
An Advice Mechanism for Heterogeneous Robot Teams

by

Steven Daniluk

A thesis submitted in conformity with the requirements
for the degree of Master of Applied Science

University of Toronto Institute for Aerospace Studies
University of Toronto

c© Copyright 2017 by Steven Daniluk

Abstract

An Advice Mechanism for Heterogeneous Robot Teams

Steven Daniluk

Master of Applied Science

University of Toronto Institute for Aerospace Studies

University of Toronto

2017

The use of reinforcement learning for robot teams has enabled complex tasks to be

performed, but at the cost of requiring a large amount of exploration. Exchanging in-

formation between robots in the form of advice is one method to accelerate performance

improvements. This thesis presents an advice mechanism for robot teams that utilizes

advice from heterogeneous advisers via a method guaranteeing convergence to an op-

timal policy. The presented mechanism has the capability to use multiple advisers at

each time step, and decide when advice should be requested and accepted, such that the

use of advice decreases over time. Additionally, collective collaborative, and cooperative

behavioural algorithms are integrated into a robot team architecture, to create a new

framework that provides fault tolerance and modularity for robot teams.

ii

Acknowledgements

I would like to thank my supervisor Prof. M. R. Emami for his guidance throughout

my research. Additionally, I would like to extend my gratitude to those around me who

provided support throughout my degree: my family, my girlfriend Minhthi, as well as my

lab mates, and my friends, Houman, Michael, Colin, and Lijun.

iii

Contents

Acknowledgements iii

Contents iv

List of Tables vi

List of Figures vii

1 Introduction 1

1.1 Motivation . 1

1.2 Objectives . 2

1.3 Outline . 2

1.4 Background . 3

1.4.1 Robot Team Architectures . 3

1.4.2 Reinforcement Learning . 4

1.4.3 Advice Mechanisms . 6

2 Integration of RCISL into the HAA Architecture 10

2.1 The Host-Avatar-Agent Architecture . 10

2.2 Robust Concurrent Individual and Social Learning 12

2.3 Integration . 15

2.3.1 Collective Behaviour . 15

2.3.2 Collaborative Behaviour . 16

2.3.3 Cooperative Behaviour . 17

3 Preference Advice 20

3.1 Incorporating Advice . 21

3.2 Advised Policy Convergence . 22

3.3 Determining When To Use Advice . 26

iv

4 Case Study 1: Preference Advice With Individual Learning 31

4.1 Simulation Scenario . 31

4.2 Experiments . 34

4.2.1 Experiment 1: Homogeneous peers as advisers 34

4.2.2 Experiment 2: Heterogeneous peers as advisers 35

4.2.3 Experiment 3: Expert advisers of varying skill level 35

4.2.4 Experiment 4: Expert advisers of varying capabilities 35

4.2.5 Experiment 5: Supplement a team of novices with a partially

trained adviser . 36

4.3 Results . 36

4.3.1 Experiment 1: Homogeneous peers as advisers 36

4.3.2 Experiment 2: Heterogeneous peers as advisers 40

4.3.3 Experiment 3: Expert advisers of varying skill level 44

4.3.4 Experiment 4: Expert advisers of varying capabilities 46

4.3.5 Experiment 5: Supplement a team of novices with a partially

trained adviser . 48

5 Case Study 2: Preference Advice Within RCISL 49

5.1 Simulation Scenario . 49

5.2 Experiments . 52

5.2.1 Experiment 1: Preference Advice with team learning 52

5.2.2 Experiment 2: Preference Advice with team learning and measure-

ment uncertainty . 52

5.2.3 Experiment 3: Preference Advice with team learning, measurement

uncertainty, and a state estimator 53

5.3 Results . 53

5.3.1 Experiment 1: Preference Advice with team learning 53

5.3.2 Experiment 2: Preference Advice with team learning and measure-

ment uncertainty . 57

5.3.3 Experiment 3: Preference Advice with team learning, measurement

uncertainty, and a state estimator 65

6 Conclusion and Future Work 73

6.1 Conclusion . 73

6.2 Future Work . 75

Bibliography 77

v

List of Tables

2.1 Summary of data transfer for the collective behaviour agent 16

2.2 Summary of data transfer for the collaborative behaviour agent 17

2.3 Summary of data transfer for the cooperative behaviour agent 19

4.1 Reward function for robot actions in Case Study 1. 33

5.1 Reward function for robot actions in Case Study 2. 51

vi

List of Figures

2.1 An example of agents residing on different hosts, and being transferred

between hosts, in the HAA architecture. 11

2.2 HAA control hierarchy displaying the executive, supervisor, and avatar

levels of control. 12

4.1 Sample foraging scenario displaying robots, items, obstacles, target zone,

and the area of rough terrain . 32

4.2 Performance with the Preference Advice mechanism, with the Advice Ex-

change mechanism, and without advice, for 4 S-NR robots in experiment

1: (a) simulation time, (b) total effort . 38

4.3 Standard deviation of performance at each run for experiment 1: (a) sim-

ulation time, (b) total effort . 39

4.4 Average reward obtained between 4 S-NR robots in experiment 1 40

4.5 Performance with the Preference Advice mechanism and without advice

for 4 heterogeneous robots (S-NR, F-NR, S-R, and F-R) in experiment 2:

(a) simulation time, (b) total effort . 41

4.6 Standard deviation of performance at each run for experiment 2: (a) sim-

ulation time, (b) total effort . 42

4.7 Average reward obtained between 4 4 heterogeneous robots (S-NR, F-NR,

S-R, and F-R) in experiment 2 . 43

4.8 Percentage which advice is requested and used during each run in experi-

ment 3 . 45

4.9 Relevance for advisers of varying skill in experiment 3 45

4.10 Relevance of advisers of varying capabilities in experiment 4 46

4.11 Simulation time for 1 S-NR robot with advisers of varying skill (experiment

2) and advisers of varying capabilities (experiment 4), compared to without

advice . 47

vii

4.12 Simulation time for 4 S-NR robots with a supplementary expert adviser

in experiment 5, compared to peer only advice and no advice 48

5.1 Sample foraging scenario displaying obstacles, target zone, and each type

of robot and item to collect . 50

5.2 Performance for individual and team learning, with and without the Pref-

erence Advice mechanism in experiment 1: (a) simulation time, (b) total

effort . 55

5.3 Standard deviation of performance at each run in experiment 1: (a) sim-

ulation time, (b) total effort . 56

5.4 Average reward obtained between the 4 robots in experiment 1 57

5.5 Simulation time with and without the Preference Advice mechanism with

zero mean Gaussian noise with a standard deviation of 0.05m (experiment

2): (a) simulation time, (b) standard deviation of simulation time 59

5.6 Team total effort time with and without the Preference Advice mecha-

nism with zero mean Gaussian noise with a standard deviation of 0.05m

(experiment 2): (a) simulation time, (b) standard deviation of simulation

time . 60

5.7 Simulation time with and without the Preference Advice mechanism with

zero mean Gaussian noise with a standard deviation of 0.20m (experiment

2): (a) simulation time, (b) standard deviation of simulation time 61

5.8 Team total effort time with and without the Preference Advice mecha-

nism with zero mean Gaussian noise with a standard deviation of 0.20m

(experiment 2): (a) simulation time, (b) standard deviation of simulation

time . 62

5.9 Simulation time with and without the Preference Advice mechanism with

zero mean Gaussian noise with a standard deviation of 0.40m (experiment

2): (a) simulation time, (b) standard deviation of simulation time 63

5.10 Team total effort time with and without the Preference Advice mecha-

nism with zero mean Gaussian noise with a standard deviation of 0.40m

(experiment 2): (a) simulation time, (b) standard deviation of simulation

time . 64

5.11 Simulation time with and without the Preference Advice mechanism, us-

ing a state estimator in the presence of zero mean Gaussian noise with

a standard deviation of 0.05m (experiment 3): (a) simulation time, (b)

standard deviation of simulation time . 66

viii

5.12 Team total effort time with and without the Preference Advice mechanism,

using a state estimator in the presence of zero mean Gaussian noise with

a standard deviation of 0.05m (experiment 3): (a) simulation time, (b)

standard deviation of simulation time . 67

5.13 Simulation time with and without the Preference Advice mechanism, us-

ing a state estimator in the presence of zero mean Gaussian noise with

a standard deviation of 0.20m (experiment 3): (a) simulation time, (b)

standard deviation of simulation time . 68

5.14 Team total effort time with and without the Preference Advice mechanism,

using a state estimator in the presence of zero mean Gaussian noise with

a standard deviation of 0.20m (experiment 3): (a) simulation time, (b)

standard deviation of simulation time . 69

5.15 Simulation time with and without the Preference Advice mechanism, us-

ing a state estimator in the presence of zero mean Gaussian noise with

a standard deviation of 0.40m (experiment 3): (a) simulation time, (b)

standard deviation of simulation time . 70

5.16 Team total effort time with and without the Preference Advice mechanism,

using a state estimator in the presence of zero mean Gaussian noise with

a standard deviation of 0.40m (experiment 3): (a) simulation time, (b)

standard deviation of simulation time . 71

5.17 Comparison of simulation time performance using a state estimator for all

noise levels: 0.05m, 0.20m, and 0.40m (experiment 3): (a) No advice, (b)

Preference Advice . 72

ix

Chapter 1

Introduction

1.1 Motivation

Enabling teams of autonomous robots with a diverse range of capabilities to seamlessly

work together on a task has been a long sought after goal [2]. The applications of an

effective robot team range from manufacturing, to planetary exploration, or to life critical

scenarios such as search and rescue in disaster zones. However, achieving a robot team

that is practical for these applications poses many difficulties, several of which are still

active areas of research [1].

There are two particular areas where further developments in robot teams are nec-

essary. The first is the unification of the architecture for organizing the control system,

and the learning algorithms responsible for the robot’s abilities. To date these have

primarily been researched independently, without demonstrating an architecture’s abil-

ity to accommodate layers of learning algorithms that create collective, cooperative, and

collaborative behaviour within robot teams, and the practical implementations of such

algorithms (e.g. centralized or distributed). The second is improving the performance

of each robot through collaboration with its teammates. Given the inherent complexity

in practical tasks for a robot team, it is advantageous to expedite the learning process

of each robot through collaboration. A variety of mechanisms for exchanging advice be-

tween agents (i.e., robots), or receiving advice from a human, have been developed [12],

[21], [16], [15]. However, an advice mechanism has yet to be developed that specifically

addresses the needs of a real world robot team. Particularly, a mechanism which does

not rely entirely on heuristics to control the usage of advice, and the ability to use advice

from heterogeneous advisers that have learned a slightly different behaviour than the

robot receiving the advice.

Progress in these two areas would create a single framework that more fully satisfies

1

Chapter 1. Introduction 2

the requirements for a real world robot team, and would expedite the learning process

for all robots. Both of which bring practical robot teams one step closer to reality.

1.2 Objectives

The purpose of this research is to advance the utility of robot teams for real world

applications. With this aim, this thesis has two main components: bridging the gap

between robot behaviour algorithms and team architectures, as well developing a method

for collaborative behaviour between heterogeneous robots.

For the first component, the collective, cooperative, and collaborative robot behaviour

in Robust Concurrent Individual and Social Learning (RCISL) will be integrated into the

Host Avatar Agent (HAA) architecture which provides modularity, scalability, and fault

tolerance. In pursuit of this goal, this section of the research has the following two goals:

1. Organize the algorithms for each level of behaviour into modular forms compatible

with the HAA architecture

2. Develop strategies for the usage and interaction with each behavioural component

to ensure fault tolerance

The second component of this work, the development of a new advice mechanism, is

intended to create a form of collaborative behaviour that is suitable for use with robot

teams. The applicability for real world robot teams places additional requirements on

the advice mechanism. Specifically, the goals for the advice mechanism are:

1. Compatible with heterogeneous advisers

2. Guarantee convergence to an optimal policy

3. Diminish the usage and influence of advice over time

1.3 Outline

In the introduction (Chapter 1) the motivation and goals of the research have been pre-

sented. In addition to this, background material necessary for the remainder of this work

will be presented. The topics include robot team architectures, reinforcement learning,

and methods of incorporating advice from other agents or external sources.

A brief discussion of RCISL and the HAA architecture, as well as the motivation

for combining the two, is presented in Chapter 2. This is followed by the methods for

Chapter 1. Introduction 3

structuring the algorithms in RCISL to ensure modularity, scalability, and fault tolerance,

and incorporating them into the HAA architecture.

Chapter 3 deals with the formulation of the Preference Advice mechanism. This

includes the methods for incorporating advice, deciding when to use advice, and a proof

demonstrating that a robot operating under an advised policy, using the Preference

Advice mechanism, will converge to a stationary and optimal policy.

Two case studies are used to evaluate the Preference Advice mechanism. Chapter 4

contains the first case study, which evaluates the Preference Advice mechanism with a

heterogeneous robot team performing the same task. In Chapter 5 the second case study

is presented, which adds heterogeneity to the tasks, incorporates a layer of team learning,

as well as adds sensory noise for each robot.

Chapter 6 includes some concluding remarks about the integration of RCISL into

the HAA architecture, as well as the Preference Advice mechanism. Some comments

regarding future work are also made.

1.4 Background

1.4.1 Robot Team Architectures

The architecture for a robot team defines the organization of the control system, as well as

the mechanisms and algorithms governing the communication and interactions between

different elements of the control systems. Hence, it plays a vital role not only in the

capabilities of the team, but also in practicality for using the team. This importance has

been highlighted in the suitably named 1,001 Robot Architectures for 1,001 Robots [25],

which describes the need for modularity and re usability when developing capabilities for

robot teams.

Two important components of a robot team architecture are team formation, and

team capabilities. Team formation refers to how the roles within the team are created

and organized, while team capabilities refers to the algorithms defining robot behaviour.

Some approaches to robot team formation have utilized predefined roles to dynamically

form teams and manage the members [7, 9], enabling new members to be added and

removed. A role can entail a responsibility for a task, or a governing process, such as

the processes for environmental mapping or computational resource allocation. When

multiple tasks and robots exist, a strategy for allocating tasks to team members is used,

and these are often either market-based or behaviour-based approaches [24, 10, 11, 27].

Team formation and capabilities are coupled together, since the method used for forming

Chapter 1. Introduction 4

teams must not only account for the capabilities of the team, but also be versatile enough

to accommodate changing capabilities for new applications.

Another important component of a robot team architecture is how computational

processes and memory are distributed amongst the hardware, as well as the impact of

any hardware or software failures. Since robot teams are often performing computation-

ally demanding tasks, and are also typically connected via a single network, it is possible

to distribute the processing amongst the team’s computational resources. Strategies for

utilizing shared hardware resources amongst robots have been presented in [13] and [29].

Additionally, since robot applications frequently involve the storage of state data about

the team, environment, or mission, efforts must be made to minimize the likelihood of

losing important information, or crippling the entire team due to a single failure. Preserv-

ing robot behaviour and information is discussed in [26], where processes can be saved

and migrated between machines (i.e., robots). When learning algorithms are used, the

behavioural policy of a robot is continuously evolving, which makes preservation of be-

haviour and memory essential. This importance is emphasized for real world applications,

where failures or loss of information must not compromise the mission.

1.4.2 Reinforcement Learning

A popular component within individual robot capabilities is the ability to learn to perform

new tasks through experience. Reinforcement learning is a common method for achieving

this, and a brief introduction to the subject will be outlined here.

For an autonomous agent that performs actions, a, in states, s, and receives a reward,

R, it must learn an appropriate mapping between states and actions. The purpose of

reinforcement learning is to develop such mapping, called the policy π, that will maximize

the expected reward of the agent over its lifetime. The reinforcement learning problem

can be formalized as a Markov Decision Process (MDP), which consists of a set of states

S, actions A, transition probabilities between states T (s′, a, a), and rewards R(s, a, s′).

