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Abstract

Complex traits are the result of a contribution of both genetic risk variants throughout the
genome, and environmental risk factors and their interactions. Genome-wide association studies
(GWAS) have identified some of these associated variants, but there remain two fundamental
issues to move forward in understanding the genetic etiology of complex traits: (1) The “missing
heritability” for complex traits persists, possibly in part due to lack of statistical power as a result
of insufficiently large sample sizes (2) The identity of the causal variant- a variant identified by
GWAS could result in a functional consequence, or it could merely tag the causal variant. I
hypothesize that integrating functional information, such as chemical modifications to DNA,
along with statistical data from an association study can help prioritize variants for further
analysis in both of these areas. I developed a method to prioritize genetic variants using hundreds
of functional annotations (Gagliano et al., 2014a) using penalized logistic regression. I compared
my prioritization method to two other methods that use data-trained classifiers to determine if

there is an ideal algorithm or annotation set for prioritizing risk variants (Gagliano et al., 2015a).
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In this work, I also investigated using different databases of disease-associated variants to define
genetic risk variants. The models created all had some accuracy for detecting risk variants. I
assessed the accuracy of these models using measures investigated in a review I undertook
(Gagliano et al., 2015b). Finally, I investigated if allele-specific methylation (ASM) is a useful
novel annotation to prioritize risk variants. I demonstrated that variants that exhibit ASM in brain
tissue are enriched for functional annotations, and are also enriched in sub-genome-wide

significant variants in a schizophrenia GWAS.
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Chapter 1
Why and How to Prioritize Genetic Risk Variants using
Functional Information?




1.1 Lay Summary

Humans are largely identical in our DNA sequence, but about 5% of the genome,
containing genetic differences or genetic variants, is a contributing factor as to why we
look different, and these variants partially explain why some people develop an illness
while others do not. A minority of these genetic variants falls into regions in our DNA
sequence that encode proteins and other molecules important for cellular function
(genes). Many of the genetic variants fall into known regulatory regions where they may
work in controlling or regulating gene function. The genetic variants that are harmful
(increase our risk of developing an illness) or are protective (reduce our risk of

developing an illness) are called genetic risk variants.

Since it is difficult to differentiate risk variants from all variants based on current
techniques, I developed a computer algorithm to do so based on their regulatory and other
genomic information. My method (Gagliano et al., 2014a) was published around the
same time as two other methods, but they use different computer algorithms and different
regulatory information. I decided to determine the best combination of computer
algorithm and regulatory information that most accurately predicts genetic risk variants
(Gagliano et al., 2015a). I found that there are several combinations that offer some
accuracy, but there is still a lot of room for improvement. In order to improve my
method, I refined it to examine a subset of genetic risk variants: those specifically
involved in mental health disorders. I also explored a new piece of regulatory
information: chemical modifications to the DNA that differ between alleles at
heterozygous sites. This new piece of information shows good potential for identifying
novel risk variants because the variants that exhibit this quality fall into known regulatory
regions significantly more than expected by chance. Identifying genetic risk factors helps

in earlier diagnosis and better treatment options for a range of diseases.



1.2 The human genome

It has long been known that genetic material, deoxyribonucleic acid (DNA), plays a role
in determining the phenotype or the manifestation of observed characteristics (Race et al.,

1949).

DNA is a double helical structure with a sugar-phosphate backbone (Watson and Crick,
1953) composed of two complementary strands containing a sequence of four nucleotides
(adenine, guanine, cytosine and thymine). Human DNA consists of about three billion
base pairs, and is organized into chromosomes that are stored in the nucleus of each cell
in the human body (Alberts et al., 2007). Some sections are transcribed into messenger
RNA (mRNA) by the use of enzymes and regulatory factors (e.g. transcription factors).
The mRNA is then transported to the cytosol of the cell where it is translated into a chain
of amino acids to create a protein. Three mRNA bases (which make up a “codon”)
translate to one amino acid (and there is redundancy in this genetic code, meaning that
there is more than one codon that translates to the same amino acid). Stop codons cause
the translational machinery to stop translating. For further information about transcription
and translation see this Nature Education review (Clancy and Brown, 2008). DNA also
encodes for non-coding RNA molecules (i.e. DNA does not encode for only protein),
such as micro-RNA (translation regulation), small nuclear RNAs (involved in splicing)
and small nucleolar RNAs (involved in ribosomal RNA modification) (Eddy, 2001;
Mattick and Makunin, 2006). The DNA is wrapped around proteins called histones (two
proteins each of H2a, H2b, H3, H4), which have an effect on DNA conformation, and
consequently the accessibility of the DNA sequence to regulatory factors and other
proteins (McGhee and Felsenfeld, 1980). Regulatory factors will be discussed in detail

later in Sections 1.8 to 1.13, inclusive.



1.3 Variation in the human genome

A change in nucleotide could alter the function of the stretch of DNA, and may contribute
to an observed characteristic. The different variations possible at a position (locus) are
called alleles. In our nuclear DNA, humans have two of each chromosome, one from the
father and one from the mother (apart from sex chromosomes). The set of alleles carried
across a set of loci on either the paternal or maternal chromosome are called a haplotype
(Griffiths et al., 2008). If the allele at one locus is known, then the allele present at a
nearby locus can often be inferred; this non-random association of alleles at different loci
is called linkage disequilibrium (LD) (Reich et al., 2001). During the formation of
gametes (egg or sperm) there is the crossing over of homologous chromosomes, resulting
in the exchange of DNA segments between the two chromosomes (Griffiths et al., 2008).
Different regions of the genome have different crossover frequencies. Areas of high
crossover are called recombination hotspots (Petes, 2001). In stretches of DNA where
there is a low crossover frequency the alleles at different alleles tend to segregate together
through multiple generations and hence are in high LD. As a consequence there are a
limited number of haplotypes within each region (Griffiths et al., 2008). Haplotypes and

allele frequencies differ depending on the ancestral population.

The completion of the initial draft sequence of the human genome in 2001 (International
Human Genome Sequencing Consortium et al., 2001) provided researchers with a map of
the DNA sequence, but since then mapping human variation is still being refined. Many
genotyping (e.g. HapMap Project (Altshuler et al., 2010)), and sequencing (e.g. 1000
Genomes Project (The 1000 Genomes Project Consortium, 2010)) projects in various
human populations have been possible as the price for such technologies decreases.
These large-scale projects provide insight into DNA variation, the frequencies of these

variants, and LD patterns throughout the genome in various world populations.



HapMap was conducted in three phases. Phase 1 investigated common variants (minor
allele frequency >5%) in individuals from three populations genotyping at least one
common SNP every 5 kilobases across the genome (The International HapMap
Consortium, 2005). Phase 2 genotyped a small number of individuals (n=270) from only
four human populations (Frazer et al., 2007). Phase 3 (HapMap3) provided the
opportunity to look at low frequency (rare) variants (e.g. minor allele frequency <5%) in
addition to common variants by genotyping over one thousand individuals. HapMap3
mapped 1.6 million variants in 1,184 reference individuals from 11 populations

(Altshuler et al., 2010).

1000 Genomes too has three phases and has been able to identify common and rare
variants throughout the human genome in diverse populations. Phase 1 came out in 2012,
and there were several versions of this phase published to refine the genotypes. The data
consisted of low-coverage whole-genome and high-coverage exome sequencing. This
phase is comprised of 1,092 individuals from 14 human populations across the globe with
a mean read depth of 5.1 times for over 37 million autosomal sites (1000 Genomes
Project Consortium et al., 2012). Phase 2 was primarily for methods development, and
there was no public release. Phase 3 came out in 2014, and it assessed 2,535 individuals
from a total of 26 world populations (details from the 1000 Genomes Project website:

http://www.1000genomes.org/fag/what-do-pilot-project-phase-1-phase-2-and-phase-3-

mean). Although many more variants were called in Phase 3 than Phase 1, 2.3 million
variants in Phase 1 were not in Phase 3 but these were either very low frequency or low
quality calls so may have been false positives in Phase 1. (More details on the differences
between these two phases are available from the 1000 Genomes Project website:

http://www.1000genomes.org/category/frequently-asked-questions/phase-3.)

Through these projects, genotyping and quality control procedures were further refined

for looking at variation.



The type of genetic variant that has been the focus in the HapMap and 1000 Genomes
Projects has been the single nucleotide polymorphism (SNP): at a single base position in
the DNA sequence there can be a different DNA nucleotide base that is present
depending on the individual. The 1000 Genomes Project has also investigated indels:
small insertions and deletions (Mullaney et al., 2010), microsatellites, CNVs, and

structural variants (Sudmant et al., 2015; Zarrei et al., 2015).

In the coding regions of the genome, there are different types of changes that could occur
depending on the location of the SNP in the sequence (see Box 1), which can explain
why such a variant may alter the phenotype (Griffiths et al., 2008). For variation in non-
coding regions in the genome, the biological explanation resulting in an altered
phenotype could be due to the SNP falling within the DNA binding site for a protein or

other regulatory signatures or functions such as splicing (more details in Section 1.8).



Box 1. Types of alterations in the coding regions of the genome.

Synonymous- the change that does not alter the amino acid sequence (due to the
redundancy in the genetic code). However a proportion of synonymous changes could
still have an effect on the protein. For instance, a synonymous mutation could disrupt

a splice site, or it could alter mRNA folding.

Nonsynonymous- the change that does alter the amino acid sequence. There are a few
types, and the phenotypic effect of the alteration depends on protein structure and
function. A missense change occurs in a protein, and the effect on the protein depends
on how similar (for instance, charge or hydrophobicity) the new amino acid is from
the one it is in the wild type protein. A nonsense change creates a premature stop
codon, and the effect depends at which point the premature stop codon is inserted. If
earlier on in the amino acid chain, often the more devastating the alteration is to the

protein’s structure and thus function.
Splice- a change in a site in the DNA sequence involved in splicing out introns

Frameshift- an insertion or deletion that shifts the three base-pair reading frame, thus

altering the string of amino acids translated

Another type of variation is copy number variants (CNVs), which involve a different
number of a set of ordered bases in the sequence. CNVs arise either de novo (meaning
not preset in either parent, but present in the progeny) or are inherited (Wain et al., 2009).

However, the focus of this thesis will be on SNPs.

All humans contain genetic variants. For instance, the 1000 Genomes Projects identified
around 38 million SNPs, 1.4 million short insertions and deletions, and more than 14,000
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larger deletions in their Phase 1 data (n=1,092) (1000 Genomes Project Consortium et al.,
2012). This Consortium found that on average, an individual carries approximately 250 to
300 loss of function variants in genes and 50 to 100 variants that are previously

implicated in inherited disorders (The 1000 Genomes Project Consortium, 2010).

1.4 The role of genetics in disease

The initial understanding of the genetic contributions to traits dates back to Gregor
Mendel (Mendel, 1866). Mendel bred pea plants to obtain desired traits from a series of
binary outcomes, such as smooth or wrinkled peas, long or short stems, and axial or
terminal flowers (Weir, 1990). Of course, at the time of Mendel it was not known that
variants in the DNA sequence were the causes leading to these particular traits.
Furthermore, Mendel had only been experimenting with single-gene traits or disorders
(which in the human context would include traits such as blood groups (Race et al.,
1949)). Such disorders present in the simplest case as a variant within a gene that results
in an alternate form of the protein, leading to a phenotype that deviates from the wild-
type phenotype (Antonarakis and Beckmann, 2006). The vast majority of human traits do

not follow such a simplistic mode of transmission.

Complex traits (e.g. height, blood pressure, schizophrenia, adverse drug response, for
example) are the result of genetics (possibly many variants in multiple genes and in
intergenic regions) (Lango Allen et al., 2010; Ehret et al., 2011; Schizophrenia Working
Group of the Psychiatric Genomics Consortium, 2014; Ozeki et al., 2011) and
environmental factors (Leask, 2004; Sinclair, 1989; Pickering, 1997; Vesell, 1991), as
well as possibly their interactions. Heritability is the proportion of the variance that can
be attributed to genetic variation; further details in the following review (Tenesa and
Haley, 2013). Humans contain millions of genetic variants, but not all are genetic risk
variants, or in other words are associated with a disease or trait. There are variants that
increase one’s risk of developing a trait (or disease), and there are also variants that are

protective, meaning they decrease one’s risk of developing a disease. The known
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disease/trait-associated variants do not account for all of the heritability (Manolio et al.,

2009).

Heritability does not pinpoint the genetic architecture of the disease, for instance the
number and/or types of DNA variation involved, and the frequency of those variants.
Heritability can be determined through twin-studies (Boomsma et al., 2002). It is
important to keep in mind that there are assumptions and limitations of twin-study
determined heritability. These studies assume that the environments are similar for both
twins in a pair, which is not necessarily true, but more importantly within pair
environment similarity is similar for monozygotic and dizygotic twins. Such studies also
assume an additive model of inheritance at a locus, and thus do not take into account
other models such as dominance (which need multi-generation family studies) or epistatic

effects (interactions among multiple genes), for example (Neale, 1992).

One hypothesis describing the effect of variants on a complex trait is the common disease
common variant hypothesis (Reich and Lander, 2001). One samples a large number of
individuals, some of whom are affected with the disease of interest (cases) and others
who are not (controls). Given the hypothesis, one can identify those variants that are
common enough in the population to be detected as statistically significant: variants that
have a genotype appearing more often in the cases compared to the controls or vice versa.

Variants detected by this procedure tend to have low or moderate effect sizes.

Another hypothesis is the common disease rare variant hypothesis (Schork et al., 2009).
The idea is that the disease results from rare variants (for instance, variants with the
minor allele appearing in less than 1% of the sample). Such variants are thought to have

high effect sizes (high penetrance), but they can also have more moderate effects.

Likely, the genetic component attributed to complex diseases is a result of both common

and rare variants both with varying effect sizes, in addition to other factors such as gene-



environment interactions. Researchers have used a variety of techniques to find those

variants.

1.5 Identification of genetic variants involved in disease

Identifying associated variants among all variants is important for advances in medical
care (Manolio, 2013). Knowledge of the variants results in information about the role of
genes, and pathways in disease, which can provide mechanistic insight. This information
ultimately can help with diagnosis, and in personalizing treatment (for example, using
genetic information to improve the selection of medication that is most likely to not have

negative side effects and/or is most likely to be effective in treating symptoms).

There has been an evolution of methods employed to identify the genetic variants that
modify (increase/decrease) one’s risk of developing a complex trait as technologies and

methodologies have developed.

Linkage studies were conducted using family data (for example, Lathrop et al., 1984).
Alleles on one chromosome co-segregate together with another allele on another
chromosome with 50% probability. Alleles on the same chromosome co-segregate at a
rate related to the distance between them on the chromosome: the recombination fraction.
Two loci are linked when the recombination fraction is less than one half. A trait was said
to be linked to a locus if the recombination fraction was less than half (assessed through
parametric studies) (Terwilliger and Ott, 1994). Non-parametric studies were developed
for complex traits and include quantitative trait linkage studies which correlate sharing of
chromosomal segments among relatives with their similarity for a given trait (Purcell et
al., 2003). These studies identify broad regions making it difficult to pinpoint precise
locations in the genome that are associated with the outcome (phenotype) of interest.
Genome-wide scans were initially conducted using microsatellite markers and restriction

fragment length polymorphisms (for example, (Rice et al., 2000)).
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To refine the resolution of the detected associated loci, studies were then carried out
comparing the frequencies of alleles or genotypes in a set of unrelated individuals with
the trait/disease of interest (cases) and a set of individuals without that particular
phenotype (controls) in particular genes. Alternatively, family-based association methods
can also be used (Ott et al., 2011). Keeping in mind the costs associated with genotyping,
rather than interrogating variants throughout the entire genome, variants in a subset of
genes were assessed. These candidate gene association studies are hypothesis-driven
association studies where genes with potential biological evidence, for instance for
possible association with the phenotype, are selected. Variants in those regions are tested
for association with the phenotype in a sample of individuals (Tabor et al., 2002). These
studies look at correlations between genotype and a phenotype. There can be relatively
simple biological rationale to implicate variants in genes as disease-causing. A variant
that produces a different amino acid or stop gain or stop loss could affect the protein
structure and thus function, and contribute to the observed characteristic. Unfortunately,
few significant findings identified through candidate gene studies have replicated in
larger samples, suggesting that most candidate gene study findings may be spurious (Hart
et al., 2013). However, one of the few examples of a gene that came up as associated to a
phenotype that has been replicated in many larger genome-scan studies was the
association between the epsilon4 haplotype of the apolipoprotein E (4POE) gene and
Alzheimer’s disease (Combarros et al., 2002; Lambert et al., 2013).

As microarray technology developed, genome-wide association studies (GWAS) became
increasingly popular (and less expensive) in the mid/late 2000s and the genome was able
to be interrogated by genotyping individuals at variants present on genotyping arrays.
GWAS have been successful in identifying risk variants for complex diseases and traits
(for example, (Jostins et al., 2012; Schizophrenia Working Group of the Psychiatric
Genomics Consortium, 2014)), but much of the heritability is still unaccounted for.
GWAS are association studies where variants throughout the genome are tested (using

regression for instance) one-by-one for an association with the trait of interest. Since
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GWAS do not only assess associations between SNPs in candidate genes and the
phenotype of interest, associations between never-before implicated loci and disease can
be detected. For instance, through GWAS, for Crohn’s disease, loci in genes involved in
autophagy have been discovered, and it is because of these studies that it is now

understood that autophagy plays a role in Crohn's (Xavier et al., 2008).

The Wellcome Trust Case Control Consortium set the standards for sample size and
analysis pipelines. They identified risk variants for seven common diseases using over
14,000 cases and a set of shared controls (Wellcome Trust Case Control Consortium,
2007). Quality control procedures for both SNPs (e.g. genotyping rate, Hardy-Weinberg
equilibrium) and individuals (e.g. population stratification) are important (Anderson et
al., 2010). This latter point relates to the importance of ensuring that a homogenous
population is used in GWAS because the association of a SNP with the trait of interest
may be confounded by that SNP being associated with ancestral differences between the
cases versus the controls (Anderson et al., 2010). These procedures and the association

analysis can be conducted in tools such as PLINK (Purcell et al., 2007).

GWAS interrogate variants on a genotyping array platform, and are useful for identifying
common variants. Such array platforms are offered by several companies including
Affymetrix and Illumina. Through projects such as HapMap and through technological
advances, the arrays have been updated. For example, more variants have been added to
new arrays over the years. The variants on the arrays have been selected largely because
of their LD correlation with many other variants, and thus able to cover a vast amount of
the genome; these variants are not necessarily chosen because they are likely to have
functional consequences (Edwards et al., 2013). Additionally, there are specialized arrays
for investigating a subset of traits (for example: Barrans and Liew, 2006; Cortes and
Brown, 2011; Voight et al., 2012). These specialized arrays contain customized content
informative for the trait of interest, such as SNPs in or close to genes that are likely

candidates for the disease.
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Procedures and software for imputing the genotypes at other variants have been
developed. Such software take advantage of LD patterns in the genome in reference
samples, and examples include Impute2 (Howie et al., 2009) and Minimac2 (Fuchsberger
et al., 2014). In imputation, missing genotypes are estimated based on haplotypes from a
cosmopolitan population. Imputation is useful for combining samples that were
genotyped on different arrays as well as for fine-mapping signals at an associated locus
(Verbeek et al., 2012). Moreover, imputation can also be used to investigate low-
frequency and rare variants at a genome-wide level; for instance see Surakka et al. (2015)

where they imputed in over 62,000 samples to identify novel loci involved in lipid levels.

As mentioned, GWAS arrays mainly contain common variants. More recently,
sequencing has become cheaper and faster (through technological advances). Whole-
genome (or whole-exome) sequencing interrogates the genome (or the exons of genes:
the exome) more thoroughly than genotyping arrays, including the less frequent (rare)
variants. There can be low power due to small sample size to detect associations with less
frequent variants. In order to address these issues, in addition to testing single-variants for
association with the phenotype, several gene-based (or region-based) tests have been
developed such as the combined multivariate and collapsing (CMC) method (Li and Leal,
2008), C-alpha (Neale et al., 2011), and sequence kernel association test (SKAT) (Wu et
al., 2011). CMC is a burden test, whereas C-alpha and SKAT are non-burden. Burden
tests collapse rare variants in a defined region into a single burden variable (Lee et al.,
2012), whereas non-burden tests do not. Burden tests work best when the variants
themselves are responsible for disease risk (i.e. not just tagging the variant resulting in
the effect because they are in high LD with each other) and all influence risk in the same
direction, whereas non-burden tests are more flexible, having the power to detect the
effects of variants whether increasing risk or protective. There is evidence supporting the
impact of rare variants in many complex diseases and traits ranging from
neurodevelopmental disorders such as autism (Krumm et al., 2015) to lipid levels

(Surakka et al., 2015). Similar to GWAS, for sequencing too, there have been some novel
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associated variants identified (Cirulli et al., 2015; Sanders et al., 2012), but a large
proportion of risk variants still remain undiscovered due to small sample sizes, variants

with small effects, or a focus on the coding sequence, for instance.

1.6 Characteristics of disease-associated variants

As more and more variants that predispose individuals to disease have been identified,

efforts have been made to share this knowledge with the scientific community.

In the literature there is no consistent term used to describe risk variants; different terms
all have some nuances. MacArthur et al. (2014) differentiates between pathogenic
variants (those that contribute mechanistically to the disease that may not be alone
sufficient to cause the disease) from damaging (those that result in altered levels or
function of a gene or gene product, but may not have a pathogenic effect), for example.
Regardless of more specific categorization, these variants may be able to be used to

partially predict risk of disease in the individuals that carry them.

There are several databases that report genetic risk variants. One example of a database
includes the National Human Genome Research Institute (NHGRI)-European
Bioinformatics Institute (EBI) Genome-wide association study (GWAS) Catalogue
(Hindorff et al., 2010)), which catalogues genetic variants from a GWAS. Another
example of a database is the Human Gene Mutation Database (HGMD) (Stenson et al.,
2009). It reports variants for all known genetic mutations responsible for causing classes
of human inherited diseases from the peer-reviewed literature. ClinVar (Landrum et al.,
2014), another database, reports relationships between medically important variants
(variants that result in a health-related phenotype) and phenotypes. HGMD and ClinVar
largely contain SNPs, but they are not restricted to this type of variation; for instance they
contain insertions, deletions and repeat variations as well. (See Box 2 for more details on

these databases.)
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Box 2. Databases of Genetic Risk Variants.

GWAS Catalogue This Catalogue started in 2010 as a manually curated collection from the
literature of variants associated with complex diseases or traits that looked at a minimum of 100,000
SNPs in the initial stage. The Catalogue moved to a new website through the European Bioinformatics

Institute (EBI) in March 2015: http://www.ebi.ac.uk/gwas/. It contains variants from GWAS studies

with a combined p-value <1.0x107 (discovery plus replication populations), and studies are excluded if
they were restricted to just candidate genes, not published in the English language, if samples were to
assess somatic mutations (e.g. tumor samples), or if the study does not include any new GWAS data.
Information is extracted from PubMed searches using terms “genome-wide” OR “genome AND

identification” OR “genome AND association”, with limits on the current year and human status.

HGMD Available at http://www.biobase-international.com/product/hgmd, there is a public

(free) and professional (paid) version. The public version is less up to date and provides less
information on the variants (for instance, neither chromosome number and base position nor rsID). The
database was first made publically available in 1996. It was first established to catalogue variants in
human genes that cause inherited disease, but has since been expanded to germ-line disease-related
functional variants (Stenson et al., 2009). It reports mutations for all known gene lesions responsible for

causing human inherited disease from the peer-reviewed literature.

ClinVar The database (at http://www.ncbi.nlm.nih.gov/clinvar/) does not include unreviewed

data from GWAS studies, but accepts variants identified through clinical testing and literature curation.
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There are design differences among the databases. For example, variants in the GWAS
Catalogue are explicitly not necessarily the disease-causing variants. Furthermore, the
Catalogue includes variants that are not just associated with diseases per se (also with
complex traits: for example height and platelet count among many others). With regard to
HGMD, the variants in the database have been included based on multiple (and vastly
different) lines of evidence. For instance, some have evidence of direct functional
relevance, while others are predicted to alter the length of a resulting gene-product but
there is no reported disease association (Stenson et al., 2009). What is more, there is not
necessarily 100% penetrance of the variants, and there is an inherent bias to variants
found in genes (because originally the database was created to study mutational
mechanisms in human genes). As for ClinVar, variants are correlated with the trait in a
clinical sample, but there is not necessarily 100% penetrance. Different clinical labs often
have different opinions on the clinical significance of the same genetic variant (Rehm et
al., 2015). Variants can be inputted into the database if evidence of causality is seen in a

sample of one, such as from a clinical testing lab (Landrum et al., 2014).

The difference in design leads to fundamental differences between the variants in the
GWAS Catalogue and HGMD (and ClinVar), such as minor allele frequency. HGMD
variants have significantly lower minor allele frequencies compared to the GWAS

Catalogue variants (Figure 1.1).
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Figure 1.1. Violin plots depicting minor allele frequency distributions for GWAS Catalogue versus
HGMD variants

GWAS = autosomal variants present in the GWAS Catalogue (with p<5 x 10™) downloaded August 7,
2014 (n=3,618); HGMD= autosomal variants in the HGMD database as of the 4™ quarter of 2013 provided
to Ensembl that are found with an rsID identifier in the 1000 Genomes Project (n=4,862). (Note that
HGMD variants without chromosomal and base position information provided were not considered.) Minor
allele frequencies were obtained from the European population of the Phase 1, version 3 of the 1000
Genomes Project (n=379). The violin plot shows the density distribution of the variants, and the summary
statistics presented in a box plot. The density is shown by the smooth lines that make up the “body”, and
the box plot is the black box inside the “body”. The white dot is the median, and the box outlines the 25%
and 75% percentiles. The lower and upper whiskers on the plot represent the 25% percentile minus
1.5*IQR and the 75% percentile plus 1.5*¥IQR, respectively. If the data does not extend as far as those
calculated ranges, then the whisker is plotted at the value of the minimum or maximum data point. [IQR=

interquartile range]

Variants in these two databases differ with regard to position: GWAS Catalogue variants

are vastly non-exonic (>70%), whereas HGMD variants are vastly exonic (~70%).
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However, there are some similarities. The GWAS Catalogue variants and HGMD
variants shown in Figure 1.1 fell into 1,510 (42% genes/number of SNPs) and 1,835
(38% genes/number of SNPs) RefSeq genes, respectively, and of those genes 308 were in
common. However, there is nearly no overlap between the actual variants in the GWAS
Catalogue with either HGMD or also with ClinVar pathogenic variants, likely due to the

frequency of the variants in the GWAS Catalogue compared to the latter two.

Databases of variants have been used in various papers in order to define genetic risk
variants. In my work described later in this thesis (Chapter 3) (Gagliano et al., 2014a), in
my best performing models I defined risk variants as those variants present in the GWAS
Catalogue with an association p-value lower than the accepted threshold for genome-
wide significance, 5 x 10™ (Pe’er et al., 2008). Iversen et al. (2014) also used variants
from the GWAS Catalogue, regardless of their association p-value, but confined to
studies that used an Affymetrix and/or Illumina array. Moving away from GWAS,
Ritchie et al. (2014) was specifically interested in regulatory variants, and defined such
variants as those present in the public version of HGMD that are regulatory (n=1,614).
They used variants labelled as pathogenic from ClinVar that do not overlap with HGMD
as a validation of their tool, called GWAVA. Shihab et al. (2015) also used variants in
HGMD.

The above briefly highlights that current databases of risk variants have different
characteristics and overlap with functional annotations with different frequencies. The
implications of these differences will be considered further in the analysis of Chapter 5

and in the discussion, Chapter 7.

1.7 Gap in variant identification with GWAS

There are many as yet uncharacterized risk variants. There are still two points
surrounding the detection of disease-associated variants from GWAS that my thesis will

aim to address:
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(1) Still undiscovered loci (i.e. “missing heritability’’) (Manolio et al., 2009)
(2) Causal variant identification (i.e. GWAS-implicated loci comprise of multiple
variants in high LD, identifying which variant(s) in the locus is disease causing:

“causal”/“functional/directly influencing the phenotype)?

What needs to be done (applicable to both of the above points) is prioritization of
variants. Prioritizing which variants are potentially disease-causing, provides researchers
with a smaller set of variants on which to follow-up (for instance, to attempt replication
of findings or to perform in vitro or in vivo studies to determine the functionality of the

variants).

To illustrate the first point, missing heritability, height will be used an example. 16% of
the phenotypic variability in height is explained by 697 known GWAS loci (Wood et al.,
2014). 45% is explained by all genotyped variants (imputation was not considered) (Yang
et al., 2010), but 80% is explained by twin studies (Silventoinen et al., 2013). The
missing heritability lies between the all genotyped variants’ contribution (45%) to the
variance calculated through twin studies (80%). This gap begs the need for larger sample

sizes or new approaches.

The second point relates to fine-mapping (Edwards et al., 2013): determining the causal
variant in a locus (where locus refers to a region of high LD in the DNA sequence) that is
associated with the phenotype of interest. The need for fine-mapping is a limitation of
GWAS. GWAS identify associated loci, such variants are not necessarily the disease-
causing variant; indeed, any variant in high LD with the associated variant may be causal.
There could be more than one causal variant at a locus as well. This need for fine-
mapping motivated the creation and use of specialized genotyping chips, for example

using the immunochip (Lenz et al., 2015), and sequencing.
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For prioritization, many methods focused on variants (often nonsynonymous) within
genes because these variants have an easily explained biological rationale: a direct effect
on the protein or gene function. Example of such methods include SIFT (Ng and
Henikoff, 2003) and PolyPhen (Adzhubei et al., 2010). SIFT predicts whether an amino
acid substitution will have an effect on the protein function based on evolutionary
conservation and how much the predicted biochemical properties differ between the
altered amino acid from the expected one. PolyPhen uses a combination of conservation
and three-dimensional structure to predict damaging mutations. Another method looked
at the functionality of synonymous variants (SilVA) (Buske et al., 2013), albeit it is rare
to have synononymous changes that are harmful in comparison to nonsynonymous

changes (Buske et al., 2013).

For genetic variants that do not fall into the coding sequence, adding additional
information to genotype can offer biological explanations as to why these non-coding
variants are associated with a phenotype. Epigenetic and other functional genomic
information may be useful in prioritizing which variants are risk variants. Such data will

be discussed in the next section.

My work aims to create in silico tools to help researchers either fill some of the void of
missing heritability or to select the best variants for follow-up by functional studies. I will
be prioritizing SNPs from GWAS studies combining statistical and functional genomic
information together to address both points. What makes my work novel is that it
incorporates more functional genomic data than previously published methods, and also

investigates the use of phenotype-specific prioritization models.
1.8 Functional genomic information

There are a number of types of functional annotations that are not within the
“boundaries” of a gene (loosely defined). A well-known example is the promoter region.

Promoters are regions upstream of a gene, which recruit the proteins required for that
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gene to be transcribed (Baumann et al., 2010). Core promoters have been identified based
on the location in relation to genes (e.g. the 30 base pairs upstream from the transcription
start site) (Griffiths et al., 2008). Another example is enhancer regions. Enhancers are
regions in the DNA sequence that recruit transcription factors through specific motifs
binding in order to accelerate transcription (Spitz and Furlong, 2012). These locations can

also be defined based on epigenetic marks.

Epigenetic modification covers a broad range of functional annotations. The term
signifies “over” genetics, and encompasses chemical modifications to the DNA that do
not alter the DNA base sequence itself (Griffiths et al., 2008). In some cases, DNA
regions are identified to have a regulatory signature based on the proteins that bind to
them. Histones, for instance, are proteins that the DNA wraps around to maintain its
conformation, and they play an active role in transcription. Histone modifications are
chemical groups added to the histone proteins. Depending on the histone modifications,
the adjoining DNA sequence has different roles in transcription. Such modifications
include H3K27Ac (acetylation of the twenty-seventh lysine of H3, which is associated
with active enhancers), H3K4Mel (monomethylation of the fourth lysine residue of H3,
which is associated with poised enhancers or with active enhancers if it is in combination
with H3K27Ac), and H3K4Me3 (trimethylation of the fourth lysine of H3, which is
associated with active promoters if it is in combination with H3K27Ac) (Shlyueva et al.,

2014).

Another example of an epigenetic modification is DNA methylation, which involves the
enzymatic addition of a methyl group to the carbon-five position on cytosine residues
(Griffiths et al., 2008). Furthermore, there are other forms of epigenetic DNA
modifications (e.g. hydroxymethylation), and methylation is not specific to cytosine

bases (Lister et al., 2013).

There are many sources of publically available functional genomic information. There are

large consortiums that have generated a range of data such as the Encyclopedia of DNA
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Elements (ENCODE) and the Epigenomics Roadmap Projects. There are also other
specific types of functional annotations that have been generated by a variety of different
groups and published, such as expression quantitative trait loci (¢QTLs) and conservation

measurcs.

1.9 ENCODE

The goal of the ENCODE project was to map the functional elements in the genome: a
segment of the genome that either encodes a defined product such as a protein, or has a
biochemical signature (e.g. transcription factor binding site or some other protein binding
site) or a specific chromatin structure (e.g. accessible open chromatin) (The ENCODE
Project Consortium, 2011). ENCODE was the first large collaborative international
project to undertake such an ambitious task. Experiments have been performed by many
groups in numerous human immortal cell lines and tissues, and also in mouse. A
limitation is that most of the ENCODE data are from (immortal) cell lines (“tier 17 cell
types, see section 1.10.1), with a limited amount of data from actual tissue. Immortal cell

lines may not reflect the actual biology in normal cells and tissue (Kashyap et al., 2011).

ENCODE data (https://www.encodeproject.org/) have been generated following

standardized guidelines, and the data have been uniformly processed to ensure
robustness. Some key insights from this project include: many non-coding variants fall
into ENCODE-annotated functional regions, many associated variants identified through
GWAS are enriched in non-coding functional elements, and there is conservation of these

elements among primates (The ENCODE Project Consortium, 2012).

The UCSC Genome Browser (Meyer et al., 2013) Table Browser tool (Karolchik et al.,
2004) and the FTP site (ftp://hgdownload.cse.ucsc.edu/goldenPath/hg19/database/)

provide access to data related to mapping and sequencing, genes, expression, regulation,

comparative genomics and variation and repeats, many of which are from ENCODE.
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Various wet laboratory methodologies were employed to determine the genomic sites of
these functional annotations. DNase I hypersensitivity can be detected by FAIRE or
DNase-seq, for example. The histone modifications and transcription factor binding sites
are detected by ChIP-seq. For FAIRE, chromatin is cross-linked with formaldehyde in
vivo, sheared by sonication, and phenol-chloroform extracted. The DNA recovered is
fluorescently labelled and hybridized to a microarray (or sequenced) to get its sequence
(Giresi et al., 2007). For ChIP-seq, formaldehyde is used to cross-link proteins to DNA.
Sonication shears the chromatin to a target size of 100 to 300 base pairs, and the protein
of interest bound to DNA is then isolated with an antibody specific for the factor (e.g.
transcription factor or histone modification). Those DNA fragments can then be

sequenced (Landt et al., 2012).

1.10 Evaluation of functional annotations from ENCODE

This section delves into some ENCODE data available. I highlight some issues relating to
the data including cell lines, and measure choice. I also provide some details about two

annotations below: transcription factor binding sites and DNase I hypersensitive sites.

1.10.1 ENCODE cell lines

The ENCODE Project has categorized various cell lines into three tiers, Tiers 1 through
3, where Tier 1 cell lines have the highest priority with regard to designing the functional
experiments. There are three Tier 1 cells (GM12878, H1-hESC, K562), and around 15
Tier 2 cells. The original Tier 2 cell lines were HeLa-S3, HepG2, and HUVEC, and the
remaining (A549, CD20+, CD20+ RO01778, CD20+ RO01794, H1-neurons, IMR90,
LHCN-M2, MCF-7, Monocytes-CD 14+, Monocytes-CD14+ RO01746, Monocytes-
CD14+ ROO01826, SK-N-SH) were added afterwards. Most of the experiments have data
from all Tier 1 cells that can be accessed as separate from the other cell types. However,

the presence of the Tier 2 cells is sparser (see Table 1.1).
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Table 1.1. Cell types (tiers) for some ENCODE Regulation data tables/tracks

Table

Cell Types *

DNase Clusters
(v2)

(wgEncodeReg
DnaseClustered

V2.bed.gz)

GM12878 HI-hESC K562 A549 HeLa-S3 HepG2 HUVEC Monocytes-CD14+ RO01746 CD20+ HMEC

DNase Clusters
(v1)

(wgEncodeReg
DnaseClustered

.bed.gz)

GM12878 HI-hESC K562 A549 HUVEC HeLa-S3 HepG2 MCF-7 Monocytes-CD14+ SK-N-SH_RA

UW DNase [
HS

Gm12878 HIhESC K562 A549 CD20+ R0O01778 Hela-S3 HepG2 HUVEC LHCN-M2 Monocd14

Monocd14ro1746

Duke DNase I

Gm12878 Hl-hesc K562 A549 CD20+_R0O01794 HeLa-S3 HepG2 HUVEC Monocd14 SK-N-SH 8988t
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Txn factor

Transcription factors: AP-2alpha AP-2gamma ATF3 BAF155 BAF170 BATF BCL11A BCL3

ChIP BCLAF1M33-P5B11 BDP1 BHLHE40 BRCA1C-1863 BRF1 BRF2 Brgl CCNT2 CEBPB c-Fos CHD2N-
1250 c-Jun c-Myc CtBP2 CTCF CTCFC-20 CTCFLSC-98982 CTCFSC-5916 E2F1 E2F4 E2F6 E2F6H-50

(wgEncodeReg | EBF EBF1C-8 eGFP-FOS eGFP-GATA2 eGFP-HDACS eGFP-JunB eGFP-JunD eGFP-NR4A1 Egr-1

TfbsClustered. ELF1SC-631 ELK4 ERalphaa ERRA ETS1 FOSL1SC-183 FOSL2 FOXA1C-20 FOXA1SC-101058

bed.gz) FOXA2SC-6554 GABP GATA-1 GATA-2 GATA2CG2-96 GATA3SC-268 GCN5 GR GRp20 GTF2B
GTF2F1RAP-74 HA-E2F1 HDAC2SC-6296 HEY1 HMGN3 HNF4A HNF4AH-171 HNF4GSC-6558 HSF1
Inil IRF1 IRF3 IRF4M-17 JunD KAP1 MafFM8194 MafKab50322 MafKSC-477 Max MEF2A MEF2CSC-
13268 MxilbHLH NANOGSC-33759 NELFe NF-E2 NF-E2H-230 NFKB NF-YA NF-YB Nrfl NRSF Oct
p300 p300F-4 p300N-15 PAX5-C20 PAXS5-N19 Pbx3 PGC1A Pol2 Pol2-4H8 Pol2b Pol2phosphoS2 Pol3
POU2F2 POUSF1SC-9081 PRDM1Val90 PU.1 Rad21 RFX5N-494 RPC155 RXRA SETDBI Sin3Ak-20
SIRT6 SIXS5 SMC3ab9263 SP1 SP2SC-643 SPT20 SREBP1 SREBP2 SRF STAT1 STAT2 STAT3 SUZ12
TAF1 TAF7SQ-8 TAL1SC-12984 TBP TCF12 TCF4 TFIIIC-110 THAP1SC-98174 TR4 USF-1 USF1SC-
8983 USF2 WHIP XRCC4 YY1 YY1C-20 ZBTB33 ZBTB7ASC-34508 ZEB1SC-25388 Znf14316618-1-
AP ZNF263 ZNF274 7773

Layered GM12878 H1-hESC K562 HUVEC

H3K4Mel/

H3K4Me3/

H3K27Ac

Broad Histone-
H3K4Mel,
H3K4Me3,
H3K27Ac

GM1278 H1-hESC K562 A549 (conditions: Dex" or EtOH) HeLa-S3 HepG2 HUVEC
Monocytes-CD14+ RO01746

Transcription

(RNA-seq)

GM12878 HI-hESC K562 HeLa-S3 HepG2 HUVEC LHCN-M2 Myoblast LHCN-M2 Myocyte 7d MCEF-7

* Tier 1; Tier 2;

“ dexamethasone. Credits for each data set available on the UCSC site.

ENCODE accession numbers for UW DNase I, HS, Duke DNase I, and Broad Histone- HeK4Mel,
H3K4Me3 and H3K27Ac are listed in Appendix D.
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The cell types that have data vary depending on the functional annotation. Limiting the

analysis to certain cell types will limit the data available for each annotation.

1.10.2 “Peaks” versus “Signals’

Histone data are available in tables for peaks (the “BroadHistone” tracks in the table
browser) and signals (“Layered” tracks in the table browser). Details are found here

http://genome.ucsc.edu/cgi-bin/hgTrackUi1?g=wgEncodeBroadHistone, but in brief

signals are based on density and are given for each base pair position while peak scores
are based on regions of statistically significant enrichment based on the signal from
controls (measurement of background abundance in the genome). The signal is a function
of the cell counts that contain the modification of interest. The peak scores are more
informative than the signal data (i.e. density) in our application of these data as a
predictor of SNP functionality. In this analysis we are most interested in genomic regions
enriched with the functional annotation, which would be the peak scores as they are
based on regions of statistical significance from comparing the signals in the experiments
to the signals from the corresponding control set. Moreover, other tracks, including

DNase clusters as well as Txn Factor ChIP also used standardized scores (on a scale of 0-

1000) based on peaks.1

1.10.3 DNase Hypersensitivity- DNase Clusters, UW DNase | HS,
Duke DNase | HS

There are several tracks available for DNase I hypersensitivity: two UW (UW DNase [
HS and DNase Clusters) and one from Duke (Duke DNase I HS).

! The peak scores have been standardized to fall between 0 and 1000. The input signal values were
multiplied by a normalization factor: the ratio of the maximum score value (1000) to the signal value at one
standard deviation from the mean, and values exceeding 1000 were assigned to 1000. The peak score for
the interval is the mean signal value across the interval.
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UW DNase I HS and Duke DNase I HS gives individual tables for each cell type, while
DNase Clusters amalgamate the cell types together. The UW HS track shows DNase I

sensitivity measured in different cell lines using Digital DNase I methodology (in brief,
DNasel digestion of intact nuclei, isolating DNasel fragments, and direct sequencing of

fragment ends).

