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The stable derived category Dsg(R) of a Gorenstein ring R is defined as the Verdier quotient of the

bounded derived category Db(modR) by the thick subcategory of perfect complexes, and was introduced

by Ragnar-Olaf Buchweitz as a homological measure of the singularities of R. This thesis contributes to

its study, centered around representation-theoretic and Koszul duality aspects.

In Part I, we first complete (over C) the classification of homogeneous complete intersection isolated

singularities R for which the graded stable derived category DZ
sg(R) (respectively, Db(cohX) for X =

projR) contains a tilting object. For this, we prove the existence of a full strong exceptional collection

of vector bundles on a 2n-dimensional smooth complete intersection of two quadrics X = V (Q1, Q2) ⊆

P2n+2, building on work of Kuznetsov. We then use results of Buchweitz-Iyama-Yamaura to describe

the indecomposable objects in DZ
sg(RY ) for RY the homogeneous coordinate rings of 4 points on P1 and

4 points on P2 in general position, and classify their Betti tables.

In Part II, for R a Koszul Gorenstein algebra, we study a natural pair of full subcategories whose

intersectionHlin(R) ⊆ DZ
sg(R) consists of modules with eventually linear projective resolutions. We prove

that such a pair forms a bounded t-structure if and only if R is absolutely Koszul in the sense of Herzog-

Iyengar, in which case there is an equivalence of triangulated categories Db(Hlin(R)) ∼= DZ
sg(R). We

then relate the heart to modules over the Koszul dual R!. This extends the Bernstein-Gel’fand-Gel’fand

correspondence to any pair of Koszul dual algebras (R,R!) with R absolutely Koszul Gorenstein, applying

in particular to the coordinate ring of elliptic normal curves of degree ≥ 4 and to the anticanonical model

of del Pezzo surfaces of degree ≥ 4. We then relate our results to conjectures of Bondal and Minamoto on

the graded coherence of Artin-Schelter regular algebras and higher preprojective algebras; we characterise

when these conjectures hold in a restricted setting, and give counterexamples to both in all dimension

≥ 4.
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Chapter 1

Introduction

This thesis is concerned with representation-theoretic and homological aspects of the stable derived

categories of Gorenstein rings, mostly centered around questions of derived Morita theory, Koszul duality

and tame classification problems. Stable derived categories were originally introduced by Ragnar-Olaf

Buchweitz and later independently by D. Orlov under the name of singularity categories. The stable

derived category of a Noetherian ring R is defined as the Verdier quotient

Dsg(R) = Db(modR)/Dperf(modR)

of the bounded derived category of R by the thick subcategory of perfect complexes, meaning complexes

with finite projective resolutions. When R is commutative, the Auslander-Buchsbaum-Serre character-

isation of regular rings as the commutative rings of finite global dimension shows that the singularity

category Dsg(R) vanishes precisely for R regular, and thus in general provides a measure of the singu-

larities of specR.

A two-sided Noetherian, not necessarily commutative ring R is Gorenstein if both injective dimensions

idim (RR) < ∞ and idim (RR) < ∞ are finite, in which case those dimensions are equal and define the

Gorenstein dimension of R. When R is Gorenstein, a foundational theorem of Buchweitz identifies

Dsg(R) ∼= MCM(R) with the stable module category of maximal Cohen-Macaulay (MCM) R-modules,

whose study interpolates singularity theory, commutative algebra and representation theory. When R is

graded, we write DZ
sg(R) for the version involving graded modules. These triangulated categories have

turned out to be ubiquitous in the last 30 years, and routinely appear in algebra and geometry. We list

some notable examples:

i. The homotopy category of matrix factorizations of f ∈ S for S regular is equivalent to the stable

derived category of the hypersurface singularity S/f , that is MF(S, f) ∼= MCM(S/f) by a theorem

of Eisenbud.

ii. The stable derived category of a self-injective algebra Λ is equivalent to its stable module category

mod Λ. This applies in particular to the group algebra Λ = kG of a finite group G over a field of

characteristic p > 0 dividing the order of G.

iii. The stable derived category of the group ring SG for S regular and G finite is equivalent to the

stable category of lattices over SG.
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Chapter 1. Introduction 2

iv. Stable derived categories arise on the opposite side of Koszul duality equivalences with the bounded

derived categories Db(coh X) of coherent sheaves on projective varieties X, as in the Bernstein-

Gel’fand-Gel’fand (BGG) correspondence

DZ
sg(∧V ∗) ∼= Db(cohP(V ))

and its generalisations to complete intersections of quadrics by Buchweitz and Kapranov.

v. Let X ⊆ Pn be an arithmetically Gorenstein projective variety with homogeneous coordinate ring

RX , meaning that the affine cone specRX over X has Gorenstein singularities. Then there is an

adjoint pair DZ
sg(RX) � Db(coh X) between the graded stable derived category of RX and the

derived category of coherent sheaves on X, which, by a theorem of Orlov, is always an equivalence

when X is Calabi-Yau, and in general embeds one category inside the other according to the sign

of the twist on the canonical module ωRX
∼= RX(a) of RX .

vi. Let Λ be a finite dimensional algebra over a field, with finite global dimension gldim Λ < ∞. By

Happel’s Theorem, one can associate to Λ a graded Gorenstein finite dimensional algebra T (Λ),

its trivial extension algebra, for which we always have a triangulated equivalence Db(mod Λ) ∼=
DZ
sg(T (Λ)).

The present thesis makes contributions to various aspects of the study of Dsg(R) for R Gorenstein.

The work is separated into two independent sections, motivated by different ways of presenting Dsg(R).

Each comes with applications to problems in related fields. In particular, this thesis pulls ideas from

commutative algebra, algebraic geometry, representation theory of associative algebras and noncom-

mutative algebraic geometry, which are tied together by the use of triangulated categories and can be

fruitfully studied by means of the stable derived category.

I. In the first part, we study the tilting problem, which asks for abstract realisations

DZ
sg(R) ∼= Dperf(Λ)

of the graded stable derived categories of graded Gorenstein k-algebras as the perfect derived

category Dperf(Λ) ⊆ Db(mod Λ) of a finite dimensional k-algebra Λ, with Dperf(Λ) = Db(mod Λ)

when gldimΛ <∞. This gives a strong handle on the structure of the triangulated category DZ
sg(R),

giving an understand of its numerical invariants such as its Grothendieck group K0, or in good

cases producing classifications of the indecomposable objects in DZ
sg(R) when the representation

theory of Λ is well-understood. Producing such equivalences amounts to finding a tilting object in

DZ
sg(R), from which the equivalence arises through Morita theory. We study existence questions

and obstructions to such equivalences, and apply tilting theory to classification problems over tame

curve singularities.

II. In the second part, we study the stable derived categories of Koszul Gorenstein algebras. We

relate questions of existence of t-structures of ‘Koszul type’ to classical rationality problems in

commutative algebra. We then show that the Koszul Gorenstein algebras satisfying the statement

of the Bernstein-Gel’fand-Gel’fand correspondence

DZ
sg(R) ∼= Db(qgrR!)
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are precisely the absolutely Koszul algebras of Herzog-Iyengar. This broadly extends the class of al-

gebras for which the correspondence holds, and we study the equivalence of triangulated categories

in many new cases, as well as produce explicit counterexamples where such an equivalence fails to

exist. We further relate the matter to structural questions in noncommutative algebraic geometry:

we characterise the graded coherence of a class of Artin-Schelter regular algebras and higher prepro-

jective algebras by the absolute Koszulity of an associated Gorenstein Koszul algebras. This leads

us to construct examples of non-coherent Artin-Schelter regular algebras and non-coherent higher

preprojective algebras in all global dimension ≥ 4, thereby giving counterexamples to conjectures

of A. Bondal and H. Minamoto, respectively.

1.1 Overview of the thesis

Chapter 1

We begin with various preliminaries on standard notation, well-known constructions and basic notions

to be taken for granted throughout this thesis. We then give a short background exposition of the theory

of maximal Cohen-Macaulay (MCM) modules over a Gorenstein ring, beginning with classical local com-

mutative algebra, continuing on to Buchweitz’s manuscript [29], and ending with Orlov’s semiorthogonal

decomposition theorem.

For the purpose of this thesis, the importance of the class of MCM modules over a Gorenstein ring

R is encapsuled in the following two results of Buchweitz and Orlov.

For any complex of R-module with bounded cohomology N ∈ Db(modR), there is an MCM module

M = Nst, unique up to stable isomorphism, which becomes isomorphic to N in the Verdier quotient

Dsg(R) := Db(modR)/Dperf(R) by complexes of finite projective dimension. Moreover, MCM modules

can be characterised as those modules M admitting a two-sided projective resolution C∗

· · · // C1
// C0

((

// C−1
// C−2

// · · ·

M

66

called its complete resolution. The homotopy theory of the resulting acyclic complexes C∗ then describes

the triangulated category Dsg(R), which is the content of Buchweitz’s Theorem.

Given a projective variety X and an ample line bundle L with section ring

RX = RX,L =
⊕
n≥0

H0(X,L⊗n)

a graded Gorenstein ring, the structure of graded MCM modules over RX reveals a surprising amount of

the geometry of X. Letting M be a graded MCM RX -module with complete resolution C∗, and killing

free summands in C∗ generated in degree below some fixed cut-off i ∈ Z, one obtains a right bounded

complex F = C[≥i] of free RX -modules with bounded cohomology

· · · // Fn+3
// Fn+2

// Fn+1
// Fn // 0
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which sheafifies to a complex of coherent sheaves F = F̃ ∈ Db(cohX) with bounded cohomology. By

Orlov’s Theorem, the resulting functor

DZ
sg(RX)→ Db(cohX)

is an equivalence of triangulated categories whenever X is Calabi-Yau, and otherwise induces an equiv-

alences upon taking Verdier quotient by a certain exceptional collection.

Chapter 2

In Chapter 2, we review historical background and definitions concerning tilting theory for derived

categories of coherent sheaves Db(cohX) and graded singularity categories DZ
sg(R). Roughly speaking, a

tilting object T ∈ T in a triangulated category T , with T idempotent complete and of algebraic origin,

is the triangulated category analog of a small projective generator in Morita Theory, in that it induces

an equivalence of triangulated categories

RHom(T,−) : T
∼=−→ Dperf(ModEndT (T )).

We review briefly the important classes of Gorenstein algebras for which DZ
sg(R) is known to contain

a tilting object, with special attention to results of Yamaura and Buchweitz-Iyama-Yamaura which

guarantee this in dimension ≤ 1, under mild hypotheses. In particular, this applies to connected graded

Artinian self-injective algebras (dimension zero) and reduced Gorenstein curve singularities (dimension

one).

We then turn our attention to dimension ≥ 2. Restricting to the case of commutative Gorenstein

algebras, always assumed Noetherian, we prove the following results. Recall that R is called standard

graded if R = k ⊕R1 ⊕R2 ⊕ · · · is generated by R1 over R0 = k.

Proposition (Prop. 2.2.21). Let k be an algebraically closed field and let R be a standard graded

Gorenstein k-algebra of dimR ≥ 2, having at most isolated singularities. Let X = projR. Assume that

DZ
sg(R) admits a tilting object T . Then:

i) Hq(X,OX) = 0 for q > 0.

ii) The a-invariant of R satisfies a < 0. In particular X is a Fano variety.

Moreover, if k has characteristic zero, then i) may be strenghthened to the vanishing of Hodge numbers:

i’) Hq(X,ΩpX) = 0 for p 6= q.

Theorem (Thm. 2.3.16). Let k be an algebraically closed field of characteristic zero. Let R be a standard

graded complete intersection with at most isolated singularities, and let X = projR. The following are

equivalent:

1) DZ
sg(R) admits a tilting object T .

2) Db(cohX) admits a tilting object E.

3) We have Hq(X,ΩpX) = 0 for p 6= q.
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Moreover, when dimR ≥ 2 and R is non-regular, this is equivalent to

4) X is one of the following:

a) A smooth quadric hypersurface.

b) A smooth 2n-dimensional complete intersection of two quadrics.

c) A smooth cubic surface.

Lastly, when these equivalent conditions hold, the tilting object E ∈ Db(cohX) can always be chosen to

come from a full strong exceptional collection of vector bundles.

The first proposition should be expected if not folklore amongst experts. Likewise many of the

implications in the above theorem are known, and follow from work of Beilinson, Kapranov, Kuleshov-

Orlov, Kuznetsov, Rapoport and Buchweitz-Iyama-Yamaura. Our contribution is to treat the remaining

case of the 2n-dimensional intersection of two quadrics X = V (Q1, Q2) ⊆ P2n+2, in particular proving

that Db(cohX) admits a full strong exceptional collection of vector bundles, which is compatible with

an analogous collection in the graded singularity category DZ
sg(R).

Chapter 3

In Chapter 3, we explore applications of tilting theory to reduced curve singularities, where we apply

the recent tilting result of Buchweitz-Iyama-Yamaura to the classification problem for indecomposable

MCM modules over certain tame curve singularities. Namely, we study the homogeneous coordinate

rings RY of 4 points on P2 in general position and 4 points on P1, respectively. To each algebra RY , the

theorem of Buchweitz-Iyama-Yamaura associates a quiver path algebra with relations kQ/I along with

an equivalence of triangulated categories

DZ
sg(RY ) ∼= Db(mod kQ/I).

In the case of 4 points Y ⊆ P2 in general position, the algebra is given by the path algebra kQ of the
4-subspace quiver

•

•

•

p1
>>

p2

66
p3

((
p4   

•

•

To 4 points Y ⊆ P1 on the projective line, one attaches the ‘Squid’ path algebra Sq(2, 2, 2, 2;λ) = kQ/I
with quiver

•

•

•
y //
x
// •

p1
>>

p2

66
p3

((
p4   

•

•

and relations pili(x, y) = 0 for i = 1, 2, 3, 4, where li is the linear form cuting out the i-th point in Y .

Both algebras have derived tame representation type, meaning that the classification problem for

indecomposables in Db(mod kQ/I) is of mild complexity. In fact the representation theory of both

algebras is well-understood. Our contribution is to studying the analogous classification in the graded
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singularity category DZ
sg(RY ): in the first case we show that one recovers the regular components of

mod kQ over the 4-subspace quiver from the geometry of the pencil of conics through 4 points Y ⊆ P2.

We then deduce the classification of indecomposable MCM modules over RY and write down the Betti

tables of indecomposable complete resolutions.

In the second case of RY the coordinate ring of 4 points Y ⊆ P1, we study the classification problem

for MCM modules over RY by reducing the problem to the weighted projective line X = P1(2, 2, 2, 2;λ)

of genus one, which is derived equivalent to the tubular algebra Sq(2, 2, 2, 2;λ). We discuss the role

of the induced braid group action on the singularity category, write down the indecomposable MCM

modules corresponding to the simple torsion sheaves on X, and give a complete classification of the Betti

tables of indecomposable graded MCM modules over RY .

Chapter 4

Chapter 4 is largely expository but contains many of the key ideas and setup required for later chapters.

We begin with recalling the basics of a class of finite dimensional algebras Λ called Fano algebras. The

prototypical example of a Fano algebra arises as follows: let X be a smooth projective Fano variety with

a tilting bundle E , and set Λ = EndX(E). We obtain an equivalence

RHom(E ,−) : Db(cohX)
∼=−→ Db(modΛ).

One may take here X = Pn and Λ = End(
⊕n

i=0O(i)) the n-th Beilinson algebra. Further assume that

dimX = gldimΛ =: n, which holds for the example above. Let

SΛ = −⊗L
Λ DΛ

be the Serre functor for Db(mod Λ) where DΛ = Homk(Λ, k), and set Sn = SΛ ◦ [−n] for the n-shifted

Serre functor on Db(modΛ), which corresponds under the above equivalence to −⊗ωX . Since X is Fano,

using ampleness of ω−1
X it is easy to see that the equivalence sends the subcategory cohX ⊆ Db(cohX)

onto the subcategory H(Λ) ⊆ Db(modΛ) of asymptotic modules

H(Λ) := {M ∈ Db(modΛ) | S−mn (M) ∈ modΛ ⊆ Db(modΛ) for all m� 0}

and so we recover the coherent sheaves on X via a canonically defined subcategory of Db(modΛ).

The class of Fano algebras, as introduced by H. Minamoto, precisely captures those finite dimensional

algebras which come from Fano varieties, at least if one allows the varieties to be noncommutative. More

precisely, by a beautiful theorem of Minamoto, any Fano algebra Λ satisfies

Db(modΛ) ∼= Db(qgrΠ)

for some graded algebra Π, where qgr Π is the category of finitely presented modules modulo torsion

modules, thought of as a category of coherent sheaves of a noncommutative variety, and furthermore

qgr Π corresponds to H(Λ) under this equivalence. The graded algebra Π is moreover coherent, a

weakening of the Noetherian condition which is required for the whole machinery to work. The algebra
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Π is constructed out of Λ by a process reminescent of the anticanonical ring
⊕

n≥0 H0(X,ω−nX ) of a

smooth variety X.

Fano algebras belong to the larger class of almost Fano algebras, which are finite dimensional algebras

containing enough data to construct Π canonically, but without the a priori knowledge that Π is a

graded coherent algebra. Almost fano algebras arise much more often in practice, and it is important to

determine whether they are actually Fano.

The class of Fano algebras contains all representation infinite quiver path algebras kQ, meaning that

Q is a finite acyclic non-Dynkin quiver Q, and Π = Π(Q) is the classical preprojective algebra of Q.

Similarly, the class of almost Fano algebras contains the subclass of higher representation infinite alge-

bras introduced by Herschend-Iyama-Oppermann, and Π = Π(Λ) is the associated higher preprojective

algebra. The missing ingredient for such algebras to be Fano is to establish the graded coherence of

Π(Λ). As such, central to this storyline is the conjecture:

Conjecture (Minamoto, Conjecture 4.1.17). Higher preprojective algebras Π(Λ) of higher representation

infinite algebras are always graded coherent.

This conjecture appears to be partially modelled on an older conjecture of A. Bondal, concerning the

class of Artin-Schelter regular algebras, which share many similarities with Π(Λ).

Conjecture (Bondal, Conjecture 4.1.18). Artin-Schelter regular algebras are always graded coherent.

In this chapter, we will see how to associate, to any Koszul Frobenius algebras A, a pair (E,Π)

consisting of an Artin-Schelter regular algebra E and the higher preprojective algebra Π = Π(Λ) of a

higher representation infinite algebra Λ. That one can do this is not new, but this doesn’t appear to

have been exploited as much as one would expect. More interestingly, we will see how to characterise

the coherence of E and Π in terms of the graded singularity category DZ
sg(A), and therefore characterise

the algebras A giving rise to a pair of coherent graded algebras (E,Π). Our main results will then be:

Theorem (Thm. 6.2.1). The following are equivalent:

i) Π is coherent.

ii) E is coherent.

iii) A is absolutely Koszul in the sense of Herzog-Iyengar.

This last condition is well-studied and holds for many classes of Koszul algebra. However we will

also construct Koszul Frobenius algebras which are not absolutely Koszul, and so obtain:

Theorem (Thm. 6.2.2). There are Artin-Schelter regular algebras {Ed}d≥4 and higher preprojective

algebras {Πd}d≥4 in each global dimension d ≥ 4 which fail to be graded coherent.

This produces a counterexample to the conjectures of Minamoto and Bondal in all global dimensions

d ≥ 4, although the counterexamples are somehow isolated and don’t seem representative of typical

behavior. Since both conjectures hold in global dimension d ≤ 2, this leaves open the case of d = 3.

The proofs of the above theorems appear only in Chapter 6 after the relevant machinery has been

setup in Chapter 5.
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Chapter 5

Chapter 5 forms the technical core of this thesis. Initially motivated by ideas of Chapter 4, this chapter

can be seen as a long digression and can be read mostly independently from the previous ones.

Given a Koszul Gorenstein algebra R, we are lead to consider a natural candidate for a t-structure

on DZ
sg(R), namely a natural pair of full subcategories (D≤0

sg (R),D≥0
sg (R)) with intersection Hlin(R) :=

D≤0
sg (R) ∩ D≥0

sg (R) ⊆ DZ
sg(R) the subcategory of modules with eventually linear minimal projective

resolution

Hlin(R) := {M ∈ DZ
sg(R) | βi,j(M) = 0 for all i 6= j whenever i� 0}.

Recall that βi,j(M) is the number of generators of degree j in the i-th term of the minimal projective

resolution P∗
∼−→M , and will be independent of representative of the isomorphism class of M ∈ DZ

sg(R)

so long as i� 0. Pairs of the form (D≤0
sg (R),D≥0

sg (R)) often arise through Koszul duality equivalence as

the t-structures pulled back from the standard t-structure attached to the Koszul dual R! = Ext∗R(k, k).

For instance, under the (contravariant) BGG correspondence

DZ
sg(∧V ∗)op ∼= Db(cohP(V ))

one sees that the standard t-structure on Db(coh P(V )) gives rise to (D≤0
sg (∧V ∗),D≥0

sg (∧V ∗)) and so

induces a (contravariant) equivalence of abelian categories

Hlin(∧V ∗)op ∼= cohP(V ).

However, for a general Koszul Gorenstein algebra R with Koszul dual R! = Ext∗R(k, k), it isn’t a priori

clear that DZ
sg(R) takes part in an equivalence of the type above, and so whether (D≤0

sg (R),D≥0
sg (R))

should form a t-structure at all.

It is well-known that an appropriate equivalence exists whenever R is Artinian and R! Noetherian,

as in the classical situation of (R,R!) = (∧V ∗,SymV ). It isn’t hard to see that the same hold for R

Artinian if we only require that R! be coherent as a graded algebra. Much more difficult is the extension

to pairs of Noetherian Koszul Gorenstein algebras (R,R!), as is done in by Buchweitz [31, Appendix] in

a beautiful tour de force. Buchweitz studies in particular the case where one of R,R! is commutative, say

R. Requiring that R! = Ext∗R(k, k) be Noetherian is then such a strong constraint that it forces R to be

given by a complete intersection of quadrics R = k[x]/(q), by an important theorem of Bøgvad-Halperin.

No improvement beyond the case of complete intersections of quadrics has been obtained since the work

of Buchweitz [31] in 1987.

In this chapter, we will obtain a complete characterisation of the Koszul Gorenstein algebras R

for which the natural candidate (D≤0
sg (R),D≥0

sg (R)) forms a bounded t-structure on DZ
sg(R). Our main

results are as follows:

Theorem (Theorem A). Let R be a Koszul Gorenstein algebra. The following are equivalent:

i) (D≤0
sg (R),D≥0

sg (R)) forms a bounded t-structure for DZ
sg(R).

ii) R is absolutely Koszul in the sense of Herzog-Iyengar.



Chapter 1. Introduction 9

Furthermore, when these equivalent conditions hold, the natural realisation functor

real : Db(Hlin(R))
∼=−→ DZ

sg(R)

is an equivalence of triangulated categories which extends the inclusion on Hlin(R).

Note that the theorem makes no mention of the Koszul dual R! = Ext∗R(k, k), and so in particular

makes no demand on the structure of the Ext algebra. The role of R! is relegated to giving a convenient

presentation of the abelian category Hlin(R), as in the next theorem.

Theorem (Theorem B). Let R be a Koszul Gorenstein algebra. If R is absolutely Koszul, then the

graded algebra E = (R!)op = Ext∗R(k, k)op is coherent, and there is a contravariant equivalence of abelian

categories

Hlin(R)op
∼=−→ qgrE

given by M 7→ Ext∗R(M,k), where qgrE is the Serre quotient of the category of finitely presented graded

E-modules modulo the subcategory of finite length modules.

Conversely, if R is Artinian and E = Ext∗R(k, k)op is coherent, then R is absolutely Koszul.

Putting those two theorems together, we deduce the general Bernstein-Gel’fand-Gel’fand correspon-

dence.

Theorem (Theorem C). Let R be an absolutely Koszul Gorenstein algebra with E = (R!)op = Ext∗R(k, k)op.

Then there is a contravariant equivalence of triangulated categories

DZ
sg(R)op ∼= Db(qgrE)

such that the bounded t-structure (D≤0
sg (R),D≥0

sg (R)) arises as the pullback of the standard t-structure on

the right-hand side.

Chapter 6

Finally, Chapter 6 consists of assorted corollaries, applications and worked out examples arising out of

Chapter 4 and 5.

We first spend some time collecting from the literature examples and classes of Koszul Gorenstein

algebras which are known to be absolutely Koszul, and so to which our results apply. Of note, all Koszul

Gorenstein algebras of codimension ≤ 4 are automatically absolutely Koszul by results of Avramov-

Kustin-Miller and Herzog-Iyengar. Moreover, many interesting projective varieties admit embeddings

X ⊆ Pn with absolutely Koszul Gorenstein homogeneous coordinate ring RX . In particular we take a

close look at the cone over an elliptic normal curve E ⊆ Pd−1 of degree d ≥ 4, at the anticanonical

model of a smooth del Pezzo Xd ⊆ Pd of degree d ≥ 4, and at the canonical embedding C ⊆ Pg−1 of a

non-hyperelliptic smooth projective curve of genus g ≥ 3, which is assumed to be cut-out by quadrics.

For the homogeneous coordinate ring RE,d of the elliptic normal curve E ⊆ Pd−1, we obtain from

the BGG correspondence an equivalence

Db(cohE) ∼= Db(Hlin(RE,d)).
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The induced heart Hlin(RE,d) ⊆ Db(cohE) is also hereditary and admits a simple description by results

of Pavlov [85]. Recall that the derived category of the elliptic curve E admits a fully faithful action by

the braid group B3 on three strands, generated by Thomas-Seidel twists along the spherical objects OE
and the structure sheaf k(x) of a closed point x ∈ E. For each d ≥ 4, one can associate a positive braid

element σ = σd ∈ B3 ⊆ Aut(Db(cohE)) acting on the derived category of E, which one normalises to

an antoequivalence γ := σ[−1]. The full subcategory

Hγ(E) := {F ∈ Db(cohE) | Hn(E,γjF) = 0 for n 6= 0 whenever j � 0}

then corresponds to Hlin(RE,d) under the above equivalence.

For the anticanonical model RXd of the del Pezzo surface Xd ⊆ Pd, using a theorem of Happel we

obtain that Hlin(RXd) must be derived equivalent to the representation category mod kQ of a finite

acyclic quiver or the category of coherent sheaves cohX over a weighted projective line in the sense of

Geigle-Lenzing.

Afterwards, we then construct a sequence of Artinian Koszul Gorenstein algebras {Rn}n≥4 which

fail to be absolutely Koszul, building on work of J.-E. Roos. This is directly applied to construct the

counterexamples to the coherence conjectures discussed in Chapter 4.

Lastly, we end this thesis with a discussion of various philosophical points behind the results obtained

and lay out some conjectures.

1.2 Preliminaries

Throughout this thesis, k will stand for a fixed choice of field. A graded object X in a category C consists

of a sequence of objects {Xi}i∈Z in C. A graded algebra R over k will always stand for a non-negatively

graded k-module, meaning that Ri = 0 for i < 0, with products Ri ⊗Rj → Ri+j , and abusing notation

we will typically conflate R with its direct sum totalisation and write R =
⊕

i≥0Ri. We say that R is

connected if R0 = k, and standard graded if R is generated in degree one over R0, that is R = R0[R1].

Similarly we will often write M =
⊕

i∈ZMi for a graded module over a graded algebra. When done this

way, elements r ∈ R or x ∈M are understood to be homogeneous, and we write |r|, |x| for their degree.

Outside of specific parts at the beginning of Chapter 2, graded algebras will be generated in degree one

over R0, which will often be k but sometimes a finite dimensional semisimple k-algebra.

Given a ring S, we write ModS for the category of right S-modules, and modS for the full subcategory

of finitely presented S-modules, which is an abelian category whenever S is right Noetherian (more

generally right coherent). Similarly we write Grmod S and grmod S for the corresponding categories

of graded modules. All module-theoretic notions will always implicitly refer to right modules, and we

identify the category of left modules with right modules over the opposite ring Sop.

A complex X = (X, d) in an abelian category A will mean a graded object X = {Xi}i∈Z equipped

with a differential di : Xi → Xi−1, meaning that d2 = 0. We always write complexes from left to right

· · · → Xi+1
di+1−−−→ Xi

di−→ Xi−1 → · · ·
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and we define its homology by Hi(X) = ker(di)/im(di−1). We will often write complexes cohomologically

by setting Xi = X−i, in which case the differential increases degree. The suspension X[1] of a complex

(sometimes written ΣX) is defined by (X[1])i = Xi+1, or equivalently (X[1])i = Xi−1, and we define

X[n] analogously for any n ∈ Z. A chain-map f : X → Y of complexes consists maps fi : Xi → Yi

commuting with the differential. A chain-map f : X → Y is called nullhomotopic if it is of the form

f = dY ◦ h + h ◦ dX for a morphism of graded object h : X → Y [−1]. We say that f : X → Y is

a quasi-isomorphism if the induced map on homology f∗ : H∗(X)
∼=−→ H∗(Y ) is an isomorphism. The

mapping cone of f : X → Y is defined as the complex

Cone(f)n := Xn−1 ⊕ Yn

with differential ∂(x+ y) = f(x)− d(x) + d(y).

Given two graded objects X,Y in A, their graded Hom abelian group Hom(X,Y ) is defined by

Homn(X,Y ) =
∏
i∈Z

Hom(Xi, Y i+n).

When X,Y are complexes, Hom(X,Y ) inherits a differential by ∂(f) = dY ◦ f − (−1)|f |f ◦ dX . When

A admits a tensor product, the tensor product X ⊗ Y is the graded object with components

(X ⊗ Y )n =
⊕
p+q=n

Xp ⊗ Y q.

This inherits the structure of a complex from X,Y by setting dX⊗Y = dX ⊗ 1 + 1⊗ dY .

We define the following categories:

i. C(A) is the category of complexes over A, with morphisms given by chain-maps.

ii. K(A) is the homotopy category of complexes over A, which is obtained from C(A) by quotienting

out nullhomotopic morphisms.

iii. D(A) is the derived category of A, obtained from K(A) by inverting quasi-isomorphisms (see [109]

or [54] for details).

We let D∗(A) for ∗ = {−,+, b} denote the full subcategories of D(A) consisting of complexes with

right bounded cohomology, left bounded cohomology or bounded cohomology, respectively. When R

is a ring, we write D(R) := D(Mod R). When R is right Noetherian (or right coherent) we denote

Db(R) := Db(modR), and we write D(X) := D(QCohX) and Db(X) := Db(cohX) for any scheme X.

In any triangulated category T , for any set of objects S ⊆ T we define the thick closure thick(S) ⊆ T
to be the smallest triangulated category of T containing S which is closed under finite direct sums and

summands. When T is closed under arbitrary direct sums, we define the localising closure loc(S) ⊆ T
to be the smallest triangulated category of T containing S closed under arbitrary direct sums; note

that loc(S) is then automatically closed under direct summands by [82, Prop. 1.6.8]. We write [1] for

the suspension in a triangulated category, and ExtnT (X,Y ) := HomT (X,Y [n]). We say that a k-linear

triangulated category is Ext-finite if dimk

⊕
n∈Z ExtnT (X,Y ) < ∞ for any X,Y ∈ T . All triangulated

categories in this thesis will be k-linear over our base field k, and typically will be Ext-finite.
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A t-structure t = (T ≤0, T ≥0) on T is a pair of full subcategories satisfying three defining axioms.

Define T ≤n = T ≤0 ◦ [−n] and T ≥n = T ≥0 ◦ [−n]. Then t forms a t-structure on T if

T1. We have containments T ≤0 ⊆ T ≤1 and T ≥1 ⊆ T ≥0.

T2. We have HomT (T ≤0, T ≥1) = 0.

T3. For every object X ∈ T , there are objects X≤0 ∈ T ≤0 and X≥1 ∈ T ≥1 fitting in a distinguished

triangle

X≤0 → X → X≥1 → X≤0[1].

When t forms a t-structure, there are truncation functors τ≤n : T → T ≤n and τ≥n : T → T ≥n which

are adjoint to the respective inclusions

τ≤n : T � T ≤n : in

jn : T ≥n � T : τ≥n

such that τ≤0X = X≤0 and τ≥1X = X≥1 above, and with the maps in the distinguished triangle coming

from the counit and unit maps of the respective adjunctions.

The triangulated category T = D(A) has a standard t-structure (D≤0,D≥0), given by complexes

with cohomology supported in degree ≤ 0 and ≥ 0, respectively. The truncation functors are given by

τ≤nX : · · · // Xn−1
dn−1 // ker(dn) // 0 // · · ·

X : · · · // Xn−1
dn−1 // Xn dn // Xn+1 // · · ·

τ≥nX : · · · // 0 // coker(dn−1)
dn // Xn+1 // · · ·

A differential graded (dg) algebra over k is a complex A = (A, d) with an associative multiplication

m : A⊗2 → A which is a chain-map, or equivalently d satisfies the Leibniz rule d(ab) = (da)b +

(−1)|a|a(db). Every graded algebra can be thought of as a dg algebra with trivial differential. A

morphism of dg algebras f : A → B is a homomorphism of algebras which respects the differential,

and a quasi-isomorphism of dg algebras f : A
∼−→ B is a morphism which is a quasi-isomorphism of

underlying complexes. We will say that two dg algebras A, B are quasi-isomorphic if they are connected

to each other by a zig-zag of quasi-isomorphisms, and denote this by A ' B. Moreover, A is formal if

it is quasi-isomorphic to its cohomology algebra H∗(A), that is A ' H∗(A).

Finally, we will make some usage of the theory of Koszul algebras. Let A = A0⊕A1⊕· · · be a locally

finite graded k-algebra generated by A1 over A0, and we assume that A0 is semisimple. Let P∗
∼=−→ A0

be the minimal graded projective resolution of A0 = A/A≥1 over A. We say that A is Koszul if Pi is

generated in degree i for all i ≥ 0.

When A is Koszul, we denote by A! = Ext∗A(A0, A0) its Koszul dual algebra. One can see that A!

is also Koszul with degree zero part A!
0 = A0 and that Ext∗A!(A!

0, A
!
0) ∼= A. While we assume some
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familiarity with the class of Koszul algebras, perhaps at the level of [17], the two above facts will suffice

for the entirety of this thesis.

1.3 Background: Maximal Cohen-Macaulay modules over Goren-

stein rings

In this section, we review classical definitions and characterizations of MCM modules, and give an

exposition of Buchweitz’s manuscript. We refer the reader to [26, 112, 68, 29] for complete references.

MCM modules over CM local rings

Let R = (R,m, k) here denote a commutative Noetherian local ring (respectively, graded local ring)

of finite Krull dimension d. All definitions and results have natural extensions to the case of graded

modules over graded rings which this thesis is concerned with, and we will spell out the graded version

of a result when appropriate. For an R-module M , a sequence of elements x1, . . . , xn in m is a regular

M -sequence if xi+1 is a non zero divisor on M/(x1, . . . , xi)M for all i = 0, 1, . . . , n− 1.

Definition 1.3.1. The depth of an R-module M , denoted depthM , is the maximal length of regular

M -sequences.

The depth of a module is always upper bounded by the Krull dimension of its support, that is

depthM ≤ dimM .

Definition 1.3.2. A module M is Cohen-Macaulay if depth M = dimM . A module M is maximal

Cohen-Macaulay if furthermore dimM = dimR, that is depthM = d.

Definition 1.3.3. A ring R is Cohen-Macaulay if R is maximal Cohen-Macaulay as an R-module. That

is, m contains a regular R-sequence of length d. The ring R is regular if m is actually generated by a

regular sequence (then of length d).

Proposition 1.3.4. Let M be a finite MCM module over a regular local ring R. Then M is free.

Proof. Since R is regular pdimM < ∞ and the Auslander-Buchsbaum formula pdimM + depthM =

depthR gives pdimM = 0, and M is free since R is local.

It follows that we may think of non-free MCM modules as measuring the singularities of R in some

way. Depth and the Cohen-Macaulay property are best recognized by cohomological criteria. To this

end, let X = specR, and for any R-module M , by abuse of notation we denote by M the associated

quasi-coherent sheaf on X. Let Γm = Γm(X,−) : QCohX → ModR be the functor of global sections

with support in m, meaning

Γm(M) = Γm(X,M) = {x ∈M | mr · x = 0 for some r � 0}.

Γm is left exact with total derived functor RΓm, and we denote by Hi
m(−) = RiΓm the i-th local

cohomology functor. Local cohomology detects depth.

Proposition 1.3.5 ([26]). Let M be a finite R-module. We have:
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i) depth RM = inf{i | Hi
m(M) 6= 0}.

ii) M is Cohen-Macaulay if and only if Hi
m(M) = 0 for i 6= dimM .

In the graded local case, say when R =
⊕

n≥0Rn is a standard graded connected k-algebra and

m = R+, we can reinterpret local cohomology of graded R-modules in terms of the projective k-scheme

projR. Here let X = projR and X̂ = specR is the affine cone over X. Let U ⊆ X̂ be the punctured

spectrum U = X̂ \m. For a graded module M , by abuse of notation we denote by M the quasi-coherent

sheaf on X̂ and M̃ denote the quasi-coherent sheaf on X.

0→ Γm(X̂,M)→ Γ(X̂,M)
res−→ Γ(U,M)→ 0

giving rise to distinguished triangles

RΓm(X̂,M)→ RΓ(X̂,M)
res−→ RΓ(U,M)→ RΓm(X̂,M)[1].

Quasi-coherent sheaf cohomology vanishes over the affine scheme X̂. By [68], we have RΓ(U,M) ∼=
RΓ∗(X, M̃) :=

⊕
n∈Z RΓ(X, M̃(n)). Putting these together, we have:

Proposition 1.3.6. Let M be a graded R-module.

i) There is an exact sequence of graded modules

0→ Γm(M)→M
res−→ Γ∗(X, M̃)→ H1

m(M)→ 0.

ii) We have natural isomorphisms of graded R-modules Hi
∗(X, M̃) ∼= Hi+1

m (M) for all i ≥ 1.

Corollary 1.3.7. Let M be a finite graded R-module. The following are equivalent:

i) M is maximal Cohen-Macaulay.

ii) The map res is an isomorphism, and we have Hi(X, M̃(n)) = 0 for all n ∈ Z for all i 6= 0,dimX.

A coherent sheaf F corresponding to a finite MCM module M is called Arithmetically Cohen-

Macaulay (ACM).

Definition 1.3.8. Let R be a local CM ring of dimension d. A canonical module ωR for R is a finite

R-module such that

ExtiR(k, ωR) =

0 i 6= d

k i = d.

Such a module ωR is unique up to isomorphism whenever it exists.

Proposition 1.3.9 (Local Duality [26]). Let R be a local CM ring with a canonical module ωR. Let

ER(k) be the injective hull of k. For any finite R-module M , we have natural isomorphisms of R-modules

Hi
m(M) = HomR(Extd−iR (M,ωR), ER(k)).

Proposition 1.3.10 (Graded Local Duality [26]). Let R be a graded connected CM k-algebra with graded

canonical module ωR. For any finite graded R-module M , we have natural isomorphisms of graded R-

modules

Hi
m(M) = Homk(Extd−iR (M,ωR), k).
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Proposition 1.3.11. A finite R-module M is Cohen-Macaulay if and only if Extd−iR (M,ωR) = 0 for

i 6= dimM . In particular M is MCM if and only if ExtnR(M,ωR) = 0 for all n > 0.

Definition 1.3.12. Let R be a CM local ring (respectively graded local). We say that R is Gorenstein

if ωR := R is a canonical module (respectively ωR := R(a) for some a ∈ Z). In the graded case, the

integer a is called the a-invariant.1

Note that by proposition 1.3.10, we have a = max{i | Hd
m(R)i 6= 0}. Gorenstein rings are ubiquitous

[16], and have many characterizations and standard examples.

Proposition 1.3.13 ([26]). Let R be a local Noetherian ring of dimension d. The following are equiva-

lent:

i) R is Gorenstein.

ii) The injective dimension of RR is finite (then equal to d).

iii) R/(x) is Gorenstein for some (and then all) regular R-sequence x = (x1, . . . , xn).

We say that R is a complete intersection if its completion R̂ at m is isomorphic to R̂ ∼= Q/(x) for Q

a regular local ring and x = (x1, . . . , xc) ⊆ mQ a regular sequence. We have strict implications:

regular =⇒ complete intersection =⇒ Gorenstein =⇒ Cohen-Macaulay.

Example 1.3.14. Let R be of Krull dimension zero. The following are equivalent:

i) R is Gorenstein.

ii) R is self-injective.

iii) RR has simple socle.

Moreover when R is a graded connected k-algebra, ωR = DR ∼= R(a) with a the degree of the socle

element.

Example 1.3.15 (Watanabe [108]). Let V be a finite-dimensional vector space over an algebraically

closed field k and let G ≤ GL(V ) be a finite group with char k - |G|. Assume that G is small, meaning

containing no pseudo-reflection. Then the invariant ring R = k[V ]G is Gorenstein if and only if G ≤
SL(V ).

The Stable Derived Category of a Gorenstein Ring

From now on, we will take rings R to be two-sided Noetherian and modules are taken to be finitely

generated, unless specified otherwise. Taking a cue from proposition 1.3.13, we call a possibly noncom-

mutative, two-sided Noetherian ring R Gorenstein (or Iwanaga-Gorenstein) if

i) idim (RR) <∞

ii) idim (RR) <∞
1The integer −a is also called the Gorenstein parameter, and sometimes denoted by the same letter a. We will not

follow this convention.
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in which case both injective dimensions are equal, say to some integer d. We call d the Gorenstein

dimension of R. Gorenstein rings admit a natural duality given by

(−)∨ := RHomR(−, R) : Db(R)op → Db(Rop).

Lemma 1.3.16 ([33, Lemma 5.3]). The functor (−)∨ is a duality. That is, the natural map X → X∨∨

is an isomorphism for all X ∈ Db(R).

Definition 1.3.17. LetR be Gorenstein. AnR-moduleM is maximal Cohen-Macaulay if ExtnR(M,R) =

0 for n > 0. Equivalently, M∨ is a module in Db(Rop).

Over R Gorenstein, for any MCM module M it follows that M∨ = M∗ := HomR(M,R), and since

(M∗)∨ = M∨∨ ∼= M is an R-module, M∗ is an MCM module over Rop and M∗∗ ∼= M . We denote

by MCM(R) the full subcategory of MCM modules over a Gorenstein ring R, (respectively MCMZ(R)

the category of graded MCM modules over a Z-graded Gorenstein ring R). Collecting some standard

properties, we have:

Proposition 1.3.18. Let R be Gorenstein. The category MCM(R) has the following properties:

i) The category MCM(R) is closed under sums, summands and extensions.

ii) MCM modules are closed under taking duals.

iii) MCM modules are reflexive, that is M∗∗ ∼= M .

iv) Projective R-modules are MCM.

v) The projective R-modules are injective objects in the category MCM(R) ⊆ modR.

We next define the stable module category.

Definition 1.3.19. Let R be any ring. The projectively stable, or stable, module category ModR (resp.

modR) has for objects all R-modules (resp. finitely generated R-modules), with morphisms given by

HomR(M,N) = HomR(M,N)/P(M,N)

where P(M,N) is the ideal of morphisms factoring through a projective object.

Definition 1.3.20. Let R be two-sided Noetherian and Gorenstein. The stable category of MCM

modules MCM(R) is the full subcategory of modR consisting of MCM modules.

Working over any Noetherian ring R, given a finite projective presentation P1
∂1−→ P0 → M of

M ∈ grmodR, we define the first syzygy Ω(M) = im(∂1). The first syzygy of M depends on the choice

of presentation, but it is well-known (Schanuel’s Lemma) that any two choice of presentations give rise

to stably isomorphic syzygies, and that one obtains a well-defined functor Ω : modR→ modR. When R

is Gorenstein, the functor Ω preserves the subcategory of MCM modules, and since R has finite injective

dimension, any syzygy module Ωn(N) is MCM for n� 0 (note that n ≥ d is enough). By a fundamental

result of Buchweitz, all MCM modules are actually of this form.

Proposition 1.3.21 (Buchweitz). The following are equivalent over R Gorenstein:
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i) M is an MCM module.

ii) For every n ≥ 0, there is an R-module N such that M ∼= Ωn(N).

Proof. Let P
∼−→M be a projective resolution and Q

∼−→M∗ be a projective resolution of the dual. Since

M is MCM, so is M∗ and by cohomology vanishing Ext>0
Rop(M∗, R) = 0 we have a quasi-isomorphism

M = M∗∗
∼−→ Q∗. Composing the quasi-isomorphisms P

∼−→ M = M∗∗
∼−→ Q∗, we obtain an acyclic

complex of projectives by taking the (shifted) cone C∗ = Cone(P → Q∗)[−1]

· · · // P1
// P0

//

''

Q∗0 // Q∗1 // · · ·

M

77

Truncating the complex C∗ sufficiently far to the right reveals M as the n-th syzygy module of N =

coker(C−n+1 → C−n).

Extracting a definition from the above proof, we set:

Definition 1.3.22. Let R be Gorenstein. A complete resolution C∗ →M of an MCM module M is an

infinite acyclic complex of finite projectives whose non-negative truncation resolves M .

As for projective resolutions, complete resolutions are unique up to homotopy and, when R is local

(or graded local), admit a minimal model which is unique up to non-canonical isomorphism. Let us write

projR ⊆ modR for the full subcategory of finitely generated projectives. We denote by Kac(projR) the

homotopy category of complete resolutions, or equivalently the homotopy category of acyclic complexes

of finitely generated projectives.

Proposition 1.3.23 (Buchweitz [29]). Let R be Gorenstein. The functor C∗ 7→ coker(C1 → C0) gives

rise to an equivalence of categories Kac(proj R)
∼=−→ MCM(R). The inverse sends M to its complete

resolution.

The triangulated structure on MCM(R)

For the remainder of these sections, we will work entirely over a Gorenstein ring R.

The homotopy category Kac(projR) is naturally triangulated, and we can pull back the triangulated

structure onto MCM(R) under the equivalence of Prop. 1.3.23. Let us describe some of its main features:

i) Suspension: We have M [1] = ΣM = cosyzR(M) with inverse M [−1] = ΩM = syzR(M):

. . . // C1
//

%%
C0

//

##
C−1

//

&&
C−2

// . . .

ΩM

99

M

99

ΣM

88

ii) Distinguished triangles: The distinguished triangles in MCM(R) are the images of short exact

sequences of MCM modules in MCM(R).
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iii) Mapping cones: Given a map f : M →M ′, first embed ι : M ↪→ C−1 into a projective module and

define Cone(f) := Coker(ι⊕ f : M ↪→ C−1 ⊕M ′). We have a distinguished triangle

C−1 ⊕M ′

))
M

f //

ι⊕f 66

M ′

∼

// Cone(f)

((

// ΣM

0

99

0

where the map Cone(f)→ ΣM is induced from the quotient C−1 � ΣM .

Tate cohomology

Every triangulated category carries a natural cohomology theory by taking Hom into a fixed object. In

the present context, this gives rise to Tate cohomology. Slightly more generally, we define:

Definition 1.3.24. Let R be Gorenstein, let N be an R-module and M an MCM module, with complete

resolution C∗ → M . For n ∈ Z, we define the n-th Tate cohomology group of M with coefficients in N

by

ExtnR(M,N) := HnHomR(C∗, N).

Proposition 1.3.25 ([29]). Tate cohomology has the following properties.

i) We can calculate ExtnR(M,N) via:

ExtnR(M,N) =


ExtnR(M,N) n ≥ 1

HomR(M,N) n = 0

TorR−1−n(N,M∗) n ≤ −2

and we have a short exact sequence

0→ Ext−1
R (M,N)→ N ⊗RM∗

ev−→ HomR(M,N)→ Ext0
R(M,N)→ 0.

ii) We have Extn+1
R (ΣM,N) = ExtnR(M,N) = Extn−1

R (ΩM,N).

iii) Let N be a perfect module. Then ExtnR(M,N) = 0 for all n ∈ Z.

iv) Let N be an MCM module with complete resolution D∗. Then the natural map D∗ → N induces a

quasi-isomorphism of Hom complexes

HomR(C∗, D∗)
∼−→ HomR(C∗, N).

Hence we have natural isomorphisms HnHomR(C∗, D∗) ∼= ExtnR(M,N). In particular

H0HomR(C∗, D∗) ∼= HomR(M,N).

Stable derived categories and Buchweitz’s equivalence

Next, still over a fixed Gorenstein ring R, consider the bounded derived category Db(R) and its sub-

category of perfect complexes Dperf(R) = thick(R), meaning complexes quasi-isomorphic to a bounded
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complex of projective modules.

Definition 1.3.26. The stable derived category of R, also called singularity category, is the Verdier

quotient

Dsg(R) = Db(R)/thick(R).

of the bounded derived category of R by the subcategory of perfect complexes.

The composition of the natural embedding and projection factors as

MCM(R) //

��

Db(R) // Dsg(R)

MCM(R)

33

Theorem 1.3.27 (Buchweitz [29]). Let R be Gorenstein. The induced functor MCM(R)
∼=−→ Dsg(R) is

an equivalence of triangulated categories.

Implicit in this theorem is the existence of an exact functor

(−)st : Db(R) � Dsg(R) ∼= MCM(R)

which we call MCM approximation, or stabilization. We can describe it as follows: let F ∈ Db(R) be

a complex with bounded cohomology and take a projective resolution P∗
∼−→ F . Since P∗ has bounded

cohomology, its tail P≥n is exact and resolves an MCM module for n� 0, say M = Coker(Pn+1 → Pn).

Now, note that we can realise P∗ as the shifted cone P∗ = Cone(P≥n
∂n−→ P≤n−1[1])[−1], which gives rise

to a distinguished triangle in Db(R)

P∗ //

∼

P≥n

∼

// P≤n−1[1] // P∗[1]

∼

F // M [n] // P≤n−1[1] // F [1]

with P≤n−1 perfect, and so F st = M [n] = cosyznR(M) in MCM(R). When F = N is a module in Db(R),

we have a stronger statement:

Proposition 1.3.28 ([29]). Let R be Gorenstein and let N ∈ grmodR. There is a short exact sequence

of R-modules

0→ P → Nst → N → 0

P perfect and Nst MCM, unique up to stable isomorphism.

Corollary 1.3.29. Tate cohomology is representable. That is, for any R-module N , we have natural

isomorphisms

ExtnR(M,N) ∼= HomR(M,Nst[n])

for all M MCM and n ∈ Z.

In particular Tate cohomology forms a cohomological functor on MCM(R), in that any distinguished

triangle gives rise to a long exact sequence of Tate cohomology groups.
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Auslander-Reiten-Serre duality and Almost-Split sequences

A standard concern of representation theory is the classification of indecomposables in various settings.

This mostly make sense only in the context of Krull-Schmidt categories. Recall that a noncommutative

ring B is local if B/radB is a division ring.

Definition 1.3.30. Let C be an additive k-linear category. We say that C is Krull-Schmidt if every

object has a direct sum decomposition X = X1 ⊕ · · · ⊕Xn into finitely many indecomposable objects,

and indecomposable objects have local endomorphism rings.

Finite decomposition into indecomposables are essentially unique in a Krull-Schmidt category, in

that we have X ∼=
⊕r

i=1X
⊕ei
i for unique indecomposables {Xi}, pairwise non-isomorphic, and unique

multiplicities ei ∈ N.

As this thesis is principally concerned with graded MCM modules, we mention the following, first

noted by Iyama and Takahashi:

Proposition 1.3.31 (Iyama-Takahashi [56, Prop. 1.4]). Let R = R0 ⊕ R1 ⊕ · · · be a non-negatively

graded Gorenstein k-algebra, locally finite over k. Then MCMZ(R) and MCMZ(R) are Krull-Schmidt

categories.

Proof. Any finitely generated graded module M over a Noetherian ring decomposes into finitely many

indecomposables, and have finite dimensional endomorphism algebras EndgrR(M) by local finiteness.

When M is indecomposable, the finite dimensional algebra EndgrR(M) has for only idempotents e =

0, 1, and thus must be local. This shows that MCMZ(R) is Krull-Schmidt. The category MCMZ(R)

then inherits the Krull-Schmidt property from MCMZ(R) since idempotents in EndgrR(M) come from

idempotents in EndgrR(M), by idempotent lifting for Artinian rings.

When R is as in Prop. 1.3.31, so that MCMZ(R) and MCMZ(R) are Krull-Schmidt, we note that every

graded MCM module M has a unique decomposition M = [M ]⊕ F with F projective and [M ] without

projective summands. Moreover, when X ∈ MCMZ(R) is indecomposable non-projective, the kernel of

EndgrR(X) � EndgrR(X) is contained in the radical of the local ring EndgrR(X). One deduces that

any two indecomposable non-projective MCM modules X,Y which are isomorphic in the stable category

MCMZ(R) must also be isomorphic in MCMZ(R). Comparing indecomposable summands of a general

MCM module, we see that two graded MCM modules M,M ′ in MCMZ(R) are stably isomorphic if and

only if [M ] and [M ′] are isomorphic in MCMZ(R). In this sense, the classification of MCM modules

reduces at once to the classification of indecomposables in MCMZ(R).

We now review standard background that is common to algebraic geometry, commutative algebra

and representation theory of Artin algebras.

Definition 1.3.32. Let T be a triangulated Hom-finite k-linear category. A Serre functor for T is an

exact autoequivalence S : T → T equipped with natural isomorphisms

HomT (X,S(Y )) ∼= DHomT (Y,X).

When they exist, Serre functors are unique up to isomorphism.
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When X is a smooth projective variety over k, the functor SX(−) = − ⊗OX ωX [dim X] is a Serre

functor for Db(X). It is quite remarkable that this extends to the stable category of MCM modules.

Definition 1.3.33. A local (respectively, graded local) commutative ring R = (R,m, k) has isolated

singularities ifRp is regular for each p ∈ specR\{m} (respectively, homogeneous primes p ∈ spec∗R\{m}).

Proposition 1.3.34 (Auslander [6], [56]). Let R be a commutative Gorenstein, or graded Gorenstein,

k-algebra.

i) When R is complete local with isolated singularities, then MCM(R) is Hom-finite over k and has a

Serre functor given by SR(−) = (−)[dimR− 1].

ii) When R is graded connected with isolated singularities, then MCMZ(R) is Hom-finite over k and

has a Serre functor given by SR(−) = −⊗R ωR[dimR− 1].

Remark 1.3.35. Note that when R is complete local above, we have ωR ∼= R and so the tensor −⊗R ωR
is implicit. In the graded case, ωR ∼= R(a) and so the M ⊗R ωR 'M(a) for M ∈ MCMZ(R).

Remark 1.3.36. Note that when R is a standard graded k-algebra, the punctured spectrum specR \ {m}
forms a Gm-bundle over X = projR, and so R has isolated singularities if and only if X is smooth. We

will use this fact implicitly throughout the thesis.

Serre functors were independently discovered by Auslander and Reiten in the guise of the translate

τ , introduced in the context of stable module categories, see [8]. In [93], Reiten-Van den Bergh studied

τ in the context of a Krull-Schmidt Hom-finite k-linear triangulated category T . Let

ξ : X → Y → Z
h−→ X[1]

be a distinguished triangle in T . We call ξ an almost-split triangle if

i. X and Z are indecomposable,

ii. h 6= 0,

iii. if W is indecomposable, then for every non-isomorphism t : W → Z we have ht = 0. Equivalently,

we have a lift as in the diagram below

W

t��zz
X // Y // Z

h // X[1].

Proposition 1.3.37 (Reiten-Van den Bergh, [93]). Assume that k is algebraically closed. The following

are equivalent over a Krull-Schmidt Hom-finite k-linear triangulated category T :

1. Each indecomposable Z of T sits inside an almost-split triangle, say

τZ → Y → Z
h−→ τZ[1].

2. T admits a Serre functor S.
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In this case τ = S ◦ [−1] and the map Z
h−→ τZ[1] = S(Z) classifying the extension is Serre dual to the

trace map End(Z)→ End(Z)/radEnd(Z) = k.

Now for T as above, the Auslander-Reiten quiver Γ(T ) is the quiver whose vertices are the iso-

morphism classes of indecomposables of T and arrows taken from a basis for Irr(X,Y ), the space

of equivalence classes of irreducible maps between indecomposables (see e.g. [47] for details). The

Auslander-Reiten quiver Γ(T ) is related to almost-split triangles as follows.

Proposition 1.3.38 ([47, 4.8]). Let X,M,Z be indecomposable objects in T and X → Y → Z → X[1]

almost-split, with Y =
⊕r

i=1 Y
⊕ei
i decomposed into pairwise non-isomorphic indecomposables. Then

Irr(X,M) 6= 0 if and only if M ∼= Yi for some i, in which case ei = dim Irr(X,Yi).

Remark 1.3.39. Given R Gorenstein, the Auslander-Reiten quiver of MCM(R) was defined in [112] in

terms of almost-split short exact sequences. It is immediate that almost-split sequences descend to

almost-split triangles in MCM(R), and one obtains the Auslander-Reiten quiver of MCM(R) from that

of MCM(R) by removing the vertex corresponding to R.

Complete resolutions over complete intersections rings

Let Q be a regular local ring with element f ∈ Q, and set R = Q/f the hypersurface ring. Complete

resolutions of MCM modules over R take a rather simple form using a construction of Eisenbud [42],

[112, Chp. 7].

Let M ∈ MCM(R) be an MCM R-module, so that depthRM = dimR = dimQ− 1. The Auslander-

Buchsbaum formula for the projective dimension of M over Q gives pdimQM + depthQM = dimQ,

since depthQM = depthRM = dimQ− 1 gives pdimQM = 1. Hence we have a length two resolution

0 // F
A // G // M // 0

with F,G finite free modules over Q. Moreover, M is annihilated by f and so multiplication by f on

the deleted resolution must be nullhomotopic

0 // F

f

��

A // G
B

��
f

��

// 0

0 // F
A // G // 0.

That is, we have factorisations f · idG = AB and f · idF = BA. Since f is a regular element, A and B

become isomorphisms over Q[f−1] and so the free modules F and G have the same rank, say r. The

tuple (A,B) then forms a pair of r × r matrices in Q whose product is the diagonal matrix f · Ir. Such

a pair is called a matrix factorisation of f .

Since f is regular, it isn’t hard to see that the complex obtained from the above by applying −⊗QR
and extending by 2-periodicity is acyclic

· · · → G
B−→ F

A−→ G
B−→ F → · · ·
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and yields a complete resolution of M over R. It follows that all complete resolutions and MCM

R-modules are described by matrix factorisations. We note that this extends to an equivalence of

triangulated categories

MF(Q, f) ∼= MCM(R)

between the homotopy category (or stable category) of matrix factorisations, and the stable category

of MCM R-modules (see [112, Chp. 7] for details on this category). Lastly, all results above extend

naturally to graded modules over graded hypersurface rings.

