
Multi-scale Local Explanation Approach for
Image Analysis Using Model-agnostic

Explainable Artificial Intelligence (XAI)

by

Hooria Hajiyan

A thesis submitted to the
School of Graduate and Postdoctoral Studies in partial

fulfillment of the requirements for the degree of

Master of Science (MSc) in Computer Science

Faculty of Science
University of Ontario Institute of Technology (Ontario Tech University)

Oshawa, Ontario, Canada

August 2022

© Hooria Hajiyan, 2022

THESIS EXAMINATION INFORMATION

Submitted by: Hooria Hajiyan

Master of Science in Computer Science

Thesis Title: Multi-scale Local Explanation Approach for Image Analysis Using Model-

agnostic Explainable Artificial Intelligence (XAI)

An oral defense of this thesis took place on July 25, 2022 in front of the following

examining committee:

Examining Committee:

Chair of Examining Committee Dr. Patrick Hung

Research Supervisor Dr. Mehran Ebrahimi

Examining Committee Member Dr. Heidar Davoudi

Thesis Examiner Dr. Min Dong

The above committee determined that the thesis is acceptable in form and content and

that a satisfactory knowledge of the field covered by the thesis was demonstrated by the

candidate during an oral examination. A signed copy of the Certificate of Approval is

available from the School of Graduate and Postdoctoral Studies.

ii

Abstract

The recent success of deep neural networks has generated a remarkable growth in Artificial

Intelligence (AI) research, and it received much interest over the past few years. However,

one of the main challenges for the broad adoption of deep learning based models such as

Convolutional Neural Networks (CNN) is the lack of understanding of their decisions.

Local Interpretable Model-agnostic Explanations (LIME) is an explanation method

which produces a coarse heatmap as a visual explanation highlighting the most important

superpixels affecting the CNN’s decision.

This thesis aims to explore and develop a multi-scale scheme of LIME to explain de-

cisions made by CNN models through heatmaps of coarse to finer scales. More precisely,

when LIME highlights large superpixels from the coarse scale, there are some tiny re-

gions in the corresponding superpixel that influenced the model’s prediction at the finer

scale. Therefore, we propose a multi-scale scheme of LIME and two weighting approaches

based on Gaussian distribution and a parameter-free framework to produce visual expla-

nations observed from different scales. We investigated the proposed multi-scale scheme

on Flower Dataset from TensorFlow and a biological dataset, Camelyon 16. The results

prove that the explanations are faithful to the underlying model, and our visualizations

are reasonably interpretable.

Keywords: Explainable Artificial Intelligence (XAI); LIME; Multi-scale Explanations;

Parameter-free Weighting Framework.

iii

Author’s Declaration

I hereby declare that this submission is entirely my own work, in my own words, and

that all sources used in researching it are fully acknowledged. This is a true copy of the

thesis, including any required final revisions, as accepted by my examiners.

I authorize the University of Ontario Institute of Technology (Ontario Tech Univer-

sity) to lend this thesis to other institutions or individuals for the purpose of scholarly

research. I further authorize University of Ontario Institute of Technology (Ontario Tech

University) to reproduce this thesis by photocopying or by other means, in total or in

part, at the request of other institutions or individuals for the purpose of scholarly re-

search. I understand that my thesis will be made electronically available to the public.

Hooria Hajiyan

iv

Statement of Contributions

Part of this work described in Chapters 4, and 5 are being prepared for publication.

v

Acknowledgements

I would like to express my sincere appreciation to my supervisor Dr. Mehran Ebrahimi for

his patience, help, and support that allowed me to successfully accomplish my research.

He trusted me and gave me the opportunity to be a member of his team. Additionally,

I would like to thank Dr. Kourosh Davoudi for his valuable suggestions on my research.

I would like to express my gratitude and appreciation to the faculty and the Computer

Science program members.

Last but not least, I would love to give my special regards to my amazing family and

express my deepest gratitude to my beloved brother, Dr. Mohammadhossein Hajiyan, for

his endless support. This journey would not have been possible without their patience,

love and support.

vi

Table of Contents

Thesis Examination Information . ii

Abstract . iii

Author’s Declaration . iv

Statement of Contributions . v

Acknowledgements . vi

Table of Contents . x

List of Tables . xii

List of Figures . xvii

1 Introduction 1

1.1 Overview . 1

1.2 Problem Definition and Challenges . 2

1.3 Research Question . 3

1.4 Contribution . 4

1.5 Thesis Outline . 4

1.6 Software & Source Code . 5

2 Background 7

2.1 Deep Learning . 7

2.1.1 Convolutional Neural Networks 10

2.1.2 CNN Architecture . 15

vii

2.2 Explainable Artificial Intelligence (XAI) 16

2.2.1 Discriminative Aspects of XAI Methods 17

2.2.2 XAI Taxonomy . 19

2.3 Transparency of a black-box Model . 20

2.3.1 Interpretability vs Explainability 21

2.3.2 Faithfulness vs Interpretability . 22

2.3.3 Expectations of an XAI System 23

2.4 Modes of Explanations . 24

2.4.1 Local vs Global . 24

2.4.2 Ante-hoc vs Post-hoc . 24

2.5 Types of Explanations . 25

2.5.1 Decision Tree Proxy Models One 25

2.5.2 Additive Feature Importance . 26

2.5.3 Salience Mapping . 26

2.5.4 First Derivative Saliency . 26

2.5.5 Layer-wise Relevance Propagation 27

2.5.6 Perturbation-based Approach . 28

2.5.7 Model-Agnostic Explanation . 28

3 Literature Review 29

3.1 Visual Explanations from CNNs . 29

3.1.1 Occlusion Maps . 30

3.1.2 Guided Backpropagation . 30

3.1.3 Class Activation Mapping . 30

3.1.4 Gradient-weighted Class Activation Mapping 31

3.1.5 Guided Grad-CAM . 31

3.1.6 Grad-CAM++ . 32

3.1.7 LIME . 33

viii

3.2 Quantifying Explainability of Saliency Methods 35

4 Methodology 37

4.1 Introduction . 37

4.1.1 Motivation: Multi-scale Version of LIME 38

4.2 Mathematical Function of LIME . 39

4.3 Sampling for Local Exploration . 40

4.3.1 Superpixels . 41

4.3.2 Perturbations . 43

4.3.3 Weights . 43

4.4 Surrogate Model . 44

4.5 Segmentation Algorithm . 45

4.5.1 Simple Linear Iterative Clustering Segmentation 45

4.6 Multi-scale Segmentation Scheme . 49

4.7 Multi-scale Visual Explanation . 53

4.7.1 Weighting Heatmaps with Discrete Gaussian Function 53

4.7.2 A Parameter-free Automated Weighting Approach 55

5 Experiments and Results 59

5.1 Experiment Design . 59

5.2 Flower Classification from TensorFlow Dataset 60

5.2.1 Classification model: Fine-tuning ResNet50 63

5.3 Qualitative Results . 65

5.3.1 Visual Explanation Results with Gaussian Function 69

5.3.2 Visual Explanation Results with Automated Approaches 76

5.4 Quantitative Results . 82

5.4.1 Area Under Curve . 82

5.4.2 Explanation Accuracy . 87

ix

5.5 Histopathology Cancer Detection . 90

5.5.1 Dataset . 95

5.5.2 Explanation Results of Multi-scale Scheme on Biological Dataset . 96

5.6 Summary . 100

6 Conclusion and Future work 103

6.1 Thesis Contribution Highlights . 103

6.2 Limitations . 105

6.3 Future Work . 105

Bibliography 106

x

List of Tables

4.1 Parameters description . 51

5.1 Multi-scale segmentation scheme with desired number of segments. 61

5.2 Flower Dataset: number of samples per class in training and validation set. 63

5.3 Predicted probabilities per class. Sample image: tulips 66

5.4 Predicted probabilities per class. Sample image: daisy 68

5.5 Predicted probabilities per class. Sample image: dandelion 68

5.6 Quantitative results of multi-scale scheme w.r.t. the original LIME, and

square-grids segmentation. Sample image: tulips. The prediction ac-

curacy of the input image is 0.98. The explanation accuracies with square-

grid segmentations are decreased, which is against what we expect from

an XAI method. 90

5.7 Quantitative results of multi-scale scheme w.r.t. the original LIME, and

square-grids segmentation. Sample image: daisy. The pa of this sample

is 0.86 and LIME led to a wrong prediction in this sample, dandelion. The

explanation accuracies are not significantly increased by the explanations

of square-grids segmentation, but the multi-scale scheme led to 10 percent

increase in accuracies obtained from each scale. 91

xi

5.8 Quantitative results of multi-scale scheme w.r.t. the original LIME, and

square-grids segmentation. Sample image: dandelion. The pa of this

sample is 0.83, and the explanation accuracies of the square-grids seg-

mentation were decreased. Generally, the multi-scale scheme provides sig-

nificantly better results than LIME and its extension with square-grids

segmentation. 91

xii

List of Figures

2.1 Example of CNN architecture design: consists of 3 convolutional layers,

2 max pooling layers, and two fully connected layers. At each layer, the

input is convolved with the convolutional kernels to create activation maps

for the next layer. The output of the network is a categorical probability

distribution and a loss function is being used during training to find the

values of the convolutional kernels. 11

2.2 Convolutional layer with a local receptive field extracts local features in a

hierarchical order. 12

2.3 Example of max-pooling using a 2 × 2 stride. The pooling operation is

done to decrease the computational power required to process the data

through dimensionality reduction and propagate only the most dominant

and relevant information further down the network. 14

2.4 Diagrammatic view of how an XAI solution is typically constructed. . . . 17

3.1 : (a) Original image with a cat and a dog. (b) Guided Backpropagation:

highlights all contributing features. (c) Localizes class-discriminative re-

gions. (d) Guided Grad-CAM, which gives high-resolution class-discriminative

visualization. 32

xiii

4.1 The black-box model’s complex decision function f which is unknown to

LIME is represented by the blue/pink background. It cannot be approx-

imated well by a linear model. The bold red cross is the instance being

explained. LIME samples instances, gets predictions using f , and weighs

them by the proximity to the instance being explained, which are repre-

sented here by size. The dashed line is the learned explanation that is

locally faithful. 42

4.2 Segmentation of a sample image (a) with Quickshift, and the perturbation

samples by randomly masking some superpixels. LIME queries the model

to predict the label for each of these samples. The prediction score of

the label “tulips” for perturbed images (b), and (c) are 0.97 and 0.99,

respectively. But in the perturbed image (d), it is visually clear that most

of the regions representing tulips have been masked, so the predicted label

of this sample should be significantly low, which is 0.1. 44

4.3 Image segmented using SLIC algorithm into superpixels of size 64, 256, and

1024 pixels approximately. These are the desired number of superpixels

defined by the user, and the model outputs a possible number of super-

pixels which is closest to the desired one. The superpixels are compact,

uniform in size, and adhere well to region boundaries. 46

4.4 SLIC segmentation of sample image with varying compactness. The higher

value of this parameter results in the square-grid shape of segments. . . . 48

4.5 General framework of the proposed multi-scale scheme of LIME 53

4.6 Gaussian curves with different values for mean and variance 55

4.7 The function f(x) in blue is approximated by a linear function in red. . . 56

4.8 Illustration of “chained trapezoidal rule” used on an irregularly-spaced

partition. 57

5.1 Multi-scale segmentation scheme with 17 levels. 62

xiv

5.2 Flower classification of TFDS. Sample images of 5 classes with actual labels. 63

5.3 Architecture of ResNet50 Convolutional Neural Network 64

5.4 Accuracy and Loss during epochs: Training and validation set 64

5.5 Sample images with the actual labels from Flower dataset 65

5.6 Heatmaps of multi-scale segmentation scheme with 17 levels. Sample im-

age: tulips . 67

5.7 First predicted class“tulips”: comparison of original LIME vs multi-scale

scheme from coarse to finest scale. The heatmaps are superimposed on

top of the original image shown in the second row for better visualization. 70

5.8 First predicted class “daisy”: comparison of original LIME vs multi-scale

scheme from coarse to finest scale. 71

5.9 First predicted class “dandelion”: comparison of original LIME vs multi-

scale scheme from coarse to finest scale. 71

5.10 First predicted class “tulips”: Localization of multi-scale scheme from

coarse to finest scale vs square-grids segmentations 72

5.11 First predicted class “daisy”: Localization of multi-scale scheme from

coarse to finest scale vs square-grids segmentations 73

5.12 First predicted class “dandelion”: Localization of multi-scale scheme from

coarse to finest scale vs square-grids segmentations 74

5.13 Evaluation of class discriminative aspect: multi-scale scheme. Sample tulips 76

5.14 Evaluation of class discriminative aspect: multi-scale scheme. Sample daisy 77

5.15 Evaluation of class discriminative aspect: multi-scale scheme. Sample

dandelion . 77

5.16 Automated weighting approaches . 78

5.17 Explanation result of the automated weighting approaches for sample im-

age tulips . 79

xv

5.18 Explanation result of the automated weighting approaches for sample im-

age daisy . 80

5.19 Explanation result of the automated weighting approaches for sample im-

age dandelion . 81

5.20 Evaluation of class discriminative aspect: automated weighting approaches

for sample image tulips . 83

5.21 Evaluation of class discriminative aspect: automated weighting approaches

for sample image daisy . 84

5.22 Evaluation of class discriminative aspect: automated weighting approaches

for sample image dandelion . 85

5.23 Masked images after removing top superpixels with an increment of 1. . . 88

5.24 AUC for sample image “tulips”. The predicted probabilities after deletion

of top 5 superpixels in each sample image. 89

5.25 Sample image: tulips. Masked images of multiplying input image by the

explanation heatmap obtained from each scale. We passed each of these

images to the same black-box and the ea is obtained. As Table 5.6 shows,

the explanation accuracies are decreased by square-grids segmentation.

On the other hand, explanation accuracies are slightly increased through

the multi-scale scheme, which became around 1. 92

5.26 Sample image: daisy. Masked images of multiplying input image by the

explanation heatmap obtained from each scale. In this sample, the expla-

nation obtained from traditional LIME led to a wrong prediction, dande-

lion, see Table 5.7. 93

xvi

5.27 Sample image: dandelion. Masked images of multiplying input image

by the explanation heatmap obtained from each scale. The prediction

accuracy of the input image is 0.83, and Table 5.8 shows the explanation

accuracies of traditional LIME and the square-grids segmentations are

decreased. However, the multi-scale scheme caused the accuracies got

around 0.99, and 1. 94

5.28 Sample images from Camelyon 16. 96

5.29 True positive sample image from Camelyon16. Results of the multi-scale

scheme with automated weighting approaches. Prediction accuracy of this

sample image with VGG19 was 0.741, and reached to 0.82 by multi-scale

scheme . 97

5.30 Localization of multi-scale scheme vs square grids explanation. True pos-

itive sample image from Camelyon16 dataset. 98

5.31 Quantitative results: Explanation accuracies of multi-scale scheme vs square-

grids and traditional LIME. The pa for this sample is 0.741. 99

5.32 True positive second sample image from Camelyon16. Results of the multi-

scale scheme with automated weighting approaches. Prediction accuracy

of this sample image with VGG19 was 0.83, and reached to 0.89 by multi-

scale scheme . 100

5.33 Localization of multi-scale scheme vs square-grids explanation. True pos-

itive second sample image from Camelyon16 dataset. 101

5.34 Quantitative results: Explanation accuracies of multi-scale scheme vs square-

grids and traditional LIME. The pa for this sample is 0.83. 102

xvii

Chapter 1

Introduction

1.1 Overview

Automatic image analysis is termed computer vision, which is an interdisciplinary field

that deals with how computers can gain an understanding of digital images or videos [64].

Computer vision seeks to automate common image analysis tasks such as classification,

segmentation, object detection, and registration through Artificial Intelligence (AI) and

Deep Learning (DL). DL is a subset of machine learning and AI in which the processes

of feature selection and extraction from images and classification happen sequentially

which eliminate the need for human intervention during the process [137]. In other

words, DL is a type of representation learning in which no feature selection is used.

Instead, the algorithm learns on its own which features are best for classifying the data

[64]. The success of Deep Neural Networks (DNNs), specifically Convolutional Neural

Networks (CNNs) and CNNs with fully connected layer, has led several research in image

denoising [43, 76, 117], auto segmentation [63, 73], image reconstruction [33, 89, 129], and

image classification [13,26,66,133].

Despite the high accuracy and satisfactory performance of DNNs in AI, it remains

unclear how a particular neural network arrives at a specific decision. Moreover, the

1

Chapter 1. Introduction 2

architecture of DNNs makes these models look like a black-box which means that we

cannot easily interpret based on what information in the input the model comes to a

decision, when it can be trusted or even corrected. In other words, although DNNs

exhibit high performance, they are opaque in terms of explainability. There may be an

inherent conflict between the predictive accuracy and explainability. Often, the highest

performing methods are the least explainable, and the most explainable models are the

least accurate [48].

Generally, humans tend to adopt interpretable, tractable, and trustworthy techniques,

given the increasing demand for explanation [9]. Explanations supporting the output

of a model are crucial for high-risk use cases, for example in medical domains, where

experts require more information from the model than a simple prediction [54, 120].

Therefore, just because DNNs are not interpretable, it does not mean that they are

not explainable [111]. To address this issue, Explainable Artificial Intelligence has been

proposed to shift toward more transparent AI, resulting in the development of techniques

to explain decisions by AI models. This area of research is often called Explainable-

AI (XAI), which emphasizes understanding cause and effect within the AI system by

examining the sensitivities of the output to changes in the parameter inputs without

needing to understand the complex computation of the model [2, 9, 74]

1.2 Problem Definition and Challenges

Explaining a prediction means presenting textual or visual artifacts that provide a qual-

itative understanding of the relationship between the instance’s components (e.g. words

in text, patches in images) and the model’s prediction. We argue that explaining pre-

dictions is an important aspect of getting humans to trust and use machine learning

effectively if the explanations are faithful and intelligible [102]. For example, in image

classification, the cause of a decision comes from the important regions/features of an

Chapter 1. Introduction 3

input image. Several XAI methods aim to interpret the decision of a black-box model in

classification problems by representing the important features of an image at region/su-

perpixel revel or pixel level. In order to choose the best XAI method in image analysis,

there are two main remarks in the literature: Does it need access to the inner structure of

the black-box model? How much the XAI tool is accurate to represent tiny regions/pixels

of an image affecting the prediction, which is called localization?

Generally, if XAI methods need access to the network’s structure, they cannot be

easily applied, and altering the structure of the black-box model is a real barrier. These

approaches explain the decision of a black-box model by taking the gradient of each

feature with respect to (w.r.t.) the target class. On the other hand, XAI methods

that do not need to change the inner structure of black-box models are easy to apply

and implement, such as model agnostics methods. This thesis presents a new version

of the Local Interpretable Model-agnostic Explanations (LIME) for multi-scale visual

explanations of a black-box decision process in image classification problems. It proposes

accurate visual explanations while representing the most influential regions of an image

from coarse to finest scales.

1.3 Research Question

This thesis studies how multi-scale visual explanations can be inferred from CNNs with

LIME as a model-agnostic explanation instead of gradient-based approaches and how to

visualize the results to have more variations obtained from different scales. In detail,

although gradient-based approaches can localize multiple objects in an individual image,

but it still needs access to the inner structure of the black-box model. In this thesis,

we try to answer the following research question: How can we use a model-agnostic

perturbation-based approach to explain the contribution of each superpixel from multi-

scales in an arbitrary CNN?

Chapter 1. Introduction 4

1.4 Contribution

The main contributions of this thesis is to explain the decision of a CNN model in image

classification problems. We summarize the main contributions in the following.

• This research aims to propose a multi-scale version of LIME, which can represent

the most important regions of an input image through heatmaps where the impor-

tant superpixels/regions are highlighted at coarse to fine scales.

• To summarize the explanation heatmaps produced by the proposed multi-scale

scheme, we proposed two weighting strategies, based on the Gaussian function and

a parameter-free framework based on the number of superpixels at each scale.

• The Gaussian function will assign higher weights to mid-range scale experiments

with the idea of not focusing on too coarse or too fine scales.

