducted for similar modeling studies conducted in Canada, but as 

mentioned the literature search, none were found. In addition, only three studies have conducted 

a full health economic evaluation modelled for a time horizon of 5 years or longer specific to TM 

technologies for HF management.  

The study by Thokala et al. (2013) compared TM with usual care from the public payer 

perspective and found TM to be cost-effective at £11,873/QALY gained in 2011 (equivalent to 

CAD $19,996/QALY gained in 2018) using a two-state (alive or dead) cohort-based Markov 

model over a 30 year time horizon.(64) This relatively higher ICER compared to our study could 

be attributed to various factors. The higher magnitude of effectiveness in the reduction of all-

cause mortality (hazard ratios of 0.76) means more costs are incurred for extended LYs. The cost 

of hospitalizations was also lower (£15,29.97 - £25,14.49), which means there is less costs saved 

per hospitalization reduced at a hazard ratio of 0.75. Furthermore, model structures differed 
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between Thokala et al’s study and our study, where different health states and transition 

probabilities were used. The probabilistic analysis conducted in Thokala et al. (2013) also saw a 

40% likelihood for cost-effectiveness, based on a £20,000/QALY WTP threshold. (64) However, 

details on distribution choice were not provided.  

A study by Liu et al. (2016) also broadly compared TM by to usual care from the 

American payer perspective and found cost-savings for specific scenarios.(66) This included 

patients who were intermediate and high risk over a 1- to 5-year time horizons. However, the 

study did not use QALYs but LYs instead. Furthermore, these results differ from our study 

because of different model structures and transition probability parameters. The health states in 

the model developed by Liu et al. (2016) were based on the number of past hospitalizations. 

Also, hospitalization rates were conditional on both NYHA class and number of past 

hospitalizations. The associated monthly probabilities for hospitalizations were much higher than 

the ones used in our study. This increased rate of hospitalizations in combination with the larger 

treatment effect size in reducing mortality and hospitalizations can be attributed to the cost-

saving results.(66)  Furthermore, a robust probabilistic sensitivity analysis was not conducted.  

A study by Grustam et al. (2018) compared TM to usual care from the public payer 

perspective within the Trans-European Network-Home-Care Management System using data 

from its original publication and other sources.(67) It resulted in an ICER of €12,479/QALY 

gained in 2015 (CAD $18,145 in 2018), which was relatively higher than the one reported in our 

study. Similar to our study, the health states were defined by NYHA class. However, 

hospitalization events were not modelled, but rather their costs were incorporated into each 

NYHA class health state based on average utilization.(67) In addition, the effectiveness of TM in 

the study was not defined by risk for all-cause mortality and hospitalizations events. Rather, 

effectiveness was measured by the decrease in probabilities of transitioning to more severe 

NYHA classes and the dead state based on an extrapolation from their database of patients using 

TM.(67) The difference in our results can be attributed to the different methods used to model 

HF and measure effectiveness.  

4.3.2 Modelling techniques used for heart failure disease management  

Due to the lack of complete economic evaluations on TM for patients with HF, we 

expanded our comparisons to other long-term cost-effectiveness studies that evaluated HF 
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disease management programs to strictly compare modelling methodologies. A study by Reed et 

al. (2015) looked to design a web-based program that evaluated the cost-effectiveness of disease 

management programs in HF from either the perspective of the healthcare system or the public 

payer in the US.(72) Of note, the method and characteristics of the simulated patient cohort used 

in our study was referenced from this work.(72) The study based their model on the output of the 

SHFM, where it served as a predictor in separate regression models for healthcare utilization and 

utilities scores over a lifetime horizon.(72,119,120) At the time of our study, researchers 

attempted to generate results from the web-based tool made available by Reed et al. (2015), but 

the webpage did not return results of the specified simulation. 

A study by Miller et al. (2009) evaluated the long-term cost-effectiveness of disease 

management in systolic HF from the perspective of the healthcare system over a lifetime horizon 

in the US.(121) A cohort-based Markov model was developed with NYHA classes of I, II and 

III/IV and a dead state as the only health states. It modeled according to a 6-month cycle length 

and leveraged their own trial data.(121). The effectiveness of the disease management program 

was actualized through improved probabilities in transitioning to more favourable NYHA 

classes.  

