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Abstract
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2010

Multi-user wireless systems with multiple antennas can drastically increase the capac-

ity while maintaining the quality of service requirements. The best performance of these

systems is obtained at the presence of instantaneous channel knowledge. Since uplink-

downlink channel reciprocity does not hold in frequency division duplex and broadband

time division duplex systems, efficient channel quantization becomes important. This

thesis focuses on different quantization techniques in a linearly precoded multi-user wire-

less system.

Our work provides three major contributions. First, we come up with an end-to-end

transceiver design, incorporating precoder, receive combining and feedback policy, that

works well at low feedback overhead. Second, we provide optimal bit allocation across the

gain and shape of a complex vector to reduce the quantization error and investigate its

effect in the multiuser wireless system. Third, we design an adaptive differential quantizer

that reduces feedback overhead by utilizing temporal correlation of the channels in a time

varying scenario.
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Chapter 1

Introduction

1.1 Motivation

Wireless communication systems face increasing demands in terms of quality of service

and number of users. The implementation of multiple input multiple output (MIMO)

systems can play a significant role in meeting this demand. MIMO systems can be used

in increasing system reliability as well as providing increased data rates. The availability

of channel state information (CSI) at the transmitter increases the capacity of MIMO

systems. However, in frequency division duplex (FDD) and broadband time division

duplex (TDD) systems, the CSI must be estimated at the receiver, quantized and fed

back to the transmitter. Clearly, there is a tradeoff between the feedback rate and

accuracy of the CSI. This thesis investigates different aspects of quantization of CSI,

especially in the context of multiuser MIMO communication.

The field of wireless communication has gone through rapid development in the last

two decades. Two major concerns in designing the wireless systems are the reliability

of the transmission and the capacity of the network. The number of users that can fit

in a particular transmission is limited by the bandwidth and time resources. Current

technologies try to serve multiple users by spreading them over time and frequency in

1
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code division multiple access (CDMA) systems or by distributing them over different

time slots in time division multiple access (TDMA) systems.

MIMO systems allow for spatial dimensions in the network enabling for space division

multiple access (SDMA). SDMA enables the simultaneous access to different users in the

same time and frequency slot using independent paths.

The capacity of the MIMO systems increase linearly with the minimum number of the

transmit and receive antennas. In next generation wireless networks, users are expected

to communicate different streams such as text, audio & video simultaneously with each

other. These data streams have different quality of service (QoS) requirements. By

creating several independent data paths between the transmitter and the receiver and

using suitable coding techniques, MIMO systems can meet these demands.

Fading is one of the most important challenges that need to be addressed while

working in the wireless environment. Fading refers to the random fluctuations of the

wireless environment and it is mostly attributed to the scatterers located between the

base station and the user. The mobility of the user changes the pattern of scattering of

the received data and thus causes fluctuation in the power of the received signal. MIMO

systems play a key role in mitigating the ill-effects of fading.

With CSI at the transmitter, MIMO systems also allow a single transmitter to com-

municate with multiple receivers on the same time/frequency channel. However, the

broadcast nature of wireless communication leads to multiuser interference. Precoding

at the transmitter based on the CSI helps to combat both fading and multiuser interfer-

ence. Precoding uses the spatial dimension of the channel to combat fading and MUI.

Other coding techniques like space-time coding use the temporal dimension to combat

fading and do not require the channel state information.

In our work, we only focus on linear precoding i.e. our algorithm will only consist of

matrix multiplications and additions. This reduces the complexity of data transmission.
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Figure 1.1: Generic model of multiuser MIMO channel with limited feedback

1.2 Key Challenges

We focus on a linear precoding based multiuser MIMO system that has quantized channel

knowledge at the transmitter. The transmitter is a base station (BS) communicating with

multiple users. Our system model is shown in Fig. 1.1. Here, M , K & Ni represent the

total number of transmit antennas, the total number of users and the number of receive

antennas of the ith user respectively. Each user has several antennas and may receive

more than one data stream. Each data stream is assumed independent of the others and

users do not co-operate in the decoding of the data. Each user estimates its own channel

and sends back the CSI via the quantized feedback path.

Feedback of the CSI to the transmitter is an overhead to the communication and

as such this overhead should be minimized. There is a trade-off between the ability to

suppress multiuser interference and the rate of CSI feedback. The central aim of this

thesis is to develop practical quantization schemes that perform well at low feedback
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rates. In this regard, we make three specific contributions:

1. To develop practical quantization schemes that perform better at low rate feedback.

2. To reduce feedback overhead by utilizing temporal correlation of previous chan-

nel instants. This will allow the proposed schemes to be utilized in time varying

channels.

3. To provide optimal bit allocation across gain and shape of the effective vector

downlink channel in a MIMO system.

1.3 Thesis Structure

This thesis is organized as follows. Chapter 2 provides a detailed survey of previous works

on channel quantization and receive combining techniques, optimal bit allocation across

gain and shape of vector and adaptive differential quantization in time varying channels.

Chapter 3 presents our work on MIMO receive combining. We analyze the quantization

error and overall sum mean squared error (SMSE) and show how the proposed algorithm

compares with the existing limited feedback based quantization techniques. Chapter

4 finds the quantization error variance of gain and shape of a complex vector for a

given number of allocated bits. Thereafter, we provide optimal bit allocation across

the gain and shape of the vector. Chapter 5 develops the proposed adaptive differential

quantization techniques and shows how our algorithm can lead to the reduction of several

kBit/sec feedback overhead in a time varying scenario. Finally, Chapter 6 summarizes

contributions of the thesis and suggests possibilities of future work.
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1.4 Publications

This thesis has led to the following publications:

1. M. N. Islam and R.S. Adve, SMSE precoder design in a multiuser MISO system

with limited feedback, 2010 Queens Biennial Symposium [26].

2. M. N. Islam and R.S. Adve, Linear transceiver design in a multiuser MIMO system

with quantized channel state information, 2010 IEEE ICASSP [25].

3. M. N. Islam and R.S. Adve, Tranceiver design using linear precoding in a multiuser

system with limited feedback, IET Transactions on Communications [27].



Chapter 2

Background

The advantages of spatial diversity and multiplexing have led to the investigation of

multi user (MU) multiple input single output (MISO) and multiple input multiple output

(MIMO) wireless communication systems. Precoding allows to combat fading and retain

the advantages of MISO and MIMO systems. Linear precoding is attractive due to its

linear nature. The best performance of linear precoding can be achieved when channel

state information (CSI) is available at the transmitter. This literature review covers

three parts. First, we review on different quantization techniques in a linearly precoded

multiuser MIMO system. Second, we focus on optimal bit allocation across gain and

shape feedback in a multiuser channel. Finally, we review previous works that have dealt

with feedback overhead reduction in a time varying channel.

2.1 Quantization Techniques in Multiuser MIMO Sys-

tems

In our work, we assume that a single transmitter (base station) is communicating with

several receivers (mobile stations) of a broadcast channel. Each user may have a single

or multiple antennas. We focus on the scenario where each user receives different data

6
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Figure 2.1: Block diagram of multiuser MIMO downlink

streams. We do not assume co-ordination among different receivers. Therefore, receive

antennas of a given user can only co-ordinate with each other.

2.1.1 Linear Precoded Systems

We start our work with a detailed description of the system model. The system model

introduced in this section will be used throughout the thesis.

System Model

Consider a single base station equipped with M transmit antennas communicating with K

independent users. User k hasNk antennas and receives Lk data streams. Let L =
∑

k Lk,

N =
∑

kNk. To ensure linear independence among the data streams, we assume L ≤M

and Lk ≤ Nk.

We clarify a particular use of symbol that will be used throughout this thesis. In

our system model, each user can receive multiple data streams. Therefore, our overall

system design is based on both per user operation and per data stream operation. Unless

stated otherwise, the notation k and i will be used to denote a user and a data stream

respectively. The ith data stream is processed by a unit norm linear precoding vector ui.
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The global precoder can be formulated as follows,

U = [u1,u2, ...,uL] (2.1)

=
[
u11 ,u12 , · · · ,u1L1

,u21 ,u22 , · · · ,u2L2
, · · · ,uK1, · · · ,uKLK

]
(2.2)

= [U1,U2, ...,UK ] (2.3)

Here, Uk denotes the transmit filters of the kth user, i.e., Uk =
[
uk1 , · · · ,ukLk

]
. Here,

i = k1, · · · , kLk
denotes the data streams of the kth user i.e. kLk

represents the Lthk stream

of the kth user.

Section 3.4.2 will show that the receive combiner, i.e., decoding filter and quantization

policy is designed from users’ perspective. Therefore, we use the symbol policy of (2.2)

in receive combiner section. On the other hand, as will be shown in section 3.5, we design

the transmit filter from data stream’s perspective. Therefore, we use the symbol policy

of (2.1) in the transmit precoder design.

Fig. 2.1 shows the block diagram of the proposed system in the downlink. Let p =

[p1, p2, .., pL]T = [p1,p2, ..,pK ]T be the powers allocated to the L data streams and the

K users. Here, pk =
(
pk1, · · · , pkLk

)T
. Define the downlink power matrix P = diag(p).

The transmitter operates under the constraint ||p||1 ≤ Pmax where Pmax is the total

available power.

The data vector x = [x1, ...., xL]T =
[
xT1 ,x

T
2 , . . . ,x

T
K

]T
, includes all L data streams

to the K users. The Nk ×M block fading channel, HH
k , between the BS and the user

is assumed to be flat. The global channel matrix is HH , with H = [H1, ...,Hk]. User k

receives

yDLk = HH
k U

√
Px + nk, (2.4)

where nk represents the zero mean additive white Gaussian noise at the kth receiver with

E
[
nkn

H
k

]
= σ2INk

. We also assume, E
[
xxH

]
= IL. To estimate its own transmitted
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symbols, from yDLk , user k forms

x̂k = VH
k y

DL
k (2.5)

= VH
k H

H
k U

√
Px + VH

k nk (2.6)

Here Vk =
[
vk1, · · · vkLk

]
is the Nk × Lk decoder matrix for user k. vkj denotes the

decoding vector of the jth stream of the kth user. Let V be the N × L block diagonal

global decoder matrix,

V = diag (V1, ...,VK) (2.7)

Hence, combining all users,

y = HHU
√
Px + n (2.8)

x̂ = VHHHU
√
Px + VHn (2.9)

where, n =
[
nT1 ,n

T
2 , . . . ,n

T
K

]T
.

2.1.2 Design Focus

The design of (P, U and V) in the above stated system model has been investigated

with different criteria. These criteria include maximizing throughput, minimizing mean

square error (MSE) under a total power constraint [51], or minimizing total transmitted

power while satisfying qualtity of service (QoS) constraints (e.g. signal-to-interference

plus noise ratio (SINR) for each stream) [6].

In this work, we focus on minimizing SMSE. In the following sub-sections, we provide

a brief literature review on the linear precoder design with MMSE objective.

Original SMSE objective

Let EDL
k denotes the Lk × Lk error covariance matrix of user k in the downlink, where

EDL
k = E

[
(x̂k − xk) (x̂k − xk)

H
]

(2.10)
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The diagonal entries of EDL
k are the MSEs of the Lk substreams of user k. Therefore,

SMSEDL
k = tr

[
EDL
k

]
. The SMSE minimization problem can be formulated as,

minp,U,V

K∑

k=1

tr
[
EDL
k

]
(2.11)

subject to : ||p||1 ≤ Pmax.

Precoder Design with Full Channel Knowledge

Section 2.1.1 shows that the design of U and V depend on the channel knowledge H.

Therefore, the primary works on linear precoder design in the downlink assumed perfect

channel knowledge.

Tenenbaum and Adve [55] focused on this work from the downlink perspective. The

authors used iterative joint optimization (IJO) and sequential quadratic programming

(SQP) techniques in their design. The optimization of (2.11) with respect to U is a non-

convex problem in the downlink. Since both IJO and SQP solve (2.11) from downlink

perspective, they suffer from increased computational complexity.

After the works in [55], there have been several works on the SMSE linear precoder

design that have exploited a duality between the downlink and a virtual uplink. Before

reviewing those works, we provide a description of duality, in terms of SMSE.

Let us imagine a virtual uplink channel model where the users transmit data to the

base station. Figure 2.2 illustrates the linear processing involved in the virtual uplink of

the system. In this uplink, the transmit powers are q = [q1, .., qL]T for the L data streams,

while the matrices U and V become the receive and transmit matrices respectively.

The global virtual uplink power allocation matrix Q is defined as, Q = diag(q) where

||q||1 ≤ Pmax. Therefore,

yUL =

L∑

j=1

HjVj

√
qjxj + n (2.12)
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Figure 2.2: Block diagram of multiuser MIMO uplink

x̂ULk =
L∑

j=1

UH
k HjVj

√
qjxj + UH

k n (2.13)

Now, let EUL
k denote the Lk × Lk error covariance matrix of user k in the uplink,

where

EUL
k = E

[(
x̂ULk − xULk

) (
x̂ULk − xULk

)H]
, (2.14)

and SMSEUL =
∑K

k=1 tr(Ek). The SMSE minimization problem in the uplink, takes the

following form,

minq,U,V

K∑

k=1

tr
[
EUL
k

]
(2.15)

subject to : ||q||1 ≤ Pmax

In a multiuser MISO system, the design of U and the allocation of p in (2.15) take

the form of a standard Weiner filter and a convex optimization problem formulation

respectively [51]. Shi and Schubert [51] prove that, for a given precoding vector and total

power budget, normalized mean square error between downlink and virtual uplink can be

shown to be equal. The use of uplink-downlink duality simplifies linear precoder design.