The Duke DNase I HS shows the locations of regulatory elements identified as open
chromatin in multiple cell types using DNase I HS assays. There is more coverage
compared to UW HS as assessed by the total length of base pair regions present in each

of these tracks.

The DNase Clusters track contains a score based on peaks for genomic regions. See
Figure 1.2 for the score distribution. This track additionally provides the number of
experiments or cell lines in which the results were significant (range: 2-148). There is no
correlation between number of experiments and score although the latter distribution may

be influenced by the cut-off of 1000.

With regard to coverage among the tracks, the DNase Clusters table combines
information from all the cell lines from both the UW and Duke groups and has the most
genomic coverage (13%). However, as mentioned this track provides peak scores for all
of the cell types together rather than a peak score for each cell type as do the tracks for
the UW and Duke groups.
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Figure 1.2. Peak score distributions for the DNase | Clusters table for human chromosome 3

1.10.4 Txn Factor ChIP

Peak scores are provided for several cell lines, and the overall score reports the highest
peak score from among all the cell lines for the particular transcription factor. See Figure

1.3 for the distribution of the transcription factor binding peak scores on chromosome 3.
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Figure 1.3. Transcription factor binding sites peak scores for human chromosome 3

Analyzing the scores according to each cell type shows that all of the cell types have data
available (e.g. none of the cell lines have complete missing data), and the ranges vary for
the various transcription factors, and some factors are more represented than others.
Interestingly, most (76%; 128,928 of the 170,219 results) of the chromosome 3 data have
transcription factor binding site data from only one experiment (i.e. one cell line). There
is no preference as to which cell line has the most non-zero scores, and so the presence of
the epigenetic mark only in other cell types will be lost if only certain cell types are

considered or if each transcription factor is assessed by a per cell line basis.

1.11 Roadmap Epigenomics Project

The NIH Roadmap Epigenomics Project (Roadmap Epigenomics Consortium et al.,

2015) http://www.roadmapepigenomics.org/ is a large consortium to map the epigenome,

specifically DNA methylation, DNA accessibility (e.g. histone modifications and DNase

I hypersensitivity), and RNA expression in humans (n=111). There are differences
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between ENCODE and Roadmap. ENCODE tends to use cell lines; for instance, for
brain-level results, ENCODE uses two cancerous cell lines both in Tier 3: glioblastoma

and neuroblastoma (http://genome-mirror.duhs.duke.edu/ENCODE/cellTypes.html),

which may not reflect the epigenetic patterns found in non-tumor cells. Roadmap
assesses functional elements in stem cells and primary ex vivo tissues. For stem cells,
there is evidence of stochastic random changes in the epigenome as stem cells divide
(Yatabe et al., 2001), and thus again such cells are not ideal for investigating the
epigenome in a living system. The tissue-level data available through Roadmap is a
closer source to the patterns exhibited in a living system. There are still factors to
consider, for instance when post-mortem samples are used to acquire brain tissue
samples, the cells are dead, and thus the amount of time after death the tissue was
collected and analyzed is important (the postmortem interval) (Birdsill et al., 2011; Dodd
et al., 1988). Although there are advantages to the Roadmap data compared to ENCODE,
since tissue-level data more accurately represent the epigenomic architecture in living
systems, there are still limitations such as epigenomes may differ in the different cell
types within the tissue, and the use of post-mortem brain tissue. Additionally, epigenetic

marks can be missed in cells that have low numbers in the tissue.

1.12 eQTLs

There are a number of expression quantitative trait loci (eQTLs) databases. eQTLs are
regions in the DNA sequence that affect expression of nearby genes (cis-eQTLs) or
distant genes (trans-eQTLs). Older GTEx (Genotype-Tissue Expression) eQTL Browser
data can be accessed through http://www.ncbi.nlm.nih.gov/gtex/GTEX2/gtex.cgi, and the

more recent data on dbGAP or through their new portal at

http://www.gtexportal.org/home/ (The GTEx Consortium, 2013). Most of the data from

the older studies are from microarray gene expression experiments. Expression studies
commonly use microarrays to measure gene expression, but there are limitations to this

methodology that RNA-sequencing can overcome (e.g. novel genes and non-coding or
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microRNAs cannot be assessed by arrays, and alternative splicing is generally not taken
into account). The older version of GTEx contains data, primarily microarray data, from
four studies (Montgomery et al. 2010, Schadt et al. 2008, Gibbs et al. 2010, Stranger et
al. 2007) in lymphoblastoid cells, liver, or four brain regions (cerebellum, frontal cortex,
pons, or temporal cortex). The newer data are RNA-sequencing data from a variety of
human tissue (n>40) including whole blood, brain, lung and stomach from a total of

1,421 samples (The GTEx Consortium, 2013).

A tissue-specific dataset is available through the UK Brain eQTL Consortium (UKBEC)

www.braineac.org (Trabzuni et al., 2011), which identifies eQTLs in brain tissue.

UKBEC data are based on microarray experiments. The consortium is currently
generating RNA-sequencing data that will also be made publically available. Many eQTL
studies perform their analyses on whole tissue, rather than specific regions. UKBEC,
however, has performed RNA-sequencing on targeted regions in the brain: substantia
nigra, putamen, and hippocampus in a large number of post-mortem unaffected brains

(N=150).

1.13 Conservation measures

Conservation of a stretch of DNA sequence among ancestrally-related species (for
instance among placental mammals) could suggest that that region of DNA plays an
essential role in normal function. Thus, variants in conserved areas may be more likely to

have functional consequences than variants outside of such areas (Frazer et al., 2003).

Common measures of conservation are PhyloP (Pollard et al., 2010), PhastCons (Siepel
et al., 2005) and GERP (Cooper et al., 2005). PhlyoP and GERP are conservation
measures for a single DNA nucleotide, whereas PhastCons provides a score for a small
region of DNA. Genomic Evolutionary Rate Profiling (GERP) is a score referring to the

conservation of each DNA nucleotide in multi-species alignment. Positive scores indicate
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a site is under evolutionary constraint, whereas negative scores may suggest accelerated

rates of evolution.

Both PhyloP and PhastCons scores are derived from the PHAST package, which makes
use of phylogenetic hidden Markov models. According to the UCSC website, these two
measures have their own advantages. PhyloP scores do not take into account conservation
at neighbouring sites, whereas PhastCons estimates the probability that each nucleotide
belongs to a conserved element. PhyloP is more effective at analyzing “signatures of
selection” whereas PhastCons' strength is in detecting conserved elements

(http://genome.ucsc.edu/cgi-bin/hgTables).

Regarding the actual data, I compared the base coverage and score distribution for
PhyloP and PhastCons scores for 46 placental mammals. Both datasets have the same
coverage of the genome (98.20%). Data points, or in other words: scores at specific
SNPs, are not available for download. Instead, for both measures, the downloadable file
provides the lower limit, range, and sum of all the data points in regions. The average
score for each region was calculated by dividing the sum of all the data points by the
number of valid data values in the block. These distributions are both positively skewed

(Figure 1.4).
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Figure 1.4. Distribution of mean conservation scores for human chromosome 3 for placental
mammals

[a] Distribution of PhyloP mean scores. [b] Distribution of PhastCons mean scores.

1.14 Dimension reduction for functional annotations

The above outlines some of the available functional data. There have been methods
proposed to integrate these data and thus reduce the dimensionality of the functional data.
Ernst et al. (2011) divided the genome into chromatin states based on several histone
modifications through the use of a multivariate hidden Markov model. They focused on
cell type-specific patterns of promoters and enhancers to define a map of chromatin states
across nine human cell types in six general categories: enhancer, promoter, insulator,
transcribed, repressed, and inactive states. These chromatin states can be visualized using
the webserver ChroMoS (Barenboim and Manke, 2013). The knowledge of chromatin
state can help inform the functional impact of the variant, but a limitation is that other
types of annotations that may be important for function (e.g. DNase I hypersensitive sites

or transcription factor binding sites, for instance) are not included.
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Another tool is Segway (semi-automated genomic annotation), which proposes that DNA
segments fall into seven “flavours” (Hoffman et al., 2012). The authors trained a dynamic
Bayesian network method, simultaneously on chromatin data from multiple experiments
to categorize the genome into the flavours. Unlike the chromatin states described above,
Segway uses multiple sources of functional annotations: histone modifications and

transcription factor binding sites, and DNasel hypersensitive sties.

1.15 Rationale for uses of regulatory genomic information

The rationale for believing that epigenetic and other genomic information can be useful
for identifying risk variants among all variants is that numerous studies have
demonstrated the enrichment of associated variants from GWAS and other trait or
disease-associated variants with such characteristics. Emerging experimental data from
various sources have suggested that the functional annotations of specific genomic
regions, such as histone modifications, DNase I hypersensitive sites, transcription factor
binding sites, and expression quantitative trait loci (¢QTL) among others, could offer
biological explanations for many variants found to be associated with disease (Hindorff et
al., 2009; Knight et al., 2011; Nicolae et al., 2010). This evidence all suggests that
functional information has the potential to be included in statistical learning algorithms to
differentiate genetic risk variants from non-risk variants based on their overlap with

various functional annotations.

Below I will highlight a few key papers published shortly after the publication of data
from the ENCODE Project featuring those ENCODE results that demonstrate an

enrichment of genetic risk variants for various functional genomic characteristics.

Schaub et al. (2012) showed that putative disease-associated variants (GWAS Catalogue
SNPs) and variants in high linkage disequilibrium (LD) with those variants show
significant enrichment for multiple functional annotations from the ENCODE Project.

Maurano et al. (2012) also found enrichment in GWAS variants or variants with which
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they are in high LD. The authors looked specifically at DNase I hypersensitive sites, and
found that the GWAS variants are more frequently localized to DNase I hypersensitive
sites than would be expected by chance. Maurano et al. also showed that the level of
enrichment for subsets of GWAS Catalogue variants associated with a particular trait
depends on the cell/tissue type considered. Further evidence for varying level of
enrichment was presented in Farh et al. (2015). They created an algorithm and used
permutation to estimate the posterior probability that an individual SNP is a causal
variant given the haplotype structure and observed pattern of association at the locus for
autoimmune-associated loci. They observed that their identified causal SNPs were
enriched in enhancers (i.e. H3K4Mel and H3K27Ac histone marks) that were mapped in

immune cells (Farh et al., 2015).

The enrichment of GWAS variants has been found in other functional sources in addition
to ENCODE data. Hnisz et al. (2013) showed that trait-associated genetic variants from
GWAS are enriched in super-enhancers (large clusters of enhancers associated with
genes involved in cell identity, for instance encoding cell-type-specific transcription
factors) and to a lesser degree in enhancers in general. Furthermore, the Roadmap
Epigenomics Consortium also showed an enrichment of GWAS Catalogue variants with
this consortium’s data (e.g. histone marks and DNase I) across all of their epigenomes

interrogated (Roadmap Epigenomics Consortium et al., 2015).

Hindorff et al. (2009) and Knight et al. (2011) showed enrichment of SNPs from the
GWAS Catalogue for several functional annotations using a random sampling of SNPs
from the HapMap II European-ancestry (CEU) population or from GWAS genotyping

arrays, respectively.

Similarly, enrichment of risk variants from sources other than the GWAS Catalogue with
such characteristics have been demonstrated, such as enrichment of variants in the

HGMD (Ritchie et al., 2014).
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Given that risk variants are enriched in functional information, these data can be used to
help with the two points that remain outstanding for disease-implicated loci: to identify

novel risk variants and to identify the causal variant at a disease-associated locus.

The next section describes the evolution of methods used to incorporate functional

genomic data to prioritize genetic risk variants.

1.16 Using functional genomic information to prioritize

genetic risk variants

Originally ad hoc methods were utilized for incorporating functional information, from
which investigators could make their own conclusions on the functionality of a variant.
For instance, user-friendly tools that process data from ENCODE and other sources were
developed that show the overlap of variants with various genomic annotations, and based
on that one can comment on the variants’ causality. Examples of such tools include
HaploReg (Ward and Kellis, 2012) and RegulomeDB (Boyle et al., 2012) (see Table
1.2). HaploReg shows the overlap of the variant of interest (and also variants at user-
defined pairwise-LD cutoffs with that variant) with annotations from ENCODE and other
sources. RegulomeDB also incorporates several annotations from ENCODE and other
sources. The latter uses a categorical scoring system, but the scale is crude. Likely causal
variants are those that are expression quantitative trait loci (¢QTL) and at the same time
fall in transcription factor binding sites and DNase I hypersensitive sites. These SNPs are
more highly ranked with regard to likely having an effect (i.e. affect binding of factors
and expression of a gene). SNPs that are not eQTLs, regardless of whether they fall into a
transcription factor binding site or DNase I hypersensitive site, are placed in a category of
SNPs less likely to be functional. Variant identifiers can be inputted into these tools in
order to either decide which are suitable candidates for follow-up or which should be
included in an association study. For example, in a candidate gene study on
antipsychotic-induced weight gain (Gagliano et al., 2014b) (see Appendix B), I inputted
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into HaploReg the variant that showed the highest evidence for association with the

phenotype to examine its functional potential.

Table 1.2. Selection of online tools that are available for showing overlap of variants,

including noncoding variants, with functional annotations

Goal Input Output Annotations used Utility Caveat
RegulomeDB (Boyle et al., 2012)
A database that annotates | Multiple Categorical DNAse I, Can download all Categorical
SNPs with known and including: score where the | transcription the dbSNP 137 outcome
predicted regulatory dbSNP IDs, highest scoring factors, and SNPs for each limited; LD
elements in the intergenic | BED or VCF SNPs are likely | promoter regions category between
regions of the human files, hgl9 to affect binding | (sources: GEO, SNPs not
genome coordinates; and gene ENCODE) taken into
expression account
HaploReg (Ward and Kellis, 2012)
Tool for exploring List of 1sIDs; | Annotates ENCODE LD threshold Annotates
annotations of the single region; | inputted SNPs (histone marks, available from SNPs but
noncoding genome at selecta (and proxies) proteins bound, 1>0.2 (based on does not
variants on haplotype GWAS based on DNase I), 1KG phase 1) provide a
blocks, such as SNPs at location conservation, score/
disease-associated loci. motifs changed, prediction
etc.

1KG= 1000 Genomes Project

There are also publically available databases specifically designed to look at transcription
factor binding sites, such as MAPPER2 (Riva, 2012), and JASPAR (Mathelier et al.,
2013; Sandelin et al., 2004). These tools either contain transcription factor binding sites
that are predicted computationally or have been observed experimentally. MAPPER2
contains putative transcription factor binding sites (upstream of genes in the promoter and

the initial introns) in the genomes of human, mouse, and drosophila. JASPAR contains

37



curated experimentally-derived transcription factor binding motifs from many

eukaryotes, including human.

Then came methods that produce a score or rank describing how likely the variant is to be
functional or in other words is a genetic risk variant by combining lots of functional data
together. Some of these methods are specifically for the integration of functional

information with statistical association data from conducted GWAS.

Schork et al. (2013), for example, looked at enrichment of genic elements (e.g.
intergenic, intron, exon, etc.) in various GWAS using summary statistics taking into
account LD. They suggest the use of stratified False Discovery Rate (sSFDR) to rank
variants. A limitation to this methodology is that the FDR is dependent on the study’s

data and thus ranks cannot necessarily be extrapolated to other studies.

Some of these methods provide a posterior probability to rank the variants in the locus.
For instance, Knight et al. (2011) reported Bayes factors for annotation (based on three
annotations: eQTLs in open chromatin, nonsynonymous SNPs, SNPs in promoters) for
each SNP. They propose that these Bayes factors should be combined with the
corresponding Bayes Factor for association from a GWAS. This study had a limited
number of annotations. Thompson et al. (2013) looked at binary predictor variables (such
as whether or not a variant is in a functional protein domain or whether or not the variant
is in a gene expressed in tissue relevant to the phenotype) using a logistic regression
model, and they incorporate GWAS data. A limitation is that some of their predictor
variables were subjective (e.g. in a gene with protein-protein interactions relevant to the
phenotype) based on expert GWAS investigators’ opinions described in Minelli et al.
(2013), and also they had a limited number of predictor variables (n=15) (Thompson et
al., 2013).

The online tools in Table 1.3 are additional tools that all give some sort of score or

posterior probability to SNPs. A downside to these methods in the table is that they are
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only applicable to GWAS that have already been conducted since they require summary
statistics (information summarizing the strength of the association with the phenotype for

each SNP such as odds ratios, test statistics and p-values).

Table 1.3. Selection of online tools that are available for prioritizing genetic variants,
including noncoding variants, requiring either association study data or summary

statistics

Goal Input Output Annotations Utility Caveat

used

Multi-threshold (and Multi-marker) Association Study Analysis: MASA (Darnell et al., 2012)

To compute an Case/control Z-score and p- Annotations Provides an Data must be
association statistic GWAS data, values for each used as prior association p- in Beagle
taking into account prior | reference SNP information — value for each (Browning
information (multi- haplotype ENCODE data SNP corrected for | and
thresholding akin to file, marker multiple testing Browning,
varying the significance file (either Bonferroni | 2007) format
threshold at each marker or permutation)

depending on prior info)
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Table 1.3. Selection of online tools that are available for prioritizing genetic variants,
including noncoding variants, requiring either association study data or summary

statistics (continued from previous page)

Goal Input Output Annotations Utility Caveat

used
Probabilistic Annotation INTegratOR (PAINTOR) (Kichaev et al., 2014)
Fine-mapping- prioritize Association Posterior Need to add Estimates the Restricted to
causal GWAS variants info (i.e. Z probabilities; your own contribution of empirical
using association stats score), LD Gamma (effect annotation each annotation GWAS data
and genomic functional info (e.g. size) estimates columns from summary
info (maximum from 1KG) & stats; accounts for
likelihood estimation annotations LD; allows
using an application of (e.g. multiple causal
Bayes Theorem) ENCODE) variants at a locus
fgwas software (Pickrell, 2014)
Test whether SNPs that GWAS data Posterior DNase I HS, Input own GWAS | Assumes
influence a trait are (SNP IDs, probabilities; the Chromatin state | data and only a single
enriched or depleted in allele association data, gene annotations to get | causal SNP
certain genomic frequency, Z- | statistics for each annotations used | posterior in a given
annotations (using a score, sample | SNP in the in the paper; for | probabilities for genomic
penalized likelihood to size of study) | genome and in fgwas, need to genomic regions region;

get posterior probability + genomic each region as add own and/or each SNP restricted to
that a SNP in a given data input estimated by the annotations in the genome empirical
genomic region is causal) model GWAS data
Phenotype Driven Variant Ontological Re-ranking tool (Phevor) (Singleton et al., 2014

Integrate phenotype, Phenotypes; Phevor score for Ontologies: Not limited to Individual
gene function, & disease output from each gene Human known disease- diagnostic
data with genomic data other variant Phenotype, associated analysis;
for improved power to prioritization Mammalian genes/variants; depends on
identify disease-causing tools (e.g. Phenotype, useful for single reliability of
alleles by using both PhastCons) Disease, & Gene | exome and trio- input (e.g.
variant prioritization Ontologies based diagnostic ontologies)

tools and biomedical

ontologies

analyses (i.e.

clinical scenarios)
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Additional methods are trained directly on known risk variants from databases through
employing supervised statistical/machine learning algorithms that output a
score/probability inferring the likelihood of a SNP to be functional. These methods are
most versatile since they can be used to score SNPs without requiring GWAS summary
statistics, and thus their utility is not limited to following up GWAS signals from an

existing study.

Kindt et al. (2013) published a permutation approach examining the enrichment or
depletion of a subset of GWAS Catalogue SNPs (p<5x10) in the annotations
investigated in two previous papers (Hindorff et al., 2009; Knight et al., 2011), and also
added in a number of genic and regulatory features, conserved elements and chromatin
states. They report odds ratios of the annotations (from logistic regression) signifying
which annotations are more likely to contain significant associated SNPs, which can be
used to prioritize GWAS hits for further studies. Although the Kindt et al. method uses
risk variants from a database, a limitation is that a SNP is not actually given a

score/probability as to how likely it is have a functional consequence.

In a Bayesian framework, Iversen et al. (2014) incorporated multiple annotations (for
example, genomic location, DNase I hypersensitivity, and scores from databases such as
RegulomeDB (Boyle et al., 2012)) and was able to improve the ranks of known
associated variants in a GWAS of ovarian cancer. This method produces posterior
probabilities for each SNP, but a limitation is that a script or program to implement the

method is not made available.

None of the studies mentioned above considered using a phenotype-specific analysis:
creating a model to specifically identify risk variants for a particular disease. Although
Iversen et al. (2014) tested their model on a GWAS of ovarian cancer, their model was
not specifically trained to identify variants specific to such a phenotype since they trained
their model on all GWAS Catalogue variants. Additionally, none of the studies

considered the issue of cell/tissue-specificity for the annotations. These studies used
41



annotations that integrated all of the cell types together as a unified annotation. For

instance, the DNase Clusters track provided by ENCODE unifies the cell types together

to define DNase I hypersensitive sites (see section 1.10.3). Of the selection of data-

trained online tools in Table 1.4, the first three do consider cell/tissue-specificity for the

annotations.

Table 1.4. Selection of online tools that are available for prioritizing variants, including

noncoding variants, based on data-trained algorithms

Goal Input Output Annotations used Utility Caveat
(Gagliano et al., 2014a)

To prioritize GWAS SNPs for | List of SNPs Bayes factors 14 with cell types LD between SNPs | Model needs
follow-up based on functional | (or GWAS for annotation amalgamated taken into account | to be rerun to
data (Used a version of elastic | summary data | (and Bayes together: for annotating; include new
net to train data on genome- if want to factors for ENCODE (DNase | precomputed annotations
wide significant SNPs in the apply the association if I, TFBS, histone Bayes factors for

GWAS Catalogue (“hits”) vs. method using GWAS marks, 1KG SNPs

SNPs not present in the directly to summary data) conservation, available on

Catalogue (“non-hit”)) GWAS) eQTLs, etc.) website

train a neural net (Quang et al., 2014)]

Combined Annotation-Dependent Depletion (CADD) (Kircher et al., 2014) [DANN- uses the published CADD training data to

To prioritize functional,
deleterious and pathogenic
variants across many
functional categories, effect
sizes and genetic architectures
(Used support vector machine
to train data—half human
derived allele variants, half
simulated; DANN uses
identical training set, but
employs a deep neural net

instead.)

VCF file
containing up
to 100,000

variants

C score (raw
and scaled) for
each variant
with option to
include the
underlying

annotations

63 distinct:
Ensembl Variant
Effect Predictor16
(VEP), data from
the ENCODE
Project,
information from
UCSC Genome

Browser tracks

Webserver to get
precomputed C
scores for 8.6
billion human

SNPs

Arbitrary C
score cut-off
to define
deleterious;
Model needs
to be rerun to
include new
annotations;
>1 line of
output for
variants in
multiple

genes
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Table 1.4 Selection of online tools that are available for prioritizing variants, including

noncoding variants, based on data-trained algorithms (continued from previous page)

Goal Input Output Annotations used Utility Caveat
Genome-wide annotation of variants (GWAVA) (Ritchie et al., 2014)
Tool for prioritizing non- rsIDs, regions | Prediction 174: ENCODE Interactive Classifier
coding variants by integrating scores from 3 (DNase I, Txn webserver to get based on
genomic and epigenomic data different factors, histone scores; Python HGMD
(Used modified random forest versions of the marks), scripts and data SNPs, so not
to train data on HGMD SNPs classifier (based | conservation, available on FTP as effective
vs. matched or unmatched on different genic & sequence site for GWAS
control sets) control sets) contexts SNPs
Silent Variant Analyzer (SilVA) (Buske et al., 2013)
Random-forest based method VCF file of Variant rank out | All related to Score provided, Only for
for prioritizing ranking (and the variants of all synonymous but authors stress synonymous
scoring) synonymous variants (SilVA will synonymous SNPs: Sequence that the rank is the | SNPs; run on
that are likely to be functional | only analyze variants conservation, more important local
synonymous) | considered; splice sites/factor output computer,
SilVA score, motifs, RNA but need
between 0 and 1 | folding energy, wget
codon usage and software, etc.
CpG content
FunSeq2 (Fu et al., 2014)*
To identify noncoding genetic | Cancer Variant reports 7 binary: Can provide own Intended for
somatic drivers in cancer; 2 variants that identify functional features, and own somatic
steps: creation of data context, | (BED/VCF); novel annotations gene networks or cancer
and variant prioritization gene list sensitive/ultra- (DNase HS, etc.) use those supplied | variants in
(optional) sensitive 4 continuous: genes (can
differential regions based motif- download a
gene on networks; breaking/gaining file with
expression Candidates File score, GERP scores for all
data with potential score, etc. noncoding
(optional) candidates variants)

*Not completely data-trained because weights are derived for each variant independently based on its annotations, i.e. a

model is not created per se in a training set and then applied to the test set variants
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There are numerous statistical learning algorithms from which to choose to create data-
trained prioritization models. These algorithms must be able to handle the features of the
functional data: correlations among predictor variables, and a large quantity of both
samples and predictor variables. A few of the algorithms that have such characteristics

include: penalized regression, random forest, and support vector machine.

For regression models, to prevent overfitting, a penalty needs to be incorporated to
prevent the coefficients from getting too large due to the correlated functional data. In the
case of logistic regression, there is a binary outcome variable, for instance risk versus

non-risk variants. A continuous probability outcome can also be obtained.

Random forest constructs a series of decision trees to separate two classes (risk versus
non-risk variants. The resulting model is created by averaging the decision trees together
(Malley et al., 2011). A subset of features (functional annotations in the context of
genetic variant prioritization) is considered at each node in the tree. In the case of a
simple presence or absence of the sample with the feature, there are only two decisions at
the node. A simple example could be at a node, if a variant falls into a splice site, it will
go to one side, and if it does not then it will go to the other side. The algorithm will rank
the features based on how many times they appear in the tree, and thus how important

they are in differentiating the two classes.

Support vector machine separates data using a hyperplane in multi-dimensional space.
The shape of the decision boundary depends on the kernel function (Malley et al., 2011).
The most basic kernel is linear, where the samples are separated linearly (for instance, the
risk separated from the non-risk variants in the realm of genetic variant prioritization).
However, more mathematical functions, such as polynomials, can be used to separate

data as well (Ben-hur and Weston, 2007).

All algorithms have their advantages and disadvantages. Regression has the advantage

over other algorithms that the importance of the predictor variables are easy to determine
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by means of the magnitude of the beta coefficient assigned to each predictor variable.
However, that being said, regression is not scale-invariant, and thus scaling or not scaling

the predictor variables will affect the model (Abdi et al., 2013).

Random forest has a bias to include continuous features into the model (Strobl et al.,
2007). However, this bias can be mitigated by selecting appropriate parameters (for

instance, the minimum number of samples at which to stop constructing the tree).

There are packages written in freely available coding languages to perform all of these

algorithms (see Table 1.5).

Table 1.5. Non-exhaustive selection of available packages for performing some statistical

learning algorithms in R and Python

R package Python package
Penalized regression glmnet LogisticRegression in scikit-
learn
Random forest e1071, party, randomforest | RandomForestClassifier in

scikit-learn

Support vector machine el071 svm in scikit-learn

These algorithms can be applied to genetic variant prioritization. The input can be a set of
variants: some labelled as risk variants and other labelled as non-risk variants, and all the
variants are annotated with their functional information. These data can then be fed to the
algorithm, which will consequently produce a prediction score for each variant (the
probability of it being a risk variant) and a variable importance measure for each
annotation demonstrating how important it is in differentiating the risk from the non-risk

variants (Figure 1.5).
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Variable importance measure

for each annotation

Variants (annotated + class label) . Algorlthm

Prediction score for each

variant

Figure 1.5. Input and output variables for statistical learning algorithms in the context of genetic
variant prioritization

For all of these algorithms, it is important to train the data (i.e. create the model) in one
dataset, and then apply it and test its accuracy in an independent dataset (Smialowski et
al., 2010). A model may be highly accurate in differentiating the risk variants from non-
risk variants in the training dataset, but that does not necessarily mean that such a model
is flexible enough to be applied to new data. A model that has high accuracy in training
data, but does very poorly when applied to a novel dataset, is referred to as being over-fit.
This model is too specific and sensitive to the fine-scale characteristics of the training set,
which makes it uninformative in any other dataset. Thus, over-fit models are not useful as

they do not have broad applicability.

For the test set, there are certain predictive accuracy measures (statistical tests and
visualization techniques) that are most appropriate for evaluating data-trained models for
prioritizing genetic risk variants. These data tend to have the characteristic of consisting
of imbalanced classes: a very high proportion of non-risk variants and a small proportion
of risk variants. This class imbalance, and other factors unique to genetic data (for
instance linkage disequilibrium, allele frequency, etc.), warrant exercising caution when
interpreting the results of predictive accuracy measures that are applied to such models. I

undertook a thorough investigation of such measures (Chapter 4).

Referring back to the methods in Table 1.4, Gagliano et al. (2014a), Ritchie et al. (2014),
and Kircher et al. (2014) all have data-trained classifiers. They use a supervised statistical

learning algorithm (i.e. algorithm is given the task to differentiate between assigned risk
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variants and non-risk variants) to create a model that assigns the functional annotations
various degrees of importance relative to each other, which is based on an annotated
dataset containing both risk and non-risk variants. The model can then be used to
generate prediction values or scores for each genetic variant on which the model is
applied (probabilities of how likely the variant will belong in the risk variant class).
These methods differ in the algorithm, annotation set, and how the risk and non-risk are
defined. These methods are described in detail in Chapter 5. The method cited as
Gagliano et al. (2014a) is described in Chapter 3.

Iversen et al. (2014), and Pickrell (2014) are in the context of a Bayesian framework.
Both consider two Bayes factors: Bayes factors for annotation and Bayes factors for
association. My method Gagliano et al. (2014a) (extending on the backbone of the
method first presented in Knight et al. (2011)) can also be applied in a Bayesian
framework. However, there are fundamental differences in the Bayesian methods for my
work compared to these two others. Gagliano et al. and Iversen et al. calculate the Bayes
factors for annotation and the Bayes factors association in separate data, whereas Pickrell
calculates both sets of Bayes factors on the same dataset. With regard to Gagliano et al.
and Iversen et al., the former uses a regularized logistic regression called elastic net,
whereas the latter employs a Bayesian shrinkage method. For dealing with LD among the
genetic variants, Gagliano et al. applied the annotations from variants in LD to the
GWAS variant, whereas Iversen et al. tested each LD-block separately. Iversen et al.
defined LD-blocks as the SNP plus its LD partners. Again, my method will be further
described in Chapter 3.

In summary, many of these genetic variant functional annotation and/or prioritization
methods have been made available as either online or downloadable tools to be run on a
local system, making these tools accessible for researchers to integrate into their
association analyses. Some of these methods simply show the overlap of variants with

various functional annotations, while others are specifically meant to be applied to
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GWAS summary data, and still others are data-trained producing a prediction score

applicable to numerous contexts.

1.17 Impact

A better understanding of the genetic architecture of complex disease leads to a more
comprehensive understanding of the biological pathways responsible for the pathology.
This enhanced knowledge is the driving force enabling the development of novel
therapies and personalized treatments to provide relief for millions of people who suffer
worldwide. The evidence discussed here of enrichment of known risk variants with
functional data suggests that the use of existing functional data can help illuminate the
genetic factors involved in complex disease in silico. More variants are being identified
(for instance, through sequencing projects such as the 1000 Genomes Project), and more
functional genomic data is constantly being made available (for instance, through the
Roadmap Epigenomics Project). The challenge now is to integrate these data together in

order to identify novel risk variants.
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Chapter 2
Thesis Aims and Hypotheses
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2
2.1 Aims and Hypotheses

The primary aim of this thesis is to develop a prediction model using statistical learning
that is able to differentiate between genetic variants that increase or decrease one’s
chance of developing a complex illness or trait from those that are not associated with
such an outcome. Each genetic variant is given a probability (between 0 and 1) for how
likely it is to be a disease-associated variant. This aim can be used to identify novel
disease-implicated loci, as well as the variant causing the phenotypic effect at a known
locus. Alongside, I compare my method to other similar existing methods (which use
different statistical learning algorithms, different functional annotations, and different
definitions of risk variants). I conduct a thorough comparison of the respective algorithms
and functional annotation sets to determine the combination with the best predictive
accuracy by exploring various predictive accuracy measures. Finally, I perform analyses

of a new annotation for prioritizing associated variants in the GWAS.
The specific hypotheses tested are the following:

1) A method can be developed to incorporate functional annotations to predict risk
genetic variants defined as those that are associated with a complex disease/trait in

humans.

2) By combining different statistical learning algorithms and functional annotation sets
that exist in the literature, a more accurate model for genetic risk variant prioritization

can be created.

3) A novel annotation based on allele-specific methylation is a relevant annotation to

include for genetic variant prioritization.
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2.2 Structure of the thesis

This thesis is composed of four studies. In the first study, I describe in detail my method
for prioritizing genetic risk variants. I then investigate statistical and visualization
techniques that are appropriate in the context of assessing the accuracy of methods for
genetic variant prioritization based on functional genomic information. Following that, I
provide a comparison of my prioritization method with two other methods. I use my
observations of the most informative measures from my predictive accuracy investigation
to assess the various models. The final study focuses on a novel type of functional
information that can be incorporated into the prioritization procedure: allele-specific

methylation.
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Chapter 3
A New Method to Prioritize Genetic Risk Variants using
Functional Information

This chapter is modified from the following: Gagliano SA, Barnes MR, Weale ME,
Knight J (2014) A method to incorporate hundreds of functional characteristics with

association evidence to improve variant prioritization. PLoS ONE 9: €98122.
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3
3.1 Abstract

The increasing quantity and quality of functional genomic information motivate the
assessment and integration of these data with association data, including data originating
from genome-wide association studies (GWAS). We used previously described GWAS
signals (“hits”) to train a regularized logistic model in order to predict SNP causality on
the basis of a large multivariate functional dataset. We show how this model can be used
to derive Bayes factors for integrating functional and association data into a combined
Bayesian analysis. Functional annotations were obtained from the Encyclopedia of DNA
Elements (ENCODE), from published expression quantitative trait loci (eQTL), and from
other sources of genome-wide characteristics. We trained the model using all GWAS
signals combined, and also using phenotype specific signals for autoimmune, brain-
related, cancer, and cardiovascular disorders. The non-phenotype specific and the
autoimmune GWAS signals gave the most reliable results. We found SNPs with higher
probabilities of causality from functional annotations showed an enrichment of more
significant p-values compared to all GWAS SNPs in three large GWAS studies of
complex traits. We investigated the ability of our Bayesian method to improve the
identification of true causal signals in a psoriasis GWAS dataset and found that
combining functional data with association data improves the ability to prioritize novel
hits. We used the predictions from the penalized logistic regression model to calculate
Bayes factors relating to functional annotations and supply these online alongside

resources to integrate these data with association data.

3.2 Introduction

Genome-wide association studies (GWAS), which investigate the association between
genetic variation and phenotypic traits, have identified many loci associated with human

diseases (Hindorff et al., 2010). However, despite considerable advances, much of the
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estimated heritability remains unaccounted for. Purcell et al. (International Schizophrenia
Consortium et al., 2009) showed that single nucleotide polymorphisms (SNPs) from
GWAS with sub-genome-wide significant p-values account for a considerable proportion
of the variance in independent samples suggesting that they are enriched for causal SNPs
or their proxies. The issues of small sample size, low minor allele frequency, and lack of
linkage disequilibrium (LD) between genotyped SNPs and the un-genotyped causal SNPs
present challenges to detecting truly causal variants among near-significant genetic

associations.

The central challenge in the interpretation of genetic associations lies in the processing
and meaningful integration of a hugely diverse range of information. Having derived a
score for a region containing a candidate variant, it has to be integrated with association
evidence. We proposed the use of empirically derived weightings within a Bayesian
framework (Knight et al., 2011). More recently Schork et al. suggested the use of
stratified False Discovery Rate (sSFDR) and Darnell et al. proposed multi-thresholding in
a manner that they say is equivalent to varying the significance threshold at each marker
depending on the prior information (Darnell et al., 2012; Schork et al., 2013). In order to
implement these approaches one needs to define appropriate weights. For instance,
Schork et al. (2013) used an LD-weighted scoring algorithm, and Kindt et al. (2013)
recently published a multivariate logistic regression approach. However, neither of these
approaches is easily scalable to the very large number of functional annotations that are

becoming available.

The primary objectives of this study are to describe an empirically justified method to
identify which functional annotations are best correlated with GWAS hit SNPs, to
provide clues to the etiology of such traits, and to develop and implement a method to
incorporate functional annotations with statistical information in association studies. To
achieve these objectives we use a machine learning approach, elastic net (a regularized

logistic regression), to predict causality of a SNP based on information from 439
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functional annotations. We explore models based on all GWAS significant SNPs and also
subsets of significant SNPs selected on the basis of phenotype and p-value. Functional
annotations are considered individually or in groups. We report a) the accuracy of the
predictions to demonstrate the utility of the method and to investigate the behaviour of
the different models, b) the frequency, correlation between and coefficients of the
functional annotations providing insight about their functional relevance to disease, c) a
prediction score for each SNP, and d) details of how to combine this score with

association statistics in a formal Bayesian framework.

We provide online scripts that can be employed so the method can be used by other
researchers using additional functional annotations

(http://www.camh.ca/en/research/research_areas/genetics and_epigenetics/Pages/Statisti

cal-Genetics.aspx). For the best models we provide the probability of causality (the

prediction score) for each SNP, the corresponding Bayes factor (BFanmot) and scripts to

combine BF ot with GWAS association signals.

3.3 Methods
3.3.1 Representative GWAS SNPs

To represent the characteristics of a typical GWAS panel, markers from the Affymetrix
Genome-Wide Human SNP Array 6.0, the Illumina Human1M-Duo Genotyping
BeadChip, and the [llumina HumanOmnil-Quad BeadChip were downloaded from the
UCSC genome browser, using the table browser tool (Karolchik et al., 2004). The union
of these three arrays consisted of 1,936,864 unique SNPs from the 22 autosomes.
Because of its unique LD and genic properties, the MHC region (chr6:29,624,809 -

33,160,245 on build 37) was excluded from downstream analyses.

LD proxies or “tagging” SNPs (1°>0.8) for the GWAS panel SNPs were identified using
VCFtools (Danecek et al., 2011) based on data from the (N=379) Europeans (Phase I,
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version 3, March 14, 2012) in the 1000 Genomes Project (The 1000 Genomes Project
Consortium, 2010).

GWAS “non-hits” were defined as all those SNPs in our union GWAS set, which were
neither a GWAS “hit” (see below), nor in high LD (1*>0.8) with a GWAS hit.

3.3.2 GWAS hits

To obtain a set of SNPs (and their LD proxies) with good prior evidence of causality, we
downloaded the Catalogue of Published Genome-wide Association Studies from the
National Human Genome Research Institute (NHGRI)
(http://www.genome.gov/gwastudies) (Hindorff et al., 2010) on August 6, 2013. This

catalogue contains a list of SNPs that have been shown to be associated with a particular
trait in a GWAS at a suggestive p-value <10. There were 13,708 entries from a total of
1,664 different studies with publication year ranging from 2005 to the date of download
(Figure 3.1). We removed SNPs in the Catalogue that were not present in the
representative GWAS set defined above, and similarly removed SNPs on the sex

chromosomes or in the MHC region, and a total of 8,405 SNPs remained.
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GWAS Catalogue- Aug. 6, 2013
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Figure 3.1. Number of publications with data in the GWAS Catalogue.

Regardless of whether a publication had one or several variants in the Catalogue it was only counted once.

All SNPs in our GWAS hit and GWAS non-hit sets, along with all their LD proxies, were
annotated with all the functional annotations defined below. Each GWAS hit and non-hit
SNP was then given the maximum value for each functional annotation found across all

its LD proxies.

3.3.3 Functional annotations

We acquired functional data from a variety of sources (Table 3.1). A full list is provided
in Table S1 available from the online PLOS ONE publication:
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0098122. In

brief, the GTEx eQTLs have been separated into 7 samples (separated by study and for

one of the studies, also by tissue). The three histone marks are separated into 18 cell types

each. There are 148 transcription factor binding sites. There are DNase I data from 100

cell types from Duke University data and 122 from the University of Washington. Much
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of the data was downloaded from the UCSC Genome Browser using the table browser
tool (Karolchik et al., 2004). Additionally, a substantial proportion of the data was
derived from the Encyclopedia of DNA Elements (ENCODE) Project Consortium, which
developed and implemented a range of experimental techniques with the aim of
identifying the functional regions of the human genome, particularly including non-
coding regions (The ENCODE Project Consortium, 2011). Data from this project that
were used included transcription factor binding sites (TFBSs), three histone
modifications (H3K4Mel, H3K4Me3, H3K27Ac), and DNase | hypersensitive sites.
H3K4Mel is associated with enhancers and DNA regions downstream of transcription
starts, and often found near regulatory elements; H3K4Me3 is associated with promoters
active or poised to be active, and often found near promoters; H3K27Ac thought to
enhance transcription possibly by blocking repressive histone mark H3K27Me3, and
often found near active regulatory elements. The technologies for identifying the
functional annotations mentioned above were chromatin immunoprecipitation followed

by sequencing (ChIP-seq).

DNase I hypersensitive sites are regions in the genome with high affinity of being
cleaved by the DNase I enzyme. The University of Washington (UW) group identified
DNase I hypersensitive sites using Digital DNase 1. This method involves DNase I
digestion of intact nuclei, isolation of DNase I “double-hit” fragments, and direct
sequencing of fragment ends. Peaks are regions that are enriched in the captured fraction
of the DNA suggesting they are occupied by the protein of interest (any score > 0). The
DNase I hypersensitive sites from the Duke University group were identified using

DNase I assays. We used a binary variable to indicate whether a SNP was within a peak.

Two types of conservation scores from 46 placental mammals (PhyloP and PhastCons)
were incorporated. Both PhyloP and PhastCons scores are derived using phylogenetic

hidden Markov models. These two measures have their own advantages. PhyloP scores
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do not take into account conservation at neighbouring sites, whereas PhastCons estimates

the probability that each nucleotide belongs to a conserved element.