• The parameter-free automated weighting approaches will take the number of su-

perpixels at each level, then assign weights to the heatmaps according to how

much-varied information each scale provides.

More precisely, the main idea is to use LIME in a multi-scale scheme to explain the

decision of a CNN model w.r.t. to the features of an input image and provide explanations

for a range of scales. Finally, we expect to have visual explanations of coarse to finest

scales that represent the most important regions affecting the model’s prediction instead

of a coarse heatmap that LIME provides. This proposed multi-scale explanation of

LIME could also be more precise and class discriminative. To our knowledge, it is the

first attempt to infer multi-scale visual explanations from LIME.

1.5 Thesis Outline

This thesis is organized in six Chapters and structured as follows:

Chapter 1. Introduction 5

• Chapter 2 introduces the necessary definitions and concepts related to XAI and

DNNs. This Chapter includes the expectation of an XAI system, along with differ-

ent modes of explanation, and various current approaches in the literature.

• Chapter 3 presents current approaches for visualization and understanding the deci-

sion making process of DNNs for images, followed by the quantifying explainability

of visual explanations.

• Chapter 4 presents our proposed multi-scale framework for LIME to produce visual

explanations by representing the important patches of an image from coarse to finest

scales. In this Chapter, we also propose different ways to calculate the weighted

heatmaps that LIME produces through the proposed multi-scale scheme.

• Chapter 5 reports the results of the proposed framework on Flower classification

dataset from TensorFlow Datasets (TFDS), and a Biological dataset, Camelyon 16.

In this Chapter, we compare the effectiveness of the proposed multi-scale scheme

compared to the existing versions of LIME, quantitatively and qualitatively.

• In Chapter 6, we highlight the key contributions and some of the limitations of the

thesis research. The Chapter also presents some interesting future directions along

which the thesis research can be extended.

1.6 Software & Source Code

Software

The implementation of the proposed models are in Python programming language. Python

is a high-level, interpreted, general-purpose programming language. Its design philoso-

phy emphasizes code readability with the use of significant indentation. Python is meant

to be an easily readable language. Majority of the training and experiments in this re-

Chapter 1. Introduction 6

search, were performed on graphical processing units (GPUs), while central processing

units (CPUs) were used for data loading and pre-processing purposes. Following packages

are examples of Python packages used in this thesis.

• NumPy is a Python package created for the purpose of scientific computing in

Python. It supports large, multi-dimensional arrays and matrices, along with a

large collection of mathematical functions and operations that can be applied to

these arrays. https://numpy.org/

• TensorFlow is a free and open-source software library for machine learning and ar-

tificial intelligence. It can be used across a range of tasks but has a particular focus

on training and inference of deep neural networks. https://www.tensorflow.org/

• Scikit-image, or skimage, is an open source Python package designed for image

preprocessing , and computer vision. https://scikit-image.org/

Source Code

You can access the Python implementations of our models, evaluation metrics, and vi-

sualization of the explanations at the following link.

https://github.com/hajiyanh/Multi-scale-Visual-Explanation-of-LIME

Chapter 2

Background

Accuracy concerns the ability of a model to make correct predictions, while interpretabil-

ity concerns to what degree the model allows for human understanding [58]. Explanations

for machine decisions and predictions are needed to justify their reliability. This requires

greater interpretability, which often means we need to understand the mechanism un-

derlying the algorithms [86]. One of the main challenges of using DL models, such as

CNNs, is the lack of understanding of their decisions. A simpler and less capable model is

favourable in many applications as they can be easily understood. However, Deep Learn-

ing models, called black-box models, have superior performance, but they do not end up

being highly interpretable. Understanding the trade-off between the model’s accuracy

and interpretability in real-world problems is important. Having a model that gives the

best accuracy leads to a low level of interpretability.

2.1 Deep Learning

When programmable computers were first conceived, people wondered whether such ma-

chines might become intelligent. AI has been a thriving field with many practical ap-

plications and active research topics that have led to intelligent software to automate

routine labor, understand speech or images, make diagnoses in medicine and support

7

Chapter 2. Background 8

basic scientific research. In the early days of AI, this field rapidly tackled and solved

problems that are intellectually difficult for human beings but relatively straightforward

for computers, such as problems that can be described by a list of formal, mathematical

rules, like recognizing spoken words or faces in images [44].

The difficulties faced by systems relying on hard-coded knowledge suggest that AI

systems need the ability to acquire their knowledge by extracting patterns from raw

data. This capability is known as Machine Learning (ML). The introduction of machine

learning-enabled computers to tackle problems involving knowledge of the real world

and make decisions that appear subjective. A simple ML algorithm called logistic re-

gression [44]. The performance of these simple ML algorithms depends heavily on the

representation of the data they are given. For example, when logistic regression recom-

mends cesarean delivery, the AI system does not examine the patient directly. Instead,

the doctor tells the system several pieces of relevant information, such as the presence

or absence of a uterine scar. Each piece of information included in the representation of

the patient is known as a feature. Logistic regression learns how each of these patient

features correlates with various outcomes. However, it cannot influence how features are

defined in any way. For example, if logistic regression were given an MRI scan of the

patient rather than the doctor’s formalized report, it would not be able to make useful

predictions. This is because individual pixels in an MRI scan have a negligible correlation

with any complications that might occur during delivery.

Many AI tasks can be solved by designing the right set of features to extract. However,

it is difficult to know what features should be extracted. For example, suppose we would

like to write a program to detect cars in photographs. We know that cars have wheels,

so we might want to use the presence of a wheel as a feature. Unfortunately, it is difficult

to describe precisely what a wheel looks like in terms of pixel values. A wheel has a

simple geometric shape, but its image may be complicated by shadows falling on the

wheel, the sun glaring off the wheel’s metal parts, the car’s fender or an object in the

Chapter 2. Background 9

foreground obscuring part of the wheel, and so on. One solution to this problem is to use

ML to discover the mapping from representation to output and the representation itself.

This approach is known as representation learning. Learned representations often result

in much better performance than can be obtained with hand-designed representations.

They also enable AI systems to adapt to new tasks with minimal human intervention

rapidly. For example, a representation learning algorithm can discover a good set of

features for a simple task in minutes or for a complex task in hours to months. This is

done by allowing computers to learn from experience and understand the world in terms

of a hierarchy of concepts, with each concept defined through its relation to simpler

concepts. By gathering knowledge from experience, this approach avoids the need for

human operators to specify all the knowledge that the computer needs formally. The

hierarchy of concepts enables the computer to learn complicated concepts by building

them out of simpler ones. If we draw a graph showing how these concepts are built on

top of each other, the graph is deep, with many layers [44]. The quintessential example

of a DL model is the deep feedforward network, or multilayer perceptron. A multilayer

perceptron is just a mathematical function mapping some set of input values to output

values. The function is formed by composing many simpler functions. We can think of

each application of a different mathematical function as providing a new representation

of the input. The idea of learning the right representation for the data provides one

perspective on deep learning. Each layer of the representation can be thought of as the

state of the computer’s memory after executing another set of instructions in parallel.

Networks with greater depth can execute more instructions in sequence. Sequential

instructions offer great power because later instructions can refer back to the results of

earlier instructions.

Chapter 2. Background 10

2.1.1 Convolutional Neural Networks

Deep Neural Networks (DNNs) refer to Artificial Neural Networks (ANN) with multilay-

ers, which have been considered one of the most powerful tools and have become very

popular over the last few decades as they can handle a vast amount of data. The in-

terest in having deeper hidden layers has recently begun to surpass classical methods in

different fields [3].

Convolutional Neural Networks (CNNs) are currently one of the most popular deep

learning architectures used in a wide range of applications, especially for image-based

visual recognition tasks. More specifically, a CNN is a particular type of deep learning-

based feed-forward neural network, which can take an input and assign prediction for a

specific task for objects present in the input. CNNs are primarily used to solve complex

image-driven tasks, including classification, object detection, registration and segmenta-

tion [25, 69, 88, 92, 115]. The information process has inspired the idea of architectural

design for CNNs in the human brain’s visual cortex. In the visual cortex, each neuron

responds to stimuli only for a certain region of the visual field known as a receptive field.

CNNs are designed for data with spatial structure, e.g. sequence of characters in

the text, sound signals, images, videos, and 3D voxel data. In each case, input is a

high-dimensional tensor with highly correlated features. For example, in the case of a

color image, the input is a h× w × 3 array where h and w are image height and width,

respectively, and each index represents a pixel color in a spatial structure. These pixels

are highly correlated, which means their values and locations in a spatial neighbourhood

form structural information.

As the name suggests, a CNN employs a mathematical operation known as convolu-

tion. Convolutional networks are neural networks that use convolution in place of general

matrix multiplication in at least one of their layers [44] The network consists of different

layers, and each layer consists of small convolutional kernels. At each layer, convolution

operators are being performed on the output from the previous layer to form a new input,

Chapter 2. Background 11

Figure 2.1: Example of CNN architecture design: consists of 3 convolutional layers, 2

max pooling layers, and two fully connected layers. At each layer, the input is convolved

with the convolutional kernels to create activation maps for the next layer. The output

of the network is a categorical probability distribution and a loss function is being used

during training to find the values of the convolutional kernels.

called a feature map, for the next layer. These kernels can be seen as local feature ex-

tractors encode the input in hierarchical order passing through the network. The values

of the convolutional kernels are the network parameters, called weights, that need to be

determined during the training process. Fig 2.1 is a schematic view of a CNN network

for an image classification task. An image is passed to a network, and at each layer,

convolutional filters convolve the input to create activation maps for the next layer. The

output of the network is categorical class labels representing the probability of the input

being one of the categories. A loss function is being used during training to update the

values of the convolutional kernels using backpropagation.

While CNN architectures have many parameters that make them unique from each

other, CNNs are typically composed of few essential constituent layers and operations.

The main constituents of the typical CNN architecture design are the convolutional layer,

pooling layer, activation function, batch-normalization layer, dropout and fully connected

layer. These individual components are explained below in detail [68, 93].

Convolutional Layer

In mathematics, the convolution of a 1D signal f with another signal g is defined as

Chapter 2. Background 12

Figure 2.2: Convolutional layer with a local receptive field extracts local features in a

hierarchical order.

o[n] = f [n] ∗ g[n] =
+∞∑

u=−∞

f [u]g[n− u]. (2.1)

Here, n and u are discrete variables. This definition can be extended for 2D convolution,

as required for pixel based convolutions as

o[m,n] = f [m,n] ∗ g[m,n] =
+∞∑

u=−∞

+∞∑
v=−∞

f [u, v]g[m− u, n− v], (2.2)

where m and n are the two dimensions of the original signal, and u, v are indexes of the

second signal. However, when considering convolutions applied on images, the input is

bound to finite numbers, i.e., size of the input images and associated filters.

The most critical building block of a CNN is a convolutional layer. Neurons in the

convolutional network are only connected to every pixel in their receptive field [82]. For

example, neurons in the first layer of a CNN only see a small region of the input image

with the size of the first convolutional filter, Fig 2.2. Consecutively, each neuron in the

second layer is connected only to a small region from the output of the first layer. This

architecture allows the network to extract local low-level features in the early layers and

then assemble them into higher-level features in the consecutive layers.

Chapter 2. Background 13

Activation Function

Activation functions are used for inducing non-linear properties in neural networks. These

functions are responsible for deciding whether a neuron should be fired or not. In other

words, the activation function will check to see if the information from the previous

neuron is relevant or not. Usually, an activation function is applied to the linear output

of every convolution to prevent the network from collapsing into a single layer. As shown

in equation 2.3, we multiply the input I with the weight W of the neuron and add the

bias b. Then apply a non-linear activation function σ. The transformed output O is then

sent to the next layer.

O = σ(W × I + b) (2.3)

Some of the popular activation functions are sigmoid, hyperbolic tangent function (tanh),

and Rectified Linear Unit (ReLu).

Pooling Layer

The pooling layer is generally applied after convolution and non-linear activation layers

or functions. The pooling layer in a CNN architecture is responsible for reducing the

spatial size of the feature maps at a given layer. The previous layers’ local region and

window size are replaced with statistics that summarize the neighbouring outputs in the

spatial reduction process. As a result, the size of every input region and, eventually, the

input feature map is spatially reduced. The spatial reduction is usually done using max

or average operation. For example, in the max-pooling process, pooling is done over a

window, as shown in Fig 2.3, and the maximum activation value of the window size is

selected. Mathematically, a pooling layer with a square input matrix of size Min, outputs

a square matrix of size Mout. Assuming choosing a stride that leads to no overlapping of

filters, the input is divided into pooling regions pi,j of a stride of size k × l.

Mout = max(k,l)∈pi,jMin (2.4)

Chapter 2. Background 14

Figure 2.3: Example of max-pooling using a 2× 2 stride. The pooling operation is done

to decrease the computational power required to process the data through dimensionality

reduction and propagate only the most dominant and relevant information further down

the network.

Max pooling becomes a max operation applied element-wise to a given region and

tiled across the feature map with the given stride. In equation 2.4, k and l is the stride,

integer values, where usually k has the same value as l. In average pooling, the average

of the activation values in the window is used. Most commonly, max pooling is used over

average pooling in various modern CNN architectures.

Batch Normalization Layer

The batch normalization (BN) layer normalizes the output of the previous layer x by

subtracting the mean µ from the output and dividing it with the standard deviation of

the output matrix σ2 for a given batch b [56].

Dropout Layer

The idea of dropout layer is based on probability. The method temporarily drops out

certain neurons during training of the neural network. Mathematically, we use a proba-

bility p, to select whether to drop a neuron temporarily. Usually the value range for p

varies from 0.25 - 0.5.

Chapter 2. Background 15

Fully Connected (FC) Layer

Fully Connected (FC) layers are generally used closer to the output layer to capture

global context and model high-level concepts. As its name suggests, each neuron in the

previous layer is connected to every neuron in the next layer in a fully connected layer.

This layer can be realized as matrix multiplication and adding of a bias term. Consider

a neural network with L hidden layers expressed in matrix form in equation 2.5,

Ol = σl(WlIl−1 + bl), (2.5)

where l is a particular layer in the given network, Ol is the output of the layer l, σ is

the activation function, Wl is the weight matrix of the layer, Il−1 is the output of the

previous layer, and bl is the bias.

2.1.2 CNN Architecture

Combining the different components mentioned in the sections above, we can obtain

the architecture as described in Fig 2.1. The architecture of the CNN consists of three

convolutional layers, two max-pooling layers and two fully connected layers in the end.

Furthermore, activation functions are assumed to be implicitly applied after each convo-

lutional operation, which are not shown explicitly in the figure [68].

First, the input image is fed into the first convolutional layer for information process-

ing. Then, the convolutional filters are applied to the different channels and summed up

individually to form feature maps equal to the number of convolutional filters in the given

layer. Next, each map is passed through the activation function and the max-pooling

layers. This process is repeated two more times. After the last convolutional, the feature

map outputs are flattened and passed along to the fully connected layers. Finally, we

pass the obtained activations through the classifier, such as softmax activation, for multi-

classification problems to obtain the prediction probability of an input image belonging

to each class.

Chapter 2. Background 16

2.2 Explainable Artificial Intelligence (XAI)

XAI has experienced significant growth over the last few years. This is due to the

widespread application of ML, particularly DNNs, that has led to the development of

highly accurate models but lack of explainability and interpretability [125]. This opacity

of such black-box models has created the need for XAI architectures motivated mainly by

three reasons. 1) The demand to produce more transparent models. 2) The need for tech-

niques that enable humans to interact with them. 3) The requirement of trustworthiness

of their inferences [28].

An XAI system aims to make the model’s behavior more intelligible to humans by

providing explanations. Every explanation is set within a context that depends on the

task, abilities, and expectations of the user of the AI system [48]. The upturn in the XAI

research outputs of the last decade is prominently due to the fast increase in using ML and

DNNs in several business areas like e-commerce [130], games [4], criminal justice [104],

computer vision [105], and healthcare [34].

Looking at the first definition of XAI models, explanations can be full or partial [48].

Fully interpretable models give full and completely transparent explanations. These

models are recognized as transparent models, like regression or decision trees. Transpar-

ent models obey “interpretability constraints” that are defined according to the domain

when the model obeys particular rules and constraints to certain variables. In contrast,

black-box models do not necessarily follow these constraints. The non-transparent struc-

ture of black-box models leads to partial explanations, which reveal important pieces of

the reasoning process. Partial explanations may include variable importance w.r.t. the

output.

The conceptual framework at the basis of the proposed XAI system is represented in

Fig 2.4. Most of the XAI methods focus on interpreting and making the entire process

of building an AI system transparent, from the inputs to the outputs via the application

Chapter 2. Background 17

Figure 2.4: Diagrammatic view of how an XAI solution is typically constructed.

of a learning approach to generate a model [126]. The outcome of these methods are

explanations of different formats, such as rules, numerical, textual or visual information

or a combination of the former.

2.2.1 Discriminative Aspects of XAI Methods

There are five main criteria for discriminating XAI methods in the literature [47, 126],

summarized below.

• Scope: First, the scope of an explanation can be either global or local. In the former

case, the goal is to make the entire inferential process of a model transparent and

understandable as a whole [47]. In the latter case, the objective is to explain each

inference of a model [22, 75].

• Stage: The second dimension refers to the stage at which a method generates

explanations. Ante-hoc methods aim to consider the explainability of a model

from the beginning and during training to make it naturally understandable while

still trying to achieve optimal accuracy [28,79,80]. Post-hoc methods keep a trained

model unchanged and mimic or explain its behaviour by using an external explainer

at testing time [28,75,90,94].

Chapter 2. Background 18

• Problem type: The third dimension refers to the problem type. XAI methods can

vary according to the underlying problem, either classification or regression.

• Input data: It says that the mechanisms followed by a model to classify images

can substantially differ from those used to classify textual documents, thus, the

input data of a model can play an important role in constructing a method for

explainability.

• Output : Finally, the output format, similarly to input data, can demand different

formats of explanations to be considered by a method for explainability: numerical,

rules, textual, visual or mixed [125].

The different formats of explanations are the natural consequence of the widespread ap-

plication of AI-powered technologies that are utilized by different users in various fields

to solve distinct problems [24, 50, 127]. System designers, developers and AI practi-

tioners find useful explanations that accurately reflect the logic implemented within a

model [131]. In this case, rule-based explanations represent a structured, compact yet

understandable way to represent a set of logical instructions. On the other hand, end-

users belonging to the lay public prefer reconstructive explanations that build a story,

exposing which input features contribute the most to the model’s prediction. For exam-

ple, visual and textual explanations can tell why the image of an animal was assigned to

a certain class in an intuitive way, such as “this image represents a penguin because it is

white and black and it has a beak” [127].

Visual explanations are probably the most natural way of communicating things and a

very appealing manner to explain them [125]. Scholars have analysed various visualization

tools to determine which ones are the most suitable for certain applications or meet the

favour of scholars and practitioners. An example of these tools are heatmaps which

highlight the specific areas of an image or specific words of a text that mainly influence

the inferential process of a model by using different colors [102, 114]. Another intuitive

Chapter 2. Background 19

form of explanation for humans is textual explanations, natural language statements

which can either be written or orally uttered. An example is a phrase “This is a Brewer

Blackbird because this is a blackbird with a white eye and long pointy black beak” shown

by an explainer of an image classification model [52] Rules are a schematic, logical format,

more structured than visual and textual explanations but still intuitive for humans. Rules

can be in the form of “IF...THEN” statements with AND/OR operators, and they are

very useful for expressing combinations of input features and their activation values [38].

2.2.2 XAI Taxonomy

In the literature, various terms exist to indicate the opposite of the black-box nature

of some of the AI and ML, especially DL, models. In this section, we distinguish the

following terms [7]:

• Interpretability : Interpretability is defined as explaining a model or providing the

meaning in understandable terms to a human [75]. For example, a ML model is

interpretable if its internal structure and decision-making process are clear and un-

derstandable for a human. As it also referred to transparency, a model is considered

to be transparent if by itself it is understandable for a human, like regression, and

decision tree. [75].