Khachan et al. [32] and Schubert et al. [49] extended the work of [51] to multiuser

MIMO systems. In the MIMO case, for a given U and V, there exists p and q such that



Chapter 2. Background 12

||p||1 = ||q||1 = Pmax and MSEUL
i = MSEDL

i . Schubert et. al. [49] used the following

solution for the downlink precoding filter (i.e., virtual uplink decoding filter),

U =
(
HVQVHHH + σ2I

)−1
HVQ (2.16)

The authors find the optimum covariance matrix, R = VQVH using a semidefinite

optimization problem. V and Q were found using an eigenvalue decomposition from R.

On the other hand, Khachan et. al. used a rank-one minimization algorithm, by

iterating between optimal V and Q to minimize the uplink SMSE in (2.14) until conver-

gence. Based on the designed V and Q, the authors prove the uplink-downlink duality in

terms of SMSE and find the downlink precoding filter. The optimal p can then be found

through a transformation. In fact, a more recent result shows that this transformation

is not required and at the MMSE, p = q [57]. We use this in our work.

All these works assumed perfect channel knowledge at the base station. Shenouda and

Davidson [50] and Ding [13] investigated SMSE precoder design with channel uncertainty.

They assume the following channel model in their work,

H = Ĥ + H̃ (2.17)

Here, Ĥ contains the channel state information that is available at the base station. H̃

denotes the channel uncertainty whose entries are assumed to follow a Gaussian probabil-

ity distribution. The channel uncertainty can arise due to imperfect channel estimation

or limited feedback. Based on this model, both [50] and [13] found the prcoding vector

and power allocation matrix to minimize SMSE. We worked on a similar problem inde-

pendently in our research project. The description of this part of our work is described

in detail in Chapter 3.

Both Shenouda & Davidson and Ding’s work assume a generalized model of channel

uncertainty in the precoder design. We specifically focus on limited feedback scenario in

our work. Therefore, we assume that the receivers are allocated a finite number of bits to

convey the channel state information to the base station. We also assume perfect channel
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estimation and delay-less noise free feedback. Therefore, in our work, the receivers have

complete channel knowledge whereas the base station contains quantized channel state

information. In this regard, the focus of this work is different from that in [13, 50].

In the following two subsections, we provide a brief literature review on topics related

with quantization.

2.2 Different Types of Quantization

In the available literature, scalar quantization [9,12], vector quantization (VQ) [5,30] and

matrix quantization [10,46] have all been used to quantize CSI. It is now well established

in the single user, single data stream, case that projecting the MIMO channel to an

appropriate vector downlink channel yields better performance than full channel scalar

quantization with same feedback overhead [40]. This has led to considerable research in

VQ, which reduces the feedback overhead by allocating bits in the proper vector downlink

channel. In VQ, to send B feedback bits as the channel index to the BS, each user needs a

codebook with 2B code vectors. Grassmannian line packing [41], VQ using mean squared

error (MSE) as the optimality criterion [11] and random vector quantization (RVQ) [29]

have been the most popular approaches in VQ.

We utilize all the feedback bits to quantize the shape of the channel in chapter 3.

Mean square inner product (MSIP) based vector quantization [48] leads to a higher inner

product between the original and quantized channel compared to MSE based VQ. Also,

its algorithm converges faster compared to Grassmannian line packing [41]. Therefore,

we use MSIP based VQ in this part of our work.

We quantize the gain and shape separately and use euclidean distance based feedback

in Chapter 4. Since the optimal codebook is not known in this case, we use random VQ

based on the MSE as the feedback method.

Quantization schemes require a measure of the distance between two vectors. Two
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popular choices are the chordal and Euclidean distance.

Chordal Distance

The chordal distance between any two vector c1 and c2 depends on the sine of the angle,

θ1,2, between these two vectors [10]. This distance is expressed as,

dc (c1, c2) = sin (θ1,2) =

√
1 − |cH1 c2|

2
(2.18)

Euclidean Distance

The Euclidean distance between any two vector c1 and c2 is expressed as,

de (c1, c2) = ||c1 − c2||2 (2.19)

Chordal distance ensures a higher inner product between the original and quantized

channel in a limited feedback scenario [48]. As will be shown in Chapter 3, with an MMSE

receiver, chordal distance based feedback outperforms its Euclidean counterpart [48].

This led us to use chordal distance based feedback in chapter 3.

On the other hand, Euclidean distance has a one-to-one mapping with SMSE pre-

coder. We investigated the optimal bit allocation problem with a theoretical perspective

in chapter 4. We therefore used Euclidean distance in the feedback policy of chapter 4.

2.3 Vector Quantization Schemes

Grassmanian Line Packing

Grassmanian line packing is the problem of optimal packing of a one-dimensional sub-

space [41]. Let us consider the space of unit-norm channel vectors Hm. Let us define an

equivalence relation between two unit norm vectors c1 ∈ Hm and c2 ∈ Hm by c1 ≡ c2

if for some θ ∈ [0, 2π], c1 = ejθc2. The equivalence relation says that two vectors are
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equivalent if they are on the same line in C
m. The complex Grassmannian manifold is

the set of all one dimensional subspaces of the space Cm.

The distance metric in a Grassmannian manifold is the chordal distance. The Grass-

manian line packing problem is the problem of finding N lines in Cm that has maximum

minimum distance between any pair of lines [41]. The minimum distance of a packing is

the sine of the minimum angle between any pair of lines.

δ(C) = min
1≤i≤j≤N

√
1 − |cHi cj|2 = sin (θmin) (2.20)

Here, θmin is the smallest angle between any pair of lines [41]. Having solved for the

optimal line packing, each vector then acts as a code vector in the quantization process.

Random Vector Quantization

In a random vector quantization (VQ) codebook, the code vectors are uniformly and

independently distributed in CM . The performance is analyzed by averaging over the

distribution of all possible random codebooks. The distortion can be defined both in

terms of chordal or Euclidean distance.

In our work, we use two different vector quantization, namely mean-squared-inner

-product (MSIP) based VQ and product VQ. In product VQ, the gain (norm) and shape

(shape in complex space) of the channel are quantized separately. The quantized channel

consists of the product between the quantized norm and the quantized shape. We provide

the description and the advantages of those VQ techniques in the appropriate chapters.

2.4 Receive Combining Schemes

In a MU MISO system, users can feed back the channel vectors using VQ. However, in the

MIMO case, one option is to combine the receive antennas to convert the MIMO channel

to the effective vector downlink MISO channel. Since the receivers cannot cooperate, the

quantization scheme of each user is independent of the other. In the recent literature on
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limited feedback, a lot of works have been done on receive combining in MIMO systems.

Note that, all these receive combining schemes are implemented prior to the precoder

design. Besides, these receive combiners are designed from the perspective of increasing

expected SINR. Here, we provide a brief review on receive combining in MIMO systems.

EigenBased Combining (EBC)

Let us assume a single-user MIMO channel where the user receives L1 streams. Let H1,

U1 and V1 denote the channel, precoding and decoding matrices respectively. Now, let

the singular value decomposition of H1 be represented through the following equation,

H1 = A1Σ1B
H
1 (2.21)

Here, A1 and B1 represent the left and right singular matrix of H1. If provided with full

CSI, in EigenBased Combining, V1 = B1(:, 1 : L1), U1 = A1(:, 1 : L1). When L1 = 1,

the scheme is called Maximum Eigenmode Transmission (MET) [5].

Now, let us assume the scenario where the receiver is receiving one data stream and

can only feed back quantized information to the base station. Since L1 = 1 in this case,

V1 and U1 take the form of a vector. Let us represent those with v1 and u1 respectively.

The receiver projects the MIMO channel H1 to an effective vector downlink channel f1

using v1 i.e., f1 = H1v1. Let C = [c1, . . . , cN ] be the quantization codebook and f̂1 be

the quantized effective vector downlink channel. Using, u1 = f̂1, the signal power at

the receiver becomes, |̂fH1 H1v1|2. Using MET, with a large number of codevectors, the

optimal solution takes the form [29],

v1 = B1(:, 1) (2.22)

f̂1 = arg max
ci∈C

|〈ci,A1(:, 1)〉|2 (2.23)

Therefore, given a large number of codevectors, the optimal receive combining vector is

the dominant right singular vector. The optimal quantized channel vector is the code-



Chapter 2. Background 17

vector that has maximum inner product with the dominant left singular vector. This

algorithm leads to maximizing signal power.

Quantization Based Combining (QBC)

Jindal introduced the idea of QBC [29]. In this section, we will show the motivation and

description of QBC.

Motivation In this section, we use the description of Boccardi et al. [58] to prove the

significance of QBC.

Let us assume that a single base station, consisting of K transmit antennas, is com-

municating with K users that are equipped with multiple receiver antennas. Let Pmax

be the power budget. Each user receives one data stream. Therefore, U and V take the

form of vectors. Let H1, · · · ,HK be the channels to the K users. uk and vk denote the

precoding and decoding vectors of the kth stream. Let us assume fk = Hkvk.

The SINR at the receiving end of the kth data takes the following form,

SINRk =
pk|fkuk|2

σ2 +
∑

j∈[1,K],j 6=k pj |fkuj|2
(2.24)

Here, σ2 is the noise variance and pk is the allocated power to the kth user. Let us assume

that the receivers use unit norm shape feedback based on chordal distance. Therefore,

the receivers choose the quantized effective channel, f̂k, in the following way:

f̂k = arg min
ck∈C

sin2
(
∠
(
fk, ck

))
(2.25)

Here, fk = fk/||fk||. Let us define the quantization angle, θk, and quantization error, f̃k

as,

cos θk =
∣∣∣fHk f̂k

∣∣∣ (2.26)

f̃k = fk −
(
f̂Hk fk

)
f̂k (2.27)
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It can be easily verified that, ||̃fk||2 = sin2 θk. Using (2.27) in (2.24),

SINRk =

pk||fk||2
∣∣∣∣
∣∣∣∣
((

f̂Hk fk

)
fk + f̃k

)H
uk

∣∣∣∣
∣∣∣∣
2

σ2 + ||fk||2
∑

j∈[1,K],j 6=k pj

∣∣∣∣
∣∣∣∣
((

f̂Hk fk

)
f̂k + f̃k

)H
uj

∣∣∣∣
∣∣∣∣
2 (2.28)

Let us assume that the BS uses zero-forcing precoder [30]. To calculate (2.28), the

users make the following simplistic assumption: f̂Hi f̂j = 0 ∀ i 6= j i.e. quantized effec-

tive channels of two different users are assumed to be multually orthogonal. Note that,

this assumption is suboptimal since streams of two different users are only statistically

independent in reality. However, this suboptimal assumption is considered due to the

following two reasons:

1. The receivers do not cooperate with each other and therefore each user does not have

access to other’s channel knowledge.

2. The users find the receive combining vector vi and design fi prior to the design of ui.

The significance of this suboptimal assumption will be shown later in this section.

Using these assumptions, uk = f̂k, u
H
j f̂k = 0. Also, for high bit quantization, f̃Hk uk ≈ 0.

Therefore, (2.28) takes the following form,

SINRk =
pk||fk||2

∣∣∣̂fHk fk

∣∣∣
2

σ2 + ||fk||2
∑

j∈[1,K],j 6=k pj

∣∣∣
∣∣∣̃fHk uj

∣∣∣
∣∣∣
2

SINRk =
Pmax

L
||fk||2 cos2θk

σ2 + Pmax

L
||fk||2||̃fk||2

∑
j∈[1,K],j 6=k

∣∣∣∣
∣∣∣∣f̃
H

k uj

∣∣∣∣
∣∣∣∣
2 (2.29)

Since power allocation across the users takes place after receive combining, we assume

equal power allocation in (2.29). We also assume, f̃k = f̃k
||̃fk||

. Now, E

[∣∣∣∣
∣∣∣∣f̃
H

k uj

∣∣∣∣
∣∣∣∣
2
]

=

1
M−1

[5]. Since (2.29) is convex with respect to
∑

j∈[1,K],j 6=k

∣∣∣∣
∣∣∣∣f̃
H

k uj

∣∣∣∣
∣∣∣∣
2

, using Jensen’s

inequality [7],

E[SINRk] ≥
Pmax

L
||fk||2 cos2θk

σ2 + Pmax

L
||fk||2 sin2

θk

(2.30)
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Figure 2.3: Comparison between Eigen-Based Combining and Quantization-Based Com-

bining

At high signal-to-noise ratio, Pmax

L
dominates over σ2. So, E[SINRk] ≥ cot2θk . Therefore,

minimization of θk leads to maximizing SINRk. Thus, reduction of quantization error

should be prioritized over increasing signal power in the high SNR regime of a multiuser

system. This leads to the introduction of QBC in multiuser systems.

Description of QBC Similar to the sections described above, we assume a codebook

C = [c1, . . . , cN ] and the effective channel, fk = Hkvk. [29] proposes to choose f̂k in the

following way,

f̂k = arg min
c=c1,··· ,cN

|∠ (c,Hk) | (2.31)

Thus, the chosen codevector has the least quantization error with the span of the MIMO

channel.

Fig. 2.3 clarifies the difference between quantization based combining and eigenbased

combining. Here, K = 1, M = 3, N = 2, L = 1, B = 1. Having perfect channel

estimation, the receiver has to execute two functions:

1. Combine the 3 × 2 MIMO channel into an effective 3 × 1 MISO channel.

2. Find the codevector that best represents the effective MISO channel.

In Fig. 2.3, ABCD represents the subspace spanned by the columns of the MIMO



Chapter 2. Background 20

channel; ox,oy and oz denote the three axes. In this model, we assume 1 bit feedback

overhead for simplicity. The codebook C = [c1, c2] where c1 and c2 are the two code-

vectors. The left and right side figures denote the case of eigenbased combining and

quantization based combining respectively. In the left figure, h1 denotes the dominant

eigenvector of the MIMO channel. On the other hand, h2 and h3 represent the projections

of c1 and c2 in the subspace. Here, ∠e1 = ∠ (c1,h1), ∠e2 = ∠ (c2,h1), ∠q1 = ∠ (c1,h2),

∠q2 = ∠ (c2,h3).