The value of a particular state can be estimated by the cumulative expected reward

for the current and future states (given the Markov property, the expected value of a

state does not depend on any previous states.) The Bellman Equation (eq. 1.1) provides

the expected value of a state, as a recursive formulation depending on the value of the

succeeding state [3]. The factor γ ∈ (0, 1) discounts the value of future states, giving a

lower value to the states further into the future.

Chapter 1. Introduction 5

vπ(s) = Eπ

[
∞∑
k=0

γkRt+k+1

∣∣∣∣∣St = s

]

=
∑
a

π(a|s)
∑
s′

T (s′, a, s) [R(s, a, s′) + γvπ(s′)]

(1.1)

The Bellman Optimality Equation (eq. 1.2) represents the value of state s, given that

every subsequent action taken is the optimal action.

v∗(s) = max
a∈A(s)

∑
s′

T (s′, a, s) [R(s, a, s′) + γv∗(s
′)] (1.2)

An alternative formulation of the Bellman Optimality Equation is to estimate the

value of a state-action pair, q∗(s, a), as given in eq. 1.3. The benefit of such a formulation

is that it is not required to know the transition function T (s, a, s), and is hence referred

to as model-free reinforcement learning.

q∗(s, a) =
∑
s′

T (s′, a, s)
[
R(s, a, s′) + γmax

a′
q∗(s

′, a′)
]

(1.3)

A popular approach to estimating the state-action value function q∗(s, a) is the tem-

poral difference method, which iteratively updates the value of the previous state as the

new state and the corresponding reward are experienced. One such temporal difference

method is Q-learning, which uses the update rule given by eq. 1.4 [33]. In eq. 1.4,

α ∈ (0, 1) is the learning rate, which approaches 0 as t approaches ∞, such that eq. 1.4

will arrive at a locally optimal policy [33].

Qt+1(st, at) = Qt(st, at) + αt

(
Rt (st, at, st+1) + γmax

a∈A
Qt (st+1, a)−Qt (st, at)

)
(1.4)

An alternative to Q-learning is SARSA(0) [28], which updates the values of Q(s, a),

commonly called Q-values, based on the selected action in the next state, as given by eq.

1.5.

Qt+1(st, at) = Qt(st, at) + αt

(
Rt (st, at, st+1) + γQt (st+1, at+1)−Qt (st, at)

)
(1.5)

The policy for selecting actions, π, can either be deterministic, e.g., greedily selecting

the most optimal action, or probabilistic, which will form a probability distribution over

all possible actions. The motivation for a probabilistic policy is that it provides a balance

Chapter 1. Introduction 6

between exploration and exploitation of the current value function. An optimal policy

depends upon the value function being determined, which by eq. 1.2 requires every

state to be visited. Utilizing a probabilistic policy enables a balance between exploration

nd exploitation to be achieved. An example of a probabilistic policy is the Boltzmann

distribution, given by,

p(ai) =
eτt(s)Q(s,ai)

n∑
j=1

eτt(s)Q(s,aj)

, i = 1, ..., n (1.6)

where n is the number of actions, and τt(s) is a temperature parameter controlling the

smoothness of the distribution, which can vary between states.

1.4.3 Advice Mechanisms

The concept of advice for a computer program has existed for nearly 60 years [19]. Much

of the recent research into advice has been focused on uses for reinforcement learning

algorithms, due to their popularity. In general, advice within a reinforcement learning

context can take three forms:

1. incorporating prior information into the agent’s policy;

2. sharing a set of experiences; and

3. recommending an action.

Incorporating prior information into the agent’s policy is often referred to as transfer

learning, and is achieved by either imposing human generated rules onto the policy, or

creating a mapping from a previously learned policy for a related task [31]. Transfer

learning can create a proper jumpstart in the learning process [4], and avoid much of

the early exploration costs. However, this requires extensive prior knowledge about the

task and agents in order to generate the appropriate mappings. Since there is a cost of

human involvement to generate the mappings for each application, transfer learning is

most applicable for tasks and agents that are not frequently subject to change, such as

RoboCup competitions where it is commonly applied [32].

The second form of advice is sharing experiences between agents. After performing

what is deemed as a successful series of actions, the adviser agent will share with the

advisee the set of 〈St, St+1, At, Rt〉 tuples that led to success. The advisee then replays

these experiences, with the intention that they will learn to replicate this behavior.

Chapter 1. Introduction 7

In [34], a theoretical analysis of exchanging experiences is performed, assuming that

agents simply observe their adviser and replay each of the observed experiences as if they

were their own. Further, it is shown that the use of experiences reduces the search time

for an optimal policy to be independent of the state space size and only dependent on

the length of the optimal solution, i.e., the number of consecutive actions.

In [12], a series of successful experiences from a knowledgeable advisor, i.e., an agent

with a learned policy or a human controller, are replayed by a learning agent. Such

demonstrations enabled the agent to not only learn more quickly, but also perform tasks

that they were initially unable to learn on their own. As mentioned in [12], a limitation

of advice in the form of sharing experiences is the potential for harmful over-training

of the agents, where an agent too strongly prefers certain actions because it has been

repeatedly taught to do so, resulting in poor generalization for the agent.

An important point to note about exchanging experiences as advice is that if there is

any heterogeneity between agents, such as robots with different capabilities, the rewards

and state transitions shared in the experience may not be attainable for the advisee.

Without some method of determining if an adviser is relevant, this can potentially cause

the advisee to learn an incorrect policy through harmful over-training.

The third form of advice is a recommendation about which action to perform. Advice

in the form of action recommendations can be generated either by another agent or by

human beings, and can be treated as a binary decision, i.e., accept or reject, or as a

suggestion that acts to bias the agent’s own decision.

The effect of biasing an agent’s decision via a reward signal is analyzed in [34], where

in each state an agent can receive an additional reward from the adviser. As identified

in [34], biasing the reward signal provides feedback only after the action is performed,

making the expert’s advice not immediately available when it is first needed. However,

it is shown that if advice can be provided immediately when it is needed, then the

search time for an optimal policy will be independent of the state space size, and only

dependent on the length of the optimal solution (identical to the use of experiences.) One

disadvantage of supplementing the reward signal as a form of action recommendation is

the possibility for an agent to learn the incorrect policy. Similar to the use of experiences

as advice, this is a problem that can arise with the use of heterogeneous agents.

In the Reinforcement and Advice-Taking Learning Environment (RATLE) mecha-

nism [15], human observers are used to generate action suggestions and decide when they

should be used. Advice is formed as IF-THEN or WHEN-REPEAT-UNTIL statements,

which are then incorporated as inputs into a connectionist Q-learning agent. By incor-

porating advice directly into the agent’s neural network, it can be further processed and

Chapter 1. Introduction 8

potentially overruled by the agent’s own policy. When compared to an agent that blindly

obeys the same advice, the use of the RATLE mechanism results in faster learning. An

important result from this work is that it demonstrates that the capability to further

process advice can be beneficial.

The Skill Advice Guided Exploration (SAGE) mechanism [16] uses action suggestions

from multiple advisers to bias the agent’s policy. An agent selects an action based on

its own action selection probability plus a weighted combination of all advisers’ action

selection probabilities. The weighting is determined by a shaping function that depends

on the difference between the advisee’s current state’s utility and that of the adviser, as

well as the frequency that each action is advised in the current state. Such approach is

attractive, because all advisers are always utilized, and their influence can vary depending

on the weighting attributed to them. The SAGE mechanism has the important ability

to reject bad advice, i.e., an action suggestion with repeatedly low utility values, by

attributing a very low weighting to it. However, the ability to reject advice happens

on a per state basis. If the same adviser continues to provide poor advice they are

not rejected entirely, but rather only in particular states which bad advice is repeatedly

provided. This means that areas of the state space where an adviser has little experience

can be identified, but outright rejection of an advisor will be very slow. Further, the

benefit of using all available advisers comes with high computational and communication

costs.

Building upon [15], Preference Knowledge-Based Kernel Regression (Pref-KBKR)

provides another approach to using humans for biasing an agent’s decision [14]. The

advice is a preference for one action over another in a particular state, implying that

the value of actions should have a specific hierarchy. Similarly to RATLE and SAGE,

Pref-KBKR provides the possibility for an agent to reject the advice, if they strongly

disagree with it, by expressing advice as a preference. The advice is pre-generated by a

human, and takes the form of a series of IF-THEN rules, similar to the RATLE mecha-

nism. Experiments were performed using agents foraging for food while avoiding enemies.

Different pieces of advice were tested, and it was found that for all variations of advice

the agents with advice outperformed those without.

An alternative to biasing an agent’s decision is to provide an agent access to the policy

of an adviser. Advice Exchange [21] is a mechanism that uses other agents as advisers,

where each agent temporarily uses the policy of their adviser to select the current action.

In the beginning of each new learning epoch, the adviser of the system is selected to be

the best performing agent (determined by the average utility value of selected actions.)

At each instant agents decide to accept or reject the advice by comparing their average

Chapter 1. Introduction 9

utility and the utility of each possible action to the adviser’s. Advice Exchange along

with SAGE are the only mechanisms that actively select their advisers. A limitation

of Advice Exchange is that the choice of adviser only changes once per learning epoch.

Additionally, since adviser selection is only dependent on the performance, it is possible

for an irrelevant, yet well performing, advisor to be selected. The possibility of irrelevant

adviser selection, combined with infrequent adviser selection, is likely to be problematic

for agents with heterogeneous capabilities. Improvements to Advice Exchange have been

made by incorporating a form of memory [22], but at the cost of additional rules and

parameters for the mechanism.

Chapter 2

Integration of RCISL into the HAA

Architecture

This chapter, and the following one (Chapter 3), focus on the integration of RCISL into

the HAA architecture. The motivation for doing so is to create a single framework for

robot teams that possesses each of the following capabilities:

• Robustness to uncertain and unpredictable situations

• Fault-tolerance for hardware and software failure

• Performance enhancement through learning

• Heterogeneity

• Modularity

• Scalability

2.1 The Host-Avatar-Agent Architecture

HAA [17, 18] is a modular hierarchical architecture consisting of three main components:

Hosts, Avatars, and Agents. Hosts are the processors which perform all the calculations

of the system, and may be located in either mobile or stationary hardware. Avatars are

mobile platforms, equipped with sensors and manipulators for interacting with their en-

vironments. The architecture allows for diversity in terms of avatar capabilities, provided

that a proper interface is used to communicate with the hardware. Finally, Agents are

the software modules that control the system, residing in hosts. Each agent is responsible

10

Chapter 2. Integration of RCISL into the HAA Architecture 11

for a specific task, and is represented by a set of state data, functions for manipulating

that data, and functions for communicating with other agents in the system. New agents

and tasks can be defined as required, forming a highly modular system. The separation

of software and hardware additionally increases scalability, as agents are dynamically

instantiated and removed, allowing for easy addition and removal of hardware.

Figure 2.1: An example of agents residing on different hosts, and being transferred
between hosts, in the HAA architecture.

Another main feature of the architecture is data and processing distribution [17],

an illustration of which is shown in fig. 2.1. A distributed processing network allows

agents to migrate freely between hosts through a freeze-thaw process, while a distributed

database (DDB) provides storage of state data for all agents. This enables optimization

and load balancing, as computationally intensive tasks can be migrated to hosts with

spare capacity. The ability to conserve power on certain mobile hosts by reallocating

processing tasks is another benefit. Fault tolerance is achieved through the sharing of

state data via the DDB, as only local data which has not yet been distributed will be lost

in case of hardware or software failures. In terms of a control system, the architecture

offers a high degree of flexibility. Due to its modular nature, the degree of centralization

can be freely chosen, as well as the level of agent interaction, all while benefiting from

the fault tolerance inherent in the architecture. Scalable Hierarchical Control (SHC) is a

control scheme that is implemented in the HAA architecture [17], and separates agents

into the following different levels:

1. Executive: Handles overall task allocation, planning and scheduling, as well as

Chapter 2. Integration of RCISL into the HAA Architecture 12

resource allocation and requests received from the Supervisor level.

2. Supervisor : Responsible for the completion of specific tasks allocated to it by the

Executive level. Each Supervisor agent can either complete an assigned task di-

rectly, coordinate Avatar level agents to handle the task, or spawn additional Su-

pervisor agents and divide the task. Supervisor agents are also responsible for

requesting Avatar resources from the Executive level.

3. Avatar : Acts as an interface between the control system and the actual physical

avatars. Each mobile platform is assigned an Avatar agent, that translates the

functionality of the hardware into an internal representation which is then exposed

to the system. Avatars can be assigned tasks matching their capabilities without

the rest of the system knowing the specifics of how the capabilities are implemented,

thus facilitating modularity.

Examples of agents in each level can be found in [17]. A schematic overview of the

hierarchical structure with typical agents included is shown in fig. 2.2.

Mission Formation Task Allocation

Task 1 Supervisor Task M Supervisor Task m Supervisor

Executive Level

Supervisor Level

Avatar Level

Robot n

Worker Agent

Worker Agent

Worker Agent

Robot N

Worker Agent

Worker Agent

Worker Agent

Robot 1

Worker Agent

Worker Agent

Worker Agent

… …

… …

Figure 2.2: HAA control hierarchy displaying the executive, supervisor, and avatar levels
of control.

2.2 Robust Concurrent Individual and Social Learn-

ing

RCISL [6] provides a method of efficiently implementing collective, collaborative, and

cooperative behaviour within a robot team. Individual learning (collective behaviour)

Chapter 2. Integration of RCISL into the HAA Architecture 13

and team learning (cooperative behaviour) are partitioned into two separate concurrent

Markov Decision Processes (MDPs) [5]. The individual learning MDP, defined by the

tuple 〈SI , AI , TI , RI〉, develops a policy for each robot to perform tasks, while the team

learning MDP, defined by the tuple 〈ST , AT , TT , RT 〉, develops a policy for allocating

tasks to team members. The separation into concurrent MDPs prevents the curse of

dimensionality as team members are added, often limiting robot teams.

The collective behaviour is achieved through individual learning, performed with a

Q-learning algorithm [33] using the update rule in eq. 1.4. Each robot develops an

individual behaviour policy πI for performing their assigned task. Actions are selected

from the policy πI in a probabilistic fashion via a Boltzmann distribution (eq. 1.6).

Collaborative behaviour is achieved through the Advice Exchange algorithm [21, 5],

which enables robot i to temporarily replace their own policy πiI,t with the policy πkI,t of

advisor k for time step t. The following equation provides the conditions that must be

met in order for the advised policy to be used:

π̄iI,t =

πkI,t ,

IF k = argmax
z∈Zi

(q̄zh) , AND

q̂ih < q̂kh, AND

q̄iM,h < q̄kh − δ
∣∣q̄kh∣∣ , AND∑

at

Qi
(
sit, a

)
< ρ

∑
at

Qk
(
sit, a

)
πiI,t , otherwise

(2.1)

Where Zi is the set of permissible advisers for robot i, q̄ is the average quality of selected

actions for the current epoch, q̂ is the best average quality over all epochs, and h is

the current epoch. q̄M,h is the average quality for epoch h up to time step M , which is

calculated with a simple moving average. Both q̂h and q̄h are updated with an exponential

moving average at the end of each epoch. Since Advice Exchange directly adopts the

policy of the adviser, the set of permissible advisers Zi must be defined a priori such

that the advisee will not adopt an inappropriate policy (i.e., a policy for a robot with

substantially different capabilities).

Cooperative behaviour through team learning is achieved with the RL-Alliance al-

gorithm [5], which is a modification of the L-Alliance algorithm [23]. RL-Alliance finds

a policy, πiT , that chooses a task selection action, (a ∈ AT), for every team member

i. Each team member has two metrics associated with it: impatience, and motivation.

Impatience represents a team member’s belief about their ability to perform each task,

and is a function of their expected time to complete that task. Motivation represents a

Chapter 2. Integration of RCISL into the HAA Architecture 14

team members desire to perform each task, and grows at each iteration as a function of

that team member’s impatience towards the task. During each task allocation round, ev-

ery task is greedily allocated to the available team member with the highest motivation.

