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Abstract
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Analysis of new user cohort studies of adverse drug effects can be based on either intention-to-

treat or as-treated paradigms. In the latter case, controlling for time-dependent confounding

is necessary, and can be implemented through inverse probability of treatment (IPT) weighted

estimation of marginal structural models (MSM). To develop the weights in the context of

pharmacoepidemiological administrative data, besides a time-fixed initial dose model, the sub-

sequent time-varying exposure can be decomposed into modeling the time of the dispensations

and the dose at each time through a multinomial or multiordinal logistic model, as a marked

point process. We compare different approaches for constructing the weights in a simulation

study, simulating data from a multistate model. For estimation of the outcome MSM, we

propose IPT weighted case-base sampling, which can reduce the size of long-format data sets

needed, especially for rare outcomes. The methods are then demonstrated in a study of the

effect of glucocorticoid use on fracture risk.
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Chapter 1

Introduction

Causal Inference

Pharmacoepidemiology

Survival Analysis

Thesis Topic

Figure 1.1: This thesis project lies within the intersection of pharmacoepidemiology, causal
inference and survival analysis.

In this thesis, the methodological focus is on continuous-time models, however, some of

the concepts are more straightforwardly understood in discrete-time. Therefore, before we

provide an integration of the longitudinal causal framework under continuous-time counting

process expression for time-dependent exposure effects on time-to-event outcome modelling

in Chapter 2, we start our introduction by reviewing the three essential areas of our method-

ology - pharmacoepidemiology, causal inference, and survival analysis Figure 1.1, with some

intuitive causal diagrams and assumptions representing discrete-time setting. Thereafter, we

summarize the methods previously used for modeling time-dependent drug exposure under

time-dependent confounder in different clinical contexts. We then introduce a motivating

example on glucocorticoid use and fracture risk, and state our research objectives and their

importance.

1
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1.1 Clinical Background

1.1.1 Pharmacoepidemiology and adverse events

Randomized Clinical Trial

With the tremendous progress and breakthrough in pharmaceutical research, especially with

the aim for precision medicines and targeted treatment, we have witnessed a large number of

new medicines coming to the market (Garbe and Suissa, 2014; Ghassemi et al., 2020). In fact,

every approved medicine must have been through the four phases of clinical trials that impose

stringent assessments on safety and efficacy. From a target compound in animal studies to

clinical trials in human subjects to health authorities submission and eventually, to marketing,

the final probability of passing through all these phases is only 11% (Van Norman, 2016). Ran-

domized Clinical Trials (RCT) that are double-blinded and placebo-controlled can be served as

the gold standard of clinical research; if randomization was done properly, it eliminates poten-

tial bias by study design (Burden, 2014; Hernan and Robins, 2020). However, let alone the sky-

rocketing cost, RCT suffers from limited patient enrollment (Van Norman, 2016). For exam-

ple, only 3% of the osteoporosis patients visited at a clinic were included in a clinical trial, and

even with the least strict inclusion criteria, only 21% were eligible to enter a study (Dowd et al.,

2000). Furthermore, it is understandable that patients entering a clinical trial with high hopes

for a cure do not want to be placed into the placebo group, merely being served as a com-

parison to the treatment group but with no alleviation in their disease progression at the end.

Electronic Health Records and Confounding

In recent years, the proliferation of electronic health records (EHR) provided alternative op-

portunities for healthcare. EHR is documented to support daily operational tasks, such as

physician billing database for revenue cycle management, real-time tracking of high-frequency

biosensor data, and even diagnostic doctor notes (Ghassemi et al., 2020). One subtype of

EHR widely used in medical research is the record linkage databases, where various sources

of data, such as disease registries, drug dispensation, hospitalization, birth and death and

visit to clinics entered by general practitioners, are linked through a pseudo-generated unique

patient ID. In Canada and Scandinavian countries, this system is set up for the administrative

purpose of reimbursement for healthcare providers (Garbe and Suissa, 2014). Some obser-

vational administrative databases, also named real-world data (RWD) in the pharmaceutical

industry, are gaining popularity by expanding the coverage of evidence on top of RCT. For

example, synthetic control methods, whereas its first proposal falls in the social science sector

(Abadie et al., 2010), has been recently adopted to complement RCT results (Beaulieu-Jones

et al., 2020; Schmidli et al., 2020). By using meta-analysis on data from historical trials or
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sampling patients who have propensity scores (which we will introduce later) matched with

the treatment group from an administrative database, some clinical trials can reduce the num-

ber of subjects needed for placebo or even replace the placebo arm with a synthetic control

arm for comparison purpose (Schmidli et al., 2020). For example, European Medical Agency

(EMA) accepted the delivery of a comparison study of the single-arm non-small-cell lung

cancer treatment Alecensa versus the standard-of-care cohort from RWD (Beaulieu-Jones

et al., 2020; Davies et al., 2018). This hybrid approach partially solves the dilemma, that we

are able to preserve the scientific necessity of randomization without leaving patients in the

placebo arm untreated. Other than EMAs green light, a pharmaceutical company like Roche

has also launched an investment on the RWD curator Flatiron (Petrone, 2018). We have

to acknowledge that observational data is revolutionizing the way we study drug safety and

efficacy. However, it remains controversial whether the RWD can replace the placebo arm in

every RCT completely.

Unlike the experimental RCTs, EHRs are purely observational and sometimes can be col-

lected without a statistical perspective in mind. Most observational studies contain underlying

conditions that are not perfectly balanced between the treated versus untreated groups. When

conducting statistical analysis, introducing additional covariates might even reverse the esti-

mated direction of the treatment effect, a phenomenon known as Simpsons Paradox (Pearl,

2009). In other words, the association between exposure and outcome is causation in RCT,

but not in observational studies. Treatment status that is varying over time are more prone to

time-dependent confounding and selection bias (Ali et al., 2016; Burden, 2014; Schmidli et al.,

2020). Failing to adjust for the imbalanced variables would lead to exaggerated or neglected

risks, especially when it comes to public health policy-making and adverse event reporting and

management.

Adverse Event Monitoring

Until the ultimate goal of regulatory approval of a molecule, the entire research and develop-

ment process usually takes twelve years on average (Van Norman, 2016). When it comes to

life-threatening medical needs, health authorities, such as U.S. Food and Drug Administration

(FDA), once started to adopt accelerated approval paradigms due to criticism on its rigorous

approval process (Van Norman, 2016). However, this effort has been heavily debated with

the intention of minimizing the impact of ineffective or unsafe products. One disreputable

example that happened in 1982 is the retraction of Oraflex, a nonsteroidal anti-inflammatory

agent that leads to the reported death of patients after the drug being released to the market.

Furthermore, even after a decade of clinical trials, some adverse dose reactions (ADR) do not

appear until a sufficient number of users are exposed in the real-world setting. An investiga-
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tion of the five drugs removed from the US market between 1997 and 1998 reveals sometimes

it takes 200 to 20,000 times of the pre-marketing sample size in the post-marketing use to

manifest rare ADRs that lead to drug withdrawal (Garbe and Suissa, 2014).

Compared to RCTs that investigate drug effectiveness, observational pharmacoepidemio-

logical studies usually focus on safety or adverse effects. As introduced by Garbe and Suissa

(2014), early in the 1960s, most western countries adopt the spontaneous reporting system

(SRS) for post-approval adverse event surveillance. SRS collects ADRs reported by physi-

cians and pharmacists, and this information is then passed on to regulatory authorities and

pharmaceutical companies. The causality between a drug and its ADRs is determined by

trained reviewers. However, this assessment can be ambiguous for ADRs from treatments

with a prolonged induction period. Various sources of bias over time provoke challenges for

a conclusion on causality. A reliable monitoring system should not only document the ADRs

but also actively empower the prediction (Garbe and Suissa, 2014). Therefore, many epidemi-

ological study designs and statistical methods provide guidance on the modeling perspective,

as a complement to the SRS.

As a summary of this section and to provide a formal definition, pharmacoepidemiology

research usually takes place after the randomized clinical trial. It uses real-world evidence,

such as the administrative database, for monitoring adverse effects of post-marketing drugs

on large populations that were unselected into clinical trials (Garbe and Suissa, 2014).

1.1.2 Cumulative dose-response curves

The dose-response relationship is used to depict the impact of a stimulus on the environment.

In pharmacology, the drug molecules enter the metabolic pathway, bind to the receptors and

uptake by the body, and the accumulation of dosage over time triggers treatment or side-

effects on the body (Boslaugh, 2007). An illustration of a dose-response curve can be served as

convincing evidence for causation. To accommodate the large span of dose, pharmacological

studies usually plot log-transformed dosage on the X-axis and the risk of the outcome on the

Y-axis, and most of the curves can be modeled through a sigmoid function (Motulsky and

Christopoulos, 2004). In the untransformed case, the dose-response curve can be any shape,

such as linear, U shape, or having a constant risk until a dosage threshold, and then the

risk exponentially grows afterwards (Boslaugh, 2007). The shape of a dose-response curve

is determined by many factors, such as strength, frequency and duration of drug utilization,

and their combined effect of the cumulative dose can be modeled as a continuous variable

over time. Before the establishment of generalized linear model, the conventional approach

for modeling a continuous variable is by categorizing dosage into ordinal levels and then use
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Mantel-Haenszel trend tests, an extension of chi-squared tests, for case and control group odds

ratio comparison (Boslaugh, 2007). This trend test approach leaves many uncertainties at

the stage of analysis planning, where the number of dose categories is often derived based on

previous similar studies, and categorization limits the functional form of the variable (Becher,

2014).

By using regression models, the cumulative dose of A can still be categorized into D

levels, and we obtain the estimates for D − 1 levels compare to the baseline level. We

can also monotonically transform A before putting it into a polynomial regression model,

although the best transforming strategy is debatable. Fractional polynomial (FP) with degree

of one P = 1 models the monotonic effect; it offers a predefined set of transforming powers,

p ∈ {−2,−1,−0.5, 0, 0.5, 1, 2, 3}, when determining what transformation to use (Royston

and Altman, 1994). When we introduce a second-order FP P = 2 to allow for non-monotonic

effect, A enters the model again with the above set of powers to select. Usually, a FP with

a degree P ≤ 2 is believed to be sufficient to capture the complexity (Becher, 2014). As

an alternative flexible approach, spline regression is a non-parametric regression technique for

the non-linear dose effect (Greenland, 1995). A spline function consists of piecewise functions

smoothly joined at prespecified time points called knots. The order of a spline is determined

by the degree of piecewise functions, and some commonly used splines are quadratic and cubic

splines for constructing a basis. Compared to the categorical analysis of dose-effect which

assumes the risk is constant over a period of time, spline regression lets the risk vary within

and between categories (Becher, 2014).

While spline regression can be constrained at the boundaries of follow-up period to let

the risk smoothly go to zero and is less sensitive to local bias compare to FP (Ramsay et al.,

1988), they do not provide a definitive answer in epidemiological research (Royston et al.,

1999), as the number and position of knots are user-chosen (Hastie and Tibshirani, 1990).

By integrating cubic spline inside the weighted cumulative exposure (WCE) proposed by

Breslow et al. (1983) and Thomas (1988) and selecting the best set of spline parameters

with BIC criteria, Sylvestre (2009) derived the associational functional form of the impact of

Flurazepam on fall risk. The effect of Flurazepam is estimated to accumulate for 10 days and

then the impact starts declining.

Another medicine also raises concerns about fall risk among the elderly. Glucocorticoid

(GC) is a type of steroid hormone that exists in vertebral animals, and it is also a life-saving

oral medicine prescribed for various inflammatory conditions, including respiratory conditions,

asthma, and chronic obstructive pulmonary disease (COPD) (Panday et al., 2014). However,

an important side effect of oral GC is that it leads to bone mineral density loss and increased

fracture risk (Panday et al., 2014). The impact of GC use on fracture risk is often expressed
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in a dose and time-dependent manner (Van Staa et al., 2000; Yasir and Sonthalia, 2019).

In a recent cohort study, fracture risk increases with cumulative GC exposure, being nearly

2.5 fold higher for elderlies that have a high cumulative dose >5400mg compare to low dose

(Balasubramanian et al., 2018). Early in the first year of initiation, GC has the most severe

impact on fracture within the first 6 months and is estimated to attenuate over time, followed

by further interruption on bone formation with long-term treatment (Amiche et al., 2016;

Van Staa et al., 2000).

1.1.3 Intention-to-treat vs. as treated effects

Intention-to-treat (ITT) analysis is usually the primary evidence required by health authorities

for clinical trials (Hernan and Hernandez-Diaz, 2012). Similarly, in pharmacoepidemiology,

studies on adverse drug effects are often based on the ITT analysis so that the analysis is

straightforward. Under this principle, we only need to balance the two treatment cohorts at

baseline. We can then assume baseline exchangeability for the assigned treatment strategies,

with the intention that patients have full adherence during the follow-up.

However in longitudinal settings, patients usually have a dynamic treatment strategy, such

that they change drug dosage, treatment duration, and they might be on or off treatment

during the follow-up with their subject-specific prescription pattern. Therefore, when we want

to estimate dose-response of the time-dependent exposure effects, rather than comparing two

drugs assigned at baseline, a more complicated as-treated analysis is needed. Contrary to

the ITT approach, the as-treated analysis aims to investigate the dosage actually received

(Ten Have et al., 2008). Inverse probability treatment (IPT) weighting and other causal

inference methods can reduce the bias introduced due to non-adherence with as-treated

analysis (Hernan and Hernandez-Diaz, 2012).

In terms of study design, a lack of adjusting for past treatment usually results in biased

estimation for the treatment effect, no matter time-fixed or time-dependent (Hernan and

Robins, 2020). To avoid the influence of prior exposure, we consider a incident new-user co-

hort, in which we restrict our study population to those who had not taken a drug-of-interest

before (Ray, 2003). Additionally, Suissa et al. (2017) proposed the prevalent new-user design

that offers a more thorough comparison between two treatments that are different in market

access chronologically, in which patients switch from an old drug to a new drug. Depending

on the research question, prevalent new-user cohort derives time-conditional propensity scores

from either time-interval-matched or prescription-number-matched exposure sets. Compared

to the incident new-user cohort design that only studies treatment-naive patients, this design

requires systematic and chronological consideration when implementing its exclusion criteria.
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Instead of comparing two alternative treatments, the interest herein is in dose-response effect

of a single drug of interest, which will still be studied within a new user cohort.

1.2 Causal inference with time-dependent exposures

As said by Aalen et al. (2008), the greatest ambition in statistical inference is to demonstrate

causality. Often, we are able to observe an association between two events, but whether one

event caused another is difficult to conclude due to the existence of confounders. Consider a

time-fixed dichotomous treatment variable A as an indicator for treated versus untreated. Let

Y be an observed outcome variable that can be binary (i.e. yes/no fracture) or continuous

(i.e. time to fracture), and X be a confounder that influences both A and Y . As a graphical

representation, a directed acyclic graph (DAG) can illustrate the relationships between these

variables. Figure 1.2.

X A Y

Figure 1.2: Example of a simple DAG

Each individual can be assigned to be either treated or untreated, and the corresponding

potential outcomes are generated. We introduce the potential outcome notation of Y a, where

the superscript a ∈ {0, 1}. For a binary outcome, Y a=1 ∈ {0, 1} is the potential outcome

of whether a patient would encounter a fracture had he been treated. For a time-to-event

outcome, Y a=1 means the time until a patient would encounter a fracture if he was treated. In

a parallel world paradigm, we would hope to obtain the two versions of potential outcomes Y 1

and Y 0 so that we could derive the individual causal effect contrast as a difference Y 1 − Y 0.

However, for each person, only one treatment and one potential outcome can be observed,

which leads to the fundamental problem of causal inference (Holland, 1986). Instead, we

could estimate the causal effect in the population level, for example, the average causal effect

(ACE) defined by the mean of the difference of the potential outcomes is:

ACE = E(Y 1 − Y 0) = E(Y 1)− E(Y 0)

where E(Y 1) is the expected potential outcome that we could have been observed, had all

patients in this population been assigned to treated group. As long as E(Y a=1) 6= E(Y a=0),
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we say that the causal effect exists. While mean is the most commonly used ACE metric, there

are many forms of population causal contrast, such as median, variance or hazard contrast

(Hernan and Robins, 2020). To estimate the population causal effect, we need to make our

potential outcome quantities identifiable. When the potential outcome can be expressed as a

function of the distribution of the observed data, the identifiability of the potential outcome

is achieved (Hernan and Robins, 2020). There are three identifiability assumptions, namely,

positivity, consistency and conditional exchangeability (Hernan and Robins, 2020).

When the values of A does not change over time and any confounding effect is solely

attributable to the baseline covariate X, we say we have a time-fixed setting (Hernan and

Robins, 2020), and the above assumptions can be expressed as follow:

• Positivity

The probability of individual i being assigned to each treatment group, under every

level of X, must be non-zero, because variability between the causal contrast groups is

important for identifiability, i.e. P (A = a | X) > 0 for all a.

• Consistency

Consistency assumption is the linkage between observed outcome and potential out-

come. We assume for any treatment strategy a that is well-defined, the observed

outcome under a given treatment assignment is equal to the potential outcome, that is

if A = a then Y a = Y .

• Conditional Exchangeability

In a randomized trial, the potential outcome under treated and untreated are exchange-

able, (Y 1, Y 0) ⊥⊥ A ⇒ Y a ⊥⊥ A. In observational studies, we require that within each

level of X, the treatment assignment A is random, such that Y a ⊥⊥ A | X. This

assumption also only holds when there are no unmeasured confounders.

Now consider the longitudinal setting, where we have A and X are measured at multiple

time points. Contrary to the previous stationary DAG, the graphical representation now have

time-dependent exposure and time-dependent confounder components.

A0 X1 A1
... Y

Figure 1.3: Example of a longitudinal DAG
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To illustrate the causal assumptions and challenges in the longitudinal setting, we first

introduce the notations needed. We use zero-based indexing for treatment time k to be con-

sistent with many publications, where k = 0, 1, 2, ...,m, ...,K, and we denote the treatment

process A(tk) = Ak and the covariate process X(tk) = Xk. Let Ak ∈ {0, 1} be a dichoto-

mous indicator for treatment status and let Xk ∈ {0, 1} be the confounder indicator at kth

follow-up period or visit in the discrete-time setting. We use an overbar to denote treatment

history up to time k, that is, Ā = Āk = (A0, A1, ..., Ak), and similarly for X̄k. There are

two types of treatment strategies, namely static treatment strategy and dynamic treatment

strategy. When current treatment only depends on treatment history Āk−1 but does not

depend on covariate histories X̄k, we have a static treatment strategy with Ak = g(āk−1).

Sometimes, the static treatment for each time point k can be determined at baseline, for

example, ”always treat”. On the other hand, we often have dynamic strategies in pharma-

coepidemiological research, where we have previous treatment influence current confounder,

and current confounder also influence current treatment, a phenomenon called treatment-

confounder feedback as shown in Figure 1.3. For example, when a physician is prescribing

a new cycle of medicine for A, other than referring to previous A use pattern, his judge-

ment might also be influenced by the previous X usage. Meanwhile, the prescription of

confounder drug X is also influenced by the target drug A. Therefore, a dynamic strategy

has Ak = g(āk−1, x̄k). With these properties, the above time-fixed version assumptions need

to be generalized to:

• Sequential Positivity

Positivity holds if at each time point k, the probability of being assigned to each

treatment group is never zero, i.e. fAk|Āk−1,X̄k
(āk | āk−1, x̄k) > 0, for ∀ (āk, x̄k)

• Sequential Consistency

For any treatment strategy g, if Ak = g
(
Āk−1, X̄k

)
at each time k for an individual i,

then the potential outcome under g is equal to the observed outcome Y g = Y .

• Sequential Conditional Exchangeability

Given treatment history up to time k − 1 and confounder history up to time k Figure

1.3, the potential outcome under strategy g is independent from current treatment

assignment Ak, i.e. Y g ⊥⊥ Ak | Āk−1, X̄k, for ∀g. This assumption is also called

sequential randomization.

So far, we have provided the formulation of the assumptions in the discrete-time setting,

and it is important to lay the intuition of these traditional assumptions before we proceed

to the alternative set of assumptions in the continuous-time setting. In continuous-time,
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consistency and conditional exchangeability would imply an equivalent causal assumption of

stability (Dawid et al., 2010). After some background on survival analysis expressed with the

counting process notations in Section 1.3, we specify the stochastic causal assumptions that

will be used in this thesis later on in Chapter 2.

As mentioned previously, dealing with confounding is a crucial part of observational data

analysis. Major causal analysis methods can be categorized into two main fields, namely,

stratification-based methods and g-methods. Both these two categories require the assump-

tion of conditional exchangeability given covariate X. Additionally, there are other methods

that do not require conditional exchangeability, such as instrumental variables, but they are

more for time-fixed situation and require alternative assumptions (Hernan and Robins, 2020).

We summarize the structure of the two major methods as follow:

1. Stratification-based methods:

• Stratification

• Matching

• Outcome regression

2. G-methods

• IPT weighting with marginal structural models (MSM)

• Parametric g-formula (standardization)

• G-estimation of structural nested models (SNM)

Propensity score is defined as the probability of treatment assignment conditional on a con-

founder level P (A = a | X = x) (Rosenbaum, 2002). It is a technique embedded within

some of the above methods. For example, among stratification-based methods, stratification

and matching are non-parametric methods that rely on propensity score, and outcome re-

gression is a parametric model-based extension of stratification (Hernan and Robins, 2020).

Stratification-based methods are traditional in a sense that they adjust the bias by condition-

ing on confounders along the causal pathway, and return the conditional effect in a subset

of the observed population. On the other hand, g-methods simulate the exposure-outcome

relation by creating a pseudo-population, where the confounding does not exist. In time-fixed

settings, stratification-based methods and g-methods perform equivalently well. However,

stratification-based methods fail in the longitudinal setting when we have time-dependent

treatment and confounder as well as treatment-confounder feedback. Consider the following

scenarios:
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(a) Treatment-Confounder Feedback

A0 X1 A1 Y

(b) Null Setting (Collider)

A0 X1 A1

U1

Y

Figure 1.4: Sources of bias in longitudinal causal inference

In Figure 1.4a By conditioning on (remove all arrows attached to) the confounder X1

that lies on the causal pathway, we dilute the estimate of overall treatment effect on the

outcome, because the past treatment effect mediated through a confounder A0 → X1 → Y

is not included. Bias can also arise from conditioning on a collider that opens up a backdoor

pathway. For example in the null setting Figure 1.4b, conditioning on X1 links its parent nodes

A and an unmeasured variable U1 together, and thus we open the pathway A0 → U1 → Y

that introduces treatment effect when in fact, there is no arrow from A to Y . Therefore,

in longitudinal studies, conventional methods that require conditioning on elements on the

causal pathway fail to handle these challenges.

Propensity score can also be used in g-methods for constructing the pseudo-population,

such that the covariate distribution between the treated and the untreated are reweighted.

With ITT analysis, the treatment assignment is determined at baseline and each patient has

a time-fixed propensity score. Usually, a conditional propensity score is parametrized with η

through an exposure model, i.e. P (A = a | X = x; η) = f(x; η), such as logistic regression

for the binary treatment assignment variable, where the coefficient is estimated with maximum

likelihood. Thereafter, the weight of each subject is obtained by taking the inverse of the

estimated propensity score:

wi(η) =
1

P (Ai = a | Xi; η)
(1.1)

Adding time-dependent (TD) component to (Eq. 1.1), we need to construct a long-format

data set, in which each ordered person-time contributes to one record. While the time-fixed

baseline covariates are replicated throughout an individual’s records, the TD indicators, e.g.

Ai(t), Xi(t), are updated along the follow-up time. The discrete-time TD weight up to time

m is the cumulative product of the weight at each time point k:

wi(tm; η) =
m∏
k=0

1

P
(
Aik | Āi,k−1, X̄ik; η

) (1.2)
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The unstabilized TD weights (Eq. 1.2) increase tremendously for later time points, as we

are constantly multiplying a number that is smaller than one to the denominator, which

makes the weights at later time points fluctuating (Xiao et al., 2010). The stabilized weight

is the ratio between the numerator of a marginal propensity score, parametrized with κ in

P (A = a;κ) = f(κ), and the denominator of a conditional propensity score, parametrized

with η, with respect to the TD confounder Xik. The stabilized weights are more preferred,

as they improve the efficiency of the estimator over the unstabilized weight Cole and Hernan

(2008).

swi(tm;κ, η) =
m∏
k=0

P
(
Aik | Āi,k−1, κ

)
P
(
Aik | Āi,k−1, X̄ik; η

) (1.3)

When there exists a vector of baseline covariates Zi for each individual, we should let Aik

also condition on Zi in both the numerator and the denominator of (Eq. 1.3).

A model that parametrize the distribution of the potential outcome P (Y ā
k ) is considered

marginal and structural. It is marginal because the model is unconditional on individual-level

confounders; it is structural because it is expressed as a causal quantity rather than through

observed data. Under the causal assumptions, the distribution P (Y ā
k ) is the same as the

weighted observed outcomes:

P [Y ā
k ] = P

(
swi(tk;κ, η) · Yi · 1

{
Āik = āik

})
(1.4)

The weighted population is now free of confounding and the outcome can be modeled through

a marginal structural model f(ā; θ) depending on the research question. We call this model

the outcome model, and the parameters have causal interpretation.
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1.3 Statistical models for time-to-event outcomes

In this section, we review fundamental survival analysis concepts for our marginal structural

models in Chapter 2. Time-to-event analysis, also called survival analysis, is widely used for

modelling the waiting time it takes until the occurrence of an event-of-interest. Let T be a

non-negative random variable for time until an event, and let E ∈ {0, 1} denote whether an

event-of-interest (e.g. a bone fracture) has happened, and each individual experiences a set

of (T,E) during the follow-up.

General Survival Concepts

One unique feature of time-to-event analysis is censoring, which is essentially a missing data

problem. Censoring happens when a person’s follow-up time is terminated, and we have not

observed an event-of-interest yet, but it may or may not happen sometime later had the

follow-up not stopped. Therefore, when we follow a study sample of n subjects for a period

of τ years, we might get a combination of complete and incomplete observations in terms

of the event-of-interest. We introduce the notation of latent event time T = min{T̃ , C},
such that in the presence of censoring, the observed event time T is the minimum of latent

event time and censoring time. The event or censoring indicator E takes the value 1 if event

happens T = T̃ , and 0 if censoring happens T < T̃ .

The latent event time T̃ can be characterized as a continuous random variable, with

probability density function f(t) (Eq. 1.5) and cumulative distribution function F (t) (Eq.

1.6). We use the complement of F (t) to represent the survival function S(t) (Eq. 1.9),

where its connection to instantaneous hazard (Eq. 1.7) and cumulative hazard (Eq. 1.8)

functions can be specified (Aalen et al., 2008; Rodriguez, 2007):

f(t) = lim
∆t→0

P (t ≤ T̃ < t+ ∆t)

∆t
(1.5)

F (t) = P (T̃ < t) =

∫ t

0

f(u)du (1.6)

h(t) = lim
∆t→0

P (t ≤ T̃ < t+ ∆t | T̃ ≥ t)

∆t
(1.7)

H(t) =

∫ t

0

h(u)du (1.8)

S(t) = P (T̃ > t) = 1− F (t) = exp

{
−
∫ t

0

h(u)du

}
= exp{−H(t)} (1.9)

Because T̃ is continuous, S(t) = P (T̃ ≥ t) is interchangeable with S(t) = P (T̃ > t).
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Thereafter, by the definition of conditional probability, we can derive that:

P (t ≤ T̃ < t+ dt) = P (t ≤ T̃ < t+ dt | T̃ ≥ t)× P (T̃ ≥ t)

⇐⇒ f(t) = h(t)S(t) (1.10)

An interpretation for (Eq. 1.10) would be the density function at time t equals to the product

of the rate of event occurrence at time t, given no event has happened until time t, and the

probability of survival until time t.

