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Abstract 

Complex traits are the result of a contribution of both genetic risk variants throughout the 

genome, and environmental risk factors and their interactions. Genome-wide association studies 

(GWAS) have identified some of these associated variants, but there remain two fundamental 

issues to move forward in understanding the genetic etiology of complex traits: (1) The “missing 

heritability” for complex traits persists, possibly in part due to lack of statistical power as a result 

of insufficiently large sample sizes (2) The identity of the causal variant- a variant identified by 

GWAS could result in a functional consequence, or it could merely tag the causal variant. I 

hypothesize that integrating functional information, such as chemical modifications to DNA, 

along with statistical data from an association study can help prioritize variants for further 

analysis in both of these areas. I developed a method to prioritize genetic variants using hundreds 

of functional annotations (Gagliano et al., 2014a) using penalized logistic regression. I compared 

my prioritization method to two other methods that use data-trained classifiers to determine if 

there is an ideal algorithm or annotation set for prioritizing risk variants (Gagliano et al., 2015a). 
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In this work, I also investigated using different databases of disease-associated variants to define 

genetic risk variants. The models created all had some accuracy for detecting risk variants. I 

assessed the accuracy of these models using measures investigated in a review I undertook 

(Gagliano et al., 2015b). Finally, I investigated if allele-specific methylation (ASM) is a useful 

novel annotation to prioritize risk variants. I demonstrated that variants that exhibit ASM in brain 

tissue are enriched for functional annotations, and are also enriched in sub-genome-wide 

significant variants in a schizophrenia GWAS. 
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Chapter 1  
Why and How to Prioritize Genetic Risk Variants using 

Functional Information?  
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1.1 Lay Summary 

Humans are largely identical in our DNA sequence, but about 5% of the genome, 

containing genetic differences or genetic variants, is a contributing factor as to why we 

look different, and these variants partially explain why some people develop an illness 

while others do not. A minority of these genetic variants falls into regions in our DNA 

sequence that encode proteins and other molecules important for cellular function 

(genes). Many of the genetic variants fall into known regulatory regions where they may 

work in controlling or regulating gene function. The genetic variants that are harmful 

(increase our risk of developing an illness) or are protective (reduce our risk of 

developing an illness) are called genetic risk variants.  

Since it is difficult to differentiate risk variants from all variants based on current 

techniques, I developed a computer algorithm to do so based on their regulatory and other 

genomic information. My method (Gagliano et al., 2014a) was published around the 

same time as two other methods, but they use different computer algorithms and different 

regulatory information. I decided to determine the best combination of computer 

algorithm and regulatory information that most accurately predicts genetic risk variants 

(Gagliano et al., 2015a). I found that there are several combinations that offer some 

accuracy, but there is still a lot of room for improvement. In order to improve my 

method, I refined it to examine a subset of genetic risk variants: those specifically 

involved in mental health disorders. I also explored a new piece of regulatory 

information: chemical modifications to the DNA that differ between alleles at 

heterozygous sites. This new piece of information shows good potential for identifying 

novel risk variants because the variants that exhibit this quality fall into known regulatory 

regions significantly more than expected by chance. Identifying genetic risk factors helps 

in earlier diagnosis and better treatment options for a range of diseases. 
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1.2 The human genome 

It has long been known that genetic material, deoxyribonucleic acid (DNA), plays a role 

in determining the phenotype or the manifestation of observed characteristics (Race et al., 

1949). 

DNA is a double helical structure with a sugar-phosphate backbone (Watson and Crick, 

1953) composed of two complementary strands containing a sequence of four nucleotides 

(adenine, guanine, cytosine and thymine). Human DNA consists of about three billion 

base pairs, and is organized into chromosomes that are stored in the nucleus of each cell 

in the human body (Alberts et al., 2007). Some sections are transcribed into messenger 

RNA (mRNA) by the use of enzymes and regulatory factors (e.g. transcription factors). 

The mRNA is then transported to the cytosol of the cell where it is translated into a chain 

of amino acids to create a protein. Three mRNA bases (which make up a “codon”) 

translate to one amino acid (and there is redundancy in this genetic code, meaning that 

there is more than one codon that translates to the same amino acid). Stop codons cause 

the translational machinery to stop translating. For further information about transcription 

and translation see this Nature Education review (Clancy and Brown, 2008). DNA also 

encodes for non-coding RNA molecules (i.e. DNA does not encode for only protein), 

such as micro-RNA (translation regulation), small nuclear RNAs (involved in splicing) 

and small nucleolar RNAs (involved in ribosomal RNA modification) (Eddy, 2001; 

Mattick and Makunin, 2006). The DNA is wrapped around proteins called histones (two 

proteins each of H2a, H2b, H3, H4), which have an effect on DNA conformation, and 

consequently the accessibility of the DNA sequence to regulatory factors and other 

proteins (McGhee and Felsenfeld, 1980). Regulatory factors will be discussed in detail 

later in Sections 1.8 to 1.13, inclusive. 
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1.3 Variation in the human genome 

A change in nucleotide could alter the function of the stretch of DNA, and may contribute 

to an observed characteristic. The different variations possible at a position (locus) are 

called alleles. In our nuclear DNA, humans have two of each chromosome, one from the 

father and one from the mother (apart from sex chromosomes). The set of alleles carried 

across a set of loci on either the paternal or maternal chromosome are called a haplotype 

(Griffiths et al., 2008). If the allele at one locus is known, then the allele present at a 

nearby locus can often be inferred; this non-random association of alleles at different loci 

is called linkage disequilibrium (LD) (Reich et al., 2001). During the formation of 

gametes (egg or sperm) there is the crossing over of homologous chromosomes, resulting 

in the exchange of DNA segments between the two chromosomes (Griffiths et al., 2008). 

Different regions of the genome have different crossover frequencies. Areas of high 

crossover are called recombination hotspots (Petes, 2001). In stretches of DNA where 

there is a low crossover frequency the alleles at different alleles tend to segregate together 

through multiple generations and hence are in high LD. As a consequence there are a 

limited number of haplotypes within each region (Griffiths et al., 2008). Haplotypes and 

allele frequencies differ depending on the ancestral population.  

The completion of the initial draft sequence of the human genome in 2001 (International 

Human Genome Sequencing Consortium et al., 2001) provided researchers with a map of 

the DNA sequence, but since then mapping human variation is still being refined. Many 

genotyping (e.g. HapMap Project (Altshuler et al., 2010)), and sequencing (e.g. 1000 

Genomes Project (The 1000 Genomes Project Consortium, 2010)) projects in various 

human populations have been possible as the price for such technologies decreases. 

These large-scale projects provide insight into DNA variation, the frequencies of these 

variants, and LD patterns throughout the genome in various world populations. 
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HapMap was conducted in three phases. Phase 1 investigated common variants (minor 

allele frequency >5%) in individuals from three populations genotyping at least one 

common SNP every 5 kilobases across the genome (The International HapMap 

Consortium, 2005). Phase 2 genotyped a small number of individuals (n=270) from only 

four human populations (Frazer et al., 2007). Phase 3 (HapMap3) provided the 

opportunity to look at low frequency (rare) variants (e.g. minor allele frequency <5%) in 

addition to common variants by genotyping over one thousand individuals. HapMap3 

mapped 1.6 million variants in 1,184 reference individuals from 11 populations 

(Altshuler et al., 2010). 

1000 Genomes too has three phases and has been able to identify common and rare 

variants throughout the human genome in diverse populations. Phase 1 came out in 2012, 

and there were several versions of this phase published to refine the genotypes. The data 

consisted of low-coverage whole-genome and high-coverage exome sequencing. This 

phase is comprised of 1,092 individuals from 14 human populations across the globe with 

a mean read depth of 5.1 times for over 37 million autosomal sites (1000 Genomes 

Project Consortium et al., 2012). Phase 2 was primarily for methods development, and 

there was no public release. Phase 3 came out in 2014, and it assessed 2,535 individuals 

from a total of 26 world populations (details from the 1000 Genomes Project website: 

http://www.1000genomes.org/faq/what-do-pilot-project-phase-1-phase-2-and-phase-3-

mean). Although many more variants were called in Phase 3 than Phase 1, 2.3 million 

variants in Phase 1 were not in Phase 3 but these were either very low frequency or low 

quality calls so may have been false positives in Phase 1. (More details on the differences 

between these two phases are available from the 1000 Genomes Project website: 

http://www.1000genomes.org/category/frequently-asked-questions/phase-3.)  

Through these projects, genotyping and quality control procedures were further refined 

for looking at variation.  
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The type of genetic variant that has been the focus in the HapMap and 1000 Genomes 

Projects has been the single nucleotide polymorphism (SNP): at a single base position in 

the DNA sequence there can be a different DNA nucleotide base that is present 

depending on the individual. The 1000 Genomes Project has also investigated indels: 

small insertions and deletions (Mullaney et al., 2010), microsatellites, CNVs, and 

structural variants (Sudmant et al., 2015; Zarrei et al., 2015). 

In the coding regions of the genome, there are different types of changes that could occur 

depending on the location of the SNP in the sequence (see Box 1), which can explain 

why such a variant may alter the phenotype (Griffiths et al., 2008). For variation in non-

coding regions in the genome, the biological explanation resulting in an altered 

phenotype could be due to the SNP falling within the DNA binding site for a protein or 

other regulatory signatures or functions such as splicing (more details in Section 1.8). 
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Another type of variation is copy number variants (CNVs), which involve a different 

number of a set of ordered bases in the sequence. CNVs arise either de novo (meaning 

not preset in either parent, but present in the progeny) or are inherited (Wain et al., 2009). 

However, the focus of this thesis will be on SNPs.             

All humans contain genetic variants. For instance, the 1000 Genomes Projects identified 

around 38  million SNPs, 1.4  million short insertions and deletions, and more than 14,000 

Box 1. Types of alterations in the coding regions of the genome.  

Synonymous- the change that does not alter the amino acid sequence (due to the 

redundancy in the genetic code). However a proportion of synonymous changes could 

still have an effect on the protein. For instance, a synonymous mutation could disrupt 

a splice site, or it could alter mRNA folding. 

Nonsynonymous- the change that does alter the amino acid sequence. There are a few 

types, and the phenotypic effect of the alteration depends on protein structure and 

function. A missense change occurs in a protein, and the effect on the protein depends 

on how similar (for instance, charge or hydrophobicity) the new amino acid is from 

the one it is in the wild type protein. A nonsense change creates a premature stop 

codon, and the effect depends at which point the premature stop codon is inserted. If 

earlier on in the amino acid chain, often the more devastating the alteration is to the 

protein’s structure and thus function.  

Splice- a change in a site in the DNA sequence involved in splicing out introns  

Frameshift- an insertion or deletion that shifts the three base-pair reading frame, thus 

altering the string of amino acids translated 
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larger deletions in their Phase 1 data (n=1,092) (1000 Genomes Project Consortium et al., 

2012). This Consortium found that on average, an individual carries approximately 250 to 

300 loss of function variants in genes and 50 to 100 variants that are previously 

implicated in inherited disorders (The 1000 Genomes Project Consortium, 2010). 

1.4 The role of genetics in disease 

The initial understanding of the genetic contributions to traits dates back to Gregor 

Mendel (Mendel, 1866). Mendel bred pea plants to obtain desired traits from a series of 

binary outcomes, such as smooth or wrinkled peas, long or short stems, and axial or 

terminal flowers (Weir, 1990). Of course, at the time of Mendel it was not known that 

variants in the DNA sequence were the causes leading to these particular traits. 

Furthermore, Mendel had only been experimenting with single-gene traits or disorders 

(which in the human context would include traits such as blood groups (Race et al., 

1949)). Such disorders present in the simplest case as a variant within a gene that results 

in an alternate form of the protein, leading to a phenotype that deviates from the wild-

type phenotype (Antonarakis and Beckmann, 2006). The vast majority of human traits do 

not follow such a simplistic mode of transmission. 

Complex traits (e.g. height, blood pressure, schizophrenia, adverse drug response, for 

example) are the result of genetics (possibly many variants in multiple genes and in 

intergenic regions) (Lango Allen et al., 2010; Ehret et al., 2011; Schizophrenia Working 

Group of the Psychiatric Genomics Consortium, 2014; Ozeki et al., 2011) and 

environmental factors (Leask, 2004; Sinclair, 1989; Pickering, 1997; Vesell, 1991), as 

well as possibly their interactions. Heritability is the proportion of the variance that can 

be attributed to genetic variation; further details in the following review (Tenesa and 

Haley, 2013). Humans contain millions of genetic variants, but not all are genetic risk 

variants, or in other words are associated with a disease or trait. There are variants that 

increase one’s risk of developing a trait (or disease), and there are also variants that are 

protective, meaning they decrease one’s risk of developing a disease. The known 
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disease/trait-associated variants do not account for all of the heritability (Manolio et al., 

2009).  

Heritability does not pinpoint the genetic architecture of the disease, for instance the 

number and/or types of DNA variation involved, and the frequency of those variants. 

Heritability can be determined through twin-studies (Boomsma et al., 2002). It is 

important to keep in mind that there are assumptions and limitations of twin-study 

determined heritability. These studies assume that the environments are similar for both 

twins in a pair, which is not necessarily true, but more importantly within pair 

environment similarity is similar for monozygotic and dizygotic twins. Such studies also 

assume an additive model of inheritance at a locus, and thus do not take into account 

other models such as dominance (which need multi-generation family studies) or epistatic 

effects (interactions among multiple genes), for example (Neale, 1992).  

One hypothesis describing the effect of variants on a complex trait is the common disease 

common variant hypothesis (Reich and Lander, 2001). One samples a large number of 

individuals, some of whom are affected with the disease of interest (cases) and others 

who are not (controls). Given the hypothesis, one can identify those variants that are 

common enough in the population to be detected as statistically significant: variants that 

have a genotype appearing more often in the cases compared to the controls or vice versa. 

Variants detected by this procedure tend to have low or moderate effect sizes. 

Another hypothesis is the common disease rare variant hypothesis (Schork et al., 2009). 

The idea is that the disease results from rare variants (for instance, variants with the 

minor allele appearing in less than 1% of the sample). Such variants are thought to have 

high effect sizes (high penetrance), but they can also have more moderate effects.  

Likely, the genetic component attributed to complex diseases is a result of both common 

and rare variants both with varying effect sizes, in addition to other factors such as gene-
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environment interactions. Researchers have used a variety of techniques to find those 

variants. 

1.5 Identification of genetic variants involved in disease 

Identifying associated variants among all variants is important for advances in medical 

care (Manolio, 2013). Knowledge of the variants results in information about the role of 

genes, and pathways in disease, which can provide mechanistic insight. This information 

ultimately can help with diagnosis, and in personalizing treatment (for example, using 

genetic information to improve the selection of medication that is most likely to not have 

negative side effects and/or is most likely to be effective in treating symptoms).  

There has been an evolution of methods employed to identify the genetic variants that 

modify (increase/decrease) one’s risk of developing a complex trait as technologies and 

methodologies have developed.  

Linkage studies were conducted using family data (for example, Lathrop et al., 1984). 

Alleles on one chromosome co-segregate together with another allele on another 

chromosome with 50% probability. Alleles on the same chromosome co-segregate at a 

rate related to the distance between them on the chromosome: the recombination fraction. 

Two loci are linked when the recombination fraction is less than one half. A trait was said 

to be linked to a locus if the recombination fraction was less than half (assessed through 

parametric studies) (Terwilliger and Ott, 1994). Non-parametric studies were developed 

for complex traits and include quantitative trait linkage studies which correlate sharing of 

chromosomal segments among relatives with their similarity for a given trait (Purcell et 

al., 2003). These studies identify broad regions making it difficult to pinpoint precise 

locations in the genome that are associated with the outcome (phenotype) of interest. 

Genome-wide scans were initially conducted using microsatellite markers and restriction 

fragment length polymorphisms (for example, (Rice et al., 2000)). 
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To refine the resolution of the detected associated loci, studies were then carried out 

comparing the frequencies of alleles or genotypes in a set of unrelated individuals with 

the trait/disease of interest (cases) and a set of individuals without that particular 

phenotype (controls) in particular genes. Alternatively, family-based association methods 

can also be used (Ott et al., 2011). Keeping in mind the costs associated with genotyping, 

rather than interrogating variants throughout the entire genome, variants in a subset of 

genes were assessed. These candidate gene association studies are hypothesis-driven 

association studies where genes with potential biological evidence, for instance for 

possible association with the phenotype, are selected. Variants in those regions are tested 

for association with the phenotype in a sample of individuals (Tabor et al., 2002). These 

studies look at correlations between genotype and a phenotype. There can be relatively 

simple biological rationale to implicate variants in genes as disease-causing. A variant 

that produces a different amino acid or stop gain or stop loss could affect the protein 

structure and thus function, and contribute to the observed characteristic. Unfortunately, 

few significant findings identified through candidate gene studies have replicated in 

larger samples, suggesting that most candidate gene study findings may be spurious (Hart 

et al., 2013). However, one of the few examples of a gene that came up as associated to a 

phenotype that has been replicated in many larger genome-scan studies was the 

association between the epsilon4 haplotype of the apolipoprotein E (APOE) gene and 

Alzheimer’s disease (Combarros et al., 2002; Lambert et al., 2013).  

As microarray technology developed, genome-wide association studies (GWAS) became 

increasingly popular (and less expensive) in the mid/late 2000s and the genome was able 

to be interrogated by genotyping individuals at variants present on genotyping arrays. 

GWAS have been successful in identifying risk variants for complex diseases and traits 

(for example, (Jostins et al., 2012; Schizophrenia Working Group of the Psychiatric 

Genomics Consortium, 2014)), but much of the heritability is still unaccounted for. 

GWAS are association studies where variants throughout the genome are tested (using 

regression for instance) one-by-one for an association with the trait of interest. Since 
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GWAS do not only assess associations between SNPs in candidate genes and the 

phenotype of interest, associations between never-before implicated loci and disease can 

be detected. For instance, through GWAS, for Crohn’s disease, loci in genes involved in 

autophagy have been discovered, and it is because of these studies that it is now 

understood that autophagy plays a role in Crohn's (Xavier et al., 2008).  

The Wellcome Trust Case Control Consortium set the standards for sample size and 

analysis pipelines. They identified risk variants for seven common diseases using over 

14,000 cases and a set of shared controls (Wellcome Trust Case Control Consortium, 

2007). Quality control procedures for both SNPs (e.g. genotyping rate, Hardy-Weinberg 

equilibrium) and individuals (e.g. population stratification) are important (Anderson et 

al., 2010). This latter point relates to the importance of ensuring that a homogenous 

population is used in GWAS because the association of a SNP with the trait of interest 

may be confounded by that SNP being associated with ancestral differences between the 

cases versus the controls (Anderson et al., 2010). These procedures and the association 

analysis can be conducted in tools such as PLINK (Purcell et al., 2007). 

GWAS interrogate variants on a genotyping array platform, and are useful for identifying 

common variants. Such array platforms are offered by several companies including 

Affymetrix and Illumina. Through projects such as HapMap and through technological 

advances, the arrays have been updated. For example, more variants have been added to 

new arrays over the years. The variants on the arrays have been selected largely because 

of their LD correlation with many other variants, and thus able to cover a vast amount of 

the genome; these variants are not necessarily chosen because they are likely to have 

functional consequences (Edwards et al., 2013). Additionally, there are specialized arrays 

for investigating a subset of traits (for example: Barrans and Liew, 2006; Cortes and 

Brown, 2011; Voight et al., 2012). These specialized arrays contain customized content 

informative for the trait of interest, such as SNPs in or close to genes that are likely 

candidates for the disease.  
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Procedures and software for imputing the genotypes at other variants have been 

developed. Such software take advantage of LD patterns in the genome in reference 

samples, and examples include Impute2 (Howie et al., 2009) and Minimac2 (Fuchsberger 

et al., 2014). In imputation, missing genotypes are estimated based on haplotypes from a 

cosmopolitan population. Imputation is useful for combining samples that were 

genotyped on different arrays as well as for fine-mapping signals at an associated locus 

(Verbeek et al., 2012). Moreover, imputation can also be used to investigate low-

frequency and rare variants at a genome-wide level; for instance see Surakka et al. (2015) 

where they imputed in over 62,000 samples to identify novel loci involved in lipid levels.  

As mentioned, GWAS arrays mainly contain common variants. More recently, 

sequencing has become cheaper and faster (through technological advances). Whole-

genome (or whole-exome) sequencing interrogates the genome (or the exons of genes: 

the exome) more thoroughly than genotyping arrays, including the less frequent (rare) 

variants. There can be low power due to small sample size to detect associations with less 

frequent variants. In order to address these issues, in addition to testing single-variants for 

association with the phenotype, several gene-based (or region-based) tests have been 

developed such as the combined multivariate and collapsing (CMC) method (Li and Leal, 

2008), C-alpha (Neale et al., 2011), and  sequence kernel association test (SKAT) (Wu et 

al., 2011). CMC is a burden test, whereas C-alpha and SKAT are non-burden. Burden 

tests collapse rare variants in a defined region into a single burden variable (Lee et al., 

2012), whereas non-burden tests do not. Burden tests work best when the variants 

themselves are responsible for disease risk (i.e. not just tagging the variant resulting in 

the effect because they are in high LD with each other) and all influence risk in the same 

direction, whereas non-burden tests are more flexible, having the power to detect the 

effects of variants whether increasing risk or protective. There is evidence supporting the 

impact of rare variants in many complex diseases and traits ranging from 

neurodevelopmental disorders such as autism (Krumm et al., 2015) to lipid levels 

(Surakka et al., 2015). Similar to GWAS, for sequencing too, there have been some novel 
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associated variants identified (Cirulli et al., 2015; Sanders et al., 2012), but a large 

proportion of risk variants still remain undiscovered due to small sample sizes, variants 

with small effects, or a focus on the coding sequence, for instance. 

1.6 Characteristics of disease-associated variants 

As more and more variants that predispose individuals to disease have been identified, 

efforts have been made to share this knowledge with the scientific community. 

In the literature there is no consistent term used to describe risk variants; different terms 

all have some nuances. MacArthur et al. (2014) differentiates between pathogenic 

variants (those that contribute mechanistically to the disease that may not be alone 

sufficient to cause the disease) from damaging (those that result in altered levels or 

function of a gene or gene product, but may not have a pathogenic effect), for example. 

Regardless of more specific categorization, these variants may be able to be used to 

partially predict risk of disease in the individuals that carry them. 

There are several databases that report genetic risk variants. One example of a database 

includes the National Human Genome Research Institute (NHGRI)-European 

Bioinformatics Institute (EBI) Genome-wide association study (GWAS) Catalogue 

(Hindorff et al., 2010)), which catalogues genetic variants from a GWAS. Another 

example of a database is the Human Gene Mutation Database (HGMD) (Stenson et al., 

2009). It reports variants for all known genetic mutations responsible for causing classes 

of human inherited diseases from the peer-reviewed literature. ClinVar (Landrum et al., 

2014), another database, reports relationships between medically important variants 

(variants that result in a health-related phenotype) and phenotypes. HGMD and ClinVar 

largely contain SNPs, but they are not restricted to this type of variation; for instance they 

contain insertions, deletions and repeat variations as well. (See Box 2 for more details on 

these databases.) 
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Box 2. Databases of Genetic Risk Variants.  

GWAS Catalogue This Catalogue started in 2010 as a manually curated collection from the 

literature of variants associated with complex diseases or traits that looked at a minimum of 100,000 

SNPs in the initial stage. The Catalogue moved to a new website through the European Bioinformatics 

Institute (EBI) in March 2015: http://www.ebi.ac.uk/gwas/. It contains variants from GWAS studies 

with a combined p-value <1.0x10-5 (discovery plus replication populations), and studies are excluded if 

they were restricted to just candidate genes, not published in the English language, if samples were to 

assess somatic mutations (e.g. tumor samples), or if the study does not include any new GWAS data. 

Information is extracted from PubMed searches using terms “genome-wide” OR “genome AND 

identification” OR “genome AND association”, with limits on the current year and human status.  

HGMD  Available at http://www.biobase-international.com/product/hgmd, there is a public 

(free) and professional (paid) version. The public version is less up to date and provides less 

information on the variants (for instance, neither chromosome number and base position nor rsID). The 

database was first made publically available in 1996. It was first established to catalogue variants in 

human genes that cause inherited disease, but has since been expanded to germ-line disease-related 

functional variants (Stenson et al., 2009). It reports mutations for all known gene lesions responsible for 

causing human inherited disease from the peer-reviewed literature.  

ClinVar  The database (at http://www.ncbi.nlm.nih.gov/clinvar/) does not include unreviewed 

data from GWAS studies, but accepts variants identified through clinical testing and literature curation.  
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There are design differences among the databases. For example, variants in the GWAS 

Catalogue are explicitly not necessarily the disease-causing variants. Furthermore, the 

Catalogue includes variants that are not just associated with diseases per se (also with 

complex traits: for example height and platelet count among many others). With regard to 

HGMD, the variants in the database have been included based on multiple (and vastly 

different) lines of evidence. For instance, some have evidence of direct functional 

relevance, while others are predicted to alter the length of a resulting gene-product but 

there is no reported disease association (Stenson et al., 2009). What is more, there is not 

necessarily 100% penetrance of the variants, and there is an inherent bias to variants 

found in genes (because originally the database was created to study mutational 

mechanisms in human genes). As for ClinVar, variants are correlated with the trait in a 

clinical sample, but there is not necessarily 100% penetrance. Different clinical labs often 

have different opinions on the clinical significance of the same genetic variant (Rehm et 

al., 2015). Variants can be inputted into the database if evidence of causality is seen in a 

sample of one, such as from a clinical testing lab (Landrum et al., 2014). 

The difference in design leads to fundamental differences between the variants in the 

GWAS Catalogue and HGMD (and ClinVar), such as minor allele frequency. HGMD 

variants have significantly lower minor allele frequencies compared to the GWAS 

Catalogue variants (Figure 1.1). 
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Figure 1.1. Violin plots depicting minor allele frequency distributions for GWAS Catalogue versus 
HGMD variants 

GWAS = autosomal variants present in the GWAS Catalogue (with p<5 x 10-8) downloaded August 7, 

2014 (n=3,618); HGMD= autosomal variants in the HGMD database as of the 4th quarter of 2013 provided 

to Ensembl that are found with an rsID identifier in the 1000 Genomes Project (n=4,862). (Note that 

HGMD variants without chromosomal and base position information provided were not considered.) Minor 

allele frequencies were obtained from the European population of the Phase 1, version 3 of the 1000 

Genomes Project (n=379). The violin plot shows the density distribution of the variants, and the summary 

statistics presented in a box plot. The density is shown by the smooth lines that make up the “body”, and 

the box plot is the black box inside the “body”. The white dot is the median, and the box outlines the 25% 

and 75% percentiles. The lower and upper whiskers on the plot represent the 25% percentile minus 

1.5*IQR and the 75% percentile plus 1.5*IQR, respectively. If the data does not extend as far as those 

calculated ranges, then the whisker is plotted at the value of the minimum or maximum data point. [IQR= 

interquartile range] 

Variants in these two databases differ with regard to position: GWAS Catalogue variants 

are vastly non-exonic (>70%), whereas HGMD variants are vastly exonic (~70%).  
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However, there are some similarities. The GWAS Catalogue variants and HGMD 

variants shown in Figure 1.1 fell into 1,510 (42% genes/number of SNPs) and 1,835 

(38% genes/number of SNPs) RefSeq genes, respectively, and of those genes 308 were in 

common. However, there is nearly no overlap between the actual variants in the GWAS 

Catalogue with either HGMD or also with ClinVar pathogenic variants, likely due to the 

frequency of the variants in the GWAS Catalogue compared to the latter two.  

Databases of variants have been used in various papers in order to define genetic risk 

variants. In my work described later in this thesis (Chapter 3) (Gagliano et al., 2014a), in 

my best performing models I defined risk variants as those variants present in the GWAS 

Catalogue with an association p-value lower than the accepted threshold for genome-

wide significance, 5 x 10-8 (Pe’er et al., 2008). Iversen et al. (2014) also used variants 

from the GWAS Catalogue, regardless of their association p-value, but confined to 

studies that used an Affymetrix and/or Illumina array. Moving away from GWAS, 

Ritchie et al. (2014) was specifically interested in regulatory variants, and defined such 

variants as those present in the public version of HGMD that are regulatory (n=1,614). 

They used variants labelled as pathogenic from ClinVar that do not overlap with HGMD 

as a validation of their tool, called GWAVA. Shihab et al. (2015) also used variants in 

HGMD. 

The above briefly highlights that current databases of risk variants have different 

characteristics and overlap with functional annotations with different frequencies. The 

implications of these differences will be considered further in the analysis of Chapter 5 

and in the discussion, Chapter 7. 

1.7 Gap in variant identification with GWAS 

There are many as yet uncharacterized risk variants. There are still two points 

surrounding the detection of disease-associated variants from GWAS that my thesis will 

aim to address: 
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(1) Still undiscovered loci (i.e. “missing heritability”) (Manolio et al., 2009) 

(2) Causal variant identification (i.e. GWAS-implicated loci comprise of multiple 

variants in high LD, identifying which variant(s) in the locus is disease causing: 

“causal”/“functional”/directly influencing the phenotype)? 

 

What needs to be done (applicable to both of the above points) is prioritization of 

variants. Prioritizing which variants are potentially disease-causing, provides researchers 

with a smaller set of variants on which to follow-up (for instance, to attempt replication 

of findings or to perform in vitro or in vivo studies to determine the functionality of the 

variants).  

To illustrate the first point, missing heritability, height will be used an example. 16% of 

the phenotypic variability in height is explained by 697 known GWAS loci (Wood et al., 

2014). 45% is explained by all genotyped variants (imputation was not considered) (Yang 

et al., 2010), but 80% is explained by twin studies (Silventoinen et al., 2013). The 

missing heritability lies between the all genotyped variants’ contribution (45%) to the 

variance calculated through twin studies (80%). This gap begs the need for larger sample 

sizes or new approaches. 

The second point relates to fine-mapping (Edwards et al., 2013): determining the causal 

variant in a locus (where locus refers to a region of high LD in the DNA sequence) that is 

associated with the phenotype of interest. The need for fine-mapping is a limitation of 

GWAS. GWAS identify associated loci, such variants are not necessarily the disease-

causing variant; indeed, any variant in high LD with the associated variant may be causal. 

There could be more than one causal variant at a locus as well. This need for fine-

mapping motivated the creation and use of specialized genotyping chips, for example 

using the immunochip (Lenz et al., 2015), and sequencing. 
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For prioritization, many methods focused on variants (often nonsynonymous) within 

genes because these variants have an easily explained biological rationale: a direct effect 

on the protein or gene function. Example of such methods include SIFT (Ng and 

Henikoff, 2003) and PolyPhen (Adzhubei et al., 2010). SIFT predicts whether an amino 

acid substitution will have an effect on the protein function based on evolutionary 

conservation and how much the predicted biochemical properties differ between the 

altered amino acid from the expected one. PolyPhen uses a combination of conservation 

and three-dimensional structure to predict damaging mutations. Another method looked 

at the functionality of synonymous variants (SilVA) (Buske et al., 2013), albeit it is rare 

to have synononymous changes that are harmful in comparison to nonsynonymous 

changes (Buske et al., 2013). 

For genetic variants that do not fall into the coding sequence, adding additional 

information to genotype can offer biological explanations as to why these non-coding 

variants are associated with a phenotype. Epigenetic and other functional genomic 

information may be useful in prioritizing which variants are risk variants. Such data will 

be discussed in the next section. 

My work aims to create in silico tools to help researchers either fill some of the void of 

missing heritability or to select the best variants for follow-up by functional studies. I will 

be prioritizing SNPs from GWAS studies combining statistical and functional genomic 

information together to address both points. What makes my work novel is that it 

incorporates more functional genomic data than previously published methods, and also 

investigates the use of phenotype-specific prioritization models.  

1.8 Functional genomic information 

There are a number of types of functional annotations that are not within the 

“boundaries” of a gene (loosely defined). A well-known example is the promoter region. 

Promoters are regions upstream of a gene, which recruit the proteins required for that 
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gene to be transcribed (Baumann et al., 2010). Core promoters have been identified based 

on the location in relation to genes (e.g. the 30 base pairs upstream from the transcription 

start site) (Griffiths et al., 2008). Another example is enhancer regions. Enhancers are 

regions in the DNA sequence that recruit transcription factors through specific motifs 

binding in order to accelerate transcription (Spitz and Furlong, 2012). These locations can 

also be defined based on epigenetic marks.  

Epigenetic modification covers a broad range of functional annotations. The term 

signifies “over” genetics, and encompasses chemical modifications to the DNA that do 

not alter the DNA base sequence itself (Griffiths et al., 2008). In some cases, DNA 

regions are identified to have a regulatory signature based on the proteins that bind to 

them. Histones, for instance, are proteins that the DNA wraps around to maintain its 

conformation, and they play an active role in transcription. Histone modifications are 

chemical groups added to the histone proteins. Depending on the histone modifications, 

the adjoining DNA sequence has different roles in transcription. Such modifications 

include H3K27Ac (acetylation of the twenty-seventh lysine of H3, which is associated 

with active enhancers), H3K4Me1 (monomethylation of the fourth lysine residue of H3, 

which is associated with poised enhancers or with active enhancers if it is in combination 

with H3K27Ac), and H3K4Me3 (trimethylation of the fourth lysine of H3, which is 

associated with active promoters if it is in combination with H3K27Ac) (Shlyueva et al., 

2014).  

Another example of an epigenetic modification is DNA methylation, which involves the 

enzymatic addition of a methyl group to the carbon-five position on cytosine residues 

(Griffiths et al., 2008). Furthermore, there are other forms of epigenetic DNA 

modifications (e.g. hydroxymethylation), and methylation is not specific to cytosine 

bases (Lister et al., 2013). 

There are many sources of publically available functional genomic information. There are 

large consortiums that have generated a range of data such as the Encyclopedia of DNA 
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Elements (ENCODE) and the Epigenomics Roadmap Projects. There are also other 

specific types of functional annotations that have been generated by a variety of different 

groups and published, such as expression quantitative trait loci (eQTLs) and conservation 

measures. 

1.9 ENCODE 

The goal of the ENCODE project was to map the functional elements in the genome: a 

segment of the genome that either encodes a defined product such as a protein, or has a 

biochemical signature (e.g. transcription factor binding site or some other protein binding 

site) or a specific chromatin structure (e.g. accessible open chromatin) (The ENCODE 

Project Consortium, 2011). ENCODE was the first large collaborative international 

project to undertake such an ambitious task. Experiments have been performed by many 

groups in numerous human immortal cell lines and tissues, and also in mouse. A 

limitation is that most of the ENCODE data are from (immortal) cell lines (“tier 1” cell 

types, see section 1.10.1), with a limited amount of data from actual tissue. Immortal cell 

lines may not reflect the actual biology in normal cells and tissue (Kashyap et al., 2011).   

ENCODE data (https://www.encodeproject.org/) have been generated following 

standardized guidelines, and the data have been uniformly processed to ensure 

robustness. Some key insights from this project include: many non-coding variants fall 

into ENCODE-annotated functional regions, many associated variants identified through 

GWAS are enriched in non-coding functional elements, and there is conservation of these 

elements among primates (The ENCODE Project Consortium, 2012). 

The UCSC Genome Browser (Meyer et al., 2013) Table Browser tool (Karolchik et al., 

2004) and the FTP site (ftp://hgdownload.cse.ucsc.edu/goldenPath/hg19/database/) 

provide access to data related to mapping and sequencing, genes, expression, regulation, 

comparative genomics and variation and repeats, many of which are from ENCODE. 
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Various wet laboratory methodologies were employed to determine the genomic sites of 

these functional annotations. DNase I hypersensitivity can be detected by FAIRE or 

DNase-seq, for example. The histone modifications and transcription factor binding sites 

are detected by ChIP-seq. For FAIRE, chromatin is cross-linked with formaldehyde in 

vivo, sheared by sonication, and phenol-chloroform extracted. The DNA recovered is 

fluorescently labelled and hybridized to a microarray (or sequenced) to get its sequence 

(Giresi et al., 2007). For ChIP-seq, formaldehyde is used to cross-link proteins to DNA. 

Sonication shears the chromatin to a target size of 100 to 300 base pairs, and the protein 

of interest bound to DNA is then isolated with an antibody specific for the factor (e.g. 

transcription factor or histone modification). Those DNA fragments can then be 

sequenced (Landt et al., 2012).  

1.10 Evaluation of functional annotations from ENCODE 

This section delves into some ENCODE data available. I highlight some issues relating to 

the data including cell lines, and measure choice. I also provide some details about two 

annotations below: transcription factor binding sites and DNase I hypersensitive sites.  

1.10.1 ENCODE cell lines 

The ENCODE Project has categorized various cell lines into three tiers, Tiers 1 through 

3, where Tier 1 cell lines have the highest priority with regard to designing the functional 

experiments. There are three Tier 1 cells (GM12878, H1-hESC, K562), and around 15 

Tier 2 cells. The original Tier 2 cell lines were HeLa-S3, HepG2, and HUVEC, and the 

remaining (A549, CD20+, CD20+_RO01778, CD20+_RO01794, H1-neurons, IMR90, 

LHCN-M2, MCF-7, Monocytes-CD14+, Monocytes-CD14+_RO01746, Monocytes-

CD14+_RO01826, SK-N-SH) were added afterwards. Most of the experiments have data 

from all Tier 1 cells that can be accessed as separate from the other cell types. However, 

the presence of the Tier 2 cells is sparser (see Table 1.1).  
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Table 1.1. Cell types (tiers) for some ENCODE Regulation data tables/tracks   

Table Cell Types * 

DNase Clusters 

(v2) 

(wgEncodeReg

DnaseClustered

V2.bed.gz) 

GM12878 H1-hESC K562 A549 HeLa-S3 HepG2 HUVEC Monocytes-CD14+_RO01746 CD20+ HMEC 

AG04449 8988T AG04450 AG09309 AG09319 AG10803 Adult_CD4_Th0 AoAF AoSMC BE2_C BJ 

CD34+_Mobilized CLL CMK Caco-2 Chorion FibroP Fibroblasts GM06990 GM12864 GM12865 

GM12891 GM12892 GM18507 GM19238 GM19239 GM19240 Gliobla H7-hESC H9ES HA-h HA-sp 

HAEpiC HAc HBMEC HCF HCFaa HCM HCPEpiC HCT-116 HConF HEEpiC HFF HFF-Myc HGF 

HIPEpiC HL-60 HMF HMVEC-LBl HMVEC-LLy HMVEC-dAd HMVEC-dBl-Ad HMVEC-dBl-Neo 

HMVEC-dLy-Ad HMVEC-dLy-Neo HMVEC-dNeo HNPCEpiC HPAEC HPAF HPDE6-E6E7 HPF HPdLF 

HRCEpiC HRE HRGEC HRPEpiC HSMM HSMM_emb HSMMtube HTR8svn HVMF Hepatocytes Huh-7 

Huh-7.5 Ishikawa Jurkat LNCaP MCF-7 Medullo Melano Myometr NB4 NH-A NHDF-Ad NHDF-neo 

NHEK NHLF NT2-D1 Osteoblasts PANC-1 PanIsletD PanIslets PrEC ProgFib RPTEC RWPE1 SAEC SK-

N-MC SK-N-SH_RA SKMC Stellate T-47D Th1 Th2 Urothelia WERI-Rb-1 WI-38 iPS pHTE 

DNase Clusters 

(v1)  

(wgEncodeReg

DnaseClustered

.bed.gz) 

 

GM12878 H1-hESC K562 A549 HUVEC HeLa-S3 HepG2 MCF-7 Monocytes-CD14+ SK-N-SH_RA 

AG04449 AG04450 AG09309 AG09319 AG10803 AoAF BE2_C BJ Caco-2 GM06990 GM12864 

GM12865 H7-hESC HA-h HA-sp HAEpiC HAc HBMEC HCF HCFaa HCM HCPEpiC HCT-116 HConF 

HEEpiC HFF HFF-Myc HGF HIPEpiC HL-60 HMEC HMF HMVEC-LBl HMVEC-LLy HMVEC-dBl-Ad 

HMVEC-dBl-Neo HMVEC-dLy-Ad HMVEC-dLy-Neo HMVEC-dNeo HNPCEpiC HPAF HPF HPdLF 

HRCEpiC HRE HRGEC HRPEpiC HSMM HSMMtube HVMF Jurkat LNCaP NB4 NH-A NHDF-Ad 

NHDF-neo NHEK NHLF PANC-1 RPTEC SAEC SK-N-MC SKMC WERI-Rb-1 WI-38  

UW DNase I 

HS 

Gm12878 H1hESC K562 A549 CD20+_RO01778 Hela-S3 HepG2 HUVEC LHCN-M2 Monocd14 

Monocd14ro1746 Ag04449 Ag04450 Ag09309 Ag09319 Ag10803 Aoaf Be2c Bj Caco2 Cd34mobilized 

Cd4naivewb11970640 Cd4naivewb78495824 Cmk Gm04503 Gm04504 Gm06990 Gm12864 Gm12865 c 

H7es H7esDiffa14d H7esDiffa2d H7esDiffa5d H7esDiffa9d Hac Hae Hah Hasp Hbmec Hbvp Hbvsmc Hcf 

Hcfaa Hcm Hconf Hcpe Hct116 Hff Hffmyc Hgf Hipe Hl60 Hmec Hmf Hmvecdad Hmvecdblad 

Hmvecdblneo Hmvecdlyad Hmvecdlyneo Hmvecdneo Hmveclbl Hmveclly Hnpce Hpaec Hpaf Hpdlf Hpf 

Hrce Hre Hrgec Hrpe Hs27a Hs5 Hsmm Hsmmt Hvmf Jurkat K562Znf2c10c5 K562Znf4c50c4 

K562Znf4g7d3 K562Znfa41c6 K562Znfb34a8 K562Znfe103c6 K562Znff41b2 K562Znfg54a11 K562Znfp5 

Lhcnm2Diff4d Lncap M059j Mcf7 Mcf7Est100nm1h Mcf7Estctrl0h Msc Nb4 Nha Nhbera Nhdfad Nhdfneo 

Nhek Nhlf Nt2d1 Panc1 Prec Rpmi7951 Rptec Saec Skmc Sknmc Sknshra T47d Th1 Th17 Th1wb33676984 

Th1wb54553204 Th2 Th2wb33676984 Th2wb54553204 Tregwb78495824 Tregwb83319432 Werirb1 Wi38 

Wi38Ohtam 

Duke DNase I  Gm12878 H1-hesc K562 A549 CD20+_RO01794 HeLa-S3 HepG2 HUVEC Monocd14 SK-N-SH 8988t 

Adultcd4th0 Adultcd4th1 AosmcSerumfree Cerebellumoc Cerebrumfrontaloc Chorion Cll Colo829 

Ecc1Dm002p1h Ecc1Est10nm30m Fibroblgm03348Lenticon Fibroblgm03348Lentimyod Fibroblgm03348 

Fibrobl Fibropag08395 Fibropag08396 Fibropag20443 Fibrop Frontalcortexoc Gcbcell Gliobla Gm10248 
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 * Tier 1; Tier 2; Tier 3+ dexamethasone. Credits for each data set available on the UCSC site. 

ENCODE accession numbers for UW DNase I, HS, Duke DNase I, and Broad Histone- HeK4Me1, 

H3K4Me3 and H3K27Ac are listed in Appendix D. 

