
Coded Caching for Cache-Aided Communication
and Computing with Nonuniform Demands

by

Yong Deng

A thesis submitted to the
School of Graduate and Postdoctoral Studies in partial

fulfillment of the requirements for the degree of

Doctor of Philosophy
in

Electrical and Computer Engineering

Faculty of Engineering and Applied Science

University of Ontario Institute of Technology (Ontario Tech University)

Oshawa, Ontario, Canada

October 2021

c© Yong Deng, 2021

THESIS EXAMINATION INFORMATION

Submitted by: Yong Deng

Doctor of Philosophy in Electrical and Computer Engineering

Thesis Title: Coded Caching for Cache-Aided Communication and Computing with
Nonuniform Demands

An oral defense of this thesis took place on October 26th, 2021 in front of the following
examining committee:

Examining Committee:

Chair of Examining Committee: Prof. Amirkianoosh Kiani

Research Supervisor: Prof. Min Dong

Examining Committee Member: Prof. Shahram ShahbazPanahi

Examining Committee Member: Prof. Ying Wang

University Examiner: Prof. Shahryar Rahnamayan

External Examiner: Prof. Jun Chen, McMaster University

The above committee determined that the thesis is acceptable in form and content and
that a satisfactory knowledge of the field covered by the thesis was demonstrated by the
candidate during an oral examination. A signed copy of the Certificate of Approval is
available from the School of Graduate and Postdoctoral Studies.

ii

ABSTRACT

In this dissertation, we consider the caching system of multiple cache-enabled users with

nonuniform demands. We thoroughly characterize the structure of the optimal cache place-

ment of the coded caching scheme (CCS). We show there are at most three file groups in the

optimal placement and obtain the closed-form solution in each file grouping case. A simple

algorithm is developed to obtain the final optimal cache placement, which only computes a

set of closed-form solutions in parallel. We propose a tighter lower bound for caching and

characterize the file subpacketization in the optimal CCS.

Upon obtaining the optimal placement of the CCS, we characterize the memory-rate

tradeoff for caching with uncoded placement. Focusing on the modified coded caching

scheme(MCCS), we formulate a cache placement optimization problem to obtain the op-

timal placement. We present two lower bounds for caching with uncoded placement and

compare them with the MCCS to characterize the memory-rate tradeoff and provide in-

sights. We extend our study to accommodate both nonuniform file popularity and sizes and

characterize the exact memory-rate tradeoff for two users.

We then study the memory-rate tradeoff for decentralized caching. We formulate

the cache placement optimization problem for the decentralized modified coded caching

scheme (D-MCCS). To solve this non-convex problem, we develop a successive Geometric

Programming (GP) approximation algorithm and a two-file-group-based low-complexity

approach. We propose a lower bound for decentralized caching and compare it with the

optimized D-MCCS to characterize the memory-rate tradeoff in special cases.

Beyond caching problems, we consider the coded distributed computing (CDC) with

arbitrary number of files of nonuniform popularity. We formulate a mixed-integer linear

programming (MILP) problem that jointly optimizes the mapping and shuffling strategies

to minimize the shuffling load. To solve this generally NP-hard problem, we propose a

two-file-group-based low-complexity approach that achieves close shuffling load as con-

ventional branch-and-cut method which has high computational complexity.

Keywords: Coded Caching; Nonuniform Demands; Memory-Rate Tradeoff; Hetero-

geneous Code Distributed Computing; Optimization

iii

AUTHOR’S DECLARATION

I, Yong Deng, hereby declare that this thesis consists of original work of which I have au-

thored. This is a true copy of the thesis, including any required final revisions, as accepted

by my examiners

I authorize the University of Ontario Institute of Technology (Ontario Tech University)

to lend this thesis to other institutions or individuals for the purpose of scholarly research.

I further authorize University of Ontario Institute of Technology (Ontario Tech University)

to reproduce this thesis by photocopying or by other means, in total or in part, at the request

of other institutions or individuals for the purpose of scholarly research. I understand that

my thesis will be made electronically available to the public.

Yong Deng

iv

STATEMENT OF CONTRIBUTIONS

Part of this dissertation described in Chapters 3, 4 and 5 have been published as:

1. Yong Deng and Min Dong, “Memory-Rate Tradeoff for Caching with Uncoded Placement under
Nonuniform Random Demands,” submitted to IEEE Transactions on Information Theory, March
2021. Available at arXiv preprint arXiv:2103.09925.

2. Yong Deng and Min Dong, “Fundamental Structure of Optimal Cache Placement for Coded
Caching with Nonuniform Demands,” submitted to IEEE Transactions on Information Theory, April
2020. Revised, available at arXiv preprint, arXiv:1912.01082.

3. Yong Deng and Min Dong, “Memory-Rate Tradeoff for Decentralized Caching under Nonuni-
form File Popularity,” in Proc. of the 19th International Symposium on Modeling and Optimization
in Mobile, Ad Hoc, and Wireless Networks (WiOPT), Oct. 18-21, 2021.

4. Yong Deng and Min Dong, “Memory-Rate Tradeoff for Caching with Uncoded Placement under
Nonuniform File Popularity,” in Proc. of the 54th Asilomar Conference on Signals, Systems, and
Computers, Nov. 3-6, 2020.

5. Yong Deng and Min Dong, “Optimal Uncoded Placement and File Grouping Structure for Im-
proved Coded Caching under Nonuniform Popularity,” in Proc. of the 18th International Sym-
posium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOPT), Jun.
15-19, 2020.

6. Yong Deng and Min Dong, “Subpacketization Level in Optimal Placement for Coded Caching
with Nonuniform File Popularity,” in Proc. of the 53rd Asilomar Conference on Signals, Systems,
and Computers, Nov. 3-6, 2019.

7. Yong Deng and Min Dong, “Optimal Cache Placement for Modified Coded Caching with Arbi
trary Cache Size,” in Proc. of the 20th IEEE International Workshop on Signal Processing Advances

in Wireless Communications (SPAWC), Jul. 2-5, 2019.

I hereby certify that I am the primary contributor of this dissertation. I performed the

majority of the experiments and writing of the manuscript.

v

Acknowledgements

First of all, I would like to express my sincere gratitude to my supervisor Prof. Min Dong,

who is such a great and respectful researcher. None of my achievements can be done

without her guidance in the past four years. Dr. Dong not only taught me how to do good

research, but also showed me how to do everything rigorously in my daily life. Through her,

I became to know what is and how to be a respectful researcher. I would like to thank her

great patience while discussing with me and for keep showing me the right way to approach

and solve problems. She has also taught me how to do the presentation professionally. I

am so proud of the experience of working with and being advised by her. Although I still

have a long way to go, what I learned from her throughout this journey is incomparable.

I would like to thank Prof. Jun Chen for serving as my external examiner. I would also

like to express my sincere gratitude to all the committee members of my defence, Prof.

Shahram ShahbazPanahi, Prof. Ying Wang and Prof. Shahryar Rahnamayan, who have

been given me valuable feedback and suggestions to help me improve my dissertation. I

would like to thank Prof. Amirkianoosh Kiani who serves as the chair of my examining

committee.

After all, I would like to thank my wife Hongli Wang, my parents Congyou Deng and

Xingfeng Liang and my sister Yunfang Deng who have been so supportive to me with their

unconditional love.

vi

Contents

Abstract ii

Acknowledgements iii

Contents iv

List of Acronyms vii

List of Figures viii

List of Tables xi

1 Introduction 1

1.1 Background and Motivation . 1

1.2 Coded Caching with Nonuniform Demands 3

1.3 Memory-Rate Tradeoff for Caching under Uncoded Placement 5

1.4 Decentralized Caching . 6

1.5 Heterogeneous Coded Distributed Computing 6

1.6 Objectives and Contributions . 7

1.7 List of Publications . 11

2 Literature Review 13

2.1 Coded Caching . 13

2.2 Memory-Rate Tradeoff for Caching . 16

2.3 Decentralized Caching . 17

vii

2.4 Coded Distributed Computing . 18

3 Fundamental Structure of Optimal Cache Placement for Coded Caching

with Nonuniform Demands 19

3.1 System Model and Problem Setup . 20

3.2 Cache Placement Optimization Formulation 23

3.3 The Optimal Cache Placement . 26

3.4 Converse Bound . 43

3.5 Subpacketization Upper Bound . 45

3.6 Numerical Results . 47

4 Memory-Rate Tradeoff for Caching with Uncoded Placement under Nonuni-

form Demands 55

4.1 Cache Placement Optimization of the MCCS for Rate Minimization 56

4.2 Converse Bound for Uncoded Placement 60

4.3 Memory-Rate Tradeoff Characterization 62

4.4 Optimal Cache Placement for the MCCS 72

4.5 Memory-rate Tradeoff For Nonuniform File Popularity and Size 79

4.6 Numerical Results . 82

5 Memory-Rate Tradeoff for Decentralized Caching with Nonuniform Demands 89

5.1 Decentralized Modified Coded Caching Scheme 89

5.2 Decentralized Cache Placement Optimization 92

5.3 Memory Rate Tradeoff for Decentralized Caching 97

5.4 Numerical Results . 103

6 Heterogeneous Coded Distributed Computing with Nonuniform File Popu-

larity 106

6.1 System Model . 106

6.2 Heterogeneous Coded Distributed Computing 108

viii

6.3 File Placement and Coded Shuffling Optimization 113

6.4 Numerical Results . 116

7 Conclusion and Future Works 119

7.1 Coded Caching . 119

7.2 Coded Distributed Computing . 120

Appendices 121

A Appendices for Chapter 3 121

A.1 Probability Distribution of Ym . 121

A.2 Proof of Theorem 1 . 121

A.3 Proof of Proposition 1 . 123

A.4 Proof of Proposition 2 . 124

A.5 Proof of Proposition 3 . 125

A.6 Proof of Proposition 4 . 126

B Appendices for Chapter 4 128

B.1 Proof of Lemma 2 . 128

B.2 Proof of Lemma 3 . 128

B.3 Proof of Theorem 2 . 129

B.4 Proof of Lemma 4 . 133

B.5 Proof of Theorem 6 . 135

C Appendices for Chapter 5 136

C.1 Proof of Theorem 7 . 136

C.2 Proof of Proposition 8 . 136

Bibliography 138

ix

List of Acronyms

CCS Coded Caching Scheme

MCCS Modified Coded Caching Scheme

D-CCS Decentralized Coded Caching Scheme

D-MCCS Decentralized Modified Coded Caching Scheme

D2D Device to Device

LP Linear Programming

GP Geometric Programming

CGP Complementary Geometric Programming

CDC Coded Distributed Computing

IV Intermediate Value

MILP Mixed Integer Linear Programming

NP Nondeterministic Polynomial-Time

x

List of Figures

1.1 An example of cache-aided systems, where users are connected to the cen-

tral service provider through a backhaul link. Each user has a local cache

to alleviate the burden of the backhaul. 3

3.1 An example of cache-aided systems, where end users are connected to

the central service provider through a shared link. Each user has a local

cache to alleviate the burden of the shared link. The files in the server have

nonuniform popularities. 20

3.2 An example of the optimal cache placement for one file group: an = a, ∀n,

with alo , alo+1 > 0 and al = 0, ∀l 6= lo, lo + 1. (The same color indicates

the same value of al) . 29

3.3 An example of the optimal cache placement for two file groups with āno+1 =

0. The 1st file group: an,lo > 0, an,lo+1 > 0, for n = 1, . . . , no, and the rest

are all 0’s. The second file group: ano+1,0 = ∙ ∙ ∙ = aN,0 = 1. 31

xi

3.4 An illustration of file partition and cache placement based on the placement

structure in Fig. 3.3, for K = 3 users, and lo = 1. File W1 in the 1st file

group is partitioned into subfiles of two sizes a1,1 and a1,2. Subfiles in

file subgroupW1
1 with size a1,1 = |W1,S |/F (red) is placed in user subset

S ∈ A1 = {{1}, {2}, {3}}; Subfiles in file subgroupW2
1 with size a1,2 =

|W1,S |/F (blue) is placed in user subset S ∈ A2 = {{1, 2}, {1, 3}, {2, 3}}.

For file Wno+1 in the second file group, the entire file is stored solely in the

server: Wno+1,∅ = Wno+1, ano+1,0 = 1. The cache memory map of user 1

shows the stored subfiles of the 1st file group {W1, . . . , Wno}. 32

3.5 An example of the optimal cache placement for two file groups with āno+1 <1

0: i) 0 = ano,0 < ano+1,0 < 1. ii) Between āno and āno+1: ano,lo >

ano+1,lo > 0; ano,l = ano+1,l = 0, ∀l ∈ K, l 6= lo. 35

3.6 An example of the optimal cache placement {an} in the case of two file

groups with āno+1 <1 0: ano+1,0 > ano,0 = 0. Between āno and āno+1:

1) ano,l1 > ano+1,l1 = 0; 2) ano,lo = ano+1,lo > 0; 3) ano,l = ano+1,l = 0,

∀l ∈ K, l 6= lo, l1. 35

3.7 An example of the optimal cache placement {an} in the case of three file

groups. No cache is allocated to the 3rd file group: an1+1,0 = 1. For

ano , ano+1 in the first and second groups: 1 > ano+1,0 > ano,0 = 0; ano,lo >

ano+1,lo > 0, lo ∈ K; ano,l = ano+1,l = 0, ∀l ∈ K, l 6= lo. 39

3.8 An example of the optimal cache placement {an} in the case of three file

groups. No cache is allocated to the 3rd file group: an1+1,0 = 1. For

ano , ano+1 in the first and second groups: 1) ano,l1 > ano+1,l1 = 0; 2)

ano,lo = ano+1,lo > 0; 3) ano,l = ano+1,l = 0, ∀l ∈ K, l 6= lo, l1. 39

3.9 Average rate R̄ vs. cache size M (N = 10, K = 6, Zipf distribution:

θ = 1.5). 52

3.10 Average rate R̄ vs. cache size M (N = 21, K = 12, step-function distribu-

tion). 52

xii

3.11 The lower bound R̄lb vs. cache size M (N = 10, K = 6, Zipf distribution:

θ = 1.5). 53

3.12 The subpacketization level under the optimal cache placement vs. cache

size M (N = 20, K = 10). Top: The worst-case subpacketization level

Lmax. Bottom: The average subpacketization level L̄. 54

4.1 Average rate R̄ vs. cache size M (N = 7, K = 4, equal file sizes, file

popularity Zipf distribution with θ = 0.56). 83

4.2 Average rate R̄ vs. cache size M (N = 12, K = 4, equal file sizes, file

popularity distribution: step function). 84

4.3 Average rate R̄ vs. Zipf parameter θ (N = 7, K = 4, M = 1, equal file

sizes). 85

4.4 Average rate R̄ vs. cache size M (kbits) (N = 7, K = 4, file popularity

distribution: p = [0.0888, 0.0968, 0.1072, 0.1215, 0.2640, 0.1427, 0.1791],

file sizes: [F1, . . . , FN] = [9/6, 8/6, 7/6, 6/6, 5/6, 4/6, 3/6] kbits. 86

5.1 Average rate R̄ vs. cache size M (N = 6, K = 4, Zipf file popularity

distribution with θ = 0.56). 104

5.2 Average rate R̄ vs. cache size M (N = 6, K = 4, Zipf file popularity

distribution with θ = 1.2). 104

6.1 Average rate R̄ vs. cache size M (N = 6, K = 4, Zipf file popularity

distribution with θ = 0.56). 117

6.2 Average rate R̄ vs. cache size M (N = 6, K = 4, Zipf file popularity

distribution with θ = 1.2). 117

xiii

List of Tables

2.1 Comparison with existing cache placement schemes for the CCS 14

3.1 Cache placement matrix for K = 7, N = 9, θ = 1.5, M = 1. 47

3.2 Cache placement matrix for K = 7, N = 9, θ = 1.5, M = 2.5. 47

3.3 Cache placement matrix for K = 7, N = 9, θ = 1.5, M = 4. 47

3.4 Cache placement matrix for K = 7, N = 9, θ = 1.5, M = 5.5. 48

3.5 Cache placement matrix for K = 7, N = 9, θ = 1.5, M = 6. 48

3.6 Cache placement matrix for K = 7, N = 9, θ = 1.5, M = 7. 48

3.7 Cache placement matrix for K = 7, N = 9, θ = 1.5, M = 6. 50

3.8 Cache placement matrix for K = 7, N = 9, θ = 1.5, M = 7. 50

3.9 Comparison of different schemes to compute the lower bound in (3.40)

(M = 1, K = 6, Zipf distribution: θ = 1.5. For N = 5, 7, 9). 53

4.1 The optimal cache placement vectors {an} for the MCCS and the CCS

(M = 1, N = 7, K = 4, θ = 0.56). 83

4.2 The optimal cache placement vectors {an} for the MCCS and the CCS

(M = 2, N = 7, K = 4, θ = 0.56). 84

4.3 The optimal cache placement vectors {an} for the MCCS and the CCS

(M = 6, N = 7, K = 4, θ = 0.56). 85

4.4 file grouping structures of the optimal cache placement {an} for the MCCS

(N = 9, K = 4, θ = 1.2). 87

xiv

Chapter 1

Introduction

1.1 Background and Motivation

The last decades have witnessed a surge in wireless traffic due to the proliferation of mobile

devices [1]. The rapidly growing content distribution services including on-demand video

streaming, Virtual Reality (VR), video-sharing-focused social networking are the major

contributor to the traffic exploding in today’s wireless networks. Facing the drastic in-

crease of data-intensive wireless applications and services, future wireless communication

networks need to effectively manage the data traffic congestion and meet the requirements

of timely content delivery. The availability of local caches at the network edge, either at

base stations or users, creates new network resources and opportunities to increase the user

service capacity. Caching technologies are anticipated to become key technological drivers

for content delivery in future wireless networks [2–4].

Caching was originally introduced in the computer system to improve the system per-

formance by storing popularly used data at memory with fast access [5]. Later, the idea

of caching popular data at memories distributed among the network was studied in dif-

ferent wireline contexts such as web caching system and content delivery network (CDN)

to reduce the overall service delay [6, 7]. In wireless networks, caching has attracted ex-

tensive attention as a key technique to alleviate the traffic load to meet the timely service

requirement. In a caching system, the cache placement strategy specifies what data to

be stored at the users’ local memories and how to store them ahead of time, without the

1

knowledge of their actual demands during the file request and delivery stage. Many re-

cent works have studied the cache placement design for caching to understand the effect

of caching on reducing the network load [8–10]. The cache placement problem was first

introduced in [8] to find optimal cache placement that minimizes the total access cost in

an arbitrary network. The problem was shown to be NP-hard and tractable approximate

solutions have been proposed in terms of linear programming (LP) relaxation [9] or greedy

algorithm [10]. Moreover, there are also extensive works address the cache placement

problem in the different networks, such as D2D network [11], multi-tier heterogeneous

network [12], femto-caching network [13, 14], fog radio access network [15], etc.

Conventional uncoded caching schemes [8–15] can improve the hit rate to explore

the local caching gain, but are not efficient when there are multiple caches [16]. Coded

caching has been recently introduced in the seminal work [17] for a shared link cache-

aided system that is formed by a single service provider (e.g., a server or base station)

and multiple users, as shown in Fig. 1.1. Specifically, a coded caching scheme (CCS) is

proposed in [17] that combines a carefully designed cache placement of uncoded contents

and a coded multicast delivery strategy to explore the caching gain. Through analysis, it is

shown that by exploring both global and local caching gain, the CCS can serve an infinite

number of users simultaneously with finite resources [17]. Since then, coded caching has

drawn considerable attention, with extensions of the CCS to the decentralized scenario [18],

transmitter caching in mobile edge networks [19, 20], user caching in device-to-device

networks [21, 22] and for both transmitter and receiver caching in wireless interference

networks [23].

Recently, the idea of exploiting coded multicasting opportunities to reduce the commu-

nication load has also been extended to the distributed computing networks for large scale

data-intensive applications to provide low-latency services [24]. In popular distributed

computing frameworks including MapReduce and Spark, a job is split into a number of

target functions that are executed through three independent phases, named as Map, Shuffle

and Reduce [24]. In the Map phase, each worker computes the map tasks using its local

2

...

Service Provider

Backhaul

Fig. 1.1: An example of cache-aided systems, where users are connected to the central
service provider through a backhaul link. Each user has a local cache to alleviate the
burden of the backhaul.

data (files) to generate Intermediate Values (IVs). In the Shuffle phase, workers exchange

their local IVs so that each worker obtains its required IVs. In the Reduce phase, using the

IVs collected in the Shuffle phase, each worker accomplishes its assigned target functions.

The major performance bottleneck of distributed computing comes from the commu-

nication overhead during the Shuffle phase. For example, more than 90% of the execution

time is committed for data shuffling when computing a Tarasort job on Amazon EC2 plat-

form [25]. To mitigate the communication bottleneck, the seminar work in [26] proposed

a coded distributed computing (CDC) scheme that greatly slashes the data shuffling time

through the utilizing of coding. Recently, the design of the CDC was well studied assuming

nonuniform mapping and reducing loads among the workers, which are referred as the het-

erogeneous CDCs [27–30]. Further, the study of CDC has also been extended into various

systems, including wireless CDC [31], heterogeneous IV sizes [32], etc.

1.2 Coded Caching with Nonuniform Demands

A key design issue in coded caching is the cache placement that specifies what portion of

each file to cache and how to store it. An effective cache placement scheme maximizes

caching gain and minimizes the transmission load in the network in the content delivery

phase (i.e., the delivery rate). The works mentioned earlier all assume uniform file popu-

larity under homogenous demands, for which a symmetric cache placement strategy (i.e.,

3

identical cache placement for all files) is optimal [33]. In the more general scenario of files

with heterogeneous demands leading to nonuniform file popularity, the cache placement

may be different among files, complicating both caching design and analysis. There is a

fundamental question on whether to distinguish files of different popularities and to what

extent. On the one hand, different cache placements for files with distinct popularities may

help capture the difference in demands to improve caching efficiency. On the other hand,

depending on the degree of difference, ignoring this difference in file popularity and simply

using the symmetric cache placement may be a good tradeoff between performance gain

and implementation complexity.

Several recent works have considered the cache placement design for the CCS un-

der nonuniform file popularity [16, 34–36], where a typical method is to construct a cache

placement scheme and bound its performance. For complexity reduction, file grouping is

commonly used as a tractable method for the cache placement design. It was first proposed

in [16], which divides files into groups based on their popularities and allocates chunks

of cache to different groups. Files within each file group are treated the same with iden-

tical cache placement. Following this, different methods to partition files into file groups

have been proposed [34–36]. These existing studies show that file grouping is an effec-

tive method to handle nonuniform file popularity for cache placement. However, the file

grouping methods used in these existing schemes are all somewhat heuristic, with two file

groups typically considered to separate the most popular files from the remaining ones. The

optimal cache placement and its relation to file grouping remain unknown. Different from

the method of construction, the optimization approach was adopted in [33,37] to formulate

the cache placement into an optimization problem to find the solution. Both works have

focused on developing numerical methods to solve the optimization problem. However, the

numerical results cannot provide insights into the optimal cache placement.

Indeed, characterizing the optimal cache placement structure may bring us a deeper

understanding of the effect of nonuniform file popularity on the caching gain offered by the

CCS. Furthermore, in the cache placement for the CCS, each file is partitioned into subfiles

4

to be stored at different sets of users. The number of required subfiles may potentially grow

exponentially with the number of users. This could prevent the practical use of the CCS

for files with finite sizes and limit the caching gain that can be achieved. There have been

studies on the tradeoff between the subpacketization level and the coded caching gain by

the CCS under uniform file popularity [38–43]. The analysis of subpacketization is more

challenging for nonuniform file popularity and, therefore, scarce in the literature, as dif-

ferent files may be partitioned in different ways. Obtaining the optimal cache placement

structure will help characterize the file subpacketization in the CCS to understand the prac-

tical limits and make an appropriate tradeoff between the subpacketization level and coded

caching gain for the CCS.

1.3 Memory-Rate Tradeoff for Caching under Uncoded
Placement

For understanding the fundamental limit of coded caching, many research efforts were

devoted to characterizing the memory-rate tradeoff for caching with uncoded cache place-

ment. For files of uniform popularity and sizes, this tradeoff has been studied extensively,

typically by developing an achievable scheme and compare it to an information-theoretic

lower bound [17, 44–46]. When the system has fewer users than files, it has been shown

that the CCS with optimized cache placement achieves the minimum peak delivery rate for

caching with uncoded placement, i.e., the exact memory-rate tradeoff [45, 46]. Recently,

a modified coded caching scheme (MCCS) was proposed [44] with an improved delivery

strategy to remove redundancy among coded messages, resulting in further delivery rate re-

duction from that of the CCS. For general scenarios of arbitrary users and files with random

requests, the MCCS with optimized cache placement has been shown to characterize the

exact memory-rate tradeoff that minimizes both average and peak delivery rate [44] under

uniform file popularity and sizes.

For files with nonuniform popularity or sizes, different cache placement strategies

were proposed for the CCS to handle nonuniformity [16, 33–37, 47–51]. In particular,

5

several CCS-based schemes, either for nonuniform file popularity [35, 36] or for nonuni-

form file sizes [50,51], were shown to achieve an average rate that is a constant factor away

from the lower bound for caching with any cache placement. However, these gaps are still

large for practical concerns. Only recently, for two files of nonuniform popularity, a coded

caching scheme was proposed [52], which achieves the lower bound for caching with un-

coded placement. For the MCCS, existing studies are scarce, and only [53] studied the

cache placement optimization under nonuniform file popularity. In general, for files with

nonuniform popularity and sizes, characterizing the memory-rate tradeoff for caching with

uncoded placement is challenging. How well the CCS and the MCCS perform in terms of

memory-rate tradeoff remains unknown.

1.4 Decentralized Caching

The above studies on caching generally rely on a carefully designed centrally coordinated

cache placement strategy to store a portion of each file content in a subset of users. How-

ever, a coordinated cache placement may not always be possible in practice, which may

limit the practical use of coded caching. For this issue, decentralized caching has been

considered [18], where no coordination among users is required, and each user caches

uncoded contents independently from each other. Specifically, for a system with a cen-

tral server connecting to multiple cache-equipped users, a decentralized coded caching

scheme (D-CCS) was proposed in [18], which consists of a decentralized (uncoded) place-

ment scheme and a coded delivery strategy. Interestingly, under uniform file popularity,

it is shown that the performance of the D-CCS is close to the centralized coded caching

scheme [18]. For nonuniform file popularity, with the number of users requesting files (i.e.,

active users) known at the server, it has been shown that the achievable rate of the D-CCS

is within a factor away from the tightest lower bound developed in [36]. However, since

the lower bound is for any caching, the gap is still large for practical consideration.

Recently, for files with uniform popularity, a decentralized modified coded caching

scheme (D-MCCS) was proposed in [44] that removes the redundancy in the coded mes-

6

sages used in the D-CCS to further reduce the delivery rate. It has been further shown that

the D-MCCS attains the lower bounds on both average and peak rates for decentralized

caching and thus characterizes the exact memory-rate tradeoff [44]. For files with nonuni-

form popularity, there is no study on the cache placement optimization for the D-MCCS

or how optimal the D-MCCS is for decentralized caching. In general, the memory-rate

tradeoff for decentralized caching remains unknown.

1.5 Heterogeneous Coded Distributed Computing

MapReduce is a popular distributed computing framework for large scale data-intensive

applications [24, 54]. To mitigate the communication bottleneck during the Shuffle phase,

the seminar work in [26] proposed a coded distributed computing (CDC) that greatly re-

duces the data shuffling load through the use of coding. Noticeably, the general idea of the

CDC is to exploit the coded multicast opportunity during the data shuffling phase, which is

essentially an extension of the CCS to the distributed computing. Focusing on the homoge-

neous system, the CDC scheme [26] characterizes the exact computation-communication

tradeoff for distributed computing. Existing studies on the CDC do not take into consider-

ation the data popularity distribution for the design of the CDC scheme [27–30,32,55–59].

Specifically, they typically focus on the scenario of one job being executed and all the

data are accessed by the job. However, in practice, the skewed data popularity is a typical

characteristic existing in the MapReduce clusters [55, 56, 60]. Empirical analysis on the

industrial MapReduce clusters (including Facebook, Cloudera and Microsoft Bing’s data

center) have shown that the file access pattern in the MapReduce cluster demonstrates a

Zipf distribution where a small number of files account for most of the accesses by the

jobs [60]. Extensive existing studies on the replica of the files with nonuniform popularity

in the traditional MapReduce clusters with uncoded shuffling have shown that the under-

standing of data popularity is essential to mitigate the data shuffling bottleneck [55,56,60].

To our best knowledge, there is no existing work focuses the CDC under nonuniform file

popularity. Moreover, existing CDC schemes are only achievable for some specific number

7

of files, which typically needs to be sufficiently large [26–30, 32].

1.6 Objectives and Contributions

The objectives and the contributions of this dissertation are summarized below.

1.6.1 Objectives

The main objectives of this dissertation are summarized as follows:

• Study the cache placement for coded caching under nonuniform file popularity. The

main goals are to obtain the optimal cache placement solution for the CCS and de-

velop a tighter lower bound for caching under nonuniform file popularity.

• Characterize the memory-rate tradeoff for caching with uncoded placement under

nonuniform file popularity. The main goals are to obtain the optimal cache placement

for the MCCS using the optimization framework and develop a lower bound for

caching with uncoded placement. Ultimately, we aim to characterize the memory-

rate tradeoff by comparing the optimized MCCS with the proposed lower bound.

• Characterize the memory-rate tradeoff for decentralized caching under nonuniform

popularity. The main goals are to obtain the optimal cache placement for the D-

MCCS and develop a lower bound for decentralized caching. Lastly, we compare

the optimized D-MCCS with the proposed lower bound for the memory-rate tradeoff

characterization.

• Develop a heterogeneous CDC scheme for MapReduce based distributed computing

with nonuniform mapping and reducing loads among the workers and an arbitrary

number of files with nonuniform popularity.

1.6.2 Contributions

The main contributions of this dissertation are summarized as follows:

8

• Coded Caching with Nonuniform Demands. We thoroughly characterize the struc-

ture of the optimal uncoded cache placement for the coded caching scheme (CCS)

under nonuniform file popularity. Formulating the cache placement as an optimiza-

tion problem to minimize the average delivery rate, we identify the file grouping

structure under the optimal solution. We show that, regardless of file popularity,

there are at most three file groups under the optimal cache placement. We further

characterize the complete structure of the optimal cache placement and obtain the

closed-form solution in each possible file grouping case. A simple algorithm is de-

veloped to obtain the final optimal cache placement, which only computes a set of

candidate closed-form solutions in parallel. We provide insights into the file groups

formed by the optimal cache placement. The optimal placement solution also indi-

cates that coding between file groups may be explored during delivery, in contrast to

the existing heuristic file grouping schemes. Using the file grouping in the optimal

cache placement, we propose a new information-theoretic converse bound for coded

caching that is tighter than existing ones. Moreover, using the optimal cache place-

ment solution, we characterize the file subpacketization in the optimal CCS and show

that the maximum subpacketization level in the worst case scales as O(2K/
√

K) for

K users.

• Memory-Rate Tradeoff for Caching with Uncoded Placement under Nonuni-

form Demands. We aim to characterize the memory-rate tradeoff for caching with

uncoded cache placement, under nonuniform file popularity. Focusing on the modi-

fied coded caching scheme (MCCS) recently proposed by Yu, etal., we formulate the

cache placement optimization problem for the MCCS to minimize the average de-

livery rate under nonuniform file popularity, restricting to a class of popularity-first

placements. We then present two information-theoretic lower bounds on the average

rate for caching with uncoded placement, one for general cache placements and the

other restricted to the popularity-first placements. By comparing the average rate of

the optimized MCCS with the lower bounds, we prove that the optimized MCCS at-

9

tains the general lower bound for the two-user case, providing the exact memory-rate

tradeoff. Furthermore, it attains the popularity-first-based lower bound for the case

of general K users with distinct file requests. In these two cases, our results also

reveal that the popularity-first placement is optimal for the MCCS, and zero-padding

used in coded delivery incurs no loss of optimality. For the case of K users with

redundant file requests, our analysis shows that there may exist a gap between the

optimized MCCS and the lower bounds due to zero-padding. We next fully charac-

terize the optimal popularity-first cache placement for the MCCS, which is shown to

possess a simple file-grouping structure and can be computed via an efficient algo-

rithm using closed-form expressions. Finally, we extend our study to accommodate

both nonuniform file popularity and sizes, where we show that the optimized MCCS

attains the lower bound for the two-user case, providing the exact memory-rate trade-

off. Numerical results show that, for general settings, the gap between the optimized

MCCS and the lower bound only exists in limited cases and is very small.

• Memory-Rate Tradeoff for Decentralized Caching with Nonuniform Demands.

We study the memory-rate tradeoff for decentralized caching under nonuniform file

popularity. We formulate the cache placement optimization problem for a recently

proposed decentralized modified coded caching scheme (D-MCCS) to minimize the

average rate. To solve this non-convex optimization problem, we develop two algo-

rithms: a successive Geometric Programming (GP) approximation algorithm, which

guarantees convergence to a stationary point but has a high computational complex-

ity, and a low-complexity approach based on a two-file-group-based placement strat-

egy. We further propose a lower bound on the average rate for decentralized caching

under nonuniform file popularity. The lower bound is given as a non-convex op-

timization problem, for which we propose a similar successive GP approximation

algorithm to compute a stationary point. We show that the optimized MCCS attains

the lower bound for the special case of no more than two active users requesting files,

or for the general case but satisfying a special condition. Thus, the optimized MCCS

10

characterizes the exact memory-rate tradeoff for decentralized caching in these cases.

In general, our numerical result shows that the optimized D-MCCS performs close

to the lower bound.

• Heterogeneous Coded Distributed Computing. We study the heterogeneous CDC

with arbitrary number files of nonuniform file popularity. To handle this more general

system setup, we propose a file placement strategy that can accommodate arbitrary

number of files in the Map phase. In the Shuffle phase, we adopt a nested coded shuf-

fling strategy that exploits the coded multicasting opportunities for all the IVs. We

then formulate an optimization problem that jointly optimizes the proposed file place-

ment and shuffling strategies to minimize the expected shuffling load. The problem

is a mixed integer linear programming (MILP) problem that is generally NP-hard.

We develop an approximate approach through the proposition of a two-file-groups-

based file placement strategy. Specifically, we convert the original problem into a

linear programming (LP) problem that optimizes the shuffling strategy for a given

two-file-group-based file placement strategy. Following this, we obtain the optimal

two-file-group-based solution through a search over all possible two-file-group-based

placements. Numerical studies show that the expected shuffling load of the opti-

mal two-file-group-based solution is close to that of the traditional branch-and-cut

method which has high computational complexity.

1.7 List of Publications

The research in this dissertation has resulted in the following list of publications.

Journal papers

Submitted:

1. Yong Deng and Min Dong, ”Memory-Rate Tradeoff for Caching with Uncoded Place-

ment under Nonuniform Random Demands,” submitted to IEEE Transactions on In-

formation Theory, March 2021. Available at arXiv preprint arXiv:2103.09925.

11

2. Yong Deng and Min Dong, ”Fundamental Structure of Optimal Cache Placement for

Coded Caching with Nonuniform Demands,” submitted to IEEE Transactions on In-

formation Theory, April 2020. Revised, available at arXiv preprint, arXiv:1912.01082.

In Preparation:

1. Yong Deng and Min Dong, ”Memory-Rate Tradeoff for Decentralized Caching under

Nonuniform File Popularity and Sizes,” in preparation.

Conference papers

Published:

1. Yong Deng and Min Dong, ”Memory-Rate Tradeoff for Decentralized Caching un-

der Nonuniform File Popularity,” in Proc. of the 19th International Symposium on

Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOPT),

Oct. 18-21, 2021.

2. Yong Deng and Min Dong, ”Memory-Rate Tradeoff for Caching with Uncoded Place-

ment under Nonuniform File Popularity,” in Proc. of the 54th Asilomar Conference

on Signals, Systems, and Computers, Pacific Grove, CA, Nov. 3-6, 2020.

3. Yong Deng and Min Dong, ”Optimal Uncoded Placement and File Grouping Struc-

ture for Improved Coded Caching under Nonuniform Popularity,” in Proc. of the

18th International Symposium on Modeling and Optimization in Mobile, Ad Hoc,

and Wireless Networks (WiOPT), Jun. 15-19, 2020.

4. Yong Deng and Min Dong, ”Subpacketization Level in Optimal Placement for Coded

Caching with Nonuniform File Popularities,” in Proc. of the 53rd Asilomar Confer-

ence on Signals, Systems, and Computers, Pacific Grove, CA, Nov. 3-6, 2019.

5. Yong Deng and Min Dong, ”Optimal Cache Placement for Modified Coded Caching

with Arbitrary Cache Size,” in Proc. of the 20th IEEE International Workshop on

Signal Processing Advances in Wireless Communications (SPAWC), Jul. 2-5, 2019.

12

In Preparation:

1. Yong Deng and Min Dong, ”Heterogeneous Coded Distributed Computing for Arbi-

trary Number of Files with Nonuniform Popularity,” to be submitted in Oct. 2021.

1.8 Notations

In this dissertation, the cardinality of set S is denoted by |S|, and the size of file W is

denoted by |W |. The bitwise ”XOR” operation between two subfiles is denoted by ⊕.

Notations b∙c and d∙e denote the floor and ceiling functions, respectively. Notation a < 0

means element-wise non-negative in vector a. We extend the definition of
(

K
l

)
and define

(
K
l

)
= 0, for l < 0 or l > K . The index set for S is defined by I|S| = {1, . . . , |S|}.