When censoring happens due to dropout, loss to follow-up, or administrative cut-off of

the follow-up time, we lose the information on the right side of the time scale, and the data

is right-censored (Aalen et al., 2008). A right censoring mechanism is said to be independent

censoring when an individual i still at-risk at time t has the same risk of experiencing the

event in the next time interval [t + dt) as if censoring would have never taken place, such

that

P (t ≤ Ti < t+ dt, Ei = 1|Ti ≥ t) = P (t ≤ T̃i < t+ dt | T̃i ≥ t) (1.11)

In other word, the observed event time is complete for all i in the study population, and

we have T̃ ⊥⊥ C (Aalen et al., 2008). Non-informative censoring assumes further that the

censoring does not give additional information on the survival of a subject beyond the cen-

soring time, and the survival distribution does not inform censoring distribution (David and

Kleinbaum, 2016). For research using administrative data, the length of follow-up is usually

pre-determined by study design, and thus non-informative censoring is usually assumed.

Discrete-Time Survival

In discrete time setting, the survival time is split into intervals, with survival time T now a

discrete random variable defined at t0 < t1 < ... < tK (Kalbfleisch and Prentice, 2011). The

probabilities of survival time takes place at tk (Eq. 1.12), the hazard experiencing event given

survived until at least tk (Eq. 1.13) and survival function in discrete time (Eq. 1.14) are

defined as follow (Kalbfleisch and Prentice, 2011; Rodriguez, 2007):

f(tk) = fk = P (T = tk) (1.12)

h(tk) = hk = P (T = tk | T ≥ tk) (1.13)

S(tk) = Sk = P (T ≥ tk) =
K∑
k

fk (1.14)

The parallel connection of the above properties can be drawn as (Eq. 1.10) in the continuous-
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time setting now to the discrete-time setting:

P (T = tk) = P (T = tk | T ≥ tk)× P (T ≥ tk)

⇐⇒ f(tk) = h(tk)S(tk) (1.15)

One distinct difference between the hazard function in continuous-time and discrete-time is

that the hazard is now a probability rather than a rate (Rodriguez, 2007). Thereafter, the

survival probability can be interpreted as a product of surviving through each previous time

points until experiencing an event at the tk:

Sk = (1− h1) (1− h2) . . . (1− hk−1) (1.16)

This formula is comparable to the continuous-time setting where the survival function involves

an integral of previous hazard up to time t.

Counting Process Framework

Alternatively, survival analysis can also be expressed from a process point of view. A stochas-

tic process is a set of random variables that are indexed with respect to time; it is widely

applied in financial and biological research (Ross, 2014). More generally, in a point process

the points are randomly distributed over some probability space. In survival analysis, when

we count the number of events up to a time t, we have a counting process.

The concept of independent increment requires the number of events in disjoint time in-

tervals to be independent. One example of a counting process that satisfies the independent

increment is the Poisson process, in which the inter-arrival time between events are exponen-

tially distributed, and thus it has memoryless property such that the next state of a process

is only dependent on the current state, regardless of the past. Such memoryless property is

also called Markov property. A Markov chain is a discrete and memoryless stochastic model

that depicts a sequence of events. In continuous-time, this becomes a Markov process, and it

is considered homogeneous if the transition intensity does not depend on time (Ross, 2014).

On the other hand, when independent increment is not satisfied, the future depends on

the past information. With the evolution of a stochastic process, a filtration or history Ft−
up to time t is generated as a σ-algebra, a collection of countable sets (Williams, 1991). For

example, the intensity process λ(t) of a counting process N(t) depends on Ft− .

We can now demonstrate the connection between the above concepts to another stochastic

process, the martingale. Let {N(t), t > 0} be the number of events we have counted until

time t. In survival analysis, we count to the first event, therefore the counting process for

each individual is defined as Ni(t) = 1{Ti≤t,Ei=1}. Here we denote the counting process jump



Chapter 1. Introduction 16

as dNi(t) = Ni(t) − Ni(t
−) ∈ {0, 1}, indicating whether an event happened at time t for

individual i. A counting process has local characteristics of a Poisson process (Aalen et al.,

2008). Consider a homogeneous Poisson process defined by its intensity λ, characterizing the

probability of event occurring in a small time interval dt. Such idea can be extended to the

intensity process λ(t) of a counting process that adapted to the history Ft− . For individual i:

λi(t)dt = P (dNi(t) = 1 | Ft−) = E(dNi(t) | Ft−)

Because dN(t) is binary, the probability is expectation. λ(t)dt can be moved inside the

conditional expectation because it also depends on the past. A reformulation gives:

E(dNi(t)− λi(t)dt | Ft−) = 0

Now we introduce the martingale residual as the ”observed” minus the ”expected” value of

the counting process, i.e. dMi(t) = dN(t)− λ(t)dt. We can then obtain the property:

E [dMi(t) | Ft−] = 0, (1.17)

A process with such property (Eq. 1.17) is a martingale. Equivalently, a counting process

can be decomposed into a predictable process and a martingale.

Ni(t) = Λi(t) +Mi(t), (1.18)

where the cumulative intensity process is Λi(t) =
∫ t

0
λi(u)du. (Eq. 1.18) is called the

Doob-Meyer decomposition in continuous-time.

So far, the history F is only for one counting process, while in reality, we can consider the

history of many covariate processes and external information that are nested as one Ft. We

usually make the assumption that martingales of different counting processes are orthogonal,

which means no two counting processes can jump simultaneously. We require this assumption

for causality (Aalen et al., 2008).

Another important property is the relations between intensity process and the hazard

function:

λi(t)dt = P (t ≤ Ti < t+ dt, ei = 1 | Ft−) =


h(t)dt, Ti ≥ t

0, Ti < t

(1.19)

Usually, patients are not observed during the entire follow-up duration, so here we introduce
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an at-risk indicator Gi(t) = 1{Ti≥t} that takes value 1 if the individual is still under observation

right before time t, or 0 otherwise. We simplify (Eq. 1.19) with the following connection:

λi(t) = Gi(t)hi(t) (1.20)

Let random variables T1, T2, ..., Tn be survival time for n individuals. In absolute continu-

ous time, no two Ti are identical, and information on Ti does not interfere another Tl, for

i 6= l. With this independent and identical distributed (I.I.D) survival time assumption, the

aggregated process of all individual processes is N(t) =
∑n

i=1Ni(t) for counting process, and

G(t) =
∑n

i=1 Gi(t) for at-risk process. When hi(t) = h(t) for all i, (Eq. 1.20) can be written

as λ(t) = G(t)h(t).

Regression Models

Often, we want to model the relationship between the survival duplet (Ti, Ei) and some co-

variate Xi for parametric models, and we need to relax the independent censoring assumption

to: given Xi, the latent event time and censoring time are independent, i.e. T̃i ⊥⊥ Ci|Xi.

One class of the survival analysis models is the proportional hazard (PH) model, in which one

unit change in the covariate results in multiplicative effect in the hazard. Let η1 denote the

log hazard ratio. The most common PH model was proposed by Cox (1972):

hi(t) = h0(t) exp{η1Xi}, (1.21)

where the baseline hazard h0(t) is left unspecified, which makes (Eq. 1.21) a semi-parametric

model. The proportionality of hazard can be shown with the following example. Let hi(t) be

the hazard of being diagnosed of lung cancer and X = 1 indicates patient i is a smoker, while

hl(t) is the hazard for a non-smoker patient l with X = 0. The hazard ratio with respect to

these two different smoking status is a constant, regardless of time:

HR =
hi(t)

hl(t)
=
h0(t) exp {η1 · 1}
h0(t) exp {η1 · 0}

= exp {η} (1.22)

The cumulative baseline hazard can be estimated using the Breslow estimator:

Ĥ0(t) =
∑
j:tj≤t

δj∑n
l=1Gl(tj) exp {η̂1Xl}

(1.23)

where tj is the ordered observed event times, and δj =
∑

i 1{Ti<tj} refers to the number of

events at each tj. For any regression model, the likelihood function is the joint probability
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distribution across all i. In a survival model like Cox PH regression, the individual probability

distribution can be specified with an event indicator. Under independent and non-informative

censoring assumptions, if an individual experiences an event at time ti, the probability contri-

bution to the likelihood is the density function fi(ti); otherwise, if censoring happens at time

ti given survival until time ti, the probability contribution is Si(ti) (Kalbfleisch and Prentice,

2011).

L =
n∏
i=1

P (Ti = ti, Ei = ei)

=
n∏
i=1

fi(ti)
eiSi(ti)

1−ei

(1.24)

Under PH assumption, we can now substitute in (Eq. 1.10) to the full likelihood function,

and replace the hazard component with our semi-parametric Cox model (Eq. 1.21). The full

likelihood function of the Cox model contains two unknown parameters, the baseline hazard

that depends on time h0(t) and the regression coefficient η1. Cox (1972, 1975) proposed

that we can obtain a partial likelihood function that is based solely on η1 by eliminating

the nuisance parameter h0(t), using conditional likelihood or profiling, or a small trick in

Appendix. A.1:

L(η1, h0(t))
η
=

n∏
i

hi(ti; η)eiSi(ti; η)

L(η1)
η1∝

n∏
i

[
exp {η1Xi}∑

l∈G(ti)
exp {η1Xl}

]ei
,

(1.25)

where η = (h0(t), η1) is a shorthand notation. Usually, the estimate for our parameter of

interest η̂1 can be obtained from software output.

In this thesis, except baseline variables and outcome process, all of the other processes

are considered TD and we elaborate on the time-dependent version of models in Chapter 2.

If we take Xi = Xi(t), we can use Cox regression to estimate the effect of a time-dependent

covariate. Further, Aalen et al. (2008) generalized Cox model with counting process notation:

λi(t) = λ0(t) exp {η1Xi(t)} , (1.26)

where λi(t) is an intensity process. Recall the connection between intensity and hazard, the

model (Eq. 1.20) is equivalent to (Eq. 1.26), the Andersen and Gill generalized Cox model.

Poisson regression, also called a log-linear model, assumes proportional hazard between

different covariate values as well. Rather than leaving the baseline hazard unspecified, we

assume a constant value which makes it a fully parametric model. It is closely connected to

Cox model in that if we take log on both side of (Eq. 1.21), we get a Poisson model, where
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η0 = log(h0(t)). In addition, the counting process expression of a nonhomogeneous Poisson

intensity model has the same form as (Eq. 1.26) (Lawless, 1987). More formally, consider

the simple case of time-fixed modeling for count value ai, let Ai follow a Poisson distribution

Ai ∼ Pois(hi) with mean E(Ai | Xi) = hi. We have the Poisson regression:

log(hi) = log (E(Ai | Xi)) = η0 + η1Xi, (1.27)

and the likelihood function is the joint probability mass function from all patients:

L(η) =
n∏
i=1

haii · exp{−hi}
ai!

(1.28)

After substituting in (Eq. 1.27), the maximum of the log of the likelihood does not have

a closed form solution, but η̂ can be estimated with gradient descent techniques through

the negative log-likelihood functions. On the practical side, these parameters can be easily

obtained from the glm() output in R (R Core Team, 2013). When using Poisson regression

to model a hazard rate, we need to divide the number of counts over a period of time

E(Ai | Xi)/t = hi, therefore, we adjust model (Eq. 1.27) with an offset term log(t).

Administrative data are naturally massive due to large sample size and long follow-up time.

With long-format splitting, the dimension can increase tremendously. As an alternative partial

likelihood for fitting hazard models, case-base sampling offers an elegant way of reducing the

data size without having a biased estimator (Hanley and Miettinen, 2009). It is also suitable

for modeling time-dependent covariates on a continuous-time scale (Saarela, 2016). Case-

base sampling includes all person-time coordinates where an event-of-interest takes place, and

then we complete the long-format data set with a random sample of person-times from all

observed follow-up time (Hanley and Miettinen, 2009). Case-base sampling has an expression

of the logistic regression form, which can be fitted with glm() in R. Note that this approach

will be discussed in more detail later in Section 2.4.2.

Multistate model

Previously, we have presented methods for survival analysis until the first event occurrence. In

reality, an individual might encounter events of distinct types, as some of the event types might

interfere the event-of-interest, or experiencing recurrent events of the same type. When we

only focus on time until the first event, we have a competing risk problem. One approach to

estimate the interrelation between event types is using time-dependent covariates (Kalbfleisch

and Prentice, 2011; Young et al., 2020). As an extension to competing risk analysis, multi-

state model allows us to investigate the transitioning between different event types until the
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event-of-interest. Let a Markov process W (t) be the state occupied at time t. λqr(t) is the

transition intensity that an individual jumps from state q at time t to state r at time t+ dt,

for q 6= r (Kalbfleisch and Prentice, 2011):

λqr(t | Ft−) = lim
dt→0

P (W (t+ dt) = r | W (t) = q,Ft−)

dt

λqr(t) = lim
dt→0

Pqr(t, t+ dt)

dt

In a homogeneous case, λqr(t) = λqr. In addition, in the special case of the competing

risks model, the transition intensities reduce into cause-specific hazards. The process W (t)

is memoryless, such that only current state is needed for deriving the transition intensity. As

an analogy, the transition intensity λqr(t) is correspondent to the hazard function h(t) in a

survival regression model. One classical example of a multistate model is the illness-death

model Figure 1.5. We can specify a transition intensity matrix (TIM) for the multistate model,

in which each intensity can be parametrized through a regression model. Conventionally, the

rows of TIM sum to zero, where the diagonal elements are negative sums of the off-diagonal

elements λqq(t) = −
∑

q 6=r λqr(t) (Aalen et al., 2008; Kalbfleisch and Prentice, 2011).

1

Healthy

2

Ill

3

Death

λ12(t)

λ21(t)

λ13(t)

λ23(t)
TIM =

λ11(t) λ12(t) λ13(t)

λ21(t) λ22(t) λ23(t)

. . .



Figure 1.5: Multistate diagram of a health-illness-death model

Recently, by incorporating the counting processes as time-dependent covariates and the

concept of causality discussed before, we are able to adapt the graphical representation of

a multistate model to dynamic path analysis (Aalen et al., 2008; Fosen et al., 2006). This

approach is used in causal mediation analysis (Imai et al., 2010), where treatment happens

before confounding Figure 1.6, and the total effect (or causal/marginal effect) of the treatment

can be decomposed into direct effect and indirect effect.
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A(t)

Treatment

X(t)

Confounder

dY (t)

Outcome

λ12(t)

λ13(t)

λ23(t)

Figure 1.6: Path diagram representing possible transitions of a jump in the counting process

However, in this thesis, the multistate models used were only for data generation in the

simulation study, rather than for modeling of the causal relationships. We also do not require

treatment and confounder to take place in a causal mediation analysis order as above.

Other than the multistate model, the marked point processes (MPP) can also be used to

model recurrent events (Mancini and Paganoni, 2019). Nowadays, MPP is widely applied to

many fields such as earthquake and medical research. It captures the time of the event (point

process) and also the event size (mark), which are predictable and I.I.D conditional on the

past Ft− (Mancini and Paganoni, 2019). Let T and D denote the time and magnitude of a

event, respectively.

λ(t, d | Ft−) = λV (t | Ft−)f(d | Ft−)

where λV (t | Ft−) is the intensity of the point process, and f(d | Ft−) is a density function

of mark D.
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1.4 Causal inference in survival analysis

A Cox MSM hazard model that combines many forms of strategies is:

h [Y ā
k ; θ] = h0(tk) · exp {θ1cum(ā)} , (1.29)

where cum(ā) =
∑k−1

s=0 as. In practice, we can incorporate some spline functions into (Eq.

1.29) to make the modelling flexible (Hernan and Robins, 2020). However, Cox MSM might

not yield a causal interpretation due to several reasons. Aalen et al. (2015) argue that after

the first event time, the risk sets consist of patients who have not experienced an event-

of-interest, which introduces implicit heterogeneity. Furthermore, in a randomized trial, the

conditional independence between treatment assignment A and baseline covariates Z among

survivors (i.e. A ⊥⊥ Z | T > t) is guaranteed if the hazard rate can be decomposed into an

additive form:

h(t | A,Z) = a(t, A) + b(t, Z),

which is not satisfied in a conditional Cox model. This property is known as non-collapsibility

(Martinussen and Vansteelandt, 2013). In addition, when we marginalize over Z, we lose

the proportional hazard. Hence, the individual level treatment effect exp{θ} in a Cox model

cannot be derived from the population treatment effect due to the frailty theories. However,

Bartlett (2019) proposed that by viewing hazard as a population distribution of the ratio

between the density of the survival time over the survival function, hazard is a valid causal

quantity. Nevertheless, the additive models often have more desirable properties as causal

quantities compare to the relative risk models (Aalen et al., 2015; Greenland, 1996; Hernan,

2010; Martinussen and Vansteelandt, 2013).

Under aforementioned identifiability assumptions in the high-dimensional setting, an al-

ternative g-method is Robin’s g-formula (Robins, 1986), also called standardization in the

point treatment setting. With discrete valued covariates Xk, we denote ā = āk and x̄ = x̄k,

and a potential hazard outcome for P (Y ā
k+1 = 1 | Y ā

k = 0) is modeled through (Young and

Tchetgen Tchetgen, 2014):

h [Y ā
k ; θ, η] =

∑
x̄

P
(
Yk+1 = 1 | Āk = ā, X̄k = x̄, Yk = 0; θ

)
·rā (k, x̄; θ, η) /

∑
x̄

rā (k, x̄; θ, η) ,

(1.30)

with

rā (k, x̄; θ, η) =
k∏
s=0

P (Ys = 0 | ās−1, x̄s−1, Ys−1 = 0; θ) f(xs | ās−1, x̄s−1, Ys = 0; η)
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so that the distribution of the observed outcome given ā and x̄ is standardized to the dis-

tribution of confounder history at each time k. When Xk is measured continuously, we can

specify an extension of (Eq. 1.30) by replacing the summation with integral. Notice that for

this thesis, we focus on continuous-time scale, so the potential outcome expression in (Eq.

1.29) and (Eq. 1.30) is replaced with the randomized trial notation E that we will introduce

in Chapter 2.

However, even though g-formula can be extended to a high-dimensional setting, it is of-

ten not used directly due to the computational burden of modeling of the confounder history

(Hernan and Robins, 2020). On the other hand, given the connection between g-formula and

Cox MSM, for the purpose of simulation studies, we can use (Eq. 1.30) to solve the true Cox

MSM parameters from observational data (Young and Tchetgen Tchetgen, 2014). In prin-

ciple, IPT weighting with MSM, g-formula and g-estimation with SNM (another g-method

that we are not going to focus on in thesis) are asymptotically equivalent and are expected

to generate ACE that are not significantly different (Hernan and Robins, 2020).

1.5 Recent methodological work in causal inference for

pharmacoepidemiology

In longitudinal epidemiological studies, the time-dependent features of patients are followed

over time. Although some covariates are naturally continuous in time, the timing of the

measurements can force these variables as discrete in time. There are two types of cohorts

resulting from discretization. When measurements occur at pre-specified time intervals, irre-

spective of the evolution of a patient’s health condition, we have the classic interval cohort

that requires a fixed observational plan. On the other hand, when measurements are taken

at clinic visits that depend on subject-specific health status, we have a clinical cohort that

follows a dynamic observational plan (Lau et al., 2007).

The choice of exposure models and simple transformations of IPTWs has been studied in

a simulation study with an interval cohort design (Xiao et al., 2010). The authors find that

Cox weighted MSM has less biased estimates than pooled logistic weighed MSM (although

the difference is small). They also suggest using normalized stabilized weights to reduce

the variability of extreme time-dependent weights. Later on, it is shown that instead of

normalizing the IPTWs, truncation at 99% or 99.5% of the stabilized weights distribution

improves the IPTW estimator, especially for positively skewed weighting distribution (Xiao
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et al., 2013).

So far, the studies mentioned previously use only one exposure model for estimating the

stabilized IPT weights. Hernan et al. (2009) proposed to separate the IPT weighting into

modeling the dynamic observational plan and the treatment assignment in a clinical cohort

study. When covariates and outcomes are measured only at clinical visits, missed visits intro-

duce missing data problems. Pullenayegum and Lim (2016) reviewed methods for correcting

such problems. One of which is modeling visits as a continuous-time intensity process (Lin

et al., 2004). We do not have a similar missing data problem in the current context of phar-

macoepidemiology using administrative data, as fracture outcomes are observed regardless of

cut-off points such as clinical visits. Also, because the clinical visits have an irregular pattern,

we can naturally assume the continuity for drug usage variables, given it is also controversial

to find the optimal time length for discretization (Ferreira Guerra et al., 2020).

Historically, the outcome model in an MSM is proposed based on discrete-time with an

interval cohort design. Hernán et al. (2000) suggest using weighted pooled logistic MSM to

approximate the weighted continuous-time Cox MSM in the outcome model. Since then, most

of the MSM applications relied on the follow-up time discretization and used a pooled logistic

model or GEE regression for the outcome model (Hernan et al., 2002; Pisani et al., 2015;

Xiao et al., 2010; Zhang et al., 2011). However, this approximation is biased with frequent

events (Young et al., 2010), which motivates the presentation of the causal framework in

continuous-time with counting process notation (Lok et al., 2008).

Roysland et al. (2011) provided a martingale representation of the MSM. The causal

effect is defined in terms of a randomized trial measure, where treatment is assumed locally

independent of the covariate process. The resulting continuous-time MSM can be estimated

using continuous-time weights. In this setting, rather than the causal assumptions introduced

in Section 1.2, we adopt causal assumptions in a continuous-time scale (we will introduce

in Chapter 2) that emphasize the equivalence of aspects of the observational measure and

the randomized trial measure (Dawid et al., 2010). That is, expressing causality without the

potential outcome notation (Commenges, 2019).

A few pieces of literature have attempted continuous-time outcome models in MSM. The

first continuous-time MSM is the Cox MSM that can be fitted by maximizing the weighted

risk sets in a Cox partial likelihood without the approximation from a pooled logistic regression

(Xiao et al., 2010). However, they still used discrete-time models to develop the weights.

Given our context, we expect to derive methods that can accommodate variables in full

continuous-time, that is, in both exposure and outcome models. Previous research has shown

that the estimating function of case-base sampling has a partial likelihood expression and

can be applied to continuous-time exposure model to derive IPTW for a continuous-time
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Cox MSM (Saarela and Liu, 2016). However, they did not address using case-base sampling

for fitting the outcome MSM. The weighted partial likelihood of case-base sampling and its

properties have not been derived, which can be an efficient and powerful alternative to the

traditional weighted Cox partial likelihood in the continuous-time.

Another recent study also bypassed the causal interpretation dilemma of hazard ratio in a

Cox MSM by using additive hazard models (Ryalen et al., 2020). This study also demonstrates

the separate modeling of treatment mode, via propensity weights derived from a logistic

regression, and time-to-treatment-initiation, through continuous-time weights derived from

an additive hazard model in counting process form. Besides, competing risk was handled

using a composite endpoint of the earliest event subtype, and the authors use subdistribution

hazards to express the weighted cumulative incidences. However, this paper does not consider

time-dependent confounders like in our case. Apart from Ryalen et al. (2020), Young et al.

(2020) also defined causal quantities under competing risks but in discrete-time, in which we

have the total effect of treatment on the outcome or the direct effect where treatment is not

mediated through a competing effect.

Another research goal in this paper is to investigate the effect of cumulative exposure on

the outcome. Several studies have investigated the modeling of the cumulative dose effect in

a causal framework. Bodnar et al. (2004) used data from a randomized trial for estimating

the cumulative dose effect of prenatal iron supplementation, under several time-dependent

and time-fixed confounders. They categorized the cumulative dose to four categories in both

study periods, and they used a logistic MSM model that sums over doses from the two study

periods. Xiao et al. (2014) incorporates the cumulative dose estimating methods proposed by

Sylvestre and Abrahamowicz (2009) (see Section 1.1.2) into a Cox MSM, where they first use

IPTW to remove the confounders to create a pseudo-population and then applied the WCE,

in which exposure is further weighted by recency, with a cubic spline function. Nevertheless,

these papers assumed that the treatment status occurs at discrete clinical visits and does not

express the causal framework in continuous-time with the counting process notation. In our

case, a marginal case-base sampling hazard model can also integrate splines for the flexible

modeling of the cumulative dose effect.
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1.6 Motivation: Glucocorticoid use and fracture risk

Osteoporosis (OP) is a prevalent disease of aging and public health concern that affects

over 1.5 million (10%) Canadians aged 40 years and older (PHAC, 2010). Under previously

introduced GC-induced osteoporosis in Section 1.1.2, there might be recurrent fractures during

a study follow-up period, but the time to first fracture is considered a time-to-event outcome.

We define the cause-specific fracture quantity as the event of interest, while death always

present as a competing risk.

Bisphosphonate (BP) can be served as a therapy, with 20%-40% reduction in fracture

risk in clinical trials (Cranney et al., 2002). Previous evidence has shown that early initiation

of BP is beneficial for reducing GC-induced cause-specific fracture hazard (Amiche et al.,

2018), and the frequency of COPD prescription is associated with BP use (Chalitsios et al.,

2020). In addition, BP persist in bone, which leads to beneficial effects that might last after

discontinuation (Burden et al., 2012). Therefore, it is imperative that BP is considered as a

time-dependent confounder in modeling the effect of time-dependent GC use on fracture risk.

Similarly, other factors that might influence both the exposure of GC and the outcome of

fracture, and that may change over time, must be modeled as time-dependent confounders.

For example, hospitalization, visits to emergency units and residency in long term care homes,

during which period of time, patients might receive high dose of GC and might reduce daily

mobility, which might have an impact on both the GC intake and fracture risk.

1.7 Research objectives and importance of our work

For this master thesis, our first objective is to model the exposure as a marked point process,

that is to decompose the modelling of cumulative exposure into modelling the time of the

dispensations and the dose at each dispensation, specifically in the context of pharmacoepi-

demiology. Our second objective is to propose IPT weighted case-base sampling for fitting

a continuous-time MSM in a causal framework, and we compare its performance with IPT

weighted Cox PH model in a simulation study. More specifically, we present the weighted

partial likelihood of case-base sampling and derive a variance estimator. The structure of

the thesis is as follows. In Chapter 2, we extend the stationary potential outcome framework

to a longitudinal setting with counting process-based notations and stochastic assumptions,

and we define the formulation of the weighting exposure models and the weighted partial

likelihood of the outcome models. In Chapter 3, we use multistate model diagram to repre-
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sent longitudinal DAG simulations on four different exposure status scenarios, weighted with

different combinations of the estimation methods introduced. In Chapter 4, we select one

method from the most relevant simulation scenarios, and illustrate the approach using ICES

data with 92,090 GC new user cohort patients. We conclude by discussing our findings and

limitations in Chapter 5.

By considering drug dispensations retrieved from record linkage databases as continuous-

time counting processes, we avoid discretizing the underlying continuous-time exposure pro-

cess. Combining the weights derived from the dispensations time model and the daily dose

dispensed model, we achieve a closer approximation to the true marginal fracture hazard.

We present a simulation study comparing the performance of the continuous-time method to

more conventional discretization of the time scale, using a multistate model to generate sim-

ulated continuous-time exposure, confounder and outcome data. Furthermore, by extending

methodology to incorporate case-base sampling as an outcome model in MSM, we can reduce

the size of long-format data set needed, especially for rare outcomes, without having biased

estimations. The proposed approach also enables estimation of absolute marginal hazards

functions, which can be used to derive predictions under alternative treatment plans.



Chapter 2

Methods

In this section, as an alternative to the potential outcome framework introduced in Section.

1.2 that are commonly used in discrete-time, we present a different causal framework and its

assumptions used in continuous-time. In the context of GC exposure and fracture outcome,

one single change in the exposure status can be modeled directly as a counting process or

decomposed into a marked point process that counts to the first event. We also generalize

the single treatment change/discontinuation case into a recurrent MPP to be more closely

aligned to the real-world data analysis. For each of the above modelling approaches, we

formulate time-dependent IPT weights derived from different survival models introduced in

Section. 1.3. Thereafter, we present two weighted partial likelihood functions of Cox and

case-base sampling for the continuous-time marginal hazard models.

2.1 Single treatment discontinuation models and weights

2.1.1 Notation and assumptions

Let Ai(t) and Xi(t) denote the exposure and confounder processes, respectively. Here Ai(t)

represents categorized dose of the drug of interest at time t. For notational simplicity, we

consider there is only one confounder process, while in practice, there could be multiple

confounder processes, such as multiple time-dependent health conditions and other drug uses.