Expression quantitative trait loci (eQTLs), which are variants that are correlated with
gene expression, were included. In particular those that fall within 2Mb (+/-1Mb
upstream and downstream) (cis-eQTLs) of the gene of interest were used. These data
were derived from the NCBI-hosted GTEx Browser
(http://www.ncbi.nlm.nih.gov/gtex/GTEX2/gtex.cgi) (Montgomery et al. 2010, Schadt et
al. 2008, Gibbs et al. 2010, Stranger et al. 2007) and the UK Brain Expression

Consortium (www.braineac.org) (Trabzuni et al., 2011).

Summary information concerning the location or function within a gene (coding-non-
synonymous, coding-synonymous, splice site, untranslated regions, etc.) was derived
from dbSNP (version 137). Non-synonymous SNPs, were classified as those SNPs with
one of the following annotations: stop-gain (nonsense), missense, stop-lost, frameshift or
inframe indel. Splice site regions were defined as being within five base pairs upstream
and five base pairs downstream of the exon start site or the exon end site. The UCSC
gene table was used to determine the exon start and end sites. The UCSC gene table is
comprised of a set of gene predictions based on data from RefSeq, GenBank, the
Consensus Coding Sequence (CCDS) variable, Rfam, and the Transfer RNA Genes
variable. (This track has since been replaced by Gencode tracks.) Additional annotations
used were 3' targets for microRNA (miRNA), and also transcription start sites as
described by Gencode (Harrow et al., 2012). As miRNA targets are known to be
substantially over-predicted, we used a conservative miRNA target dataset based on
conserved mammalian microRNA regulatory target sites in the 3' UTR regions of Refseq

Genes, as predicted by the TargetScan algorithm (Human 5.1) (Lewis et al., 2005).
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Table 3.1. Summary of functional annotations

ChIP Seq experiments; (“peaks”)

absence in any
TFBS)

Functional Description Number and detail of measures
characteristic used in the analysis*
analysed Clumped | Separated
ENCODE data
UW DNase | Data from digital DNasel methodology, N/A 122
hypersensitive sites |Replication 1 samples; (“peaks”)
Duke DNase I Positions of open chromatin by FAIRE and N/A 100
hypersensitive sites [ChIP-seq experiments; (‘“peaks”)
DNase Clusters Stringent (FDR 1% threshold) for “peaks” of 1 N/A
(v2)** DNase I hypersensitivity from uniform

processing by the ENCODE Analysis Working

Group of data from UW and Duke
Txn Factor ChIP  |Transcription factor binding sites (TFBS) from |1 (presence or | 148 (separated

by TF, but not
by cell type
due to sparse
data)

(scores range from 0.1 to 1.0 in this dataset)

Broad Histone — All are assayed using ChIP-Seq; (“peaks”) 3 (each histone |54 (each
H3K4Mel, mark grouped | histone mark
H3K4Me3, by the 18 cell | separated by
H3K27Ac types and/or cell type and/or
conditions) conditions)

Conservation
PhyloP Average scores can be calculated as the sum of |1 1

scores divided by the number of valid data

values in the block (scores range from 0.1 to

2.2910)
PhastCons Average scores can be calculated as for PhyloP |1 1

Expression quantitative trait loci

eQTL- GTEx

cis-eQTLs, p<1x10~ cut-off for variants within
2Mb of the expressed gene.

1 (any eQTL)

7 (separated by
dataset)

eQTLs - UK Brain

cis-eQTLs, FDR<1% cut-off for variants within
2Mb of the expressed gene.

1

1

Other characteristi

(V)

UCSC Genes

UCSC known Gene

Splice sites

Splice site region defined as -5 to +5 range
around exon starts & exon ends of UCSC Genes

transcription start
sites

(version 17, June 2013)

Nonsynonymous  |Coding Nonsynonymous SNPs defined as stop- |1 1
SNPs gain (nonsense), missense, stop-lost, frameshift
or inframe indel
TS miRNA sites Conserved mammalian microRNA regulatory 1 1
target sites for conserved microRNA families
Gencode Based on the GENCODE Genes variable 1 1

* All SNPs are annotated in a binary fashion indicating the presence or absence of a functional annotation, except for the conservation

scores, for which the

** The DNase Clusters v2 file was created by combining the UW and Duke DNase I data that have been uniformly processed and
replicates merged. Stringent (FDR 1% thresholded) peaks of DNase I hypersensitivity from uniform processing by the ENCODE
Analysis Working Group were applied. Grouping the UW and the Duke DNase I hypersensitive variables are not equivalent to the
DNase Clusters v2 file, and thus we used the latter to represent DNase I hypersensitive sites in the clumped analysis due to the

SNPs are assigned a quantitative score.

substantial efforts made to combine the data meaningfully.
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All SNPs in our GWAS hit and GWAS non-hit sets, along with all their LD proxies, were
annotated with all the functional annotations defined above. Each GWAS hit and non-hit
SNP was then given the maximum value for each functional annotation found across of

all its LD proxies.

3.3.4 Tests for functional enrichment

Counts of GWAS hits and non-hits were categorized by annotation value and compared
using Fisher’s exact test. To verify that results were not unduly influenced by correlations
(LD) among observations, we also conducted analyses in which genetic variants were
“pruned” so that all SNPs have r’<0.8 with all other SNPs. The results of these analyses

were very similar (data not shown).

Heat maps were constructed using R (R Core Development Team, 2008) to compare

correlations among the various functional annotation.

3.3.5 Regularized logistic regression via elastic net

As a start, we performed a univariate analysis for the 14 clumped functional annotations,
and found that all were significantly related to the status of a GWAS hit or not (p<0.005).
We used a regularized form of logistic regression known as elastic net to predict GWAS
hit versus non-hit status on the basis of the functional annotations we had collected.
Elastic net is a form of machine learning first described by Zou and Hastie (2005), and is
implemented in the glmnet package (Friedman et al., 2010) in R. Briefly, regularization is
achieved via the subtraction of a penalty term from the log-likelihood prior to
maximization. The penalty term includes both a “lasso-like” L1 component (the sum of
the absolute values of all fitted coefficients) and a “ridge-like” L2 component (the sum of
squares of all fitted coefficients). Two parameters, alpha and lambda, determine the
relative importance of the L1 versus the L2 term (alpha), and the overall importance of
the penalty term in the maximization (lambda). Appropriate values for these parameters
were found by 10-fold cross-validation of the training set (see below).
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Due to the unbalanced nature of the data (many more GWAS non-hits than hits) we
employed a weighting procedure in the logistic regression to balance the accuracy of
prediction in both types of markers. We weighted all hits by (Nhits+Nnon-hits)/2Nhits
and all non-hits by (Nhits+Nnon-hits)/2Nnon-hits, where Nhits and Nnon-hits denote the
number of hits and non-hits, respectively, in the training set. This procedure has the effect

of equalizing the importance of hits and non-hits in the logistic regression.

We randomly selected 60% of our GWAS hits and non-hits to form our training set. The
remaining 40% of the data (the test set) was used to assess the performance of the model
using ROC curves and other measures. We repeated the machine learning modifying the
percentage of the data used in the training and test sets, and all splits produced similar

results (Figure 3.2).
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Figure 3.2. Coefficients for functional annotations in the clumped analysis for different training
and test set proportions

Comparison of beta coefficients that resulted from machine learning in the clumped non-phenotype specific
analysis for various classifications of the training and test sets. [splice= splice sites, Nonsy=
nonsynonymous SNPs, DNase= DNase I hypersensitive sites, GTEx eQTLs= cis-eQTL data from the
GTEx Consortium, UK eQTLs= cis-eQTL data from the UK Brain Consortium, Phylo= PhyloP
conservation, Phast= PhastCons conservation, H3K4Mel= H3K4Mel histone modification, H3K4Me3=
H3K4Me3 histone modification, H3K27Ac=H3K27Ac histone modification, TF= transcription factor
binding sites]

3.3.6 Sensitivity analysis- elastic net

To diminish the possibility that the models are over-fit since the training of the data and
tuning of the parameters were conducted on the same set, we created a 70%/30%, split
where the 70% was further split into 60% and 40% for training the coefficients and
tuning the parameters, respectively. The remaining 30% was used to test the model.
Additionally, we examined the stability of the beta coefficients when assigning the data

to training the test sets using different random number generators.
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3.3.7 Predictive accuracy

We employed three methods to determine which models had the best predictive accuracy:
ROC curves, positive predictive values, and histograms of the predicted values from the

models.

ROC curves show the sensitivity and specificity of a fitted model. Sensitivity is the
probability of the model providing a true positive result (identifying a true GWAS hit in
the test set). Specificity is the probability of the model providing a true negative result
(identifying a true GWAS non-hit in the test set). An AUC of 0.5 indicates a model of no
predictive value, while an AUC of 1 indicates perfect predictive power. The ROC curves

were created using the ROCR package (Sing et al., 2005) in R.

ROC curves do not reflect how well a model performs within each class given
unbalanced data (a very large number of non-hit SNPs compared to hits). To capture this
aspect we also investigated positive predictive values (PPVs), the proportion of SNPs
with predicted probabilities of causality above a certain threshold (we investigated
thresholds of 0.5, 0.6, 0.7, 0.8 or 0.9) that are true GWAS hits in the test set. Finally, we
visualized class separation with histograms of the predicted probabilities of causality by

class.

3.3.8 Definition of functional variables and GWAS hits

A variety of functional annotations were investigated as input variables. One, defined as
the “clumped” analysis, featured groups of functional annotations, which were collapsed
into a single summary variable. The “separated” analysis worked on all functional

annotations individually.

We performed phenotype specific analyses in which the analyses outlined above were
carried out using phenotype specific GWAS hits as classifiers. An autoimmune list, a

brain-related list and a cardiovascular list were created using the GWAS Catalogue
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searching for terms relating to those phenotypes. Each list was then verified by an expert
in the field.

Additionally, the GWAS Catalogue was divided up into categories specified by the
Experimental Factor Ontology (EFO) definitions; however, due to small numbers of
SNPs in each category this mode of classification is not currently feasible for most of the

subsets. Only the cancer list, which was the largest disease-relevant list, was used.

Due to the small size of the lists (not including “other disease” or “other measurement”,
which both lack biological relevance), it is not feasible to use the EFO classifications.
Table 3.2 shows the number of GWAS hits that fall into each category. The numbers
provided in the table are inflated as they assume that all of those SNPs are present on the
GWAS arrays in our analysis and that none of them are in the MHC region (which was
excluded for the machine learning). Thus, the lists for training and testing are around 100

SNPs less than the listed values.

There were no results for the GWAS list for “biological processes” (i.e. the betas were all
zero), so machine learning on other lists with a smaller number of SNPs was not
performed. Machine learning was also not run on the lists that lacked biological relevance
even if they were larger than the list for “biological processes”: for example: “other

b AN1Y

disease”, “other measurement”, and “other trait”.
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Table 3.2. EFO phenotype specific GWAS lists

N in GWAS Catalogue
Phenotype (Aug. 6,2013)
Biological process 616
Metabolic disease 389
Mental disease 827
Immune disease 349
Hematological Measurement 284
Digestive disease 468
Cardiovascular disease 356
Cancer 685
Body measurement 639
Nervous system 680
Other Disease 1231
Other measurement 3216
Other trait 211
Drug response 593

We defined two sets of GWAS hits for downstream analysis, one based on a weak
significance threshold of p<10~ and one based on a strong significance threshold of
p<5x107®, as reported in the NHGRI GWAS Catalogue. An additional analysis was
undertaken in which hits were defined as the subset of the hits from the 5x10™ non-
phenotype specific analysis that were not also defined as hits in at least one of the
phenotype-specific analyses assessed. Note, to view the distribution of the hits used in the

5x10™ non-phenotype specific analysis, a Manhattan plot was constructed (Figure 3.3).
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Figure 3.3. Manhattan plot of the hits used for the non-phenotype specific analysis (p<5 x10'8)

SNPs are pruned and MHC region hits have been removed, as described.

3.3.9 Sensitivity analysis- classification

An analysis was also undertaken in which hits were defined as the subset of the non-
phenotype specific 5x10°® hits minus those hits used in the phenotype-specific analyses

(autoimmune, brain-related, cancer and cardiovascular).

3.3.10 Derivation of Bayes Factors

Bayesian analysis provides the most suitable framework for combining functional

annotations (here referred to as “annotation data”), with evidence from an association
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study (“association data”) (Stephens and Balding, 2009). We expand on our previous

empirically-based approach to the calculation of Bayes factors for annotation (Knight et
al., 2011) to allow multiple functional annotations to be considered simultaneously. The
posterior odds (O post) of causality for a trait of interest at a given SNP are given by the
ratio of the conditional probability of causality, given the annotation and the association

data, to the conditional probability of non-causality:

P(Causal | AnnotData,AssocData)
P(NotCausal | AnnotData, AssocData)

Opost =

If we assume the annotation data and association data are independent once conditioned

on causality, then the posterior odds become:

P(Causal) « P(AnnotData | Causal) 8 P(AssocData | Causal)
P(NotCausal) P(AnnotDatal|l NotCausal) P(AssocDatal NotCausal)

These three products are, respectively, the prior odds before seeing any association and
annotation data (O prior), the Bayes factor for annotation data (BFamot) and the Bayes
factor for association data (BF,0c). We note that this factorization implies that, while
functional annotations are allowed to be enriched (or impoverished) for causal SNPs
relative to non-causal SNPs, the enrichment pattern is assumed to be the same for rare
versus common causal SNPs, and for low-effect size versus high effect size causal SNPs.
We accept that this is an imperfect approximation, and it assumes among other things that
SNPs are either causal or non-causal when in reality their effect size can be arbitrarily
close to zero, but we note that the main limitation of our approach lies with the small
number of GWAS hits available to us, and subdividing these still further according to
allele frequency and effect size would be problematic. We also note that by “causal” what
we actually mean is “causal or in high LD with a causal variant”, as both the association

data and the annotation data (as defined in our study) are affected by LD proxies.
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In our previous study (Knight et al., 2011), we noted that if one assumed that (1) all hits
in the NHGRI GWAS Catalogue were truly causal; and (2) functional annotation
enrichment patterns were the same for these known hits as for future undiscovered truly
causal SNPs; then an empirically based estimate for BFno for a single binary functional
annotation would simply be the ratio of its frequency in GWAS hit versus non-hit data.
Here we note that if we start with the same two assumptions, and further assume that a
true (but unknown) logistic model exists that relates a set of functional annotations
(which can be either binary or quantitative) to the probability that a SNP is truly causal,
then one reasonable approach to estimating that logistic model would be via regularized
logistic regression as described above. Once fitted, the estimated odds of causality to
non-causality, obtained from the GWAS hit and non-hit datasets, need only be multiplied
by the prior odds of non-causality in these dataset (i.e. the ratio of the weighted sample
sizes of GWAS non-hits to GWAS hits in these data) in order to obtain the Bayes factor
for annotation. Here, we chose to weight hits and non-hits to appear of equal size, and
thus our estimate for BFnnot is obtained directly as the estimated odds of causality to non-

causality from the regularized logistic regression.

Methods for estimating BF,s0c from association data are reviewed by Stephens & Balding
(2009). Here, we use the convenient approximation described by Wakefield (Wakefield,
2007).

3.3.11 Investigating the model in the context of known GWAS

To investigate the relevance of the predictions in a variety of disorders we looked at the
p-value distribution of SNPs according to their functional class in large GWAS datasets
with a substantial fraction of GWAS significant findings. Quantile-quantile plots were
constructed for each study with multiple lines corresponding to SNPs binned according to
their predicted value. Predicted values were those derived from the non-phenotype
specific clumped model in which GWAS hits were defined as those SNPs in the GWAS
Catalogue with p-values of less than 5x10®. We expected those SNPs with higher
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predicted values to be enriched with GWAS SNPs with more significant p-values,
whereas those SNPs with lower predicted values would be enriched with less significant

p-values compared to all SNPs in the GWAS.

We also selected some SNPs shown to be associated in a large psoriasis meta-analysis
which had not been identified in a previous GWAS study (Strange et al., 2010; Tsoi et al.,
2012). We then determined the effect on the rank of their Bayes Factors in the previous
study derived either using association data or both association data and functional

annotations.

3.4 Results
3.4.1 Functional enrichment in GWAS hits

Frequencies of functional annotations in GWAS hits compared to non-hits were
compared using Fisher’s exact test. Our analyses indicate that GWAS hits are enriched
for most functional annotations compared to GWAS non-hits, except for splice sites and
micro RNA (miRNA) targets, perhaps due to the very low frequency of these two classes

of functional annotations compared to the others (Table 3.3).
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Table 3.3. Summary statistics for the functional annotations in the clumped non-

phenotype specific analysis

Description Frequency | Frequency | p value Odds | 95%
of of (Fisher’s exact | Ratio [ Confidence
annotation | annotation | test) interval
in GWAS [ in GWAS
hits non-hits
splice 0.002 0.002 0.1421 1.26| 0.78-2.02
non- 0022 0007 238838 | 10| 267739
synonymous
DNase Clusters 0.193 0.141 1.87E-39( 1.46( 1.38-1.54
GTEx eQTLs 292 2.50-3.41
(all 7 . 0.020 0.007 1.69E-31
experiments
together)
UK brain 1.37 1.28-1.47
eQTLs 0.108 0.081 2.19E-18
UCSC Genes 0.422 0.357 736E-35( 131 1.26-1.27
PhyloP* 0.217 0.172 6.56E-27( 134 1.27-141
PhastCons* 0.243 0.202 3.63E-20( 1.27[ 1.20-1.33
BroadHistone- 1.35] 1.29-141
H3k4Mel 0.637 0.566 2.20E-40
BroadHistone- 1.35] 1.30-1.41
H3k4Me3 0.509 0.434 1.63E-43
BroadHistone- 148 | 1.34-1.46
H3k2 Tac 0.587 0.503 1.28E-53
Txn Factor 1.25] 1.10-1.14
ChIP (if 0.511 0.456 5.26E-24
annotation for
any TF)
miRNA 1.12E-4 7.00E-5 0.116 | 1.70| 0.24-12.15
Genche—Txn 0.003 0.002 0.012 1.64 | 1.08-2.49
start sites

*As PhlyloP and PhastCons conservation scores were left as continuous measures, the frequencies reported

for those characteristics represent the presence of a conservation score (i.e. score > 0).
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The histone modification data from the Broad Institute had the highest frequencies in
GWAS hits, and the lowest p-values for enrichment. Many functional annotations, most
notably miRNA, were very infrequent, but the general picture was that their frequency in

GWAS hits was greater than in GWAS non-hits.

We examined the correlations among the various functional annotations (Figure 3.4 and
Figure 3.5). The separated-variable analysis included measures of functional annotations
from different cell lines as individual factors, whereas the clumped-variable analysis
grouped data from different cell lines for the same functional annotation. The clumped
analysis showed a strong correlation between the two conservation measures (PhyloP and
PhastCons), as well as strong positive correlations among the three histone marks
(H3k4Mel, H3k4Me3 and H3k27Ac), and to a lesser degree among the histone marks
and transcription factor binding sites. The separated analysis revealed additional
correlations among cell types investigated for the DNase I hypersensitive annotations
from Duke University, and to a lesser degree among the DNase I hypersensitive
annotations from the University of Washington, and between these two groups. These
results highlight the issue of correlations among functional annotations, many of which
simply represent the same genomic feature, for example a promoter element measured by
different technologies. One advantage of elastic net as a regularized logistic regression

method is its ability to accommodate highly correlated variables.
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Figure 3.4. Heat map of correlations among the clumped functional annotations for 79,821
variants.

High correlations are seen between the two conservation measures PhyloP and PhastCons (represented as Phylo and
Phast, respectively). Correlations are also seen among the histone modifications, H3k4Mel, H3k4Me3 and H3k27Ac
(Mel, Me3 and Ac, respectively.) Transcription factor binding sites also show a correlation with the histone

modifications. Note that there are negative correlations, but are all close to zero (i.e. the most negative correlation was

around -0.002). [spli= splice sites, Nons= nonsynonymous SNPs, DHs= DNase I hypersensitive sites, GTEx= cis-eQTL

data from the GTEx Consortium, UK= cis-eQTL data from the UK Brain Consortium, Phylo= PhyloP conservation,
Phast= PhastCons conservation, Me1= H3K4Mel histone modification, Me3= H3K4Me3 histone modification,
Ac=H3K27Ac histone modification, TF= transcription factor binding sites, RNA= micro RNA targets, Genc=

transcription start sites from Gencode]
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Figure 3.5. Heat map of correlations among the separated functional annotations

A full list of the numbered annotations is provided in Table S1 (available from the online PLOS ONE publication:
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0098122). The white box in the bottom left

corner corresponds to high correlation among the histone modifications. The less defined white area spanning from 72
to 219 on the x axis corresponds to correlation among the transcription factor binding sites, which also show some
correlation with the histone modifications. The white box from 220 to 319 on the x axis corresponds to a high
correlation among the different cell types for the DNase I hypersensitivity annotation from Duke University. The less

refined white box from around 320 and onwards on the x axis corresponds to the DNase I annotations from the

University of Washington. The plot also shows some correlation among the DNase I annotations from both groups.

3.4.2 Sensitivity analysis- elastic net

Similar results were produced when the training and tuning were conducted in
independent subsets (Figure 3.6), and so the 60%/40% training/test set split was pursued

for the remaining analyses.
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Figure 3.6. Coefficients for functional annotations in the clumped analysis when trained the
model and tuned the parameters on independent sets

Comparison of beta coefficients that resulted from machine learning in the clumped non-phenotype specific
analysis when using a 42%/28%/30% split for training the model, tuning the parameters, and testing the
model, respectively. (The 42% and 28% refer to 60% and 40% of 70%, respectively.) This model was

compared to using a 60%/40% split where the training and tuning were conducted on the same set.

The data was split into the training and test sets ten times using a random number
generator, and the beta coefficients were examined. We conducted this procedure
multiple times using different random numbers (i.e. starting with a different “seed”). We
found that the beta coefficients were consistent for all of the functional annotations with
the exception of those with the lowest frequencies. For splice sites in the autoimmune
analysis (Table 3.4), seed2 only had one splice site that was also a GWAS hit in the
training set. Thus, betas are not always reliable for the low frequency annotations. This
conclusion is a caveat for the separated analysis since the frequencies for many of the

annotated SNPs are very small.
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Table 3.4. Beta values for "splice sites" for autoimmune clumped analysis

seedl seed2 seed3
0.18 0 0.34

In further investigation, we assessed the relationship between the variance of betas and
the frequency of the annotation in the GWAS hits for the clumped non-phenotype
specific analysis. Generally, the lower the frequency in the hits, the larger the variability

of the beta coefficients for that particular functional annotation (Figure 3.7).
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Figure 3.7. Standard deviation and frequency of functional annotations

Relationship between the standard deviation of the beta coefficients (square root of the variance of the
coefficients) derived from the machine learning performed 10 times using 10 different seeds in the random
number generator that distributes the SNPs into the training and test sets, and the frequency of the

functional annotations in the GWAS hits. Note that the two lowest frequency annotations are not shown.

Next, we investigated whether the betas would be stabilized among the different seeds if
all functional annotations were forced to be included in the model, which can be achieved
through ridge regression. Ridge regression was performed for 10 different seeds, but the

variability of the betas seen when using elastic net persisted (Figure 3.8).
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Figure 3.8. Standard deviation from ridge regression and frequency of functional annotations

Relationship between the standard deviation of the beta coefficients (square root of the variance of the
coefficients)derived from the ridge regression performed 10 times using 10 different seeds in the random
number generator that distributes the SNPs into the training and test sets, and the frequency of the

functional annotations in the GWAS hits. Note that the two lowest frequency annotations are not shown.

3.4.3 Predictive accuracy of functional annotations

We fitted predictive models for GWAS hit status via elastic net, using clumped and
separated functional variable sets, using high-confidence (p<5x10"*) and low-confidence
(p<10~) GWAS hits, and using all GWAS hits (“non-phenotype specific”) as well as hits
classified according broad phenotype areas. We primarily investigated predictive
accuracy in a separate test set that was not involved in the fitting of the models. Variants

were randomly split between the training and test sets.

For all of our fitted models, the area under the curve (AUC) of a receiver operating
characteristic (ROC) curve was similar in the test and training sets, suggesting that the
models had not been over-fitted. (Figure 3.9 plots the AUCs derived from the training
set, and Figure 3.10 plots the AUCs derived from the test set.)
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Figure 3.9. Receiver operating characteristic (ROC) curves for analyses of clumped functional
variables and high-confidence GWAS hits using the training set

This plot is similar to the plot obtained from the separate test set, Figure 3.10.

We found that the ROC curves for both the separated and clumped analyses had similar
AUC:s: for instance 0.58 in the test set for the non-phenotype specific clumped analysis

and 0.59 in the test set for the separated analysis.

Two analyses emerged as most predictive based on integrating results from ROC curves,
positive predictive values, and histograms of the probabilities of causality (the prediction

scores). These were the analyses based on non-phenotype specific and the autoimmune
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GWAS analyses. Best results were obtained from analyses using high-confidence GWAS

hits. Results for clumped and separated functional variables were very similar (Table 3.5

and Figure 3.10).

Table 3.5. Areas under fitted ROC curves

AUC:s for analyses using the high-confidence GWAS hits. Values in parentheses are for all SNPs in the GWAS

Catalogue.

Non-

phenotype | Brain-

specific related Cancer Cardiovascular | Autoimmune
N 4480 (8219) | 530(1741) 300 (607) 369 (716) 570 (863)
AUC
clumped 0.68 (0.58) | 0.62(0.52) | 0.67 (0.60) 0.69 (0.61) 0.71 (0.67)
AUC
separated 0.70 (0.59) | 0.61(0.51)| 0.68 (0.60) 0.66 (0.61) 0.75 (0.71)
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Figure 3.10. Receiver operating characteristic (ROC) curves for analyses of clumped functional
variables and high-confidence GWAS hits

ROC curves were obtained from a separate test set.

The numbers of hits and non-hits in the test sets are reported in Table 3.6.
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Table 3.6. The number of hits and non-hits in the test set sets for the analyses of clumped

functional variables and high-confidence GWAS hits.

Hits Non-hits
Brain 144 32723
Cardiovascular 154 33346
Cancer 130 33370
Autoimmune 234 33266
Non-phenotype specific 1292 30135
Non-phenotype specific- all Catalogue 3405 30039

We also investigated positive predictive values (PPVs) and histograms of the probability
of causality (prediction score). PPV estimates could not be obtained due to insufficient
data (a limited number of true hits correctly identified as hits at a particular prediction
value threshold) for the phenotype specific analyses since these analyses contain only a
subset of all GWAS hits. As a result, PPVs were only plotted for the non-phenotype
specific analyses (Figure 3.11). PPVs appear to be highest for the analysis using all
GWAS hits compared to the analysis using the high-confidence hits when defining hits as
those variants with a prediction score of greater than 0.5, 0.6, or 0.7. There was
insufficient data at the higher thresholds for declaring a positive hit for the analysis based
on all GWAS hits. Yet sufficient data was available at the higher prediction value
thresholds for the analysis using the subset of high-confidence hits, demonstrating a
broader spread in prediction values for that analysis compared to the analysis on all

GWAS hits.
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Figure 3.11. Proportion of correctly identified hits in the test data (positive predictive values)

In the non-phenotype specific analyses at various cut-offs for defining hits: SNPs with predictive values of
greater than 0.5, 0.6, 0.7, 0.8, or 0.9. Note that results are only plotted for those predictive value thresholds

in which there are at least 11 hits correctly identified.

Histograms of the probability of causality in the test data allowed visualization of the
separation (or non-separation) of true hits versus non-hits. We found that for the non-
phenotype specific analysis and for the autoimmune analysis, the use of high-confidence
GWAS hits in the training data improved the separation of true hits from non-hits in the

test data (Figure 3.12).
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Figure 3.12. Predicted values for true GWAS hits and non-hits in the test data

Panels show results of clumped-variable analyses on high-confidence GWAS hits for brain-related [a],
cardiovascular [b], cancer [c], autoimmune [d], and non-phenotype specific hit sets [e], and for all hits in

the GWAS Catalogue for the non-phenotype specific hit set [f].

The results from the histograms of the predicted values showed a broader spread in the
non-phenotype specific clumped analysis on high-confidence GWAS hits compared to
the analysis using all hits. The former separated true hits from non-hits better than the
latter, with the modes of the two distributions distinct. These results suggest that the
weighted elastic net procedure was successful in producing models that performed well in
identifying true hits as well as in identifying true non-hits. While we could not obtain
reliable PPV estimates for the autoimmune analysis due to insufficient data, the

separation of non-hits from hits in the histogram was taken as sufficient evidence that the
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high area under the ROC curve for the autoimmune clumped analysis was also due to

positive predictive power.

Results will only be provided for the non-phenotype specific and the autoimmune
clumped analyses, the two models that were deemed to be reliable based on the predictive
accuracy measures. For the non-phenotype specific clumped analysis, the highest Bayes
factor for annotation (11.95) was obtained for rs11177, which is a known GWAS hit
associated with osteoarthritis on chromosome 3. It had a predicted value of 0.93. This
SNP or its proxies held all functional annotations except three low-frequency
annotations: splice sites, miRNA targets, and Gencode transcription start sites. This SNP,
which results in a missense change in the GNL3 gene, has 218 LD proxies (defined as
SNPs with an r* of >0.8 with rs11177 that are present in Phase I of the 1000 Genomes

Project). Of the proxies, the majority of them (203; 93%) are intronic.

Nine percent of the variants with the top 500 Bayes factors were known GWAS hits. The
frequency of hits in the test set data was 4.1%. The mean and median of the predicted
values for the true hits in the test set were higher than those for the true non-hits (for hits:
mean= 0.54, standard deviation=0.13 and median= 0.54; for non-hits: mean= 0.46,

standard deviation=0.12 and median= 0.44).

For the autoimmune clumped analysis, the SNP with the highest Bayes factor was the

same as for the non-phenotype specific clumped analysis, rs11177.

3.4.4 Investigation of the relative importance of different functional
annotations

The importance of a particular functional annotation in predicting whether or not a SNP
is more probable to be a GWAS hit is assessed by means of the magnitude of the

coefficient assigned to the annotation. In both the non-phenotype specific and
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autoimmune analyses we note that the nonsynonymous SNP functional annotation had

one of the highest coefficients (Figure 3.13).
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Figure 3.13. Coefficients of the functional annotations for the two best analyses

The figure shows the coefficients from the clumped analysis on high-confidence GWAS hits for the non-

phenotype specific versus the autoimmune model.

The coefficients for the non-phenotype specific model are provided in Table 3.7, and the
coefficients for the autoimmune model are provided in Table 3.8. Confidence intervals
cannot be easily calculated for coefficients from elastic net, and so to estimate standard
error for the coefficients we performed multivariate logistic regression (see the right
columns in Table 3.7 and Table 3.8). GTEx eQTLs had the highest coefficient in the

autoimmune analysis.
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Table 3.7. Coefficients from elastic net and multivariate logistic regression for the non-

phenotype-specific analysis

Coefficients for the non-phenotype-specific analysis defining hit SNPs as those SNPs in the GWAS Catalogue with a
p-value of less than 5x10°®. The coefficients for the multivariate logistic regression are shown in order to provide

estimates of error for the coefficients, which is not possible for elastic net.

Non-phenotype specific

Elastic net Multivariate logistic regression

Coefficient Coefficient p-value Standard error
Splice 0 -3.45E-02 0.0556 1.80E-02
PhastCons 0 1.86E-04 0.94 2.48E-05
H3k4Mel 0 -8.87E-03 3.30E-04 2.47E-03
miRNA 0 7.77E-03 0.92 7.53E-02
Gencode-Txnstart 0 -4.22E-02 0.62 8.55E-02
PhyloP 2.70E-03 1.98E-04 6.34E-14 2.63E-05
H3k27Ac 0.1 8.16E-03 1.10E-03 2.50E-03
UCSC Genes 0.16 9.48E-03 7.08E-08 1.76E-03
UK Brain eQTLs 0.27 2.84E-02 <2.0E-16 2.96E-03
H3K4Me3 0.33 2.06E-02 <2.0E-16 2.32E-03
TFBS 0.34 1.88E-02 <2.0E-16 1.84E-03
DNase I 0.35 3.10E-02 <2.0E-16 2.26E-03
GTEx eQTLs 0.72 0.13 <2.0E-16 9.54E-03
Nonsynonymous 13 0.26 <2.0E-16 7.99E-03
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Table 3.8. Coefficients from elastic net and multivariate logistic regression for the

autoimmune-specific analysis

Coefficients for the autoimmune-specific analysis defining hit SNPs as those SNPs in the GWAS Catalogue with a p-
value of less than 5x10°®. The coefficients for the multivariate logistic regression are shown in order to provide

estimates of error for the coefficients, which is not possible for elastic net.

Autoimmune

Elastic net Multivariate logistic regression

Coefficient Coefficient p-value Standard error
miRNA 0 -1.39E-02 0.61 2.74E-02
Gencode-Txnstart 0 -2.54E-02 0.41 3.11E-02
PhastCons 2.00E-04 1.25E-05 0.16 8.85E-06
H3k4Mel -6.20E-03 -2.24E-03 0.01 8.79E-04
PhyloP 2.00E-03 1.92E-05 0.84 9.41E-06
UCSC Genes 1.20E-03 -2.64E-04 0.67 6.27E-04
UK Brain eQTLs 0.14 3.50E-03 9.90E-04 1.06E-03
H3k27Ac 0.24 2.00E-03 0.02 8.88E-04
H3K4Me3 0.38 3.95E-03 1.60E-06 8.24E-04
DNase I 0.45 5.89E-03 3.30E-13 8.09E-04
TFBS 0.46 3.36E-03 2.80E-07 6.54E-04
Splice 0.48 8.23E-03 0.21 6.53E-03
Nonsynonymous 0.87 2.71E-02 <2.0E-16 3.06E-03
GTEx eQTLs 1.04 2.70E-02 4.30E-15 3.44E-03
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3.4.5 Sensitivity analysis- classification

The resulting AUCs and Beta coefficients from the analysis in which hits were defined as
the subset of the non-phenotype specific 5x10™® hits minus those hits used in the
phenotype-specific analyses (autoimmune, brain-related, cancer and cardiovascular) were
very similar to the results from the 5x10™® non-phenotype specific analysis. The results
suggest that the non-phenotype specific analysis was not being driven variants from one

of the larger phenotypes.

3.4.6 Investigating functional predictions in the context of known
GWAS
We investigated: schizophrenia (SZ) from a meta-analysis GWAS involving the first
sample from the Psychiatric Genomics Consortium (PGC1) combined with a Swedish
sample (Ripke et al., 2013), systolic blood pressure (SBP) from the International
Consortium for Blood Pressure (ICBP) (Ehret et al., 2011), and height from Genetic
Investigation of Anthropomorphic Traits (GIANT) Consortium (Lango Allen et al.,
2010). The studies analyzed over 35,000 cases and 47,000 controls, 200,000 individuals,
and over 180,000 individuals, respectively. (The significant hits from these studies were

not included in the respective models.)

For each study, we stratified the quantile-quantile plots according to predicted value bins
(Figure 3.14). We found that SNPs with higher predicted values from the non-phenotype
specific clumped analysis tended to deviate more from the line corresponding to the
overall GWAS, in favour of more association signals. Similar results were obtained for

all three GWAS analyzed: schizophrenia, systolic blood pressure and height.
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Figure 3.14. Quantile-quantile plots stratified by predicted values for SNPs in real GWAS

All GWAS SNPs (in grey) for a schizophrenia GWAS from PGC1 with a Swedish sample [a], a systolic
blood pressure GWAS from ICBP [b], and a height GWAS from GIANT [c]. The non-grey lines show

plots for SNPs binned according to their predicted value from the non-phenotype specific model.

The pattern remained when only the GWAS SNPs present in the test set were plotted, and
also when prediction values were obtained from models derived from excluding the

genome-wide significant SNPs in the training set for each GWAS respectively.

We obtained summary data obtained from a psoriasis GWAS study from Strange et al.
(2010). We then selected 15 SNPs that were subsequently discovered in a meta-analysis
(Tsoi et al., 2012). Using summary association statistics from the Strange et al. study we
derived Bayes factors for association (BF,ss0c) and Bayes factors based on association
data combined with the annotation of functional annotations (BF ,ss0c*BFannot) for each
SNP. We ranked the SNPs according to BF ¢, and ranked them again according to

BF ass0c *BF annot to determine whether annotating SNPs with their functional annotations
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improved their rank (larger Bayes factors were assigned smaller ranks). BFnnot values
were derived from the non-phenotype specific clumped analysis using high-confidence
GWAS hits. As negative controls, we took 12 independent sets of a random 15 SNPs
(which were not in high LD with any of the 15 hits and had similar p-values to the hits)
and compared the difference in the sum of ranks based on BFss50c Versus BFass0c*BFannot.
The procedure was repeated using BFnnot derived from the autoimmune clumped

analysis.

Of the 15 true psoriasis hit SNPs, 7 had better ranks based on BF ss0c*BFannot compared to
association information on its own (BF,0c). The difference of the sum of ranks assigned
to the 15 hits was nearly 48,000 based on BF550c*BFannot compared to BFas50c, With the
former having the lower sum (better ranks). Many of the hit SNPs had very large ranks
based merely on the association data (>3,000), which was also the case for ranks based
on BF 550¢*BFannot, but the trend was in the right direction with better ranks obtained when
combing the association information with the annotation of functional annotations. Of the
12 random sets of 15 independent SNPs, the trend was in the opposite direction for 10 of
the sets (with SNPs having better ranks based on BF 4450 alone). Of the remaining 2 sets,
one of them had the same number of the SNPs with improved ranks based on

BF ass0c *BF annot compared to BF ,s0c as did the analysis with the actual hits (7 out of 15),
and the other random set had 8 SNPs that showed improvement. However, for those
random SNP lists the difference in the sum of ranks from BF s, compared to

BF ass0c *BF annot Was less than half of the improvement of ranks seen for the 15 hits.
Comparable results were seen when using BF ,s0c based on the autoimmune clumped
analysis. The difference between the sum of the ranks for BFnot compared to

BF ass0c *BF annot was over 49,000, with improved ranks of the hits based on the

BF ass0c *BF annot ranks. Of the random lists the largest difference in the sum of ranks from
BFassoc compared to BF 50 *BFannot Was less than a third of the improvement of ranks

seen for the 15 hits.
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3.5 Discussion

The release of major genome-wide datasets such as ENCODE and NIH Roadmap
projects, offers an excellent opportunity to re-assess the existing GWAS corpus and draw
conclusions about which functional annotations in the human genome are most likely to
indicate causality in association studies. We previously considered Bayes factors based
on a limited set of functional annotations, considering each functional annotation
separately (Knight et al., 2011). Here we have extended our Bayesian framework by
developing Bayes factors for multiple functional annotations, considering all functional
annotations jointly. We used a regularized logistic regression to fit predictive models
allowing for large numbers of both qualitative and quantitative functional annotation
data. We performed our analysis under a wide variety of conditions, including phenotype

specific analysis for autoimmune, brain-related, cancer, and cardiovascular disorders.

Our results confirm previous findings of differences in functional enrichment in GWAS
hits compared to non-hits, which provided a rationale for utilizing functional annotations
as predictors of SNP causality. We found that using high-confidence GWAS hits
(p<5x10"®) as a classifier resulted in more predictive power. However, if the number of
GWAS hits that are available for training are too low, then the predictions become
imprecise. This was a reoccurring theme for many of the phenotype specific analyses.
The separation between true GWAS hits and non-hits in the test set, in addition to the
AUC, should be used to assess the predictive power of a model. Using those methods we
found that the non-phenotype specific and the autoimmune analyses on clumped
variables using high-confidence GWAS hits were most reliable. For instance, although
the AUCs were slightly higher for the separated analyses, the classification of true
GWAS hits and non-hits was better in the clumped analysis, suggesting that the clumped
analysis may provide more accurate predictions. The benefit of the separated analysis is
that it allows researchers to identify annotations specific to certain conditions, for

example specific cell types, which can be useful for planning further investigations, but
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the increased number of variables and sparsity of the data reduces the power of this type

of analysis.

While our study has demonstrated that relevant functional information is indeed
predictive for identifying GWAS hits, and that Bayes factors incorporating this functional
information rank known GWAS hits better than Bayes factors based on association
information alone, the improvements based on current information (for example, in the
psoriasis GWAS we analyze) are marginal. However, we outline reasons below to argue
that the benefit of adding functional information to analyses of causal variant discovery

will increase in the future.

A limitation to the study is the restricted amount of tissue- or cell-specific data, especially
in light of the findings that enrichment of disease-specific GWAS hits can differ in
certain cell types, for example for DNase I hypersensitive sites (Maurano et al., 2012).
Incorporating additional functional annotations, for example those from relevant tissue
types, will likely improve the understanding of which annotations are associated with
GWAS hit SNPs, especially for the phenotype specific analyses. Furthermore, other
functional annotations, such as further histone marks and other epigenetic modifications,

could be incorporated to improve the models.

Another limitation is that the hits and non-hits were not matched by minor allele
frequency or base pair distance, which may partially drive differences between the
functional annotations of the hits compared to the non-hits. As discussed the non-hit
selection was chosen from the group of variants not in LD with a GWAS hit. A
subsequent analysis showed that the selection of non-hits tended to have lower allele

frequencies compared to the hits (Figure 3.15).
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Figure 3.15. Violin plot showing the minor allele frequency distribution between the hits and non-
hits.

This plot shows data for 4,480 GWAS hits and 75,341 randomly selected non-hits, defined as not being in

LD with a hit. Mann-Whitney U p-value < 2.2 x 10™°.

Furthermore, SNPs with higher MAF may be thought to have more LD proxies.
However, an investigating this hypothesis showed that there is no correlation between the

number of LD proxies and MAF (Figure 3.16).
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Figure 3.16. Number of LD proxies versus minor allele frequency distribution for SNPs on
chromosome 22.

The correlation between the two measures was 0.03. Only chromosome 22 shown for computational

efficiency.