In Eigenbased combining, the dominant eigenvector h1 will be the effective MISO

channel. Since ∠e1 < ∠e2, c1 will be used as the quantized channel. On the other

hand, in the right hand figure, ∠q1 > ∠q2 i.e., c2 is closer to the subspace. Therefore,

in quantization based combining, c2 and h3 will be used as the quantized channel and

effective MISO channel respectively.

Maximum Expected Signal Combining

MET is the optimum approach in single user wireless communications. Using (2.24), it

can be easily shown that it is optimal even in a broadcast channel at low SNR. On the

other hand, QBC is optimal in a broadcast channel at high SNR. Trivellato et. al. [58]

has introduced the maximum expected signal combining (MESC) algorithm that retains

the benefits of MET and QBC at low and high SNR respectively. Since our proposed

algorithm converges to MESC for one data stream, we skip the description of [58] here.

All these schemes discussed so far assume that each user receives a single data stream.

However, our intent here is the general case wherein a user, with multiple receive antennas

may receive multiple data streams [32, 55]. Multiple data streams per user complicates

the feedback process, requiring independent information for each stream. In this part

of our work, we extend the MESC algorithm to the multiple data stream scenario. Our

contributions in this part of the work are given below:

1. We provide an end to end SMSE transceiver design that eliminates the dimension-
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ality constraint and tie the feedback overhead to the number of data streams, which is

always less than or equal to both the number of transmit and receive antennas.

2. We extend and make the MESC receiver flexible, by allowing for multiple data

streams per user scenario.

3. We show why SMSE and BER increase, instead of converging to an error floor, if

quantization error is not considered.

This concludes our literature review on quantization and receive combining schemes.

2.5 Bit Allocation across gain and shape feedback

Power allocation and interference cancellation across the users are both significant in a

broadcast channel. The base station needs to be aware of both channel quality indicator

(CQI) and channel shape indicator (CDI) to perform the two mentioned operations. In

SQ, the real and imaginary entries of the channel coefficients are quantized separately

and fed back to the base station. This helps the BS to estimate the CQI and CDI of

the channel. However, in a VQ scenario, the quality of CQI and CDI depends on the

number of bits allocated on the gain and shape of the channel vector. Therefore, optimal

bit allocation across gain and shape feedback at the receiver end can become important

in a limited feedback scenario.

To the best of our knowledge, there have not been many works on optimal bit allo-

cation across gain and shape of the vector. The earliest work on this field can be traced

to Hamkins & Zeger [20]. The authors assume a product codebook to quantize a vector

in RM . Let, x = gs. Here, let x be the original channel. Here, g and s represent the

gain and shape of the channel respectively. Based on Euclidean distance as the distance

metric, the authors use different codebooks to represent gain and shape separately. We

skip the modeling of Hamkins’ work due to its similarity with our proposed model that

will be presented in chapter 4.
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Khosnevis and Yu [33, 34] also worked on optimal bit allocation using product code-

book. They use chordal distance as the distance metric. The authors consider a multiuser

MISO system with real channels and try to minimize the total power allocated across

the users subjects to outage constraints [34]. The authors provide optimal power and

feedback bit allocation across the users and optimal bit allocation across the gain and

shape of individual users.

In spite of the difference in objectives, the works in [20,34] converge to almost similar

results in terms of bit rate. Let B, Bs and Bg represent the overall bit, shape bit and

gain bit respectively. Let, Bs and Bg represent the shape bit rate and gain bit rate

respectively. Both [20] and [34] prove,

Bs =
M − 1

M
B + k1 (2.32)

Bg =
1

M
B + k2 (2.33)

Here, k1 and k2 are constants with respect to bit allocation i.e., they depend on M ,

not B. This indicates the following result. If M bits are available to quantize a MISO

vector channel, approximately 1 and (M − 1) bits should be used to quantize the gain

and shape respectively. The intuitive exlanation for this is as follows: the gain of a RM

vector follows a one dimensional distribution, whereas the shape lies uniformly in the

(M − 1) dimensional surface of a unit norm hypersphere. As we will show in Chapter 4,

our derivations also lead to a similar result in optimal bit allocation.

Since we consider a multiuser MIMO channel, quantization bits should be allocated

optimally across gain and shape of the effective MISO channel (i.e., the effective vector

downlink channel of the data stream that the receiver obtains after performing receive

combining on the MIMO channel). The shape of the effective MISO channel is uniformly

distributed in CM . However, the norm of the effective MISO channel depends on the

receive combining algorithm. In EBC, the norm of the effective MISO channel takes

the form of the dominant singular value of the MIMO matrix. The distribution of the
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eigenvalues of the Wishart matrix is given in [54]. On the other hand, the distribution of

the norm of the effective MISO channel in QBC follows a chi-squared distribution with

(M −Nk + 1) [30].

Since MESC converges to EBC at low SNR and QBC at high SNR, to the best of

our knowledge, there has not been any work that provides a general expression of the

distribution of the norm of the effective MISO channel in MESC combining. Therefore,

albeit being non-optimal at high SNR broadcast channels, we use EBC in our work on

optimal bit allocation.

The difference between our work and the works in [20, 34] can be summarized as

follows:

1. We provide optimal bit allocation across the eigenvalue and eigenvector of a MIMO

channel.

2. Due to the use of SMSE precoder, we use Euclidean distance as the distance metric

while assuming complex channels.

2.6 Channel Quantization in time varying channels

So far our discussion has focused on block fading channels. In the last part of our work,

we focus on channel quantization in time varying channels. Supporting mobility is an

integral part of next generation broadband wireless networks [2]. The CSI overhead in

a MIMO channel can be significantly reduced using differential feedback by exploiting

temporal correlation of the channel [24, 35, 36]. Most of these works assume the channel

as a first-order Gauss-Markov process. Assuming a single input single output channel

(SISO) , the first order Gauss-Markov process can be illustrated as follows,

h(n) = a× h(n− 1) +
√

1 − a2ζ(n) (2.34)

Here, h(n) is the the SISO channel at the nth instant. a is the temporal correlation be-

tween two successive channel samples and ζ(n) is a white innovation process independent
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of h(n), i.e.,

E [h(n)h(n− 1)] = a (2.35)

E [h(n)ζ(n)] = 0 (2.36)

Both h(n) and ζ(n) follow a Gaussian distribution with same variance. The authors

assume that both transmitter and receiver are aware of a. Let, ĥ(n) and ĥ(n− 1) be the

quantized versions of h(n) and h(n− 1) respectively. The authors in [24, 35, 36] propose

the following feedback model,

ĥ(n) = aĥ(n− 1) + d̂(n) (2.37)

Here, d̂(n) is the quantized version of the difference signal, d(n) = h(n) − h(n− 1). The

temporal correlation, a 6= 0, is assumed to lie between 0 and 1 and can be calculated

through the Doppler fading process.

The model shown above has the following limitations:

1. The autocorrelation curve obtained from Markov chain model differs from the

well-accepted Jakes’ model significantly when normalized autocorrelation between two

successive sample drops below 0.5 (approximately 16/17 Km/hr in present wireless com-

munication standards) [17, 24].

2. The works in [24,35,36] assume that the transmitter and receiver agree on the value

of the parameters in the Markov chain. This assumption does not hold in non-stationary

channels.

There have been some works in the literature that avoid the two limitations mentioned

above. The authors in these works mostly focus on adaptive delta modulation based

feedback [47,56]. These works are based on Jayant’s work on ADM in speech coding [28]

and quantize the difference between the previous and current samples with a one-bit

quantizer. This form of delta modulation uses an individual delta modulator to track

the real and imaginary entries of each of the real and imaginary parts of the channel

coefficient. The step size of the delta modulator is adapted according to h(n) and h(n−1)
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respectively. If the previous two encoded bits are same, the step size is increased by a

factor of α and vice versa. In spite of the apparent advantage of the algorithm, the authors

only provide suitable step size parameters for pedestrian velocities (e.g., 4 km/hr).

The lack of flexibility of the proposed differential feedback methods motivates us to

investigate adaptive differential feedback in time-varying multiuser channels. We make

the following two contributions in this work:

1. Based on the model of adaptive differential modulation model proposed by Stroh [53],

we develop 2-bit recursive least square (RLS) and linear least square (LLS) based adap-

tive differential feedback methods in a time-varying environment. We show that 2-bit

adaptive differential feedback can outperform 3-bit and 2-bit fixed feedback up to 18

km/h and up to 32 km/h respectively.

2. We design a RLS adaptive tracking of the eigenvectors of each user’s channel

matrix and show that, if the number of data streams is less than the total number of

receive antennas, this method reduces feedback overhead.

Both these methods can lead to reducing the required feedback by several kbits/sec

in modern wireless communication standards.



Chapter 3

Precoder Design with Limited

Feedback in a Block Fading Channel

In this chapter, we propose a solution for the SMSE minimization of a multiuser MIMO

system with limited feedback. The contribution of this chapter is two-fold. First, we

provide an end-to-end SMSE transceiver design that incorporates receiver combining,

feedback policy and transmit precoder design with channel uncertainty. Second, we

remove dimensionality constraints on the MIMO system, for the scenario with multiple

data streams per user, using a combination of maximum expected signal combining and

minimum MSE receiver. This makes each user’s feedback independent of the others and

the resulting feedback overhead scales linearly with the number of data streams instead

of the number of receiving antennas.

3.1 Problem Formulation

The system model (both downlink and uplink) used here was presented in the previous

chapter. Therefore, Fig. 2.1 and Fig. 2.2 still represent the downlink and uplink system

model. In this chapter, we at first reiterate the original objective. Thereafter, we show

how the multiuser MIMO problem can be transformed into an equivalent MU MISO

26
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problem.

From section 2.1.1, the estimated data of user k is found as follows,

x̂k = VH
k y

DL
k (3.1)

= VH
k H

H
k U

√
Px + VH

k nk (3.2)

Assuming V to be the block diagonal global decoder matrix,

V = diag (V1, ...,VK) (3.3)

Combining all users,

y = HHU
√
Px + n (3.4)

x̂ = VHHHU
√
Px + VHn (3.5)

where, n =
[
nT1 ,n

T
2 , . . . ,n

T
K

]T
.

EDL
k denotes the Lk × Lk error covariance matrix of user k in the downlink, where

EDL
k = E

[
(x̂k − xk) (x̂k − xk)

H
]

(3.6)

The diagonal entries of EDL
k are the MSEs of the Lk substreams of user k. Therefore,

SMSEDL
k = tr

[
EDL
k

]
, where tr[·] denotes the trace operator. The SMSE minimization

problem can be formulated as,

minp,U,V

K∑

k=1

tr
[
EDL
k

]
(3.7)

subject to : ||p||1 ≤ Pmax

3.2 Transformation to a Equivalent MU MISO Sys-

tem

The SMSE minimization problem in (3.7) depends on the power allocation matrix P,

beamformer U and downlink decoder V. Since users cannot cooperate with each other,
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the joint design of P, U and V has to take place at the base station. This requires

the presence of complete channel knowledge at the base station. The required feedback

overhead to send back the full channel information i.e., H, sclaes as M × N . Here, M

and N denote the total number of transmit and receive antennas of the system.

We propose a sub-optimal alternative to this joint design in our work. Instead of

sending back the full channel knowledge, each user can design the receive decoding vector

in its own end and then feed back the matrix HV to the base station. In this case, the

feedback overhead will scale with M×L. Here, L denotes the total number of data streams

that the users receive. Since L ≤ N , this method minimizes the feedback overhead, at

the cost of a suboptimal V. To the best of our knowledge, all the existing works on

receive combining use maximizing SINR as the design criterion. We also follow the same

approach in our work.

Now, in (3.5), let us assume F = HV. Here F is a M × L that is formulated as

follows,

F = [f1, f2, ..., fL] (3.8)

=
[
f11 , f12 , · · · , f1L1

, f21 , f22 , · · · , f2L2
, · · · , fK1, · · · , fKLK

]
(3.9)

= [F1,F2, ...,FK ] (3.10)

fkj = Hkvkj is a length-M vector that denotes the effective vector downlink channel of

the jth stream of the kth user. Here Hk is the channel of the kth user and vkj is the

decoding vector used for its jth stream. Essentially, the kth user combines its Hk channel

to fkj using the decoding vector vkj resulting in a set of projected MISO channels for

each of its data streams. Thus, the columns of F have become the effective downlink

MISO channels of the data streams of the whole system.

Using this transformation, the overall system equation takes the following form:

x̂ = FHU
√
Px + VHn (3.11)
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Figure 3.1: Block diagram of Multiuser MIMO uplink with channel and decoder combined

as a single block

Now, the equations in the virtual uplink takes the following form,

yUL =

(
L∑

j=1

fj
√
qjxj + n

)
(3.12)

x̂ULi = uHi

(
L∑

j=1

fj
√
qjxj + n

)
(3.13)

Fig. 3.1 shows the proposed system model in the virtual uplink. As (3.13) and Fig. 3.1

show, the system has become an effective MU MISO system. The uplink-downlink duality

in a multiuser MISO system under imperfect channel conditions has already been proved

in [14].

Therefore, the new design objective becomes a two-step design problem.

Design at the receiver end:

maxVk
E [SINRk] (3.14)

Design at the base station:

minp,U

K∑

k=1

tr
[
EUL
k

]
(3.15)

subject to : ||p||1 ≤ Pmax

Here, E [SINRk] denotes the expected Signal-to-interference-plus-noise-ratio (SINR) at

the receiver. Since users cannot cooperate with each other, each user has to find the
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decoding vector on its own prior to the design of the precoding vector and power allocator.

Therefore, the users can only find the expected SINR at the transmitter.

3.3 Overall Algorithm

We, at first, summarize the overall algorithm. Important steps of the algorithm will be

described in details in the following section.

1. Send common pilots to the users in the system so that each user can estimate its

own channel.