We follow a cohort of patients i = 1, ..., n from time zero, i.e. the time of the first dispensation

where a patient satisfies the follow-up initiation criteria., to a fixed time τ , or death or first

fracture, whichever comes first. Let Yi(t) ∈ {0, 1} be the outcome process, counting until the

first fracture, with the at risk process Gi(t) = 1{Yi(t−)=0} indicating individual i is still under

observation at time t. For simplicity, here we let all processes only count to the first event.

28
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Consider a scenario that all patients start on the same dose, but might stop the treatment

at some point during the follow-up, i.e. Ai(t) = 0 or 1 − Ai(t) = 1, and stays the same

afterwards. In the special case where the exposure process Ai(t) is a counting process, it only

counts until the first discontinuation of treatment (the indicator of Ai(t) takes value 1→ 0).

Here we denote the counting process difference for Ai(t) as dAi(t) = Ai(t + dt) − Ai(t−),

which returns the number of exposure events happened during time [t, t+ ∆t), and similarly

for any other counting processes. We also define the baseline covariates Z, but they are

suppressed from the notation since all the exposure models are conditional on them. First,

the observed information up to time t is given by:

Ft = σ {Xi(u), Ai(u), Yi(u), Gi(t) : i = 1, ..., n, 0 ≤ u ≤ t}

We also introduce the partial observed information up to time t, without the time-dependent

confounder Xi(t):

F∗t = σ {Ai(u), Yi(u), Gi(t) : i = 1, ..., n, 0 ≤ u ≤ t} ⊆ Ft

The observed treatment process is characterized by the intensity function:

λOAi
(t; η)dt = PO(dAi(t) = −1 | Ft− ; η), (2.1)

parametrized with η. The function (Eq. 2.1) corresponds to the information-based intensity

(Arjas et al., 1989), taking value zero when an individual is not at risk Gi(t) = 0, or if

the treatment discontinuation has already taken place. To express the causal quantities of

interest, and the causal assumptions, we introduce the superscript O and E for ’observed’ and

’experimental’ data generating mechanisms (Commenges, 2019; Dawid et al., 2010; Roysland

et al., 2011). Under the observed O setting, the intensity function is conditional on the full

history Ft− , while in experimental E setting, the intensity function is adapted to the partial

history F∗t− , such that it may contain only time-fixed confounding (entirely attributable to

baseline covariates) but not the TD confounder process. Under the experimental condition:

λEAi
(t;κ)dt = P E(dAi(t) = −1 | Ft− ; η) = P E(dAi(t) = −1 | F∗t− ;κ), (2.2)

is parametrized with κ. We are interested in the marginal outcome hazard under such a

‘randomized’ dosage assignment. In principle, the target dosage assignment can be chosen.

When we choose the marginal assignment probability as the target dosage assignment mech-

anism, we are able to generate the numerator for the usual kind of stabilized weights. Our
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marginal fracture hazard function based on the outcome process is parametrized through our

parameters of interest θ.

ψi(t; θ)dt = P E(dYi(t) = 1 | F∗t− ; θ), (2.3)

under randomized setting E . The treatment effect in (Eq. 2.3) can be specified for example

through an outcome model ψi(t; θ) = exp {θ0(t) + θ1 (1− Ai(t))}, where θ0(t) is a flexibly

specified parametric log-baseline hazard function and θ1 is the treatment effect coefficient

and Ai(t) is now a TD variable. We consider (Eq. 2.3) as a marginal structural model. It is

marginal because it is unconditional on Xi(t), and structural because under E setting, we are

modeling a causal quantity.

Additionally, for our data generation mechanism (we will introduce in Chapter 3), we

specify the conditional fracture hazard :

λOYi(t)dt = PO(dYi(t) = 1 | Ft−) (2.4)

and its ’randomized’ version λEYi(t), and the intensity function for TD confounder process:

λOXi
(t)dt = PO(dXi(t) = 1 | Ft−) (2.5)

and its ’randomized’ version λEXi
(t). The functions (Eq. 2.4) and (Eq. 2.5) are not

parametrized, but they are needed for expressing the causal assumptions needed for the

estimation of (Eq. 2.3).

The causal assumptions for potential outcome framework introduced in Section. 1.2 im-

plies the stability assumption, that is, the stochastic way the confounder process evolve, given

observed history, is independent of the regime setting (Dawid et al., 2010). Therefore, in our

observational and experimental setting, the major causal assumptions are λOYi(t) = λEYi(t) and

λOXi
(t) = λEXi

(t), that is, the conditional data generating mechanisms under O and E are the

same, with the exception of the exposure mechanism. The stability assumption is needed to

rule out unmeasured confounders. Additionally, we require positivity, or absolute continuity

of the probability measures under O and E , that is, P E > 0 ⇒ PO > 0 or P E � PO. In

particular, for the dosage assignment mechanism, we require λE > 0⇒ λO > 0. In addition,

we assume continuous-time setting that no two counting processes can jump simultaneously.

We also assume censoring is non-informative with our administrative data.
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2.1.2 Estimation of exposure weights

There are three survival models adopted in this thesis, Poisson regression, Cox proportional

hazard model and pooled logistic regression, and the corresponding weights generated from

these models can be used to weight the partial likelihoods of the outcome models (will be

introduced in Section. 2.4). Although Cox regression is developed through a different intuition

compare to the other two models, the handling of continuous variables are similar (Becher,

2014). The stabilized weighting function (Eq. 1.3) can be extended with the counting process

expression as the likelihood ratio process, which can be further extended for continuous and

discrete-time models in the following sections:

swi(t) =
fEi (t)

fOi (t)
=
∏
u∈[0,t)

P (dAi(u) | F∗t−)

P (dAi(u) | Ft−)
, (2.6)

The product in the above equation is a product integral, and the other terms in the likelihood

ratio cancel out due to the stability assumption. Because we are interested in modeling the

treatment effect since the stop of a treatment, the weight is not influenced by the instanta-

neous hazard before an exposure status change. At the time tAi
when exposure changes, we

multiply the survival probability with the instantaneous hazard at time tAi
, and the weight

stays the same after the exposure event takes place.

2.1.2.1 Continuous-time exposure models

From (Eq. 2.6), because we are characterizing the exposure as a counting process, it follows

that a continuous-time stabilized IPT weight for individual i still at risk at time t can be

expressed with treatment assignment intensities under E and O:

swi(t) = exp

{
−
∫ t

0

(λEAi
(u;κ)− λOAi

(u; η))du

} ∏
u∈[0,t)

[
λEAi

(u;κ)

λOAi
(u; η)

]dAi(u)

(2.7)

The above derivation (cf. Roysland et al. (2011), eq. (4.3)) resembles the connection that

density function is the product of instantaneous hazard and survival probability in (Eq. 1.10).

We can also echo the connection in (Eq. 1.3), where the stabilized weight in continuous

time setting can be expressed as the likelihood ratio between the marginal and conditional

density functions. In the case of a single treatment change/discontinuation, given the relation

between intensity and hazard function, as well as the equivalence of TD regression models

and Anderson and Gill generalized intensity models introduced in Section. 1.3, we can instead
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model the treatment intensity λEAi
(t;κ) via a marginal hazard model hAi

(t;κ), with either

Poisson regression or Cox PH model. Similarly, we can obtain the estimate η̂ from the con-

ditional hazard model hAi
(t; η).

Poisson regression

We use Poisson regression to fit a constant hazard model, as they result in the same likeli-

hood expression. Given our current context that survival analysis can be expressed from a

process point of view, we use Poisson regression as one of our continuous-time models. We

can extended (Eq. 1.27) to TD version

log (hAi
(t | Xi(t); η)) = η0 + η1Xi(t), (2.8)

representing the hazard of stopping the treatment, and the marginal model hAi
(t;κ) can be

obtained by excluding the Xi(t) term. The likelihood functions L(η) (Eq. 1.28) and L(κ)

now have an additional product term over time u ∈ [0, t). As introduced before, we obtain

the estimates η̂0, η̂1 and κ̂0 from the glm() output in R. We then specify the TD stabilized

weights for the Poisson regression model:

ŝwĀi (t; κ̂, η̂) =



exp
{
−
∫ t

0
exp {κ̂0} du

}
exp

{
−
∫ t

0
exp {η̂0 + η̂1Xi(u)} du

} · 1, t < tAi

exp
{
−
∫ tAi

0
exp {κ̂0} du

}
exp

{
−
∫ tAi

0
exp {η̂0 + η̂1Xi(u)} du

} · exp {κ̂0}
exp {η̂0 + η̂1Xi(tAi

)}
, t ≥ tAi

(2.9)

Due to the constant hazard assumption in Poisson regression, the instantaneous hazard is

given by the exponentiated coefficient estimates. Because we only count until the first the

treatment event, when the treatment status changes at tAi
, the weight stays the same after-

wards.

Cox Proportional Hazard Model

As an extension to the conventional Cox model (Eq. 1.21), here we specify the time-dependent

version for our conditional Cox model for the hazard of treatment termination:

hAi
(t | Xi(t); η) = h0(t) exp {η1Xi(t)} , (2.10)
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and the marginal model hAi
(t;κ) is fitted without the covariate process Xi(t). The likelihood

function L(η1) has the same formulation as (Eq. 1.25), except we add the product term over

time, replace X with Xi(t), and the event indicator ei is now the exposure indicator dAi(t).

We obtain the estimates of η1 from coxph() function in R, and the cumulative baseline

hazards Ĥ∗0 (t) and Ĥ0(t) in the marginal and conditional models, respectively, are returned

with the Breslow estimator (Eq. 1.23). Then it follows the time-dependent stabilized-weight

for individual i is:

ŝwĀi (t; κ̂, η̂)

=



exp
{
−Ĥ∗0 (t)

}
exp

{
−
∫ t

0
exp {η̂1Xi(u)} dĤ0(u)

} · 1, t < tAi

exp
{
−Ĥ∗0 (tAi

)
}

exp
{
−
∫ tAi

0
exp {η̂1Xi(u)} dĤ0(u)

} · dĤ∗0 (tAi
)

exp {η̂1Xi(tAi
)} dĤ0(tAi

)
, t ≥ tAi

(2.11)

The instantaneous baseline hazard is obtained from the cumulative baseline hazard by taking

dĤ∗0 (t) and dĤ0(t). Similarly, the weight stays the same on and after a change in the

treatment status.

2.1.2.2 Discrete-time exposure model

Pooled logistic model

Pooled logistic model, also named sequential logistic model, treats each person-time-interval

as a record, and allows for a time-varying intercept term. The transition from continuous-time

to discrete-time long format exposure data set requires we cut the follow-up time for each

individual into clinically meaningful and predetermined bins. For example, we can choose a

monthly (30 days) interval, such that k = 0, 1, 2, ... represents 0th, 30th, 60th, ... day of the

follow-up. When every subject starts exposed ai0 = 1 and may stop the treatment at kth

interval (tAi
∈ (30(k − 1), 30k]) during the follow-up and stays unexposed afterwards, aik

takes value 1 for k = 0, ...,m − 1 and value 0 on and after k = m. Additionally, we lag

the labeling of Xik by one interval for the discrete time model to ensure correct order of

the events between exposure and confounder, while in continuous-time, lagging is not needed

because by definition no two events can take place simultaneously.
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Cox (1972) proposed that Cox PH model can be relaxed to a logistic form in discrete-time:

hi (t | Xi(t); η)

1− hi (t | Xi(t); η)
=

h0 (t)

1− h0 (t)
exp {η1Xi(t)}

⇐⇒ logit
(
hi (tk | Xik; η)

)
= η0 + η1Xik

(2.12)

where η0 = logith0(tk). Recall from Section. 1.3, in discrete-time setting, the hazard

hAi
(tk | Xi(t); η) is a probability P (Aik = 0 | Xik; η), also denoted as pik, rather than a

rate. At each time interval, an individual’s exposure status is a Bernoulli random variable:

Aik ∼ Bern(pik), with mean equal to pik. We can then derive the logistic model for each

fixed-length interval k:

logit (P (Aik = 0 | Xik; η)) = η0 + η1Xik, (2.13)

for modeling the hazard of treatment discontinuation, and the marginal model hAi
(t;κ) can

be fitted without the Xi(t) term. We define the inverse of logit as expit:

pik = expit(η0 + η1Xik) =
exp(η0 + η1Xik)

1 + exp(η0 + η1Xik)
(2.14)

The estimates of η = (η0, η1) can be obtained by maximizing the likelihood via fitting the

model with glm():

L(η) =
n∏
i=1

k∏
s=0

P (Ais = ais | Xis = xis; η)

=
n∏
i=1

k∏
s=0

expit(η0 + η1xis)
ais · [1− expit(η0 + η1xis)]

1−ais

and similarly solving L(κ) for κ̂. Unlike continuous-time models that require decomposition of

the probability density function fi(t) into a survival probability and an instantaneous hazard

of stopping the treatment, the probabilities p̂ik of stopping the treatment at interval k for

individual i, given observed information history, can be obtained by using the predict()

function in R. These marginal and conditional probabilities are needed for the stabilized

weighting function (Eq. 2.6). We pool these probabilities sequentially over k time points

from each time-specific logistic model. Before a treatment discontinuation, the probability of

being on treatment at k ∈ {1, ...,m − 1} is the cumulative product of living through each

of these intervals without experiencing an exposure event of interest, that is, the cumulative

product of 1 − p̂ik. At the interval of k = m, the probability of stopping the treatment is



Chapter 2. Methods 35

directly p̂im. When we consider the simple scenario that each counting process only counts

to the first event, the probability of treatment termination remains unchanged after the time

point of m. Similarly, we get p̂∗ik from a marginal pooled logistic model hAi
(tk;κ) coupled

with (Eq. 2.13) (Hernan, et al., 2000):

ŝwĀi (tm; κ̂, η̂) =



∏m−1
k=1 1− p̂∗ik∏m−1
k=1 1− p̂ik

, t < tAi

p̂∗im ·
∏m−1

k=1 1− p̂∗ik
p̂im ·

∏m−1
k=1 1− p̂ik

, t ≥ tAi

(2.15)
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2.2 Single treatment change models and weights

2.2.1 Notation for MPP

To achieve a closer approximation of our exposure process, instead of modelling the exposure

process Ai(t) directly, we can model the explicit visiting process Vi(t) that induces a potential

change in daily dose level Di(t), and thus also a potential change in the exposure status Ai(t).

At any given time, Ai(t) is determined by the history of dispensations (visits) counting process

Vi(t) ∈ {0, 1, ...} and the corresponding dosage assignment (dose) Di(t) ∈ {0, 1, 2, ...},
defined at the times when dVi(t) = 1. Together (Vi(t), Di(t)) is a marked point process.

Let Zi represent a collection of baseline covariates, and Di0 ∈ {1, 2, ...} as the initial dosage

value. With MPP, the observed information up to time t for Ft− and F∗t− contain the MPP

(Vi(t), Di(t)) and the baseline covariates Zi and Di0, except Ai(t) is no longer a process but

an exposure indicator. The causal assumptions remain unchanged as stated in Section. 2.1.1.

In the single treatment change setting, we assume the process Vi(t) only counts to the first

visit time (the indicator of Vi(t) takes value 0 → 1), and the exposure indicator Ai(t) only

documents the first potential stop of treatment (the indicator of Ai(t) takes value 1 → 0),

as introduced in the previous section.

2.2.2 Visit process exposure weights

Our visiting process models follow similar forms as (Eq. 2.8), (Eq. 2.10), and (Eq. 2.13)

in Section. 2.1.2, but rather than treatment discontinuation Ai(t) = 0, we are modeling a

visit initiation Vi(t) = 1. Additionally, all notations on Ai(t) and tAi
becomes Vi(t) and tV i,

whereas the marginal and conditional models are still parametrized with κ and η, respectively.

log (hVi(t | Xi(t); η)) = η0 + η1Xi(t) (2.16)

hV i(t | Xi(t); η) = h0(t) exp {η1Xi(t)} (2.17)

logit (P (Vik = 1 | Xik; η)) = η0 + η1Xik (2.18)

The corresponding stabilized weighting functions follow from (Eq. 2.9), (Eq. 2.11), and (Eq.

2.15), but with respect to history V̄ . The contribution of the weighting effect in an MPP can

be isolated by fitting only a visit model or only a dosage model. Note that both the current

visit process Vi(t) and the exposure process Ai(t) in Section.2.1.2 are counting processes.
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2.2.3 Dosage level exposure weights

A multinomial or multiordinal logistic regression dosage level model can be used to model the

dispensed daily dose categories Di(t); it is the dosage assignment model for our MPP.

Logistic Model

A simplified case of a multinomial logistic regression is a logistic regression, where everyone

in the new user cohort starts at the same dose, but at some point t during the follow-up,

the treatment can stop or a new dispensation takes place at the same dose, d ∈ {0, 1}. This

logistic model can be specified similarly as (Eq. 2.13) and (Eq. 2.14) from the discrete-time

exposure model, but parametrized with φd = (φ0, φ1) for the binary dosage model that takes

d = 0 as the reference level:

P (Di(t) = d | Xi(t);φd) =


1

1 + exp{φ0 + φ1Xi(t)}
, d = 0

exp{φ0 + φ1Xi(t)}
1 + exp{φ0 + φ1Xi(t)}

, d = 1

, (2.19)

while the marginal version of (Eq. 2.19) excludes the confounder process Xi(t). With this

dosage model, everyone starts at the same dosage, so they are indicated as on treatment

Ai(0) = 1 to start with. Therefore, before a visit/dispensation change, the stabilized weight

of dosage D takes value 1 and does not have an impact on the overall exposure weight.

On and after a visit, the weight of the dosage model becomes the ratio of the treatment

probabilities from marginal and conditional models at the time tV i, which gives the below set

of weighting function:

ŝwD̄i (t; φ̂∗, φ̂) =


1, t < tV i

p̂∗dtV i

p̂dtV i

=
P (Di(tV i) = d; φ̂∗0)

P (Di(tV i) = d | Xi(tV i); φ̂d)
, t ≥ tV i

(2.20)

In discrete-time setting, tV i falls in the kth interval, but in order to make a distinction with

the p̂ik in the pooled logistic model (Eq. 2.15), we name this dosage probaility as p̂dik for

later reference in Chapter 3. In addition, all notations for Xi(t) is Xik, Xi(tV i) notation is

changed to Xim and similarly for process Di(tV i) to Dim.
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Multinomial Logistic Model

We can also extend the dosage from binary to multiple levels, where Di(t) takes value

d ∈ {0, 1, 2}. Multiordinal model can be an alternative to the multinomial model, if we

decide to make some additional assumptions, such as the levels in dosage effect Di(t) are

equidistance. A patient can stop the treatment that takes d = 0 or can continue on treatment

with dosage level that represents, for example, d = 1: (0, 5mg] and d = 2: (5, 20mg]. For

more than two dosage levels, we can again choose level d = 0 as the reference group, with

the model extension from (Eq. 2.19), we have:

P (Di(t) = d | Xi(t);Di0;φd) =


1

1 +
∑

`∈{1,2} exp{φ0` + φ1`Xi(t) + φd0Di0}
, d = 0

exp{φ0d + φ1dXi(t) + φd0Di0}
1 +

∑
`∈{1,2} exp{φ0` + φ1`Xi(t) + φd0Di0}

, d 6= 0

,

(2.21)

where φd0 is the effect of initial dose on the decision of current dose, since we assume

patients tend to stay on the same prescription. Let φd = (φ0d, φ1d, φd0) be a shorthand

notation. Similarly, the marginal model of (Eq. 2.21) can be fitted without the confounder

process Xi(t), so it is parametrized through φ∗d = (φ0d, φd0). We can fit a logistic model

for the initial dosage d0 ∈ {1, 2} sampling, and a multinomial logistic model for after a new

dispensation takes place dVi(t) = 1, where d ∈ {0, 1, 2}. The weighting function in (Eq.

2.20) then becomes:

ŝwD̄i (t; φ̂∗, φ̂) =


1, t < tV i

p̂∗dtV i

p̂dtV i

=
P (Di(tV i) = d | Di0; φ̂∗d)

P (Di(tV i) = d | Xi(tV i);Di0; φ̂d)
, t ≥ tV i

(2.22)

The initial dose weights are not needed, because we adjust for d0 in the outcome model, so

the stabilized weight stays 1 before such event takes place.

2.2.4 Combined stabilized weights

The stabilized weighting function for exposure indicator Ai(t) is a product of stabilized weights

for Vi(t) and Di(t), which can be expressed as:

ŝwĀi (t) = ŝwV̄i (t)× ŝwD̄i (t) (2.23)
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Consider the simple case that we use a logistic model for the dosage assignment model. With

PoissonV̄ -LogisticD̄ weighting, the combined weights can be expressed as a product of (Eq.

2.9) and (Eq. 2.20), where ω̂ =
(
κ̂, η̂, φ̂∗, φ̂

)
is a collection of parameters involved:

ŝwĀi (t; ω̂) =



exp
{
−
∫ t

0
exp {κ̂0} du

}
exp

{
−
∫ t

0
exp {η̂0 + η̂1Xi(u)} du

} × 1, t < tV i

exp
{
−
∫ tV i

0
exp {κ̂0} du

}
· exp {κ̂0}

exp
{
−
∫ tV i

0
exp {η̂0 + η̂1Xi(u)} du

}
· exp {η̂0 + η̂1Xi(tV i)}

×
p̂∗dtV i

p̂dtV i

, t ≥ tV i

(2.24)

With CoxV̄ -LogisticD̄ weighting, we can merge (Eq. 2.11) and (Eq. 2.20):

ŝwĀi (t; ω̂)

=



exp
{
−Ĥ∗0 (t)

}
exp

{
−
∫ t

0
exp {η̂1Xi(u)} dĤ0(u)

} × 1, t < tV i

exp
{
−Ĥ∗0 (tV i)

}
· dĤ∗0 (tV i)

exp
{
−
∫ tV i

0
exp {η̂1Xi(u)} dĤ0 (u)

}
· exp {η̂1Xi(tV i)} dĤ0 (tV i)

×
p̂∗dtV i

p̂dtV i

, t ≥ tV i

(2.25)

With Pooled LogisticV̄ -LogisticD̄ weighting, we have the product of (Eq. 2.15) and (Eq.

2.20):

ŝwĀi (tm; ω̂) =



∏m−1
k=1 1− p̂∗ik∏m−1
k=1 1− p̂ik

× 1, t < tV i

p̂∗im ·
∏m−1

k=1 1− p̂∗ik
p̂im ·

∏m−1
k=1 1− p̂ik

× p̂∗dim
p̂dim

, t ≥ tV i

(2.26)

The similar combinations for a multinomial logistic dosage assignment Di(t) model can be

specified by replacing (Eq. 2.20) with (Eq. 2.22).
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2.3 Multiple visit MPP models and weights

Previously, we had the simplified case that the visiting process Vi(t) only counts to 1. However,

in the real world setting, a patient might stop, continue or change the daily dosage level of

treatment several times sequentially throughout the follow-up period. Therefore, the MPP

(Vi(t), Di(t)) are defined at multiple time points, and we need to use Andersen and Gill

generalized Cox model for recurrent exposure.

As introduced previously, the visiting process can be modeled continuously given the

context of administrative data. However, given the large sample size in administrative data,

the long-format data set split based on frequent person-times usually result in large data

dimensions. As an alternative, the discrete pooled logistic model can be used to approximate

the visiting process intensity in the continuous-time, but only at some equidistance time

intervals, which can possibly result in a smaller long-format data size.

In the current context, “visit” is used to refer to a time of a potential treatment change,

that is, a documented new dispensation or an inferred stop of treatment. The stop of

treatment time is the start of the gap time between two treatment episodes. Everyone starts

with their initial dosage that might span over multiple discrete time points k until a new

subsequent visit happens. Given the lack of data on adherence and the treatment is crucial

for the life-threatening condition, we can make a reasonable assumption that patients adhere

to their prescriptions such that their subsequent dosages remain the same in between two

visiting events.

We impose a Markov assumption for our MPP, that a patient’s current visit intensity and

dosage assignment only depends on the dosage at the previous one time point Di,k−1 rather

than the patient’s entire history of dosage assignment Di0, Di1, ..., Di,k−2. Based on the

pooled logistic visiting process model (Eq. 2.18), we further include the baseline covariates

Zi, the cumulative dose of GC cum(ā) =
∑k−1

s=0 as up to time k−1, and a term for continuous

time effect k. The conditional probability of visit initiation for individual i is:

logitP (Vik = 1 | Ω; η) = η0+η1Zi+η2Xik+
∑
`∈∆

η3`1{Di,k−1 = `}+η4cum(ā)+η5k, (2.27)

where P (Vik = 1 | Ω; η) = pik, and Ω is a collection of the covariates on the right hand

side of the equation. Note that Ai is no longer a counting process, so ā denotes the dose

assignment history up to time k. We use the lowest dose level d = 1 as the reference so

∆ = D⊗ = {0, 2, ..., 5}.

We also fit the Dik models coupled with our Vik model. Dik follows the same form as
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(Eq. 2.21), except with the same extended set of covariates Ω in the visit model:

pdik = P (Dik = d | Ω;φd) =


1

1 +
∑

`∈∆ exp{Υ}
, d = c

exp {Υ`=d}
1 +

∑
`∈∆ exp{Υ}

, d 6= c

, (2.28)

where Υ has the same form as the right hand side of (Eq. 2.27) but parametrized with

φ, and c is the reference level not in ∆. However, although both Di,k−1 and Dik have the

same number of levels, where d ∈ {0, ..., 5}, we have a violation of positivity assumption by

definition at the Di,k−1 = 0 to Dik = 0 transition, because the dosage model is defined at

a visit, and a patient cannot visit for no drug. Therefore, we separate the modeling of Dik

based on the previous dose level. If a patient has been unexposed at the previous time point,

we model with the first equation of (Eq. 2.29), where the current dose Dik can take values

other than d = 0. Otherwise, if a patient has been exposed with some dose level at the

previous time point, the current dose can take any value of d.

Υ =
∑
`∈D�

φ0` + φ1Zi + φ2Xik + φ4cum(ā) + φ5k, Di,k−1 = 0∑
`∈D⊕

φ0` + φ1Zi + φ2Xik +
∑
`∈D⊕

φ3`1{Di,k−1 = `}+ φ4cum(ā) + φ5k, Di,k−1 > 0
,

(2.29)

where D� = {2, ..., 5} with d = 1 as the reference level and D⊕ = {1, ..., 5} with d = 0 as the

reference level. Alternatively, the multiordinal logistic regression has much fewer parameters

compare to multinomial logistic regression. For the consideration of small covariate categories,

we can switch the Dik model to below:

logitP (Dik ≤ d | Ω;φ) = log

[
P (Dik ≤ d | Ω;φ)

1− P (Dik ≤ d | Ω;φ)

]
= Υ (2.30)

Unlike previous sections, where the effect of baseline (time-fixed) confounders on the initial

dosage assignment is not modeled, we now introduce another multinomial logistic model for



Chapter 2. Methods 42

the initial dosage Di0:

pd0i0 = P (Di0 = d0 | Zi; ξd0) =


1

1 +
∑

`0∈D� exp {ξ0`0 + ξ1Zi}
, d0 = 1

exp {ξ0d0 + ξ1Zi}
1 +

∑
`0∈D� exp {ξ0`0 + ξ1Zi}

, d0 6= 1

, (2.31)

where ξd0 = (ξ0d0 , ξ1d0). Since we are modeling a new user cohort, no patient can start

with unexposed, so Di0 model (Eq. 2.31) has one less category such that d0 6= 0. We can

again specify the lowest dose level d0 = 1 as the reference level. Similarly, (Eq. 2.31) is

exchangeable with a multiordinal logistic model for the initial dose Di0 model.