Gm10266 Gm12891 Gm12892 Gm13976 Gm13977 Gm18507 Gm19238 Gm19239 Gm19240 Gm20000 

H7es H9es Heartoc Hek293t Helas3Ifna4h Hepatocytes Hmec Hpde6e6e7 Hsmmemb Hsmmfshd Hsmm 

Hsmmt Htr8 Huh75 Huh7 Imr90 Ipscwru1 Ipsnihi11 Ipsnihi7 Ips IshikawaEst10nm30m IshikawaTam10030 

K562G1phase K562G2mphase K562Nabut K562Saha1u72hr K562Sahactrl LncapAndro Lncap 

Mcf7Ctcfshrna Mcf7Hypoxlaccon Mcf7Hypoxlac Mcf7 Mcf7Randshrna Medullod341 Medullo Mel2183 

Melano Myometr Naivebcell Nhek Olfneurosphere Osteobl Panisd Panislets Phte Progfib Psoasmuscleoc 

Rwpe1 Stellate T47dEst10nm30m T47d UrothelV2 UrothelUt189V2 Urotsa UrotsaUt189  

Txn factor 

ChIP 

(wgEncodeReg

TfbsClustered.

bed.gz) 

Transcription factors: AP-2alpha AP-2gamma ATF3 BAF155 BAF170 BATF BCL11A BCL3 

BCLAF1M33-P5B11 BDP1 BHLHE40 BRCA1C-1863 BRF1 BRF2 Brg1 CCNT2 CEBPB c-Fos CHD2N-

1250 c-Jun c-Myc CtBP2 CTCF CTCFC-20 CTCFLSC-98982 CTCFSC-5916 E2F1 E2F4 E2F6 E2F6H-50 

EBF EBF1C-8 eGFP-FOS eGFP-GATA2 eGFP-HDAC8 eGFP-JunB eGFP-JunD eGFP-NR4A1 Egr-1 

ELF1SC-631 ELK4 ERalphaa ERRA ETS1 FOSL1SC-183 FOSL2 FOXA1C-20 FOXA1SC-101058 

FOXA2SC-6554 GABP GATA-1 GATA-2 GATA2CG2-96 GATA3SC-268 GCN5 GR GRp20 GTF2B 

GTF2F1RAP-74 HA-E2F1 HDAC2SC-6296 HEY1 HMGN3 HNF4A HNF4AH-171 HNF4GSC-6558 HSF1 

Ini1 IRF1 IRF3 IRF4M-17 JunD KAP1 MafFM8194 MafKab50322 MafKSC-477 Max MEF2A MEF2CSC-

13268 Mxi1bHLH NANOGSC-33759 NELFe NF-E2 NF-E2H-230 NFKB NF-YA NF-YB Nrf1 NRSF Oct 

p300 p300F-4 p300N-15 PAX5-C20 PAX5-N19 Pbx3 PGC1A Pol2 Pol2-4H8 Pol2b Pol2phosphoS2 Pol3 

POU2F2 POU5F1SC-9081 PRDM1Val90 PU.1 Rad21 RFX5N-494 RPC155 RXRA SETDB1 Sin3Ak-20 

SIRT6 SIX5 SMC3ab9263 SP1 SP2SC-643 SPT20 SREBP1 SREBP2 SRF STAT1 STAT2 STAT3 SUZ12 

TAF1 TAF7SQ-8 TAL1SC-12984 TBP TCF12 TCF4 TFIIIC-110 THAP1SC-98174 TR4 USF-1 USF1SC-

8983 USF2 WHIP XRCC4 YY1 YY1C-20 ZBTB33 ZBTB7ASC-34508 ZEB1SC-25388 Znf14316618-1-

AP ZNF263 ZNF274 ZZZ3 

Layered 

H3K4Me1/ 

H3K4Me3/ 

H3K27Ac 

GM12878 H1-hESC K562 HUVEC HSMM NHEK NHLF 

Broad Histone- 

H3K4Me1, 

H3K4Me3, 

H3K27Ac 

GM1278 H1-hESC K562 A549 (conditions: Dex+ or EtOH) HeLa-S3 HepG2 HUVEC                      
Monocytes-CD14+_ RO01746 Dnd41 HMEC HSMM HSMM tubule NH-A NHDF-Ad NHEK NHLF 
Osteoblasts 

Transcription 

(RNA-seq) 

GM12878 H1-hESC K562 HeLa-S3 HepG2 HUVEC LHCN-M2 Myoblast LHCN-M2_Myocyte_7d MCF-7 
GM12891 GM12892 HSMM NHEK NHLF 
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The cell types that have data vary depending on the functional annotation. Limiting the 

analysis to certain cell types will limit the data available for each annotation. 

 

1.10.2 “Peaks” versus “Signals” 

Histone data are available in tables for peaks (the “BroadHistone” tracks in the table 

browser) and signals (“Layered” tracks in the table browser). Details are found here 

http://genome.ucsc.edu/cgi-bin/hgTrackUi?g=wgEncodeBroadHistone, but in brief 

signals are based on density and are given for each base pair position while peak scores 

are based on regions of statistically significant enrichment based on the signal from 

controls (measurement of background abundance in the genome). The signal is a function 

of the cell counts that contain the modification of interest. The peak scores are more 

informative than the signal data (i.e. density) in our application of these data as a 

predictor of SNP functionality. In this analysis we are most interested in genomic regions 

enriched with the functional annotation, which would be the peak scores as they are 

based on regions of statistical significance from comparing the signals in the experiments 

to the signals from the corresponding control set. Moreover, other tracks, including 

DNase clusters as well as Txn Factor ChIP also used standardized scores (on a scale of 0-

1000) based on peaks.1 

1.10.3 DNase Hypersensitivity- DNase Clusters, UW DNase I HS, 
Duke DNase I HS 

There are several tracks available for DNase I hypersensitivity: two UW (UW DNase I 

HS and DNase Clusters) and one from Duke (Duke DNase I HS). 

                                                
1
 The peak scores have been standardized to fall between 0 and 1000. The input signal values were 

multiplied by a normalization factor: the ratio of the maximum score value (1000) to the signal value at one 
standard deviation from the mean, and values exceeding 1000 were assigned to 1000. The peak score for 
the interval is the mean signal value across the interval. 
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UW DNase I HS and Duke DNase I HS gives individual tables for each cell type, while 

DNase Clusters amalgamate the cell types together. The UW HS track shows DNase I 

sensitivity measured in different cell lines using Digital DNase I methodology (in brief, 

DNaseI digestion of intact nuclei, isolating DNaseI fragments, and direct sequencing of 

fragment ends).  

The Duke DNase I HS shows the locations of regulatory elements identified as open 

chromatin in multiple cell types using DNase I HS assays. There is more coverage 

compared to UW HS as assessed by the total length of base pair regions present in each 

of these tracks. 

The DNase Clusters track contains a score based on peaks for genomic regions. See 

Figure 1.2 for the score distribution. This track additionally provides the number of 

experiments or cell lines in which the results were significant (range: 2-148). There is no 

correlation between number of experiments and score although the latter distribution may 

be influenced by the cut-off of 1000.  

With regard to coverage among the tracks, the DNase Clusters table combines 

information from all the cell lines from both the UW and Duke groups and has the most 

genomic coverage (13%). However, as mentioned this track provides peak scores for all 

of the cell types together rather than a peak score for each cell type as do the tracks for 

the UW and Duke groups. 
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Figure 1.2. Peak score distributions for the DNase I Clusters table for human chromosome 3  

 

1.10.4 Txn Factor ChIP 

Peak scores are provided for several cell lines, and the overall score reports the highest 

peak score from among all the cell lines for the particular transcription factor. See Figure 

1.3 for the distribution of the transcription factor binding peak scores on chromosome 3. 
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Figure 1.3. Transcription factor binding sites peak scores for human chromosome 3 

	
  

Analyzing the scores according to each cell type shows that all of the cell types have data 

available (e.g. none of the cell lines have complete missing data), and the ranges vary for 

the various transcription factors, and some factors are more represented than others. 

Interestingly, most (76%; 128,928 of the 170,219 results) of the chromosome 3 data have 

transcription factor binding site data from only one experiment (i.e. one cell line). There 

is no preference as to which cell line has the most non-zero scores, and so the presence of 

the epigenetic mark only in other cell types will be lost if only certain cell types are 

considered or if each transcription factor is assessed by a per cell line basis. 

 

1.11 Roadmap Epigenomics Project 

The NIH Roadmap Epigenomics Project (Roadmap Epigenomics Consortium et al., 

2015) http://www.roadmapepigenomics.org/ is a large consortium to map the epigenome, 

specifically DNA methylation, DNA accessibility (e.g. histone modifications and DNase 

I hypersensitivity), and RNA expression in humans (n=111). There are differences 



 

 

 

 

 

 

 

30 

between ENCODE and Roadmap. ENCODE tends to use cell lines; for instance, for 

brain-level results, ENCODE uses two cancerous cell lines both in Tier 3: glioblastoma 

and neuroblastoma (http://genome-mirror.duhs.duke.edu/ENCODE/cellTypes.html), 

which may not reflect the epigenetic patterns found in non-tumor cells. Roadmap 

assesses functional elements in stem cells and primary ex vivo tissues. For stem cells, 

there is evidence of stochastic random changes in the epigenome as stem cells divide 

(Yatabe et al., 2001), and thus again such cells are not ideal for investigating the 

epigenome in a living system. The tissue-level data available through Roadmap is a 

closer source to the patterns exhibited in a living system. There are still factors to 

consider, for instance when post-mortem samples are used to acquire brain tissue 

samples, the cells are dead, and thus the amount of time after death the tissue was 

collected and analyzed is important (the postmortem interval) (Birdsill et al., 2011; Dodd 

et al., 1988). Although there are advantages to the Roadmap data compared to ENCODE, 

since tissue-level data more accurately represent the epigenomic architecture in living 

systems, there are still limitations such as epigenomes may differ in the different cell 

types within the tissue, and the use of post-mortem brain tissue. Additionally, epigenetic 

marks can be missed in cells that have low numbers in the tissue. 

1.12 eQTLs 

There are a number of expression quantitative trait loci (eQTLs) databases. eQTLs are 

regions in the DNA sequence that affect expression of nearby genes (cis-eQTLs) or 

distant genes (trans-eQTLs). Older GTEx (Genotype-Tissue Expression) eQTL Browser 

data can be accessed through http://www.ncbi.nlm.nih.gov/gtex/GTEX2/gtex.cgi, and the 

more recent data on dbGAP or through their new portal at 

http://www.gtexportal.org/home/ (The GTEx Consortium, 2013). Most of the data from 

the older studies are from microarray gene expression experiments. Expression studies 

commonly use microarrays to measure gene expression, but there are limitations to this 

methodology that RNA-sequencing can overcome (e.g. novel genes and non-coding or 
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microRNAs cannot be assessed by arrays, and alternative splicing is generally not taken 

into account). The older version of GTEx contains data, primarily microarray data, from 

four studies (Montgomery et al. 2010, Schadt et al. 2008, Gibbs et al. 2010, Stranger et 

al. 2007) in lymphoblastoid cells, liver, or four brain regions (cerebellum, frontal cortex, 

pons, or temporal cortex). The newer data are RNA-sequencing data from a variety of 

human tissue (n>40) including whole blood, brain, lung and stomach from a total of 

1,421 samples (The GTEx Consortium, 2013).  

A tissue-specific dataset is available through the UK Brain eQTL Consortium (UKBEC) 

www.braineac.org (Trabzuni et al., 2011), which identifies eQTLs in brain tissue. 

UKBEC data are based on microarray experiments. The consortium is currently 

generating RNA-sequencing data that will also be made publically available. Many eQTL 

studies perform their analyses on whole tissue, rather than specific regions. UKBEC, 

however, has performed RNA-sequencing on targeted regions in the brain: substantia 

nigra, putamen, and hippocampus in a large number of post-mortem unaffected brains 

(N=150). 

1.13 Conservation measures 

Conservation of a stretch of DNA sequence among ancestrally-related species (for 

instance among placental mammals) could suggest that that region of DNA plays an 

essential role in normal function. Thus, variants in conserved areas may be more likely to 

have functional consequences than variants outside of such areas (Frazer et al., 2003). 

Common measures of conservation are PhyloP (Pollard et al., 2010), PhastCons (Siepel 

et al., 2005) and GERP (Cooper et al., 2005). PhlyoP and GERP are conservation 

measures for a single DNA nucleotide, whereas PhastCons provides a score for a small 

region of DNA. Genomic Evolutionary Rate Profiling (GERP) is a score referring to the 

conservation of each DNA nucleotide in multi-species alignment. Positive scores indicate 
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a site is under evolutionary constraint, whereas negative scores may suggest accelerated 

rates of evolution.  

Both PhyloP and PhastCons scores are derived from the PHAST package, which makes 

use of phylogenetic hidden Markov models. According to the UCSC website, these two 

measures have their own advantages. PhyloP scores do not take into account conservation 

at neighbouring sites, whereas PhastCons estimates the probability that each nucleotide 

belongs to a conserved element. PhyloP is more effective at analyzing “signatures of 

selection” whereas PhastCons' strength is in detecting conserved elements 

(http://genome.ucsc.edu/cgi-bin/hgTables).   

Regarding the actual data, I compared the base coverage and score distribution for 

PhyloP and PhastCons scores for 46 placental mammals. Both datasets have the same 

coverage of the genome (98.20%). Data points, or in other words: scores at specific 

SNPs, are not available for download. Instead, for both measures, the downloadable file 

provides the lower limit, range, and sum of all the data points in regions. The average 

score for each region was calculated by dividing the sum of all the data points by the 

number of valid data values in the block. These distributions are both positively skewed 

(Figure 1.4). 
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Figure 1.4. Distribution of mean conservation scores for human chromosome 3 for placental 
mammals  

[a] Distribution of PhyloP mean scores. [b] Distribution of PhastCons mean scores. 

1.14 Dimension reduction for functional annotations 

The above outlines some of the available functional data. There have been methods 

proposed to integrate these data and thus reduce the dimensionality of the functional data. 

Ernst et al. (2011) divided the genome into chromatin states based on several histone 

modifications through the use of a multivariate hidden Markov model. They focused on 

cell type-specific patterns of promoters and enhancers to define a map of chromatin states 

across nine human cell types in six general categories: enhancer, promoter, insulator, 

transcribed, repressed, and inactive states. These chromatin states can be visualized using 

the webserver ChroMoS (Barenboim and Manke, 2013). The knowledge of chromatin 

state can help inform the functional impact of the variant, but a limitation is that other 

types of annotations that may be important for function (e.g. DNase I hypersensitive sites 

or transcription factor binding sites, for instance) are not included. 
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Another tool is Segway (semi-automated genomic annotation), which proposes that DNA 

segments fall into seven “flavours” (Hoffman et al., 2012). The authors trained a dynamic 

Bayesian network method, simultaneously on chromatin data from multiple experiments 

to categorize the genome into the flavours. Unlike the chromatin states described above, 

Segway uses multiple sources of functional annotations: histone modifications and 

transcription factor binding sites, and DNaseI hypersensitive sties. 

1.15 Rationale for uses of regulatory genomic information  

The rationale for believing that epigenetic and other genomic information can be useful 

for identifying risk variants among all variants is that numerous studies have 

demonstrated the enrichment of associated variants from GWAS and other trait or 

disease-associated variants with such characteristics. Emerging experimental data from 

various sources have suggested that the functional annotations of specific genomic 

regions, such as histone modifications, DNase I hypersensitive sites, transcription factor 

binding sites, and expression quantitative trait loci (eQTL) among others, could offer 

biological explanations for many variants found to be associated with disease (Hindorff et 

al., 2009; Knight et al., 2011; Nicolae et al., 2010). This evidence all suggests that 

functional information has the potential to be included in statistical learning algorithms to 

differentiate genetic risk variants from non-risk variants based on their overlap with 

various functional annotations.  

Below I will highlight a few key papers published shortly after the publication of data 

from the ENCODE Project featuring those ENCODE results that demonstrate an 

enrichment of genetic risk variants for various functional genomic characteristics.  

Schaub et al. (2012) showed that putative disease-associated variants (GWAS Catalogue 

SNPs) and variants in high linkage disequilibrium (LD) with those variants show 

significant enrichment for multiple functional annotations from the ENCODE Project. 

Maurano et al. (2012) also found enrichment in GWAS variants or variants with which 
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they are in high LD. The authors looked specifically at DNase I hypersensitive sites, and 

found that the GWAS variants are more frequently localized to DNase I hypersensitive 

sites than would be expected by chance. Maurano et al. also showed that the level of 

enrichment for subsets of GWAS Catalogue variants associated with a particular trait 

depends on the cell/tissue type considered. Further evidence for varying level of 

enrichment was presented in Farh et al. (2015). They created an algorithm and used 

permutation to estimate the posterior probability that an individual SNP is a causal 

variant given the haplotype structure and observed pattern of association at the locus for 

autoimmune-associated loci. They observed that their identified causal SNPs were 

enriched in enhancers (i.e. H3K4Me1 and H3K27Ac histone marks) that were mapped in 

immune cells (Farh et al., 2015). 

The enrichment of GWAS variants has been found in other functional sources in addition 

to ENCODE data. Hnisz et al. (2013) showed that trait-associated genetic variants from 

GWAS are enriched in super-enhancers (large clusters of enhancers associated with 

genes involved in cell identity, for instance encoding cell-type-specific transcription 

factors) and to a lesser degree in enhancers in general. Furthermore, the Roadmap 

Epigenomics Consortium also showed an enrichment of GWAS Catalogue variants with 

this consortium’s data (e.g. histone marks and DNase I) across all of their epigenomes 

interrogated (Roadmap Epigenomics Consortium et al., 2015). 

Hindorff et al. (2009) and Knight et al. (2011) showed enrichment of SNPs from the 

GWAS Catalogue for several functional annotations using a random sampling of SNPs 

from the HapMap II European-ancestry (CEU) population or from GWAS genotyping 

arrays, respectively.  

Similarly, enrichment of risk variants from sources other than the GWAS Catalogue with 

such characteristics have been demonstrated, such as enrichment of variants in the 

HGMD (Ritchie et al., 2014).  
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Given that risk variants are enriched in functional information, these data can be used to 

help with the two points that remain outstanding for disease-implicated loci: to identify 

novel risk variants and to identify the causal variant at a disease-associated locus. 

The next section describes the evolution of methods used to incorporate functional 

genomic data to prioritize genetic risk variants. 

1.16 Using functional genomic information to prioritize 

genetic risk variants 

Originally ad hoc methods were utilized for incorporating functional information, from 

which investigators could make their own conclusions on the functionality of a variant. 

For instance, user-friendly tools that process data from ENCODE and other sources were 

developed that show the overlap of variants with various genomic annotations, and based 

on that one can comment on the variants’ causality. Examples of such tools include 

HaploReg (Ward and Kellis, 2012) and RegulomeDB (Boyle et al., 2012) (see Table 

1.2). HaploReg shows the overlap of the variant of interest (and also variants at user-

defined pairwise-LD cutoffs with that variant) with annotations from ENCODE and other 

sources. RegulomeDB also incorporates several annotations from ENCODE and other 

sources. The latter uses a categorical scoring system, but the scale is crude. Likely causal 

variants are those that are expression quantitative trait loci (eQTL) and at the same time 

fall in transcription factor binding sites and DNase I hypersensitive sites. These SNPs are 

more highly ranked with regard to likely having an effect (i.e. affect binding of factors 

and expression of a gene). SNPs that are not eQTLs, regardless of whether they fall into a 

transcription factor binding site or DNase I hypersensitive site, are placed in a category of 

SNPs less likely to be functional. Variant identifiers can be inputted into these tools in 

order to either decide which are suitable candidates for follow-up or which should be 

included in an association study. For example, in a candidate gene study on 

antipsychotic-induced weight gain (Gagliano et al., 2014b) (see Appendix B), I inputted 
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into HaploReg the variant that showed the highest evidence for association with the 

phenotype to examine its functional potential.  

Table 1.2. Selection of online tools that are available for showing overlap of variants, 

including noncoding variants, with functional annotations   

 

Goal Input Output Annotations used Utility Caveat 

RegulomeDB (Boyle et al., 2012) 

A database that annotates 

SNPs with known and 

predicted regulatory 

elements in the intergenic 

regions of the human 

genome 

Multiple 

including: 

dbSNP IDs, 

BED or VCF 

files, hg19 

coordinates;  

Categorical 

score where the 

highest scoring 

SNPs are likely 

to affect binding 

and gene 

expression  

DNAse I, 

transcription 

factors, and 

promoter regions  

(sources: GEO, 

ENCODE) 

Can download all 

the dbSNP 137 

SNPs for each 

category 

Categorical 

outcome 

limited; LD 

between 

SNPs not 

taken into 

account 

HaploReg (Ward and Kellis, 2012) 

Tool for exploring 

annotations of the 

noncoding genome at 

variants on haplotype 

blocks, such as SNPs at 

disease-associated loci. 

List of rsIDs; 

single region; 

select a 

GWAS 

Annotates 

inputted SNPs 

(and proxies) 

based on 

location 

ENCODE 

(histone marks, 

proteins bound, 

DNase I), 

conservation, 

motifs changed, 

etc. 

LD threshold 

available from 

r2>0.2 (based on 

1KG phase 1) 

Annotates 

SNPs but 

does not 

provide a 

score/ 

prediction  

1KG= 1000 Genomes Project 

There are also publically available databases specifically designed to look at transcription 

factor binding sites, such as MAPPER2 (Riva, 2012), and JASPAR (Mathelier et al., 

2013; Sandelin et al., 2004). These tools either contain transcription factor binding sites 

that are predicted computationally or have been observed experimentally. MAPPER2 

contains putative transcription factor binding sites (upstream of genes in the promoter and 

the initial introns) in the genomes of human, mouse, and drosophila. JASPAR contains 
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curated experimentally-derived transcription factor binding motifs from many 

eukaryotes, including human. 

Then came methods that produce a score or rank describing how likely the variant is to be 

functional or in other words is a genetic risk variant by combining lots of functional data 

together. Some of these methods are specifically for the integration of functional 

information with statistical association data from conducted GWAS. 

Schork et al. (2013), for example, looked at enrichment of genic elements (e.g. 

intergenic, intron, exon, etc.) in various GWAS using summary statistics taking into 

account LD. They suggest the use of stratified False Discovery Rate (sFDR) to rank 

variants. A limitation to this methodology is that the FDR is dependent on the study’s 

data and thus ranks cannot necessarily be extrapolated to other studies. 

Some of these methods provide a posterior probability to rank the variants in the locus. 

For instance, Knight et al. (2011) reported Bayes factors for annotation (based on three 

annotations: eQTLs in open chromatin, nonsynonymous SNPs, SNPs in promoters) for 

each SNP. They propose that these Bayes factors should be combined with the 

corresponding Bayes Factor for association from a GWAS. This study had a limited 

number of annotations. Thompson et al. (2013) looked at binary predictor variables (such 

as whether or not a variant is in a functional protein domain or whether or not the variant 

is in a gene expressed in tissue relevant to the phenotype) using a logistic regression 

model, and they incorporate GWAS data. A limitation is that some of their predictor 

variables were subjective (e.g. in a gene with protein-protein interactions relevant to the 

phenotype) based on expert GWAS investigators’ opinions described in Minelli et al. 

(2013), and also they had a limited number of predictor variables (n=15) (Thompson et 

al., 2013).  

The online tools in Table 1.3 are additional tools that all give some sort of score or 

posterior probability to SNPs. A downside to these methods in the table is that they are 
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only applicable to GWAS that have already been conducted since they require summary 

statistics (information summarizing the strength of the association with the phenotype for 

each SNP such as odds ratios, test statistics and p-values).  

Table 1.3. Selection of online tools that are available for prioritizing genetic variants, 

including noncoding variants, requiring either association study data or summary 

statistics 

   

Goal Input Output Annotations 

used 

Utility Caveat 

Multi-threshold (and Multi-marker) Association Study Analysis: MASA (Darnell et al., 2012) 

To compute an 

association statistic 

taking into account prior 

information (multi-

thresholding akin to 

varying the significance 

threshold at each marker 

depending on prior info) 

Case/control 

GWAS data, 

reference 

haplotype 

file, marker 

file 

Z-score and p-

values for each 

SNP 

Annotations 

used as prior 

information – 

ENCODE data 

Provides an 

association p-

value for each 

SNP corrected for 

multiple testing 

(either Bonferroni 

or permutation) 

Data must be 

in Beagle 

(Browning 

and 

Browning, 

2007) format 
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Table 1.3. Selection of online tools that are available for prioritizing genetic variants, 

including noncoding variants, requiring either association study data or summary 

statistics (continued from previous page) 

Goal Input Output Annotations 

used 

Utility Caveat 

Probabilistic Annotation INTegratOR (PAINTOR) (Kichaev et al., 2014) 

Fine-mapping- prioritize 

causal GWAS variants 

using association stats 

and genomic functional 

info (maximum 

likelihood estimation 

using an application of 

Bayes Theorem) 

Association 

info (i.e. Z 

score), LD 

info (e.g. 

from 1KG) & 

annotations 

(e.g. 

ENCODE) 

Posterior 

probabilities; 

Gamma (effect 

size) estimates 

Need to add 

your own 

annotation 

columns  

Estimates the 

contribution of 

each annotation 

from summary 

stats; accounts for 

LD; allows 

multiple causal 

variants at a locus 

Restricted to 

empirical 

GWAS data 

fgwas software (Pickrell, 2014) 

Test whether SNPs that 

influence a trait are 

enriched or depleted in 

certain genomic 

annotations (using a 

penalized likelihood to 

get posterior probability 

that a SNP in a given 

genomic region is causal) 

GWAS data 

(SNP IDs, 

allele 

frequency, Z-

score, sample 

size of study) 

+ genomic 

data input 

Posterior 

probabilities; the 

association 

statistics for each 

SNP in the 

genome and in 

each region as 

estimated by the 

model 

DNase I HS, 

Chromatin state 

data, gene 

annotations used 

in the paper; for 

fgwas, need to 

add own 

annotations 

Input own GWAS 

data and 

annotations to get 

posterior 

probabilities for 

genomic regions 

and/or each SNP 

in the genome 

Assumes 

only a single 

causal SNP 

in a given 

genomic 

region; 

restricted to 

empirical 

GWAS data 

Phenotype Driven Variant Ontological Re-ranking tool (Phevor) (Singleton et al., 2014) 

Integrate phenotype, 

gene function, & disease 

data with genomic data 

for improved power to 

identify disease-causing 

alleles by using both 

variant prioritization 

tools and biomedical 

ontologies 

Phenotypes; 

output from 

other variant 

prioritization 

tools (e.g. 

PhastCons)  

Phevor score for 

each gene 

Ontologies: 

Human 

Phenotype, 

Mammalian 

Phenotype, 

Disease, & Gene 

Ontologies 

Not limited to 

known disease-

associated 

genes/variants; 

useful for single 

exome and trio-

based diagnostic 

analyses (i.e. 

clinical scenarios) 

Individual 

diagnostic 

analysis; 

depends on 

reliability of 

input (e.g. 

ontologies) 
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Additional methods are trained directly on known risk variants from databases through 

employing supervised statistical/machine learning algorithms that output a 

score/probability inferring the likelihood of a SNP to be functional. These methods are 

most versatile since they can be used to score SNPs without requiring GWAS summary 

statistics, and thus their utility is not limited to following up GWAS signals from an 

existing study. 

Kindt et al. (2013) published a permutation approach examining the enrichment or 

depletion of a subset of GWAS Catalogue SNPs (p<5x10-8) in the annotations 

investigated in two previous papers (Hindorff et al., 2009; Knight et al., 2011), and also 

added in a number of genic and regulatory features, conserved elements and chromatin 

states. They report odds ratios of the annotations (from logistic regression) signifying 

which annotations are more likely to contain significant associated SNPs, which can be 

used to prioritize GWAS hits for further studies. Although the Kindt et al. method uses 

risk variants from a database, a limitation is that a SNP is not actually given a 

score/probability as to how likely it is have a functional consequence.  

In a Bayesian framework, Iversen et al. (2014) incorporated multiple annotations (for 

example, genomic location, DNase I hypersensitivity, and scores from databases such as 

RegulomeDB (Boyle et al., 2012)) and was able to improve the ranks of known 

associated variants in a GWAS of ovarian cancer. This method produces posterior 

probabilities for each SNP, but a limitation is that a script or program to implement the 

method is not made available.  

None of the studies mentioned above considered using a phenotype-specific analysis: 

creating a model to specifically identify risk variants for a particular disease. Although 

Iversen et al. (2014) tested their model on a GWAS of ovarian cancer, their model was 

not specifically trained to identify variants specific to such a phenotype since they trained 

their model on all GWAS Catalogue variants. Additionally, none of the studies 

considered the issue of cell/tissue-specificity for the annotations. These studies used 
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annotations that integrated all of the cell types together as a unified annotation. For 

instance, the DNase Clusters track provided by ENCODE unifies the cell types together 

to define DNase I hypersensitive sites (see section 1.10.3). Of the selection of data-

trained online tools in Table 1.4, the first three do consider cell/tissue-specificity for the 

annotations. 

Table 1.4. Selection of online tools that are available for prioritizing variants, including 

noncoding variants, based on data-trained algorithms 

Goal Input Output Annotations used Utility Caveat 

(Gagliano et al., 2014a) 

To prioritize GWAS SNPs for 

follow-up based on functional 

data (Used a version of elastic 

net to train data on genome-

wide significant SNPs in the 

GWAS Catalogue (“hits”) vs. 

SNPs not present in the 

Catalogue (“non-hit”))  

List of SNPs 

(or GWAS 

summary data 

if want to 

apply the 

method 

directly to 

GWAS) 

Bayes factors 

for annotation 

(and Bayes 

factors for 

association if 

using GWAS 

summary data) 

14 with cell types 

amalgamated 

together: 

ENCODE (DNase 

I, TFBS, histone 

marks, 

conservation, 

eQTLs, etc.) 

LD between SNPs 

taken into account 

for annotating; 

precomputed 

Bayes factors for 

1KG SNPs 

available on 

website 

Model needs 

to be rerun to 

include new 

annotations 

Combined Annotation-Dependent Depletion (CADD) (Kircher et al., 2014) [DANN- uses the published CADD training data to 

train a neural net (Quang et al., 2014)] 

To prioritize functional, 

deleterious and pathogenic 

variants across many 

functional categories, effect 

sizes and genetic architectures 

(Used support vector machine 

to train data–half human 

derived allele variants, half 

simulated; DANN uses 

identical training set, but 

employs a deep neural net 

instead.) 

VCF file 

containing up 

to 100,000 

variants 

C score (raw 

and scaled) for 

each variant 

with option to 

include the 

underlying 

annotations 

63 distinct: 

Ensembl Variant 

Effect Predictor16 

(VEP), data from 

the ENCODE 

Project, 

information from 

UCSC Genome 

Browser tracks 

Webserver to get 

precomputed C 

scores for 8.6 

billion human 

SNPs 

Arbitrary C 

score cut-off 

to define 

deleterious; 

Model needs 

to be rerun to 

include new 

annotations; 

>1 line of 

output for 

variants in 

multiple 

genes 
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Table 1.4 Selection of online tools that are available for prioritizing variants, including 

noncoding variants, based on data-trained algorithms (continued from previous page)  

Goal Input Output Annotations used Utility Caveat 

Genome-wide annotation of variants (GWAVA) (Ritchie et al., 2014) 

Tool for prioritizing non-

coding variants by integrating 

genomic and epigenomic data 

(Used modified random forest 

to train data on HGMD SNPs 

vs. matched or unmatched 

control sets) 

rsIDs, regions Prediction 

scores from 3 

different 

versions of the 

classifier (based 

on different 

control sets) 

174: ENCODE 

(DNase I, Txn 

factors, histone 

marks), 

conservation, 

genic & sequence 

contexts 

Interactive 

webserver to get 

scores; Python 

scripts and data 

available on FTP 

site 

Classifier 

based on 

HGMD 

SNPs, so not 

as effective 

for GWAS 

SNPs 

Silent Variant Analyzer (SilVA) (Buske et al., 2013) 

Random-forest based method 

for prioritizing ranking (and 

scoring) synonymous variants 

that are likely to be functional 

VCF file of 

the variants 

(SilVA will 

only analyze 

synonymous) 

Variant rank out 

of all 

synonymous 

variants 

considered; 

SilVA score, 

between 0 and 1 

All related to 

synonymous 

SNPs: Sequence 

conservation, 

splice sites/factor 

motifs, RNA 

folding energy, 

codon usage and 

CpG content 

Score provided, 

but authors stress 

that the rank is the 

more important 

output 

Only for 

synonymous 

SNPs; run on 

local 

computer, 

but need 

wget 

software, etc. 

FunSeq2 (Fu et al., 2014)* 

To identify noncoding genetic 

somatic drivers in cancer; 2 

steps: creation of data context, 

and variant prioritization 

Cancer 

variants 

(BED/VCF); 

gene list 

(optional) 

differential 

gene 

expression 

data 

(optional) 

Variant reports 

that identify 

novel 

sensitive/ultra-

sensitive 

regions based 

on networks; 

Candidates File 

with potential 

candidates  

7 binary: 

functional 

annotations 

(DNase HS, etc.) 

4 continuous: 

motif-

breaking/gaining 

score, GERP 

score, etc. 

Can provide own 

features, and own 

gene networks or 

use those supplied  

Intended for 

somatic 

cancer 

variants in 

genes (can 

download a 

file with 

scores for all 

noncoding 

variants) 

*Not completely data-trained because weights are derived for each variant independently based on its annotations, i.e. a 

model is not created per se in a training set and then applied to the test set variants 
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There are numerous statistical learning algorithms from which to choose to create data-

trained prioritization models. These algorithms must be able to handle the features of the 

functional data: correlations among predictor variables, and a large quantity of both 

samples and predictor variables. A few of the algorithms that have such characteristics 

include: penalized regression, random forest, and support vector machine.  

For regression models, to prevent overfitting, a penalty needs to be incorporated to 

prevent the coefficients from getting too large due to the correlated functional data. In the 

case of logistic regression, there is a binary outcome variable, for instance risk versus 

non-risk variants. A continuous probability outcome can also be obtained. 

Random forest constructs a series of decision trees to separate two classes (risk versus 

non-risk variants. The resulting model is created by averaging the decision trees together 

(Malley et al., 2011). A subset of features (functional annotations in the context of 

genetic variant prioritization) is considered at each node in the tree. In the case of a 

simple presence or absence of the sample with the feature, there are only two decisions at 

the node. A simple example could be at a node, if a variant falls into a splice site, it will 

go to one side, and if it does not then it will go to the other side. The algorithm will rank 

the features based on how many times they appear in the tree, and thus how important 

they are in differentiating the two classes. 

Support vector machine separates data using a hyperplane in multi-dimensional space. 

The shape of the decision boundary depends on the kernel function (Malley et al., 2011). 

The most basic kernel is linear, where the samples are separated linearly (for instance, the 

risk separated from the non-risk variants in the realm of genetic variant prioritization). 

However, more mathematical functions, such as polynomials, can be used to separate 

data as well (Ben-hur and Weston, 2007). 

All algorithms have their advantages and disadvantages. Regression has the advantage 

over other algorithms that the importance of the predictor variables are easy to determine 
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by means of the magnitude of the beta coefficient assigned to each predictor variable. 

However, that being said, regression is not scale-invariant, and thus scaling or not scaling 

the predictor variables will affect the model (Abdi et al., 2013).  

Random forest has a bias to include continuous features into the model (Strobl et al., 

2007). However, this bias can be mitigated by selecting appropriate parameters (for 

instance, the minimum number of samples at which to stop constructing the tree). 

There are packages written in freely available coding languages to perform all of these 

algorithms (see Table 1.5).  

Table 1.5. Non-exhaustive selection of available packages for performing some statistical 

learning algorithms in R and Python 

	
   R	
  package	
   Python	
  package	
  

Penalized	
  regression	
   glmnet	
   LogisticRegression	
  in	
  scikit-­‐

learn	
  

Random	
  forest	
   e1071,	
  party,	
  randomforest	
   RandomForestClassifier	
  in	
  

scikit-­‐learn	
  

Support	
  vector	
  machine	
   e1071	
   svm	
  in	
  scikit-­‐learn	
  

These algorithms can be applied to genetic variant prioritization. The input can be a set of 

variants: some labelled as risk variants and other labelled as non-risk variants, and all the 

variants are annotated with their functional information. These data can then be fed to the 

algorithm, which will consequently produce a prediction score for each variant (the 

probability of it being a risk variant) and a variable importance measure for each 

annotation demonstrating how important it is in differentiating the risk from the non-risk 

variants (Figure 1.5).  
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Figure 1.5. Input and output variables for statistical learning algorithms in the context of genetic 
variant prioritization 

For all of these algorithms, it is important to train the data (i.e. create the model) in one 

dataset, and then apply it and test its accuracy in an independent dataset (Smialowski et 

al., 2010). A model may be highly accurate in differentiating the risk variants from non-

risk variants in the training dataset, but that does not necessarily mean that such a model 

is flexible enough to be applied to new data. A model that has high accuracy in training 

data, but does very poorly when applied to a novel dataset, is referred to as being over-fit. 

This model is too specific and sensitive to the fine-scale characteristics of the training set, 

which makes it uninformative in any other dataset. Thus, over-fit models are not useful as 

they do not have broad applicability.  

For the test set, there are certain predictive accuracy measures (statistical tests and 

visualization techniques) that are most appropriate for evaluating data-trained models for 

prioritizing genetic risk variants. These data tend to have the characteristic of consisting 

of imbalanced classes: a very high proportion of non-risk variants and a small proportion 

of risk variants. This class imbalance, and other factors unique to genetic data (for 

instance linkage disequilibrium, allele frequency, etc.), warrant exercising caution when 

interpreting the results of predictive accuracy measures that are applied to such models. I 

undertook a thorough investigation of such measures (Chapter 4).  

Referring back to the methods in Table 1.4, Gagliano et al. (2014a), Ritchie et al. (2014), 

and Kircher et al. (2014) all have data-trained classifiers. They use a supervised statistical 

learning algorithm (i.e. algorithm is given the task to differentiate between assigned risk 

Algorithm Variants (annotated + class label) 

Variable importance measure 

for each annotation 

Prediction score for each 

variant 
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variants and non-risk variants) to create a model that assigns the functional annotations 

various degrees of importance relative to each other, which is based on an annotated 

dataset containing both risk and non-risk variants. The model can then be used to 

generate prediction values or scores for each genetic variant on which the model is 

applied (probabilities of how likely the variant will belong in the risk variant class). 

These methods differ in the algorithm, annotation set, and how the risk and non-risk are 

defined. These methods are described in detail in Chapter 5. The method cited as 

Gagliano et al. (2014a) is described in Chapter 3. 

Iversen et al. (2014), and Pickrell (2014) are in the context of a Bayesian framework. 

Both consider two Bayes factors: Bayes factors for annotation and Bayes factors for 

association. My method Gagliano et al. (2014a) (extending on the backbone of the 

method first presented in Knight et al. (2011)) can also be applied in a Bayesian 

framework. However, there are fundamental differences in the Bayesian methods for my 

work compared to these two others. Gagliano et al. and Iversen et al. calculate the Bayes 

factors for annotation and the Bayes factors association in separate data, whereas Pickrell 

calculates both sets of Bayes factors on the same dataset. With regard to Gagliano et al. 

and Iversen et al., the former uses a regularized logistic regression called elastic net, 

whereas the latter employs a Bayesian shrinkage method. For dealing with LD among the 

genetic variants, Gagliano et al. applied the annotations from variants in LD to the 

GWAS variant, whereas Iversen et al. tested each LD-block separately. Iversen et al. 

defined LD-blocks as the SNP plus its LD partners. Again, my method will be further 

described in Chapter 3. 

In summary, many of these genetic variant functional annotation and/or prioritization 

methods have been made available as either online or downloadable tools to be run on a 

local system, making these tools accessible for researchers to integrate into their 

association analyses. Some of these methods simply show the overlap of variants with 

various functional annotations, while others are specifically meant to be applied to 
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GWAS summary data, and still others are data-trained producing a prediction score 

applicable to numerous contexts. 

1.17 Impact 
A better understanding of the genetic architecture of complex disease leads to a more 

comprehensive understanding of the biological pathways responsible for the pathology. 

This enhanced knowledge is the driving force enabling the development of novel 

therapies and personalized treatments to provide relief for millions of people who suffer 

worldwide. The evidence discussed here of enrichment of known risk variants with 

functional data suggests that the use of existing functional data can help illuminate the 

genetic factors involved in complex disease in silico. More variants are being identified 

(for instance, through sequencing projects such as the 1000 Genomes Project), and more 

functional genomic data is constantly being made available (for instance, through the 

Roadmap Epigenomics Project). The challenge now is to integrate these data together in 

order to identify novel risk variants.  
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Chapter 2  
Thesis Aims and Hypotheses 
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2  

2.1 Aims and Hypotheses 

The primary aim of this thesis is to develop a prediction model using statistical learning 

that is able to differentiate between genetic variants that increase or decrease one’s 

chance of developing a complex illness or trait from those that are not associated with 

such an outcome. Each genetic variant is given a probability (between 0 and 1) for how 

likely it is to be a disease-associated variant. This aim can be used to identify novel 

disease-implicated loci, as well as the variant causing the phenotypic effect at a known 

locus. Alongside, I compare my method to other similar existing methods (which use 

different statistical learning algorithms, different functional annotations, and different 

definitions of risk variants). I conduct a thorough comparison of the respective algorithms 

and functional annotation sets to determine the combination with the best predictive 

accuracy by exploring various predictive accuracy measures. Finally, I perform analyses 

of a new annotation for prioritizing associated variants in the GWAS. 

The specific hypotheses tested are the following: 

1) A method can be developed to incorporate functional annotations to predict risk 

genetic variants defined as those that are associated with a complex disease/trait in 

humans. 

2) By combining different statistical learning algorithms and functional annotation sets 

that exist in the literature, a more accurate model for genetic risk variant prioritization 

can be created.  

3) A novel annotation based on allele-specific methylation is a relevant annotation to 

include for genetic variant prioritization. 
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2.2 Structure of the thesis 

This thesis is composed of four studies. In the first study, I describe in detail my method 

for prioritizing genetic risk variants. I then investigate statistical and visualization 

techniques that are appropriate in the context of assessing the accuracy of methods for 

genetic variant prioritization based on functional genomic information. Following that, I 

provide a comparison of my prioritization method with two other methods. I use my 

observations of the most informative measures from my predictive accuracy investigation 

to assess the various models. The final study focuses on a novel type of functional 

information that can be incorporated into the prioritization procedure: allele-specific 

methylation.   
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Chapter 3  
A New Method to Prioritize Genetic Risk Variants using 

Functional Information 

 

 

 

 

 

 

 

 

 

 

 

 

 

This chapter is modified from the following: Gagliano SA, Barnes MR, Weale ME, 

Knight J (2014) A method to incorporate hundreds of functional characteristics with 

association evidence to improve variant prioritization. PLoS ONE 9: e98122. 
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3  

3.1 Abstract 

The increasing quantity and quality of functional genomic information motivate the 

assessment and integration of these data with association data, including data originating 

from genome-wide association studies (GWAS). We used previously described GWAS 

signals (“hits”) to train a regularized logistic model in order to predict SNP causality on 

the basis of a large multivariate functional dataset. We show how this model can be used 

to derive Bayes factors for integrating functional and association data into a combined 

Bayesian analysis. Functional annotations were obtained from the Encyclopedia of DNA 

Elements (ENCODE), from published expression quantitative trait loci (eQTL), and from 

other sources of genome-wide characteristics. We trained the model using all GWAS 

signals combined, and also using phenotype specific signals for autoimmune, brain-

related, cancer, and cardiovascular disorders. The non-phenotype specific and the 

autoimmune GWAS signals gave the most reliable results. We found SNPs with higher 

probabilities of causality from functional annotations showed an enrichment of more 

significant p-values compared to all GWAS SNPs in three large GWAS studies of 

complex traits. We investigated the ability of our Bayesian method to improve the 

identification of true causal signals in a psoriasis GWAS dataset and found that 

combining functional data with association data improves the ability to prioritize novel 

hits. We used the predictions from the penalized logistic regression model to calculate 

Bayes factors relating to functional annotations and supply these online alongside 

resources to integrate these data with association data. 

3.2 Introduction 

Genome-wide association studies (GWAS), which investigate the association between 

genetic variation and phenotypic traits, have identified many loci associated with human 

diseases (Hindorff et al., 2010). However, despite considerable advances, much of the 
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estimated heritability remains unaccounted for. Purcell et al. (International Schizophrenia 

Consortium et al., 2009) showed that single nucleotide polymorphisms (SNPs) from 

GWAS with sub-genome-wide significant p-values account for a considerable proportion 

of the variance in independent samples suggesting that they are enriched for causal SNPs 

or their proxies. The issues of small sample size, low minor allele frequency, and lack of 

linkage disequilibrium (LD) between genotyped SNPs and the un-genotyped causal SNPs 

present challenges to detecting truly causal variants among near-significant genetic 

associations.   

The central challenge in the interpretation of genetic associations lies in the processing 

and meaningful integration of a hugely diverse range of information. Having derived a 

score for a region containing a candidate variant, it has to be integrated with association 

evidence. We proposed the use of empirically derived weightings within a Bayesian 

framework (Knight et al., 2011). More recently Schork et al. suggested the use of 

stratified False Discovery Rate (sFDR) and Darnell et al. proposed multi-thresholding in 

a manner that they say is equivalent to varying the significance threshold at each marker 

depending on the prior information (Darnell et al., 2012; Schork et al., 2013). In order to 

implement these approaches one needs to define appropriate weights. For instance, 

Schork et al. (2013) used an LD-weighted scoring algorithm, and Kindt et al. (2013) 

recently published a multivariate logistic regression approach. However, neither of these 

approaches is easily scalable to the very large number of functional annotations that are 

becoming available.  

The primary objectives of this study are to describe an empirically justified method to 

identify which functional annotations are best correlated with GWAS hit SNPs, to 

provide clues to the etiology of such traits, and to develop and implement a method to 

incorporate functional annotations with statistical information in association studies. To 

achieve these objectives we use a machine learning approach, elastic net (a regularized 

logistic regression), to predict causality of a SNP based on information from 439 
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functional annotations. We explore models based on all GWAS significant SNPs and also 

subsets of significant SNPs selected on the basis of phenotype and p-value. Functional 

annotations are considered individually or in groups. We report a) the accuracy of the 

predictions to demonstrate the utility of the method and to investigate the behaviour of 

the different models, b) the frequency, correlation between and coefficients of the 

functional annotations providing insight about their functional relevance to disease, c) a 

prediction score for each SNP, and d) details of how to combine this score with 

association statistics in a formal Bayesian framework.  

We provide online scripts that can be employed so the method can be used by other 

researchers using additional functional annotations 

(http://www.camh.ca/en/research/research_areas/genetics_and_epigenetics/Pages/Statisti

cal-Genetics.aspx). For the best models we provide the probability of causality (the 

prediction score) for each SNP, the corresponding Bayes factor (BFannot) and scripts to 

combine BFannot with GWAS association signals.  

3.3 Methods 

3.3.1 Representative GWAS SNPs 

To represent the characteristics of a typical GWAS panel, markers from the Affymetrix 

Genome-Wide Human SNP Array 6.0, the Illumina Human1M-Duo Genotyping 

BeadChip, and the Illumina HumanOmni1-Quad BeadChip were downloaded from the 

UCSC genome browser, using the table browser tool (Karolchik et al., 2004). The union 

of these three arrays consisted of 1,936,864 unique SNPs from the 22 autosomes. 

Because of its unique LD and genic properties, the MHC region (chr6:29,624,809 -

33,160,245 on build 37) was excluded from downstream analyses. 