2. In the MU MIMO case, each user converts its estimated MIMO channel to effective

MISO channels using the MESC algorithm, proposed in Section 3.4.2. After MSIP

based quantization, each user sends the codebook indexes of the effective channels

to the BS. In a MU MISO system, each user quantizes its own channel and the BS

assumes V = I.

3. Virtual uplink power allocation is solved using a convex optimization problem for-

mulation, shown in Section 3.5.

4. Uplink beamformer takes the form of a weiner filter, shown in Section 3.5.

5. Downlink power allocation P = Q.

6. Send dedicated pilot symbols for each of the data streams. Thereafter, implement

the MMSE downlink decoders, shown in Section 3.6.

3.4 Receiver End Design after Channel Estimation

We propose a two step receiver design. For the purposes of quantization only, each

user uses a MESC receiver and chooses the quantized codevectors that would maximize
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the SINR of their data streams. However, the users implement MMSE receivers while

receiving the actual data. This allows for the channel feedback to be independent of the

other users’ actions.

We will use the symbol policy of (3.9) in this section. We assume that the receivers

have perfect CSI using training, i.e., the kth user knows its channel Hk completely. Now,

for each of its receiving data stream kj where j ∈ [1, · · · , Lk], each user has to execute

two operations:

1. Generate a codebook C consisting of 2B unit norm vectors c1, ..., c2B off-line.

2. Design the decoding filter vkj for its jth stream and find the effective vector downlink

channel fkj using fkj = Hkvkj .

3. Quantize the original effective vector downlink channel fkj to a quantized vector

downlink channel f̂kj .

3.4.1 Codebook Generation and Quantization

Each user feeds back B bits per data stream to the BS. The kth user quantizes fkj using

the chordal distance [10]:

f̂kj = arg min
c∈[c1,..,c2B ]

sin2
(
∠
(
fkj , c

))
(3.16)

The use of chordal distance over the Euclidean distance leads to a higher inner product

between the original and quantized channels [48]. Here, we only quantize the direction of

the effective channel and this direction can lie anywhere on the M-dimensional complex

unit-norm sphere. Therefore, we generate the quantization codebook as a VQ problem

using the MSIP optimality criterion; the details of MSIP VQ codebook generation can

be found in Appendix A.
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3.4.2 Receive Combiner Design

Using our quantization policy in (3.16), we define the quantization angle θkj ∈ [0, π
2
] as,

cos θkj =
∣∣∣fHkj f̂kj

∣∣∣ (3.17)

Here, fkj =
fkj

||fkj ||2
.

Since, the receivers know the quantization angle exactly, we can use this information

to improve the expected SINR. As in [58], define the quantization error as,

f̃kj = fkj −
(
f̂Hkj fkj

)
f̂kj (3.18)

Here, ||̃fkj ||2 = sin2 θkj . Now, in the downlink, the SINR of the jth stream of the kth user

is,

SINRDL
kj

=

P
L

∣∣∣fHkjukj
∣∣∣
2

σ2 +
∑

n 6=j
P
L

∣∣∣fHkjukn
∣∣∣
2

+
∑

m∈[1,K],m6=k,l∈[1,Lm]
P
L

∣∣∣fHkjuml

∣∣∣
2 (3.19)

In (3.19) equal power allocation was assumed to simpify the receiver combining analysis.

Here,
∑

n 6=j
P
L

∣∣∣fHkjukn
∣∣∣
2

and
∑

m∈[1,K],m6=k,l∈[1,Lm]
P
L

∣∣∣fHkjuml

∣∣∣
2

denote intra-user and inter-

user interference respectively.

We design transmit filters in section 3.5. Now using the solution of ukj ((3.47) and

(3.48)) and the matrix inversion lemma,

ukj =

((
σ2 +

σ2
E

M
Pmax

)
I + F̂QF̂H

)−1

f̂kj
√
qkj

=
1

σ2 +
σ2E
M
Pmax


I− 1

σ2 +
σ2E
M
Pmax

F̂

(
Q−1 +

1

σ2 +
σ2E
M
Pmax

F̂HF̂

)−1

F̂H


 f̂kj

√
q
kj

(3.20)

Here, ukj is normalized such that, ||ukj || = 1.

Simplistic approximations and brief preview of the receive combiner design

Now, (3.19) shows that the SINR of the jth stream of the kth user depends on the

precoding vectors of all other data streams. However, as (3.20) suggests, precoding vector
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of each stream depends on the effective vector downlink channel of all other streams. The

receiver combiner design, i.e., the design of vkj and fkj takes place prior to the transmit

filter design. Since we do not assume co-operation among the users, it is impossible

for the receivers to find the exact value of (3.19). Therefore, we make some simplistic

approximations in our design. Here, we summarize the overall receive combiner design

and show the simplistic approximations,

1. We approximate that the effective vector downlink channels of the data streams

of two different users are mutually orthogonal. Therefore, f̂Hki f̂
H
lj

= 0 where k ∈

[1, K], l ∈ [1, K], k 6= l, i ∈ [1, · · · ,  Lk] , j ∈ [1, · · · , Ll].

2. While designing the decoding filter of its 1st data stream, kth user assumes the

quantized effective vector downlink channel of this stream to be orthogonal to

that of its all other data streams. Therefore, while designing vk1 , the kth user

approximates, f̂Hk1 f̂kj = 0, j ∈ [2, · · · , Lk]. Based on this approximation, the kth

user finds the fk1 and vk1 that maximizes SINRk1 .

3. While designing the decoding filter of its 2nd data stream, kth user approximates

the quantized effective vector downlink channel of this stream to be orthogonal

to that of its other data streams whose decoding filters and quantized channels

have not been designed. Therefore, while designing vk2 , the kth user approximates,

f̂Hk2 f̂kj = 0, j ∈ [3, · · · , Lk]. Based on this approximation, the kth user finds the fk2

and vk2 that maximizes SINRk2 .

4. The kth user continues the same policy up to its Lth
k stream.

Note that, these simplistic approximations are considered only at the receive combiner

design due to lack of knowledge of the other user’s channels. Since the BS has access to

the effective vector downlink channel of all the data streams, the BS does not consider

these simplistic assumptions and find the transmit filter to minimize the overall SMSE.
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Detailed descriptions of the approximations and the receive combiner design

Using the approximation of orthogonal channel of two different user’s streams, it can

be easily verified from (3.20) that f̂Hki û
H
lj

= 0 where k ∈ [1, K], l ∈ [1, K], k 6= l, i ∈

[1, · · · ,  Lk] , j ∈ [1, · · · , Ll].

Since each user knows the inner product of different code vectors in its codebook, the

assumption of orthogonality is not valid for two different streams of the same user. There-

fore, in our proposed algorithm, each user uses its known codevectors, i.e., the effective

channels of its data streams, as a set of column vectors f̂ in the F̂ matrix and assumes

that the vector downlink channels for all other users’ stream are mutually orthogonal to

its own channels. We also assume that noise variance, signal power, quantization error

variance in the BS and total number of data streams sent by the BS are known to each

of the users. Therefore due to the construction of (3.20), each user can approximate the

expected value of fHkjukj and ||ukj || even without co-operating with other users. Now,

from (3.19),

SINRDL
kj

=
P
L
|vHkjHH

k ukj |2

σ2 +
∑

n 6=j
P
L

∣∣∣fHkjukn
∣∣∣
2

+
∑

m∈[1,K],m6=k,l∈[1,Lm]
P
L

∣∣∣fHkjuml

∣∣∣
2 (3.21)

Now,

f̃kj = fkj −
(
f̂Hkj fkj

)
f̂kj (3.22)

∑

m∈[1,K],m6=k,l∈[1,Lm]

P

L

∣∣∣fHkjuml

∣∣∣
2

= ||fkj ||2
∑

m∈[1,K],m6=k,l∈[1,Lm]

∣∣∣
∣∣∣
(
f̂Hkj fkj

)
f̂Hkjuml

+ f̃Hkjuml

∣∣∣
∣∣∣
2

(3.23)

= ||fkj ||2
∑

m∈[1,K],m6=k,l∈[1,Lm]

∣∣∣
∣∣∣̃fHkjuml

∣∣∣
∣∣∣
2

(3.24)

= ||fkj ||2||̃fkj ||2
∑

m∈[1,K],m6=k,l∈[1,Lm]

∣∣∣∣
∣∣∣∣̃f
H

kj
uml

∣∣∣∣
∣∣∣∣
2

(3.25)

= ||fkj ||2 sin2 θkj
L− Lk
M − 1

(3.26)

=
L− Lk
M − 1

(
||fkj ||2 −

(
fHkj f̂kj

)(
f̂Hkj fkj

))
(3.27)
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=
L− Lk
M − 1

vHkj

(
HH
k

(
I− f̂kj f̂

H
kj

)
Hk

)
vkj (3.28)

Here, (3.23) is obtained by using fkj = ||fkj ||fkj and (3.22). (3.24) follows since we assume

f̂Hkjuml
= 0 , k 6= m for mutually orthogonal reported channels from different users. (3.25)

was obtained by setting f̃kj =
f̃kj

||f̃kj ||
. (3.26) was derived using the analysis of [58]. In the

presence of a large number of codevectors, θkj is very small which leads to f̃Hkj f̂kj ≈ 0.

Therefore, the unit vectors f̃kj and uml
are both identically distributed in the (M − 1)

dimensional plane orthogonal to f̂kj . This implies, ||̃f
H

kj
uml

||2 follows a beta distribution

with parameter (1,M−1) and has expected value 1/ (M − 1) [58]. The factor of (L− Lk)

arises since the kth user receives Lk data streams and therefore (L− Lk) data streams are

mutually orthogonal to its jth data stream. (3.27) was obtained using the quantization

angle definition of (3.17). In (3.28), we again use fkj = Hkvkj .

Using the results of (3.28) in (3.21) and defining

Bkj =
P

L
HH
k


 ∑

n∈[1,Lk],n 6=j

uknu
H
kn

+
L− Lk
M − 1

(
I− fkj f

H
kj

)

Hk (3.29)

(3.21) takes the following form:

SINRDL
kj

=
vHkj

P
L
HH
k ukju

H
kj
Hkvkj

σ2 + vHkjBkjvkj
(3.30)

Due to the structure of ukj and Bkj , SINR
DL
kj

in (3.30) is a function of vkj and f̂kj

∀j ∈ [1, Lk]. Each of these f̂kj vectors are in the codebook C which consists of codevectors

c1, · · · , c2B . Therefore, the linear decoding vector vkj and fkj∀j ∈ [1, Lk] is chosen as,

(
fkj ,vkj

)
∀j ∈ [1, Lk] = arg max

||vkj
||=1,̂fkj∈C

SINRDL
kj

(3.31)

The detailed description of the algorithm is below:

1. First, assume that intra-user streams are orthogonal and find the vector down-

link channel of the first stream. Therefore, maximizing (3.30) becomes an optimization

problem of f̂k1 and vk1 . So,

Bk1 =

(
P

L
HH
k

(
L− 1

M − 1

(
I− f̂k1 f̂

H
k1

))
Hk

)
(3.32)
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SINRDL
k1

=
vHk1
(
P
L
HH
k uk1u

H
k1
Hk

)
vk1

σ2 + vHk1Bk1vk1
(3.33)

(
f̂k1 ,vk1

)
= max

(||vk1
||=1,̂fk1∈C)

SINRDL
k1

(3.34)

2. Once the quantized channel of the 1st stream is chosen, the user assumes it to

be a nonorthogonal channel for the second stream’s vector downlink channel. However,

vector downlink channels for the other streams of the same user are still considered to

be orthogonal to both first and second stream’s channel. Thus maximizing (3.30) again

becomes an optimization problem with variables vk2 and f̂k2 for the present data stream.

So,

Bk2 =

(
P

L
HH
k

(
uk1u

H
k1

+
L− 2

M − 1

(
I− f̂k2 f̂

H
k2

))
Hk

)
(3.35)

SINRDL
k2

=
vHk2
(
P
L
HH
k uk2u

H
k2
Hk

)
vk2

σ2 + vHk2Bk2vk2
(3.36)

(
f̂k2 ,vk2

)
= max

(||vk2
||=1,̂fk2∈C)

SINRDL
k2

(3.37)

3. For the 3rd data stream of the kth user,

Bk3 =

(
P

L
HH
k

(
uk1u

H
k1

+ uk2u
H
k2

+
L− 3

M − 1

(
I− f̂k3 f̂

H
k3

))
Hk

)
(3.38)

The other equations take the forms of (3.36) - (3.37). The same policy continues upto

the last stream of the kth user.

With this algorithm, the SINR expression for a particular data stream remains a func-

tion of only its decoding vector and its quantized channel. This leads to a computational

complexity of Lk× 2B in finding the channels of Lk data streams. Now (3.29) and (3.30)

can be thought as a general form of all the data stream’s SINR expressions. In (3.29)

and (3.30), both fkj and ukj depend on the chosen codevector f̂kj . For any particular f̂kj ,

the linear decoding vector that maximizes (3.30) can be obtained by the MMSE detector,

vkj =
(
σ2I + Bkj

)−1
√

P
L
HH
k ukj [58]. Then,

SINRDL
kj

=
P

L
uHkjHk

(
σ2I + Bkj

)−1
HH
k ukj (3.39)
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The user finds the value of SINRDL
kj

for ci∀i ∈ [1, 2B] using (3.39) and chooses the ci, as

the quantized channel f̂kj , that maximizes SINRDL
kj

.

It is worth emphasizing that, to our knowledge, this is the first receive combining

scheme that considers signal power, inter-user and intra-user interference while account-

ing for multiple data streams per user.

3.5 Linear Precoder Design

The transmit precode design at the BS is performed from the data stream’s perspective.

Therefore, we use the symbol policy of (3.8) in this section. We consider the following

channel model at the BS for precoder design,

fi = f̂i + f̃i or F = F̂ + F̃ (3.40)

Here, fi denotes the effective vector downlink channel of the ith stream. F comprises L

unit-norm effective channel vectors with the original channel directions. F̂ denotes the

L quantized feedback unit norm vectors. F̃ denotes the error in the quantization.