13

Chapter 2

Literature Review

2.1 Coded Caching

The CCS has been studied in many works for various system scenarios to understand the

fundamental limit of coded caching [17–21, 23, 33]. In these works, the cache placement

for the CCS has been studied for the peak delivery rate under uniform file popularity1,

where the optimal cache placement in this case is the same for all files [17, 33]. The cache

placement under nonuniform file popularity has been investigated in [16, 34–36]. It was

first studied in [16], where a file grouping strategy independent of the number of users K

was proposed to reduce the design complexity by treating files in each group to be the same

and using the symmetric decentralized CCS for each group. Following this, by incorpo-

rating the knowledge of K in the file grouping design, several suboptimal file grouping

schemes have been proposed to lower the average delivery rate [34–36]. In [34], a specific

multi-level file popularity model is considered, where the number of files at each level and

the number of users requesting the files at each level are fixed. Under this model, a caching

scheme using two file groups was proposed and shown to be order-optimal depending on

the number of levels. With a more general file popularly distribution, a simple RLFU-GCC

scheme was proposed in [35], which splits files into two file groups, with one contain-

ing the most popular files and allocated the entire cache. The performance of this scheme

was shown to be order-optimal for the Zipf distribution. As an extension to an arbitrary

1For uniform file popularity, it can be shown that the peak rate and average rate are identical for the CCS.

14

Approach File grouping strategy Cache placement strategy

[16] Proposed a suboptimal scheme Multiple file groups Decentralized
[17],[18], [19] Proposed a suboptimal scheme One or two file groups Decentralized

[61] Via optimization, (suboptimal) numerical methods N/A Decentralized
[15], [20] Via optimization, numerical method N/A Centralized
Our work Via optimization, closed-form optimal solution Optimal file groups Centralized

Table 2.1: Comparison with existing cache placement schemes for the CCS

popularity distribution, a mixed caching strategy was proposed [36] by adding a choice

of an uncoded caching scheme to the above two-file-group caching scheme. This added

scheme has three file groups for cache placement and uses uncoded delivery. All the above

works [16, 34–36] use decentralized CCS for each file group, and there is no coding op-

portunity between the file groups in these schemes. Different from the above approaches,

the optimization framework is considered to find the optimal cache placement for the CCS

under nonuniform file popularity in the centralized scenario [33, 37] and the decentralized

setting [61].2 Numerical methods are resorted to solve these problems, which cannot be

used to characterize the optimal cache placement. The optimal cache placement for the

CCS under arbitrary file popularity distribution and its relationship with file grouping re-

mains unknown. We summarize the differences between our work and the above mentioned

existing works for the CCS in Table 2.1.

For understanding the fundamental limit of coded caching, information-theoretic con-

verse bounds are developed in the literature. The lower bounds on the peak and average

rates for files with uniform popularity have been developed and improved by several works

[17, 18, 62, 63]. For nonuniform file popularity, different lower bounds on the average rate

have been developed to demonstrate the performance of the proposed file grouping based

caching schemes [16, 34–36]. A lower bound was first developed in [16], where a genie-

based method was used to compute the sum peak delivery rates of multiple file groups that

are heuristically partitioned. The number of file groups depends on popularity distribution,

and the bound is generally loose. The genie-based method is commonly used to obtain the

2From the optimization perspective, the decentralized cache placement problem is a subproblem of the
cache placement optimization problem in the centralized scenario. In other words, any decentralized cache
placement is a feasible point of the centralized cache placement optimization problem.

15

lower bounds [34–36]. It constructs a virtual system where only a group of most popular

files need to be delivered to the users via the shared link, and these popular files are treated

equally. The group of most popular files is formed either heuristically or through a subop-

timal method, resulting in different tightness of the lower bound. In [35], focusing on the

Zipf distribution of file popularity, the authors proposed a method to determine the group

of most popular files for different Zipf parameters, and a lower bound on the average rate

is developed using the peak delivery rate in this file group. A lower bound for an arbitrary

file popularity distribution was obtained in [36] by categorizing the most popular files via

a different strategy. Furthermore, a file merging process was proposed to tighten the bound

further by including some moderately popular files into the group of most popular files.

From these existing studies, the proposed file grouping strategies appear to have a strong

influence on the tightness of the lower bound. In this work, we show that the file group

structure in the optimal cache placement would lead to a tighter lower bound.

File subpacketization in the cache placement has been studied in [38–41] for uniform

file popularity, where different methods were proposed to reduce the subpacketization level

in the cache placement with a higher delivery rate as a tradeoff. The Pareto-optimal coded

caching schemes that characterize the tradeoff between the high subpacketization level and

the rate were provided in [40]. The cache placement of the CCS given in [17] for specific

cache sizes is proved to be both optimal [39] and Pareto-optimal [40] in achieving the

highest cache gain with the minimum subpacketization level. In [42], the existence of coded

caching schemes with the linear growth of the subpacketization level for a large number of

users is shown. In [43], using multiple antennas is suggested to reduce the subpacketization

level. The problem under nonuniform file popularity is much more complicated, and the

study is scarce. In [53], a cache placement optimization problem is considered that uses the

subpacketization level as a constraint. The influence of the subpacketization level on the

average rate was explored through numerical simulations. Unfortunately, the simulation

approach is not able to provide insights into the subpacketization feature in the optimal

cache placement solution.

16

Besides nonuniform file popularity, other types of nonuniformity have also been con-

sidered in the coded caching design, including file sizes [33, 64], cache sizes [65, 66], and

link qualities [67–69].

2.2 Memory-Rate Tradeoff for Caching

With a surge of interest in caching, there are many recent works study caching with uncoded

placement. For uniform file popularity and sizes, the exact memory-rate tradeoff has been

fully characterized for both peak rate [44–46] and average rate [44], which is achieved by

the CCS and the MCCS, respectively. Beyond uncoded placement, the average rate of the

optimized MCCS was shown to be at most a factor of two away from the optimal caching

with any placement considered [70].

When heterogeneity exists in the system, the characterization of the memory-rate

tradeoff is generally an open problem. For nonuniform file popularity, the cache place-

ment problem was studied for the CCS [16, 33–37, 47, 48] and the MCCS [53] to mini-

mize the achievable delivery rate. For the CCS, to simplify the placement problem amid

nonuniformity, suboptimal file-grouping-based cache placement strategies were proposed

in [16, 34–36]. They are shown to achieve an average rate that is a constant factor away

from the lower bound for caching with any placement. Nonetheless, the gap is gener-

ally still large for practical consideration. Several works used the optimization approach

to study the cache placement problem [33, 37, 47], either obtaining certain properties or

devising numerical methods to solve the problem. The optimal placement structure has

been completely characterized in [48], which shows inherit file grouping structure with

at most three groups. For the MCCS, the complication in the improved delivery strategy

adds challenges to the analysis, and the cache placement problem was studied only in [53].

However, the problem was numerically solved in that work, which cannot provide insight

into the optimal cache placement structure.

Note that none of the above works [16, 33–37, 47, 48, 53] provided any lower bound

for caching with uncoded placement to characterize the memory-rate tradeoff. The gap

17

between the achievable rate of either the CCS or the MCCS and the optimal caching with

uncoded placement remains unknown. Most recently, the exact memory-rate tradeoff under

uncoded placement for the case of two files was characterized [52]. However, the caching

scheme proposed in [52] is only designed for two files, which is not extendable to general

scenarios.

When files only have nonuniform sizes, the CCS has again been shown to achieve

a peak rate a constant factor away from the lower bound for caching with any place-

ment [50, 51], where the gap may be large for practical concerns. A limited number

of recent works also considered joint nonuniformity in cache sizes, file popularity and

sizes [33,71]. The cache placement optimization for the CCS was considered in [33], where

simplification methods were developed for the optimization problem with well-performed

numerical solutions. However, [33] focused on the optimization framework for the CCS,

but did not address the optimality of the optimized CCS as compared to any information-

theoretic lower bound. In [71], the memory-rate tradeoff has been characterized under

general placement, in the case of full nonuniformity in cache size, file popularity and sizes,

but only for a system of two users and two files, where a caching scheme was proposed

to achieve the lower bound. Except for these recent studies, the MCCS has never been

explored for files with both nonuniform popularity and sizes.

Besides the above-mentioned works, coded caching schemes and the memory-rate

tradeoff for caching have also been investigated in various systems or network configu-

rations, including heterogeneous user profiles [72–75], nonuniform cache sizes [66, 76],

correlated files [77], decentralized placement for nonuniform file popularity and sizes, and

cache sizes [61], heterogeneous distortion [78, 79], multi-antenna transmission and shared

caches [80].

2.3 Decentralized Caching

For a system with a central server connecting to multiple cache-equipped users, a decen-

tralized coded caching scheme (D-CCS) was first proposed in [18], which consists of a

18

decentralized (uncoded) placement scheme and a coded delivery strategy. The D-CCS has

since attracted many interests, with extensions to nonuniform cache sizes [81, 82], and

nonuniform file popularity [16, 35, 36] or sizes [61]. For nonuniform file popularity, exist-

ing works mainly focus on the cache placement strategies for the D-CCS [16,35,36,61] to

reduce the achievable rates. To quantify the performances of these proposed schemes for

D-CCS, [16, 35, 36, 61] proposed different lower bounds on the average rate for caching

with any placement. With the number of users requesting files (i.e., active users) known

at the server, it has been shown that the achievable rate of the D-CCS is within a factor

away from the tightest lower bound developed in [36]. However, since the lower bound

is for any caching, the gap is still large for practical consideration. These existing re-

sults [16,35,36,61] are both not sufficient to characterize the memory-rate tradeoff for de-

centralized caching, especially for the case when the users who request files are unknown

to the server.

2.4 Coded Distributed Computing

The Coded Distributed Computing (CDC) was first proposed in [83]. It enables an inverse-

linear tradeoff between computation and communication load that greatly improves the

conventional distributed computing. Furthermore, a coded MapReduce framework was

established in [84] which exploits a particular form of coding to significantly reduce the

inter-server communication load of MapReduce. Since then, the CDC has been extended

to a variety of different models, including combinatorial design based CDC [85], CDC with

storage constraints [86], and the wireless CDC [87, 88].

All the above works of CDC consider the homogeneous systems, where the work-

ers have uniform mapping and reducing load. Existing works on CDC for heterogeneous

systems concentrate on the heterogeneity of end workers, e.g., [89–92]. In particular, con-

sider end users with heterogeneous computation capabilities, [89,90] propose different file

assignment scheme for a system of three end users. In [91, 92], it is shown that the com-

munication load can be further reduced by assigning more output functions to nodes with

19

more input files. In [93], a heterogeneous CDC scheme is proposed that jointly considers

the file allocation and function assignment. To the best of our knowledge, there is currently

no CDC scheme proposed for the the case where the files have different popularities of

being accessed by the jobs.

20

Chapter 3

Fundamental Structure of Optimal
Cache Placement for Coded Caching
with Nonuniform Demands

In this chapter, we obtain the optimal cache placement for the CCS under nonuniform de-

mands and thoroughly characterize the solution structure. We identify the inherent file

group structure under the optimal placement. We show that there are at most three file

groups under the optimal solution, and obtain the cache placement solution in closed-form

for each possible file group structure. Following this, we develop a simple and efficient

algorithm to obtain the optimal cache placement solution. Using our optimal cache place-

ment, we provide a new converse bound on the average delivery rate of caching with any

placement and quantify the subpacketization level under the optimal cache placement.

3.1 System Model and Problem Setup

3.1.1 System Model

Consider a cache-aided transmission system with a server connecting to K users, each

with a local cache, over a shared error-free link, as shown in Fig. 3.1. The server has

a database consisting of N files, {W1, . . . , WN}. Each file Wn is of size F bits and is

requested with probability pn. Let p = [p1, . . . , pN]T denote the popularity distribution of

all N files, where
∑N

n=1 pn = 1. Without loss of the generality, we label files according to

21

File 1

File N

...

File

Popularity

1 2 3 N...

User 1 User 2 User K... Cache size M

Shared link

Server

Figure 3.1: An example of cache-aided systems, where end users are connected to the
central service provider through a shared link. Each user has a local cache to alleviate the
burden of the shared link. The files in the server have nonuniform popularities.

the decreasing order of their popularities: p1 ≥ p2 ≥ ∙ ∙ ∙ ≥ pN . Each user k has a local

cache of capacity MF bits, which is referred to as cache size M (normalized by the file

size), where M is a real number and M ∈ [0, N]. Denote the file and user index sets by

N , {1, . . . , N} and K , {1, . . . , K}, respectively.

The coded caching operates in two phases: the cache placement phase and the con-

tent delivery phase. In the cache placement phase, a portion of uncoded file contents from

{W1, . . . , WN} are placed in each user k’s local cache, according to a cache placement

scheme. The cached content at user k is described by a caching function φk(∙) of N files

as Zk , φk(W1, . . . , WN). During data transmission, each user k independently requests a

file with index dk from the server. Let d , [d1, . . . , dK]T denote the demand vector of all K

users. In the content delivery phase, based on the demand vector d and the cached contents

at users, the server generates coded messages of uncached portions of requested files and

sends them to the users. The generated codeword can be described by an encoding function

ψd(∙) of the N files for demand d as Xd = ψd(W1, . . . , WN). Upon receiving the code-

word, each user k applies a decoding function ϕk(∙) to reconstruct its (estimated) requested

file Ŵd,k from the received codeword and its cached content as Ŵd,k , ϕk(Xd, Zk). A

valid coded caching scheme requires that each user k is able to reconstruct its requested

file, Ŵd,k = Wdk
, k ∈ K, for any demand d, over an error-free link.

22

3.1.2 Cache Placement Problem Construction

The cache placement is a crucial design issue in coded caching. Among existing studies

for the CCS, a common approach is to propose a cache placement scheme, construct a

lower bound on the minimum data rate, and evaluate the proposed scheme by comparing

its performance with the lower bound. In this work, we use an optimization approach for

the cache placement design for the CCS. Through construction, we formulate the cache

placement problem into a design optimization problem.

Cache placement

For K users, there are 2K user subsets in K, with subset sizes ranging from 0 to K. Denote

K0 , K ∪ {0}. Among all the user subsets, there are
(

K
l

)
different user subsets with the

same size l ∈ K0 (l = 0 corresponds to the empty subset ∅ in K). They form a cache

subgroup that contains all user subsets of size l, defined as Al , {S : |S| = l, S ⊆ K}

with |Al| =
(

K
l

)
, for l ∈ K0. For the N files, partition each file Wn into 2K non-overlapping

subfiles, one for each unique user subset S ⊆ K, denoted by Wn,S (it can be ∅). Each user

k ∈ S stores subfile Wn,S in its local cache (for S = ∅, subfile Wn,∅ is not cached to any

user, but only kept in the server). For any caching scheme, each file should be reconstructed

by combining all its subfiles. Thus, we have the file partitioning constraint

K∑

l=0

∑

S∈Al

|Wn,S | = F, n ∈ N . (3.1)

It is shown in [37, Theorem 1] that for each file Wn, the size of its subfile Wn,S only

depends on |S|. This implies that |Wn,S | is the same for any S ∈ Al of the same size l.

Based on this property, for each file Wn, its subfiles are grouped into file subgroups, each

denoted by W l
n = {Wn,S : S ∈ Al}, for l ∈ K0. There are

(
K
l

)
subfiles of the same

size inW l
n (intended for user subsets in cache subgroup Al), and there are total K + 1 file

subgroups.

Let an,l denote the size of subfiles in W l
n, as a fraction of the file size F bits: an,l ,

|Wn,S |/F (for ∀S ∈ Al), l ∈ K0, n ∈ N . Note that an,0 represents the fraction of file Wn

23

that is not stored at any user’s cache but only remains in the server. Then, the file partition

constraint (3.1) is simplified to

K∑

l=0

(
K

l

)

an,l = 1, n ∈ N . (3.2)

Recall that in file partitioning, each subfile is intended for a unique user subset. During

the cache placement, user k stores all the subfiles inW l
n that are intended for user subsets

it belongs to, i.e., {Wn,S : S ∈ Al and k ∈ S} ⊆ W l
n, for l ∈ K. Note that in each Al,

l ∈ K, there are total
(

K−1
l−1

)
different user subsets containing the same user k. Thus, there

are
∑K

l=1

(
K−1
l−1

)
subfiles in each file Wn that a user can possibly store in its local cache.

With subfile size an,l, this means that each user caches a total of
∑K

l=1

(
K−1
l−1

)
an,l fraction

of file Wn. For cache size M at each user, we have the following local cache constraint

N∑

n=1

K∑

l=1

(
K − 1

l − 1

)

an,l ≤M. (3.3)

We point out that the above construction through subfile and user subset partitioning

to represent an uncoded cache placement is general, i.e., any uncoded cache placement

scheme can be equivalently represented by the specific values of {an,l : n ∈ N , l ∈ K0}.

Content Delivery via Coded Multicasting

For content delivery by the CCS, the server multicasts a unique coded message to each user

subset. The message is formed by bitwise XOR operation of subfiles as

CS ,
⊕

k∈S

Wdk,S\{k}. (3.4)

Note that the CCS originally proposed in [17] is shown to be a valid caching scheme

for cache size M = {0, N/K, 2N/K, ..., N}. This conclusion can be straightforwardly

extended to any cache size M , using the delivery strategy of the decentralized CCS in [18].

With nonuniform file popularities, the cache placement may be different for files with

different popularities. This means the file partitioning may be different among these files,

and the subfile size an,l is a function of n. Note that when the sizes of subfiles are not

24

equal, zero padding is needed to code the subfiles together for multicasting in (3.4). As a

result, the size of coded message CS is determined by the largest subfile among subfiles in

the delivery group (user subset) S , i.e.,

|CS | = max
k∈S

adk,l, S ∈ A
l+1, l = 0, . . . , K − 1. (3.5)

With (3.4) and (3.5), each user in S can retrieve the subfile of its requested file from the

coded message CS .

3.2 Cache Placement Optimization Formulation

Based on (5.7), the average rate R̄ of data delivery by the CCS is given by

R̄ = Ed




∑

S⊆K,S6=∅

|CS |



 = Ed

[
K−1∑

l=0

∑

S∈Al+1

max
k∈S

adk,l

]

(3.6)

where Ed[∙] is taken w.r.t. demand vector d.

Let an = [an,0, . . . , an,K]T denote the (K + 1) × 1 cache placement vector for file

Wn, n ∈ N . The cache placement optimization problem for the CCS is formulated as

obtaining the optimal {an} to minimize the average rate R̄, given by1

P0 : min
{an}

R̄

s.t. (3.2), (3.3), and

an < 0, n ∈ N . (3.7)

The optimization problem P0 is complicated to solve. In the following, we provide a

few simplifications to the average rate objective and the constraints and transform P0 into

a simplified equivalent problem.

3.2.1 Problem Reformulation

For nonuniform file popularities, it is shown that the optimal cache placement under the

CCS has a popularity-first property [37]. Specifically, it states in [37, Theorem 2] that

1Note that P0 is formulated for the CCS, which is based on uncoded cache placement and one-shot coded
delivery with zero padding, as described in Section 3.1.2.

25

for file popularities p1 ≥ . . . ≥ pN , under the optimal cache placement, the following

condition holds for the cached subfiles

an,l ≥ an+1,l, l ∈ K, n ∈ N\{N}, (3.8)

where the amount of cache assigned to a file is monotonic with the file popularity.

Without loss of the optimality, we now explicitly impose constraint (3.8) and have the

following equivalent problem to P0

P1 : min
{an}

R̄

s.t. (3.2), (3.3), (3.7), (3.8).

At the optimality of P1, the local cache constraint (3.3) is attained with equality, i.e.,

the cache memory is always fully utilized. To see this, note that at optimality if there is

any unused memory, we can always modify the assumed optimal caching placement by

adding any uncached portion of files into the unused memory. This leads to reduced R̄,

contradicting the assumption that there is unused cache memory at optimality. Thus, we

replace constraint (3.3) with the equality constraint

N∑

n=1

K∑

l=1

(
K − 1

l − 1

)

an,l = M. (3.9)

Next, we show the following lemma for constraint (3.7).

Lemma 1. Under constraint (3.8), constraint (3.7) is equivalent to the following two con-

straints

aN,l ≥ 0, l ∈ K (3.10)

a1,0 ≥ 0. (3.11)

Proof. If aN,l ≥ 0, ∀l ∈ K, by the popularity-first condition (3.8), we have

an,l ≥ 0, ∀l ∈ K, ∀n ∈ N . (3.12)

26

Recall that subfile size an,0 represents the fraction of Wn that is not stored at any user cache.

From (3.2), we have

an,0 = 1−
K∑

l=1

(
K

l

)

an,l, n ∈ N . (3.13)

Combining (3.8) and (3.13), we have a1,0 ≤ . . . ≤ aN,0. If a1,0 ≥ 0 in (3.11) holds, then

an,0 ≥ 0, ∀n ∈ N . Combining this with (3.12), we have an < 0, ∀n ∈ N , which is

constraint (3.7).

By Lemma 1, constraints (3.7) in P1 can be equivalently replaced by constraints (3.10)

and (3.11).

Let Ym, m = 1, . . . , K , denote the mth smallest file index in the demand vector d. The

probability distribution of Ym is obtained in [33, Lemma 2] (the expression of Ym is pro-

vided in Appendix A.1 for completeness). By the popularity-first property of the optimal

cache placement, the average rate R̄ in (3.6) is shown to have the following expression [33]

R̄ =
N∑

n=1

K−1∑

l=1

K∑

m=1

(
K −m

l

)

Pr[Ym = n]an,l +
N∑

n=1

K−1∑

m=0

Pr[YK−m = n]an,0, (3.14)

where Pr[Ym = n] is not a function of an. The above expression shows that R̄ is a weighted

sum of an,l’s (for each cache subgroup l).

From (3.14), define gn , [gn,0, . . . , gn,K]T, n ∈ N , where

gn,l ,
K∑

m=1

(
K −m

l

)

Pr[Ym = n], l ∈ K,

gn,0 ,
K−1∑

m=0

Pr[YK−m = n]. (3.15)

Also, from (3.2) and (3.9), define b , [b0, . . . , bK]T , with bl ,
(

K
l

)
, and c , [c0, . . . , cK]T ,

with cl ,
(

K−1
l+1

)
, l ∈ K0. Combining the results from (3.9) to (3.15), we reformulate the

cache placement optimization problem P1 into the following equivalent LP problem

P2: min
{an}

N∑

n=1

gT
nan

27

s.t. (3.8), (3.10), (3.11), and

bTan = 1, n ∈ N , (3.16)
N∑

n=1

cTan = M. (3.17)

Note that compared to P1 with 2N(K + 1)−K + 1 constraints, P2 has N(K + 1) + 2

constraints. Reducing the constraints facilitates us to explore the Karush-Kuhn-Tucker

(KKT) optimality conditions [94] in the problem and obtain the inherent structure in the

optimal cache placement.

3.3 The Optimal Cache Placement

In this section, we derive the optimal cache placement solution to P2. We first present a

structural property of the optimal cache placement solution for P2. It is obtained by explor-

ing the KKT conditions for P2. Based on this property, we identify several possible optimal

solution structures. By analyzing each solution structure along with the file partition and

cache memory constraints, we obtain the closed-form cache placement solution under each

solution structure. Finally, we develop a simple low-complexity algorithm using these ob-

tained candidate solutions to obtain the optimal solution for P2. We first give the definition

of file group below.

Definition 1. (File group) A file group is a subset of N that contains all files with the

same cache placement vector, i.e., for any two files Wn and Wn′ , if their placement vectors

an = an′ , then they belong to the same file group.

For N files, there could be potential as many as N file groups (i.e., all an’s are differ-

ent), which makes the design of optimal cache placement a major challenge. File grouping

is a popular method proposed for the CCS [16, 34–36] to simplify the cache placement

design under nonuniform file popularity. Having fewer file groups reduces the complexity

in determining the placement vectors {an}. However, existing file grouping schemes are

suboptimal. Our main result in Theorem 1 below describes the structural property, in terms

of file groups, of the optimal cache placement for the CCS.

28

Theorem 1. For N files with any file popularity distribution p, and for any K and M ≤ N ,

there are at most three file groups under the optimal cache placement {an} for P1.

Proof. Since P2 is an LP, we explore the KKT conditions for P2 to derive the file group

property. See Appendix A.2.

Theorem 1 indicates that, regardless of the values of N , p, K, and M , there are only

three possible file group structures under the optimal cache placement, i.e., one to three

file groups. This implies that there are at most three unique vectors among the optimal

cache placement vectors {an}, one for each file group. This property drastically reduces

the complexity in solving the cache placement problem, and in turn, it allows us to explore

the solution structure to obtain the optimal solution {an} analytically. The result of at most

three file groups, regardless of file popularity distribution p among N files, is somewhat

surprising. We will provide some insight into this result in Section 3.3.4, after the cache

placement structure and solution are obtained.

Remark 1. Existing file grouping strategies [16, 34–36] are either suboptimal or designed

for a specific file popularity distribution. Some of these suboptimal file grouping strate-

gies [34–36] were shown to be a constant factor away from the optimum in terms of the

average rate. Since the constant factor is relatively large, it remains unclear how close their

performance is to that under the optimal cache placement strategy for the CCS. Further-

more, under a file grouping strategy, the specific cache placement for each group is needed.

Existing works use the symmetric decentralized cache placement strategy for each group.

In contrast, by Theorem 1, in the following, we will discuss each of the three file grouping

cases to obtain the corresponding optimal placement.

Following Theorem 1, we will examine all three cases of file groups for P2 to obtain

the placement solution. We first introduce the following notations to be used later:

• Denote ān = [an,1, . . . , an,K]T as the sub-placement vector in an. It specifies only the

size of each subfile stored in the local cache, while an,0 specifies the subfile kept at

the server.

29

• We use notation ān <1 0 to indicate that there is at least one positive element in ān

and the other elements are 0; otherwise, ān = 0. Similarly, ān1 <1 ān2 denotes that

at least one element in ān1 is greater than that in ān2 and all the rest elements in ān1

and ān2 are equal; otherwise ān1 = ān2 .

With the above notations, we establish the following equivalence on the placement

vectors:

1. By (3.2), for any two files n1 and n2, we have

an1 = an2 ⇔ ān1 = ān2 (3.18)

where “⇔” denotes being equivalent.

2. By (3.8) and (3.13), for any two files with their indexes n1 < n2, we have

an1 6= an2 ⇔ ān1 <1 ān2 and an1,0 < an2,0. (3.19)

In the following, we consider each case of file groups, and identify the complete struc-

ture of the cache placement vector and obtain the optimal solution for this case.

3.3.1 One File Group

With a single file group, the cache placement vectors are the same for all files. Let a1 =

∙ ∙ ∙ = aN = a. In this case, we can simplify the expressions in P2. Denote g̃ ,

[g̃0, . . . , g̃K]T with g̃l =
(

K
l+1

)
, l ∈ K0. Then, P2 is simplified into the following equiv-

alent problem

P3: min
a

g̃Ta

s.t. bTa = 1, (3.20)

cTa =
M

N
, (3.21)

a < 0. (3.22)

30

Note that P3 is the same as the cache placement optimization problem for the uniform

file popularity case (the same placement vector a for all files), of which the optimal solution

has been obtained in [33] in closed-form. To summarize, the optimal a for P3 is given as

follows:

i) If MK/N ∈ N: The optimal a has only one nonzero element: alo = 1/
(

K
lo

)
, lo =

MK/N , and al = 0, ∀ l 6= lo.

ii) If MK/N /∈ N: The optimal a has two nonzero adjacent elements: Let v , KM
N

.

Then,

alo =
1 + bvc − v
(

K
bvc

) , alo+1 =
v − bvc
(

K
dve

) , lo = bvc

al = 0, ∀ l 6= lo or lo + 1. (3.23)

Note that Case i) is a special case of Case ii): In Case ii), if lo = v, alo+1 = 0, the solution in

(3.23) reduces to that of case i). Thus, the optimal solution of P3 can be simply summarized

in (3.23).

The above shows that the optimal a has at most two nonzero elements. When MK/N

is an integer, a has only one nonzero element, which means each file is partitioned into

equal subfiles of size alo . Otherwise, a has two nonzero adjacent elements, which means

each file is partitioned into subfiles of two different sizes alo and alo+1. Each subfile is

cached into its intended user subset of size lo or lo + 1, as described in Section 3.1.2.

Fig. 3.2 illustrates the optimal a in the one-file-group case.

3.3.2 Two File Groups

For the case of two file groups, there are only two unique placement vectors in {an}. By

(3.8), this implies that {an} has the following structure: a1 = . . . = ano 6= ano+1 = . . . =

aN , for some no ∈ {1, . . . , N − 1}. By (3.18) and (3.19), this is equivalent to
{

ā1 = . . . = āno <1 āno+1 = . . . = āN

a1,0 = . . . = ano,0 < ano+1,0 = ∙ ∙ ∙ = aN,0

(3.24)

31

... ...

... ...

... ...=

Fi
le

su
bg

ro
up

s

File 1 N

One File Group

a1,0

a1,lo

a1,lo+1

a1,K

aN,0

aN,lo

aN,lo+1

aN,K

Figure 3.2: An example of the optimal cache placement for one file group: an = a, ∀n,
with alo , alo+1 > 0 and al = 0, ∀l 6= lo, lo + 1. (The same color indicates the same value of
al)

for some no ∈ {1, . . . , N − 1}. It immediately follows that ano+1,0 = ∙ ∙ ∙ = aN,0 > 0.

We use ano and ano+1 to represent the two unique placement vectors for the first and the

second file group, respectively. We first characterize the structure of the placement vector

ano+1 for the second file group below.

Proposition 1. If there are two file groups under the optimal cache placement {an}, the

optimal sub-placement vector āno+1 for the second file group has at most one nonzero

element.

Proof. See Appendix A.3.

Proposition 1 indicates that either āno+1 = 0 or āno+1 has only one nonzero element.

For the former, it means the files in the second file group are not cached but remain at

the server only. Note that two file groups were considered for placement strategies in

[35,36], where the second file group containing less popular files remains at the server, and

the location of no for the grouping was proposed in different heuristic ways. These file

grouping methods fall into the case of āno+1 = 0. However, the case of allocating cache to

the second file group, i.e., āno+1 6= 0, has never been considered in the literature.

Following Proposition 1, we obtain the optimal cache placement in each of the two

cases for āno+1 below:

32

...

...

... ...>
=

=

<

Fi
le

su
bg

ro
up

s

File 1 no no + 1 N

1st File Group 2nd File Group

a1,0

a1,lo

a1,lo+1

a1,K

ano,0

ano,lo

ano,lo+1

ano,K

ano+1,0

ano+1,lo

ano+1,lo+1

ano+1,K

aN,0

aN,lo

aN,lo+1

aN,K

Figure 3.3: An example of the optimal cache placement for two file groups with āno+1 = 0.
The 1st file group: an,lo > 0, an,lo+1 > 0, for n = 1, . . . , no, and the rest are all 0’s. The
second file group: ano+1,0 = ∙ ∙ ∙ = aN,0 = 1.

āno+1 = 0

By (3.2), we have ano+1,0 = 1. It means that no cache is allocated to the second file group,

and the entire cache is given to the first file group. It follows that the cache placement prob-

lem for ano of the first group is reduced to that in the one-file-group case in Section 3.3.1.

Specifically, we can treat the first file group as a new database consisting of these no files,

for some no ∈ {1, . . . , N − 1}. Then, the cache placement optimization problem for ano

is the same as P3, except that N is replaced by no in constraint (3.21). It follows that, the

optimal solution is the same as in (3.23), except that N is replaced by no, and v = MK/no,

i.e.,





ano,lo =
1 + bvc − v
(

K
bvc

) , ano,lo+1 =
v − bvc
(

K
dve

) , lo = bvc

ano,l = 0, ∀ l 6= lo or lo + 1.

(3.25)

An example of the placement {an} of files in this case is shown in Fig. 3.3, where ano for

the first file group has two adjacent nonzero elements. In addition, for this case, Fig. 3.4

illustrates the actual file partitions and cached contents in user 1.

Based on the similarity of the solutions in (3.23) and (3.25), we can extend the two-file-

group case to also include one file group as a special case where no = N . As a result, for

33

...

...

...W1,{1}

W1,{1,2}

W1,{1,3}

Wno,{1}

Wno,{1,2}

Wno,{1,3}

Cache map of user 1

W1,{1}

W1,{2}

W1,{3}

W1,{2,3}

W1,{1,3}

W1,{1,2}

W2
1

W0
no+1

M

File 1 File no + 1

File Partitioning

W1
1

Wno+1, ∅

a 1,1 = |W1,S|,S ∈ A1

a 1,2 = |W1,S|,S ∈ A2

a no+1,0 = |Wno+1, ∅ |

Figure 3.4: An illustration of file partition and cache placement based on the placement
structure in Fig. 3.3, for K = 3 users, and lo = 1. File W1 in the 1st file group is
partitioned into subfiles of two sizes a1,1 and a1,2. Subfiles in file subgroup W1

1 with
size a1,1 = |W1,S |/F (red) is placed in user subset S ∈ A1 = {{1}, {2}, {3}}; Sub-
files in file subgroup W2

1 with size a1,2 = |W1,S |/F (blue) is placed in user subset
S ∈ A2 = {{1, 2}, {1, 3}, {2, 3}}. For file Wno+1 in the second file group, the entire
file is stored solely in the server: Wno+1,∅ = Wno+1, ano+1,0 = 1. The cache memory map
of user 1 shows the stored subfiles of the 1st file group {W1, . . . , Wno}.

Algorithm 1 The Cache Placement for the Extended Two-File-Group Case with āno+1 = 0
(including one file group)
Input: K, M , N , and p.
Output: (R̄min, n∗

o)
1: for no = 1 to N do
2: Set lo = bMK

no
c; Set āno+1 = 0, if no < N .

3: Determine ano by (3.25).
4: Compute R̄1(no) using (3.14), by replacing N with no in (3.14).
5: end for
6: Compute n̄∗

o = argminno∈N R̄1(no); Set R̄min = R̄1(n
∗
o).

the extended two-file-group case, the optimal cache placement solution is given by (3.25),

for no ∈ {1, . . . , N} = N . What remains is to obtain the optimal n∗
o to determine {an} that

minimizes the average rate objective in P2. The optimal n∗
o is the location to determine the

file groups. It depends on (N,p, M, K) and is challenging to obtain analytically. Nonethe-

less, R̄ can be easily computed using (3.25) for no ∈ N , and we can conduct a search for no

to determine n∗
o that gives the minimum R̄. The algorithm to obtain the placement solution

{an} in this case is summarized in Algorithm 1. Through a 1-D search for the optimal n∗
o,

the algorithm computes R̄ using the closed-form expression in (3.14) by N times.

34

āno+1 <1 0

In this case, by Proposition 1, āno+1 has only one nonzero element. Assume ano+1,lo > 0,

for some lo ∈ K, and ano+1,l = 0, ∀l 6= lo, l ∈ K. We have the following propositions

describing the properties of ano and ano+1. Proposition 2 specifies the differences of āno

and āno+1 for the two file groups, and Proposition 3 characterizes the placement ano for the

first file group.

Proposition 2. If there are two file groups under the optimal cache placement {an}, and

āno+1 <1 0, for some no ∈ {1, . . . , N − 1}, then āno and āno+1 are different by only one

element.

Proof. See Appendix A.4.

Proposition 3. If there are two file groups under the optimal cache placement {an}, and

āno+1 <1 0, for some no ∈ {1, . . . , N − 1}, then ano,0 = 0.

Proof. See Appendix A.5.

Proposition 3 indicates that each file in the first file group has all its subfiles cached

among K users, and no subfile solely remains in the server. Recall in this case that āno+1

has only one nonzero element ano+1,lo > 0. By Proposition 2, the different element between

āno and āno+1 can be either at index lo or some l1, for l1 6= lo. By the popularity-first

property in (3.8), either of the following two cases holds: 2.i) ano,lo > ano+1,lo > 0; or 2.ii)

ano,l1 > ano+1,l1 = 0, for some l1 6= lo, l1 ∈ K. The structure of {an} in Case 2.i) and

Case 2.ii) is illustrated in Figs. 3.5 and 3.6, respectively. We point out that lo and l1 are not

necessarily adjacent to each other. Now we derive the solution (ano , ano+1) in each of these

two cases:

Case 2.i) ano,lo > ano+1,lo > 0:

In this case, āno and āno+1 are only different at the loth nonzero element in āno+1. It follows

that ano,l = ano+1,l = 0, ∀l 6= lo, l ∈ K. By Proposition 3, we conclude that ano,lo is the

only nonzero element in ano . From (3.16) and (3.17), we have

bloano,lo = 1

35

nocloano,lo + (N − no)cloano+1,lo = M. (3.26)

Solving (3.26) and substituting the expressions of blo and clo defined below (3.15), we have

ano,lo =
1
(

K
lo

) , ano+1,lo =
1
(

K
lo

)

(
KM
loN
− no

N

1− no

N

)

. (3.27)

By the condition of Case 2.i) ano,lo > ano+1,lo > 0, (3.27) is only valid if no < KM/lo <

N , for lo ∈ K. Thus, the range of lo for this case to be a valid candidate for the optimal

placement is
⌊

KM

N

⌋

+ 1 ≤ lo ≤ min

{

K,

⌈
KM

no

⌉

− 1

}

. (3.28)

Finally, an,0’s can be obtained by (3.13). To summarize, the placement solution (ano , ano+1)

in this case is given by

ano,lo =
1
(

K
lo

) , ano,l = 0, ∀ l 6= lo (3.29)






ano+1,0 =
1− KM

loN

1− no

N

, ano+1,lo =
1
(

K
lo

)

(
KM
loN
− no

N

1− no

N

)

ano+1,l = 0, ∀ l 6= 0 or lo

(3.30)

where lo satisfies (3.28), and no ∈ {1, . . . , N − 1}.

Fig. 3.5 illustrates the above result in this case under two file groups as the optimal

placement, where different color blocks indicate the different values of {an,l}.

Case 2.ii) ano,l1 > ano+1,l1 = 0, l1 6= lo:

In this case, the loth element in āno and āno+1 are identical, and we have ano,lo = ano+1,lo >

0. Since ano,0 = 0 by Proposition 3, we conclude that ano has two nonzero elements ano,lo

and ano,l1 . Also, recall from (3.24) that ano+1,0 > 0. Thus, ano+1 has two nonzero elements

ano+1,0 and ano+1,lo . The rest elements ano and ano+1 are all zeros. The placement structure

of {an} in this case is illustrated in Fig. 3.6, where nonzero elements in ano and ano+1 are

shown as colored blocks and zero elements as uncolored blocks. Given the structure of ano

and ano+1, by (3.16) and (3.17), we have

bloano,lo + bl1ano,l1 = 1, ano+1,0 + bloano,lo = 1 (3.31)

36

...