Finally, we note that the description of complete resolutions of MCM modules above was extended

to arbitrary complete intersections R = Q/(f1, · · · , fc) by Buchweitz-Pham-Roberts in [30].

Orlov’s semiorthogonal decomposition Theorem

Finally we arrive at Orlov’s Theorem, following [83]. We will sketch the basic statement and refer to

Appendix A.3 and [83] for the more general picture. Let k be a field and R a commutative, standard-

graded, connected Gorenstein k-algebra (or more generally a noncommutative Artin-Schelter Gorenstein

algebra, see Appendix A.3).

In such a scenario, the projective scheme X = projR and its derived category Db(cohX) are closely

related to the singularity category DZ
sg(R). Recall that by Serre’s Theorem, we can reconstruct cohX ∼=

qgr R as the quotient category of finitely generated graded R-modules grmod R, modulo the Serre

subcategory of torsion modules. For any choice of cut-off i ∈ Z, denote by grmod≥i R the full abelian

subcategory of graded R-modules with Mj = 0 for j < i. The quotient functor π : grmodR � cohX

restricts to an essentially surjective exact functor πi : grmod≥iR� cohX.

The functor πi admits a right adjoint Γ≥i : cohX → grmod≥iR given by

Γ≥i(F) =
⊕
n≥i

Γ(X,F(n))

with its natural graded R-module structure. Moreover, we have a natural isomorphism πi ◦ Γ≥i ' id

and so Γ≥i is fully faithful. This extends to an adjoint pair on derived categories

πi : Db(grmod≥iR) � Db(qgrR) : RΓ≥i

with RΓ≥i fully faithful and πi essentially surjective.

We have another Verdier quotient st : Db(grmodR) � DZ
sg(R) ∼= MCMZ(R) given by stabilisation,

or MCM approximation. Following an observation of Buchweitz, the stabilisation functor also admits a

left adjoint. Given on an MCM module M , first pick a complete resolution C

· · · → Cn+1 → Cn → Cn−1 → · · · .

Quotienting out the subcomplex C[<i] ⊆ C whose terms are given by summands generated in degree less

than i, one obtains this way a complex C[≥i] ∈ Db(grmod≥iR) with at most bounded cohomology, which
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is functorial in M and provides a left adjoint to stabilisation (see Appendix A.3 and Prop. A.3.10 for

details). With slight abuse of notation, we denote this by:

(−)[≥i] : DZ
sg(R) � Db(grmod≥iR) : st

Moreover, we have st ◦ (−)[≥i] ' id, and so (−)[≥i] is also fully faithful. We may then compose both

adjoints as shown below:

Db(grmod≥iR)

stxx
πi ''

DZ
sg(R)

(−)[≥i]
88

Φi

// Db(cohX)
Ψioo

RΓ≥i
gg

This yields an adjoint pair (Φi,Ψi) with Φi = πi ◦ (−)[≥i] and Ψi = st ◦ RΓ≥i. Note that while the

categories Db(cohX) and DZ
sg(R) do not depend on the resulting cutoff i, both functors (Φi,Ψi) do and

will generally differ as i varies.

The following is Orlov’s semiorthogonal decomposition theorem in the current setting. We refer

to [83], [33] or Appendix A.3 for the more general statement and for the definition of semiorthogonal

decomposition.

Theorem 1.3.40 ([83, Thm. 2.5]). Let R be a commutative, standard-graded, connected Gorenstein k-

algebra with projective scheme X = projR, and a-invariant a ∈ Z. The above functors and triangulated

categories are related as follows:

i) (Fano case) if a < 0, there is a semiorthogonal decomposition

RΓ≥i
(
Db(cohX)

)
=
〈
R(−i+ a+ 1), R(−i+ a+ 2), . . . , R(−i),DZ

sg(R)[≥i]
〉
.

Applying πi, this descends to a semiorthogonal decomposition

Db(cohX) =
〈
OX(−i+ a+ 1),OX(−i+ a+ 2), . . . ,OX(−i),ΦiDZ

sg(R))
〉
.

ii) (Calabi-Yau case) if a = 0, the essential images of both embeddings in Db(grmod≥i R) are equal

DZ
sg(R)[≥i] = RΓ≥i(D

b(cohX))

hence (Φi,Ψi) give inverse equivalences

Φi : DZ
sg(R) ∼= Db(cohX) : Ψi.

iii) (General type case) if a > 0, there is a semiorthogonal decomposition

DZ
sg(R)[≥i] =

〈
k(−i), k(−i− 1), . . . , k(−i− a+ 1),RΓ≥i+aDb(qgrR)

〉
.
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Applying the stabilisation st, this descends to a semiorthogonal decomposition

DZ
sg(R) =

〈
kst(−i), kst(−i− 1), . . . , kst(−i− a+ 1),Ψi+aDb(cohX)

〉
.



Part I

MCM Modules and Representation

Theory of Algebras

26



Chapter 2

Graded Gorenstein rings with tilting

MCM modules

2.1 Some history: Tilting theory, exceptional singularities and

low dimension

A classical problem of algebraic geometry asks for the realisation of a vector bundle E on projective

space P = P(V ) over a field k as the zeroth cohomology sheaf of a complex of ‘known’ vector bundles

0→ Em → · · · → E0 → · · · → E−m → 0

with cohomology concentrated in degree 0 and where Ei a sum of bundles of the form O(j), ∧iTP(j) or

ΩiP2(j) for j ∈ Z. This problem was solved in its general form by Beilinson [19], who proved that every

coherent sheaf F over Pn was quasi-isomorphic to a complex of the form

0→ En → · · · → E0 → · · · → E−n → 0

with general term

Ei =
⊕
j

Hi+j(Pn,F(−j))⊗k ΩjPn(j)

as well as to one with terms

Ei =
⊕
j

Hi−j(Pn,F ⊗ Ωj(j))⊗k OPn(−j).

These complexes are known as the Beilinson monads (see [44] for a constructive approach). Beilinson’s

approach took a derived category perspective: he showed that the sequences of sheaves

(
Ωn(n),Ωn−1(n− 1), . . . ,Ω1(1),O

)
(O(−n),O(−n+ 1), · · · ,O(−1),O)

27
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form full, strong exceptional collections in Db(Pn), meaning that upon setting Ei = Ωn−i(n− i) (respec-

tively Ei = O(−n+ i)), for 0 ≤ i, j ≤ n and l ≥ 1 we have

Hom(Ei, Ej) =

0, i > j

k, i = j
Extl(Ei, Ej) = 0 for all i, j

and that Db(Pn) is the smallest triangulated subcategory closed under direct summands containing the

{Ei}. Letting T =
⊕n

i=0Ei and Λ = End(T ), it follows [32, Thm. 1.8] that we have inverse equivalences

of triangulated categories

RHom(T,−) : Db(Pn) � Db(Λ) : −⊗L
Λ T (2.1)

onto the derived category of a finite dimensional noncommutative k-algebra Λ. This sends the Ei onto

the indecomposable projective Λ-modules, and pulls back a general complex of Λ-modules to a complex

whose terms are sums of Ωj(j) (respectively O(−j)).

Equivalences of the form (2.1) for smooth projective varieties X have been heavily studied since, and

they are always induced from a special object T ∈ Db(X). It isn’t necessary that the indecomposable

summands of T =
⊕

i Ti form a full strong exceptional collection. Rather, the slightly weaker condition

is that T be a tilting object.

Let T be a triangulated k-linear category. For F ∈ T , we denote by thick(F) ⊆ T the smallest

triangulated subcategory containing F closed under direct summands. We say that T ∈ T is tilting if it

is a classical generator for T with no non-trivial self-extensions, that is:

1) (Generating) We have thick(T ) = T , that is T is the smallest triangulated subcategory containing T

and closed under summands.

2) (No self-extensions) We have HomT (T, T [n]) = 0 for n 6= 0.

Other variants of the definition are in use but the above suffices for our purpose (See [32, Section 1] for

a general discussion).

Let X be a smooth projective variety over k with a tilting object T ∈ Db(X). The general picture is

given as follows:

Theorem 2.1.1 ([32, Thm. 1.8]). We have the following properties:

1) The endomorphism algebra Λ = End(T ) is a finite dimensional k-algebra of finite global dimension.

2) There are induced equivalences of triangulated categories

RHom(T,−) : Db(X) � Db(Λ) : −⊗L
Λ T.

Finite dimensionality of Λ is a consequence of the properness of X over k, while finite global dimension

actually follows from X being smooth. Varieties with tilting objects include projective spaces, quadric

hypersurfaces, Del Pezzo surfaces, some Toric varieties and generalised flag varieties, and furthermore

any products of such X or iterated projective bundles over a base S with a tilting object.
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Theorem 2.1.1 is a specialisation of Keller’s derived Morita Theorem.

Theorem 2.1.2 (Keller, [63]). Let T be an (algebraic) triangulated k-linear category with a tilting object

T . Let Λ = EndT (T ). Then there exists an equivalence of triangulated categories

RHomT (T,−) : T
∼=−→ Dperf(Λ)

onto the subcategory Dperf(Λ) = thick(Λ) ⊆ D(Λ) of perfect complexes, meaning complexes quasi-

isomorphic to bounded complexes of finitely generated projectives.

All triangulated categories appearing in this thesis will be algebraic, see [63] or the appendix for the

definition. Note that we have Dperf(Λ) = Db(Λ) when Λ is Noetherian of finite global dimension.

This thesis is concerned with tilting objects in the triangulated category T = MCMZ(R), the stable

category of graded MCM modules over a graded Gorenstein k-algebra R, which is a close cousin of the

triangulated categories of the form Db(X). The role of tilting theory for MCM modules first came to

the front in the study of Kleinian singularities and the McKay correspondence, and we review some of

this story.

The McKay Correspondence

Let k here be an algebraically closed field of characteristic zero, and let G ≤ SL(2, k) be a finite

subgroup. The possible such subgroups G up to conjugacy were classified by Klein, and are in one-to-

one correspondence with the simply-laced Dynkin diagrams of type ADE (where µ below denotes the

number of vertices):

Aµ : • • · · · • • µ ≥ 1

•

Dµ : • • · · · • µ ≥ 4

•

•

E6 : • • • • •

•

E7 : • • • • • •

•

E8 : • • • • • • •

Let ζn be a primitive n-th root of unity. The classification of finite subgroups G ≤ SL(2, k) is as follows,

up to conjugacy [112, 10.15]:

Aµ : The cyclic group of order µ+ 1

Cµ :=

〈(
ζµ+1 0

0 ζ−1
µ+1

)〉
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Dµ : The binary dihedral group of order 4(µ− 2)

Dµ :=

〈(
0 ζ4

ζ4 0

)
, C2µ+5

〉

E6 : The binary tetrahedral group of order 24

T :=

〈
1√
2

(
ζ8 ζ3

8

ζ8 ζ7
8

)
, D4

〉

E7 : The binary octahedral group of order 48

O :=

〈(
ζ3
8 0

0 ζ3
8

)
,T
〉

E8 : The binary icosahedral group of order 120

I :=

〈
1√
5

(
ζ4
5 − ζ5 ζ2

5 − ζ3
5

ζ2
5 − ζ3

5 ζ5 − ζ4
5

)
,

1√
5

(
ζ2
5 − ζ4

5 ζ4
5 − 1

1− ζ5 ζ3
5 − ζ5

)〉
Let S = k[u, v] and R = SG, so that X = specR = A2/G is the associated quotient singularity. Let

Q be the Dynkin graph associated to G = GQ. The graph Q has many natural incarnations throughout

this story. In particular:

1) The ADE graph Q is the dual graph of the exceptional divisor in the minimal resolution π : X̃ → X.

2) The extended ADE graph Q̃ arises as the McKay graph associated to the representation theory of

G, with extended vertex corresponding to the trivial representation of G. The McKay graph of

G has vertices {Vj} a representative set of all irreducible representations of G, with multiplicity

of edges between (Vi, Vj) given by dimk HomkG(Vi ⊗ V, Vj) where V is the standard 2-dimensional

representation of G ≤ SL(2, k).1

3) Over k = C, the root system of type Q arises as the vanishing cohomology (or Milnor lattice) of the

generic fibre Xb in the semiuniversal deformation X → B.

The Kleinian singularities X = A2//G form one of the most exceptional setting in all of algebra and

geometry, and have many intrinsic characterisations. The coordinate ring R = SG is always generated

by three fundamental invariants satisfying one relation, and so the invariant ring is isomorphic to a

hypersurface ring SG ∼= k[x, y, z]/f , with f given by:

(Aµ) f = x2 + yµ+1 + z2, µ ≥ 1

(Dµ) f = x2y + yµ−1 + z2, µ ≥ 4

(E6) f = x3 + y4 + z2

1Note that the edge multiplicity is well-defined: any choice of isomorphism
∧2 V ∼= k with the trivial G-representation

gives V ∼= V ∗ equivariantly, so that dimk HomkG(Vi ⊗ V, Vj) = dimk HomkG(Vi, V ⊗ Vj) = dimk HomkG(Vj ⊗ V, Vi).
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(E7) f = x3 + xy3 + z2

(E8) f = x3 + y5 + z2

When working over C, the above list of ADE polynomials give the local normal forms for the “simple”

hypersurface singularities classified by the Arnold school of singularity theory, up to adding or removing

squares in disjoint variables to vary dimension.

Taking a more commutative algebraic perspective under the Auslander school, one notes that the

invariant ring R = SG ⊆ S is Gorenstein, and that S is a maximal Cohen-Macaulay module over R.

Furthermore, the natural G-equivariant decomposition

S = HomkG(kG, S) =
⊕
Vj

HomkG(Vj , S)

=
⊕
Vj

Homk(Vj , S)G

is a decomposition of S into indecomposable MCM R-modules, where {Vj} runs over the irreducible

representations of G with the same multiplicity as they arise in kG. Moreover, one can run the same

construction over the completion Ŝ = k[[u, v]] and R̂ = k[[u, v]]G to obtain MCM modules over R̂.

Theorem 2.1.3 (Auslander [112, Cor. 10.10]). The above gives a bijection between irreducible G-

representations and indecomposable MCM R̂-modules. This sends the trivial representation to the free

module R̂.

Since there are finitely many indecomposable MCM R̂-module, the Gorenstein ring R̂ is said to be of

finite MCM representation type (or CM-type for short). This turns out to characterise ADE singularities.

Theorem 2.1.4 (Buchweitz-Greuel-Knörrer-Schreyer [112, Thm. 8.10, Cor. 12.6]). Let A = k[[x1, · · · , xn]]/(g)

be a complete hypersurface ring over k with g ∈ (x1, · · · , xn)2. Then A is of finite CM-type if and only

if A ∼= k[[x, y, z3, . . . , zn]]/(f) with f an ADE polynomial in n ≥ 2 variables:

(Aµ) f = x2 + yµ+1 + z2
3 + · · ·+ z2

n, µ ≥ 1

(Dµ) f = x2y + yµ−1 + z2
3 + · · ·+ z2

n, µ ≥ 4

(E6) f = x3 + y4 + z2
3 + · · ·+ z2

n

(E7) f = x3 + xy3 + z2
3 + · · ·+ z2

n

(E8) f = x3 + y5 + z2
3 + · · ·+ z2

n.

Theorem 2.1.5 (Herzog [112, Cor. 8.16]). Let A be a complete Gorenstein local k-algebra. If A is of

finite CM-type, then A is a hypersurface singularity, and therefore an ADE hypersurface singularity.

Let us denote by MCM(R) the projectively stable category of MCM R-modules obtained by killing

morphisms factoring through projective modules. Rephrasing the above homologically, as one runs over

Gorenstein complete local k-algebras R, the triangulated categories of the form MCM(R) with finitely

many indecomposables are precisely given by the ADE hypersurface singularities.
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The search for triangulated categories of ‘finite representation type’ is one of the central problem of

abstract representation theory, where the ADE graphs feature prominently. Recall that amongst the

acyclic quivers Q, the ones of finite representation type are precisely the quivers whose underlying graph

is of type ADE.

The representation theory of the ADE quiver Q (with arbitrary choice of orientation) actually arises

as part of the above storyline. To see this, consider again the Kleinian singularites X = A2//G, and note

that the invariant ring R = SG = k[u, v]G inherits a grading from the standard grading on S = k[u, v]

with |u| = |v| = 1, obtained by taking G-invariants in each degree. For simplicity, let us restrict to

the case of |G| even2. In this case, the fundamental invariants x, y, z ∈ S of G have even degrees with

gcd(|x|, |y|, |z|) = 2, and R =
⊕

n≥0R2n is properly supported in even degrees. We hence regrade R by

halving the degrees of its homogeneous elements.

Since R is graded, we may consider the stable category of graded MCM modules MCMZ(R). Recall

that graded modules have a degree shift operator given by M 7→M(1) where M(1)n = Mn+1.

Theorem 2.1.6 (Kajiura-Saito-A.Takahashi, Iyama-R.Takahashi [60] [56]). There is a tilting object

T ∈ MCMZ(R) with endomorphism algebra EndgrR(T ) ∼= kQ, the path algebra of Q. Hence there is an

equivalence of triangulated categories

MCMZ(R) ∼= Db(kQ).

In particular, this identifies the Grothendieck lattice K0(MCMZ(R)), equipped with the symmetrized Euler

pairing, with the root lattice of Q. Moreover, this equivalence sends the degree shift operator M 7→M(1)

to the Auslander-Reiten translate τ = −⊗L
kQ D(kQ)[−1] on Db(kQ).

The indecomposable MCM R-modules Mj := Homk(Vj , S)G are naturally graded modules. Combin-

ing the above results, we obtain bijections between isomorphisms classes of:

i. Irreducible representations of G other than the trivial representation.

ii. Indecomposable non-free graded MCM modules up to degree shift.

iii. Orbits of indecomposables under the Auslander-Reiten translate τ in Db(kQ).

iv. Vertices of Q.

The bijection i ↔ ii is Auslander’s, ii ↔ iii follows from Theorem 2.1.6, while iii ↔ iv follows since

kQ has finite representation type, so that each indecomposable complex is in the τ -orbit of a unique

indecomposable projective kQ-module, which are indexed by the vertices of Q. This gives a powerful

extension of McKay’s observation of the bijection i↔ iv. By a theorem of Keller-Murfet-Van den Bergh

[64], the equivalence above further descends to an equivalence of triangulated orbit categories (in the

sense of Keller [61])

MCM(R̂) = MCMZ(R)/(1) ∼= Db(kQ)/τ

and one recovers the McKay quiver (except for the vertex corresponding to the trivial representation)

by taking the Auslander-Reiten quiver of either category.

2This covers all groups G except for the odd cyclic group of order µ2n+1 corresponding to the A2n singularity. All
results stated below have their analog for this case after suitable modification.
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Existence of tilting objects

Fix an algebraically closed field k. In the first part of the thesis, we will be interested in the following

central question and its applications:

Question 2.1.7. Let R =
⊕

n≥0Rn be a non-negatively graded Gorenstein k-algebra. When does the

triangulated category MCMZ(R) admits a tilting object?

Many interesting results have been obtained by Iyama and his collaborators, and we first review their

work. For a more complete recent survey, see [55].

One can first extend the tilting result for Kleinian singularities to higher dimensional quotient sin-

gularities. The following is due to Iyama-Takahashi (but see also [81] for a noncommutative variant

and a different interpretation). Let S = k[x1, . . . , xn] be the standard graded polynomial algebra, and

recall that we write ΩiS(−) to denote i-th syzygy. Given an R-module N below, we let [N ]CM denote the

largest MCM summand of N .

Theorem 2.1.8 (Iyama-Takahashi, [56, Thm. 1.7]). Let G ≤ SL(n, k) be a finite group with char k - |G|,
and let R = SG ⊆ S inherit the natural grading. Then MCMZ(R) admits a tilting object U given by

U =

n⊕
i=1

[ΩiSk(i)]CM.

Example 2.1.9 ([56, Ex. 7.16]). Let C3 = 〈diag(ω, ω, ω)〉 ⊂ SL(3, k) with ω a primitive third root of

unity in k and char k 6= 3. Let Q be the 3-Kronecker quiver

• ////// •

Then EndgrR(U) ∼= kQ× kQ× kQ, so that MCMZ(R) ∼= Db(kQ)×Db(kQ)×Db(kQ). The i-th copy of

Db(kQ) corresponds to the subcategory MCMi+3Z(R) of graded MCM modules M = (Mn) supported

in degrees n ≡ i (mod 3).

Dimension zero

The first systematic result is the next theorem of Yamaura, which provides a complete characterisation

of Gorenstein algebras with tilting objects in dimension zero.

Theorem 2.1.10 (Yamaura, [110, Thm. 3.1]). Let A =
⊕

n≥0An be a finite dimensional graded self-

injective algebra A, so that MCMZ(A) = modZA. The following are equivalent:

i) modZA admits a tilting object T .

ii) gldimA0 <∞.

When this holds, letting a ≥ 0 be the maximal degree of A =
⊕a

n=0An, we may take T =
⊕a−1

i=0 A(i)≤0 :=⊕a−1
i=0 A/A≥i+1(i). Letting Λ = EndgrA(T ), we have gldim Λ < ∞ and we have an isomorphism of
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algebras

Λ ∼=



A0 A1 · · · Aa−2 Aa−1

A0 · · · Aa−3 Aa−2

. . .
...

...

A0 A1

A0


Example 2.1.11. Let A = A0 ⊕ A1 ⊕ A2 = k ⊕ V ⊕ k, with multiplication given by a perfect pairing

V × V → k, extended as a unital graded algebra structure to all of A. It is easy to see that A is

self-injective, and since A0 = k, Yamaura’s result applies to give a tilting object with endomorphism

algebra

Λ =

(
k V

0 k

)
Equivalently, if n = dimV with basis {xi}, then Λ ∼= kQn for Qn the n-Kronecker quiver

•
{xi} ////// •

Example 2.1.12. Let A =
∧∗

V =
∧∗
k(y1, . . . , yn) be the exterior algebra on an n-dimensional vector

space. Then Λ is given by

Λ =



k V · · ·
∧n−2

V
∧n−1

V

k · · ·
∧n−3

V
∧n−2

V

. . .
...

...

k V

k


Equivalently, Λ ∼= kQ/I is given by the quiver path algebra of Q

•
{yi} // //// •

{yi} ////// •
{yi} ////// · · ·

{yi} // //// •
{yi} // //// •

with n− 1 vertices, and relations on paths of length two yiyj + yjyi = 0 for i 6= j, and yiyi = 0.

Example 2.1.13 (Happel’s Theorem, [110, Ex. 3.15]). Using his theorem, Yamaura gave a simple proof

of a theorem of Happel. Let Λ be a finite dimensional k-algebra with gldimΛ <∞. Define T (Λ) = ΛoDΛ

to be the trivial extension algebra of Λ by the bimodule DΛ = Homk(Λ, k), with multiplication

(x, ϕ)(x′, ϕ′) = (xx′, xϕ′ + ϕx′).

Grade T (Λ) as T (Λ)0 = Λ, T (Λ)1 = DΛ and T (Λ)n = 0 otherwise. Then T (Λ) is a graded self-injective

algebra with gldim T (Λ)0 < ∞, and T = Λ is a tilting object in modZT (Λ). It follows that we have an

equivalence of triangulated categories

Db(Λ) ∼= modZ T (Λ)

which is the content of Happel’s Theorem.
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Dimension one

The next theorem due to Buchweitz-Iyama-Yamaura [28] establishes the existence of tilting objects in

dimension one, at the cost of imposing a few conditions. We briefly review their results under the

simplest hypotheses, and refer to [28] for the general results.

Here we letR =
⊕

n≥0Rn be a graded connected, finitely generated, commutative reduced Gorenstein

k-algebra of Krull dimension one. One may see [28, Lemma 4.9(a)] that any such algebra with a < 0

must be isomorphic to R ∼= k[t] with |t| = −a > 0, and so without loss of generality we impose a ≥ 0.

Let K = Q(R) be the (homogeneous) total field of fraction of R, obtained by inverting all homogeneous

non zero-divisors. We have an isomorphism of graded algebras

K ∼=
r∏
j=1

k[ti, t
−1
i ]

with |ti| ≥ 1. The number r is the number of branches of the singularity spec R. Let p ≥ 1 be the

least integer degree of a non zero-divisor x ∈ m = R≥1. At least one non zero-divisor exists since R is

Gorenstein and in particular Cohen-Macaulay, and by a prime avoidance argument one can assume that

x ∈ m \m2, and so one sees that p = 1 whenever R is generated in degree one.

Theorem 2.1.14 (Buchweitz-Iyama-Yamaura, [28]). The category MCMZ(R) admits a tilting object

T =

a+p⊕
i=1

R≥i(i) =

(
a⊕
i=1

R≥i(i)

)⊕(
a+p⊕
i=a+1

R≥i(i)

)
.

Moreover, the objects R≥i(i) for 1 ≤ i ≤ a are exceptional. The remaining module has semisimple

endomorphism ring and decomposes into indecomposables as

a+p⊕
i=a+1

R≥i(i) =

r⊕
j=1

E
⊕ej
j

with r distinct indecomposables up to multiplicity.

Example 2.1.15 (Buchweitz-Iyama-Yamaura, [28, Thm. 2.3(d)]). Let f ∈ k[x, y] be a homogeneous

polynomial of degree d ≥ 2 with squarefree decomposition into irreducibles f = f1f2 . . . fd. Since k is

algebraically closed, all irreducible factors fi = aix+ biy are linear forms. The ring R = k[x, y]/(f) is a

reduced Gorenstein ring with a-invariant a = d− 2 whose spectrum gives the cone over d points on P1,

and so we have r = d branches and moreover p = 1 since R is generated by R1. Writing m = R≥1, we

have T = m(1)⊕m2(2)⊕· · ·⊕md−2(d−2)⊕md−1(d−1), with endomorphism algebra EndgrR(T ) ∼= kQ/I

given by the quiver Q

•
•

•
x //
y
// •

x //
y
// · · ·

x //
y
// •

x //
y
// •

p1

@@

p2

88

pd

��

...

...

•



Chapter 2. Graded Gorenstein rings with tilting MCM modules 36

with a ‘tail’ of length a = d − 2 and r = d many vertices to the right, with relations xy = yx and

pi(aix+ biy) = 0.

We will make use of special cases of this theorem in Chapter 3, to investigate the construction of

MCM modules over certain curve singularities of tame CM representation type. In particular, and for

completeness we will prove special cases of Thm. 2.1.14, although in cases which circumvent the main

difficulties in the above theorem.

Finally, we refer to [55] for more examples of graded Gorenstein algebras admitting tilting objects.

2.2 Hodge theory obstruction in higher dimension

Let R = k⊕R1⊕R2⊕ . . . be a graded connected, Gorenstein k-algebra, so that in particular R is graded

local with homogeneous maximal ideal m = R+. Recall that R has (graded) isolated singularities if Rp is

regular for each homogeneous prime p 6= m. Zero dimensional rings vacuously have isolated singularities,

and one dimensional rings have isolated singularities if and only if they are reduced.

We can restate the results of the previous section as follows.

Proposition 2.2.1 (Yamaura, Buchweitz-Iyama-Yamaura). Let R be a graded Gorenstein algebra sat-

isfying dimR ≤ 1, with at most isolated singularities. Then MCMZ(R) has a (canonical) tilting object

T .

Going up in dimension, one has the natural question:

Question 2.2.2. Let R be a graded Gorenstein algebra, with dimR ≥ 2 and at most isolated singularities.

When does MCMZ(R) have a tilting object?

The tilting problem for singularity categories is closely related to the tilting problem for Db(X) on an

algebraic variety X, which is known to be heavily obstructed. Similarly, it isn’t hard to find a Gorenstein

algebra R with no tilting object.

Example 2.2.3. Let R = k[x, y, z]/(f) for f a cubic polynomial with isolated singularities at the origin,

and R with the standard grading. Then a = |f | − |x| − |y| − |z| = 3− 3 = 0 and so ωR ∼= R. Therefore

the Serre functor for MCMZ(R) is given by

SR(−) = −⊗R ωR[dimR− 1] = (−)[1]

and so MCMZ(R) is 1-Calabi-Yau. Thus there can be no equivalence MCMZ(R) ∼= Dperf(Λ) since

projective modules in modΛ ⊂ Dperf(Λ) cannot exist in an n-Calabi-Yau category for n 6= 0.

In the above example note that E = projR is a plane elliptic curve, and by Orlov’s theorem, since

E is Calabi-Yau have an equivalence of categories MCMZ(R) ∼= Db(E). The tilting problem for Db(E)

is obstructed for the same reason (and several more, see below).
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For the remainder of Chapter 2, we will impose the following simplifying assumption:

Assumption 2.2.4. All graded k-algebras R are assumed standard graded, meaning that R0 = k and

R = R0[R1] is generated in degree one over R0 = k.

In spite of the name, we note that this is not a standard hypothesis in tilting theory, since tilting

MCM modules exist more readily over non-standard graded k-algebras (such as ADE hypersurface rings

or invariant rings). However, letting X = proj R denote the underlying projective scheme, the above

assumption will allow for an easier transfer of information between R and X.

In general, one may conjecture the following:3

Conjecture 2.2.5. Let R be a standard graded Gorenstein algebra with isolated singularities. Then the

following are equivalent:

1) MCMZ(R) admits a tilting object T .

2) Db(X) admits a tilting object E.

The author has heard this conjecture from O. Iyama, who credits it to G. Stevenson. Using Orlov’s

semiorthogonal decompositions and making use of the recent theory of ‘additive invariants’, one may

observe that these two categories share essentially the same principal obstructions to tilting, such as K0

being finitely generated free or the category not being Calabi-Yau (of dimension n 6= 0). In algebraic

geometry, one of the most useful obstructions to tilting is the Hodge obstruction. Recall that we denote

by hp,q(X) = dimk Hq(X,ΩpX) the bigraded Hodge numbers of an algebraic variety X.

Proposition 2.2.6 ([32, Thm. 5.2, Cor. 4.2]). Let k be a field and let X be a smooth projective variety

over k. If Db(X) admits a tilting object E, then hq,0(X) = 0 for q > 0. Moreover, if the characteristic

of k is zero, then hp,q(X) = 0 for p 6= q.

Using standard methods, it isn’t hard to prove an analogous result for MCMZ(R), which should be

at least expected if not well-known to experts. We will show:

Proposition (Hodge obstruction for MCM modules, Prop. 2.2.21). Let k be an algebraically closed field

and R be a standard graded Gorenstein k-algebra of dimR ≥ 2, having at most isolated singularities.

Let X = projR. Assume that MCMZ(R) admits a tilting object T . Then:

i) hq,0(X) = 0 for q > 0.

ii) The a-invariant of R satisfies a < 0. In particular X is a Fano variety.

Moreover, if the characteristic of k is zero, then i) may be strenghthened to:

i’) hp,q(X) = 0 for p 6= q.

The result essentially follows from Hochschild homology computations. One may deduce it from the

additivity properties of Hochschild homology, which falls under the wide-reaching umbrella of the recent

theory of additive invariants introduced by Tabuada [107, 106, 76].

3This can be stated more generally but we will stick to these hypotheses.
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However, a recent embedding result of Orlov [84], which we will apply under the mild assumption

that k be algebraically closed4, allows us to avoid the use of additive invariants, relying instead on more

direct arguments, at the cost of stating various facts in a weaker form that is nevertheless sufficient for

our purposes.

For R standard graded Gorenstein with isolated singularities, the necessary condition a < 0 when

dimR ≥ 2 is an interesting reversal from lower dimension, since we have seen that a ≥ 0 for whenever

dimR ≤ 1, unless R is regular [28, Lemma 4.9(a)]. Interestingly, that last result holds also for non-

standard graded R with dimR ≤ 1. The author ignores if the condition a < 0 is still necessary in the

case dimR ≥ 2, if the assumption that R be generated in degree one is dropped.

The remaining of Section 2.2 will be devoted to the proof of Prop. 2.2.21.

Hochschild homology of schemes

Fix a field k throughout. All k-varieties will be assumed quasi-projective, and we fix such an X to start

and set d = dimX. We first review standard background following [32, 105, 70].

Let ∆ : X ↪→ X ×X be the diagonal embedding and let O∆ = ∆∗OX be the structure sheaf of the

diagonal. Let M∈ D(X ×X).

Definition 2.2.7 ([32, 3.1]). We define the Hochschild cohomology and homology of X with coefficients

in M by:

1) HH∗(X,M) = Ext∗X×X(O∆,M).

2) HH∗(X,M) = H−∗(X,L∆∗M).

Note that whenM is a quasicoherent sheaf we have HHi(X,M) = 0 for i < 0, and since L∆∗M∈ D−(X)

we also obtain HHj(X,M) = 0 for j < −dimX by Grothendieck vanishing. When M = O∆, we write

HH∗(X) and HH∗(X) respectively.

When X = specR is affine, the diagonal embedding ∆ : X → X ×X is induced from the multipli-

cation map Rev := R ⊗k R → R, and so Hochschild (co)homology specialises to the usual definition of

HH∗(X,M) = Ext∗Rev (R,M) and HH∗(X,M) = TorR
ev

∗ (R,M).

When X is smooth affine over k of characteristic zero, the classical Hochschild-Kostant-Rosenberg

(HKR) Theorem asserts that

HHi(X) = H0(X,ΩiX).

R. Swan ([105], [54, Rem 6.3]) has constructed, for general X smooth, two Hodge-to-Hochschild spectral

sequences

Ep,q2 = Hp(X,∧qTX) =⇒ HHp+q(X)

Ep,q2 = Hp(X,Ωd−qX ) =⇒ HHp+q−d(X)

the second of which resembles the Hodge-to-DeRham spectral sequence when k = C.

4One can likely weaken this assumption, but this will be enough for us.
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Theorem 2.2.8 ([105, Cor. 2.6]). When X is smooth over k of characteristic zero, the above spectral

sequences degenerate at E2. After reindexing, this gives isomorphisms:

HHi(X) ∼=
⊕
p+q=i

Hq(X,∧pTX)

HHi(X) ∼=
⊕
p−q=i

Hq(X,ΩpX).

The second decomposition is often referred to as the general HKR Theorem. In general characteristic,

we have the weaker but useful lemma of Buchweitz-Hille, whose proof we give for completeness.

Lemma 2.2.9 (Buchweitz-Hille, [32, Cor. 4.2]). Let k be a field and X a k-variety. Then Hq(X,OX)

embeds as a direct summand in HH−q(X).

Proof. We have an adjoint pair (L∆∗,∆∗), and note that the counit map L∆∗(O∆) = L∆∗(∆∗OX) →
OX splits after applying ∆∗ as in any adjunction. The vector space

Hq(X ×X,∆∗OX) = HomD−(X×X)(OX×X ,∆∗OX [q])

= HomD−(X)(L∆∗(OX×X),OX [q])

= Hq(X,OX)

is then a summand of

Hq(X ×X,∆∗(L∆∗(∆∗OX))) = HomD−(X×X)(OX×X ,∆∗(L∆∗(∆∗OX))[q])

= HomD−(X)(L∆∗(OX×X),L∆∗(∆∗OX)[q])

= HomD−(X)(OX ,L∆∗(∆∗OX)[q])

= HH−q(X).

The advantage of working with Hochschild homology lies in its derived invariance, giving flexibility

in choosing models to compute it. Here are a few standard applications.

Example 2.2.10 ([54, Prop. 5.39, Rem. 6.3]). Let X,Y be two smooth projective varieties with

Db(X) ∼= Db(Y ). Then we have HH∗(X) ∼= HH∗(Y ), and so in characteristic zero this implies∑
p−q=i

hp,q(X) =
∑
p−q=i

hp,q(Y ).

Example 2.2.11 ([32, Thm. 4.1, Cor. 4.2]). Let X be a smooth projective variety with a tilting object

T ∈ Db(X), and A = End(T ). Then A is finite dimensional over k, gldim A < ∞ and we have an

isomorphism HH∗(X) ∼= HH∗(A). In particular, HHi(X) = HHi(A) = 0 for i < 0, and when k is of

characteristic zero we obtain HHi(X) = 0 for all i 6= 0 by making use of the HKR Theorem and the

Hodge symmetries hp,q(X) = hq,p(X). This is essentially the content of Prop. 2.2.6.

The tilting hypothesis on T only plays a role in showing HHi(X) = 0 for i < 0. Working instead

with any classical generator T and setting A = RHomOX (T, T ), the proof of Buchweitz-Hille actually
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shows the following, which is well-known folklore. Recall that we define the Hochschild homology of a

dg k-algebra A by HH∗(A) := HH∗(A/k,A) := TorA
ev

∗ (A,A), where Aev = Aop ⊗k A.

Proposition 2.2.12. Let X be a smooth projective variety with classical generator T ∈ Db(X) and

differential graded algebra A = RHomOX (T, T ). Then we have an isomorphism HH∗(X) ∼= HH∗(A) of

Hochschild homologies.

One does not need T to be tilting to have control over the groups HHi(X). Define an object

T ∈ Db(X) to be silting if it satisfies the following weaker conditions:

i) T is a classical generator for Db(X);

ii) ExtiOX (T, T ) = 0 for all i > 0.

It follows that RHomOX (T, T ) may be replaced by a quasi-isomorphic dg algebra, which we denote again

by A by abuse of notation, with the property that Ai = 0 for i > 0:

· · · d−→ A−(n+1) d−→ A−n d−→ · · · d−→ A−1 d−→ A0 → 0

Regrading A−n = An, we observe that A = (An)n≥0 is a non-negatively graded homological dg algebra.

For such algebras, one has

Lemma 2.2.13. Let A =
⊕

n≥0An be a non-negatively graded homological dg algebra. Then HHi(A) =

0 for i < 0.

Proof. We have HHi(A) = Hi(A⊗L
Aev A) = Hi(P ⊗Aev A) where P

∼−→ A is any h-projective resolution

of A over Aev. Since A = A≥0 and Aev = Aev≥0, it is easy to construct P with the property P = P≥0

(e.g. taking P to be the two-sided Bar resolution), and so Hi(P ⊗Aev A) = 0 for i < 0.

Corollary 2.2.14. Let X be a smooth projective variety over k with a silting object T ∈ Db(X). Then

HHi(X) = 0 for i < 0, and moreover HHi(X) = 0 for i 6= 0 when the characteristic of k is zero.

Before we move to establish the Hodge obstruction result for tilting objects in graded singularity

categories MCMZ(R), we will need a few standard facts concerning Fourier-Mukai transforms. Let X,Y

denote smooth projective varieties over k throughout.

Proposition 2.2.15 (Orlov, Bondal-Van den Bergh [54, Thm. 5.14]). Let F : Db(X) → Db(Y ) be a

fully faithful functor. Then F is naturally isomorphic to a Fourier-Mukai transform F ' ΦK .

Proposition 2.2.16 ([70, Lemma 6.5]). Let ΦK : Db(X)→ Db(Y ) be a Fourier-Mukai transform. Then

there is an induced linear map on Hochschild homology

ΦHH
K : HH∗(X)→ HH∗(Y ).

Moreover, the above satisfies the following properties:

i) It is natural, in that ΦHHK ◦ΦHHL = ΦHHK◦L, where K ◦L is the convolution product of kernels [54, 70].

ii) Naturally isomorphic transforms ΦK ' ΦK′ give rise to equal linear maps ΦHHK = ΦHHK′ .

iii) Let K = O∆ so that ΦO∆
' idDb(X). Then ΦHHO∆

= idHH∗(X).
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Proof. The main claim along with i) is [70, Lemma 6.5], with the claims ii) and iii) implicit and easy

to see. Note that Kuznetsov uses a different model for HH∗(−), and the equivalence with our definition

is given in [70, Prop. 8.1].

Remark 2.2.17. Working over k = C and using the Hodge decomposition, one can instead work with the

cohomology groups H∗(X;C). Appropriate linear maps ΦHK : H∗(X;C)→ H∗(Y ;C) were constructed in

[54, Chp. 5, Lemma 5.32, Prop. 5.33], and one could use these instead in all arguments below.

The following argument is due to Kiem and Lee over k = C but their argument applies equally to

our situation, and we reproduce it here for convenience.

Proposition 2.2.18 ([65, Prop. 4.7]). Assume that the Fourier-Mukai transform ΦK : Db(X)→ Db(Y )

is a fully faithful. Then the induced map ΦHH
K is split-injective.

Proof. By [54, Prop. 5.9], the Fourier-Mukai transform ΦK admits a right adjoint which is also a Fourier-

Mukai transform, which we denote ΦKR . By [54, Cor. 1.22], the natural morphism idDb(X) → ΦKR ◦ΦK

is an isomorphism, and so we obtain

ΦO∆ ' idDb(X) ' ΦKR ◦ ΦK ' ΦKR◦K .

We then obtain

idHH∗(X) = ΦHHO∆
= ΦHHKR◦K = ΦHHKR ◦ ΦHHK

and so ΦHHK is split-injective.

Finally, we will make use of the recent ‘geometric realisation’ theorem of Orlov. The following is a

special case:

Proposition 2.2.19 (Orlov [84]). Let Λ be a finite dimensional k-algebra over an algebraically closed

field k. Then there is a fully faithful exact functor

F : Dperf(Λ) ↪→ Db(Y )

for some smooth projective k-variety Y . Moreover:

i) When gldimΛ <∞, F can be taken to have both adjoints.

ii) Db(Y ) contains a full strong exceptional collection of line bundles.

Remark 2.2.20. In particular by Ex. 2.2.11 we have HHi(Y ) = 0 for i < 0, which improves5 to HHi(Y ) =

0 for i 6= 0 in characteristic zero.

Proof. This is a special case of [84, Thm. 5.2, Thm. 5.8]. Let J = rad(Λ), and let n ∈ N be the smallest

n such that Jn = 0. Define M =
⊕n

i=1 Λ/J i and let Γ = EndΛ(M), which satisfies the following by a

theorem of Auslander [84, Thm. 5.1]:

1) gldimΓ ≤ n+ 1;

5Of course, using Kuznetsov [70] and Keller’s work on additivity of Hochschild homology, one can obtain HHi(Y ) = 0
for i 6= 0 independent of characteristic, which follows from the existence of a full exceptional collection alone. However the
above will suffice.
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2) The Λ− Γ-bimodule P = HomΛ(M,Λ) is a finite projective module over Γ satisfying EndΓ(P ) ∼= Λ.

By [84, Thm. 5.2], there is a full exceptional collection

Db(Γ) =
〈
E1, . . . , EN

〉
for some N ∈ N (here we are using a simplification afforded by k being algebraically closed). Orlov then

deduces the existence of a fully faithful embedding

−⊗Λ P : Dperf(Λ) ↪→ Db(Γ).

Lastly, by [84, Thm. 5.8], for any (small, enhanced) triangulated category T with a full exceptional

sequence, such as T = Db(Γ), there is a fully faithful embedding

T ↪→ Db(Y )

for Y a smooth projective variety, constructed by taking iterated projective bundles Y = Yk → Yk−1 →
· · · → Y1 → Y0 = Pm. In particular Db(Y ) also has a full strong exceptional collection of line bundles

by standard results [35]. Combining these embeddings gives the result.

After all this setup, we are now ready to establish Prop. 2.2.21. We restate it for convenience.

Proposition 2.2.21 (Hodge obstruction for MCM modules). Let k be an algebraically closed field and

R be a standard graded Gorenstein k-algebra of dimR ≥ 2, having at most isolated singularities. Let

X = projR. Assume that MCMZ(R) admits a tilting object T . Then:

i) hq,0(X) = 0 for q > 0.

ii) The a-invariant of R satisfies a < 0. In particular X is a Fano variety.

Moreover, if k has characteristic zero, then i) may be strenghthened to:

i’) hp,q(X) = 0 for p 6= q.

Proof. We first prove i) and i′). Under the hypothesis, we have MCMZ(R) ∼= Dperf(Λ) for Λ =

EndgrR(T ). We split the argument according to a > 0, a = 0 or a < 0 and use Orlov’s semiorthogonality

decomposition theorem.

a > 0: We have a fully faithful embedding Ψ0 : Db(X) ↪→ MCMZ(R), which we compose with the fully

faithful functor MCMZ(R) = Dperf(Λ) ↪→ Db(Y ) of Prop. 2.2.19 (since k is algebraically closed) to

obtain an embedding

F : Db(X) ↪→ Db(Y ).

By Prop. 2.2.15, F ' ΦK is naturally isomorphic to a Fourier-Mukai transform and applying Prop.

2.2.18 gives an embedding

ΦHHK : HHi(X) ↪→ HHi(Y )

with HHi(Y ) = 0 for i < 0 (and i 6= 0 in characteristic zero), and so the same holds for HHi(X).

Making use of Lemma 2.2.9, the HKR Theorem and the Hodge symmetries, we obtain i) and i′).

a = 0: This case is vacuous as MCMZ(R) is d-Calabi-Yau for d ≥ 1, and so admits no tilting object.
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a < 0: In this case we have an embedding Φ0 : MCMZ(R) ↪→ Db(X) and semiorthogonal decomposition

Db(X) =
〈
Ek, Ek−1, . . . , E1, E0,Φ0(MCMZ(R))

〉
where Ei = OX(−i) and k = |a| − 1. We will show that the tilting object Φ0(T ) ∈ Φ0(MCMZ(R))

extends to a silting object of Db(X). Semiorthogonality means that

HomDb(X)(Φ0(T ), Ei[n]) = 0

for all i = 0, 1 . . . , k and all n ∈ Z, and similarly

HomDb(X)(Ei, Ej [n]) = 0

for all 0 ≤ i < j ≤ k and n ∈ Z. Moreover, none of the objects Ei and Φ0(T ) have any positive

self-extensions.

Now, Db(X) is Ext-finite and so HomDb(X)(F ,G[m]) = 0 for m � 0 for any F ,G. It follows that

there is an n0 ∈ N such that

HomDb(X)(E0,Φ0(T )[n]) = 0 for all n > n0

or equivalently

Extn(E0[−n0],Φ0(T )) = 0 for all n > 0.

Similarly, there is an n1 � n0 such that

Extn(E1[−n1], E0[−n0]⊕ Φ0(T )) = 0 for all n > 0.

Continuing this way, we obtain a sequence n0 � n1 � · · · � nk−1 � nk such that upon setting

T̃ =

(
k⊕
i=0

Ei[−ni]

)
⊕ Φ0(T )

we have Extn(T̃ , T̃ ) = 0 for all n > 0. Since T̃ classically generated Db(X), T̃ is a silting object.

The claims i) and i′) then follow from Cor. 2.2.14.

This proves parts i) and i′). We claim that i) implies ii). To see this, using local cohomology for R at

m = R+ we have

Hq(X,OX(n)) ∼= Hq+1
m (R)n

for all 1 ≤ q ≤ d and n ∈ Z. By graded Local duality we have ExtiR(R,ωR) ∼= Homk(Hd+1−i
m (R), k) as

graded R-modules, and so

R(a) = ωR = Homk(Hd+1
m (R), k).

In particular Hd+1
m (R)0 = Hd(X,OX) = 0 gives R(a)0 = Ra = 0, and so a < 0. Lastly, OX(a) = ω̃R ∼=

ωX shows that ω−1
X is ample, and so X is Fano.
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2.3 Cones over smooth projective complete intersections

Complete intersections form the simplest class of (non-regular) Gorenstein algebras, and are a good

starting point to investigate the converse of Prop. 2.2.21. Namely we are interested in the following

question:

Question 2.3.1. Let k be an algebraically closed field of characteristic zero, let R be a standard graded

Gorenstein k-algebra and X = projR. Assume that hp,q(X) = 0 for p 6= q. Do the categories Db(X) and

MCMZ(R) admit tilting objects?

Recall that we implicitly take graded to mean finitely generated in degree one. We assume that k is

algebraically closed of characteristic zero throughout this section.

The simplest class of graded Gorenstein rings on which to test this question are the complete intersec-

tions. Consider rings of the form R = k[x0, . . . , xn+c]/(f1, . . . , fc) where (f1, . . . , fc) ⊆ (x0, . . . , xn+c)
2

is a regular sequence of homogeneous polynomials, and let proj R = X = V (f1, . . . , fc) ⊆ Pn+c the

associated projective complete intersection. We will further assume that R has isolated singularities at

the origin, or equivalently that X is smooth.

A generating series for the Hodge numbers of X was given by Hirzebruch [52] as one of the first

applications of the Hirzebruch-Riemann-Roch Theorem. Based on the above, Rapoport classified the

smooth complete intersections X with hp,q(X) = 0 for p 6= q.

Proposition 2.3.2 (Rapoport [89]). Let X ⊆ Pn+c be a smooth complete intersection with dimX ≥ 1

and codim X ≥ 1. Then X satisfies hp,q(X) = 0 for p 6= q if and only if X belongs to one of three

families:

a) X = V (Q) ⊆ Pn+1 is a quadric hypersurface.

b) X = V (Q1, Q2) ⊆ P2n+2 is a 2n-dimensional intersection of two quadrics.

c) X = X3 ⊆ P3 is a cubic surface.

Using Rapoport’s list, we will obtain the converse of Prop. 2.2.21; that is, we will deduce that the

necessary vanishing of Hodge numbers is in fact sufficient to guarantee the existence of tilting objects

for complete intersections. In fact, most of the following is already known from work of Kapranov

(quadric hypersurfaces) and Orlov-Kuleshov (cubic surfaces), and with partial statements in the work

of Kuznetsov (quadrics intersections). Our contribution will be to complete that last case, by showing

the existence of a full strong exceptional collection of vector bundles on X = V (Q1, Q2) ⊆ P2n+2.

The main theorem of this section will be:

Theorem (Thm. 2.3.16). Let k be algebraically closed of characteristic zero, let R be a standard graded

complete intersection k-algebra with isolated singularities, and X = projR. The following are equivalent:

1) MCMZ(R) admits a tilting object T .

2) Db(X) admits a tilting object E.

3) We have hp,q(X) = 0 for p 6= q.
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When dimR ≥ 2 and R is not a polynomial algebra, this is equivalent to:

4) X belongs to one of the three familes a)− b)− c).

Moreover, when these equivalent conditions hold, the tilting object E can always be assumed to come from

a strong exceptional collection of vector bundles on X.

The proof of Thm. 2.3.16 will occupy the rest of Chapter 2, and will be shown over the next ten or

so pages. Let us lay out the structure of the argument:

I. We have seen the necessity implications 1) =⇒ 3) and 2) =⇒ 3); specifically, this is the content

of Prop. 2.2.21 and Prop. 2.2.6.

II. The equivalence 3) ⇐⇒ 4) under the stated assumptions is the result of Rapoport above in Prop.

2.3.2.

III. When dimR ≤ 1, X is either empty or zero dimensional (a collection of points), and so the

assumptions 3) always hold. Theorem 2.1.14 of Buchweitz-Iyama-Yamaura states the existence

of a tilting object T ∈ MCMZ(R), and so 1) also always holds. The statement 2) holds either

vacuously (when dimR = 0 so that X is empty) or trivially as OX is a tilting bundle in Db(X)

with orthogonal exceptional summands.

IV. Similarly, when R is a polynomial algebra, the statement 1) is vacuous while statement 2) for

projR = X = Pn follows from Beilinson’s full strong exceptional collection of line bundles.

V. It remains to show the implications 4) =⇒ 1) and 4) =⇒ 2), which we will do on a case-by-case

basis. In brief:

i. The quadric hypersurface case X = V (Q) ⊆ Pn+1 will follow from work of Kapranov and

Buchweitz-Eisenbud-Herzog, coupled with Orlov’s semiorthogonal decomposition theorem.

ii. The cubic surface caseX = X3 ⊆ P3 will follow from work of Kuleshov-Orlov on semiorthogonal

decompositions of blow-ups, to prove 2), coupled with Orlov’s semiorthogonal decomposition

theorem to deduce 1).

iii. The even-dimensional complete intersection of two quadrics X = V (Q1, Q2) ⊆ P2n+2 with

homogeneous coordinate ring R = RX will be analysed via Koszul duality by use of Buch-

weitz’s Bernstein-Gel’fand-Gel’fand equivalence. Building on work of Buchweitz, Kuznetsov

and Reiten-Van den Bergh we will deduce the existence of a full strong exceptional collection

of linear MCM modules in MCMZ(R). Said collection will then extend to a full strong excep-

tional collection of vector bundles on X under Orlov’s semiorthogonal decomposition theorem.

The points I-IV being clear, we now proceed to the case-by-case analysis of point V.

Quadric hypersurfaces

Next, let X = V (Q) ⊆ Pn+1 be a smooth quadric hypersurface for n ≥ 1. Kapranov has shown the

existence of a full strong exceptional collection of vector bundles on X of the form

Db(X) =


〈
OX(−(n− 1)), · · · ,OX(−1),OX , E

〉
n even,〈

OX(−(n− 1)), · · · ,OX(−1),OX , E+, E−
〉

n odd.
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Moreover, the bundles E and E± are ACM bundles and generate a semisimple category, equivalent to

the image Φ0(MCMZ(R)) under Orlov’s semiorthogonal decomposition theorem.

Let us give a full proof of the above, since it will allow us to introduce standard ideas to be reused

in the case of quadrics intersections. Working somewhat anachronistically, one can establish Kapranov’s

Theorem from Orlov’s Theorem. By [31], the singularity category MCMZ(R) of a quadrics hypersurface

isolated singularity R = k[x0, . . . , xn+1]/(Q) is semisimple, with one or two simple MCM modules (up

to degree shift), say M (for n odd) and M+,M− (for n even). These have 2-periodic resolutions given

by matrix factorisations of Q with linear entries (A,B) (resp. (A±, B±))

. . .
A−→ R(−2)r

B−→ R(−1)r
A−→ Rr →M → 0

and respectively

. . .
A±−−→ R(−2)r±

B±−−→ R(−1)r±
A±−−→ Rr± →M± → 0

with r = n+ 2 (resp. r± = n+ 1). Orlov’s Theorem then gives

Db(X) =


〈
OX(−(n− 1)), . . . ,OX(−1),OX ,Φ0(M)

〉
n even,〈

OX(−(n− 1)), . . . ,OX(−1),OX ,Φ0(M+),Φ0(M−)
〉

n odd.

Let us recall how to compute the functor Φi for any i ∈ Z. Given a graded MCM module N with

complete resolution C

· · · → Cn+1 → Cn → Cn−1 → · · ·

Let C[<i] ⊆ C be the subcomplex given by the summands generated in degree < i, and define C[≥i] =

C/C[<i]. Then C[≥i] ∈ Db(grmodR) is a lower bounded complex with bounded cohomology, and so one

may sheafifify it to obtain a complex of coherent sheaves C̃[≥i] ∈ Db(X). By Lemma A.3.10, we have

Φi(N) ∼= C̃[≥i].

Finally, applying this to the linear resolution of M , M±, we see that Φ0(M) = M̃ , Φ0(M±) = M̃± is

simply given by sheafification. Setting E = M̃ and E± = M̃±, we obtain the exceptional ACM bundles

of Kapranov, and it’s easy to see that the relevant sheaf cohomology groups vanish and so the collection

is strong.

Summarising what we have shown:

Proposition 2.3.3. Let X = V (Q) ⊆ Pn+1 be a smooth quadric hypersurface over an algebraically

closed with k of characteristic zero, with homogeneous coordinate ring R. Then there is a full strong

exceptional collection of graded MCM modules

MCMZ(R) =


〈
M
〉

n even,

〈M+,M−〉 n odd,

extending under Orlov’s semiorthogonal decomposition theorem to a full strong exceptional collection of
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vector bundles

Db(X) =


〈
OX(−(n− 1)), · · · ,OX(−1),OX ,Φ0(M)

〉
n even,〈

OX(−(n− 1)), · · · ,OX(−1),OX ,Φ0(M+),Φ0(M−)
〉

n odd.

Cubic surfaces

Next, let X = X3 ⊆ P3 be a smooth cubic surface and R its coordinate ring. The next argument is due

to Kuleshov-Orlov [67], see also [5, Thm. 2.5]. Since X3 is smooth, it is well-known that it is abstractly

isomorphic to the blow-up π : X ∼= Bl6P2 � P2 of the projective plane in 6 points in general position.

Let Ei = π−1(pi) be the i-th exceptional fibre. By [54, Sect. 11.2] (see also references in [5]), the derived

pullback Lπ∗ : Db(P2)→ Db(X) is fully faithful, and there is a semiorthogonal decomposition

Db(X) =
〈
Lπ∗Db(P2),OE1

, · · · ,OE6

〉
=
〈
π∗E1, π∗E2, π∗E3,OE1

, · · · ,OE6

〉
where (E1, E2, E3) is any strong full exceptional sequence of vector bundles on P2. By [5, Thm. 2.5]

(or direct calculations using the adjunction (Lπ∗,Rπ∗)), the above sequence is a full strong exceptional

collection of sheaves. In particular, taking E1 = OP2 , we have π∗E1 = OX . Since R has a-invariant −1,

Orlov’s semiorthogonal decomposition yields

Db(X) =
〈
π∗E1, π∗E2, π∗E3,OE1

, · · · ,OE6

〉
=
〈
OX ,Φ0(MCMZ(R))

〉
and so we obtain a full strong collection of objects in MCMZ(R) by pushing the above down via the

adjoint Ψ0. It follows that both MCMZ(R) and Db(X) have tilting objects. The claim that Db(X)

actually has a tilting object coming from a full strong exceptional collection of vector bundles (even line

bundles) is due to Hille-Perling in [51, Thm. 5.14].

Summarising the relevant facts from the above discussion, we have:

Proposition 2.3.4. Let X = X3 ⊆ P3 be a smooth cubic surface over an algebraically closed field k of

characteristic zero, with homogeneous coordinate ring R. Then, with notation as above:

i) There is a full strong exceptional collection

MCMZ(R) =
〈
Ψ0(π∗E2),Ψ0(π∗E3),Ψ0(OE1), . . . ,Ψ0(OE6)

〉
.

ii) There is a full strong exceptional collection of line bundles on X.

Even dimensional intersections of two quadrics

We are left with analysing the 2n-dimensional smooth complete intersection of quadricsX = V (Q1, Q2) ⊆
P2n+2. Again let R denote the coordinate ring. This case is far more involved, and we will need a con-
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siderable amount of setup.

Complete intersections of quadrics in projective space have been studied by Buchweitz, Kapranov,

Bondal-Orlov and Kuznetsov. In particular Kuznetsov produced [69, Cor. 5.7], for a smooth complete

intersection of two quadrics, a semiorthogonal decomposition6 of X = V (Q1, Q2) ⊆ PN+2

Db(cohX) =
〈
A,Db(cohC)

〉
with A generated by an exceptional collection of line bundles, and C is an associated hyperelliptic curve

of genus g = N+1
2 (for N odd) or a stacky projective line with Z2-stack structure at N + 3 many points

(for N even). It was noted in [18, Ex. 5.3, Sect. 6] that in the latter case, the above semiorthogonal

decomposition refines to a full exceptional sequence of objects in Db(cohX) for N even. However, the

objects involved were given no explicit description, and it is unclear if such a collection is strong or even

consists of sheaves.