The BS assumes that the quantization error matrix F̃ has M ×L independent identi-

cally Gaussian distributed (i.i.d.) elements with zero mean and a variance of σ2
E/M . σ2

E

is the quantization error variance associated with each quantized vector f̂i. F̃ is assumed

to be independent of x, n and F̂. The details of the exact value of σ2
E is described in

Appendix A.

The BS designs the linear precoder based on the quantized feedback channels. We at

first solve the problem in the virtual uplink and then transfer the solution to downlink

using uplink downlink duality. It should be noted here that the linear precoder design

with the presence of channel uncertainty model presented in (3.40) was at first solved

in [13, 50]. However, we solved it independently in our work. Therefore, we include it in

the thesis.
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Using our previous equation for the uplink data,

xULi =
L∑

j=1

uHi fj
√
qjxj + uHi n (3.41)

At the presence of full channel knowledge, MSE of the ith stream takes the following

form,

EUL
i = uHi FQF

Hui + σ2uHi ui + 1 − uHi fi
√
qi −

√
qif

H
i ui (3.42)

However, since we only have the quantized effective channel information F̂, EUL
i is found

as follows,

EUL
i = E

[
uHi

(
F̂ + F̃

)
Q
(
F̂H + F̃H

)
ui|F̂

]
+ E

[
σ2uHi ui + 1 − uHi

(
f̂i + f̃i

)√
qi|f̂
]

+ E
[
−√

qi

(
f̂Hi + f̃Hi

)
ui|F̂

]
(3.43)

= uHi F̂QF̂Hui + σ2uHi ui + 1 − uHi f̂i
√
qi −

√
qif̂iui + E

[
uHi F̃QF̃Hui|F̂

]
(3.44)

The last equation follows since each of the f̃i vectors are zero mean and uncorrelated with

each other and also with the f̂ vectors. Now,

EF̃

[
uHi F̃QF̃Hui|F̂

]
= EF̃

[
EF̂

[
uHi F̃QF̃Hui|F̂, F̃

]]

=
1

M

(
q1σ

2
E1

+ ... + qLσ
2
EL

)
uHi ui

=
1

M
(q1 + ... + qL)σ2

Eu
H
i ui (3.45)

In (3.45), we used the fact that the complex scalar elements of f̃i vectors are i.i.d with

zero mean and variance
σ2E
M

. This holds true since the f vectors are M × 1 dimensional

column vectors and ||f̃i||2 = σ2
E by assumption. Equation (3.45) holds when we assume

σ2
Ei

to be same for different data streams. So,

EUL
i = uHi F̂QF̂Hui + σ2uHi ui + 1−uHi f̂i

√
qi−

√
qif̂

H
i ui +

σ2
E

M
(q1 + ..+ qL)uHi ui (3.46)

Differentiating (3.46) with respect to uHi and setting the result to zero, the optimum

uplink MMSE filter ui is,

uMMSE
i = J−1f̂i

√
q
i

(3.47)
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Where,

J = F̂QF̂H + σ2IM +
σ2
E

M
(q1 + ..+ qL) IM (3.48)

Using uMMSE
i and J in (3.46), the MMSE error covariance of data stream i in the uplink

is,

EUL,MMSE
i = 1 −√

q
i
f̂Hi J−1f̂i

√
q
i

(3.49)

The SMSE of the whole system is, therefore

SMSEUL =
L∑

i=1

tr
[
EUL,MMSE
i

]
(3.50)

=

L∑

i=1

1 −
L∑

i=1

tr
[√

q
i
f̂Hi J−1f̂i

√
q
i

]
(3.51)

= L− tr


QF̂H

(
F̂QF̂H +

(
σ2 +

σ2
E

∑L

i=1 qi
M

)
IM

)−1

F̂


 (3.52)

= L− tr


F̂QF̂H

(
F̂QF̂H +

(
σ2 +

σ2
E

∑L

i=1 qi
M

)
IM

)−1

 (3.53)

= L− tr

[(
J−

(
σ2 +

σ2
E

∑L

i=1 qi
M

)
IM

)
J−1

]
(3.54)

= L−M +

(
σ2 +

σ2
E

M

L∑

i=1

qi

)
tr
[
J−1
]

(3.55)

Minimizing the SMSE is therefore equivalent to minimizing
(
σ2 +

σ2E
M

∑L

i=1 qi

)
tr [J−1].

Once F̂ is designed, the SMSE expression is a function of uplink power allocation Q.

The optimization problem for power allocation is,

Qopt = arg min
Q

(
σ2 +

q1 + ...+ qL
M

σ2
E

)
tr(J−1) (3.56)

subject to : tr [Q] ≤ Pmax, qi ≥ 0∀i ∈ [1, L]

Ding [13] shows that SMSE remains a nonincreasing function of SNR if all available

power is used i.e. tr (Q) =
∑
qi = Pmax. Therefore, the optimization problem remains

convex since, the term
(
σ2 + q1+...+qL

M
σ2
E

)
becomes a constant. The convexity with respect

to J is proved in [7]. Using [57], the optimal p = q.
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3.6 Receiver design for data processing

As mentioned earlier, MESC is for quantization purposes only. The base station deter-

mines p and U based on the quantized F̂. However, for mutually nonorthogonal reported

channels and a finite number of users, using MMSE receivers for data processing provide

better results than MESC receivers [58]. Using the symbol policy of (2.2), for the data,

vkj =
(
HH
k UPUHHk + σ2I

)−1
HH
k ukj

√
p
kj
, (3.57)

which can be normalized to make ||vkj || = 1. Note that the MMSE receiver cannot be

implemented at the time of channel quantization since the precoder matrix U was not

designed at that time.

The implementation of the decoder mentioned in (3.57) requires infinite training sym-

bols. Therefore, from a practical point of view, the BS either sends a finite number of

dedicated symbols [37] or uses limited feedforward [8] to convey the post-processing in-

formation to the receivers. However, in our simulations, we restrict ourselves to the case

where the users can estimate the effective channels of their data streams.

Note that, our overall algorithm is sub-optimal because U and p are designed using

MESC, not MMSE. This is the price paid for the feedback to be independent across

users.

3.7 Analysis and Discussion

3.7.1 Different Channel Model Assumptions at the Base Sta-

tion and at the Receiver End

The channel model, representing the relation between the original channel, quantized

channel and error in channel is as follows:

fi = ||fi||
((

f̂Hi f̄i

)
f̂i + f̃i

)
(3.58)
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Since the receiver knows the channel exactly, it uses the original channel model. However,

we use the following channel model at the base station,

fi = f̂i + f̃i (3.59)

f̃i is an unknown vector at the BS.

There are two difference between (3.58) and (3.59). They are as follows:

1. Our simulation results show that expending all the available bits in the direction

of the channel provide better performance, in terms of bit error rate, in the proposed

system model that use PSK based modulation. Therefore, we only provide unit norm

shape feedback in this part of our work. So the BS is unaware of the channel norm ||fi||2.

In chapter 4, we adopt a more theoretical approach and optimally allocate bits in the

norm and shape of the channel.

2. To minimize the feedback overhead, the receiver does not expend any bit in

quantizing
(
f̂Hi f̄i

)
. Therefore, there is a phase shift of

(
f̂Hi f̄i

)
between the original

channel model of (3.58) and assumed channel model of (3.59). However, since we propose

using a MMSE decoder while actually receiving data, system performance automatically

compensates for this phase shift.

3.7.2 Relation to the Existing Algorithms

As the proposed receive combining technique maximizes the expected SINR of the data

streams at the user end, it is equivalent to the MESC algorithm in the case of one data

stream per user of [58] which was designed for the zero forcing (ZF) precoder. To

illustrate this, let Lk = 1. Since intra-user interference is not present, all the quantized

effective channels in F̂ are assumed to be mutually orthogonal. Using this in (3.20) we

get,

ukj =
1

σ2 + σ2
EPmax

f̂kj
√
q
kj
− 1

(σ2 + σ2
EPmax)

2 F̂

(
Q−1 +

1

σ2 + σ2
EPmax

I

)−1

[1, 0, · · · , 0]T
√
q
kj

∝ f̂kj , (3.60)
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(3.60) follows since
(
Q−1 + 1

σ2+σ2EPmax
I
)−1

is a diagonal matrix. Since ||ukj || = 1, ukj =

f̂kj in this scenario. Using this in (3.21) we find,

SINRDL
kj

=
vHkj

(
P
L
HH
k f̂kj f̂

H
kj
Hk

)
vkj

σ2 + vHkj

(
P
L
HH
k

(
L−1
M−1

(
I− f̂kj f̂

H
kj

))
Hk

)
vkj

(3.61)

This is the expression obtained in [58] as the MESC combiner with noise variance

σ2 = 1. [58] has shown that this algorithm takes the form of MET combining at low

SNR and QBC at high SNR. Thus MESC combining of [58] considers signal power and

inter-user interference while choosing the code vector. Since we are considering multi-

ple data streams to each user, our proposed SINR expression in (3.21) considers signal

power, inter-user and intra-user interference altogether. Thus our proposed algorithm is

a generalized form for MESC combining with multiple data streams.

3.7.3 SMSE Analysis

In the absence of quantization error, the SMSE of the precoder with perfect CSI is [32]:

SMSE = L−M + σ2tr
[(
FQFH + σ2IM

)−1
]

= L−M + tr

[(
Pmax
Lσ2

FFH + IM

)−1
]

(3.62)

In (3.62), we assumed Q = (Pmax/L) IL i.e., equal power allocation for simplicity of

the analysis. tr
(
Pmax

Lσ2
FFH + IM

)−1
is a decreasing function of SNR and hence SMSE

decreases with SNR. However, with quantization error, if the original precoder [32] is

used,

SMSE =
L∑

i=1

(
1 − qif̂

H
i J−1f̂i +

σ2
E

M
Pmaxqif̂

H
i J−2f̂i

)
(3.63)

where J = F̂QF̂H+σ2IM . Both qif̂
H
i J−1f̂i and

σ2E
M
Pmaxqif̂

H
i J−2f̂i increase with SNR. Since

the former term is a linear-over-affine function and the latter is a quadratic-over-quadratic

function of Pmax, at high SNR the latter term dominates and SMSE increases with SNR.
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Figure 3.2: Comparing the SMSE of the traditional and the proposed precoder, (M = 5,

K = 5, Nk = 1, Lk = 1 ∀ k, B = 10, QPSK)

Some recent works on SMSE based precoder design with channel uncertainty [11] observed

this effect but did not analyze it.

In our proposed algorithm,

SMSE = L−M +

(
σ2 +

σ2
E

M
Pmax

)
tr

[(
F̂QF̂H +

(
σ2 +

σ2
E

M
Pmax

)
IM

)−1
]

(3.64)

= L−M + tr


 Pmax

L
(
σ2 +

σ2E
M
Pmax

)F̂F̂H + IM




−1

(3.65)

In (3.65), we again assumed equal power allocation for analysis simplicity. Pmax

L

(
σ2+

σ2
E
M
Pmax

)

is a nonincreasing function of Pmax. Thus the proposed precoder makes sure that SMSE

does not increase with SNR in the high SNR region. Fig. 3.2 illustrates all these effects.

Since, the increase in SMSE is most apparent in MU-MISO systems, the simulations use

a MU-MISO system with independent channel realizations where M = 5, Lk = 1 ∀k and



Chapter 3. Precoder Design with Limited Feedback in a Block Fading Channel44

B = 10 bits per data stream. We use uncoded QPSK for data transfer. The proposed

algorithm clearly stabilizes the SMSE at high SNR.

3.8 Numerical Simulations

In this section we compare our proposed scheme with the leading feedback schemes in

the literature. Since our proposed algorithm uses an MMSE based receiver at the data

transmission phase, we use an MMSE receiver to simulate the other existing algorithms,

too. This preserves the fairness of the comparisons since the performance of the sys-

tem always improves with an MMSE receiver for mutually non-orthogonal channels [58].

Unless specified, all transmissions use uncoded QPSK.

As mentioned before, our proposed transceiver for MU - MIMO systems can be readily

generalized to MU - MISO systems. In Fig. 3.3, we compare the performance of the

proposed algorithm to some of the available precoders in a limited feedback MU - MISO

system. The system uses M = 4, K = 4, Lk = 1 ∀k and B = 10. The proposed

algorithm performs better than the MMSE precoder [11] by using MSIP quantization

and convexity of the power allocation problem. The traditional SMSE transceiver, that

ignores quantization error, performs well at low SNR, but begins to worsen at a SNR

of 15dB. Thus the proposed transceiver improves over the state-of-the-art in MU MISO

precoders based on limited feedback.

To the best of our knowledge, coordinated beamforming [9] is one of the very few ex-

isting linear transceivers that avoids the dimensionality constraint in the MU MIMO with

multiple data stream per user scenario. In Fig. 3.4 we compare the proposed algorithm

with coordinated beamforming. Here M = 4, K = 2, Nk = 4, Lk = 1 ∀k and B = 15.

Since coordinated beamforming implements joint transceiver design, it performs better

than the proposed algorithm with full CSIT. However, coordinated beamforming needs

at least (M2 − 1) bits for the feedback of
(
ĤĤH/||Ĥ||2F

)
. To create Fig. 3.4 we used
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Figure 3.3: Comparison with available MU-MISO precoding techniques (M = 4, K = 4,

Lk = 1 ∀ k, B = 10, QPSK)

15 bits feedback overhead per data stream in a MU MIMO system with four transmit

antennas. This means only 1 bit is available per unique scalar entry of
(
ĤĤH/||Ĥ||2F

)

, introducing large quantization error. The eigen structure of the channel therefore gets

mangled at the BS [40], leading to loss of performance. On the other hand, since our

proposed algorithm expends 15 bits to quantize the 4×1 vector, the quantization error of

the fed back vector always remains less than or equal to 2
−B
M−1 = 0.03125. Thus, the pro-

posed algorithm performs very close to its full CSIT curve and outperforms coordinated

beamforming [9] with limited feedback.