...

... ...>

<
=

=Fi
le

su
bg

ro
up

s

File 1 no no + 1 N

1st File Group 2nd File Group

a1,0

a1,lo

a1,K

ano,0

ano,lo

ano,K

ano+1,0

ano+1,lo

ano+1,K

aN,0

aN,lo

aN,K

Figure 3.5: An example of the optimal cache placement for two file groups with āno+1 <1

0: i) 0 = ano,0 < ano+1,0 < 1. ii) Between āno and āno+1: ano,lo > ano+1,lo > 0;
ano,l = ano+1,l = 0, ∀l ∈ K, l 6= lo.

Ncloano,lo + nocl1ano,l1 = M. (3.32)

Solving (3.31) and (3.32), and substituting the expressions of bl and cl given below (3.15),

we obtain the solution of (ano , ano+1) as






ano,lo =
1
(

K
lo

)
KM
loN
− l1no

loN

1− l1no

loN

, ano,l1 =
1
(

K
l1

)
1− KM

loN

1− l1no

loN

ano,l = 0, ∀ l 6= lo or l1,

(3.33)






ano+1,lo = ano,lo , ano+1,0 =
1− KM

loN

1− l1no

loN

ano+1,l = 0, ∀ l 6= 0 or lo

(3.34)

where for ano,lo , ano,l1 , and ano+1,0 being all positive, lo and l1 should satisfy one of the

following constraints

C1) lo > KM/N and l1 < KM/no, or

C2) lo < KM/N and l1 > KM/no.

Note that, if no ≤M , only constraint (C1) is valid.

In summary, for the case of two file group with āno+1 <1 0, by (3.24), the placement

{an} are determined via (ano , ano+1) in Cases 2.i) and 2.ii) for given (no, lo) or (no, lo, l1),

respectively. Since (no, lo) can be viewed as a special case of (no, lo, l1) for l1 = lo, to

unify the notations for different cases, we define (no, lo, lo) , (no, lo). As a result, the

37

...

...

... ...
>

<

... ...

...

=

=

=

=

Fi
le

su
bg

ro
up

s
1st File Group 2nd File Group

File 1 no no + 1 N
a1,0

a1,lo

a1,l1

a1,K

ano,0

ano,lo

ano,l1

ano,K

ano+1,0

ano+1,lo

ano+1,l1

ano+1,K

aN,0

aN,lo

aN,l1

aN,K

Figure 3.6: An example of the optimal cache placement {an} in the case of two file groups
with āno+1 <1 0: ano+1,0 > ano,0 = 0. Between āno and āno+1: 1) ano,l1 > ano+1,l1 = 0; 2)
ano,lo = ano+1,lo > 0; 3) ano,l = ano+1,l = 0, ∀l ∈ K, l 6= lo, l1.

average rate R̄ in P2 is a function of (no, lo, l1). To obtain the best tuple (no, lo, l1) that

results in minimum R̄, we can search over all possible values of no ∈ {1, . . . , N − 1} and

lo, l1 ∈ K within their respective range constraint in each case. The detail of obtaining the

best solution {an} is summarized in Algorithm 2. In the algorithm, we express R̄ explicitly

as R̄(no, lo, l1) to emphasize its dependency on (no, lo, l1). It computes R̄(no, lo, l1) using

the closed-form expression in (3.14) for at most (N − 1)K2 times in the worst case at

different (no, lo, l1), which can be done in parallel. Thus, the complexity of the algorithm

is very low.

Remark 2. In the case of two file groups, the first possible structure of the optimal place-

ment {an} is described in Section 3.3.2: All the cache is allocated to the first group, and the

cache placement for files in this group is identical, i.e., symmetric placement, regardless of

having different file popularities among them. As mentioned earlier, this file grouping case

has been considered in [35] and [36] for a decentralized cache placement, with different

methods proposed to determine the location of no. In [35], for files with Zipf distribution,

the selection of no results in the performance being a constant away from that of the optimal

placement. In [36], for an arbitrary file popularity distribution, the choice of no results in a

suboptimal caching strategy. In contrast, we provide the optimal cache placement {an} in

38

Algorithm 2 The Cache Placement for Two File Groups with āno+1 <1 0

Input: K, M , N , and p
Output: (R̄min, n

∗
o, l

∗
o, l

∗
1)

1: for no = 1 to N − 1 do
2: for lo = bKM

N
c+ 1 to min{K, dKM

no
e − 1} do

3: Compute {an} by (3.29) and (3.30).
4: Compute R̄(no, lo, lo) by (3.14).
5: end for
6: for lo = bKM

N
c+ 1 to K do

7: for l1 = 1 to min{K, dKM
no
e − 1} do

8: Compute {an} by (3.33) and (3.34).
9: Compute R̄(no, lo, l1) by (3.14).

10: end for
11: end for
12: for lo = 1 to bKM

N
c do

13: for l1 = dKM
no
e to K do

14: Compute {an} by (3.33) and (3.34).
15: Compute R̄(no, lo, l1) by (3.14).
16: end for
17: end for
18: end for
19: Compute (n∗

o, l
∗
o, l

∗
1) =argmin(no,lo,l1)R̄(no, lo, l1).

20: Set R̄min = R̄(n∗
o, l

∗
o, l

∗
1).

Algorithm 1. The second possible structure of {an} is shown in Section 3.3.2 in two possi-

ble cases, where each file in the second file group is partly cached and partly remains at the

server. Different from the first structure, in this case, coding opportunity between the two

file groups is explored to minimize the average rate. We provide Algorithm 2 to determine

the optimal cache placement {an}. This placement structure has never been considered in

the literature. Depending on (N,p, M, K), this placement structure may lead to a higher

caching gain and lower rate than the first one, as we will show in the simulation.

3.3.3 Three File Groups

Similar to the case of two file groups, when there are three file groups under the optimal

cache placement {an}, we have three unique values among an’s as a1 = . . . = ano 6=

ano+1 = . . . = an1 6= an1+1 = . . . = aN , for 1 ≤ no < n1 ≤ N − 1. We use ano , an1

39

and an1+1 to represent the three unique placement vectors for the first, second, and third

file group, respectively. We first determine the cache placement an1+1 in the 3rd file group

below.

Proposition 4. If there are three file groups under the optimal cache placement {an}, the

optimal placement vector an1+1 for the third file group is given by ān1+1 = 0, and an1+1,0 =

1.

Proof. See Appendix A.6.

Proposition 4 indicates that when there are three file groups under the optimal place-

ment, all the cache will be allocated to the first two file groups; the files in the 3rd file

group solely remain in the server and are not cached to any user. Following this, we only

need to obtain the two unique cache placement vectors ano and an1 in the first two groups,

respectively.

Note that since an1 6= an1+1, similar to (3.24), we have ān1 <1 ān1+1 = 0 and

an1,0 < an1+1,0 = 1. As a result, the cache placement (ano , an1) is the same as that of

the two-file-group case with ān1 <1 0 for the second file group in Section 3.3.2, where

N is replaced by n1. Specifically, for ān1 <1 0, by Propositions 1 and 2, we conclude

that ān1 has one nonzero element, and āno and ān1 are different by one element. Assume

an1,lo > 0, for some lo ∈ K. The different element in āno and ān1 can be either at lo with

ano,lo > an1,lo (as shown in Fig. 3.7), or at l1 6= lo for l1 ∈ K, with ano,l1 > an1,l1 = 0

(as shown in Fig. 3.8). Detailed solution for (ano , an1) in each case can be obtained from

Section 3.3.2, summarized as follows:

When ano,lo > an1,lo > 0

Following (3.29) and (3.30), we have

ano,lo =
1
(

K
lo

) , ano,l = 0, ∀ l 6= lo (3.35)






an1,0 =
1− KM

lon1

1− no

n1

, an1,lo =
1
(

K
lo

)

(
KM
lon1
− no

n1

1− no

n1

)

an1,l = 0, ∀ l 6= 0 or lo

(3.36)

40

...

...

... ...>

<

... ...

... ...

...>

<
=

= =

=

Fi
le

su
bg

ro
up

s

1st File Group 2nd File Group 3rd File Group

File 1 no no + 1 n1 n1 + 1 N
a1,0

a1,lo

a1,K

ano,0

ano,lo

ano,K

ano+1,0

ano+1,lo

ano+1,K

an1,0

an1,lo

an1,K

an1+1,0

an1+1,lo

an1+1,K

aN,0

aN,lo

aN,K

Fig. 3.7: An example of the optimal cache placement {an} in the case of three file groups.
No cache is allocated to the 3rd file group: an1+1,0 = 1. For ano , ano+1 in the first and
second groups: 1 > ano+1,0 > ano,0 = 0; ano,lo > ano+1,lo > 0, lo ∈ K; ano,l = ano+1,l = 0,
∀l ∈ K, l 6= lo.

where
⌊

KM
n1

⌋
+ 1 ≤ lo ≤ min

{
K,
⌈

KM
no

⌉
− 1
}

for this case to be valid. Note that the

condition for lo can be satisfied only if n1 > M . Thus, this case is possible for the optimal

placement {an} only if n1 > M .

When ano,l1 > an1,l1 = 0

From (3.33) and (3.34), we have





ano,lo =
1
(

K
lo

)
KM
lon1
− no

n1

1− no

n1

, ano,l1 =
1
(

K
l1

)
1− KM

lon1

1− l1no

lon1

ano,l = 0, ∀ l 6= lo or l1,

(3.37)






an1,lo = ano,lo , an1,0 =
1− KM

loN

1− l1no

lon1

an1,l = 0, ∀ l 6= 0 or lo

(3.38)

where lo and l1 need to satisfy one of the two conditions

C1’) lo > KM/n1 and l1 < KM/no, or

C2’) lo < KM/n1 and l1 > KM/no.

Since lo, l1 ∈ K, to further analyze the above two conditions for lo and l1, we note that

• If no < n1 ≤M : neither C1’) nor C2’) can be satisfied;

41

...

...

... ...
>

<

... ...

...

... ...

... ...

...

...

... ...

>
=

=
=

=

=

<
=

Fi
le

su
bg

ro
up

s

1st File Group 2nd File Group 3rd File Group

File 1 no no + 1 n1 n1 + 1 N
a1,0

a1,lo

a1,l1

a1,K

ano,0

ano,lo

ano,l1

ano,K

ano+1,0

ano+1,lo

ano+1,l1

ano+1,K

an1,0

an1,lo

an1,l1

an1,K

an1+1,0

an1+1,lo

an1+1,l1

an1+1,K

aN,0

aN,lo

aN,l1

aN,K

Fig. 3.8: An example of the optimal cache placement {an} in the case of three file groups.
No cache is allocated to the 3rd file group: an1+1,0 = 1. For ano , ano+1 in the first and
second groups: 1) ano,l1 > ano+1,l1 = 0; 2) ano,lo = ano+1,lo > 0; 3) ano,l = ano+1,l = 0,
∀l ∈ K, l 6= lo, l1.

• If no ≤M < n1: only C1’) can be satisfied;

• If M < no < n1: both C1’) and C2’) are possible.

As a result, Case 2) is only possible for the optimal placement {an} if n1 > M .

The structure of {an} in Cases 1) and 2) are illustrated in Figs. 3.7 and 3.8, respec-

tively, where the colored blocks indicate the nonzero elements in an.

Remark 3. From Cases 1) and 2) above, we conclude that if the optimal placement results

in three file groups, we must have n1 > M . This result is consistent with our intuition: By

Proposition 4, all the cache is allocated to the first two file groups. To maximally use the

cache, the files to be cached (in the first two groups) must be no less than M files.

Based on the above discussion, for the case of three file groups, given (no, n1, lo, l1),

the solution {an} is obtained in closed-form, and so the average rate R̄ in P2 can be

computed by (3.14) as a function of (no, n1,lo, l1). Again, we can search over all possi-

ble values of n1 ∈ {M + 1, N − 1}, no ∈ {1, . . . , n1 − 1}, and lo, l1 ∈ K within the

range specified in Cases 1) and 2), to obtain the best tuple (no, n1,lo, l1) that gives min-

imum R̄. Algorithm 3 summarizes the steps to obtain the best placement solution {an}

for three file groups. It uses Algorithm 2 to obtain the best tuple (no, lo, l1) in the two-

42

Algorithm 3 The Cache Placement for Three File Groups
Input: K, M , N , and p
Output: (R̄min, n∗

o, n∗
1, l∗o , l∗1)

1: for n1 = M to N − 1 do
2: R̄1(no, n1, lo, l1) =
3: Algorithm 2(K, M, n1, [p1, . . . , pn1]

T);
4: R̄2(n1) =

∑N
n=n1+1 gn,0;

5: Compute R̄(no, n1, lo, l1) = R̄1 + R̄2

6: end for
7: Compute (n∗

o, n
∗
1, l

∗
o, l

∗
1) = argminno,n1,lo,l1R̄(no, n1, lo, l1);

8: Set R̄min = R̄(n∗
o, n

∗
1, l

∗
o, l

∗
1).

Algorithm 4 The Optimal Cache Placement Solution for P1
Input: K, M , N , and p
Output: R̄min, {a1, . . . , aN}

1: Run Algorithms 1, 2 and 3.
2: Find the minimum output R̄min among the outputs of Algorithms 1–3.
3: Set the corresponding placement {a1, . . . , aN} for R̄min as the optimal {a1, . . . , aN}.

file-group subproblem, for each n1 ∈ {M + 1, . . . , N − 1}. The algorithm simply com-

putes R̄ for different (no, n1, lo, l1) using the closed-form expression in (3.14) for at most

(N −1)(N −M −1)K2/2 times in the worst case (depending on the values of (N, M, K))

. They can be computed efficiently in parallel.

Remark 4. We point out that there is no three-file-group caching scheme proposed for

the CCS in the literature. Only [36] has considered adding a specific three-file-group case

heuristically as part of a mixed caching scheme, where the second file group contains only

one file. However, uncoded caching is used for the case of three file groups, i.e., the con-

tent delivery is uncoded, and the case is used for very rare occasions. In the simulation,

we will show that the three-file-group cache placement for coded caching is optimal and

outperforms the two-group strategy even for files with Zipf distribution.

3.3.4 The Optimal Cache Placement Solution

By Theorem 1, the optimal cache placement problem P1 (or P2) is reduced to three sub-

problems, i.e., one, two, or three file groups, respectively. The possible structure of the

43

optimal cache placement in each subproblem is given in Sections 3.3.1 to 3.3.3. These

results lead to a simple algorithm to obtain the optimal placement solution {an} for P1:

Each file-group case returns the candidate optimal solution {an} with the minimum R̄

for this subproblem. The optimal {an} can then be obtained by taking the one that gives

the minimum R̄ among the three subproblems. The details are summarized in Algorithm

4. It uses Algorithms 1–3 and selects {an} that returns the minimum R̄ as the optimal

solution. Again, we point out obtaining the optimal {an} in Algorithm 4 requires mini-

mum complexity. Algorithms 1–3 each involves computing a closed-form expression of

R̄ multiple times, and all can be done in parallel. In total, R̄ is computed for at most

(N − 1)(N −M + 1)K2/2 + N times in the worst case.2

How to determine the file groups depends on (p, N, K, M). Although Sections 3.3.1

to 3.3.3 provide the possible structure of the optimal cache placement in three file group-

ing cases, analytically determining the final optimal file grouping, i.e., the number of file

groups and the group partition (no for two groups, and (no, n1) for three groups), is still

challenging. The same for the location of nonzero element(s) lo (and l1) in an, i.e., the

choice of cache subgroup(s) for subfiles. They depend on the file popularity distribution p,

the number of users K and the relative cache size to the database size (M vs. N). Our pro-

posed Algorithm 4 that combines Algorithms 1–3 provides a simple and efficient method to

obtain the optimal file grouping. Using the obtained file group structures, Algorithms 1–3

significantly simplify the solving of P1, by providing a set of candidate solutions in closed-

form in each case.

3.3.5 Discussion on the Optimal File Group Structure

The result in Theorem 1 of having at most three file groups in the optimal cache placement

for the CCS, regardless of file distribution p, is somewhat surprising. Based on the results

obtained in Sections 3.3.1 to 3.3.3, we provide some insights into the optimal file group

2Under the optimal placement, files with the same popularity have identical placement, i.e., an,l = an′,l,
∀l, if pn = p′n. This means that the files with the same popularity are in the same file group (e.g., a single file
group for files with uniform popularity). This may further reduce the set of candidate solutions in Algorithms
1–3 by only considering possible values of no (and n1) only for pno > pno+1 (and pn1 > pn1+1).

44

structure. We can recognize the three file groups as three categories of “most popular,”

“moderately popular,” and “non-popular” files. Regardless of file popularity distribution

p, the caching method only distinguishes files by one of these three categories. The three

categories reflect the caching strategies: From the structure of optimal {an} obtained in

Sections 3.3.1 to 3.3.3, the optimal caching strategy is to 1) cache all subfiles of the “most

popular” files (among K users); 2) for the deemed “moderately popular” files, cache only

a portion of each file, and leave the rest solely at the server; 3) if there are “non-popular”

files, they are not cached but only stored in the server.

Note that a file belongs to which category is a relative notion: the mapping of files into

these three categories, i.e., file grouping, depends on the file popularity distribution p and

the ratio of global cache size to the database size KM/N . To further understand the file

grouping phenomenon and the case of three file groups, we provide numerical examples

in Section 3.6.1 through Tables 3.1–3.6 to show how the file group structure changes (see

Section 3.6.1 for the detailed discussion). As M/N increases (e.g., from 10% to 80%), we

observe that the optimal number of file groups changes as follows: 2 → 3 → 2 → 3 → 1.

Intuitively, increasing the cache memory allows more files to be cached. As a result, a file

deemed “non-popular” for small cache size may be deemed “most popular” for large cache

size. Thus, when M/N increases, more files are shifted from the “non-popular” group

(only stored in the server) to the “most popular” group (all cached), with fewer files in the

“non-popular” group. During this transition, the “moderately popular” file group (partly

cached) appears, as the cache size is large enough to partly store some file but not all of it

(among users). This explains why and when three file groups become optimal for the cache

placement.

The existing two-file-group schemes proposed in [35, 36] have “non-popular” and

“most popular” groups and use a suboptimal strategy to decide the file groups. They can

be viewed as reflections of the two-file-group scenario. However, these two-file-group

schemes cannot capture the “moderately popular” group during the transition stage men-

tioned above. In contrast, the optimal solution we obtain captures all possible file groups,

45

which provides the highest resolution in determining the optimal cache placement, leading

to the minimum rate.

Remark 5. Note that the optimal cache placement is obtained in a centralized scenario,

where the solution and the determination of file groups requires the knowledge of K. The

knowledge of K is also required for the existing file grouping strategies [35, 36] for a

bounded performance. In practice, the system can estimate K if it is unknown. A care-

ful estimation of K based on some prior information will enable us to directly apply the

optimal cache placement solution obtained in this work. For the effect of K on the cache

placement, in general, the cache placement for the CCS is related to the ratio KM/N . A

larger K value means higher KM/N . This leads to more files being shifted from the “non-

popular” group to the “most popular” group and stored in the user caches. The inaccurate

knowledge of K may result in a mismatch to the optimal file groups and a loss from the

optimal performance. Quantifying the effect of overestimating or underestimating K on

the performance loss is non-trivial and needs further study as a future work. To this end,

it would be also interesting to study the optimal cache placement design and its gap to the

lower bound for unknown K under nonuniform file popularity.

3.4 Converse Bound

In this section, we show that the structure of the optimal cache placement solution for P1

obtained earlier can be used to obtain a tighter information-theoretic lower bound on the

average rate R̄ for any coded caching scheme (with uncoded or coded cache placement), un-

der arbitrary file popularity. This converse bound is obtained using a genie-based method.

Some existing works [16, 35, 36] have used this genie-based method to derive the lower

bounds on the average rate with different tightness. This genie-based method constructs a

virtual system, where only a group of popular files are delivered to the users via the shared

link, and the rest (unpopular) files are delivered by a genie instead of using the shared link.

Furthermore, the virtual system treats this group of popular files as if they have uniform

popularity, leading to the symmetric cache placement strategy with the same placement for

46

all these files. The average rate of the original system under any coded caching scheme is

shown to be lower bounded by that of this virtual system [18].

In deriving a lower bound using the genie-based method, the determination of the

group of popular files plays an important role in the tightness of the bound. Let p′ be

the probability threshold to decide the group of popular files, where file Wn belongs to this

group if pn ≥ p′. Let Np′ denote the number of popular files in the group. The general result

for the lower bound shows that, for K users requesting files independently, the average rate

is lower bounded by [36]

R̄ ≥ R̄lb =
1

11
Kp′(Np′ −M). (3.39)

Heuristical methods are used to decide the group of popular files to derive the converse

bounds. In [35], specific for the Zipf distribution, the choice of Np′ is proposed for different

Zipf parameter values, file sizes, and cache sizes. In [36], the value of p′ is proposed

for an arbitrary file popularity distribution. To tighten the bound further, a file merging

approach is proposed in [36]: Those files not belonging to the group of popular files, but

deemed moderately popular, are merged into new virtual files to be included in the group of

popular files. Specifically, by the definition of Np′ , we have pNp′+1 < p′. From file WNp′+1

and afterwards, subsequent files are merged into a new virtual file until the accumulated

popularity of these merged files exceeds p′. The procedure repeats until all the rest files are

considered. Let Nm
p′ denote the number of virtual files generated by the merging procedure.

With these additional virtual files, there are Np′ + Nm
p′ popular files. Using (3.39), [36]

shows a tighter lower bound given by

R̄lb =
1

11
Kp′(Np′ + Nm

p′ −M), (3.40)

and the number of virtual files is Nm
p′ = b

∑
n>Np′

pn

2/p′
+ 1

2
c. The file merging approach allows

some moderately popular files to be considered in deriving the converse bound. As a result,

the bound in (3.40) is by far the tightest converse bound.

The value of p′ for the converse bound in (3.40) obtained in [36] is determined by

combining a heuristic method and the exhaustive search. The method sets p′ = p1 ,

47

1
K max{3,M} , which results in Np1 popular files and Nm

p1
virtual files. To avoid trivial negative

lower bound in (3.40), when Np1 + Nm
p1

< M , the exhaustive search of p′ (Np′) is used by

searching over the rest of files with popularity less than p1, i.e., {Wn : Np1 + 1 ≤ n ≤ N}.

As a result, the converse bound is given by [36]

R̄lb =
1

11
max

{
1

max{3, M}
(Np1 + Nm

p1
−M), max

Np1+1≤n≤N
Kpn(Npn + Nm

pn
−M)

}

(3.41)

where the second term provides a possible improved converse bound through the exhaustive

search for N ′
p ∈ {Np1 + 1, . . . , N}.

Interestingly, the use of popular files to derive the lower bound echoes the structure of

the optimal cache placement solution for P1. As discussed in Section 3.3.4, the no files in

the first file group are the most popular files for caching. Based on this observation, we

determine Np′ by the optimal cache placement for the CCS. The group of the most popular

files is obtained from Algorithm 4 with size no, with the corresponding file popularity

threshold set as p′ = pno . The number of virtual files is Nm
pno

accordingly. Then, we obtain

the lower bound R̄lb as follows.

Proposition 5. Let no be the number of files in the first file group by the optimal cache

placement solution for P1. The average delivery rate is lower bounded by

R̄ ≥ R̄lb =
1

11
Kpno(no + Nm

pno
−M). (3.42)

We point out that the difference of R̄lb in (3.42) from the existing methods [35, 36] is

that, instead of determining the popular files heuristically or through an exhaustive search,

we obtain the number of most popular files no from the optimal file group structure in the

cache placement optimization. In the simulation, we show that the lower bound in (3.42)

is tighter than the existing ones, especially for a smaller cache size when the average rate

is more sensitive to cache placement. This shows that using the file groups given by the

optimal cache placement for the CCS provides a more accurate method in determining the

popular files than existing methods.

48

3.5 Subpacketization Upper Bound

The subpacketization level, i.e., the number of subfiles in each file required for caching, is

an important issue for the practical implementation of coded caching. Since the optimal

cache placement has not been characterized before, there is no clear quantification of the

number of subfiles generated by the CCS. In this section, we explore the properties in the

optimal cache placement solution for P1 to characterize the subpacketization structure and

derive an upper bound on the subpacketization level under the optimal cache placement,

for any file popularity distribution p and memory size M .

Recall from Section 3.1.2 that each file can be partitioned into 2K subfiles, which are

divided into K + 1 file subgroups W l
n, l ∈ K ∪ {0}. There are

(
K
l

)
subfiles in W l

n, each

with size an,l. They will be stored in corresponding user subsets with size l, provided that

an,l > 0. The subpacketization level Ln of file n is directly related to its placement vector

an as Ln =
∑

l∈K∪{0}:an,l>0

(
K
l

)
. Based on the structure of the optimal cache placement

{an} presented in Section 3.3, it is straightforward to conclude the following property of

an.

Corollary 1. For N files with any file popularity distribution p, the optimal cache place-

ment an of any file n for P1 has at most two nonzero elements.

Following this property, we bound the worst-case maximum subpacketization level,

defined by Lmax = maxn Ln, for the CCS.

Proposition 6. For given (N,p, M, K), the maximum subpacketization level Lmax under

the optimal cache placement for the CCS is bounded by

Lmax ≤

(
K

bK/2c

)

+

(
K

bK/2c+ 1

)

≤

√
8

π
e

1
12K

2K

√
K

. (3.43)

Proof. From Corollary 1, by the optimal cache placement solution, the subfiles of any file

belong to at most two file subgroups of different sizes. There are
(

K
l

)
subfiles need to be

cached into the user subsets with size l ∈ K ∪ {0}. Then, for l = bK/2c and bK/2c + 1,

49

the number of subfiles is the highest. Consequently, we have Lmax ≤
(

K
bK/2c

)
+
(

K
bK/2c+1

)
.

Based on the Stirling’s approximation [95], we have

√
2πK

(
K

e

)K

≤ K! ≤
√

2πK

(
K

e

)K

e
1

12K ,

where the bounds become tight as K increases. Assuming K = 2m, m ∈ N+, we have
(

K
K
2

)

=
K!

K
2
! ∙ K

2
!
≤

√
2πe

1
12K KK+ 1

2e−K

2π
(

K
2

)K+1
e−K

≤

√
2

π
e

1
12K

2K

√
K

,

and we have (3.43).

Proposition 6 indicates that the maximum number of subfiles in the worst-case grows

as O(2K/
√

K). The actual subpacketization level of a file group depends on the location

of nonzero element lo (l1) in an. Although we cannot explicitly obtain lo (l1) for the optimal

placement, in general, for given K, it is a function of the cache size relative to the database

size M/N . Recall that for smaller l, subfiles inW l
n are cached to smaller user subsets S’s

(|S| = l), and vice versa. Intuitively, this means that the location lo (l1) of the nonzero

element tends to be smaller for smaller cache size and becomes larger as M/N increase.

This intuition is confirmed by experiments. In the simulation, we show that, depending on

M/N , the actual subpacketization level of the optimal cache placement typically can be

much less than the upper bound in (3.43).

Remark 6. The tradeoff between the average rate and the subpacketization level has been

studied in [53] via a numerical search over different subpacketization levels. We point out

that the upper bound in Proposition 6 provides the exact subpacketization level, for which

increasing it further no longer leads to a rate reduction.

3.6 Numerical Results

In this section, we evaluate the performance of the optimal cache placement by the pro-

posed algorithm and the corresponding subpacketization level for different system setups.

Further, we also evaluate the information-theoretic lower bound based on the file grouping

strategy in the optimal cache placement solution.

50

l
Cache placement vector of each file

a1 a2 a3 a4 a5 a6 a7 a8 a9

0 0 0 0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1 0 0 0 0 0 0 0 0 0
2 0.0317 0.0317 0.0317 0 0 0 0 0 0
3 0.0095 0.0095 0.0095 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0 0

Table 3.1: Cache placement matrix for K = 7, N = 9, θ = 1.5, M = 1.

3.6.1 The Optimal Cache Placement

We first verify the structure of the optimal cache placement solution for the CCS obtained

in Section 3.3. To do so, we obtain the placement solution {an} by Algorithm 4 and ver-

ify that they match the optimal {an} obtained by numerically solving P1. For example,

we generate user random demands using Zipf distribution, where file n is requested with

probability pn = n−θ
∑N

i=1 i−θ
, with θ > 0 being the Zipf parameter. For N = 9, θ = 1.5,

and K = 7, Tables 3.1 - 3.6 show the optimal {an} for cache size M = 1, 2.5, 4, 5.5, 6, 7,

respectively. They cover the possible cases of the optimal cache placement structure dis-

cussed in Section 3.3. As the cache size increases from small to large, different file groups

and subfile partition strategies under the optimal placement solution can be observed. In

all these results, the cache placement vectors {an} have at most two nonzero elements, as

stated in Corollary 1.

Tables 3.1 shows the optimal cache placement solution {an} for M = 1. There are two

file groups under the optimal solution, as in the case discussed in Section 3.3.2 (Fig. 3.3).

They are deemed “most popular” and “non-popular” files. The placement vector of the first

file group has two nonzero elements (e.g., file W1 is partitioned into two subfile groupsW2
1

and W3
1 , containing subfiles of size 0.0317 and 0.0095, respectively), and the files in the

second group are only stored at the server.

As M is increased to 2.5, Tables 3.2 shows that the optimal placement divides files

into three file groups, verifying the structure of the optimal {an} described in Section 3.3.3

51

l
Cache placement vector of each file

a1 a2 a3 a4 a5 a6 a7 a8 a9

0 0 0 0 0 0.2500 0.2500 1.0000 1.0000 1.0000
1 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0
3 0.0214 0.0214 0.0214 0.0214 0.0214 0.0214 0 0 0
4 0.0071 0.0071 0.0071 0.0071 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0 0

Table 3.2: Cache placement matrix for K = 7, N = 9, θ = 1.5, M = 2.5.

l
Cache placement vector of each file

a1 a2 a3 a4 a5 a6 a7 a8 a9

0 0 0 0 0 0 0 0 1.0000 1.0000
1 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0
4 0.0286 0.0286 0.0286 0.0286 0.0286 0.0286 0.0286 0 0
5 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0 0

Table 3.3: Cache placement matrix for K = 7, N = 9, θ = 1.5, M = 4.

and illustrated in Fig. 3.8. The “moderately popular” file group ({W5, W6}) is included in

this case, for which the increased cache size allows more room to cache a portion of these

files, while leaving the rest portion at the server. Between the first two groups, we observe

that the sub-placement vectors ān’s are only different by one element.

When M is further increased to 4, we observe from Table 3.3 that the placement results

in two file groups, similar to that for M = 1. However, compared to M = 1, larger cache

memory allows more files to be considered in the “most popular” file group to be cached.

For these files, an has only one nonzero element, indicating they are all partitioned into

subfiles of equal length.

For M = 5.5 in Table 3.4, the files are divided into three groups, where file W8 is

now considered “moderately popular” and partly cached, instead of “non-popular” as in

the case of M = 4. Table 3.4 is the case described in Fig. 3.7 of Section 3.3.3. As we

keep increasing M , we see from Tables 3.5 that for M = 6, the result is as described in

Fig. 3.5, where files are considered either “most popular” or “moderately popular” and are

52

l
Cache placement vector of each file

a1 a2 a3 a4 a5 a6 a7 a8 a9

0 0 0 0 0 0 0 0 0.3000 1.0000
1 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0
5 0.0476 0.0476 0.0476 0.0476 0.0476 0.0476 0.0476 0.0333 0
6 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0 0

Table 3.4: Cache placement matrix for K = 7, N = 9, θ = 1.5, M = 5.5.

l
Cache placement vector of each file

a1 a2 a3 a4 a5 a6 a7 a8 a9

0 0 0 0 0 0 0 0 0 0.6000
1 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0
5 0.0476 0.0476 0.0476 0.0476 0.0476 0.0476 0.0476 0.0476 0.019
6 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0 0

Table 3.5: Cache placement matrix for K = 7, N = 9, θ = 1.5, M = 6.

stored among users accordingly. For M = 7, Table 3.6 shows that when there is enough

cache at users, all files are considered “most popular” with identical cache placement as

discussed in Section 3.3.1. This single file group resembles the placement under uniform

file popularity.

From M = 1 to M = 7, we notice that the location of the nonzero element in an (the

value of lo and l1) is increasing. This indicates that as M increases, each subfile is stored

into a larger user subset. This trend confirms our intuition that the optimal lo (l1) increases

as more cache memory is added.

Note that the optimal placement solutions in Tables 3.2, 3.4, and 3.5 show three or two

file groups that have not been considered in the existing suboptimal schemes. For example,

in [35], only two file groups are considered, with the second group of files kept at the server.

As a result, these existing schemes cannot always guarantee the minimum rate.

53

a
Cache placement vector of each file

a1 a2 a3 a4 a5 a6 a7 a8 a9

0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0
5 0.0265 0.0265 0.0265 0.0265 0.0265 0.0265 0.0265 0.0265 0.0265
6 0.0635 0.0635 0.0635 0.0635 0.0635 0.0635 0.0635 0.0635 0.0635
7 0 0 0 0 0 0 0 0 0

Table 3.6: Cache placement matrix for K = 7, N = 9, θ = 1.5, M = 7.

0.5 1 1.5 2 2.5 3 3.5 4 4.5
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

Figure 3.9: Average rate R̄ vs. cache size M (N = 10, K = 6, Zipf distribution: θ = 1.5).

3.6.2 Performance of Average Rate

To evaluate the performance of the optimal cache placement scheme obtained by Algo-

rithm 4, we plot the average rate R̄ vs. M for file popularity using Zipf distribution and a

step function in Figs. 3.9 and 3.10, respectively. For comparison, we consider the central-

ized [17] and decentralized [18] symmetric cache placement schemes designed for uniform

file popularity (i.e., one file group), the RLFU-GCC scheme with two file groups [35],

and the mixed caching scheme in [36]. In Fig. 3.9, we set N = 10, K = 6, and Zipf

parameter θ = 1.5. The optimal cache placement by Algorithm 4 results in the lowest R̄

among all the schemes. As expected, the fixed one-file-group scheme, designed for uniform

54

2 4 6 8 10 12 14
0

1

2

3

4

5

6

7

Figure 3.10: Average rate R̄ vs. cache size M (N = 21, K = 12, step-function distribu-
tion).

popularity, has the worst performance. The two-file-group scheme (RLFU-GCC) and the

mixed caching scheme have almost identical performance. The performance gap between

the two-file-group scheme (RLFU-GCC) and the optimal solution is more noticeable for

smaller M , and reduces as M increases.

In Fig. 3.10, we consider a case studied in [36] with N = 21, K = 12, and a non-Zipf

step-function file popularity distribution given as: p1 = 5/9, pn = 1/30, for n = 2, . . . , 11,

and pn = 1/90, for n = 12, . . . , 21. Again, the average rate under the optimal cache

placement is lower than that of all other schemes, with the gap more noticeable for smaller

M . As an example, for M = 2, the optimal {an} results in three file groups for coded

caching that has not been considered in any existing scheme.

3.6.3 Converse Bound

We now compare our proposed lower bound in (3.42) with those proposed in [35] and [36],

as well as the average rate under the optimal caching scheme by Algorithm 4. In Fig. 3.11,

we set N = 10, K = 6, and Zipf parameter θ = 1.5. We observe that our proposed lower

bound is the highest for all values of M , and the gap is larger for smaller M . In particular,

55

Two-file-group [36] Exhaustive Search [36] Proposed

N = 5
Np′ 4 5 3
Nm

p′ 0 0 1
R̄lb 0.0909 0.1109 0.1789

N = 7
Np′ 4 5 3
Nm

p′ 1 1 1
R̄lb 0.1212 0.1296 0.1673

N = 9
Np′ 4 5 3
Nm

p′ 2 1 2
R̄lb 0.1515 0.1242 0.2138

Table 3.7: Comparison of different schemes to compute the lower bound in (3.40) (M = 1,
K = 6, Zipf distribution: θ = 1.5. For N = 5, 7, 9).

our bound in (3.42) based on the optimal file groups in the cache placement is higher than

the one in (3.41) from [36].

As discussed in Section 3.4, the difference in the lower bounds comes from how the

values of p′, Np′ , N
m
p′ in (3.40) are set by each scheme (i.e., (3.41) and (3.42)). To see

the difference between our scheme and two other schemes in [36], including the two-file-

group-based method and the exhaustive search, we show the values of Np′ , Nm
p′ , and R̄lb in

(3.40) for each scheme in Table 3.7. We consider Zipf distribution with θ = 1.5, K = 6,

M = 1, and compare the performance for N = 5, 7, 9. Again, our scheme always leads

to the tightest lower bound R̄lb. Note that for the popular file group, the optimal cache

placement in our scheme always gives smaller Np′ . This indicates that a smaller number of

the most popular files are selected, in contrast to the two-file-group based method and the

exhaustive search. This shows that even the exhaustive search used in (3.41) is not enough

to find the optimal number of the most popular files since it only searches a subgroup of

the possible cases.

3.6.4 Subpacketization Level

Define the average subpacketization level among N files by L̄ = 1
N

∑
n Ln. For N = 20

and K = 10, we obtain both Lmax and L̄ under the optimal cache placement by solving P1

for different M and θ. Note that smaller θ indicates a more uniform popularity distribution

56

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.05

0.1

0.15

0.2

0.25

0.3

Figure 3.11: The lower bound R̄lb vs. cache size M (N = 10, K = 6, Zipf distribution:
θ = 1.5).

and vice versa. Fig. 3.12 Top shows Lmax, the worst-case level (the upper bound in (3.43)),

and the maximum possible number of subfiles (2K), over different M , for Zipf parameter

θ = 0.4, 1.4, 2.4. We see that except for a small range of M , for most of the values of

M , Lmax is much lower than the worst-case level. Fig. 3.12 Bottom shows L̄ over M .