The current number of GWAS hits in the GWAS Catalogue makes it challenging to sub-
divide hits into phenotype specific traits. However, preliminary results showing
differences in the coefficients for the functional annotations suggest that as the number of

GWAS hits grows, a phenotype specific approach from which to derive Bayes factors for
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prioritization could be more biologically relevant than simply an approach that combines
all GWAS hits together. Interestingly, although it was one of the largest lists, the brain-
related list did not have a greater predictive power than expected by chance. This finding
only serves to reinforce the widely appreciated complexity of brain-related disorders.
Nevertheless, schizophrenia GWAS significant SNPs showed enrichment of SNPs with
high predicted values from the model, as did SNPs associated with systolic blood

pressure or height.

Using manually curated phenotype lists as done here may not be the best option. Using
lists that are more reproducible, such as those based on the Experimental Factor Ontology
(EFO) definitions, may be more appealing. However, most of the lists created using the
EFO definitions were relatively small, covering less than 10% of the total GWAS hits on
the common genotyping arrays, and thus this method of classifying GWAS hits was
deemed to be not feasible, but may be possible in the future as the size of GWAS

Catalogue grows still larger.

The coefficient for SNPs was the highest in the non-phenotype specific analysis and a
close second in the autoimmune analysis. This result suggests that being a variant in a
gene that causes a protein alteration is an important indicator of whether or not a genetic
variant will be truly associated with a phenotype. The result agrees with the findings that
the top associated SNPs and also those that are nominally associated with a phenotype are
more likely to overlap genes than non-GWAS SNPs (Tang and Ferreira, 2012). Our
analysis appears to underscore the primacy of variation as a leading mediator of
functional variation in the human genome. Although this result is perhaps unsurprising, it
lends support to many of the gene-focused, rare-variant strategies that have been recently
employed (for example: Barrans and Liew, 2006; Cortes and Brown, 2011; Voight et al.,
2012). However, depending on the inclusiveness of promoter regions in chip design,
these strategies may or may not capture other high scoring variant types, such as eQTLs

and histone marks, which collectively account for more GWAS hits than variants alone.
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These patterns highlight a possible need for follow-up on non-coding variation chips.
GTEx eQTLs came up as the most important factor in the autoimmune analysis. Two of
the experiments analyzed eQTLs from lymphoblastoid cells, which may explain the

importance of this functional annotation in the autoimmune traits.

We have shown that our method can be used to calculate Bayes factors for annotation
(BFamnot). These can be applied to GWAS data to prioritize near-significant variants for
follow-up based on the likelihood of being causal in light of their functional annotations.
The method takes LD into account, and uses information from the March 2012 release of
the 1000 Genomes Project to map relevant annotation information from all variants in
high LD, including both SNPs and indels. In addition to being used for variant
prioritization of GWAS data, the methodology could be applied in the future to the
prioritization of variants from fine mapping and sequencing studies. Here, the question
arises as to whether the models described here, which were created based on common
variation, could be applied to rare variation. In time, larger databases of true causal
variation, including rare variation, will allow our method to be applied with increasing

accuracy.

3.6 Subsequent Developments

Further work has involved incorporated some additional annotations into the non-
phenotype specific model using the GWAS hits with a p-value < 5 x 10™*: synonymous
SNPs (since synonymous SNPs too can have a phenotypic effect, for instance see Buske
et al. (2013), albeit an effect is more rare than for nonsynonymous SNPs), and super-
enhancers associated in 86 human cell and tissue samples (Hnisz et al., 2013). However,
the addition of neither of these two annotations altered the accuracy of the model. The
lack of effect of the synonymous annotation was not due to low frequency of
synonymous SNPs in the full dataset, since the frequency of synonymous SNPs (0.06)
was 10-fold higher than for nonsynonymous SNPs (0.007), and the latter was the most

important predictor in the model. Super-enhancers (0.001) were not included in the model
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(i.e. it was assigned a beta coefficient of 0), which may have been in part due to a low
frequency in the full data (0.001; compare to another low frequency annotation: splice

sites at 0.002).

3.7 Supporting Data

Three files are provided, not including the “README.txt”, which describes the files
similarly to as below. “Non-phenotypespecific BFannot.txt” is a space-delimited text file
of Bayes Factors for Annotation (BFannet) for the non-phenotype specific analysis. The
first row contains the headers. The rest of the rows contain information for SNPs in 1000
Genomes EUR phase I. The meaning of the column names are as follows: rs: SNP ID,

BFannot: Bayes Factors for Annotation (based on 14 functional annotations).

“Non-phenotypespecific_assoc+pred.txt” is a space-delimited text file of the functional
annotations and the prediction value for the non-phenotype specific analysis derived from
14 functional annotations. The first row contains the headers. The rest of the rows contain
information for SNPs in the 1000 Genomes EUR phase I. The meaning of the column
names are as follows: bp: base position, hgl9, chr: chromosome number, rs: SNP ID, bp:

base position, hg19 (same as column 1).

The next 14 columns are the functional annotations (splice, nonsynonymous, DNase 1,
GTEx eQTLs, UK Brain eQTLs, PhyloP, PhastCons, H3K4Mel, H3K4Me3,
H3K27Ac, TFBS, miRNA, Gencode Txnstart). 1=the SNP has the functional annotation
or it is in high LD (r*>0.8) with a SNP that does; 0= neither the SNP nor its high LD

proxies have the functional annotation.

The second last column (cls) is classifier where 1= GWAS "hit" (p<5x10" in NHGRI
GWAS Catalogue http://www.genome.gov/gwastudies/ as of Aug. 6, 2013) and 0 = "non-

hit". The final column in the file (pred) is the prediction score (ranging from 0 to 1, where

1 is likely to be a GWAS "hit") from the non-phenotype specific analysis.
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“PLINK2wakefieldBF 2013.R” is an R script to calculate Bayes Factors for Association
(BFassoc) based on GWAS summary data.

All files and also the elastic net R code are available on GitHub (and linked to Zenodo at
http://dx.doi.org/10.5281/zenodo.34268).
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Chapter 4
A Review of Predictive Accuracy Measures that can be
Applied to Models for Prioritizing Risk Variants Based on
Functional Information

This section is modified from the following: Gagliano SA, Paterson AD, Weale ME,
Knight J (2015). Assessing models for genetic prediction of complex traits: a comparison

of visualization and quantitative methods. BMC Genomics 16(1):405.
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4
4.1 Abstract

Background: /n silico models have recently been created in order to predict which genetic
variants are more likely to contribute to the risk of a complex trait given their functional
annotations. However, there has been no comprehensive review as to which type of
predictive accuracy measures and data visualization techniques are most useful for

assessing these models.

Methods: We assessed the performance of the models for predicting risk using various

methodologies, some of which include: receiver operating characteristic (ROC) curves,
histograms of classification probability, and the novel use of the quantile-quantile plot.
These measures have variable interpretability depending on factors such as whether the
dataset is balanced in terms of numbers of genetic variants classified as risk variants

versus those that are not.

Results: We conclude that the area under the curve (AUC) is a suitable starting place, and
for models with similar AUCs, violin plots are particularly useful for examining the

distribution of the risk scores.

4.2 Introduction

The risk of developing a complex trait is influenced by many genetic variants, possibly
hundreds, in combination with environmental factors. Genome-wide association studies
(GWAS) have had success in identifying some of the genetic risk factors involved in
complex traits, but more remain to be discovered. Recently, there have been several in
silico attempts at utilizing epigenetic and genomic data to prioritize genetic risk variants.
These methods simultaneously incorporate multiple lines of genomic and epigenomic
data to identify potential risk variants from all variants (Gagliano et al., 2014a; Iversen et

al., 2014; Kindt et al., 2013; Kircher et al., 2014; Pickrell, 2014; Ritchie et al., 2014).
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A variety of predictive accuracy measures and data visualization techniques have been

used (Table 4.1) to assess these models for prioritizing genetic variants. An example is

the area under the curve (AUC) from the receiver operating characteristic (ROC) curve,

which is generally accepted as a measure of how closely the prediction values reflect the

true class. Such methods have previously been employed to predict diagnosis of an

individual (risk of developing Type II Diabetes (Janipalli et al., 2012; Lango et al., 2008;

Xu et al., 2010), for example), but have only recently been applied to predict whether

genetic variants are likely to be risk variants.

Table 4.1. Predictive accuracy measures in the literature for models for prediction of

variants associated with complex traits.

Predictive accuracy measures employed
Algorithm Classifier | Areaunder | Positive Box Histo- Violin Mann-Whitney U /
ROC curve Predictive plot Gram plot Wilcoxon Rank
value Sum test
Gagliano Modified GWAS hits | x X X
etal. 2014 | Elastic net vs. non-
hits
Iversen et Penalized GWAS hits | x*
al. 2014 logistic vs. non-
regression hits
Kircheret | Support High- X X X
al. 2014 Vector frequency
Machines human-
derived
alleles vs.
simulated
variants
Ritchie et Modified HGMD hits | x X X
al. 2014 Random vs. non-
Forest hits

* reports “Concordance index”, which is equivalent to the area under the ROC curve

We will utilize test set data from a regularized logistic model that predicts genetic risk

variants on the basis of a large multivariate functional dataset (Gagliano et al., 2014a).

We investigate the utility of several approaches for assessing predictive accuracy and

data visualization. Based on observations from this work we conclude with suggested

guidelines to aid researchers when assessing models for genetic variant prediction.
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Three broad categories of predictive accuracy measures will be discussed here: (1)
concepts in describing predictive accuracy, including ROC, AUC and the confusion
matrix (2) visualization of the distribution of prediction values, and (3) statistical tests.
All the methods described below were conducted in R, version 3.0.2 (Hothorn et al.,
2006; Lemon, J., 2006; R Core Development Team, 2008; Sing et al., 2005). See Table
4.2. Sample R code is available in Additional_File 1. Code and data to reproduce the
results in this chapter are provided in Additional_File 2. Further details are embedded in

the results. Additional files are available in Appendix C.

Table 4.2. Predictive accuracy measures and the corresponding R package in which they

can be computed.

Predictive Accuracy Measure | R package | Version

(1) The confusion matrix

Receiver Operating Characteristic Curve prediction and performance in ROCR (Sing et al., 1.0-7

and area under the curve 2005)

performance(prediction.object, "auc")
Positive predictive value and negative prediction and performance in ROCR 1.0-7
predictive value performance(prediction.object, "ppv")
performance(prediction.object, "npv")

(2) Visualization of the distribution of prediction values

Histograms of the prediction values multhist in plotrix (Lemon, J., 2006) 3.5-11

separated by class

Box plots boxplot in graphics Base
package

Violin plots vioplot in vioplot

Quantile-quantile plots qqplot in stats Base
package

(3) Statistical tests

Hypergeometric test phyper in stats Base
package

Mann-Whitney U test wilcox.test in stats Base
package

Asymptotic Generalized Cochran-Mantel- cmbh_test in coin (Hothorn et al.,, 2006) 1.0-24

Haenszel Test

4.3 Dataset and models

The example dataset and model are described in detail previously (Gagliano et al., 2014a)
and are only described briefly here. Genetic variants from common genotyping arrays

were annotated for 14 functional annotations (twelve of which are binary and two are

102



quantitative), many of which are from the ENCODE Project, with data from various cell
types merged (un-weighted) into a single variable for each annotation. All functional
annotations could be presented in a binary presence/absence format with the exception of
two types conservation scores, which remained on a quantitative scale. A regularized
logistic model, capable of handling correlated predictor variables, was used. A random
60% of the genetic variants were assigned to the training set to determine the parameters
of the model, and the remaining variants were reserved for the independent test set to
evaluate the accuracy of the model. All models produced a prediction value ranging from
0 to 1 for each genetic variant, with values close to 1 implying high probability of the
variant contributing to risk. Due to the unbalanced nature of the data a weighting
procedure that equalizes the importance of hits and non-hits in the training set was
employed. Hits were weighted by (NhpitstNnon-hits)/2Nhits and all non-hits by (NhitstNpon-
hits)/2Nnon-hits, Where Npits and Npon-nits denote the number of hits and non-hits, respectively,
in the training set (Gagliano et al., 2014a). Without this weighting scheme, all variants
are assigned low prediction values although the model still retains comparable overall
accuracy. Overall accuracy may not be representative of accuracy within classification
groups, which is the main problem with unbalanced data. As well as using the weighting
scheme to ameliorate this issue in our example data we discuss other matters to be

considered in relation to the accuracy and data visualization methods described.

For model 1, variants were classified as being hits if present in the genome-wide
association study (GWAS) Catalogue published by the National Human Genome
Research Institute (Hindorff et al., 2010) downloaded on August 6, 2013. The GWAS
Catalogue reports variants found to be associated with disease or quantitative trait in a
GWAS study with a p-value <1x10°. Variants not present in the Catalogue but present on
common genotyping arrays were assumed to be non-hits. Three alternate classifiers were
used to designate hits: (a) p-value < 5x10™ (model 2), and (b) p-value < 5x10° for only a
subset of phenotype specific hits namely an autoimmune (model 3) and a brain-related

analysis (model 4).
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In our previous work, six models were created using the alterations to the classifier
described above. The four assessed here are the two models with the highest AUC
(models 2 and 3) and two models with the lowest AUC (models 1 and 4). (See Table 4.3

for descriptive statistics for the test sets of the various models.)

Table 4.3. Descriptive statistics of the causality predictive values for the various genetic

prediction models from Chapter 3 to be used as examples here.

Standard
Phenotype-specific analyses N Minimum [25% Percentile| Median | Mean |75% Percentile|] Maximum | Deviation | N outliers*
Brain-related Hits 144 0.40 0.42 0.51 0.51 0.57 0.77 0.09 3
| Non-hits | 32723 0.40 0.40 0.46 0.48 0.53 0.79 0.07 61
Autoimmune Hits 234 0.29 0.45 0.55 0.55 0.66 0.86 0.14 0
| Non-hits | 33266 0.29 0.30 0.44 0.45 0.55 0.93 0.13 0
All phenotype analyses
p<5E-8 Hits 1292 0.32 0.44 0.54 0.54 0.62 0.92 0.13 4
Non-hits | 30135 0.32 0.35 0.44 0.46 0.55 0.91 0.12 7
all GWAS Catalogue Hits 3405 0.44 0.45 0.50 0.51 0.54 0.81 0.06 144
| Non-hits [ 30039 0.44 0.44 0.48 0.49 0.52 0.80 0.05 336

*Qutliers are defined as data points outside 1.5x interquartile range (interquartile range= 75% percentile - 25%

percentile).

4.4 Results
4.4.1 Concepts in describing predictive accuracy

4411 The Confusion Matrix

Predictive accuracy is derived from a confusion matrix (Figure 4.1). The cells in the
diagonal of the matrix are the correctly identified genetic variants. (See Chapter 4 in “An
Introduction to Statistical Learning with Applications in R” (James et al., 2013) and
Chapter 11 in “Statistical Learning for Biomedical Data” (Malley et al., 2011) for more
details.) The effects of unbalanced data in un-weighted models can be detected in such a
matrix. There would be a much larger proportion of negatives compared to positives. The
effects on false positive rate (FPR), true negative rate (TNR), positive predictive value

(PPV), and negative predictive value (NPV) are described in further detail below. The
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confusion matrix itself is not often studied as it represents data at only one threshold.

However both the ROC curve and PPV and NPV are used to consider model accuracy.

True Class

Hit Non-hit

True Positive |False Positive

Hit (TP) (FP)

False True

Non-hit |Negative (FN) |Negative (TN)
TPR= TNR=

TP/(TP+FN)  FP/(FP+TN)

PPV=TP/(TP+FP)

NPV= TN/(TN+FN)

Predicted
Class

Figure 4.1. A Confusion matrix and its relation to predictive accuracy terms.

TPR = True Positive Rate, TNR=True Negative Rate, PPV = Positive Predictive Value, NPV= Negative

Predictive Value.

4.41.2 Receiver operating characteristic curves and area under
the curve
The use of ROC curves is a common way for assessing binary outcome models (Davis
and Goadrich, 2006). ROC curves offer a global summary of machine performance at all
possible cut-offs of prediction values for defining the two classes. In this way, the ROC is
a summary of the model’s overall performance. ROC curves reflect the columns of the
confusion matrix by presenting FPR (equivalent to 1-TNR)) by true positive rate (TPR),
with the advantage of depicting these values at every threshold for defining a hit. An
AUC = 0.5 means that the predictive accuracy of the model is not better than chance,
whereas an AUC = 1 implies perfect predictive accuracy. (See Chapter 4 in “Road to
Statistical Bioinformatics” (Lee, 2010) and Chapter 11 in “Statistical Learning for
Biomedical Data” (Malley et al., 2011) for more details.)

There typically is not just one confusion matrix (see previous section), but rather there is
an infinite number: one for each point along the x-axis of the ROC. Thus in the context of

a model that outputs prediction values measured on a continuous scale rather than binary
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categories (e.g. a logistic regression model among others) one needs to decide at what
probability level one “declares” a hit to be a hit. One could use the arbitrary value of
greater than 0.5 as the cut-off to declare hits from non-hits, but there are other probability
thresholds one could use, which can be summed up in a ROC curve. That is the
conceptual difference between the AUC (average over all possible thresholds) and the
confusion matrix itself (considers the ROC “frozen” at one particular probability

threshold).

It should be noted that unless a weighting scheme such as the one we employed in our
modeling or an equal subset of both classes is chosen, ROC curves can present an overly
optimistic view of performance for unbalanced data (Davis and Goadrich, 2006). If the
model simply assigns all variants to the non-hit class then it will appear to do well, for
instance with an AUC much larger than 0.5. In this way, the larger class (non-hits) can
overwhelm the smaller class (hits). The TPR thus tends to be low throughout the
thresholds.

In the example data, the AUC of two of the models (autoimmune and all phenotype for
the high confidence hits) were very similar and reasonably good (between 0.67 and 0.71)
(see Figure 4.2). The AUC for the other two models (the all phenotype using all
Catalogue hits and the brain-related models) were also similar to each other, but poor
(less than 0.61). Thus, the AUC seems to categorize models as either good or poor, but is
not particularly useful for finer discrimination between models. (See Chapter 11 in
“Statistical Learning for Biomedical Data” (Malley et al., 2011) for details on the
limitations of ROC curves.) Below we demonstrate that additional investigation provides

further insight into the results.
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Figure 4.2. ROC curves for the four models.

The precision-recall curve has been proposed to be more appropriate than the ROC for
unbalanced data (Davis and Goadrich, 2006). Precision is equivalent to positive
predictive value (discussed in the next section) and recall is equivalent to true positive
rate (Vihinen, 2012). In this way, the curve depicts information from three of the four
cells in the confusion matrix, all of the cells except the true negative cell. An ideal
precision-recall curve has data in the top right corner of the plot. Results with the data
here (Figure 4.3) suggest that none of the models are performing particularly well,
suggesting that the ROC AUCs may be driven by the correct identification of the larger

class (non-hits).
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Figure 4.3. Precision-recall curves for the four models.

4.4.1.3 Positive and negative predictive values

The rows of the confusion matrix are represented by PPV and NPV. PPV is the
probability of variants that are true hits being correctly classified as hits, and NPV is the
probability of variants that are true non-hits being correctly classified as non-hits at any
one given threshold. (See Chapter 4 in “Road to Statistical Bioinformatics™ (Lee, 2010)
for details.) PPV and NPV are also affected by the class imbalance inherent in real

genetic association data. The effect of imbalanced data on PPV and NPV has been
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previously described (Vihinen, 2012). In scenarios where the negative class is larger than
the positive class, NPV is inflated and PPV is lower compared to the corresponding
model where the class sizes are equal and the negative and predictive classes have the
same rate of correct predictions (Vihinen, 2012). These values are best when there are
equal amounts of data in each category (Vihinen, 2012). The issue is that cell sizes of the
confusion matrix can become too small for the smaller class (hits). One needs to ensure
that there is a large enough quantity of hits and/or non-hits per cell in the confusion
matrix to draw conclusions. Otherwise, results will be driven by a very small
unrepresentative subset of the data. For the models considered here, only the two all
phenotype analyses had an adequate amount of samples in each cell, and thus PPV and
NPV were only calculated for those models. The NPV tended to be high (>0.899) at all
the various prediction value thresholds chosen to define the two classes. See Table 4.4.
However, it is the accuracy of predicting the hits, not the non-hits, which is of interest in
this work. Hence, the PPV provides more interesting results. Overall, the all phenotype
analysis using all hits in the GWAS Catalogue produced the highest PPVs as the
threshold for declaring a positive hit increased. The highest PPV (30.4%) was achieved
for this model at the threshold defining hits as those variants with prediction values
greater than 0.7. PPV results conflict between the AUC results. For the two all phenotype
models, the one with the higher AUC (the model for the GWAS hits in the Catalogue
with the stringent p-value cut-off) had overall lower PPV compared to the model using all
GWAS hits in the Catalogue. NPV results for the two models were similar, but the model
based on all GWAS hits in the Catalogue had slightly lower NPV compared to the

stringent p-value model.

Table 4.4. Positive predictive and negative predictive values at various prediction value

cut-offs for the two all phenotype analyses.

Positive Predictive Values Negative Predictive Values
Prediction value all GWAS hits in p<5E-08 hits all GWAS hits in
cut-off p<5E-08 hits Catalogue Catalogue
0.5 0.069 0.128 0.968 0.915
0.6 0.094 0.226 0.956 0.903
0.7 0.198 0.304 0.948 0.899
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4.4.2 Visualization of the distribution of prediction values

4421 Histograms

Next, class separation was investigated through histograms of the prediction values
outputted from the models, which display differences in the density distribution between
the two classes. Known hits were plotted in black and non-hits in grey on the same plot,
with the y-axis being probability densities, rather than numerical quantity, which masks
the data imbalance and thus allows for comparison between the two classes. The all
phenotype model with high confidence hits (Figure 4.4) and the autoimmune model
showed the most evidence of having two separate distributions. Although the
distributions of the prediction values for the hits and the non-hits overlap, the distribution
of the non-hits has the majority of its values closer to the 0 end of the prediction value
range. Confirming the AUC results, the brain-related model and all phenotype model

using all Catalogue hits (Figure 4.4) do poorly with regard to class separation.
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Figure 4.4. Histogram of predictive values for the all phenotype models with a bin size of 0.05.

Compare to Figure 4.5 with a bin size of 0.1. For the probability densities, the sum of the area under the
black bars adds up to one. The same is true for the grey bars. The ideal plot would have two non-
overlapping distributions with the distribution of the grey bars closest to 0 and the distribution of the black

bars close to 1.

As always, caution is warranted since the visualization of the distributions differ
depending on the bin size chosen (compare Figure 4.4 to Figure 4.5). For the histograms
with a larger bin size differences in distributions between hits and non-hits at a finer scale
is less apparent, and the distributions look more similar compared to if a smaller bin size

1s used.
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Figure 4.5. Histogram of predictive values for the all phenotype models with a bin size of 0.1.

Compare to Figure 4.4 with a bin size of 0.05. For the probability densities, the sum of the area under the
black bars adds up to one. The same is true for the grey bars. The ideal plot would have two non-
overlapping distributions with the distribution of the grey bars closest to 0 and the distribution of the black

bars close to 1. The bin size is 0.1.

4.4.2.2 Box and whisker plots

Box plots were constructed to visually compare the distributions of the hits versus the
non-hits in an alternate way (Figure 4.6). These plots visually depict much of the
descriptive data present in Table 4.4 (above), notably differences in the median between
the two classes. Again the data imbalance is masked as the summaries presented in the
plot are from within each class. As visualized in the histograms, the box plots also show
that for all of the models the distributions of the prediction values for the hits and non-
hits overlapped, but to different degrees. The plots for the brain-related model and the all
phenotype model for all variants in the GWAS Catalogue had many outliers for both
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classes, signifying that for both hits and non-hits had predictions that were a large
distance from the predictions of other variants in the respective class. Additionally, the
mean prediction scores for the hits and the non-hits appear very close for the all

phenotype model for all variants in the GWAS Catalogue.
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Figure 4.6. Box and whisker plots for the four models.

The line in the box is the median, and the box outlines the 25% and 75% percentiles. Outliers are shown as
individual data points if the value is 1.5 times the interquartile range (IQR). The lower and upper whiskers

on the plot represent the 25% percentile minus 1.5*IQR and the 75% percentile plus 1.5*IQR, respectively.
If the data does not extend as far as those calculated ranges, then the whisker is plotted at the value of the

minimum or maximum data point.

4.4.2.3 Violin plots

Violin plots visually combine the density differences depicted in the histograms and the

median differences depicted in the box plots into one plot. These plots summarize the
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results of the histograms and box plots. Furthermore, they are comparable to a histogram

with infinitely small bin sizes. See Figure 4.7.
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Figure 4.7. Violin plots of the predictive values for the four models.

4.4.24 Quantile-quantile plots

A final visualization method, the quantile-quantile plot was explored. See Figure 4.8.
The quantile-quantile plot is often used in the context of GWAS, but it also has the
potential to be useful as a predictive accuracy measures. Instead of expected and
observed p-values on the axes as is done in GWAS, we plotted the prediction values for
non-hits on the x-axis and the values for the hits on the y-axis. Plotted in this way, the
plot compares the quantiles of the hits to the non-hits. When the data points on the plot
deviate above the diagonal, the hits have higher prediction values compared to non-hits in
that quantile. Due to a limited number of hits, the quantile-quantile plots for the
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phenotype-specific analyses produced a staircase pattern. This pattern suggests two
characteristics: those models are assigning the same prediction value to several variants,
and also there are not enough hits to create a smooth curve. The former could be due to
there being different variants that have been assigned identical or similar functional
annotations. The models are binning variants together and are not able to differentiate
them on a finer scale. The small sample size for the phenotype specific analyses, makes it
difficult to draw conclusions from those quantile-quantile plots. For the two all
phenotype analyses, the quantile-quantile plots supported the findings from the other
visualization methods that the high confidence all phenotype analysis separated hits from
non-hits better than the analysis based on hits from the GWAS Catalogue. For the all
phenotype model based on the high confidence hits, the distribution consistently deviated
from the diagonal. The distribution demonstrates that the hits had higher prediction
values than non-hits in the same quantiles. The all phenotype analysis based on all hits in
the GWAS Catalogue produced a quantile-quantile plot that closely followed the line for
prediction values less than 0.6. This group of prediction values contained most of the data
since from the histograms it was determined that the distribution of the prediction values
is skewed so that most of the data fall in the lower percentiles. The distribution deviated

from the diagonal roughly in the prediction value range of 0.6 and 0.7.
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Figure 4.8. Quantile-quantile plots for the four models.

4.4.3 Statistical tests
4431

The hypergeometric test was also used to identify significant enrichment of hits
compared to non-hits in particular prediction value bins by splitting the data into bin sizes
of 0.05 ranging from less than 0.35 up to 0.95. For each model, there were effectively 13
tests performed, one test per prediction value bin. Based on this resulting contingency
table, significant enrichment of hits was seen for all of the models in at least one bin
greater than 0.55 (with significant p-values ranging from 0.01 to 5.58x10%), while no

enrichment (all p-values greater than 0.2) was seen in bins less than 0.55.

Hypergeometric test
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44.3.2 Cochran-Mantel-Haenszel test

Another test was investigated, the asymptotic generalized Cochran-Mantel-Haenszel test,
which tests the independence of two possibly ordered factors (prediction values of hits vs.
non-hits). As with the hypergeometric, a contingency table for hits and non-hits stratified
by prediction value was created. Hits and non-hits were stratified independently by
prediction values by splitting the data into bin sizes of 0.05 ranging from less than 0.35
up to 0.95. Rather than a single test per prediction value bin as in the hypergeometric, the
generalized Cochran-Mantel-Haenszel test is a single omnibus test per model. It looks for
a trend across the span of prediction values. Similar to the other statistical tests explored

in this section, significant p-values were produced for all models (p < 5.3x10™).

44.3.3 Mann-Whitney U test

A two-sided Mann-Whitney U test can be used to determine whether or not the
distributions of the prediction values for the hits differs significantly from that of the non-
hits. The Mann-Whitney U tests whether the ranks of the variants in the hit and non-hit
sets differ. Significant p-values were obtained for all analyses, including those with poor
AUC:s and poor class separation; most notably the all phenotype analysis not refined to
the high confidence hits had a Mann-Whitney p-value of 7.17x10°. It was hypothesized
that this significant p-value was due to the class imbalance and/or outliers. To explore
these hypotheses, only a random subset of non-hits equal in size to the number of hits
were selected for the Mann-Whitney U test, and in other test only outliers were removed.

In both situations, the p-values tended to remain highly significant (Table 4.5).

117



Table 4.5. Mann-Whitney U p-values for the four models.

Mann Whitney U p value

n(hits)= No outliers (1.5x outside
Unaltered |n(nonhits) |25% or 75% percentiles)
Phenotype-specific analyses

Brain-related | 3.49E-06 | 0.007447 1.76E-05
Autoimmune | 8.63E-28 5.26E-15 8.63E-28
All phenotype analyses

p<5E-08 2.08E-93 3.01E-52 3.53E-92
all Catalogue | 7.17E-50 7.26E-27 1.37E-34

The significant Mann-Whitney U p-values do not necessarily suggest that the hits and
non-hits are well separated by their prediction values. Instead, the p-values are
highlighting differences in ranks between the hits and the non-hits, which may or may not
imply class separation. We plotted the hits and non-hits according to their ranks. In all of
the plots, the non-hits follow a uniform distribution, whereas the hits follow a different
distribution, roughly negatively skewed (Figure 4.9). Thus, as with enrichment according
to the hypergeometric, and the Cochran-Mantel-Haenszel test for independence,
differences in rank according to the Mann-Whitney U are not particularly informative
with regard to class separation between the hits and non-hits according to their prediction

values.
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Figure 4.9. Ranked Mann-Whitney U ranks plotted separately for the hits and non-hits.

The non-hits follow a uniform distribution, whereas the hits do not. The same pattern was observed for all

four models.

The statistical tests mentioned above do not explicitly measure class separation between
hits and non-hits based on their prediction values, which is a key outcome for
investigating the predictive accuracy of models for variant prioritization. The
hypergeometric assesses enrichment of hits, the Mann-Whitney U tests for differences in
ranks between the hits and non-hits, and the generalized Cochran-Mantel-Haenszel test
evaluates independence of the hits and non-hits. Thus, significant p-values from these

statistical tests cannot alone be taken as proof of class separation or model performance.
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4.5 Discussion

In this review we summarized various predictive accuracy measures related to the
confusion matrix, visualization methods, and some statistical tests. These methods were
described in the context of genetic models for prediction of risk variants in complex traits

in which a class imbalance between the hits and non-hits is often inherent.

The choice of predictive accuracy measures was partially motivated by the measures
found in the publications described in the background as well as other measures. Note
that two of the mentioned papers, (Kindt et al., 2013; Pickrell, 2014), both focused on
investigating enrichment or depletion of disease- or trait-associated variants with
particular functional and genomic features. Since the predictive accuracy measures in
those papers did not relate to an output of a prediction value for each variant, those

methods were not discussed further.

In summary, the investigation above emphasizes the importance of visualizing the
underlying distributions of the classes. The ROC curve is a good starting place, but
visualization measures, especially violin plots, are valuable for differentiating models
with similar AUCs. A downside of histograms is that depending on the bin size, the
interpretation of the results may vary. With regard to box plots, these plots do not offer
any information about density. On the other hand, violin plots are able to show density
without the need of binning and at the same time depict the summary statistics that would
be seen from a box plot. Caution is needed when making conclusions about model
performance based on p-values, such as from the Mann-Whitney U test. Significant p-
values cannot necessarily be attributed to a good separation between hits and non-hits.
Visualizing the class distribution seems to be the most informative for determining the

predictive accuracy in these scenarios.

All of the papers mentioned in the introduction apply their model(s) to real data to assess

the accuracy of identifying disease-relevant genetic variants. Predictive accuracy
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measures and visualization of the prediction values can only show model performance in
theory. When evaluating model performance it is also vital to assess the model in real

applications.

4.6 Supporting Data

The R code referred to below can be found in Appendix C, and the data files are
available on the online version of this chapter that has been published as a paper in BMC

Genomics: http://www.biomedcentral.com/1471-2164/16/405

File name: Additional File 1

Sample R code to perform the tests mentioned in this chapter. MyData.txt: Sample output

data from a model on which to run the code.
File name: Additional File 2

R code to reproduce the results in this chapter. Autoimmune-testset.csv, Brain-testset.csv,
Nonpheno-5e-8-testset.csv, Nonpheno-allCat-testset.csv: data files required for Code-for-
paper.R; they contain five columns: the identifier for the genetic variant, base position,

A New Method to Prioritize Genetic Risk Variants using Functional Information
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Chapter 5
Comparison of Statistical Learning Methods Using
Functional Annotations for Prioritizing Risk Variants

This chapter is modified from the following: Gagliano SA, Ravji R, Barnes MR, Weale
ME, Knight J (2015) Smoking Gun or Circumstantial Evidence? Comparison of
Statistical Learning Methods using Functional Annotations for Prioritizing Risk Variants.
Scientific Reports 5:13373.
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5
5.1 Abstract

Although technology has triumphed in facilitating routine genome sequencing, new
challenges have been created for the data-analyst. Genome-scale surveys of human
variation generate volumes of data that far exceed capabilities for laboratory
characterization. By incorporating functional annotations as predictors, statistical learning
has been widely investigated for prioritizing genetic variants likely to be associated with
complex disease. We compared three published prioritization procedures, which use
different statistical learning algorithms and different predictors with regard to the
quantity, type and coding. We also explored different combinations of algorithm and
annotation set. As an application, we tested which methodology performed best for
prioritizing variants using data from a large schizophrenia meta-analysis by the
Psychiatric Genomics Consortium. Results suggest that all methods have considerable
(and similar) predictive accuracies (AUCs 0.64-0.71) in test set data, but there is more
variability in the application to the schizophrenia GWAS. In conclusion, a variety of
algorithms and annotations seem to have a similar potential to effectively enrich true risk
variants in genome-scale datasets, however none offer more than incremental
improvement in prediction. We discuss how methods might be evolved for risk variant
prediction to address the impending bottleneck of the new generation of genome re-

sequencing studies.

5.2 Introduction

Complex diseases are caused by the interplay of many genetic variants and the
environment, and represent a considerable health burden. Genome-wide association
studies (GWAS) have had success in identifying some genetic risk factors involved in
complex diseases such as inflammatory bowel disease (Jostins et al., 2012) and

schizophrenia (Schizophrenia Working Group of the Psychiatric Genomics Consortium,
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2014). Interrogating the entire genome, exome or even selected genes through next
generation sequencing technologies have also identified further risk variants (De Rubeis
et al., 2014; Epi4K Consortium et al., 2013; Neale et al., 2012; Rivas et al., 2011).
However, more disease-associated variants, hereafter called risk variants or hits, remain
to be discovered. Some risk variants are difficult to detect by current techniques due to
limited sample sizes and low effect size of the variants. In silico methodologies that
integrate evidence over multiple data sources have the potential to unearth some of these
risk variants in a cost-effective manner. The novel risk variants that are identified will
help illuminate the genetic risk factors involved in complex diseases, which in turn could
lead to earlier or more accurate diagnoses, and the development of personalized treatment

options.

Risk variants show enrichment in functional annotations, such as DNase I hypersensitive
sites, transcription factor binding sites, and histone modifications; for example, Disanto et
al. (2014), Maurano et al. (2012), and Schaub et al. (2012). Several groups have gone
further with the results of enrichment by incorporating functional annotations as predictor
variables in statistical learning frameworks to prioritize genetic variants for further study
(Gagliano et al., 2014a; Kircher et al., 2014; Ritchie et al., 2014). These statistical
learning algorithms use the functional annotations to define a model that provides some
measure of whether a variant is likely to increase the risk of manifesting a complex trait.
However, understanding the relative merits of these approaches requires a thorough
investigation into which statistical learning algorithm and/or which combination of

functional annotations most effectively identifies novel risk variants.

There are many aspects to consider in the statistical learning framework (Figure 5.1).
The genetic data input consists of both known risk variants and corresponding control
variants (those with no evidence for risk effect); the classifier is used to discriminate
between the two. Known risk variants may be identified from sources, such as the GWAS

Catalogue (Hindorff et al., 2010), the ClinVar database (Landrum et al., 2014), and the
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Human Gene Mutation Database (HGMD) (Stenson et al., 2009) as mentioned above. In
addition, the variants can be simulated; for example, Kircher et al. used an empirical
model of sequence evolution with local adjustment of mutation rates (Kircher et al.,
2014). In this way, the simulated variants would contain de novo pathogenic mutations.
The goal of these methods is to identify disease-causing variants, but their application can
differ depending on whether the data under consideration consist of densely mapped
variants, as in sequence data, or coarsely mapped variants, as in GWAS data. The use of
different classifiers has the effect of refining the goal, in that coarsely mapped variants
may tag other variants in high linkage disequilibrium, and so the functional
characteristics of these other variants should be taken into account. The methods we
investigate have been applied to both types of data (Griswold et al., 2014; Parra et al.,
2014).
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Figure 5.1. Various steps in the statistical learning pipeline for genetic variant prioritization using
functional annotations, with examples outlined for each

GWAS=Genome-wide association studies; ENCODE= Encyclopedia of DNA Elements; NHGRI= National

Human Genome Research Institute; HGMD= Human Gene Mutation Database

With regard to the functional annotations, some come from experimental procedures
while others are predicted computationally. Examples include genomic and epigenomic
annotations that can be incorporated from various online browsers and collections such as
the Ensembl Variant Effect Predictor (VEP) (McLaren et al., 2010) and the Encyclopedia
of DNA Elements (ENCODE) Project (The ENCODE Project Consortium, 2011).
Whether a variant is assigned the annotations that can be attributed to itself only or to
other variants with which it is in linkage disequilibrium can also refine the goal of the

method.
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In this chapter, we compared the performance of three published methods that differ in
annotation set, algorithm and genetic variants, including the classifier: a regularized
regression called elastic net from Gagliano et al. (14 annotations) discussed in Chapter 3,
a modified random forest from Ritchie et al. (174 annotations) (Ritchie et al., 2014)
called GWAVA and a support vector machine from Kircher et al. (949 annotations,
expanded from 63 unique annotations) called CADD, v.1.0 (major release) (Kircher et
al., 2014). These three papers describe algorithms capable of incorporating a large
number of genetic variants labeled with multiple functional annotations, and can output a
prediction score for each variant; hence, they are highly comparable. Although other
methods exist to prioritize genetic risk variants, such as through the use hierarchical
Bayesian analysis (Kichaev et al., 2014; Pickrell, 2014), these require genetic association
statistics for each variant for prioritization, and thus were beyond the scope of the
comparisons in this paper. We investigate nine model types: combinations of the three
different statistical learning algorithms and the three different functional annotation sets
(summarized in Table 5.1). All model types were created for different classifications of
hits: the NHGRI GWAS Catalogue (Hindorff et al., 2010) and the Human Gene Mutation
Database (HGMD) (Stenson et al., 2009).
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Table 5.1. Comparison of the three data-trained genetic variant prioritization papers

Catalogue (p-value <
5x108) [3227 in non-
phenotype specific
model]

[1614 in most
stringent matched by
gene region model”]

Gagliano et al. Ritchie et al. Kircher et al.
(PLoS ONE 2014) (Nat Methods (Nat Genetics
2014) “GWAVA” 2014) “CADD”
Functional annotations n=14 (ENCODE, eQTLs, | n= 174 (ENCODE, n=63 (expanded to 949)
PhastCons, Genic GERP, Genic (Ensembl VEP,
context...) Context___) ENCODE, PolyPhen)
Risk variants (“Hits”) [N] | NHGRI GWAS HGMD - “regulatory” | Simulated mutations

under neutral model -
"gap" sites [14.7
million]

hits”) [N]

Non-risk variants (“Non-

union of common
[Nlumina and

Other variants in 1000
Genomes Project (for

high-frequency
derived human

Affymetrix GWAS example, within 1kb of | 511eles from 1000
panels [75,341 in non- | each HGMD variant) Genomes [14.7
phenotype specific [5027 in gene region million] '
model] model]

Classifier algorithm Elastic net Random forest Support vector machine

Training protocol

60% training
40% reserved for testing

100% training

99% training
1% reserved for testing

Models based on GWAS data can be tested effectively in current data (we apply those

models to the schizophrenia GWAS from the Psychiatric Genomics Consortium). For the

purpose of this thesis we have kept this chapter largely in the format in which it was

submitted; hence Methods appear at the end of this chapter in Section 5.5.

5.3 Results

Our primary analysis used the NHGRI GWAS Catalogue as the classifier. Risk

variants/hits were defined as those variants present in the NHGRI GWAS Catalogue

(www.genome.gov/gwastudies, downloaded on August 7, 2014) (Hindorff et al., 2010)

with a p-value of equal to or less than the accepted threshold for genome-wide

significance, 5x10. A subset of non-hits (that are not in high linkage disequilibrium with

the hits) was selected from common GWAS arrays for comparability. For the three

annotation sets described above, when working with different classifiers some rare
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annotations have no variability and hence were not used to build the model. In this
analysis none of the 14 annotations from Gagliano et al. were invariable, three of the 174
annotations from Ritchie et al. were invariable, and 509 of the 949 annotations from
Kircher et al. were invariable. An independent test set was used to determine accuracy of
the models for discriminating hits from non-hits based on the predictive score output

from each model. These results are presented below.

5.3.1 Area under the ROC curve

All the models had similar accuracy as demonstrated by the area under the curve (AUC)
in the test set data (Table 5.2). Models using Kircher et al.’s annotations produced
slightly higher AUCs compared to the other two annotation sets for the elastic net and
random forest algorithms. In particular the combination of elastic net and Kircher et al.’s
annotations was the only model that produced an AUC with confidence intervals that do

not overlap with any of the other models.

Table 5.2. The area under the curve (AUC) for the GWAS Catalogue comparisons,

holding data and classifier constant, while varying algorithm and annotations.

The 95% confidence interval based on 2000 bootstrap replicates (generated using the R package pROC) is shown in

square brackets. The AUC in the training set is in parentheses.