LD proxies or “tagging” SNPs (r2≥0.8) for the GWAS panel SNPs were identified using 

VCFtools (Danecek et al., 2011) based on data from the (N=379) Europeans (Phase I, 
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version 3, March 14, 2012) in the 1000 Genomes Project (The 1000 Genomes Project 

Consortium, 2010). 

GWAS “non-hits” were defined as all those SNPs in our union GWAS set, which were 

neither a GWAS “hit” (see below), nor in high LD (r2≥0.8) with a GWAS hit.  

3.3.2 GWAS hits 

To obtain a set of SNPs (and their LD proxies) with good prior evidence of causality, we 

downloaded the Catalogue of Published Genome-wide Association Studies from the 

National Human Genome Research Institute (NHGRI) 

(http://www.genome.gov/gwastudies) (Hindorff et al., 2010) on August 6, 2013. This 

catalogue contains a list of SNPs that have been shown to be associated with a particular 

trait in a GWAS at a suggestive p-value <10-5. There were 13,708 entries from a total of 

1,664 different studies with publication year ranging from 2005 to the date of download 

(Figure 3.1). We removed SNPs in the Catalogue that were not present in the 

representative GWAS set defined above, and similarly removed SNPs on the sex 

chromosomes or in the MHC region, and a total of 8,405 SNPs remained. 
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Figure 3.1. Number	
  of	
  publications	
  with	
  data	
  in	
  the	
  GWAS	
  Catalogue. 

Regardless of whether a publication had one or several variants in the Catalogue it was only counted once.  

 

All SNPs in our GWAS hit and GWAS non-hit sets, along with all their LD proxies, were 

annotated with all the functional annotations defined below. Each GWAS hit and non-hit 

SNP was then given the maximum value for each functional annotation found across all 

its LD proxies. 

3.3.3 Functional annotations 

We acquired functional data from a variety of sources (Table 3.1). A full list is provided 

in Table S1 available from the online PLOS ONE publication: 

http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0098122. In 

brief, the GTEx eQTLs have been separated into 7 samples (separated by study and for 

one of the studies, also by tissue). The three histone marks are separated into 18 cell types 

each. There are 148 transcription factor binding sites. There are DNase I data from 100 

cell types from Duke University data and 122 from the University of Washington. Much 
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of the data was downloaded from the UCSC Genome Browser using the table browser 

tool (Karolchik et al., 2004). Additionally, a substantial proportion of the data was 

derived from the Encyclopedia of DNA Elements (ENCODE) Project Consortium, which 

developed and implemented a range of experimental techniques with the aim of 

identifying the functional regions of the human genome, particularly including non-

coding regions (The ENCODE Project Consortium, 2011). Data from this project that 

were used included transcription factor binding sites (TFBSs), three histone 

modifications (H3K4Me1, H3K4Me3, H3K27Ac), and DNase I hypersensitive sites. 

H3K4Me1 is associated with enhancers and DNA regions downstream of transcription 

starts, and often found near regulatory elements; H3K4Me3 is associated with promoters 

active or poised to be active, and often found near promoters; H3K27Ac thought to 

enhance transcription possibly by blocking repressive histone mark H3K27Me3, and 

often found near active regulatory elements. The technologies for identifying the 

functional annotations mentioned above were chromatin immunoprecipitation followed 

by sequencing (ChIP-seq).  

DNase I hypersensitive sites are regions in the genome with high affinity of being 

cleaved by the DNase I enzyme. The University of Washington (UW) group identified 

DNase I hypersensitive sites using Digital DNase I. This method involves DNase I 

digestion of intact nuclei, isolation of DNase I “double-hit” fragments, and direct 

sequencing of fragment ends. Peaks are regions that are enriched in the captured fraction 

of the DNA suggesting they are occupied by the protein of interest (any score > 0). The 

DNase I hypersensitive sites from the Duke University group were identified using 

DNase I assays. We used a binary variable to indicate whether a SNP was within a peak.  

Two types of conservation scores from 46 placental mammals (PhyloP and PhastCons) 

were incorporated. Both PhyloP and PhastCons scores are derived using phylogenetic 

hidden Markov models. These two measures have their own advantages. PhyloP scores 
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do not take into account conservation at neighbouring sites, whereas PhastCons estimates 

the probability that each nucleotide belongs to a conserved element. 

Expression quantitative trait loci (eQTLs), which are variants that are correlated with 

gene expression, were included. In particular those that fall within 2Mb (+/-1Mb 

upstream and downstream) (cis-eQTLs) of the gene of interest were used. These data 

were derived from the NCBI-hosted GTEx Browser 

(http://www.ncbi.nlm.nih.gov/gtex/GTEX2/gtex.cgi) (Montgomery et al. 2010, Schadt et 

al. 2008, Gibbs et al. 2010, Stranger et al. 2007) and the UK Brain Expression 

Consortium (www.braineac.org) (Trabzuni et al., 2011). 

Summary information concerning the location or function within a gene (coding-non-

synonymous, coding-synonymous, splice site, untranslated regions, etc.) was derived 

from dbSNP (version 137). Non-synonymous SNPs, were classified as those SNPs with 

one of the following annotations: stop-gain (nonsense), missense, stop-lost, frameshift or 

inframe indel. Splice site regions were defined as being within five base pairs upstream 

and five base pairs downstream of the exon start site or the exon end site. The UCSC 

gene table was used to determine the exon start and end sites. The UCSC gene table is 

comprised of a set of gene predictions based on data from RefSeq, GenBank, the 

Consensus Coding Sequence (CCDS) variable, Rfam, and the Transfer RNA Genes 

variable. (This track has since been replaced by Gencode tracks.) Additional annotations 

used were 3' targets for microRNA (miRNA), and also transcription start sites as 

described by Gencode (Harrow et al., 2012). As miRNA targets are known to be 

substantially over-predicted, we used a conservative miRNA target dataset based on 

conserved mammalian microRNA regulatory target sites in the 3' UTR regions of Refseq 

Genes, as predicted by the TargetScan algorithm (Human 5.1) (Lewis et al., 2005). 
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Table 3.1. Summary of functional annotations 

	
  
* All SNPs are annotated in a binary fashion indicating the presence or absence of a functional annotation, except for the conservation 
scores, for which the SNPs are assigned a quantitative score. 
** The DNase Clusters v2 file was created by combining the UW and Duke DNase I data that have been uniformly processed and 
replicates merged. Stringent (FDR 1% thresholded) peaks of DNase I hypersensitivity from uniform processing by the ENCODE 
Analysis Working Group were applied. Grouping the UW and the Duke DNase I hypersensitive variables are not equivalent to the 
DNase Clusters v2 file, and thus we used the latter to represent DNase I hypersensitive sites in the clumped analysis due to the 
substantial efforts made to combine the data meaningfully.  

 

Functional 
characteristic  
analysed 

Description  Number and detail of measures 
used in the analysis* 
Clumped Separated  

ENCODE data 
UW DNase I 
hypersensitive sites  

Data from digital DNaseI methodology, 
Replication 1 samples; (“peaks”) 

N/A  122  

Duke DNase I 
hypersensitive sites 

Positions of open chromatin by FAIRE and 
ChIP-seq experiments; (“peaks”) 

N/A  100  

DNase Clusters 
(v2)** 

Stringent (FDR 1% threshold) for “peaks” of 
DNase I hypersensitivity from uniform 
processing by the ENCODE Analysis Working 
Group of data from UW and Duke  

1  N/A 

Txn Factor ChIP  Transcription factor binding sites (TFBS) from 
ChIP Seq experiments; (“peaks”) 

1 (presence or 
absence in any 
TFBS) 

148 (separated 
by TF, but not 
by cell type 
due to sparse 
data) 

Broad Histone –  
H3K4Me1, 
H3K4Me3, 
H3K27Ac 
 

All are assayed using ChIP-Seq; (“peaks”) 3 (each histone 
mark grouped 
by the 18 cell 
types and/or 
conditions)  

54 (each 
histone mark 
separated by 
cell type and/or 
conditions) 

Conservation 
PhyloP Average scores can be calculated as the sum of 

scores divided by the number of valid data 
values in the block (scores range from 0.1 to 
2.2910) 

1  1  

PhastCons Average scores can be calculated as for PhyloP 
(scores range from 0.1 to 1.0 in this dataset) 

1  1  

Expression quantitative trait loci 
eQTL- GTEx  cis-eQTLs, p<1x10-5 cut-off for variants within 

2Mb of the expressed gene. 
1 (any eQTL) 7 (separated by 

dataset) 
eQTLs - UK Brain  cis-eQTLs, FDR<1% cut-off for variants within 

2Mb of the expressed gene. 
1  1  

Other characteristics 
UCSC Genes UCSC known Gene 1  1  
Splice sites Splice site region defined as -5 to +5 range 

around exon starts & exon ends of UCSC Genes 
1  1  

Nonsynonymous 
SNPs 

Coding Nonsynonymous SNPs defined as stop-
gain (nonsense), missense, stop-lost, frameshift 
or inframe indel 

1  1  

TS miRNA sites Conserved mammalian microRNA regulatory 
target sites for conserved microRNA families  

1  1  

Gencode 
transcription start 
sites 

Based on the GENCODE Genes variable 
(version 17, June 2013) 

 1  1  

!
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All SNPs in our GWAS hit and GWAS non-hit sets, along with all their LD proxies, were 

annotated with all the functional annotations defined above. Each GWAS hit and non-hit 

SNP was then given the maximum value for each functional annotation found across of 

all its LD proxies. 

3.3.4 Tests for functional enrichment 

Counts of GWAS hits and non-hits were categorized by annotation value and compared 

using Fisher’s exact test. To verify that results were not unduly influenced by correlations 

(LD) among observations, we also conducted analyses in which genetic variants were 

“pruned” so that all SNPs have r2<0.8 with all other SNPs. The results of these analyses 

were very similar (data not shown). 

Heat maps were constructed using R (R Core Development Team, 2008) to compare 

correlations among the various functional annotation.  

3.3.5 Regularized logistic regression via elastic net 

As a start, we performed a univariate analysis for the 14 clumped functional annotations, 

and found that all were significantly related to the status of a GWAS hit or not (p<0.005). 

We used a regularized form of logistic regression known as elastic net to predict GWAS 

hit versus non-hit status on the basis of the functional annotations we had collected. 

Elastic net is a form of machine learning first described by Zou and Hastie (2005), and is 

implemented in the glmnet package (Friedman et al., 2010) in R. Briefly, regularization is 

achieved via the subtraction of a penalty term from the log-likelihood prior to 

maximization. The penalty term includes both a “lasso-like” L1 component (the sum of 

the absolute values of all fitted coefficients) and a “ridge-like” L2 component (the sum of 

squares of all fitted coefficients). Two parameters, alpha and lambda, determine the 

relative importance of the L1 versus the L2 term (alpha), and the overall importance of 

the penalty term in the maximization (lambda). Appropriate values for these parameters 

were found by 10-fold cross-validation of the training set (see below). 
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Due to the unbalanced nature of the data (many more GWAS non-hits than hits) we 

employed a weighting procedure in the logistic regression to balance the accuracy of 

prediction in both types of markers. We weighted all hits by (Nhits+Nnon-hits)/2Nhits 

and all non-hits by (Nhits+Nnon-hits)/2Nnon-hits, where Nhits and Nnon-hits denote the 

number of hits and non-hits, respectively, in the training set. This procedure has the effect 

of equalizing the importance of hits and non-hits in the logistic regression.  

We randomly selected 60% of our GWAS hits and non-hits to form our training set. The 

remaining 40% of the data (the test set) was used to assess the performance of the model 

using ROC curves and other measures. We repeated the machine learning modifying the 

percentage of the data used in the training and test sets, and all splits produced similar 

results (Figure 3.2). 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

63 

 

 

 

 

 

 

 

Figure 3.2. Coefficients for functional annotations in the clumped analysis for different training 
and test set proportions  

Comparison of beta coefficients that resulted from machine learning in the clumped non-phenotype specific 

analysis for various classifications of the training and test sets. [splice= splice sites, Nonsy= 

nonsynonymous SNPs, DNase= DNase I hypersensitive sites, GTEx eQTLs= cis-eQTL data from the 

GTEx Consortium, UK eQTLs= cis-eQTL data from the UK Brain Consortium, Phylo= PhyloP 

conservation, Phast= PhastCons conservation, H3K4Me1= H3K4Me1 histone modification, H3K4Me3= 

H3K4Me3 histone modification, H3K27Ac=H3K27Ac histone modification, TF= transcription factor 

binding sites] 

3.3.6 Sensitivity analysis- elastic net 

To diminish the possibility that the models are over-fit since the training of the data and 

tuning of the parameters were conducted on the same set, we created a 70%/30%, split 

where the 70% was further split into 60% and 40% for training the coefficients and 

tuning the parameters, respectively. The remaining 30% was used to test the model. 

Additionally, we examined the stability of the beta coefficients when assigning the data 

to training the test sets using different random number generators. 
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3.3.7 Predictive accuracy  

We employed three methods to determine which models had the best predictive accuracy: 

ROC curves, positive predictive values, and histograms of the predicted values from the 

models.  

ROC curves show the sensitivity and specificity of a fitted model. Sensitivity is the 

probability of the model providing a true positive result (identifying a true GWAS hit in 

the test set). Specificity is the probability of the model providing a true negative result 

(identifying a true GWAS non-hit in the test set). An AUC of 0.5 indicates a model of no 

predictive value, while an AUC of 1 indicates perfect predictive power. The ROC curves 

were created using the ROCR package (Sing et al., 2005) in R. 

ROC curves do not reflect how well a model performs within each class given 

unbalanced data (a very large number of non-hit SNPs compared to hits). To capture this 

aspect we also investigated positive predictive values (PPVs), the proportion of SNPs 

with predicted probabilities of causality above a certain threshold (we investigated 

thresholds of 0.5, 0.6, 0.7, 0.8 or 0.9) that are true GWAS hits in the test set. Finally, we 

visualized class separation with histograms of the predicted probabilities of causality by 

class. 

3.3.8 Definition of functional variables and GWAS hits  

A variety of functional annotations were investigated as input variables. One, defined as 

the “clumped” analysis, featured groups of functional annotations, which were collapsed 

into a single summary variable. The “separated” analysis worked on all functional 

annotations individually.  

We performed phenotype specific analyses in which the analyses outlined above were 

carried out using phenotype specific GWAS hits as classifiers. An autoimmune list, a 

brain-related list and a cardiovascular list were created using the GWAS Catalogue 
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searching for terms relating to those phenotypes. Each list was then verified by an expert 

in the field.  

Additionally, the GWAS Catalogue was divided up into categories specified by the 

Experimental Factor Ontology (EFO) definitions; however, due to small numbers of 

SNPs in each category this mode of classification is not currently feasible for most of the 

subsets. Only the cancer list, which was the largest disease-relevant list, was used.  

Due to the small size of the lists (not including “other disease” or “other measurement”, 

which both lack biological relevance), it is not feasible to use the EFO classifications. 

Table 3.2 shows the number of GWAS hits that fall into each category. The numbers 

provided in the table are inflated as they assume that all of those SNPs are present on the 

GWAS arrays in our analysis and that none of them are in the MHC region (which was 

excluded for the machine learning). Thus, the lists for training and testing are around 100 

SNPs less than the listed values.  

There were no results for the GWAS list for “biological processes” (i.e. the betas were all 

zero), so machine learning on other lists with a smaller number of SNPs was not 

performed. Machine learning was also not run on the lists that lacked biological relevance 

even if they were larger than the list for “biological processes”: for example: “other 

disease”, “other measurement”, and “other trait”.  
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Table 3.2. EFO phenotype specific GWAS lists 

 

We defined two sets of GWAS hits for downstream analysis, one based on a weak 

significance threshold of p<10-5 and one based on a strong significance threshold of 

p<5x10-8, as reported in the NHGRI GWAS Catalogue. An additional analysis was 

undertaken in which hits were defined as the subset of the hits from the 5x10-8 non-

phenotype specific analysis that were not also defined as hits in at least one of the 

phenotype-specific analyses assessed. Note, to view the distribution of the hits used in the 

5x10-8 non-phenotype specific analysis, a Manhattan plot was constructed (Figure 3.3).  

Phenotype 
N in GWAS Catalogue 
(Aug. 6, 2013) 

Biological process 616 
Metabolic disease 389 
Mental disease 827 
Immune disease 349 
Hematological Measurement 284 
Digestive disease 468 
Cardiovascular disease 356 
Cancer 685 
Body measurement 639 
Nervous system 680 
Other Disease 1231 
Other measurement 3216 
Other trait 211 
Drug response 593 
!
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Figure 3.3. Manhattan plot of the hits used for the non-phenotype specific analysis (p<5 x10-8)     

SNPs are pruned and MHC region hits have been removed, as described. 

 

3.3.9 Sensitivity analysis- classification 

An analysis was also undertaken in which hits were defined as the subset of the non-

phenotype specific 5x10-8 hits minus those hits used in the phenotype-specific analyses 

(autoimmune, brain-related, cancer and cardiovascular).  

3.3.10 Derivation of Bayes Factors 

Bayesian analysis provides the most suitable framework for combining functional 

annotations (here referred to as “annotation data”), with evidence from an association 
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study (“association data”) (Stephens and Balding, 2009). We expand on our previous 

empirically-based approach to the calculation of Bayes factors for annotation (Knight et 

al., 2011) to allow multiple functional annotations to be considered simultaneously. The 

posterior odds (O post) of causality for a trait of interest at a given SNP are given by the 

ratio of the conditional probability of causality, given the annotation and the association 

data, to the conditional probability of non-causality: 

  

If we assume the annotation data and association data are independent once conditioned 

on causality, then the posterior odds become: 

  

These three products are, respectively, the prior odds before seeing any association and 

annotation data (O prior), the Bayes factor for annotation data (BFannot) and the Bayes 

factor for association data (BFassoc). We note that this factorization implies that, while 

functional annotations are allowed to be enriched (or impoverished) for causal SNPs 

relative to non-causal SNPs, the enrichment pattern is assumed to be the same for rare 

versus common causal SNPs, and for low-effect size versus high effect size causal SNPs. 

We accept that this is an imperfect approximation, and it assumes among other things that 

SNPs are either causal or non-causal when in reality their effect size can be arbitrarily 

close to zero, but we note that the main limitation of our approach lies with the small 

number of GWAS hits available to us, and subdividing these still further according to 

allele frequency and effect size would be problematic. We also note that by “causal” what 

we actually mean is “causal or in high LD with a causal variant”, as both the association 

data and the annotation data (as defined in our study) are affected by LD proxies. 

Opost =
P(Causal | AnnotData,AssocData)

P(NotCausal | AnnotData,AssocData)

P(Causal)
P(NotCausal)

×
P(AnnotData |Causal)

P(AnnotData | NotCausal)
×

P(AssocData |Causal)
P(AssocData | NotCausal)
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In our previous study (Knight et al., 2011), we noted that if one assumed that (1) all hits 

in the NHGRI GWAS Catalogue were truly causal; and (2) functional annotation 

enrichment patterns were the same for these known hits as for future undiscovered truly 

causal SNPs; then an empirically based estimate for BFannot for a single binary functional 

annotation would simply be the ratio of its frequency in GWAS hit versus non-hit data. 

Here we note that if we start with the same two assumptions, and further assume that a 

true (but unknown) logistic model exists that relates a set of functional annotations 

(which can be either binary or quantitative) to the probability that a SNP is truly causal, 

then one reasonable approach to estimating that logistic model would be via regularized 

logistic regression as described above. Once fitted, the estimated odds of causality to 

non-causality, obtained from the GWAS hit and non-hit datasets, need only be multiplied 

by the prior odds of non-causality in these dataset (i.e. the ratio of the weighted sample 

sizes of GWAS non-hits to GWAS hits in these data) in order to obtain the Bayes factor 

for annotation. Here, we chose to weight hits and non-hits to appear of equal size, and 

thus our estimate for BFannot is obtained directly as the estimated odds of causality to non-

causality from the regularized logistic regression. 

Methods for estimating BFassoc from association data are reviewed by Stephens & Balding 

(2009). Here, we use the convenient approximation described by Wakefield (Wakefield, 

2007). 

3.3.11 Investigating the model in the context of known GWAS 

To investigate the relevance of the predictions in a variety of disorders we looked at the 

p-value distribution of SNPs according to their functional class in large GWAS datasets 

with a substantial fraction of GWAS significant findings. Quantile-quantile plots were 

constructed for each study with multiple lines corresponding to SNPs binned according to 

their predicted value. Predicted values were those derived from the non-phenotype 

specific clumped model in which GWAS hits were defined as those SNPs in the GWAS 

Catalogue with p-values of less than 5x10-8. We expected those SNPs with higher 
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predicted values to be enriched with GWAS SNPs with more significant p-values, 

whereas those SNPs with lower predicted values would be enriched with less significant 

p-values compared to all SNPs in the GWAS. 

We also selected some SNPs shown to be associated in a large psoriasis meta-analysis 

which had not been identified in a previous GWAS study (Strange et al., 2010; Tsoi et al., 

2012). We then determined the effect on the rank of their Bayes Factors in the previous 

study derived either using association data or both association data and functional 

annotations.  

 

3.4 Results 

3.4.1 Functional enrichment in GWAS hits 

Frequencies of functional annotations in GWAS hits compared to non-hits were 

compared using Fisher’s exact test. Our analyses indicate that GWAS hits are enriched 

for most functional annotations compared to GWAS non-hits, except for splice sites and 

micro RNA (miRNA) targets, perhaps due to the very low frequency of these two classes 

of functional annotations compared to the others (Table 3.3). 
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Table 3.3. Summary statistics for the functional annotations in the clumped non-

phenotype specific analysis 

 

*As PhlyloP and PhastCons conservation scores were left as continuous measures, the frequencies reported 

for those characteristics represent the presence of a conservation score (i.e. score > 0). 

 

Description Frequency 
of 
annotation 
in GWAS 
hits 

Frequency 
of 
annotation 
in GWAS 
non-hits 

p value 
(Fisher’s exact 
test) 

Odds 
Ratio 

95% 
Confidence 
interval 

splice 0.002 0.002 0.142 1.26 0.78 – 2.02 
non-
synonymous 0.022 0.007 2.38E-38 3.10 2.67 – 3.59 

DNase Clusters 0.193 0.141 1.87E-39 1.46 1.38 – 1.54 
GTEx eQTLs 
(all 7 
experiments 
together) 

0.020 0.007 1.69E-31 

2.92 2.50 – 3.41 

UK brain 
eQTLs 0.108 0.081 2.19E-18 1.37 1.28 – 1.47 

UCSC Genes 0.422 0.357 7.36E-35 1.31 1.26 – 1.27 
PhyloP* 0.217 0.172 6.56E-27 1.34 1.27 – 1.41 
PhastCons* 0.243 0.202 3.63E-20 1.27 1.20 – 1.33 
BroadHistone- 
H3k4Me1 0.637 0.566 2.20E-40 1.35 1.29 – 1.41 

BroadHistone- 
H3k4Me3 0.509 0.434 1.63E-43 1.35 1.30 – 1.41 

BroadHistone- 
H3k27ac 0.587 0.503 1.28E-53 1.48 1.34 – 1.46 

Txn Factor 
ChIP (if 
annotation for 
any TF) 

0.511 0.456 5.26E-24 

1.25 1.10 – 1.14 

miRNA 1.12E-4 7.00E-5 0.116 1.70 0.24 –12.15 
Gencode-Txn 
start sites 0.003 0.002 0.012 1.64 1.08 – 2.49 

!
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The histone modification data from the Broad Institute had the highest frequencies in 

GWAS hits, and the lowest p-values for enrichment. Many functional annotations, most 

notably miRNA, were very infrequent, but the general picture was that their frequency in 

GWAS hits was greater than in GWAS non-hits.  

We examined the correlations among the various functional annotations (Figure 3.4 and 

Figure 3.5). The separated-variable analysis included measures of functional annotations 

from different cell lines as individual factors, whereas the clumped-variable analysis 

grouped data from different cell lines for the same functional annotation. The clumped 

analysis showed a strong correlation between the two conservation measures (PhyloP and 

PhastCons), as well as strong positive correlations among the three histone marks 

(H3k4Me1, H3k4Me3 and H3k27Ac), and to a lesser degree among the histone marks 

and transcription factor binding sites. The separated analysis revealed additional 

correlations among cell types investigated for the DNase I hypersensitive annotations 

from Duke University, and to a lesser degree among the DNase I hypersensitive 

annotations from the University of Washington, and between these two groups. These 

results highlight the issue of correlations among functional annotations, many of which 

simply represent the same genomic feature, for example a promoter element measured by 

different technologies. One advantage of elastic net as a regularized logistic regression 

method is its ability to accommodate highly correlated variables. 
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Figure 3.4. Heat map of correlations among the clumped functional annotations for 79,821 
variants. 

High correlations are seen between the two conservation measures PhyloP and PhastCons (represented as Phylo and 

Phast, respectively). Correlations are also seen among the histone modifications, H3k4Me1, H3k4Me3 and H3k27Ac 

(Me1, Me3 and Ac, respectively.) Transcription factor binding sites also show a correlation with the histone 

modifications. Note that there are negative correlations, but are all close to zero (i.e. the most negative correlation was 

around -0.002). [spli= splice sites, Nons= nonsynonymous SNPs, DHs= DNase I hypersensitive sites, GTEx= cis-eQTL 

data from the GTEx Consortium, UK= cis-eQTL data from the UK Brain Consortium, Phylo= PhyloP conservation, 

Phast= PhastCons conservation, Me1= H3K4Me1 histone modification, Me3= H3K4Me3 histone modification, 

Ac=H3K27Ac histone modification, TF= transcription factor binding sites, RNA= micro RNA targets, Genc= 

transcription start sites from Gencode] 
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Figure 3.5. Heat map of correlations among the separated functional annotations  

A full list of the numbered annotations is provided in Table S1 (available from the online PLOS ONE publication: 

http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0098122). The white box in the bottom left 

corner corresponds to high correlation among the histone modifications. The less defined white area spanning from 72 

to 219 on the x axis corresponds to correlation among the transcription factor binding sites, which also show some 

correlation with the histone modifications. The white box from 220 to 319 on the x axis corresponds to a high 

correlation among the different cell types for the DNase I hypersensitivity annotation from Duke University. The less 

refined white box from around 320 and onwards on the x axis corresponds to the DNase I annotations from the 

University of Washington. The plot also shows some correlation among the DNase I annotations from both groups. 

3.4.2 Sensitivity analysis- elastic net 

Similar results were produced when the training and tuning were conducted in 

independent subsets (Figure 3.6), and so the 60%/40% training/test set split was pursued 

for the remaining analyses. 
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Figure 3.6. Coefficients for functional annotations in the clumped analysis when trained the 
model and tuned the parameters on independent sets 

Comparison of beta coefficients that resulted from machine learning in the clumped non-phenotype specific 

analysis when using a 42%/28%/30% split for training the model, tuning the parameters, and testing the 

model, respectively. (The 42% and 28% refer to 60% and 40% of 70%, respectively.) This model was 

compared to using a 60%/40% split where the training and tuning were conducted on the same set. 

The data was split into the training and test sets ten times using a random number 

generator, and the beta coefficients were examined. We conducted this procedure 

multiple times using different random numbers (i.e. starting with a different “seed”). We 

found that the beta coefficients were consistent for all of the functional annotations with 

the exception of those with the lowest frequencies. For splice sites in the autoimmune 

analysis (Table 3.4), seed2 only had one splice site that was also a GWAS hit in the 

training set. Thus, betas are not always reliable for the low frequency annotations. This 

conclusion is a caveat for the separated analysis since the frequencies for many of the 

annotated SNPs are very small.  
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Table 3.4. Beta values for "splice sites" for autoimmune clumped analysis 

 

In further investigation, we assessed the relationship between the variance of betas and 

the frequency of the annotation in the GWAS hits for the clumped non-phenotype 

specific analysis. Generally, the lower the frequency in the hits, the larger the variability 

of the beta coefficients for that particular functional annotation (Figure 3.7). 

 

Figure 3.7. Standard deviation and frequency of functional annotations 

Relationship between the standard deviation of the beta coefficients (square root of the variance of the 

coefficients) derived from the machine learning performed 10 times using 10 different seeds in the random 

number generator that distributes the SNPs into the training and test sets, and the frequency of the 

functional annotations in the GWAS hits. Note that the two lowest frequency annotations are not shown. 

Next, we investigated whether the betas would be stabilized among the different seeds if 

all functional annotations were forced to be included in the model, which can be achieved 

through ridge regression. Ridge regression was performed for 10 different seeds, but the 

variability of the betas seen when using elastic net persisted (Figure 3.8). 
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Figure 3.8. Standard deviation from ridge regression and frequency of functional annotations 

Relationship between the standard deviation of the beta coefficients (square root of the variance of the 

coefficients)derived from the ridge regression performed 10 times using 10 different seeds in the random 

number generator that distributes the SNPs into the training and test sets, and the frequency of the 

functional annotations in the GWAS hits. Note that the two lowest frequency annotations are not shown. 

 

3.4.3 Predictive accuracy of functional annotations 

We fitted predictive models for GWAS hit status via elastic net, using clumped and 

separated functional variable sets, using high-confidence (p<5x10-8) and low-confidence 

(p<10-5) GWAS hits, and using all GWAS hits (“non-phenotype specific”) as well as hits 

classified according broad phenotype areas. We primarily investigated predictive 

accuracy in a separate test set that was not involved in the fitting of the models. Variants 

were randomly split between the training and test sets.  

For all of our fitted models, the area under the curve (AUC) of a receiver operating 

characteristic (ROC) curve was similar in the test and training sets, suggesting that the 

models had not been over-fitted. (Figure 3.9 plots the AUCs derived from the training 

set, and Figure 3.10 plots the AUCs derived from the test set.) 
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Figure 3.9. Receiver operating characteristic (ROC) curves for analyses of clumped functional 
variables and high-confidence GWAS hits using the training set  

This plot is similar to the plot obtained from the separate test set, Figure 3.10.  

 

We found that the ROC curves for both the separated and clumped analyses had similar 

AUCs: for instance 0.58 in the test set for the non-phenotype specific clumped analysis 

and 0.59 in the test set for the separated analysis.  

Two analyses emerged as most predictive based on integrating results from ROC curves, 

positive predictive values, and histograms of the probabilities of causality (the prediction 

scores). These were the analyses based on non-phenotype specific and the autoimmune 
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GWAS analyses. Best results were obtained from analyses using high-confidence GWAS 

hits. Results for clumped and separated functional variables were very similar (Table 3.5 

and Figure 3.10).  

Table 3.5. Areas under fitted ROC curves 

AUCs for analyses using the high-confidence GWAS hits. Values in parentheses are for all SNPs in the GWAS 

Catalogue.  

 

 

  

Non-

phenotype 

specific 

Brain-

related Cancer Cardiovascular Autoimmune 

N 4480 (8219) 530 (1741)  300 (607) 369 (716) 570 (863) 

AUC 

clumped 0.68 (0.58) 0.62 (0.52) 0.67 (0.60) 0.69 (0.61) 0.71 (0.67) 

AUC 

separated 0.70 (0.59) 0.61 (0.51)  0.68 (0.60)  0.66 (0.61) 0.75 (0.71) 
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Figure 3.10. Receiver operating characteristic (ROC) curves for analyses of clumped functional 
variables and high-confidence GWAS hits 

ROC curves were obtained from a separate test set. 

 

The numbers of hits and non-hits in the test sets are reported in Table 3.6. 
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Table 3.6. The number of hits and non-hits in the test set sets for the analyses of clumped 

functional variables and high-confidence GWAS hits. 

  

 

We also investigated positive predictive values (PPVs) and histograms of the probability 

of causality (prediction score). PPV estimates could not be obtained due to insufficient 

data (a limited number of true hits correctly identified as hits at a particular prediction 

value threshold) for the phenotype specific analyses since these analyses contain only a 

subset of all GWAS hits. As a result, PPVs were only plotted for the non-phenotype 

specific analyses (Figure 3.11). PPVs appear to be highest for the analysis using all 

GWAS hits compared to the analysis using the high-confidence hits when defining hits as 

those variants with a prediction score of greater than 0.5, 0.6, or 0.7. There was 

insufficient data at the higher thresholds for declaring a positive hit for the analysis based 

on all GWAS hits. Yet sufficient data was available at the higher prediction value 

thresholds for the analysis using the subset of high-confidence hits, demonstrating a 

broader spread in prediction values for that analysis compared to the analysis on all 

GWAS hits.  

Hits Non(hits
Brain 144 32723
Cardiovascular 154 33346
Cancer 130 33370
Autoimmune 234 33266
Non(phenotype@specific 1292 30135
Non(phenotype@specific(@all@Catalogue 3405 30039



 

 

 

 

 

 

 

82 

 

Figure 3.11. Proportion of correctly identified hits in the test data (positive predictive values) 

In the non-phenotype specific analyses at various cut-offs for defining hits: SNPs with predictive values of 

greater than 0.5, 0.6, 0.7, 0.8, or 0.9. Note that results are only plotted for those predictive value thresholds 

in which there are at least 11 hits correctly identified. 

Histograms of the probability of causality in the test data allowed visualization of the 

separation (or non-separation) of true hits versus non-hits. We found that for the non-

phenotype specific analysis and for the autoimmune analysis, the use of high-confidence 

GWAS hits in the training data improved the separation of true hits from non-hits in the 

test data (Figure 3.12).  
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Figure 3.12. Predicted values for true GWAS hits and non-hits in the test data 

Panels show results of clumped-variable analyses on high-confidence GWAS hits for brain-related [a], 

cardiovascular [b], cancer [c], autoimmune [d], and non-phenotype specific hit sets [e], and for all hits in 

the GWAS Catalogue for the non-phenotype specific hit set [f]. 

The results from the histograms of the predicted values showed a broader spread in the 

non-phenotype specific clumped analysis on high-confidence GWAS hits compared to 

the analysis using all hits. The former separated true hits from non-hits better than the 

latter, with the modes of the two distributions distinct. These results suggest that the 

weighted elastic net procedure was successful in producing models that performed well in 

identifying true hits as well as in identifying true non-hits. While we could not obtain 

reliable PPV estimates for the autoimmune analysis due to insufficient data, the 

separation of non-hits from hits in the histogram was taken as sufficient evidence that the 
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high area under the ROC curve for the autoimmune clumped analysis was also due to 

positive predictive power.  

Results will only be provided for the non-phenotype specific and the autoimmune 

clumped analyses, the two models that were deemed to be reliable based on the predictive 

accuracy measures. For the non-phenotype specific clumped analysis, the highest Bayes 

factor for annotation (11.95) was obtained for rs11177, which is a known GWAS hit 

associated with osteoarthritis on chromosome 3. It had a predicted value of 0.93. This 

SNP or its proxies held all functional annotations except three low-frequency 

annotations: splice sites, miRNA targets, and Gencode transcription start sites. This SNP, 

which results in a missense change in the GNL3 gene, has 218 LD proxies (defined as 

SNPs with an r2 of ≥0.8 with rs11177 that are present in Phase I of the 1000 Genomes 

Project). Of the proxies, the majority of them (203; 93%) are intronic.  

Nine percent of the variants with the top 500 Bayes factors were known GWAS hits. The 

frequency of hits in the test set data was 4.1%. The mean and median of the predicted 

values for the true hits in the test set were higher than those for the true non-hits (for hits: 

mean= 0.54, standard deviation=0.13 and median= 0.54; for non-hits: mean= 0.46, 

standard deviation=0.12 and median= 0.44). 

For the autoimmune clumped analysis, the SNP with the highest Bayes factor was the 

same as for the non-phenotype specific clumped analysis, rs11177.  

 

3.4.4 Investigation of the relative importance of different functional 
annotations 

The importance of a particular functional annotation in predicting whether or not a SNP 

is more probable to be a GWAS hit is assessed by means of the magnitude of the 

coefficient assigned to the annotation. In both the non-phenotype specific and 
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autoimmune analyses we note that the nonsynonymous SNP functional annotation had 

one of the highest coefficients (Figure 3.13).  

 

Figure 3.13. Coefficients of the functional annotations for the two best analyses 

The figure shows the coefficients from the clumped analysis on high-confidence GWAS hits for the non-

phenotype specific versus the autoimmune model. 

 

The coefficients for the non-phenotype specific model are provided in Table 3.7, and the 

coefficients for the autoimmune model are provided in Table 3.8. Confidence intervals 

cannot be easily calculated for coefficients from elastic net, and so to estimate standard 

error for the coefficients we performed multivariate logistic regression (see the right 

columns in Table 3.7 and Table 3.8). GTEx eQTLs had the highest coefficient in the 

autoimmune analysis. 
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Table 3.7. Coefficients from elastic net and multivariate logistic regression for the non-

phenotype-specific analysis 

Coefficients for the non-phenotype-specific analysis defining hit SNPs as those SNPs in the GWAS Catalogue with a 

p-value of less than 5x10-8. The coefficients for the multivariate logistic regression are shown in order to provide 

estimates of error for the coefficients, which is not possible for elastic net. 

  Non-phenotype specific 

 

Elastic net Multivariate logistic regression 

 Coefficient Coefficient p-value Standard error 

Splice 0 -3.45E-02 0.0556 1.80E-02 

PhastCons 0 1.86E-04 0.94 2.48E-05 

H3k4Me1 0 -8.87E-03 3.30E-04 2.47E-03 

miRNA 0 7.77E-03 0.92 7.53E-02 

Gencode-Txnstart 0 -4.22E-02 0.62 8.55E-02 

PhyloP 2.70E-03 1.98E-04 6.34E-14 2.63E-05 

H3k27Ac 0.1 8.16E-03 1.10E-03 2.50E-03 

UCSC Genes 0.16 9.48E-03 7.08E-08 1.76E-03 

UK Brain eQTLs 0.27 2.84E-02 < 2.0E-16 2.96E-03 

H3K4Me3 0.33 2.06E-02 < 2.0E-16 2.32E-03 

TFBS 0.34 1.88E-02 < 2.0E-16 1.84E-03 

DNase I 0.35 3.10E-02 < 2.0E-16 2.26E-03 

GTEx eQTLs 0.72 0.13 < 2.0E-16 9.54E-03 

Nonsynonymous 1.3 0.26 < 2.0E-16 7.99E-03 
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Table 3.8. Coefficients from elastic net and multivariate logistic regression for the 

autoimmune-specific analysis  

Coefficients for the autoimmune-specific analysis defining hit SNPs as those SNPs in the GWAS Catalogue with a p-

value of less than 5x10-8. The coefficients for the multivariate logistic regression are shown in order to provide 

estimates of error for the coefficients, which is not possible for elastic net. 

  Autoimmune 

 

Elastic net Multivariate logistic regression 

 Coefficient Coefficient p-value Standard error 

miRNA 0 -1.39E-02 0.61 2.74E-02 

Gencode-Txnstart 0 -2.54E-02 0.41 3.11E-02 

PhastCons 2.00E-04 1.25E-05 0.16 8.85E-06 

H3k4Me1 -6.20E-03 -2.24E-03 0.01 8.79E-04 

PhyloP 2.00E-03 1.92E-05 0.84 9.41E-06 

UCSC Genes 1.20E-03 -2.64E-04 0.67 6.27E-04 

UK Brain eQTLs 0.14 3.50E-03 9.90E-04 1.06E-03 

H3k27Ac 0.24 2.00E-03 0.02 8.88E-04 

H3K4Me3 0.38 3.95E-03 1.60E-06 8.24E-04 

DNase I 0.45 5.89E-03 3.30E-13 8.09E-04 

TFBS 0.46 3.36E-03 2.80E-07 6.54E-04 

Splice 0.48 8.23E-03 0.21 6.53E-03 

Nonsynonymous 0.87 2.71E-02 < 2.0E-16 3.06E-03 

GTEx eQTLs 1.04 2.70E-02 4.30E-15 3.44E-03 
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3.4.5 Sensitivity analysis- classification 

The resulting AUCs and Beta coefficients from the analysis in which hits were defined as 

the subset of the non-phenotype specific 5x10-8 hits minus those hits used in the 

phenotype-specific analyses (autoimmune, brain-related, cancer and cardiovascular) were 

very similar to the results from the 5x10-8 non-phenotype specific analysis. The results 

suggest that the non-phenotype specific analysis was not being driven variants from one 

of the larger phenotypes. 

3.4.6 Investigating functional predictions in the context of known 
GWAS  

We investigated: schizophrenia (SZ) from a meta-analysis GWAS involving the first 

sample from the Psychiatric Genomics Consortium (PGC1) combined with a Swedish 

sample (Ripke et al., 2013), systolic blood pressure (SBP) from the International 

Consortium for Blood Pressure (ICBP) (Ehret et al., 2011), and height from Genetic 

Investigation of Anthropomorphic Traits (GIANT) Consortium (Lango Allen et al., 

2010). The studies analyzed over 35,000 cases and 47,000 controls, 200,000 individuals, 

and over 180,000 individuals, respectively. (The significant hits from these studies were 

not included in the respective models.) 

For each study, we stratified the quantile-quantile plots according to predicted value bins 

(Figure 3.14). We found that SNPs with higher predicted values from the non-phenotype 

specific clumped analysis tended to deviate more from the line corresponding to the 

overall GWAS, in favour of more association signals. Similar results were obtained for 

all three GWAS analyzed: schizophrenia, systolic blood pressure and height.  
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Figure 3.14. Quantile-quantile plots stratified by predicted values for SNPs in real GWAS 

All GWAS SNPs (in grey) for a schizophrenia GWAS from PGC1 with a Swedish sample [a], a systolic 

blood pressure GWAS from ICBP [b], and a height GWAS from GIANT [c]. The non-grey lines show 

plots for SNPs binned according to their predicted value from the non-phenotype specific model. 

The pattern remained when only the GWAS SNPs present in the test set were plotted, and 

also when prediction values were obtained from models derived from excluding the 

genome-wide significant SNPs in the training set for each GWAS respectively. 

We obtained summary data obtained from a psoriasis GWAS study from Strange et al. 

(2010). We then selected 15 SNPs that were subsequently discovered in a meta-analysis 

(Tsoi et al., 2012). Using summary association statistics from the Strange et al. study we 

derived Bayes factors for association (BFassoc) and Bayes factors based on association 

data combined with the annotation of functional annotations (BFassoc*BFannot) for each 

SNP. We ranked the SNPs according to BFassoc, and ranked them again according to 

BFassoc*BFannot to determine whether annotating SNPs with their functional annotations 
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improved their rank (larger Bayes factors were assigned smaller ranks). BFannot values 

were derived from the non-phenotype specific clumped analysis using high-confidence 

GWAS hits. As negative controls, we took 12 independent sets of a random 15 SNPs 

(which were not in high LD with any of the 15 hits and had similar p-values to the hits) 

and compared the difference in the sum of ranks based on BFassoc versus BFassoc*BFannot. 

The procedure was repeated using BFannot derived from the autoimmune clumped 

analysis. 

Of the 15 true psoriasis hit SNPs, 7 had better ranks based on BFassoc*BFannot compared to 

association information on its own (BFassoc). The difference of the sum of ranks assigned 

to the 15 hits was nearly 48,000 based on BFassoc*BFannot compared to BFassoc, with the 

former having the lower sum (better ranks). Many of the hit SNPs had very large ranks 

based merely on the association data (>3,000), which was also the case for ranks based 

on BFassoc*BFannot, but the trend was in the right direction with better ranks obtained when 

combing the association information with the annotation of functional annotations. Of the 

12 random sets of 15 independent SNPs, the trend was in the opposite direction for 10 of 

the sets (with SNPs having better ranks based on BFassoc alone). Of the remaining 2 sets, 

one of them had the same number of the SNPs with improved ranks based on 

BFassoc*BFannot compared to BFassoc as did the analysis with the actual hits (7 out of 15), 

and the other random set had 8 SNPs that showed improvement. However, for those 

random SNP lists the difference in the sum of ranks from BFassoc compared to 

BFassoc*BFannot was less than half of the improvement of ranks seen for the 15 hits. 

Comparable results were seen when using BFassoc based on the autoimmune clumped 

analysis. The difference between the sum of the ranks for BFannot compared to 

BFassoc*BFannot was over 49,000, with improved ranks of the hits based on the 

BFassoc*BFannot ranks. Of the random lists the largest difference in the sum of ranks from 

BFassoc compared to BFassoc*BFannot was less than a third of the improvement of ranks 

seen for the 15 hits. 
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3.5 Discussion 

The release of major genome-wide datasets such as ENCODE and NIH Roadmap 

projects, offers an excellent opportunity to re-assess the existing GWAS corpus and draw 

conclusions about which functional annotations in the human genome are most likely to 

indicate causality in association studies. We previously considered Bayes factors based 

on a limited set of functional annotations, considering each functional annotation 

separately (Knight et al., 2011). Here we have extended our Bayesian framework by 

developing Bayes factors for multiple functional annotations, considering all functional 

annotations jointly. We used a regularized logistic regression to fit predictive models 

allowing for large numbers of both qualitative and quantitative functional annotation 

data. We performed our analysis under a wide variety of conditions, including phenotype 

specific analysis for autoimmune, brain-related, cancer, and cardiovascular disorders. 

Our results confirm previous findings of differences in functional enrichment in GWAS 

hits compared to non-hits, which provided a rationale for utilizing functional annotations 

as predictors of SNP causality. We found that using high-confidence GWAS hits 

(p<5x10-8) as a classifier resulted in more predictive power. However, if the number of 

GWAS hits that are available for training are too low, then the predictions become 

imprecise. This was a reoccurring theme for many of the phenotype specific analyses. 