The general trend is similar to that of Lmax, except that L̄ can be much less than Lmax at

the lower range of M , especially for θ = 2.4, where there are only a few highly popular

files. For both Lmax and L̄, they tend to increase then decrease with M . This is because

the location lo of the nonzero element in an increases as M becomes larger, as seen in

Tables 3.1–3.5. As a result, the number of subfiles
(

K
lo

)
increases then decreases. In general,

the subpacketization level is low for smaller or larger M/N and higher for moderate M/N .

3.7 Summary

In this chapter, we formulated an optimization problem to obtain the optimal cache place-

ment of the CCS. We identified the inherent file group structure under the optimal solution,

where there are at most three file groups under the optimal solution, regardless of file pop-

57

0 2 4 6 8 10 12 14 16 18 20
0

200

400

600

800

1000

1200

0 2 4 6 8 10 12 14 16 18 20
0

200

400

600

800

1000

1200

Figure 3.12: The subpacketization level under the optimal cache placement vs. cache size
M (N = 20, K = 10). Top: The worst-case subpacketization level Lmax. Bottom: The
average subpacketization level L̄.

ularity or other system parameters. For each possible file grouping case, we obtained the

cache placement solution in closed-form. Following this, we developed a simple and ef-

ficient algorithm to obtain the optimal cache placement solution by comparing a set of

candidate closed-form solutions that can be computed in parallel. Our insight into at most

three possible file groups links the caching method to popular, moderately popular, and

non-popular file categories. Furthermore, the optimal cache placement may explore cod-

ing opportunities across file groups. Based on the optimal file grouping, we provided a

new converse bound for caching under any placement that is tighter than any existing ones.

We also quantified the subpacketization level of the optimal cache placement, where we

showed that the worst-case subpacketization level grows as O(2K/
√

K). The simulation

study verified the file group structure and the optimal cache placement solution by our pro-

58

posed simple algorithm. A lower average rate achieved by the optimal cache placement

than that of existing schemes was shown.

59

Chapter 4

Memory-Rate Tradeoff for Caching with
Uncoded Placement under Nonuniform
Demands

In this chapter, for a caching system with nonuniform file popularity, we study the memory-

rate tradeoff for caching with uncoded placement. We focus on the MCCS with cache

placement optimized in the class of popularity-first placement for average rate minimiza-

tion. We then propose a general lower bound and a popularity-first-based lower bound for

caching with uncoded placement. We also compare the optimized MCCS with the lower

bound to study the memory-rate tradeoff. Finally, we extend our study of memory-rate

tradeoff to the case where files are nonuniform in both popularity and sizes.

4.1 Cache Placement Optimization of the MCCS for Rate
Minimization

We consider a cache-aided transmission system with a server connecting to K cache-

equipped users over a shared error-free link, as described in section 3.1.1. For any coded

caching scheme, cache placement is a key design issue, which needs to be optimized to

minimize the delivery rate. The MCCS is a coded caching scheme recently proposed [44],

where the delivery strategy is improved over the original CCS [17] to reduce the delivery

rate further. In this section, we formulate the rate minimization problem for the MCCS

under the cache placement optimization.

60

4.1.1 Cache Placement

The cache placement construction for the MCCS is based on file partitioning. For K users,

there are total 2K user subsets in K, with subset sizes ranging from 0 to K (including the

empty set). Grouping the user subsets based on their sizes, we form a cache subgroup that

contains all user subsets of size l, defined as Al , {S : |S| = l, S ⊆ K} with |Al| =
(

K
l

)
,

for l = 0, . . . , K . Partition each file Wn into 2K non-overlapping subfiles. Each subfile is

for a unique user subset S ⊆ K, denoted by Wn,S , and it is stored at the local cache of each

user in subset S . It is possible that Wn,S = ∅ for a given S , and also for S = ∅, subfile Wn,∅

is only kept in the server and not stored in any user’s cache. A caching scheme specifies

how files are partitioned for storage. Regardless of the scheme used, each file should be

able to be reconstructed by combining all its subfiles. Thus, we have

K∑

l=0

∑

S∈Al

|Wn,S | = F, n ∈ N . (4.1)

There are 2K subfile sizes to be determined for each file. To reduce the number of vari-

ables and simplify the cache placement problem for its tractability, the following condition

is imposed:

C1) For each file Wn, the size of its subfile Wn,S only depends on |S|, i.e., |Wn,S | is

the same for any S ∈ Al of the same size.

The above condition is in fact proven to be the property of the optimal cache placement

for the CCS [37]. For the MCCS, although it is more difficult to prove analytically, it is

numerically verified in [53] that imposing this condition results in no loss of optimality.1

As a result, the subfiles of file Wn are grouped into file subgroups according to user subset

size l, each denoted byW l
n = {Wn,S : S ∈ Al}, for l = 0, . . . , K . Note that there are

(
K
l

)

subfiles of the same size inW l
n, and there are K + 1 file subgroups. Following this, let an,l

denote the size of subfiles inW l
n as a fraction of file Wn size F bits, i.e., an,l , |Wn,S |/F ,

for ∀S ∈ Al, l = 0, . . . , K , n ∈ N . In particular, an,0 represents the fraction of file Wn

1In Section 4.3, we are able to prove that imposing Condition C1) does not incur loss of optimality in
some specific cases.

61

that is not stored at any user’s cache but only remains in the server. Then, the file partition

constraint (4.1) is simplified to

K∑

l=0

(
K

l

)

an,l = 1, n ∈ N . (4.2)

Recall that each subfile is intended for a unique user subset. For the cache placement,

user k stores all the subfiles in W l
n that are intended for it, i.e., {Wn,S : k ∈ S and S ∈

Al+1} ⊆ W l
n, for l = 0, . . . , K − 1. Note that in each cache subgroup Al, there are

(
K−1
l−1

)

different user subsets containing the same user k. Thus, there are
∑K

l=1

(
K−1
l−1

)
subfiles in

each file Wn that a user can store in its local cache. This means that, in total, a fraction
∑K

l=1

(
K−1
l−1

)
an,l of file Wn is cached by a user. With cache size M at each user, we have

the following cache constraint

N∑

n=1

K∑

l=1

(
K − 1

l − 1

)

an,l ≤M. (4.3)

For nonuniform file popularity, even with Condition C1, the cache placement is still a

complicated problem. To further simplify the cache placement problem and the average rate

expression, we consider the popularity-first cache placement approach described below.

Popularity-first cache placement

A popularity-first cache placement is to allocate more cache memory to a more popular

file: With file popularity p1 ≥ ∙ ∙ ∙ ≥ pN , the cached subfiles satisfies

an,l ≥ an+1,l, l ∈ K, n ∈ N\{N}. (4.4)

Remark 7. The popularity-first cache placement approach has been used for both the

CCS [33, 37] and the MCCS [53] to simplify the cache placement problem. For the CCS,

the popularity-first placement has been proven to be the property of the optimal cache

placement [37]. For the MCCS, the same is difficult to prove analytically, but the optimal-

ity of the popularity-first placement has been verified numerically [53]. In Section 4.3, we

will prove the optimality of popularity-first placement in some cases.

62

4.1.2 Content Delivery

In the content delivery phase, the server multicasts coded messages to different user subsets.

Each coded message corresponds to a user subset S , formed by the bitwise XOR operation

of subfiles as

CS ,
⊕

k∈S

Wdk,S\{k}. (4.5)

In the original CCS [17], the server simply delivers the coded message formed by

each user subset, for any demand vector d. However, under random demands, multiple

users may request the same (popular) file, causing redundant coded messages transmitted

separately multiple times. To address this, in the MCCS [44], a modified coded delivery

strategy is proposed to remove this redundancy and reduce the average delivery rate fur-

ther. Let Ñ(d) denote the number of distinct file requests for demand vector d, where

Ñ(d) ≤ K. To describe the delivery strategy in the MCCS, we provide the following four

definitions:

Definition 2 (Leader group). The leader group U is a user subset of size |U| = Ñ(d), with

the users in U having exactly Ñ(d) distinct file requests.

Definition 3 (Redundant group). Given the leader group U , any user subset S ⊆ K with

S ∩ U = ∅ is called a redundant group; otherwise, S is a non-redundant group.

Definition 4 (Redundant request). A file request dk by any user k in the redundant group

S is a redundant request.

Definition 5 (Redundant message). Any coded message CS corresponding to a redundant

group S is a redundant message; otherwise, it is a non-redundant message.

Based on the above definitions, any user subset is either a redundant group or a non-

redundant group. In the MCCS, only the non-redundant messages are multicasted to both

non-redundant and redundant groups. For nonuniform file popularity, file partitioning may

be different for different files, leading to different subfile sizes. In formulating the coded

63

message CS in (4.5), the following technique is commonly used for the subfiles of different

lengths in the XOR operation.

Zero-padding: With different subfile sizes, subfiles in coded message CS are zero-

padded to the size of the largest subfile in CS for transmission.

Consider zero-padding for the coded message CS for subgroup S . The size of CS in

(4.5) is given by

|CS | = max
k∈S

adk,l, S ∈ Al+1, l = 0, . . . , K − 1. (4.6)

Remark 8. Zero-padding is a technique commonly used to form coded messages in the

existing works [33, 37, 47, 48, 53]. However, the impact of zero-padding on coded caching

is unknown. Intuitively, zero-padding introduces extra waste bits that may degrade the

performance. In Section 4.3, we will provide our findings on this issue.

4.1.3 Cache Placement Optimization

Let an , [an,0, . . . , an,K]T denote the (K + 1) × 1 cache placement vector for file Wn,

n ∈ N , and let a , [aT
1 , ∙ ∙ ∙ , aT

N]T represent the entire placement for N files. For demand

vector d, the delivery rate is the total size of the non-redundant messages, given by

RMCCS(d; a) =
∑

S⊆K,S∩U 6=∅

|CS | =
∑

S⊆K,S∩U 6=∅

max
k∈S

adk,l. (4.7)

The average delivery rate R̄MCCS is given by

R̄MCCS(a) = Ed [RMCCS(d; a)] = Ed




∑

S⊆K,S∩U 6=∅

max
k∈S

adk,l



 (4.8)

where Ed[∙] is taken with respect to d.

From (4.4), define the set of all popularity-first placements by Q , {a : an,l ≥

an+1,l, l ∈ K, n ∈ N\{N}}. Aiming to obtain the minimum average rate for the MCCS,

we optimize the cache placement a ∈ Q to minimize R̄MCCS, given by

P4 : min
a∈Q

R̄MCCS(a) (4.9)

64

s.t. (4.2), (4.3), and

an < 0, n ∈ N . (4.10)

Note that in P4, we restricted the cache placement optimization within the set of

popularity-first placements, for the reason discussed in Remark 7. In the following, we

first focus on analyzing how optimal the MCCS in P4 is under nonuniform file popularity,

by comparing it with the lower bounds we develop for caching with uncoded placement.

Then, in Section 4.4, we describe the optimal cache placement solution to P4 and its inher-

ent structure.

4.2 Converse Bound for Uncoded Placement

In this section, we first introduce a lower bound on the average rate for any caching with

uncoded placement. Then, we develop a popularity-first-based lower bound by restricting

the uncoded placement to the set of popularity-first placements.

LetD denote the set of the distinct file indexes in demand vector d, i.e.,D = Unique(d) ⊆

N , where Unique(d) is to extract the unique elements in d. By the definition of the leader

group U in Definition 2, we have |D| = |U| = Ñ(d), for a given d. The following lemma

gives a lower bound on the average rate under any uncoded placement.

Lemma 2. For the caching problem described in Section 3.1, the following optimization

problem provides a lower bound on the average rate for caching with uncoded placement

P5: min
a

R̄lb(a) ,
∑

D⊆N

∑

d∈T (D)

K∏

k=1

pdk
Rlb(D; a) (4.11)

s.t. (4.2), (4.3), and (4.10)

where T (D) , {d : Unique(d) = D, d ∈ NK}, and Rlb(D; a) is the lower bound for the

distinct file set D with the placement vectors {an, n ∈ D}, given by

Rlb(D; a) , max
π:I|D|→D

K−1∑

l=0

Ñ(d)∑

i=1

(
K − i

l

)

aπ(i),l (4.12)

where π : I|D|→D is any bijective map from I|D| to D.

65

Proof. See Appendix B.1.

Note that P5 is a min-max problem. It can be cast in its epigraph form by moving

(4.12) to the constraints. The resulting equivalent problem is a linear program (LP), which

can be solved by standard LP solvers.

Given that the popularity-first placement approach has been considered in the existing

works under nonuniform file popularity, we also develop a popularity-first-based lower

bound for caching, assuming that the popularity-first placement approach is used for the

uncoded placement.

Lemma 3. (Popularity-first-based lower bound) For the caching problem described in Sec-

tion 3.1, the following optimization problem provides a lower bound on the average rate

for caching under popularity-first cache placement

P6: min
a∈Q

R̄lb(a) ,
∑

D⊆N

∑

d∈T (D)

K∏

k=1

pdk
Rlb(D; a) (4.13)

s.t. (4.2), (4.3), and (4.10)

where Rlb(D; a), for a ∈ Q, is given by

Rlb(D; a) ,
K−1∑

l=0

Ñ(d)∑

i=1

(
K − i

l

)

aφ(i),l, a ∈ Q (4.14)

where φ : I|D| → D is the bijective map in the decreasing order of file popularity, i.e.,

pφ(1) ≥ ∙ ∙ ∙ ≥ pφ(|D|).

Proof. See Appendix B.2.

Note that for Rlb(D; a) in (4.12), by restricting a ∈ Q, we can remove the max oper-

ation and simplify the expression to (4.14). Due to the restriction a ∈ Q in P6, the lower

bound given by P5 is also a lower bound for P6. In the following theorem, we show that

for K = 2 users, there is no loss of optimality by restricting to popularity-first placements.

Theorem 2. For K = 2, P5 and P6 are equivalent.

66

Proof. See Appendix B.3

Theorem 2 indicates that, with nonuniform file popularity, for K = 2 users, the

popularity-first placement is an optimal cache placement, regardless of the values of N ,

p, and M . The general lower bound for any caching with uncoded placement given by P5

is attained by some a ∈ Q. For K > 2 users, the same conclusion turns out to be challeng-

ing to prove. Although the same conclusion cannot be shown analytically, in Section 4.6,

we provide numerical results to show that the two lower bounds by P5 and P6 are equal in

general.

4.3 Memory-Rate Tradeoff Characterization

In this section, we compare the average rate of the optimized MCCS in P4 and that of the

popularity-first-based lower bound given by P6 to show the tightness of the bound, as well

as the how optimal the MCCS is. Note that the difference between P4 and P6 is only in

the expression of the average rate objective. Thus, it is sufficient to compare R̄MCCS(a) and

R̄lb(a), for a ∈ Q.

Consider N files with arbitrary popularity distribution p and local cache size M . We

compare R̄MCCS(a) and R̄lb(a) in three regions:

Region 1: K = 2;

Region 2: K > 2, Ñ(d) = K (no redundant file requests);

Region 3: K > 2, Ñ(d) < K (with redundant file requests).

Note that Region 2 is possible only when K ≤ N , and Region 3 is when there are

multiple users requesting the same file. We summarize our results below:

• For both Regions 1 and 2, we prove that the popularity-first-based lower bound by

P6 is tight, i.e., the optimized MCCS by P4 attains this lower bound. In particular,

in Region 1, by Theorem 2, the result implies the optimality of the MCCS (with

the optimized popularity-first placement) for any caching with uncoded placement.

Also, the tight bound reveals that there is no loss of optimality by zero-padding in

coded messages in the MCCS in Regions 1 and 2.

67

• For Region 3, we show that there may be a performance gap between the optimized

MCCS and the popularity-first-based lower bound by P6. The loss is due to zero-

padding in the coded messages in the delivery phase. Nonetheless, numerical results

from our experiments show that, in general, the loss only appears in limited scenarios

and is very small.

4.3.1 Expression of R̄MCCS(a)

We first rewrite the expression of R̄MCCS(a) in (4.8) for the MCCS. Given placement vector

a ∈ Q, we rewrite RMCCS(d; a) in (4.7) for demand vector d as

RMCCS(d; a) =
K−1∑

l=0

∑

S∈Al+1,S∩U 6=∅

max
k∈S

adk,l (4.15)

where we regroup the terms in RMCCS(d; a) based on the size |S| of the non-redundant

groups, and U is the leader group for d. Define ψ : I|U|→U as a bijective map from I|U|

to the leader group U , such that the requested (distinct) files by the users in U are ordered

in decreasing popularity, i.e., pdψ(1)
≥ . . . ≥ pdψ(|U|)

. Recall that φ : [|D|]→ D defined

in Lemma 3 maps the indexes of distinct files with the same file popularity order. By the

relation of D and U , the two mappings ψ(∙) and φ(∙) are based on the same file popularity

order, and we have dψ(i) = φ(i), i = 1, . . . , Ñ(d). Also, since a ∈ Q, we have

adψ(1),l ≥ . . . ≥ adψ(Ñ(d)),l
, l ∈ K. (4.16)

To evaluate the inner max operation in (4.15), we partition the coded messages into

different categories according to the user subsets. Recall that cache subgroup Al+1 is the

set of all
(

K
l+1

)
user subsets with size |S| = l + 1. Among these user subsets, there are

(
K−1

l

)
subsets containing user ψ(1) in U . Let āψ(1),l denote the size of the coded message

corresponding to each of these
(

K−1
l

)
subsets containing user ψ(1). From (4.16), we have

āS
ψ(1),l = max

k∈S
adk,l, for S ∈ Al+1, ψ(1) ∈ S ∩ U . (4.17)

Similarly, there are
(

K−2
l

)
user subsets in Al+1 that contain user ψ(2) but not ψ(1) in

U . Denote the size of the coded message corresponding to each of these subsets as āψ(2),l,

68

then

āS
ψ(2),l = max

k∈S
adk,l, for S ∈ Al+1, ψ(1) /∈ S, ψ(2) ∈ S ∩ U . (4.18)

Following the above, in general, the number of user subsets inAl+1 that include ψ(i) but not

ψ(1), . . . , ψ(i− 1) is
(

K−i
l

)
. Let āψ(i),l denote the size of the coded message corresponding

to each of these subsets. Then, we have

āS
ψ(i),l = max

k∈S
adk,l, for S ∈ Ãl+1

i (4.19)

where Ãl+1
i , {S ∈ Al+1: {ψ(1), . . . , ψ(i − 1)} ∩ S = ∅, ψ(i) ∈ S ∩ U}, with |Ãl+1

i | =
(

K−i
l

)
.

Based on (4.19), we can rewrite (4.15) as

RMCCS(d; a) =
K−1∑

l=0

Ñ(d)∑

i=1

∑

S∈Ãl+1
i

āS
ψ(i),l. (4.20)

Averaging RMCCS(d; a) in (4.20) over d, R̄MCCS(a) in (4.8) can be rewritten as

R̄MCCS(a) =
∑

D⊆N

∑

d∈T (D)

K∏

k=1

pdk
RMCCS(d; a). (4.21)

where T (D) is defined below P5 in Lemma 2. With the expression in (4.21), we now can

directly compare the minimum average rate in P4 with P5 or P6.

4.3.2 Region 1: K = 2

In this region, We have the following result on the optimality of the MCCS.

Theorem 3. For a caching problem of N files with popularity distribution p and local

cache size M , for K = 2 users, the minimum average rate of the optimized MCCS in P4

attains the lower bound given by P5. Thus, the MCCS is optimal for caching with uncoded

placement.

Proof. We first show that P4 and P6 are equivalent, i.e., R̄MCCS(a) = R̄lb(a), for a ∈ Q.

Comparing the two expressions in (4.13) and (4.21), we only need to examine RMCCS(d; a)

69

and Rlb(D; a). For K = {1, 2}, we have |D| = Ñ(d) = 1 or 2. We consider these two

cases separately below.

Case 1) Ñ(d) = 1: In this case, two users request the same file. Based on the relation

of two mappings ψ(∙) and φ(∙) discussed in Section 4.3.1, we have D = {φ(1)}, and

dψ(1) = dψ(2) = φ(1). For K = 2, Rlb(D; a) in (4.14) is given by

Rlb(D; a) = aφ(1),0 + aφ(1),1. (4.22)

For RMCCS(d; a) in (4.20), based on Ãl+1
i defined below (4.19), for Ñ(d) = 1, we have

Ã1
1 = {ψ(1)} and Ã2

1 = {ψ(1), ψ(2)}. Thus, from (4.16) and āS
ψ(1),l in (4.17), we have

RMCCS(d; a) =
∑

S∈Ã1
1

āS
ψ(1),0 +

∑

S∈Ã2
1

āψ(1),1 = adψ(1),0 + adψ(1),1. (4.23)

Since dψ(1) = φ(1), from (4.22) and (4.23), we have

RMCCS(d; a) = aφ(1),0+aφ(1),1 =Rlb(D; a). (4.24)

Case 2) Ñ(d) = 2: In this case, two users request two different files, i.e., D =

{φ(1), φ(2)}. By the popularity-first placement in (4.4), we have aφ(1),l ≥ aφ(2),l, l = 1, 2.

Following this, for K = 2 and Ñ(d) = 2, Rlb(D; a) in (4.14) is given by

Rlb(D; a) = aφ(1),0 + aφ(2),0 + aφ(1),1. (4.25)

For RMCCS(d; a) in (4.20), we have

RMCCS(d; a) =
1∑

l=0

2∑

i=1

∑

S∈Ãl+1
i

āS
ψ(i),l. (4.26)

Note that by definition, Ã2
2 contains those user subsets of size two that include ψ(2) but not

ψ(1). However, for K = 2, when excluding ψ(1), the size of the user subset can only be 1.

Thus, we have Ã2
2 = ∅ for K = 2. In addition, we have Ã1

1 = {ψ(1)}, Ã1
2 = {ψ(2)}, and

Ã2
1 = {ψ(1), ψ(2)}. Thus, RMCCS(d; a) in (4.26) is given by

RMCCS(d; a) =
∑

S∈Ã1
1

āS
ψ(1),0 +

∑

S∈Ã1
2

āS
ψ(2),0 +

∑

S∈Ã2
1

āS
ψ(1),1

70

= adψ(1),0 + adψ(2),0 + adψ(1),1

= aφ(1),0 + aφ(2),0 + aφ(1),1 = Rlb(D; a) (4.27)

where the second equality is due to (4.16)–(4.18), and the third equality is because of

dψ(i) = φ(i). From (4.24) and (4.27), we conclude that for K = 2, RMCCS(d; a) =

Rlb(D; a), for a ∈ Q. Thus, P4 and P6 are equivalent. By Theorem 2, P4 and P5 are

equivalent for K = 2, and we complete the proof.

For K = 2, Theorem 3 shows that the lower bound given by P5 is tight. It also indi-

cates two types of optimality for the MCCS: 1) the optimality of the popularity-first cache

placement for the MCCS; and 2) the optimality of the MCCS for caching with uncoded

placement. The tight bound enables us to characterize the exact memory-rate tradeoff for

caching with uncoded placement. Also, as discussed in Section 4.1.2, zero-padding is com-

monly used in constructing coded messages. The optimality of the MCCS reveals that there

is no loss of optimality to use zero-padding in the MCCS for the coded message.

4.3.3 Region 2: K > 2, Ñ(d) = K

When K ≤ N , this region may occur if every user requests a different file, i.e., |D| = |U| =

Ñ(d) = K. Note that under this condition, the probability of each file being requested

has changed. Let pi|K denote the conditional probability of file i being requested, given

Ñ(d) = K. Then, in this case, R̄lb(a) in (4.13) of P6 is rewritten as

R̄lb(a) =
∑

D⊆NK

∑

d∈T (D)

K∏

k=1

pdk|KRlb(D; a), (4.28)

and R̄MCCS(a) in (4.21) for the MCCS is rewritten as

R̄MCCS(a)=
∑

D⊆NK

∑

d∈T (D)

K∏

k=1

pdk|KRMCCS(d; a). (4.29)

Comparing the expressions in (4.28) and (4.29) in P4 and P6, respectively, we have the

following result.

71

Theorem 4. For the caching problem of N files with distribution p and local cache size

M , in Region 2, the optimized MCCS in P4 attains the popularity-first-based lower bound

given by P6.

Proof. To prove the result, we only need to show that Rlb(D; a) = RMCCS(d; a), for a ∈ Q

and Ñ(d) = K. Consider RMCCS(d; a) in (4.20). Since every user requests a distinct file,

the leader group includes all users and can be written as U = {ψ(1), . . . , ψ(K)}. Thus, for

any user subset S , we have S ⊆ U . From the definition of Ãl+1
i below (4.19), this means

that for any S ∈ Ãl+1
i , ψ(i) ∈ S ⊆ U , and dψ(i) is the most popular file requested in S . By

(4.16), we have maxk∈S adk,l = adψ(i),l. Thus, āS
ψ(i),l in (4.19) is given by

āS
ψ(i),l = max

k∈S
adk,l = adψ(i),l, for S ∈ Ãl+1

i . (4.30)

Since |Ãl+1
i | =

(
K−i

l

)
, RMCCS(d; a) in (4.20) is given by

RMCCS(d; a) =
K−1∑

l=0

K∑

i=1

(
K − i

l

)

adψ(i),l =
K−1∑

l=0

K∑

i=1

(
K − i

l

)

aφ(i),l, (4.31)

which is the same as Rlb(D; a) in (4.14) for Ñ(d) = K. Thus, we conclude that R̄lb(a) =

R̄MCCS(a) in Region 2.

Based on Theorem 4, we provide the following remarks.

The optimality of popularity-first placement

We point out that in Region 2, the MCCS and the CCS are identical. Recall from Sec-

tion 4.1.2 that the MCCS uses a modified coded delivery strategy: it removes the redundant

coded messages in that of the CCS when there are redundant requests. In Region 2, since

all file requests are distinct, there is no redundant message in the delivery phase. As a re-

sult, the MCCS is the same as the CCS. Following this, and combining it with the result in

Region 1, we have the following corollary.

Corollary 2. In Regions 1 and 2, the optimal cache placement for the MCCS is a popularity-

first placement, i.e., there is no loss of optimality by restricting a ∈ Q in P4.

72

Proof. In Region 1, the claim immediately follows Theorem 3, as discussed at the end of

Section 4.3.2. In Region 2, the MCCS is the same as the CCS. It has been shown that

the optimal placement for the CCS is a popularity-first placement [37]. Thus, the claim

immediately follows for the MCCS in Region 2.

The optimality of Condition C1

Note that in Section 4.1.1, we have imposed Condition C1 for the cache placement to sim-

plify the problem. The popularity-first placement is defined under Condition C1. Corol-

lary 2 reveals that Condition C1, in fact, holds true for the optimal cache placement of the

MCCS, i.e., the size of each subfile Wn,S only depends on the size of the user subset |S|.

This is summarized in the following corollary.

Corollary 3. Condition C1 is the property of the optimal cache placement for the MCCS

in Regions 1 and 2.

Note that the optimality of Condition C1 for the MCCS has only been demonstrated

through numerical results in [53]. We show analytically in Corollary 3 that this property

holds for the MCCS in Regions 1 and 2.

Effect of zero-padding in coded caching

As mentioned earlier, for nonuniform file popularity, zero-padding is a common technique

to form the coded messages for both the CCS [33, 37, 47, 48] and the MCCS [48, 53].

However, the effect of using it has never been discussed or studied. The tight lower bounds

shown in Theorems 3 and 4 indicate that the use of zero-padding does not cause any loss,

as stated below.

Corollary 4. Zero-padding in the coded messages incurs no loss of optimality for the

MCCS in Regions 1 and 2.

The optimality of the CCS

The above analysis focuses on the MCCS. The result in Theorem 4 also leads to several

conclusions on the optimality of the CCS, as discussed below:

73

Zero-padding Note that the delivery strategy of the CCS does not distinguish whether

file requests are the same or different, i.e., it treats all the requested files as distinct files to

form the coded messages.2 This means that for any demand vector d, the CCS is effectively

equivalent to the case when Ñ(d) = K for the MCCS in Region 2, where all users request

different files. In other words, the average rate of the CCS (averaged over all d’s) is equal

to that of the MCCS in Region 2.3

Assuming all files are treated as distinct in the delivery phase, we can also construct

a lower bound under popularity-first placement. Given how P6 in Region 2 is formulated,

this lower bound is equivalent to P6. By Theorem 4, it follows that the average rate of

the CCS attains the popularity-first-based lower bound, assuming all files are treated as

distinct. Since the popularity-first placement is optimal for the CCS under nonuniform file

popularity [37], this tight lower bound also means that zero-padding used in the CCS incurs

no loss. We state this conclusion below.

Corollary 5. Using zero-padding for the CCS incurs no loss of optimality under nonuni-

form file popularity.

The optimality of Condition C1 Following the discussion above, the tight lower bound

also implies that Condition C1 is the property of the optimal cache placement for the CCS.

This is by the similar argument used in the zero-padding discussion. Although this opti-

mality has been proven in [37], the method used there is more involved. Our results in

Theorem 4 provides a simpler alternative proof of this result.

The optimality of the CCS Following the discussion in a), since the CCS attains the

lower bound given by P6, we also conclude that the CCS is optimal in terms of the average

rate for caching under popularity-first placement, if all file requests are distinct (i.e., the

2The CCS was originally proposed for the worst-case peak rate consideration, where all file requests are
distinct.

3This result should not be confused with the conclusion that the CCS and the MCCS being the same in
Region 2 in Section 4.3.3. Here, there may be multiple requests for the same file, although the CCS does not
distinguish them. In Section 4.3.3, the comparison is restricted to Region 2 where all file requests are indeed
distinct.

74

worst-case). Note that in the literature of caching with uncoded placement, for uniform file

popularity, the optimality of the CCS in terms of the worst-case peak rate in the case of

K ≤ N has been proven [45, 46]. For nonuniform file popularity, although many existing

works study the cache placement for the CCS [16,33–37,47,48], the optimality of the CCS

in this case has never been studied or known. Our result sheds some light on the optimality

of the CCS under nonuniform file popularity.

4.3.4 Region 3: K > 2, Ñ(d) < K

This region reflects the scenario when there exist multiple users request the same file. In

the following, we show that, in general, there may exist a gap between RMCCS(d; a) and

Rlb(D; a), for a ∈ Q. The main cause of the gap is the zero-padding used in the MCCS.

Examining the expressions of RMCCS(d; a) in (4.20) and Rlb(D; a) in (4.14), we see

that they contain the same number of coded messages, which is
∑K−1

l=0

∑Ñ(d)
i=1

(
K−i

l

)
. The

only difference between RMCCS(d; a) and Rlb(D; a) is the size of each coded message |CS |,

i.e., āS
ψ(i),l and aφ(i),l. Thus, we need to examine whether āS

ψ(i),l is the same as aφ(i),l, for

any S . To better explain our result, in the following, we first use an example to show that

āS
ψ(i),l and aφ(i),l may be different, which is due to zero-padding.

Example: Assume that two users request file φ(1), the most popular file in the requests.

One user is in the leader group U , denoted by ψ(1) and the other from a redundant group,

denoted by k′ /∈ U , where dk′ = φ(1). From Rlb(D; a) in (4.14), for all
(

K−2
l

)
user subsets

that include user ψ(2) but not user ψ(1), the size of coded messages corresponding to these

subsets is always aφ(2),l (dϕ(2) = φ(2)). Now, for RMCCS(d; a) in (4.20), consider user

subset S that includes users ψ(2) and k′ but not user ψ(1). From (4.18), the size of coded

messages for S is āS
ψ(2),l = adk′ ,l

= aφ(1),l, due to zero-padding. Since aφ(1),l ≥ aφ(2),l, in

this case, zero-padding by the MCCS results in a longer coded message for user subsets

that include user k′ but not the leader user ψ(1), as it always zero-pads the subfile to the

longest one in the subset.

Similar to the above example, in general, āS
ψ(i),l and aφ(i),l may be different for a coded

message corresponding to user subset S , where S includes a user from a redundant group

75

who requests a file that is more popular than the rest requested by all other users in S . For

the MCCS using the popularity-first placement in (4.4), the coded message is zero-padded

to the size of the subfile requested by that user from the redundant group (the largest). In

contrast, for the lower bound Rlb(D; a), the size of the coded message is that of the subfile

of the most popular file (φ(i), for some i) among files requested by those users in the leader

group, i.e., S ∩ U . This mismatch between RMCCS(d; a) and Rlb(D; a) leads to a possible

gap between the average rate of the optimized MCCS and the lower bound in P6. To further

quantify the difference between RMCCS(d; a) and Rlb(D; a), we re-express RMCCS(d; a) in

the following lemma.

Lemma 4. For any demand vector d, let N̂(i) denote the total number of redundant re-

quests for files {φ(1), . . . , φ(i)}, for i = 1, . . . , Ñ(d), and N̂(0) = 0. Then, RMCCS(d; a)

in (4.20) can be rewritten as

RMCCS(d; a) =
K−1∑

l=0

Ñ(d)∑

i=1




Ñ(d)∑

j=i

(
K − j − N̂(i− 1)

l

)

−
Ñ(d)∑

j=i+1

(
K − j − N̂(i)

l

)


 aφ(i),l.

(4.32)

Proof. See Appendix B.4.

The expression in (4.32) clearly shows the difference between RMCCS(d; a) and Rlb(D; a)

in (4.14): the gap between the two is determined by N̂(i), i = 1, . . . , Ñ(d), i.e., the number

of redundant requests for files in D. From this, we identify the following two cases where

RMCCS(d; a) = Rlb(D; a):

Case i): |D| = |U| = Ñ(d) = 1. In this case, all users request the same file. We have

adψ(1),l = . . . = adψ(K),l = aφ(1),l, since only one file is requested. Then, (4.32) is given by

RMCCS(d; a) =
K−1∑

l=0

(
K − 1

l

)

aφ(1),l = Rlb(D; a).

Case ii): N̂(i) = 0, i = 1, . . . , Ñ(d)− 1. In this case, only file φ(Ñ(d)), i.e., the least

popular file in D, has redundant requests. In other words, all the users in the redundant

76

group request file φ(Ñ(d)). From (4.32), it is straightforward to show

RMCCS(d; a) =
K−1∑

l=0

Ñ(d)∑

i=1

(
K − i

l

)

aφ(i),l = Rlb(D; a).

Finally, we point out that although R̄MCCS(a) and R̄lb(a) are generally not the same due

to the existence of redundant requests as discussed above, the optimal placement solution

a∗ to P4, P5, and P6 can still be the same for some values of M and p. This also leads to

the following case where R̄MCCS(a) = R̄lb(a).

Case iii): If P4, P5 and P6 result in the same optimal solution a∗ that satisfies a∗
1 =

∙ ∙ ∙ = a∗
N , then R̄MCCS(a

∗) = R̄lb(a
∗). In this case, all the subfiles have the same size.

Thus, there is no zero-padding and no potential waste. One obvious example is the special

case of uniform file popularity, where the optimal a∗
n’s are all identical and the same for

P4, P5, and P6. In this case, the same result R̄MCCS(a
∗) = R̄lb(a

∗) has been shown in [44].

Below, we provide a simple proof of our statement.

Since a∗
1,l = . . . = a∗

N,l, l = 0, . . . , K , āS
ψ(i),l in (4.19) can be written as

āS
ψ(i),l = max

k∈S
a∗

dk,l = a∗
1,l, for S ∈ Ãl+1

i . (4.33)

Since |Ãl+1
i | =

(
K−i

l

)
, RMCCS(d; a∗) in (4.20) is written as

RMCCS(d; a∗) =
K−1∑

l=0

Ñ(d)∑

i=1

(
K − i

l

)

a∗
1,l. (4.34)

Similarly, Rlb(D; a) in (4.12) of P5 and (4.14) of P6 can both be rewritten as

Rlb(D; a∗) =
K−1∑

l=0

Ñ(d)∑

i=1

(
K − i

l

)

a∗
1,l = RMCCS(d; a∗). (4.35)

Thus, from (4.11) and (4.21), we conclude that for a∗
1 = . . . = a∗

N ,

R̄MCCS(a
∗) = R̄lb(a

∗) =
∑

D⊆N

∑

d∈T (D)

K∏

k=1

pdk

K−1∑

l=0

Ñ(d)∑

i=1

(
K − i

l

)

a∗
1,l. (4.36)

Remark 9. As discussed above, when there are redundant file requests, zero-padding the

message to the largest subfile may lead to a loss in the average rate. One possible solution

77

to avoid this loss is to create as many subfiles of equal size as possible during the placement

phase. Coincidentally, such an approach was exploited in [52] for N = 2 files, where a

placement scheme was proposed to create equal subfile size and was shown to be an optimal

caching scheme with uncoded placement for two files.

4.4 Optimal Cache Placement for the MCCS

Due to the more complicated delivery scheme by the MCCS, finding the optimal cache

placement for the MCCS under nonuniform file popularity is challenging, and the problem

has not been solved. The optimal cache placement for the CCS under nonuniform file pop-

ularity has recently been obtained in Chapter 3. In this section, through reformulating P4,

we show that the cache placement problem has a similar structure to that for the CCS. As a

result, the optimal cache placement structure for the MCCS inherits that for the CCS char-

acterized in Chapter 3. Extending the results from the CCS, we present a simple algorithm

to compute the optimal cache placement solution for the MCCS. In the following, we first

reformulate P4 and then describe the optimal cache placement solution structure.

4.4.1 Reformulation of P4

It is straightforward to see that at the optimum, the cache memory is fully utilized, and the

local cache constraint (4.3) is attained with equality, which can be replaced by

N∑

n=1

K∑

l=1

(
K − 1

l − 1

)

an,l = M. (4.37)

Next, according to Lemma 1 in Chapter 3, for any popularity-first placement a ∈ Q,

constraint (4.10) can be equivalently replaced by the following two constraints:

a1,0 ≥ 0 and aN,l ≥ 0, l ∈ K. (4.38)

Finally, for a ∈ Q, the expression of the average rate R̄MCCS(a) in (4.8) can be simpli-

78

fied as [53]4

R̄MCCS(a) =
K−1∑

l=0

(
K

l+1

) N∑

n=1





(
N∑

n′=n

pn′

)l+1

−

(
N∑

n′=n+1

pn′

)l+1


an,l

−
min{N,K}∑

u=1

K−u−1∑

l=0

(
K −u

l +1

)K−u∑

i=1

(
K− u− i

l

) N∑

n=1

Pi,u,nan,l (4.39)

where Pi,u,n is the joint probability of i) having u distinct file requests; and ii) file Wn being

the i-th least popular file among files requested by all the users that are not in the leader

group {dk : k ∈ K\U}. The expression of Pi,u,n is derived in [53], which is lengthy and

non-essential in developing our results. Therefore, we omit it here but only point out that

Pi,u,n is not a function of a.