Previously in our stabilized weights, we have the time points k ∈ {1, 2, ...,m, ...,K}. We

can now bring in the probability of dosage assignment at k = 0 modeled through (Eq. 2.31)

to the combined weighting function for multiple MPP:

ŝwĀi (tm; ω̂) = ŝwD̄0

i (tm; ξ̂∗, ξ̂)× ŝwV̄i (tm; κ̂, η̂)× ŝwD̄i (tm; φ̂∗, φ̂)

=
p̂∗d0i0

p̂d0i0
·
∏m

k=1 (1− p̂∗ik)
1{Vik=0} · (p̂∗ik)

1{Vik=1}∏m
k=1 (1− p̂ik)1{Vik=0} · (p̂ik)1{Vik=1} ·

(
p̂∗dik
p̂dik

)1{Vik=1}

,

(2.32)

where ω̂ =
(
ξ̂∗, ξ̂, κ̂, η̂, φ̂∗, φ̂

)
is a collection of marginal and conditional parameters in the

three models for Di0, Vik, Dik. Because the two D-regression models above are based

on separate data sets and thus are mutually exclusive, the weights derived from them are

combined together as ŝwD̄i (tk; φ̂
∗, φ̂). At different time points, depending on the visiting

status, some parts of the stabilized weights are equal to one in the cumulative products of

visiting model and the corresponding dosage model, but the baseline components always exist.
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2.4 Estimation of flexible hazard models for exposure-

outcome relationships

Our marginal hazard model is on continuous-time scale. The same model (Eq. 2.33) can be

fitted by both weighted Cox partial likelihood and the weighted case-base sampling partial

likelihood. The log-baseline hazard function θ0(t) is left unspecified in Cox model, but it

is fitted through a spline function in the case-base estimation. Consider the case where we

are modeling the marginal effect, parametrized with θ1, of not being on a treatment, i.e.

Ai(t) = 0 or 1 − Ai(t) = 1. The marginal hazard is a function of time and the effect may

not be proportional, and thus we can use the time interaction of treatment discontinuation

and time since stop of the treatment, parametrize with θ2, to model the dependency on time.

Thus, the outcome model for (Eq. 2.3) can be extended as:

ψi(t; θ) = exp {θ0(t) + θ1 (1− Ai(t)) + θ2 (1− Ai(t)) (t− tAi
)} (2.33)

2.4.1 Weighted Cox partial likelihood

The standard Cox partial likelihood for our outcome model has the form:

L(θ) =
n∏
i=1

∏
u∈[0,t)

(
exp(θ1Ai(u) + θ2Ai(u)(u− tAi

))∑n
l=1 Gl(u) exp(θ1Al(u) + θ2Al(u)(u− tAi

))

)dYi(u)

(2.34)

Given the stabilized weights swi(t) derived from exposure models in the previous section, the

weighted Cox partial likelihood is:

L̃(θ) =
n∏
i=1

∏
u∈[0,t)

(
swi(u) exp{θAi(u) + θ2Ai(u)(u− tAi

)}∑n
l=1Gl(u)swl(u) exp{θAl(u) + θ2Al(u)(u− tAi

)}

)swi(u)dYi(u)

(2.35)

The weighted partial likelihood does not have the usual likelihood properties (equivalence of

score covariance and information), so the naive standard errors based on inverting the observed

information matrix are not valid. Therefore, we use a robust sandwich estimator for the

variance of θ by specifying the ‘cluster’ variable to each patient ID in the coxph() function

in R. Internally, this step is achieved by using the grouped jacknife techniques (Therneau and

Grambsch, 2000). We obtain θ̂−i as the maximum likelihood estimator (MLE) excluding all

person-time observations of person i. J is a matrix, where in its ith row, we document the

difference between each θ̂−i and the MLE estimator θ̂. Let J̄ be the column means of J . The

estimated variance for our parameters of interest θ = (θ1, θ2) can be calculated as (Therneau
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and Grambsch, 2000):

V̂ ar(θ̂) =
n− 1

n
(J − J̄)′(J − J̄)

2.4.2 Weighted case-base sampling partial likelihood

In the case-base sampling method by Hanley and Miettinen (2009), the follow-up experience

is considered a collection of person-time coordinates (i, t). A finite number of these can be

sampled for the analysis purposes, with negligible loss of information. We keep all person-

times where an event happened dYi(t) = 1, and pair this ‘case series’ with a random sample

of person-times from all follow-up experience as a ‘base series’. The implementation details

for base series sampling follows from the two-step mechanism in Hanley and Miettinen (2009):

depending on how much a person contributes to the person-time, the number of base time

points a patient has is sampled from a multinomial distribution; afterwards, the base time

points are sampled uniformly within the patient’s follow-up period. Based on the simulation

results of Saarela (2016), a base series coefficient with a value larger than 100 is shown to

have no lost in efficiency. In current thesis, we define the size of the base series as 200 times

the number of outcome events in the case series to accommodate for the large sample size.

Let the sampling mechanism for base series be a Poisson process Ri(t) ∈ {0, 1, ...}. Let

ρi(t) be the intensity function of Ri(t):

ρi(t)dt = PO(dRi(t) = 1 | Ft−) = PO(dRi(t) = 1 | Gi(t))

We take ρi(t) = ρOi (t) = ρEi (t) to be consistent with the stability assumption. We define

Qi(t) = Yi(t) +Ri(t) as the counting process for all sampled person-moments contributed by

individual i. Then the intensity function for Qi(t) can be expressed as the sum of intensities

from case and base series:

P E(dQi(t) = 1 | F∗t−) = (ψi(t; θ) + ρi(t)) dt

and the conditional probability follows:

P E(dYi(t) = 1 | dQi(t) = 1,F∗t−)

=
P E(dYi(t) = 1 | F∗t−)

P E(dQi(t) = 1 | F∗t−)
=

ψi(t; θ)

ψi(t; θ) + ρi(t)

The above function is crucial for the derivation of the weighted partial likelihood for our

marginal hazard function. An interpretation would be: if a person-time was sampled, then

the probability of it being an outcome event is the above ratio. As shown in Saarela (2016),
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the two counting processes under E has Doob-Meyer decomposition:

dYi(t) = ψEi (t; θ)dt+ dMi(t)

dQi(t) = dYi(t) + dRi(t) = ψEi (t; θ)dt+ ρi(t)dt+ dMi(t) + dM
′

i (t)

where Mi(t) and M
′
i (t) are orthogonal martingales adapted to F∗t− , with EE(dMi(t) | F∗t−) =

0. However, due to confounding, we don’t have the same martingale property for EO(dMi(t) |
F∗t−). Similarly to Cox partial likelihood, exposure weights can be introduced to remove the

confounding.

The partial likelihood for case-base sampling is the joint probability contributions of each

individual:

L(θ) =
n∏
i=1

∏
u∈[0,t)

(
ψi(u; θ)dYi(u)

ψi(u; θ) + ρi(u)

)dQi(u)

(2.36)

This is of the logistic regression form with an offset term log(1/ρi(t)). With the stabilized

weights swi(t) from the previous section, we now have the weighted partial likelihood for

case-base sampling:

L̃(θ) =
n∏
i=1

∏
u∈[0,t)

(
ψi(u; θ)dYi(u)

ψi(u; θ) + ρi(u)

)swi(u)dQi(u)

(2.37)

In order to maximize the weighted case-base sampling partial likelihood, we fit the marginal

hazard model with a logistic regression form using glm(), adjusting for an offset term for time.

Score function is the first order derivative of the natural log of a likelihood function (Therneau

and Grambsch, 2000). In case-base sampling model, all outcome events are sampled, such

that dYi(t)dQi(t) = dYi(t). The pseudo-score process corresponding to (Equation. 2.37) is

given by U(t; θ) =
∑n

i=1 Ui(t; θ), where

Ui(t; θ) =

∫ t

0

swi(u)
∂

∂θ
logψi(u; θ)dYi(u)

−
∫ t

0

swi(u)
∂

∂θ
log[ψi(u; θ) + ρi(u)]dQi(u),

(2.38)

with the observed pseudo-information process given by J(t; θ) =
∑n

i=1 Ji(t; θ), where

Ji(t; θ) =−
∫ t

0

swi(u)
∂2

∂θ∂θ′
logψi(u; θ)dYi(u)

+

∫ t

0

swi(u)
∂2

∂θ∂θ′
log[ψi(u; θ) + ρi(u)]dQi(u),

(2.39)
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We denote U(t; θ) = U(θ) and J(t; θ) = J(θ). Although U(θ) does not have a direct

martingale representation as the unweighted one shown in Saarela (2016), the score process

with the likelihood ratio weights is asymptotically unbiased (Roysland et al., 2011). The

unweighted partial likelihood (Equation. 2.36) has the information equality property, where

the variance estimation can be achieved by inverting the observed information matrix at the

maximum likelihood point. However, the weighted version (Equation. 2.37) does not have

this property, and we need to use a sandwich estimator:

cov[θ̂] ≈ J(θ0)−1cov[U(θ0)]J(θ0)−1,

where the pseudo-score covariance is estimated by the empirical variance:

cov[U(θ0)] ≈
n∑
i=1

Ui(θ̂)
′Ui(θ) (2.40)

and the observed information by J(θ0) ≈ J(θ̂). This sandwich form is easily obtained as we

have I.I.D patients in our study cohort. However, in the long-format (or counting process

format), each individual contributes a cluster of person-times. Therefore, the covariance in

(Equation. 2.40) is first calculated within individual and then summed across individual. In

practice, the cluster sandwich estimator for generalized linear models is implemented in the

infjack.glm R function (Lumley and Heagerty, 1999), or the sandwich package (Zeileis,

2006; Zeileis et al., 2020).
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Simulation Study

To assess the performance of different IPT weighting and MSM combinations presented

in the previous chapter, we conduct four simulation studies. In Section 3.1, we present

the conditional data generation mechanisms needed for all of our counting processes and

variables. In Section 3.2, we use DAG to illustrate different simulation scenarios, and we

then incorporate conditional data generation mechanisms to multistate diagrams with the

corresponding transition intensity matrices. In Section 3.3 we present the log marginal hazard

rates graphs and simulation result tables.

We expect to see that under dynamic treatment, the marginal hazard models have complex

functional forms, so we allow the treatment and time interaction term. We aim to show that

the weighted models should have less bias for estimating the treatment effect compared to the

unweighted model. When we separate the exposure process into the visit process and dose

level, the combined weights should result in the least bias. Furthermore, we expect case-base

sampling MSM to produce similar results as Cox MSM, but case-base sampling requires much

less run time due to smaller data set sizes.

3.1 Simulation algorithms

Havercroft and Didelez (2012) proposed generating data from a known Cox MSM and a known

treatment assignment model. Young and Tchetgen Tchetgen (2014) suggested that we can

derive the true parameter values of a Cox MSM from observed data by using the connection of

Cox MSM and g-formula. With our data generation mechanism adapted from these previous

works, we ensure the exposure models and outcome MSM models are correctly specified.

However, these authors assumed discrete-time models for the time-dependent treatment and

covariate processes, while only allowing the outcome model to be on a continuous-time scale.

Although the pooled logistic model is one of our exposure models in the previous chapter,

47
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the discretization is indeed a result of manually splitting the data from a continuous-time

scale, whereas our data generation is based on a continuous-time model. In the simulation,

we focus on a simplified setting where all the counting processes only count to the first event,

as in this case the true marginal hazard can be calculated as a function of the conditional

data generating mechanism. Therefore, in this setting, the marginal hazard function can be

expressed as Robin’s g-formula:

ψi(t; θ) =

∫
λEYi(t)

∏
u∈[0,t) λ

E
Xi

(u)dxi(u) exp
{
−
∫ t

0

[
λEXi

(u) + λEYi(u)
]

du
}

∫ ∏
u∈[0,u) λ

E
Xi

(u)dxi(u) exp
{
−
∫ t

0

[
λEXi

(u) + λEYi(u)
]

du
} , (3.1)

where we integrate over the density of the time when the TD confounder process jumps.

In fact, (Eq. 3.1) would have a closed-form solution only in special cases, such as when

the outcome process only depends on the current value of a TD confounder process, which

makes the expression memoryless (Young and Tchetgen Tchetgen, 2014). However, the

above memoryless assumption might not be reasonable. Moreover, in the scenario tailored

to our case, even under the special case of only counting to the first event for both the

outcome and the confounder processes, (Eq. 3.1) does not have a closed-form solution. As

an illustration, we let the confounder process Xi(t) ∈ {0, 1} only count to the first event,

and let the conditional mortality hazard function depends only on Xi(t
−). Then, we define

the conditional mortality hazard as λEYi(t;xi(u
−)). The denominator of (Eq. 3.1) can be

expressed as:∫ ∏
u∈[0,t)

λEXi
(u)dxi(u) exp

{
−
∫ t

0

[
λEXi

(u) + λEYi(u;xi(u
−))
]
du

}

=exp

{
−
∫ t

0
λEYi(u; 0)du

}
exp

{
−
∫ t

0
λEXi

(u)du

}
+

∫ t

0

[
exp

{
−
∫ v

0
λEYi(u; 0)du−

∫ t

v
λEYi(u; 1)du

}
× λEXi

(v) exp

{
−
∫ v

0
λEXi

(u)du

}]
dv,

Similarly, the numerator of (Eq. 3.1) can be expressed as:

∫
λEYi(t;xi(t

−))
∏

u∈[0,t)

λEXi
(u)dxi(u) exp

{
−
∫ t

0

[
λEXi

(u) + λEYi(u;xi(u
−))
]
du

}

=λEYi(t; 0) exp

{
−
∫ t

0
λEYi(u; 0)du

}
exp

{
−
∫ t

0
λEXi

(u)du

}
+ λEYi(t; 1)

∫ t

0

[
exp

{
−
∫ v

0
λEYi(u; 0)du−

∫ t

v
λEYi(u; 1)du

}
× λEXi

(v) exp

{
−
∫ v

0
λEXi

(u)du

}]
dv,

where the above numerator and denominator do not have a closed form solution.
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Therefore, we suggest using the below conditional data generation mechanisms, and we

derive the true treatment effect of (Eq. 3.1) using numerical integration (Saarela and Liu,

2016). We assume the intercept term to be constant over time, and instead of modeling

the exponentiated intercept parameters of α′Y (t) and α′X(t), we simplify the notation to

exp(α′Y (t)) = exp(α′Y ) = αY and exp(α′X(t)) = exp(α′X) = αX .

λEYi(t) = αY · exp
{
βYAi(t) + γYXi(t

−)
}

(3.2)

λEXi
(t) = αX · exp {βXAi(t)} (3.3)

Combined with causal assumptions of λEYi(t) = λOYi(t) and λEXi
(t) = λOXi

(t). The parameters

αY , βY , γY , αX and βX are presented in Table 3.4 depending on the simulation scenario.

Then we can model the marginal hazard under: (1) being treated or (2) not being treated.

The resulting marginal log-hazard for (1) and (2) are plotted in Figure 3.5 and Figure 3.6

respectively. For a multinomial logistic model we have the extension in Figure 3.7. In our

next section about simulation design, (1) is estimated with simulation 1, (2) is estimated with

simulation 2 and simulation 3, and the extension on multinomial model is through simulation

4. Because our clinical context is a new-user cohort design, we put more focus on the case

that everyone starts exposed, but can stop or change treatment during the follow-up period.

We complete our conditional data generating mechanism by specifying the exposure mech-

anism under O:

λOAi
(t) = αA · exp

{
βAXi(t

−)
}

(3.4)

similarly we define exp(α′A(t)) = exp(α′A) = αA and λOAi
(t) = λEAi

(t). The data generating

mechanism now has the feature of treatment-confounder feedback, where the exposure process

is influenced by the current value of the confounder process, which in itself is modified by

exposure. We assume type I censoring due to the end of the follow-up period and did not

simulate baseline covariates (although these can be easily incorporated in all the processes).

The target marginal treatment intensity λEAi
(t;κ) can be expressed as a function of (Eq. 3.2),

(Eq. 3.3), and (Eq. 3.4), obtained by integrating out Xi(t). In practice, we approximate

this by fitting a marginal model λEAi
(t;κ) = exp{κ0}, resulting in the counterparts needed

for stabilized weights in discrete-time setting. The parameters αA and βA are presented

in Table 3.4 with respect to different simulation scenarios. If we separate the modeling of

Ai(t) as (Vi(t), Di(t)), we also provide parameters used for the dosage assignment models

for Di(t). In all our simulation scenarios, we assume our exposure/visit, confounder, and

outcome processes only count to the their first event.
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3.2 Simulation design

We use the discrete-time DAG Figure 3.1 to present our simulation scenarios, while the actual

data generation was done using multistate model for the continuous-time setting.

(a) Simulation 1 and 2 DAG

A0 X1 A1
... Y

(b) Simulation 3 DAG

A0 X1 A1

D1

V1

... Y

(c) Simulation 4 DAG

A0

D0

X1 A1

D1

V1

... Y

Figure 3.1: Simulation designs with DAG representation

1. Simulation 1 Figure 3.1a:

A scenario that patients all start unexposed, and then start the treatment at some

individual-specific time point. Ai(t) can be interpreted as a counting process for treat-

ment initiation. Note that baseline covariates Z are omitted from the simulation studies.

2. Simulation 2 Figure 3.1a:

In scenario 2, we simulate a reversed situation of scenario 1. With the new-user design

described in Section 1.1.3, we have Ai(0) = ai0 = 1 so that everyone starts exposed,

and then a change in visit status results in a stop of treatment. Ai(t) is a complement

of a counting process that counts to the treatment discontinuation event.

3. Simulation 3 Figure 3.1b:

Similar to the second scenario, all patients start with being on treatment, but we

separate the modeling of exposure process Ai(t) into a visit process Vi(t) that induces

the corresponding dosage assignment indicator Di(t), where the dosage level is binary,

indicating treatment stopping or continuation on the same treatment.

4. Simulation 4 Figure 3.1c:

Similar to the second and third scenario, all patients start on treatment, with some

initial dose Di0 sampled from a logistic model. We also separate the modelling of Ai(t)

into Vi(t) and Di(t), but we extend the dosage level to three categories, indicating stop

treatment, or continue on the same treatment or change to a higher dose treatment.

We use a multinomial model for the modeling of Di(t).

As a summary of Section 2.1 and Section 2.2, the different combinations of exposure and

outcome models can be specified as the below cross tabulations. When we model the exposure
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status Ai(t) directly in simulation 1 and 2, we use model specifications in Table 3.1. On the

other hand, when we separate the modeling of Ai(t) into a MPP (Vi(t), Di(t)) in simulation

3 and 4, we can i) examine the contribution of each model in the MPP separately, by using

the model specifications when fitting a visit model alone Table 3.1 or a dosage assignment

model alone Table 3.2, ii) use the combined weights of MPP, with the model specifications

listed in Table 3.3.

Table 3.1: Model specifications when weighted with an exposure process or a visiting process
model alone

Exposure Model

Fracture 
Outcome Model

Continuous Time Discrete Time (Either)

Poisson Cox Pooled Logistic Unweighted

Outcome Models
Cox (Ⅰ) (Ⅱ) (Ⅲ) (Ⅳ)

Case-base (V) (Ⅵ) (Ⅶ) (Ⅷ)

Table 3.2: Model specifications when weighted with a dosage assignment model alone

Dosage          
Assignment Model

Fracture 
Outcome Model

Continuous Time Discrete Time (Either)

Logistic Unweighted

Outcome Models
Cox (IX) (X) (Ⅳ)

Case-base (XI) (XII) (Ⅷ)

Table 3.3: Model specifications when weighted with the combination of a visiting process
model and a dosage assignment model

Visit 
Model

Dosage 
Assignment Model

Fracture 
Outcome Model

Continuous Time Discrete Time (Either)

Poisson Cox Pooled Logistic Unweighted

Logistic Unweighted

Outcome Models
Cox (Ⅰ†) (Ⅱ†) (Ⅲ†) (Ⅳ†)

Case-base (V†) (Ⅵ†) (Ⅶ†) (Ⅷ†)
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We specify the parameters used in our data generating mechanism under different sce-

narios as Table 3.4, where θ is the true value of our parameter of interest in the marginal

hazard model. We then introduce our scenario-specific multistate diagrams, transition matrix,

exposure and outcome models.

Table 3.4: Theoretical parameter values used in four simulation scenarios

Data Generation Parameters Simulation 1 Simulation 2 Simulation 3 Simulation 4

θ1 = −1 θ1 = 1 θ1 = 1 θ1 = 1

θ2 = −1
(Eq. 3.5) (Eq. 2.33) (Eq. 2.33) (Eq. 3.7)

Conditional Mechanism

αX 0.05 0.05 0.04 0.04

β§
Xd

-1.5 1.5 1.5 1.5

α♦
A 0.1 0.2 0.08 0.08

β♦
A 1.5 1.5 1.5 1.5

αY 0.02 0.02 0.02 0.02

β§
Yd

-1 -1 -1 -1 -2

γY 1.5 1.5 1.5 1.5

Binomial Dose d ∈ {0, 1}‡,. φ0 φ1 - - -0.38 -1 0

Multinomial Dose φ01 φ11
- - -

-1.5 1

d ∈ {0, 1, 2}. φ02 φ12 -2 0

§ βXd
, βYd

are βX , βY for simulation 1 and 2. βXd
, βYd

has d ∈ {0, 1} in simulation 3 and d ∈ {0, 1, 2}
in simulation 4, in which βX1 = βX2 = βXd

. In both simulation 3 and 4, βX0 = βY0 = 0.
♦ In simulation 3 and 4, αA, βA are αV , βV .
‡ In simulation 4, rather than after visit dose d sampling, we use this for d0 ∈ {1, 2} sampling, (φ0, φ1) is

now φ2. The effect of d0 on multinomial regression for d is φd0 = 0.5.
. d = 0 is the reference level for data generation, while d = 1 is the reference level for parameter estimation.

Each simulated cohort has n = 1, 000 patients, with event prevalence rate around 10%

and an administrative censoring time of τ = 5 years. We repeat the Monte Carlo simulation

experiment 1, 000 times in each scenario. For all simulation scenarios, the continuous-time

exposure data for person i is constructed by taking all person-time records until the exposure

indicator changes or until the administrative censoring if process Ai(t) never happens. The

discrete-time exposure data set further split the follow-up period with 30-day intervals. For

all simulation scenarios, the continuous-time outcome data set needed for the weighted Cox

partial likelihood is constructed by taking all the person-times in the population, while we

sample a much smaller data set with a base series coefficient of 200 in case-base sampling.

For example, with 100 events out of a 1, 000 patients cohort, we have a long-format data size

of 100 + 100× 200 = 20, 100 rows for case-base versus around 95, 000 rows for Cox.
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We then detail each simulation scenario by presenting a multistate diagram, the corre-

sponding data generation equations, and the exposure and outcome models used.

Simulation 1

In the first scenario, everyone starts unexposed and confounder value at 0 at time 0. A multi-

state model for simulation 1 is shown in Figure 3.2. Everyone starts at state 1 and then move

to other states depending on the order of the treatment, confounder and fracture outcome

counting processes they encounter. For example, a patient can initiate a treatment process

Ai(t) and then initiate another confounder drug represented by process Xi(t), which makes

them take the path of states 1 → 2 → 5. Once a patient encounters a fracture process

Yi(t), we stop the follow-up and call the resulting nodes end states (state 4, 6, 7 and 8).

Administrative censoring can take place before a patient reaches one of the below states, and

we denote it as an invisible state 0. The simulation algorithm works by drawing the time

of the next event from exponential distribution, and then the next state is randomly chosen

within the row of the current state in the transition matrix, with probabilities of each row

intensity entries normalized with the current row sum of intensities. For example, a patient

currently in state 2 can land in state 5 or state 6 with probabilities of ( λ25
λ25+λ26

, λ26
λ25+λ26

), where

λ25 = αX · eβX = 0.05 · e−1.5 = 0.011 and λ26 = αY · eβY = 0.02 · e−1 = 0.007.

A = 0

X = 0

Y = 0

Initial State:1

A = 0

X = 0

Y = 1

End State:4

A = 0

X = 1

Y = 0

State:3

A = 1

X = 0

Y = 0

State:2

A = 1

X = 1

Y = 0

State:5

A = 1

X = 1

Y = 1

End State:8

A = 0

X = 1

Y = 1

End State:7

A = 1

X = 0

Y = 1

End State:6

Y:λ14

A:λ12

X:λ13

X: λ25

Y:λ26

A: λ35

Y: λ37

Y: λ58

Figure 3.2: Simulation 1 multistate model for data generation, patients start unexposed with
no confounder
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The outcome, confounder and treatment counting processes are defined as (Eq. 3.2), (Eq.

3.3), and (Eq. 3.4). The corresponding transition intensity matrix for the first simulation

scenario is:

TIM1 =



. λ12 λ13 λ14 . . . .

. . . . λ25 λ26 . .

. . . . λ35 . λ37 .

. . . . . . . .

. . . . . . . λ58

. . . . . . . .

. . . . . . . .

. . . . . . . .



=



. αZ αX αY . . . .

. . . . αX · eβX αY · eβY . .

. . . . αZ · eβZ . αY · eγY .

. . . . . . . .

. . . . . . . αY · e(βY +γY )

. . . . . . . .

. . . . . . . .

. . . . . . . .


Our data generating mechanisms are based on homogeneous Poisson processes and their

intensity functions. Therefore, Poisson regression offers an intuitive examination to benchmark

the correctness of our data generation mechanisms. We have verified that our data are

generated correctly, by fitting the correctly specified conditional models to the simulated

data.

In simulation 1, we are modeling the effect of being on treatment coded by Ai(t) directly.

Therefore, the pooled logistic model (Eq. 2.13) has a small modification to model Aik = 1:

logit (P (Aik = 1 | Xi,k−1; η)) = η0 + η1Xi,k−1

Although the marginal and conditional exposure models for Poisson regression (Eq. 2.8)

and Cox PH model (Eq. 2.10) have the functional forms unaltered, we need to change the

interpretation to the hazard of starting the treatment.

Thereafter, the corresponding stabilized weighting functions of these exposure models have

the same functional form as (Eq. 2.9), (Eq. 2.11) and (Eq. 2.15), except the interpretation

for tAi
is changed from treatment discontinuation time to treatment starting time for person

i. The outcome model for the first scenario is a derivation of (Eq. 2.33), such that we are
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modeling the marginal causal effect of treatment initiation Ai(t) = 1:

ψi(t; θ) = exp {θ0(t) + θ1Ai(t) + θ2Ai(t) (t− tA)} (3.5)

Our parameter of interest is θ1, which can be interpreted as the treatment effect at the time

of treatment initiation. The true value of θ1 can be obtained from the coefficient of the effect

of treatment on the outcome βY = −1 in the conditional data generating mechanism of Yi(t)

(Eq. 3.2), and it can also be read from the log hazard ratio plot in Figure 3.5, where the

coefficient change at treatment starting time t = 2 is −1.

Simulation 2

Even with a different modeling purpose, simulation 2 shares the same data generating mech-

anism with simulation 1. However, the initial state in the multistate model Figure 3.3 is now

changed to state 2, that is, everyone starts exposed with no confounder and no death event.

With some small variations at the direction of transitioning for state 2 & state 1, and state

5 & state 3, the TIM in the second scenario can be derived as below.

A = 1

X = 0

Y = 0

Initial State:2

A = 0

X = 0

Y = 0

State:1

A = 0

X = 0

Y = 1

End State:4

A = 0

X = 1

Y = 0

State:3

A = 1

X = 1

Y = 0

State:5

A = 1

X = 1

Y = 1

End State:8

A = 0

X = 1

Y = 1

End State:7

A = 1

X = 0

Y = 1

End State:6

Y:λ14

A:λ21

X:λ13

X: λ25

Y:λ26

A: λ53

Y: λ37

Y: λ58

Figure 3.3: Simulation 2 multistate model for data generation, a new-user cohort starting
with no confounder
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TIM2 =



. . λ13 λ14 . . . .

λ21 . . . λ25 λ26 . .

. . . . . . λ37 .

. . . . . . . .

. . λ53 . . . . λ58

. . . . . . . .

. . . . . . . .

. . . . . . . .



=



. . αX αY . . . .

αZ . . . αX · eβX αY · eβY . .

. . . . . . αY · eγY .

. . . . . . . .

. . αZ · eβZ . . . . αY · e(βY +γY )

. . . . . . . .

. . . . . . . .

. . . . . . . .