• Explainability : It is related with the notion of explanation as an interface between

humans and an AI system [47]. In other words, explainability refers to the extent

to which a system’s internal mechanism can be explained in human terms. It

comprises AI systems that are accurate and comprehensible to humans [47].

Although these terms are similar in their semantic meanings, they provide different

levels of AI to be accepted by humans. Typical transparent models [2] include K-nearest

neighbors (KNN), decision trees, rule-based learning, bayesian network, and etc,. The

decisions from these models are often transparent. However, typical opaque models refer

Chapter 2. Background 20

to any model that is not transparent by itself [96] including ML models, DNNs, Support

Vector Machines (SVMs), and etc,. Although these models often achieve high accuracy,

they are not transparent.

For more details, the ontology and taxonomy of XAI at a high level can be detailed

as below:

• Model agnostic: Model-agnostic explanation methods [27] is designed to be gener-

ally applicable. As a result, they have to be flexible enough so that they do not

depend on the intrinsic architecture of the model. Therefore, these models are

based on relating the input of a model to its outputs.

• Model specific: Model-specific XAI approaches often take advantage of knowing a

specific model and aim to bring transparency to a particular type of one or several

models [11].

• Explanation by simplification: By simplifying a model via approximation [121],

we can find alternatives to the original models to explain the prediction we are

interested in. For example, we can build a linear model or a decision tree around

the predictions of a model, using the resulting model as a surrogate to explain the

more complex one.

• Explanation by feature relevance: This idea is similar to simplification. Roughly,

this type of XAI approaches attempts to evaluate a feature based on its average ex-

pected marginal contribution to the model’s decision after all possible combinations

have been considered [18,97].

2.3 Transparency of a black-box Model

Most of the DNNs used in image classification, image processing and computer vision

tasks work like black-box models. The non-transparent structure of these models led to

Chapter 2. Background 21

several types of research in XAI. [23,77,132].

In the medical field, clearly human lives are on the line. A comprehensive literature

review on the applications of XAI on medical images is provided in [31]. Detection of

a disease at its early phase is often critical to the recovery of patients or to prevent

the disease from advancing to more severe stages [120]. Therefore, research community

always keep track of how algorithms are used and how their usage can be trusted or

improved. As a result, interpretability and explainability of ML algorithms, specifically

DNNs, have thus become pressing issues and raising critical questions: If things go wrong,

can we explain why? If things are working well, do we know why and how to leverage

them further? There is an interchangeable misuse of interpretability and explainability

in the literature. The notable difference among these concepts is interpretability refers

to a passive characteristic of a model referring to the level at which a given model makes

sense for a human, which is also expressed as transparency. By contract, explainability

refers to an active characteristic of a model with its internal functions [9]. In other words,

A model can be explained, but the interpretability of the model is something that comes

from the design of the model itself [9].

2.3.1 Interpretability vs Explainability

The ML literature predominantly uses the term “interpretability” instead of “explain-

ability”. Still, according to [14], interpretability itself is insufficient as it does not cover

all possible problems associated with understanding black-box models. Therefore, to gain

users’ trust and acquire meaningful insights about the causes, reasons, and decisions of

black-box approaches, explainability is required rather than simple interpretability. Al-

though explainable models are interpretable by default, the opposite is not always true.

As ML penetrates critical areas such as medicine, health care support systems, and

financial markets, the inability of humans to understand these models seems problem-

atic [75]. The main difference between interpretability and explainability of a complex

Chapter 2. Background 22

model relies on how much access to the model’s internal structure and mathematical

concepts is needed. In other words, interpreting a neural network means understanding

the mathematical principles and the structure of that model even by going through each

layer of a DNN model. However, explainability refers to such techniques that explain

the output of a complex model without needing to understand the black-box model’s

inside. Even if we understand the underlying mathematical principles, explainability is

important. Providing explanations of predictions can be beneficial in teaching, learning,

and research [62].

2.3.2 Faithfulness vs Interpretability

The faithfulness of an XAI method to a model is its ability to explain the function learned

by the model accurately. So naturally, there is a trade-off between an XAI system’s

interpretability and faithfulness. It is often impossible for an explanation to be completely

faithful unless it is a complete description of the model itself. For an explanation to

be meaningful, it must at least be locally faithful, i.e., it must correspond to how the

model behaves in the vicinity of the instance being predicted [102]. A more faithful

explanation is typically less interpretable and vice versa. One could argue that a fully

faithful explanation is the entire description of the model, which is not interpretable/easy

to explain in the case of deep models [110].

To check the faithfulness of an explanation, we can measure the difference in the

model’s prediction while removing the essential feature detected by the explanation. For

example, suppose the input is an image, and the explanation is a localized heatmap. In

that case, one obvious choice for such a visualization is image occlusion [134], where we

measure the difference in the model’s predictions when patches of the input image are

masked. In other words, patches that change the model’s prediction score should be the

patches that the visual explanation assigned high intensity.

Chapter 2. Background 23

2.3.3 Expectations of an XAI System

XAI assumes that an explanation is provided to an end-user who depends on the deci-

sions, recommendations, or actions produced by an AI system. There might be many

different users, such as intelligence analysts, judges, or operators. However, other users

who demand an explanation of the system might be a developer or test operator who

needs to understand where there might be areas for improvement. Another user might

be policy-makers trying to assess the system’s fairness. Each user group may have a

preferred explanation type to communicate information most effectively. A practical

explanation will take the target user group into account, who might vary in their back-

ground knowledge and needs for what should be explained [48]. One of the principal

reasons to produce an explanation is to gain the trust of users [30]. Trust is the main

way to increase users’ confidence with a system [119] and to make them feel comfortable

while controlling and using it [75]. There are also other positive effects brought by ex-

plainability. According to [49], it is part of human nature to assign causal attribution of

events. A system that provides a causal explanation of its inferential process is perceived

as more human-like by end-users. Thus, causality is considered a fundamental attribute

of explainability [15, 75, 87, 91]. Explanations must make the causal relationships be-

tween the inputs and the model’s predictions explicit, especially when these relationships

are not evident to end-users in black-box models. Data-driven models are designed to

discover and exploit associations in the data, but they cannot guarantee a causal rela-

tionship in these associations. There are four main reasons supporting the necessity to

explain the logic of an inferential system, or a learning algorithm suggested in [2]:

• Explain to justify : the decisions made by utilizing an underlying model should be

explained to increase their justifiability.

• Explain to control : explanations should enhance the transparency of a model and

its functioning, allowing its debugging and the identification of potential flaws.

Chapter 2. Background 24

• Explain to improve: explanations should help scholars improve the accuracy and

efficiency of their models.

• Explain to discover : explanations should support the extraction of novel knowledge

and the learning of relationships and patterns.

2.4 Modes of Explanations

According to the literature, explanations are often categorized into two main aspects

[2, 47]. The first distinguishes whether the explanation is for an individual prediction,

called “local explanation”, or the model’s prediction process as a whole, called “global

explanation”. The second differentiates between the explanation emerging directly from

the prediction process, which means Ante-hoc, versus requiring post-processing or Post-

hoc. We describe both of these aspects in detail in the following,.

2.4.1 Local vs Global

A “local explanation” provides information or justification for the model’s prediction on

a specific input. A “global explanation” provides a similar justification by revealing how

the model’s predictive process works. In other words, global explanation describes the

whole decision process as a human term independent of any particular input [23].

2.4.2 Ante-hoc vs Post-hoc

Whether the explanation is local or global, explanations differ on whether they arise

as part of the prediction process or whether their generation requires post-processing

following the model making a prediction [23].

Chapter 2. Background 25

Ante-hoc

An Ante-hoc approach, which may also be referred to as directly interpretable [10], gen-

erates the explanation at the same time as the prediction is made, decision trees and

rule-based models are examples of Ante-hoc explanation models.

Post-hoc

In contrast, a Post-hoc approach requires an additional operation after the predictions

are made. Local Interpretable Model-agnostic Explanations (LIME) [102] is an example

of producing a local explanation using a surrogate model applied following the predictor’s

operation.

2.5 Types of Explanations

Just because models such as deep neural networks are not interpretable does not mean

they are not explainable. While complex models can be difficult for humans to under-

stand, we can use techniques to generate explanations that show which parameters are

used for decision-making and their relative importance to one another. Furthermore, we

can infer which parameters are being used by considering what we know about the train-

ing data and the models’ structures. Through these explanations, we can regain some of

the transparency of non-interpretable models without sacrificing performance [111].

2.5.1 Decision Tree Proxy Models One

This is one of the earlier methods developed for explaining neural networks to present

them as decision trees. Initially, the Continuous/discrete Rule Extractor via Decision

tree induction (CRED) method was used to translate shallow neural networks [107].

Deep Rule Extractor extended this method via Decision tree induction (DeepRED) to

Chapter 2. Background 26

handle arbitrarily deep networks [136]. DeepRED uses a number of techniques to prune

unnecessary branches from the resulting tree [111].

2.5.2 Additive Feature Importance

The SHapley Additive exPlanation (SHAP) framework presented in [81] is the first pre-

sented additive feature importance framework. SHAP generates explanations by calcu-

lating Shapley values, which are the additive importance that each feature of the input

has on the output of the model. Shapley values are a concept that originated in game

theory. In that context, they serve as a measure of how important each player’s actions

are to the outcome of the game. In the context of machine learning, the players are the

input features, and the outcome is the result generated by the model.

2.5.3 Salience Mapping

Salience mapping was first conceptualized in [65], which is based on combining visual

features that contribute to attentive selection such as color, intensity, orientation, and

motion queues as attentive selectors into a single map [57]. The salience at a given

position in the image is determined primarily by how different that position is from

its surroundings regarding the attentive selectors being considered. Techniques such as

Randomize Input Sampling for Explanation of black-boxes (RISE) [98]. RISE has been

developed to use salience maps to explain model’s behavior. As salience maps can be

generated independent of a classifier, one can view them as an explanation of how a

model should treat a given image.

2.5.4 First Derivative Saliency

This approach is also called the attribution explanation method, which estimates the

input contribution towards the output by computing the partial derivative of the pre-

Chapter 2. Background 27

dicted output w.r.t the input. This approach is closely related to older concepts such as

sensitivity [106]. First derivative saliency is particularly convenient for ANN models as

it can be computed for any layer using [116]. As suggested by its name and definition,

first derivative saliency can be used to enable feature importance explainability. [23].

Gradient-weighted Class Activation Mapping (Grad-CAM) is an attribution method to

calculate each input’s contribution to the output. Grad-CAM explains the output layer

decision by using gradients flowing into the last layer of the an ANN [45], and it can

be applied on various CNNs with fully connected layers. It produces a localization map

highlighting the important regions in the image and uses the gradient of the target class,

flowing into the final convolutional layer. In other words, Grad-CAM takes the gradient

of the target class w.r.t feature maps of the last convolutional layer, while the gradients

of all other predicted classes are zero. Finally, these gradients capture the importance

of each feature map for the target class. Although a saliency map computed by taking

a gradient provides a good explanation of the important pixels of a given image, this

approach requires access to the internal of the base model, such as the gradient of the

output to the input, intermediate feature maps, or the network’s weights. Many types of

research focused on Grad-CAM and its extensions like Grad-CAM++. [35, 70, 101]. We

describe these methods in detail in Chapter 3.

2.5.5 Layer-wise Relevance Propagation

Layer-wise Relevance Propagation (LRP) is a technique that explains the individual

decisions of a model by propagating the prediction from the output backwards to the

input, which informs us to what extent the input features affected the final decision [11].

In other words, LRP has been used to enable feature importance explainability in different

layers of an ANN models [21, 99]. As it only takes two passes through the model, one

forward and one backward, we can apply it to a range of connectionist models. LRP

is flexible and computationally efficient. This approach reveals attribute relevance to

Chapter 2. Background 28

features computed in an intermediate layer of an ANN. It is the most common approach

in ANN layers, including fully connected layers, convolution layers and recurrent layers.

2.5.6 Perturbation-based Approach

One of the approaches to faithfully explain the predictions of any black-box model in an

interpretable manner is called Local Interpretable Model-agnostic Explanations (LIME).

LIME takes an instance and creates some neighbours around that, called perturbations,

then builds a locally linear model around the predictions of an opaque model to explain it.

LIME pioneered the perturbation-based approach, and it is generating random perturba-

tions of the input x and training an explainable model, which is usually a linear model,

on the perturbations, and the predicted labels [102]. Perturbation-based approaches are

mainly used to enable surrogate models [6]. As this is the explanation framework that

we use in this research, we will discuss this method in greater detail in Chapter 4.

2.5.7 Model-Agnostic Explanation

The core of model-agnostic explanations is to evaluate the importance of features with

respect to the prediction. In other words, model-agnostic explanation probes the black-

box model by observing the probability change on the predicted class when erasing a

specific region of an input, like an image [17]. The most used model-agnostic explanation

approach is LIME which estimates individual feature contribution locally [86,102].

Chapter 3

Literature Review

3.1 Visual Explanations from CNNs

CNNs have enabled unprecedented bwreakthroughs in a variety of computer vision tasks,

from image classification [51,67] to object detection [42], semantic segmentation [78], im-

age captioning [19, 32, 59, 128], and visual question answering [8, 40, 83, 100]. Although

these DNNs enable superior performance, their lack of decomposability into intuitive and

understandable components makes them hard to interpret [75]. Visual explanation tech-

niques are good explanation tools to achieve model-agnostic explanations. Representative

works in this area can be found in [20], which presents a portfolio of visualization tech-

niques to help in the explanation of a black-box model built upon the set of extended

techniques mentioned earlier. Visual explanations are less common in model-agnostic

techniques for post-hoc explainability. Since the design of these methods must ensure

that they can be seamlessly applied to any model disregarding its inner structure, creating

visualizations from just inputs and outputs of an opaque model is a complex task. This is

why almost all visualization methods in this category work along with feature relevance

techniques, which provide the information that is eventually displayed to the end-user.

This Chapter presents state-of-the-art XAI methods that produce visual explanations

29

Chapter 3. Literature Review 30

quite well for image classification problems.

3.1.1 Occlusion Maps

One obvious choice for such a visualization of a CNN’s decision is image occlusion maps

[134]. This method measures the difference in CNN scores when patches of the input

image are masked. More precisely, occluding patches and classifying the occluded image,

typically resulting in lower classification scores for relevant objects when those objects

are occluded.

3.1.2 Guided Backpropagation

Several previous works [39,112,113,134] have visualized CNN predictions by highlighting

important pixels, i.e., change in intensities of these pixels have the most impact on the

prediction’s score. The one that visualize partial derivatives of predicted class scores w.r.t.

the pixel intensities is [112], which proposed guided backpropagation. This approach

adds an additional guidance signal from the higher layers to usual backpropagation.

This prevents backward flow of negative gradients, corresponding to the neurons which

decrease the activation of the higher layer unit we aim to visualize. Although this method

produces fine-grained visualizations, it is not class discriminative [110]. Visualizations

w.r.t. different classes are nearly identical.

3.1.3 Class Activation Mapping

Class Activation Mapping (CAM) has been proposed by [135] for identifying discrimi-

native regions used by a restricted class of image classification using CNNs that do not

contain any fully connected layers. A class activation map for a particular category indi-

cates the discriminative image regions used by the CNN model to identify that category.

CAM essentially trades off model complexity and performance for more transparency.

Chapter 3. Literature Review 31

However, as mentioned, CAM cannot explain CNNs with fully connected layers, and it is

the main limitation of CAM, resulting in proposing new extensions. Another limitation

of CAM is that it requires feature maps to precede softmax layers directly, so it is only

applicable to a particular kind of CNN architecture performing global average pooling

over convolutional maps immediately before prediction.

3.1.4 Gradient-weighted Class Activation Mapping

To make existing DNNs more interpretable without altering their architecture, Gradient-

weighted Class Activation Mapping (Grad-CAM) has been proposed [110]. Grad-CAM

is a visual explanation approach that uses the gradients of any target concept, flowing

into the final convolutional layer to produce a coarse localization map highlighting the

important regions in the image toward the specific concept.

Grad-CAM locates certain areas of an input image so that CNN can identify the

objects using feature maps. This algorithm requires a linear combination of feature maps,

with each feature map’s weight determined by the mean of its gradients. This concept

is based on CAM, and Grad-CAM is an extension of that method. Unlike previous

approaches, Grad-CAM is applicable to a wide variety of CNNs, like CNNs with fully

connected layers, CNNs used for structured outputs, e.g., captioning, and CNNs used in

tasks with multi-modal inputs, e.g. visual question answering, or reinforcement learning

without architectural changes or retraining [110]. To summarize, Grad-CAM uses the

gradient information flowing into the last convolutional layer of the CNN to understand

the importance of each neuron for a decision of interest and produce a coarse localization

map highlighting the important regions in an input image.

3.1.5 Guided Grad-CAM

While Grad-CAM visualizations are class-discriminative and localize relevant image re-

gions well, they lack the ability to show fine-grained importance like pixel-space gradient

Chapter 3. Literature Review 32

Figure 3.1: : (a) Original image with a cat and a dog. (b) Guided Backpropagation:

highlights all contributing features. (c) Localizes class-discriminative regions. (d) Guided

Grad-CAM, which gives high-resolution class-discriminative visualization.

visualization methods. To better understand the visualizations provided by each of these

approaches, Fig 3.1 has been taken from [110]. In this experiment, the author provided

three localization maps for a sample image of a cat and dog, and the network for investi-

gation is ResNet50. As (b) and (c) in Fig 3.1 show, guided backpropagation is not class

discriminative, and Grad-CAM provides a class-discriminative coarse localization map,

but it does not show the fine-grained details of important pixels/regions. Grad-CAM

can easily localize the cat region and provide class-discriminative by a coarse heatmap

localization. However, it is unclear from the low-resolutions of the heatmap why the net-

work predicts this particular instance as tiger cat. In order to combine the best aspects

of both, Guided Grad-CAM uses guided backpropagation and Grad-CAM visualizations

via point-wise multiplication, see image (c) in Fig 3.1. This visualization is both high-

resolution and class-discriminative, when the class of interest is tiger cat, and it also

identifies important tiger cat features like stripes, pointy ears and eyes.

3.1.6 Grad-CAM++

While the visualizations generated by gradient-based methods such as Grad-CAM ex-

plain the prediction made by the CNN model with fine-grained details of the predicted

Chapter 3. Literature Review 33

class, these methods have limitations. For example, their performance drops when local-

izing multiple occurrences of the same class [16]. In addition, for single object images,

Grad-CAM heatmaps often do not capture the entire object, which is required for better

performance on the associated recognition task. To address these limitations, Grad-

CAM++ has been proposed as a generalized visualization technique for explaining CNN

decisions, which improves the flaws mentioned above and provides a more general ap-

proach. Grad-CAM++ is known as a further upgraded version of Grad-CAM and it is

a very good algorithm among most well-known visual interpretation methods. For san-

ity check-based tasks, Grad-CAM++ yields perfect results among the recently studied

state-of-the-art methods [55]. More precisely, this approach is a pixel-wise weighting

of the gradients of the output concerning a particular spatial position in the final con-

volutional feature map of the CNN. This approach gives the importance of each pixel

in a feature map toward the overall decision of the CNN. Importantly, Grad-CAM++

derives closed-form solutions for the pixel-wise weights and obtains exact expressions for

higher-order derivatives. Furthermore, Grad-CAM++ requires a single backward pass on

the computational graph, making it computationally equivalent to prior gradient-based

methods while giving better visualizations. Grad-CAM++ resolved the main limitation

of Grad-CAM as it can localize multiple objects in an individual image, but it still needs

access to the inner structure of the black-box model.