The expression of R̄MCCS(a) in (4.39) is a weighted sum of an,l’s. Define gn ,

[gn,0, . . . , gn,K]T, with

gn,l ,

(
K

l + 1

)




(
N∑

n′=n

pn′

)l+1

−

(
N∑

n′=n+1

pn′

)l+1


−
min{N,K}∑

u=1

(
K−u

l + 1

)K−u∑

i=1

(
K − u− i

l

)

Pi,u,n.

(4.40)

Also, from (4.2) and (4.37), define b , [b0, . . . , bK]T with bl ,
(

K
l

)
, and c , [c0, . . . , cK]T

with cl ,
(

K−1
l−1

)
. The cache placement optimization problem P4 can be reformulated into

the following equivalent LP problem

P7: min
a∈Q

N∑

n=1

gT
nan

s.t. (4.38), and

bTan = 1, n ∈ N , (4.41)
N∑

n=1

cTan = M. (4.42)

4The expression in (4.8) can be simplified to (4.39) by utilizing the properties of the popularity-first
placement with ordered an,l’s to eliminate the max operation in (4.8). The expression of R̄MCCS(a) in (4.39)
can be evaluated in polynomial time instead of the exponential time required in (4.8), which simplifies P4.

79

Connection to the cache placement problem for the CCS

As described in Section 4.1.2, the MCCS only delivers the non-redundant messages, while

the CCS delivers the coded messages corresponding to all the user subsets. The expression

of R̄MCCS(a) in (4.39) explicitly shows this difference by grouping all the messages into

the first term and the redundant messages into the second term. The cache placement

optimization problem for the CCS was formulated in problem P2. It essentially minimizes

the first term in (4.39), with all the constraints on a being the same as in P7, except that the

expression of gn is different. Based on this structural similarity, the structural properties of

the placement obtained for the CCS can be straightforwardly extended to P7 for the MCCS.

Since the cache placement result is the direct extension from that of the CCS in Chapter

3, in the following, we focus on describing the placement structure and omit the details of

derivations or proofs.

4.4.2 Optimal Cache Placement: Solution Structure

A major challenge in solving P7 is that the placement vectors in the optimal cache place-

ment a can be all different, depending on the file popularity distribution. It turns out that

the number of distinct placement vectors in the optimal a is limited to at most three. Similar

to Chapter 3, we first define file group below.

Definition 6 (File group). A file group is a subset of N that contains all files with the

same cache placement vector, i.e., for any two files Wn and Wn′ , if their placement vectors

an = an′ , then they belong to the same file group.

The first structural property, in terms of file groups, of the optimal cache placement for

the MCCS is provided in the following theorem.

Theorem 5. For N files with any file popularity distribution p, and for any K and M ≤ N ,

there are at most three file groups under the optimal cache placement {an} for P7.

Proof. The only differences between P7 and the the cache placement optimization problem

for the CCS in P2 are the expressions of gn, which does not affect the arguments used in the

80

proof of Theorem 1. Thus, the same result straightforwardly applies to the optimal solution

of P7 for the MCCS.

Theorem 5 indicates that, regardless of N , p, and M , there are at most three unique

values among the optimal placement vectors {an}. This leads to three possible cases: one,

two, or three file groups. In the following, we provide the optimal placement solution {an}

for each case.

One file group

In this case, the optimal cache placement vectors are identical for all files, i.e., a1 = ∙ ∙ ∙ =

aN . Under this structure, the cache placement problem is reduced to that under uniform

file popularity (i.e., all files have the same cache placement vector), of which the optimal

solution has been obtained in closed-form [96], which is identical to that for the CCS under

uniform file popularity [33]. Specifically, the optimal placement an, for any file n ∈ N ,

has at most two nonzero elements, which is given as follows:
{

an,lo = 1+bvc−v

(K
bvc)

, an,lo+1 = v−bvc

(K
dve)

, lo = bvc

an,l = 0, ∀ l 6= lo or lo + 1
(4.43)

where v , MK
N

. In particular, when v is an integer, the optimal an has only one nonzero

element: alo = 1/
(

K
lo

)
for lo = MK/N , and al = 0, ∀ l 6= lo.

Two file groups

In this case, there are only two unique placement vectors in {an}, i.e., a1 = ∙ ∙ ∙ = ano 6=

ano+1 = ∙ ∙ ∙ = aN , for some no ∈ {1, . . . , N − 1}. We use ano and ano+1 to represent the

two unique placement vectors for the first and the second file group, respectively. Define

ān , [an,1, . . . , an,K]T as the sub-placement vector in an. It specifies the subfiles stored in

the local cache, and an,0 specifies the subfile kept at the server. Let ān <1 0 denote that

there is only one positive element in ān, and the rest are all 0’s.

There are several structural properties of the optimal placement in the two-file-group

case. They are all direct extensions from the optimal cache placement of the CCS in Chap-

ter 3. We summarize them below.

81

Proposition 7. If there are two file groups under the optimal cache placement {an}, the

following three properties hold:

Property 1 (Proposition 1): The optimal sub-placement vector āno+1 for the second file

group has at most one nonzero element.

Property 2 (Proposition 2): If āno+1 <1 0, then āno and āno+1 are different by only one

element.

Property 3 (Proposition 3): If āno+1 <1 0, then ano,0 = 0.

Following the properties in Proposition 7, the optimal placement solution for P7 can

be one of the following two structures: 1) āno+1 = 0; 2) āno+1 <1 0. For the completeness,

we briefly present the optimal placement solutions below.

Case 1: āno+1 = 0. This condition means that no cache is allocated to the files in

the second group. By (4.2), we have ano+1 = [1, 0, 0, . . .]T . To determine ano for the first

group, we treat the first no files as a new database. Then, the cache placement problem is

reduced to the one in the one-file-group case in Section 4.4.2. Therefore, the solution is the

same as in (4.43), except that N is replaced by no, and thus, v = MK/no.

Note that this two-file-group case and the one-file-group case in Section 4.4.2 can be

combined as follows: The optimal ano is given by (4.43), for v = MK/no with no ∈ N .

The optimal n∗
o depends on (N,p, M, K), which can be determined via a 1-D search over

no that gives the minimum R̄MCCS(a), where R̄MCCS(a) is computed using the closed-form

expression in (4.39). For the overall algorithm, please refer to Algorithm 1, with the only

exception that the average rate is computed using R̄MCCS(a) in (4.39).

Case 2: āno+1 <1 0. In this case, only one element in āno+1 is nonzero. Assume

ano+1,lo > 0, for some lo ∈ K, and ano+1,l = 0, ∀l 6= lo, l ∈ K. By Property 2 in

Proposition 7, the element that is different between āno and āno+1 can be either at index lo

or some l1, for l1 6= lo. Thus, for a ∈ Q, there are only two possible cases for (ano , ano+1):

2.i) ano,lo > ano+1,lo > 0; or 2.ii) ano,l1 > ano+1,l1 = 0, for some l1 6= lo, l1 ∈ K. We

present the solution in each of these two cases:

Case 2.i) ano,lo > ano+1,lo > 0: In this case, the only different element between āno

82

and āno+1 is at position lo, i.e., the nonzero element ano+1,lo in āno+1. Also, by Property

3 in Proposition 7, ano,lo is the only nonzero element in ano , and ano,l = ano+1,l = 0, for

∀l 6= lo, l ∈ K. For āno+1, there are two unknown nonzero elements ano+1,0 and ano+1,lo .

Solving the unknown elements in ano and ano+1 using constraints (4.41) and (4.42), the

optimal (ano , ano+1) is given by





ano,lo = 1

(K
lo
)
, ano,l = 0, ∀ l 6= lo

ano+1,0 = 1−

(
KM
lo
− no

N − no

)

, ano+1,lo =
1
(

K
lo

)

(
KM
lo
− no

N − no

)

ano+1,l = 0, ∀ l 6= 0 or lo

(4.44)

where no ∈ {1, . . . , N − 1}, and the nonzero element position lo is limited to
⌊

KM
N

⌋
+ 1 ≤

lo ≤ min
{

K,
⌈

KM
no

⌉
− 1
}

.

Case 2.ii) ano,l1 > ano+1,l1 = 0, l1 6= lo: In this case, the only different element

between āno and āno+1 is at position l1, which is one of the zero elements in āno+1. It

follows that ano,lo = ano+1,lo > 0. Since ano,0 = 0 (by Property 3 in Proposition 7), ano

has two nonzero elements, ano,lo and ano,l1 , and the rest are all 0’s. For ano+1, there are two

unknown nonzero elements, ano+1,0 and ano+1,lo = ano,lo, and the rest are all 0’s. Thus, we

have three unknown elements ano,lo = ano+1,lo , ano,l1 , and ano+1,0 to determine in ano and

ano+1. Solving these unknown elements using constraints (4.41) and (4.42), the optimal

(ano , ano+1) is given by





ano,lo =
1
(

K
lo

)
KM
l1
− no

lo
l1
N − no

, ano,l1 =
1
(

K
l1

)
lo
l1
N − KM

l1
lo
l1
N − no

ano,l = 0, ∀ l 6= lo or l1

ano+1,lo = ano,lo , ano+1,0 = 1−
KM
l1
− no

lo
l1
N − no

ano+1,l = 0, ∀ l 6= 0 or lo

(4.45)

where positions lo and l1 satisfy either of the following two conditions: i) lo > KM/N and

l1 < KM/no, or ii) lo < KM/N and l1 > KM/no. Note that since lo, l1 ≤ K, if no ≤M ,

only the condition in i) is valid.

In summary, we can consider Case 2.i) as the special case when l1 = lo. Then, for

given (no, lo, l1), the closed-form solution in (4.44) of Case 2.i), or (4.45) of Case 2.ii)

83

completely determines the optimal ano and ano+1. We can search over all possible values

of no ∈ {1, . . . , N − 1} and lo, l1 ∈ K for the optimal tuple (no, lo, l1) that gives minimum

R̄MCCS. For the overall algorithm, please refer to Algorithm 2.

Three file groups

Under this structure, there are three unique placement vectors in {an}, i.e., a1 = . . . =

ano 6= ano+1 = . . . = an1 6= an1+1 = . . . = aN , for 1 ≤ no < n1 ≤ N − 1. We use

ano , ano+1 and an1+1 to represent the three unique cache placement vectors for the first,

second, and the third file group, respectively. Following the proof of Proposition 4, it is

straightforward to show the same result in the following holds for the MCCS as well: All

the memory is allocated to the first two file groups and the optimal cache placement vector

for the third group is an1+1 = [1, 0, 0, . . .]T .

Following the above, we treat those n1 files in the first two groups as a new database.

The cache placement problem for these first two groups is essentially reduced to the pre-

vious two-file-group case. Since ano+1 6= an1+1, we have āno+1 6= ān1+1 = 0. This

means that āno+1 includes at least one nonzero element. Therefore, the cache placement

(ano , ano+1) belongs to the case of two file groups with āno+1 <1 0 (for the second group)

in Case 2 of Section 4.4.2. For given n1, the optimal solution for (ano , ano+1) can be ob-

tained from (4.44) or (4.45), except that N is replaced by n1 ∈ {2, . . . , N}.

The final optimal {an} is obtained by searching over all possible values of n1 ∈

{2, . . . , N},5 no ∈ {1, . . . , n1 − 1}, and lo, l1 ∈ K for the optimal tuple (no, n1,lo, l1)

that results in minimum R̄MCCS. For the overall algorithm, please refer to Algorithm 3. The

algorithm simply computes R̄MCCS using a closed-form expression for at most (N−1)(N−

2)K2/2 times with different values of (no, n1, lo, l1), which can be computed efficiently in

parallel.

5Further analysis shows that we can limit the range of search for n1 within n1 ∈ {M +1, . . . , N−1} [48].

84

The Optimal Cache Placement Solution

In summary, by Theorem 5, the optimal cache placement problem P7 is reduced to a search

among three possible file grouping structures (from one to three file groups). From Sec-

tions 4.4.2 to 4.4.2, using the closed-form expressions for {an} and R̄MCCS(a), we obtain

the candidate optimal placement for each file-group case. The final optimal placement is

the one in these three solutions that results in the minimum R̄MCCS(a). Since the overall

algorithm only involves parallel evaluations of closed-form expressions, the algorithm is

very efficient with low computational complexity.

Remark 10. We point out that, for nonuniform file popularity, although the MCCS and

the CCS have the same set of candidate optimal cache placement structures and solutions,

the final optimal cache placement for the two schemes may be different due to different

expressions of the average rate (e.g., R̄MCCS(a) in P4). We will demonstrate this in our

numerical studies in Section 4.6. Note that this is in contrast to uniform file popularity,

where the optimal cache placements of the MCCS [44] and the CCS [33] are exactly the

same.

4.5 Memory-rate Tradeoff For Nonuniform File Popular-
ity and Size

In the previous sections, we have focused on files of equal size.6 In this section, we ex-

tend our study on the memory-rate tradeoff in caching to the more general case where both

file popularity and sizes are nonuniform among files. We extend the cache placement op-

timization formulation in Section 4.1 to this case and propose a lower bound for caching

with uncoded placement. By comparing the average rates of the optimized MCCS and the

lower bound, we characterize the exact memory-rate tradeoff for K = 2 users.

6In practice, files with nonuniform sizes could also be tailored into files with uniform size which are
treated separately with different popularities [97–99].

85

4.5.1 The Optimized MCCS

Consider each file of different sizes. We assume that file Wn has Fn bits. Recall in Section

3.1 that, for uniform file sizes, subfile size an,l and cache size M are normalized by the file

size and defined in the unit of file. For files with different sizes, we remove this normaliza-

tion. Instead, for each file n ∈ N , we define the size of each subfile in bits: an,l , |Wn,S |,

for |S| = l. Likewise, the cache size M is now defined in bits. Accordingly, we rewrite file

partition constraint (4.2) as

K∑

l=0

(
K

l

)

an,l = Fn, n ∈ N . (4.46)

With the above redefinitions of an,l and M , the expressions of the cache size con-

straint (4.3) and the average delivery rate R̄MCCS(a) in (4.8) still remain the same under

the nonuniform file popularity and size. The cache placement optimization problem for the

MCCS to minimize R̄MCCS(a) under nonuniform file popularity and size is formulated as

follows:

P8 : min
a

R̄MCCS(a)

s.t. (4.3), (4.10), and (4.46)

where R̄MCCS(a) is given in (4.8), and the objective and constraint functions are now all

expressed in bits.

Note that different from P4, which is restricted to the popularity-first placement a ∈

Q, the problem size of P8 grows exponentially with K. We will not further study the

simplification of P4 and its performance in this dissertation. For the CCS, a similar problem

under nonuniform file popularity and sizes has been studied, and tractable techniques have

been developed to simplify the optimization problem with good performances [33]. The

techniques can be adopted here for P4 for the MCCS, due to the similarity between the two

caching schemes. In the following, we focus on the characterization of the memory-rate

tradeoff under nonuniform file popularity and size, which is unknown in the literature.

86

4.5.2 Memory-Rate Tradeoff Characterization

To characterize the memory-rate tradeoff for nonuniform file popularity and size, we first

propose a lower bound on average rate under uncoded placement. The lower bound is a

straightforward extension of the lower bound in P5 by considering nonuniform file popu-

larity and sizes, instead of nonuniform file popularity only.

Recall that for nonuniform file popularity and size, an,l and M are defined in bits in

Section 4.5.1. For a given a, the expression of the lower bound on the average rate R̄lb(a)

in (4.11) remains unchanged (except that it is in bits). Since constraints (4.3), (4.10), and

(4.46) remain the same, we can formulate an optimization problem to minimize R̄lb(a) to

obtain the lower bound for caching with uncoded placement under nonuniform file popu-

larity and sizes. The result is given by the following lemma.

Lemma 5. For the caching problem with nonuniform file popularity and sizes, the fol-

lowing optimization problem provides a lower bound on the average rate for caching with

uncoded placement:

P9: min
a

R̄lb(a)

s.t. (4.3), (4.10), and (4.46)

where R̄lb(a) is given in (4.11), and the objective and constraints are all in bits.

Comparing P8 and P9, we obtain the following result on the optimized MCCS for the

two-user case.

Theorem 6. For the caching problem of N files with nonuniform file popularity and sizes,

for K = 2 users, the minimum average rate for the optimized MCCS in P8 attains the lower

bound given by P9.

Proof. See Appendix B.5.

Remark 11. The tight lower bound shown in Theorem 6 shows the optimality of the opti-

mized MCCS for K = 2 users. It enables us to characterize the exact memory-rate tradeoff

87

for K = 2 users under nonuniform file popularity and sizes. The optimality of the MCCS

also indicates that there is no loss of optimality by zero-padding. For the general case of

K > 2 users, our numerical studies in Section 4.6 will show that the gap between the

optimized MCCS (P8) and the lower bound (P9) is very small in general.

4.6 Numerical Results

In this section, we provide numerically studies on the optimized MCCS and the lower

bounds obtained for caching with uncoded placement. We first consider files of the same

size but with nonuniform popularity. We study the performance of the optimized MCCS

(under the optimal cache placement obtained in Section 4.4), the lower bound in P5, and the

popularity-first-based lower bound in P6. For comparison, we also consider a few existing

strategies proposed for the CCS, including i) the optimized CCS [48], ii) a two-file-group

scheme named RLFU-GCC [35], and iii) the mixed caching strategy [36].

Let R̄ denote the average rate obtained by different schemes or the lower bound.

Fig. 4.1 shows the average rate R̄ vs. M for N = 7 and K = 4. We generate the file popu-

larities using the Zipf distribution with pn = n−θ/
∑N

i=1 i−θ, where θ is the Zipf parameter.

We set θ = 0.56 (used in [33,100]). We see that, among all the caching strategies, the opti-

mized MCCS results in the lowest average rate for all values of M . The two lower bounds

in P5 and P6 are numerically identical, indicating the optimality of popularity-first place-

ment. Comparing the optimized MCCS with the lower bounds, we see that the gap between

them is very small and only appears at a small range of cache size values M ∈ [2.5, 3.5].

The gap between the average rates of the optimized MCCS and the optimized CCS mainly

exists for small cache sizes M ∈ [0, 2] and shrinks as M increases.

As discussed in Section 4.4.2, although the candidate solutions of the optimal cache

placement for the MCCS and the CCS are the same, the optimal placements may be differ-

ent for the two schemes. To see this difference, for the same setting considered in Fig. 4.1,

we show the optimal {an} for the two schemes for M = 1, 2, 6 in Tables 4.1, 4.2, and 4.3,

respectively, representing small, moderate, and large cache sizes. For a small cache size

88

0 1 2 3 4 5 6 7
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5 RLFU-GCC
Mixed Grouping
Optimized CCS
Optimized MCCS
Lower Bound, P6
Lower Bound, P5

2 2.5 3
0.8

1

1.2

1.4

Figure 4.1: Average rate R̄ vs. cache size M (N = 7, K = 4, equal file sizes, file popularity
Zipf distribution with θ = 0.56).

l
Optimal cache placement vectors for the files

a1 a2 a3 a4 a5 a6 a7

CCS

0 0 0 0 0 1.0000 1.0000 1.0000
1 0.2500 0.2500 0.2500 0.2500 0 0 0
2 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0

MCCS

0 0.4286 0.4286 0.4286 0.4286 0.4286 0.4286 0.4286
1 0.1429 0.1429 0.1429 0.1429 0.1429 0.1429 0.1429
2 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0

Table 4.1: The optimal cache placement vectors {an} for the MCCS and the CCS (M = 1,
N = 7, K = 4, θ = 0.56).

(M = 1), the optimal placements for the MCCS and the CCS in Table 4.1 are different.

For the MCCS, all files have the identical placement, where each file is partitioned into

subfiles of two sizes, with one stored at the server (an,0) and the rest in each user’s local

cache. In contrast, for the CCS, files {W5, W6, W7} are solely stored at the server, and files

{W1, ∙ ∙ ∙ , W4} are stored in each user’s local cache. This difference on the placement is

the main cause of the performance gap between the MCCS and the CCS in Fig. 4.1. For

89

l
Optimal cache placement vectors for the files

a1 a2 a3 a4 a5 a6 a7

CCS

0 0 0 0 0 0 0 0
1 0.2143 0.2143 0.2143 0.2143 0.2143 0.2143 0.2143
2 0.0238 0.0238 0.0238 0.0238 0.0238 0.0238 0.0238
3 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0

MCCS

0 0 0 0 0 0 0 0
1 0.2143 0.2143 0.2143 0.2143 0.2143 0.2143 0.2143
2 0.0238 0.0238 0.0238 0.0238 0.0238 0.0238 0.0238
3 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0

Table 4.2: The optimal cache placement vectors {an} for the MCCS and the CCS (M = 2,
N = 7, K = 4, θ = 0.56).

l
Optimal cache placement vectors for the files

a1 a2 a3 a4 a5 a6 a7

CCS

0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0
3 0.4286 0.4286 0.4286 0.4286 0.4286 0.4286 0.4286
4 0.1429 0.1429 0.1429 0.1429 0.1429 0.1429 0.1429

MCCS

0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0
3 0.4286 0.4286 0.4286 0.4286 0.4286 0.4286 0.4286
4 0.1429 0.1429 0.1429 0.1429 0.1429 0.1429 0.1429

Table 4.3: The optimal cache placement vectors {an} for the MCCS and the CCS (M = 6,
N = 7, K = 4, θ = 0.56).

moderate to large cache sizes (M = 2, 6), Tables 4.2 and 4.3 show that the optimal cache

placements are the same for the MCCS and the CCS. However, we see from Fig. 4.1 that for

M = 2, there is a small observable gap between the average rates of the two schemes, with

that of the MCCS being lower; and for M = 6, the average rates of the two are nearly iden-

tical. The explanation for this trend is that there exist more redundant messages for M = 2

with the placement in Table 4.2 than those for M = 6 with the placement in Table 4.3. To

elaborate more on this, note that for given demand d, the number of redundant groups in

cache subgroup Al+1 is
(

K−Ñ(d)
l

)
, which decreases with l. They determine the number of

redundant messages. The indexes of the nonzero elements in an are l = 1, 2 for M = 2,

90

M l
Optimal cache placement vectors for the files

a1 a2 a3 a4 a5 a6 a7 a8 a9

3

0 0 0 0 0 1.000 1.000 1.000 1.000 1.000
1 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0
3 0.250 0.250 0.250 0.250 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0

4

0 0 0 0 0 0 0.667 1.000 1.000 1.000
1 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0
3 0.250 0.250 0.250 0.250 0.250 0.083 0 0 0
4 0 0 0 0 0 0 0 0 0

7

0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0
3 0.222 0.222 0.222 0.222 0.222 0.222 0.222 0.222 0.222
4 0.111 0.111 0.111 0.111 0.111 0.111 0.111 0.111 0.111

Table 4.4: file grouping structures of the optimal cache placement {an} for the MCCS
(N = 9, K = 4, θ = 1.2).

and l = 3, 4 for M = 6. As a result, for M = 6, there are only a very small number of

redundant messages that are removed by the MCCS. Thus, the performance of the MCCS

and the CCS are almost identical. Finally, the larger improvement of the MCCS over the

CCS (and the MCCS almost attains the lower bounds) for M ∈ [0, 2] indicates that, at a

small cache size, coded caching is more sensitive to the cache placement to achieve the

largest caching gain.

To evaluate the performance with other file popularity distribution, we consider the

case studied in [36] with N = 12, K = 5, and a step-function for file popularity distribu-

tion: p1 = 7/12, pn = 1/18, n = 2, . . . , 7, and pn = 1/60, n = 8, . . . , 12. Fig. 4.2 shows

the average rate R̄ vs. M by different caching schemes and the lower bounds. Similar to

Fig. 4.1, for all values of M , the optimized MCCS achieves the lowest R̄ among all the

strategies, which is very close to the lower bounds. The two lower bounds in P5 and P6

are equal for different values of M , with the only exception for M = 2, where R̄ for P5 is

10−4 smaller than that of P6. The gap between the MCCS and the CCS again only exists for

small values of M . To show the performance at different levels of popularity distribution,

we show in Fig. 4.3 the average rate R̄ vs. Zipf parameter θ. We set N = 7, K = 4. We

91

0 2 4 6 8 10 12
0

0.5

1

1.5

2

2.5

3

3.5

4
RLFU-GCC
Mixed Grouping
Optimized CCS
Optimized MCCS
Lower Bound, P6
Lower Bound, P5

2 2.5 3 3.5 4
0.8

1

1.2

1.4

Figure 4.2: Average rate R̄ vs. cache size M (N = 12, K = 4, equal file sizes, file
popularity distribution: step function).

choose a small cache size M = 1 to show clearly the performance gap between the caching

schemes and lower bounds. The optimized MCCS always performs the best among all the

caching strategies for any θ. The lower bound in P5 and the popularity-first-based lower

bound in P6 are numerically identical. Also, we observe that the gap between the average

rates of the optimized MCCS and the lower bounds only exists at a moderate range of θ and

is very small in general. In contrast, the gap between the MCCS and the CCS is obvious at

all values of θ. This demonstrates the advantage of the MCCS over other caching schemes

at a small value of M .

We now verify the structure of the optimal cache placement for the MCCS described

in Section 4.4.2. We generate file popularity using Zipf distribution with θ = 1.2. We

obtain the optimal placement solution {an} using our proposed algorithm and verify that it

matches the optimal solution obtained by solving P0 numerically. As an example, for N =

9 and K = 4, Table 4.4 shows the optimal {an} that is obtained by solving P0 numerically,

for M = 3, 4, 7. For M = 3, we see that there are two file groups {W1, . . . , W4} and

{W5, . . . , W9} under the optimal placement. This structure matches Case 1 in Section

92

0 0.5 1 1.5 2 2.5
0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

RLFU-GCC
Mixed Grouping
Optimized CCS
Optimized MCCS
Lower Bound, P6
Lower Bound, P5

Figure 4.3: Average rate R̄ vs. Zipf parameter θ (N = 7, K = 4, M = 1, equal file sizes).

4.4.2, where the cache is entirely allocated to the first file group with the most popular files,

and the files in the second file group are only stored at the server (a5,0 = . . . = a9,0 = 1).

The optimal an’s for the first group are identical with only one nonzero element. This

means those files are partitioned into subfiles of the same size and are stored at users’ local

caches. With a small cache size, this placement result is intuitive: only a few popular files

are cached, and the rest remain in the server; thus, the optimal cache placement results in

two file groups. For M = 4, a different cache placement strategy is shown, where the files

are divided into three file groups. The optimal {an} is as described in Section 4.4.2 for

the three-file-group case: no cache is allocated to the third file group {W7, W8, W9}, and a

portion of the file is cached for W6 in the second file group; for the first file group, files are

partitioned into subfiles of a single size and are all stored at different users. For M = 7, the

optimal placement has only a single file group, where all the files have the same placement

as discussed in Section 4.4.2. From Table 4.4, we see that the file popularity differences are

more critical for the placement when the case size M is limited (relative to the total files in

the database). As M becomes large, all the files tend to have the same placement into the

user caches.

93

0 2 4 6
0

0.5

1

1.5

2

2.5

3

3.5
Optimized CCS
Optimized MCCS, P8
Lower Bound, P9

1 1.5 2 2.5 3
1

1.5

2

2.5

Figure 4.4: Average rate R̄ vs. cache size M (kbits) (N = 7, K = 4, file popular-
ity distribution: p = [0.0888, 0.0968, 0.1072, 0.1215, 0.2640, 0.1427, 0.1791], file sizes:
[F1, . . . , FN] = [9/6, 8/6, 7/6, 6/6, 5/6, 4/6, 3/6] kbits.

Finally, we consider the scenario of nonuniform file popularity and sizes. We generate

the file popularity using Zipf distribution with θ = 0.56, which gives p = [0.0888, 0.0968,

0.1072, 0.1215, 0.2640, 0.1427, 0.1791]. The file sizes are set as [F1, . . . , FN] = [9/6, 8/6,

7/6, 6/6, 5/6, 4/6, 3/6] kbits. The file sizes and popularity combinations are chosen similar

to those used in [33], which simulate a practical scenario where file popularity and size are

relatively uncorrelated. In Fig. 4.4, we compare the optimized MCCS in P8, the lower

bound in P9, and the optimized CCS [33]. The gap between the optimized MCCS and the

lower bound only exists for M ∈ [1, 3] and is very small. Moreover, the optimized MCCS

outperforms the optimized CCS. The gap between the two again is obvious at small values

of M , and it reduces to zero as M becomes large.

4.7 Summary

In this chapter, we first formulated an optimization problem to obtain the optimal cache

placement for the MCCS under nonuniform popularity. We then provided a general lower

94

bound and a popularity-first-based lower bound for caching with uncoded placement, which

are shown to be identical for K = 2 users. We compared the MCCS with the lower bounds

to study the memory-rate tradeoff. For K = 2 users, the lower bounds are achieved by

the MCCS, providing exact memory-rate tradeoff. For K > 2 users with distinct requests,

the optimized MCCS attains the popularity-first-based lower bound. For K > 2 users

with redundant requests, our analysis showed that a gap might exist between the optimized

MCCS and the lower bounds due to zero-padding. However, numerical results showed

that such loss only exists in some limited cases and is very small in general. Finally, we

extended our study of memory-rate tradeoff to the case where files are nonuniform in both

popularity and sizes. We showed that the optimized MCCS attains the lower bound for

K = 2 users and characterizes the exact memory-rate tradeoff.

95

Chapter 5

Memory-Rate Tradeoff for
Decentralized Caching with Nonuniform
Demands

In this chapter, we study the memory-rate tradeoff for decentralized caching with nonuni-

form demands. Focusing on the D-MCCS, we formulate a cache placement optimization

problem that is non-convex and develop two approximate algorithms to solve it. We further

propose a lower bound through a non-convex optimization problem that is solved through

an approximate algorithm. Finally, we compare the optimized D-MCCS with the lower

bound to study the memory-rate tradeoff for decentralized caching.

5.1 Decentralized Modified Coded Caching Scheme

In this section, we describe the cache placement and content delivery procedures of the

D-MCCS under nonuniform file popularity.

5.1.1 Decentralized Cache Placement

A salient feature of decentralized caching is that the active user set A (both the size and the

user identities) is unknown during the cache placement phase. We consider the following

decentralized placement procedure: each user k ∈ K independently and randomly selects

and caches qnF bits of file Wn, n ∈ N , where qn is the portion of the file the user wants to

96

cache, i.e.,

0 ≤ qn ≤ 1, n ∈ N . (5.1)

We define q , [q1, . . . , qN]T as the cache placement vector of all the files in N .

For uniform file popularity, the symmetrical decentralized placement is optimal for the

D-MCCS [44], i.e., q1 = ∙ ∙ ∙ = qN = M
N

. For nonuniform file popularity, the cache place-

ment may be different for different files, which complicates the cache placement design

of the D-MCCS. In this work, we aim to optimize the cache placement vector q for the

D-MCCS to minimize the average delivery rate. Since a subset of file n ∈ N of qnF bits

are cached by each user of cache size M , we have the cache size constraint given by

N∑

n=1

qnF ≤MF. (5.2)

Note that the server knows the cached contents by each user.

5.1.2 Content Delivery

During the delivery process, the server receives the information of the active user set A

and their demand vector dA. Based on these, the server knows the cached contents among

the users in A. We define subfile Wn,S as the chunk of file Wn that is cached by the active

user subset S ⊆ A but not by the rest users in A, i.e., A\S . We use Wn,∅ to represent the

portion of file n that is not cached by any user in A. Under the decentralized placement,

for file size F being sufficiently large, by the law of large numbers, qn is approximately the

probability of one bit in file n being selected by a user. Following this, the size of subfile

Wn,S is approximately given by [18]

|Wn,S | ≈ qs
n(1− qn)A−sF, S ⊆ A, |S| = s (5.3)

where A , |A|. According to (5.3), the size of subfile Wn,S depends on |S|, i.e., the

number of the users who cache it.

For any file demand vector dA, the D-MCCS multicasts coded messages to different

user subsets in A. Each coded message is intended for an unique active user subset S ⊆ A

97

and is formed by the bitwise XOR operation of total |S| subfiles, one from each requested

file, given by

CS ,
⊕

k∈S

Wdk,S\{k}, S ⊆ A,S 6= ∅. (5.4)

From (5.4), each of the subfiles in CS belongs to file dk requested by user k ∈ S and is

cached by users in S\{k} exclusively. Note that the coded messages can only be formed

for the nonempty active user subset S 6= ∅.

Since the portion qn of file n cached by the users may be different for files with different

popularities, the subfiles forming the coded message CS in (5.4) may not have equal size. In

this case, zero-padding is adopted for the XOR operation such that subfiles are zero-padded

to the size of the longest subfile. Thus, the size of CS is determined by the largest subfile

in CS , i.e.,

|CS | = max
k∈S
|Wdk,S\{k}| = max

k∈S
qs
dk

(1− qdk
)A−sF,

S ⊆ A, |S| = s + 1, s = 0, . . . , A− 1. (5.5)

Remark 12. For nonuniform file popularity, cache placement may be different for different

files, resulting in generating subfiles of nonequal sizes. The existence of nonequal subfiles

complicates the cache placement design. Zero-padding is a common technique to handle

the nonequal files in formulating the coded messages for both centralized [33, 48, 53] and

decentralized coded caching [61]. However, its impact on decentralized coded caching has

never been studied and is unknown. In Section 5.3.2, by developing a matching converse

bound, we show that there is no loss of optimality by using zero-padding in decentralized

coded caching if the size of the active user set is no more than two, A ≤ 2.

In the original D-CCS [18], for any file demand vector dA, the server transmits the

coded messages corresponding to all the active user subsets {CS : ∀S ⊆ A} to the active

users. For the D-MCCS, the server only transmits coded messages corresponding to certain

selected active user subsets [44]. We first provide the following two definitions:

98

Algorithm 5 Decentralized modified coded caching scheme
Decentralized cache placement procedure:

1: for n ∈ N do
2: Each user randomly caches qnF bit of file Wn.
3: end for

Coded delivery procedure:

1: for S ⊆ A and S ∩ UA 6= ∅ do
2: Server generates CS and multicasts it to S .
3: end for

Definition 7. Leader group: For any demand vector dA with Ñ(dA) distinct requests, the

leader group UA is a subset of the active user set A, i.e., UA ⊆ A, that satisfies |UA| =

Ñ(dA) and the users in UA have exactly Ñ(dA) distinct requests.

Definition 8. Redundant group: Given UA, any active user subset S ⊆ A is called a

redundant group if S ∩ UA = ∅; otherwise, S is a non-redundant group.

The delivery procedure of the D-MCCS improves upon that of the D-CCS by only

multicasting coded messages corresponding to the non-redundant groups, i.e., {CS : ∀S ⊆

A and S ∩ UA 6= ∅}, to both non-redundant and redundant groups.1 As a result, the D-

MCCS achieves a lower delivery rate than the D-CCS. Note that the rate reduction only

occurs when there exist redundant groups, i.e., there are multiple requests of the same file

among the active users.

We summarize both the cache placement and coded delivery procedures of the D-

MCCS in Algorithm 5. With the cached contents at each user via the decentralized cache

placement described in Section 5.1.1 and the coded messages {CS :∀S ⊆ A and S ∩UA 6=

∅} multicasted by the server, each user in A can retrieve all the subfiles of its requested

file [44].

1Note that this coded delivery strategy follows that of the centralized MCCS [44], which has been shown
to be a valid scheme, i.e., a user can reconstruct any requested file.

99

5.2 Decentralized Cache Placement Optimization

In this section, we first formulate the cache placement design for the D-MCCS under

nonuniform file popularity as an optimization problem to minimize the average delivery

rate. We then develop two algorithms to solve the problem.

5.2.1 Problem Formulation

Based on the delivery procedure in the D-MCCS described in Section 5.1.2, for a given

demand vector dA, the delivery rate is the total number of bits in the coded messages

corresponding to all the non-redundant groups {CS : ∀S ⊆ A and S ∩UA 6= ∅}, expressed

as

RMCCS(dA;q) =
∑

S⊆A,S∩UA=∅

|CS |. (5.6)

Define Qs , {S ⊆ A : S ∩ UA = ∅, |S| = s} as the set of the non-redundant groups with

|S| = s users for s = 1, . . . , K . Based on (5.5), we can rewrite (5.6) as

RMCCS(dA;q) =
A−1∑

s=0

∑

S∈Qs+1

max
k∈S

qs
dk

(1− qdk
)A−sF. (5.7)

By taking the expectation of RMCCS(dA;q) over all the possible dA ∈ NA andA ⊆ K, the

average rate of the D-MCCS as a function of q is given by

R̄MCCS(q) = EA [EdA [RMCCS(dA;q)]] = EA




∑

dA∈NA

(
∏

k∈A

pdk

)

RMCCS(dA;q)



 . (5.8)

Thus, we formulate the cache placement optimization problem for the D-MCCS under

nonuniform file popularity as

P10 : min
q

R̄MCCS(q) s.t. (5.1), (5.2).

P10 is a non-convex optimization problem w.r.t. q, which is difficult to solve. In the

following subsection, we propose two different algorithms to solve P10.

100

5.2.2 Optimal Decentralized Cache Placement Solutions

We first develop an algorithm that converges to a stationary point of P10 through solving a

series of Geometric Programming (GP) problems. To reduce the computational complexity,

we further propose an approximate solution with very low complexity to compute.

Successive GP Approximation Algorithm

We reformulate P10 into an equivalent Complementary GP (CGP) problem, which is an

intractable NP-hard problem [101]. It is shown that a stationary point of a CGP can be

obtained through the generic successive approximation method [102].

To reformulate P10 into an equivalent CGP problem, we first introduce auxiliary vari-

ables xn, n ∈ N , and add the following inequality constraint for (1− qn) in (5.7).