Our argument will proceed in parallel: setting N = 2n, using slightly different (but essentially

equivalent) models, for X = V (Q1, Q2) ⊆ P2n+2 we will identify the non-trivial component of Db(cohX)

as the derived category Db(coh O) of an hereditary order O over P1, with ramification of order 2 at

2n + 3 points. A theorem of Reiten-Van den Bergh [94, Prop. 5.1] then guarantees the existence of a

full strong exceptional collection of sheaves (F1, . . . ,F2n+5) in cohO ⊆ Db(cohO). Our contribution will

be to show that, after suitable modification, any such collection extends under Orlov’s semiorthogonal

decomposition to a full strong exceptional collection

Db(X) =
〈
OX(−2n+ 2)), . . . ,OX(−1),OX , E1, . . . , E2n+5

〉
with Ei exceptional ACM vector bundles, analogous to Kapranov’s decomposition in the hypersurface

case.

We begin with recalling Buchweitz’s extension of the Bernstein-Gel’fand-Gel’fand correspondence

to complete intersections of quadrics [31, Appendix]. Let V be a finite dimensional vector space of

dimension 2n+ 3, and let S = S(V ) ∼= k[x0, . . . , x2n+2] be the symmetric algebra on V . Let W ⊆ S2(V )

be a 2-dimensional subspace with basis given by a regular sequence, and let R := S(V )/(W ) be the

complete intersection algebra.

Complete intersections of quadrics are Koszul, which follows from the Tate resolution of the residue

field [10]. The Koszul dual R! = Ext∗R(k, k) takes an especially simple form. Following [31, Appendix,

Sect. A.2], consider the k-quadratic map q : V ∗ →W ∗ obtained by composition q = ι∗ ◦ χ

V ∗
χ−→ S2(V )∗

ι∗−→W ∗

of the quadratic map χ : V ∗ → S2(V )∗ given by χ(ξ)(vv′) = ξ(v)ξ(v′) with the pullback of the embedding

ι : W ↪→ S2(V ). Consider the symmetric algebra S(W ∗). We obtain an induced quadratic form

q : V ∗ →W ∗ ⊆ S(W ∗)

6Kuznetsov’s semiorthogonal decomposition was of the form Db(cohX) = 〈Db(cohC),A′〉, but one can exchange the
two terms up to twist by the Serre functor, and we will do this here.
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with value in the algebra S(W ∗), and so one can form the Clifford algebra C = CS(W∗)(V
∗, q) given by

C = T (V ∗)⊗ S(W ∗)/I

with T (V ∗) the tensor algebra on V ∗ and I the two-sided ideal generated by elements of the form

ξ ⊗ ξ − q(ξ) for ξ ∈ V ∗.

The Clifford algebra C is Z-graded by setting |V ∗| = 1 and |W ∗| = 2, and is finite over the central

subalgebra S(W ∗) ⊆ C. By a theorem of Sjödin [10, Chp. 10], we then have an isomorphism of graded

algebras

R! = Ext∗R(k, k) ∼= ClS(W∗)(V
∗, q) = C.

Since C is finite over S(W ∗), it is two-sided Noetherian, and Buchweitz moreover proves that it has

finite injective dimension idim (CC) = idim (CC) = codimR = dimW , which in our scenario is 2. Hence

C is a non-commutative Gorenstein ring, and in particular we have an equivalence DZ
sg(C) ∼= MCMZ(C)

as per Buchweitz’s theorem.

The pair (R,C) is then a pair of Koszul dual Noetherian Gorenstein Koszul algebras. In [31, Ap-

pendix], Buchweitz proves the following extension of the Bernstein-Gel’fand-Gel’fand correspondence.

Letting A be either R or C, denote by Db
art(A) ⊆ Db(grmod A) and Dperf(A) ⊆ Db(grmod A) the full

subcategories of complexes with Artinian cohomology and perfect complexes, respectively.

Theorem 2.3.5 (Buchweitz [31, Appendix]). Let A be either R or C. Then there is a functor

β : Db(grmodA)→ Db(grmodA!)

satisfying the following properties:

1) β is an equivalence of triangulated categories

β : Db(grmodA)
∼=−→ Db(grmodA!).

2) Given M ∈ Db(grmodA), the cohomology module of β(M) has graded components

Hj(β(M))i = Exti+jgrA(k,M(−i)).

3) The equivalence β sends Db
art(A) onto Dperf(A!) and Dperf(A) onto Db

art(A
!), and so descends to equiv-

alences of Verdier quotients

Db(qgrA) ∼= DZ
sg(A

!),

DZ
sg(A) ∼= Db(qgrA!).

We extract the following important corollary. Let A = R in the theorem above, and let ωR = R(a)

and d = dimR. Consider the duality D = RHomR(−, ωR[d])

D : Db(grmodR)op
∼=−→ Db(grmodR).
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and note that D ◦D ' id and D(k) ∼= k.7

Recall that a complex F∗ of free graded R-module is called linear if Fi is generated in degree i. We

will also abuse notation slightly and identify MCMZ(R) ∼= DZ
sg(R).

Corollary 2.3.6. The following holds:

a) Under the contravariant equivalence

β ◦D : Db(grmodR)op
∼=−→ Db(grmodC)

the standard t-structure on Db(grmodC) pulls back to a t-structure whose heart consists of complexes

M ∈ Db(grmodR) whose minimal free resolution is linear.

b) Under the induced contravariant equivalence

β ◦D : MCMZ(R)op
∼=−→ Db(qgrC)

the standard t-structure on Db(grmod C) pulls back to a t-structure whose heart consists of modules

M ∈ MCMZ(R) whose minimal free resolution is eventually linear.

Proof. By Property 2) of Thm. 2.3.5, for M ∈ Db(grmodR) we have

Hj
i (β ◦D(M)) = Exti+jgrR(k,D(M)(−i))

= HomDb(grmod R)(k,D(M)(−i)[i+ j])

= HomDb(grmod R)(k,D(M(i)[−i− j]))

= HomDb(grmod R)(M(i)[−i− j], D(k))

= HomDb(grmod R)(M,k(−i)[i+ j])

= Exti+jgrR(M,k(−i))

and so a) follows. To see b), note that every object of qgrC ⊆ Db(qgrC) arises as the “sheafification”

of some graded module in grmodC ⊆ Db(grmodC). Hence the induced heart on DZ
sg(R)op has objects

consisting of MCM approximations of complexes whose minimal resolution is linear. Those are precisely

the MCM modules whose minimal resolution is eventually linear.

Remark 2.3.7. There is a minor error in [31, Appendix], where this corollary is misstated. In particular

it is claimed that β pulls back graded C-modules to complexes with linear minimal resolution, and that

the induced heart on MCM modules consists precisely of linear MCM modules. The first claim is false

as one needs to dualise first, and the second claim is false because MCM approximations of complexes

with linear minimal resolutions can fail to be linear. Indeed this is the case for kst over certain Koszul

algebras, where k has a linear resolution but kst will typically admit generators in various non-zero

degrees. We will see such an example in Chapter 3.

The induced heart on MCMZ(R) will play a central role in this thesis, and in particular in the

7The complex R(a)[d] is sometimes called the normalised canonical complex.
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construction of a tilting bundle for Db(X), and so we give it a name. We define

Hlin(R) ⊆ MCMZ(R)

the full subcategory of eventually linear stable MCM modules. In the above scenario, we have a diagram

MCMZ(R)op
β◦D
∼=
// Db(qgrC)

Hlin(R)op

OO

β◦D
∼=

// qgrC

OO

with vertical arrows the natural inclusions.

Next, we summarise our approach to constructing a tilting object in MCMZ(R) and Db(cohX) with

projR = X = V (Q1, Q2) ⊆ P2n+2 smooth, and recall that we assume dimX > 0. We first tie the two

questions:

Proposition 2.3.8. Assume that Hlin(R) contains a tilting object T for MCMZ(R). Then Db(cohX)

admits a tilting ACM vector bundle E. Moreover, if the summands of T form a full strong exceptional

collection, then so does of E.

Proof. Recall that R = k[x0, . . . , x2n+2]/(Q1, Q2) has a-invariant a = −2n+ 1 < 0 since we assume that

dimX > 0 and so n > 0. Consider the fully faithful embedding

RΓ≥0 : Db(cohX) ↪→ Db(grmod≥0R).

The strong version of Orlov’s Theorem (see Appendix A.3) gives a semiorthogonal decomposition

RΓ≥0(Db(cohX)) =
〈
R(2− 2n), . . . , R(−1), R, (MCMZ(R))[≥0]

〉
Since T ∈ Hlin(R), it follows that some sufficiently large syzygy T ′ = Ωm(T )(m) has a linear minimal

resolution, and T ′ is also a tilting object. Since T ′ is linear, we then have L≥0(T ′) ∼= T ′ ∈ Db(grmod≥0R).

Since T ′ is a module (and not a complex), we have

ExtngrR(R(−i), T ′) = 0 for all n 6= 0.

It follows that
⊕2n−2

i=0 R(−i) ⊕ T ′ forms a tilting module for RΓ≥0(Db(coh X)) which is moreover an

MCM module, and its sheafification E is a tilting ACM vector bundle for Db(cohX). This proves the

main claim, and the second claim is clear.

It remains to construct a tilting object T ∈ Hlin(R). By making use of the BGG equivalence (Thm.

2.3.5), this reduces to constructing a tilting object in qgrC ⊆ Db(qgrC).

Analysing the category qgr C

We review some generalities concerning C, which can be taken from [31, Appendix] or [69, Sect. 3].

Recall that the graded algebra C is finite projective over the central subalgebra S(W ∗) with W ∗ in degree
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2. Since C is generated by C1 over C0 = k, passing to the 2nd Veronese subalgebra Ceven induces an

equivalence qgr C ∼= qgr Ceven, sending M to Meven (see [87, Prop. 2.5]). Taking central homogeneous

localisations of S(W ∗) is compatible with forming Clifford algebras, and so Ceven descends to a locally

free sheaf of even Clifford algebras O := C̃even over P(W ∗) of rank 2dimV−1 = 22n+2.

Next, sheafification over proj S(W ∗) = P(W ∗) gives an exact functor F : grmodCeven → coh P(W ∗)

which vanishes precisely on finite length Ceven-modules. It then factors as

grmodCeven

(( ((

F // cohP(W ∗)

qgrCeven
π

66

The functor π is an exact functor between abelian categories, and we claim that it is faithful. Since it

is exact, it suffices to show that π(X) = 0 if and only if X = 0. But this holds by construction since

π(X) = 0 implies F (X̃) = 0 for any module representative X̃ of X, in which case X̃ has finite length

and X = 0. We have then shown that π is faithful, and so it identifies

π : qgrCeven
∼=−→ cohO

with the subcategory of coherent sheaves over P(W ∗) admitting an action from O, or in other words

coherent sheaves of modules over the sheaf of even Clifford algebras O. We are left with obtaining a

good description of O.

For convenience, since W is 2-dimensional, picking a basis q0, q∞ we get a parameterisation for the

pencil of quadrics by qt = t0q∞ + t1q0 for t = [t0 : t1] ∈ P1 = P(W ∗). The quadratic form qt ∈ W then

defines a functional on W ∗, which lets us define a k-quadratic form

V ∗
q−→W ∗

qt−→ k

which is by definition the quadratic form defined by qt ∈ W ⊆ S2(V ). The following falls out of our

identifications.

Lemma 2.3.9. Under the parameterisation P1 = P(W ∗), the fibre of O over the point ιt : speck(t) ↪→ P1

is isomorphic to the Clifford algebra of qt, that is

ι∗tO ∼= Clk(t)(V
∗, qt)

where k(t) = k denotes the residue field at the point t.

We now use a result of Reid. Since we are in char k 6= 2, the quadratic form qt has an associated

bilinear form Bt, and we define the corank of qt by the dimension of the kernel of the map V ∗ → V ∗∗ = V

induced from Bt. Recall that qt is called non-degenerate if Bt defines a perfect pairing, or equivalent qt

has corank zero.

Lemma 2.3.10 ([90, Prop. 2.1]). A complete intersection of quadrics X = V (q0, q∞) ⊆ PN is smooth

if and only if the quadratic form qt has corank ≤ 1 for all t, is generically non-degenerate and otherwise

of corank 1 at (N + 1)-many values of t.
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We can now prove that the sheaf of even Clifford algebras O over P1 is a sheaf of hereditary orders.

We begin by recalling some definitions from [94].

Hereditary orders over P1

Let R = (R,m, k) be a discrete valuation domain with fraction field K. An order Λ over R consists of

a subalgebra Λ ⊆ A of a central simple K-algebra A, such that Λ contains R as a central subring and

which is finitely generated as a module over R. An hereditary order Λ over R is simply an order Λ that

is hereditary as an algebra.

Let J = J(Λ) be the Jacobson radical. Then there is a natural number e ∈ N such that Je = mΛ,

called the ramification order of Λ over R, and we say that Λ is unramified if e = 1.

Next consider P1 with function field K = K(P1), thought of as a constant sheaf on P1 so that

OP1 ⊆ K. Let A be a central simple algebra over K. A sheaf of hereditary order O over P1 is an

OP1-algebra O ⊆ A which is coherent over P1, and which is locally an hereditary order over each DVR

OP1,t.

Next, recall some facts from the structure theory of Clifford algebras, see [31]. Let F be an al-

gebraically closed field of characteristic not 2. Let (U, q) be a finite dimensional vector space over F

equipped with a non-degenerate quadratic form q. Then the even Clifford algebra ClF (U, q)even is iso-

morphic to a matrix algebra over F when dimU is odd, and to a product of two matrix algebras when

dimU is even.

We now prove the anticipated result. This can be seen as analogous to [69, Cor. 3.16], however

phrased in the language of sheaves of orders rather than stacks.

Theorem 2.3.11. The sheaf O of even Clifford algebras is a sheaf of hereditary orders over P(W ∗) = P1,

with ramification order over t ∈ P1 given by et = 1 + corank(qt), where corank(qt) ≤ 1.

Proof. For t ∈ P1, set mt ⊆ OP1,t and Jt ⊆ Ot the respective Jacobson radicals. The algebra Ot is given

by the even Clifford algebra Ot = ClOP1,t
(V ∗, qt)even for the induced OP1-valued quadratic form qt, and

so is module-finite over the central DVR OP1,t. We have

OP1,t ⊆ Ot ⊆ Ot ⊗OP1,t
K = ClK(V ∗, q)even ∼= Mr(K)

where r = 22n+2. For the last isomorphism, observe that ClK(V ∗, q)even ⊗K K = ClK(V ∗K , q)even
∼=

Mr(K) for the base change V ∗K = V ∗ ⊗K, since q : V ∗K → K is non-degenerate, and so ClK(V ∗K , q) is

a central simple algebra. However by Tsen’s Theorem, there are no non-trivial central simple algebras

over K since k is algebraically closed, hence ClK(V ∗K , q) must be a matrix algebra.

Hence Ot is an order over OP1,t inside a matrix algebra. To compute the ramification order et,

we claim that J
1+corank(qt)
t = mtOt. To see this, note that Ot/Otmt ∼= Clk(V ∗, qt)even and let Ut be

the kernel of the map V ∗ → V ∗∗ = V associated to the corresponding symmetric bilinear form. Then

dim Ut = corank(qt) and Clk(V ∗, qt) ∼= Clk(Ũ , qt)⊗
∧
Ut for some complement Ũ of Ut. Applying Lemma

2.3.10, we see that the dimension of Ut is zero for generic t, and one otherwise. When dimUt = 1, one
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sees that elements of the form u ·ut for u ∈ U and ut ∈ Ut generate the Jacobson radical J of Clk(V ∗, qt),

and so J2 = 0 since Ut is one dimensional and ∧2Ut = 0.

It remains to prove that Ot is hereditary. We will do this in three steps:

i) Show Ot is hereditary for qt non-degenerate, and so t generic.

ii) Show that the abelian category cohO is hereditary.

iii) Deduce that the remaining ramified orders Oti are hereditary.

For the first claim, we may apply the Auslander-Goldman theorem [92, Thm. 39.1], which claims

that an order Λ over a DVR R is hereditary if and only if the radical J(Λ) is a projective Λ-module.

When qt is non-degenerate, we have seen that Jt = OP1,tmt, and since OP1,t is a DVR, mt is generated

by a single element, say πt. The annihilator of πt is trivial in Ot and so Jt = πt · Ot is a free module of

rank one. By Auslander-Goldman, Ot is hereditary.

For the second claim, we will use the BGG correspondence to construct a Serre functor on Db(cohO)

and deduce the result. Recall that the contravariant form of Buchweitz’s BGG correspondence gave rise

to an equivalence

MCMZ(k[x0, · · · , x2n+2]/(q0, q∞))op ∼= Db(cohO)

which induces identifications of corresponding hearts

Hlin(k[x0, · · · , x2n+2]/(q0, q∞))op ∼= cohO

where the left hand side is given by MCM modules with eventually linear resolutions. Now, since

k[x0, · · · , x2n+2]/(q0, q∞) has isolated singularities at the origin, the stable category of MCM modules

has a Serre functor of the form

S = (a)[2n]

= (1− 2n)[2n]

= (1− 2n)[2n− 1][1]

= −⊗ ωH[1]

where the notation −⊗ωH is a placeholder for (1− 2n)[2n− 1], but more importantly −⊗ωH preserves

the heart Hlin(k[x0, · · · , x2n+2]/(q0, q∞) of eventually linear modules. The functor S is sent onto the

inverse Serre functor S−1
O on Db(cohO), which then has the form S−1

O = − ⊗ ω−1[−1], where − ⊗ ω is

the induced autoequivalence of cohO. From the form of Serre duality

ExtiO(F ,G ⊗ ω) ∼= Ext1−i
O (G,F)∗

one deduces that cohO is hereditary.

Lastly, we let ti ∈ P1 be a point over which O ramifies, and t correspond to a generic (unramified)

point. We first note that since Ot is Noetherian (as it is finite over a central DVR), the full module

category Mod Ot is hereditary. Similarly O is a sheaf of Noetherian OP1-algebras and so QCoh O is
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hereditary. To show that Oti is hereditary, for any F ,G ∈ QCoh O we invoke the (first quadrant,

cohomological) local-to-global spectral sequence for the ringed space Y = (P1,O)

Hp(Y, Extq(F ,G)) =⇒ Extp+qO (F ,G).

Since Y is a Noetherian topological space of dimension 1, by the Grothendieck Vanishing Theorem we

have Hp(Y,A) = 0 for all p ≥ 2 and sheaves of abelian groups A. It follows that the above spectral

degenerates.

Next, since Ot is generically hereditary, the sheaf Ext2(F ,G) is supported at most over the ramified

points {ti} ⊆ P1, and we have

H0(Y, Ext2(F ,G)) ∼=
∏
ti

Ext2
Oti

(Fti ,Gti).

By degeneration of the spectral sequence, the left-hand is a summand of Ext2
O(F ,G) = 0 and so vanishes,

and therefore so do the individual Ext2
Oti

(Fti ,Gti).

Finally, letting j : U ⊆ P1 be an affine open neighbourhood of ti, denote by OU the restriction of O to

U . It is easy to see that localisation QCohOU → ModOti is essentially surjective, and any F ∈ QCohOU
extends to a quasi-coherent sheaf j∗F ∈ QCohO without changing its stalk at ti. It follows that any

M ∈ ModOti arises as Fti for some F ∈ QCohO, and we are done.

Let us now put everything together. Writing R = k[x0, · · · , x2n+2]/(q0, q∞), by Buchweitz’s BGG

correspondence we have a contravariant equivalence Hlin(R)op ∼= cohO for an hereditary order O over

P1. We can then apply the following theorem of Reiten and Van den Bergh.

Theorem 2.3.12 (Reiten-Van den Bergh [94, Prop. 5.1]). Let O be an hereditary order on P1 with

ramification of order ei at the point pi, i = 1, · · · , r. Then there is a full strong exceptional collection of

sheaves

Db(cohO) =
〈
F1, . . . ,Fl

〉
of length l = 2 +

∑r
i=1(ei − 1).

The sheaf of even Clifford algebras O is an hereditary order, ramified of order 2 at 2n+ 3 points. We

deduce:

Corollary 2.3.13. The category Hlin(R) ⊆ MCMZ(R) contains a full strong exceptional collection of

length 2n+ 5 for MCMZ(R).

We also note the following corollary of interest.

Corollary 2.3.14. There is a contravariant equivalence of abelian categories

Hlin(R)op ∼= cohX

onto the category of coherent sheaves over a weighted projective line X = P1(2, 2, . . . , 2), with weight

divisor given by the ramification divisor of the hereditary order O.

Proof. Indeed by Reiten-Van den Bergh [94] we have an equivalence cohO ∼= cohX.
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Finally, together with Prop. 2.3.8, we deduce the existence of a full strong exceptional collection of

(ACM) vector bundles on X = V (q0, q∞) ⊆ P2n+2

Db(cohX) =
〈
OX(2− 2n), . . . ,OX(−1),OX , E1, . . . , E2n+5

〉

Summarising the results of this subsection, we have shown:

Proposition 2.3.15. Let X = V (Q1, Q2) ⊆ P2n+2 be a smooth, even-dimensional complete intersection

of quadrics over an algebraically closed field k of characteristic zero, with homogeneous coordinate ring

R. Then there is a full strong exceptional collection of MCM modules with linear minimal resolutions

MCMZ(R) =
〈
M1,M2, · · · ,M2n+5

〉
.

This extends under Orlov’s semiorthogonal decomposition theorem to a full strong exceptional collection

of vector bundles

Db(cohX) =
〈
OX(2− 2n), . . . ,OX(−1),OX ,Φ0(M1),Φ0(M2), . . . ,Φ0(M2n+5)

〉

Putting it all together

We finally obtain the proof of the main theorem of this chapter.

Theorem 2.3.16. Let k be algebraically closed of characteristic zero, let R be a standard graded complete

intersection k-algebra with isolated singularities, and X = projR. The following are equivalent:

1) MCMZ(R) admits a tilting object T .

2) Db(X) admits a tilting object E.

3) We have hp,q(X) = 0 for p 6= q.

When dimR ≥ 2 and R is not a polynomial algebra, this is equivalent to:

4) X belongs to one of the three familes a)− b)− c).

Moreover, when these equivalent conditions hold, the tilting object E can always be assumed to come from

a strong exceptional collection of vector bundles on X.

Proof. The implications 1), 2) =⇒ 3) and 3) ⇐⇒ 4) having been previously established, we were left

with 4) =⇒ 1), 2). This is the content of Prop. 2.3.3, Prop. 2.3.4 and Prop. 2.3.15, and so the theorem

holds.
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Classifications of MCM modules and

Betti tables over tame curve

singularities

In this section we will take up the classification of indecomposable MCM modules over certain reduced

curve singularities of tame Cohen-Macaulay representation type (CM-type for short). We begin by

recalling basic notions from [40].

Fix an algebraically closed field k throughout and let C = (C,m, k) be a reduced complete local

Cohen-Macaulay curve singularity over k, with X = specC. Any MCM C-module M is locally free away

from the singular locus and so defines a vector bundle on each irreducible component of the regular locus

Xreg =
∐r
i=1Xreg,i, with rank vector rk(M) = (rk1, . . . , rkr) and (total) rank N =

∑
i rki. We say that

the CM-type of C is of:

1) finite type, if C has finitely many indecomposable MCM modules;

2) tame type, if C has infinitely many indecomposables and the indecomposables of fixed rank N can

be parameterized by finitely many 1-parameter families F1, . . . ,Fµ(N), with at most finitely many

exceptions;

3) wild type, if C admits n-parameter families of non-isomorphic indecomposables for n arbitrarily large.

By [39], the CM-type of C falls precisely in one of these three cases (see also [40]). The classification

of curve singularities of finite and tame CM-type is closely related to the Arnold school classification of

polynomials with isolated critical points of low modality over k = C. The modality of a holomorphic

function germ f : (Cn, 0) → (C, 0) is, roughly, the minimal number m for which one can obtain all

isomorphism classes of deformations of f by finitely many m-parameter families, see [3, 1.9] for the precise

definition. The holomorphic functions of low modality were classified by Arnold and his collaborators,

who produced the following list of normal forms.

Given a function f = f(x1, . . . , xn) depending on variables {x1, . . . , xn} and a set of disjoint variables

57
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{z1, . . . , zk}, we call the function

g(x1, . . . , xn, z1, . . . , zk) := f(x1, . . . , xn) + z2
1 + · · ·+ z2

k

a stabilisation of f . Up to stabilisation and isomorphism, the function germs of modality m ≤ 1 are [3,

2.3]:

• (m = 0): These are the simple (or ADE) singularities

Aµ, µ ≥ 1 Dµ, µ ≥ 4 E6 E7 E8

xµ+1 x2y + yµ−1 x3 + y4 x3 + xy3 x3 + y5

• (m = 1): There are 3 families of parabolic singularities

P8 X9 J10

x3 + y3 + z3 + axyz x4 + y4 + ax2y2 x3 + y6 + ax2y2

a3 + 27 6= 0 a2 6= 4 4a3 + 27 6= 0

as well as the hyperbolic singularities

Tpqr : xp + yq + zr + axyz, a 6= 0,
1

p
+

1

q
+

1

r
< 1

and an additional 14 exceptional families, whose CM-type is wild.

The above normal forms play an essential role in the classification of curves of finite and tame

CM-types over a general algebraically closed field k. Given C as above, consider its normalisation

C ⊆ C ⊆ Q(C) in its total quotient ring Q(C). We say that a ring D birationally dominates C if there

are embeddings C ⊆ D ⊆ C.

Proposition 3.0.1 (Greuel-Knörrer [112, Thm. 9.2]). The curve C has finite CM type if and only if it

birationally dominates a simple curve singularity.

Note that per the results of Buchweitz-Greuel-Knörrer-Schreyer-Herzog in Chapter 2, the only Goren-

stein curves of finite CM type are the simple curve singularities themselves. Next, by [38] the hyperbolic

singularity of type Tpq2 are isomorphic to the stabilisation of the curves Tpq

Tpq : xp + yq + bx2y2, with b 6= 0,
1

p
+

1

q
<

1

2

for b = −a
2

4 . Extending this family to Tpq with 1
p + 1

q = 1
2 enlarges it by the two parabolic singularities

T44 = X9 and T36 = J10. We impose char k 6= 2 for the next two propositions.

Proposition 3.0.2 (Drozd-Greuel, [40]). The curve C is of tame CM-type if and only if it birationally

dominates a curve of type Tpq with 1
p + 1

q ≤
1
2 .

Given a curve C of tame type, we say that C is tame of domestic representation type if there is a

uniform bound µ(n) ≤ N on the number of 1-parameter families of indecomposables of fixed rank n.

Proposition 3.0.3 (Drozd-Greuel, [40]). Let C be a curve of tame CM-type. Then C is of domestic

type if and only if it properly birationally dominates a curve of type T44 or T36.
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Tameness of the Tpq was originally established in the hyperbolic case by indirect methods via defor-

mation theory [40], with the indecomposables later described by use of the minimal resolution of the

surface singularity Tpq2 [38]. The parabolic case T44, T36 was first studied by Dieterich [37], who proved

tameness by somewhat indirect methods; in particular this left open the description of the indecompos-

ables. The question of obtaining explicit presentations of the indecomposables, or equivalently of writing

down the indecomposable matrix factorizations, was raised by Drozd and Tovpyha in [41], where they

produced some of the indecomposable matrix factorizations of T44.

Results

We now outline the results of this chapter. Let k be an algebraically closed field. We will classify the

indecomposable graded MCM modules over the following graded algebras:

• The homogeneous coordinate ring RY2
of 4 points Y2 ⊆ P2 in general linear position, meaning that

Y2 arises as the complete intersection of two conics.

• The homogeneous coordinate ring RY1
of 4 points Y1 ⊆ P1, which can be written in normalised

form as the hypersurface ring RY1
= k[x, y]/(fλ) with fλ = l1l2l3l4 a product of linear forms

fλ = xy(x− y)(x− λy), λ 6= 0, 1.

To do this, we will prove and use the following equivalences of categories. Both are special cases of the

general theorem of Buchweitz-Iyama-Yamaura [28] see in Chapter 2, but we will prove these directly.

Theorem 3.0.4. There is an equivalence of triangulated categories

MCMZ(RY2
) ∼= Db(kQ)

with Q the D̃4 quiver
•

•

•

p1
>>

p2

66
p3

((
p4   

•

•

Theorem 3.0.5. There is an equivalence of triangulated categories

MCMZ(RY1
) ∼= Db(Sq(2, 2, 2, 2;λ))

where the “Squid” algebra Sq(2, 2, 2, 2;λ) is the path algebra of the quiver

•

•

•
y //
x
// •

p1
>>

p2

66
p3

((
p4   

•

•

with relations pili(x, y) = 0 for i = 1, 2, 3, 4.

Both path algebras are derived tame and have a well-studied representation theory.
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In the case of RY2 , we will construct all indecomposable graded MCM modules and compare them

to the known classification of indecomposable representations of kQ. We will see that one then recovers

the regular components of kQ out of the classical pencil of conics construction. We will also write down

the Betti tables of complete resolutions of indecomposables.

In the case RY1
, we will make use of the derived equivalence

Db(Sq(2, 2, 2, 2;λ)) ∼= Db(X)

with X = P1(2, 2, 2, 2;λ) a weighted projective line of genus one in the sense of Geigle-Lenzing. We will

produce the MCM modules corresponding to the simple torsion sheaves on X. By results of Lenzing

and Meltzer [72], one can obtain all indecomposable sheaves by iterated applications of two ‘twists’

autoequivalences

T1, T2 : Db(X)
∼=−→ Db(X)

applied to indecomposable torsion sheaves, which send the simple torsion sheaves to the stable sheaves,

and so one reduces the classification to understanding the action of T1, T2 on the MCM modules above.

Finally, we will completely classify the Betti tables of indecomposable graded MCM modules.

For either algebra RYi , i = 1, 2, we will see that all indecomposable MCM R̂Yi-modules arise as the

completion of some graded MCM RYi -modules, and so the classification results extend to MCM(R̂Yi).

3.1 The tilting modules

Let us now prove the above theorems by exhibiting an appropriate tilting MCM module. The proofs make

use of Orlov’s semiorthogonal decomposition theorem. Recall that k is algebraically closed throughout

this chapter, and we write R = S/I for S the ambient polynomial ring and R = RYi , i = 1, 2. To

simplify calculations, we shall make use of the Orlov-Buchweitz embedding (see Appendix)

MCMZ(R) ↪→ Db(grmod≥0R)

M 7→M[≥0]

where M[≥0] is the complex with bounded cohomology obtained by taking a complete resolution C of

M and killing generators of degree < 0. This is most useful in the following situation:

Lemma 3.1.1. Let R be a graded connected Gorenstein algebra, and let M be a graded MCM R-module

generated in degree zero with no free summand. Then M[≥0]
∼= M in Db(grmod≥0R). In particular, if

M,N are both generated in degree zero without free summands, we have

ExtngrR(M,N) =

ExtngrR(M,N) n ≥ 0

0 n < 0.

Proof. Since R is graded connected, minimal complete resolutions exist for MCM modules without free
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summands1. Let C be a minimal complete resolution of M :

. . . // C1
// C0

''

// C−1
// . . .

M

77

Since M is generated in degree zero, so is C0 by minimality the graded free modules Cn are generated in

positive degrees for n > 0 and in negative degrees for n < 0. Killing negative degree generators returns

the minimal free resolution M[≥0]

∼=−→ M of M . For the second claim, since (−)[≥0] is fully faithful, we

have Ext∗grR(M,N) ∼= HomDb(grmod R)(M[≥0], N[≥0]) ∼= Ext∗grR(M,N) and the result follows.

The algebra RY2

Now let R = RY2
. Under the assumption that Y2 ⊆ P2 be in general position, meaning no three

points of Y2 lie on a line, then Y2 = V (Q,Q′) is a complete intersection of conics, and so we have

RY2
∼= k[x, y, z]/(Q,Q′). In particular, RY2

is Gorenstein with a-invariant a = 1.

Theorem 3.1.2. Let R = RY2
, so that X = proj R = Y2 ⊆ P2 is the set of 4 points {pi}. Let

Li = R/I(pi) be the homogeneous coordinate ring of pi, thought of as an R-module. Then there is a full

strong exceptional collection

MCMZ(R) = 〈m(1), L1, L2, L3, L4〉

with the endomorphism algebra of T = m(1)⊕
(⊕4

i=1 Li

)
given by kQ as above.

Proof. We have a = a(R) = 1. Applying Orlov’s theorem with cutoff i = −a = −1 gives a semiorthonal

decomposition

MCMZ(R) = 〈kst(1), st ◦ RΓ≥i+aDb(X)〉

= 〈kst(1), L1, L2, L3, L4〉

since RΓ≥i+a(X,Opi)st = Γ≥0(X,Opi)st = Lsti = Li since Li = R/I(pi) ∼= k[zi] has depth 1 and

is already MCM. This exceptional sequence is not strong, but we claim that it becomes strong upon

replacing kst(1) by m(1) = kst(1)[−1].

Since st◦RΓ≥i+a(X,−) is fully faithful the Li are pairwise orthogonal. To verify that the exceptional

sequence is strong, we calculate the remaining extension groups by Serre duality:

ExtngrR(m(1), Li) = DExtngrR(Li,m(2))

= DExtn−1
grR (Li, k

st(2))

= DExtn−1
grR (Li, k(2)).

We claim that

dimk ExtngrR(m(1), Li) = dimk Extn−1
grR (Li, k(2)) =

1, n = 0

0, n 6= 0.

1Note that minimality of C also requires M to have no free summands, since any summand of M isomorphic to R would

produce a summand of the form 0→ R
id−→ R→ 0 of C in degree 0,−1.
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Equivalently, the minimal complete resolution of Li over R looks like

· · · // C1
// R

&&

// R(2) // C−2
// · · ·

Li

77

The right hand tail of the minimal complete resolution dualises to a minimal projective resolution of the

R-dual

· · · → C∗−2 → C∗−1 → L∗i → 0

and so the above claim C−1
∼= R(2) is equivalent to C∗−1

∼= R(−2), meaning that L∗i is singly generated

in degree 2. Now, writing R = S/(Q,Q′) for S = k[x, y, z] and (Q,Q′) a regular sequence of quadrics,

by a well-known change-of-rings result (see [31, Lemma 2.5]) we have isomorphisms of graded R-module

ExtnS(Li, S) ∼= Extn−2
R (Li, R).

Setting n = 2 gives Ext2
S(Li, S) ∼= HomR(Li, R) = L∗i . Writing Li = S/(l, l′) for a regular sequence of

linear forms (l, l′) in S, self-duality of the Koszul complex KS(l, l′) gives

Ext2
S(Li, S) ∼= Li(−2)

and so L∗i
∼= Li(−2) is singly generated in degree 2, as we wanted, and so we obtain that

dimk ExtngrR(m(1), Li) = dimk Extn−1
grR (Li, k(2)) =

1, n = 0

0, n 6= 0.

This proves that the exceptional sequence is strong.

Finally, for dimension reasons we have EndgrR(T ) ∼= kQ, where Q is the quiver

•

•

•

p1
>>

p2

66
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p4   

•

•

The algebra RY1

Let R = RY1
for 4 points Y1 ⊆ P1, which is isomorphic to the hypersurface ring RY1

= k[x, y]/(fλ), with

fλ = l1l2l3l4 = xy(x − y)(x − λy), λ 6= 0, 1, a product of 4 linear forms in normalised form. Using the

same approach, we now prove:

Theorem 3.1.3. Let R = RY1 , so that X = proj R = Y1 ⊆ P1 is a set of 4 points {pi = V (li)}. Let

Li = R/li. Then there is a full strong exceptional collection

MCMZ(R) = 〈m(1),m2(2), L1, L2, L3, L4〉
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with the endomorphism algebra of T = m(1)⊕m2(2)⊕
(⊕4

i=1 Li

)
given by the squid algebra Sq(2, 2, 2, 2;λ)

presented above.

As before, the calculations of the Tate cohomology groups ExtngrR(mj(j), Li) are the most involved

part of the proof, and we collect them in the next lemma.

Lemma 3.1.4. We have

dimk ExtngrR(m(1), Li) =

1, n = 0

0, n 6= 0

dimk ExtngrR(m2(2), Li) =

1, n = 0

0, n 6= 0

dimk ExtngrR(m1(1),m2(2)) =

2, n = 0

0, n 6= 0.

Before we prove this, we begin by writing down some relevant complete resolutions for calculations.

Note that the complete resolution of Li is easy to obtain, since Li = R/li and li is part of the matrix

factorization (li, fλ/li) in S = k[x, y]. Its complete resolution is then

C(Li) : · · · → R(−4)
fλ/li−−−→ R(−1)

li−→ R
fλ/li−−−→ R(3)

li−→ R(4)→ · · ·

The complete resolution of kst is known and can be obtained by a classical method of Eisenbud, see [42].

In this case, decompose fλ = x ·fx+y ·fy in S for two cubic polynomials fx, fy. Note that in chark 6= 2,

we can take fx = 1
4∂xfλ and fy = 1

4∂yfλ by the Euler identity. We then have a matrix factorization

(A,B) of fλ

A =

(
x y

−fy fx

)
B =

(
fx −y
fy x

)

giving rise to the minimal complete resolution of kst = coker(A) below

C(kst) : · · · → R(−4)⊕R(−2)
B−→ R(−1)⊕2 A−→ R⊕R(2)

B−→ R(3)⊕2 A−→ R(4)⊕R(6)→ . . .

We can now prove the lemma.

Proof. First, letting T = m(1)⊕m2(2)⊕
(⊕4

i=1 Li

)
, note that Lemma 3.1.1 gives

ExtngrR(T, T ) = ExtngrR(T, T )

which vanishes for n < 0, taking care of all negative groups. Now, we have a = a(R) = 2, hence Serre

duality gives

ExtngrR(m(1), Li) = DExtngrR(Li,m(3))

= DExtn−1
grR (Li, k

st(3))

= DExtn−1
grR (Li, k(3))
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and the first equality follows from C(Li). For the next equality, consider the extension

ξ : 0→ m/m2 → R/m2 → k → 0

where m/m2 ∼= k(−1)⊕2. This gives rise to an exact triangle in MCMZ(R)

ξst : (m/m2)st → (R/m2)st → kst → (m/m2)st[1]

which can be rewritten as

ξst : (kst(−1))⊕2 → m2[1]→ kst → (kst(−1))⊕2[1].

Serre duality gives

ExtngrR(m2(2), Li) = DExtngrR(Li,m
2(4))

= DExtngrR(Li,m
2[2])

= DExtn+1
grR (Li,m

2[1])

Applying the long exact sequence of Tate cohomology to ξst and reading off from C(Li), while remem-

bering that the above groups vanish for n < 0, we obtain Extn+1
grR (Li,m

2[1]) = 0 for n 6= 0 and the long

exact sequence amounts to

0→ Ext0
grR(Li, k

st)→ Ext1
grR(Li, k

st(−1))⊕2 → Ext1
grR(Li,m

2[1])→ 0.

A dimension count then gives dimk Ext1
grR(Li,m

2[1]) = dimk Ext0
grR(m2(2), Li) = 1.

Finally we compute

ExtngrR(m(1),m2(2)) = DExtngrR(m2,m(1))

= DExtngrR(m2[1],m[1](1))

= DExtngrR(m2[1], kst(1))

= DExtngrR(m2[1], k(1))

Applying the long exact sequence from ξst, note that Ext∗grR(kst, k(1)) = 0 from the structure of C(kst),

giving ExtngrR(m2[1], k(1)) ∼= ExtngrR(kst(−1), k(1))⊕2 whose dimension is as stated.

We can now prove the theorem.

Proof. We use Orlov’s theorem with cutoff i = −a = −2 and X = projR to obtain a semiorthogonal

decomposition (living inside Db(grmod≥−2R))

(−)[≥−2]

(
MCMZ(R)

)
= 〈k(2), k(1),RΓ≥0Db(X)〉

= 〈k(2), k(1), L1, . . . , L4〉.
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This full exceptional collection is not strong, and we will apply a right mutation to obtain

R : 〈k(2), k(1)〉 7→
〈
k(1), R/m2(2)

〉
To see this, note that the extension

ξ : m/m2 → R/m2 → k → m/m2[1]

is isomorphic to the universal extension

Ext1(k, k(−1))∗ ⊗k k(−1)→ Rk(k(−1))→ k
coev−−−→ Ext1(k, k(−1))∗ ⊗k k(−1)[1].

This calculates the right mutation Rk(k(−1)) = R/m2, and similarly Rk(2) (k(1)) =
(
R/m2

)
(2). After

mutating and desuspending the first two terms, we obtain the resulting exceptional collection

〈
k(1)[−1],

(
R/m2

)
(2)[−1], L1, . . . , L4

〉
Upon stabilising, this is sent to the full exceptional collection

MCMZ(R) = 〈m(1),m2(2), L1, L2, L3, L4〉

which is strong by Lemma 3.1.4. It remains to calculate the endomorphism algebra. Letting T = m(1)⊕
m2(2)⊕

(⊕4
i=1 Li

)
, we have seen that EndgrR(T ) ∼= EndgrR(T ). Consider the following morphisms:

L1

L2

m(1)
x //
y
// m2(2)

q1
;;

q2

55

q3

))
q4 ##

L3

L4

with qi : m2(2)→ Li induced by x, y 7→ x, y ∈ R/li = Li. These satisfy the relations of the squid algebra

Sq(2, 2, 2, 2;λ) and so there is an algebra morphism

ϕ : Sq(2, 2, 2, 2;λ)→ EndgrR(T ).

We have computed above the dimensions of the Hom spaces between the indecomposable summands

of T , and so one sees that the morphisms considered generate EndgrR(T ), so that ϕ is surjective.

Comparing the dimensions of EndgrR(T ) and Sq(2, 2, 2, 2;λ) shows that they are equal, and so ϕ is an

isomorphism.

Finally, to end this section and as alluded to above, let us mention a basic fact relating graded MCM

modules over the previous rings R to MCM modules over the completion R̂ at m. It is well-known (see

[112]) that the completion functor M̂ ∼= M ⊗R R̂ preserves indecomposables MCM modules, and that

two graded modules satisfy M̂ ∼= N̂ if and only if M ∼= N(n) for some n ∈ Z. It isn’t however always

true that indecomposable MCM R̂-modules arise as the completion of a graded module, but this does
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hold in special circumstances. For instance:

Corollary 3.1.5. Let R̂ be the completion of R = RYi for i = 1, 2 at m = R≥1. Then every indecom-

posable MCM R̂-module is the completion M̂ of an indecomposable graded MCM R-module M .

Proof. By [64, Prop. 1.5], the completion functor (̂−) : MCMZ(R) → MCM(R̂) identifies with the

universal functor to the triangulated hull of the orbit category MCMZ(R)/(1). By Keller’s theorem [61],

this functor is essentially surjective whenever MCMZ(R) ∼= Db(H) for H an hereditary category, and (1)

moves away from the heart H in that X(n) /∈ H for all n � 0 and X ∈ H. We do this in each case as

follows:

i) (R = RY2
): Take H = mod kQ, then (1) = S = τ [−1] moves away from the heart H.

ii) (R = RY1
): Take H = coh X where X is the weighted projective line of type (2, 2, 2, 2;λ) derived

equivalent to Sq(2, 2, 2, 2;λ), then SR = (2) corresponds to SX = −⊗ωX[1] on Db(X), and one easily

sees that (1) moves away from the heart H.

3.2 Graded MCM modules over the cone of 4 points on P2 in

general position

Let R = RY2 = k[x, y, z]/(Q,Q′). We now investigate the structure of MCMZ(R). Thinking ahead, we

will modify the equivalence of the previous section to simplify calculations down the line. Recall that

SR(−) = − ⊗R ωR[dimR − 1] = (1) is a Serre functor for MCMZ(R) since R has isolated singularities.

Writing kst = S−1
R (kst(1)), the full strong exceptional sequence of the previous section

〈kst(1)[−1], L1, . . . , L4〉

can be exchanged for the exceptional sequence

〈L1, . . . , L4, k
st〉.

This sequence is also full by Serre duality, since it has trivial right orthogonal category, and is also

strong as one immediately verifies that ExtngrR(Li, k
st) = ExtngrR(Li, k) = 0 for n 6= 0. Letting T =

(
⊕4

i=1 Li)⊕ kst, we have EndgrR(T ) = kQ with Q the “four subspace” quiver

1
p1

��
2
p2 &&

0

3

p3 88

4

p4

AA

The module T is also a tilting object in the opposite category MCMZ(R)op with endomorphism algebra

kQop, and mod kQop = kQmod. From Tilting theory we obtain:
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Proposition 3.2.1. There is a contravariant equivalence of triangulated categories

F : MCMZ(R)op
∼=−→ Db(kQmod)

onto the bounded derived category of left kQ-modules, or equivalently covariant quiver representations of

Q.

We will need an explicit description of the functor F . Given M,N ∈ MCMZ(R), recall that we write

RHomgrR(M,N) = HomgrR(C(M), C(N))

where C(M), C(N) are complete resolutions of M,N , so that

HnRHomgrR(M,N) ∼= ExtngrR(M,N).

Let R = RHomgrR(T, T ) be the derived endomorphism algebra of T , quasi-isomorphic to the usual

endomorphism algebra EndgrR(T ) = kQ via the standard truncation zigzag

ϕ : R ∼←− τ≤0R ∼−→ H0R = kQ.

The zigzag of quasi-isomorphisms ϕ induces an equivalence of derived categories

ϕ∗ : Dperf(RMod)
∼=−→ Dperf(kQMod) = Db(kQmod)

given by

X 7→ kQ⊗L
τ≤0R X.

We then define F as the composite equivalence F = ϕ∗ ◦ RHomgrR(−, T )

F : MCMZ(R)op
∼=

RHomgrR(−,T )
// Dperf(RMod)

∼=
ϕ∗

// Db(kQmod).

Working with the contravariant equivalence F will turn out to be easier in practice. Note that since

kQ is hereditary, any complex in Db(kQmod) is formal, that is to say

X ∼=
⊕
n∈Z

Hn(X)[−n]

and it suffices to understand the cohomology modules Hn(X).

Lemma 3.2.2. Let M ∈ MCMZ(R). Then for each n ∈ Z, we have an isomorphism of left kQ-module

Hn(F (M)) ∼= ExtngrR(M,T ).

Proof. The action of Z0R ⊂ τ≤0R ⊂ R on RHomgrR(M,T ) by post-composition descends to the action

of H0R = kQ on ϕ∗(RHomgrR(M,T )) by post-composition. Taking n-th cohomology gives the above

module structure.

Equivalently, the quiver representation Hn(F (M)) is given by
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ExtngrR(M,L1)

&&

ExtngrR(M,L2)

++
ExtngrR(M,kst)

ExtngrR(M,L3)

33

ExtngrR(M,L4)

88

with linear maps induced from the morphism Li → kst. To classify the indecomposable graded MCM R-

module, it then suffices to classify the indecomposable representations of Q and find the indecomposables

M for which H0(F (M)) exhaust this list. One obtains the remaining indecomposables by suspension

M 7→M [n].

3.2.1 Four Subspace Problem

In this section we review the known classification of representations of the D̃4 quiver Q with “four sub-

space” orientation. A good reference for this classification is [101, XIII.3] and Happel’s monograph [47]

for the derived category aspects, and we refer to Appendix A.1 for standard definitions and generalities

on quiver representations.

Since Q is an extended Dynkin quiver, the structure of the module category kQmod contains three

types of Auslander-Reiten components, namely the preprojective, preinjective components and regular

components, and the first two become attached in the derived category. Let

SkQ(−) = −⊗L
kQ D(kQ)

be the Serre functor on Db(kQ mod), and τ = SkQ ◦ [−1] the Auslander-Reiten translate2. Letting

ei be the idempotent at the i-th vertex, the indecomposable projectives P (i) = kQei are given for

i = 0, 1, 2, 3, 4 by

0
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2This is somewhat anachronistic. See Appendix A.1.
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and the indecomposable injectives I(i) = D(P (i)kQ) = D(eikQ) are given by

k
1
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The Auslander-Reiten translate exchanges those modules up to suspension, via τP (i) = I(i)[−1] and
τ−1I(i) = P (i)[1]. The family of indecomposable complexes {τmP (i)} for i = 0, 1, 2, 3, 4 and m ∈ Z
form a connected component in the Auslander-Reiten quiver Γ(Db(kQmod)) of the form (see [47, I.5])

· · ·

��

I(1)[−1]

��

P (1)

��

τ−1P (1)

��

· · ·

&&

I(2)[−1]

&&

P (2)

''

τ−1P (2)

&&
I(0)[−1]

>>

77

''

  

P (0)

BB

99

%%

��

τ−1P (0)

>>

66

((

!!

· · ·

· · ·

88

I(3)[−1]

88

P (3)

77

τ−1P (3)

88

· · ·

AA

I(4)[−1]

@@

P (4)

@@

τ−1P (4)

AA

called a transjective component. The indecomposables complexes τmP (i) for m ≤ 0 are modules

called preprojective modules, while the indecomposables complexes of the form τmI(i) for m ≥ 0 are

modules called preinjective modules. Note that the transjective component consists of the preprojective

component in kQmod attached to the suspended preinjective component in (kQmod)[−1]. We denote

the transjective component by PI and its n-th suspension by PI[n].

One can write down the preprojective and preinjective modules explicitly but we will be satisfied

with the description ⋃
n∈Z
PI[n] = {τmP (i)[n] | i = 0, 1, 2, 3, 4, and m,n ∈ Z}.

Regular components

A module whose indecomposable summands are neither preprojective nor preinjective is called regular.

Let R(Q) denote the category of regular modules. Its structure is as follows.

Proposition 3.2.3. The category R(Q) is a full abelian subcategory closed under extension and under

the Auslander-Reiten τ . Moreover, R(Q) is serial in that every object has a unique finite composition

series with simple regular factors.

Since Q is extended Dynkin, the Auslander-Reiten components in R(Q) break down into a P1 family

of disjoint tubes of finite ranks {Tλ}λ∈P1 . The additive closures add Tλ are abelian subcategories closed

under extension and under τ , with finitely many simples (whose number is the rank of the tube).

Moreover, the categories add Tλ are pairwise Hom and Ext orthogonal.

We begin with a description of the simple regular modules in R(Q). Consider quiver representations
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of the form

k
ϕ1

  
k

ϕ2
''
k2

k

ϕ3 77

k

ϕ4

>>

with all ϕi 6= 0. One can identify this with the set {imϕi} of 4 lines through the origin in k2. Assume

that the first three lines are distinct, so that up to change of basis the above representation is given by

(ϕ1, ϕ2, ϕ3, ϕ4) = ([ 0
1 ], [ 1

1 ], [ 1
0 ],
[
λ0

λ1

]
).

Writing λ = (λ0, λ1), we denote the above representation by Rλ. It is clear that the isomorphism class

of Rλ only depends on the point λ = [λ0 : λ1] ∈ P1.

Again considering the 4-tuples of lines given by
(
ϕ1, ϕ2, ϕ3, ϕ4

)
, now assume that exactly two of the

lines collide. This yields a partition of {ϕ1, ϕ2, ϕ3, ϕ4} = {ϕi, ϕj}
∐
{ϕp, ϕq} where im ϕi = im ϕj and

im ϕp 6= im ϕq. Keeping track of ordering, there are
(

4
2

)
= 6 such partitions. Let us define corresponding

representations as

R+
0 : ([ 0

1 ], [ 1
1 ], [ 1

0 ], [ 0
1 ]) R−0 : ([ 1

1 ], [ 0
1 ], [ 0

1 ], [ 1
0 ])

R+
1 : ([ 0

1 ], [ 1
1 ], [ 1

0 ], [ 1
1 ]) R−1 : ([ 1

1 ], [ 0
1 ], [ 1

1 ], [ 1
0 ])

R+
∞ : ([ 0

1 ], [ 1
1 ], [ 1

0 ], [ 1
0 ]) R−∞ : ([ 1

0 ], [ 1
0 ], [ 0

1 ], [ 1
1 ])

We have chosen this normalization with the following properties in mind:

i. For λ = 0, 1,∞, we have Rλ = R+
λ .

ii. The involution R+
λ ↔ R−λ corresponds to interchanging {ϕi, ϕj} and {ϕp, ϕq}.

Finally, let us introduce additional representations {S±0 , S
±
1 , S

±
∞} as in Figure 3.2.1. We now have a

complete set of simple regular modules for kQ.

Proposition 3.2.4. The following properties hold:

1) The set S = {Rλ}λ∈P1\{0,1,∞} ∪ {S±λ }λ=0,1,∞ is a complete set of isomorphism classes of simples in

R(Q). In particular, each S ∈ S is indecomposable with EndkQ(S) = k.

2) The Auslander-Reiten translate acts by

τRλ ∼= Rλ, λ 6= 0, 1,∞

τS±λ = S∓λ , λ = 0, 1,∞.

3) For each λ = 0, 1,∞, we have non-trivial short exact sequences

0→ S±λ → R±λ → S∓λ → 0.

The simples {Rλ}λ∈P1\{0,1,∞} each generate a rank one tube Tλ, and {S±0,1,∞} generate tubes T0,1,∞

of rank two, as in Figure 3.2.1 with the edges attached. Since each category add Tλ is a serial abelian
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Figure 3.1: The simple regular modules S±0,1,∞.

category with finitely many simples, each indecomposable in Tλ is uniquely determined by its simple

socle and its length (or equivalently its height in the tube).

Definition 3.2.5. Let S ∈ S be a simple regular module. We denote by S〈r〉 the unique indecomposable

regular module of length r with socle S.

Note that by Prop. 3.2.4 we have R±λ = S±〈2〉 for λ = 0, 1,∞. The remaining indecomposables are

constructed by iterated extensions as follows. Let S〈r〉 be an indecomposable regular with simple socle

S. From Auslander-Reiten duality (or Serre duality) we have

Ext1
kQ(S〈r〉, τS) ∼= DHomkQ(S, S〈r〉) = k

and so there is a unique non-split extension

ξ : 0→ τS → (τS)〈r + 1〉 → S〈r〉 → 0.

Its middle term must be indecomposable, since a decomposable module would have summands of length

≤ r and, as S〈r〉 is uniserial, any surjection (τS)〈r + 1〉 � S〈r〉 would have to restrict to a surjection

on some indecomposable summand, which would be an isomorphism for length reason and hence create

a splitting of ξ. Applying this to our set of simple regulars gives unique short exact sequences

0→ Rλ → Rλ〈r + 1〉 → Rλ〈r〉 → 0, λ 6= 0, 1,∞

0→ S±λ → S±λ 〈r + 1〉 → S∓λ 〈r〉 → 0, λ = 0, 1,∞
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Figure 3.2: Tubes Tλ of rank one and two.

and we have a description of the indecomposables in each tube {Tλ}λ∈P1 , as in figure 3.2.1. As before,

denote by Tλ[n] the n-th suspension of a tube in Db(kQmod).

Theorem 3.2.6. The Auslander-Reiten quiver of Db(kQmod) is given by the union of disjoint compo-

nents

Γ(Db(kQmod)) =

( ⋃
n∈Z
PI[n]

)
∪
( ⋃
λ∈P1,n∈Z

Tλ[n]

)
.

In particular this yields a full classification of indecomposables in Db(kQmod).

3.2.2 Indecomposable graded MCM modules

We want to describe the classification of indecomposables on the other side via F : MCMZ(R)op
∼=−→

Db(kQmod). First recall that the Serre functor on MCMZ(R) is given by SR = (1) and the Auslander-

Reiten translate by τ = (1)[−1] = syz1
R(−)(1).

Since F is a contravariant equivalence, we have F ◦SR = S−1
kQ◦F and F ◦τ = τ−1◦F by uniqueness of

Serre functors3. Since the indecomposable summands of a tilting object are sent onto the indecomposable

projectives, we immediately have:

Proposition 3.2.7. We have isomorphisms

F
(
syzn−mR kst(−m)

) ∼= τmP (0)[n]

F
(
syzn−mR Li(−m)

) ∼= τmP (i)[n]

for all m,n ∈ Z and i = 1, 2, 3, 4.

The indecomposable regular modules in kQmod ⊂ Db(kQmod) are characterised amongst indecom-

posables by being τ -periodic, of period 1 or 2. In MCMZ(R) this corresponds to indecomposables with

a periodic minimal free resolution (then of period 1 or 2), and we have seen that they vary in families.

3The functor S−1 is a Serre functor for the opposite triangulated category.
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p1
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p4
l4

p3

l3

Figure 3.3: The four points X = V (Q0) ∩ V (Q∞) in P2.

Before we describe the periodic modules, let us apply some normalisations. For the remainder of this

section, assume that char k 6= 2. The complete intersection R = k[x, y, z]/(Q,Q′) is the homogeneous

coordinate ring of a set X of 4 distinct points in P2 in general position4, and conversely any set of 4

points in general position arise as the complete intersection of two conics. Moreover, there is a unique

pencil of conics through X and this pencil contains 3 singular conics.

It is well-known that any sets of 4 points in general position are related by a projective transformation,

and so up to coordinate change we can assume that the points are given by [±1 : ±1 : ±1] ∈ P2, and so

that the singular conics are given by equations

Q0 = x2 − y2

Q1 = x2 − z2

Q∞ = y2 − z2

with general conic in the pencil given by {Qλ = 0} withQλ = λ0Q∞+λ1Q0, λ = [λ0 : λ1] ∈ P1. With this

normalisation, we have an isomorphism R ∼= k[x, y, z]/(Q0, Q∞). We may picture X = V (Q0) ∩ V (Q∞)

as in figure 3.2.2, where we let li stand for both the line and the corresponding linear form in the

factorizations

Q0 = (x− y)(x+ y) = l1l3

Q∞ = (y − z)(y + z) = l2l4

and from the figure 3.2.2 we have I(pi) = (li, li+1), using cyclic indexing. Recall that for each point

pi ∈ X, we defined Li = R/I(pi) = S/(li, li+1) as its homogeneous coordinate ring thought of as an

R-module, with S = k[x, y, z].