Annotations > Gagliano et al. Ritchie et al. Kircher et al.
Elastic Net 0.67 [0.65-0.68] 0.65 [0.63-0.66] 0.71[0.69-0.73]
(0.67) (0.67) (0.74)

Random Forest (altered | 0.67 [0.65-0.68] 0.68 [0.66-0.69] 0.70[0.68-0.72]

minimum node size) (0.69) (0.72) (0.79)

;J:Cph‘?;l\ii;tﬁrprior 0.66 [0.65-0.68] 0.64 [0.63-0.66] 0.64 [0.61-0.66]
. (0.66) (0.66) (0.68)

feature selection)

The AUC results for the training set were also computed to investigate whether the

models were over-fit; that is to say, whether the training set AUC is much higher than the
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test set AUC. We found that for the Ritchie et al. and Kircher et al. annotation sets, the
random forest models with node size equal to one were prone to over-fitting. For
instance, for the random forest model based on the Ritchie et al. annotations, the test set
and training set AUCs were 0.687 and 0.998, respectively (further data available on
request). The over-fitting in the random forest models was solved when the minimum
node size was set to 10% of the total sample size. Therefore only the random forest
models with the minimum node size equal to 10% of the data are presented in Table 5.2
and discussed further in the results. These results highlight the importance of ensuring

that appropriate parameters are chosen for the algorithms.

5.3.2 Density and distribution of prediction scores

Violin plots were constructed by plotting the prediction scores for hits (risk variants) and
non-hits separately in order to visualize how well the two classes separated (Figure 5.2
and Table 5.3). The two models with the best AUCs (Kircher et al. annotations with
elastic net (0.71) and with random forest (0.70)) have comparatively well separated
means and relatively normal distributions. In one of the two models with the lowest AUC
(Ritchie et al. annotations with support vector machine (0.64)), the median prediction
score between hits and non-hits is most similar and the distribution is very skewed.
Interestingly, one of the mid-range performance models, the Gagliano et al. annotations
for the support vector machine (0.66) showed evidence of a multimodal distribution
where one mode is more common for hits and another for non-hits. However, this effect
may simply be due to the comparatively small number of annotations, which lead to a

smaller number of possible scores.
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Figure 5.2. Violin plots showing class separation by prediction scores for the various
comparisons using the GWAS Catalogue as the classifier

Hits are variants in the GWAS Catalogue with a genome-wide significant p-value (p<5x10™) and non-hits
are those not present in the GWAS Catalogue, but are found on common GWAS arrays for comparison
purposes. The non-scaled elastic net models are plotted. The adjusted minimum node size (10%) random

forest models are plotted.
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Table 5.3. Summary statistics of the prediction score distributions for the various models

based on the GWAS Catalogue classifier

For a visual representation see the violin plots (Figure 5.2). [SD=standard deviation]

Functional Annotations Gagliano et al. Ritchie et al. Kircher et al.
Hits Non-hits Hits Non-hits Hits Non-hits

Minimum 0.32 0.32 0.36 0.34 0.22 0.14

_ Median 0.54 0.44 0.49 0.44 0.54 0.41

ElasticNet |\ 054 046 |052 047 | 055 043
(not scaled)

Maximum 0.92 0.93 0.89 0.91 0.93 0.93

SD 0.13 0.12 0.11 0.09 0.15 0.15

Random Minimum 0.12 0.12 0.23 0.21 0.21 0.16

Forest .

(altered Median 0.55 0.44 0.55 0.43 0.53 0.44
minimum | Mean 0.54 0.46 053 045 0.42 0.43
node size) | Maximum 0.88 0.88 0.75 0.76 0.83 0.84

SD 0.13 0.12 0.12 0.13 0.12 0.14

Support Minimum 0.33 0.33 0.43 0.43 0.18 0.09

Vector Median 0.61 0.49 0.48 0.44 0.52 0.44

Machine 1\ o 0.58 0.50 055 049 | 058 0.50
(with prior
selection) | ¢p 0.14 0.14 0.15 0.11 0.18 0.14

Generally, the models created using the Kircher et al. annotations showed the largest
spread of prediction scores for both hits and non-hits. We have also reported the
proportion of hits in the top versus the bottom quartiles of the prediction scores in the test
set (Table 5.4). In summary the violin plots show that the distributions for hits and non-
hits overlapped for all models. However, we see from Table 5.4 that of the variants in the
top quartile of prediction scores, there are significantly more hits compared to the lower

quartile for all models assessed (p< 2.2 x 10™'°, chi-square test).
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Table 5.4. Proportion of GWAS Catalogue hits for the various models

Results are shown for the variants in the test set data that were assigned the highest prediction scores (top quartile) and
the lowest scored variants (lower quartile). The difference row shown corresponds to the proportion of GWAS
significant variants in the top quartile minus that of the lower quartile, so a positive difference suggests that the quartile
of the most highly scored variants (top quartile) contains more GWAS significant variants compared to the lowest
scored variants (lower quartile). The number of variants present in each quartile are in parentheses. Note that quartiles
can vary in size where prediction scores are identical across many variants, and all those variants with that particular

score were included in the quartile.

Annotation set

Gagliano et al. Ritchie et al. Kircher et al.

Elastic Net

Chi-sq p-val Chi-sq p-val Chi-sq p-val
top quartile 8.8% 74% 10%
(7872) (7823) (2656)
lower quartile 2.2% 2.1% 1.1%
(8261) <2.2e-16 (7837) <2.2e-16 (2655) <2.2e-16
Difference 6.6% 5.3% 9.3%

Random Forest

Chi-sq p-val Chi-sq p-val Chi-sq p-val
top quartile 8.8% 7.8% 10%
(7956) (7826) (2654)
lower quartile 2.2% 1.4% 1.0%
(7889) | <2.2e-16 (7825) <2.2e-16 (2654) <2.2e-16
Difference 6.6% 6.4% 9.1%

Support Vector Machine

Chi-sq p-val Chi-sq p-val Chi-sq p-val
top quartile 8.1% 7-3% 8.1%
(7873) (8150) (2655)
lower quartile 2.2% 2.2% 2.9%
(7807) | <2.2e-16 (7555) <2.2e-16 (2654) <2.2e-16
Difference 5.8% 5.1% 5.2%

To investigate the consistency of the models we calculated pairwise correlations of the
prediction scores in the test set for the various models either holding the algorithm or the
annotation set constant. We found that the models with the most correlated scores were
those using the Gagliano et al. annotation set. Furthermore, the degree of correlation
when holding the algorithm constant, but varying the annotation set, was generally not as

high as when holding the annotation set constant (Table 5.5).
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Table 5.5. Pairwise correlation between prediction scores in the test set between models

either holding the annotation set or the algorithm constant in the primary analysis

EN= elastic net, RF=random forest, SVM= support vector machine

Annotation set
Gagliano et al. Ritchie et al. Kircher et al.

Algorithm | EN RF SVM EN RF SVM EN RF SVM

Gagliano | EN -- 0.95 0.98 0.41 -- -- 0.47 -- --

etal. RF 0.95 -- 0.93 -- 0.47 -- -- 0.51 --
§ SVM 0.98 0.93 - - - 0.28 - -- 0.35

s Ritchieet | EN 0.41 - - - 0.84 0.79 0.71 - -

B al. RF -- 0.47 -- 0.84 -- 0.66 -- 0.82 --
§ SVM -- -- 0.28 0.79 | 0.66 -- -- -- 0.69
< | Kircheret | EN 0.47 -- -- 0.71 -- -- -- 0.84 | 0.72
al. RF -- 0.51 -- -- 0.82 -- 0.84 -- 0.69

SVM -- -- 0.35 -- -- 0.69 0.72 | 0.69 --

5.3.3 Feature selection within elastic net and random forest

More does not necessarily equal better as not all the annotations may be relevant to
predicting risk variants. Generally, not all of the functional annotations in the annotation
sets were used to create the various models. For instance of the variable features, elastic
net assigned non-zero Beta coefficients to 9 out of 14 annotations, 12 out of 171, and 16
out of 432. Random forest assigned non-zero Gini importance values to all of the 14, 131
out of 171, and 239 out of 432. All of these models had similar performance in the test
sets (AUCs ranging from 0.68 to 0.70 for the random forest models and 0.65 to 0.71 for
the elastic net models). The results suggest that elastic net has a more stringent feature
selection implementation than random forest. The support vector machine models always
assigned non-zero feature weights, as support vector machine does not intrinsically

perform feature selection, as does elastic net and random forest. Thus, we inputted only
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those annotations with a non-zero Beta coefficient from the elastic net models into the

support vector machine models (see Methods).

5.3.4 Importance of the functional annotations

Different combinations of annotations can be used to obtain models with similar
predictive accuracy. Furthermore, it is difficult to interpret the importance of the

annotations for numerous reasons, some of which are discussed below.

All three annotation sets contained a mixture of binary variables and continuous
variables. For Kircher et al.’s annotations, background selection (the annotation with the
widest continuous scale that ranged from 0 to 1000) came up as most important for
predicting the class label in the random forest model. This bias for random forest
preferentially selecting annotations measured on a continuous scale has been previously
described (Strobl et al., 2007). When making a decision at a node, continuous annotations
can be used multiple times at varying cut-offs to split the data. In this way, functional
annotations measured on a continuous scale are incorporated more often into the forest
compared to non-continuous annotations, and thus obtain higher variable importance

measures (Boulesteix et al., 2014; Strobl et al., 2007).

It is also difficult to interpret the variable importance measures derived from elastic net
because this algorithm is not scale invariant. Using Gagliano et al.’s annotations with
elastic net, we compared the models created with scaled (all annotations have a standard
deviation of 1 and a mean of 0) versus non-scaled annotations. Although the AUCs for
both models were nearly identical, the assigned Beta coefficients differed (Figure 5.3).
When we do standardize the scale, we find that the order of importance of coefficients
replicates that of the random forest model. However, standardizing a set of largely binary
variables removes the effect linked to the frequency, and thus skews the biological

representation. So it is not clear that scaling is the best approach.
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Figure 5.3. Feature importance for elastic net models using the Gagliano et al. annotations based
on the GWAS Catalogue classifier

The importance of annotations differed when using scaled versus non-scaled annotations in elastic net
[splice= splice sites, Nonsyn= nonsynonymous SNPs, DNase= DNase I hypersensitive sites, GTEx
eQTLs= cis-eQTL data from the GTEx Consortium, UK eQTLs= cis-eQTL data from the UK Brain
Consortium, Phylo= PhyloP conservation, PhastCons= PhastCons conservation, H3K4MeMel= H3K4Mel
histone modification, H3K4Me3= H3K4Me3 histone modification, H3K27Ac=H3K27Ac histone
modification, TF= transcription factor binding sites, miIRNA= micro RNA targets, Gencode-Txnstart=

transcription start sites from Gencode]

Although the focus is not about annotations we have provided details of the various
importance measures in Appendix A for the feature importance measures from all the
models based on the GWAS Catalogue as the classifier. In the primary analysis
transcription factor binding sites were consistently in the top three annotations for the
Gagliano et al. annotations for all three algorithms, but there were no other clear patterns
with regard to important annotations for the Ritchie et al. or Kircher et al. annotation sets.
In summary, different annotations came up as most important for the various models

regardless of predictive accuracy.
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5.3.5 Performance for complex disease variants: Application to
Schizophrenia GWAS
Various quantile-quantile plots were constructed in order to compare which models
showed greater separation of the schizophrenia GWAS p-values for high scoring and low
scoring functional variants. For all of the models, scores were obtained for the sub-
genome-wide-significant variants (5x10<p<1x10) from the first round of the GWAS
by the Psychiatric Genomics Consortium (PGC1) (Schizophrenia Psychiatric Genome-
Wide Association Study (GWAS) Consortium, 2011). The PGC1 p-values were plotted
on the x-axis and the p-values from the second larger round of the schizophrenia GWAS
(PGC2) (Schizophrenia Working Group of the Psychiatric Genomics Consortium, 2014)
were plotted on the y-axis (Figure 5.4). (The results from PGC2 were not used to train
the model.) Plots were constructed where annotations were held constant but the
algorithm differed. For instance, for the 14 annotations from Gagliano et al. we plotted
the models from the three algorithms in one plot. Furthermore, models from the same

algorithm but varying by annotation set were compared (Figure 5.5).
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Figure 5.4. Quantile-quantile plots of PGC1 sub-genome-wide-significant variants (5x10°
8<p<1x‘|0'€’) stratified by prediction score for the various models based on the GWAS Catalogue
classifier, and plotted by PGC2 p-values

PGCI1 p-values are plotted on the x-axis and PGC2 p-values are plotted on the y-axis. Models grouped by
annotation set: Gagliano et al. [a], Ritchie et al. [b], and Kircher et al. annotations [¢]. The lower quartile
genetic variants are those PGC1 sub-genome-wide-significant variants that were assigned the lowest
prediction scores (in the first quartile), and the top quartile variants are those with the highest prediction

scores (in the fourth quartile).
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Flgure 5. 5 Quantile-quantile plots of PGC1 sub-genome-wide-significant variants (5x10°
8<p<1x10° ) stratified by prediction scores for the various models based on the GWAS Catalogue

classifier, and plotted by -log10(PGC1 p-values) versus -log10(PGC2 p-values)

Models grouped by algorithm: elastic net (non-scaled annotations) [a], random forest (adjusted minimum

node size) [b], and support vector machine (with prior feature selection) [¢]. The lower quartile genetic

variants are those PGC1 sub-genome-wide significant variants that were assigned the lowest prediction

scores (in the first quartile), and the top quartile variants are those with the highest prediction scores (in the

fourth quartile).
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We have also reported the proportion of hits in the top versus the bottom quartiles of the
prediction scores in the test set (Table 5.6). With regard to the functional annotation set,
the separation of the novel associated variants from the non-associated in the sub-
genome-wide-significant variants was best exhibited in the quantile-quantile plots when
using either the Kircher et al. or Ritchie et al. annotation sets. Regardless of annotation
set, the elastic net models consistently showed good separation. For all algorithms using
either the Ritchie et al. or Kircher et al. annotations, the PGC1 sub-genome-wide-
significant variants that have the highest prediction scores (within the top quartile)
consistently contain a higher proportion of GWAS significant variants from the second
round of the schizophrenia GWAS (p<5x10"*) compared to the variants that have scores
in the lower quartile. The elastic net models too, regardless of annotation set, showed this
pattern. Although these patterns are not all statistically significant, it is notable that the
biggest positive difference comes from using the Ritchie et al. annotations with the elastic
net algorithm, and the most significant difference between the proportion of GWAS
significant variants in the top quartile compared to the proportion in the lower quartile
comes from the Kircher et al. annotations using the elastic net algorithm; (there are more
variants available in the Kircher et al. model than the Ritchie et al. model). The Gagliano
et al. annotations performed very poorly with both the random forest and support vector
machine algorithms since the variants with low prediction scores were more likely to be
hits than those with high scores. This is a result of the PGC?2 hits not being enriched in
two of the top annotations for the Gagliano et al. models using either the random forest or
support vector machine algorithms, H3K4Me3 and H3K27Ac. In the GWAS Catalogue
analysis of the variants that possess the H3K4Me3 and H3K27Ac marks, nearly 70% are
hits and the remainder are non-hits. In comparison, of the PGC1 sub-genome-wide-
threshold variants that possess those two annotations, only 21% are PGC2 hits, and the

remaining variants are non-hits.
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Table 5.6. Pairwise correlation between prediction scores in the test set between models

either holding the annotation set or the algorithm constant in the primary analysis

Results are shown for the variants that were assigned the highest scores (top quartile) and the lowest scored variants
(lower quartile). The difference row shown corresponds to the proportion of GWAS significant variants in the top
quartile minus that of the lower quartile, so a positive difference suggests that the quartile of the most highly scored
PGC1 sub-genome-wide significant variants (top quartile) contains more GWAS significant variants from PGC2
compared to the lowest scored PGC1 sub-genome-wide significant variants (lower quartile). The number of variants
present in each quartile are in parentheses. Note that quartiles can vary in size where prediction scores are identical

across many variants, and all those variants with that particular score were included in the quartile.

Annotation set

Gagliano et al. Ritchie et al. Kircher et al.

Elastic Net

Chi-sq p-val Chi-sq p-val Chi-sq p-val
top quartile 83% 7% 54%
(60) (56) (34)
lower quartile 79% 55% 43%
(66) 0.52 (56) 0.02 (37) | 7.30E-05
Difference 4% 22% 11%

Random Forest

Chi-sq p-val Chi-sq p-val Chi-sq p-val
top quartile 65% 72% 1%
(60) (55) (41)
lower quartile 90% >1% 53%
(59) 1.20E-03 (55) 0.02 (43) 0.10
Difference -25% 21% 18%

Support Vector Machine

Chi-sq p-val Chi-sq p-val Chi-sq p-val
top quartile 50% 70% 3%
(54) (56) (37)
lower quartile 79% 67% 64%
(68) 6.30E-04 (52) 0.79 (42) 0.41
Difference -29% 3% 9%

The results for the application to the schizophrenia GWAS did not always reflect the
AUC:s from the training data. For instance, a poor performing model in terms of AUC
based on the test set, elastic net with the Ritchie et al. annotations, performed well in the
GWAS application. All in all, the accuracy of the resulting models should be assessed by

various means, including (but not limited to) theoretical models such as the ROC curve,
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as well as empirical approaches such as applying the model using data from one study

and evaluating its performance on independent data with gold standard answers.

5.3.6 HGMD Analysis

In an attempt to apply the algorithms and annotation set combinations to whole genome
sequencing data, and indeed fine-mapping studies, rather than just GWAS, a different
classifier was used to identify hits and non-hits, the Human Gene Mutation Database
(HGMD). We conducted two analyses with subsets of the public release of HGMD. In
the first, we took all the variants (single nucleotide polymorphisms) in HGMD and chose
controls that fell within a kilobase of either side from the HGMD variant. In this analysis
one of the 14 annotations from Gagliano et al. was invariable, eight of the 174
annotations from Ritchie et al. were invariable, and 396 of the 949 annotations from
Kircher et al. were invariable. Secondly, models based on the subset of non-exonic
HGMD variants and non-exonic control variants were assessed. This second set of
models was created in an effort to overcome the ascertainment bias inherent in HGMD
related to genes. In this analysis two of the 14 annotations from Gagliano et al. were
invariable, 16 of the 174 annotations from Ritchie et al. were invariable, and 756 of the

949 annotations from Kircher et al. were invariable.

The models for the analysis using all of the HGMD variants using either the Ritchie et al.

or Kircher et al. annotations had high predictive accuracy (Table 5.7).
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Table 5.7. The area under the curve (AUC) for the HGMD comparisons, holding data

and classifier constant, while varying algorithm and annotations

The 95% confidence interval based on 2000 bootstrap replicates (generated using the R package pROC) is shown in

square brackets. The AUC in the training set is in parentheses.

Annotations 2> Gagliano et al. Ritchie et al. Kircher et al.
Elastic Net 0.66 [0.64-0.67] 0.87 [0.86-0.88] 0.88 [0.87-0.89]
(0.65) (0.88) (0.88)

Random Forest (altered
minimum node size)

0.65 [0.64-0.66]
(0.66)

0.91 [0.90-0.92]
(0.91)

0.87 [0.86-0.88]
(0.89)

Support Vector
Machine (with prior
feature selection)

0.63 [0.62-0.64]
(0.66)

0.85 [0.83-0.86]
(0.86)

0.85 [0.84-0.86]
(0.87)

The AUC:s for the non-exonic HGMD analysis were more comparable to the ones

obtained for the primary analysis using the GWAS Catalogue as the classifier (Table

5.8), but again the annotations from Ritchie et al. and Kircher et al. performed better.

Table 5.8. The area under the curve (AUC) for the non-exonic HGMD comparisons,

holding data and classifier constant, while varying algorithm and annotations

The 95% confidence interval based on 2000 bootstrap replicates (generated using the R package pROC) is shown in

square brackets. The AUC in the training set is in parentheses.

Annotations 2>

Gagliano et al.

Ritchie et al.

Kircher et al.

Elastic Net

0.65 [0.61-0.68]
(0.66)

0.77 [0.74-0.80]
(0.78)

0.79[0.76-0.81]
(0.80)

Random Forest (altered
minimum node size)

0.65 [0.61-0.68]
(0.65)

0.80 [0.77-0.82]
(0.86)

0.78 [0.75-0.80]
(0.85)

Support Vector
Machine (with prior
feature selection)

0.61 [0.58-0.65]
(0.68)

0.68 [0.65-0.72]
(0.78)

0.76 [0.73-0.78]
(0.82)
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Similar to the analysis using the GWAS Catalogue as the classifier, for the HGMD
analysis models the features that came up as most important tended to vary depending on
the algorithm and are difficult to interpret. It is however notable that genic annotations
featured highly (see Appendix A). For the Gagliano et al. annotations, the top annotation
(or the second most important in the case of support vector machine) was
nonsynonymous SNPs. For the Kircher et al. annotations, the top annotations for the
random forest and support vector machine models were related to the coding sequence or
nonsynonymous SNPs. The top annotation for elastic net was CpG. For the Ritchie et al.
annotations, the top two annotations were coding sequence and exon for both the random
forest and support vector machine models. For elastic net, the top two annotations were
donor and coding sequence. The importance of genic features is likely linked to bias in

the data, which will be examined further in the Discussion.

The HGMD analysis in which only non-exonic HGMD and control variants were
considered seemed to overcome this bias towards genes or positions relative to genes.
Interestingly, for all algorithms, the top annotation for the Gagliano et al. annotation set
was DNase I hypersensitive sites, but we caution against making biological inferences on

the top annotations for the reasons outlined above (see Appendix A).

5.3.7 Comparison of scores from the three papers: Application to
Schizophrenia GWAS
When using the actual prediction scores made available in the three papers, the quantile-
quantile plot suggested that the Gagliano et al. scores best identified the novel hits from
the second round of the schizophrenia GWAS that were not significant in the first round
(Figure 5.6). The proportion of hits in the top versus the bottom quartiles of prediction
scores are significantly different for the Gagliano et al. method (p<0.03, chi-square test),
whereas the difference between the quartiles for the Ritchie et al. and Kircher et al.

methods were not significant (p~0.4 for both methods) (Table 5.9).
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Figure 5.6. Quantile-quantile plots of PGC1 sub-genome-wide-significant variants (5x10°
8<p<1x10?®) stratified by prediction scores obtained from the three papers, and plotted by -
log10(PGC1 p-values) versus -log10(PGC2 p-values)

“GWAVA?” corresponds to the scores obtained from the method published in Ritchie et al. 2014,
“UpWeight” corresponds to the method in Chapter 3 and “CADD” corresponds to the method in Kircher et
al. 2014. The lower quartile genetic variants are those with a prediction score in the first quartile, and the

top quartile variants are those with prediction values in the fourth quartile.
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Table 5.9. Using the scores from the actual published models, the proportion of sub-
genome-wide-significant variants (5x10*<p<1x107®) variants from the first round of the
schizophrenia GWAS (PGC1) that are GWAS significant (p<5e-8) in the second round
(PGC2) for the various models

Results are shown for the variants that were assigned the highest scores (top quartile) and the lowest scored variants
(lower quartile). The difference row shown corresponds to the proportion of GWAS significant variants in the top
quartile minus that of the lower quartile, so a positive difference suggests that the quartile of the most highly scored
PGC1 sub-genome-wide significant variants (top quartile) contains more GWAS significant variants from PGC2
compared to the lowest scored PGC1 sub-genome-wide significant variants (lower quartile). The number of variants
present in each quartile are in parentheses. Note that quartiles can vary in size where prediction scores are identical
across many variants, and all those variants with that particular score were included in the quartile. “UpWeight”
corresponds to the method in Chapter 3, “GWAVA” corresponds to the scores obtained from the method published in
Ritchie et al. 2014, and “CADD?” corresponds to the method in Kircher et al. 2014.

Method
UpWeight GWAVA CADD
Chi-sq p-val Chi-sq p-val Chi-sq p-val

top quartile 80% 67% 74%
P (55) (60) (31)
61% 73% 65%

| til . . .

ower quartile (59) 0.03 (62) 0.48 (31) 0.41

Difference 19% -6% 9%

Of the variants in the top quartile for the Gagliano et al. scores, most (80%) were GWAS
significant variants (p<5x10") from the second round of the GWAS. Of the variants in
the top quartile for the Ritchie et al. scores and the Kircher et al. scores there were fewer
significant variants: 67% and 74% respectively. Only a small percentage of variants in
the top quartiles were nonsynonymous SNPs (i.e. missense, nonsense, frameshift, inframe
indel, or stop-lost mutations): 9%, 2% and 4% for the Gagliano et al. scores, Ritchie et al.
scores and Kircher et al. scores, respectively. Of the sub-genome-wide significant PGC1

SNPs, only 5% are nonsynonymous, and of those, most (83%) become PGC2 hits.

150



5.4 Discussion

We found that the three algorithms assessed here, elastic net, random forest and the linear
support vector machine show comparable accuracy in the GWAS test data. The Kircher
et al. annotations trained using the elastic net algorithm have the highest AUC. When
applied to real data, several models show the potential to prioritize novel hits, with the
exception of the random forest and support vector machine models using the Gagliano et
al. annotations. However, this was just one real dataset and further studies would need to
be assessed to validate this conclusion. Under the conditions employed in our analysis,
none of the models were over-fitted, as demonstrated by verifying that the training set

AUC is similar in magnitude to that of the test set.

Furthermore, our results show that various combinations of annotations can create models
with similar predictive ability when it comes to identifying risk variants from non-risk
variants. One must be wary of making strong conclusions about the relevance of the
annotations because of the difficulty in interpretation. The coefficients or variable
importance measures are differentially affected by issues such as correlation between the
attributes, and whether variables are normalized (for elastic net and support vector
machine). This observation makes it difficult to differentiate the predictive power of the

functional annotation sets used by each study, at least in the case of GWAS risk variants.

As mentioned in the Introduction, the main goals of these methods are to identify those
variants that are important for disease risk, which can be applied to identifying novel loci
or for fine-mapping at previously implicated loci. The HGMD is designed to contain
disease variants, whereas the GWAS Catalogue contains variants associated with disease,
but those variants may only be tagging the “causal” variant. GWAS are undertaken to
identify the loci containing the variant and may identify the actual causal variant but will
more often identify variant in high linkage disequilibrium with the causal variant. Thus,
the primary analyses in this paper (using the GWAS Catalogue) may be considered to be

about identifying novel loci rather than fine-mapping, and the HGMD analyses may be
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considered to be more about fine-mapping a specific locus. Furthermore, the Gagliano et
al. method may be considered to be better suited to identifying novel loci (rather than
fine-mapping) because it annotates variants on whether or not the variant itself falls into
the base pair range for the functional annotation, but also if that variant has is in linkage
disequilibrium (1*>0.8) with a variant that falls into the range. The Ritchie et al. and
Kircher et al. methods annotate the variants just based on whether the variant itself falls
into the base sequence for the functional annotation, and do not look at their linkage
disequilibrium proxies. That being said, we also performed the analyses for the Gagliano
et al. annotations only considering whether the variant itself falls into the sequence for
the functional annotation as an additional analysis. The resulting models had very similar
accuracy to those models created when the linkage disequilibrium proxies were taken into

account (data available on request).

To apply the methods in next generation sequencing data and fine-mapping studies we
would ideally use risk variants identified from such studies. Unfortunately, there are not a
sufficient number available. We used the HGMD to attempt to extrapolate our findings.
However, we believe the high accuracies achieved for the all HGMD models (i.e. not the
models looking just at non-exonic variants) are driven by the inherent bias of the HGMD
data, in that it is largely focused on genes. For the models using only non-exonic HGMD
and control variants, the AUCs were considerably lower, with the Kircher et al. and
Ritchie et al. annotation sets clearly out-performing the annotations used by Gagliano et
al. Yet, this subset of HGMD is a highly derived and filtered set of variants, emphasizing
the need for empirical data. The simulation employed by Kircher et al. to consider all
variants, in which the functional annotations were used to differentiate between millions
of high frequency human-derived alleles from the same number of simulated alleles,
(Kircher et al., 2014) showed considerable accuracy; further adaptions to this strategy

may prove useful.
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Compared to the corresponding elastic net or random forest models, the support vector
machine models consistently produced slightly lower AUCs for the GWAS Catalogue
and all HGMD analyses. This poorer performance may be attributed to the fact that we
implemented the most basic kernel type for the support vector machine, a linear kernel.
This kernel was chosen in an effort to be consistent with the type of kernel that was
utilized by Kircher et al., and with the advantage that computational time remains
comparable with the other algorithms. All of the models run in this paper took under 130
minutes to complete. Note that for the support vector machine, in addition to the linear
kernel, we also tried using the radial basis function kernel (the type of kernel one step
more complex than linear). We could not achieve convergence using the radial basis
function kernel within a reasonable amount of time (i.e. still no convergence after
running 48 hours on a high performance computing cluster). However, a linear kernel
may not be best to separate the data. Furthermore, as support vector machine does not
intrinsically perform feature selection, we selected a subset of features with a non-zero
Beta coefficient from the corresponding analysis using the elastic net algorithm. Use of
another method of feature selection may have yielded different results. Our results do not
necessarily suggest that the elastic net and random forest algorithms out-perform the
support vector machine algorithm, since altering either the kernel type or the functional
annotations in the support vector machine models may produce results comparable to the

other two algorithms.

There are limitations to this comparison. For example, other statistical learning
algorithms, such as a deep neural network (Quang et al., 2015), and other annotation sets
could be explored. Annotation sets could be phenotype specific, as there is evidence that
the level of enrichment of functional information can differ depending on the subset of
risk variants selected (Farh et al., 2015). For instance, enrichment of disease-specific
variants in the GWAS Catalogue can differ in certain cell types, for example for DNase I

hypersensitive sites (Maurano et al., 2012).
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Identifying which algorithm and/or annotations identify risk variants with the highest
accuracy will help researchers develop a better understanding of the genetic factors
involved in complex disease in a cost-effective manner making use of a rich set of
publically available functional data. This work helps illuminate the genetic factors
involved in disease by making use of existing functional data in silico. Increasing
knowledge on the etiology of complex disease will allow for earlier or better diagnoses,

and the development of personalized treatment and novel therapies.

5.5 Methods

We explored the utility of each of the three algorithms with each of the three functional
annotation sets in order to attribute performance differences to the algorithm and/or

annotations. A total of nine model types were created.

In the primary analysis, the set of risk variants used for training all the models were based
on whether or not a genetic variant is a hit or a non-hit from a genome-wide association

study (GWAS). Hits were defined as those variants present in the NHGRI GWAS

Catalogue (www.genome.gov/gwastudies, downloaded on August 7, 2014) (Hindorff et
al., 2010) with a p-value of equal to or less than 5x10™. There were 3,618 unique genetic
variants that met these criteria. (Note that at the time of download the novel hits from the
second phase of the schizophrenia GWAS from the Psychiatric Genomics Consortium
(PGC2) (Schizophrenia Working Group of the Psychiatric Genomics Consortium, 2014)
had not yet been included.) A subset of non-hits was selected from common GWAS
arrays (Affymetrix Genome-Wide Human SNP Array 6.0, the Illumina Human1M-Duo
Genotyping BeadChip, and the I[llumina HumanOmnil-Quad BeadChip). Those non-hits
in high linkage disequilibrium (r*> 0.8) with hits were removed from the analyses, and a

random subset of these non-hits was utilized as controls (n= 75,319).
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5.5.1 Functional annotation sets

The data was then annotated using three distinct protocols outlined in each of the three
respective papers. The variants were marked with the Gagliano et al. annotations
available on the website

(http://www.camh.ca/en/research/research_areas/genetics and epigenetics/Pages/Statisti

cal-Genetics.aspx). Fourteen functional annotations were used by Gagliano et al., two of

which were on a continuous scale (two conservation measures, PhyloP and PhastCons),
and the remaining were binary, signifying the presence or absence. The binary
annotations included those related to genomic context such as the presence in a gene, a
splice site or a transcription start site, as well as those from the ENCODE Project (The
ENCODE Project Consortium, 2011) such as three types of histone modifications and
DNase I hypersensitivity. For the ENCODE data, functional annotations present in
multiple cell lines were grouped together, and genetic variants were annotated
accordingly in a binary, present or absent, fashion. Variants were marked with an
annotation if they or their linkage disequilibrium proxies fall into the base pair range of

the annotation.

To annotate the variants using Ritchie et al.’s annotations, the data were entered into the

online GWAVA webserver (https://www.sanger.ac.uk/resources/software/gwava/).

Ritchie et al. investigated 174 functional annotations, some binary and others continuous.
They also used ENCODE Project tracks including those investigated in Gagliano et al.
but not necessarily coded as presence or absence. For instance, for transcription factor
binding sites, the number of cell types in which the site was present was used as the
annotation. Additionally, variation such as mean heterozygosity and genic and sequence
contexts were included. Variants were marked with an annotation if they fall into the base

pair range of the annotation.

To obtain Kircher et al.’s annotations, the data were entered into the online CADD

webserver (http://cadd.gs.washington.edu). However, Kircher et al. also imputed missing
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values, expanded categorical variables, added indicator variables, and included
interaction terms. Martin Kircher provided scripts to run on the webserver output to
prepare our dataset in accordance with the complete protocol. Kircher et al. looked at 63
unique functional annotations, which totaled to 949 once the categorical variables were
expanded, and the indicator variables and interaction terms were included. A mixture of
continuous, categorical, and binary functional annotations was included. Similar
annotations to those used by Gagliano et al. and/or Ritchie et al. were included, such as
ENCODE Project annotations and genic context. Additionally, data from online variant
prediction programs (e.g. Sift (Ng and Henikoff, 2003) and PolyPhen (Adzhubei et al.,
2010) were incorporated. Variants were marked with an annotation if they fall into the

base pair range of the annotation.

5.5.2 Statistical learning algorithms

The variants were randomly divided; 60% was used for training the models, and the
remaining 40% was reserved for testing. Elastic net is a regularized logistic regression,
and those models were constructed using the glmnet package in R (R Core Development
Team, 2008). A weighting procedure was included to up-weight hits, as described in
Knight et al. (2011); in brief, the weighting has the effect of equalizing the number of hits
and non-hits in the training set. Optimal values of the parameters lambda and alpha were
selected for each elastic net model using 10-fold cross validation. (The corresponding
values that are one standard deviation from the values that produce the lowest binomial
deviance.) Lambda is an overall penalty parameter. Alpha controls the proportion of
weight assigned to both the sum of the absolute value of the coefficients and the sum of
the squared value of the coefficients, which affects the degree of their sparsity. A range
of combinations of lambda and alpha were investigated. The lambda and corresponding
alpha that give a model a deviance one standard deviation above the model with the

lowest deviance was selected.
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Random forest is a collection of decision trees. The random forest models were
implemented in Python using the scikit-learn package (Pedregosa et al., 2011). Two sets
of random forest models were created, both using 10-fold cross validation. For the first
set, we replicated Ritchie et al.’s random forest implementation by using scripts (e.g.
gwava.py) provided on their online GWAVA FTP site
(ftp://ftp.sanger.ac.uk/pub/resources/software/gwava/). For instance, bootstrap sampling
was employed to form decision trees from bootstrap subset samples. To address the class
imbalance in the datasets, non-hits were down-weighted through the balance classes
function created by Ritchie et al. and included in their random forest implementation. The
balance classes function selects a subset of non-hits that is equal to the number of hits in
order to grow a tree. Furthermore, the subset of annotations used to determine the node
split was set to the square root of the total number of annotations. This setting is the
default setting for classification problems to determine the best split at each node of the
decision tree (Malley et al., 2012). Additionally, as done by Ritchie et al., we used 100
decision trees since we determined that the prediction scores and variable importance

measures did not significantly differ past 100 trees.

Ritchie et al. used a minimum node size (min_samples_split) of 1. The minimum node
size is the minimum number of samples required to split an internal node. We created
another set of random forest models in which we adjusted the minimum node size. This
parameter is dataset specific, and a recommended setting is 10% of the total dataset
(Malley et al., 2012). Consider n to be the number of hits in the training dataset. For the
second set of random forest models, we set the minimum node size to approximately 10%

of 2n.

Support vector machine creates a hyperplane within a decision boundary space defined
by support vectors to separate the classes in multidimensional space. The support vector
machine models were implemented in Python through the scikit-learn package

(Pedregosa et al., 2011). Kircher et al. did not use a weighting procedure as their training

157



set was already balanced. To compare protocols in an unbiased manner, we used a subset
of the training set in which we chose all hits, and randomly selected an equal amount of
non-hits. We performed a grid search using the tune function in order to determine the
optimal cost parameter for a linear kernel. The cost parameter is a penalty (see chapter 9
in James et al. (2013) for details). Feature selection is critical to improving model
performance and is intrinsically incorporated by the elastic net and random forest
algorithms (Appavu et al., 2011). Feature selection must be implemented before using
support vector machine, as there is no feature selection protocol built in. Kircher et al.
utilized univariate logistic regression among other methods to select features that best
predict genetic risk variants. In this paper our support vector machine models included
those annotations that had a non-zero Beta coefficient from the corresponding elastic net
models. We chose the annotations found to be important from elastic net, since this
algorithm implements a more stringent feature selection protocol compared to random

forest (see Results).

5.5.3 Assessment of model performance

We assessed model performance in the test set data by calculating the area under the
receiver operating characteristic (ROC) curve using the R package ROCR (Sing et al.,
2005) (and verified using the R package pROC (Robin et al., 2011)). 95% confidence
intervals were generated using 2000 bootstrap replicates also using pROC (Robin et al.,
2011). As another measure of model performance, we also examined the distribution of

prediction scores assigned to the test set data with the aid of violin plots.

We investigated importance of the functional annotations through the Beta coefficient for
elastic net. Similar to the output from a simple logistic regression, the larger coefficients
are interpreted as more important to predicting genetic risk variants. For random forest
we used Gini importance, which was also used in Ritchie et al. Gini importance is a
scaled measure of Gini impurity averaged over all trees; it represents the improved
capacity for correctly predicting variants that can be directly attributed to the annotation
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(Hastie et al., 2009). For support vector machine, feature weights can be obtained related
to the construction of the hyperplane when a linear kernel is used (Rosenbaum et al.,

2011).

5.5.4 Performance for complex disease variants: Application to
Schizophrenia GWAS
We tested the performance of the nine models based on the GWAS classifier in a
schizophrenia GWAS context. We selected all sub-genome-wide-significant variants
(5x10°<p<1x10"®) from the first round of the GWAS by the Psychiatric Genomics
Consortium (PGC1) (Schizophrenia Psychiatric Genome-Wide Association Study
(GWAS) Consortium, 2011). For each of the nine models we obtained prediction scores
for these variants and selected the variants from the first and fourth prediction score
quartiles. For these variants we extracted the p-values from the larger second round of the
GWAS (PGC2) (Schizophrenia Working Group of the Psychiatric Genomics Consortium,
2014) and plotted these in quantile-quantile plots. Note that there is sample overlap in the
discovery cohort (about 30%) of the smaller PGC1 in the larger PGC2. Sample details are
provided as a Supplementary Table in the PGC2 paper (Schizophrenia Working Group of
the Psychiatric Genomics Consortium, 2014). We were able to determine for all models
whether variants assigned higher scores were enriched in the variants with more

significant p-values compared to variants with less significant p-values.

5.5.5 HGMD analysis

The nine models created by combinations of annotation sets and algorithms were
assessed using two sets of the public release of the Human Gene Mutation Database
(HGMD) variants provided to Ensembl in the fourth quarter of 2013 (provided by
Graham Ritchie). In the first, we took all the variants (single nucleotide polymorphisms)
in HGMD (N= 3,391) and chose non-hits/controls (n= 24,408) that fell within a kilobase
of either side from the HGMD variant (for consistency with the way the controls were

selected in Ritchie et al. (2014)). Secondly, models based on the subset of non-exonic
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HGMD variants (N= 689) and non-exonic control variants present in the 1000 Genomes
Project (Phase 1, version 3) that are within +/-1 kilobase from any of the HGMD variants
(n=16,527). were assessed. Additionally, the data was randomly split into 60% for
training and 40% for testing. The same procedures for elastic net, random forest and
support vector machine used in the GWAS Catalogue analysis were also conducted for

the HGMD analyses.

5.5.6 Comparison of scores from the three papers: Application to
Schizophrenia GWAS
In the effort for a more general comparison of the published methods as is, rather than
looking specifically at the algorithm and annotations as done above, we additionally
conducted the schizophrenia GWAS application using scores for the variants obtained
directly from the published papers. Gagliano et al. makes available prediction scores from
the non-phenotype specific analysis (which defined risk variants as variants present in the
NHGRI GWAS Catalogue (Hindorff et al., 2010) downloaded on August 6, 2013 with a
p-value of less than or equal to 5x10®, and controls as variants on common GWAS
platforms that are not in linkage disequilibrium (1 >= 0.8) with the GWAS Catalogue
variants). Ritchie et al. makes available prediction scores from three models. We used the
most stringent, the scores from the “region” model (which defined risk variants as
“regulatory mutations” in the Human Gene Mutation Database (HGMD) (Stenson et al.,
2009) public database, and the control variants as all those variants in the 1000 Genomes
Project within a kilobase distance from each HGMD variant. Regulatory mutations are
those variants that fall into regions that do not encode for a protein. For both Gagliano et
al. and Ritchie et al. the prediction scores range from 0 to 1, where a value closer to one
assigned to a variant suggests that that variant is more likely to be a risk variant as
defined in the models. Kircher et al. defined phred-like scores (scaled C scores) in

addition to raw scores. We plotted based on the raw scores.
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Chapter 6
Allele-specific DNA Methylation: A Functional Annotation
with Potential for Risk Variant Prioritization in GWAS
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6
6.1 Abstract

It has been hypothesized that allele-specific DNA methylation (ASM) can supplement
GWAS of complex diseases and traits. We provide the first confirmation of this
hypothesis by showing that single nucleotide polymorphisms exhibiting significant
methylation intensity differences between the two alleles (ASM-SNPs) in the brain were
consistently enriched in the GWAS sub-genome-wide significant SNPs of several
phenotypes, with the strongest effect in schizophrenia. Our data also indicate that ASM-
SNPs are over-represented in functional genomic regions, and that the association

between ASM and disease could be causal.