1− qn ≤ xn, n ∈ N . (5.9)

We also introduce auxiliary variables wdA,S for A ⊆ K, dA ∈ NA and S ∈ Qs+1, s =

0, . . . , K − 1. By (5.9), we replace maxk∈S qs
dk

(1− qdk
)A−sF in (5.7) with wdA,S and add

the following constraints

qs
dk

xA−s
dk

F ≤ wdA,S , k ∈ S (5.10)

for given S ∈ Qs+1,dA ⊆ NA,A ⊆ K. As a result, we reformulate P10 into the following

equivalent problem

P11 : min
q,x,w<0

EA




∑

dA∈NA

(
∏

k∈A

pdk

)
A−1∑

s=0

∑

S∈Qs+1

wdA,S





s.t. qn ≤ 1, n ∈ N , (5.11)
N∑

n=1

qnM−1 ≤ 1, (5.12)

1

qn + xn

≤ 1, n ∈ N , (5.13)

w−1
dA,S ∙ q

s
dk

xA−s
dk

F ≤ 1, k ∈ S,S ∈ Qs+1, s = 0, . . . , K − 1,dA ∈ N
A,A ⊆ K

(5.14)

101

where x , (xn)n∈N and w , (wdA,S)S∈Qs+1,dA⊆NA,A⊆K. Note that constraints (5.12),

(5.13) and (5.14) are direct reformulations of (5.2), (5.9) and (5.10), respectively. P11

minimizes a posynomial subject to upper bound three inequality constraints (5.11), (5.12)

and (5.14) that are posynomials and the inequality constraint (5.13) that is on the ratio

between two posynomials. Thus, P11 is a CGP problem. For a CGP problem, an approach

was developed using a sequence of approximate GPs to obtain a stationary point of the

problem [102]. We adopt this approach to solve P11 by solving (q,x,w) iteratively via a

sequence of approximate GP problems. Define the objective function of P11 by R̄CGP
MCCS. In

the ith iteration, given (q(i),x(i)) obtained from previous iteration, we have the following

approximate GP problem of P11.

P12
(
q(i),x(i)

)
:
(
q(i+1),x(i+1),w(i+1)

)
=argminq,x,w<0R̄

CGP
MCCS(q,x,w)

s.t. (5.11), (5.12), (5.14),
1

(
q
(i)
n +x

(i)
n

)(
qn

q
(i)
n

)α
(i)
n
(

xn

x
(i)
n

)β
(i)
n

≤ 1, n ∈ N (5.15)

where α
(i)
n , q

(i)
n

q
(i)
n +x

(i)
n

and β
(i)
n , x

(i)
n

q
(i)
n +x

(i)
n

. Note that constraint (5.15) is formed using (5.13)

and the arithmetic-geometric mean inequality [102]

qn + xn ≥

(
qn

α
(i)
n

)α
(i)
n

(
xn

β
(i)
n

)β
(i)
n

≥ 1. (5.16)

Note that P12(q(i),x(i)) is a standard GP problem, which can be solved using a stan-

dard convex optimization solver. The above approach of iteratively solving P12(q(i),x(i))

is guaranteed to converge to a stationary point of P11 [102]. This successive GP approx-

imation algorithm is summarized in Algorithm 6. By the equivalence of P10 and P11,

we can compute a stationary point of P10 using Algorithm 6. Note that as the size of

P12(q(i),x(i)) grows exponentially with K, the computational complexity of Algorithm 6

can be very high. To address this, next, we develop an alternative algorithm to solve the

problem with very low complexity.

102

Algorithm 6 The successive GP approximation algorithm for P11
Input: K, M , N , p, pa.

1: Initialization: Choose initial feasible point
(
q(0),x(0),w(0)

)
. Set i = 0.

2: repeat
3: Solve P12(q(i),x(i)) to obtain

(
q(i+1),x(i+1),w(i+1)

)
.

4: Set i = i + 1.
5: until R̄CGP

MCCS(q
(i),x(i),w(i)) converges.

6: R̄∗
MCCS = R̄CGP

MCCS(q
(i),x(i),w(i)); q∗ = q(i).

Output: R̄∗
MCCS, q∗.

Low-Complexity File-Group-Based Approach

We now propose an algorithm that computes an approximate solution for P10. The algo-

rithm is based on a particular cache placement structure. In particular, we consider the

two-file-group based placement scheme below.

Two-file-group-based placement: In the cache placement phase, the N files are parti-

tioned into two groups – based on their popularity distribution p. DefineN1 , {1, . . . , N1},

for N1 ∈ N , and N2 , N\N1 as the file index sets of first and second file groups, respec-

tively. The first groupN1 contains more popular files. For each user k ∈ K, its entire cache

is allocated to the first group N1 and and is equally split among these files in N1. Thus, the

cached portion of each file in the two-file-group based placement is given by

qn =

{
M/N1, n ∈ N1,

0, n ∈ N2.
(5.17)

Let A1 and A2 denote the sets of active users who request the files in N1 and N2,

respectively. Note that A1 ∩ A2 = ∅ and A = A1 ∪ A2. Denote Ai = |Ai|, for i =

1, 2. Accordingly, the number of distinct file requests from Ai is Ñ(dAi
). Note that Ai

and Ñ(dAi
), i = 1, 2 are all functions of N1. Under this two-file-group-based placement

structure, in the following lemma, P10 can be reformulated as an optimization problem

w.r.t. N1 to minimize the average rate.

Proposition 8. Consider the decentralized caching problem of N files with popularity dis-

tribution p and K users, where each user k has cache size M and is with probability pa,k

of being active. The minimum average rate under the two-file-group-based decentralized

103

Algorithm 7 Two-file-group based approximate solution
Input: K, M , N , p, pa.

1: for N1 = 1 to N do
2: Compute R̄FG-2

MCCS(N1) by (5.18).
3: end for
4: Compute N∗

1 = argminN1
R̄FG-2

MCCS(N1).
5: Compute R̄FG-2

MCCS(N
∗
1).

Output: R̄FG-2
MCCS(N

∗
1).

cache placement (5.17) for the D-MCCS is minN1∈N R̄FG-2
MCCS(N1), where R̄FG-2

MCCS(N1) is

given by

R̄FG-2
MCCS(N1),EA




∑

dA∈NA

(
∏

k∈A

pdk

)

RFG-2
MCCS(dA; N1)



 (5.18)

where RFG-2
MCCS(dA; N1) is the delivery rate under two-file-group-based placement given dA

and N1, expressed as

RFG-2
MCCS(dA; N1) =

A−1∑

s=0




Ñ(dA)∑

i=1

(
A− i

s

)

−

Ñ(dA2
)∑

i=1

(
A2 − i

s

)


 ∙

(
M

N1

)s(

1−
M

N1

)A−s

F + Ñ(dA2)F.

(5.19)

Proof. See Appendix C.2.

By Proposition 8, under the two-file-group-based placement, the optimal N1 ∈ N that

results in the minimum average rate can be obtained through search in N . Our algorithm

is summarized in Algorithm 7. For each N1 ∈ N , the average rate is computed directly

using the objective function in (5.18) using the closed-form expression in (5.19). Thus, the

computational complexity of Algorithm 7 is much lower as compared with Algorithm 6.

Interestingly, our numerical study in Section 5.4 shows that the average rate achieved by

Algorithm 7 is very close to that of Algorithm 6 and, in some cases, could be even lower

than that of Algorithm 6.

Remark 13. Assuming the active user set A is known, a similar two-file-group-based

placement has been considered in [35] [36] for the D-CCS, where the size of the first

104

group N1 was proposed through heuristics. Our work is different from them in the follow-

ing aspects: First, we develop our placement solution for the case of unknown active user

setA. Second, the D-MCCS is different from the D-CCS considered in [35,36] in terms of

the delivery procedure. Specifically, the delivery procedure of the D-MCCS removes the

redundancy that exists in the coded messages of the D-CCS. Furthermore, [35, 36] apply a

user-grouping-based coded message generation method, where the coded message in (4) is

formed by files within the same file group, and there is no coding across file groups. In con-

trast, we explore the coded caching gain among all the requested files in Algorithm 5. Note

that as it has been shown for the D-CCS, the average rate of the coded delivery that explores

the coded caching gain among all files is a lower bound to that of the user-grouping-based

delivery [47].

5.3 Memory Rate Tradeoff for Decentralized Caching

In this section, we characterize the memory-rate tradeoff for decentralized caching under

nonuniform file popularity by proposing a lower bound and comparing it with the average

rate of the optimized D-MCCS in P10.

5.3.1 Lower Bound for Decentralized Caching

The general idea for developing the lower bound for decentralized caching is to divide all

the possible file demand vectors into different types and then derive a lower bound for each

type separately [44]. Given any active user set A ⊆ K, we categorize all the possible

demand vectors dA ∈ NA based on the distinct file requests in dA. We use Unique(dA) to

denote extracting the distinct file requests in dA, and the resulting index set of distinct files

is denoted as DA , Unique(dA). Recall that the leader group UA contains Ñ(dA) users

requesting all the distinct files in dA and thus we have |DA| = |UA| = Ñ(dA).

We present a lower bound on the average rate for decentralized caching under nonuni-

form file popularity in the following theorem.

105

Theorem 7. Consider the decentralized caching problem of N files with popularity distri-

bution p and K users, where each user k has cache size M and is with probability pa,k of

being active. The following optimization problem provides a lower bound on the average

rate:

P13 :min
q

R̄lb(q),EA




∑

DA⊆N

∑

dA∈T(DA)

(
∏

k∈A

pdk

)

Rlb(DA;q)



 (5.20)

s.t. (5.1), (5.2)

where T (DA) , {dA : Unique(dA) = DA, dA ∈ NA}, and Rlb(DA;q) is the lower

bound on the rate for given q and DA, given by

Rlb(DA;q) , max
π:I|DA|→DA

A−1∑

s=0

Ñ(dA)∑

i=1

(
A− i

s

)

qs
π(i)(1− qπ(i))

A−sF (5.21)

where I|DA| , {1, . . . , |DA|} and π : I|DA| → DA is any bijective map from I|DA| to DA.

Proof. See Appendix C.1

P13 is a non-convex optimization problem, and the only difference between P13 and

P10 are their objective functions R̄MCCS(q) and R̄lb(q).

Following the similar approach in Section 5.2.2, we first formulate P13 into an equiv-

alent CGP problem. With the same auxiliary variables xn, n ∈ N , we add the same in-

equality constraints (5.9). Also, we introduce auxiliary variable rDA,π for π : I|DA| → DA,

DA ⊆ N and A ⊆ K. By (5.9), we replace the expression in (5.21) with rDA,π and add the

following constraint

A−1∑

s=0

Ñ(dA)∑

i=1

(
A− i

s

)
(
qπ(i)

)s(
xπ(i)

)A−s
F ≤rDA,π (5.22)

for given π : I|DA| → DA, DA ⊆ N and A ⊆ K. Similar to the reformulation of P10 to

P11, with (5.22), we can reformulate P13 into the following CGP.

P14 : min
q,x,r<0

EA




∑

DA⊆N

∑

dA∈T (DA)

(
∏

k∈A

pdk

)

rDA,π





106

s.t. (5.11), (5.12), (5.13) and

(rDA,π)−1

A−1∑

s=0

Ñ(dA)∑

i=1

(
A− i

s

)
(
qπ(i)

)s(
xπ(i)

)A−s
F ≤ 1, A ⊆ K,DA ⊆ N , ∀π : I|DA|→DA.

(5.23)

Let R̄CGP
lb (q,x, r) denote the objective function of P14. Following similar approach in

Section 5.2.2, in the ith iteration, for given (q(i),x(i)), we formulate the following approx-

imate optimization problem of P14.

P15
(
q(i),x(i)

)
:
(
q(i+1),x(i+1), r(i+1)

)
=argminq,x,r<0R̄

CGP
lb (q,x, r)

s.t. (5.11), (5.12), (5.15), and (5.23).

Thus, we again use the successive GP approximation algorithm by iteratively solv-

ing P15
(
q(i),x(i)

)
to obtain a stationary point of P14, which is summarized in Algorithm

8. Finally, by the equivalence of P13 and P14, we obtain the stationary point of P13 by

Algorithm 8.

Algorithm 8 The Successive GP Approximation Algorithm for P14
Input: K, M , N , p, pa

Output: R̄∗
lb, q∗

1: Initialization: Choose initial feasible point
(
q(0),x(0), r(0)

)
, set i = 0.

2: repeat
3: Solve P15

(
q(i),x(i)

)
to obtain

(
q(i+1),x(i+1), r(i+1)

)
.

4: Set i = i + 1.
5: until R̄CGP

lb (q(i),x(i), r(i)) converges.
6: R̄∗

lb = R̄CGP
lb (q(i),x(i), r(i)); q∗ = q(i).

5.3.2 Memory-Rate Tradeoff Characterization

We now compare the optimized D-MCCS in P10 with the lower bound in P13 and demon-

strate the equivalence of the two problems in some specific cases. Since the difference

between P10 and P13 is only in the average rate objective expression, it is sufficient to

compare R̄MCCS(q) and R̄lb(q).

We first consider a special case where there are at most two users being active at the

same time, i.e., A ≤ 2. Conditional on A ≤ 2, R̄MCCS(q) in (5.8) and R̄lb(q) in (5.20) are

107

rewritten as

R̄MCCS(q)=EA




∑

dA∈NA

(
∏

k∈A

pdk

)

RMCCS(dA;q)
∣
∣A≤2



 , (5.24)

R̄lb(q)=EA




∑

DA⊆N

∑

dA∈T(DA)

(
∏

k∈A

pdk

)

Rlb(DA;q)
∣
∣A≤2



 . (5.25)

Comparing (5.24) and (5.25), we show in the following theorem that the lower bound in

P13 is tight.

Theorem 8. For the special case of no more than two actives users at the same time, i.e.,

A ≤ 2, the average rate of the optimized D-MCCS in P10 attains the lower bound in P13.

Proof. To show the equivalence of P10 and P13, it is sufficient to show that R̄MCCS(q) and

R̄lb(q) in (5.24) and (5.25) are equivalent. Comparing R̄MCCS(q) and R̄lb(q), we only need

to examine RMCCS(dA;q) and Rlb(DA;q) in (5.7) and (4.12). We compare RMCCS(dA;q)

and Rlb(DA;q) for the cases of A = 1 and A = 2 separately below.

Case 1: A = 1. Denote A = {u1}. In this case, RMCCS(dA;q) in (5.7) can be

straightforwardly rewritten as

RMCCS(dA;q) =
∑

S={u1}

max
k∈S

qs
dk

(1− qdk
)1−sF = 1− qdu1

.

For DA = {du1}, we rewrite Rlb(DA;q) in (4.12) as

Rlb(DA;q) = 1− qdu1
= RMCCS(dA;q), |A| = 1. (5.26)

Case 2: A = 2. Denote A = {u1, u2}. In this case, the two active users can either

have the same or distinct file requests. We discuss the two cases in the following.

du1 = du2

Two users request the same file, and we have Ñ(dA) = 1. Without loss the generality,

we denote leader group UA = {u1}. By definition, the set of non-redundant groups is

{{u1}, {u1, u2}}. We can rewrite (5.7) as

RMCCS(dA;q) =
∑

S∈{{u1},{u1,u2}}

max
k∈S

qs
dk

(1− qdk
)2−sF = (1− qdu1

)2 + qdu1
(1− qdu1

).

108

Given the leader group UA = {u1}, we have DA = {du1} and it is straightforward to

rewrite (4.12) as

Rlb(DA;q)=(1−qdu1
)2+qdu1

(1−qdu1
)=RMCCS(dA;q). (5.27)

du1 6= du2

When two users request different files and we have Ñ(dA) = 2. The leader group is

UA = {u1, u2}. Thus, we can rewrite RMCCS(dA;q) in (5.7) as

RMCCS(dA;q) =
∑

S∈{{u1},{u2},{u1,u2}}

max
k∈S

qs
dk

(1− qdk
)2−sF

=(1− qdu1
)2 + (1− qdu2

)2 + max{qdu1
(1− qdu1

), qdu2
(1− qdu2

)}.

Moreover, we also rewrite Rlb(DA;q) in (4.12) as

Rlb(DA;q) = max
{
(1− qdu1

)2 + (1− qdu2
)2 + qdu1

(1− qdu1
),

(1− qdu1
)2 + (1− qdu2

)2 + qdu2
(1− qdu2

)}

= RMCCS(dA;q). (5.28)

From (5.27) and (5.28), we conclude R̄MCCS(q) = R̄lb(q) for A = 2. Combining the result

in (5.26), we prove that R̄MCCS(q) = R̄lb(q) for A = 1, 2.

Theorem 8 shows that if there are no more than two active users at the same time,

then the optimized D-MCCS is an optimal decentralized caching scheme. In this case, the

optimized D-MCCS characterizes the exact memory-rate tradeoff for decentralized caching

under nonuniform file popularity. Moreover, the result also implies that zero-padding used

in the delivery phased of D-MCCS incurs no loss of optimality in this case.

In the general scenario where the active user set is not limited to two users, although

R̄MCCS(q) and R̄lb(q) may not be the same, the optimal placement solution q∗ to P10, P13

may still be the same for certain system configuration (N, K, M,p,pa). The following

proposition describes the result in this case.

109

Proposition 9. If q∗ with q∗1 = ∙ ∙ ∙ = q∗N is the optimal solution to both P10 and P13, then

R̄MCCS(q
∗) = R̄lb(q

∗). i.e., the lower bound in P13 is attained by the optimized D-MCCS

in P10.

Proof. For q∗1 = ∙ ∙ ∙ = q∗N , based on (5.5), the length of coded message CS corresponding

to S ∈ Qs+1 is given by

max
k∈S

(q∗dk
)s(1− q∗dk

)A−sF = (q∗1)
s(1− q∗1)

A−sF.

Following this, based on (5.7), we have

RMCCS(dA;q∗) =
A−1∑

s=0

∑

S∈Qs+1

(q∗1)
s(1− q∗1)

A−sF. (5.29)

The two summations in (5.29) represents the number of all the non-redundant groups. By

the definition, the non-redundant groups are the active user subset include at least one users

in the leader group UA. Denote UA , {u1, . . . , uÑ(dA)}. Among all user subsets in Qs+1,

there are
(

A−i
s

)
subsets including user {u1, . . . , ui}. By considering i = 1, . . . , Ñ(dA), we

can rewrite (5.29) as

RMCCS(dA;q∗) =
A−1∑

s=0

Ñ(dA)∑

i=1

(
A− i

s

)

(q∗1)
s(1− q∗1)

A−sF = Rlb(DA;q∗). (5.30)

Thus, we can conclude that R̄MCCS(q
∗) = R̄lb(q

∗).

Proposition 9 indicates that if the optimal placement q∗ is symmetric for all files,

q∗1 = ∙ ∙ ∙ = q∗N , the optimized D-MCCS is an optimal decentralized caching scheme

that characterizes the exact memory-rate tradeoff. One known example is the special

case of uniform file popularity. In this case, the optimized D-MCCS (P10) and the lower

bound (P13) have the same optimal solution q∗ with q∗n’s being all identical, and the result

R̄MCCS(q
∗) = R̄lb(q

∗) has been shown in [44].

Finally, we point out that our numerical study in Section 3.6 shows that the gap be-

tween the optimized D-MCCS and the lower bound in P13 is very small in general. This

indicates that the performance of the optimized D-MCCS is very close to the optimal de-

centralized caching.

110

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

3.5

4
Ji et al.[35]
Zhang et al.[36]
Optimized D-CCS
Optimized D-MCCS, Algorithm 7
Optimized D-MCCS, Algorithm 6
Lower bound, Algorithm 8

1 1.5 2 2.5 3

1

1.5

2

Figure 5.1: Average rate R̄ vs. cache size M (N = 6, K = 4, Zipf file popularity distribu-
tion with θ = 0.56).

5.4 Numerical Results

We now provide our numerical study on the performance of the optimized D-MCCS in P10

and the proposed lower bound for decentralized caching in P13. We set N = 6 files and

K = 4 users. We generate the nonuniform file popularities using the Zipf distribution with

pn = n−θ/
∑N

i=1 i−θ, where θ is the Zipf parameter. We set the probability of each user

being active as pa,k = 0.5, k ∈ K. We use R̄ to generally indicate the average rate obtained

by various schemes considered. We consider our proposed two schemes (Algorithms 6 and

7) for solving P10 to optimize D-MCCS, Algorithm 8 for the lower bound in P13. We set

the convergence criterion for both Algorithms 6 and 8 as the difference in the average rate

over consecutive iterations is less than 1e−4. For comparison, we also consider the existing

well-known decentralized scheme based on D-CCS, including the optimized D-CCS [61]

and the file-grouping-based schemes in [35] and [36].

In Fig. 5.1, we plot R̄ vs. cache size M under different schemes for θ = 0.56 (the same

as [33]). For the optimized D-MCCS in P10, we observe that the average rate R̄ achieved

by Algorithms 6 and 7 are nearly identical. This indicates that the low-complexity two-

111

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

3.5

4
Ji et al.[35]
Zhang et al.[36]
Optimized D-CCS
Optimized D-MCCS, Algorithm 7
Optimized D-MCCS, Algorithm 6
Lower bound, Algorithm 8

1 1.5 2 2.5 3
0.5

1

1.5

2

Figure 5.2: Average rate R̄ vs. cache size M (N = 6, K = 4, Zipf file popularity distribu-
tion with θ = 1.2).

file-group-based solution is close to the stationary points obtained by the successive GP

approximation algorithm. Among the caching schemes compared, the optimized D-MCCS

provides the lowest average rate for all values of M . The gap between the optimized D-

MCCS and the optimized D-CCS reduces as M increases. This is mainly because there

are more redundant groups in the coded delivery phase for a smaller value of M , and, as

a result, the D-MCCS improved upon the D-CCS more. The average rates obtained by

Algorithms 6 and 7 are both very close to the lower bound in P13, with only a very small

gap observed for M ∈ [1, 3]. This shows that the performance of the optimized D-MCCS

is close to that under the optimal decentralized caching.

In Fig. 5.2, we consider a larger value of θ = 1.2 for a more skewed file popular-

ity distribution to study R̄ vs. M . The average rates obtained by Algorithms 6 and 7 are

again nearly identical. However, it is interesting to see that for M = 1 and 2, Algorithm 7

achieves a lower average rate than Algorithm 6 does. This shows that in some cases, the

two-file-group-based solution could perform even better than the successive GP approx-

imation algorithm, which has a much higher computational complexity. Among all the

schemes compared, the optimized D-MCCS again achieves the lowest average rate for all

112

values of M . The gap between optimized D-MCCS and the lower bound is again very small

in general. This demonstrates the optimized D-MCCS is close to optimal for decentralized

caching.

5.5 Summary

In this chapter, we first formulated the cache placement optimization problem for the D-

MCCS to minimize the average rate and developed two algorithms to solve this non-convex

problem: a successive GP approximation algorithm to compute a stationary point of the

optimization problem, and a low-complexity simple two-file-group-based approximate al-

gorithm. To study the memory-rate tradeoff, we proposed a lower bound through a non-

convex optimization problem, for which we developed an algorithm to compute a stationary

point. We compared the optimized D-MCCS with the lower bound, showing that for the

special case of no more than two active users, the optimized D-MCCS attains the lower

bound. For general cases, we identified a condition for the optimized D-MCCS to attain

the lower bound. Our numerical study showed that the gap between the average rate of the

optimized D-MCCS and the lower bound is very small in general.

113

Chapter 6

Coded Distributed Computing with
Nonuniform File Popularity

In this chapter, we study the heterogeneous CDC for arbitrary number of files with nonuni-

form popularity, assuming nonuniform mapping and reducing loads.

6.1 System Model

We consider a distributed computing framework with a MapReduce structure, where the

network aims to process jobs from a set of N input files using K distributed workers. De-

note K , {1, . . . , K} and N , {1, . . . , N} as the worker and file indexes, respectively.

Each file n ∈ N is of size F bits. We assume files have nonuniform popularity to be used

by the jobs, which is common in practical systems and can be measured by the frequency of

the a file being accessed by the jobs [55,56,60]. Denote p = [p1, . . . , pN] as the popularity

distribution vector of the N files, where pn is the probability of file n being accessed by a

job, and
∑N

n=1 pn = 1. The K workers are expected to accomplish different jobs cooper-

atively. The processing of a job needs access to a subset of files D ⊆ N , where D 6= ∅.

We refer D as the input files of the job. Also define D = |D| as the number of input files

in D. By the MapReduce framework, each job is split into Q target functions, denoted by

{φ1(D), . . . , φQ(D)}, where each target function maps all the input files in D to an output

stream Φq of B bits: Φq = φq(D). Let Q , {1, . . . , Q} denote the indexes of the target

functions. These target functions are distributed to different workers to compute.

The computing of the Q target functions {φq(D), q ∈ Q} is decomposed into a combi-

nation of Map and Reduce functions. Specifically, the Q target functions are first split into

QD Map functions. For a given target function φq(D), q ∈ Q and an input file n ∈ D, each

Map function, denoted by gq,n outputs an Intermediate Value (IV) Vq,n of T bits. Define

Vq,n as the IV generated by gq,n that is of T bits. Each target function φq(D), q ∈ Q, is

computed by a Reduce function hq from the corresponding IVs for files in D as

φq(D) = hq({Vq,n, n ∈ D}), q ∈ Q.

Each worker k ∈ K computes a subset of the QD Map functions based on its stored

input files and generates the local IVs. Let Mk ∈ N+ denote the number of files that

can be stored by worker k, referred to as the mapping load. Denote M , [M1, . . . , MK]

as the mapping load vector of the workers. Following the common practice [26–30, 32],

we assume
∑K

k=1 Mk ≥ N , which guarantees that all the files can be stored among the

workers. Denote Mk ⊆ N as the set of files stored at worker k. Each worker k ∈ K

computes the Map functions of its stored input files inMk ∩ D for each q ∈ Q, {gq,n, q ∈

Q, n ∈Mk ∩ D}.

We consider a heterogeneous target function assignment where workers may be as-

signed with different number of target functions. Denote Wk as the set of target functions

assigned to worker k where Wk , |Wk|/Q is the reducing load of worker k normalized by

Q. Denote W , [W1, . . . , WK] as the reducing load vector of the workers. Note that each

target function is computed by one worker, i.e.,
∑K

k=1 Wk = Q.

In summary, the distributed computing network computes any given job in three phases:

Map, Shuffle and Reduce.

• In the Map phase, each worker k ∈ K computes the Map functions for all the target

functions and its stored input files Mk ∩ D to generate local IVs, given by {Vq,n :

q ∈ Q, n ∈Mk ∩ D}.

• In the Shuffle phase, each worker k ∈ K generates message Xk using its local IVs

and multicasts it to all the other workers. Each worker k receives the multicasted

115

messages from the other workers {Xi, i ∈ K\{k}} to obtain required IVs that are

not computed locally, i.e., {Vq,n : q ∈ Wk, n /∈Mk, n ∈ D}.

• In the Reduce phase, each worker k ∈ K computes its assigned target functionsWk

through the Reduce functions, using its local IVs and other required IVs obtained

during the Shuffle phase, given by {hq({Vq,n, n ∈ D}), q ∈ Wk}.

6.2 Heterogeneous Coded Distributed Computing

The original CDC scheme [26] is constructed for a single job, which requires a sufficiently

large number N of input files, assuming uniform mapping load and reducing load. The

main idea there is to form coded messages to explore coded multicasting opportunities in

the Shuffle phase. Specifically, in the Map phase, each worker is assigned the same number

of target functions. The files are partitioned into file subsets. A unique file subset (which

can be empty) is assigned to a unique worker subset S ⊆ K, and worker subsets of the

same size contains the same number of input files. Each worker k ∈ S generates the same

number of IVs, and these local IVs among the workers in S are mutually exclusive. In the

Shuffle phase, each worker k ∈ S generates a coded message containing the IVs needed

by all the rest workers in S and multicast to them. Note that this scheme requires N to be

large enough for files to be partitioned into required subsets.

In this work, we consider a heterogeneous CDC scenario for N input files with nonuni-

form popularity. We propose a file placement strategy for any number N of files. With

nonuniform file popularity, the size of file subsets placed at the worker subsets of the same

size may be different. Thus, the number of IVs needed by different workers in the same

worker subset may be different. This causes variable lengths of messages at each worker

that need to be coded together for multicasting. As a results, some IVs cannot be encoded

into the same coded message. One straightforward solution is to unicast these remaining

IVs. However, it leads to a loss due to not taking advantage of coded multicasting opportu-

nities [27–29]. To overcome this, we propose a nested coded shuffling strategy to encode

all IVs, by adopting a similar approach proposed in [30] to process a job. A different

116

heterogeneous CDC scenario is considered in [30], where although all files are needed to

process a job, workers have different mapping loads and reducing loads. Intuitively, this

strategy exploits extra coded multicasting opportunities for those remaining IVs, leading to

reduce the shuffling load as compare with the unicast solution.

6.2.1 The Mapping Strategy

During the Map phase, the files are placed at the workers so that the Map functions are

computed to generate local IVs. For K worker, there are 2K−1 non-empty worker subsets.

Each of the N files is placed in a unique worker subset. Let tn,S be an indicator to indicate

whether file n is exclusively placed in the worker subset S:

tn,S ∈ {0, 1}, n ∈ N ,S ⊆ K,S 6= ∅. (6.1)

Then, we have the file placement constraint

∑

S⊆K,S6=∅

tn,S = 1, n ∈ N . (6.2)

Furthermore, the files placed at each worker k ∈ K cannot exceed the mapping load, and

we have the mapping load constraint

N∑

n=1

∑

S⊆K,S6=∅,k∈S

tn,S ≤Mk, k ∈ K. (6.3)

Consider a given job requiring the set of input files D. Let AD
S ⊆ D denote the set of files

placed exclusively at worker subset S , and let aD
S = |AD

S |. Then, we have

aD
S =

∑

n∈D

tn,S , S ⊆ K,S 6= ∅. (6.4)

Let T , {tn,S : n ∈ N ,S ⊆ K,S 6= ∅} denote the file placement strategy. Based on

the file placement strategy T , the workers compute the Map functions to generate local IVs.

The IVs generated exclusively by worker subset S are given by {Vq,n : q ∈ Q, n ∈ AD
S }.

We aim to optimize the file placement strategy to minimize the expected shuffling load.

117

Remark 14. Note that the existing homogeneous and heterogeneous CDC schemes [26–

32] require the number of input files being sufficiently large. Also, they assume each job

requires all input files and do not consider the heterogeneity of file popularity for different

jobs. In contrast, we propose a mapping strategy for arbitrary number of input files with

nonuniform popularity to be used by jobs.

6.2.2 The Nested Coded Shuffling Strategy

In the Shuffle phase, each worker k needs to obtain the IVs that are not computed locally

{Vq,n : q ∈ Wk, n /∈ Mk, n ∈ D}, in order to compute the assigned target functions.

As discussed in earlier, in a CDC scheme, each worker combines the IVs needed by other

workers in its worker subset in a coded message and multicast it to them. However, in

a heterogeneous scenario where input file has different popularity, the number of the IVs

needed by different workers in the same worker subset may be different, which cannot

be directly coded into the same message. This complicates the design of coded shuffling

strategy.

To maximize the benefit of coded multicasting to reduce the shuffling load, in the

following, we propose a nested coded shuffling strategy that explores coded multicasting

opportunities for all IVs. Our strategy follows a similar approach in [30], which is designed

for processing a job that requires all input files, while workers have different loads. We

extend that approach to a more general heterogeneous scenario, where input files have

nonuniform popularity to be used by multiple jobs.

We first describe the shuffling strategy for worker k in given worker subset S , where

|S| ≥ 2.1 The same strategy is then applied to all other S’s that work k is in, and to

all other workers. Based on the file placement, each unique worker subset S is assigned

an exclusive input file subset. Thus, worker k needs IVs from some worker subset in

{S ′ : S ′ ⊆ K, k /∈ S ′}.

For a job with input file set D, the nested coded shuffling strategy consists of three

steps: Step 1: Identify the IVs to be sent to each worker in S; Step 2: Recursively regroups

1Note that for worker subset S containing a single worker |S| = 1, there is no IVs need to be shuffled.

118

portion of IVs of the same size so that they can be coded into the same message to be

multicasted in the subset of S; Step 3: Generate coded messages to be multicasted to other

workers. We have the following steps.

Step 1: For any S ⊆ K, consider worker k ∈ S , and consider input files placed in

S−k , S\{k}. Worker k needs to obtain the IVs computed by the workers in S−k, given by

VD
k,S−k

= {Vq,n : q ∈ Wk, n ∈ AD
S−k
}. Recall from (6.4) that aD

S−k
= |AD

S−k
|. Thus, the total

size of VD
k,S−k

in bits is |VD
k,S−k
| = TWkQaD

S−k
= TWkQ

∑
n∈Dtn,S−k

. Note that |Vk,S−k
|

may be different for each k ∈ S .

On the other hand, for shuffling, any worker j ∈ S needs to code the IVs required

by other workers in S into a message. Since the total size of the IVs may be different for

different workers, we take a fraction of the same size from the IVs for each worker and

encode them into the message. This leaves some residual IVs at worker j, which need to

be sent to other workers in S .

Let S+i , S ∪{i}, for i ∈ K\S . Let dS
k,S+i

(D) denote the total size (in bits normalized

by Q) of those residual IVs that are needed by worker k in worker subset S+i. Our proposed

strategy is to encode those residual IVs into coded messages and send them in S or the

subset of S . In other words, those residual IVs needed by worker k from all those worker

subsets of size |S| + 1, where k is in, will be encoded and sent in S or subsets of S in

Step 2. Following this, the total size of those residual IVs from S+i, for i ∈ K\S , is

Q
∑

i∈K\SdS
k,S+i

(D).

Let IDk,S denote the set of IVs to be sent to worker k within subset S . It consists of the

IVs in VD
k,S−k

and the residual IVs from all S+i’s, for i ∈ K\S . Thus, the size of IDk,S in bits

is given by

|IDk,S | = WkTQ
∑

n∈D

tn,S−k
+ Q

∑

i∈K\S

dS
k,S+i

(D). (6.5)

Note again that |IDk,S | may be different for each k ∈ S .

Step 2: Let Ij
k,S(D) denote the portion of IDk,S that are locally computed by worker

j ∈ S , j 6= k, and sent to other workers in S . We require Ij
k,S(D)’s, for k ∈ S, k 6= j,

to be the same size, such that worker j can encodes them into a message and multicasts it

119

to all other workers in S . This ensures that all IVs sent in S are via multicasting. Define

LD
j,S , |I

j
k,S(D)|/Q, for all k ∈ S, k 6= j.

After the above step, if there are residual IVs in IDk,S , we need to identify the IVs to be

encoded in worker subset S ′ ⊂ S of size |S|−1. This essentially follows the same strategy

to encode the residual IVs as described in Step 1. Recall from Step 1 that d
S−i

k,S(D) is the

size (in bits normalized by Q) of the IVs in IDk,S needed by worker k in S and are encoded

and sent in S−i or subsets of S−i, for i ∈ S, i 6= k. Then, the total size of these residual IVs

from S is Q
∑

i∈S,i 6=k d
S−i

k,S(D). Then, this nested process will continue until all IVs can be

encoded and sent via multicasting and no residual IVs remaining.

To ensure this nested strategy of regrouping of the residual IVs to be sent in the subsets

of current worker subset to be feasible, from (6.5), we have the following equality constraint

WkT
∑

n∈D

tn,S−k
+
∑

i∈K\S

dS
k,S+i

(D) =
∑

j∈S,j 6=k

LD
j,S+

∑

i∈S,i 6=k

d
S−i

k,S(D),

k ∈ S,S ⊆ K, |S| ≥ 2,D ⊆ N . (6.6)

Note that {LD
j,S} and {dS−i

k,S(D)} are the design variables for coded shuffling. These vari-

ables along with the file placement T are to be jointly optimized to minimize the expected

shuffling load, which will be described in Section 6.3.

Step 3: Each worker j ∈ S generates a coded message via bitwise XOR operation of

Ij
i,S(D)’s, for all i ∈ S, i 6= j, as

Cj
S(D) ,

⊕

i∈S,i 6=j

Ij
i,S(D). (6.7)

The coded message Cj
S(D) is then multicasted by worker j to the rest workers in S .

To decode Cj
S(D) at worker k ∈ S , we note that by the definition of Ij

i,S(D) in Step 2,

each worker k ∈ S has already locally generated all the IVs in Ij
i,S(D), for i ∈ S, i 6= k, j.

Thus, worker k can successfully decode Ij
k,S(D) from Cj

S(D) from worker j ∈ S , j 6= k.

Since LD
j,S = |Ij

k,S(D)|/Q, for all k ∈ S, k 6= j, the size of the coded message Cj
S(D)

normalized by Q is

|Cj
S(D)| = LD

j,S , j ∈ S. (6.8)

120

The overall nested coded shuffling strategy applies the above Steps 1-3 to each worker

subset in {S : S ⊆ K, |S| ≥ 2} to let each worker generates the coded message and

multicasts it to the other works in the same worker subset. The following proposition

shows the validity of the proposed nested shuffling strategy.

Proposition 10. The proposed file placement strategy and coded shuffling strategy for the

heterogeneous CDC with nonuniform file popularity described in Section 6.1 are valid for

any number N of input files.