Alternatively, tasks can be acquiesced by team members if they have had a sufficiently

long attempt at the task and another available team member is expected to be able to

complete the task quicker. The motivation for robot i to attempt task j is updated as,

mt(i, j) = [mt−1(i, j) + pt(i, j)] gt(i, j) (2.2)

where pt(i, j) is the impatience robot i has towards attempting task j, and gt(i, j) is

a gating multiplier ensuring robot i does not have any other tasks assigned, task j is

incomplete, and no other robot is expected to complete task j quicker than robot i. The

impatience factor is given by,

pt(i, j) =
θ1

τt(i, j)
(2.3)

where θ1 is a constant, and τt(i, j) is that average trial time for robot i to complete task

j. The average trial time is updated according to,

τt(i, j) = β(i, j)

(
τt−1(i, j) +

θ2
fij

(Iij − τt−1 (i, j))

)
(2.4)

where the parameter θ2 denotes a constant learning rate, fij denotes the number of

attempts member i has had towards task j, while Iij denotes the time taken during the

latest attempt by team member i on task j. Additionally, β(i, j) = e(fij/θ4)/(θ3 +e(fij/θ4))

is a softmax expression with constants θ3 and θ4 enabling a team member to make many

attempts (for adequate training) towards one task. The above formulation for average

trial time enables a pareto-optimal task assignment to be achieved.

Finally, robustness is achieved via a particle filter for robot state estimation. The

particle filter estimates position and orientation information about the robot’s environ-

ment that is necessary to form the individual learning state sI . The formulation for the

particle filter can be found in [6]. Filtering the robot’s state information enables the

individual and team learning algorithms to maintain their performance in the presence

of noisy sensory data.

Chapter 2. Integration of RCISL into the HAA Architecture 15

2.3 Integration

The primary tasks for integrating collective, collaborative, and cooperative behaviour

into the HAA architecture are: determining the necessary information to be preserved

at all times that will enable an agent to completely recover, and ensuring that all com-

munication and dependencies for the newly created agents have the appropriate fall-back

behaviour.

2.3.1 Collective Behaviour

Individual learning is implemented within the HAA architecture as a single agent (follow-

ing the HAA terminology for agents) called AgentIndividualLearning, with one instance

spawned by the Task Supervisor agent for each existing avatar. Although AgentIndi-

vidualLearning is unique for each avatar, the distributed processing capabilities of HAA

enable each agent to reside on the hardware of any available host. AgentIndividual-

Learning makes requests to the DDB or other agents to obtain state information (e.g.,

the ExecutiveSimulation agent in [17]) for the Q-learning algorithm, while the controller

responsible for issuing commands to the avatar requests movements from the individual

learning agent (e.g., the AvatarSimulation agent in [17]). Hence, AgentIndividualLearn-

ing maintains a modular form, enabling it to be altered or its functionality to be replaced

with little modifications to dependent agents.

For individual learning the primary data to be retained at all times is the developed

behaviour policy πI , and state information for the Q-learning update in eq. 1.4. The

data transfers necessary to ensure fault tolerance are summarized below in Table 2.1.

Agent transfer refers to planned migration of agents between hosts, agent recovery refers

to the recovery process after an unexpected failure, while DDB backup corresponds to

the routine data backups. During agent transfer, data is transferred directly between

hosts, during agent recovery data is retrieved from the DDB, and during DDB backups

data is sent to the DDB.

Due to the size of the table containing the Q-values, from which the behavioural policy is

derived, only the single updated Q-value is saved after each Q-learning update with eq.

1.4. However, during agent recovery it is necessary to retrieve the entire set of Q-values

for all states and actions from the DDB.

Chapter 2. Integration of RCISL into the HAA Architecture 16

Table 2.1: Summary of data transfer for the collective behaviour agent

Data Transferred Frequency

Agent Transfer sI,t At agent freeze request
sI,t−1
Qt(sI,t, aI), ∀aI ∈ AI
vt(sI,t, aI), ∀aI ∈ AI

Agent Recovery Qt(sI , aI), ∀sI ∈ SI ,∀aI ∈ AI After agent failure
vt(sI , aI), ∀sI ∈ SI ,∀aI ∈ AI

DDB Backup Qt+1(sI,t, aI,t) After Q-learning update

Where vt(sI , aI) is the number of times action aI has been performed in state sI at
time t.

2.3.2 Collaborative Behaviour

Collaborative behaviour through advice is also implemented as a single agent, called

AgentAdviceExchange, for each avatar in the HAA architecture, and is spawned by

the Task Supervisor agent. AgentAdviceExchange receives requests from the avatar’s

AgentIndividualLearning for advice, and issues requests to the appropriate AgentIndi-

vidualLearning of the adviser avatar (provided the conditions in eq. 2.1 are satisfied).

Each AgentAdviceExchange routinely uploads its performance metrics (i.e., q̂ and q̄) to

the DDB, and retrieves the performance metrics for all other avatars at the start of a

new epoch. Additionally, to accommodate failures of other agents, each advisor AgentIn-

dividualLearning must respond to the advice request within a predefined time period,

beyond which they are assumed to have failed and will be ignored until the next DDB

update.

The state information for the Advice Exchange algorithm is saved in the HAA ar-

chitecture as outlined below in Table 2.2. Identical to Table 2.1, agent transfer refers to

planned migration of agents between hosts, agent recovery refers to the recovery process

after an unexpected failure, and DDB backup corresponds to the routine data backups.

Given the small amount of data associated with AgentAdviceExchange, DDB backups

are not event driven, but rather are performed on a routine schedule (e.g. every 100 time

steps).

Chapter 2. Integration of RCISL into the HAA Architecture 17

Table 2.2: Summary of data transfer for the collaborative behaviour agent

Data Transferred Frequency

Agent Transfer Adviser Id At agent freeze request
q̄h
q̄M,h

q̂h

Agent Recovery q̄h After agent failure
q̄M,h

q̂h

DDB Backup q̄h Pre defined intervals
q̄M,h

q̂h

2.3.3 Cooperative Behaviour

The RL-Alliance algorithm for team learning is implemented within the HAA architec-

ture in a distributed fashion, where one AgentTeamLearning will be spawned by the Task

Supervisor agent for each existing avatar. Hence, all team learning agents are responsi-

ble for negotiating with each other while allocating tasks. Decentralizing task allocation

prevents a single failure from disrupting all avatars by losing task information, and en-

ables each avatar to determine its own task independent of other agent failures. The

negotiation process is a crucial component in a distributed system, as it is responsible for

resuming normal operation regardless of any party’s failure. Task allocation is performed

in synchronized ordered rounds, where the order of agent participation is determined by

the round coordinator. Before the start of each new round, the round start time and

order is distributed amongst the participating agents by the last agent to participate in

the preceding round. Each agent is allotted a predefined amount of time to participate

in the round, beyond which they are assumed to have failed. The negotiation process is

outlined in Algorithm 1.

In the event that the last agent in the current round fails before or during the coordi-

nation for the next round, it will still be responsible for coordinating the round when it

recovers on another host. The round information is routinely saved in the DDB, such that

during recovery the failed round coordinator will receive the last round order, indicating

that it is responsible for coordinating the next round. Algorithm 1 will then default to

the timeouts for participating agents being surpassed, and the round coordination will

proceed as intended. Additionally, since the RL-Alliance algorithm relies on the perfor-

Chapter 2. Integration of RCISL into the HAA Architecture 18

Algorithm 1 Task Allocation Round Negotiation

1: if t > round start time and !participated then
2: n ← Number of agents ahead on list
3: if n == 0 or t > round start time+ n ∗ timeout then
4: Perform RL-Alliance algorithm
5: Upload data to DDB
6: participated ← true
7: if last agent then
8: Randomize agent list
9: Broadcast new list

10: end if
11: end if
12: end if

mance metrics of all other robots, each AgentTeamLearning routinely updates the DDB

with it’s own metrics. Performance metrics for other agents are then received in DDB

notifications. Therefore, during each task allocation round, the RL-Alliance algorithm

will operate based on the most recent data received from the DDB for all other agents.

The data transfers necessary to ensure fault tolerance for agent data and negotiations

are summarized below in Table 2.3

Chapter 2. Integration of RCISL into the HAA Architecture 19

Table 2.3: Summary of data transfer for the cooperative behaviour agent

Data Transferred Frequency

Agent Transfer Id of each AgentTeamLearning At agent freeze request
Completion for each task
Negotiation round number
Negotiation round start time
Negotiation round order
Current task Id
Current task state
Ti*, ∀i ∈ I

Agent Recovery Id of each AgentTeamLearning At agent freeze request
Negotiation round number
Negotiation round start time
Negotiation round order
Current task Id
Current task state
Ti*, ∀i ∈ I

DDB Backup Negotiation round number After each negotiation round
Negotiation round start time
Negotiation round order
Current task Id
Current task state
Ti*, i = Agent Id

* Ti is the set of all data for the RL-Alliance algorithm for the robot i, given as Ti =
{τ(i, j), τ̄(i, j), στ (i, j), f(i, j),m(i, j), p(i, j), ν(i, j)|j ∈ J}, where τ̄(i, j) and στ (i, j) are
the mean and standard deviation of task completion times for robot i attempting task j,
and ν(i, j) is the time spent on the current task.

Chapter 3

Preference Advice

In this section the formulation for the Preference Advice Mechanism is presented. The

motivation for developing the presented mechanism stems from a desire to develop a

mechanism more suitable for robot teams that would have minimal restrictions on the

advisers and the use of advice. Hence, we desire an advice mechanism with the following

capabilities:

1. does not require advisers with full knowledge of the task;

2. is compatible with advisers of varying skill levels and relevance;

3. guarantees convergence to an optimal policy;

4. diminishes the influence and usage of advice over time.

The first capability, to not require advisers with full knowledge of the task, emphasizes

the need for utilizing partial knowledge from other agents. During the initial stages of

learning, each agent’s knowledge of the task will be sparse, but the team collectively may

have near complete knowledge. The second capability of compatibility with advisers of

varying skill levels and relevance is essential for heterogeneous agents. As the robots’

capabilities become more diverse, it becomes more important for an advice mechanism

to identify the usefulness of each adviser on its own. The third capability of convergence

to an optimal policy not only provides a theoretically sound mechanism, but is of great

importance to heterogeneous robot teams. When discrepancy exists between robots,

there is a risk that an adviser may guide an agent towards a different policy. Finally,

the fourth capability for the influence and usage of advice to diminish over time serves

to make the mechanism practical for real world applications, where each use of advice

incurs a communication and computational cost.

20

Chapter 3. Preference Advice 21

The Preference Advice mechanism will be presented as follows: first, a method for

characterizing the information possessed by an agent about a state, as well as incorpo-

rating information from an adviser, i.e. advice, into the advisee, will be shown. This

will be followed by demonstrating that a reinforcement learning agent incorporating the

advice of an adviser in the method shown will converge to a stationary and optimal pol-

icy. Finally, a formulation for an MDP will be presented that determines when an agent

needs advice, and which advisers it should use.

3.1 Incorporating Advice

Since the purpose of a reinforcement learning agent is to develop an optimal policy by

learning the value of each state and action, how knowledgeable that agent is about a state

should be dependent on these values. However, instead of directly using utility values

which can vary greatly in magnitude between applications, it is advantageous to use the

probability values for selecting each action, which are bounded on the interval [0,1]. To

assess how knowledgeable an agent is about a state via action selection probability values,

it is assumed that a high certainty about which action(s) to select can be directly related

to a high level of knowledge in the given state. Therefore, the greater the deviation from

equal probability for all actions, the more knowledgeable an agent is likely to be.

To convert state-action values, Q(s, a), to probability values for each action, p(ai),

a Boltzmann distribution (eq. 1.6) can be used. In the context of action selection

probabilities, an agent can be said to have zero knowledge about its current state when

no single action is considered to be more valuable than any other. If there are n possible

actions, then this corresponds to each action having an equal probability value given by

p(ai) = ε =
1

n
; i = 1, ..., n (3.1)

Conversely, an agent can be said to have the maximum possible amount of knowledge

about its current state when all probability is attributed to a single action, represented

by

p(ai) = 1, and p(aj) = 0 ∀i 6= j (3.2)

Let d(ai) = p(ai) − ε define the distance between selection probability of an action and

the base value. The preference level, k(ai) of action ai is defined to be proportional to

the square of the distance d(ai), as given by

Chapter 3. Preference Advice 22

k(ai) = sign(d(ai))d(ai)
2, i = 1, ..., n (3.3)

Therefore, the set K = {k1, ..., kn} represents the preference levels for the actions in a

given state, where the magnitude of each element represents the magnitude of preference

for each action, and the sign represents a “preferred to” (k > 0) or “preferred not to”

(k < 0) action.

Let Ko denote an agent’s initial set of preference levels for the actions in a state, and

let Km denote the preference levels of adviser m in the same state. For each action a,

the advised preference level is a linear combination of the advisee and adviser preference

levels, as given by

k̂(ai) = ko(ai) + λt(s)km(ai); i = 1, ..., n (3.4)

where λt(s,m) controls the influence of advice from adviser m, and will be derived in

section 3.2. The advised action selection probabilities, p̂(ai), are then obtained by

p̂(ai) =
ε+ sign(k̂(ai))

√
|k̂(ai)|∑n

j=1 p̂(aj)
; i = 1, ..., n (3.5)

Eq. 3.5 ensures that all selection probabilities will form a valid distribution. The advised

policy then selects actions based on the advised selection probabilities p̂(ai).

3.2 Advised Policy Convergence

Since the use of advice will alter the selection probabilities for each action, and hence

the agent’s policy, this can potentially prevent an agent from learning the true value of

each Q(s, a) and developing an optimal policy. Given the variety of methods available

for updating the values of Q(s, a), often having different convergence requirements, we

will demonstrate convergence with an advised policy for two commonly used methods:

Q-learning, and SARSA(0). Both methods update one Q(s, a) at a time, however the Q-

learning update (eq. 1.4) does not depend on the agent’s current action selection policy,

while the SARSA(0) update (eq. 1.5) does. Consequently, the SARSA(0) method has

more strict convergence requirements.

As detailed in [30], the convergence of SARSA(0) can be proven by treating the

update as a stochastic process described by Theorem 1 of [8]. The SARSA(0) method

is shown to converge to the true values of Q(s, a) when the policy for selecting actions

guarantees infinite exploration (i.e., each action in every state is experienced infinitely

Chapter 3. Preference Advice 23

many times,) and that at time infinity the policy becomes greedy. Naturally, the policy

at time infinity will be optimal given that the true values of Q(s, a) have been reached

and actions are greedily selected. The convergence of Q-learning only requires infinite

exploration to reach the true values of Q(s, a); however, the policy must also become

greedy at time infinity if an optimal policy is to be reached.

Thus, in order for Q-learning and SARSA(0) to converge using an advised policy two

requirements must be met. First, the advised policy must guarantee infinite exploration,

and become greedy at time infinity. Secondly, the influence of advice must diminish to

zero at time infinity, enabling the agent to converge to a stationary policy. The fulfillment

of these two requirements will guarantee convergence to an optimal policy in the presence

of advice.

Lemma 3.2.1. Let Di be an increasing sequence of σ-fields, and let Ai be Di measurable.

Then the following holds with probability 1,{
ω :

∞∑
i=1

P (Ai|Di−1) =∞

}
= {ω : ω ∈ Ai i.o.} (3.6)

Lemma 3.2.2. Consider a communicating MDP, and the reinforced decision process,

(x1, a1, r1, ..., xt, at, rt, ...) (3.7)

Let vt(s) denote the number of visits to state s up to time t, vt(s, a) denote the number

of times action a has been chosen in state s during the first t time steps, and ts(i) denote

the time when state s was visited the ith time. Assume that the action at time t, at, is

selected purely on the basis of the statistics Dt:

P (at = a|Dt, at−1, Dt−1, ..., a1, D1) = P (at = a|Dt) (3.8)

where Dt is computed from the full history (x0, a0, r0, ..., xt). Further, assume that the

action selection policy is such that

{
ω : lim

t→∞
vt(s)(ω) =∞

}
⊆

{
ω :

∞∑
i=1

P (at,i = a|Dt,i)(ω) =∞

}
(3.9)

Then, for all (s, a) pairs, vt(s)→∞, and vt(s, a)→∞, with probability 1.