6.2 Introduction

Genome-wide association studies (GWAS) have identified single nucleotide
polymorphisms (SNPs) associated with psychiatric disease, but more associated SNPs
remain to be discovered. SNPs from GWAS with nominal but sub-genome-wide
significant p-values account for a considerable proportion of the variance in independent
psychiatric samples (International Schizophrenia Consortium et al., 2009), suggesting
they are enriched for causal SNPs. Obtaining larger sample sizes (Schizophrenia Working
Group of the Psychiatric Genomics Consortium, 2014) or using sub-phenotypes (Mahon
et al., 2011) has been used to discover additional risk SNPs for psychiatric diseases.

Other options for identification of novel risk loci should be explored.

DNA methylation may play a role in disease. For instance, work has been done on
investigating the implications of methylation patterns resulting in imprinting or parent-of-
origin bias of alleles, as reviewed in Falls et al. (1999) and Butler et al. (2009). Another

type of methylation phenomenon is that some SNPs exhibit allele-specific methylation
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(ASM): where one allele shows significantly different methylation levels compared to

another allele. ASM can be determined by detecting methylation at SNPs in individuals

and then comparing the methylation levels between alleles at each SNP in the sample. An

initial ASM study used Affymetrix 250K St/ SNP arrays to assess ASM in various

human tissues, and they showed that ASM can occur outside of imprinted regions (Kerkel

et al., 2008). ASM may play a role in disease etiology through the regulation of gene

expression since ASM has been shown to be associated with expression changes in

nearby genes (Gertz et al., 2011; Schalkwyk et al., 2010). However, there has been a

limited number of studies (all in small sample sizes) (see Table 6.1), which investigated

ASM (e.g. n=10 (Schalkwyk et al., 2010) and n=42 (Hutchinson et al., 2014)). Larger

studies to detect ASM effects are warranted.

Table 6.1. Comparison of allele-specific DNA methylation studies.

Study Sample size | DNA tissue ASM lab detection | ASM statistical detection
source method method
Schalkwyk et al. | 10 (5 twin Whole blood | Affymetrix SNP 6.0 | For heterozygotes,
2010 pairs) Buccal + MSRE (Hpall, relative allelic score
(verification) | Hlal, Acil) difference between
genotyping and MSRE-
digested arrays
Gertz et al. 8 (6 family | Leukocytes RRBS (validated 4 For heterozygotes,
2011 members loci through Sanger | compared methylation
froma3 sequencing) status on the variant
generation allele and reference
family and allele for each SNP-CpG
2 pair by performing a
unrelateds) Fisher’s Exact Test and
calculated g-values.
Hutchinson 42 (12 twin | Whole blood | Affymetrix SNP 6.0 | Heterozygous SNPs with
2014 pairs and + MSRE (Acil, BsaH, | the MPRs with values
18 Hhal, Hpall, lower than the 2.5 and
singletons) HpyCH41V) 97.5 percentiles of the

MNR distribution

ASM-= allelic-specific methylation; MSRE= methylation-specific restriction enzymes; MPR= MSRE

positive region; MNR= MSRE negative region; RRBS= reduced representation bisulphite sequencing
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Previous studies investigated ASM only in heterozygous individuals, where the intensity
at one allele was compared to the intensity of the other allele after digestion with a
cocktail of methylation-specific restriction enzymes to enrich for the hypomethylated

fraction on the genotyping array (Figure 6.1).

Normalized Probe Intensities —
Hypomethylated Fraction, Heterozygotes

B allele (hypomethylation) intensity

A allele (hypomethylation) intensity

Figure 6.1. Example of ASM detection for heterozygote SNPs after digestion with MSRE.

MSRE= methylation-specific restriction enzymes

With regard to methylation and psychiatric diseases, there is evidence that this epigenetic
phenomenon of ASM plays a role in such diseases. For instance, differences in DNA
methylation at numerous loci has been shown to be associated with schizophrenia and

bipolar disorder in the frontal cortex (Mill et al., 2008).

ASM may help identify the causal SNPs for psychiatric diseases from among other SNPs
with sub-genome-wide significant p-values. SNPs exhibiting allele-specific methylation
will be referred to as ASM-SNPs from here in. We hypothesized that SNPs from
psychiatric GWAS with nominal sub-genome-wide significant p-values are enriched for

brain ASM-SNPs compared to SNPs in less significant bins.
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6.3 Methods
6.3.1 Samples

Analyses were performed using DNA from human post-mortem prefrontal cortex,
Brodmann area 10, were analyzed from control (N=74), bipolar disorder (BPD) (N=65)
and schizophrenia (SCZ) (N=64) European-ancestry individuals from the Stanley
Medical Research Institute and the Harvard Brain Tissue Resource Center. Sperm
samples from BPD (n=24) and control samples (n=24) collected at the Centre for
Addiction and Mental Health (Toronto) were also available. Ethnicity of the samples was
determined using principal components analysis using super populations from the 1000
Genomes Project (Phase 1). DNA samples from both brain tissues and sperm were
extracted using standard phenol-chloroform methods. Demographic data for the samples

are summarized in Table 6.2.
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Table 6.2. Demographics for the samples.

STANLEY (brain)

Female  Male (N=57, Age (yrs;  Ethnicity-  Ethnicity-
N=90 (N=33,37%) 63%) mean +SD) Caucasian Other

Controls| 27 7 19 42.7+7.3 27 0
sczy 31 7 23 42.5+8.6 31 0
BPD] 32 18 14 45.2+10.3 30 2

HARVARD (brain)
Female  Male (N=64, Age (yrs; Ethnicity-  Ethnicity-
N=118 (N=54, 46%) 54%) mean +SD) Caucasian Other

Controls| 49 20 29 57.9+15.9 47 2
scZ| 34 13 21 58.5+13.7 33 1
BPD 35 21 14 62.6x17.4 35 0

CAMH (sperm)
Female Male (N=48,  Age (yrs; Ethnicity-  Ethnicity-

N=48 (N/A) 100%) mean * SD) Caucasian Other
Controls| 24 N/A 24 38.5+11.3 16 8
N4 0 N/A N/A N/A 0 N/A
BPD| 24 N/A 24 38.5+12.4 21 3

SCZ= schizophrenia; BPD= bipolar disorder; Age was only provided as decade ranges (e.g. 11-20, 21-30,
etc.) for the Harvard samples, so to calculate the mean age, the decade was replaced by the median age for
that decade. Ethnicity determined by principal component analysis using genetic data. Only the

“Caucasian”/European samples (n=203 brains) were utilized for the identification of ASM.

6.3.2 Identification of ASM-SNPs

The samples described above were interrogated twice on Affymetrix SNP 6.0 (Affy6)
microarrays: once for genotyping and the other for detecting the methylation levels for
the genotypes (Figure 6.2). The genotyping was undertaken using standard procedures
following the manufacturer’s instructions, and possible batch effects were tested for and
not found. As cases and controls were run separately on two batches of arrays, a subset of
10 cases and 10 controls was re-run in the second batch to ensure comparability. These
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technical replicates were enriched separately versus the original cases and controls, which
were enriched together. For the detection of methylation levels, in brief, DNA samples
were separately digested with three methylation-specific restriction enzymes: Hpall,
HinPl1I, and HpyCHA4IV. The three digests per sample were then pooled in equal
amounts, and adaptors were ligated onto the ends of DNA fragments. To eliminate the
fragments containing methylated cytosines between the restriction enzyme targets,
ligation products were additionally digested with McrBC. Samples were then PCR-
amplified using primers complementary to the adaptor sequences, fragmented, labelled,
and hybridized to Affy6 microarrays. The crlmm R package (v1.8.11) was used to
background correct, normalize and summarize (via RMA) the SNP probes, and to make
genotype calls. Individual genotypes were assigned based on the

individual’s hybridization score for each allele separately.

Post-mortem brains (n=208

Caucasian)

DNA Extraction w

Unmethylated fraction
enrichment

Affy 6 array

Affy 6 Array

Genotypes (Hypo)-methylation intensities

PWL detection of ASM

Figure 6.2. Wet lab methodology for ASM detection.

MSRE= methylation-specific restriction enzymes (Hpall, HinP11, and HpyCH4IV were used here); Affy 6
= Affymetrix SNP 6.0; PWL= piecewise linear regression
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ASM-SNPs are detected by establishing whether there is a difference between the
total hybridization score (sum of intensities from both alleles) between groups of
individuals with different genotypes. Four ASM-SNP lists were derived: all brain, BPD,
SCZ, and control using piecewise linear regression (PWL) at q<0.01 on the total
hybridization score. PWL is a two step linear regression model, first between genotypes
AA and AB, and then between genotypes AB and BB. The genotypes were determined
from the allelic intensities from the normal genotyping array (i.e. no methylation
restriction enzymes added). No covariates were included into the model. For the array to
which the methylation specific restriction enzyme digested fragments (i.e. the
hypomethylated fraction) were bound, the microarray intensity can be interpreted as
hypomethylation level. SNPs that demonstrated one or two significant slopes (the slope
between AA-AB and/or AB-BB with a FDR<(0.01) were classified as ASM (see Figure
6.3). This procedure was done for four ASM cohorts: SCZ, BPD, controls and all brains
to get the four ASM-SNP lists.
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Figure 6.3. Methylation signal intensity plots from the Affymetric SNP 6.0 array before and after
MSRE digestion using all brain samples.

[a] signal intensity for genotyping array for rs9587163, an ASM SNP. [b] signal intensity for the same
ASM-SNP as in [a] for the hypomethylated fraction (i.e. MSRE digestion) on which the PWL was
conducted to derive the all brain ASM-SNP list in this example. [c] signal intensity for genotyping array for
rs481818, a non-ASM SNP. [d] signal intensity for the same non-ASM-SNP as in [c] for the
hypomethylated fraction (i.e. MSRE digestion) on which the PWL was conducted to derive the all brain
ASM-SNP list in this example. [MSRE= methylation-specific restriction enzymes (Hpall, HinP1I, and
HpyCH41V were used here); PWL= piecewise linear regression]
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6.3.3 Quality control

Standard quality control procedures were implemented for SNPs on the genotyping
arrays. Hardy-Weinberg equilibrium (HWE) in the control samples was assessed using
PLINK (Purcell et al., 2007), and we removed those SNPs with HWE p < 10°'°. SNPs
with low minimum allele frequencies (MAF < 0.05) were also excluded from the

analysis.

6.3.4 Analysis of ASM-SNPs in GWAS

We investigated whether ASM-SNPs were enriched in sub-genome-wide significant p-
value bins from GWAS. We analyzed brain ASM-SNPs in the context of an SCZ GWAS,
which consisted of 34,417 SCZ cases and 45,674 controls and 1,235 parent affected-
offspring trios (Schizophrenia Working Group of the Psychiatric Genomics Consortium,
2014). ASM-SNPs were also assessed in publically available summary statistics from 17
large GWAS conducted from 2010 onwards for non-psychiatric diseases and normal
traits with a minimum of N>10k cases or N>20k individuals for continuous traits (Table
6.3). We began our search for GWAS that meet such criteria starting with the list from
the Psychiatric Genomics Consortium (PGC) website. If the same study conducted more
than one GWAS on correlated traits, then in order to attempt to make the results more
independent, only one GWAS per study (the largest in terms of sample size) was selected
(with the exception of the height and body mass index GWAS, which were published in

the same study but were deemed as uncorrelated traits so both were assessed).
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Table 6.3. Sample information for the schizophrenia GWAS and large non-

psychiatric GWAS assessed for enrichment of ASM-SNPs.

GWAS

Reference

Sample

Schizophrenia

(Schizophrenia Working Group of
the Psychiatric Genomics

Consortium 2014 Nature)

49 ancestry matched, non-overlapping case-control samples (46
of European and three of east Asian ancestry, 34,241 cases and
45,604 controls) and 3 family-based samples of European

ancestry (1,235 parent affected-offspring trios)

Height

(Yang et al. 2012 Nature Genetics)

~170,000 individuals, European ancestry

BMI

(Yang et al. 2012 Nature Genetics)

~170,000 individuals, European ancestry

Type 2 Diabetes

(Morris et al. 2012 Nature Genetics)

34,840 cases and 114,981 controls, overwhelmingly European

ancestry

Age-related macular

degeneration

(Fritsche et al. 2013 Nature

Genetics)

>70,000 cases >60,000 controls of European or Asian ancestry

College Completion

(Rietveld et al. 2013 Science)

101,069 individuals

Waist to Hip Ratio

(Heid et al. 2010 Nature Genetics)

up to 123,865 individuals, European ancestry

HDL

(Teslovich et al. 2010 Nature)

~88,754 individuals, European ancestry

Coronary Heart disease

(Schunkert et al. 2011 Nature

Genetics)

22,233 cases and 64,762 controls, European ancestry

Crohn’s disease (all IBD

samples)

(Jostins et al. 2012 Nature)

13,510 cases and 20,783 controls, European ancestry

Cigarettes per day

(Tobacco and Genetics Consortium

2010 Nature Genetics)

74,053 individuals, European ancestry

Systolic blood pressure

(Ehret et al. Nature 2011)

69,395 individuals, European ancestry

Platelet count

(Gieger et al. 2011 Nature)

Up to 66,867 individuals, European ancestry
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Alzheimer’s disease (Lambert et al. 2013 Nature 17,008 Alzheimer’s disease cases and 37,154 controls, European
Genetics) ancestry
Hemoglobin level (van der Harst et al. 2012 Nature) up to 51,711 individuals of European or South Asian ancestry
Fasting insulin level (Dupuis et al. 2010 Nature up to 46,186 non-diabetics, European ancestry
Genetics)
Bone mineral density- (Estrada et al. 2012 Nature 32,961 individuals, European or East Asian ancestry
femoral neck Genetics)
2 hour glucose level (Saxena et al. 2010 Nature 15,234 non-diabetic individuals, European ancestry
Genetics)

Enrichment of ASM-SNPs in GWAS p-value bins (p <0.1; 0.1 <p<0.2;0.2<p<0.3;
etc.) was assessed using the hypergeometric test. For the hypergeometric test, the ASM
and non-ASM-SNPs are pooled together. At a particular GWAS p-value bin, the test
assesses whether more ASM-SNPs are present in that bin compared to non-ASM-SNPs
on the Affymetrix array than what would be expected by chance with sampling from the
pool of SNPs without replacement. As a negative control, two independent random SNP
lists similar in size to the ASM-SNP lists were compared to the other SNPs on the Afty6

array.

In ASM-SNP analysis of the 17 non-psychiatric GWAS plus SCZ GWAS, 720 tests were
performed in total (4 ASM-SNP lists, 10 GWAS p-value bins, and 18 GWAS), and

Bonferroni correction for multiple testing was applied accordingly.

Both GWAS and ASM-SNP lists were pruned to ensure our observations were not
confounded by correlated SNPs. Pruning was implemented in PLINK (Purcell et al.,
2007), and was conducted using the LD structure from the HapMap Project European-

ancestry (CEU) samples from the phase containing the most SNPs to ensure maximum
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overlap of SNPs (Phase 2, release 23) (Frazer et al., 2007). The filtered SNP set (SNPs
that have MAF > 0.01 and genotyping rate greater than 0.95 in the 60 CEU founders)
available on the PLINK website (http://pngu.mgh.harvard.edu/~purcell/plink/res.shtml)

was utilized. This sample was used for pruning in order to reflect the European-derived
ASM-SNP lists. The parameters for pruning were as follows: a 500 kbp window was
considered, and the number of SNPs to shift the window at each step was five. For pairs
of SNPs with an r*> 0.25, one SNP was randomly selected for removal. For all of the
GWAS, enrichment was assessed for the four ASM-SNP lists derived from: subjects
affected with SCZ, subjects affected with BPD, control subjects and all brain samples
assessed in the study (All brain).

6.3.5 Ruling out possible confounders

Given the use of restriction enzymes in the ASM detection procedure, we also tested to
see if there is over-representation of ASM-SNPs in linkage disequilibrium (LD) with
nearby restriction enzyme target overlapping SNPs across various LD thresholds. We
investigated LD effects between ASM-SNPs and SNPs that fall within any of the bases of
the MSRE sites. LD values were calculated between SNPs and MSRE SNPs in PLINK

Purcell et al., 2007), and r* values ranging from 0 to 1 were calculated.
ging

We conducted a few analyses to ensure that the enrichment of ASM-SNPs seen in the
p=<0.1 schizophrenia GWAS bin is not due to confounding factors. ASM SNPs have
significantly higher minor allele frequency (MAF) compared to non-ASM SNPs on the
Affymetrix array (mean ASM MAF= 0.28; mean non-ASM MAF= 0.24; p<2.2x 107,
Mann-Whitney U test). In order to exclude the possibility that enrichment results are
driven due to differing MAF in the ASM-SNP lists compared to non-ASM-SNPs, we
created a “MAF-filtered pseudo ASM-SNP list” containing the same number of SNPs in
minor allele frequency categories as the ASM-SNPs. We tested for enrichment this

pseudo list in the schizophrenia GWAS.
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Additionally, we conducted work to demonstrate that the identification of ASM-SNPs is
not a hybridization artifact due to differing hybridization of alleles regardless of the
methylation status. If there is unequal hybridization at the probes (for example, A alleles
give off a greater signal), then there would be a difference between the total hybridization
signals of different genotypes even at non-ASM-SNPs, and thus SNPs that exhibit
differential hybridization would be detected in this manner. We aimed (1) to establish if
SNPs that exhibit differential hybridization exist, and (2) to see if they are enriched in
any of the schizophrenia GWAS p-value bins. To answer the first aim, we ran PWL on
the raw intensity data. For the second aim, we assessed for enrichment of the resulting
pseudo ASM-SNPs in the schizophrenia GWAS p-value bins using the hypergeometric
test as previously described for the actual ASM-SNP lists.

6.3.6 Functional genomic characterization of ASM-SNPs

To further elucidate the roles of ASM-SNPs in disease, we explored functional features
of the genomic regions in which they are located, using functional genomic data from the
Encyclopedia of DNA Elements (ENCODE), for instance. Functional genomic
characterization of ASM-SNPs with functional genomic characterization (e.g. DNase
hypersensitivity, histone modifications, transcription factor binding sites, etc.) was
performed by comparing frequencies for ASM-SNPs to frequencies of SNPs that did not
exhibit ASM, using the hypergeometric test. Splice sites and nonsynonymous SNPs were
taken from the UCSC Genome Browser (Meyer et al., 2013). Splice site boundaries were
defined as a window of 5 bases up and 5 bases downstream a splice site. Nonsynonymous
variants (coding SNPs that fall into one of the following categories: stop-
gained/nonsense, missense, stop-lost, frameshift or inframe indel) were defined as a
single base pair. Cis eQTLs were defined as single base pairs from the GTEx Project
(http://www.ncbi.nlm.nih.gov/projects/gap/eqtl/index.cgi) (Gibbs JR, 2010; Montgomery
SB, 2010; Schadt et al., 2008; Stranger et al., 2007), and from the UK Brain Expression

Consortium (www.braineac.org) (Trabzuni et al., 2011). DNase clusters are DNase
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hypersensitivity data from all available cell types from the ENCODE Project have been
uniformly processed and replicates merged, and peaks are defined by a FDR 1%
threshold. UCSC Genes was available from the UCSC Genome Browser (Meyer et al.,
2013). Three histone marks (H3K4Mel, H3K4Me3, H3K27Ac) and transcription factor
binding sites were based on regions identified by chromatin immunoprecipitation
followed by sequencing (ChIP-seq). The peaks data available on UCSC Genome Browser
(Meyer et al., 2013) were used: regions of statistically significant signal enrichment

where scores associated with each enriched interval is the mean signal value across the

interval.
6.4 Results
6.4.1 Samples

Ancestry of the samples was determined by principal components analysis using 1000

Genomes Project super populations as a reference (Figure 6.4).
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Figure 6.4. Ancestry clusters using principal component analysis.

AFR= 1000 Genomes Project Africans; AFR.SNP6= Samples with self-reported African ancestry; AMR=
1000 Genomes Project Admixed-American; AMR.SNP6= Samples with self-reported Admixed-American
ancestry; ASN= 1000 Genomes Project Asians; EUR= 1000 Genomes Project Europeans; EUR.SNP6=

Samples with self-reported European ancestry; NA.SNP6= Samples without self-reported ancestry.

6.4.2 Identification of ASM-SNPs

1,374 ASM-SNPs detected in the control brains (1.31% of all SNPs investigated after
removing those in linkage disequilibrium with one another, r*>0.25); 2,921 in SCZ brains
(2.79%); 1,313 in BPD brains (1.25%); and 7,744 in all brain samples (major psychosis
cases plus controls; 7.40%). The different sized lists depending on the cohort is likely due
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to power differences. The p-values for the two sets of slopes from the piecewise linear

regression are shown in Figure 6.5.
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Figure 6.5. Distribution of p-values for piecewise linear regression among the cohorts.

SNPs assessed for ASM from the various brain sample cohorts. [a] P-values for the first slope (between

genotypes AA and AB) [b] P-values for the second slope (between genotypes AB and BB)

We also looked at these p-values by constructing Manhattan plots to see the distribution
of the SNPs across the genome according to their p-value for the piecewise linear
regression (not shown due to large file sizes). There were no particular patterns or

preferences for p-value distributions by chromosome.
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All pairwise correlations among the four ASM-SNP lists were significantly higher
pairwise overlap than expected by chance alone (p < 2.2 x 10, hypergeometric test;

Figure 6.6).

Control BPD

All brain

Figure 6.6. Overlap of identified ASM-SNPs among cohorts.

Venn diagram showing overlap of identified LD-pruned ASM-SNPs from the various brain sample cohorts.
All brain= ASM-SNPs identified in all the brains; SCZ= ASM-SNPs identified in the brains of
schizophrenia patients; control= ASM-SNPs identified in the control brains; BPD= ASM-SNPs identified

in the brains of bipolar disorder patients.

6.4.3 Quality control

We generated four ASM-SNP lists using piecewise linear regression. Depending on the

cohort being examined, we removed a set of SNPs that failed our quality control tests
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described below. Such SNPs were not found on autosomes or sex chromosomes, were not
genetically diverse (genetically diverse SNPs defined as SNPs with at least two samples
in each of the three genotype categories), diverged from Hardy-Weinberg equilibrium
(HWE), exhibited low minor allele frequency (MAF) or had limited genotype confidence
call rates. A threshold of p < 10™'° was used to filter SNPs that failed HWE (based on the
controls), and the vast majority of SNPs were in even stronger agreement with HWE:
97% of SNPs with p > 107" also exhibited p > 107, Of the 906,600 SNPs assessed on the
Afty6 array, there were 1,140 SNPs that were not found on autosomes or sex
chromosomes. The other quality control procedures were implemented for each cohort

separately (Table 6.4).

Table 6.4. Quality Control filtering of SNPs.

Number of SNPs that remain after various quality control procedures before and after piecewise linear regression
(PWL). MAF= Minor Allele Frequency; HWE= Hardy-Weinberg Equilibrium; LD= Linkage Disequilibrium

Control- BPD-

Control BPD SCZ All brain sperm sperm
Genetically
diverse 797,776 795,945 792,343 845,139 710,646 690,085
After PWL
(FDR g>1%) 2,546 2,294 4,919 15,514 300 81
MAF and
HWE cut-offs 2,025 1,926 4,431 13,795 279 79
LD pruning
(r2<0.25) 1,374 1,313 2,921 7,744 222 62
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6.4.4 Analysis of ASM-SNPs in GWAS

All four brain ASM-SNP lists showed significant enrichment in the p < 0.1 schizophrenia
GWAS bin, but not in any of the remaining bins (p > 0.1) (Figure 6.7 and Table 6.5).
The most significant ASM-SNP enrichment was for the all brains ASM-SNP list (p = 2.0
x 10"%). Random SNP lists from the Affymetrix array that passed the quality control

procedures showed no effect.
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® BPD ASM-SNPs N
B Controls ASM-SNPs
M All brain ASM-SNPs

GWAS p-value bins

Figure 6.7. Distribution of ASM-SNPs in GWAS p-value bins.

ASM-SNPs detected in the brains of controls, SCZ and BPD patients are overrepresented in the sub-
genome-wide significant p < 0.1 SCZ GWAS SNP group. SCZ GWAS p-value bins are plotted on the x-
axis, negative log;o p-values are on the y-axis. The inset shows the further division of the p < 0.1 bin,

revealing the highest density of ASM-SNPs in the SCZ GWAS p <0.01 sub-bin.
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ASM detection in sperm samples may suggest causal association between ASM-SNPs
and psychiatric disease. Although not sufficiently robust to withstand multiple-testing
correction, both control-sperm and BPD-sperm ASM-SNPs showed enrichment in the
schizophrenia GWAS p<0.1 bin (1.38-fold and 2-fold enrichment, respectively), but not
in any other bin (Table 6.4). There was some overlap between the sperm ASM-SNP lists
and the all brain ASM-SNP list. 41 (56%) of the BPD-sperm ASM-SNPs are also all
brain ASM-SNPs, and 134 (49%) of the control-sperm ASM-SNPs are also all brain
ASM-SNPs.
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Table 6.5. Enrichment of ASM-SNPs in Schizophrenia GWAS p-value bins.

Hypergeometric p-values (uncorrected for multiple testing) comparing the proportion of ASM-SNPs to all SNPs in

GWAS p-value bins. Counts (after overlap with the Affymetrix array SNPs and LD pruning) in parentheses.

P- VALUE BINS

<0.1 >0.1 >0.2 >0.3 >0.4 >0.5 >0.6 >0.7 >0.8 >0.9
ASM-SNP <02 |[<03 |[<04 |<05 |<06 |<07 |<08 |[<0.9
CATEGORY
Schizophrenia GWAS
(Schizophrenia Working Group of the Psychiatric Genomics Consortium 2014 Nature)
All brains 2.03x10°| 0.39 0.47 0.95 0.77 0.98 0.26 1.00 0.98 0.98
(1584) (865) | (771) (692) (689) (647) (685) (576) (620) (615)
SCZ brains 2.68x10% | 0.39 0.59 0.59 0.84 0.97 0.11 1.00 0.97 0.55
(599) (328) | (286) | (272) | (251) | (234) | (271) | (207) | (225) | (248)
BPD brains 5.87x10% | 0.57 0.61 0.92 0.93 0.66 0.25 0.88 0.98 0.62
(293) (143) | (127) (109) (104) (113) (120) (103) (92) (109)
Control brains 1.14x 107 | 0.78 0.95 0.19 0.39 0.95 0.55 0.98 0.77 0.76
(303) (143) | (118) (139) (128) (106) (117) (99) (111) (110)
Randomly selected SNPs in Schizophrenia GWAS
Sample 1 0.96 0.22 0.10 0.31 0.05 0.77 0.34 0.74 0.83 0.28
(762) (719) | (716) (718) (723) (682) (689) (726) (683) (676)
Sample 2 0.74 0.59 0.08 0.33 0.21 0.35 0.74 0.59 0.44 0.81
(747) (740) | (726) (703) (701) (690) (716) (688) (707) (676)
Schizophrenia GWAS
BPD sperm 7.7x10* 0.08 0.59 0.85 0.68 0.98 0.91 0.92 0.09 0.16
(20) (10) (5) (3) (4) 1) (2) (2) (8) (7
Control sperm | 6.9x1073 0.34 0.79 0.90 0.57 0.71 0.29 1.00 0.05 0.21
(51) (26) (18) (15) (19) (a7 (21) (7 (26) (22)

Enrichment of ASM-SNPs in the more significant p-value bins held when the p < 0.1 bin

was sub-divided into five bins between p-values 0 to 0.05, and the strongest enrichment

was observed in the p <0.01 bin (Table 6.6, and inset of Figure 6.7).
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Table 6.6. Enrichment of ASM-SNPs in SCZ GWAS p-value bins (p < 0.05).

Partitioning the p<0.1 bin from Table 6.5. Hypergeometric p-values (uncorrected for multiple testing) comparing the
proportion of ASM-SNPs to all SNPs in SCZ GWAS; OR- Odds ratios and their corresponding 95% confidence
intervals.

ASM-SNP P-VALUE BINS
CATEGORY p<0.01 0.01<p<0.02 | 0.02<p<0.03 | 0.03<p<0.04 | 0.04<p<0.05
BPD ASM-SNPs
p 3.84E-09 0.01 0.03 0.44 0.10
OR 1.5 1.0 1.0 1.0 1.0
95% CI 1.3-1.7 0.9-1.2 0.9-1.2 0.8-1.2 0.8-1.2
Controls ASM-SNPs
p 1.19E-04 0.01 0.07 0.28 2.45E-03
OR 1.2 1.1 0.9 0.8 1.2
95% CI 0.9-1.5 0.7-1.5 0.6-1.3 0.5-1.1 0.8-1.7
SCZ ASM-SNPs
p 2.85E-13 3.73E-04 0.03 0.92 0.11
OR 1.6 1.0 0.9 0.6 0.8
95% CI 1.2-2.0 0.7-1.4 0.6-1.4 0.4-1.0 0.5-1.3
All brain ASM-SNPs
p 6.56E-16 3.35E-03 0.01 0.04 0.06
OR 1.6 1.1 0.9 0.5 0.9
95% CI 1.3-1.9 0.9-1.4 0.7-1.2 0.4-0.8 0.6-1.1

In order to more clearly assess the potential of ASM-SNPs to prioritize sub-genome-wide
significant GWAS SNPs, we looked at the effect size for schizophrenia GWAS bins
ranging all the way from GWAS p<10~ to p=1. There is a clear gradient of ASM
enrichment across these bins: the more the significant p-value, the higher the proportion
of ASM-SNPs in that bin; for example, schizophrenia ASM-SNPs in the schizophrenia
GWAS p<107 bin exhibits odds ratio of 7.3, while it is only 1.4 for 0.001<p<0.01
(Figure 6.8). This finding supports the use of ASM to prioritize sub-genome-wide
significant GWAS SNPs.
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Figure 6.8. Odds ratios (with 95% confidence intervals) for the enrichment of ASM-SNPs in
various GWAS p-value bins in the schizophrenia GWAS.

Odds ratios and confidence intervals calculated from a 2x2 contingency table. Blue bars — ASM-SNPs
detected in the post-mortem brains from schizophrenia patients; red bars — ASM-SNPs detected in the
entire sample of brains (schizophrenia, bipolar disorder, and controls). Control and Bipolar disorder ASM-
SNP lists are not shown for clarity due to a small number of SNPs (<10), in the smaller p-value bins, which

resulted in very wide confidence intervals.

We then investigated the enrichment of ASM-SNPs in 17 non-psychiatric GWAS
(Figure 6.9).
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Figure 6.9. Distribution of ASM-SNPs in GWAS p-value bins.

Distribution of -log;o p-values (corrected for multiple testing) for 4 lists of brain ASM-SNPs interrogated in
18 large GWAS. Only GWAS SNP p < 0.1 bins are presented here. Total sample size of each GWAS in

thousands (k) is presented above each row of ASM-SNP p-values.

Enrichment in the GWAS p<0.1 bin was seen to a lesser degree for some of the four
ASM-SNP lists than in three blood/cardiovascular-related GWAS: platelet count, high
density lipoprotein (HDL) and coronary heart disease. None of the odds ratios for these
cardiovascular-related traits surpassed the odds ratios observed for the enrichment of the
corresponding ASM-SNP list in the SCZ GWAS. Significant enrichment was seen
neither in any other GWAS investigated nor in any other p-value bin (Table 6.7).
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Table 6.7. Enrichment of ASM-SNPS in GWAS p-value bins <0.1 of large GWAS.

Hypergeometric p-values (uncorrected for multiple testing) comparing the proportion of ASM-SNPs to all SNPs in
GWAS p-value bins. OR- Odds ratios followed by the corresponding 95% confidence intervals.

Height | Body Type 2 Age-related College Waist- | High Coronary | Schizophrenia
Mass Diabetes macular Comple to-hip | Density heart
Index degeneration | tion ratio Lipoprotein | disease
(BMI) (HDL)
ASM SNP brain
list
All brains
p 1 1 1 1 0.03 0.29 2.4e-7 7.2e-3 1.5e-16
OR 1.0 0.9 1.0 1.1 1.2 1.1 1.3 1.2 1.3
95% CI 0.9-1.0 [0.9-1.0 1.0-1.1 1.0-1.2 1.1-1.2 | 1.0-1.2 1.2-14 1.1-1.2 1.2-1.4
SCZ brains
p 1 1 1 1 1 1 0.02 3.9e-4 1.9e-5
OR 0.9 1.0 1.1 1.2 1.1 1.2 1.3 1.3 1.3
95% CI 0.8-1.1 [0.9-1.1 1.0-1.2 1.0-1.3 1.0-1.3 1.0-1.3 1.1-14 1.2-1.5 1.2-14
BPD brains
p 1 1 1 1 1 1 1 1 4.2e-5
OR 1.0 1.0 0.9 1.2 1.1 1.1 1.2 1.3 1.4
95% ClI 0.8-1.2 [0.8-1.2 0.8-1.1 1.0-1.4 0.9-1.3 | 0.9-1.3 1.0-1.4 1.1-1.5 1.2-1.6
Control brains
p 1 1 1 1 1 0.36 0.03 1 8.2e-5
OR 1.0 0.9 1.1 0.9 1.2 1.3 1.4 1.2 1.4
95% CI 0.8-12 [0.7-1.1 0.9-1.2 0.7-1.1 1.0-1.4 | 1.1-1.6 1.2-16 1.1-1.4 1.2-1.6
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Table 6.7 Enrichment of ASM-SNPs in GWAS p-value bins <0.1 of large GWAS

(continued)

Hypergeometric p-values (uncorrected for multiple testing) comparing the proportion of ASM-SNPs to all SNPs in
GWAS p-value bins. OR- Odds ratios followed by the corresponding 95% confidence intervals.

Crohn’s | Cigarettes | Systolic | Platelet | Alzheimer’s | Hemoglobin Fasting | Bone 2h
disease | /day Blood count disease level insulin | mineral glucose
Pressure density- level
Femoral
neck
ASM SNP
brain list
All brains
p 0.07 1 0.29 1.3e-4 0.07 1 1 0.14 1
OR 0.6 1.1 1.1 1.3 1.1 1.1 1.1 1.1 1.0
95% CI 0.5-0.6 1.0-1.2 1.1-1.2 1.2-14 1.1-1.2 1.0-1.2 1.0-1.2 1.1-1.2 0.9-1.0
SCZ brains
p 1 1 1 8.4e-3 1 1 1 0.72 1
OR 1.1 1.1 1.0 1.3 1.1 1.0 1.1 1.2 1.0
95% CI 1.0-1.3 1.0-1.2 0.9-1.2 1.1-1.4 1.0-1.2 0.9-1.2 0.9-1.2 1.1-1.4 0.8-1.1
BPD brains
p 1 1 1 1 1 1 1 1 1
OR 1.1 1.3 1.1 1.2 1.2 1.2 1.0 1.2 1.0
95% CI 1.0-1.4 1.0-1.4 0.9-13 | 1.0-14 1.0-1.4 1.0-1.4 0.8-12 | 1.0-14 | 0812
Control brains
p 1 1 0.22 1.8e-3 1 1 1 1 1
OR 1.2 1.2 1.3 1.4 1.2 1.2 1.0 1.1 0.9
95% CI 1.0-1.4 1.0-1.4 1.1-1.6 1.2-1.6 1.0-1.4 1.1-1.4 0.8-1.2 0.9-1.3 0.8-1.1
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To further demonstrate that ASM-SNP analysis can identify those sub-genome-wide
significant GWAS SNPs most likely to be disease-associated, we analyzed a 52k-
individual SCZ GWAS (Schizophrenia Psychiatric Genome-Wide Association Study
(GWAS) Consortium, 2011), which was a subset of the 81k-individual SCZ GWAS. We
categorized sub-genome-wide significant GWAS SNPs in the 52k-individual study (5 x
10%<p <0.1) as either ASM-SNPs or non-ASM-SNPs. For these SNPs we created a
quantile-quantile plot of the p-values in the 81k-individual SCZ GWAS (observed p-

values vs. expected p-values; Figure 6.10).
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Figure 6.10. The quantile-quantile plot shows ASM-SNPs and non-ASM-SNPs with a p < 0.1 in the
52k SCZ GWAS plotted by their p-value in the 81k GWAS.

The observed quantiles were derived from the 81k SCZ GWAS p-values for the respective SNPs, while the
expected quantiles were from a continuous uniform distribution of p-values. The steeper slope of the ASM-
SNPs indicates that these SNPs have lower p-values in the 81k SCZ GWAS, where both the sample size
and power is greater, compared to the non-ASM-SNPs. The plotted ASM-SNPs are those from all brains in
the p < 0.1 bin of the 52k SCZ GWAS (n = 1,376) and the plotted non-ASM-SNPs are those in the 52k
SCZ GWAS p <£0.1 bin (n = 163,592 from the total of n = 1,252,902 SNPs tested in 52K SCZ GWAS).

6.4.5 Ruling out possible confounders

We found no significant over-representation of ASM-SNPs in LD with SNPs in nearby
restriction enzyme sequences across all LD threshold values (p > 0.1, hypergeometric

test).

We ensured that the enrichment of ASM-SNPs seen in the p<0.1 schizophrenia GWAS

bin is not due to differing minor allele frequencies (MAF) between the ASM and non-
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ASM-SNPs or due to differing hybridization of alleles regardless of methylation status.
We found that for the “MAF-filtered pseudo ASM-SNP list” with the same allele
frequency distribution as the ASM-SNPs, there was no enrichment (uncorrected p>0.039,
hypergeometric test) for any of the schizophrenia GWAS p-value bins, suggesting that
the ASM-SNP enrichment seen in the p<0.1 schizophrenia GWAS bin is not due to MAF
differences between ASM and non-ASM-SNPs.

With regard to the hybridization, we detected “differential hybridization SNPs” by
running PWL on the genotyping intensity data (the array for the normal genotyping
without the use of the methylation specific restriction enzymes). We found no correlation
between the p-values for the first slope (AA and AB) with that of second slope (AB and
BB) (correlation= 0.028). We also found that the p-values obtained to detect differential
hybridization from the normal genotyping array were not correlated with the p-values
obtained from the hypomethylated fraction from which the ASM effects were detected
(correlation= 0.016 for the first slope for the two arrays; correlation= 0.019 for the second
slope for the two arrays). We defined those SNPs with a q<0.01 as SNPs that exhibit
differential hybridization. We tested these SNPs in the context of the schizophrenia
GWAS. Most SNPs (n= 104,688) were classified as differential hybridization SNPs by
this method, but these SNPs are not significantly enriched in any of the schizophrenia
GWAS p-value bins (uncorrected p> 0.0002, hypergeometric test) (Figure 6.11).
Although unequal hybridization of alleles is evident and creates pseudo ASM-SNPs,
these are not enriched in GWAS bins of interest, and therefore the enrichment results are

likely due to a true ASM effect.
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Figure 6.11. Distribution of SNPs that exhibit differential hybridization and ASM-SNPs in SCZ
GWAS p-value bins.

ASM-SNPs detected in the all brains cohort are overrepresented in the sub-genome-wide significant p < 0.1
SCZ GWAS SNP group compared to SNPs that exhibit differential hybridization detected in the same
cohort. SCZ GWAS p-value bins are plotted on the x-axis, negative log;o p-values are on the y-axis. The

numbers on top of the bars give the number of SNPs in each of the two lists.

6.4.6 Functional genomic characterization of ASM-SNPs

13% (1,036 of the 7,743) of the all brains ASM-SNP list are in CpG islands, and 7.6%
(586 out of the 7,743) are in coding regions. None of the non-ASM-SNPs (subset selected
with the same MAF distribution as the all brain ASM-SNP list) fall into CpG islands, and

4.1% are in coding regions.

ASM-SNPs in the schizophrenia GWAS p<0.1 bin showed significant enrichment in
functional genomic categories (for example, transcription factor binding sites, DNase I
hypersensitive sites, regulatory histone modifications) compared to all GWAS SNPs
p>0.1 that did not exhibit ASM effects (Table 6.8).
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Table 6.8. ASM-SNPs in the SCZ GWAS p < 0.1 bin are found in functional regions of
the genome more than expected by chance alone (uncorrected hypergeometric test

p-values).

There were 2,351 ASM-SNPs (the union of the four brain ASM-SNP lists after pruning based on linkage
disequilibrium) and 122,186 non-ASM-SNPs. Frequencies of ASM-SNPs with GWAS p > 0.1 (n = 8,829)
and non-ASM-SNPs with GWAS p>0.1 (n = 511,636) shown for comparison purposes. All SNPs are
annotated in a binary fashion indicating the presence or absence of a functional characteristic for the SNP
itself. OR= odds ratio for the 2x2 contingency table; and 95% CI is the corresponding 95% confidence
interval.

SNPs with GWAS P < 0.1 SNPs with GWAS P > 0.1

Functional Proportion P Proportion P
Characteristic ASM- [ non- (OR; 95% CI) [TASM- [ non- (OR; 95% CI)

SNPs ASM- SNPs ASM-

SNPs SNPs

splice 0.0249 0.0361

0.0021 | 0.0009 | (2.4;0.8,5.2)] 0.0015| 0.0009 (6.1;3.2,10)
non-synonymous 0.7032 0.1063

0.0030 | 0.0039 (0.8;0.3,1.5) | 0.0044| 0.0037 | (4.2;3.0,5.8)
DNase Clusters 2.02E-205 < 1E-205

0.4122 | 0.1483 (4.0,3.7,4.4) ] 0.3906]| 0.1479 (14; 13, 15)
GTEx eQTLs (all
7 experiments 4.51E-12 9.64E-12
together) 0.0285 ] 0.0109 | (2.6;2.0,3.4)] 0.0134] 0.0067 [ (4.7;3.8,5.6)
UK brain eQTLs 3.80E-10 7.67E-12

0.1438 | 0.0885| (1.5;1.3,1.6)| 0.0832| 0.0646 | (3.8;3.6,4.2)
UCSC Genes 3.06E-17 1.65E-55

0.5070 | 0.4207 | (1.4;1.3,1.5)] 0.4646| 0.3821 (4.9;4.6,5.2)
BroadHistone- 3.00E-93 2.12E-236
H3k4Mel 0.6508 | 0.4392 | (1.3;1.2,1.4)| 0.6026| 04272 | (4.6;4.3,5.0)
BroadHistone- 7.22E-134 <1E-205
H3k4Me3 04785 0.2419| (1.7;1.5,1.8) ] 0.4493| 04756 | (5.7,5.3,6.2)
BroadHistone- 1.27E-103 2.48E-239
H3k27ac 0.6159 | 0.3931 (1.6;1.5,1.7)| 0.5537| 0.4272| (5.4;5.0,5.9)
Txn Factor ChIP
(if annotation for 4.54E-109 <1E-205
any TF) 0.6159 | 0.0821 (1.5;1.4,1.6)| 0.2235| 0.0815 (5.1;4.7,5.5)

ASM-SNPs are distributed throughout the genome, and only a few are SNPs that are
significantly associated with SCZ in the GWAS (Figure 6.12).
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Figure 6.12. Manhattan plot of ASM-SNPs plotted by their SCZ GWAS p-values.