As a new user cohort, we are modeling the effect of not being on treatment, coded by

1 − Ai(t). We construct the long-format exposure data set similarly as stated in simulation

1. The conditional exposure models - Poisson regression (Eq. 2.8), Cox PH model (Eq.

2.8), and pooled logistic model (Eq. 2.13) - are the same as previously introduced. The

corresponding stabilized weighting functions of these exposure models (Eq. 2.9), (Eq. 2.11)

and (Eq. 2.15) are unaltered, as we are modeling the exposure process directly. Besides, the

marginal outcome model should also be modeling 1− Ai(t), as presented in (Eq. 2.33).

Simulation 3

Similar to simulation 2, we are modeling a new-user cohort. However, from now on, we

separate the modeling of the exposure process Ai(t) into an MPP (Vi(t), Di(t)). In simula-

tion 3, we fit a logistic model for the dosage assignment model. Depending on the value of

Di(t) = d, we would have more states than the current eight states in Figure 3.3. However,

instead of introducing more states, we decide to generate one TIM under each value of d

and we switch between these matrices when a visit happens and we encounter a new value

of d. Simulation 3 has the generalized multistate model Figure 3.4. We assume the initial

dose d = 1, such that if there was no visit process happening, the d value in state 2, 5, 6
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and 8 stays 1. For the other states, we have d ∈ {0, 1}. The data generating mechanisms

for outcome and confounder processes remain the same as (Eq. 3.2) and (Eq. 3.3), but since

Ai(t) is a latent process induced by a change in the visiting process Vi(t), we change the

generation of λEAi
(t) to λEVi(t).

λEVi(t) = αV · exp{βVXi(t
−)} (3.6)

The value of d is sampled with a logistic regression (Eq. 2.19) at time when dVi(t) = 1,

with parameter values listed in Table 3.4. Thereafter, the aggregated two TIMs of simula-

tion 3 can be specified as the below, and the parameter values can be found in Table 3.4.

A = d

V = 0

X = 0

Y = 0

Initial State:2

A = d

V = 1

X = 0

Y = 0

State:1

A = d

V = 1

X = 0

Y = 1

End State:4

A = d

V = 1

X = 1

Y = 0

State:3

A = d

V = 0

X = 1

Y = 0

State:5

A = d

V = 0

X = 1

Y = 1

End State:8

A = d

V = 1

X = 1

Y = 1

End State:7

A = d

V = 0

X = 0

Y = 1

End State:6

Y:λ14

V:λ21

X:λ13

X: λ25

Y:λ26

V: λ53

Y: λ37

Y: λ58

Figure 3.4: Simulation 3 multistate model for data generation. A new-user cohort starting
with no confounder, and treatment A can change from exposed to stop or continue on the
same dosage after a visit process V .
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TIM3,D=d =

. . αX · eβXd αY · eβYd . . . .

αV . . . αX · eβXd αY · eβYd . .

. . . . . . αY · eβYd+γY .

. . . . . . . .

. . αV · eβV . . . . αY · e(βYd+γY )

. . . . . . . .

. . . . . . . .

. . . . . . . .


After plugging in different values of d, we can see that the two TIMs for scenario 3 are

different at the intensities λ13, λ14 and λ37.

The exposure status Ai(t) starts with on treatment, but we might have a new prescription

indicating treatment discontinuation with dose d = 0 at dVi(t) = 1, which forces Ai(t) = 0.

Therefore, we are modeling a visit initiation in the visiting process, but not being on treatment

in the outcome model.

The long-format visiting data set is constructed with the same idea as the long-format

exposure data set described in simulation 1 and 2, such that we stop collecting the person-time

record until Vi(t) = 1 or administrative censoring, which ever comes first. The conditional

visiting models - the Poisson regression (Eq. 2.16), the Cox PH model (Eq. 2.17), and the

pooled logistic model (Eq. 2.18) - are the same as introduced in Section 2.2.2.

In addition to the visiting models, we complete the MPP model by fitting a logistic dosage

assignment model for the dosage level Di(t) (Eq. 2.19). The data set for fitting th dose is

not in long-format, because we only take the person-time record at dVi(t) = 1.

The combined stabilized weights ŝwĀi (t) are directly (Eq. 2.24), (Eq. 2.25), and (Eq.

2.26) introduced in Section 2.2.4. To observe the impact of the different components in the

weights, we also used stabilized weights ŝwV̄i (t) or ŝwD̄i (t) from fitting either a Vi(t) model

or a Di(t) model only.

The outcome model for simulation 3 is the same as (Eq. 2.33) for simulation 2, with a

small modification that tAi
is now changed to tVi .

Simulation 4

In simulation 4, we introduce an initial dosage variable d0 ∈ {1, 2} and expand the logistic

model for d in the previous simulation to a multinomial logistic model, where d ∈ {0, 1, 2}.
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Simulation 4 shares the same multistate model diagram, Figure 3.4, as simulation 3, but due

to an increase in the number of d levels, we have three TIM4, D = d. Because the initial

dose d0 is never zero, the d value in states 2, 5, 6 and 8 keeps consistent with d0 before a

visit process takes place, which means we do not switch to the TIM4, D = 0 for these states.

The outcome and confounder counting processes we used to generate the TIMs are:

λEYi(t) = αY · exp

{∑
d

βYd · 1{Ai(t) = d}+ γYXi(t
−)

}

λEXi
(t) = αX · exp

{∑
d

βXd
· 1{Ai(t) = d}

}
,

and the conditional generating mechanism for the visiting process stays the same as (Eq. 3.6)

in simulation 3. The initial dose Di0 is sampled with a logistic model that is independent

from Xi(0) = 0, and we assume the initial dose sampling has equal probabilities for the two

d0 levels:

logit(P (Di0 = 2)) = φ2

⇐⇒ P (Di0 = 2) = expit(0) = 0.5

The generation for an after-visit dose level d is from a multinomial distribution (Eq. 2.21),

with the corresponding parameter values in Table 3.4.

The long-format visiting data set and the dose data set are created as simulation 3.

The visiting model functions can be adapted from simulation 3, but we add in Di0 as a

baseline covariate to both the marginal and the conditional models. The combined stabilized

weights under their corresponding model specifications have similar expression as (Eq. 2.24),

(Eq. 2.25) and (Eq. 2.26) in simulation 3, except we add in κd0Di0 and ηd0Di0 to the

numerator and the denominator, respectively, and we replace the logistic dosage model with

the multinomial logistic model (Eq. 2.22) for simulation 4.

Previously in simulation 2 and 3, we take 1−Ai(t) = 1 to model the effect of not being on

treatment, such that Ai(t) = 1 is the reference level. Because now we have more treatment

levels of interest, the outcome model has an additional term for Ai(t) = 2, but we keep the

reference level as Ai(t) = 1. However, the flat line after a change in treatment in Figure 3.7

indicates there is no need for a time-interaction term for Ai(t) = 2. We specify our outcome

model simulation 4 as:

ψi(t; θ) = exp{θ0(t) + θ11 {Ai(t) = 0}+ θ21 {Ai(t) = 2}

+ θ31 {Ai(t) = 0} (t− tVi)}
(3.7)
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3.3 Simulation results

For simulation 1, the resulting marginal log-hazard graphs under two different treatment

assignments are shown in Figure 3.5. We show the causal contrast between never treated

versus start treatment at time t = 2. While the conditional models (dashed lines) shows

proportional hazards, with constant baseline hazards, the marginal hazard (solid lines) shows

complex functional form that is neither constant over time, nor proportional. In practice,

parametric marginal hazard models can be made sufficiently flexible to characterize time-

varying baseline hazards and treatment effects by introducing splines and interaction terms

with time. However, for the purposes of the simulation study, we focus on a single parameter of

θ1 that characterizes the treatment effect at the time of treatment initiation/discontinuation.

Because the true value of θ1 is known and can be captured by the specified parametric model,

it allows the comparison between weighted Cox and case-base sampling partial likelihoods.

The true value of our parameter of interest can be obtained for each scenario. In simulation

1, θ1 in (Eq. 3.5) represents the log hazard ratio of starting treatment at some time t = 2

during the follow-up versus never treated can be read from the bottom graph of Figure 3.5,

where the log hazard ratio drop at t = 2 is −1. For simulation 2 and simulation 3, a similar

pattern of marginal versus conditional hazards can be observed in Figure 3.6; except in these

scenarios, we model the stop of the treatment, and the true value for θ1 in (Eq. 2.33) is now

1. For simulation 4, we assume the effect of treatment on the confounder process is the same

regardless of the dosage level to avoid complex time interaction term in the marginal hazard

function, that is βX1 = βX2 . The top graph of Figure 3.7 shows the same log hazard ratio

trend as those in simulation 2 and 3 (the bottom graph of Figure 3.6), and thus the true

value for θ1 that models the stop of the treatment in (Eq. 3.7) is 1. Additionally, we have θ2

that represents a change of treatment to another dose level after a visit takes place, and the

true value θ2 = −1 can be read from the bottom graph of Figure 3.7.

The parameter estimation results are presented in the following tables; Table 3.5 for

simulation 1, Table 3.6 for simulation 2, Table 3.7 for simulation 3, and Table 3.8 and

Table 3.9 for simulation 4. The inferential statistics of interest are presented in the columns

of these tables, in the order of Mean, Bias, Monte Carlo Standard Deviation (SD), Mean

Standard Error (Mean SE), Root-Mean-Square Error (RMSE), 100 × Monte Carlo Error (100

× MCE), Coverage, and Power. The simulation results are not strictly rounded with respect

to their MCE due to the small differences in the estimates. The SD and Mean SE produce

approximately similar values, which indicates a valid simulation setup.

We observe several consistent patterns from all scenarios: i) The Cox and the case-

base sampling partial likelihoods have similar performance in terms of efficiency properties.
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However, due to the smaller long-format data dimension required in case-base sampling, the

run time is approximately five times less compared to that of the Cox MSM. For example,

in simulation 4, it took 10.86 seconds to complete with case-base sampling, while it took

45.90 seconds by using Cox. ii) The small undercoverage in the confidence interval observed

in both Cox and case-base sampling MSM is likely due to the downward bias in the sandwich

estimators (Fay and Graubard, 2001). iii) Regardless of continuous or discretized weights, the

weighted estimates are similar, which likely results from sufficiently fine discretization of time.

If the discretization is coarse, the discrete exposure weights might fail to approximate the

continuous-time weights. iv) The combined weighted models give larger variance estimates

than that of the single weighted models, and weighted models always have larger variance

estimates compare to unweighted. v) However, the weighted models have a smaller and more

favorable RMSE, a statistic as the sum of measured bias and standard deviation, compared

to the unweighted models for model selection. We provide coverage and power as additional

inferential statistics, but these are not of primary interest in the current simulation study.

If either the point estimate or the SE estimate is biased, the coverage will be away from

nominal probability of 0.95. Our coverage results show that MPP weightings always achieve

the closest approximation to 0.95. Power is a function of efficiency, so we expect to see

case-base and Cox having similar power. However, we should not compare power for methods

that are biased, as bias away from the null always increase the power.

We also observe some characteristics that are specific to each simulation study. In Table

3.5 and Table 3.6, and we can see that the weighted estimates always have smaller bias

compared to the unweighted estimates. For simulation 3, we separate the modeling of expo-

sure into a visit model and a dosage assignment model, and we also examine the weighting

contribution of each of these models separately. Therefore, we include all the model speci-

fications introduced in the previous chapter. In Table 3.7, we can see that the visit or the

dosage assignment model alone corrects some bias from the unweighted estimates, but the

combined weights of these two exposure models always give the least biased estimates. The

best model combination is using combined weights from a pooled logistic visit model and a

logistic dosage assignment model, with a case-base estimation of MSM (model specification

(VII†)). We observe the same overall results in simulation 4 that once again, the combined

weights give the least biased estimates. Note that the dosage assignment model alone in

Table 3.8 gives a more biased estimate than that of the unweighted, which is likely a coinci-

dence. Because the biases from using dosage assignment alone or from visit model alone are

to the opposite directions, they cancel out to some degree.

From the simulation studies, we have verified that when modeling exposure as a marked

point process, we need to used the combined weights for the outcome model. Because dose
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weights are independent from the outcome model form, the same kind of weights can also be

used to model cumulative exposures. While we keep the outcome model in simulation simple

to know the true parameter, this separation in the exposure modeling also naturally leads to

our discussion about cumulative exposure in the real data analysis in the next chapter. We

also learned that we can save significant amount of computational time by using case-base

sampling.
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Figure 3.5: Simulation 1 log hazard rate graphs, where A = 0 has true value θ1 = −1
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Chapter 4

Data Analysis

This chapter demonstrates the marginal structural modeling of adverse drug effects in a real-

world data application. We first present the chronic GC new-user cohort study design. Then,

we derive data cleaning steps and definitions for our baseline covariates, GC exposure, time-

dependent confounders, and fracture outcome. Corresponding descriptive statistics are also

provided. Thereafter, the exposure models and the combined weighting function are adapted

from Section 2.3. Subsequently, outcome models for each dose level and cumulative dose are

fitted on the weighted population where time-dependent confounders are removed. We also

generate the potential fracture hazard of always treated under each dose level.

4.1 Study design and patient cohort

We leveraged an existing cohort of older adults (66 ≤ age < 100) with respiratory conditions

who were newly initiating chronic oral glucocorticoid (GC) users between January 1, 1998

and September 30, 2014 in Ontario, Canada (Amiche et al., 2018). The cohort was created

using healthcare administrative data housed at ICES and cohort entry date t0 was the date

of first chronic oral GC claim. Patients were excluded previously before our cohort creation,

if they have resided in a long-term-care facility at cohort entry or had co-morbidities (Pagets

disease, osteomalacia, chronic renal disease, organ transplant, or malignancy other than skin),

during the one-year look-back before cohort entry, see Appendix Figure A.1. We define t1

as the start of follow-up date for each patient after the patient satisfies the chronic user

criteria. Baseline risk factors were collected within one year prior to their t1, except diabetes

and previous bisphosphonate (BP) variables had more than one-year look back window, to

allow for more complete documentation of diabetes diagnostic codes or the delayed effect

due to BP could persist in bone after treatment discontinuation. Once a patient satisfied the

chronic user criteria (with ≥ 2 GC prescriptions and a cumulative dose of ≥ 450 mg within

69
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six months after t0), we followed the patient until death, fracture, or one-year administrative

censoring, whichever happened first. Patients with an extreme daily oral GC dose (>100mg)

were censored on the dispensation date. The study design is presented in Figure 4.1.

𝑡!,#$%

01Jan97 01Jan98 31Mar1630Sep14

𝑡!,#&'

𝑡!(

𝑡!)

𝑡!*

𝑡!+ 𝑡++

𝑡+(

𝑡+)

𝑡+*

Follow-up:
Individual specific length
Admin. censor at 365 days

Chronic Criteria:
Individual-specific length
≤ 180 days 

Drug Use
Comorbidities
Previous Fracture

Baseline Covariates: 
365 days 

Exclusion Criteria: 
365 Days 

GC Exposure
Confounders
Fractures

Underlying Health Conditions

𝑡+,#&'

31Mar15
Cohort Accrual

𝑡!, 𝑡+,

≥ 2 Dispenses
≥ 450 mg
Within 𝑡!" + 180 days

Figure 4.1: Study design diagram. t0,min: begin of cohort accrual; t0,max: end of cohort
accrual; t1,max: the latest start of follow-up date possible; t0i and t1i, i = 1...5, are patient
specific index date and start of follow-up date. All patients had their first claim t0 taken place
between t0,min and t0,max, which ranges from January 01, 1998 to September 30, 2014, and
the entire study data range from January 01, 1997 to March 31, 2016.

4.2 Data cleaning and definitions

4.2.1 Baseline covariates

To derive baseline covariates, we considered chronic comorbidities, drug use history, and

previous fracture of each patient one year before the start of follow-up time t1, except past

diabetes diagnosis and past BP use had a longer look-back window of more than one year.

We included age and adjusted for time since t1 in a flexible and non-parametric way, and

stratified the analysis by sex.
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Table 4.1: Male patients characteristics by their initial daily dose categories

Levels (0,5mg] (5,10mg] (10,30mg) [30,50mg) ≥50mg

Sample size 2007 4351 9864 11792 12606

Age (mean (sd)) 76.94 (7.11) 76.36 (6.60) 75.59 (6.51) 74.80 (6.38) 74.40 (6.29)

Fall related drugs use (%) No 513 (25.6) 1241 (28.5) 2881 (29.2) 3474 (29.5) 3662 (29.0)

Yes 1494 (74.4) 3110 (71.5) 6983 (70.8) 8318 (70.5) 8944 (71.0)

Sex hormone (%) No 1981 (98.7) 4283 (98.4) 9740 (98.7) 11652 (98.8) 12454 (98.8)

Yes 26 (1.3) 68 (1.6) 124 (1.3) 140 (1.2) 152 (1.2)

Prev. BP duration (%) 0 Days 1762 (87.8) 3828 (88.0) 8843 (89.6) 10651 (90.3) 11540 (91.5)

0-1 Year 147 (7.3) 324 (7.4) 568 (5.8) 643 (5.5) 520 (4.1)

1-3 Years 61 (3.0) 102 (2.3) 230 (2.3) 276 (2.3) 295 (2.3)

3-5 Years 18 (0.9) 50 (1.1) 122 (1.2) 101 (0.9) 127 (1.0)

≥5 Years 19 (0.9) 47 (1.1) 101 (1.0) 121 (1.0) 124 (1.0)

Inhale GC (%) No 1058 (52.7) 2340 (53.8) 4435 (45.0) 4888 (41.5) 5310 (42.1)

Yes 949 (47.3) 2011 (46.2) 5429 (55.0) 6904 (58.5) 7296 (57.9)

Bronchodilators (%) No 790 (39.4) 1852 (42.6) 3326 (33.7) 3424 (29.0) 3589 (28.5)

Yes 1217 (60.6) 2499 (57.4) 6538 (66.3) 8368 (71.0) 9017 (71.5)

Thiazide (%) No 1219 (60.7) 2878 (66.1) 6767 (68.6) 8275 (70.2) 9061 (71.9)

Yes 788 (39.3) 1473 (33.9) 3097 (31.4) 3517 (29.8) 3545 (28.1)

Arthritis (%) No 1599 (79.7) 3530 (81.1) 8590 (87.1) 10794 (91.5) 11761 (93.3)

Yes 408 (20.3) 821 (18.9) 1274 (12.9) 998 (8.5) 845 (6.7)

Fall related conditions (%) No 1248 (62.2) 2864 (65.8) 6595 (66.9) 8201 (69.5) 9026 (71.6)

Yes 759 (37.8) 1487 (34.2) 3269 (33.1) 3591 (30.5) 3580 (28.4)

Emergency or No 626 (31.2) 1288 (29.6) 2627 (26.6) 3145 (26.7) 2918 (23.1)

Hospitalization (%) Yes 1381 (68.8) 3063 (70.4) 7237 (73.4) 8647 (73.3) 9688 (76.9)

Diabetes (%) No 1480 (73.7) 3293 (75.7) 7499 (76.0) 8978 (76.1) 9319 (73.9)

Yes 527 (26.3) 1058 (24.3) 2365 (24.0) 2814 (23.9) 3287 (26.1)

Previous fracture (%) No 1961 (97.7) 4284 (98.5) 9731 (98.7) 11645 (98.8) 12449 (98.8)

Yes 46 (2.3) 67 (1.5) 133 (1.3) 147 (1.2) 157 (1.2)

Fracture (%) No 1960 (97.7) 4248 (97.6) 9641 (97.7) 11577 (98.2) 12390 (98.3)

Yes 47 (2.3) 103 (2.4) 223 (2.3) 215 (1.8) 216 (1.7)

Previous raloxifene or calcitonin, denosumab, and anti-sex hormone are excluded due to small counts.

There were nine baseline drug use history variables selected into our model. We grouped

psychiatric drugs, Parkinsons disease drugs, Alzheimers disease drugs, hypertension drugs,

benzodiazepines and antiepileptics as a falls related drug use binary variable. We grouped

estrogen and androgen drugs as a sexual hormone indicator variable, and other anti-estrogenic

and anti-androgenic therapies as a hormone antagonists and related agents indicator variable.

We also included the total days treated with ALD equivalent BP previous as a continuous

variable (primarily categorized as 0 days, < 365 days, 1 − 3 years, 3 − 5 years, and > 5 years).

We grouped previous raloxifene and calcitonin as an other OP binary indicator. Because

denosumab is a second line of OP therapy drug, we derived a baseline denosumab variable.

We included previous use of other respiratory medicines, such as inhaled GC indicator and

bronchodilators indicator. We also include thiazide diuretics indicator because it is associated

with increase in bone mineral density (Lim et al., 2005).
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There were four chronic comorbidity variables selected into our model. We grouped all

inflammatory arthritis subtypes - rheumatoid arthritis, polymyalgia, systemic lupus erythe-

matosus, gouty arthritis or other rheumatic disease - as an arthritis condition binary vari-

able. We grouped all falls related conditions into a binary variable, including comorbidities of

dementia and Alzheimers disease, stroke, cardiovascular conditions, psychiatric disease and

syncope orthostatic hypotension. We coded hospitalizations or visits to emergency during

baseline period as a healthcare use binary variable. We include the diabetes binary variable

for whether there is a diagnosis of diabetes from the Ontario Diabetes Dataset (ODD) prior

to the follow-up date.

Table 4.2: Female patients characteristics by their initial daily dose categories

Levels (0,5mg] (5,10mg] (10,30mg) [30,50mg) ≥50mg

Sample size 2876 5141 11986 13223 12996

Age (mean (sd)) 77.50 (7.37) 76.33 (6.93) 75.56 (6.82) 74.66 (6.66) 74.14 (6.51)

Fall related drugs use (%) No 619 (21.5) 1113 (21.6) 2871 (24.0) 3183 (24.1) 3230 (24.9)

Yes 2257 (78.5) 4028 (78.4) 9115 (76.0) 10040 (75.9) 9766 (75.1)

Sex hormone (%) No 2623 (91.2) 4648 (90.4) 10759 (89.8) 11947 (90.4) 11903 (91.6)

Yes 253 (8.8) 493 (9.6) 1227 (10.2) 1276 (9.6) 1093 (8.4)

Anti-sex hormone (%) No 2852 (99.2) 5080 (98.8) 11867 (99.0) 13110 (99.1) 12844 (98.8)

Yes 24 (0.8) 61 (1.2) 119 (1.0) 113 (0.9) 152 (1.2)

Prev. BP duration (%) 0 Days 1712 (59.5) 3151 (61.3) 7723 (64.4) 8518 (64.4) 8653 (66.6)

0-1 Year 435 (15.1) 842 (16.4) 1629 (13.6) 1629 (12.3) 1386 (10.7)

1-3 Years 331 (11.5) 456 (8.9) 1089 (9.1) 1301 (9.8) 1222 (9.4)

3-5 Years 151 (5.3) 304 (5.9) 678 (5.7) 791 (6.0) 686 (5.3)

≥5 Years 247 (8.6) 388 (7.5) 867 (7.2) 984 (7.4) 1049 (8.1)

Prev. Raloxifene No 2848 (99.0) 5106 (99.3) 11909 (99.4) 13139 (99.4) 12919 (99.4)

or Calcitonin (%) Yes 28 (1.0) 35 (0.7) 77 (0.6) 84 (0.6) 77 (0.6)

Prev. Denosumab (%) No 2870 (99.8) 5135 (99.9) 11968 (99.8) 13200 (99.8) 12967 (99.8)

Yes 6 (0.2) 6 (0.1) 18 (0.2) 23 (0.2) 29 (0.2)

Inhale GC (%) No 1559 (54.2) 2772 (53.9) 5505 (45.9) 5311 (40.2) 5161 (39.7)

Yes 1317 (45.8) 2369 (46.1) 6481 (54.1) 7912 (59.8) 7835 (60.3)

Bronchodilators (%) No 1338 (46.5) 2411 (46.9) 4543 (37.9) 4280 (32.4) 3849 (29.6)

Yes 1538 (53.5) 2730 (53.1) 7443 (62.1) 8943 (67.6) 9147 (70.4)

Thiazide (%) No 1654 (57.5) 3141 (61.1) 7516 (62.7) 8635 (65.3) 8636 (66.5)

Yes 1222 (42.5) 2000 (38.9) 4470 (37.3) 4588 (34.7) 4360 (33.5)

Arthritis (%) No 2028 (70.5) 3847 (74.8) 10008 (83.5) 11777 (89.1) 11974 (92.1)

Yes 848 (29.5) 1294 (25.2) 1978 (16.5) 1446 (10.9) 1022 (7.9)

Fall related conditions (%) No 1859 (64.6) 3402 (66.2) 8241 (68.8) 9301 (70.3) 9517 (73.2)

Yes 1017 (35.4) 1739 (33.8) 3745 (31.2) 3922 (29.7) 3479 (26.8)

Emergency or No 931 (32.4) 1659 (32.3) 3454 (28.8) 3644 (27.6) 3175 (24.4)

Hospitalization (%) Yes 1945 (67.6) 3482 (67.7) 8532 (71.2) 9579 (72.4) 9821 (75.6)

Diabetes (%) No 2271 (79.0) 3991 (77.6) 9430 (78.7) 10500 (79.4) 10163 (78.2)

Yes 605 (21.0) 1150 (22.4) 2556 (21.3) 2723 (20.6) 2833 (21.8)

Previous fracture (%) No 2765 (96.1) 4984 (96.9) 11647 (97.2) 12865 (97.3) 12703 (97.7)

Yes 111 (3.9) 157 (3.1) 339 (2.8) 358 (2.7) 293 (2.3)

Fracture (%) No 2741 (95.3) 4892 (95.2) 11488 (95.8) 12737 (96.3) 12529 (96.4)

Yes 135 (4.7) 249 (4.8) 498 (4.2) 486 (3.7) 467 (3.6)
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We grouped all fracture subtypes - hip, vertebral, radius, humerus - as a previous fracture

binary variable. The patient characteristic tables for male and female patients are shown in

Table 4.1 and Table 4.2, respectively.

During the one year follow-up period, we had nearly equal number of male (46.7%) and

female (53.2%) patients in our final cohort. We see a higher fracture incidence rate among

female (4%) than male (2%). There are several consistent patterns from both characteristic

tables. High dose patients have a younger mean age at the start of follow-up t1 than that

of the low dose patients. Across the columns of both tables, while the daily dose levels

increase from low to high, we see a decreasing trend in percentages for arthritis, fall related

conditions, and previous fracture. An interpretation for arthritis condition, for example, is

that less proportion of high initial GC daily dose patients had arthritis condition in the year

before t1, compared to the proportions in the lower initial GC daily dose groups. On the other

hand, the percentages of had visited an emergency department or had been hospitalized, or

had used inhale GC during baseline period are positively correlated with the initial dose level.

For female patients only, the percentage of previous fall related drugs use tends to decrease

as the initial daily dose level rises.

4.2.2 GC Exposure

For each GC dispensation of a patient, due to the various pharmacokinetics of each GC

subtype, we converted different GC strength into prednisone equivalent strength Table 4.3

and multiplied prednisone equivalent strength by the quantity dispensed to get the total dose

of one dispensation. Due to lack of data on patient adherence, we then assumed patients

have full adherence so that days-supply is an accurate measurement of treatment duration.

Therefore, we inferred the average daily dose from a patients one prescription by dividing the

total dose (strength × quantity) in prednisone equivalence with days-supplied.

In order to determine a reasonable average daily dose for our cohort, we first pulled

Canadian Thoracic Society (CTS) guidelines on steroid treatment for asthma and Chronic

Obstructive Pulmonary Disease (COPD). As indicated in Table 4.4, the guideline on daily

dose and duration of prednisone treatment changes over the years for acute exacerbation

for both indications. In addition, both asthma and COPD guidelines note that the actual

dose and duration should be individualized based on previous or current response. There

are also some differences in guidelines for asthma and COPD. While the COPD guidelines

do not suggest long-term treatment and highlight that there is only evidence for short-term

GC treatment benefits within 30 days after exacerbation, long-term oral GC is required for

difficult to control asthma but with osteoporosis prevention being addressed (Lougheed et al.,
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2010; Odonnell et al., 2007). Based on these guidelines, we can primarily conclude that the

common GC daily dose for respiratory disease exacerbation treatment is 25-60mg for 7-14

days as a single prescription, but the exact GC daily dose and duration should be individualized

in our data analysis. However, after checking the distribution of our data (Appendix Figure

A.2 and Appendix Figure A.3), we confirmed that there was no consistent treatment daily

dose, or duration, or an obvious tapering regime among our cohort, so we decided to use the

individualized calculation of average daily dose.