Lemma 3.2.3. Consider an agent with a policy πo given as a set of probabilities P (a|s, t, Q)

determined from a Boltzmann distribution (eq. 1.6). If the temperature parameter τt(s)

is defined as,

Chapter 3. Preference Advice 24

τt(s) =
ln(vt(s))

maxa∈A |Qt(s, amax)−Qt(s, a)|
(3.10)

where amax = argmaxa∈AQt(s, a), then policy πo guarantees each action a in every state

s is experienced infinitely often, and becomes greedy at time infinity.

The proofs for Lemmas 3.2.1, 3.2.2 and 3.2.3 can be found in [30]. Lemmas 3.2.1 and

3.2.2 show that if the sum of selection probabilities for each action is infinite, then each

action a in every state s will be experienced an infinite number of times (i.e., infinite

exploration is achieved.) Lemma 3.2.3 provides a policy that achieves infinite exploration

and becomes greedy at time infinity. Therefore, to achieve infinite exploration under an

advised policy we wish to show that
∑∞

i=1 P (a|s, ts(i)) = ∞, where ts(i) is the time of

the ith visit to state s.

Theorem 3.2.4. Let an agent determine its initial action selection probabilities, po(ai),

via a method which ensures infinite exploration and becomes greedy at time infinity, such

as Boltzmann exploration (Lemma 3.2.3). Let the advised policy π̂ be obtained by incor-

porating advice via eq. 3.4 and having λt(s) defined as,

λt(s) =

(
ε

vt(s)
− 1

)2

+
ko(amin)

ε2
(3.11)

where amin = argmina∈A ko(a). Then, the advised policy π̂ guarantees each action a in

every state s is experienced infinitely often, and becomes greedy at time infinity. Ad-

ditionally, λt(s) → 0 as t → ∞. Therefore, an advised agent using the Q-learning or

SARSA(0) update method will converge to a stationary and optimal policy at time infinity.

Proof. The influence of advice will alter the initial action selection probabilities, but it

must not prevent infinite exploration. Utilizing lemmas 3.2.1 and 3.2.2, and the knowl-

edge that
∑∞

i=1 c/i = ∞, where c is a constant, the requirement of infinite exploration

can be fulfilled if the following condition holds for the advised policy π̂ with the action

selection probabilities defined in eq. 3.5:

p̂(ai) ≥
c

vt(s)
, i = 1, ..., n (3.12)

The advised action selection probability p̂(ai) will depend on the influence of the adviser

in eq. 3.5, governed by λt(s). Additionally, since we are concerned with maintaining a

minimum action selection probability across all actions a ∈ A, then λt(s) will be limited

by the action that reaches the minimum selection probability given by the condition in

eq. 3.12 with the least influence from adviser. This will occur when the actions with the

Chapter 3. Preference Advice 25

lowest preference level for the advisee and adviser are the same. Let this limiting action

be denoted by amin. An expression for λt(s) which satisfies eq. 3.12 can be found by

relating p̂(amin) to the advised preference level k̂(amin),

p̂(amin) ≥ c

vt(s)[
−k̂(amin)

]1/2
+ ε ≥ c

vt(s)

[−ko(amin)− λt(s)km(amin)]1/2 + ε ≥ c

vt(s)

−ko(amin)− (ε2/vt(s)− ε)2

km(amin)
≥ λt(s)

where the sign of k̂(amin) in the square root is set to negative, because p̂(amin) always

results in a negative preference (prefer not to), and the constant c is selected to be equal

to ε2. We set the adviser preference km(amin) to its lowest limit (strongly prefer not to)

of −ε2, determined by setting p(ai) = 0 in eq. 3.3, to come up with a conservative upper

bound for λt(s). This indeed corresponds to the adviser’s agreement with the advisee on

the least preferred action, resulting in a level of influence for which anything below will

guarantee condition 3.12. Hence, we can express λt(s) as,

λt(s) ≤
(

ε

vt(s)
− 1

)2

+
ko(amin)

ε2

Therefore, by choosing λt(s) as defined in eq. 3.11, each action a in every state s will be

experienced infinitely often. Further, the influence of advice diminishes to zero, since for

every state s, lim
t→∞

vt(s) =∞, resulting in lim
t→∞

λt(s) = 0. Since at time infinity the initial

agent’s action selection policy becomes greedy, and the influence of advice diminishes

to zero, then the advised policy will also become greedy at time infinity. Thus, the

convergence requirements for Q-learning and SARSA(0) have been met, and the advised

agent will converge to a stationary and optimal policy.

It can easily be verified that the advised preference levels produced by incorporating

an adviser’s advice via eq. 3.4 with λt(s) defined in eq. 3.11, will always be within the

bounds determined by eq. 3.3.

Lemma 3.2.5. With λt(s) defined by eq. 3.11, it will always be true that,

−ε2 ≤ k̂(ai) ≤ (1− ε)2 i = 1, ..., n

Proof. The lower and upper bounds of k̂(ai) are −ε2, and (1− ε)2, as determined by eq.

Chapter 3. Preference Advice 26

3.3 for p(ai) = 0 and p(ai) = 1, respectively. The proof that −ε2 ≤ k̂(ai) follows directly

from theorem 3.2.4, since λt(s) was derived such that p̂(ai) ≥ ε2/vt(s) i = 1, ..., n,

for any values of km(ai). For the largest advised preference level we consider the case

that maximizes the increase in preference level due to advice. This occurs when the

preference levels for each action of the advisee and adviser have the same sign, and when

n − 1 actions have equal preference levels of k(âmin) < 0, and a single action has the

preference level of k(âmax), where âmin = argmina∈A k̂(a) and âmax = argmaxa∈A k̂(a),

respectively. In this case, the advisee’s preference level for action âmax can be expressed

as ko(âmax) = −(1/ε− 1)2ko(âmin), where ko(âmin) can be set to −(ε2/vt(s)− ε)2, which

comes from setting po(âmin) = ε2/vt(s). Letting the adviser’s preference be set to the

maximum value of (1− ε)2, we can compare k̂(âmax) to the upper limit,

(1− ε)2 ≥ k̂(âmax)

(1− ε)2 ≥ ko(âmax) + λt(s)(1− ε)2

(1− ε)2 ≥ −(1/ε− 1)2ko(âmin) +

((
ε

vt(s)
− 1

)2

+
ko(amin)

ε2

)
(1− ε)2

(1− ε)2 ≥ (1/ε− 1)2(ε2/vt(s)− ε)2 +

((
ε

vt(s)
− 1

)2

− (ε2/vt(s)− ε)2

ε2

)
(1− ε)2

(1− ε)2 ≥ (1− ε)2(ε/vt(s)− 1)2

which will be true for any vt(s) ≥ 1 (and n > 1).

An interesting property of the proposed method of incorporating advice is that the

convergence of the advised policy does not depend on the adviser. Infinite exploration

and greedy action selection can be achieved for any advice. A poor adviser may guide

an agent towards imperfect actions and slow the rate at which the agent learns the task,

but it will not prevent convergence to an optimal policy. This property is particularly

useful for scenarios with multiple advisers in heterogeneous teams.

3.3 Determining When To Use Advice

With regards to utilizing the advice of an adviser, it is of course possible to use several

advisers at each time step. However, each time advice is requested from an adviser, a

communication cost is incurred. Further, the benefit of advice will diminish over time

as the advisee learns its own task, which should be reflected in how frequently advice is

Chapter 3. Preference Advice 27

requested over time. Thus, polling every adviser for its advice, or polling a fixed number

of advisers at each step, is not desirable, as it can result in receiving advice of little benefit

and unnecessary communication costs. Our approach is to enable the advice mechanism

to learn when it should accept or reject advice, and when it should continue seeking more

advisers.

The advice utilization process, namely learning the relationship between an agent’s

own stage in improving its performance and the benefit of advice, can be represented by

an MDP, and hence a reinforcement learning algorithm can be applied. At each time

step an agent can decide if it needs advice, if it should accept the adviser’s advice, ask

another adviser, or cease asking additional advisers. Thus, the mechanism must learn

when it is most appropriate to request advice, and when the advice should be accepted.

The advice utilization process is defined by the 〈SA, AA, TA, RA〉 tuple:

State sA ∈ SA: is defined by sA = {ψo, ψ̄m, γ}, which contains information in

the agent’s current state about i) the advisee’s confidence level, ii) whether or not

the adviser’s confidence level is greater than the advisee’s, and iii) the advisee’s

experience. The elements ψ and ψ̄m are defined as,

ψ =

√
1

1− ε

[
n∑
i=1

(d(ai))
2

] 1
2

(3.13)

ψ̄m =

{
1 , when ψm > ψo

0 , otherwise

The values of ψm and ψo are obtained using the action selection probabilities of the

adviser and advisee, respectively. The value of ψ provides a single metric about the

agent’s confidence level in the current state, which is bound on the interval [0, 1] for

any number of actions. In the zero confidence case, where the selection probabilities

of all actions are equal, ψ = 0; whereas for the maximum confidence case, when all

probability is attributed to a single action, ψ = 1. The agent’s experience in the

current state is represented by γ = 1/vt(s).

Action aA ∈ AA= {accept, skip, cease}, where accept incorporates the advice

with Eq. 3.4 and asks the next adviser for advice, skip ignores the advice and asks

the next adviser for advice, and cease rejects the advice and ceases asking for any

more advice in the current state.

Transition TA(s
′
A, aA, sA): represents the probability of transitioning from state

sA to state s′A after performing action aA.

Chapter 3. Preference Advice 28

Reward RA(sA, aA, s
′
A): defines the reward received by the mechanism after each

action, and is given by

RA =

(

1 + δ
(
ψ̂ − ψo

))2
, aA = accept

(1 + ψo)
2 , otherwise

(3.14)

where ψ̂ is found with eq. 3.13 by using the advised action selection probabilities

from eq. 3.5. The coefficient δ is a constant positive value to balance accepting and

rejecting advice, and can be adjusted depending on the application.

At the beginning of each time step, before an agent takes an action, the advice

mechanism will first decide if advice should be requested at all. Since the mechanism’s

state sA depends on the adviser’s advice, and no advisers have yet been polled, this

decision-making is achieved by selecting an action from the mechanism’s policy as if there

were an adviser available with stronger confidence than the advisee. Hence, the first state

consists of sA = {ψo, 1, γ}, which corresponds to the mechanism being optimistic that a

suitable adviser is available. If the selected action is cease, then the agent does not request

any advice at the current time step. Otherwise, an adviser is polled for its advice, a new

state sA is formed, and the mechanism chooses between accept, skip, and cease. When the

advice is accepted, the advisee’s preference levels are updated with eq. 3.4, and advice

is requested from a new adviser (presuming one is available.) When the skip action is

selected, the advice is ignored, and advice from a new adviser is requested. Finally, when

the cease action is selected, the adviser’s advice is not used, and the mechanism ceases

requesting any additional advice for this time step. Hence, the mechanism continues

requesting advice, either accepting or ignoring the advice, until either the cease action is

selected or there are no more available advisers.

The order in which advisers are polled for their advice is not part of the mechanism’s

decision-making process. Instead, a ranking scheme is used to determine the order in

which advisers are polled. The optimal adviser for an agent is one with identical ca-

pabilities and who has learned the values of Q(s, a),∀s, a. If any heterogeneity exists

between agents, their transition probabilities between states will differ, and hence the

true values of Q(s, a) for agents will not necessarily be equal for each action a in every

state s. As long as the method for learning the values of Q(s, a) implemented by the

agent is guaranteed to converge to the true values of Q(s, a),∀s, a, then at time infinity

Qo(s, a) = Qm′(s, a), and hence ko(a) = km′(a), where the o and m′ subscripts denote

the advisee and an optimal adviser, respectively. Therefore, selecting the best available

adviser is equivalent to finding the adviser with the greatest similarity, using a similarity

Chapter 3. Preference Advice 29

measure which is maximized when Qo(s, a) = Qm′(s, a). The dot product between the

unit vectors of the advisee’s and adviser’s preference levels, given by eq. 3.15, is one such

measure. Using the preference levels, as opposed to directly using the values of Q(s, a)

or p(a), is advantageous since the values of k(a) are signed, so the dot product can also

indicate when two agents oppose each other. Equation 3.15 reaches a maximum of 1

only when the preference levels are equal, is zero when either agent has zero preference

across all actions, and can be negative when the preference levels oppose each other. The

similarity measure is updated as an exponential moving average each time the adviser is

polled for its advice, given by eq. 3.16, where ρ is a constant decay rate. During each

advice round, advisers are then selected in the order of most to least similar.

βm =

(
Km

||Km||

)
·
(

Ko

||Ko||

)
(3.15)

ωm,t+1 = ρωm,t + (1− ρ)βm (3.16)

Lastly, the policy for the advice mechanism, πA(sA), is developed through a Q-learning

algorithm with the update rule defined in eq. 1.4. The steps to be performed by the

mechanism to update an agent’s preference levels at each time step are summarized in

Algorithm 2.

There are two additional points to note about the proposed mechanism. First, the

mechanism has only two parameters: δ in eq. 3.14 and ρ in eq. 3.15. Secondly, the state

space for the advice mechanism is small. With three possible actions, two state elements

in the range [0,1], and one binary state element, the state space size is 6× u× v, where

u and v are the number of discrete intervals for the state elements ψ and γ, respectively.

A small state space is intentional, since advice is most beneficial in the early stages of

learning, and the state space of the advice mechanism must be significantly smaller than

the agent’s reinforcement learning problem if a benefit is to be received in the early stages

of learning.

Chapter 3. Preference Advice 30

Algorithm 2 Seek Advice

1: K̂ ← Ko

2: Set state sA
3: aA ← πA(sA)
4: if aA ! = cease then
5: Set adviser order
6: Poll next adviser m
7: Set state sA
8: while next adviser available do
9: Update similarity measure

10: aA ← πA(sA)
11: if aA == accept then
12: Update K̂ with eq. 3.4
13: end if
14: if aA == cease and next adviser available then
15: Poll next adviser m
16: end if
17: Set state sA
18: Perform Q-learning update with eq. 1.4
19: if !next adviser available or aA == cease then
20: Break
21: end if
22: Ko ← K̂
23: end while
24: end if
25: return K̂

Chapter 4

Case Study 1: Preference Advice

With Individual Learning

4.1 Simulation Scenario

To demonstrate the effectiveness of the Preference Advice mechanism, a case study with

a heterogeneous robot team is used. The team is composed of robots with varying

capabilities, where each robot is individually learning a task with a Q-learning algorithm,

while also receiving advice from its peers or virtual advisers. Each robot has the same

goal, however their capabilities differ, resulting in each type of robot learning a slightly

different policy.

A foraging scenario is used where the goal of the team is to collect all of the items

in the area and bring them to a target zone. Robots must learn to navigate the world

effectively, to collect the items in as few actions as possible. An illustration of the

scenario is show in fig. 4.1. Each robot is initially assigned an item to collect randomly.

The total foraging area is 10m by 10m, with 4 obstacles each having a diameter of 1m,

and a single target zone with a diameter of 2m. The items to be collected are 0.5m in

diameter, and their quantity is equal to the number of robots used in each experiment.

Additionally, there is a circular area 4m in diameter in the center of the foraging area

that represents rough terrain, which only certain types of robots can pass through. The

rough terrain is intended to mimic real applications of heterogeneous robot team, such as

search and rescue, where environmental conditions may be more unfavorable for certain

robots. Four different types of robots are used, differing in their speed of movement and

their ability to traverse the rough terrain: S-NR, S-R, F-NR, and F-R, where S, F, NR,

and R represent slow, fast, non-rugged and rugged, respectively. Only rugged robots can

31

Chapter 4. Case Study 1: Preference Advice With Individual Learning32

traverse the rough terrain. Each run begins with the items, obstacles, target zone, and

robots, randomly positioned within the foraging area, and ends when either all items

have been returned to the target zone, or 4000 iteration steps have been performed.