A study by Chan et al. (2008) also evaluated the long-term cost effectiveness of disease 

management in HF from the perspective of the third-party payer over a 15 year time horizon in 

the US.(122) This study also built a cohort-based Markov model, but defined health states 

according to the number of past hospitalizations between 0 and 4 and a dead state.(122) A 

monthly cycle length was used and data was sourced from multiple studies. The effectiveness of 

the program was measured by the decrease in the probability of all-cause mortality and 

hospitalizations.(122)  

Göhler et al. (2008) conducted a cost-effectiveness analysis of HF managements 

programs in Germany from a societal perspective over a lifetime horizon.(123) Similar to Chan 

et al. (2008), the study developed a cohort-based Markov model and defined health states 

according to number of past hospitalizations between 0 and 3 and a dead state.(123) A cycle 

length of one month was used. Effectiveness of the intervention was similarly observed in the 

decreased risk of all-cause mortality and hospitalizations.(123)  
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Overall, studies generally have different methods to model HF disease management 

programs, as they are dependent and specific to the context it was conducted, the data available 

to inform the model and appropriateness of the model technique itself to the decision question. 

This was notable with the various modelling techniques used, the different health states between 

each Markov model and the different data sources for healthcare costs and intervention 

effectiveness. With this said, each economic decision model for HF management programs 

introduces a new perspective in how to conceptualize HF and measure its cost-effectiveness 

which allows other researchers to adapt and implement various techniques.  

4.4 External model validation 
To ensure model validity, hospitalization and mortality rates were compared to 

longitudinal data reported in published literature. (Table 15) In the deterministic model based on 

expected values, the control group had a hospitalization rate of 103.5 per 100 person-years. This 

was comparable to a US study by Dunlay et al. (2009) which reported an all-cause 

hospitalization rate of 86.6 per 100 person-years after a HF diagnosis based on a population of 

1,077 patients.(124) A study by Chun et al. (2012) followed 8,543 patients who were newly 

admitted to the hospital over a lifetime in Ontario, Canada and reported an all-cause 

hospitalization rate of 250.7 per 100 person-years for ischemic patients and 199.1 per 100 

person-years for non-ischemic patients.(23) The higher rates reported by Chun et al. (2012) can 

be explained by their population having worse health because rates were based on newly 

admitted patients. Furthermore, the mean age of the population was 77.0 ± 9.9 indicating higher 

susceptibility to hospitalizations. A US study by Gerber et al. (2015) found a hospitalization rate 

of 134 per 100 person-years, which was comparable to the one we modeled.(8) Another US 

study by Chamberlain et al. (2017) reported hospitalization rates at multiple timepoints two years 

after HF diagnosis for 1,972 patients.(125) Hospitalization rates were 333 per 100 person-years, 

133 per 100 person-years, 107 per 100 person-years and 100 per 100 person-years at 30 days 

after diagnosis, 31-182 days, 183-362 days and 366-730 days, respectively.(125) Since the 

majority of patients in our model were not newly diagnosed, the rate was comparable to the ones 

reported by Chamberlain et al. (2017) which occur 30 days after diagnoses.  

Benchmark survival rates in the deterministic model at year 1, 3, 5, 10 and 15 were 90.6%, 

69.8%, 55.5%, 28.5% and 14.5%, respectively. A study by Taylor et al. 2012 reported a 10-year 



 

 

 57 

survival of 26.7% based on 449 patients with HF from the Echocardiographic Heart of England 

Screening study between 1999 and 2009, which was comparable to our model.(126) It is worth 

mentioning the study by Chun et al. (2012), as it also reported survival where only 1.2% of their 

cohort survived until year 10.(23) As discussed above, the low survival rates observed in their 

cohort is due to their advanced age and worse health. A study by Loh et al. (2013) reported 

survival rates of 82.2% and 68.5% at years 1 and 3 when following a cohort of 835 HF patients 

overtime between 2005 and 2010 in the US.(127) The difference in survival rates at year 1 could 

be attributed to Loh et al.’s population having sicker patients compared to our cohort, indicated 

by the higher proportion of NYHA IV patients (28.7% vs 6.0%). A Swedish study by Zarrinkoub 

et al. (2013) identified 88,038 patients with HF and based on incident cases of HF between 

January 1, 2006 and December 31, 2010 observed a comparable 5-year survival rate of 

48%.(128) The study by Gerber et al. (2015) also reported comparable survival rates of incident 

HF cases between 2000 and 2010, where year 1 and 5 survival rates were 20.2% (95% CI 18.7% 

- 21.8%) and 52.6% (95% CI 50.6% - 54.5%), respectively.(8)  A UK study by Taylor et al. 