The separation between true GWAS hits and non-hits in the test set, in addition to the 

AUC, should be used to assess the predictive power of a model. Using those methods we 

found that the non-phenotype specific and the autoimmune analyses on clumped 

variables using high-confidence GWAS hits were most reliable. For instance, although 

the AUCs were slightly higher for the separated analyses, the classification of true 

GWAS hits and non-hits was better in the clumped analysis, suggesting that the clumped 

analysis may provide more accurate predictions. The benefit of the separated analysis is 

that it allows researchers to identify annotations specific to certain conditions, for 

example specific cell types, which can be useful for planning further investigations, but 
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the increased number of variables and sparsity of the data reduces the power of this type 

of analysis.  

While our study has demonstrated that relevant functional information is indeed 

predictive for identifying GWAS hits, and that Bayes factors incorporating this functional 

information rank known GWAS hits better than Bayes factors based on association 

information alone, the improvements based on current information (for example, in the 

psoriasis GWAS we analyze) are marginal. However, we outline reasons below to argue 

that the benefit of adding functional information to analyses of causal variant discovery 

will increase in the future. 

A limitation to the study is the restricted amount of tissue- or cell-specific data, especially 

in light of the findings that enrichment of disease-specific GWAS hits can differ in 

certain cell types, for example for DNase I hypersensitive sites (Maurano et al., 2012). 

Incorporating additional functional annotations, for example those from relevant tissue 

types, will likely improve the understanding of which annotations are associated with 

GWAS hit SNPs, especially for the phenotype specific analyses. Furthermore, other 

functional annotations, such as further histone marks and other epigenetic modifications, 

could be incorporated to improve the models. 

Another limitation is that the hits and non-hits were not matched by minor allele 

frequency or base pair distance, which may partially drive differences between the 

functional annotations of the hits compared to the non-hits. As discussed the non-hit 

selection was chosen from the group of variants not in LD with a GWAS hit. A 

subsequent analysis showed that the selection of non-hits tended to have lower allele 

frequencies compared to the hits (Figure 3.15). 
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Figure 3.15. Violin plot showing the minor allele frequency distribution between the hits and non-
hits. 

This plot shows data for 4,480 GWAS hits and 75,341 randomly selected non-hits, defined as not being in 

LD with a hit. Mann-Whitney U p-value < 2.2 x 10-16. 

Furthermore, SNPs with higher MAF may be thought to have more LD proxies. 

However, an investigating this hypothesis showed that there is no correlation between the 

number of LD proxies and MAF (Figure 3.16). 
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Figure 3.16. Number of LD proxies versus minor allele frequency distribution for SNPs on 
chromosome 22. 

The correlation between the two measures was 0.03. Only chromosome 22 shown for computational 

efficiency. 

 

The current number of GWAS hits in the GWAS Catalogue makes it challenging to sub-

divide hits into phenotype specific traits. However, preliminary results showing 

differences in the coefficients for the functional annotations suggest that as the number of 

GWAS hits grows, a phenotype specific approach from which to derive Bayes factors for 
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prioritization could be more biologically relevant than simply an approach that combines 

all GWAS hits together. Interestingly, although it was one of the largest lists, the brain-

related list did not have a greater predictive power than expected by chance. This finding 

only serves to reinforce the widely appreciated complexity of brain-related disorders. 

Nevertheless, schizophrenia GWAS significant SNPs showed enrichment of SNPs with 

high predicted values from the model, as did SNPs associated with systolic blood 

pressure or height. 

Using manually curated phenotype lists as done here may not be the best option. Using 

lists that are more reproducible, such as those based on the Experimental Factor Ontology 

(EFO) definitions, may be more appealing. However, most of the lists created using the 

EFO definitions were relatively small, covering less than 10% of the total GWAS hits on 

the common genotyping arrays, and thus this method of classifying GWAS hits was 

deemed to be not feasible, but may be possible in the future as the size of GWAS 

Catalogue grows still larger.  

The coefficient for SNPs was the highest in the non-phenotype specific analysis and a 

close second in the autoimmune analysis. This result suggests that being a variant in a 

gene that causes a protein alteration is an important indicator of whether or not a genetic 

variant will be truly associated with a phenotype. The result agrees with the findings that 

the top associated SNPs and also those that are nominally associated with a phenotype are 

more likely to overlap genes than non-GWAS SNPs (Tang and Ferreira, 2012). Our 

analysis appears to underscore the primacy of variation as a leading mediator of 

functional variation in the human genome. Although this result is perhaps unsurprising, it 

lends support to many of the gene-focused, rare-variant strategies that have been recently 

employed (for example: Barrans and Liew, 2006; Cortes and Brown, 2011; Voight et al., 

2012). However, depending on the inclusiveness of promoter regions in chip design, 

these strategies may or may not capture other high scoring variant types, such as eQTLs 

and histone marks, which collectively account for more GWAS hits than variants alone. 
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These patterns highlight a possible need for follow-up on non-coding variation chips. 

GTEx eQTLs came up as the most important factor in the autoimmune analysis. Two of 

the experiments analyzed eQTLs from lymphoblastoid cells, which may explain the 

importance of this functional annotation in the autoimmune traits.  

We have shown that our method can be used to calculate Bayes factors for annotation 

(BFannot). These can be applied to GWAS data to prioritize near-significant variants for 

follow-up based on the likelihood of being causal in light of their functional annotations. 

The method takes LD into account, and uses information from the March 2012 release of 

the 1000 Genomes Project to map relevant annotation information from all variants in 

high LD, including both SNPs and indels. In addition to being used for variant 

prioritization of GWAS data, the methodology could be applied in the future to the 

prioritization of variants from fine mapping and sequencing studies. Here, the question 

arises as to whether the models described here, which were created based on common 

variation, could be applied to rare variation. In time, larger databases of true causal 

variation, including rare variation, will allow our method to be applied with increasing 

accuracy. 

3.6 Subsequent Developments  

Further work has involved incorporated some additional annotations into the non-

phenotype specific model using the GWAS hits with a p-value < 5 x 10-8: synonymous 

SNPs (since synonymous SNPs too can have a phenotypic effect, for instance see Buske 

et al. (2013), albeit an effect is more rare than for nonsynonymous SNPs), and super-

enhancers associated in 86 human cell and tissue samples (Hnisz et al., 2013). However, 

the addition of neither of these two annotations altered the accuracy of the model. The 

lack of effect of the synonymous annotation was not due to low frequency of 

synonymous SNPs in the full dataset, since the frequency of synonymous SNPs (0.06) 

was 10-fold higher than for nonsynonymous SNPs (0.007), and the latter was the most 

important predictor in the model. Super-enhancers (0.001) were not included in the model 
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(i.e. it was assigned a beta coefficient of 0), which may have been in part due to a low 

frequency in the full data (0.001; compare to another low frequency annotation: splice 

sites at 0.002). 

3.7 Supporting Data 

Three files are provided, not including the “README.txt”, which describes the files 

similarly to as below. “Non-phenotypespecific_BFannot.txt” is a space-delimited text file 

of Bayes Factors for Annotation (BFannot) for the non-phenotype specific analysis. The 

first row contains the headers. The rest of the rows contain information for SNPs in 1000 

Genomes EUR phase I. The meaning of the column names are as follows: rs: SNP ID, 

BFannot: Bayes Factors for Annotation (based on 14 functional annotations). 

“Non-phenotypespecific_assoc+pred.txt” is a space-delimited text file of the functional 

annotations and the prediction value for the non-phenotype specific analysis derived from 

14 functional annotations. The first row contains the headers. The rest of the rows contain 

information for SNPs in the 1000 Genomes EUR phase I. The meaning of the column 

names are as follows: bp: base position, hg19, chr: chromosome number, rs: SNP ID, bp: 

base position, hg19 (same as column 1). 

The next 14 columns are the functional annotations (splice, nonsynonymous, DNase_I, 

GTEx_eQTLs, UK_Brain_eQTLs, PhyloP, PhastCons, H3K4Me1, H3K4Me3, 

H3K27Ac, TFBS, miRNA, Gencode_Txnstart). 1= the SNP has the functional annotation 

or it is in high LD (r2≥0.8) with a SNP that does; 0= neither the SNP nor its high LD 

proxies have the functional annotation.  

The second last column (cls) is classifier where 1= GWAS "hit" (p<5x10-8 in NHGRI 

GWAS Catalogue http://www.genome.gov/gwastudies/ as of Aug. 6, 2013) and 0 = "non-

hit". The final column in the file (pred) is the prediction score (ranging from 0 to 1, where 

1 is likely to be a GWAS "hit") from the non-phenotype specific analysis. 
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“PLINK2wakefieldBF_2013.R” is an R script to calculate Bayes Factors for Association 

(BFassoc) based on GWAS summary data. 

All files and also the elastic net R code are available on GitHub (and linked to Zenodo at 
http://dx.doi.org/10.5281/zenodo.34268). 
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Chapter 4  
A Review of Predictive Accuracy Measures that can be 

Applied to Models for Prioritizing Risk Variants Based on 
Functional Information 

 

 

 

 

 

 

 

 

 

 

 

 

 

This section is modified from the following: Gagliano SA, Paterson AD, Weale ME, 

Knight J (2015). Assessing models for genetic prediction of complex traits: a comparison 

of visualization and quantitative methods. BMC Genomics 16(1):405. 
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4  

4.1 Abstract 

Background: In silico models have recently been created in order to predict which genetic 

variants are more likely to contribute to the risk of a complex trait given their functional 

annotations. However, there has been no comprehensive review as to which type of 

predictive accuracy measures and data visualization techniques are most useful for 

assessing these models.  

Methods: We assessed the performance of the models for predicting risk using various 

methodologies, some of which include: receiver operating characteristic (ROC) curves, 

histograms of classification probability, and the novel use of the quantile-quantile plot. 

These measures have variable interpretability depending on factors such as whether the 

dataset is balanced in terms of numbers of genetic variants classified as risk variants 

versus those that are not.  

Results: We conclude that the area under the curve (AUC) is a suitable starting place, and 

for models with similar AUCs, violin plots are particularly useful for examining the 

distribution of the risk scores. 

4.2 Introduction 

The risk of developing a complex trait is influenced by many genetic variants, possibly 

hundreds, in combination with environmental factors. Genome-wide association studies 

(GWAS) have had success in identifying some of the genetic risk factors involved in 

complex traits, but more remain to be discovered. Recently, there have been several in 

silico attempts at utilizing epigenetic and genomic data to prioritize genetic risk variants. 

These methods simultaneously incorporate multiple lines of genomic and epigenomic 

data to identify potential risk variants from all variants (Gagliano et al., 2014a; Iversen et 

al., 2014; Kindt et al., 2013; Kircher et al., 2014; Pickrell, 2014; Ritchie et al., 2014).  
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A variety of predictive accuracy measures and data visualization techniques have been 

used (Table 4.1) to assess these models for prioritizing genetic variants. An example is 

the area under the curve (AUC) from the receiver operating characteristic (ROC) curve, 

which is generally accepted as a measure of how closely the prediction values reflect the 

true class. Such methods have previously been employed to predict diagnosis of an 

individual (risk of developing Type II Diabetes (Janipalli et al., 2012; Lango et al., 2008; 

Xu et al., 2010), for example), but have only recently been applied to predict whether 

genetic variants are likely to be risk variants. 

Table 4.1. Predictive accuracy measures in the literature for models for prediction of 

variants associated with complex traits. 

* reports “Concordance index”, which is equivalent to the area under the ROC curve 

 

We will utilize test set data from a regularized logistic model that predicts genetic risk 

variants on the basis of a large multivariate functional dataset (Gagliano et al., 2014a). 

We investigate the utility of several approaches for assessing predictive accuracy and 

data visualization. Based on observations from this work we conclude with suggested 

guidelines to aid researchers when assessing models for genetic variant prediction.  

	
   	
   	
   Predictive	
  accuracy	
  measures	
  employed	
  
	
   Algorithm	
   Classifier	
   Area	
  under	
  

ROC	
  curve	
  
Positive	
  
Predictive	
  
value	
  

Box	
  
plot	
  

Histo-­‐	
  
Gram	
  

Violin	
  
plot	
  

Mann-­‐Whitney	
  U	
  /	
  
Wilcoxon	
  Rank	
  
Sum	
  test	
  

Gagliano	
  
et	
  al.	
  2014	
  

Modified	
  
Elastic	
  net	
  

GWAS	
  hits	
  
vs.	
  non-­‐
hits	
  

x	
   x	
   	
   x	
   	
   	
  

Iversen	
  et	
  
al.	
  2014	
  

Penalized	
  
logistic	
  	
  	
  	
  	
  	
  	
  
regression	
  	
  

GWAS	
  hits	
  
vs.	
  non-­‐
hits	
  

x*	
   	
   	
   	
   	
   	
  

Kircher	
  et	
  
al.	
  2014	
  

Support	
  
Vector	
  
Machines	
  

High-­‐
frequency	
  
human-­‐
derived	
  
alleles	
  vs.	
  
simulated	
  
variants	
  	
  

x	
   	
   	
   	
   x	
   x	
  

Ritchie	
  et	
  
al.	
  2014	
  

Modified	
  
Random	
  
Forest	
  

HGMD	
  hits	
  
vs.	
  non-­‐
hits	
  

x	
   	
   x	
   	
   	
   x	
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Three broad categories of predictive accuracy measures will be discussed here: (1) 

concepts in describing predictive accuracy, including ROC, AUC and the confusion 

matrix (2) visualization of the distribution of prediction values, and (3) statistical tests. 

All the methods described below were conducted in R, version 3.0.2 (Hothorn et al., 

2006; Lemon, J., 2006; R Core Development Team, 2008; Sing et al., 2005). See Table 

4.2. Sample R code is available in Additional_File_1. Code and data to reproduce the 

results in this chapter are provided in Additional_File_2. Further details are embedded in 

the results. Additional files are available in Appendix C.  

Table 4.2. Predictive accuracy measures and the corresponding R package in which they 

can be computed. 
Predictive	
  Accuracy	
  Measure	
   R	
  package	
   Version	
  	
  
(1)	
  The	
  confusion	
  matrix	
  
Receiver	
  Operating	
  Characteristic	
  Curve	
  
and	
  area	
  under	
  the	
  curve	
  

prediction	
  and	
  performance	
  in	
  ROCR	
  (Sing	
  et	
  al.,	
  
2005)	
  
performance(prediction.object,	
  "auc")	
  

1.0-­‐7	
  

Positive	
  predictive	
  value	
  and	
  negative	
  
predictive	
  value	
  

prediction	
  and	
  performance	
  in	
  ROCR	
  
performance(prediction.object,	
  "ppv")	
  
performance(prediction.object,	
  "npv")	
  

1.0-­‐7	
  

(2)	
  Visualization	
  of	
  the	
  distribution	
  of	
  prediction	
  values	
  	
  
Histograms	
  of	
  the	
  prediction	
  values	
  
separated	
  by	
  class	
  

multhist	
  in	
  plotrix	
  (Lemon,	
  J.,	
  2006)	
   3.5-­‐11	
  

Box	
  plots	
   	
   boxplot	
  in	
  graphics	
   Base	
  
package	
  

Violin	
  plots	
   vioplot	
  in	
  vioplot	
   	
  
Quantile-­‐quantile	
  plots	
   qqplot	
  in	
  stats	
   Base	
  

package	
  
(3)	
  Statistical	
  tests	
  
Hypergeometric	
  test	
   phyper	
  in	
  stats	
   Base	
  

package	
  
Mann-­‐Whitney	
  U	
  test	
   wilcox.test	
  in	
  stats	
   Base	
  

package	
  
Asymptotic	
  Generalized	
  Cochran-­‐Mantel-­‐
Haenszel	
  Test	
  

cmh_test	
  in	
  coin	
  (Hothorn	
  et	
  al.,	
  2006)	
   1.0-­‐24	
  

 

4.3 Dataset and models 

The example dataset and model are described in detail previously (Gagliano et al., 2014a) 

and are only described briefly here. Genetic variants from common genotyping arrays 

were annotated for 14 functional annotations (twelve of which are binary and two are 
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quantitative), many of which are from the ENCODE Project, with data from various cell 

types merged (un-weighted) into a single variable for each annotation. All functional 

annotations could be presented in a binary presence/absence format with the exception of 

two types conservation scores, which remained on a quantitative scale. A regularized 

logistic model, capable of handling correlated predictor variables, was used. A random 

60% of the genetic variants were assigned to the training set to determine the parameters 

of the model, and the remaining variants were reserved for the independent test set to 

evaluate the accuracy of the model. All models produced a prediction value ranging from 

0 to 1 for each genetic variant, with values close to 1 implying high probability of the 

variant contributing to risk. Due to the unbalanced nature of the data a weighting 

procedure that equalizes the importance of hits and non-hits in the training set was 

employed. Hits were weighted by (Nhits+Nnon-hits)/2Nhits and all non-hits by (Nhits+Nnon-

hits)/2Nnon-hits, where Nhits and Nnon-hits denote the number of hits and non-hits, respectively, 

in the training set (Gagliano et al., 2014a). Without this weighting scheme, all variants 

are assigned low prediction values although the model still retains comparable overall 

accuracy. Overall accuracy may not be representative of accuracy within classification 

groups, which is the main problem with unbalanced data. As well as using the weighting 

scheme to ameliorate this issue in our example data we discuss other matters to be 

considered in relation to the accuracy and data visualization methods described.  

For model 1, variants were classified as being hits if present in the genome-wide 

association study (GWAS) Catalogue published by the National Human Genome 

Research Institute (Hindorff et al., 2010) downloaded on August 6, 2013. The GWAS 

Catalogue reports variants found to be associated with disease or quantitative trait in a 

GWAS study with a p-value <1x10-6. Variants not present in the Catalogue but present on 

common genotyping arrays were assumed to be non-hits. Three alternate classifiers were 

used to designate hits: (a) p-value < 5x10-8 (model 2), and (b) p-value < 5x10-8 for only a 

subset of phenotype specific hits namely an autoimmune (model 3) and a brain-related 

analysis (model 4). 
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In our previous work, six models were created using the alterations to the classifier 

described above. The four assessed here are the two models with the highest AUC 

(models 2 and 3) and two models with the lowest AUC (models 1 and 4). (See Table 4.3 

for descriptive statistics for the test sets of the various models.) 

Table 4.3. Descriptive statistics of the causality predictive values for the various genetic 

prediction models from Chapter 3 to be used as examples here. 

*Outliers are defined as data points outside 1.5x interquartile range (interquartile range= 75% percentile - 25% 

percentile). 

 

4.4 Results 

4.4.1 Concepts in describing predictive accuracy 

4.4.1.1 The Confusion Matrix 

Predictive accuracy is derived from a confusion matrix (Figure 4.1). The cells in the 

diagonal of the matrix are the correctly identified genetic variants. (See Chapter 4 in “An 

Introduction to Statistical Learning with Applications in R” (James et al., 2013) and 

Chapter 11 in “Statistical Learning for Biomedical Data” (Malley et al., 2011) for more 

details.) The effects of unbalanced data in un-weighted models can be detected in such a 

matrix. There would be a much larger proportion of negatives compared to positives. The 

effects on false positive rate (FPR), true negative rate (TNR), positive predictive value 

(PPV), and negative predictive value (NPV) are described in further detail below. The 

Phenotype)specific.analyses N Minimum 25%*Percentile Median Mean 75%*Percentile Maximum
Standard*
Deviation N*outliers*

Brain<related Hits 144 0.40 0.42 0.51 0.51 0.57 0.77 0.09 3
Non<hits 32723 0.40 0.40 0.46 0.48 0.53 0.79 0.07 61

Autoimmune Hits 234 0.29 0.45 0.55 0.55 0.66 0.86 0.14 0
Non<hits 33266 0.29 0.30 0.44 0.45 0.55 0.93 0.13 0

All.phenotype.analyses
p<5E<8 Hits 1292 0.32 0.44 0.54 0.54 0.62 0.92 0.13 4

Non<hits 30135 0.32 0.35 0.44 0.46 0.55 0.91 0.12 7
all*GWAS*Catalogue Hits 3405 0.44 0.45 0.50 0.51 0.54 0.81 0.06 144

Non<hits 30039 0.44 0.44 0.48 0.49 0.52 0.80 0.05 336
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confusion matrix itself is not often studied as it represents data at only one threshold. 

However both the ROC curve and PPV and NPV are used to consider model accuracy. 

 

Figure 4.1. A Confusion matrix and its relation to predictive accuracy terms.  

TPR = True Positive Rate, TNR=True Negative Rate, PPV = Positive Predictive Value, NPV= Negative 

Predictive Value. 

4.4.1.2 Receiver operating characteristic curves and area under 
the curve 

The use of ROC curves is a common way for assessing binary outcome models (Davis 

and Goadrich, 2006). ROC curves offer a global summary of machine performance at all 

possible cut-offs of prediction values for defining the two classes. In this way, the ROC is 

a summary of the model’s overall performance. ROC curves reflect the columns of the 

confusion matrix by presenting FPR (equivalent to 1-TNR)) by true positive rate (TPR), 

with the advantage of depicting these values at every threshold for defining a hit. An 

AUC = 0.5 means that the predictive accuracy of the model is not better than chance, 

whereas an AUC = 1 implies perfect predictive accuracy. (See Chapter 4 in “Road to 

Statistical Bioinformatics” (Lee, 2010) and Chapter 11 in “Statistical Learning for 

Biomedical Data” (Malley et al., 2011) for more details.)  

There typically is not just one confusion matrix (see previous section), but rather there is 

an infinite number: one for each point along the x-axis of the ROC. Thus in the context of 

a model that outputs prediction values measured on a continuous scale rather than binary 
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categories (e.g. a logistic regression model among others) one needs to decide at what 

probability level one “declares” a hit to be a hit. One could use the arbitrary value of 

greater than 0.5 as the cut-off to declare hits from non-hits, but there are other probability 

thresholds one could use, which can be summed up in a ROC curve. That is the 

conceptual difference between the AUC (average over all possible thresholds) and the 

confusion matrix itself (considers the ROC “frozen” at one particular probability 

threshold). 

It should be noted that unless a weighting scheme such as the one we employed in our 

modeling or an equal subset of both classes is chosen, ROC curves can present an overly 

optimistic view of performance for unbalanced data (Davis and Goadrich, 2006). If the 

model simply assigns all variants to the non-hit class then it will appear to do well, for 

instance with an AUC much larger than 0.5. In this way, the larger class (non-hits) can 

overwhelm the smaller class (hits). The TPR thus tends to be low throughout the 

thresholds. 

In the example data, the AUC of two of the models (autoimmune and all phenotype for 

the high confidence hits) were very similar and reasonably good (between 0.67 and 0.71) 

(see Figure 4.2). The AUC for the other two models (the all phenotype using all 

Catalogue hits and the brain-related models) were also similar to each other, but poor 

(less than 0.61). Thus, the AUC seems to categorize models as either good or poor, but is 

not particularly useful for finer discrimination between models. (See Chapter 11 in 

“Statistical Learning for Biomedical Data” (Malley et al., 2011) for details on the 

limitations of ROC curves.) Below we demonstrate that additional investigation provides 

further insight into the results. 
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Figure 4.2. ROC curves for the four models.  

 

The precision-recall curve has been proposed to be more appropriate than the ROC for 

unbalanced data (Davis and Goadrich, 2006). Precision is equivalent to positive 

predictive value (discussed in the next section) and recall is equivalent to true positive 

rate (Vihinen, 2012). In this way, the curve depicts information from three of the four 

cells in the confusion matrix, all of the cells except the true negative cell. An ideal 

precision-recall curve has data in the top right corner of the plot. Results with the data 

here (Figure 4.3) suggest that none of the models are performing particularly well, 

suggesting that the ROC AUCs may be driven by the correct identification of the larger 

class (non-hits). 
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Figure 4.3. Precision-recall curves for the four models.  

 

4.4.1.3 Positive and negative predictive values  

The rows of the confusion matrix are represented by PPV and NPV. PPV is the 

probability of variants that are true hits being correctly classified as hits, and NPV is the 

probability of variants that are true non-hits being correctly classified as non-hits at any 

one given threshold. (See Chapter 4 in “Road to Statistical Bioinformatics” (Lee, 2010) 

for details.) PPV and NPV are also affected by the class imbalance inherent in real 

genetic association data. The effect of imbalanced data on PPV and NPV has been 
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previously described (Vihinen, 2012). In scenarios where the negative class is larger than 

the positive class, NPV is inflated and PPV is lower compared to the corresponding 

model where the class sizes are equal and the negative and predictive classes have the 

same rate of correct predictions (Vihinen, 2012). These values are best when there are 

equal amounts of data in each category (Vihinen, 2012). The issue is that cell sizes of the 

confusion matrix can become too small for the smaller class (hits). One needs to ensure 

that there is a large enough quantity of hits and/or non-hits per cell in the confusion 

matrix to draw conclusions. Otherwise, results will be driven by a very small 

unrepresentative subset of the data. For the models considered here, only the two all 

phenotype analyses had an adequate amount of samples in each cell, and thus PPV and 

NPV were only calculated for those models. The NPV tended to be high (>0.899) at all 

the various prediction value thresholds chosen to define the two classes. See Table 4.4. 

However, it is the accuracy of predicting the hits, not the non-hits, which is of interest in 

this work. Hence, the PPV provides more interesting results. Overall, the all phenotype 

analysis using all hits in the GWAS Catalogue produced the highest PPVs as the 

threshold for declaring a positive hit increased. The highest PPV (30.4%) was achieved 

for this model at the threshold defining hits as those variants with prediction values 

greater than 0.7. PPV results conflict between the AUC results. For the two all phenotype 

models, the one with the higher AUC (the model for the GWAS hits in the Catalogue 

with the stringent p-value cut-off) had overall lower PPV compared to the model using all 

GWAS hits in the Catalogue. NPV results for the two models were similar, but the model 

based on all GWAS hits in the Catalogue had slightly lower NPV compared to the 

stringent p-value model.  

Table 4.4. Positive predictive and negative predictive values at various prediction value 

cut-offs for the two all phenotype analyses. 
	
   Positive	
  Predictive	
  Values	
   Negative	
  Predictive	
  Values	
  
Prediction	
  value	
  
cut-­‐off	
   p<5E-­‐08	
  hits	
  

all	
  GWAS	
  hits	
  in	
  
Catalogue	
  

p<5E-­‐08	
  hits	
   all	
  GWAS	
  hits	
  in	
  
Catalogue	
  

0.5	
   0.069	
   0.128	
   0.968	
   0.915	
  
0.6	
   0.094	
   0.226	
   0.956	
   0.903	
  
0.7	
   0.198	
   0.304	
   0.948	
   0.899	
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4.4.2 Visualization of the distribution of prediction values 

4.4.2.1 Histograms 

Next, class separation was investigated through histograms of the prediction values 

outputted from the models, which display differences in the density distribution between 

the two classes. Known hits were plotted in black and non-hits in grey on the same plot, 

with the y-axis being probability densities, rather than numerical quantity, which masks 

the data imbalance and thus allows for comparison between the two classes. The all 

phenotype model with high confidence hits (Figure 4.4) and the autoimmune model 

showed the most evidence of having two separate distributions. Although the 

distributions of the prediction values for the hits and the non-hits overlap, the distribution 

of the non-hits has the majority of its values closer to the 0 end of the prediction value 

range. Confirming the AUC results, the brain-related model and all phenotype model 

using all Catalogue hits (Figure 4.4) do poorly with regard to class separation.  
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Figure 4.4. Histogram of predictive values for the all phenotype models with a bin size of 0.05. 

Compare to Figure 4.5 with a bin size of 0.1. For the probability densities, the sum of the area under the 

black bars adds up to one. The same is true for the grey bars. The ideal plot would have two non-

overlapping distributions with the distribution of the grey bars closest to 0 and the distribution of the black 

bars close to 1.  

As always, caution is warranted since the visualization of the distributions differ 

depending on the bin size chosen (compare Figure 4.4 to Figure 4.5). For the histograms 

with a larger bin size differences in distributions between hits and non-hits at a finer scale 

is less apparent, and the distributions look more similar compared to if a smaller bin size 

is used. 
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Figure 4.5. Histogram of predictive values for the all phenotype models with a bin size of 0.1.  

Compare to Figure 4.4 with a bin size of 0.05. For the probability densities, the sum of the area under the 

black bars adds up to one. The same is true for the grey bars. The ideal plot would have two non-

overlapping distributions with the distribution of the grey bars closest to 0 and the distribution of the black 

bars close to 1. The bin size is 0.1. 

4.4.2.2 Box and whisker plots 

Box plots were constructed to visually compare the distributions of the hits versus the 
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descriptive data present in Table 4.4 (above), notably differences in the median between 

the two classes. Again the data imbalance is masked as the summaries presented in the 
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classes, signifying that for both hits and non-hits had predictions that were a large 

distance from the predictions of other variants in the respective class. Additionally, the 

mean prediction scores for the hits and the non-hits appear very close for the all 

phenotype model for all variants in the GWAS Catalogue. 

 

 

Figure 4.6. Box and whisker plots for the four models. 

The line in the box is the median, and the box outlines the 25% and 75% percentiles. Outliers are shown as 

individual data points if the value is 1.5 times the interquartile range (IQR). The lower and upper whiskers 

on the plot represent the 25% percentile minus 1.5*IQR and the 75% percentile plus 1.5*IQR, respectively. 

If the data does not extend as far as those calculated ranges, then the whisker is plotted at the value of the 

minimum or maximum data point. 

4.4.2.3 Violin plots 

Violin plots visually combine the density differences depicted in the histograms and the 

median differences depicted in the box plots into one plot. These plots summarize the 
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results of the histograms and box plots. Furthermore, they are comparable to a histogram 

with infinitely small bin sizes. See Figure 4.7. 

 

Figure 4.7. Violin plots of the predictive values for the four models. 

 

4.4.2.4 Quantile-quantile plots 

A final visualization method, the quantile-quantile plot was explored. See Figure 4.8. 

The quantile-quantile plot is often used in the context of GWAS, but it also has the 

potential to be useful as a predictive accuracy measures. Instead of expected and 

observed p-values on the axes as is done in GWAS, we plotted the prediction values for 

non-hits on the x-axis and the values for the hits on the y-axis. Plotted in this way, the 

plot compares the quantiles of the hits to the non-hits. When the data points on the plot 

deviate above the diagonal, the hits have higher prediction values compared to non-hits in 

that quantile. Due to a limited number of hits, the quantile-quantile plots for the 
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phenotype-specific analyses produced a staircase pattern. This pattern suggests two 

characteristics: those models are assigning the same prediction value to several variants, 

and also there are not enough hits to create a smooth curve. The former could be due to 

there being different variants that have been assigned identical or similar functional 

annotations. The models are binning variants together and are not able to differentiate 

them on a finer scale. The small sample size for the phenotype specific analyses, makes it 

difficult to draw conclusions from those quantile-quantile plots. For the two all 

phenotype analyses, the quantile-quantile plots supported the findings from the other 

visualization methods that the high confidence all phenotype analysis separated hits from 

non-hits better than the analysis based on hits from the GWAS Catalogue. For the all 

phenotype model based on the high confidence hits, the distribution consistently deviated 

from the diagonal. The distribution demonstrates that the hits had higher prediction 

values than non-hits in the same quantiles. The all phenotype analysis based on all hits in 

the GWAS Catalogue produced a quantile-quantile plot that closely followed the line for 

prediction values less than 0.6. This group of prediction values contained most of the data 

since from the histograms it was determined that the distribution of the prediction values 

is skewed so that most of the data fall in the lower percentiles. The distribution deviated 

from the diagonal roughly in the prediction value range of 0.6 and 0.7.  
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Figure 4.8. Quantile-quantile plots for the four models. 

 

4.4.3 Statistical tests 

4.4.3.1 Hypergeometric test  

The hypergeometric test was also used to identify significant enrichment of hits 

compared to non-hits in particular prediction value bins by splitting the data into bin sizes 

of 0.05 ranging from less than 0.35 up to 0.95. For each model, there were effectively 13 

tests performed, one test per prediction value bin. Based on this resulting contingency 

table, significant enrichment of hits was seen for all of the models in at least one bin 

greater than 0.55 (with significant p-values ranging from 0.01 to 5.58x10-29), while no 

enrichment (all p-values greater than 0.2) was seen in bins less than 0.55. 
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4.4.3.2 Cochran-Mantel-Haenszel test 

Another test was investigated, the asymptotic generalized Cochran-Mantel-Haenszel test, 

which tests the independence of two possibly ordered factors (prediction values of hits vs. 

non-hits). As with the hypergeometric, a contingency table for hits and non-hits stratified 

by prediction value was created. Hits and non-hits were stratified independently by 

prediction values by splitting the data into bin sizes of 0.05 ranging from less than 0.35 

up to 0.95. Rather than a single test per prediction value bin as in the hypergeometric, the 

generalized Cochran-Mantel-Haenszel test is a single omnibus test per model. It looks for 

a trend across the span of prediction values. Similar to the other statistical tests explored 

in this section, significant p-values were produced for all models (p < 5.3x10-9).  

4.4.3.3 Mann-Whitney U test  

A two-sided Mann-Whitney U test can be used to determine whether or not the 

distributions of the prediction values for the hits differs significantly from that of the non-

hits. The Mann-Whitney U tests whether the ranks of the variants in the hit and non-hit 

sets differ. Significant p-values were obtained for all analyses, including those with poor 

AUCs and poor class separation; most notably the all phenotype analysis not refined to 

the high confidence hits had a Mann-Whitney p-value of 7.17x10-50. It was hypothesized 

that this significant p-value was due to the class imbalance and/or outliers. To explore 

these hypotheses, only a random subset of non-hits equal in size to the number of hits 

were selected for the Mann-Whitney U test, and in other test only outliers were removed. 

In both situations, the p-values tended to remain highly significant (Table 4.5).  
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Table 4.5. Mann-Whitney U p-values for the four models. 

 

The significant Mann-Whitney U p-values do not necessarily suggest that the hits and 

non-hits are well separated by their prediction values. Instead, the p-values are 

highlighting differences in ranks between the hits and the non-hits, which may or may not 

imply class separation. We plotted the hits and non-hits according to their ranks. In all of 

the plots, the non-hits follow a uniform distribution, whereas the hits follow a different 

distribution, roughly negatively skewed (Figure 4.9). Thus, as with enrichment according 

to the hypergeometric, and the Cochran-Mantel-Haenszel test for independence, 

differences in rank according to the Mann-Whitney U are not particularly informative 

with regard to class separation between the hits and non-hits according to their prediction 

values. 

Unaltered
n(hits)=/
n(nonhits)

No/outliers/(1.5x/outside/
25%/or/75%/percentiles)

Phenotype)specific.analyses
Brain=related 3.49E&06 0.007447 1.76E&05
Autoimmune 8.63E&28 5.26E=15 8.63E&28
All.phenotype.analyses
p<5E=08 2.08E&93 3.01E&52 3.53E&92
/all/Catalogue 7.17E&50 7.26E&27 1.37E&34

Mann/Whitney/U/p/value
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Figure 4.9. Ranked Mann-Whitney U ranks plotted separately for the hits and non-hits. 

The non-hits follow a uniform distribution, whereas the hits do not. The same pattern was observed for all 

four models. 

The statistical tests mentioned above do not explicitly measure class separation between 

hits and non-hits based on their prediction values, which is a key outcome for 

investigating the predictive accuracy of models for variant prioritization. The 

hypergeometric assesses enrichment of hits, the Mann-Whitney U tests for differences in 

ranks between the hits and non-hits, and the generalized Cochran-Mantel-Haenszel test 

evaluates independence of the hits and non-hits. Thus, significant p-values from these 

statistical tests cannot alone be taken as proof of class separation or model performance. 
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4.5 Discussion 

In this review we summarized various predictive accuracy measures related to the 

confusion matrix, visualization methods, and some statistical tests. These methods were 

described in the context of genetic models for prediction of risk variants in complex traits 

in which a class imbalance between the hits and non-hits is often inherent.  

The choice of predictive accuracy measures was partially motivated by the measures 

found in the publications described in the background as well as other measures. Note 

that two of the mentioned papers, (Kindt et al., 2013; Pickrell, 2014), both focused on 

investigating enrichment or depletion of disease- or trait-associated variants with 

particular functional and genomic features. Since the predictive accuracy measures in 

those papers did not relate to an output of a prediction value for each variant, those 

methods were not discussed further.  

In summary, the investigation above emphasizes the importance of visualizing the 

underlying distributions of the classes. The ROC curve is a good starting place, but 

visualization measures, especially violin plots, are valuable for differentiating models 

with similar AUCs. A downside of histograms is that depending on the bin size, the 

interpretation of the results may vary. With regard to box plots, these plots do not offer 

any information about density. On the other hand, violin plots are able to show density 

without the need of binning and at the same time depict the summary statistics that would 

be seen from a box plot. Caution is needed when making conclusions about model 

performance based on p-values, such as from the Mann-Whitney U test. Significant p-

values cannot necessarily be attributed to a good separation between hits and non-hits. 

Visualizing the class distribution seems to be the most informative for determining the 

predictive accuracy in these scenarios. 

All of the papers mentioned in the introduction apply their model(s) to real data to assess 

the accuracy of identifying disease-relevant genetic variants. Predictive accuracy 
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measures and visualization of the prediction values can only show model performance in 

theory. When evaluating model performance it is also vital to assess the model in real 

applications.  

4.6 Supporting Data 

The R code referred to below can be found in Appendix C, and the data files are 

available on the online version of this chapter that has been published as a paper in BMC 

Genomics: http://www.biomedcentral.com/1471-2164/16/405  

File name: Additional_File_1 

Sample R code to perform the tests mentioned in this chapter. MyData.txt: Sample output 

data from a model on which to run the code.  

File name: Additional_File_2 

R code to reproduce the results in this chapter. Autoimmune-testset.csv, Brain-testset.csv, 

Nonpheno-5e-8-testset.csv, Nonpheno-allCat-testset.csv: data files required for Code-for-

paper.R; they contain five columns: the identifier for the genetic variant, base position,  

A New Method to Prioritize Genetic Risk Variants using Functional Information 
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Chapter 5  
Comparison of Statistical Learning Methods Using 

Functional Annotations for Prioritizing Risk Variants 

 

 

 

 

 

 

 

 

 

 

 

 

 

This chapter is modified from the following: Gagliano SA, Ravji R, Barnes MR, Weale 

ME, Knight J (2015) Smoking Gun or Circumstantial Evidence? Comparison of 

Statistical Learning Methods using Functional Annotations for Prioritizing Risk Variants. 

Scientific Reports 5:13373.  
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5  

5.1 Abstract 

Although technology has triumphed in facilitating routine genome sequencing, new 

challenges have been created for the data-analyst. Genome-scale surveys of human 

variation generate volumes of data that far exceed capabilities for laboratory 

characterization. By incorporating functional annotations as predictors, statistical learning 

has been widely investigated for prioritizing genetic variants likely to be associated with 

complex disease. We compared three published prioritization procedures, which use 

different statistical learning algorithms and different predictors with regard to the 

quantity, type and coding. We also explored different combinations of algorithm and 

annotation set. As an application, we tested which methodology performed best for 

prioritizing variants using data from a large schizophrenia meta-analysis by the 

Psychiatric Genomics Consortium. Results suggest that all methods have considerable 

(and similar) predictive accuracies (AUCs 0.64-0.71) in test set data, but there is more 

variability in the application to the schizophrenia GWAS. In conclusion, a variety of 

algorithms and annotations seem to have a similar potential to effectively enrich true risk 

variants in genome-scale datasets, however none offer more than incremental 

improvement in prediction. We discuss how methods might be evolved for risk variant 

prediction to address the impending bottleneck of the new generation of genome re-

sequencing studies.  

5.2 Introduction 

Complex diseases are caused by the interplay of many genetic variants and the 

environment, and represent a considerable health burden. Genome-wide association 

studies (GWAS) have had success in identifying some genetic risk factors involved in 

complex diseases such as inflammatory bowel disease (Jostins et al., 2012) and 

schizophrenia (Schizophrenia Working Group of the Psychiatric Genomics Consortium, 
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2014). Interrogating the entire genome, exome or even selected genes through next 

generation sequencing technologies have also identified further risk variants (De Rubeis 

et al., 2014; Epi4K Consortium et al., 2013; Neale et al., 2012; Rivas et al., 2011). 

However, more disease-associated variants, hereafter called risk variants or hits, remain 

to be discovered. Some risk variants are difficult to detect by current techniques due to 

limited sample sizes and low effect size of the variants. In silico methodologies that 

integrate evidence over multiple data sources have the potential to unearth some of these 

risk variants in a cost-effective manner. The novel risk variants that are identified will 

help illuminate the genetic risk factors involved in complex diseases, which in turn could 

lead to earlier or more accurate diagnoses, and the development of personalized treatment 

options.  

Risk variants show enrichment in functional annotations, such as DNase I hypersensitive 

sites, transcription factor binding sites, and histone modifications; for example, Disanto et 

al. (2014), Maurano et al. (2012), and Schaub et al. (2012). Several groups have gone 

further with the results of enrichment by incorporating functional annotations as predictor 

variables in statistical learning frameworks to prioritize genetic variants for further study 

(Gagliano et al., 2014a; Kircher et al., 2014; Ritchie et al., 2014). These statistical 

learning algorithms use the functional annotations to define a model that provides some 

measure of whether a variant is likely to increase the risk of manifesting a complex trait. 

However, understanding the relative merits of these approaches requires a thorough 

investigation into which statistical learning algorithm and/or which combination of 

functional annotations most effectively identifies novel risk variants.  

There are many aspects to consider in the statistical learning framework (Figure 5.1). 

The genetic data input consists of both known risk variants and corresponding control 

variants (those with no evidence for risk effect); the classifier is used to discriminate 

between the two. Known risk variants may be identified from sources, such as the GWAS 

Catalogue (Hindorff et al., 2010), the ClinVar database (Landrum et al., 2014), and the 
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Human Gene Mutation Database (HGMD) (Stenson et al., 2009) as mentioned above. In 

addition, the variants can be simulated; for example, Kircher et al. used an empirical 

model of sequence evolution with local adjustment of mutation rates (Kircher et al., 

2014). In this way, the simulated variants would contain de novo pathogenic mutations. 

The goal of these methods is to identify disease-causing variants, but their application can 

differ depending on whether the data under consideration consist of densely mapped 

variants, as in sequence data, or coarsely mapped variants, as in GWAS data. The use of 

different classifiers has the effect of refining the goal, in that coarsely mapped variants 

may tag other variants in high linkage disequilibrium, and so the functional 

characteristics of these other variants should be taken into account. The methods we 

investigate have been applied to both types of data (Griswold et al., 2014; Parra et al., 

2014).  
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Figure 5.1. Various steps in the statistical learning pipeline for genetic variant prioritization using 
functional annotations, with examples outlined for each 

GWAS=Genome-wide association studies; ENCODE= Encyclopedia of DNA Elements; NHGRI= National 

Human Genome Research Institute; HGMD= Human Gene Mutation Database  

With regard to the functional annotations, some come from experimental procedures 

while others are predicted computationally. Examples include genomic and epigenomic 

annotations that can be incorporated from various online browsers and collections such as 

the Ensembl Variant Effect Predictor (VEP) (McLaren et al., 2010) and the Encyclopedia 

of DNA Elements (ENCODE) Project (The ENCODE Project Consortium, 2011). 

Whether a variant is assigned the annotations that can be attributed to itself only or to 

other variants with which it is in linkage disequilibrium can also refine the goal of the 

method. 
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In this chapter, we compared the performance of three published methods that differ in 

annotation set, algorithm and genetic variants, including the classifier: a regularized 

regression called elastic net from Gagliano et al. (14 annotations) discussed in Chapter 3, 

a modified random forest from Ritchie et al. (174 annotations) (Ritchie et al., 2014) 

called GWAVA and a support vector machine from Kircher et al. (949 annotations, 

expanded from 63 unique annotations) called CADD, v.1.0 (major release) (Kircher et 

al., 2014). These three papers describe algorithms capable of incorporating a large 

number of genetic variants labeled with multiple functional annotations, and can output a 

prediction score for each variant; hence, they are highly comparable. Although other 

methods exist to prioritize genetic risk variants, such as through the use hierarchical 

Bayesian analysis (Kichaev et al., 2014; Pickrell, 2014), these require genetic association 

statistics for each variant for prioritization, and thus were beyond the scope of the 

comparisons in this paper. We investigate nine model types: combinations of the three 

different statistical learning algorithms and the three different functional annotation sets 

(summarized in Table 5.1). All model types were created for different classifications of 

hits: the NHGRI GWAS Catalogue (Hindorff et al., 2010) and the Human Gene Mutation 

Database (HGMD) (Stenson et al., 2009).   
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Table 5.1. Comparison of the three data-trained genetic variant prioritization papers 

	
  

Models based on GWAS data can be tested effectively in current data (we apply those 

models to the schizophrenia GWAS from the Psychiatric Genomics Consortium). For the 

purpose of this thesis we have kept this chapter largely in the format in which it was 

submitted; hence Methods appear at the end of this chapter in Section 5.5.   

5.3 Results 

Our primary analysis used the NHGRI GWAS Catalogue as the classifier. Risk 

variants/hits were defined as those variants present in the NHGRI GWAS Catalogue 

(www.genome.gov/gwastudies, downloaded on August 7, 2014) (Hindorff et al., 2010) 

with a p-value of equal to or less than the accepted threshold for genome-wide 

significance, 5x10-8. A subset of non-hits (that are not in high linkage disequilibrium with 

the hits) was selected from common GWAS arrays for comparability. For the three 

annotation sets described above, when working with different classifiers some rare 
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(PLoS(ONE(2014)(

Ritchie(et#al.((
(Nat(Methods(
2014)(“GWAVA”(

Kircher(et#al.((
(Nat(Genetics(
2014)(“CADD”(

Functional!annotations! n=!14!(ENCODE,'eQTLs,'
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context…)!

n='174'(ENCODE,'
GERP,'Genic'
context…)'
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n=63!(expanded!to!949)!
(Ensembl'VEP,'
ENCODE,'PolyPhen…)!
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model]!
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annotations have no variability and hence were not used to build the model. In this 

analysis none of the 14 annotations from Gagliano et al. were invariable, three of the 174 

annotations from Ritchie et al. were invariable, and 509 of the 949 annotations from 

Kircher et al. were invariable. An independent test set was used to determine accuracy of 

the models for discriminating hits from non-hits based on the predictive score output 

from each model. These results are presented below. 