10m!

0m!
0m!

10m!

Target Zone!
Obstacles!
Targets!
Rough Terrain!
Non-Rugged Robot (slow-fast)!
Rugged Robot (slow-fast)!

Figure 4.1: Sample foraging scenario displaying robots, items, obstacles, target zone, and
the area of rough terrain

The learning process for each robot is an MDP with a 〈S,A, T,R〉 tuple defined as:

State s ∈ S: is defined by s = {td, tθ, gd, gθ, od, ot}, which contains the

distance d and relative angle θ from the robot to center of the item t, goal

location g, as well information about the closest obstacles. The obstacle states,

od = {o1,d, ..., ok,d} and ot = {o1,t, ..., ok,t}, contain the distance d and type t of

the closest obstacle along k equally spaced detection rays. Three detection rays

are used, orientated with a separation of π/10 rads. The rigid obstacles, walls,

and items (other than the one the robot is aiming at), are treated as the same

type, while the rough terrain is treated as a separate type. All distances are

limited to a maximum range of 2m and divided into 5 discrete intervals, while

all angles are divided into 5 discrete quadrants within the interval [0, 2π) rads.

Action a ∈ A: is defined by [move forward, rotate left, rotate right, interact].

The move forward action will move the robot 0.2m for a slow robot and 0.4m

for a fast robot, while the rotate left and rotate right actions will move the

Chapter 4. Case Study 1: Preference Advice With Individual Learning33

robot ±1/5π radians for all robots. interact attaches an item to the robot if the

robot is within 0.5m of the item and the item is the robot’s target item.

Transition T (s′, a, s): represents the probability of transitioning from state s

to state s′ after performing action a.

Reward R(s, a, s′): is the reward given to each robot for its action, and is

defined in Table 4.1. A reward is given when the robot moves at least a threshold

distance ∆d (set to 30% of the robot’s step size) towards or away from an item

or goal area, or their target item is returned. When the robot does not receive

any reward for its movement with respect to an item or for returning an item, a

reward of 1.0 is given.

Table 4.1: Reward function for robot actions in Case Study 1.

Behavior Reward
Robot moved at least ∆d towards target item 5

Robot moved at least ∆d away from target item 0.1
Item moved at least ∆d towards target zone 5

Item moved at least ∆d away from target zone 0.1
Item is returned to target zone 50

None of the above occurs 1

Each robot develops an individual policy π through a Q-learning algorithm with the

update rule in eq. 1.4. The discount factor γ is held constant at 0.3, while the learning

rate α decays to 0 as t→∞, governed by:

α = 1/(1 + vt(s))
σ (4.1)

where σ is a constant that is set to 0.9. Each action has a probability of being selected

defined by a Boltzmann distribution with a modified version of τt(s) in eq. 3.10, as given

by,

τt(sI) =
−ln ((1− nξ)/vt(s) + nξ)

maxa∈A |Qt(sI , amax)−Qt(sI , aI)|
(4.2)

where amax = argmaxa∈AQt(sI , aI), n is number of actions, and ξ is a constant coefficient

[0, 1). The expression for τt(sI) in eq. 4.2 is a modification of the formulation in [30],

and enables actions to be selected in a probabilistic fashion that becomes more greedy

over time, while maintaining a minimum probability of ξ over all actions. The value

of ξ is selected to be equal to 0.02. Ensuring a minimum action selection probability

Chapter 4. Case Study 1: Preference Advice With Individual Learning34

is necessary in a simulation environment where the state resolution is kept low enough

to be tractable. Discretizing states can result in two very different scenarios having the

same state values, such as a robot being directly against an obstacle, and a robot having

a minimal amount of clearance to pass the obstacle. In such a scenario a policy which is

too greedy could result in the robot getting stuck repeatedly performing an poor action.

Finally, for the Preference Advice mechanism actions are selected via a ε-greedy policy,

where a random action is selected with probability 0.05, otherwise the highest valued

action is selected. The coefficient δ applied to the advice mechanism reward in eq. 3.14

is set to 2.5.

4.2 Experiments

A series of experiments using the Preference Advice mechanism have been formed to

demonstrate its capabilities. In the following sections a novice robot refers to a robot

that has had zero prior experience at the task, with zero initialized quality values. An

expert robot is one which has previously performed and learned from the given task

for a defined number of runs. Further, experts do not perform policy updates during

simulations in order to perform a controlled analysis of the advice mechanism. Each

expert is simply a saved policy from a previously trained robot.

4.2.1 Experiment 1: Homogeneous peers as advisers

When agents are concurrently learning a task, a difficult challenge is to use the partial

knowledge of the other agents in a beneficial way. The ability of the proposed mechanism

to do so is demonstrated by performing the foraging scenario with 4 novice agents of the

same type (chosen to be S-NR). Each agent will inevitably learn different portions of the

state space before others, so the mechanism will need to use the partial knowledge of

others in order for the agent to develop the appropriate policy more quickly. When the

advice mechanism is used, each agent should learn its task more quickly when compared

to the case without the advice mechanism. This can be reflected by the simulation time

to complete the task (number of iterations) and total team effort (number of actions) at

each run, as well as the average reward received by the team during each run. We also

compare the performance of the proposed mechanism to the team performance using the

Advice Exchange algorithm [21].

Chapter 4. Case Study 1: Preference Advice With Individual Learning35

4.2.2 Experiment 2: Heterogeneous peers as advisers

We extend experiment 1 to use heterogeneous advisers to demonstrate the mechanism’s

performance with advisers possessing different capabilities. Four robots, one of each S-

NR, S-R, F-NR, and F-R type, perform the foraging scenario. In the case of non-rugged

robots, the rugged advisers will attempt to guide them through the rough terrain, which

they are incapable of moving through. Such a scenario will illustrate that the biasing

effect of the advice in the proposed mechanism can influence an agent without aggressively

forcing it to perform detrimental actions.

4.2.3 Experiment 3: Expert advisers of varying skill level

Due to the random nature of action selection (as well as scenario initialization), certain

agents may learn the task faster or more slowly than others, resulting in the usefulness of

advice varying between agents. When advisers of the same type, but different expertise,

are made available to the advisee, the advice mechanism must be capable of recognizing

varying levels of knowledge about the task. To demonstrate this, a simulation is per-

formed with one novice S-NR robot having access to expert advisers of the same type

trained for 10, 50, and 100 runs. Since all robots are homogeneous, the advice mechanism

must evaluate advisers based on their skill at the task. The relevance of each adviser is

indicated by the similarity measure in eq. 3.16. The appropriate behaviour of the mech-

anism is expected to attribute a greater similarity to the experts with more experience

as time proceeds.

4.2.4 Experiment 4: Expert advisers of varying capabilities

As previously stated, for heterogeneous robot teams the suitability of advice depends

not only on the expertise of the adviser, but also on how similar the adviser is to the

advisee. When advisers of different types but similar expertise are made available to

the advisee, the advice mechanism must still be capable of determining the relevance of

each adviser. To demonstrate this, a simulation is performed with a novice S-NR robot

having access of expert advisers of each possible type (i.e., S-NR, F-NR, S-R, and F-R),

all previously trained for 100 runs. In this scenario the rugged advisers will attempt to

guide the robot across the rough terrain, which it is incapable of doing, while the fast

advisers will have learned a different sequence of motions than the advisee due to the

larger movement during each action. Again, the relevance of advisers is indicated by the

similarity measure with eq. 3.16.

Chapter 4. Case Study 1: Preference Advice With Individual Learning36

4.2.5 Experiment 5: Supplement a team of novices with a par-

tially trained adviser

An interesting use of advice for robot teams is when a group of novice robots can have

access to at least one expert robot. Even if the expert robot is only partially trained, its

availability should still accelerate the learning process for the entire team. To investigate

this, 4 S-NR novice robots perform the foraging scenario. Each novice has access to

the advice of its peers as well as a previously trained S-NR robot. The supplementary

expert adviser does not participate in the scenario. The experiment is repeated using the

supplementary expert adviser, which is trained for 10, 50, and 100 runs, to illustrate the

effects of varying levels of expertise made available in the early stages.

4.3 Results

During each experiment, the simulations are limited to 200 runs when 4 robots are used,

and 100 runs when 1 robot is used, with each run limited to 4000 iterations. The reduction

in runs when a single robot is used is due to the robot’s performance converging more

quickly when other robots are not present to impede its motion. Each experiment is

repeated 15 times, and the data is averaged over all 15 trials. Additionally, a 10 point

moving average (i.e. averaged over 10 runs) is applied to the averaged results from the 15

trials. The following metrics are utilized to measure the team’s performance: simulation

time, total, effort, standard deviation of simulation time, standard deviation of total

effort, and the average team reward. Where simulation time is the total number of

iterations made for each team member, and total effort is the number of actions towards

the task taken by each team member.

4.3.1 Experiment 1: Homogeneous peers as advisers

Experiment 1, the use of homogeneous peers as advisers with 4 S-NR robots, is considered

first. Figs. 4.2a and 4.2b shows the simulation time (number of iterations) and total effort

(number of actions) required by the team at each run to complete the task without advice,

with the Preference Advice mechanism, and with the Advice Exchange mechanism for

comparison. It is apparent from the figures that the use of advice provides a consistent

reduction in the mean values of both simulation time and total effort. This is especially

evident during the transient stage of learning, considered as the first 50 runs where

rapid convergence occurs. For both metrics, the use of the Preference Advice mechanism

provides a greater improvement than the Advice Exchange mechanism. The benefit of

Chapter 4. Case Study 1: Preference Advice With Individual Learning37

Advice Exchange is most noticeable within the first 100 epochs for simulation time and

total effort, but becomes indistinguishable from the no advice case beyond that. With

the Preference Advice mechanism, the mean values of simulation time and total effort

appear to be consistently less than both the Advice Exchange and no advice cases for

the first 100 runs, beyond which only the reduction in simulation time is discernible.

The standard deviation of simulation time and total effort at each run is presented

in figs. 4.3a and 4.3b. With the Advice Exchange mechanism there is no discernible

reduction in the standard deviation of either simulation time or total effort. However,

with the Preference Advice mechanism there is a clear reduction in the standard deviation

of both simulation time and total effort. This reduction is most prominent during the

transient stage, but is present for all 200 runs. Reducing the standard deviation of

simulation time and total effort with the Preference Advice mechanism indicates that it

increases the consistency in the team’s performance at the task. Again, this improvement

is the result of utilizing multiple advisers at each time step.

The ability of the Preference Advice mechanism to incorporate advice from multiple

advisers at each time step is a key factor in the improvement in both the mean and

standard deviation of simulation time and total effort. In the early stages of learning,

a robot’s experience in the state space will be sparse, hence several advisers may need

to be polled before one with sufficient experience in the desired state is found. If only a

single adviser can be utilized at each time step, which is the case for Advice Exchange,

it severely limits the likelihood of obtaining useful advice. Additionally, it is likely that

each robot will have some experience in the state, but not a large amount. This will

frequently prevent advice from being used if it is required that the adviser’s performance

or experience exceeds the advisee’s (as evaluated by certain conditions). Conversely,

if an adviser’s input can be utilized, regardless of the magnitude of their contribution,

the benefits of advice can be redeemed more frequently and provide a more consistent

performance improvement

Lastly, the average reward of all robots in the team is displayed in fig. 4.4. Again, the

use of advice appears to provide a slight, yet consistent, improvement in the mean value

of reward obtained compared to without advice. Acquiring reward in larger quantities

indicates that the use of advice encourages the selection of more favorable actions earlier.

Interestingly, the distinction between the Preference Advice and Advice Exchange mech-

anisms is only apparent within the first 50 runs. A likely cause of this is that the reward

function only provides a large, or small reward when the robot moves some threshold

distance towards or away from the target item or the target zone. This results in a small

subset of actions having equivalent rewards, yet varying in their contribution to the goal.

Chapter 4. Case Study 1: Preference Advice With Individual Learning38

20 40 60 80 100 120 140 160 180 200
Runs

0

500

1000

1500

2000

2500

S
im

ul
at

io
n

T
im

e
(n

o.
 it

er
at

io
ns

)

Preference Advice
Advice Exchange
No Advice

(a)

20 40 60 80 100 120 140 160 180 200
Runs

0

1000

2000

3000

4000

5000

6000

T
ot

al
 E

ffo
rt

 (
no

. a
ct

io
ns

)

Preference Advice
Advice Exchange
No Advice

(b)

Figure 4.2: Performance with the Preference Advice mechanism, with the Advice Ex-
change mechanism, and without advice, for 4 S-NR robots in experiment 1: (a) simulation
time, (b) total effort

Chapter 4. Case Study 1: Preference Advice With Individual Learning39

20 40 60 80 100 120 140 160 180 200
Runs

0

100

200

300

400

500

600

700

800

900

1000

1
S

T
D

 o
f S

im
ul

at
io

n
T

im
e

(n
o.

 it
er

at
io

ns
)

Preference Advice
Advice Exchange
No Advice

(a)

20 40 60 80 100 120 140 160 180 200
Runs

0

50

100

150

200

250

300

350

400

450

500

1
S

T
D

 o
f T

ot
al

 E
ffo

rt
 (

no
. a

ct
io

ns
)

Preference Advice
Advice Exchange
No Advice

(b)

Figure 4.3: Standard deviation of performance at each run for experiment 1: (a) simula-
tion time, (b) total effort

Chapter 4. Case Study 1: Preference Advice With Individual Learning40

Preference Advice
Advice Exchange
No Advice

20 40 60 80 100 120 140 160 180 200
Runs

R

0

0.05

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Preference Advice
Advice Exchange
No Advice

Figure 4.4: Average reward obtained between 4 S-NR robots in experiment 1

4.3.2 Experiment 2: Heterogeneous peers as advisers

The second experiment demonstrates the mechanisms compatibility with heterogeneous

advisers, where one of each type of robot (i.e., S-NR, F-NR, S-R, and F-R) perform

the foraging scenario together. Hence, no two robots performing the foraging task have

identical capabilities. The simulation time and total effort for the team to complete the

task at each run, with and without advice, is shown in figs. 4.5a and 4.5b. The compar-

ison to Advice Exchange is not made here, since it is not compatible with heterogeneous

advisers.

Again, the mean values of simulation time and total effort are consistently lower with

the Preference Advice mechanism than without advice, particularly during the transient

stage of learning. In this scenario, the advice from rugged robots would be to cross the

rough terrain, which non-rugged robots are incapable of doing, while the advice from

non-rugged robots would be to go around the terrain, which is an inferior policy for

rugged robots.

If unsuitable advice were being used, we would expect to see an increase in iterations

accompanied by an increase in the standard deviation of mission iterations, as a result

of robots getting ”stuck” performing actions they are incapable of doing. However, there

is a decrease simulation time and total effort, as well as a decrease in their standard

Chapter 4. Case Study 1: Preference Advice With Individual Learning41

20 40 60 80 100 120 140 160 180 200
Runs

0

500

1000

1500

2000

2500

S
im

ul
at

io
n

T
im

e
(n

o.
 it

er
at

io
ns

)

Preference Advice
No Advice

(a)

20 40 60 80 100 120 140 160 180 200
Runs

0

1000

2000

3000

4000

5000

6000

T
ot

al
 E

ffo
rt

 (
no

. a
ct

io
ns

)

Preference Advice
No Advice

(b)

Figure 4.5: Performance with the Preference Advice mechanism and without advice for 4
heterogeneous robots (S-NR, F-NR, S-R, and F-R) in experiment 2: (a) simulation time,
(b) total effort

Chapter 4. Case Study 1: Preference Advice With Individual Learning42

20 40 60 80 100 120 140 160 180 200
Runs

0

100

200

300

400

500

600

700

800

900

1000

1
S

T
D

 o
f S

im
ul

at
io

n
T

im
e

(n
o.

 it
er

at
io

ns
)

Preference Advice
No Advice

(a)

20 40 60 80 100 120 140 160 180 200
Runs

0

50

100

150

200

250

300

350

400

450

500

1
S

T
D

 o
f T

ot
al

 E
ffo

rt
 (

no
. a

ct
io

ns
)

Preference Advice
No Advice

(b)

Figure 4.6: Standard deviation of performance at each run for experiment 2: (a) simula-
tion time, (b) total effort

Chapter 4. Case Study 1: Preference Advice With Individual Learning43

Preference Advice
No Advice

20 40 60 80 100 120 140 160 180 200
Runs

R

0

0.05

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Preference Advice
No Advice

Figure 4.7: Average reward obtained between 4 4 heterogeneous robots (S-NR, F-NR,
S-R, and F-R) in experiment 2

deviations (figs. 4.6a and 4.6b) that is comparable to the reduction in standard deviation

from experiment 1 with homogeneous advisers. Therefore, this is a strong indication

that the Preference Advice mechanism is compatible with heterogeneous advisers. Such

compatibility is due to the adviser influence λt(s) in eq. 3.11 being derived to ensure

a conservative use of advice that will not bias the advisee’s policy too strongly. The

average reward of all team members is shown in fig. 4.7, where a similar improvement

as in experiment 1 is observed.