(2017) reported survival rates following a diagnosis of HF in primary for patients in a 

community setting, including 54,313 patients between 1998 and 2012.(7) At year 1, 5 and 10, 

survival rates were 81.3%, 51.1% and 29.5%, respectively.(7) Another study by Taylor et al. 

(2019) used a different dataset to verify their findings from its previous study and reported 

survival rates at year 1, 5, 10, and 15 of 75.9%, 45.5%, 24.5% and 12.7%, respectively.(6)  

Table 16.  Hospitalization incidence rates and survival rates from real life data reported in 

published literature compared to the model developed in this study. 

Source 
Setting and Follow-up period Rate 

Hospitalization Incidence Rate 

Deterministic model 
– 103.5 per 100 person-years 

Dunlay et al. (2009) 
US  
1987 to 2006 

86.6 per 100 person-years 

Chun et al. (2012) 
Canada 
Records from April 1999 to 
March 2001 

Ischemic à 250.7 per 100 person-years 
Non-ischemic à 199.1 per 100 person-years 

Gerber et al. (2015) 
US 
2000 to 2010 

134 per 100 person-years (95% CI 125 – 144) 

Chamberlain et al. 
(2017) 

US 
2000 to 2011 

30 days after diagnosis à 333 per 100 person-years  
31 – 182 days à 133 per 100 person-years 
183 – 361 days à 107 per 100 person-years  
366 – 730 days à100 per 100 person-years  
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Survival Rates 

Deterministic model 
– Year 1 – 90.6% 

Year 3 – 69.8% 
Year 5 – 55.5%  
Year 10 – 28.5% 
Year 15 – 14.5% 

Taylor et al. (2012) 
UK 
February 25, 1999 to February 25, 
2009  

Year 10 – 26.7% (95% CI 22.7% - 30.9%) 

Chun et al. (2012) 
Canada 
Records from April 1999 to 
March 2001 

Year 10 – 1.2%  

Loh et al. (2013) 
US 
2005 to 2010  

Year 1 – 82.2%  
Year 3 – 68.5%  

Zarrinkoub et al. (2013) 
Sweden 
January 1, 2006 to December 31, 
2010 

Year 5 – 48% 

Gerber et al. (2015) 
US 
2000 to 2010 

Year 1 – 20.2% (95% CI 18.7% - 21.8%) 
Year 5 – 52.6% (95% CI 50.6% - 54.5%) 

Taylor et al. (2017) 
UK 
January 1, 1998 to December 31, 
2012  

Year 1 – 81.3% (95% CI 80.9% – 81.6%) 
Year 5 – 51.1% (95% CI 51.0% – 52.0%) 
Year 10 – 29.5% (95% CI 28.9% – 30.2%) 

Taylor et al. (2019) 
UK  
January 1, 2000 to December 31, 
2017 

Year 1 – 75.9% (95% CI 75.5% – 76.3%) 
Year 5 – 45.5% (95% CI 45.1% – 46.0%) 
Year 10 – 24.5% (95% CI 23.9% - 25.0%)  
Year 15 – 12.7% (95% CI 11.9% - 13.5%)  

4.5 Limitations 
As with any modelling exercise, it is important to understand the limitations around data 

availability and assumptions. First, due to the lack of long-term studies, the trajectory of TM’s 

effectiveness was unknown and was assumed constant over the patient’s lifetime. It is not known 

if effectiveness changes over time, which may impact the results of this study. For example, an 

argument could be made that effectiveness might decrease over time since adherence rates of 

patients using Medly were found to decline 1.4% per month, though averaging 73.6% over 

time.(45) If decreasing effectiveness over time was linked to decreasing adherence rates, then the 

cost-effectiveness of Medly would be over-estimated. With that said, future studies should report 

on the effect of time on effectiveness of TM for patients with HF and follow patients for longer 

periods.  

Another limitation was the assumption that patients used Medly over the entirety of the 

model. It has been reported that clinicians have not established a generalizable duration of 

enrollment into the program.(44) Patients may be enrolled into the program for a period of time 

and be off-boarded after they have learned the necessary self-care behaviours for HF and do not 
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require the assistance of the technology anymore. This could decrease costs of the intervention 

and underestimate its cost-effectiveness. Future studies should continue to identify factors that 

influence a clinician’s and patient’s decision to use or not use the Medly technology, which 

would provide insight to a patient’s length of enrollment.  