Table 4.3: GC subtypes conversion table (Album, 2014; Edsbacker and Andersson, 2004)

Drugs 5mg Prednisone Equivalent Conversion Factor

Budesonide 1.125 4.44

Cortisone 25 0.20

Dexamethasone 0.75 6.67

Hydrocortisone 20 0.25

Methylprednisone 4 1.25

Prednisolone 5 1

Prednisone 5 1

Triamcinolone 4 1.25

Table 4.4: Canadian Thoracic Society guidelines on prednisone equivalent
treatment on asthma and COPD for acute exacerbation (Lougheed et al., 2010, 2012;

Odonnell et al., 2007, 2008)

Asthma 2010 2012

40-60 mg per day for 7 to 14 days. 30-50 mg per day for at least 5 days.

COPD 2007 2008

30-40 mg per day for 10-14 days. 25-50 mg per day for 7-14 days.

Another challenging point was the overlapping of two dispensation duration dates. Treat-

ment episode construction is one of the four common pharmacoepidemiological problems

(Pazzagli et al., 2018). In reality, patients may collect new medications before finishing all

pills from the previous visit, due to personal reasons that might make them have to resched-

ule the next visit, and thus introducing overlaps in the administration data record (Pazzagli

et al., 2018). The different methods used to construct the treatment episode might lead

to various estimates on drug efficacy and safety. Current methods suggested by Pazzagli
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et al. (2018) on dealing with overlaps are 1) adding the overlap days to the end of the next

dispensation, which prolongs the overall duration of treatment or 2) ignoring the overlap by

assuming shorter duration of the previous dispensation, which might affect the drug effect

outcome estimation. We define our treatment episode for GC using a combination of these

approaches based on pharmacological and clinical considerations.

Some patients had two dispensations on the same date, and the smaller dosage could

be a tapering treatment after the major treatment. We combine these two dispensations as

one by appending the smaller daily dose dispensation after the major prescription ended, and

calculate the daily dose as the sum of total dose divided by sum of total days supplied. If this

combined dispensation has a days-supply exceeds the maximum allowed value of 100, we cut

off at 100 days and truncate the total dose accordingly.

In order to correct the overlapping days from different dispensations, we use the preliminary

evidence from Appendix 4. to make an assumption that if a patient gets the next dispensation

within 30 days earlier than expected, then we would push the next dispensation forward until

the previous dispensation is finished and start the second treatment later. All subsequent

dispensations would be pushed forward accordingly. On the other hand, we assumed that if a

patient gets the next dispensation more than 30 days earlier, the patient might need to renew

a dispensation, so we truncate the current days-supply and switch to the new dispensation.

After the data cleaning stated above, 97.5% of the daily dose distribution of all dispensa-

tions in our data Appendix Figure A.2 was within 100mg, which incorporates the suggested

daily dose provided by CTS Table 4.4. We then censored the patients who ever had > 100mg

extreme daily dose in their oral GC dispensations at that extreme dispensation date. The

resulting new distribution of daily dose from all dispensations is shown in Appendix Figure

A.5.

We determined the start of follow-up date using the criteria of ≥ 2 oral GC dispensations

and ≥ 450mg cumulative dose. If a patient reached 450mg at the first dispense, then we

start the follow-up at the second dispense date; if a patient did not reach 450mg at the first

dispense, then from the second dispense on, we obtain the cumulative dose by summing total

dose of each dispense of a patient, until the date of a dispense that the cumulative dose

reached 450mg. According to Appendix Figure A.6 < 1% patients have t1 beyond one and

half years of t0, we exclude patients with extremely late follow-up dates to ensure a more

homogeneous study cohort. Our study follow-up length was determined to be one year with

effective GC treatment length consideration (Amiche et al., 2016, 2018; De Vries et al., 2007;

Steinbuch et al., 2004), so we calculated the administrative censoring date as 365 days after

the start of follow-up date. We excluded patients who have no more GC exposure after the

start of follow-up date.
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4.2.3 Fracture Outcome

Our fracture data are pulled from three databases - Ontario Health Insurance Plan (OHIP),

Discharge Abstract Database (DAD) and National Ambulatory Care Reporting System (NACRS).

OHIP is for outpatient records, DAD contains hospitalization records, and NACRS documents

visits to emergency department (ICES, 2017, 2020a,b). DAD and NACRS contain ICD-9 and

ICD-10 diagnosis codes listed in Appendix Table A.1 that we used to code our fracture vari-

able. The fracture outcome variable is coded if any of the fracture subtypes - hip, vertebral,

radius, or humerus happened during the follow-up.

A washout period is the length of days between recurrent fracture claims (Folkestad et al.,

2017). If a patient has two records of the same fracture type within a washout period, we

ruled out the second record as a physician check-up for the first fracture instead of a unique

second fracture. Previous literature has shown that different definitions of a fracture event

might lead to inconsistent estimates in osteoporosis administrative data research (ODonnell

et al., 2013). Therefore, we explored the length of different washout periods to see if there

was a significant reduction in number of outcomes identified. According to Appendix Table

A.4, the length of washout period (0 day, 90 days, and 120 days) does not affect the case

numbers of hip fracture, because it is unlikely to have recurrent events for hip fracture, and

thus we did not use a washout period for our definition of hip fracture. On the other hand,

for vertebral, radius or ulna, and humerus fractures, there was a small decrease in number

of outcomes identified when using a 120 day washout period compared to a 90 day washout

period. Our data and literature reviews suggest that a 90 day washout period would be

sufficient (Lix et al., 2012; ODonnell et al., 2013), so we used a 90-day washout period for

defining vertebral, radius, or humerus fracture. The outcome of interest is the first fracture

of any fracture subtype. We removed patients who died before their start of follow-up date

and censored at death time for patients who died before a fracture event, which might due to

data entry error. With the above data cleaning steps from GC exposure and fracture outcome

presented in Figure 4.2, we finalized our study cohort.

In our study, patients who are non-administratively censored can experience either death or

fracture. Due to death being a competing risk for our event of interest fracture, the fracture

hazards are cause-specific hazards. As descriptive analyses show in Figure 4.3, the distribution

of density curves are similar between female and male for either death or fracture subgroup.

The peak of death time is around the 30th day of the follow-up period. The impact of GC on

fracture also appears to manifest early during the one-year follow-up (female at around 30th

day and male around 80th day).
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New eligible chronic oral glucocorticoid users

N = 191,702

January 1998 - Septermber 2014

Exposure cohort with respiratory conditions

N = 92,067

Exposure cohort after cleaning dispensations

N = 86,996

Final exposure cohort after cleaning outcome

N = 86,842

Remove patients without respiratory condition at t0

N = 99,612

Remove patients aged 100 or more at t1

N = 23

Censor1at extreme daily dose > 100mg

N = 4,224

Remove patient with only 1 dispensation

N = 559

Remove patients have cumulative dose < 450 mg

or have no more exposure after t1

N = 56

Remove patients have t1 > t0 + 180 days

N = 232

Removed patients, if death on or before t1:

N = 154

Figure 4.2: Study flow diagram. t0 is the index date of first dispensation and t1 is the start
of follow-up date after a patient satisfy the chronic user criteria; both t0 and t1 are subject-
specific. Among the final cohort, a total of 2,639 (3.0%) patients experienced an osteoporosis
fracture; 11,858 (13.7%) patients died without a fracture; 72,345 patients reached the end
of follow-up and experienced an administrative censoring. In terms of TD confounder, 19,331
patients (666 had a fracture) ever had an BP prescription and 2,069 patients (68 had a
fracture) ever entered long-term care during the one year follow-up.

1All patients with an extreme daily dose had it at the first dispensation, so censoring is deletion.
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Figure 4.3: Event time density comparison by sex for non-administratively censored patients.

After determining each patient′s start and end of follow-up dates, we can visualize their

exposure pattern with different daily dose categories and outcome types. Due to ICES privacy

protection guidelines, we simulated data for exposure and outcome of five patients at the

individual level for illustration Figure 4.4.
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Figure 4.4: Simulated patient GC exposure and outcome during 1 year follow-up. We put the
start of follow-up date t1 of the 5 patients in Figure 4.1 onto the same 0-365 days scale.

With the aim of controlling for data dimension while maintaining sufficient clinical infor-

mation, we discretize our exposure data set into long-format with an interval of 5 days, which

corresponds to the first peak of our treatment duration distribution from all dispensations

Appendix Figure A.3. In addition, the density comparisons for dose-specific treatment du-

ration is presented in Figure 4.5, from which we validated that high dose groups have short
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days-supplied values, while low dose groups are for maintenance treatments that can have

longer therapy cycles.
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Figure 4.5: Days-supplied value for different dosage categories.
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Figure 4.6: The percentages of patients prescribed with each daily dose category in the riskset
over time.

During the study length of 365 days, a patient can have a maximum of 73 time intervals k
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if the follow-up is terminated by administrative censoring. With the long-format GC exposure

data set, a descriptive visualization of GC dispensation patterns over the follow-up period is

presented in Figure 4.6. The gray line represents the percentage of unexposed patients in

our cohort, which starts from zero at t1, reached a plateau at day 105, and eventually landed

around 80% for those reached the end of the study period. On the other hand, high daily

dose (> 10mg) prescriptions are nearly 20% more common than the low daily dose (≤ 10mg)

prescriptions at t1, and this high-dose dominance pattern gradually faded beyond the first

three months.

4.2.4 TD Confounders

Standard methods, such as Cox outcome regression, cannot deal with time-dependent con-

founders in the presence of a treatment-confounder feedback loop, in which case MSMs are

needed. Our time-dependent confounders are long term care during the follow-up, and OP

drugs, which can be divided into classes of BP and other OP drugs.

BPs can be categorized into two subtypes: nitrogen-containing and non-nitrogen contain-

ing BPs (Ganesan et al., 2020). Nitrogen-containing BPs include alendronate, risedronate,

and zoledronic acid; and non-nitrogen containing bisphosphonates include etidronate (Gane-

san et al., 2020). A common method to compare drug utilization patterns across different

regions or countries is to consider the World Health Organization (WHO) Defined Daily Dose

(DDD). Appendix Table A.2 provides a summary of WHO DDD in milligrams of different

types of BP medications prescribed in this study.

However, WHO DDD fails to consider the condition under treatment and includes only a

single DDD for a medication, regardless of indication or strength. For example, etidronate is

prescribed as a daily dose of 200 mg to treat Pagets disease, yet 400mg/day for 14 days covers

therapy for 90 days, and thus effective daily treatment dose is (400×14)/90 = 62mg/day for

osteoporosis (Burden et al., 2013; Merlotti et al., 2009). This is considered equivalent therapy

to alendronate 10mg daily, or risedronate 5mg daily (Burden et al., 2013; WHO, 2019b,e).

We thus used clinical guidelines for therapy to treat osteoporosis and prevent fractures to de-

fine alendronate equivalent daily dose of bisphosphonates to enable modeling bisphosphonate

therapy as a single exposure. Although some data suggest that risedronate reduces fracture

risk earlier than alendronate, while alendronate benefits persist in bone longer after discontin-

uation than risedronate, and that the nitrogen-containing bisphosphonates are more effective

in reducing fracture risk than the non-nitrogen-containing bisphosphonate etidronate, the ev-

idence in the real world is unclear (Cadarette et al., 2008, 2013), particularly in the context of

GC-induced osteoporosis (Amiche et al., 2018). Therefore for the purposes of this study, an
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alendronate-equivalent dose was calculated consider exposure to all types of bisphosphonates.

Table 4.5: 10mg daily alendronate equivalent bisphosphonates (Burden et al., 2013)

Drug Names Dose
Daily Alendronate

Equivalent
Quantity

Days Supply

Imputation

Alendronate 5mg/day 5mg Q Q

Alendronate
10mg/day

70mg/week
10mg Q

Q

Q × 7

Risedronate

5mg/day

35mg/week

150mg/month

10mg Q

Q

Q × 7

Q × 30

Etidronate
400mg/day for 14 days

(then 500mg calcium for 76 days)
10mg Q* Q* × 90

Zoledronic Acid 1 infusion of 5mg/100ml in a year 10mg Q* Q* × 365

* Q=1 for etidronate and zoledronic acid.

Similarly, we need to harmonize the difference between WHO suggested dosage and the

actual dosage we have. All our documented prescriptions for zoledronic acid are 5mg/100ml

per infusion and lasts 365 days, so we adopted this value, instead of using the WHO sug-

gested 4mg/100ml that includes common cancer dosage (Burden et al., 2013). Due to the

common days-supply entry error in Ontario osteoporosis administrative data, we imputed the

days-supply value as indicated in Table 4.5 and made BP prescriptions strictly to 10mg alen-

dronate equivalent (Burden et al., 2013). After cleaning alendronate equivalent BPs with the

above derived guidelines, we further cleaned the overlapping exposure windows of consecutive

dispensations of a patient, with a small variation of the strategy we used when cleaning GC

exposure overlaps due to different pharmacokinetics between GC and BP. If two dispensa-

tions are made on the same date, we deleted the lower dose dispensation. To make sure

there was no overlap between dispensations, if a patient received the next dispensation of

the same molecule, then we shifted all subsequent dispensations until the patient finished

the current days-supply value; if a patient changes treatment molecule (e.g. alendronate to

risedronate, or alendronate to denosumab), then we truncate the current days-supply to the

new dispensation date (Pazzagli et al., 2018).

From our primary summary statistics, female has more prevalent TD confounders compare

to male - 31.3% of female in our GC new-users cohort had taken BP therapy, compare to

only 12.0% in male; the prevalence of LTC initiation is roughly the same for female (2.6%)

and male (2.1%).
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4.3 Models for GC usage patterns

A baseline covariate is considered a confounder if it impacts both the dosage assignment

and the outcome. Variables that are highly associated with the exposure but do not affect

the time-to-event outcome should be removed from the analysis. Therefore, univariate pre-

screening is conducted for each baseline variable with the initial dose assignment using a

chi-squared test and the time-to-event outcome using a log-rank test. Analyses are stratified

by sex, because we hypothesize that different sex have different hormone treatment. Among

our selected baseline covariates, anti-sex hormone therapies, bronchodilators, and previous

denosumab use are not significantly (p > 0.05) correlated with the outcome for both sex

and thus are excluded from the analysis. For males specifically, we further excluded the

insignificant variable of diabetes and also the previous raloxifene or calcitonin use due to zero

or small counts that would lead to positivity assumption violation when fitting the model.

Afterwards, the selected baseline covariates are integrated into our long-format exposure

data set which was discretized with five-day intervals. For any continuous variable in our

exposure and outcome data sets, we center it by subtracting the mean before fitting the

model. The conditional GC exposure models are adapted from the models for Di0, Vik, and

Dik introduced in Section 2.3, with the modification that η1Zi =
∑ι=q

ι=1 η1ιZiι includes the

q selected baseline variables and η2Xik =
∑r=2

r=1 η2rXir,k stands for long term care (LTC)

initiation, where we lag one interval for LTC confounder labeling in discrete-time setting, and

calculate BP cumulative days up to time k − 1. Instead of fitting the visiting model with

a linear time effect k, we replace η5k and φ5k with a quadratic spline basis transformation∑
p η5pbpk and

∑
p φ5pbpk, where p = 1, 2 is the spline degree indicator.

The marginal versions of the three exposure models all contain the baseline covariates,

as we will adjust the baseline covariates through the outcome regression model, and we only

adjust time-dependent confounders with IPTW. Therefore, the marginal Di0 model is the

same as its conditional model, while the marginal version of our multiple visit MPP Vik model

(Eq. 2.27) and Dik model (Eq. 2.30) are specified excluding the time-dependent covariates∑r=2
r=1 η2rXir,k. Our fitted conditional initial dose Di0 model has the form:

logit[P (Di0 ≤ d0 | Ω;φ)] = log

[
P (Di0 ≤ d0 | Ω;φ)

1− P (Di0 ≤ d0 | Ω;φ)

]
= ξ0d0 +

ι=q∑
ι=1

ξ1ιZiι, (4.1)

where the coefficient estimates ξ̂ = {ξ̂0d0 , ξ̂1ι} are listed in Table 4.6.
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Table 4.6: Parameter estimates for the initial dosage assignment D0 model - Male

Covariate Notation Coef.Estimate Std.Error OR 95% CI p

Age Zi1 -0.03 0.00 0.97 (0.97, 0.97) <0.001 *

Fall related drugs use Zi2 0.12 0.02 1.13 (1.08, 1.18) <0.001 *

Sex hormone Zi3 -0.11 0.08 0.89 (0.76, 1.05) 0.165

Prev. BP duration 0-1 year (vs. 0 days) Zi4 -0.20 0.04 0.82 (0.76, 0.88) <0.001 *

Prev. BP duration 1-3 years (vs. 0 days) Zi5 -0.05 0.06 0.95 (0.85, 1.07) 0.383

Prev. BP duration 3-5 years (vs. 0 days) Zi6 -0.06 0.09 0.95 (0.79, 1.13) 0.537

Prev. BP duration ≥ 5 year (vs. 0 days) Zi7 0.07 0.09 1.07 (0.90, 1.28) 0.432

Inhale GC Zi8 0.16 0.02 1.18 (1.14, 1.22) <0.001 *

Thiazide Zi9 -0.19 0.02 0.82 (0.79, 0.86) <0.001 *

Arthritis Zi10 -0.72 0.03 0.49 (0.46, 0.52) <0.001 *

Fall related conditions Zi11 -0.21 0.02 0.81 (0.78, 0.84) <0.001 *

Emergency or hospitalization Zi12 0.30 0.02 1.35 (1.29, 1.40) <0.001 *

Prev. fracture Zi13 -0.18 0.08 0.83 (0.71, 0.97) 0.023 *

Intercept d0 ≤ 1 | d0 ≥ 2 ξ01 -2.84 0.03 <0.001 *

Intercept d0 ≤ 2 | d0 ≥ 3 ξ02 -1.55 0.03 <0.001 *

Intercept d0 ≤ 3 | d0 ≥ 4 ξ03 0.17 0.02 <0.001 *

Intercept d0 ≤ 4 | d0 ≥ 5 ξ04 1.01 0.03 <0.001 *

The columns corresponds to covariate, notation, coefficient estimates, standard error of coefficient

estimates, odds ratio (OR) estimates, 95% confidence interval of OR, and p-value.

Alternatively, a forest plot can provide an efficient visualization to check whether the con-

fidence interval (CI) bands cross the threshold value of 1 for odds ratios or hazard ratios.

Several baseline covariates are predictive for initial dose prescription for males. Some factors

increase the odds of lower initial dose prescription, such as fall-related drug use, inhale GC

use, or visit an emergency unit or hospitalization. In comparison, other factors decrease the

odds of lower initial dose prescriptions, such as less than one year of previous BP treatment,

thiazide, arthritis, fall-related conditions, and a previous fracture. As an interpretation ex-

ample, patients being previously hospitalized or have visited an emergency unit at baseline

increase the odds of receiving a low initial dose by 1.35 folds. On the other hand, having

arthritis at baseline would likely decrease the odds of having a low initial dose compare to

those who do not have arthritis by 51% (i.e., patients with baseline arthritis condition tend to

have higher initial GC dose). The interpretations for these predictive variables stay the same

no matter which initial dose caegories are being compared, e.g. d ≤ 1 vs. d ≥ 1 or d ≤ 2 vs.

d ≥ 2, etc., due to the proportional odds assumption.

Also, the predictive factors for female patients’ initial dose assignment do not differ drasti-

cally from those for males. According to Appendix Figure B.1, the effect of previous long term

(≥ 5 years) BP treatment and baseline sex hormone are additionally predictive for female.

Female patients with previous long term BP increase the odds of getting a low initial GC dose

by 1.20 folds, while those treated with sex hormone decrease the odds of getting a low dose
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by 13%.

The Di0 data set used for fitting the initial dose model has one row per patient, which

has a size of 40, 620 for males and 46, 222 for females. On the other hand, the exposure data

sets for subsequent multiple visit MPP models are in long-format, so we need to use robust

sandwich standard error due to data replications and unobserved heterogeneity. We apply the

R function infjack.glm for our visiting model, and we use the R package sandwich for the

two multiordinal dosage models to derive the corresponding robust standard error.

Subsequent Visiting Model − Male

Covariate

Intercept

Age

Fall related drugs use

Sex hormone

Prev. BP duration 0−1 year (vs. 0 days)

Prev. BP duration 1−3 years (vs. 0 days)

Prev. BP duration 3−5 years (vs. 0 days)

Prev. BP duration >= 5 year (vs. 0 days)

Inhale GC

Thiazide

Arthritis

Fall related conditions

Emergency or hospitalization

Prev. fracture

LTC

Cumulative BP days

Prev. dose d = 0 (vs. d = 1)

Prev. dose d = 2 (vs. d = 1)

Prev. dose d = 3 (vs. d = 1)

Prev. dose d = 4 (vs. d = 1)

Prev. dose d = 5 (vs. d = 1)

Cumulative GC dose

Time basis 1

Time basis 2

p−value

<0.001 *

<0.001 *

0.857  

0.007 *

<0.001 *

0.060  

0.996  

<0.001 *

<0.001 *

<0.001 *

<0.001 *

<0.001 *

<0.001 *

<0.001 *

<0.001 *

<0.001 *

<0.001 *

0.161  

<0.001 *

<0.001 *

<0.001 *

<0.001 *

<0.001 *

<0.001 *

HR

0.13

1.01

1.00

0.94

0.91

1.03

1.00

1.14

1.14

1.08

0.97

1.06

1.10

1.28

2.84

1.00

0.18

0.99

1.40

2.25

4.91

1.00

1.28

0.80

0.13 1.33 2.52 3.71 4.91

Figure 4.7: The forest plot of HR for the subsequent visit model Vik for male.

The forest plot for conditional subsequent visiting models for male Figure 4.7 shows that
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being in LTC at the previous five-day time point k − 1 increases the odds of getting a GC

dispensation at the current time-point k by 2.84 folds, and the effect of time-dependent BP

treatment appears insignificant at predicting subsequent dispensation initiation. Furthermore,

patients previously unexposed tend to stay unexposed, while patients previously on high dose

group (d ≥ 3) tend to have a new dispensation at the current time point. Besides, baseline

covariates such as age, previous long term BP treatment, inhale GC, thiazide, falls-related

conditions, emergency or hospitalization, and the previous fracture shows an increase in odds

to get a subsequent visit/dispensation, while sex hormone, previous short term BP therapy and

arthritis decrease the odds of getting a visit. For female patients, Appendix Figure B.2 shows

similar results, except that having three to five years of previous BP therapy has slightly more

significance in predicting a subsequent visit than having more than five years of previous BP

therapy. Having diabetes at baseline also weakly increases the odds of receiving a subsequent

dispensation.

We then present the subsequent Dik models for our MPP. Among male patients who are

unexposed at the previous time-point Figure 4.8, patients with baseline fall-related drug use,

inhale GC use, emergency or hospitalization, and more than one year previous BP therapy

increase the odds of receiving low dose GC treatment the current time k when there is a visit.

All other time-fixed or time-dependent covariates increase the odds of receiving a higher

dose, among which the first-degree time effect spline basis, arthritis, and LTC are the most

significant.

Secondly, for those who are previous exposed with some dose d 6= 0 Figure 4.9, baseline

inhale GC use, time effect spline bases, and on a high dose (d ≥ 3) at time k − 1 increase

the odds of getting a high dose at k, while all other factors, except insignificant arthritis and

cumulative BP days, increase the odds of receiving lower dose at k. We also found the higher

the previous dose, the less likely a patient transfers to a low dose category at k, but those

who are on maintenance dose tend to stay in low dose.

Combining the results from the three subsequent exposure models, we notice an inter-

esting phenomenon for the time-dependent LTC status: patients in LTC tend to get GC

dispensations; if they were not taking GC at k − 1, then they tend to receive a higher dose

GC dispensation at k; however, if they are already taking GC at k− 1, then they have higher

odds of receiving a lower dose.

Similar patterns can be observed from female Dik models in Appendix Figure B.3 and

Appendix Figure B.4.
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Subsequent Dosage Model For Previous Dose Is 0 − Male

Covariate

Age

Fall related drugs use

Sex hormone

Prev. BP duration 0−1 year (vs. 0 days)

Prev. BP duration 1−3 years (vs. 0 days)

Prev. BP duration 3−5 years (vs. 0 days)

Prev. BP duration >= 5 year (vs. 0 days)

Inhale GC

Thiazide

Arthritis

Fall related conditions

Emergency or hospitalization

Prev. fracture

LTC

Cumulative BP days

Cumulative GC dose

Time basis 1

Time basis 2

Intercept d <= 1 | d >= 2

Intercept d <= 2 | d >= 3

Intercept d <= 3 | d >= 4

Intercept d <= 4 | d >= 5

p−value

<0.001 *

<0.001 *

<0.001 *

<0.001 *

<0.001 *

<0.001 *

<0.001 *

<0.001 *

<0.001 *

<0.001 *

<0.001 *

<0.001 *

<0.001 *

<0.001 *

<0.001 *

<0.001 *

<0.001 *

<0.001 *

<0.001 *

<0.001 *

<0.001 *

<0.001 *

OR

0.96

1.07

0.89

0.84

1.14

1.30

1.42

1.20

0.84

0.51

0.82

1.43

0.99

0.63

1.00

1.00

0.40

0.71

0.40 0.66 0.91 1.17 1.43

Figure 4.8: The forest plot of OR for the subsequent dose model Dik, where at previous dose
Di,k−1, the dose level is unexposed for male.
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Subsequent Dosage Model For Previous Dose Is Not 0 − Male

Covariate

Age

Fall related drugs use

Sex hormone

Prev. BP duration 0−1 year (vs. 0 days)

Prev. BP duration 1−3 years (vs. 0 days)

Prev. BP duration 3−5 years (vs. 0 days)

Prev. BP duration >= 5 year (vs. 0 days)

Inhale GC

Thiazide

Arthritis

Fall related conditions

Emergency or hospitalization

Prev. fracture

LTC

Cumulative BP days

Prev. dose d = 2 (vs. d = 1)

Prev. dose d = 3 (vs. d = 1)

Prev. dose d = 4 (vs. d = 1)

Prev. dose d = 5 (vs. d = 1)

Cumulative GC dose

Time basis 1

Time basis 2

Intercept d <= 0 | d >= 1

Intercept d <= 1 | d >= 2

Intercept d <= 2 | d >= 3

Intercept d <= 3 | d >= 4

Intercept d <= 4 | d >= 5

p−value

<0.001 *

0.018 *

<0.001 *

<0.001 *

<0.001 *

<0.001 *

<0.001 *

<0.001 *

<0.001 *

0.532  

<0.001 *

<0.001 *

<0.001 *

<0.001 *

0.077  

<0.001 *

<0.001 *

<0.001 *

<0.001 *

<0.001 *

<0.001 *

<0.001 *

<0.001 *

<0.001 *

<0.001 *

<0.001 *

<0.001 *

OR

1.02

1.04

1.09

1.11

1.17

1.17

1.16

0.92

1.14

1.01

1.15

1.19

1.23

1.80

1.00

1.07

0.55

0.36

0.25

1.00

0.74

0.34

0.25 0.64 1.02 1.41 1.8

Figure 4.9: The forest plot of OR for the subsequent dose model Dik, where at previous dose
Di,k−1, the dose level is unexposed for male.
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4.4 Combined IPTWs and checking covariate balance

After deriving the IPTWs by predicting the marginal and conditional propensity scores on the

discrete-time exposure data, the weights were accumulated up to the interval previous to the

time point being considered in the outcome model to ensure correct ordering of time-varying

exposure and covariate status. We then obtain the cumulative products of visiting weights

over time. The stabilized weighting function is the ratio between each pair of the marginal

and the conditional models as specified in (Eq. 2.32).