In Fig. 3.5 we compare our proposed scheme with other VQ combining limited feed-

back MU MIMO transceivers. In this example, M = 4, K = 2, N1 = N2 = 2, N3 = 3,

Lk = 1 ∀k and B = 15. Since to the best of our knowledge, existing VQ combining MU
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Figure 3.4: Comparison with the coordinated beamforming (M = 4, K = 2, Nk = 4,

Lk = 1 ∀ k, B = 15, QPSK)

MIMO schemes have not dealt with multiple data streams per user, we stick with one data

stream per user in this comparison. The proposed scheme outperforms the QBC [30] and

MET [5] approaches due to the use of SMSE precoder, adaptive receive combining and

optimal power allocation. Although our algorithm outperforms Boccardi’s MESC [58] up

to 20 dB, [58] seems to converge at a lower error floor than the proposed algorithm. This

happens because in our proposed algorithm the actual quantization error variance is not

known at the BS. Due to the adaptive quantization policy of the proposed algorithm,

the quantization error variance changes from low to high SNR; since we only quantize

the direction of the effective channels, the norm of the quantization error is not available

at the BS. The quantization error in MESC case [58] also changes from low to high SNR

but the BS does not need this knowledge due to the use of a ZF precoder.

Our proposed transceiver adds to the literature by allowing multiple data streams per
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Figure 3.5: Comparison with available MU-MIMO VQ precoding techniques (M = 4,

N1 = N2 = 2, K = 3, N3 = 3, Lk = 1, ∀ k, B = 15, QPSK)

user. Fig. 3.6 shows the comparison of the transceiver’s performance to other possible

methods to transmit multiple data streams per user. In Fig. 3.6, Eigen Based Combining

(EBC) projects the MIMO channel to its dominant eigenvectors to create effective MISO

channels [25] and QBC chooses the set of codevectors that will generate least quantization

error as effective MISO channels [30]. The proposed transceiver approaches EBC at low

SNR and QBC at high SNR. Thus the proposed algorithm retains the advantages of both

EBC and QBC by providing a trade-off between signal power, intra-user and inter-user

interference.
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Chapter 4

Optimal Bit Allocation across Gain

and Shape Feedback

We used two heuristic approaches in the previous chapter. These approaches were de-

scribed in section 3.7.1. We again mention it here:

1. We used all the available bits to quantize the shape of the individual user’s channel,

assuming that the channel gains do not play a significant role.

2. We used MSIP based feedback and SMSE based precoder in our overall system

design. Although the presence of phase shift between the original and quantized channel

is an inherent property of the MSIP based feedback, the overall system performance, in

terms of BER, would not be affected since we used MMSE decoder as the receiver.

In this chapter, we approach the quantization problem from a more theoretical per-

spective. Our objective here is the investigation of the effect of optimal bit allocation

across gain and shape in the performance of a multiuser system. Therefore, we use a

product based codebook and quantize the gain and shape of the channel separately. We

provide optimal bit allocation across gain and shape feedback to minimize the overall

SMSE of the system.

The difference between (3.58) and (3.59) arises due to the use of chordal distance.

49
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Figure 4.1: Separate gain and shape quantization using product quantization

Therefore, we use Euclidean distance in this part of our work. To the best of our knowl-

edge, this is the only work that provides optimal bit allocation based on euclidean distance

among the norm and shape of a complex channel.

4.1 Problem Statement

We use a product based codebook in this work. Therefore, we have separate codebooks

to quantize the gain and shape of the channel. Let us assume that we expend Bs and

Bg bits to quantize the gain and shape of the channel respectively. Now, B = Bs + Bg

where B is the total feedback overhead per data stream. Therefore, Ns = 2Bs, Ng = 2Bg .

Here, Ns and Ng are the total number of shape and gain codevectors respectively.

From the previous chapter,

SMSE = L−M +

(
σ2 +

σ2
E

M

L∑

i=1

qi

)
tr
[
J−1
]

(4.1)

The previous chapter dealt with the design of P,U,V to minimize (4.1) for a given σ2
E .

In this chapter, we focus on minimizing σ2
E using optimal bit allocation.

Problem Statement:

Let z ∈ CM represent the original channel vector to be quantized. Comparing with
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the notations used in the previous chapters, z will take the form of h in the MISO case.

On the other hand, z takes the form of f (f = Hv) i.e., it represents the effective vector

downlink channel of the original MIMO channel H. As specified in section 2.5, due to the

lack of knowledge of channel norm in MESC combining, we used eigen-based combining in

this part of our work. Therefore, z represents the product of singular value and singular

vector in the MIMO case.

Let ẑ represent the quantized channel. Let, C be the quantization codebook. The

original problem statement is as follows:

minBs,BgE
[
||z− ẑ||2

]
(4.2)

subject to :Bs +Bg = B , ẑ ∈ C

Fig. 4.1 represents the product codebook operation based on separate gain and shape

quantization. Let, z = gs. Here, g and s denote the gain and shape of the channel

respectively, i.e., g is positive and ||s||2 = 1. Due to the use of separate gain and shape

quantization and a product based codebook, the BS finds ẑ as, ẑ = ĝŝ. Here, ĝ and ŝ

denote the quantized gain and shape respectively.

If we consider a MIMO system, these will indicate the singular values and the direc-

tions of the singular vectors (i.e., the f vectors) of the MIMO channel respectively. If

we consider a MISO system, g and s will indicate the norm and direction of the original

channels (i.e., the h vectors) respectively.

The Lloyd-Max algorithm [39] is the optimal solution to find the codebook for the

gain of the vector. Simulation results show that numerically achieved codebook based

on the faster K-means algorithm [42] also provides almost similar performance. We use

K-means algorithm in our work.

The Euclidean distance based optimal codebook of unit norm codevectors is not yet

known. Therefore, we use random VQ to find the shape codebook of the channel i.e., the

unit norm quantized shape codevectors of the codebook are randomly and independently
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distributed in C
M .

Let Cg and Cs represent the gain and shape codebook respectively. Note that, the size

and form of Cg and Cs will vary with respect to Bs and Bg.

Now, the optimal bit allocation problem takes the following form,

minBs,BgE
[
||z− ĝŝ||2

]
(4.3)

subject to :Bs +Bg = B , ĝ ∈ Cg , ŝ ∈ Cs

Hamkins et al. [20] has shown that, for high rate quantization, the quantization distortion

takes the following form,

E
[
||z− ĝŝ||2

]
≈ E

[
(g − ĝ)2

]
+ E

[
g2
]
E
[
||s− ŝ||2

]
(4.4)

≈ Dg + E
[
g2
]
Ds (4.5)

Here, E [g2] denotes the variance of the gain. Dg = E [(g − ĝ)2] denotes the distortion

due to gain quantization. Ds = E [||s− ŝ||2] represents the distortion due to unit norm

shape quantization. Since Dg and Ds are independent of each other in (4.5), the optimal

bit allocation problem can be solved using the following three steps:

1. Find Dg, gain distortion, for a given Bg.

2. Find Ds, shape distortion, for a given Bs.

3. Provide optimal bit allocation to minimize the overall distortion, i.e., minBs,BgE [g2]Ds+

Dg.

We will provide descriptions of those three steps in the next few sections.

4.2 Distortion due to gain quantization

Distortion due to gain quantization is given through the following equation,

Dg = E
[
(g − ĝ)2

]
(4.6)

=

∫ ∞

0

(r − ĝ(r))2 fg(r)dr (4.7)
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Here, r is the random variable representing gain. fg(r) is the probability density function

of gain. Using Bennett’s integral ( [15], page-186), the gain distortion of (4.7) takes the

following form,

Dg =
1

12N2
g

||fg(r)|| 1
3

(4.8)

Here, ||fg(r)|| 1
3

denotes
(∫∞

0
|fg(r)|

1
3dr
)3

. The distortion of the norm of a MISO channel

due to quantization has been calculated by Hamkins et al. in [20]. Following Hamkins’

derivation, we seek to find the analytical expression of the quantization distortion of the

eigenvalues of MIMO channel.

Lemma 1: Using the probability distribution of the dominant eigenvalues of Wishart

matrix [54] and Jacobian transform [52],

||fg(r)|| 1
3

=
3 × 3L(e)β

4(L(e) − 1)!
Γ3

(
L(e) + 1

3

)
(4.9)

Where, L(e) = (M − e)(N − e). M and N are the number of transmit and receive

antennas respectively. e denotes the order of the eigenvalue where 0 represents the most

dominant one, 1 denotes the 2nd most dominant one and so on. Here, β = λ̃e
L(e)

where λ̃e

is the mean of the eth eigenvalue.

Proof: See Appendix B.

Using (4.8) and (4.9), the gain distortion at high resolution can be expressed as,

Dg =
1

12N2
g

||fg(r)|| 1
3

(4.10)

=
1

16N2
g

3L(e)β

(L(e) − 1)!
Γ3

(
L(e) + 1

3

)
(4.11)

= Cg2
−2Bg (4.12)

Here, Cg = 1
16

3L(e)β

(L(e)−1)!
Γ3
(
L(e)+1

3

)
is a constant with respect to Bg.

Note that the gain distortion of a complex MISO vector due to quantization was

obtained in [20] through the following equation,

Dg = CgMISO
2−2Bg (4.13)
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Figure 4.2: Quantization distortion of the dominant singular value of 2x2 MIMO channel

Here, CgMISO
=

3k/2Γ( k+2
6 )

8Γ( k
2 )

[20]. Note that both (4.12) and (4.13) suggest that gain

distortion due to quantization is proportional to 2−2Bg .

Fig. 4.2 shows the distortion due to gain quantization of the dominant singular value

of a 2 × 2 MIMO channel. According to the figure, the analytical expression starts to

converge with the simulated result as Bg increases. This observation matches with the

fact that the Bennett integral in (4.9) holds for high bit quantization.

4.3 Distortion due to Shape Quantization

This section focuses on the shape quantization error of a unit norm vector located in CM .

Here, we are measuring the quantization error of two unit norm vectors in terms of

Euclidean distance. The Euclidean distance of two points in a CM plane has a one-to-
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Figure 4.3: Shape quantization block diagram

one correlation with that of two points in a R2M plane. Therefore, from now on, we will

assume that we are dealing with vectors in the R2M plane.

Now, let s and ŝ denote the original and quantized channel vectors. Figure 4.3 shows

a two dimensional view of the problem that we are trying to solve. Here, OB and OA

denote s and ŝ respectively.

Let us assume that the Euclidean distance between s and ŝ is d i.e.,

d = ||s− ŝ||2 (4.14)

Define U2M i.e., ABCEFG as the unit hypersphere in R2M . The surface area of U2M

i.e., SA (ABCEFG) is given by [33],

SA (U2M ) = 2MC2M (4.15)

Where,

C2M =
πM

Γ(M + 1)
(4.16)

Define the spherical caps D2M i.e., ABC around the channel vector s,

D2M = (̂s ∈ U2M |||s− ŝ||2 ≤ d) (4.17)
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In hypersphere of real dimensions, there is a one to one correlation between the Euclidean

and angular distance between two points. In Fig. 4.3, let ∠AOB = θ be the angular

distance between s and ŝ. Since ||OA|| = ||̂s|| = 1, AD = sin(θ) and OD = cos(θ). Since

||OB|| = ||s|| = 1, BD = 1 − cos(θ). Therefore,

AB2 = AD2 +BD2 = sin2(θ) + (1 − cos(θ))2 = 2 − 2cos(θ) (4.18)

Assuming b = d2,

b = 2 − 2cos(θ) (4.19)

θ = cos−1 (1 − 0.5b) (4.20)

The surface area of the spherical cap D2M i.e., SA(ABC) is given by [33],

SA
(
D2M

)
= (2M − 1)C2M−1

∫ θ

0

sin2M−2φdφ (4.21)

We use random VQ in the proposed problem. The quantization code vectors are

uniformly and independently distributed in CM . So, the quantization code vectors in

R2M are also independent and isotropically distributed. Therefore, if we assume a small

sphere of radius d centred on s, the quantized code vectors can lie anywhere in this

sphere. This leads to the following result,

Pr[||s− ŝ||2 ≤ b] =
SA(ABC)

SA(ABCEFG)
(4.22)

Using (4.15), (4.16), (4.20) and (4.21) in (4.22) we get,

Pr[||s− ŝ||2 ≤ b] =
(2M − 1)C2M−1

∫ cos−1(1−0.5b)

0
sin2M−2φdφ

2MC2M
(4.23)

All the quantized codevectors are randomly chosen. Therefore, the probability that the

square of the Euclidean distance between any quantization codevector and the original

channel is higher than b, is independent of the other. Therefore,

Pr[ min
i∈[1,Ns]

||s− ŝi||2 ≥ b] =

(
1 − (2M − 1)C2M−1

∫ cos−1(1−0.5b)

0
sin2M−2φdφ

2MC2M

)N

(4.24)
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Figure 4.4: Comparison of the simulated distortion with the theoretical upper bound

(2x1 complex vector)

Now, expected value of the distortion error variance due to shape quantization is found

as follows,

E(b) =

∫ 4

0

Pr[min
i∈N

||s− ŝi||2 ≥ b]db (4.25)

The limits of integration in (4.25) follows from the fact that the square of the Euclidean

distance between two points in a unit radius complex sphere ranges between 0 and 4.

Lemma 2 :

E(b) ≤ Cs2
−2Bs
2M−1 (4.26)

Here, Cs =

(
π

2M−1
2 Γ(M)

2πMΓ( 2M−1
2

+1)

) −2
2M−1

is a constant with respect to Bs.

Proof: See Appendix B.