3.1.7 LIME

LIME is an XAI approach relying on segmenting images into superpixels based on the

Quick-Shift algorithm [1]. LIME is an explanatory framework for the decision of any ML

classifier. The original implementation can process classifiers with text, images, or tabular

data as input. For example, in the case of explaining the decision of a CNN in image

classification with LIME, the output of LIME is a set of connected pixel patches and a

weighting for each patch. These weights indicate how strong a patch is correlated with

Chapter 3. Literature Review 34

the classifier decision [108]. For images, this is achieved by randomly removing patches

from the image and replacing them with the mean color of the patch or with some chosen

color, default is grey. Then every instance, as a perturbed version of the original image

will be measured by the proximity measure that indicates how different the perturbed

image is from the original instance. This proximity measure, called distance measure, is

used to enforce locality for the linear model [102]. Finally, each of these perturbed images

will be classified by the CNN model, and then the linear model will be fitted to these

experiments. The linear model approximates the weights/importance for each patches

by selecting k features with Lasso, called K-Lasso [102]. The weights (w) are ultimately

found through K-Lasso, a procedure that is based on the regression method [118]. The

input is the number of features limit k which is the number of patches the user wants in

the explanation. LIME relies on segmentation of the image into superpixels, that is on

similarity based grouping of pixels into larger structures based on local features [37]. The

segmentation of an image into superpixels is crucial for the generation of the explanation

in LIME since perturbation of superpixels is used to identify which of the image areas

has been relevant for a specific class decision [108].

An explorative study of how different superpixel methods impact the generated visual

explanations of LIME has been done in [108]. This study compared superpixel segmenta-

tion algorithms, namely Felzenszwalb, Simple Linear Iterative Clustering Segmentation

(SLIC) and Compact-Watershed, and their specific effects on LIME. This comparative

study reveals that SLIC makes it possible to influence the actual size of the superpix-

els through a parameter. Additionally, a lower variance and standard deviation was

achieved. These results show that SLIC has advantages over Quick-Shift due to showing

a better correspondence between superpixels and relevant areas. We explain the SLIC

segmentation algorithm in detail in Chapter 4.

Chapter 3. Literature Review 35

3.2 Quantifying Explainability of Saliency Methods

Visual explanations of a CNN model for justifying any target category can be checked

quantitatively through each of the following metrics.

• Structural SIMilarity index (SSIM): The main question is whether different XAI

methods point to the same input regions to explain a given prediction. It measures

the similarity of different XAI methods or even LIME with different segmentation

algorithms [46]. SSIM has also been used to obtain the best values of parame-

ters. It measures the similarity of the visual explanations obtained from LIME

with different sets of parameters, e.g., whether SSIM changed when the number of

superpixels and number of samples differ by a shift of n [46].

• Explanation accuracy: Instead of prediction accuracy (pa), when the entire sample

image is passed to the black-box model, the obtained feature subset, containing the

most important regions, is passed to the same black-box model. Then, the predic-

tion label is observed and noted as an explanation accuracy (ea). If ea increases than

the pa, we can state the explanation is correct, and it contains the most important

regions of the input image. In other words, the explanation method captures the

extent to which the explanations are truly influential toward the prediction [103].

• Faithfulness: Saliency methods generates relevance scores w.r.t. model predictions

assigned to the features, pixels or superpixels for images. Described in [5], the

faithfulness of an explanation refers to whether the relevance scores reflect the true

importance. A typical approach for quantifying the property of XAI is through

strategical modification on the input according to the explainer indication and

monitor the model behaviors. There are several different metrics proposed based

on this approach. For example, measuring Area Under Curve (AUC), which is

motivated by deletion or insertion. The intuition behind the deletion metric is that

Chapter 3. Literature Review 36

removing the cause, important pixels, will force the model to change its decision.

A sharp drop, thus a low area under the probability curve. [98].

• Sensitivity check: Sensitivity check means localizing the specific region of the target

in the image. If an explanation is faithful, it should give different explanations for

different decisions. The similarity measure of the highest prediction score and the

lowest one should be close to zero, e.g., Pearson correlation [72].

• Localization: Basically, localization means capturing fine-grained details, and high-

light important pixels in the image. It is also called high-resolution, which states

that a good saliency map should highlight a few discriminative superpixels rather

than the entire object in an input image [46].

To summarize, a good visual explanation should localize important regions of an image

that correspond to any decision of interest in high-resolution detail, even if the image con-

tains evidence for multiple possible objects, which is important for predicting a particular

object.

Chapter 4

Methodology

4.1 Introduction

According to the literature, the most leading and common XAI tools in medical domain is

the local explanation methods [29,60,61,101,109]. The gradient-based methods got more

attention due to their accuracy, but there is no specific research on LIME to improve its

performance in localizing multiple objects.

With the idea of producing fine-grained visual explanations of medical images, the

results of LIME have been investigated for classification of lymph node metastases on

Camelyon16 dataset in [95] using three well-known segmentation algorithms, including

Felzenszwalb’s, SLIC, and Quickshift. All three algorithms have a parameter “sigma”

that defines the width of a Gaussian preprocessing step. Higher sigmas typically result

in a smaller number of segments. This is the only parameter shared in common by these

algorithm, and each of these algorithms has several parameter affecting the explanation

by LIME. The sensitivity of these algorithms to variations in texture and color and their

own variables raises the question of how the best set of parameters can be determined.

As an alternative approach, [95] proposed a new method to segment each studied image

into grids of 9, 16, 36, 64, 144, 256, and 576 equally-sized squares. On the one hand,

37

Chapter 4. Methodology 38

these segments did not hold the contextual meaning of a typical superpixel, but scheme

guaranteed that every image was divided into exactly the same number of segments on

the same positions. These square segments were then passed to the LIME algorithm like

the usual superpixels would be. The resulting weighted heatmaps gave a rough idea of

what sub-regions of the image were most relevant for a given classification. The finer

grids provided a more fine-grained view with a larger number of small square segments.

Due to the importance of XAI to explain decisions of DL approaches in different

areas, specifically medical diagnosis, and the increasing demand for such explainable

models in health-related applications, we proposed a multi-scale scheme of LIME as a

model agnostic explanation tool.

4.1.1 Motivation: Multi-scale Version of LIME

Although in the square-grid segmentation approach, the image will be divided into the

same number of segments with the same probability to be masked, but this approach does

not hold the main contextual meaning of a segmentation task called boundary recall. A

good segmentation approach with higher boundary recall will stick to image boundaries.

According to the literature [1], Simple Linear Iterative Clustering Segmentation (SLIC)

is a good superpixel algorithm with high boundary recall and low under-segmentation

error, as we explained in Section 4.5. With this idea, we were motivated to propose a

multi-scale version of LIME using the SLIC segmentation algorithm and providing visual

explanations at a coarse, finer, and the finest scales of an image. In this Chapter, we

first explain what LIME sees in an image, and how it works from the mathematical point

of view in Section 4.2. Then, we described sampling in LIME by turning on/off some

superpixels, creating perturbations, and predicting the probability of the target class for

each perturbation in Section 4.3. Finally, the surrogate model is explained in Section 4.4,

besides the important remarks that helped us define the main contribution of this work.

Chapter 4. Methodology 39

4.2 Mathematical Function of LIME

As we mentioned in Chapter 3, there are some methods for visual explanations that are

gradient-based, and the explanations generated in these cases are heatmaps where each

pixel in the image receives a value according to its relevance for a given classification. Due

to the computation complexity of gradient-based XAI methods and sometimes modifying

the last layers of several CNN models, model-agnostic explanation tools are much easier

to implement, specifically for a wide range of black-box models. In this thesis, we focus

on LIME as a model-agnostic XAI method as it only requires the classifier’s outputs

for different images. In this case, a given image is segmented into superpixels, and the

relevance of each superpixel for a given classification is determined using a linear model.

LIME can be used for any image classifying system, not just neural networks, as it does

not employ specific steps to any individual model type.

In this Section, we describe the mathematical function of LIME and explain what

does LIME see in a sample image from a mathematical point of view [41,102].

Formally, we define an explanation as a model g ∈ G, where G is a class of potentially

interpretable models, such as linear models, and decision trees. i.e., a model g ∈ G can

be readily presented to the user with visual or textual artifacts. The domain of g is

{0, 1}d′
. In other words, g acts over absence/presence of the interpretable components

in binary form. As not every g ∈ G may be simple enough to be interpretable, thus

Ω(g) is a measure of complexity, which is opposed to interpretability of the explanation

g ∈ G. For example, for decision trees Ω(g) may be the depth of the tree, while for linear

models, Ω(g) may be the number of non-zero weights.

• Let the model being explained be denoted f : Rd → R.

In classification, f(x) is the probability that x belongs to a certain class.

• i is an index of the number of samples, 1 ≤ i ≤ n, and πi(x) is a proximity measure

Chapter 4. Methodology 40

between an instance i to x, so as to define locality around x.

• Finally, let L(f, g, πi) be a measure of how unfaithful g is in approximating f in

the locality defined by πi.

In order to ensure both interpretability and local fidelity, LIME minimizes L(f, g, πi)

while having Ω(g) be low enough to be interpretable by humans [41]. The explanation

produced by LIME is obtained by

argmin L(f, g, πi) + Ω(g). (4.1)

This formulation can be used with different explanation families G, fidelity functions

L, and complexity measures Ω. LIME uses sparse linear regression, Lasso, but in this

thesis we used Ridge regression as the explanation model and performed the search using

perturbations.

4.3 Sampling for Local Exploration

LIME wants to minimize the locality-aware loss L(f, g, πi) without making any assump-

tions about f , since the explainer is model-agnostic. Thus, in order to learn the local

behavior of f as the interpretable inputs vary, we approximate L(f, g, πi) by drawing i

samples, weighted by πi.

In order to explain what does LIME do on an image, we consider a model f for sample

image ξ. LIME

• decomposes ξ in d superpixels, that is, small homogeneous image patches.

• creates i number of new images x1, ..., xi by randomly turning on and off some of

these superpixels. In other words, sampling instances around x by drawing nonzero

elements of x uniformly at random.

Chapter 4. Methodology 41

• queries the model, and gets predictions yi = f(xi). Basically, LIME recovers the

sample image from binary domain Rd′ to the original representation domain z ∈ Rd,

and obtain f(z), which is used as a label for the explanation model. Given this

dataset Z of perturbed samples with associated labels, LIME can optimize equation

4.1.

• builds a local weighted surrogate model β̂, fitting the yis to the presence or absence

of superpixels.

The primary intuition behind LIME is presented in Fig 4.1, where sample instances

in the vicinity of x have a high weight due to πi and far away from x have low weight,

πi [102]. Even though the original model may be too complex to explain globally, LIME

presents a locally faithful explanation, where the locality is captured by πi. LIME is

robust to sampling noise since the samples are weighted by πi in equation 4.1. We now

present a concrete instance of this general framework.

According to LIME, each coefficient in β̂ is associated to a superpixel of the original

image ξ. The more positive the more important the superpixel is for the prediction

at ξ. Generally, LIME visualizes β̂ by highlighting the superpixels associated to the

top positive coefficients. This top positive coefficients is a parameter k in LIME. From

now on, we consider a model f : [0, 1]D → R as well as an image example to explain

ξ ∈ [0, 1]D. D denotes the number of pixels of the sample image on which model f

operates. Generally, the inputs of f are always 2- or 3- dimensional arrays. In particular,

grayscale images are usually encoded as h× w arrays, and RGB images are represented

by h× w × 3, when each channel represent to a primary color.

4.3.1 Superpixels

At the first step, LIME splits the image ξ into d number of superpixels. According to

the definition of superpixels, these are contiguous patches of the image that share color

Chapter 4. Methodology 42

Figure 4.1: The black-box model’s complex decision function f which is unknown to

LIME is represented by the blue/pink background. It cannot be approximated well by

a linear model. The bold red cross is the instance being explained. LIME samples

instances, gets predictions using f , and weighs them by the proximity to the instance

being explained, which are represented here by size. The dashed line is the learned

explanation that is locally faithful.

Chapter 4. Methodology 43

and/or brightness similarities. For any 1 ≤ k ≤ d, kth superpixel associated to the input

image ξ by Jk. Therefore, the d subsets J1, ..., Jd form a partition of the pixels. LIME

masks some of these superpixels by randomly setting them to zero to create perturbations.

4.3.2 Perturbations

One of the LIME’s key ideas is to create n new samples from the input ξ by randomly

replacing/masking some superpixels of the image. To be more precise, we assume that

ξ is fixed, and J1, ..., Jd are given. Then, the first step of taking samples is to compute

the replacement image. For each sample 1 ≤ i ≤ n, LIME samples a random vector

zi ∈ {0, 1}d where each coordinate of zi is independent and identically distributed (i.i.d.)

Bernoulli with parameter 1/2. Each zi,j corresponds to the activation or inactivation of

superpixel j in sample i.

Fig 4.2 shows superpixel segmentation with Quickshift on a sample image of tulips.

Let’s assume this is a classification problem, and the model predicts the label tulips for

this specific image. To see how we can create perturbations and the corresponding labels,

we used Quickshift to segment out the image, then randomly turned on/off some of these

superpixels Fig 4.2 (b), (c), and (d). These samples are passed to the model, and the

corresponding labels are given. As it is obvious, active superpixels in images (b) and (c)

show more regions of tulips compared to the image (d). The given probabilities by the

model also prove this fact.

4.3.3 Weights

The new sample images xi can be quite different from the original image. For instance, if

most of the superpixels are activated, which means most of the zi,j are 1, then the sample

xi is close to the original image ξ. Therefore, the new instance will be given a positive

weight πi that takes the proximity into account based on equation 4.2. The weights are

defined as

Chapter 4. Methodology 44

Figure 4.2: Segmentation of a sample image (a) with Quickshift, and the perturbation

samples by randomly masking some superpixels. LIME queries the model to predict the

label for each of these samples. The prediction score of the label “tulips” for perturbed

images (b), and (c) are 0.97 and 0.99, respectively. But in the perturbed image (d), it

is visually clear that most of the regions representing tulips have been masked, so the

predicted label of this sample should be significantly low, which is 0.1.

∀1 ≤ i ≤ n, πi := exp(
−dcos(1, zi)2

2υ2
), (4.2)

where υ is a positive bandwith parameter, called “kernel-width”, equal to 0.25 by default,

and dcos is the cosine distance. We see that,

• dcos(1, zi) takes near 0 values if most of the superpixels are activated.

• and values near 1 in the opposite scenario, as expected.

4.4 Surrogate Model

The last stage of LIME is to build a surrogate model around the samples taken from

the input. LIME builds a linear model with the interpretable features zi as input and

the model predictions yi := f(xi) as responses. This linear model, in the default imple-

mentation, is obtained by (weighted) Ridge regression [53]. Finally, in equation 4.3, the

output of LIME for model f and image ξ are given by

Chapter 4. Methodology 45

β̂λ ∈ argmin{
n∑

i=1

πi(yi − βT zi)
2 + λ||β||2}, (4.3)

where β̂λ are the interpretable coefficients, the 0th coordinate of β̂λ is the intercept of

the model, and λ > 0 is a regularization parameter.

4.5 Segmentation Algorithm

4.5.1 Simple Linear Iterative Clustering Segmentation

Simple Linear Iterative Clustering (SLIC) performs a local clustering of pixels in the

5-D space defined by the L, a, b values of the CIELAB color space and the x, y pixel

coordinates. The distance measure of SLIC enforces compactness and regularity in the

superpixel shapes and seamlessly accommodates grayscale as well as color images. SLIC

is simple to implement and easily applied in practice. The only parameter specifies the

desired number of superpixels. SLIC is significantly more efficient than competing meth-

ods while producing segmentations of similar or better quality as measured by standard

boundary recall and under-segmentation error measures [84]. Compact and highly uni-

form superpixels that respect image boundaries, such as those generated by SLIC in Fig

4.3, are desirable for many vision tasks. SLIC superpixels outperforms competing meth-

ods for two vision tasks: object class recognition and medical image segmentation [1]. In

both cases, SLIC results in similar or greater performance at a lower computational cost

than existing methods [1]. Superpixel algorithms need to be easy to use. Difficult-to-set

parameters can result in lost time or poor performance. A good superpixel segmenta-

tion algorithm should have low under-segmentation error and high boundary recall. To

be useful as a pre-processing algorithm, such a segmentation should result in equally

sized compact superpixels with control over their number [95]. For the same reason,

the algorithm should preferably have a low computational cost and require few input

Chapter 4. Methodology 46

Figure 4.3: Image segmented using SLIC algorithm into superpixels of size 64, 256, and

1024 pixels approximately. These are the desired number of superpixels defined by the

user, and the model outputs a possible number of superpixels which is closest to the

desired one. The superpixels are compact, uniform in size, and adhere well to region

boundaries.

parameters. SLIC generates superpixels by clustering pixels based on their color simi-

larity and proximity in the image plane. SLIC algorithm is defined in more detail in the

following [1].

Distance Measure

SLIC algorithm takes the parameter k as a desired number of approximately equally-

sized superpixels. For an image with N pixels, the approximate size of each superpixel is

therefore N/K pixels. For roughly equally-sized superpixels there would be a superpixel

center at every grid interval S =
√

N/K.

At the onset of this algorithm, it choose K superpixel cluster centers,

Ck = [lk, ak, bk, xk, yk]
T , (4.4)

Chapter 4. Methodology 47

with k = [1, K] at regular grid intervals S. Since the spatial extent of any superpixel is

approximately S2, we can safely assume that pixels that are associated with this cluster

center lie within a 2S × 2S area around the superpixel center on the xy plane. This

becomes the search area for the pixels nearest to each cluster center.

Euclidean distances in CIELAB color space are perceptually meaningful for small

distances. Suppose spatial pixel distances exceed this perceptual color distance limit. In

that case, they begin to outweigh pixel color similarities (resulting in superpixels that do

not respect region boundaries, only proximity in the image plane). Therefore, instead of

using a simple Euclidean norm in the 5D space, SLIC uses a distance measure Ds defined

as

dlab =
√

(lk − li)2 + (ak − ai)2 + (bk − bi)2

dx,y =
√

(xk − xi)2 + (yk − yi)2

Ds = dlab +
m

S
dxy,

(4.5)

where Ds is the sum of the lab distance and the xy plane distance normalized by the grid

interval S. A variable m is introduced in Ds allowing us to control the compactness of a

superpixel. The greater the value of m, the more spatial proximity is emphasized and the

more compact the cluster. According to the literature, this value can be in the range [1,

20] [1]. Fig 4.4 shows SLIC segmentation with different values of compactness m for the

sample image “tulips”. As we want to explore small regions of an image in a multi-scale

scheme, the superpixels should have more spatial proximity and proper compactness. A

higher compactness value results in square-grid shape segments, which do not necessarily

stick to the object’s boundaries.

In this thesis we aim to segment a sample image into several steps, going from coarse to

finest scales. Therefore, we hypothesize that the segmentation approach should stick to

the object’s boundaries so that small regions of a finer scale segmentation would still be

meaningful.

Chapter 4. Methodology 48

Figure 4.4: SLIC segmentation of sample image with varying compactness. The higher

value of this parameter results in the square-grid shape of segments.

Under-segmentation Error

Under-segmentation error was first introduced in [71] and quantifies the leakage of su-

perpixels across ground truth segments. Under-segmentation error essentially measures

the error an algorithm makes in segmenting an image w.r.t. a known ground truth, hu-

man segmented images in this case. This measure thus penalizes superpixels that do not

tightly fit a ground truth segment boundary. Given ground truth segments g1, g2, ..., gm

and a superpixel output s1, s2, ..., sL, the under-segmentation error for a ground truth

segment gi is

U =
1

N
(

M∑
i=1

(
∑

[sj |sj∩gi>B]

|sj|)−N); (4.6)

where s gives the size of the segment in pixels, N is the size of the image in pixels, and

B is the minimum number of pixels that need to be overlapping. The expression sj ∩ gi

is the intersection or overlap error of a superpixels sj with respect to a ground truth

segment gi. B is set to be 5 percent of |sj| to account for small errors in ground truth

segmentation data. The value of U is computed for each ground truth image and then

averaged. The lower under-segmentation error means better segmentation algorithm.

Chapter 4. Methodology 49

Boundary Recall

Boundary Recall is part of the precision-recall framework introduced in [85] and quantifies

the fraction of boundary pixels correctly captured by a superpixel segmentation. Higher

boundary recall describes better adherence to image boundaries. In other words, the

standard boundary recall measure computes what fraction of ground truth edges fall

within one pixel of a least one superpixel boundary.