Similar to risk set sampling, some patients with short person-time contribution are not

selected by case-base sampling, so the final number of selected individuals are 38,065 (out of

40,620) and 45,360 (out of 46,222) for male and female, respectively. The outcome data set

is constructed using case-base sampling of size 804 × 200 + 804 = 161,604 rows for male

and 1,835 × 200 + 1835 = 368,835 rows for female. For any time point in the outcome data

set, we calculate the corresponding five-day time interval that it falls into.

Then, we match the combined stabilized weights from the discrete-time exposure data

set over to the sampled time points in the case-base long format continuous-time outcome

data set. We can plot the density distribution of weights for exposure Aik value, and we

also plot the matched weights from each of the exposure models, Di0, Vik and Dik, for di-

agnostic purpose. As shown in Figure 4.10, the top left graph is the overall distribution of

all combined stabilized weights in the outcome data set for male, and it is highly skewed to

the right because of extreme time-dependent Vik weights (bottom left panel). We decide to

truncate at 0.5% and 99.5% on both ends, and the resulting weights are within the range

of approximately (0.6, 2.1) as shown in the top right graph. The weights from Dik are well

centered at 1 with a slight positive skew (bottom right panel). Because the marginal and

conditional models are the same for the initial dose model, the stabilized weights for Di0 are

exactly all at 1. We see similar pattern for female Appendix Figure B.5, except the outliers in

time-dependent visiting weights are much more extreme than those for male, which eventually

result in a wider range of weights (0.6, 3.0) after truncation.

We further investigate the trajectory of the truncated combined stabilized weights over time

Figure 4.11. For both sex, the median of the weights lie on 1 over time, but the variability

of the weights gradually increase, which can be seen from the 90% interval lines. Because

of truncation, the minimum and maximum weights stays the same at later time-points. The

wider range of weights in female might due to higher proportion of female patients ever had

a BP therapy during follow-up as a time-dependent confounder.
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Figure 4.11: Truncated stabilized weights as a function of time for both genders

We then assess the covariate balance with and without weightings between different dosage

groups for each sex. Whether the distributions of a confounder are balanced in different dosage

groups can be assessed by using a t-test for continuous variables or a Chi-squared test for

categorical variables. However, these methods are reliant on sample size, and they may re-

turn falsely significant results in large sample size studies (Lanza et al., 2013). Therefore,

we consider using standardized mean difference (SMD, or Cohen’s d) as a metric for assess-

ing balance (Cohen, 2013). For a binary covariate, SMD is the pair-wise difference in the

treatment group means divided by the pooled standard deviation:

SMD =
X̄a − X̄b√

s2a+s2b
2

(4.2)

For a categorical variable with more than two levels, the Mahalanobis distance is returned

as a generalization of SMD (Yang and Dalton, 2012). A covariate is considered balanced in

different treatment groups if the SMD is less than an effect size value of 0.2 (Cohen, 2013).

For diagnostic purpose only, the marginal model for the initial dose model D′i0 is fitted

differently than that of our Di0 exposure model introduced in the previous section, because

now we are interested in adjusting baseline covariates through weighting. Therefore, we keep

only the intercept for our marginal model, while the conditional model remains the same as

(Eq. 2.31). The implementation of SMD plots before and after weighting are adapted from

Tang et al. (2020), using the packages survey and TableOne in R.
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Figure 4.12: Standardized Mean Difference (SMD) plot at baseline for both genders

In Figure 4.12, most of our unweighted covariates are already well-balanced with a SMD

below the threshold 0.2. After the weighting, we see notable improvement for covariates

age, inhale GC and arthritis in both genders, and thus balance is achieved for all weighted

covariates at the baseline.

We also attempt checking effect of covariate balance using the truncated combined sta-

bilized time-varying weights in Appendix Figure B.6. Previously from Figure 4.3, the first

three months of follow-up appears to be crucial for fracture incidence. Therefore, we split

our case-base outcome model into three sections based on if the sampled time-point falls

in: i) (0,100] days, ii) (100, 183] days, or iii) (183, 365] days. However, the time-varying

weights across these three time points appear to dilute the effect of baseline weighting. In

addition, our time-dependent confounders, LTC and cumulative BP duration, are weak con-

founders due to infrequent onset or prescriptions, so the improvements from weighting are

not obvious. Nevertheless, the balance assessment for time-dependent confounders remains

a methodological challenge, and the technical details require more consideration.

4.5 Models for GC usage-fracture outcome relationship

Consider the simplest models without interaction with time, we maximize the weighted case-

base partial likelihood by fitting one marginal hazard model for dosage level, with a = 1 as

the reference (Ai(t) takes the same value as Dik mapped from discrete-time exposure data,

for t ∈ (5(k − 1), 5k]) (Eq. 4.3) and another marginal hazard model for log-linear effect of
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cumulative dose (Eq. 4.4). We can also consider modelling the effect of cumulative dose

through a flexible quadratic spline with p = 1, 2. (Eq. 4.5).

logψi(t; θ) =
∑
p

θ0p(t) +

ι=q∑
ι=1

θ1ιZiι +
∑

a∈{0,2,...,5}

θ2a1{Ai(t) = a} (4.3)

logψi(t; θ) =
∑
p

θ0p(t) +

ι=q∑
ι=1

θ1ιZiι + θ2cum(ā) (4.4)

logψi(t; θ) =
∑
p

θ0p(t) +

ι=q∑
ι=1

θ1ιZiι +
∑
p

θ2pBasis(cum(ā))p (4.5)

Like the stabilized weights, cumulative dose are first calculated in the discrete-time exposure

data set and then matched over to the sampled time points in the continuous-time outcome

data set. In the exposure data set, we take the median daily dose value of all dispensations

within each dose category, and the resulting daily dose values are 0mg, 5mg, 10mg, 20mg,

34mg and 50mg for d ∈ {0, 1, ..., 5}, respectively. The cumulative dose is calculated by

accumulating number of days exposed (a constant of 5) × the derived median daily dose

value at each interval over a patient’s follow-up period.

Table 4.7: Parameter estimates for the unweighted dose level outcome model - Male

Covariate Notation Coef.Estimate Std.Error HR 95% CI p

Intercept η0 -10.13 0.20 0.00 (0.00, 0.00) <0.001 *

Baseline hazard basis 1 (cont.) θ01 -0.14 0.24 0.87 (0.54, 1.41) 0.578

Baseline hazard basis 2 (cont.) θ02 -0.09 0.13 0.92 (0.72, 1.17) 0.491

Age (cont.) Zi1 0.05 0.01 1.05 (1.04, 1.06) <0.001 *

Fall related drugs use (yes vs. no) Zi2 -0.09 0.09 0.91 (0.76, 1.09) 0.314

Sex hormone (yes vs. no) Zi3 0.69 0.23 1.99 (1.26, 3.15) 0.003 *

Prev. BP duration 0-1 year (vs. 0 days) Zi4 0.05 0.14 1.05 (0.80, 1.40) 0.711

Prev. BP duration 1-3 years (vs. 0 days) Zi5 0.38 0.20 1.46 (0.99, 2.15) 0.055

Prev. BP duration 3-5 years (vs. 0 days) Zi6 0.62 0.25 1.86 (1.14, 3.03) 0.013 *

Prev. BP duration ≥ 5 year (vs. 0 days) Zi7 0.05 0.31 1.05 (0.57, 1.91) 0.882

Inhale GC (yes vs. no) Zi8 -0.13 0.07 0.88 (0.76, 1.01) 0.079

Thiazide (yes vs. no) Zi9 0.19 0.08 1.21 (1.03, 1.43) 0.022 *

Arthritis (yes vs. no) Zi10 0.09 0.11 1.10 (0.89, 1.36) 0.384

Fall related conditions (yes vs. no) Zi11 0.31 0.08 1.36 (1.17, 1.57) <0.001 *

Emergency or hospitalization (yes vs. no) Zi12 0.38 0.09 1.46 (1.22, 1.76) <0.001 *

Prev. fracture (yes vs. no) Zi13 1.58 0.14 4.84 (3.66, 6.39) <0.001 *

Treatment A = 0 (vs. A = 1) 1{Ai(t) = 0} -0.02 0.15 0.98 (0.73, 1.33) 0.908

Treatment A = 2 (vs. A = 1) 1{Ai(t) = 2} -0.04 0.20 0.96 (0.65, 1.42) 0.832

Treatment A = 3 (vs. A = 1) 1{Ai(t) = 3} 0.28 0.18 1.32 (0.92, 1.89) 0.126

Treatment A = 4 (vs. A = 1) 1{Ai(t) = 4} 0.26 0.25 1.30 (0.80, 2.11) 0.284

Treatment A = 5 (vs. A = 1) 1{Ai(t) = 5} -0.02 0.29 0.98 (0.56, 1.72) 0.944
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The marginal hazard models are fitted with and without the weights, in both settings,

adjusting for the baseline covariates. Because our IPTWs only adjust for the weak time-

dependent confounders, the effect of weighting is not apparent. The weighted Table 4.8

and unweighted Table 4.7 model outputs has minimal difference in terms of the coefficient

estimates, which suggest BP and LTC are weak time-dependent confounders. Comparing

across different models, all three models returns similar results, and we demonstrate the

similarities by presenting Table 4.8 with Appendix Table B.1 and Appendix Table B.2. We

also noticed that the cumulative GC dose spline is only significant at the first degree, so a

linear spline basis would be equivalent to directly modeling cumulative dose as a continuous

variable and would be enough to capture the flexibility.

Table 4.8: Parameter estimates for the weighted dose level outcome model - Male

Covariate Notation Coef.Estimate Std.Error HR 95% CI p

Intercept η0 -10.15 0.20 0.00 (0.00, 0.00) <0.001 *

Baseline hazard basis 1 (cont.) θ01 -0.16 0.24 0.85 (0.53, 1.37) 0.498

Baseline hazard basis 2 (cont.) θ02 -0.08 0.12 0.93 (0.73, 1.18) 0.547

Age (cont.) Zi1 0.05 0.01 1.05 (1.04, 1.06) <0.001 *

Fall related drugs use (yes vs. no) Zi2 -0.10 0.09 0.91 (0.76, 1.09) 0.290

Sex hormone (yes vs. no) Zi3 0.75 0.23 2.12 (1.36, 3.31) 0.001 *

Prev. BP duration 0-1 year (vs. 0 days) Zi4 0.07 0.14 1.07 (0.81, 1.42) 0.632

Prev. BP duration 1-3 years (vs. 0 days) Zi5 0.36 0.20 1.43 (0.97, 2.11) 0.069

Prev. BP duration 3-5 years (vs. 0 days) Zi6 0.70 0.24 2.01 (1.25, 3.21) 0.004 *

Prev. BP duration ≥ 5 year (vs. 0 days) Zi7 -0.03 0.31 0.97 (0.52, 1.78) 0.911

Inhale GC (yes vs. no) Zi8 -0.12 0.07 0.89 (0.77, 1.02) 0.090

Thiazide (yes vs. no) Zi9 0.17 0.08 1.19 (1.01, 1.40) 0.038 *

Arthritis (yes vs. no) Zi10 0.11 0.11 1.12 (0.91, 1.38) 0.299

Fall related conditions (yes vs. no) Zi11 0.30 0.07 1.36 (1.17, 1.57) <0.001 *

Emergency or hospitalization (yes vs. no) Zi12 0.38 0.09 1.47 (1.22, 1.76) <0.001 *

Prev. fracture (yes vs. no) Zi13 1.57 0.14 4.79 (3.63, 6.31) <0.001 *

Treatment A = 0 (vs. A = 1) 1{Ai(t) = 0} 0.01 0.15 1.01 (0.75, 1.37) 0.929

Treatment A = 2 (vs. A = 1) 1{Ai(t) = 2} 0.00 0.20 1.00 (0.68, 1.47) 0.995

Treatment A = 3 (vs. A = 1) 1{Ai(t) = 3} 0.28 0.18 1.33 (0.93, 1.90) 0.117

Treatment A = 4 (vs. A = 1) 1{Ai(t) = 4} 0.29 0.25 1.34 (0.83, 2.17) 0.232

Treatment A = 5 (vs. A = 1) 1{Ai(t) = 5} 0.01 0.29 1.01 (0.57, 1.77) 0.985

The columns corresponds to covariate, notation, hazard ratio (HR) estimates, 95% confidence interval, and

p-value. ’cont.’ means continuous variable.

From the model output for male patients Table 4.8, the daily dosage levels (A = 3) and

(A = 4) show high but insignificant impact on fracture for male patients, compared to the

lowest daily dose level (A = 1).

Several differences in estimated cause-specific fracture HRs are observed for female pa-

tients Table 4.9. A daily dosage level of A = 3 or A = 4 significantly increase the cause-

specific fracture hazard for female, in which A = 4 : 30 - 50mg has the highest increase of

1.65 folds.
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Table 4.9: Parameter estimates for the weighted dose level outcome model - Female

Covariate Notation Coef.Estimate Std.Error HR 95% CI p

Intercept η0 -9.52 0.13 0.00 (0.00, 0.00) <0.001 *

Baseline hazard basis 1 (cont.) θ01 -0.02 0.16 0.98 (0.71, 1.34) 0.892

Baseline hazard basis 2 (cont.) θ02 -0.11 0.08 0.90 (0.76, 1.06) 0.197

Age (cont.) Zi1 0.06 0.00 1.06 (1.05, 1.06) <0.001 *

Fall related drugs use (yes vs. no) Zi2 0.08 0.07 1.08 (0.95, 1.23) 0.231

Sex hormone (yes vs. no) Zi3 -0.19 0.09 0.83 (0.69, 0.99) 0.039 *

Prev. BP duration 0-1 year (vs. 0 days) Zi4 0.18 0.07 1.20 (1.05, 1.37) 0.007 *

Prev. BP duration 1-3 years (vs. 0 days) Zi5 0.30 0.07 1.36 (1.17, 1.57) <0.001 *

Prev. BP duration 3-5 years (vs. 0 days) Zi6 0.21 0.09 1.23 (1.03, 1.48) 0.025 *

Prev. BP duration ≥ 5 year (vs. 0 days) Zi7 0.09 0.08 1.10 (0.94, 1.29) 0.251

Inhale GC (yes vs. no) Zi8 0.04 0.05 1.04 (0.95, 1.14) 0.435

Thiazide (yes vs. no) Zi9 0.07 0.05 1.07 (0.97, 1.19) 0.168

Arthritis (yes vs. no) Zi10 0.03 0.07 1.03 (0.91, 1.17) 0.620

Fall related conditions (yes vs. no) Zi11 0.20 0.05 1.23 (1.11, 1.35) <0.001 *

Emergency or hospitalization (yes vs. no) Zi12 0.25 0.06 1.28 (1.15, 1.44) <0.001 *

Prev. fracture (yes vs. no) Zi13 0.95 0.09 2.57 (2.17, 3.05) <0.001 *

Prev. raloxifene or calcitonin (yes vs. no) Zi14 0.13 0.26 1.14 (0.69, 1.88) 0.620

Diabetes (yes vs. no) Zi15 -0.20 0.06 0.82 (0.73, 0.92) 0.001 *

Treatment A = 0 (vs. A = 1) 1{Ai(t) = 0} -0.05 0.09 0.95 (0.80, 1.13) 0.559

Treatment A = 2 (vs. A = 1) 1{Ai(t) = 2} -0.02 0.12 0.98 (0.77, 1.23) 0.848

Treatment A = 3 (vs. A = 1) 1{Ai(t) = 3} 0.26 0.11 1.30 (1.05, 1.62) 0.016 *

Treatment A = 4 (vs. A = 1) 1{Ai(t) = 4} 0.50 0.15 1.65 (1.24, 2.20) 0.001 *

Treatment A = 5 (vs. A = 1) 1{Ai(t) = 5} 0.19 0.19 1.21 (0.84, 1.74) 0.315

We perform a likelihood ratio test for each of the weighted outcome models, comparing to

their corresponding weighted null model, in which the treatment term is excluded. With the

addition of any one of the three treatment terms, the full model fits the data set significantly

better than their null model Appendix Table B.6. Similar result are shown in the likelihood

ratio test table for females Appendix Table B.7.

We are also interested in the fracture hazard over time, both descriptively in the current

data set and in terms of potential outcomes under always treated schemes at different doses.

For male patients, Figure 4.13 top left panel shows the fracture hazard over time. The impact

of GC manifests since the beginning of follow-up and has an overall trend of monotonically

decreasing over time. The upper bound of the 90% interval curve shows slightly exaggerated

increase beyond the 300th day of follow-up. Due to our exceptionally rare event setting

(2% and 4% cause-specific fracture incidence for male and female, respectively), the hazard

appears minimal on the y-axis.

To answer the causal question of what could we potentially observe in fracture hazard had

the patients been always treated with each dosage level over time, we create the potential

outcome data sets always treated with each of the five dosage levels and predict the potential

hazards with our fitted marginal hazard models.
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Figure 4.13: Descriptive and potential hazard under always treated with each dose

Figure 4.13 top right panel shows the potential hazard curves if the male patients in our

study population are always treated with each dose level. Contrary to our belief that the

higher dose would leads to higher hazard, the second highest dose level (A = 4) results in

the highest cause-specific fracture hazard, graphically overlapped with the median dose level

(A = 3) curve. The cause-specific fracture hazard curve of the highest dose group (A = 5)

is overlapped with the curves of the low dose groups (daily dose ≤ 10mg). With the two

cumulative dose models in Figure 4.13 bottom panels, we see the expected result that the

higher the dose level, the higher the cumulative dose, and the higher the hazard. The cause-

specific hazard grows exponentially since day 1 if the patients are always on high dose, so
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this explains why GC treatment tapering (transfer from a high initial dose to a maintenance

dose) should be recommended in future CTS protocols Table 4.4. In practice, it is unlikely

for a patient to be always on high dose, so the log-linear effect assumption near the end

of the follow-up is extrapolated. The flexible cumulative dose model provides a regularized

representation of the cumulative dose model at later time points, and we still observe the

same functional form of hazard over time.

Similar trends are observed for female patients Appendix Figure B.7, while female has

slightly higher hazards compare to male, which might be due to a slightly higher event

incidence rate in female. The cause-specific fracture hazard curves from the dose level model

are more separated for female patients, and with flexible cumulative dose model, a heavier

penalization is applied to the high dose groups at later time points.



Chapter 5

Discussion

5.1 Strengths

This thesis has extended the existing statistical methods on continuous-time marginal struc-

tural models by making both the exposure and the outcome models fully-continuous, combined

with considering pharmacoepidemiological dispensations as a marked point process. Instead of

the discrete-time causal assumptions on consistency, conditional exchangeability, and positiv-

ity, we used the continuous-time causal assumptions: stability, which implies no unmeasured

confounder, and absolute continuity.

Our research context is administrative data, where various exposure, confounder, and

death databases are linked through a unique patient ID. Therefore, we generated these pro-

cesses independently in our simulation study, and our confounder process is naturally observed

independently from the exposure process in our data application. To the best of our knowl-

edge, we have performed comprehensive baseline data cleaning and clustering with proper

clinical guidance to identify possible confounders.

Regarding absolute continuity, in our simulation study, we have experimented with initial

parameter values to guarantee that there is at least one event for each combination (e.g.

confounder process happens before visit process, confounder process happens after visit pro-

cess, etc.) in each data set generated under 1,000 seeds. With the administrative data type,

pharmacological dispensations continuously occur without incurring the missing data problem

at discrete clinical visits. In our data application, we had frequent dispensations to ensure no

positivity violation in the study population. Additionally, we have assigned treatment gaps

as an unexposed state, with its own treatment probability. In general, positivity is a testable

assumption; we verified this by checking that all the parameters in the exposure models can

be estimated without identifiability issues, as well as checking the distribution of the resulting

weights. These properties guarantee that the treatment intensities under observed O and

97
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experimental E settings are always positive, which gives us absolute continuity.

The different combinations of IPTW estimators and the marginal hazard models are val-

idated through simulation studies. Under several possible study designs that are leveraging

treatment initiation or termination, we proposed the data generating mechanism through

multistate models. As we expected, the discrete and continuous-time exposure models re-

turn similar parameter estimates when discretization is reasonably chosen, and the weighted

case-base sampling partial likelihood can serve as a computationally efficient alternative to

the well-established weighted Cox partial likelihood, while also being able to estimate absolute

hazards.

For our real data analysis, we uncovered GC prescription patterns over time descriptively.

The lack of clear guidelines on GC duration cleaning motivates us to propose the novel data-

driven criteria for dealing with treatment overlaps (≤30 days push the overlaps forward, >

30 days truncate the current dispensation and advance the next dispensation), and we have

accounted for the treatment gaps by adding an unexposed level. To date, we are the first to

construct GC episode on a non-overlapping individual level without any aggregation, which

could lead to a better approximation to the real usage. On the other hand, previous literature

has suggested the dispensation days-supply values are often inaccurate for BP in the Ontario

Drug Benefits database (Burden et al., 2013). We have cleaned the days-supply values for BP

with peer-reviewed guidance and taken into account the quantity dispensed. Once again, we

emphasize that days-supply should not be relied on solely when cleaning the exposure data,

as it tends to give an underestimated treatment duration. Besides, we have proposed a novel

conversion metrics for alendronate equivalent BP treatment duration.

We used case-base partial likelihood for fitting our outcome model. Apart from smaller

data size, another advantage of case-base sampling is its handling of tied event times in the

outcome model. Many fracture event times are tied across individuals, but ties should not have

any practical implications for the case-base sampling partial likelihood. Unlike Cox’s partial

likelihood, which conditions on the risksets, we can shift the times in case-base by infinitesimal

amount without changing the likelihood. Therefore, case-base sampling can handle tied event

times during a relatively short follow-up period. Besides, case-base sampling can also be used

to fit absolute hazards, and thus can be used to calculate predictions and prediction intervals.

These properties can further be used to calculate cumulative incidences as probabilities, and

thus are easier to interpret as causal quantities. However, marginal hazards as causal quantities

need to be interpreted with caution due to them involving both causal effects and selection.

Finally, we applied our exposure model to the administrative data to generate combined

stabilized weights, identified significant risk factors for cause-specific fracture hazard for male

and female separately after removing time-dependent confounders, and provided potential
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fracture hazard over time under always treated regime with each GC daily dose level. Here,

we discuss some limitations to our methodology and provide some suggestions for future

direction.

5.2 Limitations

In our simulation study, we only considered counting to the first exposure event, while in

reality there could be recurrent exposure episodes for a patient. We simplified the scenario

in simulation studies so that the true parameter value could be calculated. However, if the

true parameter value can be obtained in high dimensional settings, simulation studies could

be conducted for recurrent exposures to check the MPP weighting performance. We also did

not investigate the effect of discretization on continuous time scale on parameter estimation,

although a recent study has validated our hypothesis that coarse discretization would result

in bias (Ferreira Guerra et al., 2020).

In our real data analysis, different definitions of GC exposure might result in a divergent

estimation of drug effects. The threshold criteria on 30-day (monthly) overlap proposed by

us should be investigated further by clinical scientists regarding GC’s pharmacokinetics. In

terms of causal assumptions, inevitably, there might be underlying unmeasured confounders

that we fail to access in some other electronic healthcare databases, and the assumption of

no unmeasured confounders is not testable. In addition, in both our simulation study and the

real data analysis, we assumed there is only administrative censoring.

The data generation mechanism we adopt in the simulation study guarantees there will be

no misspecification. However, the exposure and outcome models in the data analysis require

more consideration. We did not use a continuous-time model, such as Cox or Poisson, for

our visiting process Vik, due to our study’s large sample size (86,842 patients in total). For

example, using the Cox model would have to generate an enormous data set (number of

rows ≈ 86,842 × 365 minus a few non-administratively censored person-times). Even with

our current five-day discretization, we ended up with 5,721,411 rows. Besides, the five-day

interval captures most of the days-supply values, but there are still around 6% short (daily to

four-day) prescriptions being smoothed out in the approximation.

Furthermore, a surprising amount (∼ 13%) of our study population experienced death as

a competing risk. In the current analysis, we have only presented the cause-specific fracture

hazard. Patients in both death and fracture subgroups took more high dose treatment early

on during the follow-up (graphs are not shown due to small cells), and the peaks of the event

time density curves are overlapped at around 30th day for death and fracture subgroups, and

high mortality can affect the estimation of dose-effect.
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Moreover, due to our study’s large sample size and high dispensation rates, the p-values

tend to be significant by chance for the exposure models. Large sample studies usually give

small standard errors for coefficient estimates, so the 95% confidence interval is less likely to

cross 1 for estimates close to 1.

BP’s effect in preventing fracture is often delayed because it persists in bone long after

the therapy has stopped. So far, it has been difficult to quantify how much shifting we

should address when modeling. On the other hand, GC’s effect manifests rapidly within three

months after the chronic users’ cohort entry. Therefore, we suspect the therapeutic effect of

BP prescribed during our one-year follow-up was not exhibited before the GC-induced fracture

took place. Thus, BP therapy appears to be a weak time-dependent confounder.

In general, it is possible to have model misspecified in real data analysis. Our current

results suggest the highest dose level does not result in the highest cause-specific fracture

hazard, because the model did not enforce the monotonicity of the dose effect. Our current

outcome model also assumed proportionality of the treatment effects, and such proportionality

assumption can be relaxed by adjusting for an interaction term between time on treatment

and treatment dosage. Methods discussed in this thesis are only singly robust, and doubly

robust methods for longitudinal data have begun to receive more attention in the literature

(Tran et al., 2019).

5.3 Outlook

Given how popular GC is used in both clinical trials for the emerging infectious diseases like

SARS and COVID-19 (Zhang et al., 2020) and real-world setting as a steroid therapy for

respiratory conditions and inflammatory arthritis, we strongly encourage the development of

guidelines on how to adjust GC treatment duration overlaps in pharmacoepidemiological data,

possibly separated for acute therapy and maintenance therapy.

We have assumed administrative censoring. If there were actual random censoring other

than administrative censoring in the data, Inverse Probability Censoring (IPC) weights could

be introduced to correct some biases, due to censoring explained by observed covariates. Mod-

eling subdistribution fracture hazard would be an alternative to modeling the cause-specific

hazard. Inspired by the recent study by Ryalen et al. (2020), we could further consider inves-

tigating the subdistribution hazards by constructing a different riskset (Austin et al., 2016).

After that, cumulative incidence functions can be plotted to compare the two subgroups of

death and fracture. However, modeling subdistribution hazard in the causal inference frame-

work with time-dependent exposures may require further investigation.

One previous study has proposed using case-base sampling to derive continuous-time
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weights for a continuous Cox outcome MSM (Saarela and Liu, 2016). With our data, using

case-base sampling to construct the exposure data set would only result in 2,639 × 200

= 530,439 rows. We could replace our current discrete and conventional continuous-time

exposure models with case-base sampling in both simulation and the data analysis as a future

direction.

Several time-dependent confounders could be further adjusted, such as other OP drugs,

visit to emergency department, and hospitalization. Only 0.3% of our study population ever

had an other OP dispensation on either denosumab, raloxifene, or calcitonin, so we expect the

confounding effect from these to be weak due to the infrequency. These drugs have different

mechanisms for treating GC-induced osteoporosis and do not persist in bones after treatment

ends, so we should not convert them into a single category and model each of them as on-

or-off treatment separately. We list the days-supply imputation for each drug in (Appendix.

Table. A.3). The days-supply values are determined, and since we do not convert them into

the same type, we should shift all the subsequent exposure windows until the current dispense

is finished within each drug. Furthermore, deriving a clinically meaningful definition for a visit

to emergency and hospitalization during follow-up could be challenging for our statistical

analysis because most patients are discharged on the same date as admission. Therefore, a

time-dependent confounder exposure duration of zero could occur.

Other than unmeasured confounders, failing to adjust for the dosage level and time inter-

action term could also lead to outcome model misspecification. We considered the simplest

outcome model to start with, but one future direction is to model the cumulative exposure

through a time interaction term. We could also extend WCE to our outcome model, that is,

weight the cumulative exposure effect by dispensation recency (Xiao et al., 2014).

To handle the possible outcome model misspecification, instead of using a flexible outcome

model, we could consider constrain the outcome model to be monotonically decreasing, based

on our current fracture hazard over time pattern. Doubly robust estimators combine IPTW

and g-formula together, which allows us to get an unbiased estimator with either one of the

exposure or the outcome model correctly specified (Hernan and Robins, 2020).