Eq. (4.26) leads to the following result,

E
(
||s− ŝ||2

)
<

(
π

2M−1
2 Γ(M)

2πMΓ
(
2M−1

2
+ 1
)
) −2

2M−1

2
−2Bs
2M−1 (4.27)
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Fig. 4.4 compares the derived analytical result with simulated distortion. In the

simulation, we generate 2Bs random unit norm quantization code vector for each shape

quantization bit, Bs, shown in fig. 4.4. We assume that this set of code vector constitutes

the codebook. Thereafter, we generate a random unit norm vector downlink channel, s,

and map it to the quantized code vector based on Euclidean distance i.e. we find the

quantized code vector of the codebook that has the least Euclidean distance with s. We

calculate the squared Euclidean distance between s and its corresponding quantized code

vector. We iterate this process, i.e., generate different unit norm vector downlink channel

for 1000 times and find the average squared Euclidean distance, i.e., shape distortion.

Fig. 4.4 shows that the upper bound of the shape distortion, derived in (4.27), contains

a fixed gap with the original simulation. Therefore, we can approximate the shape

distortion due to quantization with the analytical expression of (4.27).

4.4 Optimal Bit Allocation

The overall bit distortion takes the following form:

D = E
[
g2
]
Ds +Dg (4.28)

= E
[
g2
]
Cs2

− 2Bs
2M−1 + Cg2

−2Bg (4.29)

= C̄s2
− 2Bs

2M−1 + Cg2
−2(B−Bs) (4.30)

The entries of the original channel matrix, H, was assumed to follow a Gaussian distribu-

tion. Now, using the relationship between the singular values of a Gaussian matrix and

the eigenvalues of its corresponding Wishart matrix, E [g2] = E[λe] = λ̃e. Here λe and

λ̃e denote the eth eigenvalue and the mean of the eth eigenvalue of the Wishart matrix

respectively. λ̃e for different eigenvalues can be found in [54]. Since E [g2] = λ̃e is also a

constant with respect to bit allocation, we assumed C̄s = CsE [g2] in (4.30). Therefore,
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the optimal bit allocation problem can be defined as follows,

minBs,BgC̄s2
− 2Bs

2M−1 + Cg2
−2(B−Bs) (4.31)

Lemma 3:

The optimal bit allocation problem has the following form,

Bs =
2M − 1

2M
B +

2M − 1

4M
log2

(
C̄s

Cg(2M − 1)

)
(4.32)

Bg =
1

2M
B − 2M − 1

4M
log2

(
C̄s

Cg(2M − 1)

)
(4.33)

Here, C̄s and Cg are the terms defined in the previous subsections.

Proof: See Appendix B.

Now, defining R = B/M as the bit rate, i.e., bit per transmit antenna, we find,

Rs =
2M − 1

2M
R +

2M − 1

4M2
log2

(
C̄s

Cg(2M − 1)

)
(4.34)

Rg =
1

2M
R− 2M − 1

4M2
log2

(
C̄s

Cg(2M − 1)

)
(4.35)

Here, Rs andRg denotes the shape bit rate and gain bit rate respectively. Asymptotically,

as the number of transmit antennas goes to infinity,

Rs ≈
2M − 1

2M
R (4.36)

Rg ≈
1

2M
R (4.37)

The analytical expressions of (4.36) and (4.37) can be intuitively explained as follows:

The norm of a CM vector varies across a one dimensional line. However, the shape of a

CM vector is uniformly distributed in the surface of a (2M −1) dimensional hypersphere.

Therefore, given 2M number of bits to quantize a vector, one should expend approximately

1 and (2M − 1) bit to quantize the gain and shape of the vector respectively.

Fig. 4.5 shows the effect of bit allocation in the quantization distortion of a 2x1 CM

MISO channel. We used (4.13) and (4.27) as the gain and shape distortion equation to

find the optimal bit allocation. Here, we had 16 bits in total to quantize the vector. The
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Figure 4.5: Effect of bit allocation in the 16 bit quantization of a 2x1 complex MISO

channel

x axis shows the amount of bits allocated in shape quantization. Now, Bg = B − Bs.

Therefore, the point Bs = c indicates that c and 16 − c bits were used to quantize the

shape and the gain respectively where c ∈ [0, 16]. According to Fig. 4.5, the lowest

distortions takes place at Bs = 13 (σ2
E = 0.021) and at Bs = 12 (σ2

E = 0.023). Our

analytical expressions in (B.44) and (B.45) lead to the following optimal point: Bs = 12.4,

Bg = 3.6. Thus, the predictions of our analytical expressions turn to be very close to the

actual bit allocation problem.

Therefore, the quantization error for a fixed bit rate takes the following forms,

D =C̄s2
− 2Bs

2M−1 + Cg2
−2Bg (4.38)

=C̄s2
− 2

2M−1

(
2M−1
2M

B+ 2M−1
4M

log2

(
C̄s

Cg(2M−1)

))

+ Cg2
−2

(
1

2M
B− 2M−1

4M
log2

(
C̄s

Cg(2M−1)

))
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=2− B
M log2

(
C̄s

Cg(2M − 1)

)(
C̄s2

− 1
2M − Cg2

− 2M−1
2M

)
(4.39)

=Dc2
− B

M (4.40)

Here, Dc = log2

(
C̄s

Cg(2M−1)

)(
C̄s2

− 1
2M − Cg2

− 2M−1
2M

)
is a constant that does not depend

on the feedback overhead.

4.5 Overall Algorithm

We used eigenbased combining here for quantization purposes i.e., each user would project

its MIMO channel into its most dominant eigenvector. Unlike Chapter 3, we do not use

an MMSE receiver to observe the effect of bit allocation i.e. we use the eigenbased

combiner also as the actual receiver. The steps of the overall algorithm of the proposed

method are:

1. The receivers generate gain codebook of Bg bits by generating dominant singular

values of a random Gaussian matrix and using K-means algorithm [42]. The receivers

also generate 2Bs random unit-norm codevectors, uniformly distributed in CM . Both

these processes are performed off-line.

2. The BS sends common pilot symbols so that receivers can estimate Hk.

3. The receivers use v̄k = DRSV (Hk) and find Fk = Hkv̄k. Here, DRSV [·] means

finding the Dominant Right Singular Vector of the matrix.

4. The receivers use the stored codebooks to quantize the gain and shape of Fk(:, 1).

Quantization is done based on Euclidean distance.

5. Qopt = minQ

(
σ2 +

σ2EPmax

M

)
tr(J−1), such that tr(Q) ≤ Pmax. σ2

E = D of (4.40). J

follows (3.48).

6. ūk = J−1f̂k
√
qk, uk = ūk/||ūk||2.

7. p = q.

8. vk = ||ūk|| × v̄k.

Here, uk,vk,p and q denote the same things as in Chapter 3. The reasoning for using
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||ūk|| in the receiver design is as follows: ūk of step 6 minimizes the virtual uplink

SMSE of the system. However, ūk is normalized to limit the overall transmitted power.

Therefore, ||ūk|| is used as a post-multiplication factor at the receiver end to scale the

received signal i.e. to minimize the overall SMSE [50,51]. ||ūk|| impacts the performance

of pulse amplitude modulation based system. The BS can inform the receivers regarding

their individual ||ūk|| by expending a few bits in a limited feedforward path.

4.6 Numerical Simulations

We present simulations to observe the effect of bit allocation in a multiuser multiantenna

system. In our multiuser system model, the base station has two transmit antennas and

there are two receivers. Each receiver has 2 receive antennas and receives 1 data stream.

The feedback overhead per user is 16 bits.

Fig. 4.6 shows the effect of bit allocation on the quantization error of the mentioned

vector. Figure 4.6 shows that Bs = 13 and Bg = 3 provides the optimal bit allocation.

The derived equations in (4.32) and (4.33) lead to the following result: at the optimal

point, Bg = 2.6, Bs = 13.4. Therefore, the theoretical solution matches closely with the

simulated result.

We observe the effect of bit allocation in the SMSE performance of a 16-QAM mod-

ulation based system. Fig. 4.7 shows that Bs = 12 and Bs = 13 leads to the minimum

SMSE whereas, Bs = 16 leads to higher SMSE. Therefore, optimal bit allocation across

gain and shape feedback provides better performance in terms of SMSE.

Fig. 4.8 shows that Bs = 12 and Bs = 13 performs best in terms of BER, too.

Multiuser interference changes both norm and shape of the received signal. Since Bs = 16

uses Bg = 0, the calculation of ||ūk||, in this case, becomes erroneous. The received signal

at the antenna does not get scaled properly and the change in norm due to multiuser

interference is not corrected. Therefore, the overall SMSE is not minimized. This leads
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Figure 4.6: Effect of bit allocation in the quantization of the product of dominant eigen-

value & the corresponding eigenvector of a 2 x 2 MIMO channel

to the inferior performance of Bs = 16.

The norm of the recovered signal does not have any effect in phase shift keying

(PSK) based systems. Therefore, we observe the effect of bit allocation on the BER

performance of the MU-MIMO system using QPSK modulation. Here, M = 2 , N =

[2 2] , L = [1 1] , B = 12 . The optimal bit allocation analysis leads to following result:

Bs = 10, Bg = 2. However, Fig. 4.9 shows that the Bs = 12, Bg = 0 leads to the least

BER in the QPSK modulation based system. This suggests that the use of all available

bits in shape quantization leads to the best performance in QPSK system, in terms of

BER. This result is in direct contrast with our optimal bit allocation derivation. We

assume that this may occur due to the fact that the BER in QPSK only depends on the

phase, not gain, of the recovered signal.

A closer look at the order of the performance of different bit allocation in Fig. 4.6,
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Figure 4.7: Effect of bit allocation in the SMSE of 16-QAM system, M = 2, N = [2 2], L =

[1 1], B = 16

Fig. 4.7 and Fig. 4.8 reveal that overall quantization error is related with the SMSE &

BER performance of a 16QAM modulation based system. However, since QPSK depends

only on phase, the quantization error & SMSE do not reflect the BER performance of a

QPSK based system. An extension of this work should be the investigation of the use of

higher bit rate feedback and the inclusion of other modulation systems.
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Figure 4.8: Effect of bit allocation in the BER of 16-QAM systems, M = 2, N = [2 2], L =
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Figure 4.9: Effect of bit allocation in BER in QPSK, M = 2, N = [2 2], L = [1 1], B = 12



Chapter 5

Quantized Feedback in a Time

Varying Multiuser Channel

In the previous two chapters, we assumed a block fading channel model at each chan-

nel realization. The users had to quantize the full channel information for feeding back

to the base station. However, time varying channel is a more realistic model for the

application under consideration and the use of past channel knowledge can lead to sig-

nificant reduction in feedback overhead. This motivates us to design quantized feedback

in a time varying multiuser channel. In this chapter, we design linear least squares and

recursive least squares based adaptive predictors and 2 bit differential quantizers. Com-

pared to the existing differential feedback literature, our proposed quantizer provides

three advantages:

1. The controller parameters are flexible enough to adapt themselves to different

vehicle speeds.

2. The model is backward adaptive i.e., the base station and receiver can agree upon

the predictor and variance estimator coefficients without the explicit exchange of the

parameters

3. It can outperform fixed quantizer even when the correlation between two successive

66
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Table 5.1: Channel Parameters

Parameter Value(units)

Carrier Frequency (fc) 2.5 GHz

Channel Sampling Rate (fs) 200 Hz

Frame Duration (Tfr) 5 ms

channel samples becomes as low as 0.05.

5.1 System and Feedback Model

We use the same system model and the notations that were enlisted in Chapter 2 and

3. However, since we assume time varying channels in our current scheme, our overall

system model incorporates channel mobility and feedback model.

The channels are temporally correlated and assumed to follow a modified version of

Jakes’ model [59]. Here, channel parameters are selected (as in Table 5.1) to represent

typical values of the WiMax standard [1].

In this chapter, we use two different feedback methods. We introduce those two

methods here. The corresponding algorithms will be described in details in the respective

sections.

Channel Quantization

In this method, full channel knowledge is quantized and sent back to the base station

(BS). The receivers expend 2 bits on the differential quantization of the real and imaginary

parts of each channel entry based on minimum Euclidean distance. The base station (BS)

uses the following channel model:

H = Ĥ + H̃ (5.1)
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Here, Ĥ and H̃ denote the quantized channel and error in channel feedback respectively.

This channel model is used to find the optimal F through iteration between V and

Q [32]. This method allows the implementation of an optimal receiver at the expense of

higher feedback overhead.

Eigenentry Quantization

Here, we use the feedback model proposed in Chapter 3 i.e., the individual users only

feed back the effective vector downlink channel knowledge. At first, let us reiterate the

singular value decomposition model of the channel i.e.,

Hk = AkΣkB
H
k (5.2)

In this proposed method, for the purposes of quantization only, the receivers use, as Vk,

the Lk right singular vectors corresponding to the maximum singular values of Hk. So,

Vk = Bk(:, 1 : Lk). Therefore, Fk = Ak(:, 1 : Lk) × Σk(:, 1 : Lk). Thus, each receiver

projects its own MIMO channel into the set of dominant eigenvectors.

The receivers expend 2 bits to perform adaptive differential quantization of each

real and imaginary entry of Ak(:, 1 : Lk) and fixed scalar quantization of each entry of

Σk(:, 1 : Lk). Since F is quantized and sent to the base station, the transmitter assumes

the following channel model,

F = F̂ + F̃ (5.3)

Here, F̂ and F̃ represent the quantized effective channel and error in the feedback re-

spectively. The dimension of F is M × L. As explained in Chapter 3, since L ≤ N , this

method saves feedback overhead at the expense of a sub-optimal receiver.