Now for λ = (λ0, λ1) ∈ k2 \ {0}, let (Φ+
λ ,Φ

−
λ ) be the pair of matrices over S given by

Φ+
λ =

[
λ1(x+ y) y + z

λ0(z − y) x− y

]
Φ−λ =

[
x− y −y − z

λ0(y − z) λ1(x+ y)

]

We have Φ+
λΦ−λ = Qλ · I2 = Φ−λΦ+

λ . Letting µ = (µ0, µ1) correspond to a different point in P1, the

sequence (Qµ, Qλ) is regular in S and the pair (Φ+
λ ,Φ

−
λ ) defines a matrix factorization of Qλ over

4A set of n+ 2 points in Pn is in general position if no n+ 1 of them lie in a proper linear subspace. Here this means
that no 3 points in X are collinear.
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S′ = S/(Qµ). The module

Nλ = coker
(
R(−1)⊕2 Φ

+
λ−−→ R⊕2

)
is then an MCM module over R ∼= S′/(Qλ), with isomorphism class independent of representative of

[λ0 : λ1] ∈ P1. Its complete resolution is then given by

C(Nλ) : · · · → R(−2)⊕2 Φ
−
λ−−→ R(−1)⊕2 Φ

+
λ−−→ R⊕2 Φ

−
λ−−→ R(1)⊕2 → · · ·

Proposition 3.2.8. The following holds for all λ ∈ P1:

i) We have EndgrR(Nλ) = EndgrR(Nλ) = k, hence the modules Nλ are indecomposable.

ii) We have τ2Nλ ∼= Nλ.

Proof. For part i), direct calculations show that the only scalar matrices A,B fitting in a commutative

diagram

R(−1)⊕2

A��

Φ+
λ // R⊕2

B��
R(−1)⊕2

Φ+
λ // R⊕2

are given by A = B = c · I2 for some c ∈ k, for any λ ∈ P1. Thus EndgrR(Nλ) = EndgrR(Nλ) = k.

Part ii) follows from the definition of τ = syz1
R(−)(1) and the minimal complete resolution of Nλ is

2-periodic.

Next, consider λ = 0, 1,∞ corresponding to the 3 singular conics listed above. Then the factorizations

Q0 = x2 − y2 = (x− y)(x+ y)

Q1 = x2 − z2 = (x− z)(x+ z)

Q∞ = y2 − z2 = (y − z)(y + z)

are size one matrix factorizations of Qλ, netting us additional MCM modules5

D+
0 = coker

(
R(−1)

x−y−−−→ R
)

D−0 = coker
(
R(−1)

x+y−−−→ R
)

D+
1 = coker

(
R(−1)

x+z−−−→ R
)

D−1 = coker
(
R(−1)

x−z−−−→ R
)

D+
∞ = coker

(
R(−1)

y+z−−→ R
)

D−∞ = coker
(
R(−1)

y−z−−→ R
)

We will write D±λ = R/l±λ for l±λ the corresponding linear form6. Each pair (l+λ , l
−
λ ) corresponds

to a pair of lines in Figure 3.2.2 forming the singular conic V (Qλ). We then have minimal complete

resolutions

C(D±λ ) : · · · → R(−2)
l∓λ−→ R(−1)

l±λ−→ R
l∓λ−→ R(1)

l±λ−→ R(2)→ · · ·

Proposition 3.2.9. The following holds for each λ = 0, 1,∞:

i) We have EndgrR(D±λ ) = EndgrR(D±λ ) = k, hence the modules D±λ are indecomposable.

5The choice of sign will become clear in Theorem 3.2.10.
6There is some ambiguity in that (l1, l2, l3, l4) = (l+0 , l

−
∞, l
−
0 , l

+
∞). In practice we will use {li} solely to refer to Li =

R/(li, li+1) and the {l±λ } to refer to D±λ = R/l±λ .
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Figure 3.4: The three pairs of lines corresponding to singular conics.

ii) We have τD±λ
∼= D∓λ .

Proof. We have EndgrR(D±λ ) ∼= (R/l±λ )0 = k hence i) follows, and ii) follows from the definition τ =

syz1
R(−)(1).

We now have enough indecomposable MCM modules to produce all simple regular modules over kQ.

The following is the main calculation of this section.

Theorem 3.2.10. We have the following isomorphisms in Db(kQmod):

i) F (Nλ) ∼= Rλ for all λ ∈ P1.

ii) F (D±λ ) ∼= S±λ for λ = 0, 1,∞.

Proof. For ease of calculations we will use Orlov’s fully faithful embedding

(−)[≥0] : MCMZ(R) ↪→ Db(grmod≥0R).

Note that we have (Li)[≥0] = Li, (Nλ)[≥0] = Nλ, (D±λ )[≥0] = D±λ by Lemma 3.1.1 since they are

generated in degree zero, and (kst)[≥0] = k since a > 0 by Cor. A.3.11 to Orlov’s Theorem.

We first show i). Let U = T[≥0] =
(⊕4

i=1 Li
)
⊕ k. We have

HomgrR(Nλ, T ) ∼= HomgrR(Nλ, U) � HomgrR(Nλ, k) 6= 0

sinceNλ is generated in degree 0. This means that H0(F (Nλ)) = HomgrR(Nλ, T ) 6= 0 and so Hi(F (Nλ)) =

0 for i 6= 0 since Nλ is indecomposable and F (Nλ) is formal in Db(kQmod). Hence F (Nλ) is a kQ-module.

By Lemma 3.2.2 we have to compute the module structure on HomgrR(Nλ, T ) ∼= HomgrR(Nλ, U)

under endomorphisms of U , or equivalently the maps in the diagram

HomgrR(Nλ, L1)

''

HomgrR(Nλ, L2)

++
HomgrR(Nλ, k)

HomgrR(Nλ, L3)

33

HomgrR(Nλ, L4)

77
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induced by the canonical quotient Li � k. Let dim(Nλ) := dim(F (Nλ)) = (d0, d1, d2, d3, d4) be the

dimension vector of the above quiver representation. We have d0 = dimk HomgrR(Nλ, k) = 2 with the

obvious basis, and we claim that di = dimk HomgrR(Nλ, Li) = 1 for i = 1, 2, 3, 4. We prove this by

constructing explicit bases. Present Li = R/I(pi) = R/(li, li+1) as a quotient of two linear forms as

above. Consider the morphisms

R(−1)⊕2
Φ+
λ //

[
0 1
−λ0 0

]
��

R⊕2

[ 0 1 ]

��

// // Nλ

��

R(−1)⊕2
Φ+
λ //

[
λ1 1
−λ0 −1

]
��

R⊕2

[ 1 1 ]

��

// // Nλ

��
R(−1)⊕2

[ x−y y−z ]
// R // // L1 R(−1)⊕2

[ x+y y−z ]
// R // // L2

R(−1)⊕2
Φ+
λ //

[
λ1 1
0 0

]
��

R⊕2

[ 1 0 ]

��

// // Nλ

��

R(−1)⊕2
Φ+
λ //

[
λ0λ1 λ1

λ0λ1 λ0

]
��

R⊕2

[λ0 λ1 ]

��

// // Nλ

��
R(−1)⊕2

[ x+y y+z ]
// R // // L3 R(−1)⊕2

[ x−y y+z ]
// R // // L4

where we recall that Φ+
λ =

[
λ1(x+y) y+z
λ0(z−y) x−y

]
. These chain-maps cannot be nullhomotopic for degree reasons

as there are no non-zero morphism h : R → R(−1), and so di ≥ 1 for i = 1, 2, 3, 4. Since τ2Nλ ∼= Nλ,

we know that F (Nλ) must be a regular indecomposable with d0 = 2, and an appeal to the classification

of regular indecomposables then shows that di = 1 for i = 1, 2, 3, 4. With the bases constructed above,

it is now clear that F (Nλ) = Rλ.

We now show ii). By the same argument as above, F (D±λ ) must be a regular indecomposable kQ-

module and we are left with computing the module structure on HomgrR(D±λ , U). Let dim(D±λ ) :=

dim(F (D±λ ) = (d0, d1, d2, d3, d4) be its dimension vector. We have d0 = dimk HomgrR(D±λ , k) = 1 with

generator given by the canonical quotient D+
λ � k. Writing D±λ = R/l±λ for l±λ the corresponding

linear form, we have HomgrR(R/l±λ , Li)
∼= HomgrS(S/l±λ , Li) and one calculates its dimension from the

incidence relations

di = dimk HomgrS(S/l±λ , Li) =

1, pi ∈ V (l±λ )

0, pi /∈ V (l±λ )

which can be read from Figure 3.2.2. Since F (D±λ ) is an indecomposable regular module, by comparing

dimension vectors we obtain F (D±λ ) = S±λ as claimed.

Remark 3.2.11. We can pick explicit bases for HomgrR(D+
λ , Li) as below:

R(−1)
x−y ..

[ 1
0 ]
��

R

[ 1 ]

��

// D+
0

��

R(−1)
x−y ..

[ 0
0 ]
��

R

[ 0 ]

��

// D+
0

��

R(−1)
x−y ..

[ 0
0 ]
��

R

[ 0 ]

��

// D+
0

��

R(−1)
x−y ..

[ 1
0 ]
��

R

[ 1 ]

��

// // D+
0

��
R(−1)⊕2

[ x−y y−z ]
00 R // L1 R(−1)⊕2

[ x+y y−z ]
00 R // L2 R(−1)⊕2

[ x+y y+z ]
00 R // L3 R(−1)⊕2

[ x−y y+z ]
00 R // L4
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R(−1)
x+z ..

[ 0
0 ]
��

R

[ 0 ]

��

// D+
1

��

R(−1)
x+z ..

[
1
−1

]
��

R

[ 1 ]

��

// D+
1

��

R(−1)
x+z ..

[ 0
0 ]
��

R

[ 0 ]

��

// D+
1

��

R(−1)
x+z ..

[ 1
1 ]
��

R

[ 1 ]

��

// D+
1

��
R(−1)⊕2

[ x−y y−z ]
00 R // L1 R(−1)⊕2

[ x+y y−z ]
00 R // L2 R(−1)⊕2

[ x+y y+z ]
00 R // L3 R(−1)⊕2

[ x−y y+z ]
00 R // L4

R(−1)
y+z ..

[ 0
0 ]
��

R

[ 0 ]

��

// D+
∞

��

R(−1)
y+z ..

[ 0
0 ]
��

R

[ 0 ]

��

// D+
∞

��

R(−1)
y+z ..

[ 0
1 ]
��

R

[ 1 ]

��

// D+
∞

��

R(−1)
y+z ..

[ 0
1 ]
��

R

[ 1 ]

��

// D+
∞

��
R(−1)⊕2

[ x−y y−z ]
00 R // L1 R(−1)⊕2

[ x+y y−z ]
00 R // L2 R(−1)⊕2

[ x+y y+z ]
00 R // L3 R(−1)⊕2

[ x−y y+z ]
00 R // L4

This clearly shows that F (D+
λ ) = S+

λ , and so that F (D−λ ) = S−λ by using τ .

Remark 3.2.12. As a result, we see that the pencil of conics {V (Qλ)}λ∈P1 serves as natural parameter

space for the family of tubes {Tλ}λ∈P1 , with the rank of Tλ given by the number of branches of V (Qλ).

Finally we obtain the remaining indecomposables by taking extensions. Let S ′ = {Nλ}λ6=0,1,∞ ∪
{D±λ }λ=0,1,∞, which is sent contravariantly onto the set of simple regular modules S ⊂ Db(kQ mod)

by F . For any MCM modules M,N , we have Ext1
grR(M,N) = Ext1

grR(M,N). We can define MCM

modules Nλ〈r〉, D±λ 〈r〉 for r ≥ 1 iteratively as the unique modules fitting inside non-trivial short exact

sequences

0→ Nλ〈r〉 → Nλ〈r + 1〉 → Nλ → 0, λ 6= 0, 1,∞

0→ D∓λ 〈r〉 → D±λ 〈r + 1〉 → D±λ → 0, λ = 0, 1,∞

corresponding to the short exact sequences

0→ Rλ → Rλ〈r + 1〉 → Rλ〈r〉 → 0, λ 6= 0, 1,∞

0→ S±λ → S±λ 〈r + 1〉 → S∓λ 〈r〉 → 0, λ = 0, 1,∞

under the isomorphisms

Ext1
grR(Nλ, Nλ〈r〉) ∼= Ext1

grR(Nλ, Nλ〈r〉) ∼= Ext1
kQ(Rλ〈r〉, Rλ) = k

and respectively for D±λ 〈r〉. Note that under this notation we have Nλ = D+
λ 〈2〉 and syz1

R(Nλ)(1) =

τNλ = D−λ 〈2〉 for λ = 0, 1,∞, while τNλ ∼= Nλ for λ 6= 0, 1,∞ by Prop. 3.2.4.

A priori, the modules Nλ〈r〉, D±λ 〈r〉 in MCMZ(R) only have indecomposable images in MCMZ(R),

and so might contain a free summand. We show that this is not so.

Lemma 3.2.13. The modules Nλ〈r〉, D±λ 〈r〉 are indecomposable in the module category.

Proof. Let M be such a module, and we can write M = F ⊕ [M ] for F a maximal free summand and

[M ] indecomposable. From the above short exact sequences one sees that M is generated in degree

zero by β0,0(M) generators, and Betti numbers are subadditive under short exact sequences. We have

β0,0([M ]) ≤ β0,0(M). We will show that the numbers β0,0([M ]) are additive under the above short exact

sequences, thus reversing the inequality β0,0([M ]) ≥ β0,0(M) and proving M = [M ].

We have β0,0([M ]) = dimk HomgrR([M ], k), and we claim that HomgrR([M ], k) = HomgrR([M ], k).

To see this, note that a non-zero map f : [M ] → k factoring through a free module G must surject
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onto one of its summand to reach k, thus splitting off a free summand of [M ], a contradiction. We then

obtain

β0,0([M ]) = dimk HomgrR([M ], k)

= dimk HomgrR([M ], k)

= dimk HomgrR(M,k)

= dimk HomgrR(M,kst)

= dimk HomkQ(P (0), F (M))

and dimk HomkQ(P (0),−) is additive on short exact sequence of kQ-modules, from which the above

extensions come from. This shows β0,0(M) ≤ β0,0([M ]) and so M = [M ].

This completes the classification of graded MCM R-modules. To state the result in full, recall that

the complexity of a module M is the least integer c = cx(M) such that the minimal free resolution F∗

of M has ranks rk(Fn) with growth of order O(nc−1).

Let C be the Auslander-Reiten component of Γ(MCMZ(R)) containing L1, . . . , L4, k
st, and let Qλ

be the component contaning Nλ for λ ∈ P1. All indecomposables in Qλ have periodic minimal free

resolution period 1 or 2 according to whether λ 6= 0, 1,∞ or λ = 0, 1,∞, corresponding to the τ -period.

Hence these modules have complexity one. In particular they satisfy M [2] ∼= M(2). In the next section,

we will construct the minimal complete resolutions of L1, . . . , L4, k
st which will be of complexity two.

Summarising this section, we have shown:

Theorem 3.2.14. The indecomposable (non-free) graded MCM R-modules are listed in the following

table, up to degree shift:

Indecomposable objects (up to degree shift)

Complexity 2 Complexity 1

λ ∈ P1 \ {0, 1,∞} λ = 0, 1,∞

kst[n], n ∈ Z Nλ〈r〉, r ≥ 1 Dλ〈r〉+, r ≥ 1

Li[n], n ∈ Z Dλ〈r〉−, r ≥ 1

Theorem 3.2.15. The Auslander-Reiten quiver of MCMZ(R) is given by the union of disjoint compo-

nents

Γ
(
MCMZ(R)

)
=

( ⋃
n∈Z
C[n]

)
∪
( ⋃
λ∈P1,n∈Z

Qλ[n]

)
.

The components C can be drawn as

· · ·

  

L1(1)[−1]

##

L1

��

L1(−1)[1]

  

· · ·

((
L2(1)[−1]

))
L2

%%

L2(−1)[1]

''
kst(2)[−2]

;;

55

))

##

kst(1)[−1]

>>

77

((

  

kst

>>

77

((

  

· · ·

· · ·

66

L3(1)[−1]

55

L3

99

L3(−1)[1]

77

· · ·

>>

L4(1)[−1]

;;

L4

BB

L4(−1)[1]

>>
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and the components Qλ as below, with the edges identified

...

''

...
...

""

...

%%

...

Nλ〈6〉

77

((

D−λ 〈6〉
&&

99

D+
λ 〈6〉

##

<<

Nλ〈5〉

((

66

Nλ〈5〉 D+
λ 〈5〉

##

;;

D−λ 〈5〉
&&

88

D+
λ 〈5〉

Nλ〈4〉

((

66

D+
λ 〈4〉

&&

88

D−λ 〈4〉
##

;;

Nλ〈3〉

((

66

Nλ〈3〉 D−λ 〈3〉
##

;;

D+
λ 〈3〉

&&

88

D−λ 〈3〉

Nλ〈2〉

((

66

D−λ 〈2〉

&&

88

D+
λ 〈2〉

##

;;

Nλ

66

Nλ D+
λ

;;

D−λ

88

D+
λ

λ ∈ P1 \ {0, 1,∞} λ = 0, 1,∞.

3.2.3 Betti tables of indecomposables

Let M be a graded MCM R-module with minimal complete free resolution

· · · →
⊕
j∈Z

R(−j)⊕βi,j → · · · →
⊕
j∈Z

R(−j)⊕β1,j →
⊕
j∈Z

R(−j)⊕β0,j →
⊕
j∈Z

R(−j)⊕β−1,j → · · · .

The Betti table of M is the table whose entry in the i-th column and j-th row is given by βi,i+j .

· · · 0 1 · · · a-2 a-1 a · · ·
...

...
...

...
...

...

-2 · · · β0,−2 β1,−1 · · · βa−2,a−4 βa−1,a−3 βa,a−2 · · ·
-1 · · · β0,−1 β1,0 · · · βa−2,a−3 βa−1,a−2 βa,a−1 · · ·
0 · · · β0,0 β1,1 · · · βa−2,a−2 βa−1,a−1 βa,a · · ·
1 · · · β0,1 β1,2 · · · βa−2,a−1 βa−1,a βa,a+1 · · ·
...

...
...

...
...

...

We list here all Betti tables of indecomposables. Note that τ±1 = syz±1
R (−)(±1) and (±1) correspond

to horizontal and vertical shifts respectively.

It is simple to obtain the Betti tables from our classifications. Let F : MCMZ(R)op
∼=−→ Db(kQmod )

be the previous equivalence. For any quiver representation X of Q, we write X0 for the vector space

sitting over the 0 vertex. We will use the following lemma for calculations.

Lemma 3.2.16. For any M ∈ MCMZ(R), we have

βi,i+j(M) = dimk H−j(τ−i−jF (M))0.

Proof. We have βi,i+j(M) = dimk ExtigrR(M,k(−i − j)) = dimk ExtigrR(M,kst(−i − j)). We also have
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τM = M(1)[−1], and so we obtain

βi,i+j(M) = dimk ExtigrR(M,kst(−i− j))

= dimk HomgrR(M,kst(−i− j)[i])

= dimk HomgrR(M, τ−i−jkst[−j])

= dimk HomgrR(τ i+jM,kst[−j])

= dimk HomDb(kQop)(F (kst[−j]), F (τ i+jM))

= dimk HomDb(kQop)(P (0)[j], τ−i−jF (M))

= dimk H−j(τ−i−jF (M))0.

It follows that the Betti table of any indecomposable M can be computed from the dimension vectors

of the τ -orbit of quiver representation {τnF (M)}n∈Z. We deduce that, if X ∈ kQmod ⊆ Db(kQmod) is a

kQ-module such that τ−nX is also a kQ-module for all n ≥ 0, then any MCM R-module corresponding to

X has a linear resolution in that βi,i+j(M) = 0 for j 6= 0 for all i ≥ 0. Moreover, the regular kQ-modules

correspond precisely to the MCM modules which are completely linear, meaning that βi,i+j(M) = 0 for

any j 6= 0 and all i ∈ Z.

The dimension vectors of indecomposable representations of Q are written down in [101, XIII.3], and

from this it is easy to obtain the corresponding Betti tables of indecomposables MCM modules. We

record this in the next proposition.

Proposition 3.2.17. The Betti tables of indecomposable graded MCM modules are given up to syzygy

and degree shifts by:

Nt〈r〉 : Dt〈r〉± :

. . . -1 0 1 2 . . .

-1 - - - - - -

0 . . . 2r 2r 2r 2r . . .

1 - - - - - -

. . . -1 0 1 2 . . .

-1 - - - - - -

0 . . . r r r r . . .

1 - - - - - -

kst : Li :

. . . -2 -1 0 1 2 3 . . .

–2 - - - - - - - -

-1 . . . 5 3 1 - - - -

0 - - - 1 3 5 7 . . .

1 - - - - - - - -

. . . -2 -1 0 1 2 3 . . .

-2 - - - - - - - -

-1 . . . 2 1 - - - - -

0 - - - 1 2 3 4 . . .

1 - - - - - - - -
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3.3 Graded MCM modules over the cone of 4 points on P1

The algebra RY2
had tame domestic CM-type and almost all of the isomorphism classes of indecompos-

able MCM modules were exhausted by a 1-parameter family of tubes {Tλ}λ∈P1 . In contrast, the algebra

RY1 studied in this section is of tame but non-domestic CM-type, and we will see that all indecomposables

live in 1-parameter familes of tubes

{Tλ,q}λ∈P1 q ∈ Q ∪ {∞}

indexed by a choice of slope q for an appropriate stability condition. We have shown the existence of an

equivalence of triangulated categories

MCMZ(RY1) ∼= Db(Sq(2, 2, 2, 2;λ))

onto the derived category of the squid algebra Sq(2, 2, 2, 2;λ) with quiver

•

•

•
y //
x
// •

p1
>>

p2

66
p3

((
p4   

•

•

and relations pili(x, y) = 0 for i = 1, 2, 3, 4. Squid algebras arise as endomorphism algebras of certain

tilting sheaves on Geigle-Lenzing weighted projective line of the corresponding weight type, in this case

giving

Db(Sq(2, 2, 2, 2;λ)) ∼= Db(X)

for X = P1(2, 2, 2, 2;λ) a weighted projective line of genus one. The above description of the set of

indecomposables was obtained by Geigle, Lenzing and Meltzer and parallels the Atiyah classification of

vector bundles on the elliptic curve. The main aspect of the classification is the existence of two ‘twist’

autoequivalences

T1, T2 : Db(X)
∼=−→ Db(X)

generating a braid group on three strands B3 = 〈T1, T2〉, from which one obtains all indecomposables

(up to suspension) by successive applications starting from the category of torsion sheaves coh0X.

Let R = RY1
= S/(fλ) for S = k[x, y] and fλ = xy(x− y)(x− λy), λ 6= 0, 1. The aim of this section

is to understand the parallel classification in the category MCMZ(R), or equivalently in the homotopy

category of matrix factorisations MF(S, fλ) ∼= MCMZ(R). In this chapter, we will do the following

things:

1) We will write down the matrix factorisations corresponding to the simple torsion sheaves, from which

the remaining indecomposables can be produced by taking extensions and applying B3.

2) We will give formulas for the rank and degree of a (complex of) sheaves FM ∈ Db(X) ∼= MCMZ(R)

in terms of the Betti table of the corresponding MCM module M , allowing an intrinsic description
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of the ‘charge’ of a graded MCM module Z : K0(MCMZ(R))→ Z⊕2 defined as

Z(M) =

(
rkM

degM

)
:=

(
rkFM
degFM

)

Along with the t-structure giving rise to cohX ⊂ MCMZ(R), this gives the data of a stability condition

on MCMZ(R) in the sense of Bridgeland.

3) We will write down the action of the operations M 7→ M(1) on the charge Z(M), giving rise to an

action of the cyclic group C4 of order 4 on the lattice Z⊕2. We then give a fundamental domain

for the action of C4, so that it suffices to consider indecomposables with Z(M) in that fundamental

domain.

4) Finally as main result, making use of the above fundamental domain, we will completely classify the

Betti tables of indecomposable graded MCM modules M up to degree shift and syzygy.

Relations to previous work

The parabolic surface singularities

P8 X9 J10

x3 + y3 + z3 + axyz x4 + y4 + ax2y2 + z2 x3 + y6 + ax2y2 + z2

a3 + 27 6= 0 a2 6= 4 4a3 + 27 6= 0

give the cone over the embedding of an elliptic curve Ea inside P2, P(1, 1, 2) and P(1, 2, 3) respectively.

In his thesis, A. Pavlov classified the Betti tables of graded MCM modules over a hypersurface ring

A = k[x, y, z]/(f) for f in the above table by making use of Orlov’s equivalence

MCMZ(A) ∼= Db(Ea).

to reduce calculations of Betti tables to sheaf cohomology calculations. Our methods are directly inspired

from his, although the presence of exceptional objects (sitting in tubes of rank two) adds a layer of

complexity for which further ideas are required.

Lastly, the above picture suggests that similar results hold for the curve singularity of type T36. This

requires more involved (but similar) calculations, and we will not go through this here.

Weighted projective lines

We now recall standard notation, definitions and background results which will be used implicitly

throughout this section. The reader is referred to [45, 72, 78] for a more in-depth view of the topic.

Note that we will only use the weighted projective line of genus one X = P1(p,λλλ) = P1(2, 2, 2, 2;λ)

with λλλ = (0,∞, 1, λ). The derived categories of weighted projective lines of genus one were thoroughly

investigated by Lenzing and Meltzer in [72, 78].

Let us fix notation. Given a set of weights p = (p1, . . . , pn) and points λλλ = (λ1, . . . , λn) on P1, a

weighted projective line X = P1(p,λλλ) is constructed from P1 from an appropriate ‘root construction’ of
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order pi at the point λi, with the resulting geometric object living in one of many categories according

to one’s taste (as a Deligne-Mumford stack, as an orbifold P1, as a ‘noncommutative’ projective variety,

. . . ). The resulting category of coherent sheaves cohX being the main object of interest, we will use the

original (and most tractable) model for it introduced by Geigle and Lenzing [45].

Given a set (p,λλλ) of weighted points on P1, we can and will assume that pi ≥ 2 and that λλλ =

(0,∞, 1, λ4, . . . λn). Let S = k[u, v] be the homogeneous coordinate ring of P1. Introduce the ’homoge-

neous coordinate ring’ of X by adding pi-roots at the points λi

S(p,λλλ) =
S[x1, . . . , xn]

(li(u, v)− xpii )i=1,...,n

where li ∈ k[u, v] is the linear form cutting out λi ∈ P1. Since we assume that λ1 = [0 : 1] and λ2 = [1 : 0]

the first two relations become u = xp1

1 , v = xp2

2 , hence it is customary to write

S(p,λλλ) =
k[x1, . . . , xn]

(li(x
p1

1 , x
p2

2 )− xpii )i=3,...,n

.

To the set of weights p, one associates a rank one abelian group L = L(p) with presentation

L(p) = 〈~x1, . . . , ~xn,~c | p1~x1 = · · · = pn~xn = ~c〉.

Setting p = lcm(p1, . . . , pn), there is a group homomorphism δ : L→ Z given by δ(~xi) = p
pi

, with finite

kernel. We denote by ~ω = (n − 2)~c −
∑n
i=1 ~xi the canonical element in L. The coordinate ring S(p,λλλ)

admits a grading by the group L by setting |xi| := ~xi. Taking a cue from the Serre’s Theorem, we define

the abelian category of coherent sheaves cohX as the Serre quotient

cohX =
grmod LS(p,λλλ)

grmodL0S(p,λλλ)

of the finitely generated graded S(p,λλλ)-modules by the subcategory of finite length modules, with QCohX
defined similarly. Alternatively, these categories have models as actual (quasi-)coherent sheaves on a

ringed spaced, see [45].

Writing B = S(p,λλλ) to alleviate notation, each ~x ∈ L gives rise to a corresponding line bundle

OX(~x) = B̃(~x), and we denote by

M̃ ⊗OX(~x) := M̃(~x)

the twisting operator on sheaves. Note that by [71, Appendix], cohX has a symmetric closed monoidal

structure with unit OX for which the above line bundles are the invertible objects, compatible with

sheafification, so that ~x 7→ OX(~x) gives an isomorphism of abelian groups L ∼= Pic(X). We denote

ωX = OX(~ω) the canonical line bundle.

The categories coh X and QCoh X share the same formal properties as those of smooth projective

curves. In particular cohX is an Ext-finite hereditary category with Serre duality

Exti(F ,G ⊗ ωX) ∼= DExt1−i(G,F)

and we set SX(−) = − ⊗ ωX[1] the Serre functor on Db(X) with τ = − ⊗ ωX the Auslander-Reiten
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translate.

We can compute the cohomology of line bundles as H0(X,OX(~x)) ∼= B~x, and H1(X,OX(~x)) by Serre

duality. Every coherent sheaf on X is the direct sum of its torsion subsheaf and quotient torsion-free

sheaf, which is then a vector bundle, and vector bundles admit finite filtrations with line bundle successive

quotients. One is lead to understand torsion sheaves and vector bundles separately.

The indecomposable torsion sheaves are supported over a single point x ∈ P1. We say that x is

ordinary if it lies outside of the set λλλ, and exceptional otherwise. Torsion sheaves supported over x

form a serial abelian subcategory, with unique simple sheaf over x ordinary and pi-many simple sheaves

{Si,j}j∈Z/piZ over x = λi exceptional. These have presentations

0→ OX((j − 1)~xi)
xi−→ OX(j~xi)→ Si,j → 0.

In particular we single out Si,0 as the unique simple sheaf with a non-zero section7, and we have

Hom(OX, Si,0) = k and Si,j ⊗ ωX = Si,j+1. There is a family of indecomposable “ordinary” torsion

sheaves Sx for any x, with presentations

0→ OX(−~c) l(u,v)−−−→ OX → Sx → 0

where l(u, v) ∈ S = k[u, v] = k[xp1

1 , x
p2

2 ] ⊆ B is the linear form cutting down the point x ∈ P1. The sheaf

Sx has length one when x is ordinary and length pi over x = λi, with the Si,j as simple composition

factors. The Auslander-Reiten quiver of the subcategory of torsion sheaves coh0X then forms a P1 family

of tubes {Tλ}λ∈P1 , of rank pi over λi and rank one elsewhere.

In contrast, the classification of indecomposable vector bundles on X differs greatly in complexity

according to whether the virtual genus gX ∈ Q satisfies gX < 1, gX = 1 or gX > 1 as in the case of

algebraic curves, and a complete classification is only attainable for gX ≤ 1. See [45, 78] for more details.

The rank and degree of a sheaf define maps onK0(X) := K0(cohX), uniquely determined by additivity

from their value on line bundles as

rk(OX(~x)) = 1

deg(OX(~x)) = δ(~x).

In particular deg(Sx) = deg(OX(~c)) = p and deg(Si,j) = 1.

We make note of two particular tilting sheaves in Db(X). To fix notation, note that L is an ordered

abelian group with positive cone L+ = N · {~x1, . . . , ~xn}, and let Si,j〈r〉 be the unique indecomposable

torsion sheaf of length r supported over λi with simple socle Si,j . Then we have a tilting bundle

Tcan =
⊕

~0≤~x≤~c

OX(~x)

7This agrees with the notation in [36] but disagrees with [78].
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whose endomorphism algebra is given by Ringel’s canonical algebra C(p,λλλ) = kQ/I with quiver

OX( ~x1)
x1 // OX(2 ~x1)

x1 // · · · x1 // OX((p1 − 1) ~x1)

x1

$$

OX( ~x2)
x2 // OX(2 ~x2)

x2 // · · · x2 // OX((p2 − 1) ~x2)
x2

))
OX

x1

>>

x2
77

xn

''

...
...

...
... OX(~c)

OX(~xn)
xn // OX(2~xn)

xn // · · · xn // OX((pn − 1)~xn)

xn
55

and relations li(x
p1

1 , x
p2

2 )− xpii = 0, as well as a tilting sheaf [73, Ex. 4.4]

Tsquid = OX ⊕OX(~c)⊕

(
n⊕
i=1

pi−1⊕
r=1

Si,0〈r〉

)

with endomorphism algebra a Squid algebra Sq(p,λλλ) = kQ/I with quiver

S1,0
// S1,0〈2〉 // · · · // S1,0〈p1 − 1〉

S2,0
// S2,0〈2〉 // · · · // S2,0〈p2 − 1〉

OX
u //
v
// OX(~c)

p1

==

p2

77

pn−1

''
pn

!!

...
...

...
...

Sn−1,0
// Sn−1,0〈2〉 // · · · // Sn−1,0〈pn−1 − 1〉

Sn,0 // Sn,0〈2〉 // · · · // Sn,0〈pn − 1〉

and relations pili(u, v) = 0. Note that the indecomposable summands of Tcan and Tsquid naturally form

full strong exceptional collections since the above quivers have no cycles. Since the head of the Squid

algebra is a Kronecker quiver, we can interpret that second full exceptional collection as

Db(X) =
〈
Db(P1), S1,0, · · · , S1,0〈p1 − 1〉, · · · , Sn,0, · · · , Sn,0〈pn − 1〉

〉
.

Moreover, this admissible embedding Db(P1) ↪→ Db(X) sends

OP1(n) 7→ OX(n~c)

k(x) 7→ Sx

for n ∈ Z and any x ∈ P1. In this way, the category cohX can be thought of as an enlargement of cohP1,

see [71].



Chapter 3. MCM modules and Betti tables over tame curve singularities 86

Setup

We can now go ahead with the results of this section. Thinking ahead, we will normalise our calculations

by replacing the tilting object T = m(1)⊕m2(2)⊕
(⊕4

i=1 Li

)
by

U = T (−3)[1] = kst(−2)⊕ (R/m2)st(−1)⊕

(
4⊕
i=1

Li(−3)[1]

)

with same endomorphism algebra EndgrR(U) ∼= Sq(2, 2, 2, 2;λ). From previous results, we obtain:

Corollary 3.3.1. For X = P1(2, 2, 2, 2;λ), we have equivalences of triangulated categories

MCMZ(R) ∼= Db(Sq(2, 2, 2, 2;λ)) ∼= Db(X).

The composed equivalence sends the full strong exceptional collection

(
kst(−2), (R/m2)st(−1), L1(−3)[1], . . . , L4(−3)[1]

)
to

(OX,OX(~c), S1,0, . . . , S4,0) .

Next, we review the structure of Db(X) for X = P1(2, 2, 2, 2;λ).

3.3.1 Weighted projective lines of genus one and braid group actions

In this subsection we review the classification of indecomposable coherent sheaves over a weighted pro-

jective line of genus one due to Lenzing and Meltzer [72], which closely mirrors Atiyah’s classification of

sheaves on an elliptic curve. Everything here is due to them, and we follow [72, 78]. Let

Z : K0(X)→ Z⊕2

be the ‘charge’8, sending the class [F ] of a coherent sheaf to

Z(F) =

(
rk(F)

deg(F)

)

Let µ(F) = deg(F)
rk(F) be the slope of F . We say that F is semistable (resp. stable) if for each proper

subsheaf 0 6= F ′ ( F we have µ(F ′) ≤ µ(F) (resp. µ(F ′) < µ(F)). Denote by Cq the category of

semistable sheaves of slope q ∈ Q ∪ {∞}. Note that C∞ = coh0 X is the subcategory of torsion sheaves.

The category Cq is a full abelian subcategory of cohX closed under extension for any q, with simple objects

given by the stable sheaves. Weighted projective lines of genus one are characterised by deg(ωX) = 0,

or equivalently ωX has finite order in Pic(X), and so Cq is closed under the Auslander-Reiten translate

τ = − ⊗ ωX. In the genus one case, indecomposable sheaves are semistable [45, Thm. 5.6] and we are

lead to describe the categories Cq for each q. We will do this by means of the Telescopic functors of

Lenzing and Meltzer.

8This follows Bridgeland’s terminology in [24].
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Let U be the τ -orbit of a stable sheaf, e.g. U = {OX, ωX, . . . , ω
p−1
X }, U = {Si,0, Si,1, . . . , Si,pi−1}, or

U = {Sx}. We define the left mutation LU (respectively right mutation RU ) by U acting on F ∈ Db(X)

via the distinguished triangles

LU (F)[−1]→
⊕
E∈U

Hom•(E ,F)⊗k E
ev−→ F → LU (F)

RU (F)→ F coev−−−→
⊕
E∈U

Hom•(F , E)∗ ⊗k E → RU (F)[1]

The LU , RU are called tubular mutations and recover the notion of spherical twists when U = {E}.

Proposition 3.3.2 ([78, Thm. 5.1.3]). The constructions LU , RU are functorial in F . Moreover, they

give inverse autoequivalences LU , RU : Db(X)
∼=−→ Db(X).

For simplicity and to fix notation, let us restrict to the case of interest X = P1(2, 2, 2, 2;λ). In this

case, ωX has order 2 in Pic(X). In [72], [78, Chp. 5], Lenzing and Meltzer consider two autoequivalences

T1, T2 : Db(X)
∼=−→ Db(X) given respectively by right mutation by the orbit of the structure sheaf U =

{OX, ωX}, and left mutation by the orbit of a simple torsion sheaf U = {S1,0, S1,1}

T1(F)→ F coev−−−→
⊕
j∈Z2

Hom•(F , ω⊗jX )∗ ⊗k ω⊗jX → T1(F)[1]

T2(F)[−1]→
⊕
j∈Z2

Hom•(S1,j ,F)⊗k S1,j
ev−→ F → T2(F)

These act on rank and degree by (
rk(T1F)

deg(T1F)

)
=

(
1 1

0 1

)(
rk(F)

deg(F)

)
(
rk(T2F)

deg(T2F)

)
=

(
1 0

1 1

)(
rk(F)

deg(F)

)
and restrict to equivalences

T1 : Cq
∼=−→ C q

q+1
for all 0 ≤ q ≤ ∞

T2 : Cq
∼=−→ Cq+1 for all q ∈ Q ∪ {∞}

T1 : C∞
∼=−→ C1.

Let B3 = 〈σ1, σ2 | σ1σ2σ1 = σ2σ1σ2〉 be the braid group on 3 strands.

Proposition 3.3.3 ([78, Sect. 5.3.6]). The functors T1, T
−1
2 satisfy the Braid relations

T1T
−1
2 T1

∼= T−1
2 T1T

−1
2 .

Moreover, the homomorphism B3 → Aut(Db(X)) given by σ1 7→ T1, σ2 7→ T−1
2 is fully faithful.

The induced action on rank and degree then gives rise to the well-known homomorphism B3 �

SL(2,Z). It is also well-known that the transformations T1 : q 7→ q
q+1 and T2 : q 7→ q + 1 defines
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Figure 3.5: The Calkins-Wilf tree.

an action of the free monoid on two words F{T1, T2} on the positive rationals Q+, which is free and

transitive with single generator 1. This gives the positive rationals the structure of an infinite binary

tree called the Calkins-Wilf tree. Writing q ∈ Q+ as wq(T1, T2) · 1 for some unique word wq(T1, T2), one

deduces the existence of an autoequivalence

Φq,∞ := wq(T1, T2) ◦ T1 : Db(X)
∼=−→ Db(X)

restricting to C∞
∼=−→ Cq for any q > 0. One then extends Φq,∞ with the same property to any q ≤ 0 by

Φq,∞ := T−n2 ◦Φq+n,∞ for n� 0, with result independent of n. The functors Φq,∞ are called Telescopic

Functors.

Since the category C∞ consists of all skyscraper sheaves, the category Cq is serial for any q, with

simples given by the stable sheaves of slope q. As the type of X is (2, 2, 2, 2), the Auslander-Reiten

quiver of Cq breaks down into tubes of rank one indexed by the ordinary points x ∈ P1 and tubes of

rank two indexed by the exceptional points xi ∈ P1. These correspond to indecomposables for which

F ⊗ ωX ∼= F and F ⊗ ωX � F , respectively. Moreover, the exceptional sheaves are precisely the stable

sheaves living in rank two tubes.

For computing morphism spaces in Db(X), we have the following well-known results.

Lemma 3.3.4 (Lemma 4.1, [72]). Let F ,G be semistable sheaves of slopes q, q′.

1. If q > q′, then Hom(F ,G) = 0.

2. If q < q′, then Ext1(F ,G) = 0.

Proposition 3.3.5 (Weighted Riemann-Roch, [72]). We have

χ(F ,G) + χ(F ,G ⊗ ωX) =

∣∣∣∣∣ rk(F) rk(G)

deg(F) deg(G)

∣∣∣∣∣ .
In particular, we get

χ(F) + χ(F ⊗ ωX) = deg(F).

3.3.2 Matrix factorisations corresponding to simple torsion sheaves

We see that to understand the classification of indecomposables in MCMZ(R) ∼= Db(X), we must:
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1) Understand the rank and degree maps

rk, deg : K0(MCMZ(R))→ Z

and thus define the slope of an (indecomposable) graded MCM module.

2) Recover the category C∞ inside MCMZ(R).

3) Understand the action of T1, T2 on C∞ ⊆ MCMZ(R).

In order to situate ourselves, let us first calculate the images of {kst(−j)}j∈Z under the above equiv-

alence. By 2-periodicity we have kst(−j − 4) ∼= kst(−j)[−2], and so it suffices to compute the image

of

kst, kst(−1), kst(−2), kst(−3).

The Serre functor SR(M) = M(2) is sent to the Serre functor SX(F) = F ⊗ ωX[1]. The periodicity

identity (4) = [2] corresponds to the fact that ωX is 2-torsion. Keeping this in mind, we will prove the

following:

Theorem 3.3.6. Under the equivalence of Cor. 3.3.1, we have

kst 7→ ωX[1]

kst(−1) 7→ OX(−~c)[1]

kst(−2) 7→ OX

kst(−3) 7→ OX(−~c)⊗ ωX.

Proof. By Corollary 3.3.1 we already have kst(−2) 7→ OX, and so kst = SR (kst(−2)) 7→ SX (OX) = ωX[1].

Let Fkst(−1) correspond to kst(−1). We previously obtained the exceptional pair (kst(−2),
(
R/m2

)st
(−1))

as the right mutation

R : (kst(−1), kst(−2)) 7→
(
kst(−2), Rkst(−1)(k

st(−2))
)

and so we can obtain (OX,OX(~c)) as the right mutation

R : (Fkst(−1),OX) 7→
(
OX, RFkst(−1)

(OX)
)

Since left and right mutations are inverses (Prop. A.3.6), we can recover Fkst(−1) as the left mutation

Fkst(−1)
∼= LOX

(
RFkst(−1)

(OX)
)
∼= LOX(OX(~c))

calculated by the distinguished triangle

LOX(OX(~c))[−1]→ RHom(OX,OX(~c))⊗k OX
ev−→ OX(~c)→ LOX(OX(~c)).

This calculation can be done inside Db(P1) ⊆ Db(X), where the above corresponds to the Euler sequence

(up to twist)

0→ OP1(−1)→ H0(P1,OP1(1))⊗k OP1
ev−→ OP1(1)→ 0.
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This gives Fkst(−1) = LOX(OX(~c)) ∼= OX(−~c)[1], and finally kst(−3) 7→ OX(−~c)⊗ω−1
X = OX(−~c)⊗ωX.

Remark 3.3.7. Our choice of tilting object U = T (−3)[1] in Cor. 3.3.1 was made in anticipation of this

result, and this normalisation will be helpful in calculations of Betti tables in further sections.

We can produce the indecomposable matrix factorisations corresponding to the simple objects in C∞.

For simplicity we assume char k 6= 2 for the calculation. We already have the bases of the rank two

tubes, given by

Li(−3)[1] = coker(R(−3)
fλ/li−−−→ R) = R/(

fλ
li

)

which are sent to Si,0 under Cor. 3.3.1, and τLi(−3)[1] = Li(−1) = R/li(−1) sent to Si,1. By the previ-

ous theorem, the pair (kst(−1)[−1], kst(−2)) corresponds to (OX(−~c),OX), with 2-dimensional morphism

space. Taking a basis9 φ0, φ∞ for HomgrR(kst(−1)[−1], kst(−2)), for any p = [p0 : p1] ∈ P1 we define

the MCM module Mp as the cone of φp = p1φ0 + p0φ∞

kst(−1)[−1]
φp−→ kst(−2)→Mp → kst(−1)[2]

whose distinguished triangle is sent to

OX(−~c) sp−→ OX → Sp → OX(−~c)[1].

for the corresponding cosection sp, with cokernel an ordinary skyscraper sheaf. We can produce the

associated matrix factorisations. We have fλ = xy(x − y)(x − λy) = x3y − (1 + λ)x2y2 + λxy3. Write

fλ = xfx + yfy for fx = 1
4
∂fλ
∂x and fy = 1

4
∂fλ
∂y , and note that x|fy and y|fx. We have already seen part

1) of the next result, which we restate for convenience.

Proposition 3.3.8. Assume char k 6= 2. We have the following explicit presentations.

1) kst corresponds to the matrix factorisation

S(−4)⊕ S(−2)
B // S(−1)⊕ S(−1)

A // S ⊕ S(2)

with

A =

(
x y

−fy fx

)
B =

(
fx −y
fy x

)
.

2) A basis of morphisms φ0, φ∞ : kst(−1)[−1]→ kst(−2) can be taken as

S(−6)⊕ S(−6)

ϕ∞

��
ϕ0

��

−A // S(−5)⊕ S(−3)

ψ∞

��
ψ0

��

−B // S(−2)⊕ S(−2)

ϕ∞

��
ϕ0

��
S(−6)⊕ S(−4)

B // S(−3)⊕ S(−3)
A // S(−2)⊕ S

9This may not correspond a priori to the basis {u, v} of H0(X,OX(~c)) on the other side. However, the choices we will
make in Prop. 3.3.8 will turn out to correspond to {u, v} up to rescaling, see Lemma 3.3.10 and following remark.
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with matrices given by

ϕ0 =

(
0 1

0 − fyx

)
ψ0 =

(
− fyx −1

0 0

)

ϕ∞ =

(
1 0
fx
y 0

)
ψ∞ =

(
0 0

− fxy 1

)
.

Proof. Part 1) follows from the Tate resolution, see [42]. For part 2), note that the MCM approximation

kst(−2) → k(−2) corresponds to the natural projection and induces natural isomorphisms on Tate

cohomology

Ext0
grR

(
kst(−1)[−1], kst(−2)

) ∼=−→ Ext0
grR

(
kst(−1)[−1], k(−2)

)
.

The morphisms φ0, φ∞ descend to the natural basis on the latter.

Now let φp = p1φ0 + p0φ∞. Taking Cone(φp) yields a 4× 4 matrix factorisation

S(−6) S(−3) S(−2)

S(−4) S(−3) S

S(−5)

B ψp

0 B


//
S(−2)

A ϕp

0 A


//
S(−1)

S(−3) S(−2) S(1)

with ϕp = p1ϕ0 + p0ϕ∞, ψp = p1ψ0 + p0ψ∞ and matrices given by

(
A ϕp

0 A

)
=


x y p0 p1

−fy fx p0
fx
y −p1

fy
x

0 0 x y

0 0 −fy fx



(
B ψp

0 B

)
=


fx −y −p1

fy
x −p1

fy x −p0
fx
y p0

0 0 fx −y
0 0 fy x


The matrices ϕp, ψp have two scalar entries, and so this matrix factorisation is stably equivalent to a

2× 2 matrix factorisation. Direct calculations show the following:

Proposition 3.3.9. The module Mp is given by the reduced matrix factorisation

S(−5)⊕ S(−4)
Bp // S(−2)⊕ S(−3)

Ap // S(−1)⊕ S

where (Ap, Bp) for p1 6= 0 are given by

Ap =

(
x− p0

p1
y 1

p1
y2

−p0
fλ
xy

fλ
x

)
Bp =

(
fλ
x − 1

p1
y2

p0
fλ
xy x− p0

p1
y

)
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and for p1 = 0, p0 6= 0 by

Ap =

(
y x2

0 fλ
y

)
Bp =

(
fλ
y −x2

0 y

)

Recall that Li(−3)[1] = R/( fλli ) and Li(−1) = R/li(−1) correspond to the simple sheaves Si,0, Si,1.

From the above presentation, one verifies:

Lemma 3.3.10. For each exceptional point pi = V (li) ∈ P1, there are short exact sequences of MCM

modules

0→ R/li(−1)→Mpi → R/(
fλ
li

)→ 0.

Hence the Mpi corresponds to Spi , the ‘ordinary’ skyscraper sheaf over the exceptional point pi for

pi = 0,∞, 1, λ.

Remark 3.3.11. Let {u′, v′} be a basis of Hom(OX,OX(−~c)) ∼= H0(X,OX(~c)) corresponding to {φ0, φ∞}.
There is an invertible matrix taking {u′, v′} to {u, v}. However, the induced transformation on P1 fixes

the 4 exceptional points and so must be trivial, hence the basis {u′, v′} is given by {u, v} up to rescaling.

Summarising, we have shown:

Proposition 3.3.12. Assume char k 6= 2. The set of indecomposable MCM modules

{Mp}p 6=0,∞,1,λ ∪ {R/(
fλ
li

), R/li(−1)}i=1,2,3,4

correspond under the equivalence of Corollary 3.3.1 to the set of simple torsion sheaves in C∞

{Sp}p6=0,∞,1,λ ∪ {Si,0, Si,1}i=1,2,3,4.

We now investigate the shape of the Betti table of indecomposable graded MCM modules in a more

systematic way. This will occupy the remaining sections.

3.3.3 Betti tables from cohomology tables

Now given M , write FM for the corresponding complex of coherent sheaves. In Thm. 3.3.6 we saw that

Fkst = ωX[1]

Fkst(−1) = OX(−~c)[1]

Fkst(−2) = OX

Fkst(−3) = OX(−~c)⊗ ωX.

with Fkst(−j−4) = Fkst(−j)[−2]. Let C be the minimal complete resolution of M , which looks like

C : · · · →
⊕
j∈Z

R(−j)⊕βi+1,j →
⊕
j∈Z

R(−j)⊕βi,j →
⊕
j∈Z

R(−j)⊕βi−1,j → · · ·

We can calculate the graded Betti numbers βi,j by

βi,j = dimk HomgrR(C, k[i](−j)) = dimk ExtigrR(M,k(−j)) = dimk ExtigrR(M,kst(−j))
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and so by the dimension of the corresponding morphism space in Db(X). This idea was used by A.

Pavlov in his thesis to produce classifications of Betti tables of graded MCM modules over the cone of

various embeddings of an elliptic curve [85]. In our context, Thm. 3.3.6 implies:

Corollary 3.3.13. We can calculate Betti numbers βi,j = βi,j(M) as follows:

βi,0 = dimk Exti(FM , ωX[1]) = h−i(FM )

βi,1 = dimk Exti(FM ,OX(−~c)[1]) = h−i(FM (~c)⊗ ωX)

βi,2 = dimk Exti(FM ,OX) = h1−i(FM ⊗ ωX)

βi,3 = dimk Exti(FM ,OX(−~c)⊗ ωX) = h1−i(FM (~c)).

When FM is a coherent sheaf, collecting terms via the periodicity βi,j = βi+2,j+4, the only possible

non-trivial Betti numbers for M of the form β0,∗, β1,∗ are

β0,0, β0,1, β0,2, β0,3, β1,2, β1,3, β1,4, β1,5.

Since cohX is hereditary, indecomposables in Db(X) are of the form F [n] for F an indecomposable

coherent sheaf and n ∈ Z, and it suffices to work out Betti tables corresponding to coherent sheaves. In

this case, the data is best expressed in the following table:

β(M) =


β0,0 β1,2

β0,1 β1,3

β0,2 β1,4

β0,3 β1,5

 =


h0(F) h0(F ⊗ ωX)

h0(F(~c)⊗ ωX) h0(F(~c))

h1(F ⊗ ωX) h1(F)

h1(F(~c)) h1(F(~c)⊗ ωX)


where F = FM . We will refer to the latter table as the cohomology table β(F).

Example 3.3.14. Since Fkst(−2) = OX, we can calculate

β(kst(−2)) =


1 0

0 2

1 0

0 0

 =


h0(OX) h0(ωX)

h0(OX(~c)⊗ ωX) h0(OX(~c))

h1(ωX) h1(OX)

h1(OX(~c)) h1(OX(~c)⊗ ωX)


and we recover the Betti table of Prop. 3.3.8.

Example 3.3.15. Since FMp
= Sp, we have

β(Mp) =


1 1

1 1

0 0

0 0

 =


h0(Sp) h0(Sp ⊗ ωX)

h0(Sp(~c)⊗ ωX) h0(Sp(~c))

h1(Sp ⊗ ωX) h1(Sp)

h1(Sp(~c)) h1(Sp(~c)⊗ ωX)


as Sp ⊗ L ∼= Sp for any line bundle L and ‘ordinary’ skyscraper sheaf Sp. This recovers the Betti table

of Prop. 3.3.9.
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The C4 group action

The autoequivalence M 7→ M(1) on MCMZ(R) induces an autoequivalence FM 7→ FM{1} on Db(X).

Since shifting the grading acts by translation on Betti tables, it suffices to compute one Betti table in the

orbit {M(n)}n∈Z, or equivalently one cohomology table in the orbit {FM{n}}n∈Z. First, we calculate

the effect of (1) on rank and degree. We begin by finding an intrinsic description of the maps

rk, deg : K0(MCMZ(R))→ Z

defined by deg(M) := deg(FM ) and rk(M) := rk(FM ).

Lemma 3.3.16. For any graded MCM module M, we have

deg(M) = χ(M,kst)− χ(M,kst(−2))

=
∑
i∈Z

(−1)iβi,0 −
∑
i∈Z

(−1)iβi,2,

rk(M) =
1

2
χ(M,kst(−1)⊕ kst(−2))− 1

2
χ(M,kst ⊕ kst(−3))

=
1

2

∑
i∈Z

(−1)i(βi,1 + βi,2)− 1

2

∑
i∈Z

(−1)i(βi,0 + βi,3).

When M corresponds to a coherent sheaf, this simplifies to

deg(M) = (β0,0 + β1,2)− (β0,2 + β1,4),

rk(M) =
1

2
(β0,1 + β0,2 + β1,3 + β1,4)− 1

2
(β0,0 + β0,3 + β1,2 + β1,5).

Proof. The formula for deg(M) falls out of the weighted Riemann-Roch theorem via Thm. 3.3.6. To

deduce the formula for rk(M), we use deg(F(~c)) = deg(F) + 2rk(F), so that rk(F) = 1
2 (deg(F(~c)) −

deg(F)), then collect terms via Thm. 3.3.6.

We now calculate the effect of M 7→M(1) on the vector

Z(M) =

(
rk(M)

deg(M)

)

Proposition 3.3.17. For any graded MCM module M , we have(
rk(M(1))

deg(M(1))

)
=

(
−1 −1

2 1

)(
rk(M)

deg(M)

)
.

Proof. Writing K0 := K0(MCMZ(R)), we will check that the following commutes:

K0

(1)

��

Z // Z2

(
−1 −1
2 1

)
��

K0
Z // Z2
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Figure 3.6: Orbits of 〈r〉 = C4.

The full exceptional collection of Orlov’s Theorem 〈kst(−1), kst(−2), L1(−3)[1], . . . , L4(−3)[1]〉 gives a

Z-basis of K0 on which this can be checked. We have

Z
(
kst(−2)

)
= Z (OX) =

(
1

0

)

Z
(
kst(−1)

)
= Z (OX(−~c)[1]) =

(
−1

2

)

Z
(
kst
)

= Z (ωX[1]) =

(
−1

0

)

Z (Li(−3)[1]) = Z (Si,0) =

(
0

1

)

Z (Li(−2)[1]) =

(
−1

1

)
.

The last line is calculated by Lemma 3.3.16, and so the above diagram commutes.

Let r ∈ GL2(Z) be the matrix

r =

(
−1 −1

2 1

)
.

Note that r2 = −I2, which also follows formally from (2) = SR corresponding to SX = −⊗ωX[1] in Db(X),

since deg(ωX) = 0. Let C4 = 〈r〉. Our goal will be to describe the possible β(M) for M indecomposable

with (rk(M), deg(M)) = (r, d) fixed, and it is sufficient to do this on a fundamental domain for C4.

The action of r preserves convex cones and integrality and induces a chamber decomposition of Z⊕2,

which simple calculations show can be pictured as in Figure 3.6. We will implicitly ignore (0, 0) ∈ Z⊕2

in statements to come as there are no indecomposable sheaves of this type, and consider only the action

on Z⊕2 \ {(0, 0)}. From Figure 3.6, one sees:

Proposition 3.3.18. The union of the three regions R1 ∪R2 ∪R3 below is a fundamental domain for
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Figure 3.7: Fundamental domain for C4.

the action of C4 on Z⊕2 \ {(0, 0)}:

R1 = {(r, d) | r ≥ 0, d > 0}

R2 = {(r, d) | r > 0, d = 0}

R3 = {(r, d) | r > 0, d < −2r}.

The choice of domain for C4 may appear odd, but note that since r ≥ 0 throughout, each pair (r, d)

is realized by a coherent sheaf and we need not consider complexes. Another reason for this choice is to

maximize vanishing patterns in the cohomology table

β(F) =


h0(F) h0(F ⊗ ωX)

h0(F(~c)⊗ ωX) h0(F(~c))

h1(F ⊗ ωX) h1(F)

h1(F(~c)) h1(F(~c)⊗ ωX)


Lemma 3.3.19. Let F be an indecomposable coherent sheaf.

1) For F in region R1, we have h1(F) = h1(F ⊗ ωX) = h1(F(~c)) = h1(F(~c)⊗ ωX) = 0.

2) For F in region R3, we have h0(F) = h0(F ⊗ ωX) = h0(F(~c)) = h0(F(~c)⊗ ωX) = 0.

Proof. These follow from Lemma 3.3.4 by slope arguments, using the formula

µ(F ⊗ L) = µ(F) + deg(L)

for a line bundle L and recalling that deg(ωX) = 0 and deg(OX(~c)) = 2.

This lemma reduces calculations in regions R1,R3 to computing Euler characteristics, and region

R2 can be dealt with by hand. In the upcoming sections we will completely classify the Betti tables

β(M) of indecomposables with Z(M) in the fundamental domain of C4. The smaller domain Z⊕2
≥0 for

G will play a role in a later section, where we will discuss its role in explicit constructions of matrix

factorisations.
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3.3.4 Cohomology tables of indecomposable coherent sheaves

Cohomology tables for rank one tubes

We are now in a position to compute the cohomology tables of indecomposable sheaves. We will list

the corresponding possible Betti tables of matrix factorisations in a later section, under a different

normalisation. We begin with indecomposables living in rank one tubes, or equivalently which satisfy

F ⊗ ωX ∼= F . Recall that we denote by Φq,∞ the Telescopic autoequivalence of Db(X) which restricts to

Φq,∞ : C∞
∼=−→ Cq.