5.3.1 Area under the ROC curve 

All the models had similar accuracy as demonstrated by the area under the curve (AUC) 

in the test set data (Table 5.2). Models using Kircher et al.’s annotations produced 

slightly higher AUCs compared to the other two annotation sets for the elastic net and 

random forest algorithms. In particular the combination of elastic net and Kircher et al.’s 

annotations was the only model that produced an AUC with confidence intervals that do 

not overlap with any of the other models. 

Table 5.2. The area under the curve (AUC) for the GWAS Catalogue comparisons, 

holding data and classifier constant, while varying algorithm and annotations.  

The 95% confidence interval based on 2000 bootstrap replicates (generated using the R package pROC) is shown in 

square brackets. The AUC in the training set is in parentheses. 

 

The AUC results for the training set were also computed to investigate whether the 

models were over-fit; that is to say, whether the training set AUC is much higher than the 

Annotations(! (! Gagliano(et(al.! (Ritchie(et(al.! (Kircher(et(al.!
Elastic!Net!!
!

0.67![0.6510.68]!
(0.67)!

0.65![0.6310.66]!
(0.67)!

0.71![0.6910.73]!
(0.74)!

Random!Forest!(altered!
minimum!node!size)!

0.67![0.6510.68]!
(0.69)!

0.68![0.6610.69]!
(0.72)!

0.70![0.6810.72]!
(0.79)!

Support!Vector!
Machine!(with!prior!
feature!selection)!

0.66![0.6510.68]!
(0.66)!

0.64![0.6310.66]!
(0.66)!

0.64![0.6110.66]!
(0.68)!
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test set AUC. We found that for the Ritchie et al. and Kircher et al. annotation sets, the 

random forest models with node size equal to one were prone to over-fitting. For 

instance, for the random forest model based on the Ritchie et al. annotations, the test set 

and training set AUCs were 0.687 and 0.998, respectively (further data available on 

request). The over-fitting in the random forest models was solved when the minimum 

node size was set to 10% of the total sample size. Therefore only the random forest 

models with the minimum node size equal to 10% of the data are presented in Table 5.2 

and discussed further in the results. These results highlight the importance of ensuring 

that appropriate parameters are chosen for the algorithms.  

5.3.2 Density and distribution of prediction scores 

Violin plots were constructed by plotting the prediction scores for hits (risk variants) and 

non-hits separately in order to visualize how well the two classes separated (Figure 5.2 

and Table 5.3). The two models with the best AUCs (Kircher et al. annotations with 

elastic net (0.71) and with random forest (0.70)) have comparatively well separated 

means and relatively normal distributions. In one of the two models with the lowest AUC 

(Ritchie et al. annotations with support vector machine (0.64)), the median prediction 

score between hits and non-hits is most similar and the distribution is very skewed. 

Interestingly, one of the mid-range performance models, the Gagliano et al. annotations 

for the support vector machine (0.66) showed evidence of a multimodal distribution 

where one mode is more common for hits and another for non-hits. However, this effect 

may simply be due to the comparatively small number of annotations, which lead to a 

smaller number of possible scores.  
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Figure 5.2. Violin plots showing class separation by prediction scores for the various 
comparisons using the GWAS Catalogue as the classifier 

Hits are variants in the GWAS Catalogue with a genome-wide significant p-value (p<5x10-8) and non-hits 

are those not present in the GWAS Catalogue, but are found on common GWAS arrays for comparison 

purposes. The non-scaled elastic net models are plotted. The adjusted minimum node size (10%) random 

forest models are plotted.  
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Table 5.3. Summary statistics of the prediction score distributions for the various models 

based on the GWAS Catalogue classifier 

For a visual representation see the violin plots (Figure 5.2). [SD=standard deviation] 

 

Generally, the models created using the Kircher et al. annotations showed the largest 

spread of prediction scores for both hits and non-hits. We have also reported the 

proportion of hits in the top versus the bottom quartiles of the prediction scores in the test 

set (Table 5.4). In summary the violin plots show that the distributions for hits and non-

hits overlapped for all models. However, we see from Table 5.4 that of the variants in the 

top quartile of prediction scores, there are significantly more hits compared to the lower 

quartile for all models assessed (p< 2.2 x 10-16, chi-square test). 

  

Functional*Annotations* Gagliano*et*al.* Ritchie*et*al.* Kircher*et*al.*
** ** Hits* Non7hits* Hits* Non7hits* Hits* Non7hits*

Elastic(Net(
(not(scaled)(

Minimum( 0.32( 0.32( 0.36( 0.34( 0.22( 0.14(

Median( 0.54( 0.44( 0.49( 0.44( 0.54( 0.41(

Mean( 0.54( 0.46( 0.52( 0.47( 0.55( 0.43(

Maximum( 0.92( 0.93( 0.89( 0.91( 0.93( 0.93(

SD( 0.13( 0.12( 0.11( 0.09( 0.15( 0.15(
Random(
Forest(
(altered(
minimum(
node(size)(

Minimum( 0.12( 0.12( 0.23( 0.21( 0.21( 0.16(

Median( 0.55( 0.44( 0.55( 0.43( 0.53( 0.44(

Mean( 0.54( 0.46( 0.53( 0.45( 0.42( 0.43(

Maximum( 0.88( 0.88( 0.75( 0.76( 0.83( 0.84(

SD( 0.13( 0.12( 0.12( 0.13( 0.12( 0.14(

Support(
Vector(
Machine(
(with(prior(
feature(
selection)(

Minimum( 0.33( 0.33( 0.43( 0.43( 0.18( 0.09(

Median( 0.61( 0.49( 0.48( 0.44( 0.52( 0.44(

Mean( 0.58( 0.50( 0.55( 0.49( 0.58( 0.50(

Maximum( 0.91( 0.93( 1.00( 1.00( 0.98( 0.99(

SD( 0.14( 0.14( 0.15( 0.11( 0.18( 0.14(

*
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Table 5.4. Proportion of GWAS Catalogue hits for the various models 

Results are shown for the variants in the test set data that were assigned the highest prediction scores (top quartile) and 

the lowest scored variants (lower quartile). The difference row shown corresponds to the proportion of GWAS 

significant variants in the top quartile minus that of the lower quartile, so a positive difference suggests that the quartile 

of the most highly scored variants (top quartile) contains more GWAS significant variants compared to the lowest 

scored variants (lower quartile). The number of variants present in each quartile are in parentheses. Note that quartiles 

can vary in size where prediction scores are identical across many variants, and all those variants with that particular 

score were included in the quartile. 

 

To investigate the consistency of the models we calculated pairwise correlations of the 

prediction scores in the test set for the various models either holding the algorithm or the 

annotation set constant. We found that the models with the most correlated scores were 

those using the Gagliano et al. annotation set. Furthermore, the degree of correlation 

when holding the algorithm constant, but varying the annotation set, was generally not as 

high as when holding the annotation set constant (Table 5.5). 

Annotation'set'

'' Gagliano'et'al.'' Ritchie'et'al.'' Kircher'et'al.'

'

'' E'l'a's't'i'c'''N'e't'

'' '' Chi6sq'p6val' '' Chi6sq'p6val' '' Chi6sq'p6val'

top'quartile'
8.8%'

(7872)'

<'2.2e616'

7.4%'
(7823)'

<'2.2e616'

10%'
(2656)'

<'2.2e616'lower'quartile'
2.2%''

(8261)'
2.1%'

(7837)'
1.1%'

(2655)'

Difference'' 6.6%' '' 5.3%' '' 9.3%' ''

' '
R'a'n'd'o'm'''F'o'r'e's't'

'' '' Chi6sq'p6val' '' Chi6sq'p6val' '' Chi6sq'p6val'

top'quartile'
8.8%'

(7956)'

<'2.2e616'

7.8%'
(7826)'

<'2.2e616'

10%'
(2654)'

<'2.2e616'
lower'quartile'

2.2%'
(7889)'

1.4%'
(7825)'

1.0%'
(2654)'

Difference'' 6.6%' '' 6.4%' '' 9.1%' ''

'
'' S'u'p'p'o'r't'''V'e'c't'o'r''M'a'c'h'i'n'e'

'' '' Chi6sq'p6val' '' Chi6sq'p6val' '' Chi6sq'p6val'

top'quartile'
8.1%'
(7873)'

<'2.2e616'

7.3%'
(8150)'

<'2.2e616'

8.1%'
(2655)'

<'2.2e616'
lower'quartile'

2.2%'
(7807)'

2.2%'
(7555)'

2.9%'
(2654)'

Difference'' 5.8%' '' 5.1%' '' 5.2%' ''

'
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Table 5.5. Pairwise correlation between prediction scores in the test set between models 

either holding the annotation set or the algorithm constant in the primary analysis 

EN= elastic net, RF=random forest, SVM= support vector machine 

 

 

5.3.3 Feature selection within elastic net and random forest 

More does not necessarily equal better as not all the annotations may be relevant to 

predicting risk variants. Generally, not all of the functional annotations in the annotation 

sets were used to create the various models. For instance of the variable features, elastic 

net assigned non-zero Beta coefficients to 9 out of 14 annotations, 12 out of 171, and 16 

out of 432. Random forest assigned non-zero Gini importance values to all of the 14, 131 

out of 171, and 239 out of 432. All of these models had similar performance in the test 

sets (AUCs ranging from 0.68 to 0.70 for the random forest models and 0.65 to 0.71 for 

the elastic net models). The results suggest that elastic net has a more stringent feature 

selection implementation than random forest. The support vector machine models always 

assigned non-zero feature weights, as support vector machine does not intrinsically 

perform feature selection, as does elastic net and random forest. Thus, we inputted only 

! ! Annotation!set!
Gagliano!et!al.! Ritchie!et!al.! Kircher!et!al.!

Algorithm! EN! RF! SVM! EN! RF! SVM! EN! RF! SVM!

An
no

ta
tio

n!
se
t!

Gagliano!
et!al.!

EN! ::! 0.95! 0.98! 0.41! ::! ::! 0.47! ::! ::!
RF! 0.95! ::! 0.93! ::! 0.47! ::! ::! 0.51! ::!
SVM! 0.98! 0.93! ::! ::! ::! 0.28! ::! ::! 0.35!

Ritchie!et!
al.!

EN! 0.41! ::! ::! ::! 0.84! 0.79! 0.71! ::! ::!
RF! ::! 0.47! ::! 0.84! ::! 0.66! ::! 0.82! ::!
SVM! ::! ::! 0.28! 0.79! 0.66! ::! ::! ::! 0.69!

Kircher!et!
al.!

EN! 0.47! ::! ::! 0.71! ::! ::! ::! 0.84! 0.72!
RF! ::! 0.51! ::! ::! 0.82! ::! 0.84! ::! 0.69!
SVM! ::! ::! 0.35! ::! ::! 0.69! 0.72! 0.69! ::!

!
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those annotations with a non-zero Beta coefficient from the elastic net models into the 

support vector machine models (see Methods). 

5.3.4 Importance of the functional annotations  

Different combinations of annotations can be used to obtain models with similar 

predictive accuracy. Furthermore, it is difficult to interpret the importance of the 

annotations for numerous reasons, some of which are discussed below.  

All three annotation sets contained a mixture of binary variables and continuous 

variables. For Kircher et al.’s annotations, background selection (the annotation with the 

widest continuous scale that ranged from 0 to 1000) came up as most important for 

predicting the class label in the random forest model. This bias for random forest 

preferentially selecting annotations measured on a continuous scale has been previously 

described (Strobl et al., 2007). When making a decision at a node, continuous annotations 

can be used multiple times at varying cut-offs to split the data. In this way, functional 

annotations measured on a continuous scale are incorporated more often into the forest 

compared to non-continuous annotations, and thus obtain higher variable importance 

measures (Boulesteix et al., 2014; Strobl et al., 2007).  

It is also difficult to interpret the variable importance measures derived from elastic net 

because this algorithm is not scale invariant. Using Gagliano et al.’s annotations with 

elastic net, we compared the models created with scaled (all annotations have a standard 

deviation of 1 and a mean of 0) versus non-scaled annotations. Although the AUCs for 

both models were nearly identical, the assigned Beta coefficients differed (Figure 5.3). 

When we do standardize the scale, we find that the order of importance of coefficients 

replicates that of the random forest model. However, standardizing a set of largely binary 

variables removes the effect linked to the frequency, and thus skews the biological 

representation. So it is not clear that scaling is the best approach.  
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Figure 5.3. Feature importance for elastic net models using the Gagliano et al. annotations based 
on the GWAS Catalogue classifier 

The importance of annotations differed when using scaled versus non-scaled annotations in elastic net 

[splice= splice sites, Nonsyn= nonsynonymous SNPs, DNase= DNase I hypersensitive sites, GTEx 

eQTLs= cis-eQTL data from the GTEx Consortium, UK eQTLs= cis-eQTL data from the UK Brain 

Consortium, Phylo= PhyloP conservation, PhastCons= PhastCons conservation, H3K4MeMe1= H3K4Me1 

histone modification, H3K4Me3= H3K4Me3 histone modification, H3K27Ac=H3K27Ac histone 

modification, TF= transcription factor binding sites, miRNA= micro RNA targets, Gencode-Txnstart= 

transcription start sites from Gencode] 

Although the focus is not about annotations we have provided details of the various 

importance measures in Appendix A for the feature importance measures from all the 

models based on the GWAS Catalogue as the classifier. In the primary analysis 

transcription factor binding sites were consistently in the top three annotations for the 

Gagliano et al. annotations for all three algorithms, but there were no other clear patterns 

with regard to important annotations for the Ritchie et al. or Kircher et al. annotation sets. 

In summary, different annotations came up as most important for the various models 

regardless of predictive accuracy.  
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5.3.5 Performance for complex disease variants: Application to 
Schizophrenia GWAS 

Various quantile-quantile plots were constructed in order to compare which models 

showed greater separation of the schizophrenia GWAS p-values for high scoring and low 

scoring functional variants. For all of the models, scores were obtained for the sub-

genome-wide-significant variants (5x10-8<p<1x10-6) from the first round of the GWAS 

by the Psychiatric Genomics Consortium (PGC1) (Schizophrenia Psychiatric Genome-

Wide Association Study (GWAS) Consortium, 2011). The PGC1 p-values were plotted 

on the x-axis and the p-values from the second larger round of the schizophrenia GWAS 

(PGC2) (Schizophrenia Working Group of the Psychiatric Genomics Consortium, 2014) 

were plotted on the y-axis (Figure 5.4). (The results from PGC2 were not used to train 

the model.) Plots were constructed where annotations were held constant but the 

algorithm differed. For instance, for the 14 annotations from Gagliano et al. we plotted 

the models from the three algorithms in one plot. Furthermore, models from the same 

algorithm but varying by annotation set were compared (Figure 5.5).  
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Figure 5.4a 
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Figure 5.4b 
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Figure 5.4c 

Figure 5.4. Quantile-quantile plots of PGC1 sub-genome-wide-significant variants (5x10-

8<p<1x10-6) stratified by prediction score for the various models based on the GWAS Catalogue 
classifier, and plotted by PGC2 p-values 

PGC1 p-values are plotted on the x-axis and PGC2 p-values are plotted on the y-axis. Models grouped by 

annotation set: Gagliano et al. [a], Ritchie et al. [b], and Kircher et al. annotations [c]. The lower quartile 

genetic variants are those PGC1 sub-genome-wide-significant variants that were assigned the lowest 

prediction scores (in the first quartile), and the top quartile variants are those with the highest prediction 

scores (in the fourth quartile). 
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Figure 5.5a 
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Figure 5.5b 
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Figure 5.5c 

 

Figure 5.5. Quantile-quantile plots of PGC1 sub-genome-wide-significant variants (5x10-

8<p<1x10-6) stratified by prediction scores for the various models based on the GWAS Catalogue 
classifier, and plotted by -log10(PGC1 p-values) versus -log10(PGC2 p-values) 

Models grouped by algorithm: elastic net (non-scaled annotations) [a], random forest (adjusted minimum 

node size) [b], and support vector machine (with prior feature selection) [c]. The lower quartile genetic 

variants are those PGC1 sub-genome-wide significant variants that were assigned the lowest prediction 

scores (in the first quartile), and the top quartile variants are those with the highest prediction scores (in the 

fourth quartile). 
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We have also reported the proportion of hits in the top versus the bottom quartiles of the 

prediction scores in the test set (Table 5.6). With regard to the functional annotation set, 

the separation of the novel associated variants from the non-associated in the sub-

genome-wide-significant variants was best exhibited in the quantile-quantile plots when 

using either the Kircher et al. or Ritchie et al. annotation sets. Regardless of annotation 

set, the elastic net models consistently showed good separation. For all algorithms using 

either the Ritchie et al. or Kircher et al. annotations, the PGC1 sub-genome-wide-

significant variants that have the highest prediction scores (within the top quartile) 

consistently contain a higher proportion of GWAS significant variants from the second 

round of the schizophrenia GWAS (p<5x10-8) compared to the variants that have scores 

in the lower quartile. The elastic net models too, regardless of annotation set, showed this 

pattern. Although these patterns are not all statistically significant, it is notable that the 

biggest positive difference comes from using the Ritchie et al. annotations with the elastic 

net algorithm, and the most significant difference between the proportion of GWAS 

significant variants in the top quartile compared to the proportion in the lower quartile 

comes from the Kircher et al. annotations using the elastic net algorithm; (there are more 

variants available in the Kircher et al. model than the Ritchie et al. model). The Gagliano 

et al. annotations performed very poorly with both the random forest and support vector 

machine algorithms since the variants with low prediction scores were more likely to be 

hits than those with high scores. This is a result of the PGC2 hits not being enriched in 

two of the top annotations for the Gagliano et al. models using either the random forest or 

support vector machine algorithms, H3K4Me3 and H3K27Ac. In the GWAS Catalogue 

analysis of the variants that possess the H3K4Me3 and H3K27Ac marks, nearly 70% are 

hits and the remainder are non-hits. In comparison, of the PGC1 sub-genome-wide-

threshold variants that possess those two annotations, only 21% are PGC2 hits, and the 

remaining variants are non-hits.  
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Table 5.6. Pairwise correlation between prediction scores in the test set between models 

either holding the annotation set or the algorithm constant in the primary analysis 

Results are shown for the variants that were assigned the highest scores (top quartile) and the lowest scored variants 

(lower quartile). The difference row shown corresponds to the proportion of GWAS significant variants in the top 

quartile minus that of the lower quartile, so a positive difference suggests that the quartile of the most highly scored 

PGC1 sub-genome-wide significant variants (top quartile) contains more GWAS significant variants from PGC2 

compared to the lowest scored PGC1 sub-genome-wide significant variants (lower quartile). The number of variants 

present in each quartile are in parentheses. Note that quartiles can vary in size where prediction scores are identical 

across many variants, and all those variants with that particular score were included in the quartile. 

 

The results for the application to the schizophrenia GWAS did not always reflect the 

AUCs from the training data. For instance, a poor performing model in terms of AUC 

based on the test set, elastic net with the Ritchie et al. annotations, performed well in the 

GWAS application. All in all, the accuracy of the resulting models should be assessed by 

various means, including (but not limited to) theoretical models such as the ROC curve, 

Annotation'set'

'' Gagliano'et'al.'' Ritchie'et'al.'' Kircher'et'al.'

'
'' E'l'a's't'i'c'''N'e't'

'' '' Chi6sq'p6val' '' Chi6sq'p6val' '' Chi6sq'p6val'

top'quartile' 83%'
(60)'

0.52'

77%'
(56)'

0.02'

54%'
(34)'

7.30E605'lower'quartile' 79%'
(66)'

55%'
(56)'

43%'
(37)'

Difference'' 4%' '' 22%' '' 11%' ''

' ' R'a'n'd'o'm'''F'o'r'e's't'

'' '' Chi6sq'p6val' '' Chi6sq'p6val' '' Chi6sq'p6val'

top'quartile' 65%'
(60)'

1.20E603'

72%'
(55)'

0.02'

71%'
(41)'

0.10'lower'quartile' 90%'
(59)'

51%'
(55)'

53%'
(43)'

Difference'' 625%' '' 21%' '' 18%' ''

' '' S'u'p'p'o'r't'''V'e'c't'o'r''M'a'c'h'i'n'e'

'' '' Chi6sq'p6val' '' Chi6sq'p6val' '' Chi6sq'p6val'

top'quartile' 50%'
(54)'

6.30E604'

70%'
(56)'

0.79'

73%'
(37)'

0.41'lower'quartile' 79%'
(68)'

67%'
(52)'

64%'
(42)'

Difference' 629%' ' 3%' ' 9%' '
'
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as well as empirical approaches such as applying the model using data from one study 

and evaluating its performance on independent data with gold standard answers. 

5.3.6 HGMD Analysis 

In an attempt to apply the algorithms and annotation set combinations to whole genome 

sequencing data, and indeed fine-mapping studies, rather than just GWAS, a different 

classifier was used to identify hits and non-hits, the Human Gene Mutation Database 

(HGMD). We conducted two analyses with subsets of the public release of HGMD. In 

the first, we took all the variants (single nucleotide polymorphisms) in HGMD and chose 

controls that fell within a kilobase of either side from the HGMD variant. In this analysis 

one of the 14 annotations from Gagliano et al. was invariable, eight of the 174 

annotations from Ritchie et al. were invariable, and 396 of the 949 annotations from 

Kircher et al. were invariable. Secondly, models based on the subset of non-exonic 

HGMD variants and non-exonic control variants were assessed. This second set of 

models was created in an effort to overcome the ascertainment bias inherent in HGMD 

related to genes. In this analysis two of the 14 annotations from Gagliano et al. were 

invariable, 16 of the 174 annotations from Ritchie et al. were invariable, and 756 of the 

949 annotations from Kircher et al. were invariable. 

The models for the analysis using all of the HGMD variants using either the Ritchie et al. 

or Kircher et al. annotations had high predictive accuracy (Table 5.7).  
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Table 5.7. The area under the curve (AUC) for the HGMD comparisons, holding data 

and classifier constant, while varying algorithm and annotations 

The 95% confidence interval based on 2000 bootstrap replicates (generated using the R package pROC) is shown in 

square brackets. The AUC in the training set is in parentheses. 

 

The AUCs for the non-exonic HGMD analysis were more comparable to the ones 

obtained for the primary analysis using the GWAS Catalogue as the classifier (Table 

5.8), but again the annotations from Ritchie et al. and Kircher et al. performed better.  

 

Table 5.8. The area under the curve (AUC) for the non-exonic HGMD comparisons, 

holding data and classifier constant, while varying algorithm and annotations 

The 95% confidence interval based on 2000 bootstrap replicates (generated using the R package pROC) is shown in 

square brackets. The AUC in the training set is in parentheses. 

 

Annotations(! (! Gagliano(et(al.(! (Ritchie(et(al.! (Kircher(et(al.!
Elastic!Net!!
!

0.66![0.6400.67]!
(0.65)!

0.87![0.8600.88]!
(0.88)!

0.88![0.8700.89]!
(0.88)!

Random!Forest!(altered!
minimum!node!size)!

0.65![0.6400.66]!
(0.66)!

0.91![0.9000.92]!
(0.91)!

0.87![0.8600.88]!
(0.89)!

Support!Vector!
Machine!(with!prior!
feature!selection)!

0.63![0.6200.64]!
(0.66)!

0.85![0.8300.86]!
(0.86)!

0.85![0.8400.86]!
(0.87)!

!

Annotations(! (! Gagliano(et(al.(! (Ritchie(et(al.! (Kircher(et(al.!
Elastic!Net!!
!

0.65![0.6110.68]!
(0.66)!

0.77![0.7410.80]!
(0.78)!

0.79![0.7610.81]!
(0.80)!

Random!Forest!(altered!
minimum!node!size)!

0.65![0.6110.68]!
(0.65)!

0.80![0.7710.82]!
(0.86)!

0.78![0.7510.80]!
(0.85)!

Support!Vector!
Machine!(with!prior!
feature!selection)!

0.61![0.5810.65]!
(0.68)!

0.68![0.6510.72]!
(0.78)!

0.76![0.7310.78]!
(0.82)!
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 Similar to the analysis using the GWAS Catalogue as the classifier, for the HGMD 

analysis models the features that came up as most important tended to vary depending on 

the algorithm and are difficult to interpret. It is however notable that genic annotations 

featured highly (see Appendix A). For the Gagliano et al. annotations, the top annotation 

(or the second most important in the case of support vector machine) was 

nonsynonymous SNPs. For the Kircher et al. annotations, the top annotations for the 

random forest and support vector machine models were related to the coding sequence or 

nonsynonymous SNPs. The top annotation for elastic net was CpG. For the Ritchie et al. 

annotations, the top two annotations were coding sequence and exon for both the random 

forest and support vector machine models. For elastic net, the top two annotations were 

donor and coding sequence. The importance of genic features is likely linked to bias in 

the data, which will be examined further in the Discussion. 

The HGMD analysis in which only non-exonic HGMD and control variants were 

considered seemed to overcome this bias towards genes or positions relative to genes. 

Interestingly, for all algorithms, the top annotation for the Gagliano et al. annotation set 

was DNase I hypersensitive sites, but we caution against making biological inferences on 

the top annotations for the reasons outlined above (see Appendix A).   

5.3.7 Comparison of scores from the three papers: Application to 
Schizophrenia GWAS 

When using the actual prediction scores made available in the three papers, the quantile-

quantile plot suggested that the Gagliano et al. scores best identified the novel hits from 

the second round of the schizophrenia GWAS that were not significant in the first round 

(Figure 5.6). The proportion of hits in the top versus the bottom quartiles of prediction 

scores are significantly different for the Gagliano et al. method (p<0.03, chi-square test), 

whereas the difference between the quartiles for the Ritchie et al. and Kircher et al. 

methods were not significant (p~0.4 for both methods) (Table 5.9). 
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Figure 5.6. Quantile-quantile plots of PGC1 sub-genome-wide-significant variants (5x10-

8<p<1x10-6) stratified by prediction scores obtained from the three papers, and plotted by -
log10(PGC1 p-values) versus -log10(PGC2 p-values) 

“GWAVA” corresponds to the scores obtained from the method published in Ritchie et al. 2014, 

“UpWeight” corresponds to the method in Chapter 3 and “CADD” corresponds to the method in Kircher et 

al. 2014. The lower quartile genetic variants are those with a prediction score in the first quartile, and the 

top quartile variants are those with prediction values in the fourth quartile.  
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Table 5.9. Using the scores from the actual published models, the proportion of sub-

genome-wide-significant variants (5x10-8<p<1x10-6) variants from the first round of the 

schizophrenia GWAS (PGC1) that are GWAS significant (p<5e-8) in the second round 

(PGC2) for the various models 

Results are shown for the variants that were assigned the highest scores (top quartile) and the lowest scored variants 

(lower quartile). The difference row shown corresponds to the proportion of GWAS significant variants in the top 

quartile minus that of the lower quartile, so a positive difference suggests that the quartile of the most highly scored 

PGC1 sub-genome-wide significant variants (top quartile) contains more GWAS significant variants from PGC2 

compared to the lowest scored PGC1 sub-genome-wide significant variants (lower quartile). The number of variants 

present in each quartile are in parentheses. Note that quartiles can vary in size where prediction scores are identical 

across many variants, and all those variants with that particular score were included in the quartile. “UpWeight” 

corresponds to the method in Chapter 3, “GWAVA” corresponds to the scores obtained from the method published in 

Ritchie et al. 2014, and “CADD” corresponds to the method in Kircher et al. 2014. 

 

Of the variants in the top quartile for the Gagliano et al. scores, most (80%) were GWAS 

significant variants (p<5x10-8) from the second round of the GWAS. Of the variants in 

the top quartile for the Ritchie et al. scores and the Kircher et al. scores there were fewer 

significant variants: 67% and 74% respectively. Only a small percentage of variants in 

the top quartiles were nonsynonymous SNPs (i.e. missense, nonsense, frameshift, inframe 

indel, or stop-lost mutations): 9%, 2% and 4% for the Gagliano et al. scores, Ritchie et al. 

scores and Kircher et al. scores, respectively. Of the sub-genome-wide significant PGC1 

SNPs, only 5% are nonsynonymous, and of those, most (83%) become PGC2 hits. 

! Method!

! UpWeight! GWAVA! CADD!

! ! Chi2sq!p2val! ! Chi2sq!p2val! ! Chi2sq!p2val!

top!quartile! 80%!
(55)! !

!
0.03!

67%!
(60)! !

!
0.48!

74%!
(31)! !

!
0.41!lower!quartile! 61%!

(59)!
73%!
(62)!

65%!
(31)!

Difference! 19%! !! 26%! !! 9%! !!

!



 

 

 

 

 

 

 

151 

5.4 Discussion 

We found that the three algorithms assessed here, elastic net, random forest and the linear 

support vector machine show comparable accuracy in the GWAS test data. The Kircher 

et al. annotations trained using the elastic net algorithm have the highest AUC. When 

applied to real data, several models show the potential to prioritize novel hits, with the 

exception of the random forest and support vector machine models using the Gagliano et 

al. annotations. However, this was just one real dataset and further studies would need to 

be assessed to validate this conclusion. Under the conditions employed in our analysis, 

none of the models were over-fitted, as demonstrated by verifying that the training set 

AUC is similar in magnitude to that of the test set.  

Furthermore, our results show that various combinations of annotations can create models 

with similar predictive ability when it comes to identifying risk variants from non-risk 

variants. One must be wary of making strong conclusions about the relevance of the 

annotations because of the difficulty in interpretation. The coefficients or variable 

importance measures are differentially affected by issues such as correlation between the 

attributes, and whether variables are normalized (for elastic net and support vector 

machine). This observation makes it difficult to differentiate the predictive power of the 

functional annotation sets used by each study, at least in the case of GWAS risk variants. 

As mentioned in the Introduction, the main goals of these methods are to identify those 

variants that are important for disease risk, which can be applied to identifying novel loci 

or for fine-mapping at previously implicated loci. The HGMD is designed to contain 

disease variants, whereas the GWAS Catalogue contains variants associated with disease, 

but those variants may only be tagging the “causal” variant. GWAS are undertaken to 

identify the loci containing the variant and may identify the actual causal variant but will 

more often identify variant in high linkage disequilibrium with the causal variant. Thus, 

the primary analyses in this paper (using the GWAS Catalogue) may be considered to be 

about identifying novel loci rather than fine-mapping, and the HGMD analyses may be 
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considered to be more about fine-mapping a specific locus. Furthermore, the Gagliano et 

al. method may be considered to be better suited to identifying novel loci (rather than 

fine-mapping) because it annotates variants on whether or not the variant itself falls into 

the base pair range for the functional annotation, but also if that variant has is in linkage 

disequilibrium (r2>0.8) with a variant that falls into the range. The Ritchie et al. and 

Kircher et al. methods annotate the variants just based on whether the variant itself falls 

into the base sequence for the functional annotation, and do not look at their linkage 

disequilibrium proxies. That being said, we also performed the analyses for the Gagliano 

et al. annotations only considering whether the variant itself falls into the sequence for 

the functional annotation as an additional analysis. The resulting models had very similar 

accuracy to those models created when the linkage disequilibrium proxies were taken into 

account (data available on request). 

To apply the methods in next generation sequencing data and fine-mapping studies we 

would ideally use risk variants identified from such studies. Unfortunately, there are not a 

sufficient number available. We used the HGMD to attempt to extrapolate our findings. 

However, we believe the high accuracies achieved for the all HGMD models (i.e. not the 

models looking just at non-exonic variants) are driven by the inherent bias of the HGMD 

data, in that it is largely focused on genes. For the models using only non-exonic HGMD 

and control variants, the AUCs were considerably lower, with the Kircher et al. and 

Ritchie et al. annotation sets clearly out-performing the annotations used by Gagliano et 

al. Yet, this subset of HGMD is a highly derived and filtered set of variants, emphasizing 

the need for empirical data. The simulation employed by Kircher et al. to consider all 

variants, in which the functional annotations were used to differentiate between millions 

of high frequency human-derived alleles from the same number of simulated alleles, 

(Kircher et al., 2014) showed considerable accuracy; further adaptions to this strategy 

may prove useful.  
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Compared to the corresponding elastic net or random forest models, the support vector 

machine models consistently produced slightly lower AUCs for the GWAS Catalogue 

and all HGMD analyses. This poorer performance may be attributed to the fact that we 

implemented the most basic kernel type for the support vector machine, a linear kernel. 

This kernel was chosen in an effort to be consistent with the type of kernel that was 

utilized by Kircher et al., and with the advantage that computational time remains 

comparable with the other algorithms. All of the models run in this paper took under 130 

minutes to complete. Note that for the support vector machine, in addition to the linear 

kernel, we also tried using the radial basis function kernel (the type of kernel one step 

more complex than linear). We could not achieve convergence using the radial basis 

function kernel within a reasonable amount of time (i.e. still no convergence after 

running 48 hours on a high performance computing cluster). However, a linear kernel 

may not be best to separate the data. Furthermore, as support vector machine does not 

intrinsically perform feature selection, we selected a subset of features with a non-zero 

Beta coefficient from the corresponding analysis using the elastic net algorithm. Use of 

another method of feature selection may have yielded different results. Our results do not 

necessarily suggest that the elastic net and random forest algorithms out-perform the 

support vector machine algorithm, since altering either the kernel type or the functional 

annotations in the support vector machine models may produce results comparable to the 

other two algorithms. 

There are limitations to this comparison. For example, other statistical learning 

algorithms, such as a deep neural network (Quang et al., 2015), and other annotation sets 

could be explored. Annotation sets could be phenotype specific, as there is evidence that 

the level of enrichment of functional information can differ depending on the subset of 

risk variants selected (Farh et al., 2015). For instance, enrichment of disease-specific 

variants in the GWAS Catalogue can differ in certain cell types, for example for DNase I 

hypersensitive sites (Maurano et al., 2012).  
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Identifying which algorithm and/or annotations identify risk variants with the highest 

accuracy will help researchers develop a better understanding of the genetic factors 

involved in complex disease in a cost-effective manner making use of a rich set of 

publically available functional data. This work helps illuminate the genetic factors 

involved in disease by making use of existing functional data in silico. Increasing 

knowledge on the etiology of complex disease will allow for earlier or better diagnoses, 

and the development of personalized treatment and novel therapies. 

5.5 Methods 

We explored the utility of each of the three algorithms with each of the three functional 

annotation sets in order to attribute performance differences to the algorithm and/or 

annotations. A total of nine model types were created.  

In the primary analysis, the set of risk variants used for training all the models were based 

on whether or not a genetic variant is a hit or a non-hit from a genome-wide association 

study (GWAS). Hits were defined as those variants present in the NHGRI GWAS 

Catalogue (www.genome.gov/gwastudies, downloaded on August 7, 2014) (Hindorff et 

al., 2010) with a p-value of equal to or less than 5x10-8. There were 3,618 unique genetic 

variants that met these criteria. (Note that at the time of download the novel hits from the 

second phase of the schizophrenia GWAS from the Psychiatric Genomics Consortium 

(PGC2) (Schizophrenia Working Group of the Psychiatric Genomics Consortium, 2014) 

had not yet been included.) A subset of non-hits was selected from common GWAS 

arrays (Affymetrix Genome-Wide Human SNP Array 6.0, the Illumina Human1M-Duo 

Genotyping BeadChip, and the Illumina HumanOmni1-Quad BeadChip). Those non-hits 

in high linkage disequilibrium (r2 > 0.8) with hits were removed from the analyses, and a 

random subset of these non-hits was utilized as controls (n= 75,319). 
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5.5.1 Functional annotation sets 

The data was then annotated using three distinct protocols outlined in each of the three 

respective papers. The variants were marked with the Gagliano et al. annotations 

available on the website 

(http://www.camh.ca/en/research/research_areas/genetics_and_epigenetics/Pages/Statisti

cal-Genetics.aspx). Fourteen functional annotations were used by Gagliano et al., two of 

which were on a continuous scale (two conservation measures, PhyloP and PhastCons), 

and the remaining were binary, signifying the presence or absence. The binary 

annotations included those related to genomic context such as the presence in a gene, a 

splice site or a transcription start site, as well as those from the ENCODE Project (The 

ENCODE Project Consortium, 2011) such as three types of histone modifications and 

DNase I hypersensitivity. For the ENCODE data, functional annotations present in 

multiple cell lines were grouped together, and genetic variants were annotated 

accordingly in a binary, present or absent, fashion. Variants were marked with an 

annotation if they or their linkage disequilibrium proxies fall into the base pair range of 

the annotation. 

To annotate the variants using Ritchie et al.’s annotations, the data were entered into the 

online GWAVA webserver (https://www.sanger.ac.uk/resources/software/gwava/). 

Ritchie et al. investigated 174 functional annotations, some binary and others continuous. 

They also used ENCODE Project tracks including those investigated in Gagliano et al. 

but not necessarily coded as presence or absence. For instance, for transcription factor 

binding sites, the number of cell types in which the site was present was used as the 

annotation. Additionally, variation such as mean heterozygosity and genic and sequence 

contexts were included. Variants were marked with an annotation if they fall into the base 

pair range of the annotation. 

To obtain Kircher et al.’s annotations, the data were entered into the online CADD 

webserver (http://cadd.gs.washington.edu). However, Kircher et al. also imputed missing 
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values, expanded categorical variables, added indicator variables, and included 

interaction terms. Martin Kircher provided scripts to run on the webserver output to 

prepare our dataset in accordance with the complete protocol. Kircher et al. looked at 63 

unique functional annotations, which totaled to 949 once the categorical variables were 

expanded, and the indicator variables and interaction terms were included. A mixture of 

continuous, categorical, and binary functional annotations was included. Similar 

annotations to those used by Gagliano et al. and/or Ritchie et al. were included, such as 

ENCODE Project annotations and genic context. Additionally, data from online variant 

prediction programs (e.g. Sift (Ng and Henikoff, 2003) and PolyPhen (Adzhubei et al., 

2010) were incorporated. Variants were marked with an annotation if they fall into the 

base pair range of the annotation. 

5.5.2 Statistical learning algorithms 

The variants were randomly divided; 60% was used for training the models, and the 

remaining 40% was reserved for testing. Elastic net is a regularized logistic regression, 

and those models were constructed using the glmnet package in R (R Core Development 

Team, 2008). A weighting procedure was included to up-weight hits, as described in 

Knight et al. (2011); in brief, the weighting has the effect of equalizing the number of hits 

and non-hits in the training set. Optimal values of the parameters lambda and alpha were 

selected for each elastic net model using 10-fold cross validation. (The corresponding 

values that are one standard deviation from the values that produce the lowest binomial 

deviance.) Lambda is an overall penalty parameter. Alpha controls the proportion of 

weight assigned to both the sum of the absolute value of the coefficients and the sum of 

the squared value of the coefficients, which affects the degree of their sparsity. A range 

of combinations of lambda and alpha were investigated. The lambda and corresponding 

alpha that give a model a deviance one standard deviation above the model with the 

lowest deviance was selected.  
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Random forest is a collection of decision trees. The random forest models were 

implemented in Python using the scikit-learn package (Pedregosa et al., 2011). Two sets 

of random forest models were created, both using 10-fold cross validation. For the first 

set, we replicated Ritchie et al.’s random forest implementation by using scripts (e.g. 

gwava.py) provided on their online GWAVA FTP site 

(ftp://ftp.sanger.ac.uk/pub/resources/software/gwava/). For instance, bootstrap sampling 

was employed to form decision trees from bootstrap subset samples. To address the class 

imbalance in the datasets, non-hits were down-weighted through the balance_classes 

function created by Ritchie et al. and included in their random forest implementation. The 

balance_classes function selects a subset of non-hits that is equal to the number of hits in 

order to grow a tree. Furthermore, the subset of annotations used to determine the node 

split was set to the square root of the total number of annotations. This setting is the 

default setting for classification problems to determine the best split at each node of the 

decision tree (Malley et al., 2012). Additionally, as done by Ritchie et al., we used 100 

decision trees since we determined that the prediction scores and variable importance 

measures did not significantly differ past 100 trees.  

Ritchie et al. used a minimum node size (min_samples_split) of 1. The minimum node 

size is the minimum number of samples required to split an internal node. We created 

another set of random forest models in which we adjusted the minimum node size. This 

parameter is dataset specific, and a recommended setting is 10% of the total dataset 

(Malley et al., 2012). Consider n to be the number of hits in the training dataset. For the 

second set of random forest models, we set the minimum node size to approximately 10% 

of 2n. 

Support vector machine creates a hyperplane within a decision boundary space defined 

by support vectors to separate the classes in multidimensional space. The support vector 

machine models were implemented in Python through the scikit-learn package 

(Pedregosa et al., 2011). Kircher et al. did not use a weighting procedure as their training 
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set was already balanced. To compare protocols in an unbiased manner, we used a subset 

of the training set in which we chose all hits, and randomly selected an equal amount of 

non-hits. We performed a grid search using the tune function in order to determine the 

optimal cost parameter for a linear kernel. The cost parameter is a penalty (see chapter 9 

in James et al. (2013) for details). Feature selection is critical to improving model 

performance and is intrinsically incorporated by the elastic net and random forest 

algorithms (Appavu et al., 2011). Feature selection must be implemented before using 

support vector machine, as there is no feature selection protocol built in. Kircher et al. 

utilized univariate logistic regression among other methods to select features that best 

predict genetic risk variants. In this paper our support vector machine models included 

those annotations that had a non-zero Beta coefficient from the corresponding elastic net 

models. We chose the annotations found to be important from elastic net, since this 

algorithm implements a more stringent feature selection protocol compared to random 

forest (see Results). 

5.5.3 Assessment of model performance  

We assessed model performance in the test set data by calculating the area under the 

receiver operating characteristic (ROC) curve using the R package ROCR (Sing et al., 

2005) (and verified using the R package pROC (Robin et al., 2011)). 95% confidence 

intervals were generated using 2000 bootstrap replicates also using pROC (Robin et al., 

2011). As another measure of model performance, we also examined the distribution of 

prediction scores assigned to the test set data with the aid of violin plots.  

We investigated importance of the functional annotations through the Beta coefficient for 

elastic net. Similar to the output from a simple logistic regression, the larger coefficients 

are interpreted as more important to predicting genetic risk variants. For random forest 

we used Gini importance, which was also used in Ritchie et al. Gini importance is a 

scaled measure of Gini impurity averaged over all trees; it represents the improved 

capacity for correctly predicting variants that can be directly attributed to the annotation 
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(Hastie et al., 2009). For support vector machine, feature weights can be obtained related 

to the construction of the hyperplane when a linear kernel is used (Rosenbaum et al., 

2011).  

5.5.4 Performance for complex disease variants: Application to 
Schizophrenia GWAS 

We tested the performance of the nine models based on the GWAS classifier in a 

schizophrenia GWAS context. We selected all sub-genome-wide-significant variants 

(5x10-8<p<1x10-6) from the first round of the GWAS by the Psychiatric Genomics 

Consortium (PGC1) (Schizophrenia Psychiatric Genome-Wide Association Study 

(GWAS) Consortium, 2011). For each of the nine models we obtained prediction scores 

for these variants and selected the variants from the first and fourth prediction score 

quartiles. For these variants we extracted the p-values from the larger second round of the 

GWAS (PGC2) (Schizophrenia Working Group of the Psychiatric Genomics Consortium, 

2014) and plotted these in quantile-quantile plots. Note that there is sample overlap in the 

discovery cohort (about 30%) of the smaller PGC1 in the larger PGC2. Sample details are 

provided as a Supplementary Table in the PGC2 paper (Schizophrenia Working Group of 

the Psychiatric Genomics Consortium, 2014). We were able to determine for all models 

whether variants assigned higher scores were enriched in the variants with more 

significant p-values compared to variants with less significant p-values. 

5.5.5 HGMD analysis 

The nine models created by combinations of annotation sets and algorithms were 

assessed using two sets of the public release of the Human Gene Mutation Database 

(HGMD) variants provided to Ensembl in the fourth quarter of 2013 (provided by 

Graham Ritchie). In the first, we took all the variants (single nucleotide polymorphisms) 

in HGMD (N= 3,391) and chose non-hits/controls (n= 24,408) that fell within a kilobase 

of either side from the HGMD variant (for consistency with the way the controls were 

selected in Ritchie et al. (2014)). Secondly, models based on the subset of non-exonic 
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HGMD variants (N= 689) and non-exonic control variants present in the 1000 Genomes 

Project (Phase 1, version 3) that are within +/-1 kilobase from any of the HGMD variants 

(n= 16,527). were assessed. Additionally, the data was randomly split into 60% for 

training and 40% for testing. The same procedures for elastic net, random forest and 

support vector machine used in the GWAS Catalogue analysis were also conducted for 

the HGMD analyses. 