Furthermore, it was assumed that the QoL of patients using Medly was the same as 

patients in the control group. However, evidence from the Medly Program Evaluation (Appendix 

5) and past literature (29) indicates that QoL improves when patients use Medly. Since QoL in 

these studies were measured using HF-specific scoring tools, such as the Minnesota Living with 

Heart Failure Questionnaire (MLHFQ), translating the improved QoL to utility values used in 

this study was not feasible, since QALY is derived from a generic QoL measure. The exclusion 

of this improved QoL underestimated Medly’s cost-effectiveness, as the incremental QALYs 

gained would be higher.  Future studies should look to establish methods for converting HF-

specific QoL scores to generic QALY measures, such as the MLHFQ score to EuroQol-5D. 

Another limitation was the use of a secondary patient cohort to simulate virtual patient 

profiles in the model. Since accounting for correlation between patient characteristics is a key 

component in individual-level simulation models, its use was necessary as the cohort size from 

the Medly Program Evaluation was under-powered. It is not known if the effect on 

hospitalizations from the Medly Program Evaluation would have the same effect on the 

simulated cohort. However, this was addressed in the probabilistic analysis. Future studies 

should look to collect data on larger representative samples of HF patients in Ontario. This is 

beneficial to economic models as its use in developing individual-level models can overcome the 

limitations associated with cohort-based simulations, such as the incorporation of patient history 

and probabilities that are conditional on individual patient characteristics.(129,130)  

Also, the healthcare utilization data used to inform parameters in this study were based 

on the Medly Program Evaluation which relied on a relatively small sample of patients, self-

reported ED and GP visits and a database that was limited to events that occurred at UHN. This 

early-stage evidence on baseline healthcare utilization in HF patients may under-estimate or 

over-estimate the actual healthcare utilization of a HF population, which could alter the results of 

the study. Specifically, this could result in a higher incremental cost, since the cost of living with 

HF increases, which over-estimates Medly’s cost-effectiveness. With this said, these 
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uncertainties were addressed in the probabilistic analysis. Future studies should look to produce 

more robust estimates of healthcare utilization for patients with HF in Ontario.  

This study also did not capture the effect of age and sex on the modelled outcomes. 

Although these variables were captured in the mortality estimates via the SHFM, its effect on 

other outcomes, such as hospitalization and transitions between NYHA functional classes, were 

not included in the model. Literature suggests that there is an increase in negative health 

outcomes for older age groups and males, such as hospitalization rates (131), but this was not 

investigated in the Medly Program Evaluation. Future research should explore if there are 

differences in outcomes between age groups and sex in the Medly Program Evaluation and if so, 

to adjust for those effects in the cost-effectiveness model. 

 

4.6 Implications  

4.6.1 New evidence relevant to Ontario’s healthcare decision makers  

Our study provided the Medly Program with its first evaluation where an economic 

perspective was considered. This added to the growing body of evidence around the program’s 

value for not only patients and healthcare professionals, but also for the healthcare system. As 

discussions around implementing the Medly program at other sites in Ontario continue amongst 

decision makers and stakeholders, this study directly contributes to their understanding of 

Medly’s cost-effectiveness. This is especially relevant for hospital decision makers who intend to 

make evidence-based decisions on the purchases they make to improve their operations. Our 

study enables a new perspective to the upfront costs involved with implementing the TM 

infrastructure and purchasing necessary equipment, relative to the total costs a patient with HF 

incurs over a lifetime. Such evidence alleviates some of the uncertainty around the risks in 

introducing a new model of care for patients with HF. Furthermore, our study presents evidence 

for various scenarios around HF severity and various deployment models and explains how cost-

effectiveness could change depending on these specifications. In addition, our study provides 

transparency around the areas of uncertainty in the evidence since all relevant information is 

organized within an economic evaluation framework. This helps decision makers identify where 

the gaps in knowledge exist and how they should be addressed, if need be.  
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Furthermore, the Medly program’s integration with a multidisciplinary HF clinic at UHN 

presented an example for a cost-effective model of care that overcame challenges specific to 

physician incentives and managing increased clinical workload. Currently, the majority of 