Proof. To prove the proposed strategies are valid, we need to show that for each job with

its required set of input files D, each worker k ∈ K can obtain all of the IVs it needs

from D. Recall that for each worker subset S containing at least two workers (|S| ≥ 2),

the file placement strategy T and the shuffling strategy with design variables {LD
k,S} and

{dS−i

k,S(D)} must satisfy equality constraint (6.6). Summing both side of (6.6) over all S’s,

where k ∈ S , and S ⊆ K, |S| ≥ 2, we have

∑

S⊆K,
|S|≥2,k∈S

WkT
∑

n∈D

tn,S−k
+

∑

S⊆K,
|S|≥2,k∈S

∑

i∈K\S

dS
k,S+i

(D) =

∑

S⊆K,
|S|≥2,k∈S

∑

j∈S,j 6=k

LD
j,S+

∑

S⊆K,
|S|≥3,k∈S

∑

i∈S,i 6=k

d
S−i

k,S(D). (6.9)

Note that the second terms on both sides of (6.9) are equal. Thus, we have

∑

S⊆K,
|S|≥2,k∈S

WkT
∑

n∈D

tn,S−k
=

∑

S⊆K,
|S|≥2,k∈S

∑

j∈S,j 6=k

LD
j,S . (6.10)

Note that the left hand side of (6.10) is the total size of all the IVs needed by worker k in

all the worker subsets in {S : S ⊆ K, |S| ≥ 2, k ∈ S}, which contains all the IVs worker

k needs from other workers, as discussed at the beginning of Section 6.2.2. The right hand

side of (6.10) is the total size of all the IVs multicasted by all the workers other than worker

k in each of the worker subset in {S : S ⊆ K, |S| ≥ 2, k ∈ S}. The equality (6.10) shows

that, under the strategies satisfying constraint (6.6), each worker k can obtain its needed

IVs from the multicasted coded messages by all the other workers.

121

6.3 File Placement and Coded Shuffling Optimization

In this section, we formulate an optimization problem to optimize the file placement and

nested coded shuffling strategies proposed in Section 6.2.1 and 6.2.2.

For a given job, the shuffling load within a worker subset S equals to the coded mes-

sages multicasted by all the workers in S and the overall shuffling load L(D) is the sum

over all the worker subsets in {S : S ⊆ K, |S| ≥ 2}, given by

L(D) =
∑

S,j:S⊆K,|S|≥2,j∈S

|Cj
S(D)| =

∑

S,j:S⊆K,|S|≥2,j∈S

LD
j,S .

We define pD as the probability of a nonempty input file set D being accessed by a job,

which is a function of the file popularity distribution p. By averaging L(D) over all the

possible nonempty input file sets D ⊆ N ,D 6= ∅, the expected shuffling load is given by

L̄ =
∑

D⊆N ,D6=∅

pDL(D).

Following this, we formulate P16 that jointly optimizes the file placement strategy T and

nested coded shuffling strategy {LD
k,S , d

S−i

k,S(D)} to minimize L̄.

P16 : min
{tn,S ,LD

k,S ,d
S−i
k,S(D)}

L̄

s.t. (6.1), (6.2), (6.3), (6.6), and

LD
k,S ≥ 0, k ∈ S,S ⊆ K, |S| ≥ 2,D ⊆ N (6.11)

d
S−i

k,S(D)≥0, k∈S,i∈S−k,D⊆N ,S⊆K, |S|≥3 (6.12)

where (6.11) and (6.12) guarantee that the size of the coded messages are non-negative.

Due to constraint (6.1), P16 is a mixed integer linear programming (MILP) problem, which

in general is NP-hard [103]. Although approximate solution can be obtained by existing

optimization solvers using the branch-and-cut method (e.g., Mosek, Gurobi etc.), the com-

putational complexity remains very high. In the following, we resort to develop a heuristic

approximate algorithm to solve the problem.

122

6.3.1 Approximate Solution for P16

The constraint on the file placement vector in (6.1) makes P16 a MILP problem. To elimi-

nate this constraint, we first propose a two-file-group-based file placement strategy.

Two-file-group-based file placement: We partition the filesN into two non-overlapping

groups. The first group contains the N1 popular files in N , defined as N1 , {1, . . . , N1}

for N1 ∈ N . The second group contains the rest of the less popular files, denoted by

N2 , N\N1. We describe the two-file-group-based placement strategy in Algorithm 9.

For a given N1, the output of Algorithm 9 is a two-file-group-based file placement strat-

egy {M̄N1
k , k ∈ K}, where M̄N1

k is the set of files placed at worker k. We start with the

placement of the files in N2 in lines 1 – 8. The idea is to place each file in n ∈ N2 at

exactly one worker. Starting from k = 1 and n = N1 + 1, we place file n at worker k in

line 5 and update its mapping load Mk in line 6. Then we move to next available worker

(k+1) mod K to place file n+1 until finish the placement forN2. The placement strategy

of the files in N1 is described in lines 9 – 17. Starting from k = 1, for each worker k with

Mk > 0, we place the files in N1 cyclically at worker k until its mapping load fulfilled and

then move to the next available worker.

Comments on the two-file-group-based file placement. The proposition of the two-file-

group-based file placement strategy is inspired by the widely used two-file-group-based

cache placement for coded caching under nonuniform file popularity [36]. Note that the

CDC scheme is an extension of the coded caching to the distributed computing problem,

with the similar idea of exploiting the coded multicasting opportunities that significantly

reduce the delivery/shuffling load [26]. For coded caching under nonuniform popular-

ity, the two-file-group-based cache placement has shown to have close-to-optimal perfor-

mance [36, 48]. The two-file-group-based cache placement keeps the less popular files

solely in the server and devotes all the caches to the popular files through a decentralized

placement. Our two-file-group-based file placement for the heterogeneous CDC employs

the similar idea: We place each of the less popular files at one worker so that the mini-

mum mapping loads are used, and devote all the rest mapping loads to the popular files by

123

Algorithm 9 Two-file-group-based file placement algorithm
Input: K, M , N , N1

Output: M̄N1
1 , . . . ,M̄N1

K

#File placement for the second file group N2

1: M̄N1
k = ∅, k ← 1

2: for n = N1 + 1 to N do
3: if Mk > 0 then
4: M̄N1

k ← M̄
N1
k ∪ {n}

5: Mk ←Mk − 1
6: end if
7: k ← (k + 1) mod K
8: end for

#File placement for the first file group N1

9: n← 0
10: for k = 1 to K do
11: if Mk > 0 then
12: for m = 1 to Mk do
13: M̄N1

k ← M̄
N1
k ∪ {(n + m) mod N1}

14: end for
15: n← (Mk + n) mod N1

16: end if
17: end for

placing them in a round-robin manner.

For a given two-file-group-based placement {M̄N1
k } computed by Algorithm 9, we

redefine T as a two-file-group-based file placement vector, where the cache placement

vector for file n ∈ N is given by

tn,S =

{
1, S = {k : k ∈ K, n ∈ M̄N1

k }

0, otherwise.

Also redefine L̄ as the expected shuffling load and {LD
k,S , d

S−i

k,S(D)} as the nested coded

shuffling strategy for given t, we can convert P16 into a coded shuffling optimization prob-

lem for a given two-file-group base file placement strategy {M̄N1
k }, given by

P17: min
{LD

k,S ,d
S−i
k,S(D)}

L̄ s.t. (6.6), (6.11), (6.12).

Note that P17 is a LP problem with
∑N

n=1

(
N
n

)(
K2+

∑K
k=3 k2−K

)
variables, which can be

solved by standard optimization solvers.

124

4 5 6 7 8 9 10 11 12 13 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Round robin
Xu, et al. [30]
P16, two-file-group-based approach
P16, branch-and-cut approach
Relaxed LP problem of P16

5 6 7
0.34

0.345

0.35

0.355

0.36

0.365

Figure 6.1: Average rate R̄ vs. cache size M (N = 6, K = 4, Zipf file popularity distribu-
tion with θ = 0.56).

For a given two-file-group-based placement strategy {M̄N1
k }, P17 optimizes the coded

shuffling strategy to minimize the expected shuffling load. Following this, we can further

search for the optimal N1 ∈ N that gives us the minimum shuffling load among all possible

two-file-group-based placement strategies {{M̄N1
k }, N1 ∈ N}. In Section 6.4, numerical

studies show that the optimal two-file-group-based solution has close performance to the

conventional branch-and-cut method.

6.4 Numerical Results

In this section, we provide numerical studies on the performance of the proposed hetero-

geneous CDC scheme in P16. We solve P16 using the proposed two-file-group-based ap-

proach described in Section 6.3.1 and the conventional branch-and-cut method. We obtain

the two-file-group-based file placement using Algorithm 9. We also compare with the file

placement strategy in [30], the round-robin placement strategy commonly used by uncoded

distributed computing [60] and the relaxed LP problem of P16, which can be considered

125

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Round robin
P16, two-file-group-based approach
P16, branch-and-cut approach
Relaxed LP problem of P16

Figure 6.2: Average rate R̄ vs. cache size M (N = 6, K = 4, Zipf file popularity distribu-
tion with θ = 1.2).

as a lower bound for the proposed heterogeneous CDC scheme. We generate the file popu-

larities using the Zipf distribution with pn = n−θ/
∑N

i=1 i−θ where θ is the Zipf parameter.

We assume the files popularities are independently distributed and derive the probability of

file subset D being accessed by a job as

pD =

∏
n∈D pn

∏
n/∈D(1− pn)

1−
∏

n∈N (1− pn)
, D ⊆ N ,D 6= ∅.

We consider a CDC network of K = 4 workers with nonuniform mapping and normalized

reducing loads, given by M = [3, 4, 4, 5] and W = [1/8, 1/4, 1/4, 3/8], respectively. We

also set the size of the IVs as T = 1.

In Fig. 6.1, we show the expected load L̄ vs. the file number N for θ = 0.56 (used

in [100]). We solve P16 by the branch-and-cut method only for N ≤ 10, due to its high

computational complexity. From Fig. 6.1, although the branch-and-cut method achieves

the lowest L̄ among all the schemes, the two-file-group-based approach has very close

performance, with slightly higher L̄’s observed at specific points. The placement strategy

in [30] only works for N = 6 and 12, where the L̄’s are higher than the proposed scheme.

The gap between P16 and its relaxed LP problem is increasing with N for N ≤ 6 and

remains approximately unchanged for N > 6. In Fig. 6.2, we set N = 8 and plot L̄ vs.

126

Zipf parameter θ. Comparison different schemes to compute the lower bound in method

only exists for θ < 0.6 and is decreasing with θ. This shows that the two-file-group-based

placement performs better for larger θ’s, i.e., more diverse distributions. When θ increases,

the solution of P16 (by both the two-file-group-based and branch-and-cut approaches) is

getting closer to that of its relaxed LP problem. The L̄ of the round-robin approach has

small changes for different Zipf parameter θ’s and is always produce the highest L̄.

6.5 Summary

In this chapter, for heterogeneous CDC with an arbitrary number of files with nonuniform

popularity, we proposed a file placement strategy and a nested coded shuffling strategy to

exploit coded multicasting opportunities. We formulated an optimization problem to jointly

optimize the proposed file placement and shuffling strategies. The problem is a generally

NP-hard MILP problem and we developed a two-file-group-based approximate approach

to solve it. Numerical studies showed that the proposed approximate approach achieves

an average load close to that of the conventional branch-and-cut method which has high

computational complexity.

127

Chapter 7

Conclusion and Future Works

In this chapter, summarize the main results in this dissertation and outline some possible

future works.

7.1 Coded Caching

In this dissertation, we mainly focused on studying the caching problems for the system of

multiple cache-enabled users connected to a single server through a shared error-free link.

In Chapter 3, we characterized the optimal cache placement for both the CCS. Using the

optimal cache placement structure, we derived a lower bound for caching and character-

ized the subpacketization in the optimal CCS. In Chapter 4, we studied the memory-rate

tradeoff for caching under nonuniform demands. We formulated an optimization problem

to optimize the cache placement for the MCCS and characterized the optimal cache place-

ment structure. To characterize the memory-rate tradeoff, we proposed two lower bounds.

We compared the optimized MCCS with the lower bounds in three regions and provide

insights. decentralized caching under nonuniform demands. In Chapter 5, we studied

the memory-rate tradeoff for the decentralized caching paradigm. We formulated cache

placement optimization problem to obtain the optimal cache placement for the D-MCCS

and compared the optimized D-MCCS with the proposed lower bound to characterize the

memory-rate tradeoff.

One possible direction of our future works is to extend our studies of the optimal cache

placement for coded caching to the device-to-device (D2D) network and the interference

network with multiple transmitters and users. Existing works on the coded caching for D2D

and interference networks mainly focus on uniform demand [21–23,104–108], we can for-

mulate cache placement optimization problems to study the optimal cache placement of the

CCS with nonuniform demands under D2D and interference networks networks. It is also

interesting to study the memory-rate tradeoff for caching with nonuniform demands under

D2D and interference networks, which remains unknown in the literature. To accomplish

this, efforts are needed to develop new lower bounds for caching under the aforementioned

network structures and then compare with the optimized coded caching schemes.

7.2 Coded Distributed Computing

In Chapter 6, we investigated the MapReduce based heterogenous CDC for arbitrary num-

ber of files with nonuniform popularity. We proposed a general file placement strategy and

adopted a nested coded shuffling strategy to exploit extra coded multicasting opportunities.

We formulated an optimization problem to optimize the proposed file placement and shuf-

fling strategies. The problem is a generally NP-hard MILP problem and we developed an

two-file-group-based approximate approach to solve it. Numerical study showed that the

approximate approach performs close to the conventional branch-and-cut method.

The study of heterogeneous CDC is still at an early stage. First of all, the computation-

communication tradeoff remains unknown under this more general system setup. One pos-

sible future work is to develop a lower bound on the average shuffling load to characterize

the computation-communication tradeoff for the heterogeneous CDC with nonuniform file

popularity. Other than this, the application of CDC in different scenarios can be considered

in the future. One direction is to study the online CDC where the jobs arrive at different

times and have different deadlines of being finished. In this case, it is interesting to study

the scheduling of the job execution and coded shuffling for CDC. In [87], the wireless CDC

has been studied for the homogeneous system where both unlink and downlink communi-

cation load have been considered. We can also consider extending our work to the wireless

129

heterogeneous CDC for an arbitrary number of files with nonuniform popularity.

130

Appendix A

Appendices for Chapter 3

A.1 Probability Distribution of Ym

For Ym being the mth smallest file index in the demand vector d, m = 1, . . . , K , the

probability distribution of Ym is given as follows [33, Lemma 2]:

Pr[Y1 = i] =
(N∑

l=i

pl

)K

−
(N∑

l=i+1

pl

)K

,

Pr[Y2 = i] = Pr[Y1 = i] + K
[(i−1∑

l=1

pl

)(N∑

l=i

pl

)K−1

−
(i∑

l=1

pl

)(N∑

l=i+1

pl

)K−1]
;

For 3 ≤ m ≤ K,

Pr[Ym = 1] =
K−m∑

k=0

(
K

m + k

)

pm+k
1 (1− p1)

K−m−k,

Pr[Ym = i] =

(
K

K −m + 1

)((N∑

l=i

pl

)K−m+1

−
(N∑

l=i+1

pl

)K−m+1
)(

i−1∑

l=1

)m−1

+
K−2∑

k=0

min{m,K−k}−2∑

b=max{0,m−2−k}



 K! p2+k
i

(2 + k)! b! (K − 2− k − b)!

(
i−1∑

l=1

pl

)b(N∑

l=i+1

pl

)K−2−k−b


 ,

for i = 2, . . . , N.

131

A.2 Proof of Theorem 1

We prove Theorem 1 by exploiting the properties in the Karush-Kuhn-Tucker (KKT) con-

ditions for P2. The Lagrangian associate with P2 is given by

L =
N∑

n=1

gT
nan −

N−1∑

n=1

K∑

l=1

γn,l(an,l − an+1,l)−
K∑

l=1

ρlaN,l

− ρ0a1,0 + λ(
N∑

n=1

cTan −M) +
N∑

n=1

νn(bTan − 1) (A.1)

where {γn,l} are the Lagrange multipliers for constraint (3.8), {ρ0, . . . , ρK} are the La-

grange multipliers for constraints in (3.10), {νn} are the Lagrange multipliers for constraint

(3.16), and λ is the Lagrange multiplier for constraint (3.3). Since P2 is an LP, the KKT

conditions hold for P2, which are listed below:

bTan = 1, (A.2)
N∑

n=1

cTan = M, (A.3)

aN,l ≥ 0, l ∈ K, (A.4)

ρl ∙ aN,l = 0, ρl ≥ 0, l ∈ K, (A.5)

a1,0 ≥ 0, (A.6)

ρ0 ∙ a1,0 = 0, (A.7)

an,l − an+1,l ≥ 0, n ∈ N\{N}, l ∈ K, (A.8)

γn,l(an,l−an+1,l)=0, γn,l ≥ 0, n ∈ N\{N}, l ∈ K (A.9)
∂L

∂an,l

=gn,l−γn,l+γn−1,l+λcl+νnbl = 0, n ∈ N\{1, N}, l ∈ K (A.10)

∂L

∂a1,l

= g1,l − γ1,l + λcl + ν1bl = 0, l ∈ K (A.11)

∂L

∂aN,l

= gN,l − ρl + γN−1,l + λcl + νNbl = 0, (A.12)

∂L

∂an,0

= gn,0 + λc0 + νnb0 = 0, n ∈ N\{1}, (A.13)

∂L

∂a1,0

= g1,0 − ρ0 + λc0 + ν1b0 = 0. (A.14)

From (A.10) and (A.11), we have, for m = 1, . . . , N − 1,
m∑

n=1

∂L

∂an,l

=
m∑

n=1

gn,l − γm,l + mλcl +
m∑

n=1

νnbl = 0. (A.15)

132

Based on the above KKT conditions, we prove Theorem 1 by contradiction. Assume

that there exists an optimal solution {an} that divides the files into four file groups. The

structure of the sub-placement vectors ān’s can be expressed as ā1 = . . . = āno <1 āno+1 =

. . . = ān1 <1 ān1+1 = . . . = ān2 <1 ān2+1 = . . . = āN , for 1 ≤ no < n1 < n2 ≤ N − 1.

By the property in (3.8), we assume ano,lo > ano+1,lo , an1,l1 > an1+1,l1 and an2,l2 > an2+1,l2 ,

for some lo, l1, l2 ∈ K. From (A.9), we have

γno,lo = γn1,l1 = γn2,l2 = 0. (A.16)

Since c0 = 0 and b0 = 1, from (A.13), we have

νn = −gn,0, n ∈ N\{1}. (A.17)

Following (A.15), let m = no, n1, n2, we have
no∑

n=1

gn,lo − γno,lo + noλclo +
no∑

n=1

νnblo = 0, (A.18)

n1∑

n=1

gn,l1 − γn1,l1 + n1λcl1 +

n1∑

n=1

νnbl1 = 0, (A.19)

n2∑

n=1

gn,l2 − γn2,l2 + n2λcl2 +

n2∑

n=1

νnbl2 = 0. (A.20)

Substituting the values of γno,lo , γn1,l1 , γn2,l2 in (A.16) and νn in (A.17) into (A.18) - (A.20),

we have

λnoclo + ν1blo = −
no∑

i=2

gn,0blo −
no∑

n=1

gn,lo , (A.21)

λn1cl1 + ν1bl1 = −
n1∑

i=2

gn,0bl1 −
n1∑

n=1

gn,l1 , (A.22)

λn2cl2 + ν1bl2 = −
n2∑

i=2

gn,0bl2 −
n2∑

n=1

gn,l2 . (A.23)

We rewrite (A.21) - (A.23) into a matrix form Ax = b as



noclo blo

n1cl1 bl1

n2cl2 bl2




[

λ
ν1

]

=




−
∑no

n=2 gn,0blo −
∑no

n=1 gn,lo

−
∑n1

n=2 gn,0bl1 −
∑n1

n=1 gn,l1

−
∑n2

n=2 gn,0bl2 −
∑n2

n=1 gn,l2



 . (A.24)

Note that no 6= n1 6= n2, and by the definition of cl and bl below (3.15), the 3×2 coefficient

matrix A in (A.24) is full rank, there is no feasible solution for λ, ν1. This contradicts the

assumption that there exists an optimal {an} with four file groups. A similar argument

follows to show more than four file groups is not possible. Thus, we have the conclusion

in Theorem 1.

133

A.3 Proof of Proposition 1

With two file groups, the sub-placement vectors have the following relation: ā1 = . . . =

āno <1 āno+1 = . . . = āN , for some no ∈ {1, . . . , N − 1}. Since there is at least one

element that is different between āno and āno+1, by (3.8), we assume ano,lo > ano+1,lo , for

some lo ∈ K. Consequently, we have γno,lo = 0 based on (A.9). From (A.15), we have
no∑

n=1

gn,l + noλclo +
no∑

n=1

νnblo = 0. (A.25)

From (A.10)–(A.12), we have

N∑

n=1

gn,l − ρl + Nλcl +
N∑

n=1

νnbl = 0, l ∈ K. (A.26)

Assume āN has two nonzero elements at the l1th and l2th locations, i.e., aN,l1 > 0,

aN,l2 > 0, for l1 6= l2, l1, l2 ∈ K. Note that one of l1 and l2 can be lo. Without loss of

generality, we assume l2 6= lo. We know from (A.5) that ρl1 = ρl2 = 0. Then, from (A.26),

we have
N∑

n=1

gn,l1 + Nλcl1 +
N∑

n=1

νnbl1 = 0, (A.27)

N∑

n=1

gn,l2 + Nλcl2 +
N∑

n=1

νnbl2 = 0. (A.28)

Using the expression of νn in (A.17), we can rewrite (A.25)(A.27)(A.28) into a matrix form

as



noclo blo

Ncl1 bl1

Ncl2 bl2




[

λ
ν1

]

=




−
∑no

n=2 gn,0blo −
∑no

n=1 gn,lo

−
∑N

n=2 gn,0bl1 −
∑N

n=1 gn,l1

−
∑N

n=2 gn,0bl2 −
∑N

n=1 gn,l2



 . (A.29)

Similar to the argument in the proof of Theorem 1, since no < N , l2 6= l1, l2 6= lo,

by the definition of cl and bl, the coefficient matrix of (A.29) is full rank, and there is no

feasible solution for λ and ν1, contradicting the assumption that the optimal āN has two

nonzero elements. Similarly, we show the optimal āN cannot have more than two nonzero

elements. Thus, we complete the proof.

A.4 Proof of Proposition 2

Since the optimal cache placement solution result in two file groups, the sub-placement

vectors have the following structure: ā1 = . . . = āno <1 āno+1 = . . . = āN <1 0, for some

134

no ∈ {1, . . . , N − 1}. By Proposition 1, āno+1 has only one nonzero element. Assume

ano+1,lo > 0, for some lo ∈ K. From (A.5), we know that ρlo = 0. Then from (A.26), we

have

N∑

n=1

gn,lo + λNclo +
N∑

n=1

νnblo = 0. (A.30)

Assume that there are two elements in āno and āno+1 being different: ano,l1 > ano+1,l1

and ano,l2 > ano+1,l2 , for l1 6= l2, l1, l2 ∈ K. Without loss of generality, we assume l2 6= lo.

From (A.9), we have γno,l1 = γno,l2 = 0. As a result, from (A.15), we have

no∑

n=1

gn,l1 + λnocl1 +
no∑

n=1

νnbl1 = 0, (A.31)

no∑

n=1

gn,l2 + λnocl2 +
no∑

n=1

νnbl2 = 0. (A.32)

Again, using (A.17), we put (A.30)–(A.32) in a matrix form as



Nclo blo

nocl1 bl1

nocl2 bl2




[

λ
ν1

]

=




−
∑N

n=2 gn,0blo−
∑N

n=1 gn,lo

−
∑no

n=2 gn,0bl1−
∑no

n=1 gn,l1

−
∑no

n=2 gn,0bl2−
∑no

n=1 gn,l2



 .

By the similar argument in the proof of Proposition 1, the coefficient matrix of (A.30)–

(A.32) is full rank, and λ and ν1 do not have any feasible solution, contradicting the as-

sumption that āN has two nonzero elements. Similarly, we can proof that āN cannot have

more than two nonzero elements.

A.5 Proof of Proposition 3

With two file groups, the sub-placement vectors have the following structure: ā1 = . . . =

āno <1 āno+1 = . . . = āN , for some no ∈ {1, . . . , N − 1}. Assume āno+1,lo > 0, for

lo ∈ K. By Proposition 2, only one element is different between āno and āno+1. This

element can be either at lo, i.e., ano,lo > ano+1,lo (as shown in Fig. 3.5), or any l1 6= lo,

l1 ∈ K, i.e., ano,l1 > ano+1,l1 (as shown in Fig. 3.6). We discuss the two cases separately.

ano,lo > ano+1,lo > 0

If a1,0 = . . . = ano,0 > 0, by (A.7) we have ρ0 = 0. Combining this with (A.14), we have

g1,0 + λc0 + ν1b0 = 0, which gives

ν1 = −g1,0. (A.33)

135

By (A.9), since ano,lo > ano+1,lo , we have γno,lo = 0. Substituting the expression of νn in

(A.17) and (A.33) into (A.15), we have

λnoclo = −
no∑

n=1

gn,lo −
no∑

n=1

gn,0blo . (A.34)

Combining (A.10) and (A.12), we have

N∑

n=no+1

∂L

∂an,lo

=
N∑

n=no+1

gn,lo − ρlo +γno,lo + (N − no)λclo +
N∑

n=no+1

νnblo

= 0. (A.35)

For ano+1,lo = aN,lo > 0, from (A.5), we have ρlo = 0. Along with γno,lo = 0, (A.35)

can be rewritten as

λ(N − no)clo = −
N∑

n=no+1

gn,lo −
N∑

n=no+1

gn,0blo . (A.36)

Examining (A.34) and (A.36), we see that there is no feasible solution for λ to satisfy

both equations. This contradicts the assumption that a1,0 = . . . = ano,0 > 0.

ano,l1 > ano+1,l1 = 0, for l1 6= lo

From (A.9), we have γno,l1 = 0. Assuming a1,0 = . . . = ano,0 > 0, we have (A.33). Similar

to (A.34), we have

λnocl1 = −
no∑

n=1

gn,l1 −
no∑

n=1

gn,0bl1 . (A.37)

For ano+1,lo = aN,lo > 0, again we have ρlo = 0, and νn in (A.17) and (A.33). Thus, from

(A.26), we have

λNclo = −
N∑

n=2

gn,0blo−
N∑

n=1

gn,lo . (A.38)

Again, there is no feasible solution for λ to satisfy both (A.37) and (A.38). This contradicts

the assumption that a1,0 = . . . = ano,0 > 0.

From both two cases above, we conclude if a1,0 = . . . = ano,0 > 0, there is no feasible

solution for λ and ν1. Thus, we have a1,0 = . . . = ano,0 = 0 for the optimal {an}.

136

A.6 Proof of Proposition 4

With three file groups, the sub-placement vectors have the following structure: ā1 = . . . =

āno <1 āno+1 = . . . = ān1 <1 ān1+1 = . . . = āN , for 1 ≤ no < n1 ≤ N − 1.

Assume that ano,lo > ano+1,lo and an1,l1 > an1+1,l1 , for lo, l1 ∈ K. From (A.9), we have

γno,lo = γn1,l1 = 0. Substitute the value of νn in (A.17) into (A.15), we have the following

λnoclo + ν1blo = −
no∑

n=2

gn,0blo −
no∑

n=1

gn,lo , (A.39)

λn1cl1 + ν1bl1 = −
n1∑

n=2

gn,0bl1 −
n1∑

n=1

gn,l1 . (A.40)

To show ān1+1 = 0 by contradiction, assume that āN <1 0, i.e., ān1+1 = . . . = āN has at

least one nonzero element. Let aN,l2 > 0 for some l2 ∈ K. Then, we have ρl2 = 0 by (A.5).

Then, from (A.26), we have

Nλcl2 + ν1bl2 = −
N∑

n=1

gn,l2 −
N∑

n=2

gn,0bl2 . (A.41)

Putting (A.39)–(A.41) into a matrix form, we have



noclo blo

n1cl1 bl1

Ncl2 bl2



 ∙

[
λ
ν1

]

=




−
∑no

n=2 gn,0blo −
∑no

n=1 gn,lo

−
∑n1

n=2 gn,0bl1 −
∑n1

n=1 gn,l1

−
∑N

n=2 gn,0bl2 −
∑N

n=1 gn,l2



 .

Using a similar argument as in the proof of Theorem 1, we conclude that λ and ν1 do

not have any feasible solution, which contradicts the assumption that āN <1 0. Thus, we

complete the proof.

137

Appendix B

Appendices for Chapter 4

B.1 Proof of Lemma 2

The proof directly follows the proof of [52, Theorem 2] with a slight modification. In the

proof of [52, Theorem 2], by a genie-based method, it is shown that the delivery rate for a

distinct file set D satisfies

R(D) ≥ max
π:I|D|→D

K∑

l=0

Ñ(d)∑

i=1

(
K − i

l

)
ǎn,l(
K
l

) (B.1)

where ǎn,l is the total number of bits from file n ∈ D cached by exactly l users. In our

definition of an,l, subscript l refers to the user subset size |S| = l in a cache subgroup Al.

Thus, they are identical. Following the definitions of ǎn,l and an,l, we have an,l = ǎn,l/
(

K
l

)
,

since there are
(

K
l

)
user subsets in Al. Thus, for a given a, we can equivalently express

(B.1) as

R(D) ≥ max
π:I|D|→D

K∑

l=0

Ñ(d)∑

i=1

(
K − i

l

)

an,l , Rlb(D; a). (B.2)

Using the above expression, by averaging Rlb(D; a) over all possible D ⊆ N , we obtain

the general lower bound R̄lb(a) the average rate w.r.t a in (4.11). The final lower bound on

average rate is obtained by optimizing a to minimize R̄lb(a), which is shown in P1.

B.2 Proof of Lemma 3

The popularity-first-based lower bound is essentially a simplification of P1 in Lemma 2,

by restricting to the set of popularity-first placement vectors: a ∈ Q. We need to show that

Rlb(D; a) in (4.12) can be simplified into (4.14) for a ∈ Q. For ∀D ⊆ N , since φ(∙) is

138

such that pφ(1) ≥ ∙ ∙ ∙ ≥ pφ(|D|), by the definition of popularity-first placement in (4.4), for

a ∈ Q, we have

aφ(i),l ≥ aφ(i+1),l, l ∈ K, i = 1, . . . , Ñ(d)− 1. (B.3)

Since
(

K−i
l

)
is a decreasing function of i, for a ∈ Q, we have

max
π:I|D|→D

K∑

l=0

Ñ(d)∑

i=1

(
K − i

l

)

aπ(i),l =
K∑

l=0

Ñ(d)∑

i=1

(
K − i

l

)

aφ(i),l.

Thus, we remove the max operation in (4.12) to arrive at the simplified expression in (4.14),

for a ∈ Q.

B.3 Proof of Theorem 2

For P1, consider a feasible cache placement vector â and any lo ∈ K. Define ϕ : I|N | → N

as a bijective map for â such that âϕ(1),lo ≥ . . . ≥ âϕ(N),lo . Note that ϕ(∙) depends on â and

lo.

Assume pϕ(io) < pϕ(io+1), for some io ∈ I|N |\{N}. We construct another feasible

cache placement vector ã using â by switching the values of âϕ(io),lo and âϕ(io+1),lo . Specif-

ically,

i) for l ∈ K, we have





ãϕ(io),lo = âϕ(io+1),lo

ãϕ(io+1),lo = âϕ(io),lo

ãϕ(i),l = âϕ(i),l, i 6= io, i ∈ I|N |;

(B.4)

ii) for l = 0, by (B.4) and file partition constraint (4.2), we have





ãϕ(io),0 = 1−
∑

l∈K\{lo}

(
K
l

)
âϕ(io),l −

(
K
lo

)
âϕ(io+1),lo

ãϕ(io+1),0 = 1−
∑

l∈K\{lo}

(
K
l

)
âϕ(io+1),l −

(
K
lo

)
âϕ(io),lo

ãϕ(i),0 = âϕ(i),0, i 6= io, io + 1, i ∈ I|N |.

(B.5)

From (B.4), we have

ãϕ(1),lo ≥ ∙ ∙ ∙ ≥ ãϕ(io),lo , ãϕ(io+1),lo ≥ ∙ ∙ ∙ ≥ ãϕ(N),lo ,

ãϕ(io+1),lo ≥ ãϕ(io),lo . (B.6)

From (B.5) and (4.2), we conclude that

âϕ(io),0 + âϕ(io+1),0 = ãϕ(io),0 + ãϕ(io+1),0 (B.7)

139

âϕ(io),0 − ãϕ(io),0 =

(
K

lo

)

(âϕ(io+1),lo − âϕ(io),lo) (B.8)

âϕ(io+1),0−ãϕ(io+1),0 =

(
K

lo

)

(âϕ(io),lo−âϕ(io+1),lo). (B.9)

Now, we show that R̄lb(â) ≥ R̄lb(ã).

For K = 2, we have Ñ(d) = |D| ≤ 2. Define ξ : I|D| → D as a bijective map for a

such that aξ(1),1 ≥ aξ(|D|),1. Note that ξ(∙) depends on a. Then, Rlb(D; a) in (4.12) is given

by

Rlb(D; a) = max
π:I|D|→D

{ |D|∑

i=1

aπ(i),0 + aπ(1),1

}
=

|D|∑

i=1

aξ(i),0 + aξ(1),1 (B.10)

Given â, the set D of distinct file indexes in demand vector d can be categorized into

the following four types:

1. D̃1,j , {D ⊆ N : ϕ(io) ∈ D, ϕ(io + 1) /∈ D, ϕ(io) = ξ(j)}, for j = 1, 2.1

2. D̃2,j , {D ⊆ N : ϕ(io + 1) ∈ D, ϕ(io) /∈ D, ϕ(io + 1) = ξ(j)}, for j = 1, 2.

3. D̃3 , { {ϕ(io), ϕ(io + 1)} }.

4. D̃4 , {D ⊆ N\{ϕ(io), ϕ(io + 1)} }.

Note that for any D, its type is the same for â and ã. To see this, consider D =

{ϕ(io), n
′}, where n′ ∈ N\{ϕ(io), ϕ(io + 1)}. Assume âϕ(io),1 ≥ ân′,1. Then for â, we

have ξ(1) = ϕ(io), and D ∈ D̃1,1. For ã, from (B.6), we also have ãϕ(io),1 ≥ ãn′,1. Thus,

for the mapping ξ(∙) for ã, we have ξ(1) = ϕ(io), and in this case, we again have D ∈ D̃1,1.

All other types of D can be verified using the similar argument.

Based on the above four categories of D, we rewrite R̄lb(a) in (4.11) as

R̄lb(a) =
2∑

i=1

2∑

j=1

∑

D∈D̃i,j

∑

d∈T (D)

pd1pd2Rlb(D; a) +
∑

D∈D̃3∪D̃4

∑

d∈T (D)

pd1pd2Rlb(D; a).

Following the above, we have

R̄lb(â)− R̄lb(ã) =
2∑

i=1

2∑

j=1

∑

D∈D̃i,j

∑

d∈T (D)

pd1pd2(Rlb(D; â)− Rlb(D; ã))

1Set D̃1,j corresponds to the case where file ϕ(io) is requested and aϕ(io),1 is ranked the jth in ξ(∙).

140

+
∑

D∈D̃3∪D̃4

∑

d∈T (D)

pd1pd2(Rlb(D; â)− Rlb(D; ã)). (B.11)

We now evaluate the differences between Rlb(D; â) and Rlb(D; ã), for lo = 1, 2.

Case 1: lo = 1. We express Rlb(D; â) in (B.10) based on the types of D. If D ∈ D̃1,1,

then ϕ(io) = ξ(1), and we have

Rlb(D; â) =

{
âϕ(io),0 + âϕ(io),1, |D| = 1

âϕ(io),0 + âξ(2),0 + âϕ(io),1, |D| = 2,
(B.12)

or more compactly, we can express (B.12) as follows

Rlb(D; â) = âϕ(io),0 + s ∙ âξ(2),0 + âϕ(io),1, D ∈ D̃1,1 (B.13)

where s ∈ {0, 1} is an indicator defined by s = {0 : if |D| = 1; 1 : if |D| = 2}.

Similarly, for any other types of D, we can always rewrite Rlb(D; â) in (B.10) as in (B.13)

by replacing ξ(1) and ξ(2) with ϕ(io) and ϕ(io + 1), given as follows

Rlb(D; â)=






âϕ(io),0 + s ∙ âξ(2),0 + âϕ(io),1, D ∈ D̃1,1

âξ(1),0 + âϕ(io),0 + âξ(1),1, D ∈ D̃1,2

âϕ(io+1),0 + s ∙ âξ(2),0 + âϕ(io+1),1, D ∈ D̃2,1

âξ(1),0 + âϕ(io+1),0 + âξ(1),1, D ∈ D̃2,2

âϕ(io),0 + âϕ(io+1),0 + âϕ(io),1, D ∈ D̃3

âξ(1),0 + s ∙ âξ(2),0 + âξ(1),1, D ∈ D̃4

(B.14)

where the second and fourth cases are only for |D| = 2.

Similar to Rlb(D; â) in (B.14), we can rewrite Rlb(D; ã) in (B.10) as follows

Rlb(D; ã)=






ãϕ(io),0 + s ∙ ãξ(2),0 + ãϕ(io),1, D ∈ D̃1,1

ãξ(1),0 + ãϕ(io),0 + ãξ(1),1, D ∈ D̃1,2

ãϕ(io+1),0 + s ∙ ãξ(2),0 + ãϕ(io+1),1, D ∈ D̃2,1

ãξ(1),0 + ãϕ(io+1),0 + ãξ(1),1, D ∈ D̃2,2

ãϕ(io),0 + ãϕ(io+1),0 + ãϕ(io+1),1, D ∈ D̃3

ãξ(1),0 + s ∙ ãξ(2),0 + ãξ(1),1 Dc ∈ D̃4.

(B.15)

Comparing (B.14) and (B.15), we note that the only difference is the case of D ∈ D̃3,

where âξ(1),1 = âϕ(io),1, while ãξ(1),1 = ãϕ(io+1),1 by (B.6).