5.5.6 Comparison of scores from the three papers: Application to 
Schizophrenia GWAS 

In the effort for a more general comparison of the published methods as is, rather than 

looking specifically at the algorithm and annotations as done above, we additionally 

conducted the schizophrenia GWAS application using scores for the variants obtained 

directly from the published papers. Gagliano et al. makes available prediction scores from 

the non-phenotype specific analysis (which defined risk variants as variants present in the 

NHGRI GWAS Catalogue (Hindorff et al., 2010) downloaded on August 6, 2013 with a 

p-value of less than or equal to 5x10-8, and controls as variants on common GWAS 

platforms that are not in linkage disequilibrium (r2 >= 0.8) with the GWAS Catalogue 

variants). Ritchie et al. makes available prediction scores from three models. We used the 

most stringent, the scores from the “region” model (which defined risk variants as 

“regulatory mutations” in the Human Gene Mutation Database (HGMD) (Stenson et al., 

2009) public database, and the control variants as all those variants in the 1000 Genomes 

Project within a kilobase distance from each HGMD variant. Regulatory mutations are 

those variants that fall into regions that do not encode for a protein. For both Gagliano et 

al. and Ritchie et al. the prediction scores range from 0 to 1, where a value closer to one 

assigned to a variant suggests that that variant is more likely to be a risk variant as 

defined in the models. Kircher et al. defined phred-like scores (scaled C scores) in 

addition to raw scores. We plotted based on the raw scores. 
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Chapter 6  
Allele-specific DNA Methylation: A Functional Annotation 

with Potential for Risk Variant Prioritization in GWAS 
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6  

6.1 Abstract 

It has been hypothesized that allele-specific DNA methylation (ASM) can supplement 

GWAS of complex diseases and traits. We provide the first confirmation of this 

hypothesis by showing that single nucleotide polymorphisms exhibiting significant 

methylation intensity differences between the two alleles (ASM-SNPs) in the brain were 

consistently enriched in the GWAS sub-genome-wide significant SNPs of several 

phenotypes, with the strongest effect in schizophrenia. Our data also indicate that ASM-

SNPs are over-represented in functional genomic regions, and that the association 

between ASM and disease could be causal. 

6.2 Introduction  

Genome-wide association studies (GWAS) have identified single nucleotide 

polymorphisms (SNPs) associated with psychiatric disease, but more associated SNPs 

remain to be discovered. SNPs from GWAS with nominal but sub-genome-wide 

significant p-values account for a considerable proportion of the variance in independent 

psychiatric samples (International Schizophrenia Consortium et al., 2009), suggesting 

they are enriched for causal SNPs. Obtaining larger sample sizes (Schizophrenia Working 

Group of the Psychiatric Genomics Consortium, 2014) or using sub-phenotypes (Mahon 

et al., 2011) has been used to discover additional risk SNPs for psychiatric diseases. 

Other options for identification of novel risk loci should be explored. 

DNA methylation may play a role in disease. For instance, work has been done on 

investigating the implications of methylation patterns resulting in imprinting or parent-of-

origin bias of alleles, as reviewed in Falls et al. (1999) and Butler et al. (2009). Another 

type of methylation phenomenon is that some SNPs exhibit allele-specific methylation 
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(ASM): where one allele shows significantly different methylation levels compared to 

another allele. ASM can be determined by detecting methylation at SNPs in individuals 

and then comparing the methylation levels between alleles at each SNP in the sample. An 

initial ASM study used Affymetrix 250K StyI SNP arrays to assess ASM in various 

human tissues, and they showed that ASM can occur outside of imprinted regions (Kerkel 

et al., 2008). ASM may play a role in disease etiology through the regulation of gene 

expression since ASM has been shown to be associated with expression changes in 

nearby genes (Gertz et al., 2011; Schalkwyk et al., 2010). However, there has been a 

limited number of studies (all in small sample sizes) (see Table 6.1), which investigated 

ASM (e.g. n=10 (Schalkwyk et al., 2010) and n=42 (Hutchinson et al., 2014)). Larger 

studies to detect ASM effects are warranted.   

Table 6.1. Comparison	
  of	
  allele-­‐specific	
  DNA	
  methylation	
  studies.	
   

Study	
   Sample	
  size	
   DNA	
  tissue	
  
source	
  

ASM	
  lab	
  detection	
  
method	
  

ASM	
  statistical	
  detection	
  
method	
  

Schalkwyk	
  et	
  al.	
  
2010	
  

10	
  (5	
  twin	
  
pairs)	
  

Whole	
  blood	
  	
  
Buccal	
  
(verification)	
  

Affymetrix	
  SNP	
  6.0	
  
+	
  MSRE	
  (HpaII,	
  
HlaI,	
  AciI)	
  

For	
  heterozygotes,	
  
relative	
  allelic	
  score	
  
difference	
  between	
  
genotyping	
  and	
  MSRE-­‐
digested	
  arrays	
  

Gertz	
  et	
  al.	
  
2011	
  

8	
  (6	
  family	
  
members	
  
from	
  a	
  3	
  
generation	
  
family	
  and	
  
2	
  
unrelateds)	
  

Leukocytes	
   RRBS	
  (validated	
  4	
  
loci	
  through	
  Sanger	
  
sequencing)	
  

For	
  heterozygotes,	
  
compared	
  methylation	
  
status	
  on	
  the	
  variant	
  
allele	
  and	
  reference	
  
allele	
  for	
  each	
  SNP-­‐CpG	
  
pair	
  by	
  performing	
  a	
  
Fisher’s	
  Exact	
  Test	
  and	
  
calculated	
  q-­‐values.	
  

Hutchinson	
  
2014	
  

42	
  (12	
  twin	
  
pairs	
  and	
  
18	
  
singletons)	
  

Whole	
  blood	
   Affymetrix	
  SNP	
  6.0	
  
+	
  MSRE	
  (AciI,	
  BsaH,	
  
HhaI,	
  HpaII,	
  
HpyCH4IV)	
  

Heterozygous	
  SNPs	
  with	
  
the	
  MPRs	
  with	
  values	
  
lower	
  than	
  the	
  2.5	
  and	
  
97.5	
  percentiles	
  of	
  the	
  
MNR	
  distribution	
  

ASM= allelic-specific methylation; MSRE= methylation-specific restriction enzymes; MPR= MSRE 

positive region; MNR= MSRE negative region; RRBS= reduced representation bisulphite sequencing 
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Previous studies investigated ASM only in heterozygous individuals, where the intensity 

at one allele was compared to the intensity of the other allele after digestion with a 

cocktail of methylation-specific restriction enzymes to enrich for the hypomethylated 

fraction on the genotyping array (Figure 6.1). 

 

Figure 6.1. Example of ASM detection for heterozygote SNPs after digestion with MSRE. 

MSRE= methylation-specific restriction enzymes 

 

With regard to methylation and psychiatric diseases, there is evidence that this epigenetic 

phenomenon of ASM plays a role in such diseases. For instance, differences in DNA 

methylation at numerous loci has been shown to be associated with schizophrenia and 

bipolar disorder in the frontal cortex (Mill et al., 2008).  

ASM may help identify the causal SNPs for psychiatric diseases from among other SNPs 

with sub-genome-wide significant p-values. SNPs exhibiting allele-specific methylation 

will be referred to as ASM-SNPs from here in. We hypothesized that SNPs from 

psychiatric GWAS with nominal sub-genome-wide significant p-values are enriched for 

brain ASM-SNPs compared to SNPs in less significant bins. 
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6.3 Methods 

6.3.1 Samples 

Analyses were performed using DNA from human post-mortem prefrontal cortex, 

Brodmann area 10, were analyzed from control (N=74), bipolar disorder (BPD) (N=65) 

and schizophrenia (SCZ) (N=64) European-ancestry individuals from the Stanley 

Medical Research Institute and the Harvard Brain Tissue Resource Center. Sperm 

samples from BPD (n=24) and control samples (n=24) collected at the Centre for 

Addiction and Mental Health (Toronto) were also available. Ethnicity of the samples was 

determined using principal components analysis using super populations from the 1000 

Genomes Project (Phase 1). DNA samples from both brain tissues and sperm were 

extracted using standard phenol-chloroform methods. Demographic data for the samples 

are summarized in Table 6.2.  
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Table 6.2. Demographics	
  for	
  the	
  samples.	
   

 	
  

SCZ= schizophrenia; BPD= bipolar disorder; Age was only provided as decade ranges (e.g. 11-20, 21-30, 

etc.) for the Harvard samples, so to calculate the mean age, the decade was replaced by the median age for 

that decade. Ethnicity determined by principal component analysis using genetic data. Only the 

“Caucasian”/European samples (n=203 brains) were utilized for the identification of ASM. 

6.3.2 Identification of ASM-SNPs  

The samples described above were interrogated twice on Affymetrix SNP 6.0 (Affy6) 

microarrays: once for genotyping and the other for detecting the methylation levels for 

the genotypes (Figure 6.2). The genotyping was undertaken using standard procedures 

following the manufacturer’s instructions, and possible batch effects were tested for and 

not found. As cases and controls were run separately on two batches of arrays, a subset of 

10 cases and 10 controls was re-run in the second batch to ensure comparability. These 

STANLEY((brain)

N=90
Female*

(N=33,*37%)
Male*(N=57,*

63%)
Age*(yrs;*

mean*±*SD)
EthnicityC*
Caucasian

EthnicityC*
Other

Controls 27 7 19 42.7±7.3 27 0

SCZ 31 7 23 42.5±8.6 31 0

BPD 32 18 14 45.2±10.3 30 2
HARVARD((brain)

N=118
Female*

(N=54,*46%)
Male*(N=64,*

54%)
Age*(yrs;*

mean*±*SD)
EthnicityC*
Caucasian

EthnicityC*
Other

Controls 49 20 29 57.9±15.9 47 2

SCZ 34 13 21 58.5±13.7 33 1

BPD 35 21 14 62.6±17.4 35 0
CAMH((sperm)

N=48
Female*
(N/A)

Male*(N=48,*
100%)

Age*(yrs;*
mean*±*SD)

EthnicityC*
Caucasian

EthnicityC*
Other

Controls 24 N/A 24 38.5±11.3 16 8

SCZ 0 N/A N/A N/A 0 N/A

BPD 24 N/A 24 38.5±12.4 21 3
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technical replicates were enriched separately versus the original cases and controls, which 

were enriched together. For the detection of methylation levels, in brief, DNA samples 

were separately digested with three methylation-specific restriction enzymes: HpaII, 

HinP1I, and HpyCH4IV. The three digests per sample were then pooled in equal 

amounts, and adaptors were ligated onto the ends of DNA fragments. To eliminate the 

fragments containing methylated cytosines between the restriction enzyme targets, 

ligation products were additionally digested with McrBC. Samples were then PCR-

amplified using primers complementary to the adaptor sequences, fragmented, labelled, 

and hybridized to Affy6 microarrays. The crlmm R package (v1.8.11) was used to 

background correct, normalize and summarize (via RMA) the SNP probes, and to make 

genotype calls. Individual genotypes were assigned based on the 

individual’s hybridization score for each allele separately.  

 

Figure 6.2. Wet lab methodology for ASM detection. 

MSRE= methylation-specific restriction enzymes (HpaII, HinP1I, and HpyCH4IV were used here); Affy 6 

= Affymetrix SNP 6.0; PWL= piecewise linear regression 

 

Post-­‐mortem	
  brains	
  (n=208	
  
Caucasian)	
  	
  

DNA	
  Extraction	
  

Affy	
  6	
  array	
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ASM-SNPs are detected by establishing whether there is a difference between the 

total hybridization score (sum of intensities from both alleles) between groups of 

individuals with different genotypes. Four ASM-SNP lists were derived: all brain, BPD, 

SCZ, and control using piecewise linear regression (PWL) at q<0.01 on the total 

hybridization score. PWL is a two step linear regression model, first between genotypes 

AA and AB, and then between genotypes AB and BB. The genotypes were determined 

from the allelic intensities from the normal genotyping array (i.e. no methylation 

restriction enzymes added). No covariates were included into the model. For the array to 

which the methylation specific restriction enzyme digested fragments (i.e. the 

hypomethylated fraction) were bound, the microarray intensity can be interpreted as 

hypomethylation level. SNPs that demonstrated one or two significant slopes (the slope 

between AA-AB and/or AB-BB with a FDR<0.01) were classified as ASM (see Figure 

6.3). This procedure was done for four ASM cohorts: SCZ, BPD, controls and all brains 

to get the four ASM-SNP lists. 
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Genotyping array (no MSRE)            Hypomethylated fraction (after MSRE) 

 

a    rs9587163, an ASM-SNP           b 

 

        c       rs481818, a non-ASM-SNP          d 
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Figure 6.3. Methylation signal intensity plots from the Affymetric SNP 6.0 array before and after 
MSRE digestion using all brain samples. 

[a] signal intensity for genotyping array for rs9587163, an ASM SNP. [b] signal intensity for the same 

ASM-SNP as in [a] for the hypomethylated fraction (i.e. MSRE digestion) on which the PWL was 

conducted to derive the all brain ASM-SNP list in this example. [c] signal intensity for genotyping array for 

rs481818, a non-ASM SNP. [d] signal intensity for the same non-ASM-SNP as in [c] for the 

hypomethylated fraction (i.e. MSRE digestion) on which the PWL was conducted to derive the all brain 

ASM-SNP list in this example. [MSRE= methylation-specific restriction enzymes (HpaII, HinP1I, and 

HpyCH4IV were used here); PWL= piecewise linear regression] 
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6.3.3 Quality control 

Standard quality control procedures were implemented for SNPs on the genotyping 

arrays. Hardy-Weinberg equilibrium (HWE) in the control samples was assessed using 

PLINK (Purcell et al., 2007), and we removed those SNPs with HWE p < 10-10. SNPs 

with low minimum allele frequencies (MAF < 0.05) were also excluded from the 

analysis.  

	
  

6.3.4 Analysis of ASM-SNPs in GWAS 

We investigated whether ASM-SNPs were enriched in sub-genome-wide significant p-

value bins from GWAS. We analyzed brain ASM-SNPs in the context of an SCZ GWAS, 

which consisted of 34,417 SCZ cases and 45,674 controls and 1,235 parent affected-

offspring trios (Schizophrenia Working Group of the Psychiatric Genomics Consortium, 

2014). ASM-SNPs were also assessed in publically available summary statistics from 17 

large GWAS conducted from 2010 onwards for non-psychiatric diseases and normal 

traits with a minimum of N>10k cases or N>20k individuals for continuous traits (Table 

6.3). We began our search for GWAS that meet such criteria starting with the list from 

the Psychiatric Genomics Consortium (PGC) website. If the same study conducted more 

than one GWAS on correlated traits, then in order to attempt to make the results more 

independent, only one GWAS per study (the largest in terms of sample size) was selected 

(with the exception of the height and body mass index GWAS, which were published in 

the same study but were deemed as uncorrelated traits so both were assessed).  
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Table 6.3. Sample	
  information	
  for	
  the	
  schizophrenia	
  GWAS	
  and	
  large	
  non-­‐

psychiatric	
  GWAS	
  assessed	
  for	
  enrichment	
  of	
  ASM-­‐SNPs.	
   

 

GWAS Reference Sample 

Schizophrenia (Schizophrenia Working Group of 

the Psychiatric Genomics 

Consortium 2014 Nature) 

49 ancestry matched, non-overlapping case-control samples (46 

of European and three of east Asian ancestry, 34,241 cases and 

45,604 controls) and 3 family-based samples of European 

ancestry (1,235 parent affected-offspring trios)  

Height (Yang et al. 2012 Nature Genetics)  ~170,000 individuals, European ancestry 

BMI (Yang et al. 2012 Nature Genetics)  ~170,000 individuals, European ancestry 

Type 2 Diabetes (Morris et al. 2012 Nature Genetics) 34,840 cases and 114,981 controls, overwhelmingly European 

ancestry 

Age-related macular 

degeneration 

(Fritsche et al. 2013 Nature 

Genetics)  

>70,000 cases >60,000 controls of European or Asian ancestry 

College Completion (Rietveld et al. 2013 Science) 101,069 individuals 

Waist to Hip Ratio (Heid et al. 2010 Nature Genetics)  up to 123,865 individuals, European ancestry 

HDL  (Teslovich et al. 2010 Nature)  ~88,754 individuals, European ancestry 

Coronary Heart disease (Schunkert et al. 2011 Nature 

Genetics)  

22,233 cases and 64,762 controls, European ancestry  

 

Crohn’s disease (all IBD 

samples) 

(Jostins et al. 2012 Nature)  13,510 cases and 20,783 controls, European ancestry 

Cigarettes per day (Tobacco and Genetics Consortium 

2010 Nature Genetics) 

74,053 individuals, European ancestry 

Systolic blood pressure (Ehret et al. Nature 2011)  69,395 individuals, European ancestry 

 

Platelet count  (Gieger et al. 2011 Nature)  Up to 66,867 individuals, European ancestry 
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Alzheimer’s disease (Lambert et al. 2013 Nature 

Genetics)  

17,008 Alzheimer’s disease cases and 37,154 controls, European 

ancestry 

Hemoglobin level  (van der Harst et al. 2012 Nature)  up to 51,711 individuals of European or South Asian ancestry  

Fasting insulin level (Dupuis et al. 2010 Nature 

Genetics)  

up to 46,186 non-diabetics, European ancestry 

Bone mineral density- 

femoral neck 

(Estrada et al. 2012 Nature 

Genetics)  

32,961 individuals, European or East Asian ancestry 

 

2 hour glucose level (Saxena et al. 2010 Nature 

Genetics)  

15,234 non-diabetic individuals, European ancestry 

 

Enrichment of ASM-SNPs in GWAS p-value bins (p ≤ 0.1; 0.1 < p ≤ 0.2; 0.2 < p ≤ 0.3; 

etc.) was assessed using the hypergeometric test. For the hypergeometric test, the ASM 

and non-ASM-SNPs are pooled together. At a particular GWAS p-value bin, the test 

assesses whether more ASM-SNPs are present in that bin compared to non-ASM-SNPs 

on the Affymetrix array than what would be expected by chance with sampling from the 

pool of SNPs without replacement. As a negative control, two independent random SNP 

lists similar in size to the ASM-SNP lists were compared to the other SNPs on the Affy6 

array.  

In ASM-SNP analysis of the 17 non-psychiatric GWAS plus SCZ GWAS, 720 tests were 

performed in total (4 ASM-SNP lists, 10 GWAS p-value bins, and 18 GWAS), and 

Bonferroni correction for multiple testing was applied accordingly. 

Both GWAS and ASM-SNP lists were pruned to ensure our observations were not 

confounded by correlated SNPs. Pruning was implemented in PLINK (Purcell et al., 

2007), and was conducted using the LD structure from the HapMap Project European-

ancestry (CEU) samples from the phase containing the most SNPs to ensure maximum 
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overlap of SNPs (Phase 2, release 23) (Frazer et al., 2007). The filtered SNP set (SNPs 

that have MAF > 0.01 and genotyping rate greater than 0.95 in the 60 CEU founders) 

available on the PLINK website (http://pngu.mgh.harvard.edu/~purcell/plink/res.shtml) 

was utilized. This sample was used for pruning in order to reflect the European-derived 

ASM-SNP lists. The parameters for pruning were as follows: a 500 kbp window was 

considered, and the number of SNPs to shift the window at each step was five. For pairs 

of SNPs with an r2 > 0.25, one SNP was randomly selected for removal. For all of the 

GWAS, enrichment was assessed for the four ASM-SNP lists derived from: subjects 

affected with SCZ, subjects affected with BPD, control subjects and all brain samples 

assessed in the study (All brain). 

6.3.5 Ruling out possible confounders 

Given the use of restriction enzymes in the ASM detection procedure, we also tested to 

see if there is over-representation of ASM-SNPs in linkage disequilibrium (LD) with 

nearby restriction enzyme target overlapping SNPs across various LD thresholds. We 

investigated LD effects between ASM-SNPs and SNPs that fall within any of the bases of 

the MSRE sites. LD values were calculated between SNPs and MSRE SNPs in PLINK 

(Purcell et al., 2007), and r2 values ranging from 0 to 1 were calculated. 

We conducted a few analyses to ensure that the enrichment of ASM-SNPs seen in the 

p≤0.1 schizophrenia GWAS bin is not due to confounding factors. ASM SNPs have 

significantly higher minor allele frequency (MAF) compared to non-ASM SNPs on the 

Affymetrix array (mean ASM MAF= 0.28; mean non-ASM MAF= 0.24; p < 2.2 x 10-16, 

Mann-Whitney U test). In order to exclude the possibility that enrichment results are 

driven due to differing MAF in the ASM-SNP lists compared to non-ASM-SNPs, we 

created a “MAF-filtered pseudo ASM-SNP list” containing the same number of SNPs in 

minor allele frequency categories as the ASM-SNPs. We tested for enrichment this 

pseudo list in the schizophrenia GWAS.  
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Additionally, we conducted work to demonstrate that the identification of ASM-SNPs is 

not a hybridization artifact due to differing hybridization of alleles regardless of the 

methylation status. If there is unequal hybridization at the probes (for example, A alleles 

give off a greater signal), then there would be a difference between the total hybridization 

signals of different genotypes even at non-ASM-SNPs, and thus SNPs that exhibit 

differential hybridization would be detected in this manner. We aimed (1) to establish if 

SNPs that exhibit differential hybridization exist, and (2) to see if they are enriched in 

any of the schizophrenia GWAS p-value bins. To answer the first aim, we ran PWL on 

the raw intensity data. For the second aim, we assessed for enrichment of the resulting 

pseudo ASM-SNPs in the schizophrenia GWAS p-value bins using the hypergeometric 

test as previously described for the actual ASM-SNP lists.  

6.3.6 Functional genomic characterization of ASM-SNPs 

To further elucidate the roles of ASM-SNPs in disease, we explored functional features 

of the genomic regions in which they are located, using functional genomic data from the 

Encyclopedia of DNA Elements (ENCODE), for instance.	
  Functional genomic 

characterization of ASM-SNPs with functional genomic characterization (e.g. DNase 

hypersensitivity, histone modifications, transcription factor binding sites, etc.) was 

performed by comparing frequencies for ASM-SNPs to frequencies of SNPs that did not 

exhibit ASM, using the hypergeometric test. Splice sites and nonsynonymous SNPs were 

taken from the UCSC Genome Browser (Meyer et al., 2013). Splice site boundaries were 

defined as a window of 5 bases up and 5 bases downstream a splice site. Nonsynonymous 

variants (coding SNPs that fall into one of the following categories: stop-

gained/nonsense, missense, stop-lost, frameshift or inframe indel) were defined as a 

single base pair. Cis eQTLs were defined as single base pairs from the GTEx Project 

(http://www.ncbi.nlm.nih.gov/projects/gap/eqtl/index.cgi) (Gibbs JR, 2010; Montgomery 

SB, 2010; Schadt et al., 2008; Stranger et al., 2007), and from the UK Brain Expression 

Consortium (www.braineac.org) (Trabzuni et al., 2011). DNase clusters are DNase 
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hypersensitivity data from all available cell types from the ENCODE Project have been 

uniformly processed and replicates merged, and peaks are defined by a FDR 1% 

threshold. UCSC Genes was available from the UCSC Genome Browser (Meyer et al., 

2013). Three histone marks (H3K4Me1, H3K4Me3, H3K27Ac) and transcription factor 

binding sites were based on regions identified by chromatin immunoprecipitation 

followed by sequencing (ChIP-seq). The peaks data available on UCSC Genome Browser 

(Meyer et al., 2013) were used: regions of statistically significant signal enrichment 

where scores associated with each enriched interval is the mean signal value across the 

interval. 

6.4 Results  

6.4.1 Samples 

Ancestry of the samples was determined by principal components analysis using 1000 

Genomes Project super populations as a reference (Figure 6.4). 
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Figure 6.4. Ancestry clusters using principal component analysis. 

AFR= 1000 Genomes Project Africans; AFR.SNP6= Samples with self-reported African ancestry; AMR= 

1000 Genomes Project Admixed-American; AMR.SNP6= Samples with self-reported Admixed-American 

ancestry; ASN= 1000 Genomes Project Asians; EUR= 1000 Genomes Project Europeans; EUR.SNP6= 

Samples with self-reported European ancestry; NA.SNP6= Samples without self-reported ancestry. 

 

6.4.2 Identification of ASM-SNPs 

1,374 ASM-SNPs detected in the control brains (1.31% of all SNPs investigated after 

removing those in linkage disequilibrium with one another, r2>0.25); 2,921 in SCZ brains 

(2.79%); 1,313 in BPD brains (1.25%); and 7,744 in all brain samples (major psychosis 

cases plus controls; 7.40%). The different sized lists depending on the cohort is likely due 
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to power differences. The p-values for the two sets of slopes from the piecewise linear 

regression are shown in Figure 6.5. 
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b 

Figure 6.5. Distribution of p-values for piecewise linear regression among the cohorts. 

SNPs assessed for ASM from the various brain sample cohorts. [a] P-values for the first slope (between 

genotypes AA and AB) [b] P-values for the second slope (between genotypes AB and BB)  

 

We also looked at these p-values by constructing Manhattan plots to see the distribution 

of the SNPs across the genome according to their p-value for the piecewise linear 

regression (not shown due to large file sizes). There were no particular patterns or 

preferences for p-value distributions by chromosome. 
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All pairwise correlations among the four ASM-SNP lists were significantly higher 

pairwise overlap than expected by chance alone (p < 2.2 x 10-16, hypergeometric test; 

Figure 6.6). 

	
  

 

Figure 6.6. Overlap of identified ASM-SNPs among cohorts. 

Venn diagram showing overlap of identified LD-pruned ASM-SNPs from the various brain sample cohorts. 

All brain= ASM-SNPs identified in all the brains; SCZ= ASM-SNPs identified in the brains of 

schizophrenia patients; control= ASM-SNPs identified in the control brains; BPD= ASM-SNPs identified 

in the brains of bipolar disorder patients. 

 

6.4.3 Quality control 

We generated four ASM-SNP lists using piecewise linear regression. Depending on the 

cohort being examined, we removed a set of SNPs that failed our quality control tests 
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described below. Such SNPs were not found on autosomes or sex chromosomes, were not 

genetically diverse (genetically diverse SNPs defined as SNPs with at least two samples 

in each of the three genotype categories), diverged from Hardy-Weinberg equilibrium 

(HWE), exhibited low minor allele frequency (MAF) or had limited genotype confidence 

call rates. A threshold of p < 10−10 was used to filter SNPs that failed HWE (based on the 

controls), and the vast majority of SNPs were in even stronger agreement with HWE: 

97% of SNPs with p > 10-10 also exhibited p > 10-7. Of the 906,600 SNPs assessed on the 

Affy6 array, there were 1,140 SNPs that were not found on autosomes or sex 

chromosomes. The other quality control procedures were implemented for each cohort 

separately (Table 6.4).  

Table 6.4.	
  Quality	
  Control	
  filtering	
  of	
  SNPs.	
   

Number of SNPs that remain after various quality control procedures before and after piecewise linear regression 
(PWL). MAF= Minor Allele Frequency; HWE= Hardy-Weinberg Equilibrium; LD= Linkage Disequilibrium 

 

	
  	
   Control	
   BPD	
   SCZ	
   All	
  brain	
  
Control-­‐	
  
sperm	
  

BPD-­‐	
  
sperm	
  

Genetically	
  
diverse	
   797,776	
   795,945	
   792,343	
   845,139	
   710,646	
   690,085	
  

After	
  PWL	
  
(FDR	
  q>1%)	
   2,546	
   2,294	
   4,919	
   15,514	
   300	
   81	
  

MAF	
  and	
  
HWE	
  cut-­‐offs	
   2,025	
   1,926	
   4,431	
   13,795	
   279	
   79	
  

LD	
  pruning	
  
(r2<0.25)	
   1,374	
   1,313	
   2,921	
   7,744	
   222	
   62	
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6.4.4 Analysis of ASM-SNPs in GWAS 

All four brain ASM-SNP lists showed significant enrichment in the p ≤ 0.1 schizophrenia 

GWAS bin, but not in any of the remaining bins (p > 0.1) (Figure 6.7 and Table 6.5). 

The most significant ASM-SNP enrichment was for the all brains ASM-SNP list (p = 2.0 

x 10-19). Random SNP lists from the Affymetrix array that passed the quality control 

procedures showed no effect.  

 

 

 

Figure 6.7. Distribution of ASM-SNPs in GWAS p-value bins.  

ASM-SNPs detected in the brains of controls, SCZ and BPD patients are overrepresented in the sub-

genome-wide significant p ≤ 0.1 SCZ GWAS SNP group. SCZ GWAS p-value bins are plotted on the x-

axis, negative log10 p-values are on the y-axis. The inset shows the further division of the p ≤ 0.1 bin, 

revealing the highest density of ASM-SNPs in the SCZ GWAS p ≤ 0.01 sub-bin.  
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ASM detection in sperm samples may suggest causal association between ASM-SNPs 

and psychiatric disease. Although not sufficiently robust to withstand multiple-testing 

correction, both control-sperm and BPD-sperm ASM-SNPs showed enrichment in the 

schizophrenia GWAS p≤0.1 bin (1.38-fold and 2-fold enrichment, respectively), but not 

in any other bin (Table 6.4). There was some overlap between the sperm ASM-SNP lists 

and the all brain ASM-SNP list. 41 (56%) of the BPD-sperm ASM-SNPs are also all 

brain ASM-SNPs, and 134 (49%) of the control-sperm ASM-SNPs are also all brain 

ASM-SNPs. 
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Table 6.5. Enrichment	
  of	
  ASM-­‐SNPs	
  in	
  Schizophrenia	
  GWAS	
  p-­‐value	
  bins.	
   

Hypergeometric p-values (uncorrected for multiple testing) comparing the proportion of ASM-SNPs to all SNPs in 
GWAS p-value bins. Counts (after overlap with the Affymetrix array SNPs and LD pruning) in parentheses. 

 

 

Enrichment of ASM-SNPs in the more significant p-value bins held when the p ≤ 0.1 bin 

was sub-divided into five bins between p-values 0 to 0.05, and the strongest enrichment 

was observed in the p ≤ 0.01 bin (Table 6.6, and inset of Figure 6.7).  

  

!
!
ASM%SNP!
CATEGORY!

P%!VALUE!BINS!

≤0.1! >0.1!
≤0.2!

>0.2!
≤0.3!

>0.3!
≤0.4!

>0.4!
≤0.5!

>0.5!
≤0.6!

>0.6!
≤0.7!

>0.7!
≤0.8!

>0.8!
≤0.9!

>0.9!

! !
Schizophrenia!GWAS!!

(Schizophrenia.Working.Group.of.the.Psychiatric.Genomics.Consortium.2014.Nature).
.

All!brains! 2.03.x.10D19.
.(1584).

0.39.
(865).

0.47.
(771).

0.95.
(692).

0.77.
(689).

0.98.
(647).

0.26.
(685).

1.00.
(576).

0.98.
(620).

0.98.
(615).

SCZ!brains!! 2.68.x.10D8..
(599).

0.39.
(328).

0.59.
(286).

0.59.
(272).

0.84.
(251).

0.97.
(234).

0.11.
(271).

1.00.
(207).

0.97.
(225).

0.55.
(248).

BPD!brains!! 5.87.x.10D8..
(293).

0.57.
(143).

0.61.
(127).

0.92.
(109).

0.93.
(104).

0.66.
(113).

0.25.
(120).

0.88.
(103).

0.98.
(92).

0.62.
(109).

Control!brains! 1.14.x.10D7..
(303).

0.78.
(143).

0.95.
(118).

0.19.
(139).

0.39.
(128).

0.95.
(106).

0.55.
(117).

0.98.
(99).

0.77.
(111).

0.76.
(110).

! !
Randomly!selected!SNPs!in!Schizophrenia!GWAS!!

.
Sample!1! 0.96.

(762)!
0.22.
(719).

0.10.
(716).

0.31.
(718).

0.05.
(723).

0.77.
(682).

0.34.
(689).

0.74.
(726).

0.83.
(683).

0.28.
(676).

Sample!2! 0.74.
(747)!

0.59.
(740).

0.08.
(726).

0.33.
(703).

0.21.
(701).

0.35.
(690).

0.74.
(716).

0.59.
(688).

0.44.
(707).

0.81.
(676).

! !
Schizophrenia!GWAS!

!.
BPD!sperm! 7.7.x.10D4.

(20).
0.08.
(10).

0.59.
(5).

0.85.
(3).

0.68.
(4).

0.98.
(1).

0.91.
(2).

0.92.
(2).

0.09.
(8).

0.16.
(7).

Control!sperm! 6.9.x.10D3.
(51).

0.34.
(26).

0.79.
(18).

0.90.
(15).

0.57.
(19).

0.71.
(17).

0.29.
(21).

1.00.
(7).

0.05.
(26).

0.21.
(22).

!
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Table 6.6. Enrichment	
  of	
  ASM-­‐SNPs	
  in	
  SCZ	
  GWAS	
  p-­‐value	
  bins	
  (p	
  ≤	
  0.05). 

Partitioning the p≤0.1 bin from Table 6.5. Hypergeometric p-values (uncorrected for multiple testing) comparing the 
proportion of ASM-SNPs to all SNPs in SCZ GWAS; OR- Odds ratios and their corresponding 95% confidence 
intervals. 

 

 

In order to more clearly assess the potential of ASM-SNPs to prioritize sub-genome-wide 

significant GWAS SNPs, we looked at the effect size for schizophrenia GWAS bins 

ranging all the way from GWAS p<10-7 to p=1. There is a clear gradient of ASM 

enrichment across these bins: the more the significant p-value, the higher the proportion 

of ASM-SNPs in that bin; for example, schizophrenia ASM-SNPs in the schizophrenia 

GWAS p<10-7 bin exhibits odds ratio of 7.3, while it is only 1.4 for 0.001≤p<0.01 

(Figure 6.8). This finding supports the use of ASM to prioritize sub-genome-wide 

significant GWAS SNPs. 

ASM$SNP'
CATEGORY'

P$VALUE'BINS'
p≤0.01' 0.01<p≤0.02' 0.02<p≤0.03' 0.03<p≤0.04' 0.04<p≤0.05'

BPD'ASM$SNPs'
p"
OR"

95%"CI'

"
3.84E/09"
1.5""

1.3/1.7""

"
0.01""
1.0""

0.9/1.2"

"
0.03""
1.0""

0.9/1.2"

"
0.44""
1.0""

0.8/1.2"

"
0.10""
1.0""

0.8/1.2"
Controls'ASM$SNPs'

p"
OR"

95%"CI'

"
1.19E/04""
1.2""

0.9/1.5"

"
0.01""
1.1""

0.7/1.5"

"
0.07""
0.9""

0.6/1.3"

"
0.28""
0.8""

0.5/1.1"

"
2.45E/03""
1.2""

0.8/1.7"
SCZ'ASM$SNPs'

p"
OR"

95%"CI'

"
2.85E/13""
1.6""

1.2/2.0"

"
3.73E/04""
1.0""

0.7/1.4"

"
0.03""
0.9""

0.6/1.4"

"
0.92""
0.6""

0.4/1.0"

"
0.11""
0.8""

0.5/1.3"
All'brain'ASM$SNPs'

p"
OR"

95%"CI'

"
6.56E/16"
1.6""

1.3/1.9""

"
3.35E/03""
1.1""

0.9/1.4""

"
0.01""
0.9""

0.7/1.2"

"
0.04"
0.5""

0.4/0.8""

"
0.06""
0.9""

0.6/1.1"
!
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Figure 6.8. Odds ratios (with 95% confidence intervals) for the enrichment of ASM-SNPs in 
various GWAS p-value bins in the schizophrenia GWAS. 

Odds ratios and confidence intervals calculated from a 2x2 contingency table. Blue bars – ASM-SNPs 

detected in the post-mortem brains from schizophrenia patients; red bars – ASM-SNPs detected in the 

entire sample of brains (schizophrenia, bipolar disorder, and controls). Control and Bipolar disorder ASM-

SNP lists are not shown for clarity due to a small number of SNPs (<10), in the smaller p-value bins, which 

resulted in very wide confidence intervals. 

We then investigated the enrichment of ASM-SNPs in 17 non-psychiatric GWAS 

(Figure 6.9).  
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Figure 6.9. Distribution of ASM-SNPs in GWAS p-value bins.  

Distribution of -log10 p-values (corrected for multiple testing) for 4 lists of brain ASM-SNPs interrogated in 

18 large GWAS. Only GWAS SNP p ≤ 0.1 bins are presented here. Total sample size of each GWAS in 

thousands (k) is presented above each row of ASM-SNP p-values. 

 

Enrichment in the GWAS p≤0.1 bin was seen to a lesser degree for some of the four 

ASM-SNP lists than in three blood/cardiovascular-related GWAS: platelet count, high 

density lipoprotein (HDL) and coronary heart disease. None of the odds ratios for these 

cardiovascular-related traits surpassed the odds ratios observed for the enrichment of the 

corresponding ASM-SNP list in the SCZ GWAS. Significant enrichment was seen 

neither in any other GWAS investigated nor in any other p-value bin (Table 6.7). 
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Table 6.7. Enrichment	
  of	
  ASM-­‐SNPS	
  in	
  GWAS	
  p-­‐value	
  bins	
  ≤0.1	
  of	
  large	
  GWAS.	
   

Hypergeometric p-values (uncorrected for multiple testing) comparing the proportion of ASM-SNPs to all SNPs in 
GWAS p-value bins. OR- Odds ratios followed by the corresponding 95% confidence intervals. 
 
 

 
 
  

ASM$SNP$brain$
list$

Height$ Body$
Mass$
Index$
(BMI)$

Type$2$
Diabetes$

Age?related$
macular$
degeneration$

College$
Comple
tion$

$$$$$Waist?$$$$$$$$$
$$$to?hip$
$$$ratio$

High$
Density$
Lipoprotein$
(HDL)$

Coronary$
heart$
disease$

Schizophrenia$

All#brains#
p$
OR$

95%$CI$

$
1$
1.0$

0.9?1.0$

$
1$
0.9$

0.9?1.0$

$
1$
1.0$

1.0?1.1$

$
1$
1.1$$

1.0?1.2$

$
0.03$
1.2$$

1.1?1.2$

$
0.29$
1.1$$

1.0?$1.2$

$
2.4e?7$
1.3$$

1.2?1.4$

$
7.2e?3$
1.2$$

1.1?1.2$

$
1.5e?16$
1.3$$

1.2?1.4$

SCZ#brains#
p$
OR$

95%$CI$

$
1$
0.9$

0.8?1.1$

$
1$
1.0$

0.9?1.1$

$
1$
1.1$$

1.0?1.2$

$
1$
1.2$$

1.0?1.3$

$
1$
1.1$$

1.0?1.3$

$
1$
1.2$$

1.0?1.3$

$
0.02$
1.3$$

1.1?1.4$

$
3.9e?4$
1.3$$

1.2?1.5$

$
1.9e?5$
1.3$$

1.2?1.4$

BPD#brains#
p$
OR$

95%$CI$

$
1$
1.0$

0.8?1.2$

$
1$
1.0$

0.8?1.2$

$
1$
0.9$$

0.8?1.1$

$
1$
1.2$$

1.0?1.4$

$
1$
1.1$$

0.9?1.3$

$
1$
1.1$$

0.9?1.3$

$
1$
1.2$$

1.0?1.4$

$
1$
1.3$$

1.1?1.5$

$
4.2e?5$
1.4$$

1.2?1.6$

######Control#brains#
p$
OR$

95%$CI$

$
1$
1.0$

0.8?1.2$

$
1$
0.9$

0.7?1.1$

$
1$
1.1$$

0.9?1.2$

$
1$
0.9$$

0.7?1.1$

$
1$
1.2$$

1.0?1.4$

$
0.36$
1.3$$

1.1?1.6$

$
0.03$
1.4$$

1.2?1.6$

$
1$
1.2$$

1.1?1.4$

$
8.2e?5$
1.4$$

1.2?1.6$

!
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Table 6.7 Enrichment of ASM-SNPs in GWAS p-value bins ≤0.1 of large GWAS 
(continued) 
 
Hypergeometric p-values (uncorrected for multiple testing) comparing the proportion of ASM-SNPs to all SNPs in 
GWAS p-value bins. OR- Odds ratios followed by the corresponding 95% confidence intervals. 
 

  

ASM$SNP$
brain$list$

Crohn’s$
disease$

Cigarettes$
/day$

Systolic$
Blood$
Pressure$

Platelet$
count$

Alzheimer’s$
disease$

Hemoglobin$
level$$

Fasting$
insulin$

Bone$
mineral$
density@$
Femoral$
neck$

2h$
glucose$
level$

All#brains#
p$
OR$

95%$CI$

$
0.07$
0.6$$

0.5@0.6$

$
1$
1.1$$

1.0@1.2$

$
0.29$
1.1$$

1.1@1.2$

$
1.3e@4$
1.3$$

1.2@1.4$

$
0.07$
1.1$$

1.1@1.2$

$
1$
1.1$$

1.0@1.2$

$
1$
1.1$$

1.0@1.2$

$
0.14$
1.1$

1.1@1.2$
$

$
1$
1.0$$

0.9@1.0$

SCZ#brains#
p$
OR$

95%$CI$

$
1$
1.1$$

1.0@1.3$

$
1$
1.1$$

1.0@$1.2$
$

$
1$
1.0$$

0.9@1.2$

$
8.4e@3$
1.3$$

1.1@1.4$

$
1$
1.1$$

1.0@1.2$

$
1$
1.0$$

0.9@1.2$

$
1$
1.1$$

0.9@1.2$

$
0.72$
1.2$$

1.1@1.4$

$
1$
1.0$$

0.8@1.1$

BPD#brains#
p$
OR$

95%$CI$

$
1$
1.1$$

1.0@1.4$

$
1$
1.3$$

1.0@1.4$

$
1$
1.1$

0.9@1.3$

$
1$
1.2$$

1.0@1.4$

$
1$
1.2$$

1.0@1.4$

$
1$
1.2$$

1.0@1.4$

$
1$
1.0$$

0.8@1.2$

$
1$
1.2$$

1.0@1.4$

$
1$
1.0$

0.8@1.2$

###Control#brains#
p$
OR$

95%$CI$

$
1$
1.2$$

1.0@1.4$

$
1$
1.2$$

1.0@1.4$

$
0.22$
1.3$$

1.1@1.6$

$
1.8e@3$
1.4$$

1.2@1.6$

$
1$
1.2$$

1.0@1.4$

$
1$
1.2$$

1.1@1.4$

$
1$
1.0$$

0.8@1.2$

$
1$
1.1$$

0.9@1.3$

$
1$
0.9$$

0.8@1.1$

!
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To further demonstrate that ASM-SNP analysis can identify those sub-genome-wide 

significant GWAS SNPs most likely to be disease-associated, we analyzed a 52k-

individual SCZ GWAS (Schizophrenia Psychiatric Genome-Wide Association Study 

(GWAS) Consortium, 2011), which was a subset of the 81k-individual SCZ GWAS. We 

categorized sub-genome-wide significant GWAS SNPs in the 52k-individual study (5 x 

10-8 < p < 0.1) as either ASM-SNPs or non-ASM-SNPs. For these SNPs we created a 

quantile-quantile plot of the p-values in the 81k-individual SCZ GWAS (observed p-

values vs. expected p-values; Figure 6.10). 
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Figure 6.10. The	
  quantile-­‐quantile	
  plot	
  shows	
  ASM-­‐SNPs	
  and	
  non-­‐ASM-­‐SNPs	
  with	
  a	
  p	
  ≤	
  0.1	
  in	
  the	
  
52k	
  SCZ	
  GWAS	
  plotted	
  by	
  their	
  p-­‐value	
  in	
  the	
  81k	
  GWAS. 

The observed quantiles were derived from the 81k SCZ GWAS p-values for the respective SNPs, while the 

expected quantiles were from a continuous uniform distribution of p-values. The steeper slope of the ASM-

SNPs indicates that these SNPs have lower p-values in the 81k SCZ GWAS, where both the sample size 

and power is greater, compared to the non-ASM-SNPs. The plotted ASM-SNPs are those from all brains in 

the p ≤ 0.1 bin of the 52k SCZ GWAS (n = 1,376) and the plotted non-ASM-SNPs are those in the 52k 

SCZ GWAS p ≤ 0.1 bin (n = 163,592 from the total of n = 1,252,902 SNPs tested in 52K SCZ GWAS).  

6.4.5 Ruling out possible confounders 

We found no significant over-representation of ASM-SNPs in LD with SNPs in nearby 

restriction enzyme sequences across all LD threshold values (p > 0.1, hypergeometric 

test). 

We ensured that the enrichment of ASM-SNPs seen in the p≤0.1 schizophrenia GWAS 

bin is not due to differing minor allele frequencies (MAF) between the ASM and non-
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ASM-SNPs or due to differing hybridization of alleles regardless of methylation status. 

We found that for the “MAF-filtered pseudo ASM-SNP list” with the same allele 

frequency distribution as the ASM-SNPs, there was no enrichment (uncorrected p>0.039, 

hypergeometric test) for any of the schizophrenia GWAS p-value bins, suggesting that 

the ASM-SNP enrichment seen in the p≤0.1 schizophrenia GWAS bin is not due to MAF 

differences between ASM and non-ASM-SNPs. 

With regard to the hybridization, we detected “differential hybridization SNPs” by 

running PWL on the genotyping intensity data (the array for the normal genotyping 

without the use of the methylation specific restriction enzymes). We found no correlation 

between the p-values for the first slope (AA and AB) with that of second slope (AB and 

BB) (correlation= 0.028). We also found that the p-values obtained to detect differential 

hybridization from the normal genotyping array were not correlated with the p-values 

obtained from the hypomethylated fraction from which the ASM effects were detected 

(correlation= 0.016 for the first slope for the two arrays; correlation= 0.019 for the second 

slope for the two arrays). We defined those SNPs with a q<0.01 as SNPs that exhibit 

differential hybridization. We tested these SNPs in the context of the schizophrenia 

GWAS. Most SNPs (n= 104,688) were classified as differential hybridization SNPs by 

this method, but these SNPs are not significantly enriched in any of the schizophrenia 

GWAS p-value bins (uncorrected p> 0.0002, hypergeometric test) (Figure 6.11). 