physicians in Ontario are paid via fee-for-service (FFS), representing 55% of the $11.59 billion 

paid to physicians in 2015-2016.(132) With the majority of models being FFS, the strategy for 

reimbursing physicians for services provided via TM becomes a challenge. Typically, TM 

models of care requires a clinical team member, including physicians, to monitor patients via the 

technology. However, there are no guidelines for how or when a physician should bill for their 

services provided via TM.  A study by Hunting et al. (2015) in Ontario found that nurses that 

monitored patient’s health status via Telehomecare found difficulty in contacting primary care 

physicians and keeping them involved with the patient’s care.(133) One reason described for the 

low uptake of Telehomecare at it outset was the lack of incentives for physicians.(133) In the 

Medly Program, the model of care involved staff cardiologists at UHN’s HF clinic who were not 

paid via FFS, but rather conducted services under an alternative payment plan between the 

physician and hospital. This payment model contributed to the successful integration of TM 

within the clinic, as discrepancies around fees for service did not exist.  

  In addition, the integration of Medly was successful because of its cost-effective 

management around increased workload.  There was cause for concern regarding increased 

clinical workload reported by clinicians in multiple studies.(40,41) In addition, it was identified 

that availability of human resources was important for successful implementation, as the tasks 

required by Medly increased the clinic’s workload.(43) Since the total workload added by Medly 

was outside the limits of the cardiologists’ capacity, its reliance on a registered nurse coordinator 

hired by the Medly program as a patient’s first point of contact decreased dependency on 

cardiologists. As mentioned above, the hired nurse had the necessary skills to manage patient 

concerns and involved cardiologists as required. This played a role in Medly’s cost-effectiveness 

evidence in this study, as costs were not driven by physician services. This nurse-led strategy 

presents a model of care that could be scalable to other hospitals who do not rely on FFS 

payment models for physicians.  
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4.6.2 Introduction of microsimulations to economic evaluations for 
telemonitoring interventions 

Based on our search of literature, this was the first study to develop a microsimulation 

model to evaluate the cost-effectiveness of a TM technology for HF. With TM generally aimed 

at chronic disease management, state-transition modelling approaches are the ideal choice.(69) 

Economic evaluations for TM technologies is an emerging field and researchers and decision 

makers are attracted to cohort-based models due its relative simplicity.(130) However, a 

limitation made in cohort models is that the transition probabilities only depend on the current 

health state and cannot depend on the history before that cycle (i.e., the Markov 

assumption).(134) Microsimulation models (individual state-transition models) can overcome 

this assumption by incorporating the impact of history on future events, while also capturing the 

variation between patient characteristics.(135) Therefore, the impact of TM in this study was 

evaluated on individual patient trajectories rather than the deterministic mean response of 

homogenous cohorts. As seen in our study, the use of a microsimulation approach allowed for 

the use of continuous variables specific to individual patients to adjust probabilities within the 

model accordingly, ranging from the conditional probability of hospitalizations based on only 

NYHA class to the monthly derivation of survival curves via the SHFM based on all 18 variables 

associated with the patient.  

4.6.3 Leveraging existing research to develop long-term models for early 
stage interventions 

Our study provided a case study on the use of multiple data sources and methods to 

develop a decision model for an early-stage intervention where knowledge gaps existed. Since 

the purpose of the study was to evaluate the potential long-term effects of the Medly Program, 

the use of various data sources and modelling techniques were indispensable. This study was 

successful in developing a flexible algorithm based in the Cholesky Decomposition method that 

was able to generate representative hypothetical cohorts of patients with HF according to the 

needs of the analysis.(69) It was decided that leveraging a larger publicly available dataset of HF 

patients was necessary because data collection from the Medly Program Evaluation was on-going 

and the sample size of available patient data was not representative of the potential long-term 

scalability of the program. An example of the algorithm’s flexibility to adapt to the needs of the 
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analyses was the ability to generate hypothetical patient cohorts for NYHA classes I, II and III 

while maintaining the individual differences between patients within each class.  