For K = 2, lo = 1, (B.8) and (B.9) are respectively given by

âϕ(io),0 − ãϕ(io),0 = 2(âϕ(io+1),1 − âϕ(io),1), (B.16)

141

âϕ(io+1),0 − ãϕ(io+1),0 = 2(âϕ(io),1 − âϕ(io+1),1). (B.17)

Based on (B.14)–(B.17), we now compute Rlb(D; â)−Rlb(D; ã) for different types of

D. For D ∈ D̃1,1, we have

Rlb(D; â)−Rlb(D; ã) = âϕ(io),0−ãϕ(io),0+âϕ(io),1−ãϕ(io),1

(a)
= 2âϕ(io+1),1 − âϕ(io),1 −ãϕ(io),1

(b)
= âϕ(io+1),1 − âϕ(io),1 (B.18)

where (a) is by (B.16) and (b) is due to (B.4). Similarly, using (B.6)(B.7)(B.16) and (B.17),

we obtain the following for all the other types of D

Rlb(D; â)−Rlb(D; ã)=






âϕ(io+1),1 − âϕ(io),1, D ∈ D̃1,1

2(âϕ(io+1),1 − âϕ(io),1), D ∈ D̃1,2

âϕ(io),1 − âϕ(io+1),1, D ∈ D̃2,1

2(âϕ(io),1 − âϕ(io+1),1), D ∈ D̃2,2

0, D ∈ D̃3 ∪ D̃4,

or more compactly,

Rlb(D; â)−Rlb(D; ã) =






j(âϕ(io+1),1 − âϕ(io),1), D ∈ D̃1,j , j = 1, 2

j(âϕ(io),1 − âϕ(io+1),1), D ∈ D̃2,j , j = 1, 2

0, D ∈ D̃3 ∪ D̃4.

(B.19)

Substituting (B.19) into (B.11), we have

R̄lb(â)− R̄lb(ã) =
2∑

j=1

∑

D∈D̃1,j

∑

d∈T (D)

pd1pd2j(âϕ(io+1),1 − âϕ(io),1)

+
2∑

j=1

∑

D∈D̃2,j

∑

d∈T (D)

pd1pd2j(âϕ(io),1 − âϕ(io+1),1)

=
(
p2

ϕ(io) + 2
∑

n′∈N ′

pn′pϕ(io)

)
(âϕ(io+1),1 − âϕ(io),1)

+
(
2
∑

n′∈N ′′

pn′pϕ(io)

)
2(âϕ(io+1),1 − âϕ(io),1)

+
(
p2

ϕ(io+1)+ 2
∑

n′∈N ′

pn′pϕ(io+1)

)
(âϕ(io),1 − âϕ(io+1),1)

+
(
2
∑

n′∈N ′′

pn′pϕ(io+1)

)
2(âϕ(io),1 − âϕ(io+1),1)

142

≥ 0. (B.20)

whereN ′ , {ϕ(io+2), . . . , ϕ(N)} andN ′′ , {ϕ(1), . . . , ϕ(io−1)}, and the last inequality

is due to the assumption that pϕ(io) < pϕ(io+1) and âϕ(io),1 ≥ âϕ(io+1),1 for lo = 1.

Case 2: lo = 2. From the third case in (B.4), we have

ân,1 = ãn,1, n ∈ N . (B.21)

For K = 2, lo = 2, (B.8) and (B.9) are respectively given by

âϕ(io),0 − ãϕ(io),0 = âϕ(io+1),2 − âϕ(io),2, (B.22)

âϕ(io+1),0 − ãϕ(io+1),0 = âϕ(io),2 − âϕ(io+1),2. (B.23)

We compare Rlb(D; â) and Rlb(D; ã) for different types of D’s. For D /∈ D̃3, it is

straightforward to show that the expressions of Rlb(D; â) and Rlb(D; ã) are the same as the

those for Case 1 (lo = 1) in (B.14) and (B.15), respectively. Similar to Case 1, based on

(B.14) (B.15) and (B.21) – (B.23), except for D /∈ D̃3, we have

Rlb(D; â)−Rlb(D; ã) =






âϕ(io+1),2 − âϕ(io),2, D ∈ D̃1,j , j = 1, . . . , |D|

âϕ(io),2 − âϕ(io+1),2, D ∈ D̃2,j , j = 1, . . . , |D|

0, D ∈ D̃4.

(B.24)

For D ∈ D̃3, we rewrite (B.10) for both â and ã as follows

Rlb(D; a) = aϕ(io),0 + aϕ(io+1),0 + max{aϕ(io),1, aϕ(io+1),1}, D ∈ D̃3, a ∈ {â, ã}.
(B.25)

By (B.7), the sum of the first two terms in (B.25) is the same for â and ã. By (B.21), the

third term in (B.25) is identical for â and ã. Thus, we have

Rlb(D; â)− Rlb(D; ã) = 0, D ∈ D̃3. (B.26)

Following (B.20), we substitute (B.24) and (B.26) into (B.11) and obtain the following

R̄lb(â)− R̄lb(ã) =
(
p2

ϕ(io) +
∑

n′∈N ′∪N ′′

2pn′pϕ(io)

)
(âϕ(io+1),2 − âϕ(io),2)

+
(
p2

ϕ(io+1) +
∑

n′∈N ′∪N ′′

2pn′pϕ(io+1)

)
(âϕ(io),2 − âϕ(io+1),2)

≥0. (B.27)

whereN ′ andN ′′ are defined below (B.20) and the inequality is due to the assumption that

pϕ(io) < pϕ(io+1) and âϕ(io),2 ≥ âϕ(io+1),2 for lo = 2.

143

From the above results, we conclude that R̄lb(â) − R̄lb(ã) ≥ 0, for any lo ∈ {1, 2}.

This means that, if pϕ(io) < pϕ(io+1), we can always reduce R̄lb(â) by switching the values

of âϕ(io),lo and âϕ(io+1),lo . It follows that at the optimality of P1, we have an1,lo ≥ an2,lo ,

lo = 1, 2, for any n1, n2 ∈ N satisfying pn1 ≥ pn2 , i.e., the optimal a is a popularity-first

cache placement. Thus, P1 and P2 are equivalent.

B.4 Proof of Lemma 4

We look at each inner term
∑

S∈Ãl+1
i

āS
ψ(i),l of RMCCS(d; a) in (4.20), for i = 1, . . . , Ñ(d).

For cache subgroup Al+1, first consider Ãl+1
1 , where for any user subset S ∈ Ãl+1

1 , S

includes user ψ(1). Based on the relation of mappings ψ(∙) and φ(∙) discussed above

(4.16), we have adψ(1),l = aφ(1),l, which is the size of the coded message for any user subset

S ∈ Ãl+1
1 . By (4.16), (4.19), and |Ãl+1

1 | =
(

K−1
l

)
, we have

∑

S∈Ãl+1
1

āS
ψ(1),l =

(
K − 1

l

)

aφ(1),l. (B.28)

Denote N̈i as the number of users that request file φ(i) but are not in leader group U .

We have N̈i ≤ N − Ñ(d). For Ãl+1
2 (in which user subsets includes user ψ(2) but not

ψ(1)),. among the total of
(

K−2
l

)
user subsets, there are

(
K−2−N̈1

l

)
user subsets that do not

contain any user that requests file φ(1). The size of coded messages corresponding to these

user subsets is adψ(2),l = aφ(2),l. For the rest of
(

K−2
l

)
−
(

K−2−N̈1

l

)
user subsets, since they

contain at least one user k′ from the redundant group that requests file φ(1), the size of

coded message is adk′ ,l
= aφ(1),l. Thus, the size of coded message for user subset S ∈ Ãl+1

2

can be one of the above two cases, and we have

∑

S∈Ãl+1
2

āS
ψ(2),l =

((
K − 2

l

)

−

(
K − 2− N̈1

l

))

aφ(1),l +

(
K − 2− N̈1

l

)

aφ(2),l. (B.29)

Following the similar arguments above, the size of coded message for user subset

S ∈ Ãl+1
3 (i.e., including ψ(3) but not ψ(1),ψ(2)) can be one of the three types aφ(1),l,

aφ(2),l and aφ(3),l. It follows that

∑

S∈Ãl+1
3

āS
ψ(3),l =

((
K − 3

l

)

−

(
K − 3− N̈1

l

))

aφ(1),l

+

((
K − 3− N̈1

l

)

−

(
K − 3− N̈1 − N̈2

l

))

aφ(2),l

144

+

(
K − 3− N̈1 − N̈2

l

)

aφ(3),l. (B.30)

The first term in the above expression corresponds to the coded messages for the user

subsets that contain users from the redundant group requesting file φ(1). The second term

is for the coded messages for the user subsets that contain users from the redundant group

requesting file φ(2) but not φ(1). The third term represents the coded messages for all the

rest user subsets in Ãl+1
2 that do not request either file φ(1) or φ(2).

Following the derivations above, we can obtain the general expression of
∑

S∈Ãl+1
i

āS
ψ(i),l

with a recursive pattern. Let N̂(i) be the total number of redundant requests for files

{φ(1), . . . , φ(i)} (i.e., file requests by users in the redundant group). We have N̂(i) ,
∑i

j=1 N̈j . Similar to (B.28)–(B.30), for the coded messages for S ∈ Ãl+1
i , we have

∑

S∈Ãl+1
i

āS
ψ(i),l =

((
K − i

l

)

−

(
K − i− N̂(1)

l

))

aφ(1),l + . . .

+

((
K − i− N̂(i− 2)

l

)

−

(
K− i− N̂(i− 1)

l

))

aφ(i−1),l

+

(
K − i− N̂(i− 1)

l

)

aφ(i),l, (B.31)

for i = 1, . . . , Ñ(d). Assume that N̂(0) = 0. From (B.28) – (B.31), we have

Ñ(d)∑

i=1

∑

S∈Ãl+1
i

āS
ψ(i),l =

Ñ(d)∑

i=1




Ñ(d)∑

j=i

(
K − j − N̂(i− 1)

l

)

−
Ñ(d)∑

j=i+1

(
K − j − N̂(i)

l

)


 aφ(i),l.

(B.32)

Summing up both sides of (B.32) for l = 0, . . . , K − 1, we have RMCCS(d; a) as in (4.32).

B.5 Proof of Theorem 6

To show that P4 and P5 are equivalent for K = 2, we will show that R̄lb(a) = R̄MCCS(a),

for any given a. To do so, we only need to compare RMCCS(d; a) and Rlb(D; a). For

K = {1, 2}, we have |D| = 1 or 2. We consider the two cases separately below.

For |D| = 1

Two users request the same file. We have d1 = d2. Thus, we have D = {d1}. By

RMCCS(d; a) in (5.7) and Rlb(D; a) in (4.12), it is straightforward to show that

RMCCS(d; a) = Rlb(D; a) = ad1,0 + ad1,1. (B.33)

145

For |D| = 2

As shown in (B.10), Rlb(D; a) in (4.12) can be written as

Rlb(D; a) = aξ(1),0 + aξ(2),0 + aξ(1),1 (B.34)

where ξ : I|D| → D is defined as a bijective map such that aξ(1),1 ≥ aξ(2),1.

Since two users request different files, we have the leader group U = {1, 2}. For

K = {1, 2}, RMCCS(d; a) in (5.7) is given by

RMCCS(d; a) =
∑

S⊆{{1},{2},{1,2}}

max
k∈S

adk,l = ad1,0 + ad2,0 + max{ad1,1, ad2,1}. (B.35)

By the definition of ξ : [|D|] → D, we have Rlb(D; a) = RMCCS(d; a). Thus, we

conclude that R̄lb(a) = R̄MCCS(a), and P4 and P5 are equivalent .

146

Appendix C

Appendices for Chapter 5

C.1 Proof of Theorem 7

The proof follows the genie-based approach used in developing the lower bound for the

centralized uncoded cache placement under uniform or nonuniform file popularity [44,109]

or nonuniform cache sizes [66]. For a given file request vector DA by the active users in A,

the average delivery rate must satisfy [109]

R(DA;q) ≥ max
π:I|DA|→DA

Ñ(dA)∑

i=1

A−1∑

s=1

(
A− s

i

)

aπ(i),s (C.1)

where aπ(i),s is the number of bits of file π(i) cached exclusively by any user subset S ∈ A

with |S| = s users. With decentralized placement, as shown in (5.3), the number of bits

cached by any s active users in A is aπ(i),s = qs
π(i)(1 − qπ(i))

A−sF . Following this, under

decentralized placement, we can rewrite (C.1) as

R(DA;q) ≥ max
π:I|DA|→DA

Ñ(dA)∑

i=1

A−1∑

s=1

(
A− s

i

)

qs
π(i)(1− qπ(i))

A−sF.

which is the lower bound on the delivery rate for a given DA and q defined in (4.12). By

averaging Rlb(DA;q) over all possible DA ⊆ N andA over all possibleA ⊆ K, we obtain

the general lower bound R̄lb(q) the average rate w.r.t q in (5.20). The final lower bound

on average rate is obtained by optimizing q to minimize R̄lb(q), which is the optimization

problem P4 as presented in Theorem 7.

C.2 Proof of Proposition 8

We divide all the transmitted coded messages into two different types based on the user

subsets they corresponding to. Denote Qs+1
1 , {S ⊆ A : S ∩ UA 6= ∅,S ∩ A1 6= ∅, |S| =

147

s + 1} as the non-redundant groups of size s + 1 that include the users in A1. Also denote

Q2 , {S ⊆ A : S ∩ UA 6= ∅,S ∩ A1 = ∅, |S| = s + 1} as the rest of the non-redundant

groups of size s + 1, i.e., the ones do not include any user in A1. By definition, we have

Qs+1 = Qs+1
1 ∪Qs+1

2 . Thus, we can rewrite RMCCS(dA;q) in (5.7) as

RMCCS(dA;q) =
A−1∑

s=0

∑

S∈Qs+1
1

|CS |+
A−1∑

s=0

∑

S∈Qs+1
2

|CS |. (C.2)

For the coded message corresponding to the user subset S ∈ Qs+1
1 , its length is given by

|CS | =

(
M

N1

)s(

1−
M

N1

)A−s

F, S ∈ Qs+1
1 . (C.3)

The number of user subsets in Qs+1
1 can be expressed as the total number of non-redundant

groups minus the number of non-redundant groups that only include users in A2, given

by
((

A
s+1

)
−
(

A−Ñ(dA)
s+1

))
−
((

A2

s+1

)
−
(

A0−Ñ(dA2
)

s+1

))
. Thus, the total length of the all the

coded messages corresponding to the user subsets in Qs+1
1 , i.e., the first term of (C.2) can

be expressed as
∑

S∈Qs+1
1

|CS | =

((
A

s + 1

)

−

(
A− Ñ(dA)

s + 1

)

−

((
A2

s + 1

)

−

(
A2 − Ñ(dA2)

s + 1

)))(
M

N1

)s(

1−
M

N1

)A−s

F

=




Ñ(dA)∑

i=1

(
A− i

s

)

−

Ñ(dA2
)∑

i=1

(
A2 − i

s

)



(

M

N1

)s(

1−
M

N1

)A−s

F (C.4)

where the second equality is due to
(

A
s+1

)
−
(

A−Ñ(dA)
s+1

)
=
∑Ñ(dA)

i=1

(
A−i

s

)
that can be easily

shown.

For the coded messages corresponding to S ∈ Qs+1
2 , s = 0, . . . , K − 1, since all the

files requested by the users in the user subset are only in the server, we have

|CS | =

{
F, s = 0,S ∈ Qs+1

2 ;

0, s ≥ 1,S ∈ Qs+1
2 .

(C.5)

As a result, the length of the coded messages corresponding to user subsets in Q2, i.e., the

first term of (C.2) is given by

A−1∑

s=0

∑

S∈Qs+1
2

|CS | = Ñ(dA2)F. (C.6)

148

Thus, by plugging in the results in (C.4) and (C.6) into (C.2), we obtain the expression of

RMCCS(dA, N1) in (5.19) and finish the proof.

149

Bibliography

[1] Cisco, “Global mobile data traffic forecast update, 2016-2021,” 2017.

[2] E. Bastug, M. Bennis, and M. Debbah, “Living on the edge: The role of proactive
caching in 5g wireless networks,” IEEE Commun. Mag., vol. 52, pp. 82–89, aug
2014.

[3] X. Wang, M. Chen, T. Taleb, A. Ksentini, and V. Leung, “Cache in the air: exploit-
ing content caching and delivery techniques for 5g systems,” IEEE Commun. Mag.,
vol. 52, pp. 131–139, Feb. 2014.

[4] G. S. Paschos, G. Iosifidis, M. Tao, D. Towsley, and G. Caire, “The role of caching in
future communication systems and networks,” IEEE J. Sel. Areas Commun., vol. 36,
pp. 1111–1125, Sep. 2018.

[5] R. Fagin, “Asymptotic miss ratios over independent references,” Journal of Com-
puter and System Sciences, vol. 14, pp. 222–250, Feb. 1977.

[6] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker, “Web caching and zipf-
like distributions: evidence and implications,” in Proc. IEEE Conf. on Computer
Communications (INFOCOM), 1999, pp. 126–134.

[7] M. Korupolu and M. Dahlin, “Coordinated placement and replacement for large-
scale distributed caches,” IEEE Trans. on Knowledge and Data Engineering, vol. 14,
pp. 1317–1329, Jun. 2002.

[8] I. D. Baev and R. Rajaraman, “Approximation algorithms for data placement in arbi-
trary networks,” in the 20th annual ACM-SIAM symp. on Discrete algorithms, 2001,
pp. 661–670.

[9] P. Krishnan, D. Raz, and Y. Shavitt, “The cache location problem,” IEEE/ACM
Trans. on Netw., vol. 8, pp. 568–582, May 2000.

[10] S. Borst, V. Gupta, and A. Walid, “Distributed caching algorithms for content distri-
bution networks,” in Proc. IEEE Conf. on Computer Communications (INFOCOM),
Mar. 2010, pp. 1–9.

150

[11] M. Ji, G. Caire, and A. F. Molisch, “Wireless device-to-device caching networks:
Basic principles and system performance,” IEEE Journal on Selected Areas in Com-
munications, vol. 34, pp. 176–189, Jan. 2016.

[12] K. Li, C. Yang, Z. Chen, and M. Tao, “Optimization and analysis of probabilistic
caching in n -tier heterogeneous networks,” IEEE Trans. Commun., vol. 17, pp.
1283–1297, Feb. 2018.

[13] K. Shanmugam, N. Golrezaei, A. G. Dimakis, A. F. Molisch, and G. Caire, “Fem-
tocaching: Wireless content delivery through distributed caching helpers,” IEEE
Trans. Inform. Theory, vol. 59, pp. 8402–8413, Dec. 2013.

[14] J. Song, H. Song, and W. Choi, “Optimal content placement for wireless femto-
caching network,” IEEE Trans. Wireless Commun., vol. 16, pp. 4433–4444, Jul.
2017.

[15] S.-H. Park, O. Simeone, and S. Shamai Shitz, “Joint optimization of cloud and edge
processing for fog radio access networks,” IEEE Trans. Wireless Commun., vol. 15,
pp. 7621–7632, Sep. 2016.

[16] U. Niesen and M. A. Maddah-Ali, “Coded caching with nonuniform demands,”
IEEE Trans. Inform. Theory, vol. 63, pp. 1146–1158, Dec. 2017.

[17] M. A. Maddah-Ali and U. Niesen, “Fundamental limits of caching,” IEEE Trans.
Inform. Theory, vol. 60, pp. 2856–2867, Mar. 2014.

[18] ——, “Decentralized coded caching attains order-optimal memory-rate tradeoff,”
IEEE/ACM Trans. Netw., vol. 23, pp. 1029–1040, Aug. 2015.

[19] A. Sengupta, R. Tandon, and O. Simeone, “Fog-aided wireless networks for content
delivery: Fundamental latency tradeoffs,” IEEE Trans. Inform. Theory, vol. 63, pp.
6650–6678, Aug. 2017.

[20] M. A. Maddah-Ali and U. Niesen, “Cache-aided interference channels,” in Proc.
IEEE Int. Symp. on Infor. Theory (ISIT), Jun. 2015, pp. 809–813.

[21] M. Ji, G. Caire, and A. F. Molisch, “Fundamental limits of caching in wireless D2D
networks,” IEEE Trans. Inform. Theory, vol. 62, pp. 849–869, Feb. 2016.

[22] Ç. Yapar, K. Wan, R. F. Schaefer, and G. Caire, “On the optimality of D2D coded
caching with uncoded cache placement and one-shot delivery,” IEEE Trans. Com-
mun., vol. 67, no. 12, pp. 8179–8192, Dec. 2019.

[23] F. Xu, M. Tao, and K. Liu, “Fundamental tradeoff between storage and latency in
cache-aided wireless interference networks,” IEEE Trans. Inform. Theory, vol. 63,
pp. 7464–7491, Jun. 2017.

151

[24] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on large clus-
ters,” Commun. of the ACM, vol. 51, pp. 348–355, Jan. 2008.

[25] S. Li, M. A. Maddah-Ali, and A. S. Avestimehr, “Coding for distributed fog com-
puting,” IEEE Commun. Magazine, vol. 55, pp. 34–40, Apr. 2017.

[26] S. Li, M. A. Maddah-Ali, Q. Yu, and A. S. Avestimehr, “A fundamental tradeoff
between computation and communication in distributed computing,” IEEE Trans.
Inform. Theory, vol. 64, pp. 109–128, Jan. 2018.

[27] M. Kiamari, C. Wang, and A. S. Avestimehr, “On heterogeneous coded distributed
computing,” in Proc. IEEE Global Telecommn. Conf. (GLOBECOM), Dec. 2017.

[28] F. Xu and M. Tao, “Heterogeneous coded distributed computing: Joint design of
file allocation and function assignment,” in Proc. IEEE Global Telecommn. Conf.
(GLOBECOM), Dec. 2019.

[29] N. Woolsey, R.-R. Chen, and M. Ji, “Coded distributed computing with heteroge-
neous function assignments,” in Proc. IEEE Int. Conf. Communications (ICC), Jun.
2020.

[30] F. Xu, S. Shao, and M. Tao, “New results on the computation-communication trade-
off for heterogeneous coded distributed computing,” IEEE Trans. Commun., vol. 69,
pp. 2254–2270, Apr. 2021.

[31] S. Li, Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “A scalable framework for
wireless distributed computing,” IEEE/ACM Transactions on Networking, vol. 25,
pp. 2643–2654, May 2017.

[32] Y. Dong, B. Tang, B. Ye, Z. Qu, and S. Lu, “Intermediate value size aware coded
mapreduce,” in 26th IEEE Int. Conf. on Parallel and Distributed Systems (ICPADS),
Dec. 2020, pp. 348–355.

[33] A. M. Daniel and W. Yu, “Optimization of heterogeneous coded caching,” IEEE
Trans. Inform. Theory, vol. 66, pp. 1893–1919, Mar. 2020.

[34] J. Hachem, N. Karamchandani, and S. N. Diggavi, “Coded caching for multi-level
popularity and access,” IEEE Trans. Inform. Theory, vol. 63, pp. 3108–3141, Mar.
2017.

[35] M. Ji, A. M. Tulino, J. Llorca, and G. Caire, “Order-optimal rate of caching and
coded multicasting with random demands,” IEEE Trans. Inform. Theory, vol. 63,
pp. 3923–3949, Apr. 2017.

[36] J. Zhang, X. Lin, and X. Wang, “Coded caching under arbitrary popularity distribu-
tions,” IEEE Trans. Inform. Theory, vol. 64, pp. 349–366, Nov. 2018.

152

[37] S. Jin, Y. Cui, H. Liu, and G. Caire, “Structural properties of uncoded placement
optimization for coded delivery,” arXiv preprint arXiv:1707.07146, Jul. 2017.

[38] K. Shanmugam, M. Ji, A. M. Tulino, J. Llorca, and A. G. Dimakis, “Finite-length
analysis of caching-aided coded multicasting,” IEEE Trans. Inform. Theory, vol. 62,
pp. 5524–5537, Aug. 2016.

[39] Q. Yan, M. Cheng, X. Tang, and Q. Chen, “On the placement delivery array design
for centralized coded caching scheme,” IEEE Trans. Inform. Theory, vol. 63, pp.
5821–5833, Jul. 2017.

[40] M. Cheng, Q. Yan, X. Tang, and J. Jiang, “Coded caching schemes with low rate and
subpacketizations,” arXiv preprint arXiv:1703.01548, Mar. 2017.

[41] L. Tang and A. Ramamoorthy, “Low subpacketization schemes for coded caching,”
in Proc. IEEE Int. Symp. on Infor. Theory (ISIT), Jun. 2017, pp. 2790–2794.

[42] K. Shanmugam, A. M. Tulino, and A. G. Dimakis, “Coded caching with linear sub-
packetization is possible using Ruzsa-Szeméredi graphs,” in Proc. IEEE Int. Symp.
on Infor. Theory (ISIT), Jun. 2017, pp. 1237–1241.

[43] E. Lampiris and P. Elia, “Adding transmitters dramatically boosts coded-caching
gains for finite file sizes,” IEEE J. Sel. Areas Commun., vol. 36, pp. 1176–1188, Jun.
2018.

[44] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “The exact rate-memory tradeoff
for caching with uncoded prefetching,” IEEE Trans. Inform. Theory, vol. 64, pp.
1281–1296, Feb. 2018.

[45] K. Wan, D. Tuninetti, and P. Piantanida, “On caching with more users than files,” in
Proc. IEEE Int. Symp. on Infor. Theory (ISIT), Jul. 2016.

[46] ——, “On the optimality of uncoded cache placement,” in IEEE Infor. Theory Work-
shop, Sep. 2016.

[47] S. A. Saberali, L. Lampe, and I. F. Blake, “Full characterization of optimal uncoded
placement for the structured clique cover delivery of nonuniform demands,” IEEE
Trans. Inform. Theory, vol. 66, no. 1, pp. 633–648, Jan. 2020.

[48] Y. Deng and M. Dong, “Fundamental structure of optimal cache placement for coded
caching with heterogeneous demands,” arXiv preprint arXiv:1912.01082, Apr. 2020.

[49] H. Cheng, C. Li, H. Xiong, and P. Frossard, “Optimal decentralized coded caching
for heterogeneous files,” in the 25th European Signal Processing Conf., 2017.

[50] J. Zhang, X. Lin, C. Wang, and X. Wang, “Coded caching for files with distinct file
sizes,” in Proc. IEEE Int. Symp. on Infor. Theory (ISIT), 2015.

153

[51] J. Zhang, X. Lin, and C. Wang, “Closing the gap for coded caching with distinct file
sizes,” in Proc. IEEE Int. Symp. on Infor. Theory (ISIT), 2019.

[52] S. Sahraei, P. Quinton, and M. Gastpar, “The optimal memory-rate trade-off for the
non-uniform centralized caching problem with two files under uncoded placement,”
IEEE Trans. Inform. Theory, vol. 65, no. 12, pp. 7756–7770, Dec. 2019.

[53] S. Jin, Y. Cui, H. Liu, and G. Caire, “Uncoded placement optimization for coded
delivery,” arXiv preprint arXiv:1709.06462, Jul. 2018.

[54] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on large clus-
ters,” Commun. of the ACM, vol. 51, pp. 107–113, Jan. 2008.

[55] Q. Chen, J. Yao, and Z. Xiao, “Libra: Lightweight data skew mitigation in mapre-
duce,” IEEE Trans. on Parallel and Distributed Systems, vol. 26, pp. 2520–2533,
Sep. 2015.

[56] W. Chen, B. Liu, I. Paik, Z. Li, and Z. Zheng, “Qos-aware data placement for mapre-
duce applications in geo-distributed data centers,” IEEE Trans. on Engineering Man-
agement, vol. 68, pp. 120–136, Jan. 2021.

[57] F. Li, J. Chen, and Z. Wang, “Wireless mapreduce distributed computing,” IEEE
Transactions on Information Theory, vol. 65, pp. 6101–6114, Oct. 2019.

[58] K. Konstantinidis and A. Ramamoorthy, “Resolvable designs for speeding up dis-
tributed computing,” IEEE/ACM Transactions on Networking, vol. 28, pp. 1657–
1670, Apr. 2020.

[59] A. R. Elkordy, S. Li, M. A. Maddah-Ali, and A. S. Avestimehr, “Compressed coded
distributed computing,” IEEE Transactions on Communications, vol. 69, pp. 2773–
2783, May 2021.

[60] G. Ananthanarayanan, S. Agarwal, S. Kandula, A. Greenberg, I. Stoica, D. Har-
lan, and E. Harris, “Scarlett: Coping with skewed content popularity in mapreduce
clusters,” in 6th ACM Conf. on Computer Systems (EuroSys), Apr. 2011.

[61] Q. Wang, Y. Cui, S. Jin, J. Zou, C. Li, and H. Xiong, “Optimization-based decentral-
ized coded caching for files and caches with arbitrary sizes,” IEEE Trans. Commun.,
Dec. 2019.

[62] C. Wang, S. H. Lim, and M. Gastpar, “A new converse bound for coded caching,” in
Inf. Theory and Applications Workshop (ITA), 2016.

[63] C. Wang, S. Saeedi Bidokhti, and M. Wigger, “Improved converses and gap results
for coded caching,” IEEE Trans. Inform. Theory, vol. 64, no. 11, pp. 7051–7062,
Nov. 2018.

154

[64] J. Zhang, X. Lin, and C. Wang, “Closing the gap for coded caching with distinct file
sizes,” in Proc. IEEE Int. Symp. on Infor. Theory (ISIT), 2019, pp. 687–691.

[65] Q. Yang and D. Gndz, “Coded caching and content delivery with heterogeneous
distortion requirements,” IEEE Trans. Inform. Theory, vol. 64, pp. 4347–4364, Jun.
2018.

[66] A. M. Ibrahim, A. A. Zewail, and A. Yener, “Coded caching for heterogeneous
systems: An optimization perspective,” IEEE Trans. Commun., vol. 67, no. 8, pp.
5321–5335, Aug. 2019.

[67] A. S. Cacciapuoti, M. Caleffi, M. Ji, J. Llorca, and A. M. Tulino, “Speeding up
future video distribution via channel-aware caching-aided coded multicast,” IEEE J.
Sel. Areas Commun., vol. 34, pp. 2207–2218, Aug. 2016.

[68] M. Mohammadi Amiri and D. Gndz, “Cache-aided content delivery over erasure
broadcast channels,” IEEE Trans. Commun., vol. 66, pp. 370–381, Jan. 2018.

[69] D. Cao, D. Zhang, P. Chen, N. Liu, W. Kang, and D. Gndz, “Coded caching with
asymmetric cache sizes and link qualities: The two-user case,” IEEE Trans. Com-
mun., vol. 67, no. 9, pp. 6112–6126, 2019.

[70] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “Characterizing the rate-memory
tradeoff in cache networks within a factor of 2,” IEEE Trans. Inform. Theory, vol. 65,
pp. 647–663, Jan. 2019.

[71] C. Chang and C. Wang, “Coded caching with full heterogeneity: Exact capacity of
the two-user/two-file case,” in Proc. IEEE Int. Symp. on Infor. Theory (ISIT), 2019.

[72] ——, “Coded caching with heterogeneous file demand sets the insufficiency of
selfish coded caching,” in Proc. IEEE Int. Symp. on Infor. Theory (ISIT), 2019.

[73] S. Wang and B. Peleato, “Coded caching with heterogeneous user profiles,” in Proc.
IEEE Int. Symp. on Infor. Theory (ISIT), 2019.

[74] C. Chang, C. Wang, and B. Peleato, “On coded caching for two users with overlap-
ping demand sets,” in Proc. IEEE Int. Conf. Communications (ICC), 2020.

[75] C. Zhang and B. Peleato, “On the average rate for coded caching with heterogeneous
user profiles,” in Proc. IEEE Int. Conf. Communications (ICC), 2020.

[76] D. Cao, D. Zhang, P. Chen, N. Liu, W. Kang, and D. Gündüz, “Coded caching
with asymmetric cache sizes and link qualities: The two-user case,” IEEE Trans.
Commun., vol. 67, pp. 6112–6126, Sep. 2019.

[77] P. Hassanzadeh, A. M. Tulino, J. Llorca, and E. Erkip, “Rate-memory trade-off for
caching and delivery of correlated sources,” IEEE Trans. Inform. Theory, vol. 66,
pp. 2219–2251, Apr. 2020.

155

[78] Q. Yang and D. Gündüz, “Coded caching and content delivery with heterogeneous
distortion requirements,” IEEE Trans. Inform. Theory, vol. 64, pp. 4347–4364, Jun.
2018.

[79] P. Hassanzadeh, A. M. Tulino, J. Llorca, and E. Erkip, “Rate-distortion-memory
trade-offs in heterogeneous caching networks,” IEEE Trans. Wireless Commun.,
vol. 19, pp. 3019–3033, May 2020.

[80] E. Parrinello, A. Ünsal, and P. Elia, “Fundamental limits of coded caching with
multiple antennas, shared caches and uncoded prefetching,” IEEE Trans. Inform.
Theory, vol. 66, pp. 2252–2268, Apr. 2020.

[81] M. Mohammadi Amiri, Q. Yang, and D. Gndz, “Decentralized caching and coded
delivery with distinct cache capacities,” IEEE Trans. Commun., vol. 65, pp. 4657–
4669, Nov. 2017.

[82] L. Zheng, Q. Chen, Q. Yan, and X. Tang, “Decentralized coded caching scheme
with heterogeneous file sizes,” IEEE Trans. Veh. Technol., vol. 69, pp. 818–827, Jan.
2020.

[83] S. Li, M. A. Maddah-Ali, and A. S. Avestimehr, “Coding for distributed fog com-
puting,” IEEE Commun. Mag., vol. 55, no. 4, pp. 34–40, Apr. 2017.

[84] ——, “Coded mapreduce,” in Allerton Conference on Commun., Control, and Com-
put., Sep. 2015, pp. 964–971.

[85] N. Woolsey, R. Chen, and M. Ji, “A new combinatorial design of coded distributed
computing,” in Proc. IEEE Int. Symp. on Infor. Theory (ISIT), Jun. 2018, pp. 726–
730.

[86] Q. Yan, S. Yang, and M. Wigger, “Storage, computation, and communication: A
fundamental tradeoff in distributed computing,” in IEEE Infor. Theory Workshop,
Nov. 2018, pp. 1–5.

[87] S. Li, Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “A scalable framework for
wireless distributed computing,” IEEE/ACM Trans. Netw., vol. 25, no. 5, pp. 2643–
2654, Oct. 2017.

[88] F. Li, J. Chen, and Z. Wang, “Wireless mapreduce distributed computing,” Proc.
IEEE Int. Symp. on Infor. Theory (ISIT), vol. 65, no. 10, pp. 6101–6114, Oct. 2019.

[89] A. Reisizadeh, S. Prakash, R. Pedarsani, and A. S. Avestimehr, “Coded computation
over heterogeneous clusters,” IEEE Trans. Inform. Theory, vol. 65, no. 7, pp. 4227–
4242, Jul. 2019.

156

[90] M. Kiamari, C. Wang, and A. S. Avestimehr, “On heterogeneous coded distributed
computing,” in Proc.IEEE Global Telecommn. Conf. (GLOBECOM), Dec. 2017, pp.
1–7.

[91] N. Woolsey, R. Chen, and M. Ji, “Cascaded coded distributed computing on hetero-
geneous networks,” in Proc. IEEE Int. Symp. on Infor. Theory (ISIT), Jul. 2019, pp.
2644–2648.

[92] N. Woolsey, R. Chen, and M. Ji, “Coded distributed computing with heterogeneous
function assignments,” arXiv preprint arXiv:1902.10738, Feb. 2019.

[93] F. Xu and M. Tao, “Heterogeneous coded distributed computing: Joint design of file
allocation and function assignment,” arXiv preprint arXiv:1908.06715, Aug. 2019.

[94] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge university press,
2004.

[95] W. Feller, “Stirlings formula,” An introduction to probability theory and its applica-
tions, vol. 1, no. 3, pp. 50–53, 1968.

[96] Y. Deng and M. Dong, “Optimal cache placement for modified coded caching with
arbitrary cache size,” in Proc. IEEE Int. Workshop on Signal Processing advances in
Wireless Commun.(SPAWC), Jul. 2019, pp. 1–5.

[97] R. Pedarsani, M. A. Maddah-Ali, and U. Niesen, “Online coded caching,”
IEEE/ACM Trans. Netw., vol. 24, no. 2, pp. 836–845, Apr. 2016.

[98] U. Niesen and M. A. Maddah-Ali, “Coded caching for delay-sensitive content,” in
Proc. IEEE Int. Conf. Communications (ICC), 2015.

[99] S. Park, O. Simeone, and S. Shamai Shitz, “Joint optimization of cloud and edge
processing for fog radio access networks,” IEEE Trans. Wireless Commun., vol. 15,
pp. 7621–7632, Nov. 2016.

[100] M. Zink, K. Suh, Y. Gu, and J. Kurose, “Characteristics of youtube network traf-
fic at a campus network–measurements, models, and implications,” Comput. Netw.,
vol. 53, pp. 501–514, Apr. 2009.

[101] M. Avriel, Advances in Geometric Programming. New York: PlenumPress, 1980.

[102] M. Chiang, C. W. Tan, D. P. Palomar, D. O’neill, and D. Julian, “Power control by
geometric programming,” IEEE Trans. Wireless Commun., vol. 6, pp. 2640–2651,
Jul. 2007.

[103] M. Conforti, G. Cornuéjols, G. Zambelli et al., Integer programming. Springer,
2014.

157

[104] J. Wang, M. Cheng, Q. Yan, and X. Tang, “Placement delivery array design for
coded caching scheme in D2D networks,” IEEE Trans. Commun., vol. 67, no. 5, pp.
3388–3395, May 2019.

[105] N. Woolsey, R.-R. Chen, and M. Ji, “Towards practical file packetizations in wireless
device-to-device caching networks,” arXiv preprint arXiv:1712.07221, Oct. 2017.

[106] X. Zhang and M. Ji, “A new design framework on device-to-device coded
caching with optimal rate and significantly less subpacketizations,” arXiv preprint
arXiv:1901.07057, Jun. 2019.

[107] A. M. Ibrahim, A. A. Zewail, and A. Yener, “Device-to-device coded caching with
heterogeneous cache sizes,” in Proc. IEEE Int. Conf. Communications (ICC), May
2018, pp. 1–6.

[108] N. Naderializadeh, M. A. Maddah-Ali, and A. S. Avestimehr, “Fundamental limits of
cache-aided interference management,” IEEE Trans. Inform. Theory, pp. 1–1, Feb.
2017.

[109] Y. Deng and M. Dong, “Memory-rate tradeoff for caching with uncoded placement
under nonuniform file popularity,” in the 54th Asilomar Conf. on Signals, Systems
and computers, 2020.

158