Theorem 3.3.20. Let (r, d) be in the fundamental domain with q = d
r . Consider F with F ⊗ ωX ∼= F

and (rk(F), deg(F)) = (r, d). An indecomposable such F exists if and only if gcd(r, d) is even, in which

case |gcd(r,d)|
2 gives the length of F in Cq. The cohomology table β(F) is then given as:

r ≥ 0, d > 0 r > 0, d = 0 r > 0, d < −2r


d
2

d
2

d
2 + r d

2 + r

0 0

0 0




0 0

r r

0 0

0 0




0 0

0 0

−d2 −d2
−d2 − r −d2 − r



Proof. An indecomposable F is in the image of Φq,∞ : C∞
∼=−→ Cq, and this functor acts on (r, d)

by SL(2,Z) transformation and therefore preserves gcd(r, d). In C∞, the lowest value of gcd(r, d) =

gcd(0, d) = d possible for indecomposables in rank one tubes is 2, realised by the ‘ordinary sheaves’ Sx,

with higher values 2n realised by Sx〈n〉. This proves the claim except for the shape of β(F).

Now, F 7→ F ⊗ ωX acts by column change on cohomology tables, and so β(F) is symmetrical. By

Riemann-Roch we have 2 · χ(F) = d and 2 · χ(F(~c)) = d + 2r. Combining this with Lemma 3.3.19

determines tables in region R1,R3, and we now consider the region R2 given by sheaves of degree zero.

Since F lives in a rank one tube, it lives in a disjoint component from OX. Applying Φ−1
0,∞ sends them to

torsion sheaves with disjoint supports, and therefore Ext∗(OX,F) = 0. An application of Lemma 3.3.19

and Riemann-Roch as above determines β(F).

Cohomology tables for rank two tubes

We now study indecomposable sheaves F with F ⊗ ωX � F . We begin with some generalities, most of

which is well-known.

Proposition 3.3.21. Let (r, d) be in the fundamental domain and q = d
r . The following hold:

i) For any (r, d), there is an indecomposable F with (rk(F), deg(F)) = (r, d) and F ⊗ ωX � F .

ii) Any such indecomposable F has length |gcd(r, d)| in Cq.

iii) There are finitely many indecomposable sheaves of type (r, d) if and only if gcd(r, d) is odd, in which

case there are exactly eight.

iv) There is an exceptional sheaf of type (r, d) if and only if |gcd(r, d)| = 1, in which case all such

indecomposables are exceptional.
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v) When gcd(r, d) is even and d 6= 0, β(F) = β(F̃) where F̃ is indecomposable of same rank and degree,

and F̃ ⊗ ωX ∼= F̃ .

Proof. The first four points follow from the autoequivalence Φq,∞ as in the proof of Theorem 3.3.20.

For v), similarly reduce to skyscraper sheaves. Let S〈2n〉 be an indecomposable torsion sheaf supported

over the exceptional point xi of degree 2n. Then [S〈2n〉] has height 2n in its tube of rank two, and

computing Grothendieck classes gives [S〈2n〉] = n[Si,0] + n[Si,1]. In particular the “ordinary” torsion

sheaf Sx for x = xi has degree 2, and we have [Sx] = [Si,0] + [Si,1]. From the presentation

0→ OX(−~c)→ OX → Sx → 0

we see that [Sx] = [Sx′ ] for any ordinary point x′, and so [S〈2n〉] = n[Sx] = n[Sx′ ] = [Sx′〈n〉] where

Sx′〈n〉 is a length n indecomposable sheaf supported at x′.

Applying Φq,∞, we deduce that for any indecomposable F of type (r, d) with gcd(r, d) even, there

is another indecomposable F̃ of type (r, d) with [F̃ ] = [F ] and F̃ ⊗ ωX ∼= F̃ . Since [F̃ ] = [F ], we have

χ(F̃ ⊗ L) = χ(F ⊗ L) for any line bundle L, and outside of the case d = 0, those values determine the

cohomology table, hence β(F) = β(F̃).

The remainder of the section will be aimed at proving the next theorem.

Theorem 3.3.22. Let (r, d) be in the fundamental domain. The β(F) of indecomposables of type (r, d)

satisfying F ⊗ ωX � F are listed as follows:

(r, d) r ≥ 0, d > 0 r > 0, d < −2r

d odd


d±1

2
d∓1

2
d∓1

2 + r d±1
2 + r

0 0

0 0


4


0 0

0 0

−d±1
2 −d∓1

2

−d∓1
2 − r −d±1

2 − r


4

(odd, even)


d
2 ± 1 d

2 ∓ 1
d
2 ∓ 1 + r d

2 ± 1 + r

0 0

0 0


1


d
2

d
2

d
2 + r d

2 + r

0 0

0 0


6


0 0

0 0

−d2 ± 1 −d2 ∓ 1

−d2 ∓ 1− r −d2 ± 1− r


1


0 0

0 0

−d2 −d2
−d2 − r −d2 − r


6

(even, even)


d
2

d
2

d
2 + r d

2 + r

0 0

0 0


8


0 0

0 0

−d2 −d2
−d2 − r −d2 − r


8
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r > 0, d = 0 Tube contains OX Tube does not contain OX

r odd


1 0

r − 1 r + 1

1 0

0 0


1


0 1

r + 1 r − 1

0 1

0 0


1


0 0

r r

0 0

0 0


6

r even


1 0

r r

0 1

0 0


1


0 1

r r

1 0

0 0


1


0 0

r r

0 0

0 0


6

The subscript counts the number of indecomposables satisfying F ⊗ωX � F with given cohomology table.

The proof strategy. We will make use of Crawley-Boevey’s generalisation of Kac’s Theorem for

weighted projective lines. By the previous proposition, indecomposables with gcd(r, d) odd correspond

to real roots of the associated root system, which are enumerated in a standard basis for K0. Going

through the list, one tabulates all triples (rk(F), deg(F), χ(F)) coming from real roots [F ], and this

triple completely determines β(F) in regions R1,R3. The region R2 is then dealt with by hand. We

first recall the needed notions, following [36, 97].

Kac’s Theorem, after Schiffmann-Crawley-Boevey

We follow [36, 97] for the material that follows. Let X = P1(p,λλλ) be a general weighted projective

line for now, and let Tcan =
⊕
~0≤~x≤~cOX(~x) be the canonical tilting object with endomorphism algebra

C(p,λλλ) = kQ/I with quiver Q:

~x1
// 2 ~x1

// . . . // (p1 − 1) ~x1

��

~x2
// 2 ~x2

// . . . // (p2 − 1) ~x2

''~0

DD

;;

##

...
...

...
... ~c

~xn // 2~xn // . . . // (pn − 1)~xn

77

Let Q′ be the tree subquiver corresponding to T ′ =
⊕
~0≤~x<~cOX(~x), which we label differently as

1, 1 // 1, 2 // . . . // 1, p1 − 1

2, 1 // 2, 2 // . . . // 2, p2 − 1

0

@@

88

&&

...
...

...
...

n, 1 // n, 2 // . . . // n, pn − 1
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Let g be its associated Kac-Moody algebra with root system Γ, with simple roots ε0, εi,j , and let

Lg = g[t, t−1] its loop algebra with root system Γ̂ = Zδ⊕Γ, with symmetric form extended by (δ,−) = 0.

The derived equivalence

RHom(Tcan,−) : Db(X)
∼=−→ Db(C(p,λλλ))

sends {OX, Si,j}j 6=0 to the simple modules S(0), S(i, j) supported over Q′. This identifies the summand

Z[OX]⊕ (
⊕

i,j 6=0 Z[Si,j ]) of K0(X) with Γ, sending the symmetrised Euler form with the Weyl-invariant

symmetric bilinear form on Γ. As Schiffmann then shows [97], this extends to a full isomorphism

K0(X)
∼=−→ Γ̂ sending [Sx] to δ. The induced positive cone given by classes of coherent sheaves on Γ̂ is

given by nonnegative combinations of

ε0, ε0 + nδ, εi,j , δ −
∑
j 6=0

εi,j , n ∈ Z

with [OX(n~c)] 7→ ε0 +nδ and [Si,0] 7→ δ−
∑
j 6=0 εi,j . A version of Kac’s Theorem then holds for coherent

sheaves on X, which we only state in a weak form:

Proposition 3.3.23 (Crawley-Boevey, [36]). The isomorphism K0(X)
∼=−→ Γ̂ induces a bijection between

Grothendieck classes of indecomposable coherent sheaves and the positive roots of Lg.

1) When β is a positive real root, then there is a unique indecomposable F such that [F ] 7→ β.

2) When β is a positive imaginary root, then there are infinitely many indecomposables F for which

[F ] 7→ β.

The suspension [1] acts on K0(X) ∼= K0(Db(X)) by [F [1]] = −[F ], and so this extends to a bijection

between all (positive and negative) roots of Lg and orbits of indecomposables in Db(X) under F 7→ F [2].

Letting ∆ be the set of roots of g, the roots of Lg are given by {α + nδ | α ∈ ∆, n ∈ Z}, and the real

roots are those of the form α+ nδ with α ∈ ∆re.

Coming back to X = P1(2, 2, 2, 2;λ), g is of affine type D̃4 and we write εi for εi,1. The positive real

roots of D̃4 are given by solutions α =
∑4
i=0 αiεi to

q(α) =
(
α2

0 + α2
1 + · · ·+ α2

4

)
− (α0α1 + · · ·+ α0α4) = 1

with αi ∈ Z≥0. Writing q(α) =
∑4
i=1

(
αi − 1

2α0

)2 ≥ 0, one sees that the solutions are as listed in Figure

3.8. Alternatively, the positive real roots are given by the dimension vectors of indecomposables over

the quiver Q of type D̃4, except for those which are multiples of (α0, α1, α2, α3, α4) = (2, 1, 1, 1, 1). The

dimension vectors are written down in [101, XIII.3].

The last three columns record (rk(F), deg(F), χ(F)) where F is any indecomposable corresponding

to β = α + nδ. To see this, note that we must have [F ] = α0[OX] +
∑4
i=1 αi[Si,1] + n[Sx] and that

χ(OX) = 1, χ(Si,1) = 0 and χ(Sx) = 1. A general real root then has the form β = ±α + nδ, with α in

the above table and n ∈ Z. Finally, let us record a lemma before moving on to the proof of Theorem

3.3.22.

Lemma 3.3.24. Let F ∈ Db(X) be an indecomposable complex with [F ] 7→ β real, with r ≥ 0, d ∈ Z.
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α0 α1 α2 α3 α4 r d χ

2m m+1 m m m 2m 4m+1+2n 2m+n
2m m m+1 m m 2m 4m+1+2n 2m+n
2m m m m+1 m 2m 4m+1+2n 2m+n
2m m m m m+1 2m 4m+1+2n 2m+n

2m+1 m m m m 2m+1 4m+2n 2m+1+n

2m+1 m+1 m m m 2m+1 4m+1+2n 2m+1+n
2m+1 m m+1 m m 2m+1 4m+1+2n 2m+1+n
2m+1 m m m+1 m 2m+1 4m+1+2n 2m+1+n
2m+1 m m m m+1 2m+1 4m+1+2n 2m+1+n

2m+1 m+1 m+1 m m 2m+1 4m+2+2n 2m+1+n
2m+1 m m m+1 m+1 2m+1 4m+2+2n 2m+1+n
2m+1 m+1 m m+1 m 2m+1 4m+2+2n 2m+1+n
2m+1 m m+1 m m+1 2m+1 4m+2+2n 2m+1+n
2m+1 m+1 m m m+1 2m+1 4m+2+2n 2m+1+n
2m+1 m m+1 m+1 m 2m+1 4m+2+2n 2m+1+n

2m+1 m m+1 m+1 m+1 2m+1 4m+3+2n 2m+1+n
2m+1 m+1 m m+1 m+1 2m+1 4m+3+2n 2m+1+n
2m+1 m+1 m+1 m m+1 2m+1 4m+3+2n 2m+1+n
2m+1 m+1 m+1 m+1 m 2m+1 4m+3+2n 2m+1+n

2m+1 m+1 m+1 m+1 m+1 2m+1 4m+4+2n 2m+1+n

2m+2 m m+1 m+1 m+1 2m+2 4m+3+2n 2m+2+n
2m+2 m+1 m m+1 m+1 2m+2 4m+3+2n 2m+2+n
2m+2 m+1 m+1 m m+1 2m+2 4m+3+2n 2m+2+n
2m+2 m+1 m+1 m+1 m 2m+2 4m+3+2n 2m+2+n

Figure 3.8: Positive real roots of D̃4 and triples (r, d, χ), where m ≥ 0, n ∈ Z.
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Then the possible values of χ(F) only depend on d and are listed below:

d χ

d odd
(
d−1

2

)
4
,
(
d+1

2

)
4

d even
(
d
2 − 1

)
1
,
(
d
2

)
6
,
(
d
2 + 1

)
1

The subscript indicates how many times χ appears for fixed (r, d).

Proof. This follows by inspection of Figure 3.8, where the case r > 0 corresponds to β = α + nδ for α

in the table, and r = 0 uses ±α for α in the first four rows.

We can now compute cohomology tables of indecomposables in rank two tubes

β(F) =


h0(F) h0(F ⊗ ωX)

h0(F(~c)⊗ ωX) h0(F(~c))

h1(F ⊗ ωX) h1(F)

h1(F(~c)) h1(F(~c)⊗ ωX)



Proof. Let F be indecomposable with F ⊗ ωX � F , of type (r, d). First assume that (r, d) is in region

R1, the case R3 being similar. As previously, the bottom half of β(F) vanishes for slope reasons

(Lemma 3.3.19). When gcd(r, d) is even then by Proposition 3.3.21 the table β(F) is symmetrical under

exchanging columns, and therefore is forced to be as in Theorem 3.3.20. When gcd(r, d) is odd, then by

3.3.21 and Kac’s Theorem the class [F ] must correspond to a real root, and so the possible values of χ

are listed in Lemma 3.3.24, which determines the possible values of h0(F). By Riemann-Roch we have

h0(F) + h0(F ⊗ ωX) = d

h0(F(~c)) + h0(F(~c)⊗ ωX) = d+ 2r

Now, keeping in mind that β(F) = β(M) where M is presented by a matrix factorisation, the sum of
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each column must be equal. From this one sees that the tables must be of the form

(r, d) r ≥ 0, d > 0

d odd


d±1

2
d∓1

2
d∓1

2 + r d±1
2 + r

0 0

0 0


4

d even


d
2 ± 1 d

2 ∓ 1
d
2 ∓ 1 + r d

2 ± 1 + r

0 0

0 0


1


d
2

d
2

d
2 + r d

2 + r

0 0

0 0


6

The same argument determines tables in region R3, so we are left with region R2 where r > 0, d = 0.

We first note that the base of rank two tubes in C0 consists of line bundles of degree zero, with one

distinguished tube having {OX, ωX} as base. For the other tubes, an appeal to the autoequivalence

Φ0,∞ : C0
∼=−→ C∞ shows that Ext∗(OX,F) = 0 = Ext∗(OX,F ⊗ωX). The first row and third row of β(F)

vanishes, and slope considerations show vanishing of the fourth row. The table must then be
h0(F) h0(F ⊗ ωX)

h0(F(~c)⊗ ωX) h0(F(~c))

h1(F ⊗ ωX) h1(F)

h1(F(~c)) h1(F(~c)⊗ ωX)

 =


0 0

r r

0 0

0 0


We are down to F in the Auslander-Reiten component of {OX, ωX}. Now, F is uniserial with socle either

OX or ωX. Assume the first. From the structure of a rank two tube, the simple top of F is ωX when r is

even, andOX for r odd. This determines the dimensions of Hom(OX,F), Hom(ωX,F), Hom(F ,OX), Hom(F , ωX)

as

dimk Hom(OX,F) = 1

dimk Hom(ωX,F) = 0

dimk Hom(F ,OX) =

1 r odd

0 r even

dimk Hom(F , ωX) =

0 r odd

1 r even

and from Serre duality one deduces the shape of the first and third rows. This is enough to determine
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the tables as

r odd r even


1 0

r − 1 r + 1

1 0

0 0




1 0

r r

0 1

0 0



The case of F with socle ωX is then given by the mirrored table.

3.3.5 Betti tables of indecomposables

Finally, we collect and list the Betti tables of indecomposable MCM modules in the standard format

0 1

0 β0,0 β1,1

1 β0,1 β1,2

2 β0,2 β1,3

3 β0,3 β1,4

4 β0,4 β1,5

5
...

...

One can then obtain the complete Betti table by extending by 2-periodicity via βi,j = βi+2,j+4.

In the previous sections, we produced the cohomology tables β(FM ) of coherent sheaves with (r, d)

in a chosen appropriate fundamental domain for the action of M 7→ M(1). In what follows, we will

use a slightly different fundamental domain, better adapted to displaying the Betti tables β(M). Call

an indecomposable M of the first kind if it belongs to the same Auslander-Reiten component as some

Ωnkst(m), and of the second kind otherwise.

Corollary 3.3.25. The indecomposables of the first kind are uniquely determined by their Betti table.

Up to translation, these are all tables of the form

0 1

0 1 -

1 r-1 -

2 1 r+1

3 - -

0 1

0 r+1 1

1 - r-1

2 - 1

3 - -

for r > 0 odd,

0 1

0 1 -

1 r -

2 - r

3 - 1

0 1

0 r -

1 1 -

2 - 1

3 - r

for r > 0 even.
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The indecomposables with the above tables have degree 0 and rank r.

Proof. Assuming the hypothesis, Ω−nM(−m−2) is in the same Auslander-Reiten component as kst(−2)

which corresponds to OX, then apply theorem 3.3.22 and translate the resulting tables in the above

form.

Most indecomposables are of the second kind.

Corollary 3.3.26. Up to translation, the Betti tables of indecomposables of the second kind are all tables

of type I−V:

I 0 1

0 a -

1 b a

2 - b

3 - -

II 0 1

0 a+1 0

1 b a

2 0 b+1

3 0 0

III 0 1

0 a 0

1 b+1 a+1

2 0 b

3 0 0

IV 0 1

0 a+2 0

1 b a

2 0 b+2

3 0 0

V 0 1

0 a 0

1 b+2 a+2

2 0 b

3 0 0

with a, b ≥ 0, where we have b 6= 0 for tables of type I and b− a odd for tables of type IV −V. Here the

degree is given by d = β0,0 + β1,2 = 2a, 2a+ 1, 2a+ 2 and the rank by r = b− a.

Proof. Let M be indecomposable of the second kind. We claim that, up to translation, β(M) can be

put in the form

β(M) =


β0,0 β1,2

β0,1 β1,3

β0,2 β1,4

β0,3 β1,5

 =


α β

β + r α+ r

0 0

0 0


for some α, β and r ∈ Z. Running over possibilities in Thm. 3.3.20, 3.3.22, this is already the case in

regions R1,R2, where d, r ≥ 0. For (rk(M), deg(M)) belonging to R3, applying M 7→ M(2) will put

β(M) in the above form. Note that this sends (r, d) 7→ (−r,−d), and so the above tables coming from

region (3) will have r < 0. This will change our fundamental domain to r > −d2 , d ≥ 0:

r

d

-2 -1 0 1 2

-2

-1

0

1

2

Now, the case α = β = 0 corresponds to d = 0, or tables in region (2). The other two regions run over

the same pairs (α, β), with only difference whether r ≥ 0 or r < 0. Next, set a = α, b = α+ r. Running

over the possible α in Thm. 3.3.20, 3.3.22 shows that tables must have shapes I−V. In particular in

type I, note that b = 0 implies r = −d2 which falls outside of our domain. Lastly, fixing the type I−V of
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a table, note that (a, b) and (r, d) uniquely determine each other via r = b−a and d = 2a, 2a+1, 2a+2,

and so the classification is complete.
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Absolutely Koszul Gorenstein

algebras
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Chapter 4

Fano algebras, higher preprojective

algebras and Artin-Schelter regular

algebras

4.1 Finite dimensional Fano algebras and noncommutative pro-

jective geometry

This part of the thesis concerns an application of singularity categories to the representation theory of

finite dimensional algebras and to noncommutative projective geometry in the sense of Artin-Zhang,

which leads naturally to homological results on Koszul duality for Gorenstein algebras. We begin with

some motivation and by reviewing basic definitions and examples. Let k be a field throughout, which

we assume algebraically closed in the first section for simplicity.

Given a smooth projective k-variety X with tilting complex E , the endomorphism algebra Λ = End(E)

is finite dimensional of finite global dimension, and one has a derived equivalence

Db(X) ∼= Db(Λ).

The finer properties of the (anti-)canonical bundle of X exert some control over the representation theory

of Λ, through the identification of Serre functors

SX = −⊗OX ωX [dim X] 7→ SΛ = −⊗L
Λ ωΛ[gldim Λ]

for a suitable canonical complex ωΛ = DΛ[−gldim Λ] ∈ Db(Λev), where DΛ = Homk(Λ, k). For a general

finite dimensional algebra Λ of finite global dimension, the notion of ampleness of the anti-canonical

complex

ω−1
Λ = RHomΛ(DΛ,Λ)[gldim Λ]

was introduced and studied in depth by Minamoto [79]. This leads to the notion of a Fano algebra Λ,

108
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as well as a suitable “anticanonical ring”

Π(Λ) =
⊕
m≥0

HomDb(Λ)(Λ, ω
−m
Λ )

where ω−mΛ = (ω−1
Λ )⊗

L
Λm, mimicking the classical anticanonical ring

R(X) =
⊕
m≥0

H0(X,ω−mX ) =
⊕
m≥0

HomDb(X)(OX , ω−mX ).

Now fix Λ a finite dimensional algebra of finite global dimension gldimΛ = d <∞. Let Pic(Λ) be the

group of isomorphism classes of invertible complexes of bimodules L ∈ Db(Λev) under the derived tensor

product − ⊗L
Λ −, thought of as the group Pic(X) of line bundles L on a projective variety X. Recall

that the Serre criterion for ampleness states that L is ample if and only if for all coherent sheaves F

Hs(X,F ⊗ Lm) = 0 for s > 0 for all m� 0.

Let (D≤0,D≥0) be the standard t-structure on Db(X), and consider the pair of full subcategories

D≤0,L = {F ∈ Db(X) | Hs(X,F ⊗ Lm) = 0 for s > 0 for all m� 0}

D≥0,L = {F ∈ Db(X) | Hs(X,F ⊗ Lm) = 0 for s < 0 for all m� 0}

The hypercohomology spectral sequence shows that L is ample if and only if the above gives rise to the

standard t-structure on Db(X). By analogy, given L ∈ Pic(Λ), writing Lm := L⊗
L
Λm we consider the

pair of full subcategories DL := (D≤0,L,D≥0,L)

D≤0,L = {M ∈ Db(Λ) | Hs(M ⊗L
Λ L

m) = 0 for s > 0 for all m� 0}

D≥0,L = {M ∈ Db(Λ) | Hs(M ⊗L
Λ L

m) = 0 for s < 0 for all m� 0}

obtained by formally substituting OX for Λ, since Hs(X,F) = HomDb(X)(OX ,F [s]) and Hs(M) =

HomDb(Λ)(Λ,M [s]). Next, we say that a complex M ∈ Db(Λ) is pure if it is in the essential image of

modΛ ↪→ Db(Λ), or equivalently if Hs(M) = 0 for s 6= 0.

Definition 4.1.1 (Minamoto [79]). Let L ∈ Pic(Λ) be an invertible complex of bimodules.

i) We say that L is almost ample (almost very ample) if Lm is pure for all m� 0 (m ≥ 0).

ii) We say that L is ample (very ample) if L is almost ample (almost very ample) and furthermore DL

forms a t-structure for Db(Λ).

Remark 4.1.2. Our terminology differs slightly from [79], where only ii) is used. Our notion of ‘very

ample’ also corresponds to ‘extremely ample’ in [79, Defn. 3.4], since Minamoto reserves the adjective

‘very’ for an intermediate condition. The adjective ‘almost’ also replaces ‘quasi’ in [80]. As we will not

make extended usage of these notions, the change in terminology should not prove confusing.

When L is ample, note that the t-structure DL on Db(Λ) can be very different than the standard

one, and the heart HL is of considerable interest (see [79, Sect. 5]). The terminology should feel natural

by the following lemma:
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Lemma 4.1.3 ([79, Lemma 3.11]). Let L ∈ Pic(Λ) be (almost) ample. Then Lm is (almost) very ample

for all m� 0.

Definition 4.1.4 ([79, Def. 4.1]). Let Λ be a finite dimensional algebra of finite global dimension

gldimΛ = d <∞, and consider the anti-canonical complex ω−1
Λ ∈ Pic(Λ)

ω−1
Λ = RHomΛ(DΛ,Λ)[d].

We say that Λ is (almost) Fano if ω−1
Λ is (almost) ample.

Definition 4.1.5. Let Λ be an almost Fano algebra. The N-graded algebra

Π(Λ) :=
⊕
m≥0

HomDb(Λ)(Λ, ω
−m
Λ ) =

⊕
m≥0

H0(ω−mΛ )

is called the higher preprojective algebra of Λ.

Consider the d-shifted Serre functor Sd := SΛ ◦ [−d] on Db(Λ) and its inverse

Sd(M) = M ⊗L
Λ ωΛ = M ⊗L

Λ DΛ[−d]

S−1
d (M) = M ⊗L

Λ ω
−1
Λ = M ⊗L

Λ RHomΛ(DΛ,Λ)[d] ∼= RHomΛ(DΛ,M)[d].

Then Λ is almost Fano if and only if S−md (Λ) is pure for all m� 0, that is

S−md (Λ) ∈ modΛ ⊆ Db(Λ) for all m� 0.

The stronger condition that ω−1
Λ be almost very ample is equivalent to

S−md (Λ) ∈ modΛ ⊆ Db(Λ) for all m ≥ 0.

One can picture this as the infinite sequence of conditions

ExtiΛ(DΛ,Λ) = 0 for all i < d

ExtiΛ(DΛ,ExtdΛ(DΛ,Λ)) = 0 for all i < d

ExtiΛ(DΛ,ExtdΛ(DΛ,ExtdΛ(DΛ,Λ))) = 0 for all i < d

...

Since RHomΛ(DΛ,M) ∼= M ⊗L
Λ RHomΛ(DΛ,Λ) for all M ∈ Db(Λ), these can be equivalently phrased

as the Tor-vanishing conditions

ExtiΛ(DΛ,Λ) = 0 for all i < d

TorΛ
d−i(ExtdΛ(DΛ,Λ),ExtdΛ(DΛ,Λ)) = 0 for all i < d

TorΛ
d−i(ExtdΛ(DΛ,Λ)⊗Λ2,ExtdΛ(DΛ,Λ)) = 0 for all i < d

...
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Example 4.1.6 (d = 1). Let Λ be a finite dimensional hereditary algebra. Let M be an indecomposable

Λ-module. Then

S−1
1 (M) = τ−1(M) = RHomΛ(DΛ,M)[1] ∼=

Ext1
Λ(DΛ,M) M is not injective

HomΛ(DΛ,M)[1] M is injective

since HomΛ(DΛ,M) = 0 for M with no injective summands. It follows that ω−1
Λ is almost very ample

if and only if for every indecomposable projective P , the modules

P, τ−1P, τ−2P, τ−3P, . . . , τ−mP, . . .

are never injective. Equivalently, Λ is of infinite representation type. We will see later that ω−1
Λ is

actually very ample in this case [79, Prop. 5.1]. The algebra

Π(Λ) =
⊕
m≥0

HomΛ(Λ, τ−mΛ)

is the classical preprojective algebra of Gel’fand-Ponomarev and Baer-Geigle-Lenzing [15].

On the other hand, when Λ is hereditary of finite representation type the Serre functor SΛ satisfies

the fractionally Calabi-Yau property SnΛ ∼= [m] for some n,m ∈ Z (see [79, Thm. 5.1], [61, Ex. 8.3(2)]),

and so ωΛ behaves like a torsion line bundle in this case.

As part of a larger program to study algebras of higher global dimension with ‘hereditary behavior’,

Herschend, Iyama and Oppermann [49] have introduced the class of ‘d-hereditary‘ algebras, which break

down into ‘d-representation finite’ and ‘d-representation infinite’ algebras. We will be interested mainly

in the latter.

Definition 4.1.7 (Herschend-Iyama-Oppermann [49]). A finite dimensional algebra Λ with gldimΛ =

d < ∞ is called d-representation infinite if ω−1
Λ is almost very ample. We will also call Λ higher

representation infinite when d is implicit.

These notions are closely related to the study of geometric helices by Bondal-Polishchuk [23] and

Bridgeland-Stern [25].

Example 4.1.8. Let X be a smooth Fano variety with a geometric helix of sheaves (Ei)i∈Z of period

n, meaning that for all i ∈ Z:

i) (Ei, . . . , Ei+n−1) is a full exceptional collection;

ii) Ei+n = Ei ⊗ ω−1
X ;

iii) for all i ≤ j we have Hom(Ei, Ej [s]) = 0 whenever s 6= 0.

That last condition implies that (Ei+1, . . . , Ei+n) is strong, and let E =
⊕n

j=1Ei+j be the tilting sheaf

with Λ = End(E). If gldimΛ = dimX, then Λ is higher representation infinite by condition ii) and iii).

Its higher preprojective algebra Π(Λ) is the rolled-up helix algebra of [25]. Moreover, letting π : Y → X

be the total space of the canonical bundle ωX , the sheaf π∗E pulls back to a tilting sheaf on Y and we

additionally have Π(Λ) = End(π∗E) (see [25]).
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Now let X be a Fano variety. Recall that when ω−1
X is very ample, the anticanonical ring R(X) is a

Noetherian graded algebra, generated in degree one over R(X)0 = H0(X,OX) and of Krull dimension

dimR(X) = dimX+1. Moreover one recovers X = projR(X), as well as the category of (quasi-)coherent

sheaves cohX = qgrR(X) (QCohX = QGrR(X)) as the Serre quotients

qgrR(X) =
grmodR(X)

grmod0R(X)
QGrR(X) =

GrmodR(X)

Grmod0R(X)

where grmod0R(X) and Grmod0R(X) denote the subcategories of right bounded (or Artinian) modules

{M | M≥n = 0, n � 0}. The situation is more complicated for the higher preprojective algebra Π(Λ)

of an almost Fano algebra, but some analogous results hold.

Lemma 4.1.9. Assume that ω−1
Λ is almost very ample. Then

Π(Λ) =
⊕
m≥0

H0(ω−mΛ ) ∼=
⊕
m≥0

H0(ω−1
Λ )⊗Λm = TΛ(ExtdΛ(DΛ,Λ)).

Hence Π(Λ) is finitely generated in degree one over Π(Λ)0 = Λ. Moreover we have gldim Π(Λ) =

gldimΛ + 1.

Proof. The first statement is a consequence of the Tor-vanishing conditions and the Künneth Theorem,

see [79]. For the global dimension claim see [49].

In contrast, higher preprojective algebras are rarely Noetherian. In the classical case of an hereditary

algebra of infinite representation type, the preprojective algebra Π(Λ) is Noetherian if and only if Λ is

of tame representation type, if and only if Λ is Morita equivalent to kQ with Q a quiver of extended

Dynkin type. This is in keeping with expectations from noncommutative projective geometry where the

graded algebras arising through natural constructions are rarely Noetherian. According to Polishchuk’s

[87], the more natural condition is that of coherence. We follow [87] and [79, Sect. 2.1] from here. Let

B = B0 ⊕ B1 ⊕ . . . be a locally finite graded k-algebra, and recall that modules are implicitly taken to

be right modules.

Definition 4.1.10. Let M a graded B-module. We say that M is coherent if:

a) M is a finitely generated graded B-module.

b) Every map f : P → M from a finitely generated projective graded B-module has finitely generated

kernel.

We say that B is graded coherent if B and B/B≥1 are coherent graded modules.

Remark 4.1.11. There is the analogous notion of coherence for the underlying ungraded algebra of B,

and some authors sometimes denote the above notion by ‘graded coherence’. For us, coherence of a

graded algebra will implicitly refer to the graded notion, and so there should be no ambiguity.

Denote by cohB ⊆ grmodB ( GrmodB the full subcategory of coherent and finitely presented graded

modules, respectively. The next lemma is originally a result of Serre for coherent sheaves over ringed

spaces [99, Sect. II.13], whose proof goes through unchanged as pointed out in [87, Prop. 1.1] and [79,

Sect. 2]. Note that one can equivalently recast condition b) in terms of maps from finitely generated

graded free modules.
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Recall that a full subcategory C ⊆ Grmod B is called a Serre subcategory if for every short exact

sequence in GrmodB

0→ F → G→ K → 0

if two terms of the sequence are in C, so is the third.

Lemma 4.1.12. The subcategory cohB ⊆ GrmodB is a Serre subcategory closed under finitely generated

submodules. In particular cohB ⊆ GrmodB is an abelian subcategory closed under extension. Moreover,

when B is coherent we have cohB = grmodB, and the latter then contains all graded modules of finite

length.

The full subcategory Grmod0B ( GrmodB of right bounded modules also forms a Serre subcategory,

and we may form the Serre quotient to obtain an abelian category

QGrB :=
GrmodB

Grmod0B

thought of as the category of quasicoherent sheaves on some noncommutative variety. When B is

coherent, finite length modules are finitely presented and so the full subcategory grmod0 B ⊆ grmodB

of finite length modules is a Serre subcategory with which to form the Serre quotient

qgrB :=
grmodB

grmod0B

to obtain the corresponding category of coherent sheaves.

The importance of coherence for graded algebras is in the following beautiful result of Minamoto. A

large supply of d-representation infinite algebras arise as endomorphism algebras of (good) tilting object

on a Fano variety X so that

Db(Λ) ∼= Db(cohX)

and they are in general expected to ‘come from geometry’. In general, let Λ be a higher representation

infinite algebra Λ with anticanonical complex ω−1
Λ , and recall that Dω−1

Λ = (D≤0,ω−1
Λ ,D≥0,ω−1

Λ ) denotes

the pair of full subcategories

D≤0,ω−1
Λ = {M ∈ Db(Λ) | Hs(M ⊗L

Λ ω
−m
Λ ) = 0 for s > 0 for all m� 0}

D≥0,ω−1
Λ = {M ∈ Db(Λ) | Hs(M ⊗L

Λ ω
−m
Λ ) = 0 for s < 0 for all m� 0}.

Additionally, we write Hω
−1
Λ (Λ) = D≤0,ω−1

Λ ∩ D≥0,ω−1
Λ for the full subcategory of ‘eventual modules’, or

simply H(Λ) if ω−1
Λ is understood.

Theorem 4.1.13 ([79, Thm. 3.7, Cor. 3.12]). Let Λ be a higher representation infinite algebra with

higher preprojective algebra Π(Λ). Then:

1) There are equivalences of derived categories

−⊗L
Λ Π(Λ) : D(ModΛ)

∼=−→ D(QGr Π(Λ)).

2) The following are equivalent:
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i) Π(Λ) is coherent.

ii) Dω−1
Λ forms a t-structure on Db(Λ).

When either of these holds, the above equivalence descends to

Db(Λ) ∼= Db(qgr Π(Λ))

and Dω−1
Λ is the pullback of the standard t-structure on Db(qgr Π(Λ)).

Remark 4.1.14. A similar statement appears in [87] in the context of a triangulated category containing

a geometric helix, where a certain pair of subcategories form a t-structure if and only if the graded

algebra associated to this helix is coherent.

Example 4.1.15. [79, Prop. 5.1, Cor. 3.6] Let Λ = kQ be an hereditary algebra of infinite representa-

tion type. Then Π(Λ) = Π(Q) is always coherent.

Example 4.1.16. Let X be a smooth Fano variety with a geometric helix {Ei}i∈Z of period n as in

Example 4.1.8. Assume furthermore that the Ei consist of sheaves and we let E =
⊕n

j=1Ei+j and

Λ = End(E). Then by [25, Thm 3.6], Π(Λ) is Noetherian and finite over its centre. Moreover when

E is a vector bundle it isn’t hard to see that the t-structure Dω−1
Λ is the pushforward of the standard

t-structure under the equivalence

RHom(E ,−) : Db(X)
∼=−→ Db(Λ)

hence we have

cohX ∼= H(Λ) ∼= qgrΠ(Λ).

One may ask whether coherence holds in general [49, Question 4.37]. The following was conjectured

by Minamoto in 2012 in Banff.

Conjecture 4.1.17 (Minamoto). The higher preprojective algebra Π(Λ) of a higher representation in-

finite algebra Λ is always coherent.

It is an important and difficult task in general to determine when coherence holds for algebras of

interest. A related class of algebras for which this problem is unresolved are the Artin-Schelter regular

algebras. Let A = k ⊕A1 ⊕A2 ⊕ . . . be a graded connected k-algebra, finitely generated in degree one.

We say that A is Artin-Schelter regular if

1) gldimA = d <∞;

2) A satisfies the Gorenstein condition

ExtiA(k,A) =

0 i 6= d

k(−a) i = d

for some a ∈ Z.
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Note that one sometimes requires additonal finiteness conditions, but we do not do this here. In this

generality, one has:

Conjecture 4.1.18 (Bondal, [86]). Artin-Schelter regular algebras are always coherent.

We finally arrive at the results of this chapter. Let n denote the global dimension of an Artin-Schelter

regular algebra or of a higher preprojective algebra. Both conjectures have affirmative answers when

n ≤ 2. A main result of this thesis is a negative answer to both conjectures in all dimensions n ≥ 4.

Theorem (Thm. 6.2.2). There are higher preprojective algebras {Πn}n≥4 and Artin-Schelter regular

algebras {En}n≥4 of global dimension n ≥ 4, all of which fail to be coherent.

The bound n ≥ 4 seems to be the lowest we can go with our methods, and so the following may be

warranted.

Conjecture. Let Π3 be a higher preprojective algebra and E3 be an Artin-Schelter regular algebra, both

of global dimension 3. Then Π3 and E3 are coherent graded algebras.

We will actually characterise coherence for a restricted class of algebras. Let A be a Koszul Frobenius

algebra, graded connected over k. To A we will associate a higher representation infinite algebra B, along

with a contravariant equivalence of triangulated categories

DZ
sg(A)op ∼= Db(modB).

We then associate to A a higher preprojective algebra Π = Π(B) and an Artin-Schelter regular algebra

E = Ext∗A(k, k)op, and recast both conjectures in terms of DZ
sg(A). We will prove:

Theorem (Thm. 6.2.1). For A as above, the following are equivalent:

1) Π is coherent.

2) E is coherent.

3) A is absolutely Koszul in the sense of Herzog-Iyengar [50].

This last condition has been heavily studied in commutative algebra this last decade, and holds fairly

generally. In spite of this, we will obtain counterexamples by constructing pathological commutative

Frobenius Koszul algebras, building on examples due to J.-E. Roos.

In the above setting, we are lead to study a natural pair of full subcategories Dlin = (D≤0
sg (A),D≥0

sg (A))

of DZ
sg(A), whose intersection

Hlin(A) = D≤0
sg (A) ∩D≥0

sg (A)

consists of objects whose minimal graded free resolution is eventually linear. We will study this pair

of subcategories for a general Koszul Gorenstein algebra A. Our principal result, from which all above

stated results will follow, will be the following pair of theorems. These should be considered as sharp

generalisations of the Bernstein-Gel’fand-Gel’fand correspondence for Koszul Gorenstein algebras.

Theorem A. The following are equivalent for a Gorenstein Koszul algebra A:

i) Dlin forms a bounded t-structure on DZ
sg(A).
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ii) A is absolutely Koszul in the sense of Herzog-Iyengar.

When either of these equivalent conditions hold, the natural realisation functor

real : Db(Hlin(A))
∼=−→ DZ

sg(A).

is an equivalence of triangulated categories.

Theorem B. Let A be an absolutely Koszul Gorenstein algebra. Then E = (A!)op = Ext∗A(k, k)op is

coherent, and we have a contravariant equivalence of abelian categories

Hlin(A)op
∼=−→ qgrE

sending M to Ext∗A(M,k).

The converse holds in the Artinian case: if A is Artinian Koszul Gorenstein with Ext∗A(k, k)op coherent,

then A is absolutely Koszul.

Combining them, we obtain:

Theorem C. Let A be an absolutely Koszul Gorenstein algebra, with E = (A!)op = Ext∗A(k, k)op. Then

we have equivalences of triangulated categories

DZ
sg(A)op ∼= Db(qgrE)

such that the t-structure Dlin is the pullback of the standard t-structure on the right hand side.

We will prove Theorems A, B and C in Chapter 5 and give the aforementioned applications in Chapter

6.

4.2 Fano algebras from Koszul Frobenius algebras

We now set conventions for the remaining of the chapter. In order to encompass natural examples coming

from quiver path algebras we will work in slightly greater generality than the previous section, but the

reader will not lose out on any of the essential ideas by taking all algebras to be graded connected over

a field.

Let k be a field throughout and k a finite dimensional semisimple k-algebra. A graded algebra

A = k⊕A1⊕A2⊕ . . . will mean a locally finite graded k-algebra, finitely generated by A1 over A0 = k.

By k-algebra we mean that the product A⊗k A→ A is bilinear over k, e.g. A = kQ/I is a graded path

algebra over k = kQ0. Recall that we write D = Homk(−, k) for k-duality.

Definition 4.2.1. A graded Frobenius k-algebra A is a finite k-algebra such that D(A) ∼= A(a) inde-

pendently both as left and right A-modules, for some a ∈ Z. A graded symmetric algebra is a graded

Frobenius algebra such that AD(A)A ∼= AA(a)A as bimodules.

Given a graded Frobenius A, the invariant a is then the top degree of A, and we will always assume

that a ≥ 1 since a = 0 gives A = k. By [80, Lemma 2.9], there is a graded k-algebra automorphism
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ν : A→ A, uniquely defined up to inner automorphisms, such that AD(A)A ∼= 1A(a)ν as bimodules, using

subscripts to denote the ν-twisted module structure on the right. This is the Nakayama automorphism

ν = νA, and graded symmetric algebras are those for which we can take ν = id. Note that pulling back

through ν gives an isomorphism of bimodules 1A(a)ν ∼= ν−1A(a)1. Moreover, since ν preserves grading,

it descends to an automorphism of k and similarly 1kν ∼= ν−1k1 as A-bimodules. In particular kν ∼= k as

right A-modules, but note that ν typically permutes the simple summands.

Since k is semisimple, it is itself symmetric as a k-algebra [102, Cor. 5.17] and we have natural

isomorphisms between the various duality functors

D = Homk(−, k) ∼= Homk(−,Homk(k, k)) ∼= Homk(−,k).

Assume for now that A is a graded Frobenius k-algebra. Then A is self-injective and so we have a

natural equivalence DZ
sg(A) = modZA. We will need the following.

Proposition 4.2.2 (Auslander-Reiten Duality [8]). Let A be graded Frobenius. Writing ωA = D(A) ∼=
1A(a)ν , the category modZA has a Serre functor given by SA = −⊗A ωA[−1].

Next, note that every module is vacuously MCM over a self-injective algebra, and in particular every

M ∈ modZA admits a complete resolution. The minimal graded projective resolution P∗
∼−→ k = A/A≥1

of k dualises to a minimal projective coresolution k ∼−→ D(P∗), and so the minimal complete resolution

C(k) of k looks like

· · · // A(−1)⊕ dimA1 // A

##

//
ν−1A(a)1

//
ν−1A(a+ 1)⊕ dimA1

1
// · · ·

k
77

from which we can read the dimension of ExtigrA(k,k(−j)) and so we have ExtngrA(k,k) = 0 for n 6= 0,

and HomgrA(k,k) is a quotient algebra of k and therefore semisimple. A basic set of non-projective

indecomposable summands of k are then orthogonal w-exceptional1 objects in modZA, and thick(k) is a

semisimple subcategory.

We call a thick subcategory generated by finitely many orthogonal exceptional (or w-exceptional)

objects a block. From the previous paragraph, we see that thick(k) = add{k[i] | i ∈ Z} forms a block

in modZA. One extends the usual notions of exceptional sequences and geometric helices to blocks in

the natural way. Recall that A is Koszul if the minimal projective resolution P∗
∼−→ k is linear, that is

Pi is generated in degree i, and that we denote by Sn = SA ◦ [−n] the desuspended Serre functor. The

following is well-known, but we will give a complete proof.

Proposition 4.2.3. Let A be a Koszul Frobenius k-algebra with a ≥ 1, and let Ei = k(−i)[i]. Then the

sequence (Ei)i∈Z forms a block helix for modZA of period a. That is:

i) There is a full block exceptional collection modZA = 〈Ei, Ei+1, . . . , Ei+a−1〉.

ii) We have Ei+a = S−1
a−1Ei.

iii) (Ei)i∈Z forms a block geometric helix: for every pair (i, j) with i ≤ j, we have ExtsgrA(Ei, Ej) =

0 for all s 6= 0.

1Meaning weakly exceptional, in that we allow for division rings as endomorphism algebras instead of k.
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Proof. i). The conditions ExtsgrA(Ek, El) = Exts+l−kgrA (k,k(k−l)) = 0 for i ≤ l < k ≤ i+a−1 and all s ∈
Z and

ExtsgrA(Ek, Ek) =

0 s 6= 0

semisimple s = 0

follow from the structure of the minimal complete resolution C(k), hence the above forms a block

exceptional decomposition. To see that it is full, note that soc(A) ∼= k(−a) gives a short exact sequence

ξ : 0→ k(−a)→ A→ A/soc(A)→ 0

which shows that k(−a) ∼= A/soc(A)[−1] in modZA. Taking a Jordan-Hölder filtration of A/soc(A)

shows that k(−a) = A/soc(A)[−1] ∈ thick(k,k(−1), . . . ,k(−a + 1)), and iteratively grade shifting ξ by

(−1) shows that k(−a− j) ∈ thick(k,k(−1), . . . ,k(−a+ 1)) for all j ≥ 0. Dualising ξ and applying the

same argument shows that k(−j) ∈ thick(k,k(−1), . . . ,k(−a + 1)) for all j ≤ 0, and applying Jordan-

Hölder filtrations to a general finite dimensional module shows that (k(−i),k(−i− 1), . . . ,k(−i−a+ 1))

is full for any i ∈ Z.

ii) This follows since

S−1
a−1(k(−i)[i]) = k(−i)[i]⊗A ω−1

A [a] = kν−1(−i− a)[i+ a] ∼= k(−i− a)[i+ a].

Lastly, ExtsgrA(Ei, Ej) = Exts+j−igrA (k,k(i − j)) = 0 for s 6= 0 whenever i − j ≤ 0 is a condition

which only involves the nonnegative part C≥0(k) of the complete resolution C(k), where it reduces to

Exts+lgrA(k,k(−l)) = 0 for s 6= 0 and all l ≥ 0 which is the definition of Koszul.

When A is Koszul Frobenius, it is immediate that the opposite category (modZA)op inherits a block

geometric helix by setting Eopi = E−i. Let Ti =
⊕a−1

j=0 Ei+j (resp. T opi =
⊕a−1

j=0 E
op
i+j) be the associated

tilting objects in modZA (resp. (modZA)op). Let Λ = EndgrA(Ti), which is independent of choice of

i ∈ Z, and note that Λop = EndgrA(T opi ). From the geometric helix condition, we obtain:

Proposition 4.2.4. Let A be a Koszul Frobenius k-algebra, and let d = a− 1. The algebras Λ, Λop are

both d-representation infinite algebras, and the tilting objects Ti, T
op
i induce equivalences of triangulated

categories

Fi : modZA
∼=−→ Db(Λ)

F opi : (modZA)op
∼=−→ Db(Λop)

sending Ti to Λ (resp. T opi to Λop).

Proof. That Λ and Λop are d-representation infinite is a rephrasing of condition ii) and b) in Prop. 4.2.3.

The equivalence of triangulated categories is standard for any tilting object.

Let us look at some example applications of the above proposition.

Example 4.2.5. The exterior algebra A =
∧∗
k(y0, . . . , yn) is Koszul Frobenius of top degree a = n+ 1.

The algebra Λ = kQ/I is the Beilinson algebra, with quiver given by

•
{xi} ////// •

{xi} ////// •
{xi} ////// · · ·

{xi} ////// •
{xi} ////// •
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with n+ 1 vertices and relations I = (xixj − xjxi).

Example 4.2.6. Let V be a vector space over k of dimension n ≥ 2 and V × V → k a perfect pairing,

extended to a graded algebra structure on A = A0 ⊕A1 ⊕A2 = k ⊕ V ⊕ k. Then A is Frobenius of top

degree a = 2, and Koszul2 by [74]. The algebra Λ ∼= kQ is the path algebra of the n-Kronecker quiver

•
{xi} ////// •

where {xi} is a basis for V .

Example 4.2.7. More generally, let B = k ⊕B1 ⊕ · · · be a Koszul k-algebra of finite global dimension

n. Then A = B! = Ext∗B(k, k) is a Koszul Frobenius k-algebra if and only if B is an Artin-Schelter

regular k-algebra [103, Thm. 5.10]. The top degree of A is then a = n. Picking a basis {yi} for

B1
∼= Ext1

grA(k, k(−1)), we have Λ = kQ/I for the quiver Q

•
{yi} ////// •

{yi} ////// •
{yi} ////// · · ·

{yi} // //// •
{yi} // //// •

with n vertices, and quadratic relations amongst {yi} inherited from the quadratic algebra B.

Interestingly, this construction attaches an (n− 1)-representation infinite algebra Λ, and therefore a

n-preprojective algebra Π = Π(Λ), to any Koszul Artin-Schelter regular algebra B with gldimB = n.

Next, let us see an example over a semisimple base k which is not a field.

Example 4.2.8. Let A = kQ/(Q2) be the radical square zero algebra over k = kQ0 with quiver Q an
oriented cycle

• // •

  
•

>>

•

��
• •

~~
•

``

•oo

Computing the indecomposable projectives P (i) and injectives I(i), one sees that A is a basic graded

self-injective algebra, and so is graded Frobenius, with top degree is a = 1. Moreover, radical square zero

algebras are always Koszul, and so the previous proposition applies. The algebra Λ ∼= kQ0 is semisimple.

It follows that modZA is a semisimple category.

Next, for the rest of this subsection, we fix a Koszul Frobenius algebra A of top degree a, with

associated d-representation infinite algebra Λ with d = a − 1. For our purposes we will single out

the equivalence G := F op−a+1 and spell out its properties. The tilting object is given by T op−a+1 =⊕a−1
j=0 E

op
j−a+1 =

⊕a−1
j=0 Ea−1−j =

⊕a−1
j=0 Ej . Let us write for the record:

Corollary 4.2.9. There is a contravariant equivalence of categories

G : (modZA)op
∼=−→ Db(Λop)

2This reference covers the case when A is commutative, or equivalently when the pairing is symmetric, but the general
case follows from Prop. 4.2.3.
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sending T−a+1 =
⊕a−1

j=0 Ej =
⊕a−1

j=0 k(−j)[j] to Λop.

Our aim for the remainder of this subsection is to characterise coherence of the higher preprojective

algebra Π(Λop) in terms of A.

Let us write βi,j = βi,j(M) = dimk ExtigrA(M,k(−j)) for the graded Betti numbers of M . Of course

when k decomposes we can refine the numbers βi,j further, but we will not do this. Note that βi,j(Mν) =

dimk ExtigrA(Mν ,k(−j)) = dimk ExtigrA(M, kν−1(−j)) = dimk ExtigrA(M, k(−j)) = βi,j(M).

Lemma 4.2.10. Let M ∈ modZA. Then:

i) dimk Hs(GM) =
a−1∑
l=0

βs+l,l

ii) dimk Hs
(
(GM)⊗L

Λop ω
−m
Λop

)
=
a−1∑
l=0

βma+s+l,ma+l.

Proof. We have

Hs(GM) = HomDb(Λop)(Λ
op, G(M)[s])

= HomDb(Λop)(G(T op−a+1), G(M)[s])

= HomDb(Λop)(G(T op−a+1), G(M [−s]))

= HomgrA(M,T op−a+1[s])

=

a−1⊕
l=0

Exts+lgrR(M, k(−l)).

This proves i). For ii), note that (GM) ⊗L
Λ ω−mΛ = S−md (GM) = G(Sma−1M) = G(Mνm(ma)[−ma]),

then apply i).

We can picture these cohomology groups using the Betti table β(M) whose entries are given by βi,i+j

in the i-th column and j-th row for i, j ∈ Z:

· · · 0 1 · · · a-2 a-1 a · · ·
...

...
...

...
...

...

-2 · · · β0,−2 β1,−1 · · · βa−2,a−4 βa−1,a−3 βa,a−2 · · ·
-1 · · · β0,−1 β1,0 · · · βa−2,a−3 βa−1,a−2 βa,a−1 · · ·
0 · · · β0,0 β1,1 · · · βa−2,a−2 βa−1,a−1 βa,a · · ·
1 · · · β0,1 β1,2 · · · βa−2,a−1 βa−1,a βa,a+1 · · ·
...

...
...

...
...

...

The sum of the zeroth row highlights gives the dimension of H0(GM), and the sum of the (−1)-th

row highlights gives that of H1(GM). More generally the dimension vector of Hs
(
(GM)⊗L

Λop ω
−m
Λop

)
represents a-many consecutive entries on row −s and these entries move to the right as m increases.

This is because the operation

β(M) 7→ β(Sa−1M) = β(Mν(a)[−a]) = β(M(a)[−a])

translates the table to the left by a-many columns.
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Now let us focus on the equivalence G : (modZA)op
∼=−→ Db(Λop). By Minamoto’s Theorem, coherence

of Π(Λop) is equivalent to the pair of full subcategories Dω−1

= (D≤0,ω−1
Λop ,D≥0,ω−1

Λop )

D≤0,ω−1
Λop = {X ∈ Db(Λop) | Hs(X ⊗L

Λop ω
−m
Λop ) = 0 for s > 0 for all m� 0}

D≥0,ω−1
Λop = {X ∈ Db(Λop) | Hs(X ⊗L

Λop ω
−m
Λop ) = 0 for s < 0 for all m� 0}

forming a t-structure on Db(Λop), which is then bounded. We can translate this into a statement about

modZA. Before moving further, let us first recall basic notions concerning t-structures (see [53, Chp.

8]).

Let T be a triangulated category with a pair of full subcategories t = (T ≤0, T ≥0), and denote

T ≤n = T ≤0 ◦ [−n] and T ≥n = T ≥0 ◦ [−n]. The pair t forms a t-structure if and only if these satisfy the

three defining properties:

T1. T ≤0 ⊆ T ≤1 and T ≥1 ⊆ T ≥0.

T2. HomT (T ≤0, T ≥1) = 0.

T3. For all X in T there is a distinguished triangle X≤0 → X → X≥1 → X≤0[1] with X≤0 in T ≤0 and

X≥1 in T ≥1.

When this holds, the embedding in : T ≤n ↪→ T and jn : T ≥n ↪→ T admit right and left adjoints

in : T ≤n � T : τ≤n

τ≥n : T � T ≥n : jn.

The unit and counit maps of the adjunctions gives rise to maps X → τ≥nX and τ≤nX → X, which fit

into distinguished triangles

τ≤nX → X → τ≥n+1X → (τ≤nX)[1].

Letting C = T ≤0 ∩ T ≥0 stand for the heart of this t-structure, which is naturally an abelian category,

one defines the t-cohomology objects H0X = τ≥0τ≤0X and HnX = H0(X[n]) = (τ≥nτ≤nX)[n] living

in C ⊆ T . The functor H0 : T → C is then a cohomological functor. A t-structure is bounded if every

object X ∈ T has finitely many non-zero cohomology objects HnX.

The axioms T1, T2, T3 are self-dual, and so a t-structure t = (T ≤0, T ≥0) on T induces an opposite

t-structure top = (T op,≤0, T op,≥0) on T op by setting

T op,≤0 = (T ≥0)op

T op,≥0 = (T ≤0)op.

Note that the suspension on T op is given by [−1], and so we have

T op,≤n = (T ≥−n)op

T op,≥n = (T ≤−n)op.
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Now consider the pair (D≤0,ω−1
Λop , D≥0,ω−1

Λop ) on Db(Λop). We define the pair (mod≤0A, mod≥0A) on

modZA by pulling back the above pair through the contravariant equivalence G, so that for every n ∈ Z
we have

mod≤nA = G−1
(

D≥−n,ω
−1
Λop

)
mod≥nA = G−1

(
D≤−n,ω

−1
Λop

)
.

Proposition 4.2.11. The subcategories mod≤nA, mod≥nA, and mod≤0A ∩ mod≥0A of modZA are

given by

mod≤nA = {M ∈ modZA | Hs
(
(GM)⊗L

Λop ω
−m
Λop

)
= 0 for s < −n whenever m� 0}

= {M ∈ modZA | βi,j(M) = 0 for j − i > n whenever j � 0}

= {M ∈ modZA | βi,j(M) = 0 for j − i > n whenever i� 0}

mod≥nA = {M ∈ modZA | Hs
(
(GM)⊗L

Λop ω
−m
Λop

)
= 0 for s > −n whenever m� 0}

= {M ∈ modZA | βi,j(M) = 0 for j − i < n whenever j � 0}

= {M ∈ modZA | βi,j(M) = 0 for j − i < n whenever i� 0}

mod≤0A ∩mod≥0A = {M ∈ modZA | βi,j(M) = 0 for i 6= j whenever j � 0}

= {M ∈ modZA | βi,j(M) = 0 for i 6= j whenever i� 0}.

Proof. By Lemma 4.2.10 we have dimk Hs(G(M) ⊗L
Λop ω

−m
Λop ) =

∑a−1
l=0 βma+s+l,ma+l. The first equality

follows by setting s = i− j, and the second by noting that the indices i, j in {(i, j) | βi,j 6= 0} go to +∞
together.

Remark 4.2.12. We can picture these categories in terms of the shape of the Betti table β(M). The

category mod≤nA consists of modules whose Betti table is eventually supported on the n-th row or above

(resp. mod≥nA consists of modules with Betti table eventually supported on the n-th row or below).

Now, pulling back the pair of subcategories (mod≤0A, mod≥0A) of Prop. 4.2.11 onto Minamoto’s

pair (D≤0,ω−1
Λop , D≥0,ω−1

Λop ) through the contravariant equivalence G of Prop. 4.2.9, we may rephrase

Minamoto’s Theorem 4.1.13 as follows:

Proposition 4.2.13. The following are equivalent.

i) The higher preprojective algebra Π(Λop) is coherent.

ii) The pair Dω−1

= (D≤0,ω−1
Λop ,D≥0,ω−1

Λop ) forms a t-structure on Db(Λop), which is then bounded.

iii) The pair (mod≤0A,mod≥0A) forms a t-structure on modZ A, which is then bounded.

In the next section we will investigate when a natural generalisation of the above forms a t-structure

for the graded singularity category over an arbitrary Koszul Gorenstein k-algebra.