Our study also successfully implemented a highly validated multivariate Cox model, the 

SHFM (72,73,87,88), within our algorithm to project the survival of each generated patient over 

their lifetime. Since the purpose of this study was to understand long-term effects of the Medly 

Program, the inclusion of the most-validated predictive model for HF survival was logical.(136) 

The use of the SHFM provided a link for the survival probabilities derived in our model to a 

larger body HF research around predictive modelling. As mentioned, this was similarly done in a 

study by Reed et al. (2015), where the SHFM was used as its underlying prognosis model and 

correlated healthcare costs and utility values via regression techniques.(72,119,120) 

4.7 Future research  
Though this study contributed to the evidence around the cost-utility of TM for patients 

with HF in Ontario, there are still knowledge gaps that remain. In this study, the effectiveness in 

hospitalization reduction was based on evidence from the Medly Program Evaluation which had 

a pre-post study design since the scope of the evaluation was around quality improvement. This 

type of evidence is susceptible to more scrutiny since patients act as their own comparator and 

inferences around causality are limited. Furthermore, evaluation of reduction in mortality was 

not possible due to this study design. Future research on Medly should design studies that 

compare outcomes for patients that use TM to patients who do not, whether it be comparisons 

between matched-controls or conducting a prospective study.  

Given the importance of baseline healthcare utilization for economic evaluation, it would 

be valuable for future research to explore the patterns around healthcare utilization for patients 

with HF in Ontario. It would also be of value to stratify these findings by NYHA classes since 

healthcare utilization tends to increase as HF severity increases. Deriving these metrics would 

provide a better understanding for the impact that TM could have on HF healthcare costs.  

With the above mentioned, the Medly program is looking to conduct another cost-utility 

analysis using an updated dataset for all of the patients currently enrolled onto the program. In 

addition, the study will use data from Institute for Clinical Evaluative Sciences to access 

information on healthcare utilization and costs associated with patients enrolled onto the Medly 
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Program across Ontario. This would expand on this current study by using model inputs that 

more accurately represent the Medly Program.  

It is also important for future research to evaluate whether TM for HF patients is 

affordable relative to the government’s budget. Specifically, conducting a budget impact analysis 

would account for the true unit costs of this intervention since it considers the total number of 

people that this intervention would affect in Ontario. This provides an estimate for the budget 

required to fund this initiative. A budget impact analysis would provide synergetic economic 

evidence alongside a CUA, since a CUA evaluates the TM’s value relative to the existing 

standard of care. 

 Conclusion 
HF places a large burden on the healthcare system and the patients it affects.  TM has 

emerged as solution to assist in its disease management which have been found to improve QoL 

and hospitalization and mortality rates. However, the evidence for cost-effectiveness around TM 

for patients with HF is sparse with no previous studies in Canada that have been published.  

This study presents the first economic evaluation using a microsimulation of TM for HF 

patients compared to the current standard of care in Ontario. It presents evidence on TM long-

term cost-effectiveness within the Ontario healthcare system and that TM is likely cost-effective 

for patients with HF depending on decision makers’ WTP. The study also concludes results 

similar to other international studies. This research also introduces a novel approach to modelling 

a HF disease management program via a microsimulation.  

Ultimately, these results offer the first evaluation of the Medly Program that considered 

an economic perspective. It was able to consider not only the clinical impact of the program, but 

also the costs associated with its implementation and its impact on healthcare utilization. Though 

knowledge gaps existed within the evaluation, the application of conservative approaches to 

assumptions and the execution of probabilistic analyses further supports the program’s cost-

effectiveness. In addition, this study can be used to direct future work in addressing some of the 

gaps in evidence to further confirm the findings of Medly’s cost-effectiveness. Key decision 

makers and stakeholders can refer to this study when considering the implementation of the 

Medly Program at different sites across Ontario. 
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In conclusion, the Medly Program can present a long-term cost-effective solution for 

patients with HF when implemented with a multidisciplinary HF clinic in Ontario. This study 

provided evidence on the costs associated with implementing a TM system, a model of care for 

TM that is cost-effective and the uncertainty around the results itself. With HF’s impact on 

patients’ QoL and burden on healthcare resources, expanding access to TM is an integral part to 

improving HF disease management, patient outcomes and integrated care.  
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Appendices 
Appendix 1  

Table a) Proportion of patients in each NYHA class in the simulated cohort based on Reed et al. 

(2015) compared to the 185 patients enrolled in the Medly Program Evaluation. 