Although unequal hybridization of alleles is evident and creates pseudo ASM-SNPs, 

these are not enriched in GWAS bins of interest, and therefore the enrichment results are 

likely due to a true ASM effect.  
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Figure 6.11. Distribution of SNPs that exhibit differential hybridization and ASM-SNPs in SCZ 
GWAS p-value bins.  

ASM-SNPs detected in the all brains cohort are overrepresented in the sub-genome-wide significant p ≤ 0.1 

SCZ GWAS SNP group compared to SNPs that exhibit differential hybridization detected in the same 

cohort. SCZ GWAS p-value bins are plotted on the x-axis, negative log10 p-values are on the y-axis. The 

numbers on top of the bars give the number of SNPs in each of the two lists. 

 

6.4.6 Functional genomic characterization of ASM-SNPs 

13% (1,036 of the 7,743) of the all brains ASM-SNP list are in CpG islands, and 7.6% 

(586 out of the 7,743) are in coding regions. None of the non-ASM-SNPs (subset selected 

with the same MAF distribution as the all brain ASM-SNP list) fall into CpG islands, and 

4.1% are in coding regions. 

ASM-SNPs in the schizophrenia GWAS p≤0.1 bin showed significant enrichment in 

functional genomic categories (for example, transcription factor binding sites, DNase I 

hypersensitive sites, regulatory histone modifications) compared to all GWAS SNPs 

p>0.1 that did not exhibit ASM effects (Table 6.8). 
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Table 6.8. ASM-­‐SNPs	
  in	
  the	
  SCZ	
  GWAS	
  p	
  ≤	
  0.1	
  bin	
  are	
  found	
  in	
  functional	
  regions	
  of	
  

the	
  genome	
  more	
  than	
  expected	
  by	
  chance	
  alone	
  (uncorrected	
  hypergeometric	
  test	
  

p-­‐values).	
  	
   

There were 2,351 ASM-SNPs (the union of the four brain ASM-SNP lists after pruning based on linkage 
disequilibrium) and 122,186 non-ASM-SNPs. Frequencies of ASM-SNPs with GWAS p > 0.1 (n = 8,829) 
and non-ASM-SNPs with GWAS p>0.1 (n = 511,636) shown for comparison purposes. All SNPs are 
annotated in a binary fashion indicating the presence or absence of a functional characteristic for the SNP 
itself. OR= odds ratio for the 2x2 contingency table; and 95% CI is the corresponding 95% confidence 
interval. 

 

ASM-SNPs are distributed throughout the genome, and only a few are SNPs that are 

significantly associated with SCZ in the GWAS (Figure 6.12). 

 

 

!
 

SNPs%with%GWAS%P%≤%0.1% SNPs%with%GWAS%P%>%0.1%
Functional 
Characteristic 
 
 

Proportion P  
(OR; 95% CI) 

Proportion P  
(OR; 95% CI) ASM-

SNPs 
non-
ASM-
SNPs 

ASM-
SNPs 

non-
ASM-
SNPs 

splice 
0.0021 0.0009 

0.0249 
(2.4; 0.8, 5.2) 0.0015 0.0009 

0.0361 
(6.1; 3.2, 10) 

non-synonymous 
0.0030 0.0039 

0.7032 
(0.8; 0.3,1.5) 0.0044 0.0037 

0.1063 
(4.2; 3.0, 5.8) 

DNase Clusters 
0.4122 0.1483 

2.02E-205 
(4.0; 3.7, 4.4) 0.3906 0.1479 

< 1E-205 
(14; 13, 15) 

GTEx eQTLs (all 
7 experiments 
together) 0.0285 0.0109 

4.51E-12 
(2.6; 2.0, 3.4) 0.0134 0.0067 

9.64E-12 
(4.7; 3.8, 5.6) 

UK brain eQTLs 
0.1438 0.0885 

3.80E-10 
(1.5; 1.3, 1.6) 0.0832 0.0646 

7.67E-12 
(3.8; 3.6, 4.2) 

UCSC Genes 
0.5070 0.4207 

3.06E-17 
(1.4; 1.3, 1.5) 0.4646 0.3821 

1.65E-55 
(4.9; 4.6, 5.2) 

BroadHistone- 
H3k4Me1 0.6508 0.4392 

3.00E-93 
(1.3; 1.2, 1.4) 0.6026 0.4272 

2.12E-236 
(4.6; 4.3, 5.0) 

BroadHistone- 
H3k4Me3 0.4785 0.2419 

7.22E-134 
(1.7; 1.5, 1.8) 0.4493 0.4756 

<1E-205 
(5.7; 5.3, 6.2) 

BroadHistone- 
H3k27ac 0.6159 0.3931 

1.27E-103 
(1.6; 1.5, 1.7) 0.5537 0.4272 

2.48E-239 
(5.4; 5.0, 5.9) 

Txn Factor ChIP 
(if annotation for 
any TF) 0.6159 0.0821 

4.54E-109 
(1.5; 1.4, 1.6) 0.2235 0.0815 

<1E-205 
(5.1; 4.7, 5.5) 
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Figure 6.12. Manhattan plot of ASM-SNPs plotted by their SCZ GWAS p-values.  

The LD-pruned all brain ASM-SNP list (n=7,744 SNPs is plotted) using data from the second 

round of the SCZ GWAS. 
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6.5 Discussion 

 We demonstrate that ASM in the brain is relevant to psychiatric GWAS by 

demonstrating that brain ASM-SNPs were consistently enriched in schizophrenia GWAS 

sub-genome-wide significant SNPs, with a lesser degree of enrichment in the HDL, 

platelet count and, coronary heart disease GWAS. The degree of enrichment seen in the 

p≤0.1 bin for these three cardiovascular related GWAS may point to a sharing of genetic 

factors between psychiatric and cardiovascular disorders. Yet it is difficult to disentangle 

whether this relationship is primarily environmental or genetic. Furthermore, ASM-SNPs 

are over-represented in functional genomic regions, and thus ASM may be important in 

prioritizing which sub-genome-wide significant GWAS SNPs are causal. 

Unlike previous ASM studies, in this work we assessed ASM at all SNPs rather than just 

in heterozygous individuals by considering methylation differences among genotypes 

rather than between the two alleles of a heterozygous individual. However, similar to 

previous work we used a cocktail of methylation-specific restriction enzymes (MSRE) to 

enrich for the hypomethylated fraction and assess this fraction on an Affymetrix SNP 6.0 

array taking the allele intensities as a measure of hypomethylation intensity. We 

compared the all brain ASM-SNP list (before LD pruning) to the ASM-SNP lists in 

Schalkwyk et al. (2010) and Hutchinson et al. (2014), two papers in which MSRE and 

was combined with Affymetrix SNP 6.0 arrays to detect ASM. ASM-SNPs were only 

detected in heterozygous individuals in those two studies. Three ASM-SNPs (rs220030, 

rs9366927, rs943049) listed in Schalkwyk et al. (2010) in either of Tables 1,2,3 or S3 

(n=204) were also identified as an ASM-SNPs in Hutchinson et al. (2014) in Figure 2b 

(n=30). These two groups (see Table 6.1) used a different cocktail of enzymes, but they 

both used whole blood. Comparing these ASM-SNP lists to the all brain ASM-SNP list 

described here, 28/204 (14%) (see Table 6.9) of the ASM-SNPs detected by Schalkwyk 

were also detected in our all brain ASM-SNP list, and 2/30 (7%) (rs11761231, 
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rs4689713) of the ASM-SNPs detected by Hutchinson were also detected in our brain 

ASM-SNP list. 

Table 6.9. ASM-­‐SNPs	
  identified	
  in	
  this	
  study	
  and	
  also	
  in	
  Schalkwyk	
  et	
  al.	
  	
   

Common SNPs between the all brain ASM-SNP list here and ASM-SNPs in either Tables 1, 2, 3 or S3 in 

Schalkwyk et al. RAS= relative allelic score 

SNP	
  
Schalkwyk-­‐average	
  

RAS	
  change	
  

All	
  brain	
  ASM-­‐SNPs	
  

p-­‐value	
  1	
   direction	
  1	
   p-­‐value	
  2	
   direction	
  2	
  
rs10234308	
   0.34	
   0.003	
   positive	
   9.46E-­‐05	
   negative	
  

rs1043509	
   0.11	
   NA	
   NA	
   4.20E-­‐05	
   negative	
  
rs11211481	
   0.22	
   9.65E-­‐05	
   positive	
   0.004	
   negative	
  

rs13099918	
   0.23	
   0.885	
   positive	
   2.60E-­‐06	
   negative	
  

rs1378942	
   0.11	
   3.80E-­‐10	
   positive	
   6.66E-­‐07	
   negative	
  
rs1889364	
   0.15	
   4.99E-­‐09	
   positive	
   0.098	
   negative	
  

rs1953211	
   0.1	
   0.001	
   positive	
   3.35E-­‐10	
   negative	
  
rs2143346	
   0.23	
   0.392	
   positive	
   2.35E-­‐05	
   negative	
  

rs2234211	
   0.17	
   1.20E-­‐06	
   positive	
   0.766	
   positive	
  
rs2272554	
   0.14	
   6.54E-­‐06	
   positive	
   0.011	
   negative	
  

rs2731826	
   0.38	
   1.56E-­‐09	
   positive	
   0.002	
   negative	
  

rs2824493	
   0.1	
   0.013	
   positive	
   7.87E-­‐05	
   negative	
  
rs3821023	
   0.31	
   1.65E-­‐05	
   positive	
   0.187	
   negative	
  

rs391467	
   0.21	
   0.011	
   negative	
   9.63E-­‐07	
   negative	
  
rs4556786	
   0.18	
   1.50E-­‐22	
   positive	
   0.006	
   negative	
  

rs4653164	
   0.11	
   0.003	
   positive	
   1.51E-­‐07	
   negative	
  

rs4828524	
   0.1	
   0.002	
   positive	
   4.99E-­‐05	
   negative	
  
rs4837866	
   0.13	
   1.80E-­‐06	
   positive	
   7.98E-­‐13	
   negative	
  

rs553161	
   0.13	
   0.143	
   negative	
   8.37E-­‐12	
   negative	
  
rs6441992	
   0.16	
   0.567	
   negative	
   3.81E-­‐06	
   negative	
  

rs6760544	
   0.36	
   1.75E-­‐05	
   positive	
   0.010	
   negative	
  
rs6864309	
   0.1	
   7.74E-­‐05	
   positive	
   0.526	
   positive	
  

rs7146315	
   0.16	
   0.458	
   positive	
   1.33E-­‐19	
   negative	
  

rs7209653	
   0.11	
   0.000	
   positive	
   0.018	
   negative	
  
rs734380	
   0.18	
   2.96E-­‐10	
   positive	
   0.012	
   negative	
  

rs7534271	
   0.22	
   0.290	
   positive	
   2.47E-­‐10	
   negative	
  
rs762982	
   0.14	
   0.542	
   negative	
   9.81E-­‐05	
   negative	
  

rs822625	
   0.26	
   0.017	
   positive	
   9.52E-­‐05	
   negative	
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A limitation in this study is not taking into account the differential hybridization seen 

between alleles on the genotyping array in the ASM detection procedure even though 

these differential hybridization pseudo ASM-SNPs did not exhibit the enrichment in the 

SCZ GWAS p≤0.1 bin as seen in the ASM-SNP lists. SNPs that demonstrate differential 

hybridization from the genotyping array do not exhibit the enrichment in the SCZ sub-

genome-wide significant SNPs, as was seen with the ASM-SNPs (those SNPs that show 

differences in allele intensities on the hypomethylation arrays). To background correct for 

underlining differential hybridization we could have, for each SNP, divided its 

hypomethylation intensity by its genotyping array intensity. Furthermore, there are some 

issues with the Affymetrix array platforms that could lead to incorrect calls. For instance, 

the genotyping call rate is reduced for SNPs in probes with high GC content (>70%), and 

variants in probes with low sequence complexity are more likely to be called incorrectly 

(Kothiyal et al., 2009).  

Additionally, we have not investigated other confounding factors that could be 

interpreted as ASM by our method such as there being nearby SNPs interfering with the 

methylation specific restriction enzyme sites. One could impute to a reference panel such 

as the 1000 Genomes Project data or perform whole-genome sequencing to test whether 

SNPs are interfering with restriction enzyme sites. 

Other considerations surround ethnic heterogeneity. ASM may differ between different 

populations. We had a largely European population, and thus derived ASM-SNP lists 

from the genetically-determined European samples. Due to a limited number of non-

European samples, we were unable to assess ASM in different populations, but 

comparing ASM in different populations would be interesting to investigate in the future. 

That being said, although our ASM-SNP lists were derived from European individuals, 

not all of the GWAS we investigated were composed of solely European subjects (see 

Table 6.2).   
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Next steps would also be to replicate ASM results using another detection methodology 

such as bisulphite sequencing as there are limitations with using the Affymetrix arrays to 

detect ASM. For instance, different types of methylation (e.g. hydroxylmethylation) 

cannot be differentiated using this methodology.  
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Chapter 7  
Overall Conclusion and Future Directions 
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7  

7.1 Conclusion 

This thesis has investigated the potential of using functional genomic annotations in a 

statistical learning framework in order to identify novel disease-associated loci, and/or to 

prioritize the actual causal genetic variant at identified loci. I used elastic net, a type of 

penalized logistic regression. My work was unique because I created a score for each 

SNP using hundreds more annotations than previous publications in the field, and also 

created phenotype-specific models (for autoimmune, brain-related, and cardiovascular 

diseases, and also for cancer) in addition to a general non-phenotype specific model 

differentiating GWAS Catalogue variants from variants on common genotyping arrays as 

the classifier (Gagliano et al., 2014a). These models were able to identify genetic risk 

variants; the models with the highest accuracies were the non-phenotype specific model 

and the autoimmune model both trained using variants in the GWAS Catalogue below the 

accepted threshold for genome-wide significance, p < 5x10-8. 

The timeliness of my prioritization method (Gagliano et al., 2014a) was demonstrated by 

it being published within weeks of two others (Kircher et al., 2014; Ritchie et al., 2014). 

These methods all use different functional annotations as predictor variables, a different 

classification of disease-associated from benign variants, and different statistical learning 

algorithms. I investigated which combination of predictor variables, classifier and 

algorithm produced the model with the best predictive accuracy (Gagliano et al., 2015a). 

I assessed the accuracy of these models through the use of AUCs and violin plots, two 

measures deemed as informative from my investigation of predictive accuracy measures 

(Gagliano et al., 2015b). Additionally, I explored which of the published models are best 

at prioritizing genetic variants by applying the models to a schizophrenia (SCZ) GWAS 

for which there were two studies conducted by the Psychiatric Genomics Consortium 
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(Schizophrenia Psychiatric Genome-Wide Association Study (GWAS) Consortium, 

2011; Schizophrenia Working Group of the Psychiatric Genomics Consortium, 2014). I 

applied the models to the first SCZ GWAS and evaluated which model best prioritized 

the novel associated variants from the second study. Results suggested that all methods 

have considerable (and similar) predictive accuracies (AUCs 0.64-0.71) in test set data, 

but there is more variability in the application to the schizophrenia GWAS. With regard 

to the functional annotation set, the Kircher et al. or Ritchie et al. annotation sets 

performed the best in identifying schizophrenia-associated variants. Regardless of 

annotation set, the elastic net models consistently showed good separation of GWAS 

significant SNPs from other SNPs. I found that using both the same algorithm and 

annotation set, but a different database as the classifier (GWAS Catalogue or HGMD) 

resulted in vastly different models with regard to overall accuracy. Additionally, which 

annotations were included in the models differed between the two databases, and the 

models exhibited similar accuracy within a database. Finally, in Chapter 6 I showed that 

a new annotation, allele-specific methylation (ASM) is useful for prioritizing GWAS hits. 

Variants that exhibit ASM (ASM-SNPs) showed enrichment in functional annotations, 

and also the most significant enrichment in the sub-genome-wide significant SNPs in the 

largest to date schizophrenia GWAS (Schizophrenia Working Group of the Psychiatric 

Genomics Consortium, 2014) as well as other traits. 

With regard to my initial hypotheses on page 50: 

1) I developed a method to incorporate multiple functional annotations that is able to 

predict genetic risk variants for various complex diseases/traits generally and also for 

phenotype-specific outcomes with some accuracy.  

2) I evaluated the performance of different statistical learning algorithms, functional 

annotation sets and classifiers that exist in the literature. I found that accuracy tends to be 

similar when the same classifier is used, but the annotations that are identified as most 

important vary. No one model was found to out-perform the others. 
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3) I assessed the functional enrichment and enrichment in GWAS sub-genome-wide 

significant variants of a novel annotation based on allele-specific methylation (ASM). 

The results suggest that ASM is a relevant annotation to include for genetic variant 

prioritization. 

Broadly speaking, the use of statistical learning to prioritize genetic risk variants is very 

timely and relevant in the age where genome-wide genetic information and a vast amount 

of functional genomic information are available. This work has potential for improved 

understanding of common health conditions; identifying novel risk variants by the use of 

computers is cost effective and may ultimately result in the development of better 

treatment options for people who suffer from a variety of devastating diseases around the 

world. 

More specifically, in silico prioritization of variants has several applications in genetic 

association analysis pipelines, and can be used for several purposes in the context of 

association studies. For instance, at the completion of a GWAS, the top findings can be 

prioritized to determine which will be either subjected to functional studies for further 

follow-up or assessed in an independent replication sample. In this way, the prioritization 

can be useful for fine-mapping associated loci. Furthermore, it may be useful to use this 

methodology to select likely functional SNPs for a custom array. Prioritization may also 

be used in the middle of a two-stage GWAS, where a proportion of the individuals in the 

study are genotyped on all available variants in the first stage, and a proportion of these 

variants are genotyped on the remaining samples in the second stage (Skol et al., 2007). 

Rather than selecting variants for the second stage based solely on their association p-

value from the first stage, their prediction score (based on functional genomic 

information) can also be used to help select those variants that move on to the next stage. 

Additionally, prioritization could allow for more informative pathway analyses. 
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7.2 Limitations 

There are limitations to the work described in this thesis. First of all, risk variants are 

difficult to define. This challenge is clear from the inherent differences between variants 

in databases such as in the GWAS Catalogue and in HGMD (as discussed in Chapter 1) 

that are being used to create models for prioritization of risk variants. One notable 

difference is that variants in the GWAS Catalogue have higher minor allele frequencies 

compared to variants in HGMD. The two databases mostly contain different types of 

variation, and so it unclear whether a model trained using GWAS Catalogue variants as 

the classifier will effectively prioritize low frequency predominantly coding variants such 

as those in HGMD.  

The differences between variants in different databases are further supported by my work 

in the methods comparison chapter (Chapter 5). I explored the differences between the 

GWAS Catalogue and HGMD variants further by testing to see if I could use statistical 

learning algorithms to predict variants from one database from the other. For the 

annotation set, I used the 14 discussed in Chapter 3. The models created had an AUC of 

82% in the independent test set for random forest, and 80% for elastic net. The accuracy 

could be attributed to the underlying frequency differences between the GWAS 

Catalogue and HGMD variants. Those frequency differences for the Gagliano et al. 

annotations are shown in Figure 7.1. 
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Figure 7.1. Frequency of GWAS Catalogue and HGMD variants that overlap with the binary 
annotations from Chapter 3. 

GWAS Catalogue variants are those with a p-value of < 5x10-8 as of May 15, 2015 (n=3607). HGMD 

variants in the public version provided to Ensembl in the fourth quarter of 2013 (n=3963). The control-

GWAS are SNPs (n= 31,663) selected that are not in LD with the selected GWAS Catalogue SNPs but 

have the same minor allele frequency distribution as the GWAS Catalogue SNPs. The control-HGMD have 

the same minor allele frequency distribution as the HGMD SNPs (n= 3971). All the selected variants are 

autosomal variants present in the 1000 Genomes Project. GTEx_eQTLs= cis-eQTL data from the GTEx 

Consortium, nonsynonymous= nonsynonymous SNP, UK_Brain_eQTLs= cis-eQTL data from the UK 

Brain Consortium, DNase_I= DNase I hypersensitive sites, UCSC_Genes= UCSC Genes, H3K4Me3= 

H3K4Me3 histone modification, TFBS= transcription factor binding site, H3K27Ac=H3K27Ac histone 

modification, H3K4Me1= H3K4Me1 histone modification 

 

This high accuracy held true when a different set of functional genomic annotations were 

utilized, those utilized by the program GWAVA (Ritchie et al., 2014). The two sets of 

risk variants could be separated with high accuracy through random forest and elastic net. 
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Ritchie et al. (2014) applied their random forest model trained using regulatory HGMD 

variants as a classifier to the non-coding variants in the GWAS Catalogue. They conclude 

that their model works (slightly but significantly) in scoring GWAS Catalogue variants 

higher than control variants (Mann-Whitney U test p=3.6x10-29) (Ritchie et al., 2014). 

However, (as I discussed in the predictive accuracy chapter, Chapter 4), p-values from 

statistical tests can be misleading with regard to accuracy of the model. Visualizing the 

distribution of the two classes is important. Indeed, Ritchie et al. provide a box plot in 

their Supplementary Material, which demonstrates a strong overlap between the 

prediction scores for the GWAS Catalogue and control variants, suggesting that their 

HGMD classifier model was not very effective in identifying GWAS variants.  

Missing heritability is likely explained by both common and rare variants (and also other 

factors such as interactions between genes and between genes and the environment, for 

instance), and thus databases containing either of these variants are relevant. Future work 

could involve applying my methodology with the GWAS Catalogue variants to rare 

variants. It would also be interesting to look at creating a model in which risk variants 

were defined from various databases considered together rather than just one database. 

Furthermore, there are limitations to all of the machine learning methods as discussed in 

Chapter 1. All of the papers also have methodological limitations. For instance, there 

were several non-standard methodological procedures utilized in the Ritchie et al. paper. 

For instance, it is common practice to test the accuracy of a model in an independent test 

set. Ritchie et al. did not reserve any of their samples to create a separate test set. What is 

more, in random forest, it is recommended to set the minimum sample size at a node to 

10% of the overall sample in order to avoid overfitting (Malley et al., 2012). However, 

Ritchie et al. set the minimum sample size to 1. 

For my methodology, a limitation surrounds the selection of control variants from which 

to differentiate the GWAS Catalogue variants. I selected control variants as those that are 

on common genotyping arrays. However, imputation has become commonplace in 
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GWAS, with papers that imputed using HapMap Project data starting in around 2010 

(Dupuis et al., 2010; Franke et al., 2010). As a result, the whole genome (or at least the 

reference genome to which the variants are being imputed: HapMap and/or 1000 

Genomes Projects’ variants) is being interrogated in GWAS. It may no longer make sense 

to limit the controls to only variants on genotyping arrays now that more variants in the 

genome are beginning to be interrogated through imputation. Given this consideration, 

the use of annotating SNPs with their proxy information when all variants have been 

assessed may reduce accuracy. However, regardless of imputation, the fact remains that 

variants present in the GWAS Catalogue may not themselves be the causal variant. A 

SNP that is in LD with the SNP in the GWAS Catalogue may be the causal SNP, and that 

SNP may not have the same functional annotations as the GWAS Catalogue SNP. 

Annotating SNPs with the annotations of their proxies accounts for the uncertainty of the 

causal SNP in the LD block, as was implemented in Chapter 3. Furthermore, work of 

others has demonstrated that SNPs on genotyping arrays (e.g. 1M Illumina that are not 

present in the GWAS Catalogue) show a similar pattern to that of the GWAS SNPs, 

possibly reflecting a bias in the array SNPs for functional regions (Hoffman et al., 2013). 

The sample size of known risk variants is also a limitation. A small number of known 

associated loci with a particular disease makes it challenging to create disease-specific 

models. However, a more homogenous subset of variants may be required to make more 

accurate models. 

Another limitation to the GWAS Catalogue is that it does not include CNVs. CNVs may 

contribute to the genetic component of complex disease as well. For instance, there is 

strong evidence for CNVs contributing to autism spectrum disorders (Devlin and Scherer, 

2012; Glessner et al., 2009; Pinto et al., 2010; Sebat et al., 2007). That being said, the 

inclusion of CNVs may require a consideration of new annotations. For instance, one of 

the annotations I included, nonsynonmous SNPs, would not apply to CNVs. In addition, 

Kircher et al.’s annotations for the reference allele and alternate allele or previous amino 
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acid and new amino acid would not apply to CNVs. Moreover, the effect of having a 

CNV fall into a regulatory region is not necessarily the same effect as that of having a 

SNP in that region. For instance, take the case of a transcription factor binding site. A 

SNP in such a site may lead to reduced or increased binding of the appropriate 

transcription factor, which could affect the binding of the other factors that interact with 

that factor. A CNV in that same region, say having more copies of a sequence than in the 

wild-type, may result in a drastic and copy-number-dependent increase of gene 

expression. On the other hand, a CNV with fewer copies of a sequence than in the wild-

type, can result in decreased expression. Although CNVs may be contributing to the 

missing heritability, new models may need to be created that are specific to CNVs. 

Furthermore, it is important to look at epigenetic marks at various developmental time-

points. It is becoming clear that the establishment of epigenetic marks is crucial early in 

development, and that these functional marks alter throughout development. Even in 

utero environmental differences can modify epigenetic marks, resulting in increased risk 

of developing a particular trait. An example is malnutrition in the mother (e.g. Dutch 

Famine in the winter of 1944-1945). Malnutrition can modify DNA methylation, and the 

prevalence of a trait may be increased in that population (e.g. schizophrenia) (Heijmans 

et al., 2008; Tobi et al., 2009). The mechanisms underlying these methylation changes 

due to malnutrition are not known (Tobi et al., 2015). The binding of transcription factors 

also changes throughout the course of development, and these changes are necessary for 

normal development (Spitz and Furlong, 2012). Furthermore, DNA methylation patterns 

change throughout the lifespan; for instance, in the frontal cortex, changes in DNA 

methylation are important for brain development (Lister et al., 2013). However, all of the 

functional data considered for the statistical learning presented in this thesis have been 

from one developmental time point (i.e. adult). There are some data for developmental 

time points (albeit limited) from the Roadmap Epigenomics Project. Incorporating data 

from various developmental time points or perhaps variables representing the change in 

marks between developmental time points may be informative to identify variants 
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associated with disease. Other limitations to the current work are discussed in the next 

section along with steps that I could take to overcome them. 

7.3 Future directions 

Models for genetic variant prioritization can be improved by incorporating more 

functional annotations from additional tissues/cell types, other functional genomic 

annotations, and data derived from laboratory techniques that suggest more direct 

functionality rather than only sequence overlap. Considering rare variant analysis and 

also the use of more homogenous sets of variants of which to use as a classifier in 

machine learning algorithms are also relevant. 

7.3.1 Tissue-specificity 

Tissue-specificity is important in regulation, and applies to many of the functional 

annotations considered in my statistical learning framework. As discussed in Chapter 1, 

demonstrated disease-associated variants have different functional annotations depending 

on the tissue, including DNase I hypersensitive sites, transcription factor binding sites, 

histone modifications, and expression quantitative trait loci (eQTLs) to name a few (Farh 

et al., 2015; Gagliano et al., 2014a; Maurano et al., 2012; Nicolae et al., 2010). It is 

understood that epigenetic profiles are tissue-specific. Several groups have shown that 

there is tissue-specific enrichment of variants in functional annotations, and that subsets 

of variants show different patterns of enrichment. For example, as mentioned in Chapter 

1, Maurano et al. (2012) showed that the enrichment of subsets of disease-associated 

variants in DNase I hypersensitive sites varies depending on the tissue. Although it is 

well known that tissue-specificity plays an important role in the function of genetic 

variants dependent on the set of variants considered, tissue-specificity has only been a 

minor consideration in data-driven genetic variant prioritization models to date. Taking 

these points into consideration may be key in developing more accurate models for 

prioritization. 
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In my analyses I found that all models performed better than chance, except for the brain-

related psychiatric analysis, which had limited predictive power. As more data from 

additional tissue and cell types become available, they can be incorporated into prediction 

models to improve the accuracy. I started working on a tissue-specificity model for 

prioritizing psychiatric risk variants.  

Pilot Work - prioritizing brain-related psychiatric risk variants 

I started incorporating newly available brain data to better prioritize brain-related 

variants. I hypothesized that brain tissue-specific functional annotations would improve 

prediction of risk variants in this particular phenotype-specific analysis. Since the 

publication of my method (Gagliano et al., 2014a), more brain tissue data have become 

available through the Roadmap Epigenomics Project, as well as an extensive eQTL meta-

analysis study that also collected data from the brain (Kim et al., 2014).  

I added some additional tissue-relevant regulatory features, and used a more homogenous 

subset of risk variants (psychiatric-related) into the elastic net algorithm discussed in 

Chapter 3. I downloaded the histone marks for H3K4Me1, H3K4Me3, and H3K27Ac 

for all of the brain regions from the Roadmap Epigenomics Project from the FTP site 

(ftp://ftp.ncbi.nlm.nih.gov/pub/geo/DATA/roadmapepigenomics/). Peaks had not been 

called, and so I used the program MACS (Feng et al., 2011) to compute the ChIP-seq 

peaks from corresponding background control files of the abundance of reads that were 

also available.2  

I downloaded a more recent version of the GWAS Catalogue (May 15, 2015) that 

contained the additional loci identified by the large meta-analysis for schizophrenia 

                                                
2
 For parameters, I set the size of the sequencing tags to 35, and scaled the smaller dataset towards the 

larger. In the case of replicates for a particular tissue and histone mark, which replicate to select is arbitrary. 
I visually inspected the input files on the UCSC Genome Browser, and if both had adequate signals I chose 
the largest replicate that also had the corresponding background control file. 
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(Schizophrenia Working Group of the Psychiatric Genomics Consortium, 2014). In order 

to maximize my sample size of disease-variants, while keeping them as homogenous as 

possible, I selected all variants associated with any of the five psychiatric diseases 

(schizophrenia, bipolar disorder, major depressive disorder, autism and attention deficit 

hypersensitivity disorder) shown to share a proportion of common variants (Cross-

Disorder Group of the Psychiatric Genomics Consortium, 2013). I excluded other brain-

related or neurodegenerative disorders (e.g. Alzheimer’s disease or Parkinson’s disease). 

Recall that the GWAS Catalogue reports variants with association p-values of up to 10-5. 

In order to have an adequate number of variants for the statistical learning procedure, I 

used all the GWAS Catalogue variants that met the above criteria, rather than restricting 

to only the subset that reached genome-wide significance with a p-value of less than 

5x10-8. There were a total of 915 independent variants that met these criteria. I used 

elastic net as previously described in the Methods of Chapter 3, but only annotated the 

variants with the brain-specific functional annotations: the histone marks from the 

Roadmap Epigenomics Project described above, brain eQTLs from Kim et al. (2014) and 

brain eQTLs from the UK Brain Expression Consortium (UKBEC) (Trabzuni et al., 

2011). Unfortunately, the results from this larger and more homogenous set of variants 

with the brain-specific functional annotations, did not offer much better predictive 

accuracy than by chance: the AUC in the test set was 0.534 (and a similar AUC was 

observed in the training set, 0.535 demonstrating that the model was not over-fitted).  

This result suggests that there is still work to be done in improving the accuracy of a 

psychiatric-specific prioritization model, which could involve adding more functional 

annotations. A logical next step would be to incorporate more brain-level data into the 

model, which will be further discussed below.  

Next steps- prioritizing brain-related psychiatric risk variants 

One could use brain-level data soon to be available from the new PsychENCODE project, 

http://psychencode.org/. The goal of this project is to look at regulatory elements (e.g. 
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transcription factor binding sites) as was done by the ENCODE Project, but in either 

schizophrenia or control post-mortem brains.  

Furthermore, UKBEC has recently generated new RNA-sequencing data, soon to be 

made publically available. Studies to identify eQTLs previously used microarrays to 

measure gene expression, but there are limitations to this methodology that RNA-

sequencing can overcome (e.g. novel genes and non-coding or microRNAs, allele-

specificity, and alternative splicing are taken into account in the latter). Additionally, 

many eQTL studies perform their analyses on whole tissue, rather than specific regions. 

UKBEC, however, has performed RNA-sequencing on targeted regions in the brain: 

substantia nigra, putamen, and hippocampus in a large number of post-mortem unaffected 

brains (N=150). These data represent a unique resource that could be useful to 

incorporate in the brain-related psychiatric model. Additionally, there are new RNA-

sequencing data from the GTEx Project (Ardlie et al., 2015), albeit not yet from those 

specific brain regions as for the UKBEC data. 

7.3.2 Incorporating additional functional genomic annotations 

There are also other functional annotations that may prove to be relevant to include that 

provide observational evidence that suggests functionality, for example, splicing QTLs 

(sQTLs), which are genetic variants that affect the generation of transcript isoforms of the 

same genes (Ardlie et al., 2015; Zhang et al., 2015). Again, these are tissue specific, and 

the authors who coined the term show that sQTLs are significantly enriched for SNPs 

associated with traits in previous GWAS (that is to say SNPs present in the GWAS 

Catalogue). 

Another option is to look at allele-specific epigenetic effects, which could indicate a 

potential regulatory role for the variant exhibiting this allele-specific effect. For instance, 

Peralta et al. (2014) at the Genetic Analysis Workshop 19 investigated changes in allele-

specific chromatin accessibility (measured as DNase-seq read depth of each allele at a 
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heterozygous locus). They mapped genome-wide genotypes from a reference sample to 

sequencing reads for DNase I hypersensitive sites (DHS) for heterozygous SNPs. SNPs 

that show a significant difference in chromatin accessibility between the alleles may 

suggest that that SNP can compromise DHSs. 

7.3.3 Annotating not based solely on location overlap 

Another possible way forward would be annotating variants based on data from 

laboratory methods with results that imply an actual function due to the physical 

interaction between the DNA sequence and the protein of interest. DNA variants falling 

into a sequence that is part of a protein’s recognition sequence does not necessarily mean 

those variants are functional. The variant itself may not fall precisely within the 

consensus region for binding, and also an effect may not be seen due to redundancy of 

function with another site (Spitz and Furlong, 2012). Furthermore, the interaction 

between a protein and a stretch of DNA (for instance, detected through ChIP-seq) does 

not necessarily imply that that region of DNA is functional, meaning that there are effects 

resulting in alterations downstream. For instance, binding of a transcription factor can 

occur without influencing the transcription of any genes (Shlyueva et al., 2014). 

However, there are methods that confirm an interaction between two stretches of DNA as 

a result of a bound protein, and data from such methods suggest functionality. Annotating 

based on evidence for functionality from a DNA-protein-DNA interaction, would make 

the annotations less noisy. There has been an evolution of variations and extensions of 

the chromosome conformation capture (3C) method to detecting such physical 

interactions between fragments of DNA (for instance, between promoter and enhancer 

regions).  

Essentially, all of these 3C-based methods involve creating a one-dimensional image of a 

three-dimensional structure. The chromatin is fixed, and then digested. Afterwards, the 

sticky-ends of the cross-linked DNA fragments are allowed to ligate together. This 

procedure can detect which fragments are far away on the linear chromosome template, 
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but co-localize in space (Wit and Laat, 2012). In the 3C procedure, PCR primers are 

designed for the ends of the fragments, so that the frequency and sequence of those 

fragments can then be quantified by quantitative polymerase chain reaction (qPCR) 

(Dekker et al., 2002). Rather than qPCR, chromosome conformation capture-on-chip 

(4C) applies next-generation sequencing or microarrays to the 3C procedure, and it uses 

restriction enzymes to digest the DNA before the ligation step. Chromosome 

conformation capture carbon copy (5C) and Hi-C offer interaction frequency, a high 

throughput, and less PCR bias compared to 3C (Wit and Laat, 2012). 5C does not have as 

good a resolution as Hi-C since the former is based on distances between 

oligonucleotides whereas the latter depends on the sequencing depth (Wit and Laat, 

2012). However, unlike ChIP-seq (the method used for the ENCODE and Roadmap 

Epigenomics Projects histone modification data), both 5C and Hi-C methods are able to 

concurrently observe many or all interactions of one DNA sequence with multiple 

sequences elsewhere. These data are useful to observe with which genes the regulatory 

element interacts. These experimental observations can subsequently be used to infer 

biological pathways that may be relevant to understanding the disease of interest. 

Furthermore, DNase footprinting can be used to get a more precise location of where the 

protein of interest binds to the DNA sequence compared to ChIP-seq. For ChIP-seq, 

formaldehyde is used to cross-link proteins to DNA. Sonication shears the chromatin to a 

target size of 100 to 300 base pairs, and the protein of interest bound to DNA is then 

isolated with an antibody specific for the factor. Those DNA fragments that were cross-

linked with the factor of interest in a ChIP-seq experiment can be used as the input for 

DNase footprinting. In this technique, labelled DNA sequences are fragmented by DNase 

I. The location in the sequence that is bound to the protein is protected from being 

cleaved, and thus one can infer that that is where the protein is bound. In this way, 

through the use of restriction enzymes, highly occupied binding sites can be detected at 

high resolution (Hesselberth et al., 2009).  
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7.3.4 Incorporating prediction scores into rare variant analysis 

In rare variant analysis, variants can be grouped together based on genes or sliding 

windows. Rare variant association tests will weight variants based on features, for 

example minor allele frequency, where the weight assigned to a variant is the inverse of 

the minor allele frequency, and in that way the rarer the variant the higher the weight. 

Other weights that can be included reflect the impact on amino acid sequence, such as 

PolyPhen category (“benign,” “possibly damaging,” or “probably damaging”), and other 

sequence-based annotations (Lee et al., 2014).  

During my PhD, I briefly explored a similar idea of up-weighting rare variants (only 

those found in genes) using sequence-based weights. I did this work using real (i.e. not 

simulated) hypertension phenotype data and sequencing data of chromosome 3 from the 

Genetic Analysis Workshop 18 (GAW18) meeting in Stevenson, Washington (October 

2012). For the weights, I used the simple model of whether a SNP is nonsynonymous and 

whether or not it falls into a DNase I hypersensitive site. Tests for association were 

conducted in SKAT-O, one analysis without functional weights and the other with the 

weights. The use of weights based on those two functional annotations did not improve 

power in the analysis, which is likely due to the simplicity of the model.  

I propose that a new weighting scheme can be to use the prediction scores from the 

prioritization model using the functional annotations to weight SNPs in rare variant 

association analysis. The higher the prediction score, the larger the weight. In this way, 

more weight is assigned to those variants that are more likely to have functional 

consequences that result in a non-wild-type phenotype. 

7.3.5 Using a homogenous set of genetic risk variants for training 

Some key findings that I would like to bring back up are that I found that different 

annotations came up as important for different sets of variants (Gagliano et al., 2014a), 

and that the predictive accuracy of the models varied (Gagliano et al., 2015b). I also 



 

 

 

 

 

 

 

216 

found that the use of variants from other databases, such as variants in HGMD (Stenson 

et al., 2009), produced models with varying results as well (Gagliano et al., 2015a). These 

observations suggest that use of a homogenous ascertained set of the disease-associated 

variants may create models with higher accuracy. Ritchie et al. (2014) tried using a 

homogenous subset of regulatory variants in the HGMD Catalogue, and I (Gagliano et 

al., 2014a) tried using phenotype-specific variants from the GWAS Catalogue. However, 

both of these subsets are based only on current knowledge of variants, and thus are 

limited.  

As discussed in this thesis, I performed a supervised statistical learning method on 

phenotype-specific sets of disease-associated variants (which were subjectively 

categorized based on descriptions provided in the GWAS Catalogue). In order to identify 

novel disease-associated loci objectively, I propose to identify more homogenous subsets 

of disease-associated variants through unsupervised learning. The unsupervised learning 

methods that can be employed are K-means clustering and principal components analysis. 

Those subsets can be used as classifiers in supervised learning, which would include 

penalized regression like elastic net, and decision-tree methods for example. Recall that 

in unsupervised learning, the algorithm is unaware of which variants are disease-

associated; this method is employed to discover any patterns inherent in the data on 

which the algorithm is trained. In supervised learning, the algorithm is aware of which 

variants are disease-associated (for instance knowledge derived from GWAS Catalogue 

as in my work); this method can be employed to develop and test the accuracy of the 

models derived to predict novel disease-associated variants and identify novel structures 

in genomic data. 

7.4 To the future 

In this thesis the focus has been on using functional genomic information to prioritize 

which genetic variants are functional or are likely associated with a complex disease or 

trait of interest. First of all, there needs to be an unbiased large set of genetic risk variants 
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from which to make the predictions (for instance, not primarily common variants as in 

the GWAS Catalogue or coding sequence biases as in HGMD). 

The precision and quality of the features inputted into the models is also important. 

Functional data is becoming more abundant and technologies for quantifying these data 

are improving. Predicting the functionality of genetic variants using high-quality data 

(e.g. at single base pair resolution, and in a tissue-specific manner) in phenotype-specific 

models will allow the predictions for each variant to be incorporated together to predict 

the risk of a particular person to develop a particular trait.  

In the perfect world every SNP in the human genome will be completely characterized 

from observations conducted in hundreds of individuals in every available cell type. In 

this way, the entire DNA sequence will be available for searching for novel disease-

associated loci, as well as for fine-mapping variants at disease-associated loci in relevant 

tissue for the disease. For rare Mendelian disorders, it would be necessary to sequence 

hundreds (which may be all) of the cases. 

I predict that a big leap in the future will be to use the scoring of genetic variants in order 

to predict the status of a person for numerous diseases/traits based on genome-wide 

genetic variants and functional information while they are in the prodromal phase, and 

this knowledge can then be used for earlier treatment or preventative measures. When 

such procedures are successful, the consequences could look a lot like the fictional film 

GATTACA (Niccol, 1997). In one of the earlier scenes in the film, when a baby is born 

at the hospital, the nurse takes a blood sample, and from the DNA sequence is 

immediately able to tell the parents the probabilities of their child having a whole array of 

diseases, and even the baby’s estimated age of death. However, one can defy their odds 

as in the case of the main character in GATTACA; he does not experience his apparently 

highly probable heart deficits, outlives his premature estimated age of death, and 

ultimately succeeds in his dreams that should have been impossible for a person with his 

genetic “imperfections”.  
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These probabilities determined in GATTACA are presumably based solely on the 

genomic sequence itself, and examples of being able to confidently make disease-risk 

predictions currently exist. For instance, in the domain of genetic testing, tests exist for 

disorders with strong genetic components. For example, the presence of 40 or more CAG 

repeats in the first exon of the huntingtin gene (HTT) results in Huntington’s disease 

(Lench et al., 2013), or the deletion of the codon that encodes phenylalanine at position 

508 in the cystic fibrosis transmembrane conductance regulator (ATP-binding cassette 

sub-family C, member 7) gene (CFTR) in homozygous state, among other mutations, 

results in Cystic Fibrosis. Direct-to-consumer companies (e.g. 23andMe) have looked at 

specific genetic variants to predict simple non-medical traits such as whether or not one is 

likely to be able to smell asparagus in his/her urine, and also (more controversially) to 

predict the risk of developing complex diseases (e.g. Alzheimer’s disease, diabetes, or 

cardiovascular disease).  

Much work is being done in the area of prediction, but the scores are generally used for 

other purposes such as exploring disease overlap (International Schizophrenia 

Consortium et al., 2009) or for the prediction of benign versus malignant tumors 

(Steyerberg et al., 1995). In late 2013, the USA’s Food and Drug Association ordered 

23andMe to stop providing consumers with health-related data (but they can still use the 

genetic data to investigate ancestry) (The Associated Press, 2013). 

However, I envision that in the future, the algorithm responsible for determining these 

probabilities will be based upon a number of factors in addition to the actual genotypes, 

including: epigenetic data from the actual individual at single cell resolution (i.e. instead 

of using publically available ENCODE data for instance), biochemical biomarkers such 

as blood levels of a particular protein), gene expression data, and other childhood 

environmental factors known to be important for health outcomes (including 

socioeconomic status). After all, with regard to the latter point, there is strong evidence 

that early exposures to adversity (such as maltreatment or neglect) can alter epigenetic 
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modifications (for example, (Boyce and Kobor, 2015)), which have downstream effects 

on phenotype, and so it is logical to be able to make predictions based on more than just 

genetic factors, but rather both genetics and the environment. From these inputs, one will 

obtain all the probabilities of the person’s risk of developing a number of diseases and 

traits.  