Chapter 5

Absolutely Koszul algebras and

t-structures of Koszul type

Throughout this chapter, A will denote more generally a Koszul Gorenstein algebra satisfying some mild

finiteness hypotheses to be set-out shortly; certainly two-sided Noetherian and graded connected over a

field suffices, and the arguments in the general case will not differ substantially. Over such an algebra

A, define the following full subcategories of MCMZ(A):

MCM≤n(A) = {M ∈ MCMZ(A) | βi,j(M) = 0 for j − i > n whenever i� 0}

MCM≥n(A) = {M ∈ MCMZ(A) | βi,j(M) = 0 for j − i < n whenever i� 0}.

Moreover, we will consider the pair tlin = (MCM≤0(A), MCM≥0(A)) as a candidate pair for a t-structure,

with intersection

Hlin(A) := MCM≤0(A) ∩ MCM≥0(A)

the category of eventually linear stable MCM modules. The goal of this chapter is to give a proof of the

following theorems.

Theorem A. Let A be a Koszul Gorenstein algebra. The following are equivalent:

i) A is absolutely Koszul.

ii) tlin forms a bounded t-structure.

When either of these equivalent conditions hold, the natural realisation functor

real : Db(Hlin(A))
∼=−→ MCMZ(A)

is an equivalence of triangulated categories.

Theorem B. Let A be an absolutely Koszul, Gorenstein k-algebra, which we assume homologically

homogeneous. Then E = (A!)op = Ext∗A(k,k)op is coherent and we have a contravariant equivalence of

abelian categories

Hlin(A)op
∼=−→ qgrE

123
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sending M to Ext∗A(M, k).

Conversely, if A is Artinian Koszul Gorenstein with E = (A!)op = Ext∗A(k,k)op coherent, then A is

absolutely Koszul.

Putting the two theorems together, we then obtain:

Theorem C. Let A be an absolutely Koszul, Gorenstein k-algebra, which is assumed homologically

homogeneous, and let E = (A!)op = Ext∗A(k,k)op. Then there exists an equivalence of triangulated

categories

MCMZ(A)op ∼= Db(qgrE)

such that tlin arises as the pullback of the standard t-structure on the right hand side.

5.1 Linearity defect and Theorem A

Standing hypotheses

We now impose hypotheses for the remainder of this chapter, which are slightly more permissive than

those used in Chapter 4. As before k denotes a fixed field and k will denote a fixed finite-dimensional

semisimple k-algebra. A graded k-algebra will always mean a graded algebra S = k ⊕ S1 ⊕ S2 ⊕ . . . ,
with multiplication S ⊗k S → S bilinear over k, and we further assume that dimk Si <∞ for all i ≥ 0.

The weakened assumptions are meant to capture the following natural examples:

a) S = k[x0, . . . , xn]/I is a commutative graded k-algebra of finite type over k = k;

b) S = kQ/I is a graded path algebra for a finite bound quiver (Q, I) with path-length homogeneous

relations I, thought of as an algebra over k := kQ0;

c) skew group algebras S ∗G over k = kG, with underlying graded vector space (S ∗G)i := (S⊗k kG)i =

Si ⊗k kG and twisted multiplication

(s, g) ∗ (s′, g′) = (sg(s′), gg′)

where S = k⊕A1⊕· · · a standard graded algebra and G ≤ Aut0(S) a finite subgroup of homogeneous

automorphisms of S, over k of characteristic not dividing the order of the group;

d) more generally the Koszul duals S! = Ext∗S(k,k) of Koszul algebras of the above form.

Additionally, working over a semisimple base k instead of the field k, starting in Section 5.2 we will

need to assume that our algebras are homologically homogeneous, meaning that the simple summands

of k have the same projective dimension. The relevance is only to the proof of Theorem B and we will

impose it from Section 5.2 onwards.
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Basic properties

Recall that modules over a graded algebra S will by default refer to graded right S-modules. Under the

assumption that S is (right) coherent, the category of finitely presented modules grmod S ( Grmod S

is an abelian subcategory closed under extensions and under taking finitely generated submodules, and

contains all finite length modules. Moreover, each M ∈ grmodS admits a projective resolution

· · · → P2 → P1 → P0 →M → 0

by finitely generated projectives. Recall that a complex of projectives P∗ = (P∗, ∂) is minimal if P∗⊗S k
has trivial differential. Writing rS := rad(S) = S≥1 for the homogeneous Jacobson radical of S, this is

equivalently to the statement ∂(Pn+1) ⊆ PnrS for all n.

Recall that a general graded algebra T is semiperfect if T/J(T ) is semisimple and the idempotents of

T/J(T ) lift to T . This holds in our setting as S/rS = S/S≥1 = k is semisimple, and idempotent lifting

holds for degree reasons. By [66], each M ∈ grmod S admits a projective cover π : P � M , meaning

that P is finite projective with ker(π) ⊆ P rS , and so each M ∈ grmod S admits a minimal projective

resolution P∗
∼−→M , unique up to (non-canonical) isomorphism. Moreover, by [66] the category grmodS

has the Krull-Schmidt property.

The map S � S/rS = k for S semiperfect always induces a bijection on indecomposable finitely

generated (graded) projectives [66], with k considered as a graded algebra sitting in degree zero. Since

we have a splitting S � k, here this bijection takes the form

PS = P 7→ P ⊗S k

Vk = V 7→ V ⊗k S.

In particular every finitely generated projective S-module can be written as P = V ⊗kS for some unique

graded k-module V .

Throughout this chapter, A will always denote a graded Gorenstein k-algebra, which is assumed

two-sided coherent and of Gorenstein dimension d = idim (AA) = idim (AA) < ∞. Given M ∈ grmodA

with finite presentation

P1 → P0 →M → 0

the dual (left) module M∗ = HomA(M,A) is the kernel of a map between finitely generated projectives

over Aop

0→M∗ → P ∗0 → P ∗1

and so must be finitely presented by two-sided coherence of A. Taking dual modules then restricts to a

functor between finitely presented modules

(−)∗ : grmodA→ grmodAop.

By [33, Lemma 5.3], whose proof in the Noetherian case applies in the coherent setting (see also [111,
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Prop. 3.5]), this extends to a duality on the bounded derived category

(−)∨ := RHomA(−, A) : Db(grmodA)op
∼=−→ Db(grmodAop)

in that (−)∨∨ ' id. We form in the usual ways the categories MCMZ(A) ⊆ modZA and DZ
sg(A). The

proofs of Buchweitz’s theorems [29] apply verbatim in our situation to give equivalences

Kac(projZA) ∼= MCMZ(A) ∼= DZ
sg(A)

with the middle category inheriting the structure of a triangulated category through either equivalence.

The stable category MCMZ(A) also inherits the Krull-Schmidt property from MCMZ(A) since endo-

morphism algebras of graded modules have finite length over k and are then Artinian, and so have the

idempotent lifting property (see [66] for more details).

Given N ∈ grmod A, by the Krull-Schmidt property we have an essentially unique decomposition

N = [N ]⊕F with F the largest projective summand of N . Note that N and N ′ are stably isomorphic if

and only if [N ] and [N ′] are isomorphic. We will need the following lemma, which was used previously

in Chapter 3 but which is worth spelling out in full here.

Lemma 5.1.1. Let N ∈ grmodA. Then HomgrA (N, k(j)) ∼= HomgrA ([N ],k(j)) for all j ∈ Z.

Proof. We have HomgrA (N, k(j)) ∼= HomgrA ([N ],k(j)) and so it is sufficient to check that any morphism

f : [N ]→ k(j) factoring through a projective

[N ]
α

&&

f // k(j)

P

β 88

must be zero. Assume it is not. Since k(j) is semisimple, the image im(f) = im(β) is a semisimple

summand supported in degree −j and without loss of generality we can assume that f and β are

surjective. The map β then further factors through the projective cover π : A(j) � k(j) as depicted

[N ]
α

''
α̃

��

f // k(j)

P

��

β 77

A(j)

π

??

That f is onto is implies that α̃ is also onto for degree reasons, in which case [N ] contains a projective

summand, a contradiction.

Linearity defect and t-structures

We are finally ready to investigate when the pair of full subcategories tlin = (MCM≤0(A), MCM≥0(A))

forms a t-structure. Recall that we define the (stable)1 graded Betti numbers of M ∈ MCMZ(A) as the

1It would be more appropriate to call these the stable graded Betti numbers as these differ slightly from the usual
definition, in that ours satisfy β0,∗(P ) = 0 for any finite projective P . Since we will only use the notation βi,j as defined
here, the author hopes that there will be no ambiguity.
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dimensions

βi,j(M) = dimk ExtigrA(M, k(−j))

and that for i ≥ 0 we have agreements

βi,j(M) = βi,j([M ]) = dimk ExtigrA([M ],k(−j)) = dimk TorAi ([M ],k)j .

We have defined full subcategories MCM≤n(A), MCM≥n(A) by

MCM≤n(A) = {M ∈ MCMZ(A) | βi,j(M) = 0 for j − i > n whenever i� 0}

MCM≥n(A) = {M ∈ MCMZ(A) | βi,j(M) = 0 for j − i < n whenever i� 0}.

Note that MCM≤0(A)[−n] = MCM≤n(A) and MCM≥0(A)[−n] = MCM≥n(A). We say that M is

n-linear if TorSi (M,k)j = 0 for j − i 6= n, and that M is linear if it is 0-linear. The intersection

Hlin(A) := MCM≤0(A) ∩ MCM≥0(A)

is the subcategory of eventually linear stable MCM modules. The above pair typically occurs as the

t-structure dual to the standard t-structure under (contravariant) Koszul duality equivalences. Let us

begin with a classical example.

Example 5.1.2 (BGG correspondence for exterior and symmetric algebras). Let A =
∧∗
k(y0, · · · , yn)

be an exterior algebra over k with Koszul dual symmetric algebra B := Ext∗A(k, k) ∼= k[x0, · · · , xn].

Following [44], there are natural functors L,R giving rise to an equivalence of triangulated categories

L : Db(grmodA) � Db(grmodB) : R

We have a natural isomorphism of complexes L(M) ' RHomA(k,M) up to a natural regrading, which

gives [44, Prop. 2.3]

Hj(L(M))i = Exti−jgrA(k,M(−i))

Consider the duality

D : Db(grmodA)op
∼=−→ Db(grmodA)

given by D = RHomA(−, ωA), where ωA = A(a) = A(n + 1), and Aop ∼= A naturally identified via

the antipode map. Then D satisfies D2 ' id and D(k) ∼= k. Combining with the above, we obtain a

contravariant equivalence

LD : Db(grmodA)op
∼=−→ Db(grmodB)

with a natural isomorphism LD ' RHomA(k,D(−)) ' RHomA(−, k) up to regrading, and we have the

more natural

Hj(LD(M))i = Exti−jgrA(M,k(−i)).

The functor LD sends perfect complexes to complexes with Artinian (or torsion) cohomology, and so

descends to an equivalence

LD : (modZA)op
∼=−→ Db(cohPn).

From the above cohomology calculations, one sees that mod≥0A = LD−1(D≤0) and mod≤0A = LD−1(D≥0),
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where (D≤0,D≥0) is the standard t-structure on Db(cohPn).

The above example generalises easily, and one can streamline the proof using Morita theory (see

Appendix A.2). The next example is well-known (see [46, Ex. 3.2, Ex. 11.1] where this example was

treated in the ungraded situation). The author has learned the idea behind the proof from a talk by G.

Stevenson.

Example 5.1.3 (BGG correspondence for Artinian-Coherent pairs). Let A be an Artinian, Koszul,

Gorenstein k-algebra. Let B = Ext∗A(k, k) be the Koszul dual, and assume that Bop is a coherent graded

algebra.

Consider the full subcategory S ⊆ Db(grmod A) defined by S = {k(−i)[i] | i ∈ Z}. One can think

of the small subcategory S as abstractly equivalent to a category with object set given by Z, with

morphisms given by

Hom(i, j) = Extj−igrA(k, k(i− j))

and composition given by that of the Ext algebra. The subcategory S is a tilting subcategory, in the

sense that:

a) S classically generate Db(grmodA), i.e. thick(S) = Db(grmodA),

b) S has no non-trivial extensions, meaning that ExtngrA(s, s′) = 0 for n 6= 0 for any objects s, s′ ∈ S.

The first fact holds since A is Artinian and the second since A is Koszul. Moreover, Sop is a tilting

subcategory for the opposite category Db(grmodA)op. By Keller’s Tilting Theorem A.2.2, we have an

equivalence of triangulated categories

RHom(−, S) : Db(grmodA)op
∼=−→ Dperf(ModSop)

onto the subcategory of perfect DG-modules Dperf(Mod Sop) ⊆ D(Mod Sop). This is simply the multi-

object version of Keller’s Theorem which we have repeatedly used throughout this thesis, but let us

unpack the notation further.

Let S ⊆ Db
dg(grmodA) be the small DG category obtained from S with same objects as S but with

morphisms computed in a fixed DG enhancement D := Db
dg(grmodA) of Db(grmodA). Since S is tilting,

there is a quasi-equivalence of DG categories S ' H0(S) = S inducing an equivalence of (perfect) derived

categories

Dperf(ModS) ∼= Dperf(ModS)

and similarly for opposite categories Sop, Sop. Next, note that any object M ∈ D induces a left S-module

by restricting HomD(M,−) to S ⊆ D. The equivalence RHom(−, S) is then obtained by composing

HomD(−,S) : Db(grmodA)
∼=−→ Dperf(ModSop)

with Dperf(ModSop) ∼= Dperf(ModSop). Now, a DG module over Sop is nothing but a complex of graded

modules over Bop = Ext∗A(k, k)op, so that Dperf(Mod Sop) = Dperf(GrmodBop). Since A is Artinian, we

have that gldimBop <∞, and since Bop is coherent we deduce that Dperf(GrmodBop) = Db(grmodBop).
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The above equivalence can then be rewritten as

RHom(−, S) : Db(grmodA)op
∼=−→ Db(grmodBop).

Given M ∈ Db(grmodA), the complex RHom(M,S) is a complex of graded Bop-modules, with cohomol-

ogy given by

Hj(RHom(M,S))i ∼= ExtjgrA(M,k(−i)[i]) = Exti+jgrA(M,k(−i)) (5.1)

and the standard action of Bop = Ext∗A(k, k)op by post-composition. We deduce that RHom(A,S) ∼=
B ∈ Db(grmodBop), and so that RHom(−, S) sends perfect complexes onto complexes with finite length

cohomology. This equivalence then descends to

MCMZ(A)op
∼=−→ Db(qgrBop).

Finally, from the isomorphism 5.1, we see that the category grmodBop ⊆ Db(grmodBop) corresponds to

complexes with linear minimal projective resolution under RHom(−, S), and so the pair tlin on MCMZ(A)

arises as the pullback of the standard t-structure on Db(qgrBop).

One advantage of the argument by Morita theory is that it makes clear the formal nature of the

argument, so long as A is Artinian and B is coherent. However, equivalences of this type hold more

generally than this type of argument would initially lead one to believe.

Example 5.1.4 (BGG correspondence after Buchweitz [31, Appendix]). Let R = k[x]/(q) be a complete

intersection of quadrics, as studied in Chapter 2. Let C = R! = Ext∗R(k, k) be its Koszul dual, a

homogeneous Clifford algebra over a polynomial subalgebra k[η] with basis {η} dual to {q}. Then

(R,C) is a pair of Koszul dual Noetherian Koszul Gorenstein algebras. Letting A be either R or C, and

modifying slightly the approach in [31, Appendix], we have seen that there is an equivalence

Db(grmodA)op � Db(grmodA!)

exchanging perfect complexes and complexes with Artinian cohomology, and so descending to equiva-

lences

MCMZ(A)op � Db(qgrA!)

and such that tlin arises on MCMZ(A) via the pullback of the standard t-structure under this equivalence.

Remark 5.1.5. Explicit use is made in [31, Appendix] of the Noetherianity of Ext∗R(k, k), and complete

intersections of quadrics are the only commutative Koszul algebras with Noetherian Ext algebra. The

proof does not immediately extend to the case of Ext∗R(k, k) coherent, although an extension beyond the

Noetherian case may be possible by involving new ideas, see the discussion in Sect. 6.3.

Now, instead of imposing finiteness conditions on our algebras A or their Koszul dual Ext∗A(k,k),

we will instead make use of criteria more internal to the stable category MCMZ(A). We begin with

reviewing a parallel story.
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Absolutely Koszul Algebras

As part of their study of graded modules over the exterior algebra A =
∧∗
k(y0, . . . , yn) through the BGG

correspondence, Eisenbud, Fløystad and Schreyer proved the following result.

Theorem 5.1.6 (Eisenbud-Fløystad-Schreyer [44]). Let A =
∧∗
k(y0, · · · , yn) and let M ∈ Db(grmodA)

with minimal free resolution F∗ = (F∗, ∂)
∼−→M . Then the linear part of the differential on F dominates;

that is, expressing ∂ as matrices with entries in A and removing the entries of degree ≥ 2 yields a complex

linA(F∗) with at most bounded cohomology.

This notion was further analysed by Herzog-Iyengar [50] and Römer [95], who introduced the notions

below for (graded-)commutative algebras and whose results form the basis of this chapter. Note that

closely related notions were studied by Mart́ınez-Villa and Zacharia in [77] (see also [75]).

Let S be a coherent graded k-algebra and let M ∈ Db(grmod S) with minimal projective resolution

F∗ = (F∗, ∂)
∼=−→M :

· · · → Fn+1
∂−→ Fn

∂−→ Fn−1 → · · ·

Writing rS = S≥1, the minimal complex F∗ satisfies ∂(Fn+1) ⊆ FnrS , and we define a filtration by

subcomplexes F = {FkF∗}k≥0 by setting (FkF∗)n = Fnr
k−n
S , where by convention rkS = S for k ≤ 0.

Definition 5.1.7 (Herzog-Iyengar [50]). The associated graded complex linS(F∗) := grF (F∗) is called

the linear part of F .

The definition in terms of the filtration F makes sense in fair generality (e.g. local Noetherian rings),

but this complex takes a simpler form in our setting. Each projective module has a canonical form

Fn+1
∼= Vn+1⊗k S for a unique graded k-module Vn+1, and so the differential ∂ : Fn+1 → Fn is uniquely

determined by its restriction

∂ : Vn+1 → Vn ⊗k S.

Expand ∂ = ∂1 + ∂2 + . . . , where ∂i(Vn+1) ⊆ Vn ⊗k Si. Then ∂2 = 0 implies ∂2
1 = 0 for degree reasons,

and one has

linS(F∗) = (F∗, ∂1)

similar to the statement of Thm. 5.1.6.

Definition 5.1.8 (Herzog-Iyengar [50]). Let S be a coherent graded k-algebra and M ∈ Db(grmodS).

Keeping the above notation, the linearity defect of M is defined as

ldS(M) = sup{n | Hn(linS(F∗)) 6= 0}.

Definition 5.1.9 (Herzog-Iyengar [50]). Let S be a coherent graded k-algebra and M ∈ grmod S. We

say that M is Koszul if ldS(M) = 0.

Example 5.1.10. Any module M for which F∗ has linear differential ∂ = ∂1 is Koszul.

Example 5.1.11 (Herzog-Iyengar [50]). Let S = k[x, y] and M have minimal resolution F∗ of length

two

0 // S(−1)

[
x2

y

]
// S ⊕ S(1) // 0.
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Then linS(F∗) is given by

0 // S(−1)

[
0
y

]
// S ⊕ S(1) // 0.

and so Hn(linS(F∗)) = 0 for n > 0 and M is Koszul.

Finiteness of linearity defect is a useful property with strong consequences. The following proposition

was proved in the commutative case by Herzog-Iyengar. Recall that the Hilbert function HS(t) =∑
n≥0 dimkSn t

n of a standard graded, commutative k-algebra S is rational, of the form

HS(t) =
hS(t)

(1− t)dimS
.

Proposition 5.1.12 (Herzog-Iyengar, [50, Prop. 1.8]). Let S be a commutative, graded connected

k-algebra, and let M be a graded S-module with ldS(M) < ∞. Then the Poincaré series PMS (t) :=∑
n≥0

dimk ExtnS(M,k)tn ∈ Z[[t]] is rational of the form

PMS (t) =
QMS (t)

hS(−t)

for some polynomial QMS (t) ∈ Z[t].

In other words, modules with finite linearity defect have rational Poincaré series with uniform de-

nominator depending only on the structure of S. We make the following definition.

Definition 5.1.13. Let S be a coherent graded k-algebra. We say that S is absolutely Koszul if

i) S is Koszul;

ii) ldS(M) <∞ for all finitely presented modules M . Equivalently, every such M has a Koszul syzygy.

Herzog and Iyengar introduced this notion for commutative graded k-algebras S (and more generally

for Noetherian local rings); they actually showed that i) follows from ii) by using the Avramov-Eisenbud-

Peeva [11, 14] characterisation of commutative Koszul algebras as graded algebras S such that the

Castlenuovo-Mumford regularity

regS(M) = sup{r | TorSn(M,k)n+r 6= 0, n ∈ N}

is finite for each M ∈ grmodS. It is not known to the author whether the finiteness of regS(M) for all

M ∈ grmodS implies (or even follows from) Koszulity of S in our generality, and we will simply impose

condition i) for now. Let us at least record a lemma.

Lemma 5.1.14. Let S be a coherent graded k-algebra, and let M,N ∈ grmod S.

a) Assume that M is Koszul, with generator degrees in the interval [n, n′]. Then TorSi (M,k)i+j = 0 for

j /∈ [n, n′].

b) Assume that N has finite linearity defect. Then N has finite regularity.

Proof. To see a), let F∗ be the minimal resolution of M . Since M is Koszul, note that it has the

same graded Betti numbers as H0(linS(F∗)), which breaks down as a direct sum of j-linear modules for

n ≤ j ≤ n′. Part b) then follows since N has a Koszul syzygy, which has finite regularity by a).
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The prototypical examples of absolutely Koszul algebras are as follows.

Example 5.1.15. The theorem of Eisenbud-Fløystad-Schreyer (Thm. 5.1.6) states that the exterior

algebra
∧∗
k(y0, · · · , yn) is absolutely Koszul.

Example 5.1.16 (Herzog-Iyengar, [50, Cor. 5.10]2). Complete intersections of quadrics are absolutely

Koszul.

In general, we have a proper containment

{Absolutely Koszul algebras} ( {Koszul algebras}

even when restricted to commutative k-algebras. The matter of comparing the relative sizes of each class

has a long history in commutative algebra, and is closely connected to rationality problems for Poincaré

series. Given a local Noetherian commutative ring (R,m, k), the Serre-Kaplansky Conjecture asked for

a proof of the rationality of the Poincaré series

P kR(t) =
∑
n≥0

dimk ExtnR(k, k)tn.

Anick gave the first counterexample in his 1982 thesis [2], and his constructions have since found many

applications and refinements. When S is a commutative Koszul k-algebra, the Poincaré series P kS (t) =

HS!(t) is always rational by the standard identity

HS!(t) =
1

HS(−t)
=

(1 + t)

hS(−t)

dimS

but Jacobsson [59] gave an example of a module M over such a ring for which PMS (t) is transcendental.

The construction methods of Anick and Jacobsson were later taken up by Roos [95], who introduced the

following definition in general:

Definition 5.1.17. A Koszul k-algebra S is good in the sense of Roos if all finitely presented modules

M have rational Poincaré series

PMS (t) =
QMS (t)

dS(t)

with QMS (t), dS(t) ∈ Z[t] and denominator dS(t) independent of M .

Prop. 5.1.12 states that absolutely Koszul commutative k-algebras are good, with uniform denomi-

nator dS(t) = hS(−t). Roos gave examples of ’bad’ (i.e. not good) Koszul algebras. For instance:

Theorem 5.1.18 (Roos, [95, Thm 2.4b(A)]). Let S′ = k[x1, x2]/(x1, x2)2. Then S := S′ ⊗k S′ is a bad

Koszul algebra in the sense of Roos. More specifically, there is a sequence of finitely generated graded

S-modules {Mα}α∈N with PMα

S (t) rational, expressed in reduced form as

PMα

S (t) =
Qα(t)

dα(t)

with lim sup(deg dα(t)) =∞ as α runs over N.

2The cited result concerns the local case but applies equally to the graded setting.
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More precisely in the above theorem, given any candidate denominator dS(t) ∈ Z[t], we see that

dα(t) cannot divide dS(t) for infinitely many α ∈ N as the degree of dα(t) can be arbitrarily high. In

particular, taking dS(t) = hS(−t) we deduce that ldS(Mα) = ∞ for infinitely many α ∈ N by Prop.

5.1.12.

Remark 5.1.19. The ‘bad’ Koszul algebra S′ ⊗k S′ is particularly interesting, and will play a role in our

construction of a counterexample to the conjectures of Minamoto and Bondal in Chapter 6.

Existence of t-structures

We are now almost in position to prove the first part of Theorem A. Recall that Gorenstein algebras

are implicitly taken to be two-sided coherent, which ensures the existence of complete resolutions for

finitely presented MCM modules, but the remaining notions refer to right modules. We also denoted

tlin = (MCM≤0(A), MCM≥0(A)).

Let us discuss the structure of this subsection. Our main aim is to prove the following result:

Proposition (Proposition 5.1.25). Let A be a Koszul Gorenstein algebra. The following are equivalent:

i) A is absolutely Koszul.

ii) tlin forms a bounded t-structure for MCMZ(A).

The main tool will be an elegant characterisation of Koszul modules over a coherent Koszul algebra

S due to Römer. Recall that M ∈ grmodS is n-linear if TorSi (M,k)i+j = 0 for j 6= n and all i ≥ 0, and

M is linear if it is 0-linear. Let M〈n〉 ⊆M be the submodule generated by Mn for fixed n ∈ Z. We say

that M is componentwise linear if M〈n〉 is n-linear for each n ∈ Z. We also denote the initial degree of

M by

indeg(M) = inf{n | Mn 6= 0}.

The following is due to Römer [95, Lemma 3.2.2, Thm. 3.2.8], [58, Sect. 5] in commutative algebra.

Theorem (Thm. 5.1.24). Let S be a coherent Koszul k-algebra and M ∈ grmod S a module with finite

regularity, with indeg(M) = n. The following are equivalent:

i) M is componentwise linear;

ii) M〈n〉 is n-linear and M/M〈n〉 is componentwise linear;

iii) M is Koszul.

While Römer worked over a commutative or graded-commutative, standard graded Noetherian alge-

bras S, the proof works in our generality and for completeness we will reproduce the arguments, with at

most superficial changes to cover our situation. We will follow the exposition in [58, Sect. 5]. We first

need a few lemmas.

Lemma 5.1.20 ([58, Lemma 5.4]). Let S be a coherent Koszul k-algebra and let M ∈ grmodS. If M is

n-linear, then M rS is (n+ 1)-linear.
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Proof. The module M/M rS ∼=
⊕

i∈I k(−n) has an n-linear resolution since S is Koszul. Consider the

short exact sequence

0→M rS →M →M/M rS → 0.

The long exact sequence of TorS(−,k) preserves internal degrees, and one deduces that TorSi (M rS ,k)i+j =

0 for j > n+1. Since M rS is generated in degree n+1, TorSi (MmS ,k)i+j = 0 for j < n+1 by properties

of minimal resolutions, and it follows that M rS is (n+ 1)-linear.

Note that as corollary we see that n-linear modules are componentwise linear, since if M is n-linear

and i ≥ n, we have M〈i〉 = M ri−nS is i-linear.

Next, we have:

Lemma 5.1.21 ([58, Lemma 5.5]). Let S be a coherent Koszul k-algebra and let M ∈ grmod S, with

indeg(M) = n. The following are equivalent:

i) M is componentwise linear;

ii) M〈n〉 is n-linear and M/M〈n〉 is componentwise linear.

Proof. For i ≥ n, we have M〈n〉〈i〉 = M〈n〉r
i−n
S , and one sees that the sequence

0→M〈n〉〈i〉 →M〈i〉 → (M/M〈n〉)〈i〉 → 0

is exact. Under both hypotheses, M〈n〉 is n-linear and so by Lemma 5.1.20 the module M〈n〉〈i〉 is i-

linear. Inspecting the long exact sequence of Tor modules, one sees that M〈i〉 is i-linear if and only if(
M/M〈n〉

)
〈i〉 is i-linear, and the statement follows.

We next introduce an important subcomplex of the minimal resolution, which refines the information

contained in the linear part. Let S be a coherent Koszul k-algebra as before and M ∈ grmod S, with

minimal resolution F∗ = (F∗, ∂)
∼−→M . Let n = indeg(M). The minimal resolution F∗ has terms of the

form

Fi = Vi ⊗k S

with Vi =
⊕

j≥n Vi,i+j a bigraded finite k-module. We define the (zeroth) linear strand F
(n)
∗ ⊆ F∗ to be

the subcomplex with terms of the form

F
(n)
i = Vi,i+n ⊗k S.

That this is a subcomplex follows since we have ∂1(F
(n)
i ) ⊆ F (n)

i−1 and ∂≥2(F
(n)
∗ ) = 0 for degree reasons.

In particular F
(n)
∗ is a linear subcomplex of F∗.

The definition of the linear strand F
(n)
∗ makes sense for any minimal, lower bounded complex of

finite graded projective modules. It applies in particular to the complex F∗/F
(n)
∗ , whose zeroth linear

strand we denote F
(n+1)
∗ , and call it the first linear strand of F∗. Continuing this way, we produce linear

complexes F
(n)
∗ , F

(n+1)
∗ , F

(n+2)
∗ , . . . , called the zeroth, first, second, . . . , linear strands of F∗. Since the
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underlying bigraded S-module of the linear strand is a direct summand of the underlying module of F∗,

comparing differentials one obtains a direct sum decomposition of the lineart part of F∗

linS(F∗) = (F∗, ∂1) =
⊕
i≥n

F
(n+i)
∗

in terms of the linear strands. Note that the largest r indexing a non-zero summand F
(n+r)
∗ 6= 0 computes

the regularity of M , via

regS(M)− indeg(M) = r

and in particular that the regularity of M is finite if and only if the decomposition is finite.

The inclusions of subcomplexes F
(n)
∗ ⊆ F∗, F

(n+1)
∗ ⊆ F∗/F

(n)
∗ , . . . , keep track of the way one

reconstructs F∗ from the summands of linS(F∗). The way this information is reflected at the level of

modules is encapsulated by the following lemma.

Lemma 5.1.22. Let S be a coherent Koszul k-algebra and M ∈ grmod S, with minimal resolution

F∗
∼−→ M . Let n = indeg(M), and assume that M〈n〉 is n-linear. Then the linear strand F

(n)
∗ ⊆ F∗ is a

minimal resolution of M〈n〉, and we have a short exact sequence of resolutions

0 // F (n)
∗ //

'
��

F∗ //

'
��

F∗/F
(n)
∗ //

'
��

0

0 // M̃〈n〉 // M̃ // M̃/M̃〈n〉 // 0.

Proof. Let E∗
∼−→M〈n〉 be the minimal resolution of the n-linear module M〈n〉, and let α : E∗ → F∗ be

a comparison morphism lifting the inclusion map ι : M〈n〉 ↪→ M . We will show that α is injective and

that im(α) = F
(n)
∗ is the zeroth linear strand of F∗.

Let G∗ = Cone(α), with distinguished triangle

E∗ → F∗ → G∗ → E∗[1]. (5.2)

The long exact sequence of homology shows that Hi(G∗) = 0 for i < 0 and i > 1, and moreover that

H0(G∗) ∼= M/M〈n〉, fitting into an exact sequence

0 // H1(G∗) // H0(E∗) // H0(F∗) // H0(G∗) // 0

0 // H1(G∗) // M〈n〉
ι // M // M/M〈n〉 // 0

Since ι is injective, we must have H1(G∗) = 0. It follows that G∗ is a (not necessarily minimal) resolution

of M/M〈n〉.

We must then have TorSi (G∗,k)i+j ∼= TorSi (M/M〈n〉,k)i+j = 0 for j < n + 1 and all i ≥ 0. Taking

the long exact sequence of Tor associated to the distinguished triangle 5.2, one sees that the boundary

map TorSi (G∗,k)i+j → TorSi−1(E∗,k)i+j vanishes for all j ∈ Z, since either the domain or codomain is
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zero by combining the above vanishing with the n-linearity of E∗. The long exact sequence breaks down

into short exact sequences of totalised Tor modules

0 // TorS∗ (E∗,k) // TorS∗ (F∗,k) // TorS∗ (G∗,k) // 0

0 // E∗ ⊗S k
α⊗Sk // F∗ ⊗S k // TorS∗ (G∗,k) // 0.

The second line holds since F∗ and E∗ are minimal. By the Nakayama lemma, α : E∗ → F∗ must then

be injective. Since E∗ is n-linear, we see that im(α) ⊆ F
(n)
∗ lands into the linear strand, and from the

degree vanishing TorSi (G∗,k)i+j = 0 for j < n + 1, we see that im(α) = F
(n)
∗ . We have shown that

α : E∗
∼=−→ F

(n)
∗ is an isomorphism. In particular F

(n)
∗ ⊆ F∗ resolves the submodule M〈n〉 ⊆ M , as we

claimed.

It remains to consider the short exact sequence of complexes

0→ F
(n)
∗ → F∗ → F∗/F

(n)
∗ → 0

Repeating the above argument with F∗/F
(n)
∗ instead of G∗, the long exact sequence of homology shows

that H0(F∗/F
(n)
∗ ) ∼= M/M〈n〉 and Hi(F∗/F

(n)
∗ ) = 0 for i 6= 0, and so the above is a short exact sequence

of minimal resolutions.

In order to prove Römer’s Theorem, we will also need the next simple lemma on the behavior of

linear strands.

Lemma 5.1.23. Let S be a coherent graded k-algebra and X∗ be a complex of finite graded projectives

S-modules, such that Xi = 0 for i < 0 and with indeg(X0) = n. Assume that:

i) X∗ has finitely many linear strands, that is the decomposition below is finite:

linS(X∗) =
⊕
i≥n

X
(n+i)
∗ .

ii) Hk(linS(X∗)) = 0 for k > 0.

Then Hk(X∗) = 0 for k > 0 as well.

Proof. Under the hypothesis, X∗ is a finite iterated extension of complexes X
(n+i)
∗ with Hk(X(n+i)) = 0

for k > 0, and so X∗ inherits the same property.

We now turn to the proof of Römer’s Theorem.

Theorem 5.1.24 (Römer, [95, Lemma 3.2.2, Thm. 3.2.8], [58, Sect. 5]). Let S be a coherent Koszul

k-algebra and M ∈ grmod S a module with finite regularity, with indeg(M) = n. The following are

equivalent:

i) M is componentwise linear;

ii) M〈n〉 is n-linear and M/M〈n〉 is componentwise linear;
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iii) M is Koszul.

Proof. The equivalence of i) and ii) is given by Lemma 5.1.21, and we will use it implicitly in the proof.

We will establish the equivalence of i) and iii) by induction on r(M) := regS(M)− indeg(M) ≥ 0, which

is the number of linear strands in the minimal resolution F∗ of M . When r(M) = 0, M is n-linear and so

both Koszul and componentwise linear, and there is nothing to prove. We now assume that r(M) > 0.

We will make repeated use of the following observation: consider the short exact sequence

0→ F
(n)
∗ → F∗ → F∗/F

(n)
∗ → 0

associated to the inclusion of the zeroth linear strand. The underlying morphism of bigraded S-modules

is split exact, and this extends to a splitting of linear parts

linS(F∗) = linS(F
(n)
∗ )⊕ linS(F∗/F

(n)
∗ ). (5.3)

The implication iii) =⇒ i). Assume that M is Koszul, meaning that Hi(lin
S(F∗)) = 0 for i > 0. By

the lineart part direct sum decomposition (5.3), the same statement holds for the zeroth linear strand

F
(n)
∗ . We claim that the natural map incl∗ : H0(F

(n)
∗ ) → H0(F∗) ∼= M coming from incl : F

(n)
∗ ↪→ F∗ is

injective with image M〈n〉; it will follow that M〈n〉 is n-linear in particular.

The above map is part of the long exact sequence of homology

· · · → H1(F∗/F
(n)
∗ )→ H0(F (n))

incl∗−−−→ H0(F∗)→ H0(F∗/F
(n)
∗ )→ 0.

It is clear by construction of F (n) that the image of incl∗ is sent onto M〈n〉 under the isomorphism

H0(F∗) ∼= M , and we claim that H1(F∗/F
(n)
∗ ) = 0. Indeed F∗/F

(n)
∗ has finitely many linear strands and

Hi(lin
S(F∗/F

(n)
∗ )) = 0 for i > 0 by (5.3) and the assumption that M is Koszul, hence Hk(F∗/F

(n)
∗ ) = 0

for i > 0 by Lemma 5.1.23. We conclude that incl∗ : H0(F (n)) ∼= M〈n〉 is an isomorphism.

Since M〈n〉 is n-linear, we can use Lemma 5.1.22 to conclude that F∗/F
(n)
∗ resolves M/M〈n〉, and from

the decomposition of linear parts (5.3) we see that M/M〈n〉 is Koszul and that r(M/M〈n〉) < r(M). By

induction, we obtain that M/M〈n〉 is componentwise linear, and since M〈n〉 is n-linear the equivalence

i) ⇐⇒ ii) shows that M itself is componentwise linear. This proves iii) =⇒ i).

The implication i) =⇒ iii). Assuming i), then M〈n〉 is n-linear and M/M〈n〉 is componentwise linear.

We again use Lemma 5.1.22 to conclude that F
(n)
∗ resolves M〈n〉 and F∗/F

(n)
∗ resolves M/M〈n〉, and

from the linear part decomposition (5.3) we conclude that M is Koszul if and only M/M〈n〉 is Koszul,

and that r(M/M〈n〉) < r(M). Since M/M〈n〉 is componentwise linear, it is Koszul by induction and we

are done.

We can finally prove the main result of this subsection, Prop. 5.1.25 below. To alleviate notation,

we will use the standard ΩmM := M [−m] for m ∈ Z to denote (co)syzygies in MCMZ(A), and we will

write M〈≤n〉 ⊆M for the submodule generated by M≤n.

As we will be working in the stable category MCMZ(A), we point out that the construction M〈n〉 is

not an invariant of the stable isomorphism class of M ∈ MCMZ(A), as for instance (M⊕P )〈n〉 = M〈n〉⊕
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P〈n〉 need not be stably isomorphic to M〈n〉. However, the construction M〈≤n〉 is stably invariant, as

indecomposable projective modules are cyclic and thus generated in single degree, so that M〈≤n〉⊕P〈≤n〉
is stably isomorphic to M〈≤n〉 for any finite graded projective P .

Similarly, the statement that M is n-linear is not stably invariant, however we will use it to mean that

the unique module representative [M ] without projective summand is n-linear. Moreover the statement

that M is Koszul (or componentwise linear) is perfectly invariant. In light of these observations, for

M ∈ MCMZ(A) we will define M〈n〉 := [M ]〈n〉, and note that M〈n〉 = M〈≤n〉 whenever indeg([M ]) = n.

Recall that the Betti table β(M) has entry in the i-th column and j-th row given by βi,i+j as below:

· · · 0 1 · · · i-1 i i+1 · · ·
...

...
...

...
...

...

-2 · · · β0,−2 β1,−1 · · · βi−1,i−3 βi,i−2 βi+1,i−1 · · ·
-1 · · · β0,−1 β1,0 · · · βi−1,i−2 βi,i−1 βi+1,i · · ·
0 · · · β0,0 β1,1 · · · βi−1,i−1 βi,i βi+1,i+1 · · ·
1 · · · β0,1 β1,2 · · · βi−1,i βi,i+1 βi+1,i+2 · · ·
...

...
...

...
...

...

and that subcategories MCM≤n(A) and MCM≥n(A) consists of modules whose Betti table is eventually

supported at or above the n-th row (resp. at or below the n-th row) for i � 0. Recall also that in the

presence of a t-structure, so that cohomology objects Hn(M) are defined, the amplitude of M is defined

by

sup{|i− i′| | Hi(M) 6= 0 and Hi
′
(M) 6= 0}.

Proposition 5.1.25. Let A be a Koszul Gorenstein k-algebra. The following are equivalent:

i) A is absolutely Koszul.

ii) tlin forms a bounded t-structure for MCMZ(A).

Proof. We will want to make use of Römer’s Theorem 5.1.24, but we first need to show that every

M ∈ MCMZ(A) has finite regularity under each of the above hypotheses. For i) this is the statement of

Lemma 5.1.14. For ii), note that the cohomology objects Hi(M)[−i] are eventually i-linear and so have

finite regularity, and if n = inf{i | Hi(M) 6= 0} then we have a distinguished triangle

τ≤nM →M → τ≥n+1M → τ≤nM [1].

The t-cohomology long exact sequence shows that Hi(τ≤nM) = HiM for i ≤ n and Hi(τ≥n+1M) =

HiM for i ≥ n+1. Since τ≤nM ∼= Hn(M)[−n] is n-linear and τ≥n+1M has finite regularity by induction

on amplitude, we conclude that M has finite regularity by half-exactness of ExtigrA(−,k(−i − j)). We

can therefore assume that regularity is finite throughout and apply Römer’s Theorem.

The implication i) =⇒ ii). Assume that A is absolutely Koszul. We will show that tlin defines a

bounded t-structure. Recall the axioms of a t-structure:
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T1. MCM≤0(A) ⊆ MCM≤1(A) and MCM≥1(A) ⊆ MCM≥0(A);

T2. HomgrA(MCM≤0(A), MCM≥1(A)) = 0;

T3. For all M in MCMZ(A) there is a distinguished triangle M≤0 → M → M≥1 → M≤0[1] with M≤0

in MCM≤0(A) and M≥1 in MCM≥1(A).

That T1 holds is immediate and T2 is easily verified by considering the degrees of generators of sufficiently

far syzygies. We are left with considering T3. Let M in MCMZ(A) and take m � 0 so that M̃ =

Ωm(M)(m) is Koszul; such an m exists by absolute Koszulity of A. Consider the submodule M̃〈≤0〉 ⊆ M̃
and, abusing notation by taking M̃ ∈ grmodA to be any representative, consider the short exact sequence

in grmodA

0→ M̃〈≤0〉 → M̃ → M̃/M̃〈≤0〉 → 0.

We will construct the distinguished triangle of T3

M≤0 →M →M≥1 →M≤0[1]

in the following way:

a) First, we will see that the graded module M̃〈≤0〉 is also Koszul, so that TorAi (M̃〈≤0〉,k)i+j = 0 for

j > 0 and all i ≥ 0 by Cor. 5.1.14; this point will be established below.

b) Secondly, one notes that TorAi (M̃/M̃〈≤0〉,k)i+j = 0 for j < 1 and all i ≥ 0 automatically as the

module is generated in degrees ≥ 1.

c) Third, it is a priori unclear that the above two modules are MCM, but we can replace them by

their MCM approximation. As this is an exact functor Db(grmod A) � MCMZ(A), we obtain a

distinguished triangle (
M̃〈≤0〉

)st
→ M̃ →

(
M̃/M̃〈≤0〉

)st
→ M̃st

〈≤0〉[1]

in MCMZ(A). Since MCM approximation leaves the tail of the minimal resolution unchanged, we

deduce from the points a) and b) that
(
M̃〈≤0〉

)st
∈ MCM≤0(A) and

(
M̃/M̃〈≤0〉

)st
∈ MCM≥1(A).

d) Finally, since Ω±1(−)(±1) translates Betti tables horizontally, we obtain the required distinguished

triangle

M≤0 →M →M≥1 →M≤0[1]

by applying Ω−m(−)(−m) to the previous triangle.

It remains to estalish a), which we now turn to.

We claim that M̃〈≤0〉 is Koszul and that this follows from Römer’s Theorem. We show this by

induction on the distance of the initial degree indeg(M̃) to 0, and assume that indeg(M̃) ≤ 0, as

otherwise the claim is vacuous.

When indeg(M̃) = 0, then M̃〈≤0〉 = M̃〈0〉 is linear since M̃ is Koszul. Next assume that indeg(M̃) < 0.

Define the module N := M̃/M̃〈indeg(M̃)〉, which is also Koszul, but with indeg(M̃) < indeg(N) ≤ 0. The

module N〈≤0〉 is then Koszul by induction. Now, writing indeg := indeg(M̃〈≤0〉) = indeg(M̃) for short,

note that:
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1) the module M̃〈≤0〉〈indeg〉 = M̃〈indeg〉 is indeg-linear since M̃ is Koszul;

2) the module N〈≤0〉 ∼= M̃〈≤0〉/M̃〈indeg〉 = M̃〈≤0〉/M̃〈≤0〉〈indeg〉 is also Koszul as per the above paragraph.

Since M̃〈≤0〉〈indeg〉 is indeg-linear and M̃〈≤0〉/M̃〈≤0〉〈indeg〉 is Koszul, it follows from Römer’s Theorem

5.1.24 that M̃〈≤0〉 is also Koszul, as we wanted to show. This completes the induction, and we have

established point a).

Thus we have shown that tlin forms a t-structure on MCMZ(A). We only need to show that it is

bounded. The above construction gives the following formula for the truncation functors τ≤n, τ≥n

applied to M ∈ MCMZ(A):

τ≤nM = Ω−m
((

Ωm(M)(m)〈≤n〉
)st)

(−m)

τ≥nM = Ω−m
((

Ωm(M)(m)/Ωm(M)(m)〈≤n−1〉
)st)

(−m)

for any m � 0 such that Ωm(M)(m) is Koszul. It is immediate that τ≤nM = 0 for all n � 0, and

from the above formula we also obtain that τ≥nM = 0 for all n > regA(M). Hence the t-structure is

bounded, and we have shown the implication i) =⇒ ii).

The implication ii) =⇒ i). Assume that tlin = (MCM≤0(A), MCM≥0(A)) forms a bounded t-

structure. We will show ldA(M) < ∞ for each M in MCMZ(A). Since the t-structure is bounded, we

work by induction on the amplitude of M . When the amplitude is zero, using the truncation sequences

one sees that M ∼= HnM [−n] for some n ∈ Z, and so M has an eventually n-linear minimal resolution

and so ldA(M) < ∞. When M has positive amplitude, there is a smallest interval [n, n′] for which

HiM = 0 for i /∈ [n, n′]. We have a distinguished triangle

τ≤nM →M → τ≥n+1M → τ≤nM [1]

Then τ≤nM ∼= (HnM)[−n] has an eventually n-linear minimal free resolution and τ≥n+1M has a Koszul

syzygy module by induction. We may apply the functor Ωm(−)(m) for m� 0 to obtain

Ωm(τ≤nM)(m)→ ΩmM(m)→ Ωm(τ≥n+1M)(m)→ Ωm(τ≤nM)(m)[1]

with the first module n-linear and the third module Koszul, or equivalently componentwise linear. Now,

since Ωm(−)(m) preserves the categories MCM≤i(A) and MCM≥i(A) for each i, it is easy to see that

Ωm(−)(m) commutes with the truncations τ≤i, τ≥i. Writing M̃ = Ωm(M)(m) for short, we may rewrite

the above triangle as

τ≤nM̃ → M̃ → τ≥n+1M̃ → τ≤nM̃ [1]

Our aim is to deduce that M̃ is Koszul from condition (ii) in Römer’s Theorem 5.1.24. That is, we

would like to compare the above to the short exact sequence

0→ M̃〈indeg(M̃)〉 → M̃ → M̃/M̃〈indeg(M̃)〉 → 0

and deduce that the first term is indeg(M̃)-linear with third term componentwise linear.

Possibly increasing m and removing projective summands from M̃ , we will show three points:
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a) We have indeg(M̃) = n = inf{i | Hi(M) 6= 0}.

b) The modules M̃〈n〉 and M̃/M̃〈n〉 are MCM.

c) There is a comparison map of distinguished triangles in MCMZ(A)

τ≤nM̃
ι //

ι̃∼=
��

M̃ // τ≥n+1M̃

ϕ∼=
��

// τ≤nM̃ [1]

��
M̃〈n〉 // M̃ // M̃/M̃〈n〉 // M̃〈n〉[1]

which is an isomorphism.

Once this is established, we will deduce that M̃〈n〉 is n-linear and M̃/M̃〈n〉 is Koszul, and so that M̃

itself is Koszul by Römer’s Theorem 5.1.24. Since M has the Koszul syzygy M̃ = Ωm(M)(m), we obtain

that ldA(M) ≤ m <∞.

The proof of a) is straightforward but b) and c) will be more involved. To see a), note that the table

β(M̃) is supported between rows n, n′ as i � 0 and [n, n′] is the smallest interval with that property.

Take m large enough so that this holds at i ≥ 0 and removing potential projective summands from M̃ ,

we have M̃<n = 0 and M̃〈n〉 6= 0.

We will prove b) and c) at the same time by playing them off each others, by gradually constructing

approximations to the comparison map of c), possibly increasing m along the way. The primary hurdle

is that M̃〈n〉 and M̃/M̃〈n〉 are not a priori MCM, and so we will need to take some of our arguments

outside of the category MCMZ(A) and into the larger stable category modZ A, and eventually replace

them by large syzygies.

We first note the standard isomorphism of distinguished triangles

τ≤nM̃
ι // M̃ // τ≥n+1M̃

∼=

��

// τ≤nM̃ [1]

τ≤nM̃
ι // M̃ // Cone(ι) // τ≤nM̃ [1].

We can model the cone triangle as coming from a short exact sequence in MCMZ(A), of the form

0→ [τ≤nM̃ ]
ι−→ M̃ ⊕ P → Cone(ι)→ 0

where P is some projective module, and recall that we write [N ] for the unique module representative

of N ∈ MCMZ(A) without projective summands. Since [τ≤nM̃ ] is n-linear and so generated in degree

n, we have a comparison map of short exact sequences

0 // [τ≤nM̃ ]

ι̃

��

ι // M̃ ⊕ P

π
����

// Cone(ι)

��

// 0

0 // M̃〈n〉 // M̃ // M̃/M̃〈n〉 // 0

(5.4)
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where π ◦ ι factors through ι̃ for degree reasons and the third horizontal map follows from surjectivity

of π.

Next, for any Y ∈ grmodA, consider the k-linear functor HomgrA(−, Y ) : (grmodA)op → Modk. We

claim that HomgrA(−, Y ) is half-exact on grmodA: by results of Auslander-Bridger [7, Thm. 1.40] (see

also bottom of p.47 in [7]), for any X,Y ∈ grmodA we have isomorphisms

HomgrA(X,Y ) ∼= Nat
(
Ext1

grA(Y,−), Ext1
grA(X,−)

)
,

natural inX,Y , onto the space of natural transformations between Ext functors. Using that Nat(Ext1
grA(Y,−),−)

is right-exact on the abelian category of k-linear functors Fun ((grmodA)op, Mod k) (with termwise

abelian structure), combined with half-exactness of X 7→ Ext1
grA(X,−), we obtain that HomgrA(−, Y )

is half-exact.

Taking Y = k(−n), from (5.4) we obtain a commutative diagram of exact sequences

HomgrA(Cone(ι),k(−n)) // HomgrA(M̃ ⊕ P,k(−n)) // HomgrA(τ≤nM̃, k(−n)) // Ext1
grA(Cone(ι),k(−n))

HomgrA(M̃/M̃〈n〉,k(−n)) //

OO

HomgrA(M̃, k(−n))
res //

∼= π∗

OO

HomgrA(M̃〈n〉,k(−n))

ι̃∗

OO

The top row is exact as it is part of the long exact sequence of Tate cohomology, while the bottom row

is exact by Auslander-Bridger. We claim that the three corner are zero:

HomgrA(Cone(ι),k(−n)) = Ext1
grA(Cone(ι),k(−n)) = HomgrA(Cone(ι),k(−n)) = 0.

That the first two vanish follows from noting that:

1) Cone(ι) ∼= τ≥n+1M̃ in MCMZ(A);

2) The syzygy level m of M̃ = Ωm(M)(m) was taken sufficiently high so that τ≥n+1M̃ is Koszul, hence

has Betti table supported supported at or below the (n+ 1)-th row for all i ≥ 0 by Lemma 5.1.14.

The vanishing on the bottom row is clear. We conclude by a simple diagram chase that the maps res

and ι̃∗ = HomgrA(ι̃, k(−n)) are isomorphisms.

We claim that ι̃ : τ≤nM̃ → M̃〈n〉 must then be a stable isomorphism. Recall that by Lemma 5.1.1,

for any N ∈ modZA we have

HomA(N, k) =
⊕
j∈Z

HomgrA(N, k(j)) =
⊕
j∈Z

HomgrA([N ],k(j)) = HomA([N ],k).
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Since ι̃ : τ≤nM̃ → M̃〈n〉 is a homomorphism between n-generated modules, it induces isomorphisms

HomgrA(M̃〈n〉,k(−n)) ∼=̃
ι∗ // HomgrA(τ≤nM̃, k(−n))

HomA(M̃〈n〉,k) ∼=

HomA(ι̃,k) // HomA(τ≤nM̃, k)

HomA

(
[M̃〈n〉],k

)
∼=

HomA([̃ι],k) // HomA

(
[τ≤nM̃ ],k

)
Homk([M̃〈n〉]⊗A k,k) ∼=

Homk([̃ι],k) // Homk

(
[τ≤nM̃ ]⊗A k,k

)
By the Nakayama Lemma, the map

[̃ι] : [τ≤nM̃ ]→ [M̃〈n〉]

induced from ι̃ is an isomorphism and thus ι̃ is an isomorphism in modZ A. As consequence, we obtain

that:

1) M̃〈n〉 is an MCM module, as it is stably isomorphic to one;

2) M̃〈n〉 is n-linear, as it is n-generated and stably isomorphic to an n-linear module.

In particular we have established half of claim b). We then turn to the construction of the comparison

map of claim c).

Next, the comparison map of short exact sequence (5.4) gives rise to a comparison map of distin-

guished triangles in Db(grmodA), and taking MCM approximation gives rise to a comparison map

τ≤nM̃
ι //

ι̃∼=
��

M̃ // τ≥n+1M̃

ϕ
��

// τ≤nM̃ [1]

∼=
��

M̃〈n〉 // M̃ //
(
M̃/M̃〈n〉

)st
// M̃〈n〉[1]

in MCMZ(A), where we write ϕ for the remaining vertical map. We have shown that ι̃ is an isomorphism,

and so ϕ also must be one. We deduce that
(
M̃/M̃〈n〉

)st ∼= τ≥n+1M̃ is Koszul; in particular, any

sufficiently far syzygy of M̃/M̃〈n〉 is both Koszul and MCM. This is close to our wanted claim, that

M̃/M̃〈n〉 be Koszul and MCM, and so we will aim to replace M̃/M̃〈n〉 by a large syzygy of the same

form.

We will fix this by increasing the syzygy level m of M̃ = Ωm(M)(m) once more. Let F∗
∼−→ M̃ be

the minimal resolution of M̃ . Recall that by Lemma 5.1.22, the minimal graded projective resolutions

of M̃〈n〉 ⊆ M̃ is given by the n-th linear strand F
(n)
∗ ⊆ F∗, and so we have a short exact sequence of

minimal resolutions

0 // F (n)
∗ //

��

F∗ //

��

F∗/F
(n)
∗ //

��

0

0 // M̃〈n〉 // M̃ // M̃/M̃〈n〉 // 0.
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Truncating the resolutions at homological degree m′ � 0 and twisting by (m′), we obtain a short exact

sequence of resolutions of the m′-th syzygies

0 // F (n)
≥m′(m

′) //

��

F≥m′(m
′) //

��

F≥m′(m
′)/F

(n)
≥m′(m

′) //

��

0

0 // Ωm
′
M̃〈n〉(m

′) // Ωm
′
M̃(m′) // Ωm

′
(
M̃)/M̃〈n〉

)
(m′) // 0.

We make a few observations:

1) Since M̃〈n〉 is n-linear, so is Ωm
′
(M̃〈n〉)(m

′).

2) Since F
(n)
≥m′(m

′) is the n-th linear strand of F≥m′(m
′) by construction, and we deduce that

Ωm
′
(M̃〈n〉)(m

′) ∼=
(

Ωm
′
(M̃)(m′)

)
〈n〉

.

3) From the short exact sequence above we obtain that

Ωm
′
(
M̃/M̃〈n〉

)
(m′) ∼=

(
Ωm

′
(M̃)(m′)

)
/
(

Ωm
′
(M̃)(m′)

)
〈n〉

.

Note that for m′ � 0 sufficiently large, the left-hand side is MCM and Koszul.

Finally, replacing replacing Ωm(M)(m) by Ωm+m′(M)(m + m′) (so that we henceforth write M̃ =

Ωm+m′(M)(m + m′)), the points 1)-2)-3) above show that M̃〈n〉 is an n-linear MCM module and that

M̃/M̃〈n〉 is a Koszul MCM module, establishing our previous claim b). This is enough to conclude

that M̃ is Koszul by Römer’s Theorem 5.1.24. Note that we also obtain claim c), since the comparison

map of short exact sequence (5.4) (at our increased syzygy level) actually gives rise an isomorphism of

distinguished triangles

τ≤nM̃
ι //

ι̃∼=
��

M̃ // τ≥n+1M̃

ϕ∼=
��

// τ≤nM̃ [1]

∼=
��

M̃〈n〉 // M̃ // M̃/M̃〈n〉 // M̃〈n〉[1].

As we have shown that M̃ = Ωm+m′(M)(m+m′) is Koszul, M has a Koszul syzygy and so ldA(M) ≤
m+m′ <∞. This establishes the implication ii) =⇒ i).

Remark 5.1.26. When A is commutative, since finiteness of regularity for M ∈ MCMZ(A) follows from

Koszulity of A, condition ii) can be replaced by the weaker conditition that tlin forms a t-structure,

which will then necessarily be bounded.

This proposition provides a categorical interpretation of absolute Koszulity. In particular, this shows

that tlin fails to form a t-structure for sufficiently pathological Gorenstein Koszul algebras, notably if

the algebra is bad in the sense of Roos. We will construct Koszul Gorenstein algebras which fail to be

absolutely Koszul in Chapter 6.
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Properties of the t-structure

Let A be absolutely Koszul Gorenstein. We have shown that tlin forms a bounded t-structure on

MCMZ(A) in the proof of Prop. 5.1.25. In this subsection, we simply record some of its main properties,

which were either implicit or sometimes explicit in the proof of Prop. 5.1.25.