NYHA 
class  

Simulated 
cohort (%) 

Medly 
Program 
Evaluation 
(%) 

NYHA 
class (%) 

Simulated 
cohort (%) 

Medly 
Program 
Evaluation 
(%) 

1 4.8% 6.5% 1 15.9% 14.1% 

1.5 11.1% 7.6% 
   

2 22.8% 34.2% 2 46.1% 54.9% 

2.5 23.3% 20.7% 
   

3 19.1% 27.1% 3 32.0% 31.0% 

3.5 12.9% 3.9% 
   

4 6.0% 0.0% 4 6.0% 0.0% 

 
 

Appendix 2 

Table b) Data from the OCCI informing cost per case according to diagnosis codes I500 – 

congestive heart failure, I501 – left ventricular failure, and I509 – heart failure unspecified.  

Diagnosis 
Codes 

 
# Cases Avg Std Dev Min Max LOS 

Avg 
Std Dev min max 

I500, 
I501, I509 

Acute 
Inpatient 

2,142 $8,908  $16,867  $63  $295,320  5.9 11.2 1 216 

I500, 
I501, I509 

ED visit 
general care 

22,090 $377  $374  $1  $17,738  
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Appendix 3  

Table c) Akaike information criterion (AIC) and Bayesian information criterion (BIC) scores for 

each distribution fitted for the healthcare utilization data from the Medly Program Evaluation. 
GP Visits Information 

Criteria Method 
Geometric  Poisson Negative 

Binomial 
Size (se) mu (se) 

Entire Cohort AIC 457.19 604.94 448.29 0.49 (0.10) 1.58 (0.22) 
 

BIC 460.07 607.82 454.06   

NYHA I AIC 62.63 97.15 54.78 0.17 (0.10) 1.20 (0.69) 
 

BIC 63.62 98.15 56.78   

NYHA II AIC 238.71 322.99 233.99 0.47 (0.13) 1.57 (0.31) 
 

BIC 240.94 325.11 238.46   

NYHA III AIC 153.56 179.55 155.52 0.92 (0.37) 1.85 (0.37) 
 

BIC 155.28 181.26 158.94   

OP Visits 
    

  

Entire Cohort AIC 775.52 806.71 755.86 2.50 (0.56) 2.46 (0.16) 
 

BIC 778.75 809.94 762.31   

NYHA I AIC 113.51 114.01 110.44 3.38 (2.20) 2.65 (0.43) 
 

BIC 114.77 115.27 112.95   

NYHA II AIC 403.32 426.83 398.81 2.00 (0.60) 2.20 (0.21) 
 

BIC 405.93 429.45 404.04   

NYHA III AIC 253.12 257.92 243.66 3.16 (1.26) 2.84 (0.31) 
 

BIC 255.16 259.97 247.75   

ED Visits 
    

  

Entire Cohort AIC 430.43 617.46 415.56 0.42 (0.09) 1.21 (0.18) 
 

BIC 433.38 620.41 421.46   

NYHA I AIC 41.75 41.93 43.61 1.90 (4.05) 0.45 (0.16) 
 

BIC 42.84 43.02 45.79   

NYHA II AIC 251.01 422.11 229.68 0.29 (0.07) 1.50 (0.35) 
 

BIC 253.32 424.41 234.29   

NYHA III AIC 127.88 134.21 129.25 1.53 (0.90) 1.12 (0.21) 
 

BIC 129.64 135.97 132.77   

 
Geometric, Poisson and negative binomial distributions were fitted for GP visits, outpatient 
clinic visits and ED visits for the entire cohort and each NYHA class. AIC and BIC scores were 
used to choose distribution shapes. Both criteria are a measure of the relative quality of a 
statistical model by trading off the model fit with a number of model parameters – the lower the 
AIC and/or BIC, the better the model.(137) Since the majority of distributions indicated negative 
binomial as the best fit, including the best fit for the entire cohort for each healthcare service, 
negative binomial distributions were chosen for all NYHA classes.  
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Appendix 4 

Table d) Patient characteristics of the simulated NYHA functional class I cohort. 
n 1000 

Male  (%) 80.2 

Ischemic Etiology  (%) 59.1 

Beta Blocker (%) 30.8 

Aldosterone Blocker  (%) 3.9 

Angiotensin Receptor Blocker (%) 37.2 

ACE Inhibitor (%) 93.0 

Allopurinol (%) 3.7 

Age (mean (sd)) 62.89 (3.24) 

Ejection Fraction (mean (sd)) (%) 26.12 (2.89) 