Chapter 4. Case Study 1: Preference Advice With Individual Learning44

4.3.3 Experiment 3: Expert advisers of varying skill level

Experiments 3 and 4 use virtual expert advisers that do not participate in the task,

where the single robot performing the foraging task simply has access to their policies.

Such a scenario enables the use of advice over time with Preference Advice mechanism to

be studied under static adviser conditions, as well as demonstrating how the Preference

Advice mechanism could be used with alternative advice sources, such as humans. In

experiment 3, virtual expert advisers with different amounts of experience are made

available to a S-NR robot. Figure 4.8 shows the percentage which the Preference Advice

mechanism requests and accepts advice at each time step. As the robot learns the

task, the frequency which advice is requested rapidly diminishes. Reducing the use of

advice over time is a desirable property for real world robot teams, where unnecessary

communication and computational costs should be avoided. The acceptance of advice at

each time step increases to a peak near run 30, and steadily diminishes thereafter. The

increase in advice acceptance between run 1 and run 30 indicates that the Preference

Advice mechanism quickly learns the value of advice, while the decline afterwards paired

with the small request occurrence indicates that it also becomes more selective with

advice over time. The relevance of each adviser, as measured by eq. 3.16, is displayed

in fig. 4.9. The relevance of an adviser increases with its experience, which is the

appropriate behavior, resulting in the adviser with the most experience being polled first

for its advice. Therefore, despite the mechanism not directly learning the relevance of

each adviser, the ranking scheme implemented has worked successfully.

Chapter 4. Case Study 1: Preference Advice With Individual Learning45

20 40 60 80 100 120 140 160 180 200
Runs

0

10

20

30

40

50

60

70

P
er

ce
nt

ag
e

of
 O

cc
ur

an
ce

 [%
]

Advice Requests and Usage

Advice Requested
Advice Accepted

Figure 4.8: Percentage which advice is requested and used during each run in experiment
3

20 40 60 80 100 120 140 160 180 200
Runs

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

R
el

ev
an

ce
 !

100 Run Expert
10 Run Expert
1 Run Expert

Figure 4.9: Relevance for advisers of varying skill in experiment 3

Chapter 4. Case Study 1: Preference Advice With Individual Learning46

4.3.4 Experiment 4: Expert advisers of varying capabilities

Experiment 4 uses expert advisers differing in terms of capabilities. A S-NR robot having

access to a virtual expert adviser of each type (S-NR, F-NR, S-R, and F-R) is used for the

simulation. The relevance of each type of adviser, as determined by eq. 3.16, is shown

in fig. 4.10. The two advisers of the slow type, namely S-NR and S-R, appear to be

equally the most relevant, while the advisers of the fast type, F-NR and F-R, have lower,

yet similar, levels of relevance. The Preference Advice mechanism differentiates between

the policies of different adviser types, although the results indicate that the difference in

policies between rugged and non-rugged robots is smaller than the difference between fast

and slow robots. The results from this experiment highlight the importance of having

an advice mechanism capable of determining the relevance of advisers on its own, since

prior to operation the similarity in policies may not be obvious enough to generate static

rules regarding the use of advisers.

20 40 60 80 100 120 140 160 180 200
Runs

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

R
el

ev
an

ce
 !

S-NR Expert
F-NR Expert
S-R Expert
F-R Expert

Figure 4.10: Relevance of advisers of varying capabilities in experiment 4

Fig. 4.11 shows the number of iterations for the single S-NR robot to complete the

foraging task without advice, with advice from advisers of varying skill levels, and with

advice from advisers of varying capabilities. Both variations in advisers provide similar

improvements in simulation time, especially during the transient stage of learning. Again,

since the supplementary expert adviser is a virtual adviser, it could also be a human

Chapter 4. Case Study 1: Preference Advice With Individual Learning47

20 40 60 80 100 120 140 160 180 200
Runs

0

500

1000

1500

S
im

ul
at

io
n

T
im

e
(n

o.
 it

er
at

io
ns

)

Varying Skill
Varying Capabilities
No Advice

Figure 4.11: Simulation time for 1 S-NR robot with advisers of varying skill (experiment
2) and advisers of varying capabilities (experiment 4), compared to without advice

providing advice to the team. Such a reduction in iterations with a virtual expert adviser

can provide significant benefits to real world robot teams, where the use of a single human

can greatly reduce the time to learn the task at hand, as well as reduce operational time

for the robots, and hence costs. Based on the adviser relevance values, it appears that

for experiment 3 the 100 run expert (of the same type as the advisee) was consistently

polled first. Additionally, for experiment 4 the relevance of the S-NR and S-R robots

were the largest and nearly equal, indicating those two advisers were consistently polled

first. These two observations imply that having two expert advisers with high relevance

is not distinctly more beneficial than having a single expert adviser available.

Chapter 4. Case Study 1: Preference Advice With Individual Learning48

5 10 15 20 25 30 35 40 45 50
Runs

0

500

1000

1500

2000

2500

S
im

ul
at

io
n

T
im

e
(n

o.
 it

er
at

io
ns

)

100 Run Expert
50 Run Expert
10 Run Expert
Peer Advice
No Advice

Figure 4.12: Simulation time for 4 S-NR robots with a supplementary expert adviser in
experiment 5, compared to peer only advice and no advice

4.3.5 Experiment 5: Supplement a team of novices with a par-

tially trained adviser

Lastly, we consider experiment 5, where a team of four S-NR robots use peers as advisers,

plus one supplementary expert adviser. The simulation time for each case of adviser ex-

pertise (10, 50, and 100 runs) is shown in fig. 4.12, as well as peer only advice (identical

to experiment 1) and no advice for comparison. Given the large number of curves on the

plot, for clarity only the simulation time during the transient stage is shown. Relative

to peer only advice, the supplementary adviser provides an additional reduction in sim-

ulation time, with the advisers having 50 and 100 runs of experience providing the most

improvement. Despite the improvement obtained from having a supplementary expert

adviser in addition to peers being relatively small, it does indicate that all four robots are

successfully able to leverage the additional source of advice early in the learning process.

Similar to the balance between exploration and exploitation with reinforcement learning,

there is a similar balance between exploiting an experienced adviser and enabling a robot

to experience a sufficient amount of exploration. The policy of the expert adviser with

100 runs of experience could be directly adopted, but it may completely prevent the

novice robots from experiencing large areas of the state space.

Chapter 5

Case Study 2: Preference Advice

Within RCISL

5.1 Simulation Scenario

The second case study serves to demonstrate the use of the Preference Advice mechanism

within the RSICL algorithm, which is described in chapter 2. Namely, the use of advice

in the presence of team learning and state uncertainty. Uncertainty in observations and

state estimates is an inevitable aspect of real world robot systems, so it is important

to test any new developments under such circumstances. A foraging scenario with a

heterogeneous team of robots is used, but differs from Case Study 1 in the types of tasks

to be performed, and the lack of the rough terrain. The additional variation in tasks to

be performed adds an additional layer of heterogeneity that necessitates the use of a task

allocation algorithm.

The goal of the team is to collect a set of items within a foraging area, and deposit

them in a collection zone. The foraging area is 10m by 10m, containing 4 obstacles that

are 0.5m in diameter, and a single collection zone that is 1m in diameter. Four different

types of robots are used, differing in their speed of movement and their strength: Slow-

Weak, Slow-Strong, Fast-Weak, and Fast-Strong. There are also two possible types of

collectable items: light and heavy. Only the strong type robots are capable of moving the

heavy items. All robots and items are 0.25m in diameter. In the presented case study,

4 robots are used (one of each type: Slow-Weak, Slow-Strong, Fast-Weak, and Fast-

Strong), and 4 items are to be collected (two light and two heavy). Each run begins with

the items, obstacles, collection zone, and robots, randomly positioned within the foraging

area. A run is complete when either all items have been returned to the collection zone,

49

Chapter 5. Case Study 2: Preference Advice Within RCISL 50

10m!

0m!
0m!

10m!

Target Zone!
Obstacles!
Targets!
Weak Robot (slow-fast)!
Strong Robot (slow-fast)!

Figure 5.1: Sample foraging scenario displaying obstacles, target zone, and each type of
robot and item to collect

or 6000 actions by each robot have been performed. An example initial configuration for

the simulation scenario is shown in fig. 5.1.

As discussed in section 2.2, individual and team learning are partitioned into two

separate, concurrent, MDP’s. The individual learning process for each robot is an MDP

with a 〈SI , AI , TI , RI〉 tuple defined as:

State sI ∈ SI : is defined by sI = {td, tθ, tt, gd, gθ, od, oθ}, which contains the

distance and relative angle from the robot to the target t, goal location g, and

closest obstacle o. The subscripts d and θ indicate that the variable represents

the distance and angle to the object respectively. The state tt indicates the type

of target to be collected. All distances are limited to a maximum range of 3m

and divided into 3 discrete intervals, while all angles are divided into 5 discrete

quadrants within the range [0, 2π) rads. The obstacle state o represents the

single closest obstacle to the robot, which can be a fixed obstacle, a wall, items,

or another robot.

Chapter 5. Case Study 2: Preference Advice Within RCISL 51

Action aI ∈ AI : is defined by [move forward, rotate left, rotate right,

interact]. The move forward action will move the robot 0.2m for a slow type

robot and 0.4m for a fast type robot, while the rotate left and rotate right ac-

tions will move the robot ±1/5π radians for all robot types. interact attaches

an item to the robot if the robot is within 0.5m of the item and the item is the

robot’s target item.

Transition TI(s
′
I, aI, sI): represents the probability of transitioning from state

sI to state s′I after performing action aI .

Reward RI(sI, aI, s
′
I): is the reward given to each robot for its action, and is

defined in Table 5.1. A reward is given when the robot moves at least a threshold

distance ∆d (set to 30% of the robot’s step size) towards or away from an item

or goal area, or their target item is returned. When the robot does not receive

any reward for its movement with respect to an item or for returning an item, a

reward of 1.0 is given.

Table 5.1: Reward function for robot actions in Case Study 2.

Behavior Reward
Avatar moved at least ∆d towards target item 5

Avatar moved at least ∆d away from target item 0.1
Item moved at least ∆d towards collection area 5

Item moved at least ∆d away from collection area 0.1
Item is returned to collection area 50

None of the above occurs 1

Q-learning is used to develop the individual learning policy, πI , in the same fashion

as for Case Study 1. In eq. 1.4 the discount factor γ is held constant at 0.3, while the

learning rate α decays to 0 as t → ∞, governed by eq. 4.1 with the constant σ set to

0.9. Each action has a probability of being selected defined by a Boltzmann distribution

with the temperature parameter τt(sI) defined by eq. 4.2 with the value of ξ being set

to 0.02 to ensure all actions maintain a minimum selection probability.

Team learning is achieved with the RL-Alliance algorithm, which is responsible for

appropriately allocating tasks to robots with sufficient capabilities (e.g. only strong

robots are capable of collecting heavy items). The parameter values for the impatience

update (eq. 2.3) and trial time update (eq. 2.4) are selected to be θ1 = 1.0, θ2 = 15.0,

θ3 = 0.3, and θ4 = 2.0. Additionally, the motivation for each robot is updated after every

5 time steps, and the maximum number of time steps before a robot must acquiesce its

Chapter 5. Case Study 2: Preference Advice Within RCISL 52

task is selected to be 1500, enabling a task to be assigned multiple times if it is not yet

completed.

Finally, for the Preference Advice mechanism actions are selected via a ε-greedy policy,

where a random action is selected with probability 0.05. The coefficient δ applied to the

advice mechanism reward in eq. 3.14 is set to 4.0. It is worth noting that no restrictions

are placed upon which robots can be used as advisers (i.e. a robot can utilize advice

from another robot of any type).

5.2 Experiments

The RCISL algorithm builds upon individual learning by adding additional layers of team

and social learning, while also making each robot robust to measurement uncertainty via

a state estimator. Investigating the use of the Preference Advice mechanism within

RCISL provides additional insight into the mechanism’s behaviour in more complex in

realistic applications. Particularly, how the performance benefit with the Preference

Advice mechanism is influenced by the presence of state uncertainty. With this goal in

mind, three experiments have been formed.

5.2.1 Experiment 1: Preference Advice with team learning

The first experiment serves to demonstrate the use of the Preference Advice mechanism

in an application that utilizes team learning. This repeats the experiments performed for

CISL in [5], with the Preference Advice mechanism replacing the use of Advice Exchange.

The foraging scenario is performed with and without the use of the Preference Advice

mechanism to observe the impact on the team’s performance.

5.2.2 Experiment 2: Preference Advice with team learning and

measurement uncertainty

Real world robot systems inevitably have noise present in every measurement. Conse-

quently, it is important to observe the influence of noise on each aspect of the system.

In this experiment, zero mean Gaussian noise is added to each state variable for a robot

(excluding the target type variable which is binary). The foraging scenario is performed

with measurement noise having standard deviations of 0.05m, 0.20m, and 0.40m. Addi-

tionally, the scenario is performed for each noise level with and without the the use of

the Preference Advice mechanism.

Chapter 5. Case Study 2: Preference Advice Within RCISL 53

5.2.3 Experiment 3: Preference Advice with team learning,

measurement uncertainty, and a state estimator

As in [6], a particle filter is implemented to estimate each of the state variable for every

robot. Each simulation from experiment 2 is performed again, but this time with the

particle filter utilized. This experiment serves to provide the most realistic usage of

advice within a robot team, since uncertainty will always be present, but so will methods

of eliminating that uncertainty.

5.3 Results

During each experiment, the simulations are limited to 200 runs, with each run limited to

6000 iterations. Each experiment is repeated 15 times, and the data is averaged over all

15 trials. Additionally, a 10 point moving average (i.e. averaged over 10 runs) is applied

to the averaged results from the 15 trials. Identical to the experiments in chapter 4, the

following metrics are utilized to measure the team’s performance: simulation time, total,

effort, standard deviation of simulation time, standard deviation of total effort, and the

average team reward.

5.3.1 Experiment 1: Preference Advice with team learning

The results from experiment 1 are presented in figures 5.2 to 5.4. From figures 5.2a

and 5.2b it can be seen that the Preference Advice mechanism has improved both the

simulation time and total effort for the team consistently throughout the learning process.

A notable difference with respect to the results without team learning (chapter 4) is that

there is no immediate jump start in performance from the first epoch, but rather a

gradual improvement. This can be attributed to the nature of the L-Alliance algorithm,

which inevitably allocates tasks to the incorrect robots during the initial epochs, until it

appropriately identifies the proper robot for each task. This results in both simulation

time and total effort being dominated by the time L-Alliance allows each robot to attempt

a task, regardless of each robot’s performance at its task. It is likely that a prior heuristic

incorporated into the team learning algorithm could greatly reduce the dependency of

early performance on team learning.