4.6 Multi-scale Segmentation Scheme

Choosing an appropriate superpixel segmentation algorithm is so important in prepro-

cessing step for computer vision applications like object class recognition and medical

image segmentation. Such segmentation algorithms should output high-quality super-

pixels that are compact and roughly equally sized for low computational overhead. SLIC

is a simple superpixel segmentation algorithm to implement and output better quality

superpixels. It needs only the number of desired superpixels as the input parameter. As a

result, it scales up linearly in computational cost and memory usage. The efficacy of SLIC

superpixels in object recognition and medical image segmentation has been proved in [1].

SLIC obtains better quality and higher computational efficiency than other state-of-the-

art algorithms. In this work, we have decided to use the SLIC segmentation algorithm

and specify two main parameters: compactness and the desired number of superpixels.

We aimed to segment an image into a multi-scale scheme to look at the superpixels of an

image from coarse to finer scales by keeping the boundaries and sticking to the contextual

meaning of superpixels. The pseudo-code of the proposed multi-scale scheme is shown in

Algorithm 1, and the list of notations is presented in Table 4.1.

Due to some important remarks in the literature [41]:

• When we experiment on a large n number of samples, basically when the number

of samples is 10 times larger than the number of superpixels that an image is split

Chapter 4. Methodology 50

up in, we can consider that λ = 0, the regularization parameter in LIME, and still

get meaningful results.

• Part of what makes LIME attractive is to visualize the results of LIME and look at

the highlighted part of the image. The final step of LIME for images is to display

the k superpixels associated to the top positive coefficients of β̂λ
n, usually it is five.

Hence, we define the number of samples to be 10×number of superpixels at each level,

we can use LIME without regularization and get meaningful results. Since we aimed

to present the visual explanations of the proposed scheme on heatmaps that highlight

all superpixels along with the corresponding coefficients that show the importance of

each region, we do not need to specify the parameter k. Furthermore, we focus on the

importance of each superpixel toward the target class, which could be the top one or

any of the predicted classes. We are normalizing the coefficients before showing them on

heatmaps. In other words, we set the negative values of the output of LIME to zero and

are not interested in evaluating superpixels that negatively affect the target class.

As the list of parameters are shown in Table 4.1, the proposed multi-scale scheme

takes the desired number of segments/superpixels, s1, · · · , sL, where L is the number

of levels. Since we want to keep the objects’ boundaries through SLIC segmentation

algorithm, we should set c to be small enough. Hence, we set c = 5 in all experiments in

the proposed multi-scale scheme of LIME. Then an iterative process executes inside the

for loop in Algorithm 1. At each level l, 1 ≤ l ≤ L, SLIC takes sl as the desired number

of superpixels and returns s′l as the number of superpixels after the segmentation process.

Then, the algorithm defines total number of samples/perturbations, n, and creates these

neighbors by randomly masking some superpixels. A separate linear model is fitted at

each level, then we take the coefficients, normalize the value of the coefficients in a range

of (0,1) and represent the result on heatmaps.

Hence, the output is L number of heatmaps which represent superpixels which mostly

Chapter 4. Methodology 51

List of Notations / Parameters

x Input image of size (h,w, 3).

L Number of levels for multi-scale segmentation.

l Index of segmentation level.

s Desired number of superpixels.

c Compactness.

s′ Final number of superpixels that SLIC provides at each level.

n Num-of-samples = 10 * s′.

i index of the number of samples.

p Perturbation or masked image which is a matrix of size (m,n, 3).

X Binary matrix of size (n, s′).

Y Vector of size (1, n): predicted label for each perturbation.

W Vector of size (1, n): distance of perturbations from x.

coefficients Vector of size (1, s′).

E Explanation matrix of size (h,w) represents the coefficients.

Table 4.1: Parameters description

affected the prediction from coarse to fine scale. The results can be interpreted by an

expert or final user by looking at the produced heatmaps. In order to look at interes

objects in an image from different scales, like too coarse or too fine scales, the number of

levels/scales in the proposed method might be large enough. In this case, the interpreta-

tion of the produced heatmaps would be difficult. For this reason, we were motivated to

classify the heatmaps using a weighting approach. To classify the heatmaps and produce

explanations at different scales, we proposed two weighting strategies in Section 4.7. The

general framework of this method is also provided in Fig 4.5.

Chapter 4. Methodology 52

Algorithm 1 LIME with Multi-scale Scheme

Require: s1 . . . sL, and c

for l ← 1 to L do

Apply SLIC segmentation algorithm with sl, and c;

Take ‘num of superpixels‘ s′l;

Define num-of-samples n;

Create samples/perturbations (p1, ..., pn);

Compute distance/weight of perturbations from input image (w1, .., wn);

Predict label/class for each perturbation (y1, ..., yn);

Fit linear model on set of perturbations X and predicted labels Y ;

Take the coefficients of the linear model;

Do normalization of the coefficients;

Represent coefficients on explanation heatmaps (E1, ..., El);

Return the heatmap;

end for

Chapter 4. Methodology 53

Figure 4.5: General framework of the proposed multi-scale scheme of LIME

4.7 Multi-scale Visual Explanation

To combine the visual explanations of the proposed multi-scale scheme in an appropri-

ate way, we proposed two weighting approaches, using discrete Gaussian function, and a

parameter-free approach. The main point of these two weighting approaches is to sum-

marize the explanation heatmaps of different levels and highlight the most important

superpixels/regions from coarse to finest scales.

4.7.1 Weighting Heatmaps with Discrete Gaussian Function

Gaussian functions are often used to represent the probability density function of a

normally distributed random variable with expected value µ and variance σ2. In this

case, the Gaussian is of the form in equation 4.7

Chapter 4. Methodology 54

C = [1/(σ
√
2π](exp(−(x− µ)/2σ)2), ∀c ∈ [−n/2, (n/2) + 1]. (4.7)

Normalized Gaussian curves with value µ and variance σ2 are shown in Fig 4.6.

Gaussian functions are widely used in statistics to describe the normal distributions, in

signal processing to define Gaussian filters, in image processing where two-dimensional

Gaussians are used for Gaussian blurs, and in mathematics to solve heat equations and

diffusion equations.

This work aims to combine the heatmaps provided by the multi-scale version of LIME

when we assign weights by discrete Gaussian function. We expect that mid-range scale

experiments keep objects’ boundaries and be more localized compared to the very first

or last experiments. Hence, we set µ=0, and σ=5, as we want to assign higher weights to

mid-range scale experiments for an arbitrary number of scales that we want to combine.

In order to provide more variation in the explanations, we combine the heatmaps in three

different levels described below. At each level, the mid-range scale experiments will get

higher weights and the weights are becoming smaller from the sides. Assume L is the

number of levels, therefore

• Coarse scale visual explanation: Weighted average of experiments 1 - int(L/3)

• Finer scale visual explanation: Weighted average of experiments 1 - int(2L/3)

• Finest scale visual explanation: Weighted average of experiments int(2L/3) - l.

In this way, we use Gaussian distribution when σ is constant and shift the mean, µ,

to the right to combine heatmaps of different scales.

Chapter 4. Methodology 55

Figure 4.6: Gaussian curves with different values for mean and variance

4.7.2 A Parameter-free Automated Weighting Approach

Trapezoidal Rule

The trapezoidal rule is mostly used for approximating area under the curves. This is

possible if we divide the total area into smaller trapezoids instead of using rectangles.

The trapezoidal rule integration actually calculates the area by approximating the area

under the graph of a function as a trapezoid.

In calculus, the trapezoidal rule is a technique for approximating the definite integral

as its shown in Fig 4.7 and equation 4.8.

∫ b

a

f(x) dx ≈ (b− a) (f(a) + f(b)) (4.8)

The integral can be even better approximated by partitioning the integration interval,

applying the trapezoidal rule to each sub-interval, and summing the results. In practice,

this chained/composite trapezoidal rule is usually what is meant by “integrating with the

trapezoidal rule”. Let {xk} be a partition of [a,b] such that a = x0 < x1 < · · · < xN−1 <

Chapter 4. Methodology 56

Figure 4.7: The function f(x) in blue is approximated by a linear function in red.

xN = b and ∆xk be the length of the k− th sub-interval. That is ∆xk = xk − xk−1, then

∫ b

a

f(x) dx ≈
N∑
k=1

f(xk−1) + f(xk)

2
∆xk. (4.9)

When the partition has a regular spacing, that means all the ∆xk have the same value

∆x, the formula can be simplified for calculation efficiency by factoring ∆x out as

∫ b

a

f(x) dx ≈ ∆x

2
(f(x0) + 2f(x1) + 2f(x3) + · · ·+ 2f(xN−1) + f(xN)) . (4.10)

When the grid spacing is non-uniform, one can use the formula of equation 4.9. Fig

4.8 shows approximating the definite integral with the irregularly-spaced partition of

[a,b].

With the idea of approximating definite integral with the irregularly-spaced partition,

we decided to assign weights to each scale. In other words, in segmentation of an image

at different scales, the number of segments might vary according to the user-specified

set of parameters. Therefore, the number of segments in this multi-scale segmentation is

not specifically equal, and the spacing is non-uniform. Hence, we propose two different

schemes to assign weights to the heatmaps given from different scales. Then, we compute

the weighted heatmap to represent the results. We aim to assign weight to each heatmap

Chapter 4. Methodology 57

Figure 4.8: Illustration of “chained trapezoidal rule” used on an irregularly-spaced par-

tition.

based on how far/close the number of segments is from the next level. Let’s assume

1, · · · , L is the number of scales that we want to segment out an image from coarse to

fine, where s′1, · · · , s′L is the number of segments that SLIC provides at each scale. If s′l

is too smaller than s′l+2, it means the input image is segmented out into tiny superpixels

compared to the previous level, and the space between level l and l + 2 is large. We

assign more weight to the heatmap given from scale l + 1 to enhance different results of

different scales and provide more variations in visual explanations. On the other hand,

if the number of segments at scale l + 1 and l + 3 are too close, i.e., s′l+1 ≈ s′l+3, these

segmentations are more likely to provide similar results on the explanation heatmaps.

Therefore, the automatic weighting approach based on the trapezoidal rule will assign

a lower weight to the explanation heatmap taken from level l + 2. The results of this

parameter-free automatic weighting approach are provided in Chapter 5.

First Automated Weighting Approach

In this work, we assume the partitions/number of segments are not equally space. Hence,

we expanded the equation 4.9. With the idea of chained trapezoidal rule for approximat-

Chapter 4. Methodology 58

ing definite integral and the irregularly-spaced partition, we define the first automated

weighting approach as

l+1∑
l=1

(El−1 + El)

2
× (s′l − s′l−1) = E0

d0
2

+ E1(
d0
2

+
d1
2
) + · · ·+ EL(

dl−1

2
), (4.11)

Where E1, · · · , EL is a set of explanation heatmaps, s′1, · · · , s′L is the final number of

segments/superpixels and d0, · · · , dl−1 is a set of intervals between number of segments.

Therefore, each heatmap will be multiplied by the corresponding weight. These weights

are calculated based on the distances/intervals of the number of segments in the proposed

multi-scale scheme.

Second Automated Weighting Approach

In the second automated weighting approach, we consider the inverse of the final number

of segments to calculate the distances/weights, 1
s′0
, · · · , 1

s′n
.We define the second weighting

approach as

l+1∑
l=1

(El−1 + El)

2
× (

1

s′i
− 1

s′i−1

) = E0
d′0
2

+ E1(
d′0
2

+
d′1
2
) + · · ·+ EL(

d′l−1

2
). (4.12)

Chapter 5

Experiments and Results

In this Chapter, we report and discuss the experimental results of the proposed multi-scale

scheme of LIME. First, we will cover the experiment design, multi-scale SLIC segmenta-

tion, which consists of 17 levels, the set of parameters, and datasets, besides a summary

of the classification models, ResNet50 and VGG19, that are trained and proposed previ-

ously for the specific datasets used in this thesis. Furthermore, we present the explanation

results of the proposed multi-scale scheme, qualitatively and quantitatively. Finally, we

discuss and compare the overall performance of the proposed multi-scale scheme with the

previously proposed square-grids segmentation [95].

5.1 Experiment Design

In this thesis, we investigated the result of the proposed multi-scale scheme of LIME

with SLIC segmentation algorithm on a flower classification dataset from TFDS and a

biological dataset. The multi-scale segmentation scheme is shown in Table 5.1. Ba-

sically, SLIC has two parameters which affects the segmentation results, compactness,

and desired number of segments. Compactness, c, balances color proximity and space

proximity. Higher values give more weight to space proximity, making superpixel shapes

more square/cubic. This parameter depends strongly on image contrast and the shapes

59

Chapter 5. Experiments and Results 60

of objects in the image. It is recommended exploring possible values on a log scale, e.g.,

0.01, 0.1, 1, 10, 100. From here to the end of this thesis, we set c = 20 for all experiments

in a multi-scale scheme. We found that SLIC segmentation with this parameter provides

meaningful superpixels while keeping the boundaries in an image. To compare the results

of the proposed multi-scale scheme of LIME with the equally sized square-grids in the

literature, we set c = 50 for the square-grids segmentations of LIME. The only parameter

that is changed during the process is the desired number of segments. We define
√
s as

the square root of the desired number of segments, starting from 4 to 20. Then s will be

passed to the SLIC segmentation algorithm, returning the final number of segments/su-

perpixels, s′. Fig 5.1 shows the SLIC segmentation algorithm on a sample image from

TensorFlow flower dataset with desired number of segments specified in Table 5.1. The

sample image and the desired number of segments are passed to the SLIC segmentation

algorithm. Finally, the segmented image with a final number of segments is presented

in Fig 5.1. The desired number of segments and the number of segments after SLIC

segmentation algorithm are displayed on top of each image.

5.2 Flower Classification from TensorFlow Dataset

TensorFlow Datasets (TFDS) provide a collection of ready-to-use datasets with Ten-

sorFlow, Jax, and other Machine Learning frameworks. To explore the results of the

proposed multi-scale explanation framework with LIME in a classification problem, we

used the flower dataset from TFDS. This dataset was split into a training set, and a

validation set shown in Table 5.2. The dataset consists of color images of size 224× 224

with 5 possible class labels, see Fig 5.2, ’daisy’, ’tulip’, ’sunflower’, ’dandelion’, ’rose’.

Chapter 5. Experiments and Results 61

Table 5.1: Multi-scale segmentation scheme with desired number of segments.

Multi-scale Scheme

Level Square root of s Desired number of segments

(s)

Number of segments s′

1 4 16 12

2 5 25 21

3 6 36 34

4 7 49 45

5 8 64 60

6 9 81 77

7 10 100 93

8 11 121 111

9 12 144 135

10 13 169 160

11 14 196 184

12 15 225 210

13 16 256 242

14 17 289 279

15 18 324 347

16 19 361 347

17 20 400 383

Chapter 5. Experiments and Results 62

Figure 5.1: Multi-scale segmentation scheme with 17 levels.

Chapter 5. Experiments and Results 63

Figure 5.2: Flower classification of TFDS. Sample images of 5 classes with actual labels.

TensorFlow Flower Dataset

daisy tulip sunflower dandelion rose

Total 769 984 734 1052 784

Training 615 787 587 841 627

Validation 154 197 147 211 157

Table 5.2: Flower Dataset: number of samples per class in training and validation set.

5.2.1 Classification model: Fine-tuning ResNet50

Several pre-trained CNN has been evaluated on this dataset, like VGG16, VGG19, and

ResNet50. Accorsing to Kaggle Flower Classification Keras, ResNet50 provided the best

performance among state-of-the-art pre-trained classification networks. Hence, we used

pre-trained ResNet50 model and fine-tuned that on this dataset.

The ResNet50 model consists of 5 stages each with a convolution and identity block.

Each convolution block has 3 convolution layers and each identity block also has 3 convo-

lution layers. The ResNet50 has over 25 million trainable parameters. The architecture

of this network is shown in Fig 5.3.

To fine-tuning ResNet50 on this dataset, we set the parameters of the model to be

non-trainable and then added six more layers, including Batch-Normalization layer and

Dense layer, to the network as below:

• Batch-Normalization layer

https://github.com/RockyXu66/Kaggle_Flowers_Classification_Keras/blob/master/Flower_Classification_Keras.ipynb

Chapter 5. Experiments and Results 64

Figure 5.3: Architecture of ResNet50 Convolutional Neural Network

Figure 5.4: Accuracy and Loss during epochs: Training and validation set

• Dense layer (2048, ReLU activation)

• Batch-Normalization layer

• Dense layer (1024, ReLU activation)

• Batch-Normalization layer

• Dense layer (num-classes=5, softmax activation)

Then, we trained the model on training data and evaluated how well the model performed

on training and validation sets.

The accuracy of fine-tuned ResNet50 on this dataset is 0.92 on training set and 0.90

on validation set. Fig 5.4 shows the accuracy and loss during 30 epochs.

In the following Sections, we evaluated the results of the proposed multi-scale version

of LIME on three different samples taken from the Flower dataset, qualitatively and

Chapter 5. Experiments and Results 65

Figure 5.5: Sample images with the actual labels from Flower dataset

quantitatively. First, in Section 5.3, we investigated how LIME detects the most impor-

tant superpixels at different levels qualitatively. This section evaluated the localization

and class discriminative aspects of the proposed multi-scale scheme. Then, Section 5.4

checked the faithfulness of the proposed multi-scale scheme using Area Under Curve

(AUC) with the idea of deletion the highest superpixels/regions. We also calculated the

explanation accuracy of the multi-scale scheme at coarse, finer, and finest scales.

5.3 Qualitative Results

In order to examine how the proposed multi-scale scheme of LIME works, we chose three

different samples from the Flower dataset shown in Fig 5.5. The reason we chose these

sample images is that there are multiple objects of the same class in each image and

these objects are represented on different scales.

The first sample image is ‘tulips ’ from Fig 5.5. When we passed this image to the

ResNet50, the predicted labels and probabilities corresponding to each class are shown

in Table 5.3. As the predicted probabilities show, the first predicted class is ‘tulips ’ with

a probability of 0.98, and the second predicted class is ‘roses ’ with the probability of

0.18. We passed this sample image into the multi-scale scheme with 17 levels, and the

Chapter 5. Experiments and Results 66

Sample image 1 -Actual class name: tulips Class name Predicted probability

First predicted class tulips 0.98

Second predicted class roses 0.18

Third predicted class daisy 0.00

Forth predicted class sunflowers 0.00

Fifth predicted class dandelion 0.00

Table 5.3: Predicted probabilities per class. Sample image: tulips

final heatmaps corresponding to each level are presented in Fig 5.6. In other words,

we implemented LIME at each scale and fitted individual linear models. The heatmaps

obtained from each level represent the top superpixels toward the target class. As Fig

5.6 shows, we explored the regions of interest from coarse to fine scales.

The execution time of the very first levels, coarse scales, is less than a minute, and

the process takes more time to produce the samples at finer scales, about 3-4 minutes.

Totally the computation time of the proposed multi-scale scheme with 17 levels is around

an hour for each sample image. Clearly, when the number of samples is constant at each

level, the computation time is highly dependent on the the number of levels.

Finally, we presented the weighted combination of as visual explanations the first and

second classes visually, to evaluate the localization and class discriminative aspects of

the proposed multi-scale scheme.

The second sample image is ‘daisy ’ from Fig 5.5. First, we passed this image to the

black-box model, ResNet50, and the predicted probabilities per class are shown in Table

5.4. The first predicted class is ‘daisy ’ with the prediction probability of 0.868. Also,

the black-box model predicted ‘dandelion’ as the second class that we were interested in

investigating and explaining the results visually. In other words, we wanted to see which

part of the image the black-box model was looking at to predict the first and the second

classes.