Even when modeling in continuous-time, we suggest horizontally shift the functional form

of the BP effect forward. One future direction in study design is that we model the BP

dispensations in the previous year, rather than during the current follow-up period. More

generally, we can introduce latency periods to the modeling, both for the confounders and

the exposure of interest.

Another methodological challenge is how to assess the time-varying covariate balance.

We have attempted to split our outcome data set based on sampled time points, but a more

continuous and systematic approach is needed.
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Appendix A

Derivations & Data Cleaning

Cox partial likelihood derivation:

L(η1, h0(t))
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Table A.1: ICD codes used for fracture outcome derivation

 

 

 

 

 

  

F
ra

ct
u

re
s 

Hip Fracture     

 ICD-9 (CIHI 

DAD) 
820.xx Fx* of neck of femur 

 ICD-10 

(CIHI DAD) 
S72.0x Fx of neck of femur 

  S72.1x Pertrochanteric fx 
   S72.2 Subtrochanteric fx  

Radius or ulna fracture 
 OHIP 813 Radius or ulna 

 ICD-9 (CIHI 

DAD) 
813.x Fx of radius and ulna 

 ICD-10 

(CIHI DAD) 
S52.x Fx of forearm 

Humerus fracture 
 OHIP 812 Fx of humerus 

 ICD-9 (CIHI 

DAD) 
812.x Fx of humerus 

 ICD-10 

(CIHI DAD) 
S42.2x Fx of upper end of humerus 

  S42.3x Fx of shaft of humerus 
   S42.4x Fx of lower end of humerus 

Vertebral fracture 
 OHIP 805 Vertebral without spinal cord damage 

 ICD-9 (CIHI 

DAD) 
733.13 Path fx of vertebrae 

   805.xx 
Fx of vertebral column w/o spinal cord 

injury 

 ICD-10 

(CIHI DAD) 
S22.0 Fx of thoracic vertebra 

  S22.1 Multiple fx of thoracic spine 
  S32.0  

  S32.7-S32.8  

   M48.4 Fatigue or stress fracture of vertebral 

  

* Fx = fracture
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 54

  

Figure 3.2.Study flow diagram  
Index date = First dispensing date in the 6-month window that meets the “chronic use” criteria (cumulative  
prednisone equivalent dose ≥450 mg and ≥2 prescriptions dispensed)  
aTotal may not add to 100% due to overlap between exclusion criteria 
bIncludes chronic renal disease (N=29,235), malignancy other than skin (N=88,456), organ transplant (N=1,552), or bone metabolic 
disorders (Paget’s disease (N=595), osteomalacia (N=12)) 
cBefore 01/1998 the days supply variable is not available. Patients identified after 2014/09 do not have a minimum of 6-months 
before the start of follow-up  
 

Study cohort  
Community-dwelling chronic glucocorticoid 

users, age ≥66  
(1998/01 – 2014/09)  

 (N=191,702) 

All chronic glucocorticoid users  
Age ≥65 (1995/04 – 2015/03)  

(N=424,296) 

Eligible chronic glucocorticoid users  
Age ≥66 (1995/04 – 2013/03)  

(N=278,631) 

All new glucocorticoid users  
Age ≥65 (1995/04 – 2016/03)  

(N=883,715)  

Exclusionsa:  
• Age < 66 at index date (N=47,132)  

• Death date prior to index date, i.e. database  
error (N=10)  

• Co-morbidity during 1-year lookbacka,b 
(N=111,281) 

Eligible chronic glucocorticoid users  
Age ≥66 (1998/01 – 2014/09)  

(N=203,358) 

Index date <1998/01 and >2014/09  
(N= 75,273)c 

Long-term care at index (N=11,838) 

No chronic use during study period  
(N= 459,419) 

Figure A.1: Existing cohort exclusion criteria flowchart (Amiche, 2018)
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Figure A.2: The distribution of daily dose from all dispensations of all patients. 97.5% of the
data lies within 100mg.

 

 

Figure A.3: The distribution of days-supply value from all dispensations of all patients. The
most common days-supply is 7 days, followed by a second peak at 30 days, and a third peak
at 5 days.

1For all histograms in the Appendix, bars with < 6 counts were hidden.
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Figure A.4: The distribution of gap - current dispense date plus current days supply value
minus the next dispensation date - from all dispensations of all patients. A positive value
means there is an overlap in exposure, while a negative value (e.g.−90) means a patient
waited for 90 days until receiving the next dispensation. The peak of the distribution is at 0
days, which means around 28% of two subsequent dispensations has no overlap in time. The
range of the distribution goes from −540 days to 100 days. We determine the threshold value
at gap = 30 days for either pushing forward all subsequent dispensation dates (0 < gap ≤
30 days) or truncating current days supply value to next dispensation date (gap > 30 days).

 

Figure A.5: The distribution of daily dose after excluding extreme values of > 100mg
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Figure A.6: The difference of days between t1 and t0 for patients who satisfied dispensation
and cumulative dose requirements. We determine the cut-off value at 180 days, and exclude
< 1% patients with t1 > t0 + 180 days.

Table A.2: World Health Organization defined daily dose for bisphosphonates (WHO,
2019a,b,c,d,e,f,g,h)

Osteoporosis Drug Types Drug Names WHO DDD (mg)

Nitrogen-containing

BP

Alendronate 10

Alendronate Sodium 10

Alendronate Sodium Cholecalciferol 10

Risedronate 5

Zoledronic Acid 4

Non-nitrogen

containing BP

Etidronate 400

Other OP Drugs

Denosumab 0.33

Raloxifene 60

Calcitonin –

Table A.3: Other osteoporosis drugs days-supply imputation (Burden et al., 2013)

Other OP Drugs Quantity Days-supply Imputation

Denosumab 1 183‖

Raloxifene Q Q**

Calcitonin Q Q × 28

‖ Based on dispensation date
** Based on quantity dispensed
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Table A.4: Different washout periods for fracture subtypes comparison. Hip fracture (HIP),
radius or ulna (RAD) fractures, vertebral (VERT) fractures, and humerus (HUM) fractures
were evaluated.

No washout HIP (N) RAD (N) VERT (N) HUM (N) 

OHIP NA 595 474 404 

ICD diagnostic codes          

      a. ICD DAD 773 138 456 138 

      b. ICD NACRS 587 333 333 232 

      c. ICD DAD or NACRS 804 390 688 283 

OHIP or ICD diagnostic codes 804 669 980 470 

OHIP or ICD diagnostic + PR codes*  683 655 980 451 

     

90 day washout  HIP (N) RAD (N) VERT (N) HUM (N) 

OHIP NA 562 466 372 

ICD diagnostic codes          

      a. ICD DAD 768 137 453 137 

      b. ICD NACRS 585 333 330 232 

      c. ICD DAD or NACRS 799 388 682 282 

OHIP or ICD diagnostic codes 799 634 963 437 

OHIP or ICD diagnostic + PR codes*  681 621 963 417 

     

120 day washout  HIP (N) RAD (N) VERT (N) HUM (N) 

OHIP NA 557 461 365 

ICD diagnostic codes          

      a. ICD DAD 767 137 452 137 

      b. ICD NACRS 585 333 330 232 

      c. ICD DAD or NACRS 798 388 681 282 

OHIP or ICD diagnostic codes 798 629 957 431 

OHIP or ICD diagnostic + PR codes*  681 616 957 411 

 * Procedure codes were listed in Appendix Table A.5.

Table A.5: Procedure codes used only for exploring the fracture definition versus washout
period, unused in actual fracture date derivation

 

 

P
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Hip Fracture     

 CCI Fixation: 1VA73, 1VC73 Reduction: 1VA74, 1VC74, 1VA80, 1VC80 

 CCP Fixation: 9104, 9124 Reduction: 9054, 9114, 9134 

Radius or ulna fracture 

 CCI 
Fixation: 1TV74 

Repair: 1TV80, 1TV82  

Reduction: 1TV73 

Immobilization: 1TV03 

 CCP Fixation: 9111, 9131, 9052 Reduction: 9101, 9121, 9141 

Humerus fracture 

 CCI 
Fixation: 1TK74 

Repair: 1TK80, 1TK82   

Reduction:1TK73 

Immobilization: 1TK03 

 CCP Fixation: 9130, 9130, 9051 Reduction: 9100, 9120 

Vertebral fracture 
 NA 
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Initial Dose Model − Female

Covariate

Age

Fall related drugs use

Sex hormone

Prev. BP duration 0−1 year (vs. 0 days)

Prev. BP duration 1−3 years (vs. 0 days)

Prev. BP duration 3−5 years (vs. 0 days)

Prev. BP duration >= 5 year (vs. 0 days)

Inhale GC

Thiazide

Arthritis

Fall related conditions

Emergency or hospitalization

Prev. fracture

Prev. raloxifene or calcitonin

Diabetes

Intercept d0 <= 1 | d0 >= 2

Intercept d0 <= 2 | d0 >= 3

Intercept d0 <= 3 | d0 >= 4

Intercept d0 <= 4 | d0 >= 5

p−value

<0.001 *

0.031 *

<0.001 *

<0.001 *

0.075  

0.255  

<0.001 *

<0.001 *

<0.001 *

<0.001 *

<0.001 *

<0.001 *

0.001 *

0.099  

0.529  

<0.001 *

<0.001 *

<0.001 *

<0.001 *

OR

0.97

1.05

0.87

0.83

0.95

0.96

1.20

1.27

0.88

0.42

0.81

1.36

0.84

0.84

1.01

0.42 0.66 0.89 1.12 1.36

Figure B.1: The forest plot of OR for the initial dose model Di0 for female.
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Subsequent Visiting Model − Female

Covariate

Intercept

Age

Fall related drugs use

Sex hormone

Prev. BP duration 0−1 year (vs. 0 days)

Prev. BP duration 1−3 years (vs. 0 days)

Prev. BP duration 3−5 years (vs. 0 days)

Prev. BP duration >= 5 year (vs. 0 days)

Inhale GC

Thiazide

Arthritis

Fall related conditions

Emergency or hospitalization

Prev. fracture

Prev. raloxifene or calcitonin

Diabetes

LTC

Cumulative BP days

Prev. dose d = 0 (vs. d = 1)

Prev. dose d = 2 (vs. d = 1)

Prev. dose d = 3 (vs. d = 1)

Prev. dose d = 4 (vs. d = 1)

Prev. dose d = 5 (vs. d = 1)

Cumulative GC dose

Time basis 1

Time basis 2

p−value

<0.001 *

<0.001 *

<0.001 *

<0.001 *

<0.001 *

0.167  

0.011 *

0.060  

<0.001 *

<0.001 *

<0.001 *

<0.001 *

<0.001 *

<0.001 *

0.832  

0.002 *

<0.001 *

<0.001 *

<0.001 *

<0.001 *

<0.001 *

<0.001 *

<0.001 *

<0.001 *

<0.001 *

<0.001 *

HR

0.14

1.02

1.03

0.93

0.95

0.99

0.97

1.02

1.14

1.09

0.96

1.10

1.10

1.19

1.01

1.02

2.68

1.00

0.15

0.97

1.31

2.09

4.64

1.00

1.33

0.80

0.14 1.27 2.39 3.52 4.64

Figure B.2: The forest plot of HR for the subsequent visit model Vik for female.
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Subsequent Dosage Model For Previous Dose Is 0 − Female

Covariate

Age

Fall related drugs use

Sex hormone

Prev. BP duration 0−1 year (vs. 0 days)

Prev. BP duration 1−3 years (vs. 0 days)

Prev. BP duration 3−5 years (vs. 0 days)

Prev. BP duration >= 5 year (vs. 0 days)

Inhale GC

Thiazide

Arthritis

Fall related conditions

Emergency or hospitalization

Prev. fracture

Prev. raloxifene or calcitonin

Diabetes

LTC

Cumulative BP days

Cumulative GC dose

Time basis 1

Time basis 2

Intercept d <= 1 | d >= 2

Intercept d <= 2 | d >= 3

Intercept d <= 3 | d >= 4

Intercept d <= 4 | d >= 5

p−value

<0.001 *

0.266  

<0.001 *

<0.001 *

0.068  

<0.001 *

<0.001 *

<0.001 *

0.001 *

<0.001 *

<0.001 *

<0.001 *

0.045 *

<0.001 *

<0.001 *

<0.001 *

<0.001 *

<0.001 *

<0.001 *

<0.001 *

<0.001 *

<0.001 *

<0.001 *

<0.001 *

OR

0.95

0.98

0.90

0.90

1.05

1.21

1.34

1.32

0.94

0.44

0.83

1.37

0.91

1.08

0.93

0.68

1.00

1.00

0.45

0.77

0.44 0.67 0.91 1.14 1.37

Figure B.3: The forest plot of OR for the subsequent dose model Dik, where at previous dose
Di,k−1, the dose level is unexposed for female.



Appendix B. Additional Analysis Outputs 122

Subsequent Dosage Model For Previous Dose Is Not 0 − Female

Covariate

Age

Fall related drugs use

Sex hormone

Prev. BP duration 0−1 year (vs. 0 days)

Prev. BP duration 1−3 years (vs. 0 days)

Prev. BP duration 3−5 years (vs. 0 days)

Prev. BP duration >= 5 year (vs. 0 days)

Inhale GC

Thiazide

Arthritis

Fall related conditions

Emergency or hospitalization

Prev. fracture

Prev. raloxifene or calcitonin

Diabetes

LTC

Cumulative BP days

Prev. dose d = 2 (vs. d = 1)

Prev. dose d = 3 (vs. d = 1)

Prev. dose d = 4 (vs. d = 1)

Prev. dose d = 5 (vs. d = 1)

Cumulative GC dose

Time basis 1

Time basis 2

Intercept d <= 0 | d >= 1

Intercept d <= 1 | d >= 2

Intercept d <= 2 | d >= 3

Intercept d <= 3 | d >= 4

Intercept d <= 4 | d >= 5

p−value

<0.001 *

<0.001 *

<0.001 *

<0.001 *

<0.001 *

0.001 *

<0.001 *

<0.001 *

<0.001 *

<0.001 *

<0.001 *

<0.001 *

<0.001 *

<0.001 *

0.034 *

<0.001 *

0.013 *

<0.001 *

<0.001 *

<0.001 *

<0.001 *

<0.001 *

<0.001 *

<0.001 *

0.005 *

<0.001 *

<0.001 *

<0.001 *

<0.001 *

OR

1.03

1.16

0.90

1.07

1.09

1.08

1.11

0.91

1.13

1.09

1.21

1.20

1.10

0.88

1.03

1.90

1.00

1.12

0.62

0.40

0.26

1.00

0.77

0.37

0.26 0.67 1.08 1.49 1.9

Figure B.4: The forest plot of OR for the subsequent dose model Dik, where at previous dose
Di,k−1, the dose level is unexposed for female.
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Table B.1: Parameter estimates for the weighted cumulative dose outcome model - Male

Covariate Notation Coef.Estimate Std.Error HR 95% CI p

Intercept η0 -9.93 0.14 0.00 (0.00, 0.00) <0.001 *

Baseline hazard basis 1 (cont.) θ01 -0.49 0.24 0.61 (0.38, 0.98) <0.039 *

Baseline hazard basis 2 (cont.) θ02 -0.40 0.13 0.67 (0.52, 0.86) 0.002 *

Age Zi1 0.05 0.01 1.05 (1.04, 1.06) <0.001 *

Fall related drugs use (yes vs. no) Zi2 -0.09 0.09 0.91 (0.76, 1.09) 0.304

Sex hormone (yes vs. no) Zi3 0.75 0.23 2.12 (1.36, 3.30) 0.001 *

Prev. BP duration 0-1 year (vs. 0 days) Zi4 -0.02 0.14 0.98 (0.74, 1.29) 0.863

Prev. BP duration 1-3 years (vs. 0 days) Zi5 0.36 0.20 1.43 (0.97, 2.11) 0.069

Prev. BP duration 3-5 years (vs. 0 days) Zi6 0.65 0.24 1.92 (1.20, 3.09) 0.007 *

Prev. BP duration ≥ 5 year (vs. 0 days) Zi7 -0.04 0.31 0.96 (0.52, 1.78) 0.907

Inhale GC (yes vs. no) Zi8 -0.06 0.07 0.94 (0.82, 1.09) 0.409

Thiazide (yes vs. no) Zi9 0.18 0.08 1.19 (1.01, 1.40) 0.033 *

Arthritis (yes vs. no) Zi10 0.08 0.11 1.09 (0.88, 1.34) 0.434

Fall related conditions (yes vs. no) Zi11 0.29 0.07 1.34 (1.16, 1.55) <0.001 *

Emergency or hospitalization (yes vs. no) Zi12 0.37 0.09 1.45 (1.20, 1.74) <0.001 *

Prev. fracture (yes vs. no) Zi13 1.57 0.14 4.81 (3.64, 6.35) <0.001 *

Cumulative GC dose (cont.) cum(ā) 0.00 0.00 1.00 (1.00, 1.00) <0.001 *

cont. means continuous variable.

Table B.2: Parameter estimates for the weighted flexible cumulative dose outcome model -
Male

Covariate Notation Coef.Estimate Std.Error HR 95% CI p

Intercept η0 -10.22 0.15 0.00 ( 0.00, 0.00) <0.001 *

Baseline hazard basis 1 (cont.) θ01 -0.57 0.24 0.57 ( 0.35, 0.91) <0.018 *

Baseline hazard basis 2 (cont.) θ02 -0.43 0.13 0.65 ( 0.50, 0.84) 0.001 *

Age (cont.) Zi1 0.05 0.01 1.05 ( 1.04, 1.06) <0.001 *

Fall related drugs use (yes vs. no) Zi2 -0.09 0.09 0.91 ( 0.77, 1.09) 0.329

Sex hormone (yes vs. no) Zi3 0.75 0.23 2.12 ( 1.36, 3.30) 0.001 *

Prev. BP duration 0-1 year (vs. 0 days) Zi4 -0.03 0.14 0.97 ( 0.74, 1.29) 0.859

Prev. BP duration 1-3 years (vs. 0 days) Zi5 0.36 0.20 1.43 ( 0.97, 2.11) 0.069

Prev. BP duration 3-5 years (vs. 0 days) Zi6 0.66 0.24 1.94 ( 1.21, 3.11) 0.006 *

Prev. BP duration ≥ 5 year (vs. 0 days) Zi7 -0.04 0.31 0.96 ( 0.52, 1.77) 0.902

Inhale GC (yes vs. no) Zi8 -0.05 0.07 0.95 ( 0.82, 1.09) 0.471

Thiazide (yes vs. no) Zi9 0.17 0.08 1.19 ( 1.01, 1.40) 0.034 *

Arthritis (yes vs. no) Zi10 0.07 0.11 1.07 ( 0.87, 1.32) 0.507

Fall related conditions (yes vs. no) Zi11 0.29 0.07 1.34 ( 1.15, 1.55) <0.001 *

Emergency or hospitalization (yes vs. no) Zi12 0.37 0.09 1.45 ( 1.20, 1.74) <0.001 *

Prev. fracture (yes vs. no) Zi13 1.57 0.14 4.83 ( 3.66, 6.37) <0.001 *

Cumulative GC dose spline basis 1 (cont.) Basis(cum(ā))1 2.35 0.52 10.45 ( 3.78, 28.92) <0.001 *

Cumulative GC dose spline basis 2 (cont.) Basis(cum(ā))2 0.67 1.47 1.95 ( 0.11, 34.60) 0.650
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Figure B.6: Male and female pair-wise SMD over time
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Figure B.7: Descriptive and potential hazard under always treated with each dose
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Table B.3: Parameter estimates for the unweighted dose level outcome model - Female

Covariate Notation Coef.Estimate Std.Error HR 95% CI p

Intercept η0 -9.55 0.13 0.00 (0.00, 0.00) <0.001 *

Baseline hazard basis 1 (cont.) θ01 0.06 0.16 1.06 (0.77, 1.46) 0.715

Baseline hazard basis 2 (cont.) θ02 -0.17 0.09 0.84 (0.71, 1.00) 0.045 *

Age (cont.) Zi1 0.06 0.00 1.06 (1.05, 1.06) <0.001 *

Fall related drugs use (yes vs. no) Zi2 0.08 0.07 1.09 (0.96, 1.24) 0.205

Sex hormone (yes vs. no) Zi3 -0.23 0.09 0.79 (0.66, 0.95) 0.014 *

Prev. BP duration 0-1 year (vs. 0 days) Zi4 0.17 0.07 1.18 (1.03, 1.35) 0.016 *

Prev. BP duration 1-3 years (vs. 0 days) Zi5 0.32 0.07 1.38 (1.19, 1.60) <0.001 *

Prev. BP duration 3-5 years (vs. 0 days) Zi6 0.21 0.09 1.24 (1.03, 1.49) 0.025 *

Prev. BP duration ≥ 5 year (vs. 0 days) Zi7 0.10 0.08 1.11 (0.94, 1.30) 0.207

Inhale GC (yes vs. no) Zi8 0.04 0.05 1.04 (0.95, 1.15) 0.372

Thiazide (yes vs. no) Zi9 0.06 0.05 1.07 (0.96, 1.18) 0.222

Arthritis (yes vs. no) Zi10 0.04 0.07 1.04 (0.92, 1.19) 0.509

Fall related conditions (yes vs. no) Zi11 0.20 0.05 1.22 (1.11, 1.35) <0.001 *

Emergency or hospitalization (yes vs. no) Zi12 0.24 0.06 1.28 (1.14, 1.43) <0.001 *

Prev. fracture (yes vs. no) Zi13 0.95 0.09 2.59 (2.18, 3.09) <0.001 *

Prev. raloxifene or calcitonin (yes vs. no) Zi14 0.17 0.25 1.18 (0.72, 1.94) 0.508

Diabetes (yes vs. no) Zi15 -0.19 0.06 0.83 (0.73, 0.93) 0.002 *

Treatment A = 0 (vs. A = 1) 1{Ai(t) = 0} -0.03 0.09 0.97 (0.81, 1.16) 0.758

Treatment A = 2 (vs. A = 1) 1{Ai(t) = 2} 0.01 0.12 1.01 (0.79, 1.29) 0.940

Treatment A = 3 (vs. A = 1) 1{Ai(t) = 3} 0.27 0.11 1.31 (1.05, 1.63) 0.019 *

Treatment A = 4 (vs. A = 1) 1{Ai(t) = 4} 0.53 0.15 1.70 (1.27, 2.27) <0.001 *

Treatment A = 5 (vs. A = 1) 1{Ai(t) = 5} 0.24 0.19 1.27 (0.88, 1.83) 0.204

Table B.4: Parameter estimates for the weighted cumulative dose outcome model - Female

Covariate Notation Coef.Estimate Std.Error HR 95% CI p

Intercept η0 -9.30 0.10 0.00 (0.00, 0.00) <0.001 *

Baseline hazard basis 1 (cont.) θ01 -0.44 0.16 0.64 (0.47, 0.88) 0.005 *

Baseline hazard basis 2 (cont.) θ02 -0.47 0.09 0.62 (0.53, 0.74) <0.001 *

Age (cont.) Zi1 0.06 0.00 1.06 (1.05, 1.06) <0.001 *

Fall related drugs use (yes vs. no) Zi2 0.08 0.07 1.09 (0.96, 1.24) 0.197

Sex hormone (yes vs. no) Zi3 -0.20 0.09 0.82 (0.69, 0.98) 0.030 *

Prev. BP duration 0-1 year (vs. 0 days) Zi4 0.14 0.07 1.15 (1.01, 1.32) 0.037 *

Prev. BP duration 1-3 years (vs. 0 days) Zi5 0.30 0.07 1.35 (1.17, 1.56) <0.001 *

Prev. BP duration 3-5 years (vs. 0 days) Zi6 0.20 0.09 1.22 (1.02, 1.47) 0.030 *

Prev. BP duration ≥ 5 year (vs. 0 days) Zi7 0.08 0.08 1.09 (0.93, 1.27) 0.298

Inhale GC (yes vs. no) Zi8 0.09 0.05 1.10 (1.00, 1.21) 0.052

Thiazide (yes vs. no) Zi9 0.07 0.05 1.07 (0.97, 1.19) 0.191

Arthritis (yes vs. no) Zi10 0.01 0.06 1.01 (0.89, 1.14) 0.916

Fall related conditions (yes vs. no) Zi11 0.20 0.05 1.22 (1.11, 1.35) <0.001 *

Emergency or hospitalization (yes vs. no) Zi12 0.24 0.06 1.27 (1.13, 1.42) <0.001 *

Prev. fracture (yes vs. no) Zi13 0.94 0.09 2.56 (2.16, 3.03) <0.001 *

Prev. raloxifene or calcitonin (yes vs. no) Zi14 0.13 0.26 1.14 (0.69, 1.89) 0.606

Diabetes (yes vs. no) Zi15 -0.19 0.06 0.82 (0.73, 0.93) 0.001 *

Cumulative GC dose (cont.) cum(ā) 0.00 0.00 1.00 (1.00, 1.00) <0.001 *
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Table B.5: Parameter estimates for the weighted flexible cumulative dose outcome model -
Female

Covariate Notation Coef.Estimate Std.Error HR 95% CI p

Intercept η0 -9.61 0.10 0.00 ( 0.00, 0.00) <0.001 *

Baseline hazard basis 1 (cont.) θ01 -0.55 0.16 0.58 ( 0.42, 0.79) 0.001 *

Baseline hazard basis 2 (cont.) θ02 -0.51 0.09 0.60 ( 0.51, 0.71) <0.001 *

Age (cont.) Zi1 0.06 0.00 1.06 ( 1.05, 1.06) <0.001 *

Fall related drugs use (yes vs. no) Zi2 0.09 0.07 1.09 ( 0.96, 1.24) 0.193

Sex hormone (yes vs. no) Zi3 -0.20 0.09 0.82 ( 0.68, 0.98) 0.029 *

Prev. BP duration 0-1 year (vs. 0 days) Zi4 0.14 0.07 1.15 ( 1.01, 1.31) 0.039 *

Prev. BP duration 1-3 years (vs. 0 days) Zi5 0.30 0.07 1.35 ( 1.16, 1.56) <0.001 *

Prev. BP duration 3-5 years (vs. 0 days) Zi6 0.21 0.09 1.23 ( 1.02, 1.48) 0.027 *

Prev. BP duration ≥ 5 year (vs. 0 days) Zi7 0.09 0.08 1.09 ( 0.93, 1.28) 0.293

Inhale GC (yes vs. no) Zi8 0.10 0.05 1.11 ( 1.01, 1.22) 0.031 *

Thiazide (yes vs. no) Zi9 0.07 0.05 1.07 ( 0.97, 1.19) 0.198

Arthritis (yes vs. no) Zi10 -0.01 0.06 0.99 ( 0.87, 1.12) 0.858

Fall related conditions (yes vs. no) Zi11 0.20 0.05 1.22 ( 1.11, 1.34) <0.001 *

Emergency or hospitalization (yes vs. no) Zi12 0.24 0.06 1.27 ( 1.13, 1.42) <0.001 *

Prev. fracture (yes vs. no) Zi13 0.93 0.09 2.54 ( 2.15, 3.01) <0.001 *

Prev. raloxifene or calcitonin (yes vs. no) Zi14 0.14 0.26 1.14 ( 0.69, 1.89) 0.599

Diabetes (yes vs. no) Zi15 -0.19 0.06 0.82 ( 0.73, 0.93) 0.001 *

Cumulative GC dose spline basis 1 (cont.) Basis(cum(ā))1 2.61 0.37 13.64 ( 6.63, 28.07) <0.001 *

Cumulative GC dose spline basis 2 (cont.) Basis(cum(ā))2 -0.61 1.12 0.55 ( 0.06, 4.92) 0.589

Table B.6: Likelihood ratio test for all three outcome models - Male

Outcome Models

(Eq. 4.3) (Eq. 4.4) (Eq. 4.5)

Degree of freedom 5 1 2

Pr(> chisq) 0.009 * <0.001 * <0.001 *

Table B.7: Likelihood ratio test for all three outcome models - Female

Outcome Models

(Eq. 4.3) (Eq. 4.4) (Eq. 4.5)

Degree of freedom 5 1 2

Pr(> chisq) <0.001 * <0.001 * <0.001 *
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