NYHA class (mean (sd)) 1.00 (0.01) 

Systolic Blood Pressure (mean (sd)) 
(mmHg) 

123.10 (4.43) 

Lymphocytes percent (mean (sd)) (%) 25.23 (2.88) 

Sodium (mean (sd)) (mEq/L) 139.40 (1.80) 

Cholesterol (mean (sd)) (mg/dL) 201.65 (6.90) 

Hemoglobin (mean (sd)) (g/dL) 13.71 (1.25) 

Uric Acid (mean (sd)) (mg/dL) 7.66 (1.49) 

Body Weight (mean (sd)) (kg) 78.84 (3.98) 

Diuretic (mean (sd)) (mg/day) 71.53 (9.38) 

Implantable cardioverter-defibrillator 
(%) 

40 
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Table e) Patient characteristics of the simulated NYHA functional class II cohort. 

N 1000 

Male  (%) 79.9 

Ischemic Etiology  (%) 57.7 

Beta Blocker (%) 30.3 

Aldosterone Blocker  (%) 3.8 

Angiotensin Receptor Blocker (%) 38.3 

ACE Inhibitor (%) 92.8 

Allopurinol (%) 3.9 

Age (mean (sd)) 62.86 (3.35) 

Ejection Fraction (mean (sd)) (%) 26.14 (2.88) 

NYHA class (mean (sd)) 2.00 (0.01) 

Systolic Blood Pressure (mean (sd)) 
(mmHg) 

123.10 (4.43) 

Lymphocytes percent (mean (sd)) (%) 25.18 (2.83) 

Sodium (mean (sd)) (mEq/L) 139.38 (1.80) 

Cholesterol (mean (sd)) (mg/dL) 201.65 (6.92) 

Hemoglobin (mean (sd)) (g/dL) 13.71 (1.26) 

Uric Acid (mean (sd)) (mg/dL) 7.64 (1.53) 

Body Weight (mean (sd)) (kg) 78.86 (3.95) 

Diuretic (mean (sd)) (mg/day) 71.56 (9.41) 

Implantable cardioverter-defibrillator 
(%) 

40 
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Table f) Patient characteristics of the simulated NYHA functional class III cohort. 

n 1000 

Male  (%) 77.9 

Ischemic Etiology  (%) 57.4 

Beta Blocker (%) 28.3 

Aldosterone Blocker  (%) 3.4 

Angiotensin Receptor Blocker (%) 37.3 

ACE Inhibitor (%) 92.7 

Allopurinol (%) 4.5 

Age (mean (sd)) 62.85 (3.36) 

Ejection Fraction (mean (sd)) (%) 26.13 (2.90) 

NYHA class (mean (sd)) 3.00 (0.01) 

Systolic Blood Pressure (mean (sd)) 
(mmHg) 

123.09 (4.46) 

Lymphocytes percent (mean (sd)) (%) 25.17 (2.81) 

Sodium (mean (sd)) (mEq/L) 139.38 (1.81) 

Cholesterol (mean (sd)) (mg/dL) 201.68 (6.92) 

Hemoglobin (mean (sd)) (g/dL) 13.71 (1.19) 

Uric Acid (mean (sd)) (mg/dL) 7.64 (1.55) 

Body Weight (mean (sd)) (kg) 78.88 (3.99) 

Diuretic (mean (sd)) (mg/day) 71.61 (9.40) 

Implantable cardioverter-defibrillator 
(%) 

40 
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Appendix 5 

Table g) Multivariate linear regression for Minnesota Living with Heart Failure 
Questionnaire total scores. Lower scores indicate better QoL. 
  Dependent variable: 

    
  MLHFQ total 

  
6-month follow up -7.840*** 
  (2.809) 
    
Location of Onboard 2.698 
  (3.639) 
    
LVEF < 40% -8.971*** 
  (3.275) 
    
NYHA 7.354*** 
  (1.146) 
    
Age -0.609*** 
  (0.104) 
    
Female -6.875** 
  (3.312) 
    
Followed by clinic < 6 months -2.269 
  (3.092) 
    
Constant 77.874*** 
  (8.090)  
Observations 279 
R2 0.250 
Adjusted R2 0.231 
Residual Std. Error 23.144 (df = 271) 
F Statistic 12.925*** (df = 7; 271) 
 

Note: *p<0.1; **p<0.05; ***p<0.01 
  

 