Chapter 5. Experiments and Results 67

Figure 5.6: Heatmaps of multi-scale segmentation scheme with 17 levels. Sample image:

tulips

Chapter 5. Experiments and Results 68

Sample image 2 -Actual class name: daisy Class name Predicted probability

First predicted class daisy 0.86

Second predicted class dandelion 0.07

Third predicted class sunflowers 0.05

Forth predicted class roses 0.00

Fifth predicted class tulips 0.00

Table 5.4: Predicted probabilities per class. Sample image: daisy

Sample image 3 -Actual class name: dandelion Class name Predicted probability

First predicted class dandelion 0.83

Second predicted class daisy 0.16

Third predicted class sunflowers 0.00

Forth predicted class tulips 0.00

Fifth predicted class roses 0.00

Table 5.5: Predicted probabilities per class. Sample image: dandelion

The third sample image is ‘dandelion’ from 5.5. When we passed this image to

the fine-tuned ResNet50, the model predicted the correct label, ‘dandelion’, as the first

prediction class with probability 0.83. The predictions are shown in Table 5.5. The second

predicted class for this image is ‘daisy ’, and we also explored the class discriminative

aspect of the proposed multi-scale scheme through visual explanations for this sample

image as well. For better comparison and consistency in the results, all of the heatmaps

provided in this section are the weighted combinations with Gaussian function.

Chapter 5. Experiments and Results 69

5.3.1 Visual Explanation Results with Gaussian Function

Evaluating Localization

This section evaluates two main aspects of the proposed multi-scale scheme through the

weighted heatmaps from coarse, finer, and finest scales. As mentioned in the literature,

a good visual explanation method should be able to localize the important pixels/su-

perpixels instead of highlighting a whole region of a target object towards the interest

label/class.

To compare the results of the proposed multi-scale scheme with the original LIME,

we represented the results of each scale with the original LIME on heatmaps, besides

the superimposed heatmaps on top of the sample image. Also, we compared the results

obtained from multi-scale with the square-grids segmentation approach proposed in [95].

All the results presented in this section are obtained from the first predicted class for

each sample image. For the first sample “tulips”, the localization results presented in

Figs 5.7, and 5.10, respectively. As Fig 5.7 shows, the interest regions are more localized

in the multi-scale scheme compared to the original LIME, even at the finest scale. In Fig

5.10, we aimed to evaluate the results obtained from the weighted combination at each

scale with the corresponding results of square-grids segmentation. As it is shown, the

proposed scheme can significantly represent the important superpixels while keeping the

object boundaries.

The same results are provided for second and third sample images as well, see Figs

5.8, and 5.11 for sample “daisy”, Figs 5.9, and 5.12 for sample “dandelion”. The results

in Fig 5.8, is a good example of visual explanations where the image contains multi

objects and different parts of each object have been detected at each scale perfectly.

Looking at the original results of LIME in Fig 5.8, shows that LIME might not be able

to detect all top superpixels/regions with highlighted boundaries. Although the heatmap

of the original LIME highlighted some parts of the interest object, the small objects are

Chapter 5. Experiments and Results 70

Figure 5.7: First predicted class“tulips”: comparison of original LIME vs multi-scale

scheme from coarse to finest scale. The heatmaps are superimposed on top of the original

image shown in the second row for better visualization.

somehow ignored. On the other hand, the explanation results of the proposed multi-scale

scheme for this sample show how the objects detected at coarse and finer scales, even

the smaller objects. Also, when the multi-scale scheme looks at tiny regions of the same

objects from the very last level, tiny superpixels appeared in the results that the model

was looking at during the decision-making process. Fig 5.11 shows the explanation results

of the same sample image “daisy” with the square-grids segmentation, corresponding to

each scale. These heatmaps show a lot of highlighted regions in the background, and

the boundaries were not detected correctly. The results are somehow the same for third

sample “dandelion” in Figs 5.9, and 5.12. The results obtained from multi-scale scheme

are significantly better than the original LIME and square-grids segmentation for this

sample image.

Chapter 5. Experiments and Results 71

Figure 5.8: First predicted class “daisy”: comparison of original LIME vs multi-scale

scheme from coarse to finest scale.

Figure 5.9: First predicted class “dandelion”: comparison of original LIME vs multi-scale

scheme from coarse to finest scale.

Chapter 5. Experiments and Results 72

Figure 5.10: First predicted class “tulips”: Localization of multi-scale scheme from coarse

to finest scale vs square-grids segmentations

Chapter 5. Experiments and Results 73

Figure 5.11: First predicted class “daisy”: Localization of multi-scale scheme from coarse

to finest scale vs square-grids segmentations

Chapter 5. Experiments and Results 74

Figure 5.12: First predicted class “dandelion”: Localization of multi-scale scheme from

coarse to finest scale vs square-grids segmentations

Chapter 5. Experiments and Results 75

Evaluating Class Discriminative

Besides localization, a good visual explanation should be class-discriminative, which

means in a multi-classification problem, the heatmaps of different classes should not

be the same. There are several approaches to examining the similarity of two heatmap-

s/images. This section provided the results of the first and second predicted class for

each sample image corresponding to each scale. The results prove the multi-scale scheme

refers to different superpixels/regions w.r.t. the target class. In Figs 5.13, 5.14, and

5.15 we investigated how the heatmaps are changed corresponding to the first and sec-

ond predicted class for each sample. In Fig 5.13, the second predicted class for sample

image “tulips” is “roses” with accuracy of 0.18, see Table 5.3, and the heatmaps refer

to the irrelevant regions highlighted in the background and the tulips are ignored by the

black-box. Although the heatmaps of the first and second predicted class obtained with

original LIME are not the same for this sample, it is not clear where the black-box model

focused on predicting “roses”. Through the multi-scale scheme, some regions highlighted

at coarse scale are a little bit look like roses, and the model might be fooled in this case.

Another interesting result is provided in Fig 5.14 for sample image “daisy”. In this case,

the second predicted class is “dandelion” , see Table 5.4, and the results obtained from

the original LIME is look-alike, with some minor difference in some regions. But the most

important superpixels with the highest coefficient are the same in the first and second

predicted classes. In other words, the original LIME is not class discriminative in this

sample since it does not explain which superpixels the model has paid attention to predict

the second class. We applied the proposed multi-scale scheme of LIME to this sample,

and the result of the weighted heatmap at the finest scale represents the tiny superpixel

that the model was looking at in the second prediction class. The same experiments

have been done to the third sample image “dandelion”, and the second predicted class

is “daisy”, see Table 5.5. The same as the previous instance image, the original LIME

is not specifically class discriminative, Fig 5.15. The regions that the original LIME

Chapter 5. Experiments and Results 76

Figure 5.13: Evaluation of class discriminative aspect: multi-scale scheme. Sample tulips

represented in the first and second classes are somehow pointing to the same object in

the image. While looking at the explanations of the multi-scale scheme, the top super-

pixels/regions that appeared in the heatmaps of coarse and finer scales w.r.t. the second

class are different than the first predicted class.

5.3.2 Visual Explanation Results with Automated Approaches

Evaluating Localization

Based on the number of segments specified in Table 5.1 for 17 levels in the proposed

multi-scale scheme, the weights are calculated for the first and second automated weight-

ing approaches that are shown in Fig 5.16. For example, according to the first automated

weighting approach presented in Section 4.7.2, experiments of finer scale segmentations

will get higher weights. On the other hand, if we calculate the distance between two

levels by taking the inverse of the number of segments, see Section 4.7.2, some expla-

Chapter 5. Experiments and Results 77

Figure 5.14: Evaluation of class discriminative aspect: multi-scale scheme. Sample daisy

Figure 5.15: Evaluation of class discriminative aspect: multi-scale scheme. Sample dan-

delion

Chapter 5. Experiments and Results 78

Figure 5.16: Automated weighting approaches

nations obtained from the coarse scale will get higher weights and explanations of finer

scales will be equally weighted. The explanation results of these two automated weight-

ing approaches are shown in Figs 5.17, 5.18, 5.19, for “tulips”, “daisy”, and “dande-

lion”, respectively. The explanation results of heatmaps obtained from these automated

weighting approaches are considerably consistent with the results of coarse and finest

scales weighted with Gaussian function.

Evaluating Class Discriminative

In this section, we evaluated the class discriminative aspect of the multi-scale scheme

with automated weighting approaches. Figs 5.20, 5.21, and 5.22 represent the results

of the first and second predicted class on heatmaps obtained from automated weighting

approaches for sample images “tulips”, “daisy”, and “dandelion”, respectively. In each

figure, the first and second rows represent the weighted heatmaps obtained from the

automated weighting approaches for the first and second predicted classes, respectively.

The results are visually consistent with the Gaussian function weighting approach at the

Chapter 5. Experiments and Results 79

Figure 5.17: Explanation result of the automated weighting approaches for sample image

tulips

Chapter 5. Experiments and Results 80

Figure 5.18: Explanation result of the automated weighting approaches for sample image

daisy

Chapter 5. Experiments and Results 81

Figure 5.19: Explanation result of the automated weighting approaches for sample image

dandelion

Chapter 5. Experiments and Results 82

coarse and finest scale.

These are two general approaches to classifying the heatmaps. We believe that the

weighting approaches are subjective and the weights might be assigned based on an ex-

pert’s opinion. In other words, the measure of goodness is subjective when the scales are

increasing or decreasing. In these weighting approaches, we aim to provide various infor-

mation at different scales. For example, we assign weights based on Gaussian function to

focus on mid-range scale experiments and produce explanations that are more localized

to the objects’ boundaries. Also in the proposed parameter-free weighting approaches,

when it considers the difference in the number of superpixels at each level, the purpose is

that experiments which provide various results get higher weights. Therefore, increasing

the number of scales does not matter in this case. Another way is to assign weights to

the heatmaps based on an expert’s opinion in high-risk cases, like medical images.

Since the automated weighting approaches provided consistent results with varying

scales, we are motivated to use these approaches on biological datasets in Section 5.5.

5.4 Quantitative Results

This section evaluates the faithfulness of the proposed multi-scale scheme through AUC

and the explanation accuracy at each level.

5.4.1 Area Under Curve

Estimation of the importance of each superpixel in state-of-the-art methods has been

investigated in [98]. To assess the performance of LIME with the proposed multi-scale

explanation scheme, we used the automatic evaluation metric called “deletion”, motivated

by [36, 98]. The intuition behind the deletion metric is that the removal of the cause

will force the base model to change its decision. Specifically, this metric measures a

decrease in prediction probabilities as more and more important pixels are removed,

Chapter 5. Experiments and Results 83

Figure 5.20: Evaluation of class discriminative aspect: automated weighting approaches

for sample image tulips

Chapter 5. Experiments and Results 84

Figure 5.21: Evaluation of class discriminative aspect: automated weighting approaches

for sample image daisy

Chapter 5. Experiments and Results 85

Figure 5.22: Evaluation of class discriminative aspect: automated weighting approaches

for sample image dandelion

Chapter 5. Experiments and Results 86

where the importance is obtained from the importance map. A sharp drop and thus

a low area under the probability curve means a good explanation. In this section, we

calculated the predicted probability after removing top superpixels. In other words,

salient superpixels/regions are gradually masked from the input image by setting pixels

to zero, then the masked image will be passed to the black-box model.

The probability of the sample image “tulips” is 0.98. We gradually removed the

top superpixels with an increment of 1 and passed the new sample image to the model.

Fig 5.23 shows deletion of top superpixels one by one in segmentations 1 to 5. In Fig

5.23, the first row represents the removal of the top two superpixels led to the prediction

accuracy near zero. The second row corresponds to the deletion of superpixels with an

increment of 1 in segmentation 2. This process continued, and the six sample images

corresponding to the deletion of top superpixels in segmentation 3 to 5 are shown. To

see how AUC changed and the probabilities varied to become zero/near zero in higher

levels with a large number of superpixels/regions, we decided to remove top regions

with an increment of 5, then check the probabilities in Fig 5.24, where x-axis shows the

number of masked images, and y-axis shows the prediction accuracy corresponding to

each masked image. Each plot shows a drop in the prediction accuracy after deletion of

top superpixels with an increment of 5. In other words, we removed the top 5 superpixels

at each level/segmentation and then passed the created masked image to the black-box.

A sharp drop and thus a low area under the probability curve shows that LIME can

perform as expected for a range of scales. Since there are multiple objects of the same

class in the masked images, some regions of other objects still got a chance to be detected

by the black-box and represented by the multi-scale scheme, specifically at lower levels

where the superpixels are too fine. That is why we can see a few significant increases

in predicted probabilities at some steps. Finally, all the probabilities will get near zero,

proving that the explanation is faithful and the model being explained could find the

most relevant regions even by looking at finer scales through the proposed multi-scale

Chapter 5. Experiments and Results 87

scheme.

5.4.2 Explanation Accuracy

In recent research, a methodology has been proposed in [103] toward quantifying the re-

liability of the explanations procured as an outcome from XAI algorithms, and proceeds

in the direction of building user trust in the black-box models. The ideology behind the

proposed quantifiable system is that salient regions detected by XAI algorithms should

be sufficient to obtain approximately similar prediction accuracy, if not higher than the

accuracy obtained when the entire attribute set is provided to the model. In other words,

the proposed quantifying system feeds the explanations of the input features obtained

from the XAI algorithm to the black-box model as input and notes its accuracy and

prediction label. This information is then compared to the accuracy and prediction label

computed when the original input feature subset is passed as input to the same black-box

model. The whole idea is that since the algorithm already captures the most influential

features during the training phase, sending the explanations would aid in quantifying the

reliability of the built model. Initially, Prediction Accuracy “pa” is computed when the

entire feature subset or input image is passed to a black-box model and the correspond-

ing prediction class is noted. The prediction is then utilized in computing the model’s

explanation and a feature subset. More precisely, by sending the initial input image with

its corresponding prediction to an XAI algorithm, salient features of the original input

are obtained. This obtained feature subset containing the most influential features in

computing the prediction is then passed to the aforementioned black-box model, and the

prediction label with its accuracy is observed and noted as explanation accuracy “ea”.

Since the weighted combination of the heatmaps with Gaussian function provided

enough variation from coarse to fine scales, we evaluated the explanation accuracy at

these three scales. Therefore, each of these weighted heatmaps is multiplied by the input

image, then the output, which is a masked image where some part of the superpixels are

Chapter 5. Experiments and Results 88

Figure 5.23: Masked images after removing top superpixels with an increment of 1.

Chapter 5. Experiments and Results 89

Figure 5.24: AUC for sample image “tulips”. The predicted probabilities after deletion

of top 5 superpixels in each sample image.

Chapter 5. Experiments and Results 90

explanation accuracy (ea) ea of square grids es of multi-scale scheme

Original LIME 0.98 - -

Coarse-scale - 0.96 1.00

Finer-scale - 0.94 0.99

Finest-scale - 0.90 0.99

Table 5.6: Quantitative results of multi-scale scheme w.r.t. the original LIME, and

square-grids segmentation. Sample image: tulips. The prediction accuracy of the

input image is 0.98. The explanation accuracies with square-grid segmentations are

decreased, which is against what we expect from an XAI method.

gray, will be passed to the same black-box, and explanation accuracy will be observed.

Figs 5.25, 5.26, and 5.27 show the masked images after multiplying the input image by

the corresponding heatmaps for “tulips”, “daisy”, and “dandelion”, respectively. We

compared the ea of the multi-scale scheme with the original LIME for each sample image

in Tables 5.6, 5.7, and 5.8.

5.5 Histopathology Cancer Detection

In [95] the square-grids segmentation has been tested on Camelyon16 dataset with VGG19

network as the black-box model. Since the results of VGG19 network has been proved

on this dataset, we chose the same black-box model with the same dataset to assess

the results of proposed multi-scale scheme. This model consisted of a CNN with 0.968

prediction accuracy on the test set [95]. The only change we made was in the last layer of

the network to get the prediction probabilities through softmax activation function, then

trained the model on the test set. This section aims to evaluate the visual explanations

of proposed multi-scale scheme with the automated weighting approaches on Camelyon

16. Therefore, we compared the results with the square-grids segmentations qualitatively,

Chapter 5. Experiments and Results 91

explanation accuracy

(ea)
ea of square grids ea of multi-scale scheme

Original LIME:

predicted dandelion
0.65 - -

Coarse-scale - 0.89 0.97

Finer-scale - 0.87 0.95

Finest-scale - 0.87 0.94

Table 5.7: Quantitative results of multi-scale scheme w.r.t. the original LIME, and

square-grids segmentation. Sample image: daisy. The pa of this sample is 0.86 and

LIME led to a wrong prediction in this sample, dandelion. The explanation accuracies

are not significantly increased by the explanations of square-grids segmentation, but the

multi-scale scheme led to 10 percent increase in accuracies obtained from each scale.

explanation accuracy

(ea)
ea of square grids ea of multi-scale scheme

Original LIME: 0.73 - -

Coarse-scale - 0.76 1.00

Finer-scale - 0.83 0.99

Finest-scale - 0.62 0.97

Table 5.8: Quantitative results of multi-scale scheme w.r.t. the original LIME, and

square-grids segmentation. Sample image: dandelion. The pa of this sample is

0.83, and the explanation accuracies of the square-grids segmentation were decreased.

Generally, the multi-scale scheme provides significantly better results than LIME and its

extension with square-grids segmentation.

Chapter 5. Experiments and Results 92

Figure 5.25: Sample image: tulips. Masked images of multiplying input image by the

explanation heatmap obtained from each scale. We passed each of these images to the

same black-box and the ea is obtained. As Table 5.6 shows, the explanation accuracies

are decreased by square-grids segmentation. On the other hand, explanation accuracies

are slightly increased through the multi-scale scheme, which became around 1.

Chapter 5. Experiments and Results 93

Figure 5.26: Sample image: daisy. Masked images of multiplying input image by the

explanation heatmap obtained from each scale. In this sample, the explanation obtained

from traditional LIME led to a wrong prediction, dandelion, see Table 5.7.

Chapter 5. Experiments and Results 94

Figure 5.27: Sample image: dandelion. Masked images of multiplying input image by

the explanation heatmap obtained from each scale. The prediction accuracy of the input

image is 0.83, and Table 5.8 shows the explanation accuracies of traditional LIME and

the square-grids segmentations are decreased. However, the multi-scale scheme caused

the accuracies got around 0.99, and 1.

Chapter 5. Experiments and Results 95

and quantitatively.

5.5.1 Dataset

Lymph Node Metastases on Camelyon16

Patch Camelyon (P-CAM) is a dataset developed by Veeling et al. [124]. It was de-

rived from the Camelyon16 hematoxylin and eosin-stained WSIs. The original whole

slide images were acquired and digitized with a 40× objective (corresponding to a pixel

resolution of 0.243 microns) [12], and undersampled at 10× to increase the field of view

for P-CAM. The 96 by 96 pixel patches were extracted by [124] from the gigapixel WSIs

by converting the slides to hue-saturation-value format (HSV), followed by blurring and

filtering out patches that had saturation lines below 0.07, which was shown to exclude

irrelevant background patches [95]. The binary labels of each image corresponded to the

presence or absence of at least one pixel of tumor tissue in the central 32 by 32 pixel

square of each patch. 0 meaning absence, and 1 meaning the presence of tumor tissue.

Tumor tissue outside this square did not influence the label. However, this outer region

was maintained in the image, both to it possibly giving relevant context for classification

algorithms and to enable the usage of certain types of fully-convolutional models that

do not use zero-padding [122]. The dataset was presented in two versions. The first one

was a GitHub repository [122] containing the full dataset of 327,680 patches divided into

training validation and test sets following the same division of the original Camelyon16.

The second version was the same as the first, but removed duplicate images present in the

original P-CAM due to the probabilistic sampling of patches. This version was presented

as a dataset for a Kaggle competition [123]. Besides the removal of duplicates, there is

no differences between the splits or other aspects of the data. There are 220,026 labelled

images in the second version. For the remainder of this thesis, we work on the second

version of this dataset downloaded from Kaggle. Two sample image from Camelyon16

Chapter 5. Experiments and Results 96

Figure 5.28: Sample images from Camelyon 16.

dataset are shown in Fig 5.28.