The LD-pruned all brain ASM-SNP list (n=7,744 SNPs is plotted) using data from the second
round of the SCZ GWAS.
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6.5 Discussion

We demonstrate that ASM in the brain is relevant to psychiatric GWAS by
demonstrating that brain ASM-SNPs were consistently enriched in schizophrenia GWAS
sub-genome-wide significant SNPs, with a lesser degree of enrichment in the HDL,
platelet count and, coronary heart discase GWAS. The degree of enrichment seen in the
p=<0.1 bin for these three cardiovascular related GWAS may point to a sharing of genetic
factors between psychiatric and cardiovascular disorders. Yet it is difficult to disentangle
whether this relationship is primarily environmental or genetic. Furthermore, ASM-SNPs
are over-represented in functional genomic regions, and thus ASM may be important in

prioritizing which sub-genome-wide significant GWAS SNPs are causal.

Unlike previous ASM studies, in this work we assessed ASM at all SNPs rather than just
in heterozygous individuals by considering methylation differences among genotypes
rather than between the two alleles of a heterozygous individual. However, similar to
previous work we used a cocktail of methylation-specific restriction enzymes (MSRE) to
enrich for the hypomethylated fraction and assess this fraction on an Affymetrix SNP 6.0
array taking the allele intensities as a measure of hypomethylation intensity. We
compared the all brain ASM-SNP list (before LD pruning) to the ASM-SNP lists in
Schalkwyk et al. (2010) and Hutchinson et al. (2014), two papers in which MSRE and
was combined with Affymetrix SNP 6.0 arrays to detect ASM. ASM-SNPs were only
detected in heterozygous individuals in those two studies. Three ASM-SNPs (rs220030,
1$9366927, rs943049) listed in Schalkwyk et al. (2010) in either of Tables 1,2,3 or S3
(n=204) were also identified as an ASM-SNPs in Hutchinson et al. (2014) in Figure 2b
(n=30). These two groups (see Table 6.1) used a different cocktail of enzymes, but they
both used whole blood. Comparing these ASM-SNP lists to the all brain ASM-SNP list
described here, 28/204 (14%) (see Table 6.9) of the ASM-SNPs detected by Schalkwyk
were also detected in our all brain ASM-SNP list, and 2/30 (7%) (rs11761231,
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rs4689713) of the ASM-SNPs detected by Hutchinson were also detected in our brain
ASM-SNP list.

Table 6.9. ASM-SNPs identified in this study and also in Schalkwyk et al.

Common SNPs between the all brain ASM-SNP list here and ASM-SNPs in either Tables 1, 2, 3 or S3 in
Schalkwyk et al. RAS= relative allelic score

Schalkwyk-average All brain ASM-SNPs
SNP RAS change p-value 1 direction 1 p-value 2 direction 2
rs10234308 0.34 0.003 | positive 9.46E-05 | negative
rs1043509 0.11 | NA NA 4.20E-05 | negative
rs11211481 0.22 9.65E-05 | positive 0.004 | negative
rs13099918 0.23 0.885 | positive 2.60E-06 | negative
rs1378942 0.11 3.80E-10 | positive 6.66E-07 | negative
rs1889364 0.15 4.99E-09 | positive 0.098 | negative
rs1953211 0.1 0.001 | positive 3.35E-10 | negative
rs2143346 0.23 0.392 | positive 2.35E-05 | negative
rs2234211 0.17 1.20E-06 | positive 0.766 | positive
rs2272554 0.14 6.54E-06 | positive 0.011 | negative
rs2731826 0.38 1.56E-09 | positive 0.002 | negative
rs2824493 0.1 0.013 | positive 7.87E-05 | negative
rs3821023 0.31 1.65E-05 | positive 0.187 | negative
rs391467 0.21 0.011 | negative 9.63E-07 | negative
rs4556786 0.18 1.50E-22 | positive 0.006 | negative
rs4653164 0.11 0.003 | positive 1.51E-07 | negative
rs4828524 0.1 0.002 | positive 4.99E-05 | negative
rs4837866 0.13 1.80E-06 | positive 7.98E-13 | negative
rs553161 0.13 0.143 | negative 8.37E-12 | negative
rs6441992 0.16 0.567 | negative 3.81E-06 | negative
rs6760544 0.36 1.75E-05 | positive 0.010 | negative
rs6864309 0.1 7.74E-05 | positive 0.526 | positive
rs7146315 0.16 0.458 | positive 1.33E-19 | negative
rs7209653 0.11 0.000 | positive 0.018 | negative
rs734380 0.18 2.96E-10 | positive 0.012 | negative
rs7534271 0.22 0.290 | positive 2.47E-10 | negative
rs762982 0.14 0.542 | negative 9.81E-05 | negative
rs822625 0.26 0.017 | positive 9.52E-05 | negative
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A limitation in this study is not taking into account the differential hybridization seen
between alleles on the genotyping array in the ASM detection procedure even though
these differential hybridization pseudo ASM-SNPs did not exhibit the enrichment in the
SCZ GWAS p=<0.1 bin as seen in the ASM-SNP lists. SNPs that demonstrate differential
hybridization from the genotyping array do not exhibit the enrichment in the SCZ sub-
genome-wide significant SNPs, as was seen with the ASM-SNPs (those SNPs that show
differences in allele intensities on the hypomethylation arrays). To background correct for
underlining differential hybridization we could have, for each SNP, divided its
hypomethylation intensity by its genotyping array intensity. Furthermore, there are some
issues with the Affymetrix array platforms that could lead to incorrect calls. For instance,
the genotyping call rate is reduced for SNPs in probes with high GC content (>70%), and
variants in probes with low sequence complexity are more likely to be called incorrectly

(Kothiyal et al., 2009).

Additionally, we have not investigated other confounding factors that could be
interpreted as ASM by our method such as there being nearby SNPs interfering with the
methylation specific restriction enzyme sites. One could impute to a reference panel such
as the 1000 Genomes Project data or perform whole-genome sequencing to test whether

SNPs are interfering with restriction enzyme sites.

Other considerations surround ethnic heterogeneity. ASM may differ between different
populations. We had a largely European population, and thus derived ASM-SNP lists
from the genetically-determined European samples. Due to a limited number of non-
European samples, we were unable to assess ASM in different populations, but
comparing ASM in different populations would be interesting to investigate in the future.
That being said, although our ASM-SNP lists were derived from European individuals,
not all of the GWAS we investigated were composed of solely European subjects (see

Table 6.2).
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Next steps would also be to replicate ASM results using another detection methodology
such as bisulphite sequencing as there are limitations with using the Affymetrix arrays to
detect ASM. For instance, different types of methylation (e.g. hydroxylmethylation)

cannot be differentiated using this methodology.
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Chapter 7
Overall Conclusion and Future Directions
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I

7.1 Conclusion

This thesis has investigated the potential of using functional genomic annotations in a
statistical learning framework in order to identify novel disease-associated loci, and/or to
prioritize the actual causal genetic variant at identified loci. I used elastic net, a type of
penalized logistic regression. My work was unique because I created a score for each
SNP using hundreds more annotations than previous publications in the field, and also
created phenotype-specific models (for autoimmune, brain-related, and cardiovascular
diseases, and also for cancer) in addition to a general non-phenotype specific model
differentiating GWAS Catalogue variants from variants on common genotyping arrays as
the classifier (Gagliano et al., 2014a). These models were able to identify genetic risk
variants; the models with the highest accuracies were the non-phenotype specific model
and the autoimmune model both trained using variants in the GWAS Catalogue below the

accepted threshold for genome-wide significance, p < 5x10°®.

The timeliness of my prioritization method (Gagliano et al., 2014a) was demonstrated by
it being published within weeks of two others (Kircher et al., 2014; Ritchie et al., 2014).
These methods all use different functional annotations as predictor variables, a different
classification of disease-associated from benign variants, and different statistical learning
algorithms. I investigated which combination of predictor variables, classifier and
algorithm produced the model with the best predictive accuracy (Gagliano et al., 2015a).
I assessed the accuracy of these models through the use of AUCs and violin plots, two
measures deemed as informative from my investigation of predictive accuracy measures
(Gagliano et al., 2015b). Additionally, I explored which of the published models are best
at prioritizing genetic variants by applying the models to a schizophrenia (SCZ) GWAS

for which there were two studies conducted by the Psychiatric Genomics Consortium
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(Schizophrenia Psychiatric Genome-Wide Association Study (GWAS) Consortium,
2011; Schizophrenia Working Group of the Psychiatric Genomics Consortium, 2014). I
applied the models to the first SCZ GWAS and evaluated which model best prioritized
the novel associated variants from the second study. Results suggested that all methods
have considerable (and similar) predictive accuracies (AUCs 0.64-0.71) in test set data,
but there is more variability in the application to the schizophrenia GWAS. With regard
to the functional annotation set, the Kircher et al. or Ritchie et al. annotation sets
performed the best in identifying schizophrenia-associated variants. Regardless of
annotation set, the elastic net models consistently showed good separation of GWAS
significant SNPs from other SNPs. I found that using both the same algorithm and
annotation set, but a different database as the classifier (GWAS Catalogue or HGMD)
resulted in vastly different models with regard to overall accuracy. Additionally, which
annotations were included in the models differed between the two databases, and the
models exhibited similar accuracy within a database. Finally, in Chapter 6 I showed that
a new annotation, allele-specific methylation (ASM) is useful for prioritizing GWAS hits.
Variants that exhibit ASM (ASM-SNPs) showed enrichment in functional annotations,
and also the most significant enrichment in the sub-genome-wide significant SNPs in the
largest to date schizophrenia GWAS (Schizophrenia Working Group of the Psychiatric

Genomics Consortium, 2014) as well as other traits.
With regard to my initial hypotheses on page 50:

1) I developed a method to incorporate multiple functional annotations that is able to
predict genetic risk variants for various complex diseases/traits generally and also for

phenotype-specific outcomes with some accuracy.

2) I evaluated the performance of different statistical learning algorithms, functional
annotation sets and classifiers that exist in the literature. I found that accuracy tends to be
similar when the same classifier is used, but the annotations that are identified as most

important vary. No one model was found to out-perform the others.
202



3) I assessed the functional enrichment and enrichment in GWAS sub-genome-wide
significant variants of a novel annotation based on allele-specific methylation (ASM).
The results suggest that ASM is a relevant annotation to include for genetic variant

prioritization.

Broadly speaking, the use of statistical learning to prioritize genetic risk variants is very
timely and relevant in the age where genome-wide genetic information and a vast amount
of functional genomic information are available. This work has potential for improved
understanding of common health conditions; identifying novel risk variants by the use of
computers is cost effective and may ultimately result in the development of better
treatment options for people who suffer from a variety of devastating diseases around the

world.

More specifically, in silico prioritization of variants has several applications in genetic
association analysis pipelines, and can be used for several purposes in the context of
association studies. For instance, at the completion of a GWAS, the top findings can be
prioritized to determine which will be either subjected to functional studies for further
follow-up or assessed in an independent replication sample. In this way, the prioritization
can be useful for fine-mapping associated loci. Furthermore, it may be useful to use this
methodology to select likely functional SNPs for a custom array. Prioritization may also
be used in the middle of a two-stage GWAS, where a proportion of the individuals in the
study are genotyped on all available variants in the first stage, and a proportion of these
variants are genotyped on the remaining samples in the second stage (Skol et al., 2007).
Rather than selecting variants for the second stage based solely on their association p-
value from the first stage, their prediction score (based on functional genomic
information) can also be used to help select those variants that move on to the next stage.

Additionally, prioritization could allow for more informative pathway analyses.
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7.2 Limitations

There are limitations to the work described in this thesis. First of all, risk variants are
difficult to define. This challenge is clear from the inherent differences between variants
in databases such as in the GWAS Catalogue and in HGMD (as discussed in Chapter 1)
that are being used to create models for prioritization of risk variants. One notable
difference is that variants in the GWAS Catalogue have higher minor allele frequencies
compared to variants in HGMD. The two databases mostly contain different types of
variation, and so it unclear whether a model trained using GWAS Catalogue variants as
the classifier will effectively prioritize low frequency predominantly coding variants such

as those in HGMD.

The differences between variants in different databases are further supported by my work
in the methods comparison chapter (Chapter 5). I explored the differences between the
GWAS Catalogue and HGMD variants further by testing to see if I could use statistical
learning algorithms to predict variants from one database from the other. For the
annotation set, I used the 14 discussed in Chapter 3. The models created had an AUC of
82% in the independent test set for random forest, and 80% for elastic net. The accuracy
could be attributed to the underlying frequency differences between the GWAS
Catalogue and HGMD variants. Those frequency differences for the Gagliano et al.

annotations are shown in Figure 7.1.
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Figure 7.1. Frequency of GWAS Catalogue and HGMD variants that overlap with the binary
annotations from Chapter 3.

GWAS Catalogue variants are those with a p-value of < 5x10™® as of May 15, 2015 (n=3607). HGMD
variants in the public version provided to Ensembl in the fourth quarter of 2013 (n=3963). The control-
GWAS are SNPs (n=31,663) selected that are not in LD with the selected GWAS Catalogue SNPs but
have the same minor allele frequency distribution as the GWAS Catalogue SNPs. The control-HGMD have
the same minor allele frequency distribution as the HGMD SNPs (n=3971). All the selected variants are
autosomal variants present in the 1000 Genomes Project. GTEx eQTLs= cis-eQTL data from the GTEx
Consortium, nonsynonymous= nonsynonymous SNP, UK Brain_eQTLs= cis-eQTL data from the UK
Brain Consortium, DNase I= DNase I hypersensitive sites, UCSC_Genes= UCSC Genes, H3K4Me3=
H3K4Me3 histone modification, TFBS= transcription factor binding site, H3K27Ac=H3K27Ac histone
modification, H3K4Mel= H3K4Mel histone modification

This high accuracy held true when a different set of functional genomic annotations were
utilized, those utilized by the program GWAVA (Ritchie et al., 2014). The two sets of

risk variants could be separated with high accuracy through random forest and elastic net.
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Ritchie et al. (2014) applied their random forest model trained using regulatory HGMD
variants as a classifier to the non-coding variants in the GWAS Catalogue. They conclude
that their model works (slightly but significantly) in scoring GWAS Catalogue variants
higher than control variants (Mann-Whitney U test p=3.6x10"") (Ritchie et al., 2014).
However, (as I discussed in the predictive accuracy chapter, Chapter 4), p-values from
statistical tests can be misleading with regard to accuracy of the model. Visualizing the
distribution of the two classes is important. Indeed, Ritchie et al. provide a box plot in
their Supplementary Material, which demonstrates a strong overlap between the
prediction scores for the GWAS Catalogue and control variants, suggesting that their

HGMD classifier model was not very effective in identifying GWAS variants.

Missing heritability is likely explained by both common and rare variants (and also other
factors such as interactions between genes and between genes and the environment, for
instance), and thus databases containing either of these variants are relevant. Future work
could involve applying my methodology with the GWAS Catalogue variants to rare
variants. It would also be interesting to look at creating a model in which risk variants

were defined from various databases considered together rather than just one database.

Furthermore, there are limitations to all of the machine learning methods as discussed in
Chapter 1. All of the papers also have methodological limitations. For instance, there
were several non-standard methodological procedures utilized in the Ritchie et al. paper.
For instance, it is common practice to test the accuracy of a model in an independent test
set. Ritchie et al. did not reserve any of their samples to create a separate test set. What is
more, in random forest, it is recommended to set the minimum sample size at a node to
10% of the overall sample in order to avoid overfitting (Malley et al., 2012). However,

Ritchie et al. set the minimum sample size to 1.

For my methodology, a limitation surrounds the selection of control variants from which
to differentiate the GWAS Catalogue variants. I selected control variants as those that are

on common genotyping arrays. However, imputation has become commonplace in
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GWAS, with papers that imputed using HapMap Project data starting in around 2010
(Dupuis et al., 2010; Franke et al., 2010). As a result, the whole genome (or at least the
reference genome to which the variants are being imputed: HapMap and/or 1000
Genomes Projects’ variants) is being interrogated in GWAS. It may no longer make sense
to limit the controls to only variants on genotyping arrays now that more variants in the
genome are beginning to be interrogated through imputation. Given this consideration,
the use of annotating SNPs with their proxy information when all variants have been
assessed may reduce accuracy. However, regardless of imputation, the fact remains that
variants present in the GWAS Catalogue may not themselves be the causal variant. A
SNP that is in LD with the SNP in the GWAS Catalogue may be the causal SNP, and that
SNP may not have the same functional annotations as the GWAS Catalogue SNP.
Annotating SNPs with the annotations of their proxies accounts for the uncertainty of the
causal SNP in the LD block, as was implemented in Chapter 3. Furthermore, work of
others has demonstrated that SNPs on genotyping arrays (e.g. IM Illumina that are not
present in the GWAS Catalogue) show a similar pattern to that of the GWAS SNPs,
possibly reflecting a bias in the array SNPs for functional regions (Hoffman et al., 2013).

The sample size of known risk variants is also a limitation. A small number of known
associated loci with a particular disease makes it challenging to create disease-specific
models. However, a more homogenous subset of variants may be required to make more

accurate models.

Another limitation to the GWAS Catalogue is that it does not include CNVs. CNVs may
contribute to the genetic component of complex disease as well. For instance, there is
strong evidence for CNVs contributing to autism spectrum disorders (Devlin and Scherer,
2012; Glessner et al., 2009; Pinto et al., 2010; Sebat et al., 2007). That being said, the
inclusion of CNVs may require a consideration of new annotations. For instance, one of
the annotations I included, nonsynonmous SNPs, would not apply to CNVs. In addition,

Kircher et al.’s annotations for the reference allele and alternate allele or previous amino

207



acid and new amino acid would not apply to CNVs. Moreover, the effect of having a
CNV fall into a regulatory region is not necessarily the same effect as that of having a
SNP in that region. For instance, take the case of a transcription factor binding site. A
SNP in such a site may lead to reduced or increased binding of the appropriate
transcription factor, which could affect the binding of the other factors that interact with
that factor. A CNV in that same region, say having more copies of a sequence than in the
wild-type, may result in a drastic and copy-number-dependent increase of gene
expression. On the other hand, a CNV with fewer copies of a sequence than in the wild-
type, can result in decreased expression. Although CNVs may be contributing to the

missing heritability, new models may need to be created that are specific to CNVs.

Furthermore, it is important to look at epigenetic marks at various developmental time-
points. It is becoming clear that the establishment of epigenetic marks is crucial early in
development, and that these functional marks alter throughout development. Even in
utero environmental differences can modify epigenetic marks, resulting in increased risk
of developing a particular trait. An example is malnutrition in the mother (e.g. Dutch
Famine in the winter of 1944-1945). Malnutrition can modify DNA methylation, and the
prevalence of a trait may be increased in that population (e.g. schizophrenia) (Heijmans
et al., 2008; Tobi et al., 2009). The mechanisms underlying these methylation changes
due to malnutrition are not known (Tobi et al., 2015). The binding of transcription factors
also changes throughout the course of development, and these changes are necessary for
normal development (Spitz and Furlong, 2012). Furthermore, DNA methylation patterns
change throughout the lifespan; for instance, in the frontal cortex, changes in DNA
methylation are important for brain development (Lister et al., 2013). However, all of the
functional data considered for the statistical learning presented in this thesis have been
from one developmental time point (i.e. adult). There are some data for developmental
time points (albeit limited) from the Roadmap Epigenomics Project. Incorporating data
from various developmental time points or perhaps variables representing the change in

marks between developmental time points may be informative to identify variants
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associated with disease. Other limitations to the current work are discussed in the next

section along with steps that I could take to overcome them.

7.3 Future directions

Models for genetic variant prioritization can be improved by incorporating more
functional annotations from additional tissues/cell types, other functional genomic
annotations, and data derived from laboratory techniques that suggest more direct
functionality rather than only sequence overlap. Considering rare variant analysis and
also the use of more homogenous sets of variants of which to use as a classifier in

machine learning algorithms are also relevant.

7.3.1 Tissue-specificity

Tissue-specificity is important in regulation, and applies to many of the functional
annotations considered in my statistical learning framework. As discussed in Chapter 1,
demonstrated disease-associated variants have different functional annotations depending
on the tissue, including DNase I hypersensitive sites, transcription factor binding sites,
histone modifications, and expression quantitative trait loci (eQTLs) to name a few (Farh
et al., 2015; Gagliano et al., 2014a; Maurano et al., 2012; Nicolae et al., 2010). It is
understood that epigenetic profiles are tissue-specific. Several groups have shown that
there is tissue-specific enrichment of variants in functional annotations, and that subsets
of variants show different patterns of enrichment. For example, as mentioned in Chapter
1, Maurano et al. (2012) showed that the enrichment of subsets of disease-associated
variants in DNase I hypersensitive sites varies depending on the tissue. Although it is
well known that tissue-specificity plays an important role in the function of genetic
variants dependent on the set of variants considered, tissue-specificity has only been a
minor consideration in data-driven genetic variant prioritization models to date. Taking
these points into consideration may be key in developing more accurate models for

prioritization.
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In my analyses I found that all models performed better than chance, except for the brain-
related psychiatric analysis, which had limited predictive power. As more data from
additional tissue and cell types become available, they can be incorporated into prediction
models to improve the accuracy. I started working on a tissue-specificity model for

prioritizing psychiatric risk variants.
Pilot Work - prioritizing brain-related psychiatric risk variants

I started incorporating newly available brain data to better prioritize brain-related
variants. I hypothesized that brain tissue-specific functional annotations would improve
prediction of risk variants in this particular phenotype-specific analysis. Since the
publication of my method (Gagliano et al., 2014a), more brain tissue data have become
available through the Roadmap Epigenomics Project, as well as an extensive eQTL meta-

analysis study that also collected data from the brain (Kim et al., 2014).

I added some additional tissue-relevant regulatory features, and used a more homogenous
subset of risk variants (psychiatric-related) into the elastic net algorithm discussed in
Chapter 3. [ downloaded the histone marks for H3K4Mel, H3K4Me3, and H3K27Ac
for all of the brain regions from the Roadmap Epigenomics Project from the FTP site

(ftp://ftp.ncbi.nlm.nih.gov/pub/geo/DATA /roadmapepigenomics/). Peaks had not been

called, and so I used the program MACS (Feng et al., 2011) to compute the ChIP-seq

peaks from corresponding background control files of the abundance of reads that were

also available.2

I downloaded a more recent version of the GWAS Catalogue (May 15, 2015) that

contained the additional loci identified by the large meta-analysis for schizophrenia

2 For parameters, | set the size of the sequencing tags to 35, and scaled the smaller dataset towards the
larger. In the case of replicates for a particular tissue and histone mark, which replicate to select is arbitrary.
I visually inspected the input files on the UCSC Genome Browser, and if both had adequate signals I chose
the largest replicate that also had the corresponding background control file.
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(Schizophrenia Working Group of the Psychiatric Genomics Consortium, 2014). In order
to maximize my sample size of disease-variants, while keeping them as homogenous as
possible, I selected all variants associated with any of the five psychiatric diseases
(schizophrenia, bipolar disorder, major depressive disorder, autism and attention deficit
hypersensitivity disorder) shown to share a proportion of common variants (Cross-
Disorder Group of the Psychiatric Genomics Consortium, 2013). I excluded other brain-
related or neurodegenerative disorders (e.g. Alzheimer’s disease or Parkinson’s disease).
Recall that the GWAS Catalogue reports variants with association p-values of up to 107,
In order to have an adequate number of variants for the statistical learning procedure, I
used all the GWAS Catalogue variants that met the above criteria, rather than restricting
to only the subset that reached genome-wide significance with a p-value of less than
5x107®. There were a total of 915 independent variants that met these criteria. I used
elastic net as previously described in the Methods of Chapter 3, but only annotated the
variants with the brain-specific functional annotations: the histone marks from the
Roadmap Epigenomics Project described above, brain eQTLs from Kim et al. (2014) and
brain eQTLs from the UK Brain Expression Consortium (UKBEC) (Trabzuni et al.,
2011). Unfortunately, the results from this larger and more homogenous set of variants
with the brain-specific functional annotations, did not offer much better predictive
accuracy than by chance: the AUC in the test set was 0.534 (and a similar AUC was

observed in the training set, 0.535 demonstrating that the model was not over-fitted).

This result suggests that there is still work to be done in improving the accuracy of a
psychiatric-specific prioritization model, which could involve adding more functional
annotations. A logical next step would be to incorporate more brain-level data into the

model, which will be further discussed below.
Next steps- prioritizing brain-related psychiatric risk variants

One could use brain-level data soon to be available from the new PsychENCODE project,

http://psychencode.org/. The goal of this project is to look at regulatory elements (e.g.
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transcription factor binding sites) as was done by the ENCODE Project, but in either

schizophrenia or control post-mortem brains.

Furthermore, UKBEC has recently generated new RNA-sequencing data, soon to be
made publically available. Studies to identify eQTLs previously used microarrays to
measure gene expression, but there are limitations to this methodology that RNA-
sequencing can overcome (e.g. novel genes and non-coding or microRNAs, allele-
specificity, and alternative splicing are taken into account in the latter). Additionally,
many eQTL studies perform their analyses on whole tissue, rather than specific regions.
UKBEC, however, has performed RNA-sequencing on targeted regions in the brain:
substantia nigra, putamen, and hippocampus in a large number of post-mortem unaffected
brains (N=150). These data represent a unique resource that could be useful to
incorporate in the brain-related psychiatric model. Additionally, there are new RNA-
sequencing data from the GTEx Project (Ardlie et al., 2015), albeit not yet from those
specific brain regions as for the UKBEC data.

7.3.2 Incorporating additional functional genomic annotations

There are also other functional annotations that may prove to be relevant to include that
provide observational evidence that suggests functionality, for example, splicing QTLs
(sQTLs), which are genetic variants that affect the generation of transcript isoforms of the
same genes (Ardlie et al., 2015; Zhang et al., 2015). Again, these are tissue specific, and
the authors who coined the term show that sQTLs are significantly enriched for SNPs
associated with traits in previous GWAS (that is to say SNPs present in the GWAS
Catalogue).

Another option is to look at allele-specific epigenetic effects, which could indicate a
potential regulatory role for the variant exhibiting this allele-specific effect. For instance,
Peralta et al. (2014) at the Genetic Analysis Workshop 19 investigated changes in allele-

specific chromatin accessibility (measured as DNase-seq read depth of each allele at a
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heterozygous locus). They mapped genome-wide genotypes from a reference sample to
sequencing reads for DNase I hypersensitive sites (DHS) for heterozygous SNPs. SNPs
that show a significant difference in chromatin accessibility between the alleles may

suggest that that SNP can compromise DHSs.

7.3.3 Annotating not based solely on location overlap

Another possible way forward would be annotating variants based on data from
laboratory methods with results that imply an actual function due to the physical
interaction between the DNA sequence and the protein of interest. DNA variants falling
into a sequence that is part of a protein’s recognition sequence does not necessarily mean
those variants are functional. The variant itself may not fall precisely within the
consensus region for binding, and also an effect may not be seen due to redundancy of
function with another site (Spitz and Furlong, 2012). Furthermore, the interaction
between a protein and a stretch of DNA (for instance, detected through ChIP-seq) does
not necessarily imply that that region of DNA is functional, meaning that there are effects
resulting in alterations downstream. For instance, binding of a transcription factor can
occur without influencing the transcription of any genes (Shlyueva et al., 2014).
However, there are methods that confirm an interaction between two stretches of DNA as
a result of a bound protein, and data from such methods suggest functionality. Annotating
based on evidence for functionality from a DNA-protein-DNA interaction, would make
the annotations less noisy. There has been an evolution of variations and extensions of
the chromosome conformation capture (3C) method to detecting such physical
interactions between fragments of DNA (for instance, between promoter and enhancer

regions).

Essentially, all of these 3C-based methods involve creating a one-dimensional image of a
three-dimensional structure. The chromatin is fixed, and then digested. Afterwards, the
sticky-ends of the cross-linked DNA fragments are allowed to ligate together. This
procedure can detect which fragments are far away on the linear chromosome template,
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but co-localize in space (Wit and Laat, 2012). In the 3C procedure, PCR primers are
designed for the ends of the fragments, so that the frequency and sequence of those
fragments can then be quantified by quantitative polymerase chain reaction (QPCR)
(Dekker et al., 2002). Rather than qPCR, chromosome conformation capture-on-chip
(4C) applies next-generation sequencing or microarrays to the 3C procedure, and it uses
restriction enzymes to digest the DNA before the ligation step. Chromosome
conformation capture carbon copy (5C) and Hi-C offer interaction frequency, a high
throughput, and less PCR bias compared to 3C (Wit and Laat, 2012). 5C does not have as
good a resolution as Hi-C since the former is based on distances between
oligonucleotides whereas the latter depends on the sequencing depth (Wit and Laat,
2012). However, unlike ChIP-seq (the method used for the ENCODE and Roadmap
Epigenomics Projects histone modification data), both 5C and Hi-C methods are able to
concurrently observe many or all interactions of one DNA sequence with multiple
sequences elsewhere. These data are useful to observe with which genes the regulatory
element interacts. These experimental observations can subsequently be used to infer

biological pathways that may be relevant to understanding the disease of interest.

Furthermore, DNase footprinting can be used to get a more precise location of where the
protein of interest binds to the DNA sequence compared to ChIP-seq. For ChIP-seq,
formaldehyde is used to cross-link proteins to DNA. Sonication shears the chromatin to a
target size of 100 to 300 base pairs, and the protein of interest bound to DNA is then
isolated with an antibody specific for the factor. Those DNA fragments that were cross-
linked with the factor of interest in a ChIP-seq experiment can be used as the input for
DNase footprinting. In this technique, labelled DNA sequences are fragmented by DNase
I. The location in the sequence that is bound to the protein is protected from being
cleaved, and thus one can infer that that is where the protein is bound. In this way,
through the use of restriction enzymes, highly occupied binding sites can be detected at

high resolution (Hesselberth et al., 2009).
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7.3.4 Incorporating prediction scores into rare variant analysis

In rare variant analysis, variants can be grouped together based on genes or sliding
windows. Rare variant association tests will weight variants based on features, for
example minor allele frequency, where the weight assigned to a variant is the inverse of
the minor allele frequency, and in that way the rarer the variant the higher the weight.
Other weights that can be included reflect the impact on amino acid sequence, such as

99 ¢

PolyPhen category (“benign,” “possibly damaging,” or “probably damaging”), and other

sequence-based annotations (Lee et al., 2014).

During my PhD, I briefly explored a similar idea of up-weighting rare variants (only
those found in genes) using sequence-based weights. I did this work using real (i.e. not
simulated) hypertension phenotype data and sequencing data of chromosome 3 from the
Genetic Analysis Workshop 18 (GAW18) meeting in Stevenson, Washington (October
2012). For the weights, I used the simple model of whether a SNP is nonsynonymous and
whether or not it falls into a DNase I hypersensitive site. Tests for association were
conducted in SKAT-O, one analysis without functional weights and the other with the
weights. The use of weights based on those two functional annotations did not improve

power in the analysis, which is likely due to the simplicity of the model.

I propose that a new weighting scheme can be to use the prediction scores from the
prioritization model using the functional annotations to weight SNPs in rare variant
association analysis. The higher the prediction score, the larger the weight. In this way,
more weight is assigned to those variants that are more likely to have functional

consequences that result in a non-wild-type phenotype.

7.3.5 Using a homogenous set of genetic risk variants for training

Some key findings that I would like to bring back up are that I found that different
annotations came up as important for different sets of variants (Gagliano et al., 2014a),
and that the predictive accuracy of the models varied (Gagliano et al., 2015b). I also
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found that the use of variants from other databases, such as variants in HGMD (Stenson
et al., 2009), produced models with varying results as well (Gagliano et al., 2015a). These
observations suggest that use of a homogenous ascertained set of the disease-associated
variants may create models with higher accuracy. Ritchie et al. (2014) tried using a
homogenous subset of regulatory variants in the HGMD Catalogue, and I (Gagliano et
al., 2014a) tried using phenotype-specific variants from the GWAS Catalogue. However,
both of these subsets are based only on current knowledge of variants, and thus are

limited.

As discussed in this thesis, I performed a supervised statistical learning method on
phenotype-specific sets of disease-associated variants (which were subjectively
categorized based on descriptions provided in the GWAS Catalogue). In order to identify
novel disease-associated loci objectively, I propose to identify more homogenous subsets
of disease-associated variants through unsupervised learning. The unsupervised learning
methods that can be employed are K-means clustering and principal components analysis.
Those subsets can be used as classifiers in supervised learning, which would include
penalized regression like elastic net, and decision-tree methods for example. Recall that
in unsupervised learning, the algorithm is unaware of which variants are disease-
associated; this method is employed to discover any patterns inherent in the data on
which the algorithm is trained. In supervised learning, the algorithm is aware of which
variants are disease-associated (for instance knowledge derived from GWAS Catalogue
as in my work); this method can be employed to develop and test the accuracy of the
models derived to predict novel disease-associated variants and identify novel structures

in genomic data.

7.4 To the future

In this thesis the focus has been on using functional genomic information to prioritize
which genetic variants are functional or are likely associated with a complex disease or

trait of interest. First of all, there needs to be an unbiased large set of genetic risk variants
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from which to make the predictions (for instance, not primarily common variants as in

the GWAS Catalogue or coding sequence biases as in HGMD).

The precision and quality of the features inputted into the models is also important.
Functional data is becoming more abundant and technologies for quantifying these data
are improving. Predicting the functionality of genetic variants using high-quality data
(e.g. at single base pair resolution, and in a tissue-specific manner) in phenotype-specific
models will allow the predictions for each variant to be incorporated together to predict

the risk of a particular person to develop a particular trait.

In the perfect world every SNP in the human genome will be completely characterized
from observations conducted in hundreds of individuals in every available cell type. In
this way, the entire DNA sequence will be available for searching for novel disease-
associated loci, as well as for fine-mapping variants at disease-associated loci in relevant
tissue for the disease. For rare Mendelian disorders, it would be necessary to sequence

hundreds (which may be all) of the cases.

I predict that a big leap in the future will be to use the scoring of genetic variants in order
to predict the status of a person for numerous diseases/traits based on genome-wide
genetic variants and functional information while they are in the prodromal phase, and
this knowledge can then be used for earlier treatment or preventative measures. When
such procedures are successful, the consequences could look a lot like the fictional film
GATTACA (Niccol, 1997). In one of the earlier scenes in the film, when a baby is born
at the hospital, the nurse takes a blood sample, and from the DNA sequence is
immediately able to tell the parents the probabilities of their child having a whole array of
diseases, and even the baby’s estimated age of death. However, one can defy their odds
as in the case of the main character in GATTACA; he does not experience his apparently
highly probable heart deficits, outlives his premature estimated age of death, and
ultimately succeeds in his dreams that should have been impossible for a person with his

genetic “imperfections”.
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These probabilities determined in GATTACA are presumably based solely on the
genomic sequence itself, and examples of being able to confidently make disease-risk
predictions currently exist. For instance, in the domain of genetic testing, tests exist for
disorders with strong genetic components. For example, the presence of 40 or more CAG
repeats in the first exon of the huntingtin gene (H77) results in Huntington’s disease
(Lench et al., 2013), or the deletion of the codon that encodes phenylalanine at position
508 in the cystic fibrosis transmembrane conductance regulator (ATP-binding cassette
sub-family C, member 7) gene (CFTR) in homozygous state, among other mutations,
results in Cystic Fibrosis. Direct-to-consumer companies (e.g. 23andMe) have looked at
specific genetic variants to predict simple non-medical traits such as whether or not one is
likely to be able to smell asparagus in his/her urine, and also (more controversially) to
predict the risk of developing complex diseases (e.g. Alzheimer’s disease, diabetes, or

cardiovascular disease).

Much work is being done in the area of prediction, but the scores are generally used for
other purposes such as exploring disease overlap (International Schizophrenia
Consortium et al., 2009) or for the prediction of benign versus malignant tumors
(Steyerberg et al., 1995). In late 2013, the USA’s Food and Drug Association ordered
23andMe to stop providing consumers with health-related data (but they can still use the
genetic data to investigate ancestry) (The Associated Press, 2013).

However, I envision that in the future, the algorithm responsible for determining these
probabilities will be based upon a number of factors in addition to the actual genotypes,
including: epigenetic data from the actual individual at single cell resolution (i.e. instead
of using publically available ENCODE data for instance), biochemical biomarkers such
as blood levels of a particular protein), gene expression data, and other childhood
environmental factors known to be important for health outcomes (including
socioeconomic status). After all, with regard to the latter point, there is strong evidence

that early exposures to adversity (such as maltreatment or neglect) can alter epigenetic
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modifications (for example, (Boyce and Kobor, 2015)), which have downstream effects
on phenotype, and so it is logical to be able to make predictions based on more than just
genetic factors, but rather both genetics and the environment. From these inputs, one will
obtain all the probabilities of the person’s risk of developing a number of diseases and

traits.

Large challenges will be presented to society with the algorithm that I am envisioning for
the future that will be responsible for determining the probabilities of one developing a
particular complex disease or trait will be based upon a number of factors in addition to
the actual genotypes. There may be some people who choose that they would rather not
know their risks. Additionally, the challenge will also come for healthcare professionals
to explain to the public that these risks are only probabilities, and not certainties. Yet, as
beautifully depicted in GATTACA, these probabilities do not and should never define the

worth and value of a human being.
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Objective Antipsychotics are effective in treating schizophrenia symptoms. However, the use of clozapine and olanzapine in particular are
associated with significant weight gain. Mouse and human studies suggest that the protein kinase cAMP-dependent regulatory type II beta
(PRKAR2B) gene may be involved in energy metabolism, and there is evidence that it is associated with clozapine’s effects on triglyceride
levels. We aimed at assessing PRKAR2B’s role in antipsychotic-induced weight gain in schizophrenia patients.

Methods DNA samples from adult schizophrenia or schizoaffective disorder patients of mixed ancestry were genotyped, and weight gain
was assessed. We analyzed 16 tag single-nucleotide polymorphisms across the PRKAR2B gene in a Caucasian subset treated either with
clozapine or olanzapine (N=99). Linear regression based on an additive model was performed with the inclusion of relevant covariates.
Results Normalized per cent weight change was analyzed, revealing that patients with the minor allele at rs9656135 had a mean weight
increase of 4.1%, whereas patients without this allele had an increase of 3.4%. This association is not significant after correcting for multiple

testing.

Conclusions Because of limited power, PRKAR2B’s role in antipsychotic-induced weight gain is unclear, but biological evidence suggests
that PRKAR2B may be involved. Further research in larger sample sizes is warranted. Copyright © 2014 John Wiley & Sons, Ltd.

KEY WORDS—PRKAR?2B; antipsychotic-induced weight gain; schizophrenia; pharmacogenetics; polymorphisms

INTRODUCTION

The use of antipsychotics, such as clozapine and
olanzapine, has been effective in treating schizophrenia
patients but is often associated with severe metabolic
side effects, particularly significant weight gain. Weight
gain itself is a serious health concern due to
comorbidities such as cardiovascular disease and type
II diabetes (Reynolds, 2012). With regard to the genetic
component of antipsychotic-induced weight gain
(AIWG), there is a heritable component. In a monozy-
gotic twin and sibling pair study, Gebhardt et al.
(2010) estimated the contribution of genetic factors in
AIWG to be 60-80%. Additionally, numerous genes,
some of which have been replicated, have been shown
to be associated with AIWG (Miiller and Kennedy,
2006, Lett et al., 2012). A recent example of a

*Correspondence to: J. Knight, Campbell Family Mental Health Research
Institute, Centre for Addiction and Mental Health, Toronto, Ontario,
Canada. Tel: +1 416 535 8501 E-mail: jo.knight@camh.ca

Copyright © 2014 John Wiley & Sons, Ltd.

replicated finding is with a locus near the melanocortin
4 receptor gene (Malhotra et al., 2012). Other replicated
findings involve variants in leptin genes and others in
the promoter of the 5-hydroxytryptamine (serotonin)
receptor 2C gene (Reynolds, 2012). In this study, we
investigate another likely candidate gene to be involved
in AIWG, the protein kinase cAMP-dependent regula-
tory type II beta (PRKAR2B) gene. Other protein kinase
genes, particularly the subunits of AMP-activated
protein kinase, have been previously studied in AIWG
(Jassim et al., 2011; Souza et al., 2012). However,
PRKAR2B has so far only been investigated in one
study that looked at phenotypic outcomes related to
AIWG. A variant in this gene was shown to be
associated with clozapine’s effects on triglyceride levels
in a genome-wide pharmacogenomics study of meta-
bolic side effects using participants from the Clinical
Antipsychotic Trial of Intervention Effectiveness
(Adkins et al., 2011). PRKAR2B codes for one of the
several regulatory subunits of cAMP-dependent protein
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kinase. It is expressed in all tissue, including the
hypothalamus, which could suggest a role that is linked
to appetite.

Furthermore, the PRKAR2B gene is a plausible
candidate for being implicated in antipsychotic-induced
metabolic outcomes as supported by animal studies. For
instance, with regard to the metabolic phenotype,
Czyzyk et al. (2008) showed that disruption of the
RIl-beta subunit (coded by PRKAR2B) reverses
elevated body weight, hyperphagia, and obesity of
agouti lethal yellow mice. In that paper, Czyzyk et al.
(2008) also discuss that PRKAR2B may be one of the
cAMP effector molecules working downstream of the
melanocortin 4 receptor gene. As for being implicated
in antipsychotic effects, Adams ez al. (1997) found that
the cataleptic response to haloperidol is blocked in mice
with a targeted disruption in the RII-beta subunit. In
addition, mice lacking this regulatory subunit exhibit a
10% reduction in body weight and a 50% decrease in
white adipose tissue and are resistant to diet-induced
obesity and hyperglycemia (Adams et al., 1997).
Altogether, these previous studies support the hypothe-
sis that variants of the PRKAR2B gene may be
implicated in AIWG. Thus, we aimed at studying the
contribution of PRKAR2B to AIWG in a sample of
schizophrenia or schizoaffective disorder patients.