For any M ∈ MCMZ(A), the truncation functors τ≤n, τ≥n are defined by passing to a Koszul syzygy

M̃ = Ωm(M)(m) for m ≥ ldA(M), and applying Ω−m(−)(−m) to the distinguished triangle(
M̃〈≤n〉

)st
→ M̃ →

(
M̃/M̃〈≤n〉

)st
→
(
M̃〈≤n〉

)st
[1] (5.5)

to obtain

τ≤nM →M → τ≥n+1M → τ≤nM [1] (5.6)

with τ≤nM ∈ MCM≤n(A) and τ≥n+1M ∈ MCM≥n+1(A). This is independent of the choice of Koszul

syzygy, since τ≤n and τ≥n compute the right and left adjoints to the corresponding inclusions of full

subcategories (see [53, Prop. 8.1.4]).

Note that by taking m ≥ ldA(M) + dimA instead we may guarantee that both M̃〈n〉 and M̃/M̃〈n〉

are MCM (as shown in the proof of the implication ii) =⇒ i) in Prop. 5.1.25) and thus omit MCM

approximation in the distinguished triangle 5.5.

Let T be a triangulated category with a t-structure t = (T ≤0, T ≥0) and a triangulated functor F :

T → T . We say that F is t-exact (or exact when t is understood) if F (T ≤0) ⊆ T ≤0 and F (T ≥0) ⊆ T ≥0.

It follows that F restricts to an exact functor on the abelian heart T ≤0 ∩ T ≥0, and commutes with

taking cohomology (see [53, Sect. 8.1])

FHn(X) ∼= HnF (X).

Next, for any M ∈ MCMZ(A) let F∗
∼−→ M denote its minimal resolution. We have seen that the

linear part of F∗ decomposes into linear strands

linA(F∗) =
⊕
i∈Z

F
(i)
∗

where F
(i)
∗ is an i-linear complex, meaning with n-th term generated in degree n + i. Note that since

ldA(M) < ∞ each linear strand has bounded cohomology. The next proposition follows readily from

what we have shown.

Proposition 5.1.27. Let A be absolutely Koszul Gorenstein. The following properties hold for t = tlin:

i) The autoequivalence Ω1(−)(1) is t-exact;

ii) Let M be a Koszul MCM module over A. Then H0(linA(F∗)) ∼= H∗(M) =
⊕

n∈ZHn(M)[−n];

iii) Let M be an MCM module over A. Then we have Hi(M)[−i] ∼= (F
(i)
∗ )st, the MCM approximation

of the corresponding linear strand. In particular H∗(M) ∼= linA(F∗)
st.



Chapter 5. Absolutely Koszul algebras and t-structures of Koszul type 146

We say that M ∈ MCMZ(A) is t-formal if M ∼= H∗(M). Hence we see from Prop. 5.1.27 iii) that

t-formality is equivalent to M admitting a minimal resolution F∗ = (F∗, ∂) with eventually purely linear

differential, that is ∂ = ∂1 on F≥m for m� 0.

The realisation functor

Now assume that A is an absolutely Koszul Gorenstein k-algebra, so that Hlin(A) ⊆ MCMZ(A) is the

heart of a bounded t-structure. The category Hlin(A) is then an abelian category and it is natural to

expect the existence of a realisation functor between triangulated categories

real : Db(Hlin(A))→ MCMZ(A)

restricting to the inclusion onHlin(A). Given a triangulated categoryD with a t-structure t = (D≤0,D≥0),

the construction of such a realisation functor was given by Beilinson in terms of a choice of filtered tri-

angulated category (DF, θ) over D, generalising the notion of the filtered derived category of an abelian

category. We review this construction and show that it applies to the case at hand. Once shown to

exist, standard criteria will then apply to show that real is fully faithful and essentially surjective, and

therefore an equivalence of triangulated categories. We follow the exposition of [88, Sect. 3], based

on results of Beilinson [20, Appendix] and Beilinson-Bernstein-Deligne [21]. We write D for a general

triangulated category throughout.

Definition 5.1.28 (Beilinson). A filtered triangulated category DF (f-category for short) is a trian-

gulated category equipped with two full triangulated subcategories DF (≤ 0) and DF (≥ 0), an exact

automorphism s : DF → DF (called f -shift) and a natural transformation α : id → s such that

DF (≤ n) := snDF (≤ 0) and DF (≥ n) := snDF (≥ 0) satisfy the following axioms:

i) DF (≥ 1) ⊆ DF (≥ 0), DF (≤ 1) ⊇ DF (≤ 0) and
⋃
n∈ZDF (≥ n) =

⋃
n∈ZDF (≤ n) = DF .

ii) For X ∈ DF , we have αX = s(αs−1X).

iii) For X ∈ DF (≥ 1) and Y ∈ DF (≤ 0), we have Hom(X,Y ) = 0 and bijections Hom(Y,X) ∼=
Hom(Y, s−1X) ∼= Hom(sY,X) induced by α.

iv) For any X ∈ DF , there is a distinguished triangle Y → X → Z → Y [1] with Y ∈ DF (≥ 1) and

Z ∈ DF (≤ 0).

Definition 5.1.29. Let D be a triangulated category. An f -category (DF, θ) over D is the data of an

f-category DF along with an equivalence of triangulated categories θ : D
∼=−→ DF (≤ 0) ∩ DF (≥ 0).

Example 5.1.30 (Filtered derived category [19, Ex. A.2]). Let A be an abelian category. Define

CF (A) to be the category of complexes X = (X,F ) in A equipped with a finite decreasing filtration by

subcomplexes

F : X = F pX ⊇ F p+1X ⊇ · · · ⊇ F q−1X ⊇ F qX = 0, p, q ∈ Z with p ≤ q.

The morphisms in CF (A) are the chain-maps respecting the filtration. Define griF (X) = F iX/F i+1X

and grF (X) =
⊕

i∈Z griF (X). A morphism f : X → Y is a filtered quasi-isomorphism if the morphism
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on associated graded complexes gr(f) : gr(X)
∼−→ gr(Y ) is a quasi-isomorphism. The filtered derived

category DF (A) is the localisation of CF (A) at the filtered quasi-isomorphism.

The category DF (A) is an f-category over D(A): we have s(X,F ) = (X, sF ) where (sF )iX = F i−1X,

and αX : X → sX is induced by F iX ⊆ F i−1X. One then takes

DF (A)(≤ n) = {(X,F ) | griF (X) = 0 for i > n}

DF (A)(≥ n) = {(X,F ) | griF (X) = 0 for i < n}

and the equivalence θ : D(A)
∼=−→ DF (A)(≤ 0) ∩ DF (A)(≥ 0) sends a complex X ∈ D(A) to (X,Tr)

equipped with the trivial filtration

Tr : X = F 0X ⊇ F 1X = 0.

The verifications that i)− iii) hold is straightforward. For iv), we have truncation functors

σ≤n : DF (A)→ DF (A)(≤ n)

σ≥n : DF (A)→ DF (A)(≥ n)

defined by

σ≤nX := X/Fn+1X

σ≥nX := FnX

with the induced filtrations. We then have a triangle

σ≥1X → X → σ≤0X → σ≥1X[1]

verifying iv).

Note that since filtered quasi-isomorphisms are quasi-isomorphisms ([109, Thm. 5.5.11]), we obtain

a forgetful functor ω : DF (A)→ D(A).

Example 5.1.31 (Filtered homotopy category). One can analogously define the filtered triangulated

category KF (A) over KA consisting of complexes equipped with finite decreasing filtrations, and filtered

chain-maps up to filtration-preserving homotopies. The remaining data is as above, and KF (A) is a

filtered triangulated category over K(A).

For the question at hand, we will make use of the following. Take A = grmod R for a two-sided

coherent graded Gorenstein k-algebra R, and let projZ R be the full subcategory of finitely generated

projective graded modules.

Example 5.1.32 (Filtered singularity category). Define KFac(projZR) ⊆ KF (grmodR) as the full sub-

category of acyclic complexes C = (C,F ) of finite projectives equipped with finite decreasing filtrations

such that the associated graded grF (C) complex is also acyclic.

Then KFac(projZR) is an f -category over Kac(projZR), with same data as above. The verifications

are the same as above, with only difference the question of whether σ≤nC = C/Fn+1C and σ≥nC = FnC
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are acyclic. But this holds since both complexes are equipped with finite filtrations whose associated

graded is acyclic.

Note that by transport of structure under the equivalence MCMZ(R) ∼= Kac(projZR), we obtain an

f -category over MCMZ(R).

The usefulness of f -categories is summarised by the following proposition. Recall from [53, Sect. 8.1]

that an exact functor F : D → D′ between triangulated categories equipped with t-structures (D≤0,D≥0)

and (D′≤0,D′≥0) is t-exact if F (D≤n) ⊆ D′≤n and F (D≥n) ⊆ D′≥n for each n ∈ Z.

Proposition 5.1.33 ([88, Prop. 3.3]). Let (DF, θ) be an f -category over D.

i) There is an exact functor ω : DF → D such that ω ◦αX : ωX
∼=−→ ωsX is an isomorphism (Forgetful

functor).

ii) Given a t-structure t = (D≤0,D≥0), there is a unique t-structure t̃ = (DF≤0,DF≥0) for which θ is

a t-exact functor and sDF≤0 ⊆ DF≤−1.

Moreover, if C = D≤0 ∩ D≥0 is the heart of this t-structure, then there is a canonical equivalence of the

new heart DF≤0 ∩ DF≥0 ∼= Cb(C) with the category of bounded complexes over C.

See [88, Rem. 3.4] for an explicit construction of this t-structure and the corresponding equivalence.

We can then construct the realisation functor of a t-structure t = (D≤0,D≥0) on D. Let (DF, θ) be

an f -category over D, and let G : Cb(C)
∼=−→ DF≤0 ∩ DF≥0 ⊆ DF be the embedding induced from the

equivalence of the previous proposition. Let Q : Cb(C)→ Db(C) be the localisation functor.

Theorem 5.1.34 ([88, Thm 3.11]). Given the above data, there is a unique functor realDF fitting into

a commutative diagram

Cb(C)

G

��

Q // Db(C)

realDF

��

DF

ω

��
D

Moreover, realDF : Db(C)→ D is an exact functor satisfying the following properties:

i) realDF restricts to the identity on C and is t-exact with respect to the standard t-structure on Db(C)
and t = (D≤0,D≥0) on D.

ii) realDF induces isomorphisms HomDb(C)(X,Y [n]) ∼= HomD(X,Y [n]) for any X,Y ∈ C and n ≤ 1.

iii) The following are equivalent:

a) realDF is fully faithful;

b) realDF induces isomorphisms HomDb(C)(X,Y [n]) ∼= HomD(X,Y [n]) for any X,Y ∈ C and all

n ≥ 2.
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c) (Effaceability criterion) For any X,Y ∈ C ⊆ D, n ≥ 2 and morphism f : X → Y [n], there is an

object W ∈ C and epimorphism g : W � X such that fg : W → Y [n] is zero.

d) (Coeffaceability criterion) For any X,Y ∈ C ⊆ D, n ≥ 2 and morphism f : X → Y [n], there is

an object Z ∈ C and monomorphism e : Y ↪→ Z such that e[n]f : X →W [n] is zero.

iv) The essential image of realDF is contained in the bounded part

Db =
⋃
a≤b

D[a,b] :=
⋃
a≤b

D≤b ∩ D≥a

with agreement whenever realDF is fully faithful.

We now apply these results to the absolutely Koszul Gorenstein k-algebra A. By Ex. 5.1.32, the

t-structure tlin admits a realisation functor

real : Db(Hlin(A))→ MCMZ(A)

where we hide the dependence on the f-category over MCMZ(A) in the notation. We will prove:

Proposition 5.1.35 (Prop. 5.1.38). The functor real is an equivalence of triangulated categories.

Since the t-structure tlin is bounded, we see by Thm 5.1.34 iv) that it suffices to prove that real is fully

faithful. In order to use one of the (co)effaceability criteria, we begin by studying the monomorphisms

and epimorphisms in Hlin(A). We first recall the abelian category structure on Hlin(A) (see [53, Thm.

8.1.9] for details).

Let f : X → Y be a morphism in Hlin(A) and set Z = Cone(f). It follows from the long exact

sequence of t-cohomology that Z ∈ MCM[−1,0](A) = MCM≤0(A) ∩MCM≥−1(A). The abelian category

structure on Hlin(A) is given by

coker(f) = H0(Z) ∼= τ≥0Z

ker(f) = H−1(Z) ∼= τ≤0(Z[−1]).

In any abelian category, we of course have that f is a monomorphism if and only if ker(f) = 0, and f is

an epimorphism if and only if coker(f) = 0. We now record a general characterisation of monomorphisms

and epimorphisms in Hlin(A). Some of these characterisations will be mainly of use in the next section.

Lemma 5.1.36. Let f : X → Y be a morphism in Hlin(A).

i) The following are equivalent:

a) f is a monomorphism, that is fg = 0 implies g = 0 in Hlin(A);

b) Z = Cone(f) is eventually linear;

c) The induced map f∗m : ExtmgrA(Y,kst(−m))→ ExtmgrA(X,kst(−m)) is surjective for all m� 0;

d) The induced map fm : [ΩmX(m)]0 → [ΩmY (m)]0 is injective for all m� 0.

ii) The following are equivalent:
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a) f is an epimorphism, that is gf = 0 implies g = 0 in Hlin(A);

b) Z = Cone(f) is eventually (−1)-linear;

c) The induced map f∗m : ExtmgrA(Y,kst(−m))→ ExtmgrA(X,kst(−m)) is injective for all m� 0;

d) The induced map fm : [ΩmX(m)]0 → [ΩmY (m)]0 is surjective for all m� 0.

Proof. The equivalence of a) and b) simply rephrases vanishing of the kernel or cokernel of f . To see

that b) is equivalent to c), consider the distinguished triangle

X → Y → Z → X[1].

For any m ∈ N, taking Tate cohomology with coefficients in k(−m) gives rise to a long exact sequence

· · · → Extm+n
grA (X,k(−m))→ Extm+n+1

grA (Z,k(−m))→ Extm+n+1
grA (Y, k(−m))

f∗−→ Extm+n+1
grA (X,k(−m))→ · · ·

Since X and Y are eventually linear, there is an n0 ∈ N such that for all m ≥ n0, we have

Extm+i
grA (X ⊕ Y,k(−m)) = 0 for all i 6= 0.

Assuming m ≥ n0, then for n /∈ {−1, 0}, we have Extm+n+1
grA (Z,k(−m)) = 0 by vanishing of the outer

terms. For n = −1, 0 the long exact sequence breaks down into a four-term exact sequence

0→ ExtmgrA(Z,k(−m))→ ExtmgrA(Y,k(−m))
f∗m−−→ ExtmgrA(X,k(−m))→ Extm+1

grA (Z,k(−m))→ 0.

We obtain that Z is eventually linear if and only if f∗m is surjective for all m � 0, and dually Z is

eventually (−1)-linear if and only if f∗m is injective for all m� 0.

Next, we show that c) is equivalent to d). By Lemma 5.1.1, we have commutative diagrams

ExtmgrA(Y,k(−m))
f∗m // ExtmgrA(X,k(−m))

HomgrA(Ωm(Y )(m),k)
f∗m // HomgrA(Ωm(X)(m),k)

HomgrA([Ωm(Y )(m)],k)
f∗m // HomgrA([Ωm(X)(m)],k)

Homk([Ωm(Y )(m)]0,k)
f∗m // Homk([Ωm(X)(m)]0,k)

and as Homk(−,k) is a duality on finite length k-modules we are done.

We now introduce a special monomorphism attached to any M ∈ Hlin(A). Let C(M) be the minimal

complete resolution of M , which in degree n is given by

Cn(M) = Vn ⊗k A
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where Vn is some finite length graded k-module. Since M is eventually linear, Vn is concentrated in

degree n for all n� 0. Since the complex is minimal, the quotient map Cn(M) = Vn⊗kA� Vn⊗kk ∼= Vn

factors through the (reduced) n-th syzygy

Cn(M)
**

// Vn

[Ωn(M)]

55

and, applying degree shift by n, restricts to an isomorphism on degree zero components

[Ωn(M)(n)]0
∼=−→ Vn(n)0.

Note that by definition Vn(n) is concentrated in degree zero for any n� 0 such that Ωn(M)(n) is linear,

and in this case we simply write Vn(n) = Vn(n)0. Taking MCM approximation, we obtain a map in

MCMZ(A)

Ωn(M)

&&

// V stn
π
��
Vn

such that composing with π induces HomgrA(Ωn(M), V stn ) ∼= HomgrA(Ωn(M), Vn). We will write

ιn : M → Ω−n(V stn ) = V stn [n]

for the corresponding morphism. Note that when k = k is a field, for n � 0 we have V stn [n] =

(kst(−n)[n])βn,n(M). In general we have Vn ∈ add(k(−n)) and V stn ∈ add(kst(−n)), where add(X) is the

full subcategory whose objects are summands of finite direct sums of X. Note also that V stn depends on

M , although this is not reflected in the notation.

Proposition 5.1.37. The morphism ιn : M → V stn [n] is a monomorphism in Hlin(A) for each n� 0.

Proof. The proof will proceed directly from the definition of monomorphism. Fix n � 0 such that

Ωn(M)(n) is linear. Since Ωn(−)(n) is an autoequivalence of Hlin(A), the map ιn : M → V stn [n] is a

monomorphism if and only if Ωn(ιn)(n) : Ωn(M)(n) → V stn (n) is a monomorphism. For simplicity, we

may replace M by Ωn(M)(n) to reduce to the case of M linear, so that we may set n = 0 and simply

write ι : M → V st0 .

Replacing M by [M ] if necessary, we may assume that M has no projective summands and simply

write M = [M ]. By abuse of notation, we write ι : M → V st0 for any representative morphism in

grmodA. Then by construction, since M is linear, the composite map

πι : M → V st0 → V0

becomes an isomorphism upon passing to degree zero

πι0 : M0

∼=−→ V0.

Now let g : N → M be a morphism in Hlin(A) such that ιg : N → V st0 is zero, interpreted as vanishing

in the stable category Hlin(A) ⊆ grmodA. Since we have V st0 ∈ add(kst) and V0 ∈ add(k), by Lemma
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5.1.1 we have

HomgrA(N,V st0 ) ∼= HomgrA(N,V0) ∼= HomgrA([N ], V0)

with first isomorphism given by composing with π. Again, possibly after removing projective summands

from N we may assume that N = [N ]. Since ιg = 0 in grmodA, it follows that πιg = 0 in grmodA.

Now, since N is eventually linear, it must be generated in degree ≤ 0 and we let N〈<0〉 ⊆ N be the

submodule generated by N<0. Since M is generated in degree zero, we have factorisations

N

##

g // M

πι
  

ι // V st0

π

��
N/N〈<0〉

g

;;

V0.

Then πιg = 0 implies πιg = 0. Since N/N〈<0〉 is generated in degree zero, g is determined by its degree

zero component. But πι0 is an isomorphism, hence (πιg)0 = (πι)0g0 = 0 implies g0 = 0, and so g = 0.

This shows that ι is a monomorphism.

We can now prove that the realisation functor real : Db(Hlin(A)) → MCMZ(A) gives an equivalence

of triangulated categories.

Proposition 5.1.38. The functor real is an equivalence of triangulated categories.

Proof. We will apply the coeffaceability criterion in Thm. 5.1.34 iii). Let X,Y ∈ Hlin(A) and n ≥ 2,

and let f : X → Y [n] be a morphism in MCMZ(A). Since X is eventually linear, there is an n0 ∈ N
such that for all m ≥ n0, we have

Extm+n
grA (X,kst(−m)) = Extm+n

grA (X,k(−m)) = 0 for all n 6= 0.

Consider the morphism ιm : Y → V stm [m] of Prop. 5.1.37. Taking m� n0 large enough so that ιm is a

monomorphism, we may take e = ιm. Then the composite morphism e[n]f : X → Y [n]→ V stm [m+ n] is

zero by our assumption that m ≥ n0, since V stm ∈ add(kst(−m)).

It follows that real is fully faithful, and by Thm. 5.1.34 iv) it must be essentially surjective since tlin

is bounded.

Putting everything together, we obtain the proof of Theorem A.

Theorem 5.1.39 (Theorem A). Let A be a Koszul Gorenstein k-algebra. The following are equivalent:

i) A is absolutely Koszul;

ii) tlin forms a bounded t-structure.

When either of these equivalent conditions hold, the natural realisation functor

real : Db(Hlin(A))
∼=−→ MCMZ(A)

is an equivalence of triangulated categories.

Proof. Combine Prop. 5.1.25 and Prop. 5.1.38.
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5.2 The Artin-Zhang-Polishchuk noncommutative section ring

and Theorem B

Given an absolutely Koszul Gorenstein algebra A, the abelian category Hlin(A) is an interesting k-linear,

Hom-finite abelian category, and it is of interest to find multiple descriptions of this category.

We will show that the opposite abelian category Hlin(A)op contains an ample sequence in a suitable

sense; from this we will deduce that the (opposite) Koszul dual (A!)op = Ext∗A(k,k)op is coherent as a

graded algebra, and obtain a description of Hlin(A)op in terms of (A!)op.

Noncommutative projective schemes after Artin-Zhang

In the foundational paper [4], Artin and Zhang introducing the noncommutative projective scheme

associated to a Noetherian N-graded noncommutative k-algebra B, and established a useful recognition

theorem for its category of coherent sheaves amongst abelian categories.

Let us begin with the classical setting. Let X be a k-scheme, and let O(1) be an ample line bundle on

X, where we write O(m) := O(1)⊗m for its tensor powers and F(m) = F ⊗O(m). By classical results

of Serre, the sequence {O(m)}m∈Z detects various properties of the category cohX of coherent sheaves:

a) (Global generation) For every F ∈ cohX and m� 0, the coherent sheaf F(m) is globally generated;

that is, the natural morphism

Γ(X,F(m))⊗k O
ev−→ F(m)

is an epimorphism.

b) (Detecting epimorphisms). For every epimorphism f : F → G, the induced map on sections

Γ(fm) : Γ(X,F(m))→ Γ(X,G(m))

is surjective for all m� 0.

Property a) is taken as the definition of ampleness in Hartshorne, and b) follows from Serre’s am-

pleness criterion by setting K = ker(f), as we have vanishing of sheaf cohomology Hi(X,K(m)) = 0

for i > 0 for all m � 0. Moreover, the section ring S =
⊕

n≥0 Γ(X,O(n)) is a Noetherian N-graded

k-algebra and the truncated sections

Γ≥m(X,F) :=
⊕
n≥m

Γ(X,F(n))

form finitely generated modules over S. When O(1) is very ample so that S is generated by S1 over S0,

the above properties are instrumental in the proof of Serre’s Theorem, which recovers the category of

coherent sheaves via the Serre quotient cohX = qgrS.

Now consider a triple (C,O, s), with C a Noetherian, k-linear, Hom-finite abelian category, where

Noetherian means that every object X ∈ C is Noetherian; O is a distinguished object of C; and s : C
∼=−→ C

is an autoequivalence of C, which we think of formally as − ⊗ O(1). We may formally write O(m) =
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sm(O), and we can mimic taking global sections of anyM ∈ C by defining Γ(M(m)) := Hom(O(−m),M).

As before, we obtain a section ring

S =
⊕
n≥0

Γ(O(n)) =
⊕
n≥0

Hom(O(−n),O)

∼=
⊕
n≥0

Hom(O,O(n))

with graded algebra structure given by composing g ∈ Hom(O,O(m)) and f ∈ Hom(O,O(n)) as

f ∗ g := sm(f) ◦ g.

Similarly we obtain homogeneous and truncated section functors Γ∗,Γ≥m : C → GrmodS by setting

Γ∗(M) =
⊕
n∈Z

Γ(M(n)) =
⊕
n∈Z

Hom(O(−n),M)

Γ≥m(M) =
⊕
n≥m

Γ(M(n)) =
⊕
n≥m

Hom(O(−n),M)

with S operating on the right by composition.

Definition 5.2.1 ([4, 4.2.1]). The autoequivalence s is ample if the following conditions are satisfied in

C:

a) (Global generation) For every M ∈ C and m ∈ Z, there exists indices i1, . . . , is ≥ m for which there

exists an epimorphism
s⊕
j=1

O(−ij) �M.

b) (Detecting epimorphisms) For every epimorphism f : M → N in C, the induced map

Γ(M(m))→ Γ(N(m))

is surjective for all m� 0.

Artin and Zhang proved the following extension of Serre’s Theorem. We refer to [4] for the definition

of the χ1 condition.

Theorem 5.2.2 ([4, Thm 4.5]). Let (C,O, s) be a triple as above, and assume that s is ample. Then

the section ring S =
⊕

n≥0 Γ(O(n)) is a Noetherian N-graded algebra (satisfying the χ1 condition), and

there is an equivalence of abelian categories

C
∼=−→ qgr S

given by sending M 7→ Γ≥m(M) for any m ∈ Z.

Conversely, if B is a Noetherian N-graded algebra (satisfying the χ1 condition), then (qgrB, πB, (1))

forms a triple as above, meaning that qgr B is a Noetherian abelian category with distinguished object
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πB the image of B, and autoequivalence s = (1) descencending from the degree shift functor. Moreover,

(1) is ample, and the natural morphism of graded algebras B → Γ≥0(πB) is an isomorphism in large

enough degrees.

Remark 5.2.3. The Artin-Zhang Theorem extends Serre’s Theorem not only to the noncommutative

setting but also improves on the commutative case. Set (C,O, s) = (cohX,OX ,−⊗L) for X a k-scheme

and L an ample, but not very ample, line bundle. Then s = −⊗L is ample in the sense of Def. 5.2.1, and

its section ring S =
⊕

n≥0 Γ(X,L⊗n) is finitely generated but not necessarily in degree 0 and 1. Serre’s

Theorem requires S to be generated by S1 over S0, but by the above theorem, the functor Γ≥0(X,−) still

induces an equivalence cohX ∼= qgrS. In other words, Serre’s Theorem still holds for finitely generated

graded k-algebras arising as the section ring of an ample line bundle on some projective variety. This

was verified directly in the case of line bundle of degree 1 and 2 on an elliptic curve in [85, Chp. 7].

Note that the general statement coh proj S ∼= qgr S fails to hold for arbitrary finitely generated

commutative k-algebras S, see [83, Prop. 2.17] for correct behavior there.

Noncommutative projective schemes after Polishchuk

Many natural examples of noncommutative projective schemes occur in mathematics beyond those cov-

ered by the Artin-Zhang schemes. The crux of the matter is that many abelian categories C which ought

to be realised as categories of coherent sheaves fail to be Noetherian (see [87] for natural examples).

This was remedied in [87] by systematically working with coherent algebras instead, and we present the

relevant results here.

We have seen previously that attached to an N-graded locally finite coherent k-algebra B = B0⊕B1⊕
. . . , we obtain an abelian category qgrB = grmodB/grmod0 B. We now look to establish a recognition

theorem for such categories, following Polishchuk [87].

Let C be a Hom-finite k-linear abelian category, not necessarily Noetherian. As previously, we

consider a triple (C,O, s) where O is a distinguished object and s an autoequivalence of C, and define

O(n) := sn(O).

Polishchuk works in the setting of connected graded k-algebras, and so one introduces the connected

section ring S = k ⊕ S≥1 = k ⊕ Γ≥1(O), where for any M ∈ C the sections Γ≥m(M) are defined as

previously; the latter inherits as before the structure of a graded S-module. The notion of ampleness of

s then takes a different form:

Definition 5.2.4 ([87, Sect. 2]). The autoequivalence s is ample if the following properties hold:

i) (Detecting epimorphisms) For every epimorphism f : M → N in C, the induced map

Γ(M(m))→ Γ(N(m))

is surjective for all m� 0.

ii) (Finite generation) For every M ∈ C and m ∈ Z, the module Γ≥m(M) is finitely generated over S.
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iii) (Global generation) For every M ∈ C and m ∈ Z, there exists indices i1, . . . , is ≥ m for which there

exists an epimorphism
s⊕
j=1

O(−ij) �M.

Remark 5.2.5. The terminology is a minor departure from Polishchuk’s [87], and it is good to highlight

the discrepancy. Polishchuk works more generally with a sequence of objects E = (Ei)i∈Z, to which

he associates a Z-algebra A = A(E), defined as a bigraded k-algebra A =
⊕

i≤j Aij with Aii = k and

Aij = HomC(Ei, Ej) for i < j, and with multiplication having sole component Ajk⊗Aij → Aik given by

composition in C, where Aii = k ↪→ EndC(Ei) is identified with scalar multiples of the identity. Global

sections are defined by Γ∗(M) =
⊕

i∈Z HomC(Ei,M), which form graded modules over A. Setting

Ei = O(−i), one obtains the Z-algebra A = A(E) from S via A =
⊕

i≤j Aij =
⊕

i≤j Sj−i. The notions

readily translate from there, see [87, Rem. 2.1].

Polishchuk then extends the Artin-Zhang Theorem to non-Noetherian abelian categories.

Proposition 5.2.6 ([87, Prop. 2.3]). Let (C,O, s) be a triple as above with s ample. Then:

i) For every M ∈ C and m ∈ Z, the graded module Γ≥m(M) is a coherent S-module.

ii) The section ring S is a coherent graded algebra.

Theorem 5.2.7 ([87, Thm. 2.4]). Let (C,O, s) be a triple as above with s ample. If S denotes the

section ring, then there is an equivalence of abelian categories

C
∼=−→ qgr S

given by sending M 7→ Γ≥m(M) for any m ∈ Z.

When s is ample, we will more generally call {O(n)}n∈Z an ample sequence.

Ample sequences in the category Hlin(A)op

Fix an absolutely Koszul Gorenstein k-algebraA, and consider the triple (C,O, s) := (Hlin(A)op,kst,Ω1(−)(1)).

We aim to show that s = Ω1(−)(1) = (−)(1)[−1] is ample, and then compare the section ring with

Ext∗A(k,k)op. We first need a minor assumption and observation, only relevant to the case where k 6= k.

The definition of the section ring S = k⊕S≥1 = k⊕Γ≥1(O) can be changed to allow any intermediate

subalgebra k ⊆ S̃0 ⊆ S0 in degree zero, since S0 = EndC(O) is finite dimensional over k. This was noted

by Minamoto, whose work on coherence of higher preprojective algebras as discussed in Chapter 4 led

him to consider section rings of the form S = Π(Λ)

S0 ⊕ S1 ⊕ · · · = Λ⊕Π1(Λ)⊕ . . .

for Λ a Fano finite dimensional algebra (see [79, Sect. 3]). He notes that Polishchuk’s results go through

with the same proof in this more general case, and we will use this implicitly.

We now impose the following assumption:
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Assumption 5.2.8. We assume that A is homologically homogeneous, of infinite global dimension.

That is, for every simple summand S of k, we assume that pdimS =∞.

The stabilisation functor st : Db(grmod A) → MCMZ(A) induces an algebra morphism ϕ : k =

EndgrA(k) → EndgrA(kst). By our assumption (5.2.8), no summand of k is perfect over A and so the

summands of k survive stabilisation. Since k is semisimple, the kernel of ϕ is generated by idempotents,

but since non-zero idempotents are sent to non-zero idempotents the map ϕ must be injective, giving a

sequence of intermediate algebras

k ⊆ k ⊆ EndgrA(kst)

Working in the opposite abelian category Hlin(A)op, we shall set S̃0 = kop, we will use the section ring

S = kop ⊕
⊕
n≥1

HomHlin(A)op(kst,Ωn(kst)(n))

= kop ⊕
⊕
n≥1

HomHlin(A)(kst,Ω−n(kst)(−n))op

= kop ⊕
⊕
n≥1

ExtngrA(kst,kst(−n))op

and denote it by Ext
∆+

grA(kst,kst)op. Of course, this agrees with Polishchuk’s definition when k = k. The

truncated global sections of M ∈ Hlin(A)op can be described

Γ≥m(M) =
⊕
n≥m

ExtngrA(M,kst(−n))

with its natural right S-module structure by post-composition in MCMZ(A). To help analyse its struc-

ture, we have the following well-known lemma:

Lemma 5.2.9 ([103, Thm. 6.3 (4)]). Let N ∈ grmod A be a linear module. Then Ext∗A(N, k) is a

linear module over Ext∗A(k,k)op. Therefore it is generated by Ext0
A(N, k), and in particular Ext∗A(N, k)

is finitely generated.

Remark 5.2.10. The paper [103] works over a field k instead of the more general semisimple base k, but

the proof of [103, Thm. 6.3 (4)] goes through without change.

We finally get to the main point.

Proposition 5.2.11. Let A be absolutely Koszul Gorenstein, satisfying hypothesis (5.2.8). Consider the

triple (Hlin(A)op,kst,Ω1(−)(1)). Then Ω1(−)(1) is an ample autoequivalence.

Proof. We need to verify three conditions:

i) (Detecting epimorphisms) For every epimorphism f : M � N in Hlin(A)op, the induced map on

sections

Γ(fm) : ExtmgrA(M, kst(−m))→ ExtmgrA(N, kst(−m))

is surjective for all m� 0.

ii) (Finite generation) For every M ∈ Hlin(A)op and m ∈ Z, the truncated global sections Γ≥m(M) =⊕
n≥m ExtngrA(M,kst(−n)) is finitely generated over S.
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iii) (Global generation) For every M ∈ Hlin(A)op and m ∈ Z, there exists indices i1, . . . , is ≥ m for

which one has an epimorphism
s⊕
j=1

Ω−ij (kst)(−ij) �M.

To see i), note that epimorphisms f : M � N in Hlin(A)op are simply monomorphisms f : N ↪→ M

in Hlin(A), in which case the result follows from the characterisation of monomorphisms (Lemma 5.1.36)

. For iii), note that we have monomorphisms

ιm : M ↪→ Vm[m] = Ω−mVm

for all m � 0. Since Ω−mVm ∈ add(Ω−m(kst)(−m)), we have a split monomorphism Ω−mVm ↪→
Ω−m(kst)(−m)⊕N for some N � 0. Passing to the opposite category, we obtain an epimorphism by

composition

Ω−m(kst)(−m)⊕N � Ω−mVm �M

and iii) follows.

It remains to prove finite generation of Γ≥m(M) =
⊕

n≥m ExtngrA(M, kst(−n)) over S = Ext
∆+

A (kst,kst)op.
Since Γ≥i(M)/Γ≥i+1(M) has finite length over k, it suffices to prove finite generation of Γ≥m(M) for

M fixed and m� 0. There exists an n0 ∈ N such that for any m ≥ n0, the syzygy Ωm(M)(m) is linear.

Since we have Γ≥m(M) = Γ≥0(Ωm(M)(m)), it is sufficient to prove that Γ≥0(M) is finitely generated

for every linear MCM module M .

By Lemma 5.2.9, for M linear Ext∗A(M,k) is finitely generated over Ext∗A(k,k). After possibly

removing projective summands from M (which does not affect the result), the stabilisation functor

induces a bijection

Ext∗A(M,k) ∼= Ext≥0
A (M, kst)

and the induced right Ext∗A(k,k)op-module structure on the latter factors through the map Ext∗A(k,k)op →
Ext

∆+

A (kst,kst)op = S. It follows that

Γ≥0(M) =
⊕
n≥0

ExtngrA(M, kst(−n)) = Ext≥0
A (M,kst)

is finitely generated over S, as we wanted.

The proposition shows that S = Ext
∆+

A (kst,kst)op is coherent as a graded k-algebra, and we want to

compare it with the classical Ext algebra. Recall that for any graded algebra B and n ∈ N, we denote

by B(n) =
⊕

i∈ZBni be the n-th Veronese subalgebra of B, and likewise for any graded B module N we

write N (n) =
⊕

i∈ZNni.

Fixing such an n ∈ N and replacing Ω1(−)(1) by Ωn(−)(n), note that the corresponding section ring

is replaced by S(n) = (Ext
∆+

A (kst,kst)op)(n). We will also need:

Lemma 5.2.12. For any n ∈ N, the autoequivalence Ωn(−)(n) of Hlin(A)op is also ample.

Proof. The verifications of i) and iii) are immediate from the previous proposition, with the only subtle

point the finite generation of Γ≥m(M)(n) =
⊕

ni≥m ExtnigrA(M, kst(−ni)) over S(n). We may similarly

reduce to the case of M linear.
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By Lemma 5.2.9, the module Ext∗A(M, k) is generated by Ext0
A(M, k) over Ext∗A(k,k)op. Since

Ext∗A(k,k)op is generated by Ext1
A(k,k) as a k-algebra, this survives passage to Veroneses and Ext∗A(M,k)(n)

is generated by Ext0
A(M, k) over (Ext∗A(k,k)op)(n). The rest of the argument is the same.

Remark 5.2.13. Given a triple (C,O, s) with s ample and n ∈ N, it isn’t a priori clear if sn is also ample.

It is easy to see that this holds for arbitrary n if the section ring S of s is generated by S1 over S0. The

above proof is a workaround for our situation.

By Lemma 5.2.12, it follows that for any n ∈ N, the Veronese S(n) = (Ext
∆+

A (kst,kst)op)(n) is also

coherent. This is useful in light of the following:

Proposition 5.2.14 (Polishchuk). Let B be a graded k-algebra, generated by B1 over k and with finitely

many relations. Let n ∈ N. Then B is coherent if and only if B(n) is coherent. When both conditions

hold, we have an equivalence of abelian categories

qgrB ∼= qgrB(n)

sending M ∈ qgrB to M (n) =
⊕

i∈ZMni.

Proof. This is [87, Prop. 2.6]. Again, Polishchuk works over k but the argument goes through unchanged

over k.

Combining everything, we obtain a proof of Theorem B.

Theorem 5.2.15 (Theorem B). Let A be absolutely Koszul Gorenstein, satisfying (5.2.8). Then

(A!)op = Ext∗A(k,k)op is coherent, and we have a contravariant equivalence of abelian categories

Hlin(A)op ∼= qgr (A!)op

sending M to Ext∗A(M, k).

The converse holds in the Artinian case: if A is an Artinian Koszul Gorenstein algebra with (A!)op

is coherent, then A is absolutely Koszul.

Proof. Assume that A is absolutely Koszul. Since A is Koszul, Ext∗A(k,k)op is generated in degree one

over k with finitely many (quadratic) relations. By Prop. 5.2.14, Ext∗A(k,k)op is coherent if and only if

one of its n-th Veronese (Ext∗A(k,k)op)(n) is coherent. Taking n� idim (A), we have an isomorphism of

Veroneses subalgebras

(Ext∗A(k,k)op)(n) ∼= kop ⊕
(⊕
i≥1

ExtnigrA(kst,kst(−ni))
)op

= S(n)

since kst is eventually linear and Tate cohomology eventually agrees with Ext. We have noted that this

last algebra is coherent by Lemma 5.2.12, and therefore so is (A!)op = Ext∗A(k,k)op.

Next, consider the composition

Hlin(A)op
Ext∗A(−,k)−−−−−−−→ qgr (A!)op

(−)(n)

−−−−→ qgrS(n).
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Note that Ext≥mA (M, k) ↪→ Ext∗A(M,k) is an isomorphism in qgr (A!)op for any m ≥ 0, and that

Ext≥1
A (−,k) is well-defined on the stable categoryHlin(A) ⊆ MCMZ(A), hence we may compute Ext∗A(−,k)

as Ext≥mA (−,k) for any choice of m ≥ 1. For any M ∈ Hlin(A), there is an n0 ≥ idimA such that for any

m ≥ n0, we have

Ext≥mA (M,k) ∼=
⊕
i≥m

ExtigrA(M, k(−i)) ∼=
⊕
i≥m

ExtigrA(M,kst(−i))

as (A!)op = Ext∗A(k,k)op-modules. Composing with (−)(n) sends M to

Γ≥m(M)(n) =
⊕
ni≥m

ExtnigrA(M, kst(−ni))

with the notation from Lemma 5.2.12. We obtain a commutative diagram

Hlin(A)op

Γ≥m(−)(n)

∼=

''

Ext∗A(−,k) // qgr (A!)op

(−)(n)∼=

��
qgrS(n)

and so the top row is an equivalence. This proves the main claim.

For the converse, let A be Artinian Koszul Gorenstein and assume that E = (A!)op = Ext∗A(k,k)op

is coherent. We have seen that the BGG correspondence already holds in this case (Ex. 5.1.3), meaning

that we have an equivalence of triangulated categories

MCMZ(A)op ∼= Db(qgrE)

such that pulling back the standard bounded t-structure on the right hand side gives rise to tlin, which

is therefore also a bounded t-structure. Therefore A is absolutely Koszul by Theorem A.

As corollary, we obtain Theorem C.

Theorem 5.2.16 (Theorem C). Let A be absolutely Koszul Gorenstein, and homologically homogeneous.

Let E = (A!)op = Ext∗A(k,k)op. Then there is an equivalence of triangulated categories

MCMZ(A)op ∼= Db(qgrE)

such that tlin arises as the pullback of the standard t-structure on the right hand side.

5.3 The virtual dimension of a Koszul Gorenstein algebra

In this subsection, unless otherwise stated, A will denote an absolutely Koszul Gorenstein k-algebra, of

Gorenstein dimension d. It is often the case that the triangulated category MCMZ(A) admits a Serre

functor SA of standard form

SA(−) = −⊗A ωA[d− 1]
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for some invertible A-bimodule ωA = 1Aα(a), where α an automorphism of A of degree zero. This holds

for instance when A is Frobenius, or when A is commutative with isolated singularities. From now on,

we will assume that A admits a Serre functor SA of standard form.

Define ωH := ωA[−a] so that the category H := Hlin(A) of eventually linear modules is stable under

M 7→M ⊗A ωH := M(a)[−a]. Setting ν := d− 1 + a, we write

SH(−) = −⊗ ωH[ν]

for the induced autoequivalence on Db(H). The following is an immediate consequence of Theorem A.

Proposition 5.3.1. The autoequivalence SH is a Serre functor for Db(H). In particular for any X,Y ∈
H we have

ExtiH(X,Y ) ∼= Extν−iH (Y,X ⊗ ωH)∗

and so gldimH = ν.

Remark 5.3.2. Since the category Hop = Hlin(A)op ∼= qgr (A!)op sometimes arises as the category of

coherent sheaves on some projective variety, it fails in general to contain enough projectives or injectives,

and so we interpret Ext through the derived category.

Definition 5.3.3. For A a Koszul Gorenstein k-algebra, we call ν = d− 1 + a the virtual dimension of

A.

Note that when A is absolutely Koszul Gorenstein (and gldim A = ∞) we have an immediate in-

equality ν = gldimH ≥ 0. When A is commutative, the invariant ν is easily computed from numerical

data attached to A, and this inequality holds more generally.

Proposition 5.3.4. Assume that A is commutative Gorenstein graded connected over k, so that its

Hilbert series is rational of the form

HA(t) =
hA(t)

(1− t)d
.

Then deg hA(t) = ν + 1. In particular ν ≥ 0 unless A is a polynomial algebra.

We will use a well-known lemma, which follows from a prime avoidance argument.

Lemma 5.3.5. Let R = (R,m, k) be a local or graded local Noetherian commutative ring. If m contains

a non-zerodivisor r, then there is a non-zerodivisor r′ ∈ m \m2.

Proof of Prop. 5.3.4. Since depth A = dimA for A in the proposition, the lemma guarantees that

a regular sequence x = (x1, . . . , xd) of linear forms xi ∈ A1 exists, and both sides of the equality

deg hA(t) = ν+1 are stable under the reduction A 7→ A/(x). The proof of Prop. 5.3.4 then immediately

reduces to the case d = 0 where it holds since both sides equal the socle degree. Note that ν = −1

corresponds to hA(t) constant, in which case A/(x) = k and A is regular, hence a polynomial algebra.

Next, again in the commutative case, we have ν = dimA − 1 + a = dimX + a for X = projA, in

which case the possible inequalities

ν < dimX

ν = dimX

ν > dimX
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correspond to the three cases of Orlov’s semiorthogonal decomposition theorem, and dictate the direction

of the embedding.

Now, from Prop. 5.3.1 we immediately obtain:

Corollary 5.3.6. Let A be an absolutely Koszul Gorenstein k-algebra with a Serre functor of standard

form. The following holds:

1) When ν = 0, the category MCMZ(A) is semisimple.

2) When ν ≤ 1, every indecomposable M ∈ MCMZ(A) is eventually n-linear for some n ∈ Z.

Proof. Indeed gldim H = 0 implies that Db(H) ∼= MCMZ(A) is semisimple, while for gldim H ≤ 1

every complex X ∈ Db(H) is formal by [1, Sect. 5.2.5] (see also [1, Sect. 6, Thm. 3.1]), and so each

indecomposable M ∈ MCMZ(A) has the form M ∼= Hn(M)[−n] for some unique n ∈ Z.

Example 5.3.7. Let A = k[x0, . . . , xd]/(Q) be a quadric hypersurface with isolated singularities at the

origin. Then HA(t) = 1+t
(1−t)d and so ν = 0, and MCMZ(A) is semisimple as first shown in [31].
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Applications of absolute Koszulity

6.1 Application: BGG correspondence beyond complete inter-

sections

In this subsection we collect known constructions and examples from the literature to which we can apply

our results. These will be mostly pulled from commutative algebra, and so from now on we let R,S

stand for Noetherian, standard graded commutative k-algebras over a field k. All such examples and the

methods leading to them follow either explicitly or implicitly by work of Conca-Iyengar-Nguyen-Römer

[34].

We have already encountered the important example of short Gorenstein rings. The next proposition

follows from the literature [74, 12]. Moreover, a complete understanding of the Betti tables of indecom-

posable stable modules over short Gorenstein rings has been achieved by Avramov-Gibbons-Wiegand in

[9].

We will give a separate proof of the following proposition, distinct from the existing literature, as to

exemplify the results and methods of chapter 4 and 5.

Proposition 6.1.1 (Short Gorenstein rings). Let R be an Artinian Gorenstein algebra of embedding

dimension e ≥ 2 with m3 = 0, hence of socle degree a = 2. Then R is absolutely Koszul with ν = a−1 = 1.

Proof. R is absolutely Koszul by [12], where it is shown that the only indecomposable non-free graded

R-module which are not Koszul are the cosyzygies of the residue field k, and so every module has an

eventually Koszul syzygy. Note that for a = 2, e ≥ 2 is necessary since e = 1 gives R ∼= k[x]/(x3), which

is not Koszul.

We can also give a direct representation theoretic proof via tilting theory. Since a = 2, there is a full

exceptional collection modZ R =
〈
k, k(−1)[1]

〉
, which can be verified directly as in the proof of Prop.

4.2.3, or alternatively follows from Orlov’s Theorem. It is immediate that this collection is strong, and

we have

EndgrR(k ⊕ k(−1)[1]) ∼=

(
EndgrR(k) Ext1

grR(k, k(−1))

0 EndgrR(k(−1)[1])

)
=

(
k R∗1

0 k

)

163
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which is isomorphic to the path algebra kQe of the e-Kronecker quiver

0

y1 //
...

ye
//
1

In particular kQe is representation infinite for e ≥ 2 and representation finite otherwise. Making use of

the opposite tilting object T op = k ⊕ k(−1)[1] ∈ (modZR)op, we have a contravariant equivalence

G : (modZR)op
∼=−→ Db(mod kQope )

sending R-modules to complexes of left kQe-modules, or covariant Qe-representations, and we have

G(k) = P (0) and G(k(−1)[1]) = P (1). Next, writing τR = SR ◦ [−1] = (2)[−2] for the Auslander-Reiten

translate of R and τQe = SkQe ◦ [−1] = D(kQe)⊗L
kQe

(−)[−1] for that of kQe, these are related by

G ◦ τR ∼= τ−1
Qe
◦G.

We also have τ−1
Qe

= RHomkQe(D(kQe),−)[1]. If X is a kQope -module, we write X = (X0, X1) for the

corresponding quiver representation. For any R-module M , we then have

Ext2n+i
grR (M,k(−2n)) = HomgrR(M, τ−2n

R k[i])

∼= HomDb(kQope )(G(τ−2n
R k[i]), G(M))

∼= HomDb(kQope )(τ
2n
QeG(k)[−i], G(M))

∼= HomDb(kQope )(P (0), τ−2n
Qe

G(M)[i])

∼= Hi(τ−2n
Qe

G(M))0

Ext2n+1+i
grR (M,k(−2n− 1)) = HomgrR(M, τ−2n

R k(−1)[1][i])

∼= HomDb(kQope )(G(τ−2n
R k(−1)[1][i]), G(M))

∼= HomDb(kQope )(τ
2n
QeG(k(−1)[1])[−i], G(M))

∼= HomDb(kQope )(P (1), τ−2n
Qe

G(M)[i])

∼= Hi(τ−2n
Qe

G(M))1.

Setting M = k so that G(M) = P (0), we conclude that R is Koszul if and only if the complex τ−2n
Qe

P (0)

is supported in cohomological degree zero (i.e. is quasi-isomorphic to a module) for all n ≥ 0. This is

well-known to characterise representation infinite quivers (see Appendix A.1), and so holds if and only

if e ≥ 2.

More generally this shows that M has a linear resolution if and only if G(M) ∈ mod kQope ⊆
Db(kQope ) is a module, and remains a module under the iteration of τ−1

Qe
. Assuming e ≥ 2, the only

indecomposable kQe-modules without this property are the preinjective modules {τnI(0), τnI(1)}n≥0,

since regular modules are closed under τ±1
Qe

. Define an R-module M to be completely linear if βi,j(M) = 0

whenever i 6= j for all i, j ∈ Z. Then G restricts to a bijection on the following classes, up to isomorphism:

{Completely linear indecomposable stable R-modules} ↔ {Regular indecomposable kQe-modules}.
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Since kQe is hereditary, complexes in Db(kQope ) are formal, and translating through G one sees that all

indecomposable R-modules are n-linear except for the cosyzygies of k, which are sent onto the preinjective

modules (up to suspension). It follows that R is absolutely Koszul.

Remark 6.1.2. Applying Theorem C and Minamoto’s Theorem 4.1.13, we obtain equivalences of trian-

gulated categories

Db(qgr ((R!)op)) ∼= Db(Hlin(R))op ∼= (modZR)op ∼= Db(kQope ) ∼= Db(qgrΠ(Qope ))

which are compatible with the t-structures, and which induce equivalence of abelian categories

qgr ((R!)op) ∼= Hlin(R)op ∼= Hω
−1

(kQope ) ∼= qgrΠ(Qope ).

The two presentations by qgr ((R!)op) and qgrΠ(Qope ) correspond to picking different choices of ample

sequences in Hlin(R)op.

The absolute Koszulity of short Gorenstein rings allows us to produce many more interesting examples

of absolutely Koszul Gorenstein algebras, using a theorem of Conca-Iyengar-Nguyen-Römer:

Theorem 6.1.3 ([34, Thm. 2.4]). Let R,S be standard graded commutative algebras, and let ϕ : R→ S

be a k-algebra morphism of finite flat dimension. If S is absolutely Koszul, then so is R.

When R is Gorenstein, we can apply this to the zero-dimensional reduction R → R := R/(x) by a

regular sequence of linear forms x = (x1, . . . , xd).

Corollary 6.1.4. Let R be Gorenstein of codimension ≥ 2 with ν = d−1 +a = 1. Then R is absolutely

Koszul (and in particular Koszul).

Proof. The codimension and ν invariant are preserved under passing to R, in which case R is an Artinian

Gorenstein algebra of embedding dimension e ≥ 2 and socle degree a = ν + 1 = 2. By Prop. 6.1.1, R is

absolutely Koszul and by Thm. 6.1.3 so is R.

Using this proposition, we can provide a great deal of interesting examples.

Corollary 6.1.5. Let k be an algebraically closed field. The following algebras are absolutely Koszul

Gorenstein with ν = 1:

a) The coordinate ring RE,d of an elliptic curve E ⊆ Pd−1 of degree d ≥ 4.

b) The coordinate ring RXd of an anticanonically embedded smooth del Pezzo surface Xd ⊆ Pd of degree

d ≥ 4.

c) More generally, the coordinate ring RXd of a smooth variety Xd ⊆ Pd+n−2 of dimension n ≥ 2 and

degree d ≥ 4. These include:

i) The coordinate ring of a smooth complete intersection of two quadrics X4 = V (Q1, Q2) ⊆ Pn+2.

ii) The Plücker coordinate ring of the Grassmannian X5 = Gr(2, 5) ⊆ P9.

iii) The coordinate ring of the Segre variety X6 = P2 × P2 ⊆ P8.

iv) The coordinate ring of the Segre variety X6 = P1 × P1 × P1 ⊆ P7.
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v) The coordinate ring of the degree 7 threefold X7 ⊆ P8.

vi) The coordinate ring of the 2nd Veronese embedding X8 = P3 ⊆ P14.

d) R/(x) where R is one of the above and x = (x1, . . . , xc) is a regular sequence of linear forms xi ∈ R1

of length 1 ≤ c ≤ d.

Let us put those examples in context before giving the proof. Given an smooth Fano variety X of

dimension n ≥ 2, we define the index of X by ind(X) = sup{ r | −KX ∼ rH for some H ∈ Div(X)}.
We call H a fundamental divisor if ind(X)H ∼ −KX , and define the degree d = degX = Hn via

intersection theory. There is an upper bound ind(X) ≤ dimX + 1, and so we define the coindex

coind(X) = dimX + 1− ind(X).

The cases coind(X) = 0, 1 characterise projective space and quadric hypersurfaces, respectively, and

the next case is more interesting. We say that X = (X,H) is a (polarised) del Pezzo variety if H is a

fundamental divisor, coind(X) = 2 and H satisfies

Hn(X,OX(mH)) = 0 for all 0 < n < dimX and m ∈ Z.

The smooth polarised del Pezzo varieties were classified by Fujita in characteristic zero [100, Thm.

3.3.1], and the divisor H is very ample as soon as d ≥ 3. The corresponding embedding gives cubic

hypersurfaces for d = 3, and the examples b), c) are the sole examples of degree d ≥ 4 up to taking linear

sections, at least in characteristic zero.

When R is a graded Gorenstein algebra with X = projR a smooth Fano variety, then polarised by

OX(1) = R̃(1), the coindex and the invariant ν are related. We have ωX ∼= ω̃R ∼= OX(a) for a < 0,

so that −a ≤ ind(X), and so coind(X) ≤ ν + 1, with equality when OX(1) comes from a fundamental

divisor. Setting ν = 1 then naturally leads to del Pezzo varieties.

We now prove the corollary.

Proof of Cor. 6.1.5. Case a): It is well-known that RE,d is Gorenstein, and one can show this as follows.

By [43, Cor. 6.18], the ring RE,d is a normal Cohen-Macaulay domain, and the so natural morphism

to the section ring RE,d →
⊕

n≥0 H0(E,OE(n)) is bijective, where OE(1) is the restriction to E of

OPd−1(1). That RE,d is Gorenstein follows from Stanley’s numerical criterion [104, Thm. 4.4] which

says that a graded Cohen-Macaulay domain R is Gorenstein if and only if its Hilbert series HR(t) is

symmetric, in that

HR(t−1) = (−1)dimRtsHR(t)

for some s ∈ Z. One easily computes the Hilbert series of the section ring to be

HRE,d(t) =
1 + (d− 2)t+ t2

(1− t)2

and symmetry follows. Hence RE,d is Gorenstein. We have ν = dimE + a = 1 + 0 = 1, and the

requirement codim RE,d ≥ 2 to use Cor. 6.1.4 forces d ≥ 4, with d = 3 corresponding to plane cubic

curves.
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Case b): We can prove that RXd is Gorenstein by reducing to the previous case. A generic linear section

Xd,t of Xd ⊆ Pd is a smooth irreducible curve, which has trivial canonical bundle by the adjunction

formula (using that ω−1
Xd

= OXd(1)) and so Xd,t is an elliptic curve in Pd−1. We then have RXd/l = RXd,t
for the corresponding regular linear form l ∈ RXd,1 and so RXd must be Gorenstein by the previous case.

We have ν = dimXd+a = 2−1 = 1, and again codimR(Xd) ≥ 2 forces d ≥ 4, with d = 3 corresponding

to a cubic surface.

Case c): Let Xd ⊆ Pd+n−2 be a smooth variety of degree d ≥ 4 and dimension n ≥ 2. By Bertini’s

Theorem, a generic linear section X ′d = Xd ∩ Pd+n−3 ⊆ Pd+n−3 is smooth and irreducible so long as

dimXd ≥ 2, and X ′d ⊆ Pd+n−3 is another smooth variety of degree d and dimension n− 1. Iterating, we

construct a smooth del Pezzo surface X̃d ⊆ Xd of the same degree, with coordinate ring RX̃d = RXd/(x)

a quotient by a regular sequence of linear forms x = (x1, . . . , xn−2). Since RX̃d = RXd/(x) is Gorenstein,

so is RXd , and since RX̃d is absolutely Koszul, so is RXd by Thm. 6.1.3.

Case d): Finally, the property of R being Gorenstein with ν = dimR− 1 + a = 1 and codimension ≥ 2

is unchanged under reduction modulo x, and Cor. 6.1.4 shows that R/(x) is absolutely Koszul.

There also are a few interesting examples with ν = 2. For the next proof, recall that the multiplicity

e(R) of R in dimension d > 0 is given in terms of the Hilbert polynomial of R by the coefficient e0 in

the expansion [26, Defn. 4.1.5]

PR(n) =

d−1∑
i=0

(−1)d−1−ied−1−i

(
n+ i

i

)

and that the Hilbert polynomial of R can be computed from X = projR as PR(n) = χ(OX(n)). The

following examples are due to Conca-Iyengar-Nguyen-Römer.

Proposition 6.1.6 (Conca-Iyengar-Nguyen-Römer, [34, Thm. 5.1]). Let k be an algebraically closed

field of characteristic zero. The following algebras are absolutely Koszul Gorenstein algebras with ν = 2:

a) The coordinate ring RC of the canonical embedding of a non-hyperelliptic smooth projective curve

C ⊆ Pg−1 of genus g ≥ 3, which is neither trigonal nor isomorphic to a plane quintic.

b) The coordinate ring RX of a smooth projective variety X ⊆ Pg+n−2 of dimension n ≥ 2 whose section

by a generic linear subspace X ∩ Pg−1 is a canonical curve of the above form.

Proof. The ring RC is a Gorenstein domain with isolated singularity, with ν = dimC + a = 1 + 1 = 2

since C is canonically embedded. In [34, Thm. 5.1], it is shown1 that any graded Gorenstein domain

with isolated singularity in characteristic zero with 2e(R) = 2codimR + 2 is absolutely Koszul, as soon

as it has quadratic relations. We can compute the Hilbert polynomial of RC via Riemann-Roch as

PRC (n) = χ(OC(n)) = χ(ω⊗nC ) = (2g − 2)n+ 1− g, which we write

PRC (n) = −(2− 2g)(n+ 1) + g − 1

to obtain e(RC) = e0 = g− 1. Since codimRC = g− 2, the equality holds, while the condition of having

quadratic relations is equivalent to the stated conditions by Petri’s Theorem. The second case follows

from Bertini’s Theorem as before.
1Our presentation is somewhat out of order, since they show Thm. 5.1 by reducing to the case of the coordinate ring of

a canonical curve. However we point out that the curves arising this way are precisely those covered by Petri’s Theorem.
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Next, we collect various classes of absolutely Koszul algebras from the literature. Note that some

references work in the setting of local Noetherian rings, but the arguments immediately adapt to the

graded case.