A second noticeable difference to the results in case study 1 is that the performance

improvement with the use of advice is still noticeable after learning has converged (i.e.

from 50 up to 200 runs). An important difference between the two case studies is that

in the current case study each robot developing is developing the same policy about how

Chapter 5. Case Study 2: Preference Advice Within RCISL 54

to move throughout the world, whereas in case study one the Non-Rugged robots were

required to learn to avoid the rough terrain, and hence making their policy less applicable

to the remainder of the robots on the team.

The standard deviation of simulation time and total effort over all 15 trials is shown

in fig. 5.3a and fig. 5.3b. Similar to the experiments without team learning, the Prefer-

ence Advice mechanism has reduced the standard deviation of both simulation time and

total effort, indicating an improvement in consistency in addition to the improvement in

performance. This is an intended and expected result for the use of advice that biases a

robots decision, since the advice is not a strict acceptance, but rather a consensus on a

decision. It is natural that utilizing more robots to arrive at a consensus for a decision

will lead to more consistency in selecting the appropriate decision.

The average team reward for all robots is shown in fig. 5.4, where it can be observed

that the Preference Advice mechanism provides a noticeable and consistent improvement

compared to without advice. This indicates that the use of advice more quickly encour-

ages the robots to select the more highly rewarded actions. Interestingly, the increase in

reward due to advice is more prominent when team learning is used compared to case

study 1. This is likely due to the increased similarity between robot policies with regards

to navigating the environment. Similar to the results for simulation time and total effort,

the initial rapid improvement in reward is not present for that case study, as it was for

case study 1.

Chapter 5. Case Study 2: Preference Advice Within RCISL 55

20 40 60 80 100 120 140 160 180 200
Runs

0

500

1000

1500

2000

2500

S
im

ul
at

io
n

T
im

e
(n

o.
 it

er
at

io
ns

)

Preference Advice
No Advice

(a)

20 40 60 80 100 120 140 160 180 200
Runs

0

1000

2000

3000

4000

5000

6000

T
ot

al
 E

ffo
rt

 (
no

. a
ct

io
ns

)

Preference Advice
No Advice

(b)

Figure 5.2: Performance for individual and team learning, with and without the Prefer-
ence Advice mechanism in experiment 1: (a) simulation time, (b) total effort

Chapter 5. Case Study 2: Preference Advice Within RCISL 56

20 40 60 80 100 120 140 160 180 200
Runs

0

100

200

300

400

500

600

700

800

900

1000

1
S

T
D

 o
f S

im
ul

at
io

n
T

im
e

(n
o.

 it
er

at
io

ns
)

Preference Advice
No Advice

(a)

20 40 60 80 100 120 140 160 180 200
Runs

0

50

100

150

200

250

300

350

400

450

500

1
S

T
D

 o
f T

ot
al

 E
ffo

rt
 (

no
. a

ct
io

ns
)

Preference Advice
No Advice

(b)

Figure 5.3: Standard deviation of performance at each run in experiment 1: (a) simulation
time, (b) total effort

Chapter 5. Case Study 2: Preference Advice Within RCISL 57

Preference Advice
No Advice

20 40 60 80 100 120 140 160 180 200
Runs

R

0

0.05

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

Preference Advice
No Advice

Figure 5.4: Average reward obtained between the 4 robots in experiment 1

5.3.2 Experiment 2: Preference Advice with team learning and

measurement uncertainty

The results for experiment 2, which adds a zero mean Gaussian noise to all robot state

variables, are shown in figures 5.5 to 5.10. Similar to experiment 1, the simulation

time, total effort, and standard deviation of each metric are shown for each level of

noise (standard deviations of 0.05m, 0.20m, and 0.40m). To accompany the results,

each figure also contains the results from experiment 1 without noise and without advice

for reference. It is worth noting that figures 5.7 through 5.10 have different axis scales

than the remainder of figures within this case study, due to the substantial decrease in

performance for large amounts of state uncertainty.

By observing the standard deviations of simulation time and total effort in figures

5.5b, 5.6b, 5.7b, 5.8b, 5.9b, and 5.10b, it is apparent that there is minimal distinction

between the Preference Advice mechanism and no advice cases. Consequently, advice has

little influence on the consistency of the team in the presence of uncertainty. However,

there is a very noticeable improvement in both simulation time and total effort when

the Preference Advice mechanism is used. Despite the variability in performance not

being improved, there is still a large improvement in the mean performance. With 0.05m

standard deviation noise, the use of advice improves the performance (simulation time

Chapter 5. Case Study 2: Preference Advice Within RCISL 58

and total effort) to be approximately equivalent to the no advice case with zero noise

(figures 5.5a and 5.6a).

As the state uncertainty increases, the relative performance improvement with advice

also increases, as can be seen in figures 5.7a, 5.8a, 5.9a, and 5.10a. A hypothesis for

why the benefit of advice increases with state uncertainty is that the addition of state

uncertainty has an equalizing effect on the reward and transition functions for each

experience (sI , aI , s
′
I). This results in a robot having less certainty about which action to

select. In such a scenario the use of advice has an opportunity to substantially improve

the confidence in action selection, This is in contrast to the case with no state uncertainty,

where a robot can more easily converge to the true reward and transition functions, and

hence have higher confidence in action selection.

The results from this experiment are the most significant for realistic robot teams,

which will inevitably have some degree of uncertainty in every state estimate. It high-

lights in interesting observation that an advice mechanism that amalgamates the advice

of multiple advisers can be analogous to a state estimator utilizing observations from

multiple sources.

Additionally, it is worth noting that in figures 5.7b and 5.9b, the standard deviation

of simulation time is extremely small during the first 5 runs. This is due to a limit being

placed on the total allowed iterations, and the team consistently reaching this limit with

large amounts of state uncertainty.

Chapter 5. Case Study 2: Preference Advice Within RCISL 59

20 40 60 80 100 120 140 160 180 200
Runs

0

500

1000

1500

2000

2500

S
im

ul
at

io
n

T
im

e
(n

o.
 it

er
at

io
ns

)

Preference Advice <=0.05
No Advice <=0.05
No Advice <=0.0

(a)

20 40 60 80 100 120 140 160 180 200
Runs

0

100

200

300

400

500

600

700

800

900

1000

1
S

T
D

 o
f S

im
ul

at
io

n
T

im
e

(n
o.

 it
er

at
io

ns
)

Preference Advice <=0.05
No Advice <=0.05
No Advice <=0.0

(b)

Figure 5.5: Simulation time with and without the Preference Advice mechanism with zero
mean Gaussian noise with a standard deviation of 0.05m (experiment 2): (a) simulation
time, (b) standard deviation of simulation time

Chapter 5. Case Study 2: Preference Advice Within RCISL 60

20 40 60 80 100 120 140 160 180 200
Runs

0

1000

2000

3000

4000

5000

6000

T
ot

al
 E

ffo
rt

 (
no

. a
ct

io
ns

)

Preference Advice <=0.05
No Advice <=0.05
No Advice <=0.0

(a)

20 40 60 80 100 120 140 160 180 200
Runs

0

50

100

150

200

250

300

350

400

450

500

1
S

T
D

 o
f T

ot
al

 E
ffo

rt
 (

no
. a

ct
io

ns
)

Preference Advice <=0.05
No Advice <=0.05
No Advice <=0.0

(b)

Figure 5.6: Team total effort time with and without the Preference Advice mechanism
with zero mean Gaussian noise with a standard deviation of 0.05m (experiment 2): (a)
simulation time, (b) standard deviation of simulation time

Chapter 5. Case Study 2: Preference Advice Within RCISL 61

20 40 60 80 100 120 140 160 180 200
Runs

0

1000

2000

3000

4000

5000

6000

S
im

ul
at

io
n

T
im

e
(n

o.
 it

er
at

io
ns

)

Preference Advice <=0.20
No Advice <=0.20
No Advice <=0.0

(a)

20 40 60 80 100 120 140 160 180 200
Runs

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1
S

T
D

 o
f S

im
ul

at
io

n
T

im
e

(n
o.

 it
er

at
io

ns
)

Preference Advice <=0.20
No Advice <=0.20
No Advice <=0.0

(b)

Figure 5.7: Simulation time with and without the Preference Advice mechanism with zero
mean Gaussian noise with a standard deviation of 0.20m (experiment 2): (a) simulation
time, (b) standard deviation of simulation time

Chapter 5. Case Study 2: Preference Advice Within RCISL 62

20 40 60 80 100 120 140 160 180 200
Runs

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

T
ot

al
 E

ffo
rt

 (
no

. a
ct

io
ns

)

Preference Advice <=0.20
No Advice <=0.20
No Advice <=0.0

(a)

20 40 60 80 100 120 140 160 180 200
Runs

0

100

200

300

400

500

600

700

800

900

1000

1
S

T
D

 o
f T

ot
al

 E
ffo

rt
 (

no
. a

ct
io

ns
)

Preference Advice <=0.20
No Advice <=0.20
No Advice <=0.0

(b)

Figure 5.8: Team total effort time with and without the Preference Advice mechanism
with zero mean Gaussian noise with a standard deviation of 0.20m (experiment 2): (a)
simulation time, (b) standard deviation of simulation time

Chapter 5. Case Study 2: Preference Advice Within RCISL 63

20 40 60 80 100 120 140 160 180 200
Runs

0

1000

2000

3000

4000

5000

6000

S
im

ul
at

io
n

T
im

e
(n

o.
 it

er
at

io
ns

)

Preference Advice <=0.40
No Advice <=0.40
No Advice <=0.0

(a)

20 40 60 80 100 120 140 160 180 200
Runs

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1
S

T
D

 o
f S

im
ul

at
io

n
T

im
e

(n
o.

 it
er

at
io

ns
)

Preference Advice <=0.40
No Advice <=0.40
No Advice <=0.0

(b)

Figure 5.9: Simulation time with and without the Preference Advice mechanism with zero
mean Gaussian noise with a standard deviation of 0.40m (experiment 2): (a) simulation
time, (b) standard deviation of simulation time

Chapter 5. Case Study 2: Preference Advice Within RCISL 64

20 40 60 80 100 120 140 160 180 200
Runs

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

T
ot

al
 E

ffo
rt

 (
no

. a
ct

io
ns

)

Preference Advice <=0.40
No Advice <=0.40
No Advice <=0.0

(a)

20 40 60 80 100 120 140 160 180 200
Runs

0

100

200

300

400

500

600

700

800

900

1000

1
S

T
D

 o
f T

ot
al

 E
ffo

rt
 (

no
. a

ct
io

ns
)

Preference Advice <=0.40
No Advice <=0.40
No Advice <=0.0

(b)

Figure 5.10: Team total effort time with and without the Preference Advice mechanism
with zero mean Gaussian noise with a standard deviation of 0.40m (experiment 2): (a)
simulation time, (b) standard deviation of simulation time

Chapter 5. Case Study 2: Preference Advice Within RCISL 65

5.3.3 Experiment 3: Preference Advice with team learning,

measurement uncertainty, and a state estimator

In experiment 3 a particle filter is used as a state estimator for each the robot’s state

variables that are subject to noise. Identical to experiment 2, the results for the team

performance with and without advice for each level of sensory noise are shown in figures

5.11 to 5.16.

It is immediately apparent from the simulation time and total effort that the results for

experiment closely mimic those of experiment 1. Particularly, the relative performance

improvement achieved with the Preference Advice mechanism in the transient phase

of learning, and the approximately equal performance during the steady state phase.

Additionally, the relative performance improvement for simulation time and total effort

with the Preference Advice mechanism is consistent across all three levels of uncertainty.

Similar amount of improvement as in experiment 1 are also observed for the standard

deviations of simulation time and total effort. The similarity in results to experiment

1 indicates that the particle filter is acting as an effective state estimator, and that the

advice mechanism remains beneficial under such circumstances.

To compare the differences in performance for each level of uncertainty, the simulation

time for all levels of uncertainty are plotted in fig. 5.17, where the no advice case is shown

in fig. 5.17a, and the Preference advice case is shown in fig. 5.17b. For brevity, only the

simulation time is shown. A slight increase in simulation time can be observed as the

uncertainty increases, as expected since the effectiveness of a state estimator is a function

of the amount of uncertainty in the system. It is worth noting that the performance

difference between no noise, and noise of 0.40m standard deviation is more exaggerated

for the no advice case than it is for the use of advice. Hence, the Preference Advice

mechanism compensates for the shortcomings of the state estimator in highly uncertain

situations.

Chapter 5. Case Study 2: Preference Advice Within RCISL 66

20 40 60 80 100 120 140 160 180 200
Runs

0

500

1000

1500

2000

2500

S
im

ul
at

io
n

T
im

e
(n

o.
 it

er
at

io
ns

)

Preference Advice <=0.05
No Advice <=0.05

(a)

20 40 60 80 100 120 140 160 180 200
Runs

0

100

200

300

400

500

600

700

800

900

1000

1
S

T
D

 o
f S

im
ul

at
io

n
T

im
e

(n
o.

 it
er

at
io

ns
)

Preference Advice <=0.05
No Advice <=0.05

(b)

Figure 5.11: Simulation time with and without the Preference Advice mechanism, using
a state estimator in the presence of zero mean Gaussian noise with a standard deviation
of 0.05m (experiment 3): (a) simulation time, (b) standard deviation of simulation time

Chapter 5. Case Study 2: Preference Advice Within RCISL 67

20 40 60 80 100 120 140 160 180 200
Runs

0

1000

2000

3000

4000

5000

6000

T
ot

al
 E

ffo
rt

 (
no

. a
ct

io
ns

)

Preference Advice <=0.05
No Advice <=0.05

(a)

20 40 60 80 100 120 140 160 180 200
Runs

0

50

100

150

200

250

300

350

400

450

500

1
S

T
D

 o
f T

ot
al

 E
ffo

rt
 (

no
. a

ct
io

ns
)

Preference Advice <=0.05
No Advice <=0.05

(b)

Figure 5.12: Team total effort time with and without the Preference Advice mechanism,
using a state estimator in the presence of zero mean Gaussian noise with a standard devi-
ation of 0.05m (experiment 3): (a) simulation time, (b) standard deviation of simulation
time

Chapter 5. Case Study 2: Preference Advice Within RCISL 68

20 40 60 80 100 120 140 160 180 200
Runs

0

500

1000

1500

2000

2500

S
im

ul
at

io
n

T
im

e
(n

o.
 it

er
at

io
ns

)

Preference Advice <=0.20
No Advice <=0.20

(a)

20 40 60 80 100 120 140 160 180 200
Runs

0

100

200

300

400

500

600

700

800

900

1000

1
S

T
D

 o
f S

im
ul

at
io

n
T

im
e

(n
o.

 it
er

at
io

ns
)

Preference Advice <=0.20
No Advice <=0.20

(b)

Figure 5.13: Simulation time with and without the Preference Advice mechanism, using
a state estimator in the presence of zero mean Gaussian noise with a standard deviation
of 0.20m (experiment 3): (a) simulation time, (b) standard deviation of simulation time

Chapter 5. Case Study 2: Preference Advice Within RCISL 69

20 40 60 80 100 120 140 160 180 200
Runs

0

1000

2000

3000

4000

5000

6000

T
ot

al
 E

ffo
rt

 (
no

. a
ct

io
ns

)

Preference Advice <=0.20
No Advice <=0.20

(a)

20 40 60 80 100 120 140 160 180 200
Runs

0

50

100

150

200

250

300

350

400

450

500

1
S

T
D

 o
f T

ot
al

 E
ffo

rt
 (

no
. a

ct
io

ns
)

Preference Advice <=0.20
No Advice <=0.20

(b)

Figure 5.14: Team total effort time with and without the Preference Advice mechanism,
using a state estimator in the presence of zero mean Gaussian noise with a standard devi-
ation of 0.20m (experiment 3): (a) simulation time, (b) standard deviation of simulation
time

Chapter 5. Case Study 2: Preference Advice Within RCISL 70

20 40 60 80 100 120 140 160 180 200
Runs

0

500

1000

1500

2000

2500

S
im

ul
at

io
n

T
im

e
(n

o.
 it

er
at

io
ns

)