5.5.2 Explanation Results of Multi-scale Scheme on Biological

Dataset

We chose two sample images from Camelyon 16 dataset with the actual label 1. These

samples are correctly classified as true positive with the VGG19 network and the predic-

tion accuracy is 0.741, and 0.834, respectively, see Figs 5.29, and 5.32. For the first sample

image, the results of multi-scale scheme and the combined heatmaps by the automated

weighting approaches are presented in Fig 5.29. To compare the results quantitatively,

we multiplied the sample image by each of these heatmaps, and the masked images are

shown in Fig 5.31, along with the ea corresponding to each image. As the results show,

the ea obtained from traditional LIME is 0.548, which caused a significant decrease in

the prediction accuracy of the original input image. Although the square-grids segmen-

tation can detect some superpixels/regions by weighting approach 1, the results of the

multi-scale scheme are more convincing even at finer scales. The explanation accuracies

Chapter 5. Experiments and Results 97

Figure 5.29: True positive sample image from Camelyon16. Results of the multi-scale

scheme with automated weighting approaches. Prediction accuracy of this sample image

with VGG19 was 0.741, and reached to 0.82 by multi-scale scheme

of multi-scale scheme at coarse and fine scales have been increased to 0.82, and 0.79,

respectively. Visually speaking, the localization of multi-scale scheme compare to the

square-grids is much more convincing, specifically at finer scale.

The same results were observed for the second sample image as well. The local-

ization of the multi-scale scheme compared to the traditional LIME and square-grids

segmentation is provided in Fig 5.33. The heatmaps of the multi-scale scheme referred to

different regions/superpixels of an input image. Hence, we were motivated to check the

explanation accuracies and compare the results with traditional LIME and square-grids

segmentation in Fig 5.34. As the results prove, the ea obtained from traditional LIME

reached 0.691, which means the explanation obtained from traditional LIME does not

contain the most important regions of the input image. On the other hand, the values

of ea increased through the proposed multi-scale scheme compared to traditional LIME

and square-grids segmentation, Fig 5.34.

Chapter 5. Experiments and Results 98

Figure 5.30: Localization of multi-scale scheme vs square grids explanation. True positive

sample image from Camelyon16 dataset.

Chapter 5. Experiments and Results 99

Figure 5.31: Quantitative results: Explanation accuracies of multi-scale scheme vs

square-grids and traditional LIME. The pa for this sample is 0.741.

Chapter 5. Experiments and Results 100

Figure 5.32: True positive second sample image from Camelyon16. Results of the multi-

scale scheme with automated weighting approaches. Prediction accuracy of this sample

image with VGG19 was 0.83, and reached to 0.89 by multi-scale scheme

5.6 Summary

In this chapter, we evaluated the results of the proposed multi-scale scheme of LIME

on Flower Dataset from TFDS and a Biological dataset, Camelyon 16, along with the

fine-tuned networks trained explicitly for these two classification problems. Finally, we

compared the explanation results obtained from the multi-scale version of LIME with

the traditional LIME and the square-grids segmentation proposed in the literature. This

study proves that the explanations provided as heatmaps of the proposed multi-scale

scheme are significantly better than the previous extensions of LIME, qualitatively and

quantitatively. We also proposed two ways to calculate the weighted heatmaps and

focus on the influential regions from coarse to fine scale using Gaussian function and the

parameter-free automated weighting approaches.

Chapter 5. Experiments and Results 101

Figure 5.33: Localization of multi-scale scheme vs square-grids explanation. True positive

second sample image from Camelyon16 dataset.

Chapter 5. Experiments and Results 102

Figure 5.34: Quantitative results: Explanation accuracies of multi-scale scheme vs

square-grids and traditional LIME. The pa for this sample is 0.83.

Chapter 6

Conclusion and Future work

This research aimed to study the effectiveness of LIME as a model-agnostic explana-

tion approach for interpreting the decision of black-box models and address some of its

shortcomings corresponding to images.

We proposed a multi-scale scheme to enhance visual explanations of LIME at different

scales through the results from attentive heatmaps that can produce more comprehensive

explanations from coarse to fine scale. In other words, this thesis contributed to the ex-

tension of LIME with local explanations obtained from different scales. This thesis also

introduced weighting approaches with Gaussian distribution and a parameter-free frame-

work for producing heatmaps of different levels as visual explanations. Therefore, this

Chapter summarizes the main contributions presented in this thesis and offers promising

future research directions.

6.1 Thesis Contribution Highlights

The main contribution of this thesis in Chapter 4 can be summarized as follows:

• Multi-scale scheme for visual explanations of LIME

Since LIME is too sensitive to superpixel segmentation, we segment an image into

103

Chapter 6. Conclusion and Future work 104

the desired number of superpixels at each level, then apply LIME and fit a linear

model to achieve a visual explanation on heatmaps that represent how strong each

patch is correlated with the classifier decision. In this multi-scale framework, first,

an input image is segmented into large patches, coarse scale segmentation, at the

first level, and the patches will get smaller at the last level. Hence, through this

multi-scale scheme, LIME will focus on the same patch at coarse to finer scales to

interpret how important each tiny piece of an image is toward the classifier decision.

• Calculating weighted heatmaps obtained from multi-scale scheme

This thesis presents two ways to calculate the weighted heatmaps and produce

visual explanations from coarse, finer and finest scales. Firstly, we use Gaussian

distribution when the mean is shifted to the left and right to produce various ex-

planations of different scales. Secondly, we proposed parameter-free automated

weighting approaches to assign weights to the heatmaps based on the difference in

the number of superpixels. To be more precise, if the number of superpixels is close

at two sequential levels, they might probably produce similar results. Therefore,

the explanations obtained from these levels will get low weights. On the opposite,

a large gap between the number of superpixels of two levels will achieve various ex-

planation results. The results of automated weighting approaches are aligned with

the explanation results obtained from Gaussian distribution weighting at coarse

and finest scales.

The results show this multi-scale scheme of LIME achieves highly accurate results

compared to the square-grids segmentation, presented in the literature, as the ob-

jects’ boundaries remain in this approach and the explanations are more localized.

Furthermore, the quantitative results prove that LIME can perform as expected

for a range of scales, and the explanations would be better or at least equal to the

original LIME, qualitatively and quantitatively.

Chapter 6. Conclusion and Future work 105

6.2 Limitations

The qualitative and quantitative experimental results demonstrated that the proposed

methods produce quite interpretable results. However, there are some limitations accom-

panied with this method which should be considered.

• Since the number of superpixels are different at each level, the implementation of

LIME and fitting of the linear model are done separately, which is time-consuming

in large-scale images.

• To check the results quantitatively, we calculated AUC to make sure that LIME can

detect relevant superpixels, even at the very fine scale segmentation level, besides

the explanation accuracies, which produced convincing results. Since the datasets

used in this thesis do not have ground truth, we could not evaluate the localization

aspect of the proposed method quantitatively. There is a metric called “Pointing

Game” which could assess the explanation method and count how many pixels with

the highest score are located inside the ground truth area.

6.3 Future Work

The proposed methods in this thesis open several new directions for future work. Since

the number of superpixels/coefficients is varied in each level of the proposed multi-scale

scheme, LIME should be implemented separately. We suggest creating a projection

matrix of joining segmentation obtained from coarse to fine scales, then using the pro-

jection matrix to fit the linear model. We can overlap tiny superpixels from finer scale

segmentation to the corresponding region at coarse scale segmentation. Therefore, the

masked images of each scale can be mapped to the joint segmentation in the projection

matrix, where the number of superpixels/coefficients are constant. So, a single linear

model will be fitted to the perturbations. Furthermore, instead of taking average from

Chapter 6. Conclusion and Future work 106

heatmaps, the sampling can be modified in LIME instead of taking an equal number of

samples/perturbations at each level. Sampling in the proposed multi-scale scheme could

also be modified. For example, the proposed weighting approaches, either Gaussian dis-

tribution or parameter-free automated approaches, could be used to define the number

of samples at each level. The proposed scheme could also be implemented along with

various segmentation algorithms in the literature, such as Quickshift, and Felzenszwalb,

to compare the effectiveness of the segmentation algorithm in LIME.

Bibliography

[1] Radhakrishna Achanta, Appu Shaji, Kevin Smith, Aurelien Lucchi, Pascal Fua,

and Sabine Süsstrunk. SLIC superpixels. Technical report, 2010.

[2] Amina Adadi and Mohammed Berrada. Peeking inside the black-box: a survey on

explainable artificial intelligence (XAI). IEEE access, 6:52138–52160, 2018.

[3] Saad Albawi, Tareq Abed Mohammed, and Saad Al-Zawi. Understanding of a

convolutional neural network. In 2017 international conference on engineering and

technology (ICET), pages 1–6. Ieee, 2017.

[4] Maximilian Alber, Sebastian Lapuschkin, Philipp Seegerer, Miriam Hägele,

Kristof T Schütt, Grégoire Montavon, Wojciech Samek, Klaus-Robert Müller, Sven

Dähne, and Pieter-Jan Kindermans. innvestigate neural networks! J. Mach. Learn.

Res., 20(93):1–8, 2019.

[5] David Alvarez Melis and Tommi Jaakkola. Towards robust interpretability with

self-explaining neural networks. Advances in neural information processing systems,

31, 2018.

[6] David Alvarez-Melis and Tommi S Jaakkola. A causal framework for explain-

ing the predictions of black-box sequence-to-sequence models. arXiv preprint

arXiv:1707.01943, 2017.

107

Bibliography 108

[7] Plamen P Angelov, Eduardo A Soares, Richard Jiang, Nicholas I Arnold, and

Peter M Atkinson. Explainable artificial intelligence: an analytical review. Wiley

Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 11(5):e1424,

2021.

[8] Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret Mitchell, Dhruv Batra,

C Lawrence Zitnick, and Devi Parikh. Vqa: Visual question answering. In Proceed-

ings of the IEEE international conference on computer vision, pages 2425–2433,

2015.

[9] Alejandro Barredo Arrieta, Natalia Dı́az-Rodŕıguez, Javier Del Ser, Adrien Ben-

netot, Siham Tabik, Alberto Barbado, Salvador Garćıa, Sergio Gil-López, Daniel

Molina, Richard Benjamins, et al. Explainable artificial intelligence (XAI): Con-

cepts, taxonomies, opportunities and challenges toward responsible AI. Information

Fusion, 58:82–115, 2020.

[10] Vijay Arya, Rachel KE Bellamy, Pin-Yu Chen, Amit Dhurandhar, Michael Hind,

Samuel C Hoffman, Stephanie Houde, Q Vera Liao, Ronny Luss, Aleksandra Mo-

jsilović, et al. One explanation does not fit all: A toolkit and taxonomy of AI

explainability techniques. arXiv preprint arXiv:1909.03012, 2019.

[11] Sebastian Bach, Alexander Binder, Grégoire Montavon, Frederick Klauschen,

Klaus-Robert Müller, and Wojciech Samek. On pixel-wise explanations for

non-linear classifier decisions by layer-wise relevance propagation. PloS one,

10(7):e0130140, 2015.

[12] Babak Ehteshami Bejnordi, Mitko Veta, Paul Johannes Van Diest, Bram Van Gin-

neken, Nico Karssemeijer, Geert Litjens, Jeroen AWM Van Der Laak, Meyke

Hermsen, Quirine F Manson, Maschenka Balkenhol, et al. Diagnostic assessment

Bibliography 109

of deep learning algorithms for detection of lymph node metastases in women with

breast cancer. Jama, 318(22):2199–2210, 2017.

[13] Jyostna Devi Bodapati and Naralasetti Veeranjaneyulu. Feature extraction and

classification using deep convolutional neural networks. Journal of Cyber Security

and Mobility, pages 261–276, 2019.

[14] Nadia Burkart and Marco F Huber. A survey on the explainability of supervised

machine learning. Journal of Artificial Intelligence Research, 70:245–317, 2021.

[15] Urszula Chajewska and Joseph Y Halpern. Defining explanation in probabilistic

systems. arXiv preprint arXiv:1302.1526, 2013.

[16] A Chattopadhyay, A Sarkar, P Howlader, and VN Balasubramanian. Grad-

CAM++: Improved visual explanations for deep convolutional networks. arxiv

2017. arXiv preprint arXiv:1710.11063.

[17] Hanjie Chen, Guangtao Zheng, and Yangfeng Ji. Generating hierarchical expla-

nations on text classification via feature interaction detection. arXiv preprint

arXiv:2004.02015, 2020.

[18] Hugh Chen, Scott Lundberg, and Su-In Lee. Explaining models by propagating

shapley values of local components. In Explainable AI in Healthcare and Medicine,

pages 261–270. Springer, 2021.

[19] Xinlei Chen, Hao Fang, Tsung-Yi Lin, Ramakrishna Vedantam, Saurabh Gupta,

Piotr Dollár, and C Lawrence Zitnick. Microsoft coco captions: Data collection

and evaluation server. arXiv preprint arXiv:1504.00325, 2015.

[20] Paulo Cortez and Mark J Embrechts. Opening black box data mining models using

sensitivity analysis. In 2011 IEEE Symposium on Computational Intelligence and

Data Mining (CIDM), pages 341–348. IEEE, 2011.

Bibliography 110

[21] Danilo Croce, Daniele Rossini, and Roberto Basili. Explaining non-linear classi-

fier decisions within kernel-based deep architectures. In Proceedings of the 2018

EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for

NLP, pages 16–24, 2018.

[22] Hoa Khanh Dam, Truyen Tran, and Aditya Ghose. Explainable software analytics.

In Proceedings of the 40th International Conference on Software Engineering: New

Ideas and Emerging Results, pages 53–56, 2018.

[23] Marina Danilevsky, Kun Qian, Ranit Aharonov, Yannis Katsis, Ban Kawas, and

Prithviraj Sen. A survey of the state of explainable AI for natural language pro-

cessing. arXiv preprint arXiv:2010.00711, 2020.

[24] Maartje MA De Graaf and Bertram F Malle. How people explain action (and

autonomous intelligent systems should too). In 2017 AAAI Fall Symposium Series,

2017.

[25] Anamika Dhillon and Gyanendra K Verma. Convolutional neural network: a review

of models, methodologies and applications to object detection. Progress in Artificial

Intelligence, 9(2):85–112, 2020.

[26] Wang Di. A comparative research on clothing images classification based on neural

network models. In 2020 IEEE 2nd International Conference on Civil Aviation

Safety and Information Technology (ICCASIT, pages 495–499. IEEE, 2020.

[27] Jürgen Dieber and Sabrina Kirrane. Why model why? assessing the strengths and

limitations of lime. arXiv preprint arXiv:2012.00093, 2020.

[28] Filip Karlo Došilović, Mario Brčić, and Nikica Hlupić. Explainable artificial intelli-

gence: A survey. In 2018 41st International convention on information and commu-

nication technology, electronics and microelectronics (MIPRO), pages 0210–0215.

IEEE, 2018.

Bibliography 111

[29] Rachel Lea Draelos and Lawrence Carin. Hirescam: Faithful location representation

in visual attention for explainable 3D medical image classification. arXiv preprint

arXiv:2011.08891, 2020.

[30] Mary T Dzindolet, Scott A Peterson, Regina A Pomranky, Linda G Pierce, and

Hall P Beck. The role of trust in automation reliance. International journal of

human-computer studies, 58(6):697–718, 2003.

[31] Tjoa Erico and Guan Cuntai. A survey on explainable artificial intelligence (XAI):

towards medical XAI. arXiv preprint arXiv:1907.07374, 2019.

[32] Hao Fang, Saurabh Gupta, Forrest Iandola, Rupesh K Srivastava, Li Deng, Piotr

Dollár, Jianfeng Gao, Xiaodong He, Margaret Mitchell, John C Platt, et al. From

captions to visual concepts and back. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 1473–1482, 2015.

[33] Parastoo Farnia, Mohammad Mohammadi, Ebrahim Najafzadeh, Maysam Alimo-

hamadi, Bahador MakkiAbadi, and Alireza Ahmadian. High-quality photoacous-

tic image reconstruction based on deep convolutional neural network: towards

intra-operative photoacoustic imaging. Biomedical Physics & Engineering Express,

6(4):045019, 2020.

[34] Jean-Marc Fellous, Guillermo Sapiro, Andrew Rossi, Helen Mayberg, and Michele

Ferrante. Explainable artificial intelligence for neuroscience: behavioral neurostim-

ulation. Frontiers in neuroscience, page 1346, 2019.

[35] Tomas Folke, Scott Cheng-Hsin Yang, Sean Anderson, and Patrick Shafto. Explain-

able AI for medical imaging: explaining pneumothorax diagnoses with bayesian

teaching. arXiv preprint arXiv:2106.04684, 2021.

Bibliography 112

[36] Ruth C Fong and Andrea Vedaldi. Interpretable explanations of black boxes by

meaningful perturbation. In Proceedings of the IEEE international conference on

computer vision, pages 3429–3437, 2017.

[37] Brian Fulkerson, Andrea Vedaldi, and Stefano Soatto. Class segmentation and

object localization with superpixel neighborhoods. In 2009 IEEE 12th international

conference on computer vision, pages 670–677. IEEE, 2009.

[38] Glenn Fung, Sathyakama Sandilya, and R Bharat Rao. Rule extraction from linear

support vector machines. In Proceedings of the eleventh ACM SIGKDD interna-

tional conference on Knowledge discovery in data mining, pages 32–40, 2005.

[39] Chuang Gan, Naiyan Wang, Yi Yang, Dit-Yan Yeung, and Alex G Hauptmann.

Devnet: A deep event network for multimedia event detection and evidence re-

counting. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 2568–2577, 2015.

[40] Haoyuan Gao, Junhua Mao, Jie Zhou, Zhiheng Huang, Lei Wang, and Wei Xu. Are

you talking to a machine? dataset and methods for multilingual image question.

Advances in neural information processing systems, 28, 2015.

[41] Damien Garreau and Dina Mardaoui. What does lime really see in images? In

International Conference on Machine Learning, pages 3620–3629. PMLR, 2021.

[42] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature

hierarchies for accurate object detection and semantic segmentation. In Proceedings

of the IEEE conference on computer vision and pattern recognition, pages 580–587,

2014.

[43] Lovedeep Gondara. Medical image denoising using convolutional denoising au-

toencoders. In 2016 IEEE 16th international conference on data mining workshops

(ICDMW), pages 241–246. IEEE, 2016.

Bibliography 113

[44] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press,

2016.

[45] Lukasz Gorski, Shashishekar Ramakrishna, and Jedrzej M Nowosielski. Towards

Grad-CAM based explainability in a legal text processing pipeline. arXiv preprint

arXiv:2012.09603, 2020.

[46] Mara Graziani, Thomas Lompech, Henning Müller, and Vincent Andrearczyk.

Evaluation and comparison of cnn visual explanations for histopathology. Explain-

able Agency in Artificial Intelligence at AAAI21, pages 195–201, 2020.

[47] Riccardo Guidotti, Anna Monreale, Salvatore Ruggieri, Franco Turini, Fosca Gian-

notti, and Dino Pedreschi. A survey of methods for explaining black box models.

ACM computing surveys (CSUR), 51(5):1–42, 2018.

[48] David Gunning, Mark Stefik, Jaesik Choi, Timothy Miller, Simone Stumpf, and

Guang-Zhong Yang. XAI—explainable artificial intelligence. Science Robotics,

4(37):eaay7120, 2019.

[49] Taehyun Ha, Sangwon Lee, and Sangyeon Kim. Designing explainability of an

artificial intelligence system. In Proceedings of the Technology, Mind, and Society,

pages 1–1. 2018.

[50] Maaike Harbers, Karel van den Bosch, and John-Jules Ch Meyer. A study into

preferred explanations of virtual agent behavior. In International Workshop on

Intelligent Virtual Agents, pages 132–145. Springer, 2009.

[51] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning

for image recognition. In Proceedings of the IEEE conference on computer vision

and pattern recognition, pages 770–778, 2016.

Bibliography 114

[52] Lisa Anne Hendricks, Ronghang Hu, Trevor Darrell, and Zeynep Akata. Grounding

visual explanations. In Proceedings of the European Conference on Computer Vision

(ECCV), pages 264–279, 2018.

[53] Arthur E Hoerl and Robert W Kennard. Ridge regression: Biased estimation for

nonorthogonal problems. Technometrics, 12(1):55–67, 1970.