Large challenges will be presented to society with the algorithm that I am envisioning for 

the future that will be responsible for determining the probabilities of one developing a 

particular complex disease or trait will be based upon a number of factors in addition to 

the actual genotypes. There may be some people who choose that they would rather not 

know their risks. Additionally, the challenge will also come for healthcare professionals 

to explain to the public that these risks are only probabilities, and not certainties. Yet, as 

beautifully depicted in GATTACA, these probabilities do not and should never define the 

worth and value of a human being.  
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induced weight gain 
Content in this chapter is published in Gagliano SA, Tiwari AK, Freeman N, Lieberman 
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Protein kinase cAMP-dependent regulatory type II beta (PRKAR2B)
gene variants in antipsychotic-induced weight gain

Sarah A. Gagliano1,2, Arun K. Tiwari1, Natalie Freeman1, Jeffrey A. Lieberman3,6, Herbert Y. Meltzer4,
James L. Kennedy1,2,5, Jo Knight1,2,5* and Daniel J. Müller1,2,5

1Neurogenetics Section, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
2Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
3Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY, USA
4Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
5Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
6The New York State Psychiatric Institute, New York, NY, USA

Objective Antipsychotics are effective in treating schizophrenia symptoms. However, the use of clozapine and olanzapine in particular are
associated with significant weight gain. Mouse and human studies suggest that the protein kinase cAMP-dependent regulatory type II beta
(PRKAR2B) gene may be involved in energy metabolism, and there is evidence that it is associated with clozapine’s effects on triglyceride
levels. We aimed at assessing PRKAR2B’s role in antipsychotic-induced weight gain in schizophrenia patients.
Methods DNA samples from adult schizophrenia or schizoaffective disorder patients of mixed ancestry were genotyped, and weight gain
was assessed. We analyzed 16 tag single-nucleotide polymorphisms across the PRKAR2B gene in a Caucasian subset treated either with
clozapine or olanzapine (N= 99). Linear regression based on an additive model was performed with the inclusion of relevant covariates.
Results Normalized per cent weight change was analyzed, revealing that patients with the minor allele at rs9656135 had a mean weight
increase of 4.1%, whereas patients without this allele had an increase of 3.4%. This association is not significant after correcting for multiple
testing.
Conclusions Because of limited power, PRKAR2B’s role in antipsychotic-induced weight gain is unclear, but biological evidence suggests
that PRKAR2B may be involved. Further research in larger sample sizes is warranted. Copyright © 2014 John Wiley & Sons, Ltd.

key words—PRKAR2B; antipsychotic-induced weight gain; schizophrenia; pharmacogenetics; polymorphisms

INTRODUCTION

The use of antipsychotics, such as clozapine and
olanzapine, has been effective in treating schizophrenia
patients but is often associated with severe metabolic
side effects, particularly significant weight gain. Weight
gain itself is a serious health concern due to
comorbidities such as cardiovascular disease and type
II diabetes (Reynolds, 2012). With regard to the genetic
component of antipsychotic-induced weight gain
(AIWG), there is a heritable component. In a monozy-
gotic twin and sibling pair study, Gebhardt et al.
(2010) estimated the contribution of genetic factors in
AIWG to be 60–80%. Additionally, numerous genes,
some of which have been replicated, have been shown
to be associated with AIWG (Müller and Kennedy,
2006, Lett et al., 2012). A recent example of a

replicated finding is with a locus near the melanocortin
4 receptor gene (Malhotra et al., 2012). Other replicated
findings involve variants in leptin genes and others in
the promoter of the 5-hydroxytryptamine (serotonin)
receptor 2C gene (Reynolds, 2012). In this study, we
investigate another likely candidate gene to be involved
in AIWG, the protein kinase cAMP-dependent regula-
tory type II beta (PRKAR2B) gene. Other protein kinase
genes, particularly the subunits of AMP-activated
protein kinase, have been previously studied in AIWG
(Jassim et al., 2011; Souza et al., 2012). However,
PRKAR2B has so far only been investigated in one
study that looked at phenotypic outcomes related to
AIWG. A variant in this gene was shown to be
associated with clozapine’s effects on triglyceride levels
in a genome-wide pharmacogenomics study of meta-
bolic side effects using participants from the Clinical
Antipsychotic Trial of Intervention Effectiveness
(Adkins et al., 2011). PRKAR2B codes for one of the
several regulatory subunits of cAMP-dependent protein
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kinase. It is expressed in all tissue, including the
hypothalamus, which could suggest a role that is linked
to appetite.
Furthermore, the PRKAR2B gene is a plausible

candidate for being implicated in antipsychotic-induced
metabolic outcomes as supported by animal studies. For
instance, with regard to the metabolic phenotype,
Czyzyk et al. (2008) showed that disruption of the
RII-beta subunit (coded by PRKAR2B) reverses
elevated body weight, hyperphagia, and obesity of
agouti lethal yellow mice. In that paper, Czyzyk et al.
(2008) also discuss that PRKAR2B may be one of the
cAMP effector molecules working downstream of the
melanocortin 4 receptor gene. As for being implicated
in antipsychotic effects, Adams et al. (1997) found that
the cataleptic response to haloperidol is blocked in mice
with a targeted disruption in the RII-beta subunit. In
addition, mice lacking this regulatory subunit exhibit a
10% reduction in body weight and a 50% decrease in
white adipose tissue and are resistant to diet-induced
obesity and hyperglycemia (Adams et al., 1997).
Altogether, these previous studies support the hypothe-
sis that variants of the PRKAR2B gene may be
implicated in AIWG. Thus, we aimed at studying the
contribution of PRKAR2B to AIWG in a sample of
schizophrenia or schizoaffective disorder patients.

METHODS

Samples

Patients were recruited from four sites. Within each site,
patients were from various ethnic backgrounds. For the
first three sites, 226 clinically diagnosed schizophrenia
or schizoaffective disorder patients were recruited and
are summarized in the succeeding texts. In the first sam-
ple (DJM-1), schizophrenia patients (N= 99; Berlin)
were given different antipsychotics and assessed up to
6weeks. Patients (N= 77) from the second sample
(HYM; Ohio) were treated with clozapine for up to
6weeks, and patients (N= 55) from the third (JAL;
New York) were treated with clozapine, haloperidol,
olanzapine, or risperidone for up to 14weeks. Demo-
graphic details on these subjects have been previously
described (Tiwari et al., 2013), but refer to Table S1
for a summary. For the fourth sample, 21 patients were
recruited from an ongoing study at the Centre for
Addiction and Mental Health in Toronto (DJM-2;
Toronto) study. Patients were included when either
starting or switching to a new second-generation
antipsychotic (clozapine, olanzapine, risperidone, or
quetiapine) and were prospectively assessed for AIWG
and treatment response for a minimum of 6months. All

patients were assessed for research diagnosis and
comorbid conditions using the Structured Clinical
Interview for the Diagnostic and Statistical Manual of
Mental Disorders, Fourth Edition (First et al., 1997)
and symptom severity using the Positive and Negative
Syndrome Scale (Kay et al., 1987). Metabolic assess-
ments included weight at baseline, week two and week
six. Exclusion criteria included severe medical condi-
tions (e.g., hepatitis C, HIV, and diabetes), substance
abuse/dependence, significant mental retardation, or
severe personality disorder. Ethylenediaminetetraacetic
acid tubes with a minimum of 10ml venous blood were
drawn from each subject. Approval from the
institutional ethics committees and informed consent
were obtained for all patients.

Genotyping

A total of 16 tag single-nucleotide polymorphisms
(SNPs) were selected in the PRKAR2B gene for associ-
ation with AIWG. Additional genotyped SNPs were
available for quality control procedures. DNA samples
were genotyped using the GoldenGate Genotyping
Assay (Illumina Inc. San Diego, CA, USA) as per the
manufacturers’ protocol (Fan et al., 2006) at The Centre
for Applied Genomics (Toronto, Ontario, Canada).
Briefly, SNPs were uploaded to Illumina’s Assay
Design Tool (http://www.illumina.com/) for probe
design resulting in a custom panel (GS0013427-OPA)
of 384 SNPs. A total of 5 μl of 50 ng/μl in 10mM
Tris–HCl pH 8.0, 1mM ethylenediaminetetraacetic
acid of genomic DNA underwent an allele-specific
oligonucleotide hybridization followed by extension
and ligation. A universal polymerase chain reaction
step for all 384 loci followed with primers labeled
with either Cy3 (primer 1) or Cy2 (primer 2). The am-
plified products were then hybridized to GoldenGate
Genotyping Universal-32, 384-plex beadchips, and
scanned using the Illumina iScan (Illumina Inc.).
The resulting data was analyzed with GenomeStudio
v2011 using the default parameters. SNPs were
clustered on the sample dataset and manually
inspected. SNPs were discarded if call rates were less
than 90%. A total of seven SNPs failed, leading to
377 SNPs of good quality for further use.

Genetic data quality control

Quality control procedures and association analyses
were performed using PLINK (version 1.07, http://
pngu.mgh.harvard.edu/~purcell/plink/) (Purcell et al.,
2007). Plots for call rate distributions and ancestry map-
ping based on principal component analysis (PCA) were
created using R (http://cran.r-project.org/) (R, 2008).
Quality control measures were applied to both
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 individuals and markers. Duplicate samples, individuals
with less than 95% call rates, and individuals with outly-
ing heterozygosity were removed from the analysis. As
for the quality control measures applied to the markers,
standard thresholds were chosen: rare variants defined
as markers with a minor allele frequency (MAF) of less
than 1%, and markers with a missing data rate of greater
than 5% were excluded. Thresholds for other quality
control measures, such as Hardy–Weinberg equilibrium
(HWE), were decided on the basis of the number of
markers. The HWE threshold of 0.0001 was determined
by dividing the alpha value of 0.05 into the total number
of markers available on the array (N= 377). None of the
PRKAR2B markers failed HWE (see the first set of
columns in Table 1 for summary statistics for the 16
PRKAR2B SNPs).

Statistical analysis

Considering the samples were of mixed ethnicity, an
analysis option would have been to conduct multiple
association studies (each of which analyze a single eth-
nicity) and then combine the results in a meta-analysis.
However, this option was not feasible because of small
sizes of some samples. Instead, the association analysis
was performed on the largest ethnic subset, Caucasians.
Those Caucasians treated with either clozapine or
olanzapine (N= 99) were included (refer to Table 2 for
the demographics). Those individuals who self-reported
as Caucasian and also clustered with the HapMap
(Frazer et al., 2007) CEU population after PCA using
the independent genotyped markers (N= 123) available
from all samples were considered to be Caucasian
(N=99). The rationale behind choosing the subset of

individuals treated with either clozapine or olanzapine
was that in literature reviews of AIWG, the highest
weight gain is typically observed in individuals taking
those medications (e.g., Lett et al., 2012). The trade-
off involved in choosing to use this subset with less
noise is that a smaller sample size also results.
In PLINK, linear regression was performed on the

subset described with the inclusion of the following
variables as covariates: baseline weight, study dura-
tion, and the first principal component from the PCA
on the subset of individuals analyzed. Per cent weight
change rather than absolute weight change was used as
the outcome variable since the US Food and Drug
Administration defines clinically significant weight
gain using a percentage (≥7% of baseline weight) on
US package inserts for these antipsychotics (Casey
et al., 2004). Because linear regression assumes that
the continuous variable follows a normal distribution,
the Shapiro–Wilk normality test in R was applied,
and the null hypothesis that the distribution is normal
was rejected (p= 3.1e-05). Data were consequently
normalized using a square root transformation to
follow a normal distribution according to the
Shapiro–Wilk normality test.
Correction for multiple testing was performed in two

ways: by adjusting for the PRKAR2B SNPs and also by
taking into account all of the SNPs genotyped on the
same array as the PRKAR2B SNPs. The number of
independent tests was determined taking into account
the linkage disequilibrium structure of the PRKAR2B
SNPs using matrix spectral decomposition (Nyholt,
2004). Specifically, the Li and Ji method (2005) that
is recommended by Nyholt was employed.

Statistical power calculation

In order to assess statistical power, calculations were
performed using the Genetic Power Calculator (http://
pngu.mgh.harvard.edu/~purcell/gpc/) (Purcell et al.,
2003). The calculations, on the basis of quantitative trait
loci for singletons, were conducted using the following

Table 1. Summary statistics and regression results for PRKAR2B single-
nucleotide polymorphisms (SNPs)

Summary statistics Regression results

PRKAR2B
SNP

Minor allele
frequency

Hardy–Weinberg
equilibrium p-value Beta

Uncorrected
p-value

rs1544582 0.44 (G) 0.23 !0.15 0.17
rs2237648 0.32 (A) 0.65 0.069 0.57
rs2237649 0.43 (A) 0.36 !0.15 0.23
rs11766415 0.40 (G) 0.53 !0.09 0.41
rs2536504 0.34 (T) 1 !0.02 0.88
rs2536505 0.12 (C) 1 0.37 0.045
rs6960842 0.45 (G) 0.84 !0.05 0.66
rs2536508 0.27 (G) 0.45 !0.006 0.96
rs13311274 0.38 (C) 0.47 0.05 0.69
rs17153823 0.13 (G) 1 !0.12 0.50
rs13224682 0.07 (G) 0.39 0.008 0.97
rs9656135 0.07 (T) 1 0.72 0.0015
rs2302453 0.45 (A) 0.42 !0.086 0.44
rs12705406 0.16 (A) 0.70 !0.09 0.58
rs257376 0.39 (G) 0.83 !0.047 0.69
rs257378 0.22 (G) 0.39 0.086 0.57

Table 2. Demographics of Caucasian subset used in the analysis

Characteristic Median (range)

Sex 55 women
44 men

Age (years) 34 (18–65)
Baseline weight (kg) 78.20 (49.50–185.40)
Treatment duration (weeks)b 6 (1–14)
Per cent weight change (%) 2.91 (!7.59 to 26.85)
Normalized per cent weight change (%)a 3.49 (1.00–5.94)

aUsed as the outcome variable in the linear regression association analysis
where genotype at each locus is the predictor variable.
bFor most patients (87%), the treatment duration was 6weeks.
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 assumptions: The marker allele is in perfect linkage
disequilibrium with the high risk allele, the quantitative
trait accounts for 5% of the total variance under an additive
model, and the MAF of these alleles is 0.3. The first two
assumptions make the estimated sample size conservative
because the frequency and percentage of the heritability
accounted for by the quantitative trait may be lower than
specified. The MAF of 0.3 was chosen as it is the average
MAF for the PRKAR2B SNPs analyzed.

In silico functional analysis

An in silico functional analysis was performed in
HaploReg v2 (http://www.broadinstitute.org/mammals/
haploreg/haploreg.php) (Ward and Kellis, 2012).
HaploReg is a resource that incorporates data from the
ENCODE Project, Roadmap Epigenome Mapping
Consortium, and also expression quantitative trait loci
(eQTL) data from the Genotype-Tissue Expression
eQTL Browser in order to explore the annotations of
noncoding SNPs.

RESULTS

There were 99 individuals who belonged to the Cauca-
sian subset being treated with either clozapine or
olanzapine: 22 from DJM-1, 50 from HYM, 8 from
JAL, and 19 from DJM-2. In the association analysis,
one of the SNPs in PRKAR2B (rs9656135) was signifi-
cantly associated with AIWG before correcting for
multiple testing (uncorrected p= 0.0015, odds ratio =
2.05). There were no significant associations between
the genotype and any of the covariates. At SNP
rs9656135, the predicted values from the fitted model
y= 0.72x! 0.01β1 + 0.02β2! 0.29β3 + 4.01 where y
is the normalized per cent weight change, x is the
genotype, β1 is the baseline weight, β2 is the study
duration, and β3 is the first principal component were
plotted (Figure 1). (See the final set of columns in
Table 1 for the regression results for the 16 PRKAR2B
SNPs.) The MAF for this marker is 7%. A closer
inspection at the number of individuals per genotype
at this marker (Table 3) showed that there were no
individuals homozygous for the minor allele (T), and
thus, the linear regression was only comparing the
heterozygotes with those homozygous for the major
allele (C). With the lack of homozygotes for the minor
allele, it cannot be determined whether the trend seen
between SNP rs9656135 and per cent weight change
follows an allelic model.
Single-nucleotide polymorphism rs9656135 is in

close proximity to the SNP (rs13224682) found in
Adkins et al. (2011) to be associated with clozapine’s
effects on triglyceride levels; however, these SNPs

are not in linkage disequilibrium with each other
(r2 = 0) (Figure 2).
We assessed the significance of the association by

adjusting for multiple comparisons based on two strate-
gies. One only accounted for the SNPs in the PRKAR2B
gene, whereas the other accounted for all of the SNPs
genotyped on the array that were selected as possible
candidates for AIWG. According to the method in Li
and Ji (2005), there are nine effective tests. Implementing
the same procedure, but taking into account all of the
SNPs (N=377) successfully genotyped on the same
array as the PRKAR2B SNPs, there are 176 effective
tests. The association between SNP rs9656135 and
AIWG remained significant (p=0.01) when correcting
for just the SNPs in PRKAR2B. Using all of the hypo-
thesized SNPs that were genotyped on the array, SNP

Figure 1. Box plots of normalized weight change distributions for the
various genotypes at single-nucleotide polymorphism rs9656135. The black
line in each box represents the median. The lower line of the box is the 25%
quartile, and the upper line is the 75% quartile. The lower and upper
whiskers represent the minimum and maximum values, respectively, but
these do not include outliers. Outliers, represented as isolated circles drawn
outside of the boxes, are those values that are either 1.5 times less than or
greater than the interquartile range (the difference between the 75% and
25% quartiles)

Table 3. Genotype counts summary for the most significant single-
nucleotide polymorphism from the association analysis, rs9656135

Genotype T/T T/C C/C

Counts 0 15 84
Frequency 0 0.15 0.85
Normalized mean per cent weight gain (%) N/A 4.1 3.4

333prkar2b in antipsychotic-induced weight gain

Copyright © 2014 John Wiley & Sons, Ltd. Hum. Psychopharmacol Clin Exp 2014; 29: 330–335.
DOI: 10.1002/hup



 

 

 

 

 

 

 

294 

 

rs9656135 is no longer statistically significant (p=0.26)
when adjusting for the 176 effective tests.
Power analyses revealed that our study was under-

powered, requiring 153 individuals instead of 99 to
achieve 80% power (assuming MAF 3%, and 5% of
the variance accounted for).
PLINK was used to calculate the inflation factor

based on the median chi-squared value for the linear
regression model to ensure that the sample did not
contain admixture. An inflation factor of one suggests
that there is no stratification in the sample, whereas
values greater than one indicate stratification effects.
Using the additional typed markers (total N= 377),
the inflation factor in the Caucasian subset in the cloza-
pine and olanzapine group resulted in one with the
inclusion of the first principal component in the
analysis, suggesting that that principal component
effectively corrected for stratification.

DISCUSSION

We investigated the role of the PRKAR2B gene in
AIWG in a sample of Caucasian schizophrenia patients
being treated with clozapine or olanzapine (N= 99).
We tested for associations between the 16 genotyped
tag SNPs in this gene and per cent weight gain. One
SNP (rs9656135) showed an association with AIWG.
The odds ratio was 2.05. This SNP remained statisti-
cally significant after adjusting for multiple testing by
taking into account only the SNPs in PRKAR2B; how-
ever, it was no longer significant when adjusting for all

of the SNPs genotyped on the same array used for
ancillary analyses outlined earlier and for the investiga-
tion of other AIWG candidate genes.
Single-nucleotide polymorphism rs9656135 is an

intronic SNP, and there is no currently available
functional evidence to support the role of this SNP in
AIWG. There is a possibility that SNP rs9656135
may tag a functional variant, which has a more signif-
icant association signal with AIWG. Inputting
rs9656135 into HaploReg (Ward and Kellis, 2012)
showed that this SNP does not overlap with any DNase
I hypersensitive sites, binding sites for proteins,
promoter or enhancer annotations, or eQTL. However,
using a lower linkage disequilibrium (LD) threshold of
r2 = 0.6, rather than the default 0.8 in HaploReg, shows
that there are a large number of SNPs with LD between
r2 = 0.6 and 0.8 that show extensive enhancer histone
and promoter marks and a few with DNase protection
and multiple proteins bound as well.
The other investigated SNPs yielded no significant

results prior to correction for multiple testing, and
overall, our study suggests that the PRKAR2B gene
may not play a major role in AIWG. As for the
rationale to investigate the PRKAR2B gene in AIWG,
evidence was provided by animal studies suggesting
a role in energy metabolism. For example, PRKAR2B
mouse knockouts are lean, with increased activity
and resting metabolic rate. These mice are protected
from diet-induced obesity and fatty livers
(Cummings et al., 1996). In addition, one variant in
PRKAR2B was found to be significantly associated

Figure 2. Linkage disequilibrium plot displaying r2 values for the 16 PRKAR2B single-nucleotide polymorphisms analyzed. The plot was constructed in
Haploview version 4.2 (Barrett et al., 2005)
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with trigylceride levels, a variable related to AIWG
(Adkins et al., 2011). This SNP was not associated
with AIWG in our study. However, the study by
Adkins et al. (2011) corrected for multiple testing
using a false discovery rate approach, which gives rise
to a higher number of false positive results. Additionally,
the study included principal components into their
regression model from a PCA that was performed on
an admixed sample, and it is not clear if PCA is able
to adjust for such extensive population stratification.
Thus, PRKAR2B association findings of Adkins
et al. are difficult to interpret. A limitation of our study
is limited power because of a small sample size. Addi-
tional limitations involve the heterogeneity of the
sample with regard to potential confounding variables
that may affect weight gain but were not included in
the model, such as calorie intake, inpatient versus
outpatient status, concomitant therapy, and study
duration. In light of these described limitations, the
PRKAR2B gene’s involvement in AIWG cannot be
conclusively determined at the present time.
Larger samples are required for further analysis;

however, PRKAR2B remains a biologically plausible
candidate as a contributor to AIWG. Association
analysis approaches extending beyond genes to
investigate biological pathways could be conducted
in the future to investigate the influence of this gene
and others on AIWG.
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Additional_File_1.R 
 
#Sample R Code 
#MyData.txt is a text file (either space or tab-delimited) with a header. It contains a 
list of genetic variants (one variant per line) with at least the following two labelled 
columns: cls (a 0/1 binary indicator: 1=hit and 0=non-hit) and score (contains the 
prediction value). 
 
#Receiver operator characteristic curve 
pdf("ROC.pdf") 
x<-read.table("MyData.txt", h=T, as.is=T) 
library(ROCR) 
pred<-prediction(x$score, x$cls)  
perf <- performance( pred, "tpr", "fpr" ) 
plot(perf, lwd=5) 
abline(0,1,lty=3) 
dev.off() 
#display area under the curve 
performance(pred, "auc") 
#display positive predictive values 
performance(pred, "ppv") 
#display negative predictive values 
performance(pred, "npv") 
 
#Histogram 
require(plotrix) 
x<-read.table("MyData.txt", h=T, as.is=T) 
hits<-subset(x, x$cls==1) 
nonhits<-subset(x, x$cls==0) 
l<-list(hits$score, nonhits$score) 
#adjust the start and end position and bin increments below 
bins<-seq(0,1, by=0.05) 
pdf("Histogram.pdf") 
multhist(l, freq=F, xlab="Predicted Value", breaks=bins, col=c("black","grey")) 
legend("top", title="Classifier", c("Hits", "Non-hits"), pch=c(15, 15), 
col=c("black","grey")) 
dev.off() 
 
#Box plot 
pdf("Boxplot.pdf") 
x<-read.table("MyData.txt", h=T, as.is=T) 
hits<-subset(x, x$cls=="1") 
nonhits<- subset(x, x$cls=="0") 
boxplot(hits$score, nonhits$score, xlab="Classification", ylab="Prediction", 
names=c("Hit","Non-hit"), ylim=c(0,1)) 
dev.off() 
 
#Violin plot 
library(vioplot)  
pdf("Violinplot.pdf") 
x<-read.table("MyData.txt", h=T, as.is=T) 
hits<-subset(x, x$cls=="1") 
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nonhits<- subset(x, x$cls=="0") 
vioplot(hits$score, nonhits$score, names=c("Hit","Non-hit"), col="white", ylim=c(0,1)) 
title(xlab="Classification", ylab="Prediction") 
dev.off() 
 
#Quantile-quantile plot 
pdf("Qqplot.pdf") 
x<-read.table("MyData.txt", h=T, as.is=T) 
hits<-subset(x, x$cls=="1") 
nonhits<- subset(x, x$cls=="0") 
qqplot(nonhits$score, hits$score, ylab="Hits", xlab="Non-hits", ylim=c(0,1), xlim=c(0,1)) 
abline(0,1, col="grey") 
dev.off() 
 
#Hypergeometric test 
x<-read.table("MyData.txt", h=T, as.is=T) 
hits<-subset(x, x$cls==1) 
nonhits<-subset(x, x$cls==0) 
res<-matrix(nrow=3,ncol=13) 
row=1 
col=0 
BD<-length(nonhits[,1]) 
j<-length(hits[,1]) 
#prediction value bins ranging from less than 0.35 to between 0.9 and 0.95, increasing by 
increments of 0.5 
for (i in seq(0.3,0.9,0.05)) 
{ 
col<-col+1 
c<-length(subset(nonhits$score,nonhits$score<i+0.05 & nonhits$score>i)) 
a<-length(subset(hits$score, hits$score<i+0.05 & hits$score>i)) 
res[row,col]<-c/dim(nonhits)[1] 
res[row+1,col]<-a/dim(hits)[1] 
res[row+2,col]<-sum(phyper(a,j,BD-j,c, lower.tail=F)) 
} 
#write a table to read in Excel 
head<-c("p<0.35", "0.35<p<0.4", "0.4<p<0.45", "0.45<p<0.5", "0.5<p<0.55", 
"0.55<p<0.6","0.6<p<0.65", "0.65<p<0.7", "0.7<p<0.75","0.75<p<0.8", "0.8<p<0.85", 
"0.85<p<0.9","0.9<p<0.95") 
table<-rbind(head, res) 
write.table(table, "Hypergeometric.csv", sep=",", row.names=F, col.names=F, quote=F) 
#the first row is the frequency of non-hits 
#the second row is the frequency of the hits 
#the third row is the hypergemoetric p-value 
 
#Mann-Whitney U test 
x<-read.table("MyData.txt", h=T, as.is=T) 
nonhits<-subset(x, x$cls==0) 
hits<-subset(x, x$cls==1) 
wilcox.test(nonhits$score, hits$score) 
 
#Asymptotic Generalized Cochran-Mantel-Haenszel Test 
library("coin") 
x<-read.table("MyData.txt", h=T, as.is=T) 
nonhits<-subset(x, x$cls==0) 
hits<-subset(x, x[$cls==1) 
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counts<-matrix(nrow=2,ncol=13) 
row=1 
col=0 
for (i in seq(0.3,0.9,0.05)) 
{ 
col<-col+1 
c<-length(subset(nonhits$score,nonhits$score<i+0.05 & nonhits$score>i)) 
a<-length(subset(hits$score, hits$score<i+0.05 & hits$score>i)) 
counts[row,col]<-c 
counts[row+1,col]<-a 
} 
counts<-as.table(counts) 
cmh_test(counts) 

 
Additional_File_2.R 
#Code for the plots in the paper: "Assessing models for genetic prediction of complex 
traits: a comparison of visualization and quantitative methods" Sarah A Gagliano, Andrew 
D Paterson, Michael E Weale and Jo Knight 
#Figure 1- the confusion matrix, 
#no data in this figure 
 
#Figure 2- ROC curves 
library("ROCR") 
pdf("ROC-clumped-4models.pdf") 
x<-read.table("Nonpheno-5e-8-testset.csv", sep=",", h=F) 
pred<-prediction(x[,5], x[,4])  
perf <- performance( pred, "tpr", "fpr" ) 
plot(perf, lwd=5) 
par(new=T) 
x<-read.table("Autoimmune-testset.csv", sep=",", h=F) 
pred<-prediction(x[,5], x[,4])  
perf <- performance( pred, "tpr", "fpr" ) 
plot(perf, lwd=5, col="grey") 
par(new=T) 
x<-read.table("Brain-testset.csv", sep=",", h=F) 
pred<-prediction(x[,5], x[,4])  
perf <- performance( pred, "tpr", "fpr" ) 
plot(perf, lwd=5, lty=3, col="grey") 
par(new=T) 
x<-read.table("Nonpheno-allCat-testset.csv", sep=",", h=F) 
pred<-prediction(x[,5], x[,4])  
perf <- performance( pred, "tpr", "fpr" ) 
plot(perf, lwd=5, lty=3) 
abline(0,1, lty=3) 
legend("bottomright", title="GWAS hits", c("Autoimmune", "Non-phenotype specific", "Non-
phenotype specific- all Catalogue", "Brain-related"), lty=c(1, 1, 3, 3), lwd=c(5, 5, 5, 
5), col=c("grey", "black", "black", "grey")) 
dev.off() 
 
#Figure 3- Histograms 
require(plotrix) 
pdf("Histograms-clumped-4models.pdf") 
#make PDF first (better quality);then use Preview to convert to TIFF 
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par(mfrow=c(2,2)) 
x<-read.table("Brain-testset.csv", sep=",") 
hits<-subset(x, x[,4]==1) 
nonhits<-subset(x, x[,4]==0) 
l<-list(hits[,5], nonhits[,5]) 
bins<-seq(0.175,0.95, by=0.05) 
multhist(l, freq=F, xlab="Predicted Value", ylab="Density", breaks=bins, 
col=c("black","grey"), ylim=c(0,10)) 
legend("topright", title="Brain-related", c("<5x10^-8 hits", "non-hits"), pch=c(15, 15), 
col=c("black","grey"), cex=0.9) 
x<-read.table("Autoimmune-testset.csv", sep=",") 
hits<-subset(x, x[,4]==1) 
nonhits<-subset(x, x[,4]==0) 
l<-list(hits[,5], nonhits[,5]) 
bins<-seq(0.175,0.975, by=0.05)#0.27 as starting works but starts at 0.3 
multhist(l, freq=F, xlab="Predicted Value", ylab="Density",  breaks=bins, 
col=c("black","grey"), ylim=c(0,10)) 
legend("topright", title="Autoimmune", c("<5x10^-8 hits", "non-hits"), pch=c(15, 15), 
col=c("black","grey"), cex=0.9) 
x<-read.table("Nonpheno-5e-8-testset.csv", sep=",") 
hits<-subset(x, x[,4]==1) 
nonhits<-subset(x, x[,4]==0) 
l<-list(hits[,5], nonhits[,5]) 
bins<-seq(0.175,0.95, by=0.05) 
multhist(l, freq=F, xlab="Predicted Value", ylab="Density", breaks=bins, 
col=c("black","grey"), ylim=c(0,10)) 
legend("topright", title="All phenotype", c("<5x10^-8 hits", "non-hits"), pch=c(15, 15), 
col=c("black","grey"), cex=0.9) 
x<-read.table("Nonpheno-allCat-testset.csv", sep=",") 
hits<-subset(x, x[,4]==1) 
nonhits<-subset(x, x[,4]==0) 
l<-list(hits[,5], nonhits[,5]) 
bins<-seq(0.175,0.95, by=0.05) 
multhist(l, freq=F, xlab="Predicted Value", ylab="Density", breaks=bins, 
col=c("black","grey"), ylim=c(0,10)) 
legend("topright", title="All phenotype", c("all Catalogue hits", "non-hits"), pch=c(15, 
15), col=c("black","grey"), cex=0.9) 
dev.off() 
 
#Figure 4- Histograms (bin size of 0.1) 
require(plotrix) 
pdf("Histograms0.1bins-clumped-4models.pdf") 
par(mfrow=c(2,2)) 
x<-read.table("Brain-testset.csv", sep=",") 
hits<-subset(x, x[,4]==1) 
nonhits<-subset(x, x[,4]==0) 
l<-list(hits[,5], nonhits[,5]) 
bins<-seq(0.25,0.95, by=0.1) 
multhist(l, freq=F, xlab="Predicted Value", ylab="Density", breaks=bins, 
col=c("black","grey"), ylim=c(0,6)) 
legend("topright", title="Brain-related", c("<5x10^-8 hits", "non-hits"), pch=c(15, 15), 
col=c("black","grey")) 
x<-read.table("Autoimmune-testset.csv", sep=",") 
hits<-subset(x, x[,4]==1) 
nonhits<-subset(x, x[,4]==0) 
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l<-list(hits[,5], nonhits[,5]) 
bins<-seq(0.25,0.95, by=0.1) 
multhist(l, freq=F, xlab="Predicted Value", ylab="Density",  breaks=bins, 
col=c("black","grey"), ylim=c(0,6)) 
legend("topright", title="Autoimmune", c("<5x10^-8 hits", "non-hits"), pch=c(15, 15), 
col=c("black","grey")) 
x<-read.table("Nonpheno-5e-8-testset.csv", sep=",") 
hits<-subset(x, x[,4]==1) 
nonhits<-subset(x, x[,4]==0) 
l<-list(hits[,5], nonhits[,5]) 
bins<-seq(0.25,0.95, by=0.1) 
multhist(l, freq=F, xlab="Predicted Value", ylab="Density", breaks=bins, 
col=c("black","grey"), ylim=c(0,6)) 
legend("topright", title="All phenotype", c("<5x10^-8 hits", "non-hits"), pch=c(15, 15), 
col=c("black","grey")) 
x<-read.table("Nonpheno-allCat-testset.csv", sep=",") 
hits<-subset(x, x[,4]==1) 
nonhits<-subset(x, x[,4]==0) 
l<-list(hits[,5], nonhits[,5]) 
bins<-seq(0.25,0.95, by=0.1) 
multhist(l, freq=F, xlab="Predicted Value", ylab="Density", breaks=bins, 
col=c("black","grey"), ylim=c(0,6)) 
legend("topright", title="All phenotype", c("all Catalogue hits", "non-hits"), pch=c(15, 
15), col=c("black","grey")) 
dev.off() 
 
#Figure 5- Box plots 
pdf("boxplots-clumped-testset-4models.pdf") 
par(mfrow=c(2,2)) 
x<-read.table("Brain-testset.csv",sep=",") 
hits<-subset(x, x[,4]=="1") 
nonhits<- subset(x, x[,4]=="0") 
boxplot(hits[,5], nonhits[,5], xlab="Classification", ylab="Prediction", main="Brain-
related", names=c("Hit","Non-hit"), ylim=c(0.25,0.95)) 
x<-read.table("Autoimmune-testset.csv", sep=",") 
hits<-subset(x, x[,4]=="1") 
nonhits<- subset(x, x[,4]=="0") 
boxplot(hits[,5], nonhits[,5], xlab="Classification", ylab="Prediction", 
main="Autoimmune", names=c("Hit","Non-hit"), ylim=c(0.25,0.95)) 
x<-read.table("Nonpheno-5e-8-testset.csv", sep=",") 
hits<-subset(x, x[,4]=="1") 
nonhits<- subset(x, x[,4]=="0") 
boxplot(hits[,5], nonhits[,5], xlab="Classification", ylab="Prediction", main="Non-
phenotype specific", names=c("Hit","Non-hit"), ylim=c(0.25,0.95)) 
x<-read.table("Nonpheno-allCat-testset.csv", sep=",") 
hits<-subset(x, x[,4]=="1") 
nonhits<- subset(x, x[,4]=="0") 
boxplot(hits[,5], nonhits[,5], xlab="Classification", ylab="Prediction", main="Non-
phenotype specific-all Catalogue", names=c("Hit","Non-hit"), ylim=c(0.25,0.95)) 
dev.off() 
 
#Figure 6- Violin plots 
library(vioplot)  
pdf("vioplots-clumped-testset-4models.pdf") 
par(mfrow=c(2,2)) 
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x<-read.table("Brain-testset.csv",sep=",") 
hits<-subset(x, x[,4]=="1") 
nonhits<- subset(x, x[,4]=="0") 
vioplot(hits[,5], nonhits[,5], names=c("Hit","Non-hit"), col="white", ylim=c(0.25,0.95)) 
title("Brain-related", xlab="Classification", ylab="Prediction") 
x<-read.table("Autoimmune-testset.csv", sep=",") 
hits<-subset(x, x[,4]=="1") 
nonhits<- subset(x, x[,4]=="0") 
vioplot(hits[,5], nonhits[,5], names=c("Hit","Non-hit"), col="white", ylim=c(0.25,0.95)) 
title("Autoimmune", xlab="Classification", ylab="Prediction") 
x<-read.table("Nonpheno-5e-8-testset.csv", sep=",") 
hits<-subset(x, x[,4]=="1") 
nonhits<- subset(x, x[,4]=="0") 
vioplot(hits[,5], nonhits[,5], names=c("Hit","Non-hit"), col="white", ylim=c(0.25,0.95)) 
title("Non-phenotype specific", xlab="Classification", ylab="Prediction") 
x<-read.table("Nonpheno-allCat-testset.csv", sep=",") 
hits<-subset(x, x[,4]=="1") 
nonhits<- subset(x, x[,4]=="0") 
vioplot(hits[,5], nonhits[,5], names=c("Hit","Non-hit"), col="white", ylim=c(0.25,0.95)) 
title("Non-phenotype specific-all Catalogue", xlab="Classification", ylab="Prediction") 
dev.off() 
 
#Figure 7- Quantile-quantile plots 
pdf("qqplots-clumped-4models.pdf") 
par(mfrow=c(2,2)) 
x<-read.table("Brain-testset.csv",sep=",") 
hits<-subset(x, x[,4]=="1") 
nonhits<- subset(x, x[,4]=="0") 
qqplot(nonhits[,5], hits[,5], ylab="Hits", xlab="Non-hits", main="Brain-related", 
xlim=c(0.25,0.95), ylim=c(0.25,0.95)) 
abline(0,1, col="grey") 
x<-read.table("Autoimmune-testset.csv", sep=",") 
hits<-subset(x, x[,4]=="1") 
nonhits<- subset(x, x[,4]=="0") 
qqplot(nonhits[,5], hits[,5], ylab="Hits", xlab="Non-hits",  
main="Autoimmune",xlim=c(0.25,0.95), ylim=c(0.25,0.95)) 
abline(0,1, col="grey") 
x<-read.table("Nonpheno-5e-8-testset.csv", sep=",") 
hits<-subset(x, x[,4]=="1") 
nonhits<- subset(x, x[,4]=="0") 
#nrow(hits) #4480 
#nrow(nonhits) #75341 
qqplot(nonhits[,5], hits[,5], ylab="Hits", xlab="Non-hits", main="Non-phenotype 
specific",xlim=c(0.25,0.95), ylim=c(0.25,0.95)) 
abline(0,1, col="grey") 
x<-read.table("Nonpheno-allCat-testset.csv", sep=",") 
hits<-subset(x, x[,4]=="1") 
nonhits<- subset(x, x[,4]=="0") 
qqplot(nonhits[,5], hits[,5], ylab="Hits", xlab="Non-hits", main="Non-phenotype specific-
all Catalogue",xlim=c(0.25,0.95), ylim=c(0.25,0.95)) 
abline(0,1, col="grey") 
dev.off() 
 
#Figure 8- Ranks 
require(plotrix) 
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pdf("Ranks-clumped-4models.pdf") 
par(mfrow=c(2,2)) 
x<-read.table("Brain-testset.csv", sep=",") 
dim(x) # 32867 
sortbypred<-x[with(x, order(V5)), ] 
sortbypred$rank<-seq(1, 32867,1) 
hitsforplot<-subset(sortbypred, sortbypred$V4==1) 
nonhitsforplot<-subset(sortbypred, sortbypred$V4==0) 
l<-list(hitsforplot$rank, nonhitsforplot$rank) 
bins<-seq(0, 34000, by=1000) 
multhist(l, freq=F, xlab="Rank", ylab="Density", breaks=bins, col=c("black","grey")) 
legend("topleft", title="Brain-related", c("<5x10^-8 hits", "non-hits"), pch=c(15, 15), 
col=c("black","grey")) 
x<-read.table("Autoimmune-testset.csv", sep=",") 
dim(x) # 33500 
sortbypred<-x[with(x, order(V5)), ] 
sortbypred$rank<-seq(1, 33500,1) 
hitsforplot<-subset(sortbypred, sortbypred$V4==1) 
nonhitsforplot<-subset(sortbypred, sortbypred$V4==0) 
l<-list(hitsforplot$rank, nonhitsforplot$rank) 
bins<-seq(0,34000, by=1000) 
multhist(l, freq=F, xlab="Rank", ylab="Density", breaks=bins, col=c("black","grey")) 
legend("topleft", title="Autoimmune", c("<5x10^-8 hits", "non-hits"), pch=c(15, 15), 
col=c("black","grey")) 
x<-read.table("Nonpheno-5e-8-testset.csv", sep=",") 
dim(x) # 31427 
sortbypred<-x[with(x, order(V5)), ] 
sortbypred$rank<-seq(1, 31427,1) 
hitsforplot<-subset(sortbypred, sortbypred$V4==1) 
nonhitsforplot<-subset(sortbypred, sortbypred$V4==0) 
l<-list(hitsforplot$rank, nonhitsforplot$rank) 
bins<-seq(0,34000, by=1000) 
multhist(l, freq=F, xlab="Rank", ylab="Density",  breaks=bins, col=c("black","grey")) 
legend("topleft", title="All phenotype", c("<5x10^-8 hits", "non-hits"), pch=c(15, 15), 
col=c("black","grey")) 
x<-read.table("Nonpheno-allCat-testset.csv", sep=",") 
dim(x) # 33444 
sortbypred<-x[with(x, order(V5)), ] 
sortbypred$rank<-seq(1,33444,1) 
hitsforplot<-subset(sortbypred, sortbypred$V4==1) 
nonhitsforplot<-subset(sortbypred, sortbypred$V4==0) 
l<-list(hitsforplot$rank, nonhitsforplot$rank) 
bins<-seq(0,34000, by=1000) 
multhist(l, freq=F, xlab="Rank", ylab="Density", breaks=bins, col=c("black","grey")) 
legend("topleft", title="All phenotype-all Catalogue", c("hits", "non-hits"), pch=c(15, 
15), col=c("black","grey")) 
dev.off() 
 
##Statistical tests 
#Mann-Whitney U p-value 
x<-read.table("Brain-testset.csv", sep=",") 
nonhits<-subset(x, x[,4]==0) 
hits<-subset(x, x[,4]==1) 
wilcox.test(nonhits[,5], hits[,5])$p.value  
x<-read.table("Autoimmune-testset.csv", sep=",") 
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nonhits<-subset(x, x[,4]==0) 
hits<-subset(x, x[,4]==1) 
wilcox.test(nonhits[,5], hits[,5])$p.value  
x<-read.table("Non-pheno-5e-8-testset.csv", sep=",") 
nonhits<-subset(x, x[,4]==0) 
hits<-subset(x, x[,4]==1) 
wilcox.test(nonhits[,5], hits[,5])$p.value  
x<-read.table("Non-pheno-allCat-testset.csv", sep=",") 
nonhits<-subset(x, x[,4]==0) 
hits<-subset(x, x[,4]==1) 
wilcox.test(nonhits[,5], hits[,5])$p.value  
 
#Hypergeometric test p-value 
x<-read.table("Nonpheno-5e-8-testset.csv", sep=",", as.is=T) #repeat for other data sets 
hits<-subset(x, x[,4]==1) 
nonhits<-subset(x, x[,4]==0) 
res<-matrix(nrow=3,ncol=13) 
row=1 
col=0 
BD<-length(nonhits[,1]) 
j<-length(hits[,1]) 
#prediction value bins ranging from less than 0.35 to between 0.9 and 0.95, increasing by 
increments of 0.5 
for (i in seq(0.3,0.9,0.05)) 
{ 
col<-col+1 
c<-length(subset(nonhits[,5],nonhits[,5]<i+0.05 & nonhits[,5]>i)) 
a<-length(subset(hits[,5], hits[,5]<i+0.05 & hits[,5]>i)) 
res[row,col]<-c/dim(nonhits)[1] 
res[row+1,col]<-a/dim(hits)[1] 
res[row+2,col]<-sum(phyper(a,j,BD-j,c, lower.tail=F)) 
} 
#write a table to read in Excel 
head<-c("p<0.35", "0.35<p<0.4", "0.4<p<0.45", "0.45<p<0.5", "0.5<p<0.55", 
"0.55<p<0.6","0.6<p<0.65", "0.65<p<0.7", "0.7<p<0.75","0.75<p<0.8", "0.8<p<0.85", 
"0.85<p<0.9","0.9<p<0.95") 
table<-rbind(head, res) 
write.table(table, "Hypergeometric.csv", sep=",", row.names=F, col.names=F, quote=F) 
#the first row is the frequency of non-hits 
#the second row is the frequency of the hits 
#the third row is the hypergemoetric p-value 
 
#Asymptotic Generalized Cochran-Mantel-Haenszel Test 
library("coin") 
x<-read.table("Nonpheno-5e-8-testset.csv", sep=",", as.is=T) #repeat for other data sets 
nonhits<-subset(x, x[,4]==0) 
hits<-subset(x, x[,4]==1) 
counts<-matrix(nrow=2,ncol=13) 
row=1 
col=0 
for (i in seq(0.3,0.9,0.05)) 
{ 
col<-col+1 
c<-length(subset(nonhits[,5],nonhits[,5]<i+0.05 & nonhits[,5]>i)) 
a<-length(subset(hits[,5], hits[,5]<i+0.05 & hits[,5]>i)) 
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counts[row,col]<-c 
counts[row+1,col]<-a 
} 
counts<-as.table(counts) 
cmh_test(counts)  
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D  ENCODE accession numbers 
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Histone Marks: 

ENCSR000AKF 

ENCSR000AOT 

ENCSR000AKS 

ENCSR000AMJ 

ENCSR000ANA 

ENCSR000AMU 

ENCSR000APJ 

ENCSR000ANI 

ENCSR000ANX 

ENCSR000ALI 

ENCSR000AKL 

ENCSR000EXV 

ENCSR000EWC 

ENCSR000EXJ 

ENCSR000DWJ 

ENCSR000DVU 

ENCSR000DUA 

ENCSR000DUO 

ENCSR000DWD 

ENCSR000DRY 

ENCSR000DQH 

ENCSR000DTU 

ENCSR000AKA 

ENCSR000AMP 
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ENCSR000DUF 

ENCSR000AKU 

ENCSR000AOF 

ENCSR000DTQ 

ENCSR000DQV 

ENCSR000DQM 

ENCSR000DXR 

ENCSR000DWP 

ENCSR000AOC 

ENCSR000AKC 

ENCSR000AKP 

ENCSR000AMO 

ENCSR000ALB 

ENCSR000APH 

DNase I: 

ENCSR000ENO 

ENCSR000EPC 

ENCSR000EMI 

ENCSR000ENP 
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