Preference Advice <=0.40
No Advice <=0.40

(a)

20 40 60 80 100 120 140 160 180 200
Runs

0

100

200

300

400

500

600

700

800

900

1000

1
S

T
D

 o
f S

im
ul

at
io

n
T

im
e

(n
o.

 it
er

at
io

ns
)

Preference Advice <=0.40
No Advice <=0.40

(b)

Figure 5.15: Simulation time with and without the Preference Advice mechanism, using
a state estimator in the presence of zero mean Gaussian noise with a standard deviation
of 0.40m (experiment 3): (a) simulation time, (b) standard deviation of simulation time

Chapter 5. Case Study 2: Preference Advice Within RCISL 71

20 40 60 80 100 120 140 160 180 200
Runs

0

1000

2000

3000

4000

5000

6000

T
ot

al
 E

ffo
rt

 (
no

. a
ct

io
ns

)

Preference Advice <=0.40
No Advice <=0.40

(a)

20 40 60 80 100 120 140 160 180 200
Runs

0

50

100

150

200

250

300

350

400

450

500

1
S

T
D

 o
f T

ot
al

 E
ffo

rt
 (

no
. a

ct
io

ns
)

Preference Advice <=0.40
No Advice <=0.40

(b)

Figure 5.16: Team total effort time with and without the Preference Advice mechanism,
using a state estimator in the presence of zero mean Gaussian noise with a standard devi-
ation of 0.40m (experiment 3): (a) simulation time, (b) standard deviation of simulation
time

Chapter 5. Case Study 2: Preference Advice Within RCISL 72

20 40 60 80 100 120 140 160 180 200
Runs

0

500

1000

1500

2000

2500

S
im

ul
at

io
n

T
im

e
(n

o.
 it

er
at

io
ns

)

No Advice <=0.0
No Advice <=0.05
No Advice <=0.20
No Advice <=0.40

(a)

20 40 60 80 100 120 140 160 180 200
Runs

0

500

1000

1500

2000

2500

S
im

ul
at

io
n

T
im

e
(n

o.
 it

er
at

io
ns

)

Preference Advice <=0.0
Preference Advice <=0.05
Preference Advice <=0.20
Preference Advice <=0.40

(b)

Figure 5.17: Comparison of simulation time performance using a state estimator for all
noise levels: 0.05m, 0.20m, and 0.40m (experiment 3): (a) No advice, (b) Preference
Advice

Chapter 6

Conclusion and Future Work

6.1 Conclusion

This thesis has made two contributions to the progress of robot teams: the integration

of collective, collaborative, and cooperative behaviour into an existing robot team archi-

tecture, and the development of an advice mechanism for heterogeneous robot teams.

The RCISL algorithms consisting of Q-learning for collective behaviour, Advice Ex-

change for collaborative behaviour, and RL-Alliance for cooperative behaviour, have been

implemented within the HAA architecture by forming a new agent for each behavioural

algorithm. Each behavioural algorithm has been implemented in a distributed fashion,

and organized into a modular form that enables easy instantiation and removal from the

control system for dynamically scaling the team. Additionally, each algorithm has been

made robust to faults through routine backups of necessary state data in the DDB, and

appropriate fallback behaviour for communication failures with other agents.

Experiments with the newly developed framework were performed with a foraging

case study using a simulated team of heterogeneous robots. In the case study, 4 avatars

would each develop a policy for collecting and delivering items, while receiving advice

from other avatars, as well as develop a policy for appropriately allocating tasks. In each

experiment, the rate of failures for agents and hosts were varied to observe the frameworks

ability to handle faults, as well as the performance of the team at the foraging task in

the presence of faults.

The new advice mechanism, called Preference Advice, has been developed for real

world use of heterogeneous robot teams. Advice is incorporated into the advisee’s policy

by biasing the selection probability of each action. An important feature of this method

is that it guarantees both convergence to an optimal policy at time infinity, and that the

influence of advice diminishes to zero at time infinity. The Preference Advice mechanism

73

Chapter 6. Conclusion and Future Work 74

also has the capability to decide when advice should be requested and accepted, and to

use multiple advisers at each time step. A ranking scheme is implemented to determine

the order which advisers should be polled, and is based on the similarity between the

advisee’s and adviser’s policies.

Experiments with the Preference Advice mechanism were performed with a simulated

team of robots performing a foraging task. When a team of homogeneous robots with zero

prior experience perform the foraging task, the mechanism accelerates the initial stage

of the learning process in comparison to without advice, by reducing the simulation time

(number of iterations) and total effort (number of actions) to complete the task. The

improvement in performance observed also exceeds the improvement obtained with an

alternative advice mechanism that uses a form of direct policy adoption. A reduction in

the standard deviation of both simulation time and total effort was observed, indicating

an improvement in the team’s consistency. When the foraging task was performed with

a team of heterogeneous robots, each possessing different capabilities, similar levels of

improvement relative to the no advice case were observed for simulation time, total effort,

and their respective standard deviations. The use of the Preference Advice mechanism

was also studied with a single robot having virtual advisers of varying skill levels and

experience. In both cases, the mechanism differentiated between advisers of different

skill levels and capabilities through the implemented ranking scheme. Additionally, it

was observed that the frequency which advice is requested decreases steadily from the first

run, and the acceptance of advice reaches a peak during the transient stage of learning

and steadily decreases afterwards.

The experiments have shown that the Preference Advice mechanism has three impor-

tant attributes for use with real world robot teams. First, the convergence guarantees

of the mechanism as well as the adviser ranking scheme enable a performance improve-

ment to be obtained when heterogeneous advisers are used. Second, the usage of advice

decreases over time, which reduces the communication and computational costs for the

team. Third, an experienced adviser can further improve the benefit of advice. The

experienced adviser could be a human being, which can help reduce the risk of an entire

team performing potentially hazardous exploration.

The Preference Advice mechanism was also tested within the RCISL framework,

i.e. with team learning and state uncertainty. A foraging case study was used, where

heterogeneity exists in both the tasks to be performed as well as the robot capabilities.

No restrictions were placed on which advisers could be utilized by any robot. Three

experiments were performed: Preference Advice with team learning, Preference Advice

with team learning and measurement uncertainty, and Preference Advice with team

Chapter 6. Conclusion and Future Work 75

learning and measurement uncertainty and a state estimator.

The Preference Advice mechanism was shown to have a consistent improvement in

both simulation time and total effort, for all three experiments. The amount of im-

provement in performance (simulation time and total effort) with the use of advice was

approximately equal between the experiments without noise, and with noise and a state

estimator. However, a much larger performance improvement was observed for the case

with noise but without a state estimator. Hence, when a robot can easily converge to

the appropriate reward and transition functions through limited experience, advice has

limited benefit. But for the cases where the reward and transition functions may take

longer to converge to, such as having high state uncertainty, there is more potential for

improvement and the effect of advice is more pronounced. An improvement in the stan-

dard deviations of simulation time and total effort were observed for the experiments

without noise, and with noise and a state estimator. However no such improvement was

observed for the case with noise but without the state estimator. Hence, the Preference

Advice mechanism improves the mean performance under all three circumstances tested,

but it only improves the team’s consistency in the scenarios with low state uncertainty.

6.2 Future Work

There are a variety of extensions to the Preference Advice case studies that would pro-

vide additional insight. One extension would be to increase the amount of heterogeneity

within the team and observe if the performance with the Preference Advice mechanism

ever becomes worse than the no advice case. This would of course require maintaining

one robot of each type to ensure all potential advisers are different from the advisee.

Another extension would be to add increasing amounts for complexity to the environ-

ment, resulting in a more difficult task to learn, and observe the relationship between

task difficulty and the performance benefit with advice. Lastly, it would be interesting to

observe the performance for a larger team of robots, multiple robots of each type. Pro-

viding advisers that are learning the identical policy should further enhance the benefit

of advice.

The presented mechanism is accompanied with a proof of convergence. However, it

would be interesting to attempt to theoretically demonstrate an improvement in the rate

of convergence, or simply to identify the constraints that would ensure an improvement

in the convergence rate. The rate of convergence for Q-learning has been investigated in

[20], which could provide a useful starting point.

Regarding the incorporation of advice into the advisee’s policy, it would be desirable to

Chapter 6. Conclusion and Future Work 76

discover a more theoretically grounded method of biasing an agent’s policy. An interesting

approach to advice incorporation would be a form of Bayesian update, utilizing the

advisee’s initial information as the prior, and forming a posterior after incorporating the

adviser’s input. A potential approach to this may be to view action selection probabilities

as a multinomial distribution, and use the Dirichlet distribution as a conjugate prior.

Bibliography

[1] T. Arai, E. Pagello, and L. E. Parker. Guest editorial advances in multirobot systems.

IEEE Transactions on Robotics and Automation, 18(5):655–661, Oct 2002.

[2] T. Balch and R. C. Arkin. Behavior-based formation control for multirobot teams.

IEEE Transactions on Robotics and Automation, 14(6):926–939, Dec 1998.

[3] Richard Bellman. Dynamic Programming. Princeton University Press, Princeton,

NJ, USA, 1 edition, 1957.

[4] Georgios Boutsioukis, Ioannis Partalas, and Ioannis Vlahavas. Transfer Learning

in Multi-Agent Reinforcement Learning Domains, pages 249–260. Springer Berlin

Heidelberg, Berlin, Heidelberg, 2012.

[5] Justin Girard and M. Reza Emami. Concurrent markov decision processes for robot

team learning. Engineering Applications of Artificial Intelligence, 39:223 – 234, 2015.

[6] Justin Girard and M. Reza Emami. A robust approach to robot team learning.

Autonomous Robots, pages 1–17, 2015.

[7] Tyler Gunn and John Anderson. Dynamic heterogeneous team formation for robotic

urban search and rescue. Procedia Computer Science, 19:22 – 31, 2013. The 4th

International Conference on Ambient Systems, Networks and Technologies (ANT

2013), the 3rd International Conference on Sustainable Energy Information Tech-

nology (SEIT-2013).

[8] Tommi Jaakkola, Michael I. Jordan, and Satinder P. Singh. On the convergence of

stochastic iterative dynamic programming algorithms. Neural Comput., 6(6):1185–

1201, November 1994.

[9] E. G. Jones, B. Browning, M. B. Dias, B. Argall, M. Veloso, and A. Stentz. Dynam-

ically formed heterogeneous robot teams performing tightly-coordinated tasks. In

77

BIBLIOGRAPHY 78

Robotics and Automation, 2006. ICRA 2006. Proceedings 2006 IEEE International

Conference on, pages 570–575, May 2006.

[10] Nidhi Kalra, Robert Zlot, M. Bernardine Dias, and Anthony Stentz. Market-Based

Multirobot Coordination: A Comprehensive Survey and Analysis. Robotics Institute

Carnegie Mellon University Tech Rep CMURITR0516, 94(December 2005):48, 2006.

[11] G Ayorkor Korsah, Anthony Stentz, and M Bernardine Dias. A comprehensive

taxonomy for multi-robot task allocation. The International Journal of Robotics

Research, 32(12):1495–1512, 2013.

[12] Long-Ji Lin. Programming robots using reinforcement learning and teaching. In

Proceedings of the Ninth National Conference on Artificial Intelligence - Volume 2,

AAAI’91, pages 781–786. AAAI Press, 1991.

[13] Andrey Loukianov, Masanori Sugisaka, Hidenori Kimura, Msanori Sugisaka, and

H. Kimura. Implementing distributed control system for intelligent mobile robot.

Artificial Life and Robotics, 8(2):159–162, 2004.

[14] Richard Maclin, Jude Shavlik, Lisa Torrey, Trevor Walker, and Edward Wild. Giving

advice about preferred actions to reinforcement learners via knowledge-based kernel

regression. In Proceedings of the 20th National Conference on Artificial Intelligence

- Volume 2, AAAI’05, pages 819–824. AAAI Press, 2005.

[15] Richard Maclin, Jude W. Shavlik, and Pack Kaelbling. Creating advice-taking re-

inforcement learners. In Machine Learning, pages 251–281, 1996.

[16] R. J. Malak and P. K. Khosla. A framework for the adaptive transfer of robot

skill knowledge using reinforcement learning agents. In Robotics and Automation,

2001. Proceedings 2001 ICRA. IEEE International Conference on, volume 2, pages

1994–2001 vol.2, 2001.

[17] Adrian Martin and M. Reza Emami. A fault-tolerant approach to robot teams.

Robotics and Autonomous Systems, 61(12):1360–1378, 2013.

[18] Adrian Martin and M. Reza Emami. A dynamically distributed control framework

for robot teams. International Journal of Robotics and Automation, 29(3):312–318,

2014.

[19] John McCarthy. Programs with common sense. In Semantic Information Processing,

pages 403–418. MIT Press, 1968.

BIBLIOGRAPHY 79

[20] Larry Ng. Concurrent Individual and Social Learning in Robotic Teams. PhD thesis,

University of Toronto Institute for Aerospace Studies, Toronto, Canada, November

2012.

[21] Lúıs Nunes and Eugénio Oliveira. Cooperative Learning Using Advice Exchange,

pages 33–48. Springer Berlin Heidelberg, Berlin, Heidelberg, 2003.

[22] Lúıs Nunes and Eugénio Oliveira. Exchanging Advice and Learning to Trust, volume

2782 of Lecture Notes in Computer Science, pages 250–265. Springer-Verlag, 2003.

[23] L. E. Parker. Alliance: an architecture for fault tolerant multirobot cooperation.

IEEE Transactions on Robotics and Automation, 14(2):220–240, Apr 1998.

[24] Lynne E. Parker. Distributed intelligence: Overview of the field and its application

in multi-robot systems. Journal of Physical Agents, 2(1):5–14, 2008.

[25] E. Prassler and K. Nilson. 1,001 robot architectures for 1,001 robots [industrial

activities]. IEEE Robotics Automation Magazine, 16(1):113–113, March 2009.

[26] Himanshu Raj, Balasubramanian Seshasayee, Keith J. O’Hara, Ripal Nathuji,

Karsten Schwan, and Tucker Balch. Spirits: Using Virtualization and Pervasive-

ness to Manage Mobile Robot Software Systems, pages 116–129. Springer Berlin

Heidelberg, Berlin, Heidelberg, 2006.

[27] Florian Rohrmüller, Dirk Wollherr, and Martin Buss. MuRoCo: A framework for

capability- and situation-aware coalition formation in cooperative multi-robot sys-

tems. Journal of Intelligent and Robotic Systems: Theory and Applications, 67(3-

4):339–370, 2012.

[28] Gavin Adrian Rummery. Problem solving with reinforcement learning. PhD thesis,

University of Cambridge Ph. D. dissertation, 1995.

[29] P. E. Rybski, S. A. Stoeter, M. Gini, D. F. Hougen, and N. P. Papanikolopoulos.

Performance of a distributed robotic system using shared communications channels.

IEEE Transactions on Robotics and Automation, 18(5):713–727, Oct 2002.

[30] Satinder Singh, Tommi Jaakkola, Michael L. Littman, and Csaba Szepesvári. Con-

vergence results for single-step on-policy reinforcement-learning algorithms. Machine

Learning, 38(3):287–308, 2000.

[31] Matthew E. Taylor and Peter Stone. Transfer learning for reinforcement learning

domains: A survey. Journal of Machine Learning Research, 10(1):1633–1685, 2009.

BIBLIOGRAPHY 80

[32] Lisa Torrey, Jude Shavlik, Trevor Walker, and Richard Maclin. Skill Acquisition Via

Transfer Learning and Advice Taking, pages 425–436. Springer Berlin Heidelberg,

Berlin, Heidelberg, 2006.

[33] Christopher J.C.H. Watkins and Peter Dayan. Technical note: Q-learning. Machine

Learning, 8(3):279–292.

[34] Steven D. Whitehead. A complexity analysis of cooperative mechanisms in rein-

forcement learning. In Proceedings of the Ninth National Conference on Artificial

Intelligence (AAAI-91), pages 607–613, Anaheim, 1991.