[54] Andreas Holzinger, Chris Biemann, Constantinos S Pattichis, and Douglas B Kell.

What do we need to build explainable AI systems for the medical domain? arXiv

preprint arXiv:1712.09923, 2017.

[55] Xavier Alphonse Inbaraj, Charlyn Villavicencio, Julio Jerison Macrohon, Jyh-

Horng Jeng, and Jer-Guang Hsieh. Object identification and localization us-

ing Grad-CAM++ with mask regional convolution neural network. Electronics,

10(13):1541, 2021.

[56] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep net-

work training by reducing internal covariate shift. In International conference on

machine learning, pages 448–456. PMLR, 2015.

[57] Laurent Itti, Christof Koch, and Ernst Niebur. A model of saliency-based visual

attention for rapid scene analysis. IEEE Transactions on pattern analysis and

machine intelligence, 20(11):1254–1259, 1998.

[58] Ulf Johansson, Cecilia Sönströd, Ulf Norinder, and Henrik Boström. Trade-off

between accuracy and interpretability for predictive in silico modeling. Future

medicinal chemistry, 3(6):647–663, 2011.

[59] Justin Johnson, Andrej Karpathy, and Li Fei-Fei. Densecap: Fully convolutional

localization networks for dense captioning. In Proceedings of the IEEE conference

on computer vision and pattern recognition, pages 4565–4574, 2016.

Bibliography 115

[60] Md Rezaul Karim, Till Döhmen, Michael Cochez, Oya Beyan, Dietrich Rebholz-

Schuhmann, and Stefan Decker. Deepcovidexplainer: explainable COVID-19 diag-

nosis from chest X-ray images. In 2020 IEEE International Conference on Bioin-

formatics and Biomedicine (BIBM), pages 1034–1037. IEEE, 2020.

[61] Md Rezaul Karim, Jiao Jiao, Till Doehmen, Michael Cochez, Oya Beyan, Dietrich

Rebholz-Schuhmann, and Stefan Decker. Deepkneeexplainer: Explainable knee

osteoarthritis diagnosis from radiographs and magnetic resonance imaging. IEEE

Access, 9:39757–39780, 2021.

[62] Sujata Khedkar, Vignesh Subramanian, Gayatri Shinde, and Priyanka Gandhi.

Explainable AI in healthcare. In Healthcare (April 8, 2019). 2nd International

Conference on Advances in Science & Technology (ICAST), 2019.

[63] Hojin Kim, Jinhong Jung, Jieun Kim, Byungchul Cho, Jungwon Kwak, Jeong Yun

Jang, Sang-wook Lee, June-Goo Lee, and Sang Min Yoon. Abdominal multi-organ

auto-segmentation using 3D-patch-based deep convolutional neural network. Sci-

entific reports, 10(1):1–9, 2020.

[64] Eyal Klang. Deep learning and medical imaging. Journal of thoracic disease,

10(3):1325, 2018.

[65] Christof Koch and Shimon Ullman. Selecting one among the many: A simple

network implementing shifts in selective visual attention. Technical report, MAS-

SACHUSETTS INST OF TECH CAMBRIDGE ARTIFICIAL INTELLIGENCE

LAB, 1984.

[66] Sajja Tulasi Krishna and Hemantha Kumar Kalluri. Deep learning and transfer

learning approaches for image classification. International Journal of Recent Tech-

nology and Engineering (IJRTE), 7(5S4):427–432, 2019.

Bibliography 116

[67] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification

with deep convolutional neural networks. Advances in neural information processing

systems, 25:1097–1105, 2012.

[68] Devinder Kumar. Class based strategies for understanding neural networks. 2020.

[69] Wooju Lee, Donggyu Sim, and Seoung-Jun Oh. A CNN-based high-accuracy reg-

istration for remote sensing images. Remote Sensing, 13(8):1482, 2021.

[70] Piyawat Lertvittayakumjorn and Francesca Toni. Human-grounded evaluations of

explanation methods for text classification. arXiv preprint arXiv:1908.11355, 2019.

[71] Alex Levinshtein, Adrian Stere, Kiriakos N Kutulakos, David J Fleet, Sven J Dick-

inson, and Kaleem Siddiqi. Turbopixels: Fast superpixels using geometric flows.

IEEE transactions on pattern analysis and machine intelligence, 31(12):2290–2297,

2009.

[72] Xiao-Hui Li, Yuhan Shi, Haoyang Li, Wei Bai, Yuanwei Song, Caleb Chen Cao, and

Lei Chen. Quantitative evaluations on saliency methods: An experimental study.

arXiv preprint arXiv:2012.15616, 2020.

[73] Ying Liang, Diane Schott, Ying Zhang, Zhiwu Wang, Haidy Nasief, Eric Paulson,

William Hall, Paul Knechtges, Beth Erickson, and X Allen Li. Auto-segmentation

of pancreatic tumor in multi-parametric MRI using deep convolutional neural net-

works. Radiotherapy and Oncology, 145:193–200, 2020.

[74] Igor Linkov, Stephanie Galaitsi, Benjamin D Trump, Jeffrey M Keisler, and Alexan-

der Kott. Cybertrust: From explainable to actionable and interpretable artificial

intelligence. Computer, 53(9):91–96, 2020.

Bibliography 117

[75] Zachary C Lipton. The mythos of model interpretability: In machine learning,

the concept of interpretability is both important and slippery. Queue, 16(3):31–57,

2018.

[76] Baozhong Liu and Jianbin Liu. Overview of image denoising based on deep learn-

ing. In Journal of Physics: Conference Series, volume 1176, page 022010. IOP

Publishing, 2019.

[77] Hui Liu, Qingyu Yin, and William Yang Wang. Towards explainable NLP:

A generative explanation framework for text classification. arXiv preprint

arXiv:1811.00196, 2018.

[78] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks

for semantic segmentation. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 3431–3440, 2015.

[79] Yin Lou, Rich Caruana, and Johannes Gehrke. Intelligible models for classification

and regression. In Proceedings of the 18th ACM SIGKDD international conference

on Knowledge discovery and data mining, pages 150–158, 2012.

[80] Yin Lou, Rich Caruana, Johannes Gehrke, and Giles Hooker. Accurate intelligi-

ble models with pairwise interactions. In Proceedings of the 19th ACM SIGKDD

international conference on Knowledge discovery and data mining, pages 623–631,

2013.

[81] Scott M Lundberg and Su-In Lee. A unified approach to interpreting model pre-

dictions. Advances in neural information processing systems, 30, 2017.

[82] Wenjie Luo, Yujia Li, Raquel Urtasun, and Richard Zemel. Understanding the

effective receptive field in deep convolutional neural networks. Advances in neural

information processing systems, 29, 2016.

Bibliography 118

[83] Mateusz Malinowski, Marcus Rohrbach, and Mario Fritz. Ask your neurons: A

neural-based approach to answering questions about images. In Proceedings of the

IEEE international conference on computer vision, pages 1–9, 2015.

[84] David Martin, Charless Fowlkes, Doron Tal, and Jitendra Malik. A database of

human segmented natural images and its application to evaluating segmentation

algorithms and measuring ecological statistics. In Proceedings Eighth IEEE Inter-

national Conference on Computer Vision. ICCV 2001, volume 2, pages 416–423.

IEEE, 2001.

[85] David R Martin, Charless C Fowlkes, and Jitendra Malik. Learning to detect

natural image boundaries using local brightness, color, and texture cues. IEEE

transactions on pattern analysis and machine intelligence, 26(5):530–549, 2004.

[86] Christian Meske and Enrico Bunde. Transparency and trust in Human-AI-

Interaction: The role of model-agnostic explanations in computer vision-based

decision support. In International Conference on Human-Computer Interaction,

pages 54–69. Springer, 2020.

[87] Tim Miller, Piers Howe, and Liz Sonenberg. Explainable AI: Beware of inmates

running the asylum or: How I learnt to stop worrying and love the social and

behavioural sciences. arXiv preprint arXiv:1712.00547, 2017.

[88] Shervin Minaee, Yuri Y Boykov, Fatih Porikli, Antonio J Plaza, Nasser Kehtar-

navaz, and Demetri Terzopoulos. Image segmentation using deep learning: A sur-

vey. IEEE transactions on pattern analysis and machine intelligence, 2021.

[89] Reza Mohammadi, Iman Shokatian, Mohammad Salehi, Hossein Arabi, Isaac Shiri,

and Habib Zaidi. Deep learning-based auto-segmentation of organs at risk in high-

dose rate brachytherapy of cervical cancer. Radiotherapy and Oncology, 159:231–

240, 2021.

Bibliography 119

[90] Grégoire Montavon, Wojciech Samek, and Klaus-Robert Müller. Methods for inter-

preting and understanding deep neural networks. Digital Signal Processing, 73:1–15,

2018.

[91] Morten Mørup. Applications of tensor (multiway array) factorizations and de-

compositions in data mining. Wiley Interdisciplinary Reviews: Data Mining and

Knowledge Discovery, 1(1):24–40, 2011.

[92] Zohaib Mushtaq, Shun-Feng Su, and Quoc-Viet Tran. Spectral images based en-

vironmental sound classification using cnn with meaningful data augmentation.

Applied Acoustics, 172:107581, 2021.

[93] Kamyar Nazeri Naeini. Structure guided image restoration: a deep learning ap-

proach. PhD thesis, 2019.

[94] Andrés Páez. The pragmatic turn in explainable artificial intelligence (XAI). Minds

and Machines, 29(3):441–459, 2019.

[95] Iam Palatnik de Sousa, Marley Maria Bernardes Rebuzzi Vellasco, and Eduardo

Costa da Silva. Local interpretable model-agnostic explanations for classification

of lymph node metastases. Sensors, 19(13):2969, 2019.

[96] Frank Pasquale. The black box society. Harvard University Press, 2015.

[97] Dino Pedreschi, Fosca Giannotti, Riccardo Guidotti, Anna Monreale, Salvatore

Ruggieri, and Franco Turini. Meaningful explanations of black box AI decision

systems. In Proceedings of the AAAI conference on artificial intelligence, volume 33,

pages 9780–9784, 2019.

[98] Vitali Petsiuk, Abir Das, and Kate Saenko. Rise: Randomized input sampling for

explanation of black-box models. arXiv preprint arXiv:1806.07421, 2018.

Bibliography 120

[99] Nina Poerner, Benjamin Roth, and Hinrich Schütze. Evaluating neural network

explanation methods using hybrid documents and morphological agreement. arXiv

preprint arXiv:1801.06422, 2018.

[100] Mengye Ren, Ryan Kiros, and Richard Zemel. Exploring models and data for image

question answering. Advances in neural information processing systems, 28, 2015.

[101] Mauricio Reyes, Raphael Meier, Sérgio Pereira, Carlos A Silva, Fried-Michael

Dahlweid, Hendrik von Tengg-Kobligk, Ronald M Summers, and Roland Wiest.

On the interpretability of artificial intelligence in radiology: challenges and oppor-

tunities. Radiology: Artificial Intelligence, 2(3):e190043, 2020.

[102] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. ” why should I trust

you?” explaining the predictions of any classifier. In Proceedings of the 22nd ACM

SIGKDD international conference on knowledge discovery and data mining, pages

1135–1144, 2016.

[103] Pratyush Rokade and Kumar Raju Alluri BKSP. Building quantifiable system for

XAI models. Available at SSRN 4038039.

[104] Cynthia Rudin. Algorithms for interpretable machine learning. In Proceedings of

the 20th ACM SIGKDD international conference on Knowledge discovery and data

mining, pages 1519–1519, 2014.

[105] Cynthia Rudin. Stop explaining black box machine learning models for high

stakes decisions and use interpretable models instead. Nature Machine Intelligence,

1(5):206–215, 2019.

[106] Andrea Saltelli, Marco Ratto, Terry Andres, Francesca Campolongo, Jessica Cari-

boni, Debora Gatelli, Michaela Saisana, and Stefano Tarantola. Global sensitivity

analysis: the primer. John Wiley & Sons, 2008.

Bibliography 121

[107] Makoto Sato and Hiroshi Tsukimoto. Rule extraction from neural networks via

decision tree induction. In IJCNN’01. International Joint Conference on Neural

Networks. Proceedings (Cat. No. 01CH37222), volume 3, pages 1870–1875. IEEE,

2001.

[108] Ludwig Schallner, Johannes Rabold, Oliver Scholz, and Ute Schmid. Effect of

superpixel aggregation on explanations in lime–a case study with biological data.

In Joint European Conference on Machine Learning and Knowledge Discovery in

Databases, pages 147–158. Springer, 2019.

[109] Kathryn Schutte, Olivier Moindrot, Paul Hérent, Jean-Baptiste Schiratti, and Si-

mon Jégou. Using stylegan for visual interpretability of deep learning models on

medical images. arXiv preprint arXiv:2101.07563, 2021.

[110] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedan-

tam, Devi Parikh, and Dhruv Batra. Grad-CAM: Visual explanations from deep

networks via gradient-based localization. In Proceedings of the IEEE international

conference on computer vision, pages 618–626, 2017.

[111] Sumeet S Shah and John W Sheppard. Evaluating explanations of convolutional

neural network image classifications. In 2020 International Joint Conference on

Neural Networks (IJCNN), pages 1–8. IEEE, 2020.

[112] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convolu-

tional networks: Visualising image classification models and saliency maps. arXiv

preprint arXiv:1312.6034, 2013.

[113] Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and Martin Ried-

miller. Striving for simplicity: The all convolutional net. arXiv preprint

arXiv:1412.6806, 2014.

Bibliography 122

[114] Hendrik Strobelt, Sebastian Gehrmann, Hanspeter Pfister, and Alexander M Rush.

Lstmvis: A tool for visual analysis of hidden state dynamics in recurrent neural

networks. IEEE transactions on visualization and computer graphics, 24(1):667–

676, 2017.

[115] Yanan Sun, Bing Xue, Mengjie Zhang, and Gary G Yen. Evolving deep convolu-

tional neural networks for image classification. IEEE Transactions on Evolutionary

Computation, 24(2):394–407, 2019.

[116] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep

networks. In International Conference on Machine Learning, pages 3319–3328.

PMLR, 2017.

[117] Chunwei Tian, Yong Xu, Lunke Fei, Junqian Wang, Jie Wen, and Nan Luo. En-

hanced CNN for image denoising. CAAI Transactions on Intelligence Technology,

4(1):17–23, 2019.

[118] Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the

Royal Statistical Society: Series B (Methodological), 58(1):267–288, 1996.

[119] Nava Tintarev and Judith Masthoff. A survey of explanations in recommender

systems. In 2007 IEEE 23rd international conference on data engineering workshop,

pages 801–810. IEEE, 2007.

[120] Erico Tjoa and Cuntai Guan. A survey on explainable artificial intelligence (XAI):

Toward medical XAI. IEEE transactions on neural networks and learning systems,

32(11):4793–4813, 2020.

[121] Julian Tritscher, Markus Ring, Daniel Schlr, Lena Hettinger, and Andreas Hotho.

Evaluation of post-hoc XAI approaches through synthetic tabular data. In Interna-

tional symposium on methodologies for intelligent systems, pages 422–430. Springer,

2020.

Bibliography 123

[122] B Veeling. The patchcamelyon (PCam) deep learning classification benchmark,

2019.

[123] B Veeling, BE Bejnordi, G Litjens, and JVD Laak. Histopathologic cancer detec-

tion, 2019.

[124] Bastiaan S Veeling, Jasper Linmans, Jim Winkens, Taco Cohen, and Max Welling.

Rotation equivariant cnns for digital pathology. In International Conference

on Medical image computing and computer-assisted intervention, pages 210–218.

Springer, 2018.

[125] Giulia Vilone and Luca Longo. Explainable artificial intelligence: a systematic

review. arXiv preprint arXiv:2006.00093, 2020.

[126] Giulia Vilone and Luca Longo. Classification of explainable artificial intelligence

methods through their output formats. Machine Learning and Knowledge Extrac-

tion, 3(3):615–661, 2021.

[127] Giulia Vilone and Luca Longo. Notions of explainability and evaluation approaches

for explainable artificial intelligence. Information Fusion, 76:89–106, 2021.

[128] Oriol Vinyals, Alexander Toshev, Samy Bengio, and Dumitru Erhan. Show and

tell: A neural image caption generator. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 3156–3164, 2015.

[129] Ge Wang, Jong Chul Ye, and Bruno De Man. Deep learning for tomographic image

reconstruction. Nature Machine Intelligence, 2(12):737–748, 2020.

[130] Weiquan Wang and Izak Benbasat. Recommendation agents for electronic com-

merce: Effects of explanation facilities on trusting beliefs. Journal of Management

Information Systems, 23(4):217–246, 2007.

Bibliography 124

[131] Michael R Wick and William B Thompson. Reconstructive explanation: Explana-

tion as complex problem solving. In IJCAI, pages 135–140, 1989.

[132] Sarah Wiegreffe and Ana Marasović. Teach me to explain: A review of datasets

for explainable nlp. arXiv preprint arXiv:2102.12060, 2021.

[133] Chia-Hung Yeh, Min-Hui Lin, Po-Chao Chang, and Li-Wei Kang. Enhanced vi-

sual attention-guided deep neural networks for image classification. IEEE Access,

8:163447–163457, 2020.

[134] Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional

networks. In European conference on computer vision, pages 818–833. Springer,

2014.

[135] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba.

Learning deep features for discriminative localization. In Proceedings of the IEEE

conference on computer vision and pattern recognition, pages 2921–2929, 2016.

[136] Jan Ruben Zilke, Eneldo Loza Menćıa, and Frederik Janssen. Deepred–rule extrac-

tion from deep neural networks. In International Conference on Discovery Science,

pages 457–473. Springer, 2016.

[137] Avraham Zlochower, Daniel S Chow, Peter Chang, Deepak Khatri, John A Boock-

var, and Christopher G Filippi. Deep learning AI applications in the imaging of

glioma. Topics in Magnetic Resonance Imaging, 29(2):115–00, 2020.

	Thesis Examination Information
	Abstract
	Author’s Declaration
	Statement of Contributions
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Overview
	Problem Definition and Challenges
	Research Question
	Contribution
	Thesis Outline
	Software & Source Code

	Background
	Deep Learning
	Convolutional Neural Networks
	CNN Architecture

	Explainable Artificial Intelligence (XAI)
	Discriminative Aspects of XAI Methods
	XAI Taxonomy

	Transparency of a black-box Model
	Interpretability vs Explainability
	Faithfulness vs Interpretability
	Expectations of an XAI System

	Modes of Explanations
	Local vs Global
	Ante-hoc vs Post-hoc

	Types of Explanations
	Decision Tree Proxy Models One
	Additive Feature Importance
	Salience Mapping
	First Derivative Saliency
	Layer-wise Relevance Propagation
	Perturbation-based Approach
	Model-Agnostic Explanation

	Literature Review
	Visual Explanations from CNNs
	Occlusion Maps
	Guided Backpropagation
	Class Activation Mapping
	Gradient-weighted Class Activation Mapping
	Guided Grad-CAM
	Grad-CAM++
	LIME

	Quantifying Explainability of Saliency Methods

	Methodology
	Introduction
	Motivation: Multi-scale Version of LIME

	Mathematical Function of LIME
	Sampling for Local Exploration
	Superpixels
	Perturbations
	Weights

	Surrogate Model
	Segmentation Algorithm
	Simple Linear Iterative Clustering Segmentation

	Multi-scale Segmentation Scheme
	Multi-scale Visual Explanation
	Weighting Heatmaps with Discrete Gaussian Function
	A Parameter-free Automated Weighting Approach

	Experiments and Results
	Experiment Design
	Flower Classification from TensorFlow Dataset
	Classification model: Fine-tuning ResNet50

	Qualitative Results
	Visual Explanation Results with Gaussian Function
	Visual Explanation Results with Automated Approaches

	Quantitative Results
	Area Under Curve
	Explanation Accuracy

	Histopathology Cancer Detection
	Dataset
	Explanation Results of Multi-scale Scheme on Biological Dataset

	Summary

	Conclusion and Future work
	Thesis Contribution Highlights
	Limitations
	Future Work

	Bibliography