We say that an algebra R has the Backelin-Roos property if there is a Golod map ϕ : Q� R with Q

a complete intersection, see [34, Sect. 3] for the definition of Golod maps. Such algebras are widespread

and were originally introduced in connections with rationality questions for Poincaré series.

Example 6.1.7. The following graded k-algebras are absolutely Koszul.

a) Koszul algebras with the Backelin-Roos property [50, Thm. 5.9], [34, Prop. 3.4];

b) Retracts of absolutely Koszul algebras [34, Prop. 2.3(3)].

c) Artinian Gorenstein algebras of embedding dimension e ≥ 3 and socle degree a = 3 with an exact

pair of linear zero divisors; in particular a generic Artinian Gorenstein algebras with e ≥ 3 and a = 3

[22, Prop. 4.1, Thm. 4.2].

d) Koszul algebras S of small embedding codepth, that is edim S − depthS ≤ 3, or Koszul Gorenstein

algebras R of codimension ≤ 4 [13, Thm. 6.4, Prop. 6.3].

e) Algebras of the form S/(I+L) with S = k[x1, . . . , xn], I, L quadratic monomial ideals with I generated

by a regular sequence and L having a 2-linear resolution over S [34, Thm. 4.1].

f) The c-th Veronese subalgebra S(c) of S = k[x1, . . . , xn] in characteristic zero, for n, c taking values

[34, Cor. 5.4]:

i) n ≤ 3 and all c;

ii) n ≤ 4 and c ≤ 4;

iii) n ≤ 6 and c = 2.

g) The Segre product Sm,n of k[x1, . . . , xm] with k[x1, . . . , xn] in characteristic zero, with m ≤ n taking

values [34, Prop 5.9]:

i) m ≤ 2;

ii) m = 3 and n ≤ 5;

iii) m = n = 4.

Note that most of c) − g) are special cases of a), as shown in the respective references. We make a

special mention of the Koszul Gorenstein algebras of codimension ≤ 4, which should give rise to a large

class of interesting examples by the Buchsbaum-Eisenbud structure theorem in codimension ≤ 3 [27]

(see also [91]).

We now take a more detailed look at some of the previous examples.
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The cone over an elliptic curve of degree d ≥ 4

Let RE,d be the coordinate ring of E ⊆ Pd−1 from Cor. 6.1.5, and we assume that OE(1) ∼= OE(dx)

for some closed point x ∈ E. Applying Orlov’s Theorem2 and Theorem A, we obtain equivalences of

triangulated categories.

Db(cohE) ∼= MCMZ(RE,d) ∼= Db(Hlin(RE,d)).

In his thesis [85], Pavlov characterised the images of indecomposable linear MCM modules in Db(cohE)

under Orlov’s equivalence [85, Chp. 6, Sect. 6.2]. His method leads more generally to a description of

the induced t-structure with hereditary heart Hlin(RE,d) ⊆ Db(cohE). We recall a few results and facts

from [85].

Recall that any spherical object F ∈ Db(cohE) gives rise to an autoequivalence TF ∈ Aut(Db(cohE)),

the associated spherical twist, also called Thomas-Seidel twist (see [85], [54] for definitions). Given our

closed point x ∈ E above, the skyscraper sheaf k(x) is a spherical object, and OE is spherical since E is

Calabi-Yau. This defines two autoequivalences of Db(cohE) which we denote

A := TOE

B := Tk(x)

We have B = Tk(x)
∼= −⊗OE OE(x) ([85, Lemma 2.4.3]), but A = TOE has no such simple description.

Moreover, A and B satisfy the braid relations ABA ' BAB, see [98, Prop. 2.13].

Next, consider the degree shift autoequivalence M 7→ M(1) of MCMZ(RE,d), and write σ for the

corresponding autoequivalence of Db(cohE) under Orlov’s equivalence Db(cohE) ∼= MCMZ(RE,d).

Proposition 6.1.8 (Pavlov, [85, Thm. 4.1.2, Lemma 2.4.4]). In the above situation, we have the

following identifications:

1) The suspended sheaf OE [1] ∈ Db(cohE) corresponds to kst ∈ MCMZ(RE,d) under Orlov’s equivalence.

2) The autoequivalence σ ∈ Db(cohE) is given by σ = Bd ◦ A.

Remark 6.1.9. We can rewrite Bd ∼= − ⊗OE OE(x)⊗d = − ⊗OE OE(dx) = − ⊗OE OE(1) for OE(1)

coming from the embedding E ⊆ Pd−1, and thus rewrite σ = −⊗OE OE(1) ◦ A.

For any M ∈ MCMZ(RE,d), write FM for the corresponding complex of sheaves in Db(cohE). We

have ωE ∼= OE , and so Serre duality gives

HomDb(E)(F ,OE [1]) ∼= HomDb(E)(OE ,F)∗

2We fix a choice of cut-off i = 0 throughout this subsection.
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for any F ∈ Db(cohE). In particular, the Betti numbers of M can be computed as ([85, Thm. 4.1.2])

βi,j(M) = dimk ExtigrRE,d(M,kst(−j)) = dimk HomgrRE,d
(M,kst(−j)[i])

= dimk HomgrRE,d
(M(j)[−i], kst)

= dimk HomDb(E)(σ
jFM [−i],OE [1])

= dimk HomDb(E)(OE , σjFM [−i])

= dimk H0(E, σjFM [−i]).

Define a new autoequivalence γ = σ[−1] = Bd ◦ A ◦ [−1]. This last quantity can be rewritten

βi,j(M) = dimk H0(E, σjFM [−i]) = dimk H0(E,γjFM [j − i])

= dimk Hj−i(E,γjFM ).

Finally, recall that the bounded t-structure tlin is defined as

MCM≤0(RE,d) = {M | βi,j(M) = 0 for j − i > 0 whenever i� 0}

= {M | βi,j(M) = 0 for j − i > 0 whenever j � 0}

MCM≥0(RE,d) = {M | βi,j(M) = 0 for j − i < 0 whenever i� 0}

= {M | βi,j(M) = 0 for j − i < 0 whenever j � 0}.

We see that this gives rise to a bounded t-structure tγ = (D≤0,γ,D≥0,γ) on Db(cohE) defined by

D≤0,γ = {F | Hn(E,γjF) = 0 for n > 0 whenever j � 0}

D≥0,γ = {F | Hn(E,γjF) = 0 for n < 0 whenever j � 0}.

The hereditary heartHγ(E) := D≤0,γ∩D≥0,γ ⊆ Db(cohE) then consists of complexes eventually without

non-zero sheaf cohomology

Hγ(E) = {F ∈ Db(cohE) | Hi(E,γjF) = 0 for i 6= 0 for all j � 0}.

This category can likely be described further using Pavlov’s work, see in particular [85, Sect. 6.2] for a

description of the indecomposables FM corresponding to indecomposable linear MCM modules M under

Hγ(E) ∼= Hlin(RE,d).

Lastly, our work shows that Db(Hγ(E)) ∼= Db(coh E), and so for each indecomposable sheaf F ∈
coh E, there is a unique n = nF ∈ Z for which F [n] ∈ Hγ(E). It would be interesting to have a

description of nF in terms of F .

Cones over smooth del Pezzo varieties of degree d ≥ 4

The hereditary heart Hlin(RXd) for Xd a smooth del Pezzo variety of degree d ≥ 4 are examples of

hereditary Ext-finite abelian categories with Serre duality, and such categories tend to be rather special.

Along this line, let us recall a famous structure theorem of Happel. Recall that an abelian category C is

connected if it is not of the form C = C1 × C2 for two non-zero orthogonal full subcategories C1, C2.
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Theorem 6.1.10 (Happel [48]). Let k be an algebraically closed field and A an hereditary, Ext-finite,

connected k-linear abelian category. Assume that Db(A) admits a tilting object. Then, up to derived

equivalence A is of the form

Db(A) ∼=

Db(mod kQ) with Q a finite acyclic quiver;

Db(cohX) with X = P1(p1, . . . , pt) a weighted projective line.

Note that A itself need not be equivalent to mod kQ or coh X, as it can fail to be Noetherian. As

immediate special case, we obtain:

Corollary 6.1.11. Let k be algebraically closed and R an absolutely Koszul, commutative, Gorenstein

k-algebra with isolated singularities and ν = 1. Assume that Hlin(R) is connected and that MCMZ(R) ∼=
Db(Hlin(R)) admits a tilting object. Then, up to derived equivalence Hlin(R) has one of two forms:

Db(Hlin(R)) ∼=

Db(mod kQ) with Q a finite acyclic quiver;

Db(cohX) with X = P1(p1, . . . , pt) a weighted projective line.

Note that a priori the connectedness assumption can fail to hold3, however Happel’s Theorem will

describe the connected summands.

Happel’s Theorem applies to the coordinate rings RXd of smooth del Pezzo surfaces Xd ⊆ Pd of degree

d ≥ 4 of Cor. 6.1.5. To see this, we will show that MCMZ(RXd) contains a tilting object (essentially the

same argument was already used in Chapter 2 for the cubic surface in P3). Recall that a = a(RXd) = −1

since Xd is anticanonically embedded, and so Orlov’s Theorem yields

Db(cohXd) =
〈
OXd ,Φ0(MCMZ(RXd))

〉
Recall that Xd is abstractly isomorphic either to the blowup π : BlmP2 � P2 of m = 9− d points on P2

in general position, or additionally to the variety X8 = P1 × P1 ↪→ P8 in degree 8.

In the first case Xd
∼= BlmP2 � P2, let Ej = π−1(pj) denote the exceptional divisors. Then by

Orlov’s blow-up formula [54, Sect. 11.2] (see also references in [5]), the derived pullback provides a fully

faithful embedding Lπ∗ : Db(cohP2) ↪→ Db(cohBlmP2) with semiorthogonal decomposition

Db(cohXd) =
〈
Lπ∗Db(cohP2),OE1

, · · · ,OEm
〉

=
〈
π∗OP2 , π∗(OP2(1)), π∗(OP2(2)),OE1

, · · · ,OEm
〉

=
〈
OXd , π∗(OP2(1)), π∗(OP2(2)),OE1

, · · · ,OEm
〉
.

By [5, Thm. 2.5], the latter forms a full strong exceptional collection of sheaves in Db(cohXd). One can

perform calculations directly: by adjunction and using that π has rational fibres, we have

HomDb(Xd)(π
∗(O(n)),OEj ) ∼= HomDb(P2)(O(n),Rπ∗(OEj ))

∼= HomDb(P2)(O(n),Opj )

3In the case ν = 0, consider R = k[x, y]/(xy). It is easy to see that Hlin(R) ∼= mod k ×mod k, with two simple objects
corresponding to R/(x) and R/(y).
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and one sees that its endomorphism algebra Λ ∼= kQ̃/I is given by the quiver Q̃ = Q̃
(1)
m below

•
•

•
{xi} ////// •

{xi} ////// •

q1

AA

q2

::

qm

��

...

...

•

with {xi} a basis of sections for H0(P2,OP2(1)) and with relations xixi′ = xi′xi and qj lj(x0, x1, x2) =

0 = qj l
′
j(x0, x1, x2), where the j-th point pj = V (lj , l

′
j) ∈ P2 is cutout by said linear forms lj , l

′
j . By

Orlov’s Theorem MCMZ(RXd) inherits a full strong exceptional collection with endomorphism algebra

kQ/I with Q = Q
(1)
m

•
•

•
{xi} ////// •

q1

AA

q2

::

qm

��

...

...

•

with the same relations.4

Next let X8 = P1 × P1 ⊆ P8. Let E = OP1 ⊕ OP1(1), and define O(i, j) := OP1(i) � OP1(j). It is

well-known that E � E is a tilting bundle on P1 × P1, whose summands form a full strong exceptional

collection of line bundles

Db(cohX8) =
〈
O,O(0, 1),O(1, 0),O(1, 1)

〉
.

with corresponding quiver path algebra kQ̃/I given by Q̃ = Q̃(2)

•
u

��
v

��

x
//

y // •
u

��
v

��
•

x
//

y // •

with commuting square relations I = (ux − xu, vx − xv, uy − yu, vy − yv). Similarly, Orlov’s Theorem

gives

Db(cohXd) =
〈
OXd ,Φ0(MCMZ(RX8

))
〉

and again MCMZ(RX8
) inherits a full strong exceptional sequence, with endomorphism algebra kQ where

Q = Q(2) is

•
x

��
y

��
•

u
//

v // •

4There is a strong similarity with the Squid algebra of Chapter 3.
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In particular the path algebra kQ(2) has no relations.

Because the quiver path algebras kQ(1)/I and kQ(2) are connected, Hlin(RXd) is a connected category,

and we have just shown that Db(Hlin(R)) contains a tilting complex. Happel’s Theorem then implies an

equivalence

Db(Hlin(RXd)) ∼=

Db(mod kQ) with Q a finite acyclic quiver;

Db(cohX) with X = P1(p1, . . . , pt) a weighted projective line.

It would be very interesting to know which of these occur. The following table contains the extent of

the author’s knowledge (recall that m = 9− d):

d d = 4 d = 5 d = 6 d = 7 d = 8 d = 8 d = 9

Xd Bl5P2 Bl4P2 Bl3P2 Bl2P2 Bl1P2 P1 × P1 P2

Db(Hlin(RXd)) Db(cohP1(2, 2, 2, 2, 2)) ?? ?? ?? ?? Db(mod kQ(2)) Db(mod kQ
(1)
0 )

The case d = 4 corresponds to a complete intersection of two quadrics Bl5P2 ∼= X4 = V (Q1, Q2) ⊆ P4,

and we have already given an exposition of this case in chapter 2, using methods of Buchweitz and

Kuznetsov. In particular cohP1(2, 2, 2, 2, 2) ∼= cohO for the hereditary order O on P1 associated to the

pencil of quadrics. The second case d = 8 follows since the quiver Q(2) above had no relation.

The quiver kQ
(1)
0 for d = 9 is the 3-Kronecker quiver, and this case was studied by Iyama-Yoshino

[57] (see also [64]) who classified the rigid indecomposables MCM modules over the third Veronese5

of S = k[x0, x1, x2] by use of Kac’s Theorem. Since the result of Kac’s Theorem has been extended

to hereditary categories of the form coh X by Crawley-Boevey [36], one could contemplate looking for

similar classifications for all rings RXd , d ≥ 4, at least once the above table has been filled. This will be

investigated in later work.

6.2 Application: The Coherence Conjectures of Minamoto and

Bondal

We finally return after a long digression to the original motivation for the study of the t-structure tlin

on MCMZ(A). In this section we take A to be a Koszul Frobenius k-algebra of top degree a ≥ 1, and

for simplicity work over k = k, where k is our fixed ground field.

We have seen in chapter 4 that one can attach a finite dimensional k-algebra Λ to A by the construc-

tion

Λ = EndgrA(

a−1⊕
i=0

Ωik(i))

such that both Λ and Λop are d-representation infinite algebras, of global dimension d = a− 1. As these

are endomorphism algebras of tilting objects, these come equipped with equivalence of triangulated

5Technically they worked with the invariant ring of the natural µ3 action by cube roots of unity, which agrees with the
third Veronese algebra in characteristic 6= 3.
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categories

modZA
∼=−→ Db(Λ)

(modZA)op
∼=−→ Db(Λop).

and we inherit a pair of (d + 1)-preprojective algebras Π(Λ) and Π(Λop), both of global dimension

d+ 1 = a. Moreover, since A is Frobenius, its Koszul dual A! = Ext∗A(k, k) is an Artin-Schelter regular

algebra [103, Thm. 5.10] of global dimension a. Now, the Koszul and Frobenius properties are left-right

symmetric and it isn’t hard to see that (Aop)! ∼= (A!)op, and so (A!)op is also Artin-Schelter regular of

global dimension a. The next theorem summarises what we have shown in the previous two chapters.

Recall that all notions refer to right modules. We set Π = Π(Λop) and E = (A!)op.

Theorem 6.2.1. Let A be a Koszul Frobenius algebra, and let Π and E be the graded algebras defined

above. The following are equivalent:

i) A is absolutely Koszul.

ii) Π is coherent.

iii) E is coherent.

Moreover, when these conditions hold, we have equivalences of triangulated categories

Db(qgrE) ∼= (modZ A)op ∼= Db(Λop) ∼= Db(qgr Π)

preserving the relevant t-structures, so that this descends to an equivalence of abelian categories

qgrE ∼= Hlin(A)op ∼= H(Λop) ∼= qgr Π.

Proof. The equivalence i) ⇐⇒ ii) follows from Prop. 4.2.13 and Thm. A. That of i) ⇐⇒ iii)

follows from Thm. B, and the last statement is a combination of Thm. C, Prop. 4.2.11 and Minamoto’s

Theorem 4.1.13.

We now construct counterexamples to coherence.

Theorem 6.2.2. For each n ≥ 4, there is a (commutative) Koszul Frobenius k-algebra Rn of socle

degree n which is not absolutely Koszul.

The associated higher preprojective algebra Πn = Π(ΛopRn) and AS-regular algebra En = (R!
n)op are then

counterexamples to Conjectures 4.1.17 and 4.1.18 in all global dimension n ≥ 4.

We first need a lemma, which was briefly stated in the last section.

Lemma 6.2.3 ([34, Prop. 2.3(3)]). Let R,S be standard graded commutative k-algebras. Let ϕ : R→ S

be a retract of k-algebras with section σ : S → R, ϕσ = idS. If R is absolutely Koszul, then so is S.

Construction 6.2.4. We begin by taking a bad Koszul algebra in the sense of Roos. Let S =

k[x, y]/(x, y)2, and consider Sm = S⊗m. Then S2 is the bad Koszul algebra of Roos from Thm. 5.1.18;

in particular it cannot be absolutely Koszul by Prop. 5.1.12. Moreover, Sm retracts onto S2 for all

m ≥ 2 and so these are never absolutely Koszul. However the Sm are not Frobenius.
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Let R = Sn(S(2))∗ be the trivial algebra extension by the symmetric S-bimodule (S(2))∗ = S∗(−2),

with multiplication

(r, ϕ) · (r′, ϕ′) = (rr′, rϕ′ + r′ϕ).

Then R is commutative graded Frobenius, with Hilbert series HR(t) = 1+4t+t2. In particular R satisfies

R≥3 = 0 and so R is Koszul by Prop. 6.1.1 (in fact, absolutely Koszul). In fact, setting V = spank{x, y},
the algebra R is simply the algebra

R = k ⊕ (V ⊕ V ∗)⊕ k

with multiplication induced from the self duality pairing on V ⊕ V ∗. The Koszul Frobenius algebra

R = S n (S(2))∗ retracts onto S by construction, with ϕ : R→ S the projection and section σ : S → R

the natural inclusion. Define

Rn =

R⊗m n = 2m

R⊗m ⊗ k[ε] n = 2m+ 1

where k[ε] = k[x]/(x2). Then Rn is a commutative Koszul Frobenius algebra of socle degree n. For all

m ≥ 2, we have k-algebra retractions induced from ϕ, σ

S2 � Sm � R⊗m � R⊗m ⊗ k[ε]

and so Rn retracts onto S2 for all n ≥ 4, and cannot be absolutely Koszul then by the previous lemma.

This establishes Thm. 6.2.2.

Remark 6.2.5. Since Rn is a commutative (graded) local k-algebra, we have that R!
n = Ext∗Rn(k, k) ∼=

Uπ∗(Rn) is the universal enveloping algebra of a graded Lie algebra π∗(Rn) supported in degrees ≥ 1

called the Homotopy Lie algebra of Rn [10, Chp 10]. In particular, Ext∗Rn(k, k) is a Hopf algebra, and

so there is anti-isomorphism σ : Ext∗Rn(k, k)
∼=−→ Ext∗Rn(k, k)op given by the antipode map. This shows

more clearly that coherence fails on both sides simultaneously.
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6.3 Discussion and conjectures

The structure of complete resolutions

We record here a few thoughts and conjectures on the structure of complete resolutions over absolutely

Koszul Gorenstein algebras, inspired by the equivalence of Theorem A.

Let A = k ⊕ A1 ⊕ . . . be a two-sided coherent, Koszul Gorenstein k-algebra, and recall that dimA

refers to the Gorenstein dimension of A. We define the width of M ∈ grmodA and the global width of A

by

width(M) = sup{ |j1 − j2| | (M ⊗A k)jk 6= 0, k = 1, 2}.

gl.width(A) = sup{ width(M) | M ∈ MCMZ(A) indecomposable}.

In plain terms, the width of M is the largest difference between degrees of generators. When A is

absolutely Koszul, referring to tlin-cohomology recall that we define the amplitude of M ∈ MCMZ(A)

(and analogously the global amplitude of A) by

amp(M) = sup{ |j1 − j2| | Hjk(M) 6= 0, k = 1, 2}.

gl.amp(A) = sup{ amp(M) | M ∈ MCMZ(A) indecomposable}.

These notions are closely related to the regularity, since for any Koszul module K with initial degree

indeg(K) = 0, we have

amp(K) = width(K) = regA(K).

We have an immediate inequality

gl.amp(A) ≤ gl.width(A).

Now, let us assume additionally that A is two-sided absolutely Koszul. We say that N ∈ grmod A is

coKoszul if N∗ is Koszul. In this situation, we have a notion of ‘middle part’ of the complete resolution

of MCM modules.

Definition 6.3.1. Let A be two-sided coherent, two-sided absolutely Koszul Gorenstein. Let M ∈
MCMZ(A), and let C be a complete resolution of M . The middle part of C consists of the terms {Cn}
for which

coker(Cn−1 → Cn) = ΩnM

is neither Koszul nor coKoszul.

Since ΩnM is Koszul for any n � 0 and coKoszul for any n � 0 in the situation above, the

middle part of C consists of a finite number of terms in the complete resolution. The global width of

A attempts to measure the complexity of the middle parts of all indecomposable complete resolutions,

while the global amplitude measures the complexity of the tails.

The complexity of the Betti tables of complete resolutions appears to be sensitive to the invariant

ν = dimA− 1 + a. More precisely, there is some evidence for the following dichotomies.
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Conjecture 6.3.2 (Dichotomy for width). Let A be a two-sided coherent, Koszul, Gorenstein k-algebra,

and let ν = dimA− 1 + a be the virtual dimension of A. Then:

1) If ν ≤ 1, then gl.width(A) ≤ N <∞ for some N ∈ N. That is, there is a uniform bound N such that

every indecomposable M ∈ MCMZ(A) in generated in at most N degrees.

2) If ν ≥ 2, then gl.width(A) =∞. That is, for every N ∈ N there is an indecomposable M ∈ MCMZ(A)

such that width(M) > N .

Conjecture 6.3.3 (Dichotomy for amplitude). Let A be a two-sided coherent, two-sided absolutely

Koszul, Gorenstein k-algebra, and let ν = dimA− 1 + a be the virtual dimension of A. Then:

1) If ν ≤ 1, then gl.amp(A) ≤ 1. That is, every indecomposable M ∈ MCMZ(A) is eventually n-linear

for some n ∈ Z.

2) If ν ≥ 2, then gl.amp(A) =∞. That is, for every N ∈ N there is an indecomposable M ∈ MCMZ(A)

such that amp(M) > N .

We have shown some partial cases already, such as Conj. 6.3.3 1). The general case will be studied

in subsequent work.
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Appendix

A.1 Representation theory of quivers and finite dimensional

algebras

This appendix is a quick summary of the relevant facts on the representation theory of algebras used

implicitly in this thesis. The reader is referred to [8, 47, 101] for details.

Finite dimensional algebras and quivers

Throughout this section k will stand for an algebraically closed field, and Λ will refer to a finite dimen-

sional k-algebra. Since Λ is finite dimensional and thus Artinian, Λ/radΛ is semisimple and so isomorphic

to a product of matrix algebras Me1(k)× · · · ×Mer (k) by the Artin-Wedderburn theorem.

Definition A.1.1. A finite-dimensional algebra Λ is basic if Λ/radΛ ∼= k × · · · × k. Equivalently, the

decomposition of ΛΛ =
⊕r

i=1 P (i) into indecomposable projectives P (i) is multiplicity free, i.e. the P (i)

are pairwise non-isomorphic.

Every finite dimensional algebra is Morita equivalent to a basic algebra, and two Morita equivalent

basic algebras are isomorphic.

A quiver Q = (Q0, Q1) is a directed graph, with vertex set Q0 and arrow set Q1. Given an arrow
a ∈ Q1, we let s(a), t(a) denote its source and target vertices.
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Let kQd be the k-span of Qd for d = 0, 1, and assume for simplicity that both sets are finite. Then

kQ0 =
∏
i∈Q0

k is a semisimple k-algebra with standard basis of idempotents {ei} and kQ1 is a kQ0-

bimodule for which ejkQ1ei is the k-span of arrows {a : i→ j}. We define the path algebra

kQ = TkQ0
(kQ1) =

⊕
d≥0

kQd

as the tensor algebra of kQ1 over kQ0, with kQd = (kQ1)⊗d the k-space of paths of length d for all d ∈ N.

Equivalently, kQ is the k-span of the graded set {Qd} of paths of length d ∈ N, with multiplication given

by “function composition” for a, b ∈ Q1 whenever possible:

m2(a, b) =

ab s(a) = t(b)

0 else.

Note that kQ is an augmented kQ0-algebra, and is the free kQ0-algebra on the bimodule kQ1. The

Jacobson radical is given by the arrow ideal radkQ = (kQ1) = kQ≥1.

Given Λ basic, write 1 = e1 + · · ·+ er for a full set of primitive idempotents {ei}, so that P (i) = eiΛ.

We construct the ordinary quiver Q = QΛ as follows. Take Q0 = {ei}. Next, let Q1 be a set of arrows

{a : i→ j} in bijection with a k-basis ej(radΛ/rad2Λ)ei.

Proposition A.1.2 (Gabriel’s theorem). Let Λ be basic with ordinary quiver Q = QΛ. Then there

is a surjective homomorphism kQ � Λ whose kernel I consists of decomposable elements, meaning

I ⊆ kQ≥2 = rad2kQ, so that kQ/I ∼= Λ. The quiver Q is uniquely determined by this property so long

as I ⊆ rad2kQ.

A generating set for I = (ρ1, . . . , ρc) can always be taken as linear combinations of paths with same

source and target. When I is in this form, we call the pair (Q, I) a bound quiver. Note that kQ/I is

finite dimensional if and only if kQ≥d ⊆ I for d� 0.

A representation of a bound quiver (Q, I) consists of a set of vector spaces {Vi}i∈Q0
and operators

ϕa : Vi → Vj for every a : i→ j, such that {ϕa}a∈Q1
satisfy the relations I. Morphisms of representations

are simply natural transformations. We denote the category of representations of (Q, I) by Rep(Q, I)

(resp. rep(Q, I) for the subcategory of representations with finite dimensional Vi).

Given a quiver representation ({Vi}, {ϕa}), the path algebra kQ/I operates on the left of V =⊕
i∈Q0

Vi via the ϕa, giving a functor to left kQ/I-modules.

Proposition A.1.3. This functor gives rise to an equivalence of categories

Rep(Q, I) ∼= Mod (kQ/Iop).
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The inverse sends V 7→ {Vi} with Vi = eiV . When kQ/I is finite dimensional, this restricts to

rep(Q, I) ∼= mod (kQ/Iop).

Trichotomy

Fix a finite dimensional algebra Λ and restrict attention to finitely generated modules. For an algebra

A, we say that a k-linear functor

F : modA→ modΛ

is a representation embedding if it sends indecomposables to indecomposables and reflects isomorphisms,

that is F (M) ∼= F (N) implies M ∼= N . Given Λ, the classification problem for indecomposable Λ-

modules can be a various complexity. We say that the representation theory of Λ is of

• finite type, if there are finitely many indecomposable Λ-modules;

• tame type, if there are infinitely many indecomposables and, for any dimension d, there are finitely

many k[T ]−Λ-bimodules F1, . . . ,Fµ(d) such that Fi are free of finite rank as k[T ]-modules and all

but finitely many indecomposable Λ-modules of dimension d are of the form Mi,λ = Fi/(T −λ)Fi,
for some i = 1, . . . , µ(d) and λ ∈ k;

• wild type, if for any finitely generated k-algebra A there is a representation embedding F : modA→
modΛ.

By Drozd’s Theorem, the representation type of a finite dimensional algebra Λ must be either finite,

tame or wild.

Grothendieck groups and Euler forms

Let Λ = kQ/I be a finite dimensional algebra, presented as in Gabriel’s theorem. Given a finite

dimensional quiver representation V = {Vi}, we define the dimension vector dim V := (dimVi)i∈Q0
.

Letting K0(Λ) = K0(modΛ), we have an isomorphism of abelian groups

dim : K0(Λ)
∼=−→ Z|Q0|.

Letting S(i) be the simple top of the indecomposable projective P (i), S(i) can be represented by the

unique quiver representation with dimVj = δij , and so [S(i)] forms a finite Z-basis of K0(Λ). The

dimension vector dimV gives the Jordan-Hölder multiplicity of each S(i) in V . When gldimΛ <∞, the

Euler form

〈X,Y 〉 =
∑
i∈Z

dim ExtiΛ(X,Y )

is defined and descends to a pairing 〈−,−〉 : K0(Λ) ⊗ K0(Λ) → Z. One can show that this pairing is

perfect.

Hereditary algebras

An algebra Λ is hereditary if gldim Λ = 1. The finite dimensional hereditary algebras have historically

been the best studied finite dimensional algebras, and their module category exhibits a rich structure.
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Proposition A.1.4. A finite dimensional basic hereditary algebra Λ is isomorphic to kQ for some

acyclic quiver Q, and any such path algebra is hereditary.

Proposition A.1.5. Let Q be an acyclic quiver. The representation type of kQ is determined as follows:

i) kQ is of finite type if and only if the underlying graph of Q is a simply-laced (ADE) Dynkin diagram.

ii) kQ is of tame type if and only if the underlying graph of Q is of affine ADE type.

iii) kQ is wild otherwise.

Define a bilinear form 〈−,−〉Q on Z|Q0| by

〈d, d′〉Q =
∑
i∈Q0

did
′
i −

∑
a:i→j

did
′
j .

Proposition A.1.6. The isomorphism dim : K0(kQ)
∼=−→ Z|Q0| sends the Euler form to the above. That

is

〈X,Y 〉 = 〈dimX,dimY 〉Q.

The underlying graph of Q determines a symmetrizable Cartan matrix, to which we attach a Kac-

Moody algebra g = gQ. Recall that g is graded by a finite free abelian group Γ called the root lattice,

with Z-basis of simple roots {εi}. We let ∆ = {α ∈ Γ | gα 6= 0} be the sets of roots of g. Now denote

by (−,−)Q the symmetrization of the above pairing, meaning

(d, d′)Q = 〈d, d′〉Q + 〈d′, d〉Q.

We can identify the lattice Z|Q0| = Γ with the root lattice of g, sending the dimension vector of the simple

representation S(i) to the simple root εi. This identifies (−,−)Q with the Weyl-invariant symmetric

bilinear form on Γ.

Proposition A.1.7 (Kac’s Theorem). The above identification induces a bijection between the dimen-

sion vectors of indecomposable representations of Q and the positive roots ∆+ of g. Furthermore:

i) There is a unique indecomposable X with dimX 7→ α for each positive real root α.

ii) There are infinitely many indecomposables Y with dimY 7→ β for each positive imaginary root β.

Auslander-Reiten theory

Let Λ be a finite dimensional algebra, and let

ξ : 0→ X → Y → Z → 0

be a short exact sequence in modΛ.

Definition A.1.8. A short exact sequence ξ is almost-split if 0 6= ξ ∈ Ext1
Λ(Z,X), X,Z are indecom-

posable and for every non-isomorphism t : W → Z with W indecomposable factors as

W
t��yy

0 // X // Y // Z // 0.
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Almost-split sequences were introduced by Auslander-Reiten and their existence is fundamental to

the representation theory of finite dimensional algebras. Every indecomposable object sits inside an

almost-split sequence. Let X be indecomposable, and pick a minimal projective presentation

P1 → P0 → X → 0.

Writing (−)∨ = HomΛ(−,Λ), we define the transpose Tr(X) ∈ modΛop by the dual presentation

P∨0 → P∨1 → Tr(X)→ 0.

Define the functors

τ = DTr(−) : modΛ→ modΛ

τ−1 = TrD(−) : modΛ→ modΛ.

Define the projectively stable (resp. injectively stable) categories modΛ (resp. modΛ) with homomor-

phism space

Hom(X,Y ) = HomΛ(X,Y )/P(X,Y )

and

Hom(X,Y ) = HomΛ(X,Y )/I(X,Y )

where P(X,Y ) (resp. I(X,Y )) is the ideal of morphisms factoring through a projective object (resp.

injective object).

Proposition A.1.9. The functors Tr, τ, τ−1 descend to equivalences of stable categories

Tr :modΛ � modΛop : Tr

τ :modΛ � modΛop : τ−1

Theorem A.1.10 (Auslander-Reiten). Let Λ be a finite dimensional k-algebra. Then every non-injective

indecomposable X sits in a unique almost-split sequence

0→ X → Y → τ−1X → 0

and every non-projective indecomposable Z sits in a unique almost-split sequence

0→ τZ → Y → Z → 0.

Definition A.1.11. Let P (i) = eiΛ and I(i) = D(Λei) = eiD(Λ) be the indecomposable projective and

injective Λ modules, as {ei} runs through a full set of primitive idempotents.

i) Indecomposables of the form τ−nP (i) for n ≥ 0 are called preprojective.

ii) Indecomposables of the form τnI(i) for n ≥ 0 are called preinjective.

We can encode the structure of almost-split sequences in a combinatorial structure called the Auslander-

Reiten (AR) quiver Γ = ΓmodΛ. The quiver Γ = (Γ0,Γ1) is defined by

a) Γ0 = {X indecomposable }/ ∼=.
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b) Γ1 has a set of arrows {a : [X] → [Y ]} in bijection with a k-basis of the space of irreducible maps

Irr(X,Y ).

See [47] for the definition of irreducible maps.

Proposition A.1.12. The AR quiver is related to almost-split sequences as follows. Let

ξ : 0→ X
f−→ Y

g−→ Z → 0

be an almost-split sequence, and decompose Y =
⊕r

i=1 Y
⊕ei
i into indecomposables.

i) The classes of the components fi : X → Yi give a full set of arrows coming out of X in Γ, and we

have dim Irr(X,Yi) = ei.

ii) The classes of the components gi : Yi → Z give a full set of arrows coming into Z in Γ, and we have

dim Irr(Yi, Z) = ei.

We can picture the above in Γ as

[Y1]

e1

!!
[Y2]

e2 ''
[X]

e1

==

e2

66

er−1

((
er

!!

... [Z]

[Yr−1]

er−1
77

[Yr]

er

==

writing ei for the multiplicity of arrows.

Now let Λ be hereditary, say basic so that Λ = kQ for some Q acyclic. Denote by P and I the

subcategories of preprojective and preinjective modules. We say that an indecomposable is regular if it

is neither in P nor I, and denote by R the subcategory of regular indecomposables. The categories P, I
each form a component in the AR quiver Γ, called the preprojective and preinjective components. The

category R breaks down into connected components, each closed under τ±, called regular components.

Proposition A.1.13. The following are equivalent:

i) kQ is of finite representation type (i.e. Q is Dynkin).

ii) R = ∅.

iii) P = I.

When kQ is representation infinite, the quiver Γ is directed in that the nonzero morphisms in modkQ

go from left to right in (P,R, I).

Proposition A.1.14. When kQ is representation infinite, we have:

i) HomΛ(R,P) = 0.

ii) HomΛ(I,R) = 0.
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iii) HomΛ(I,P) = 0.

Proposition A.1.15. Let kQ be representation infinite. The following are equivalent:

i) kQ is of tame representation type (i.e Q is affine Dynkin).

ii) The functor τ has finite order on R.

The regular components in the tame case are tubes {Tλ}λ∈P1 parameterized by P1. The category of

modules whose indecomposable summands belong to Tλ is a serial category, with finitely many simple

objects forming the base of the tube. We call the number of simples the rank of the tube. All but finitely

many tubes have rank one.

Proposition A.1.16. We have rkK0(Λ) = 2 +
∑
λ(rk(Tλ)− 1).

Derived categories of finite-dimensional algebras

We let Db(Λ) := Db(mod Λ) ∼= Db
mod Λ(Mod Λ), and Dperf(Λ) ⊆ Db(Λ) for the subcategory of perfect

complexes, meaning those quasi-isomorphic to bounded complexes of projectives.

Given a finite dimensional algebra Λ, we are primarily interested in the bounded derived category

Db(Λ) and the perfect derived category Dperf(Λ). We recall some of their properties.

Proposition A.1.17 (Happel). The following hold.

i) Db(Λ) is an Hom-finite Krull-Schmidt category.

ii) Db(Λ) admits a Serre functor if and only if gldimΛ <∞. In this case it is given by

SΛ(−) = −⊗L
Λ DΛ

with inverse given by the right adjoint

S−1
Λ (−) = −⊗L

Λ RHomΛ(DΛ,Λ) ' RHom(DΛ,−).

iii) Dperf(Λ) admits a Serre functor if and only if Λ is Gorenstein, whence it is also given by the above.

By [93], existence of a Serre functor S for the triangulated category T = Db(Λ) is equivalent to

the existence of almost-split triangles, with Auslander-Reiten translate τ = S ◦ [−1]. Since the module

category mod Λ admits almost-split short exact ssequence and a translate τ = DTr, one may ask how

whether these are compatible. Let us temporarily write τ∆ = S ◦ [−1] for the translate in Db(Λ) and τ

for the translate in modΛ.

Proposition A.1.18. Let Λ be hereditary. Consider a short exact sequence in modΛ

ξ : 0→ X → Y → Z → 0

with associated triangle in Db(Λ)

ξ∆ : X → Y → Z → X[1].

Then ξ is almost-split in modΛ if and only if ξ∆ is almost-split in Db(Λ). Furthermore, we have:
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i) τ∆Z = τZ = TorΛ
1 (Z,DΛ) for each indecomposable non-projective module Z.

ii) τ−1
∆ X = τ−1X = Ext1

Λ(DΛ, X) for each indecomposable non-injective module X.

iii) τ∆P (i) = I(i)[−1].

Remark A.1.19. The reader is warned that this result is special to the hereditary case; the translates

τ and τ∆ usually differ in nature for gldim Λ ≥ 2. We will primarily work with Serre functors on

triangulated categories, and so τ will always refer to τ∆ if any ambiguity arises.

Happel has worked out the structure of the Auslander-Reiten quiver of Db(kQ). First, a standard

fact.

Proposition A.1.20. Let H be an abelian category with Ext2
H(−,−) = 0. Then all objects in Db(H)

are formal. That is, for each X we have an isomorphism X ∼=
⊕

n∈Z Hn(X)[−n] in Db(H), and so each

object is the shifted sum of its cohomology objects.

Theorem A.1.21 (Happel [47]). The AR components of Db(kQ) look as follows.

i) The preprojective component P and shifted preinjective components I[−1] form one connected com-

ponent in Db(kQ), called the transjective component PI. We have

PI = {τnP (i) | P (i) indecomposable projective n ∈ Z}.

ii) The connected components are either shifts of regular components in mod kQ or shifts of PI.

A.2 Derived Morita theory and Tilting theory

We briefly review and give references for the general Morita theorem of Keller in the context of algebraic

triangulated categories, based on the articles [62, 63]. The reader is referred to these articles for more

details.

Let k be a commutative ring. A k-linear triangulated category T is called algebraic if it arises as

the stable category E of a Frobenius category E , see [62, Sect. 3.6] for definitions. We note that all

triangulated categories appearing in this thesis are algebraic.

Closely related is the notion of dg category.

Definition A.2.1. We say that an additive k-linear category C is a differential graded (dg) category if

C has the following properties:

1) The Hom objects HomC(X,Y ) are complexes for any X,Y .

2) The identity 1X is closed for each X, i.e. d(1X) = 0.

3) Composition of morphisms

HomC(Y, Z)⊗k HomC(X,Y )→ HomC(X,Z)

is a chain-map of complexes.
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To any dg category C we can attach a k-linear category H0C with the same objects as C and morphism

space HomH0C(X,Y ) = H0HomC(X,Y ). A dg functor between dg categories F : C → D is an additive

functor such that the induced linear map FX,Y : HomC(X,Y )→ HomD(F (X), F (Y )) is a morphism of

complexes; such functors descend to functors H0(F ) : H0(C)→ H0(D). A quasi-equivalence F : C ∼−→ D is

a dg functor F such that H0(F ) is an equivalence; equivalently, the morphisms FX,Y on Hom complexes

are quasi-isomorphisms.

Given any algebraic triangulated category T , one can find a dg category C along with an equivalence

T ∼= H0(C). We will set the notation

RHomT (X,Y ) := HomC(X,Y ).

Note that RHomT (X,X) is naturally a dg algebra over k for any object X ∈ T .

Define an object X ∈ T to be compact if HomT (X,−) commutes with arbitrary direct sums in T .

Let T c be the subcategory of compact objects. Given a set of objects S ⊆ T , we define thick(S) ⊆ T
(respectively loc(S) ⊆ T ) to be the smallest triangulated subcategory of T closed under finite sums and

summands (respectively arbitrary sums; direct summands will follow, see [82]). Next, we say that a set

of objects S ⊆ T is:

i) A set of classical generators, if thick(S) = T .

ii) A set of compact generators, if S ⊆ T c consists of compact objects and loc(S) = T .

We can now state Keller’s derived Morita theorem. We refer to [62] for the module and derived category

of a small DG category.

Theorem A.2.2 (Keller [62, Thm. 3.8]). Let T be an algebraic triangulated category. Assume that T
is idempotent closed. Let C be the associated dg category such that H0(C) ∼= T . Let S ⊆ T be a small full

subcategory and S the DG category obtained from S, with same objects as S but with morphisms given

by HomC(s, s
′) for any s, s′ ∈ S. The following holds:

i) If S ⊆ T is a set of classical generators, then we have an exact equivalence of categories

RHom(S,−) : T
∼=−→ Dperf(Mod S).

ii) If T is closed under arbitrary direct sums and S ⊆ T is a set of compact generators, then we have

an exact equivalence of categories

RHom(S,−) : T
∼=−→ D(Mod S).

This theorem further specialises. We say that S ⊆ T is tilting if

i) S is a set of classical generators;

ii) HomT (s, s′[n]) = 0 for n 6= 0 and all s, s′ ∈ S.
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We note the special case when S consists of a single object S = {T}. The object T is then called a

tilting object.

When S is a tilting subcategory with S as in the above theorem, letting τ≤0 be the left truncation

functor for standard t-structure on Db(k), we have quasi-isomorphisms of Hom complexes

HomC(s, s
′)
∼←− τ≤0HomC(s, s

′)
∼−→ HomT (s, s′)

for any s, s′ ∈ S. Writing τ≤0S for the DG category with morphism complexes as above, we obtain

quasi-equivalences

S ∼←− τ≤0S ∼−→ H0S = S.

Lastly, we note that quasi-equivalent dg categories S ' H0(S) = S have equivalent derived categories

D(Mod S) ∼= D(Mod S) (and perfect derived categories (Dperf(Mod S) ∼= D(Mod S)). Keller’s Tilting

theorem then specialises to

Corollary A.2.3 (Keller). Assume that S ⊆ T is a tilting subcategory. Then there is an equivalence of

triangulated categories

T
∼=−→ Dperf(Mod S).

As a special case, when S = {T} consists of a single tilting object T , we have an equivalence of triangu-

lated categories

T
∼=−→ Dperf(ModEndT (T )).

This last statement is [63, Thm. 8.7].

A.3 Semiorthogonal decompositions and Orlov’s Theorem

In this section we review Orlov’s semiorthogonal decomposition theorem and standard background no-

tions leading up to it. Everything in here is in [83], except for the description of the crucial left adjoint

to MCM approximation, which is due to Buchweitz.

Let T be a k-linear triangulated category over some field k, andA ⊆ T a full triangulated subcategory.

Definition A.3.1. We say that A is right admissible (resp. left admissible) if the embedding ι : A ↪→ T
has a right adjoint Q : T → A (resp. left adjoint). We say that A is admissible when it is both left and

right admissible.

Define the right orthogonal category A⊥ = {X ∈ T | HomT (A,X) = 0 for all A ∈ A}, and similarly

define the left orthogonal category ⊥A. By making use of the counit map of the adjunction and the

long exact sequence of Hom spaces, one sees that A ⊆ T is right admissible if and only if for all X ∈ T ,

there is a distinguished triangle

XA → X → XA⊥ → XA[1]

with XA ∈ A and XA⊥ ∈ A⊥. Analogously, A ⊆ T is left admissible if and only if for all X ∈ T , there

is a distinguished triangle

X ⊥A → X → XA → X ⊥A[1]

with X ⊥A ∈ ⊥A and XA in A.
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Definition A.3.2. Let A,B ⊆ T be full triangulated subcategories. We say that T has a (weak)

semiorthogonal decomposition T = 〈A,B〉 if HomT (B,A) = 0 and for all X ∈ T , there is a distinguished

triangle

XB → X → XA → XB[1].

with XA ∈ A and XB in B. Equivalently, A is left admissible (and then B = ⊥A). Again equivalently,

B is right admissible (and then A = B⊥). We say that T = 〈A,B〉 is a semiorthogonal decomposition if

A (equivalently, B) are admissible.

Given a weak semiorthogonal decomposition, we can refine it by decomposing A or B further.

Definition A.3.3. A sequence of full triangulated subcategories (A1, . . . ,An) in T is a weak semiorthog-

onal decomposition T = 〈A1, . . . ,An〉 if there is a sequence of left admissible subcategories T1 = A1 ⊂
T2 ⊂ · · · ⊂ Tn = T such that Ak is the left orthogonal of Ak−1 in Tk, for all k = 2, . . . , n. If all Ak are

admissible, then T = 〈A1, . . . ,An〉 is a semiorthogonal decomposition.

Semiorthogonal decompositions occur often in algebraic geometry and representation theory. At one

extreme, the derived category Db(X) of a smooth projective Calabi-Yau variety X does not admit any

semiorthogonal decomposition. At the other extreme, some varieties (e.g. X = Pn) admit semiorthogonal

decompositions Db(X) = 〈A1, . . . ,An〉 with Ai ∼= Db(pt), so that the pieces Ai are as simple as possible.

Definition A.3.4. An object E ∈ T is exceptional if

HomT (E,E[n]) =

k n = 0

0 n 6= 0.

A sequence σ = (E1, . . . , En) is an exceptional sequence if the Ei are exceptional objects, and HomT (Ei, Ej [n]) =

0 for all n ∈ Z whenever j > i. The sequence σ is strong if furthermore HomT (Ei, Ej [n]) = 0 for all

n 6= 0 and any i, j, and is full if thick(E1, . . . , En) = T .

Given σ = (E1, . . . , En) a full strong exceptional sequence, the sum T =
⊕n

i=1Ei is a tilting object

for T in the sense of Appendix A.2.

Example A.3.5. Let A = kQ/I be a finite dimensional algebra with I ⊆ rad2kQ with Q a finite acyclic

quiver. Order Q0 = {1, . . . , n} in which the arrow directions a : i → j are increasing, and let ei be the

idempotent path at the i-th vertex. Then the indecomposable right projective modules P (i) = eiA form

a full strong exceptional collection

Db(A) = 〈P (1), . . . , P (n)〉.

Mutations of exceptional collections

Assume that T is Ext-finite. Given objectsA,B,C in T , denote by Hom•(A,B) =
⊕

n∈Z HomT (A,B[n])[−n]

the object in Db(k), and define

Hom•(A,B)⊗k C =
⊕
n∈Z

HomT (A,B[n])⊗k C[−n].
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Interpret the dual Hom•(A,B)∗ in Db(k) accordingly. Following Gorodentsev, we have canonical distin-

guished triangles in T
LA(B)[−1]→ Hom•(A,B)⊗k A

ev−→ B → LA(B)

RA(B)→ A
coev−−−→ Hom•(A,B)∗ ⊗k B → RA(B)[1]

which uniquely define LA(B), RA(B). Now, an exceptional collection (E,F ) of length two is called an

exceptional pair. We have the standard result.

Proposition A.3.6 (Gorodentsev [96]). Let (E,F ) be an exceptional pair in T . The operations L,R

descend to an action on the set of exceptional pairs

R : (E,F ) 7→ (F,RE(F ))

L : (E,F ) 7→ (LE(F ), E)

called right and left mutations. Moreover, R,L are inverses in that we have isomorphisms of pairs

L ◦R(E,F ) ∼= (E,F ) and R ◦ L(E,F ) ∼= (E,F ).

We can extend these to mutations on isomorphism classes of exceptional collections of any lengths.

Orlov’s semiorthogonal decomposition theorem

Let A =
⊕

i≥0Ai be a two-sided Noetherian, graded connected k-algebra throughout. We say that A is

Artin-Schelter Gorenstein if A is Gorenstein of dimension d (meaning idim (AA) = idim (AA) = d <∞)

and A satisfies the additional Gorenstein condition

ExtiA(k,A) =

0 i 6= d

k(−a) i = d.

interpreted as isomorphism of graded modules. This latter condition follows for free in the commutative

case [26], but has to be imposed otherwise. The integer a is the a-invariant (and −a is the Gorenstein

parameter1). Since A is Noetherian, we can define the abelian category

qgrA := grmodA/grmod0A

as the Serre quotient category of finitely generated graded A-modules by the Serre subcategory of finite

length modules. The significance of this construction is due to a classical theorem of Serre.

Theorem A.3.7 (Serre). Let R =
⊕

n≥0Rn be a standard graded, Noetherian commutative k-algebra.

Let X = projR be its projective scheme. Then the sheafification functor (̃−) : grmodR→ cohX descends

to an exact equivalence of abelian categories

(̃−) : qgrR
∼=−→ cohX.

Its inverse sends F to the class of the finitely generated graded R-module

Γ≥i(X,F) =
⊕
n≥i

Γ(X,F(n))

1The reader is warned that ‘a′ is often used to denote the Gorenstein parameter in the literature, notably in [83].
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for any i ∈ Z.

Note that the image of the homogeneous section functor Γ∗(X,F) =
⊕

n∈Z Γ(X,F(n)) may fail to

be finitely generated as an R-module, e.g. for F a skyscraper sheaf.

Now in general, for any choice of cut-off i ∈ Z, denote by grmod≥iA the full abelian subcategory of

graded A-modules with Mj = 0 for j < i. The quotient functor π : grmod A � qgr A restricts to an

essentially surjective exact functor πi : grmod≥iA� qgrA.

Assume from this point on that A is Artin-Schelter Gorenstein. Then Orlov observes [83, Sect. 2]

that πi admits a right adjoint ωi : qgrA→ grmod≥iA given by

ωi(M) =
⊕
n≥i

Homqgr A(πA,M(n)).

Moreover, we have πiωi ∼= id and so ωi is fully faithful. This extends to an adjoint pair on derived

categories

πi : Db(grmod≥iA) � Db(qgrA) : Rωi

with Rωi fully faithful and πi essentially surjective.

Since A is Gorenstein, we have another Verdier quotient st : Db(grmodA) � DZ
sg(A) given by stabilisa-

tion. Using semiorthogonal decomposition techniques, Orlov observes that st restricted to Db(grmod≥iA)

stays essentially surjective and gains a left adjoint which we shall denote by X 7→ X[≥i]

(−)[≥i] : DZ
sg(A) � Db(grmod≥iA) : st

Moreover, we have st ◦ (−)[≥i] ∼= id, and so (−)[≥i] is fully faithful. We may then compose both adjoints

as shown below:

Db(grmod≥iA)

stxx
πi ''

DZ
sg(A)

(−)[≥i]
88

Φi

// Db(qgrA)
Ψioo

Rωi

gg

This yields an adjoint pair (Φi,Ψi) with Φi = π ◦ (−)[≥i] and Ψi = st ◦ Rωi. Note that while the

categories Db(qgrA) and DZ
sg(A) do not depend on the resulting cutoff i, both functors (Φi,Ψi) do and

will generally differ as i varies.

The following is Orlov’s semiorthogonal decomposition theorem.

Theorem A.3.8 ([83, Thm. 2.5]). Let A be an Artin-Schelter Gorenstein k-algebra with a-invariant

a ∈ Z. The above functors and triangulated categories are related as follows:

i) (Fano case) if a < 0, there is a semiorthogonal decomposition

Rωi
(
Db(qgrA)

)
=
〈
A(−i+ a+ 1), A(−i+ a+ 2), . . . , A(−i),DZ

sg(A)[≥i]
〉
.

Applying πi, this descends to a semiorthogonal decomposition

Db(qgrA) =
〈
πA(−i+ a+ 1), πA(−i+ a+ 2), . . . , πA(−i),ΦiDZ

sg(A))
〉
.
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ii) (Calabi-Yau case) if a = 0, the essential images of both embeddings in Db(grmod≥i A) are equal

DZ
sg(A)[≥i] = RωiD

b(qgrA)

hence (Φi,Ψi) give inverse equivalences

Φi : DZ
sg(A) ∼= Db(qgrA) : Ψi.

iii) (General type case) if a > 0, there is a semiorthogonal decomposition

DZ
sg(A)[≥i] =

〈
k(−i), k(−i− 1), . . . , k(−i− a+ 1),Rωi+aDb(qgrA)

〉
.

Applying stabilisation st, this descends to a semiorthogonal decomposition

DZ
sg(A) =

〈
kst(−i), kst(−i− 1), . . . , kst(−i− a+ 1),Ψi+aDb(qgrA)

〉
.

Remark A.3.9. The above theorem is usually just stated in terms of Ψi and Φi and the resulting

semiorthogonal decompositions in Db(qgrA) and DZ
sg(A). However the above statement is what Orlov

shows as part of the proof, and this stronger version has many uses.

The existence of the left adjoint (−)[≥i] : DZ
sg(A) → Db(grmod≥i A) follows by abstract nonsense

arguments involving admissible subcategories, and it is important in applications to have a concrete

description. The following is due to Buchweitz.

First apply the equivalence DZ
sg(A) ∼= MCMZ(A). We will construct a functor

(−)[≥i] : MCMZ(A)→ Db(grmod≥iA)

which we also denote (−)[≥i] by abuse of notation. We will then give a direct proof that (−)[≥i] is a

left adjoint to MCM approximation, giving a model for the sought-after left adjoint implicit in Orlov’s

result.

Let M be a graded MCM A-module with complete resolution C. Let C[<i] ⊆ C be the graded

submodule whose terms are graded free A-modules generated in degree < i. The short exact sequence

ξ : 0→ C[<i] → C → C/C[<i] → 0

is split as a sequence of A-modules and we have HomgrA(C[<i], C/C[<i]) = 0. Since the differential

d : Cn → Cn−1 is A-linear and homogeneous of degree zero, we see that C[<i] is a subcomplex, and we

interpret ξ as a short exact sequence of complexes. Applying the same idea shows that C 7→ C[<i] and

C/C[<i] is natural in C and preserves homotopy equivalences.

The quotient complex C[≥i] = C/C[<i] has terms in grmod≥i A. Since A is graded connected, up to

homotopy one can replace C, and thus C[≥i], by a minimal complex, which shows that C[≥i] has bounded

cohomology as the degrees of generators of Cn strictly increase as n → ∞ (and respectively decrease

as n → −∞). Hence we obtain a functor MCMZ(A) → Db(grmod≥i A) given by M 7→ C[≥i]. We now
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consider the pair of functors

(−)[≥i] : MCMZ(A) � Db(grmod≥iA) : st.

Proposition A.3.10 (Buchweitz). The pair
(
(−)[≥i], st

)
is an adjoint pair.

Proof. Let K = K(projZA) be the homotopy category of complexes of finite graded projectives. Then ξ

gives a triangle in K
C[<i] → C → C[≥i] → C[<i][1]

natural in C. Let F ∈ Db(grmod≥i A) with projective resolution P∗
∼−→ F , taken so that all terms Pn

have generators in degree ≥ i. Then HomK(C[<i], P∗) = 0 and so

HomK(C[≥i], P∗) ∼= HomK(C,P∗).

Next, writing P t∗ = P≥n as the tail truncation and Ph∗ = P≤n−1 for the head for n � 0, we have a

distinguished triangle

P h
∗ → P∗ → P t

∗ → P h
∗ [1]

with the head P h
∗ a perfect complex and the tail P t

∗ a shifted resolution of an MCM module. Since we

have HomK(C,P h
∗ ) = 0, the long exact sequence of Hom spaces gives

HomK(C,P∗) ∼= HomK(C,P t
∗).

As P t
∗ is a shifted resolution of an MCM module, it extends to a complete resolution D of the MCM

approximation F st. Since each morphism C → P t
∗ has a unique lift to D up to homotopy, the map

D → P t
∗ induces an isomorphism

HomK(C,D) ∼= HomK(C,P t∗).

Combining the above, we obtain natural isomorphisms

HomDb(grmod≥iA)(C[≥i], F ) ∼= HomK(C[≥i], P∗)

∼= HomK(C,P∗)

∼= HomK(C,D)

∼= HomgrA(M,F st).

By uniqueness of adjoints, it follows that Orlov’s left adjoint is given on MCM modules by M[≥i] =

C[≥i]. This has some immediately interesting consequences:

Corollary A.3.11. Let A be Artin-Schelter Gorenstein with a > 0. Let C be a complete resolution of the

MCM module kst. Then C[≥0] is a projective resolution of k. In other words, kst can be “unstabilised”.

We note that this typically fails for a ≤ 0, as can be seen already from the Tate resolution of the

residue field over a hypersurface ring.
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and the Backelin-Roos property. Acta Math. Vietnam., 40(3):353–374, 2015. 163, 165, 167, 168,

174
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[99] Jean-Pierre Serre. Faisceaux algébriques cohérents. Ann. of Math. (2), 61:197–278, 1955. 112

[100] I. R. Shafarevich, editor. Algebraic geometry. V, volume 47 of Encyclopaedia of Mathematical

Sciences. Springer-Verlag, Berlin, 1999. Fano varieties, A translation of ıt Algebraic geometry. 5

(Russian), Ross. Akad. Nauk, Vseross. Inst. Nauchn. i Tekhn. Inform., Moscow, Translation edited

by A. N. Parshin and I. R. Shafarevich. 166
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