METHODS
Samples

Patients were recruited from four sites. Within each site,
patients were from various ethnic backgrounds. For the
first three sites, 226 clinically diagnosed schizophrenia
or schizoaffective disorder patients were recruited and
are summarized in the succeeding texts. In the first sam-
ple (DIM-1), schizophrenia patients (N=99; Berlin)
were given different antipsychotics and assessed up to
6 weeks. Patients (N=77) from the second sample
(HYM; Ohio) were treated with clozapine for up to
6 weeks, and patients (N=55) from the third (JAL;
New York) were treated with clozapine, haloperidol,
olanzapine, or risperidone for up to 14 weeks. Demo-
graphic details on these subjects have been previously
described (Tiwari et al., 2013), but refer to Table S1
for a summary. For the fourth sample, 21 patients were
recruited from an ongoing study at the Centre for
Addiction and Mental Health in Toronto (DJM-2;
Toronto) study. Patients were included when either
starting or switching to a new second-generation
antipsychotic (clozapine, olanzapine, risperidone, or
quetiapine) and were prospectively assessed for AIWG
and treatment response for a minimum of 6 months. All

Copyright © 2014 John Wiley & Sons, Ltd.

patients were assessed for research diagnosis and
comorbid conditions using the Structured Clinical
Interview for the Diagnostic and Statistical Manual of
Mental Disorders, Fourth Edition (First er al., 1997)
and symptom severity using the Positive and Negative
Syndrome Scale (Kay et al., 1987). Metabolic assess-
ments included weight at baseline, week two and week
six. Exclusion criteria included severe medical condi-
tions (e.g., hepatitis C, HIV, and diabetes), substance
abuse/dependence, significant mental retardation, or
severe personality disorder. Ethylenediaminetetraacetic
acid tubes with a minimum of 10 ml venous blood were
drawn from each subject. Approval from the
institutional ethics committees and informed consent
were obtained for all patients.

Genotyping

A total of 16 tag single-nucleotide polymorphisms
(SNPs) were selected in the PRKAR2B gene for associ-
ation with AIWG. Additional genotyped SNPs were
available for quality control procedures. DNA samples
were genotyped using the GoldenGate Genotyping
Assay (Illumina Inc. San Diego, CA, USA) as per the
manufacturers’ protocol (Fan ez al., 2006) at The Centre
for Applied Genomics (Toronto, Ontario, Canada).
Briefly, SNPs were uploaded to Illumina’s Assay
Design Tool (http://www.illumina.com/) for probe
design resulting in a custom panel (GS0013427-OPA)
of 384 SNPs. A total of 5pul of 50ng/pl in 10 mM
Tris—HCI pH 8.0, 1 mM ethylenediaminetetraacetic
acid of genomic DNA underwent an allele-specific
oligonucleotide hybridization followed by extension
and ligation. A universal polymerase chain reaction
step for all 384 loci followed with primers labeled
with either Cy3 (primer 1) or Cy2 (primer 2). The am-
plified products were then hybridized to GoldenGate
Genotyping Universal-32, 384-plex beadchips, and
scanned using the Illumina iScan (Illumina Inc.).
The resulting data was analyzed with GenomeStudio
v2011 wusing the default parameters. SNPs were
clustered on the sample dataset and manually
inspected. SNPs were discarded if call rates were less
than 90%. A total of seven SNPs failed, leading to
377 SNPs of good quality for further use.

Genetic data quality control

Quality control procedures and association analyses
were performed using PLINK (version 1.07, http://
pngu.mgh.harvard.edu/~purcell/plink/) (Purcell ez al.,
2007). Plots for call rate distributions and ancestry map-
ping based on principal component analysis (PCA) were
created using R (http://cran.r-project.org/) (R, 2008).
Quality control measures were applied to both

Hum. Psychopharmacol Clin Exp 2014; 29: 330-335.
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individuals and markers. Duplicate samples, individuals
with less than 95% call rates, and individuals with outly-
ing heterozygosity were removed from the analysis. As
for the quality control measures applied to the markers,
standard thresholds were chosen: rare variants defined
as markers with a minor allele frequency (MAF) of less
than 1%, and markers with a missing data rate of greater
than 5% were excluded. Thresholds for other quality
control measures, such as Hardy—Weinberg equilibrium
(HWE), were decided on the basis of the number of
markers. The HWE threshold of 0.0001 was determined
by dividing the alpha value of 0.05 into the total number
of markers available on the array (N =377). None of the
PRKAR2B markers failed HWE (see the first set of
columns in Table 1 for summary statistics for the 16
PRKAR?2B SNPs).

Statistical analysis

Considering the samples were of mixed ethnicity, an
analysis option would have been to conduct multiple
association studies (each of which analyze a single eth-
nicity) and then combine the results in a meta-analysis.
However, this option was not feasible because of small
sizes of some samples. Instead, the association analysis
was performed on the largest ethnic subset, Caucasians.
Those Caucasians treated with either clozapine or
olanzapine (N=99) were included (refer to Table 2 for
the demographics). Those individuals who self-reported
as Caucasian and also clustered with the HapMap
(Frazer et al., 2007) CEU population after PCA using
the independent genotyped markers (N =123) available
from all samples were considered to be Caucasian
(N=99). The rationale behind choosing the subset of

Table 1. Summary statistics and regression results for PRKAR2B single-
nucleotide polymorphisms (SNPs)

Summary statistics Regression results

PRKAR2B  Minor allele Hardy—Weinberg Uncorrected
SNP frequency equilibrium p-value Beta p-value
rs1544582 0.44 (G) 0.23 —0.15 0.17
152237648 0.32 (A) 0.65 0.069 0.57
152237649 0.43 (A) 0.36 —0.15 0.23
rs11766415  0.40 (G) 0.53 —0.09 0.41
152536504 0.34 (T) 1 —0.02 0.88
1s2536505 0.12 (C) 1 0.37 0.045
1s6960842 0.45 (G) 0.84 —0.05 0.66
152536508 0.27 (G) 0.45 —0.006  0.96
rs13311274  0.38 (O) 0.47 0.05 0.69
rs17153823  0.13 (G) 1 —0.12 0.50
1s13224682  0.07 (G) 0.39 0.008  0.97
1s9656135 0.07 (T) 1 0.72 0.0015
152302453 0.45 (A) 0.42 —0.086 0.44
1512705406 0.16 (A) 0.70 —0.09 0.58
15257376 0.39 (G) 0.83 —0.047  0.69
1s257378 0.22 (G) 0.39 0.086  0.57

Copyright © 2014 John Wiley & Sons, Ltd.

Table 2. Demographics of Caucasian subset used in the analysis

Characteristic Median (range)

Sex 55 women

44 men
Age (years) 34 (18-65)
Baseline weight (kg) 78.20 (49.50-185.40)
Treatment duration (weeks)b 6 (1-14)

2.91 (=7.59 to 26.85)
3.49 (1.00-5.94)

Per cent weight change (%)
Normalized per cent weight change (%)"

“Used as the outcome variable in the linear regression association analysis
where genotype at each locus is the predictor variable.
°For most patients (87%), the treatment duration was 6 weeks.

individuals treated with either clozapine or olanzapine
was that in literature reviews of AIWG, the highest
weight gain is typically observed in individuals taking
those medications (e.g., Lett et al., 2012). The trade-
off involved in choosing to use this subset with less
noise is that a smaller sample size also results.

In PLINK, linear regression was performed on the
subset described with the inclusion of the following
variables as covariates: baseline weight, study dura-
tion, and the first principal component from the PCA
on the subset of individuals analyzed. Per cent weight
change rather than absolute weight change was used as
the outcome variable since the US Food and Drug
Administration defines clinically significant weight
gain using a percentage (=7% of baseline weight) on
US package inserts for these antipsychotics (Casey
et al., 2004). Because linear regression assumes that
the continuous variable follows a normal distribution,
the Shapiro-Wilk normality test in R was applied,
and the null hypothesis that the distribution is normal
was rejected (p=3.1e-05). Data were consequently
normalized using a square root transformation to
follow a normal distribution according to the
Shapiro—Wilk normality test.

Correction for multiple testing was performed in two
ways: by adjusting for the PRKAR2B SNPs and also by
taking into account all of the SNPs genotyped on the
same array as the PRKAR2B SNPs. The number of
independent tests was determined taking into account
the linkage disequilibrium structure of the PRKAR2B
SNPs using matrix spectral decomposition (Nyholt,
2004). Specifically, the Li and Ji method (2005) that
is recommended by Nyholt was employed.

Statistical power calculation

In order to assess statistical power, calculations were
performed using the Genetic Power Calculator (http://
pngu.mgh.harvard.edu/~purcell/gpc/) (Purcell et al.,
2003). The calculations, on the basis of quantitative trait
loci for singletons, were conducted using the following

Hum. Psychopharmacol Clin Exp 2014; 29: 330-335.
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assumptions: The marker allele is in perfect linkage
disequilibrium with the high risk allele, the quantitative
trait accounts for 5% of the total variance under an additive
model, and the MAF of these alleles is 0.3. The first two
assumptions make the estimated sample size conservative
because the frequency and percentage of the heritability
accounted for by the quantitative trait may be lower than
specified. The MAF of 0.3 was chosen as it is the average
MATF for the PRKAR2B SNPs analyzed.

In silico functional analysis

An in silico functional analysis was performed in
HaploReg v2 (http://www.broadinstitute.org/mammals/
haploreg/haploreg.php) (Ward and Kellis, 2012).
HaploReg is a resource that incorporates data from the
ENCODE Project, Roadmap Epigenome Mapping
Consortium, and also expression quantitative trait loci
(eQTL) data from the Genotype-Tissue Expression
eQTL Browser in order to explore the annotations of
noncoding SNPs.

RESULTS

There were 99 individuals who belonged to the Cauca-
sian subset being treated with either clozapine or
olanzapine: 22 from DIM-1, 50 from HYM, 8 from
JAL, and 19 from DJM-2. In the association analysis,
one of the SNPs in PRKAR2B (rs9656135) was signifi-
cantly associated with AIWG before correcting for
multiple testing (uncorrected p=0.0015, odds ratio =
2.05). There were no significant associations between
the genotype and any of the covariates. At SNP
rs9656135, the predicted values from the fitted model
y=0.72x —0.0151+0.0252 — 0.2963 +4.01 where y
is the normalized per cent weight change, x is the
genotype, f1 is the baseline weight, 2 is the study
duration, and 3 is the first principal component were
plotted (Figure 1). (See the final set of columns in
Table 1 for the regression results for the 16 PRKAR2B
SNPs.) The MAF for this marker is 7%. A closer
inspection at the number of individuals per genotype
at this marker (Table 3) showed that there were no
individuals homozygous for the minor allele (T), and
thus, the linear regression was only comparing the
heterozygotes with those homozygous for the major
allele (C). With the lack of homozygotes for the minor
allele, it cannot be determined whether the trend seen
between SNP rs9656135 and per cent weight change
follows an allelic model.

Single-nucleotide polymorphism rs9656135 is in
close proximity to the SNP (rs13224682) found in
Adkins ef al. (2011) to be associated with clozapine’s
effects on triglyceride levels; however, these SNPs

Copyright © 2014 John Wiley & Sons, Ltd.
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Figure 1. Box plots of normalized weight change distributions for the
various genotypes at single-nucleotide polymorphism rs9656135. The black
line in each box represents the median. The lower line of the box is the 25%
quartile, and the upper line is the 75% quartile. The lower and upper
whiskers represent the minimum and maximum values, respectively, but
these do not include outliers. Outliers, represented as isolated circles drawn
outside of the boxes, are those values that are either 1.5 times less than or
greater than the interquartile range (the difference between the 75% and
25% quartiles)

Table 3. Genotype counts summary for the most significant single-
nucleotide polymorphism from the association analysis, rs9656135

Genotype T/T T/IC C/C
Counts 0 15 84
Frequency 0 0.15 0.85
Normalized mean per cent weight gain (%) N/A 4.1 3.4

are not in linkage disequilibrium with each other
(r*=0) (Figure 2).

We assessed the significance of the association by
adjusting for multiple comparisons based on two strate-
gies. One only accounted for the SNPs in the PRKAR2B
gene, whereas the other accounted for all of the SNPs
genotyped on the array that were selected as possible
candidates for AIWG. According to the method in Li
and Ji (2005), there are nine effective tests. Implementing
the same procedure, but taking into account all of the
SNPs (N=377) successfully genotyped on the same
array as the PRKAR2B SNPs, there are 176 effective
tests. The association between SNP rs9656135 and
AIWG remained significant (p=0.01) when correcting
for just the SNPs in PRKAR2B. Using all of the hypo-
thesized SNPs that were genotyped on the array, SNP

293 Hum. Psychopharmacol Clin Exp 2014; 29: 330-335.
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Figure 2. Linkage disequilibrium plot displaying #* values for the 16 PRKAR2B single-nucleotide polymorphisms analyzed. The plot was constructed in

Haploview version 4.2 (Barrett et al., 2005)

rs9656135 is no longer statistically significant (p =0.26)
when adjusting for the 176 effective tests.

Power analyses revealed that our study was under-
powered, requiring 153 individuals instead of 99 to
achieve 80% power (assuming MAF 3%, and 5% of
the variance accounted for).

PLINK was used to calculate the inflation factor
based on the median chi-squared value for the linear
regression model to ensure that the sample did not
contain admixture. An inflation factor of one suggests
that there is no stratification in the sample, whereas
values greater than one indicate stratification effects.
Using the additional typed markers (total N=377),
the inflation factor in the Caucasian subset in the cloza-
pine and olanzapine group resulted in one with the
inclusion of the first principal component in the
analysis, suggesting that that principal component
effectively corrected for stratification.

DISCUSSION

We investigated the role of the PRKAR2B gene in
AIWG in a sample of Caucasian schizophrenia patients
being treated with clozapine or olanzapine (N=99).
We tested for associations between the 16 genotyped
tag SNPs in this gene and per cent weight gain. One
SNP (rs9656135) showed an association with AIWG.
The odds ratio was 2.05. This SNP remained statisti-
cally significant after adjusting for multiple testing by
taking into account only the SNPs in PRKAR2B; how-
ever, it was no longer significant when adjusting for all

Copyright © 2014 John Wiley & Sons, Ltd.

of the SNPs genotyped on the same array used for
ancillary analyses outlined earlier and for the investiga-
tion of other AIWG candidate genes.

Single-nucleotide polymorphism rs9656135 is an
intronic SNP, and there is no currently available
functional evidence to support the role of this SNP in
AIWG. There is a possibility that SNP rs9656135
may tag a functional variant, which has a more signif-
icant association signal with AIWG. Inputting
rs9656135 into HaploReg (Ward and Kellis, 2012)
showed that this SNP does not overlap with any DNase
I hypersensitive sites, binding sites for proteins,
promoter or enhancer annotations, or eQTL. However,
using a lower linkage disequilibrium (LD) threshold of
2 =0.6, rather than the default 0.8 in HaploReg, shows
that there are a large number of SNPs with LD between
7?=0.6 and 0.8 that show extensive enhancer histone
and promoter marks and a few with DNase protection
and multiple proteins bound as well.

The other investigated SNPs yielded no significant
results prior to correction for multiple testing, and
overall, our study suggests that the PRKAR2B gene
may not play a major role in AIWG. As for the
rationale to investigate the PRKAR2B gene in AIWG,
evidence was provided by animal studies suggesting
a role in energy metabolism. For example, PRKAR2B
mouse knockouts are lean, with increased activity
and resting metabolic rate. These mice are protected
from diet-induced obesity and fatty livers
(Cummings et al., 1996). In addition, one variant in
PRKAR2B was found to be significantly associated

294  Hum. Psychopharmacol Clin Exp 2014; 29: 330-335.
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with trigylceride levels, a variable related to AIWG
(Adkins et al., 2011). This SNP was not associated
with AIWG in our study. However, the study by
Adkins et al. (2011) corrected for multiple testing
using a false discovery rate approach, which gives rise
to a higher number of false positive results. Additionally,
the study included principal components into their
regression model from a PCA that was performed on
an admixed sample, and it is not clear if PCA is able
to adjust for such extensive population stratification.
Thus, PRKAR2B association findings of Adkins
et al. are difficult to interpret. A limitation of our study
is limited power because of a small sample size. Addi-
tional limitations involve the heterogeneity of the
sample with regard to potential confounding variables
that may affect weight gain but were not included in
the model, such as calorie intake, inpatient versus
outpatient status, concomitant therapy, and study
duration. In light of these described limitations, the
PRKAR2B gene’s involvement in AIWG cannot be
conclusively determined at the present time.

Larger samples are required for further analysis;
however, PRKAR2B remains a biologically plausible
candidate as a contributor to AIWG. Association
analysis approaches extending beyond genes to
investigate biological pathways could be conducted
in the future to investigate the influence of this gene
and others on AIWG.
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C R code for Chapter 4 A Review of Predictive
Accuracy Measures that can be Applied to
Models for Prioritizing Risk Variants Based on
Functional Information
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Additional_File_1.R

#Sample R Code

#MyData.txt is a text file (either space or tab-delimited) with a header. It contains a
list of genetic variants (one variant per line) with at least the following two labelled
columns: cls (a @/1 binary indicator: 1=hit and @=non-hit) and score (contains the
prediction value).

#Receiver operator characteristic curve
pdf("ROC.pdf™)
x<-read.table("MyData.txt", h=T, as.is=T)
library(ROCR)

pred<-prediction(x$score, x$cls)

perf <- performance( pred, "tpr", "fpr" )
plot(perf, 1lwd=5)

abline(@,1,1ty=3)

dev.off()

#display area under the curve
performance(pred, "auc™")

#display positive predictive values
performance(pred, "ppv")

#display negative predictive values
performance(pred, "npv")

#Histogram

require(plotrix)

x<-read.table("MyData.txt", h=T, as.is=T)

hits<-subset(x, x$cls==1)

nonhits<-subset(x, x$cls==0)

1<-1list(Chits$score, nonhits$score)

#adjust the start and end position and bin increments below
bins<-seq(0,1, by=0.05)

pdf("Histogram.pdf")

multhist(l, freg=F, xlab="Predicted Value", breaks=bins, col=c("black","grey"))
legend("top", title="Classifier", c("Hits", "Non-hits"), pch=c(15, 15),
col=c("black","grey"))

dev.off()

#Box plot

pdf("Boxplot.pdf")

x<-read.table("MyData.txt", h=T, as.is=T)

hits<-subset(x, x$cls=="1")

nonhits<- subset(x, x$cls=="0")

boxplot(hits$score, nonhits$score, xlab="Classification", ylab="Prediction",
names=c("Hit","Non-hit"), ylim=c(0,1))

dev.off()

#Violin plot

library(vioplot)

pdf("Violinplot.pdf™)
x<-read.table("MyData.txt", h=T, as.is=T)
hits<-subset(x, x$cls=="1")
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nonhits<- subset(x, x$cls=="0")

vioplot(hits$score, nonhits$score, names=c("Hit","Non-hit"), col="white", ylim=c(0@,1))
title(xlab="Classification", ylab="Prediction")

dev.off()

#Quantile-quantile plot

pdf("Qgplot.pdf™)

x<-read.table("MyData.txt", h=T, as.is=T)

hits<-subset(x, x$cls=="1")

nonhits<- subset(x, x$cls=="0")

qgplot(nonhits$score, hits$score, ylab="Hits", xlab="Non-hits", ylim=c(0,1), xlim=c(0,1))
abline(@,1, col="grey")

dev.off()

#Hypergeometric test

x<-read.table("MyData.txt", h=T, as.is=T)

hits<-subset(x, x$cls==1)

nonhits<-subset(x, x$cls==0)

res<-matrix(nrow=3,ncol=13)

row=1

col=0

BD<-length(nonhits[,1])

j<-lengthChits[,1])

#prediction value bins ranging from less than 0.35 to between 0.9 and 0.95, increasing by
increments of 0.5

for (i in seq(0.3,0.9,0.05))

{

col<-col+1

c<-length(subset(nonhits$score,nonhits$score<i+0.05 & nonhits$score>i))
a<-length(subset(hits$score, hits$score<i+0.05 & hits$score>i))
res[row,col]<-c/dim(nonhits)[1]

resfrow+l,col]<-a/dimChits)[1]

res[row+2,col]<-sum(phyper(a,j,BD-j,c, lower.tail=F))

}

#write a table to read in Excel

head<-c("p<0@.35", "0.35<p<0.4", "0.4<p<0.45", "0.45<p<0.5", "0.5<p<@.55",
"0.55<p<0.6","0.6<p<0@.65", "0.65<p<@.7", "0.7<p<0.75","0.75<p<0.8", "0.8<p<0.85",
"0.85<p<@.9","0.9<p<0.95")

table<-rbind(head, res)

write.table(table, "Hypergeometric.csv", sep=",", row.names=F, col.names=F, quote=F)
#the first row is the frequency of non-hits

#the second row is the frequency of the hits

#the third row is the hypergemoetric p-value

#Mann-Whitney U test
x<-read.table("MyData.txt", h=T, as.is=T)
nonhits<-subset(x, x$cls==0)
hits<-subset(x, x$cls==1)
wilcox.test(nonhits$score, hits$score)

#Asymptotic Generalized Cochran-Mantel-Haenszel Test
library("coin™)

x<-read.table("MyData.txt", h=T, as.is=T)
nonhits<-subset(x, x$cls==0)

hits<-subset(x, x[$cls==1)
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counts<-matrix(nrow=2,ncol=13)

row=1

col=0

for (1 in seq(0.3,0.9,0.05))

{

col<-col+1

c<-length(subset(nonhits$score,nonhits$score<i+0.05 & nonhits$score>i))
a<-length(subset(hits$score, hits$score<i+0.05 & hits$score>i))
counts[row,col]<-c

counts[row+1,col]<-a

}

counts<-as.table(counts)

cmh_test(counts)

Additional_File_2.R

#Code for the plots in the paper: "Assessing models for genetic prediction of complex
traits: a comparison of visualization and quantitative methods" Sarah A Gagliano, Andrew
D Paterson, Michael E Weale and Jo Knight

#Figure 1- the confusion matrix,

#no data in this figure

#Figure 2- ROC curves

library("ROCR™)

pdf("ROC-clumped-4models.pdf")
x<-read.table("Nonpheno-5e-8-testset.csv", sep=",", h=F)
pred<-prediction(x[,5], x[,4])

perf <- performance( pred, "tpr", "fpr" )

plot(perf, 1lwd=5)

par(new=T)

x<-read.table("Autoimmune-testset.csv", sep=",", h=F)
pred<-prediction(x[,5], x[,4])

perf <- performance( pred, "tpr", "fpr" )

plot(perf, 1lwd=5, col="grey")

par(new=T)

x<-read.table("Brain-testset.csv", sep=",", h=F)
pred<-prediction(x[,5], x[,4])

perf <- performance( pred, "tpr", "fpr" )

plot(perf, lwd=5, 1ty=3, col="grey")

par(new=T)

x<-read.table("Nonpheno-allCat-testset.csv", sep=",", h=F)
pred<-prediction(x[,5], x[,4])

perf <- performance( pred, "tpr", "fpr" )

plot(perf, lwd=5, lty=3)

abline(0@,1, 1ty=3)

legend("bottomright"”, title="GWAS hits", c("Autoimmune", "Non-phenotype specific", "Non-
phenotype specific- all Catalogue", "Brain-related"), lty=c(1, 1, 3, 3), lwd=c(5, 5, 5,
5), col=c("grey", "black", "black", "grey"))

dev.off()

#Figure 3- Histograms

require(plotrix)

pdf("Histograms-clumped-4models.pdf™)

#make PDF first (better quality);then use Preview to convert to TIFF
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par(mfrow=c(2,2))

x<-read.table("Brain-testset.csv", sep=",")

hits<-subset(x, x[,4]==1)

nonhits<-subset(x, x[,4]==0)

1<-listChits[,5], nonhits[,5])

bins<-seq(0.175,0.95, by=0.05)

multhist(l, freg=F, xlab="Predicted Value", ylab="Density", breaks=bins,
col=c("black","grey"), ylim=c(0,10))

legend("topright", title="Brain-related", c("<5x10A-8 hits", "non-hits"), pch=c(15, 15),
col=c("black","grey"), cex=0.9)

x<-read.table("Autoimmune-testset.csv", sep=",")

hits<-subset(x, x[,4]==1)

nonhits<-subset(x, x[,4]==0)

1<-listChits[,5], nonhits[,5])

bins<-seq(0.175,0.975, by=0.05)#0.27 as starting works but starts at 0.3

multhist(l, freg=F, xlab="Predicted Value", ylab="Density", breaks=bins,
col=c("black","grey"), ylim=c(0,10))

legend("topright", title="Autoimmune", c("<5x10A-8 hits", "non-hits"), pch=c(15, 15),
col=c("black","grey"), cex=0.9)

x<-read.table("Nonpheno-5e-8-testset.csv", sep=",")

hits<-subset(x, x[,4]==1)

nonhits<-subset(x, x[,4]==0)

1<-listChits[,5], nonhits[,5])

bins<-seq(0.175,0.95, by=0.05)

multhist(l, freg=F, xlab="Predicted Value", ylab="Density", breaks=bins,
col=c("black","grey"), ylim=c(0,10))

legend("topright", title="All phenotype", c("<5x10A-8 hits", "non-hits"), pch=c(15, 15),
col=c("black","grey"), cex=0.9)

x<-read.table("Nonpheno-allCat-testset.csv", sep=",")

hits<-subset(x, x[,4]==1)

nonhits<-subset(x, x[,4]==0)

1<-listChits[,5], nonhits[,5])

bins<-seq(0.175,0.95, by=0.05)

multhist(l, freg=F, xlab="Predicted Value", ylab="Density", breaks=bins,
col=c("black","grey"), ylim=c(0,10))

legend("topright", title="All phenotype", c("all Catalogue hits", "non-hits"), pch=c(15,
15), col=c("black","grey"), cex=0.9)

dev.off()

#Figure 4- Histograms (bin size of 0.1)

require(plotrix)

pdf("Histograms@.lbins-clumped-4models.pdf")

par(mfrow=c(2,2))

x<-read.table("Brain-testset.csv", sep=",")

hits<-subset(x, x[,4]==1)

nonhits<-subset(x, x[,4]==0)

1<-listChits[,5], nonhits[,5])

bins<-seq(0.25,0.95, by=0.1)

multhist(l, freg=F, xlab="Predicted Value", ylab="Density", breaks=bins,
col=c("black","grey"), ylim=c(0,6))

legend("topright", title="Brain-related", c("<5x10A-8 hits", "non-hits"), pch=c(15, 15),
col=c("black","grey"))

x<-read.table("Autoimmune-testset.csv", sep=",")

hits<-subset(x, x[,4]==1)

nonhits<-subset(x, x[,4]==0)
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1<-listChits[,5], nonhits[,5])

bins<-seq(0.25,0.95, by=0.1)

multhist(l, freg=F, xlab="Predicted Value", ylab="Density", breaks=bins,
col=c("black","grey"), ylim=c(0,6))

legend("topright", title="Autoimmune", c("<5x10A-8 hits", "non-hits"), pch=c(15, 15),
col=c("black","grey"))

x<-read.table("Nonpheno-5e-8-testset.csv", sep=",")

hits<-subset(x, x[,4]==1)

nonhits<-subset(x, x[,4]==0)

1<-listChits[,5], nonhits[,5])

bins<-seq(0.25,0.95, by=0.1)

multhist(l, freg=F, xlab="Predicted Value", ylab="Density", breaks=bins,
col=c("black","grey"), ylim=c(0,6))

legend("topright", title="All phenotype", c("<5x10A-8 hits", "non-hits"), pch=c(15, 15),
col=c("black","grey"))

x<-read.table("Nonpheno-allCat-testset.csv", sep=",")

hits<-subset(x, x[,4]==1)

nonhits<-subset(x, x[,4]==0)

1<-listChits[,5], nonhits[,5])

bins<-seq(0.25,0.95, by=0.1)

multhist(l, freg=F, xlab="Predicted Value", ylab="Density", breaks=bins,
col=c("black","grey"), ylim=c(0,6))

legend("topright", title="All phenotype", c("all Catalogue hits", "non-hits"), pch=c(15,
15), col=c("black","grey"))

dev.off()

#Figure 5- Box plots

pdf("boxplots-clumped-testset-4models.pdf")

par(mfrow=c(2,2))

x<-read.table("Brain-testset.csv",sep=",")

hits<-subset(x, x[,4]=="1")

nonhits<- subset(x, x[,4]=="0")

boxplot(Chits[,5], nonhits[,5], xlab="Classification", ylab="Prediction", main="Brain-
related", names=c("Hit","Non-hit"), ylim=c(0@.25,0.95))
x<-read.table("Autoimmune-testset.csv", sep=","

hits<-subset(x, x[,4]=="1")

nonhits<- subset(x, x[,4]=="0")

boxplot(Chits[,5], nonhits[,5], xlab="Classification", ylab="Prediction",
main="Autoimmune", names=c("Hit","Non-hit"), ylim=c(@.25,0.95))
x<-read.table("Nonpheno-5e-8-testset.csv", sep=","

hits<-subset(x, x[,4]=="1")

nonhits<- subset(x, x[,4]=="0")

boxplot(Chits[,5], nonhits[,5], xlab="Classification", ylab="Prediction", main="Non-
phenotype specific", names=c("Hit","Non-hit"), ylim=c(0.25,0.95))
x<-read.table("Nonpheno-allCat-testset.csv", sep=","

hits<-subset(x, x[,4]=="1")

nonhits<- subset(x, x[,4]=="0")

boxplot(Chits[,5], nonhits[,5], xlab="Classification", ylab="Prediction", main="Non-
phenotype specific-all Catalogue", names=c("Hit","Non-hit"), ylim=c(@.25,0.95))
dev.off()

#Figure 6- Violin plots

library(vioplot)
pdf("vioplots-clumped-testset-4models.pdf")
par(mfrow=c(2,2))
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x<-read.table("Brain-testset.csv",sep=",")

hits<-subset(x, x[,4]=="1")

nonhits<- subset(x, x[,4]=="0")

vioplot(Chits[,5], nonhits[,5], names=c("Hit","Non-hit"), col="white", ylim=c(@.25,0.95))
title("Brain-related", xlab="Classification", ylab="Prediction")
x<-read.table("Autoimmune-testset.csv", sep=","

hits<-subset(x, x[,4]=="1")

nonhits<- subset(x, x[,4]=="0")

vioplot(Chits[,5], nonhits[,5], names=c("Hit","Non-hit"), col="white", ylim=c(@.25,0.95))
title("Autoimmune"”, xlab="Classification", ylab="Prediction™)
x<-read.table("Nonpheno-5e-8-testset.csv", sep=","

hits<-subset(x, x[,4]=="1")

nonhits<- subset(x, x[,4]=="0")

vioplot(Chits[,5], nonhits[,5], names=c("Hit","Non-hit"), col="white", ylim=c(@.25,0.95))
title("Non-phenotype specific", xlab="Classification", ylab="Prediction™)
x<-read.table("Nonpheno-allCat-testset.csv", sep=","

hits<-subset(x, x[,4]=="1")

nonhits<- subset(x, x[,4]=="0")

vioplot(Chits[,5], nonhits[,5], names=c("Hit","Non-hit"), col="white", ylim=c(@.25,0.95))
title("Non-phenotype specific-all Catalogue", xlab="Classification", ylab="Prediction™)
dev.off()

#Figure 7- Quantile-quantile plots

pdf("qgplots-clumped-4models.pdf™)

par(mfrow=c(2,2))

x<-read.table("Brain-testset.csv",sep=",")

hits<-subset(x, x[,4]=="1")

nonhits<- subset(x, x[,4]=="0")

gqgplot(nonhits[,5], hits[,5], ylab="Hits", xlab="Non-hits", main="Brain-related",
x1lim=c(@.25,0.95), ylim=c(0.25,0.95))

abline(@,1, col="grey")

x<-read.table("Autoimmune-testset.csv", sep=",")

hits<-subset(x, x[,4]=="1")

nonhits<- subset(x, x[,4]=="0")

gqgplot(nonhits[,5], hits[,5], ylab="Hits", xlab="Non-hits",

main="Autoimmune" ,x1lim=c(@.25,0.95), ylim=c(@.25,0.95))

abline(@,1, col="grey")

x<-read.table("Nonpheno-5e-8-testset.csv", sep=",")

hits<-subset(x, x[,4]=="1")

nonhits<- subset(x, x[,4]=="0")

#nrow(hits) #4480

#nrow(nonhits) #75341

gqgplot(nonhits[,5], hits[,5], ylab="Hits", xlab="Non-hits", main="Non-phenotype
specific",x1lim=c(0.25,0.95), ylim=c(0.25,0.95))

abline(@,1, col="grey")

x<-read.table("Nonpheno-allCat-testset.csv", sep=",")

hits<-subset(x, x[,4]=="1")

nonhits<- subset(x, x[,4]=="0")

ggplot(nonhits[,5], hits[,5], ylab="Hits", xlab="Non-hits", main="Non-phenotype specific-
all Catalogue",xlim=c(0@.25,0.95), ylim=c(@.25,0.95))

abline(@,1, col="grey")

dev.off()

#Figure 8- Ranks
require(plotrix)
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pdf("Ranks-clumped-4models.pdf")

par(mfrow=c(2,2))

x<-read.table("Brain-testset.csv", sep=",")

dim(x) # 32867

sortbypred<-x[with(x, order(V5)), ]

sortbypred$rank<-seq(l, 32867,1)

hitsforplot<-subset(sortbypred, sortbypred$v4==1)

nonhitsforplot<-subset(sortbypred, sortbypred$v4==0)

1<-list(hitsforplot$rank, nonhitsforplot$rank)

bins<-seq(@, 34000, by=1000)

multhist(l, freg=F, xlab="Rank", ylab="Density", breaks=bins, col=c("black","grey"))
legend("topleft", title="Brain-related", c("<5x10A-8 hits", "non-hits"), pch=c(15, 15),
col=c("black","grey"))

x<-read.table("Autoimmune-testset.csv", sep=",")

dim(x) # 33500

sortbypred<-x[with(x, order(V5)), ]

sortbypred$rank<-seq(1, 33500,1)

hitsforplot<-subset(sortbypred, sortbypred$v4==1)

nonhitsforplot<-subset(sortbypred, sortbypred$v4==0)

1<-list(hitsforplot$rank, nonhitsforplot$rank)

bins<-seq(0@,34000, by=1000)

multhist(l, freg=F, xlab="Rank", ylab="Density", breaks=bins, col=c("black","grey"))
legend("topleft", title="Autoimmune", c("<5x10A-8 hits", "non-hits"), pch=c(15, 15),
col=c("black","grey"))

x<-read.table("Nonpheno-5e-8-testset.csv", sep=",")

dim(x) # 31427

sortbypred<-x[with(x, order(V5)), ]

sortbypred$rank<-seq(l, 31427,1)

hitsforplot<-subset(sortbypred, sortbypred$v4==1)

nonhitsforplot<-subset(sortbypred, sortbypred$v4==0)

1<-list(hitsforplot$rank, nonhitsforplot$rank)

bins<-seq(0@,34000, by=1000)

multhist(l, freg=F, xlab="Rank", ylab="Density", breaks=bins, col=c("black","grey"))
legend("topleft", title="All phenotype", c("<5x10A-8 hits", "non-hits"), pch=c(15, 15),
col=c("black","grey"))

x<-read.table("Nonpheno-allCat-testset.csv", sep=",")

dim(x) # 33444

sortbypred<-x[with(x, order(V5)), ]

sortbypred$rank<-seq(1,33444,1)

hitsforplot<-subset(sortbypred, sortbypred$vV4==1)

nonhitsforplot<-subset(sortbypred, sortbypred$v4==0)

1<-list(hitsforplot$rank, nonhitsforplot$rank)

bins<-seq(0,34000, by=1000)

multhist(l, freg=F, xlab="Rank", ylab="Density", breaks=bins, col=c("black","grey"))
legend("topleft", title="All phenotype-all Catalogue", c("hits", "non-hits"), pch=c(15,
15), col=c("black","grey"))

dev.off()

##Statistical tests

#Mann-Whitney U p-value
x<-read.table("Brain-testset.csv", sep=",")
nonhits<-subset(x, x[,4]==0)
hits<-subset(x, x[,4]==1)
wilcox.test(nonhits[,5], hits[,5])%p.value
x<-read.table("Autoimmune-testset.csv", sep=","
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nonhits<-subset(x, x[,4]==0)

hits<-subset(x, x[,4]==1)

wilcox.test(nonhits[,5], hits[,5])%p.value
x<-read.table("Non-pheno-5e-8-testset.csv", sep=",")
nonhits<-subset(x, x[,4]==0)

hits<-subset(x, x[,4]==1)

wilcox.test(nonhits[,5], hits[,5])%p.value
x<-read.table("Non-pheno-allCat-testset.csv", sep=",")
nonhits<-subset(x, x[,4]==0)

hits<-subset(x, x[,4]==1)

wilcox.test(nonhits[,5], hits[,5])%p.value

#Hypergeometric test p-value

x<-read.table("Nonpheno-5e-8-testset.csv", sep=",", as.is=T) #repeat for other data sets
hits<-subset(x, x[,4]==1)

nonhits<-subset(x, x[,4]==0)

res<-matrix(nrow=3,ncol=13)

row=1

col=0

BD<-length(nonhits[,1])

j<-lengthChits[,1])

#prediction value bins ranging from less than ©0.35 to between 0.9 and 0.95, increasing by
increments of 0.5

for (i in seq(0.3,0.9,0.05))

{

col<-col+1

c<-length(subset(nonhits[,5],nonhits[,5]<i+0.05 & nonhits[,5]>1))
a<-length(subset(hits[,5], hits[,5]<i+@.05 & hits[,5]>1))
res[row,col]<-c/dim(nonhits)[1]

resfrow+l,col]<-a/dimChits)[1]

res[row+2,col]<-sum(phyper(a,j,BD-j,c, lower.tail=F))

}

#write a table to read in Excel

head<-c("p<0.35", "0.35<p<0.4", "0.4<p<0.45", "0.45<p<0.5", "0.5<p<@.55",
"0.55<p<0.6","0.6<p<0@.65", "0.65<p<@.7", "0.7<p<0.75","0.75<p<0.8", "0.8<p<0.85",
"0.85<p<@.9","0.9<p<0.95")

table<-rbind(head, res)

write.table(table, "Hypergeometric.csv", sep=",", row.names=F, col.names=F, quote=F)
#the first row is the frequency of non-hits

#the second row is the frequency of the hits

#the third row is the hypergemoetric p-value

#Asymptotic Generalized Cochran-Mantel-Haenszel Test
library("coin™)

x<-read.table("Nonpheno-5e-8-testset.csv", sep=",", as.is=T) #repeat for other data sets
nonhits<-subset(x, x[,4]==0)

hits<-subset(x, x[,4]==1)

counts<-matrix(nrow=2,ncol=13)

row=1

col=0

for (i in seq(0.3,0.9,0.05))

{

col<-col+1

c<-length(subset(nonhits[,5],nonhits[,5]<i+0.05 & nonhits[,5]>1))
a<-length(subset(hits[,5], hits[,5]<i+@.05 & hits[,5]>1))
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counts[row,col]<-c
counts[row+1,col]<-a

}

counts<-as.table(counts)
cmh_test(counts)
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D ENCODE accession numbers
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Histone Marks:

ENCSRO00AKF
ENCSRO00AOT
ENCSRO00AKS

ENCSRO00AM]J
ENCSRO00ANA
ENCSRO00AMU
ENCSRO00APJ

ENCSRO00ANI

ENCSRO00ANX
ENCSRO00ALI

ENCSRO00AKL
ENCSRO00EXV
ENCSROO0EWC
ENCSRO00EX]J

ENCSR000DWJ
ENCSR000DVU
ENCSRO00DUA
ENCSR000DUO
ENCSR0O00DWD
ENCSRO00DRY
ENCSR000DQH
ENCSR000DTU

ENCSRO00AKA

ENCSRO00AMP
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ENCSR000DUF
ENCSRO00AKU
ENCSRO00AOF
ENCSR000DTQ
ENCSR000DQV
ENCSR000DQM
ENCSRO00DXR
ENCSR000DWP
ENCSR000AOC
ENCSRO00AKC
ENCSRO00AKP
ENCSR000AMO
ENCSRO00ALB
ENCSRO00APH

DNase I:

ENCSRO00ENO
ENCSRO00OEPC
ENCSRO00EMI
ENCSROO0OENP
ENCSRO00EPL
ENCSRO00EMN
ENCSRO00EMS
ENCSRO00ENM
ENCSRO00ENU

ENCSROOOEPT
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ENCSRO00EPZ
ENCSRO00EPS
ENCSRO00EMQ
ENCSRO00ELF
ENCSRO00EJS
ENCSRO00EJT
ENCSRO00EJK
ENCSRO00ELT
ENCSRO00EJL
ENCSRO00ELA
ENCSRO00EJA
ENCSRO00EKE
ENCSRO00EKS
ENCSRO00EKD
ENCSRO00EJT
ENCSRO00EID
ENCSRO00EKZ
ENCSRO00EJX
ENCSRO00EJ]
ENCSRO00EKC
ENCSRO00EJD
ENCSRO00ELU
ENCSRO00EJF
ENCSRO00ELV

ENCSROOOEJE
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ENCSRO00EKU

ENCSROOOEKT

ENCSROOOEIE

ENCSROOOEPS

ENCSR000CZZ

ENCSRO000DBG

ENCSR000DBP

ENCSRO000DAB

ENCSRO000DBK

ENCSRO00DBN

ENCSRO00DAS

ENCSRO000DBD

ENCSR000CZG

ENCSR000DBO

ENCSRO00DBL

ENCSR000DBM

ENCSR0O00DBB

ENCSRO00DAD

ENCSRO00DAZ

ENCSRO00DBC

ENCSR000CZK

ENCSRO00CZE

ENCSR000CZJ

ENCSR000CZD

ENCSRO00DBH
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