5.2 Adaptive Differential Quantizer Model

The receiver uses the adaptive differential quantizer model of Stroh [53], shown in Fig. 5.1,

originally proposed for speech processing. The left and right sides of the channel block
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Figure 5.1: Block diagram of the adaptive differential quantizer

are located at the receiver and base station respectively. Since we assume the channel

variance to be Gaussian, a unit variance 2 bit Gaussian quantizer [39, 43] is used in the

quantizer block. Let hn and ĥn represent the original and quantized channel parameters

at the nth instant; h̃n denotes the predicted channel entry, calculated based on the past

samples of ĥn.; dn = hn − h̃n is the difference signal between the incoming channel entry

hn and predicted channel parameter h̃n; gn is used to normalize the variance of the

difference signal i.e., to avoid granular noise and overloading; d̂n = dn + qnn where qnn

is the quantization noise at the nth instant; z−1 denotes a one sample delay. Note that

we assume that the receiver knows the CSI exactly.
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To focus on quantization, we assume delay-less and noise-free feedback in our work.

Therefore, using the symmetry of the receiver and base station in adaptive differential

coding, ĥn = hn + qnn [16,53]. Here, the adaptor block controls the predictor coefficients

and the variance estimator block estimates gn. The predictor coefficients and variance

estimator parameters depend on ĥn and d̂n, rather than on hn and dn. Therefore, unlike

the differential feedback model proposed in [24,35,36], the BS can reproduce the predictor

and variance estimator parameters without the explicit transmission of the coefficients.

5.3 System Design

We design the predictor and variance estimator blocks to control the performance of the

adaptive differential quantizer. The three-fold objectives of the system design are given

below:

1. The system needs to be backward-adaptive i.e., the control parameters depend on ĥn

and d̂n. This alleviates the need of explicit exchange of control parameters for different

channel correlations.

2. Minimize the quantization error variance.

3. Minimize the transient time.

We use both linear least squares (LLS) and recursive least squares (RLS) based pre-

dictor and variance estimators in our work.

5.3.1 LLS Based Predictor

The LLS predictor uses the model

h̃n =

T∑

j=1

wj,nĥn−j (5.4)
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Here, T is the predictor order and wj,n is the jth weight coefficient at the nth time instant.

The predictor coefficients are computed to minimize the mean squared error

ǫ2 =
1

Lp

Lp∑

i=1

[
ĥn−i −

T∑

j=1

wj,nĥn−i−j

]2
(5.5)

Here, Lp is the learning period. ǫ2 is the fitting or average prediction error. The weights

are the solution to the linear equation,

Φ(n)w(n) = ψ(n) (5.6)

where w(n) is the T × 1 vector of predictor coefficients, at the nth time instant; Φ(n) is

the T × T covariance matrix estimate and ψ(n) is a T × 1 vector given by,

Φ(n)j,k =

Lp∑

i=1

ĥn−i−j ĥn−i−k (5.7)

ψ(n)j,1 =

Lp∑

i=1

ĥn−iĥn−i−j (5.8)

Clearly, this has the same form as the Weiner filter with a finite training period.

For LLS, the factor normalizing the variance, gn, is given by:

gn = k

√√√√ 1

LR

LR∑

i=1

d̂2n−i. (5.9)

Here, LR is the learning period of the variance estimator. k is a constant which is used

to compensate for the bias in the estimate. Since, d̂n is corrupted by quantizer noise, k

must be chosen via experiment.

5.3.2 RLS Based Predictor

As we will show later, linear least square based predictors perform close to ideal Weiner

filter predictors. However, reducing the steady state error to acceptable levels requires

increasing the learning period and an attendant increase of transient time [53]. The
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increase of transient time in LLS based differential quantizer motivates investigation of

a recursive least square based backward predictor [22]:

Φ(n) =

n−1∑

i=1

λn−1−iĥ(i)ĥH(i) (5.10)

ψ(n) =
n−1∑

i=1

λn−1−iĥ(i)d̂H(i) (5.11)

Φ(n) = λΦ(n− 1) + ĥ(n− 1)ĥH(n− 1) (5.12)

ψ(n) = λψ(n− 1) + ĥ(n− 1)d̂H(n− 1) (5.13)

Φ(n)w(n) = ψ(n) (5.14)

Here, ĥ(i) =
[
ĥi, · · · , ĥi−T+1

]
and λ is the memory factor of the predictor.

For the RLS variance estimator, gn is calculated as

vn =

n−1∑

i=1

kn−1−i
2 d̂2i (5.15)

gn = k1

√
1∑n−1

i=1 k
n−1−i
2

vn (5.16)

As n becomes large,

gn = k1

√
(1 − k2)

(
k2vn−1 + d̂2n−1

)
. (5.17)

Here, k1 plays the same role as k in LLS variance estimator. k2 is the memory factor of

the variance estimator.

5.4 Selection of channel parameters

Fig. 5.2 shows the effect of the variance estimator learning period (LR) in the quantization

error variance of LLS based feedback. As Fig. 5.2 shows, the quantization error variance

decreases as learning period increases. However, the increase of learning period in the

variance estimator also increases the transient time.

Fig. 5.3 shows the effect of learning period of the predictor (Lp) in LLS based feedback.

The effect of the learning period length in the predictor block follows the same pattern
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Figure 5.2: Effect of learning period of the variance estimator LR in the quantization

error variance of LLS based feedback

of the learning period length of the variance estimator block. The increase in learning

period comes with the decrease in quantization error and increase in transient time. We

heuristically choose a learning period of 100 samples in our algorithm. Since, the time

duration between two successive sample is 5 ms [1], this will lead to a transient time of

around 500 ms.

Fig. 5.4 shows the effect of LLS bias (k) in the quantization error performance of the

system. As Fig. 5.4 shows, a lower value in the bias leads to a relatively small quantization

error variance at high speed. However, it leads to a relatively high quantization error

variance at low speed. The higher bias values tend to show the opposite pattern. We

stick to a bias value of 1.1 which provides a trade-off between these two extremes.

The predictor memory constant and memory factor, in the given range, do not have

a significant impact on the quantization error variance. We use a predictor memory
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Figure 5.3: Effect of learning period of the predictor (LP ) in the quantization error

variance of LLS based feedback

constant of 0.98 and a memory factor of 0.9 in our work. The design parameters used in

our experiments are provided in Table. 5.2.

Linear precoding algorithm with channel quantization based feedback

Given the approach taken above, the overall precoding algorithm is as follows: The BS

designs the linear precoding algorithms using the adaptive differential quantizer. Since

the BS has quantized knowledge of all the entries of Ĥ, the linear transceiver can be

designed with a few changes to the algorithm of [32]. Briefly, the resulting algorithm is:

1. The BS sends common pilot symbols so that receivers can estimate Hk.

2. The receivers feed back each real and imaginary entry of Ĥk using the proposed

adaptive differential quantizer.
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Figure 5.4: Effect of variance estimator bias (k) in the quantization error variance of LLS

based feedback

3. The BS initializes Vk = SV D(Ĥk) and qk = 1, ∀k.

4. Let, J = ĤVQVHĤH + σ2IM + σ2
EH
tr[Q]IM . The BS iterates between optimum

V and Q̂ to minimize J [32].

5. Uk = J−1HkVk

√
Qk.

6. p = q.

7. The BS sends dedicated pilot symbols and the users implement MMSE receivers:

Vk =
(
HH
k UPUHHk + σ2I

)−1
HH
k Uk

√
Pk. (5.18)

σ2
EH

is the quantization error variance associated with each scalar entry of the matrix

H̃V. We assumed V to be deterministic here to simplify the quantization error analysis.
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Table 5.2: Design Parameters

Parameter Description Parameter Notation Value

Learning Period of the predictor in LLS LP 100

Learning Period of the variance estimator in LLS LR 100

Bias of the variance estimator in LLS k 1.15

Order of the predictor memory T 2

Memory factor of the predictor in RLS λ 0.98

Memory factor of the variance estimator in RLS k2 0.9

Bias of the variance estimator in RLS k1 1.1

We used g2n as the quantization error variance in section 5.2 i.e., our proposed differential

channel model. Since we perform quantization of the real and imaginary component

independently, σ2
EH

can be readily computed as g2nr + g2ni where g2nr and g2ni denotes

the quantization variance associated with the real and imaginary part of the channel

respectively.

5.5 Comparison of RLS and LLS based feedback

To simulate the performance of the adaptive differential quantizer, 2000 time correlated

zero-mean unit-variance complex Gaussian scalar channels were generated using the chan-

nel model of [59] for each speed. In this section, we provide the comparison of RLS and

LLS based feedback. Here, we choose the combination of the design parameters that, to

the best of our knowledge, provide the best performance in terms of quantization error

variance and transient time reduction. This set of design parameters is given in Table

5.2. One of the prime objectives of our overall study is to reduce the feedback overhead

in a time varying channel. Therefore, we show the quantization error variance of fixed
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2-bit and 3-bit feedback per channel entry in our work to illustrate the advantage of the

LLS and RLS based feedback. The quantization error variance of 2-bit and 3-bit fixed

feedback were obtained from [43].

We also show the performance of the 2 bit ideal Gaussian differential filter in time-

varying scenario. The ideal Gaussian differential feedback system should consist of the

following two things:

1. The minimum mean square error variance of the ideal predictor can be found as

follows [22]:

σ2
dn

= σ2
hn

− ψHΦ−1ψ (5.19)

The ideal values of ψ and Φ can be obtained for any given speed using Doppler fading [17].

2. The quantization error variance of the 2-bit ideal Gaussian quantizer is governed

by [39]:

σ2
qnn

= 0.1175σ2
dn

(5.20)

Using (5.19) and (5.20), we find the quantization error variance of an ideal Gaussian

differential feedback system. Fig. 5.5 compares the quantization error variance produced

by different feedback systems. Apart from pedestrian velocities (i.e., 1 − 1.5 m/s), the

RLS and LLS based feedback system provides almost same performance in terms of

quantization error reduction. Fig. 5.5 shows that the performance curves of both these

feedback system cross those of 3 bit fixed feedback and 2 bit fixed feedback at 4.5 m/s

(≈ 16 km/hr) and at 9 m/s (≈ 32 km/hr) respectively. Thus, the proposed differential

quantizers reduce feedback overhead by 1 bit per channel entry up to 16 km/hr and

reduce quantization error with same feedback overhead up to 32 km/hr.

Note that both differential quantizers’ performance becomes inferior with respect

to fixed feedback as the vehicle velocity exceeds 32 km/h. Using the parameters from

Table 5.1, this speed corresponds to a maximum normalized correlation of 0.0255 between

two successive channel samples. Therefore, our proposed adaptive differential feedback

provides better results compared to fixed quantization as long as the temporal correlation
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Figure 5.5: Comparison of of differential feedback with fixed feedback

between two succesive channel sample remains positive.

Fig. 5.5 shows that the ideal differential quantizer keeps almost 1 m/s (≈ 3.6 km/hr)

performance gap with the proposed differential quantizer. The ideal differential quantizer

contains ideal co-efficients in the predictor and variance estimator block. While, our

proposed feedback system updates these parameters online. If a vehicle changes its speed,

our proposed feedback system can track the change of speed without explicit transmission

of the coefficients. Thus, our proposed feedback model works as a more realistic feedback

system at the cost of a performance gap.

Fig. 5.6 shows the transient time of RLS and LLS based feedback. The simulation was

performed at 6 m/s (i.e., 21.6 km/hr). The average quantization error was calculated at

every iteration. As expected, the RLS based feedback model outperforms the LLS based

feedback in terms of transient time. Defining transient time to be the time when average

quantization error gets reduced to 10% of its original value, the transient time of the

RLS based feedback is ≈ 50 iterations i.e., 250 ms (since channel sampling frequency =
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Figure 5.6: Comparison of the transient time of RLS and LLS based feedback at 21.6

km/hr

5 ms). Most of the previous works on differential feedback [24, 35, 36] assume stationary

channels and need explicit exchange of control parameters. The adaptability to non-

stationary channels is a major advantage of the proposed feedback model.

5.6 Quantization of Eigenvectors

It is now well established in the single user, single data stream, case that projecting

the MIMO channel to its most dominant eigenvector yields better performance than full

channel quantization with same feedback overhead [40]. Due to multiuser interference,

this statement does not readily hold in multiuser multiple data stream case. However,

we still investigate the performance of the adaptive differential eigen-vector feedback in

multiuser time varying channels.
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Table 5.3: Codebook of scalar entries of eigen-matrix

M = 2 M = 3 M = 4 M = 8 Standard Gaussian

-1.34 -1.40 -1.43 -1.48 -1.51

-0.43 -0.44 -0.45 -0.45 0.45

0.43 0.44 0.45 0.45 0.45

1.34 1.40 1.43 1.48 1.51

The scalar entries of Ak(:, 1 : Lk), the left singular vector matrix of Hk, can be adap-

tively differentially quantized using the same model shown in Fig. 5.1. Note that, both

the adaptive predictors proposed in the previous section do not assume any particular

model of the signal; they try to find the “best” predicted value based on the past obser-

vations. Therefore, if we can show the entries of Ak to be approximately Gaussian, the

model of Fig. 5.1 can be readily applied to track Ak. We use the following properties.

Property 1: The matrix of singular vectors of a rectangular Gaussian matrix is called

a Haar matrix. If A is a C
M×M Haar matrix, then E [|Aij|2] = 1

M
1 ≤ i, j ≤M [23].

Property 2 : The probability distribution of
√
M times the Haar matrix A, approaches

the standard complex Gaussian measure as M → ∞. (4.2.11 of [45])

In practice, the entries of the Haar matrix approach a Gaussian random variable for

small values of M . To show this, we set N = 2 and choose different numbers of transmit

antennas, M . We generate 105 random Gaussian distributed channels, H ∈ CM×N ,

and find the left singular matrix of A ∈ CM×M . We randomly pick different entries of

A. After normalizing the samples using Property 1, we find the 2 bit codebook of the

collected samples using Kmeans clustering [38]. In Table 5.3 we compare the codebook

with that of a unit variance 2-bit standard Gaussian quantizer [39].

In Table 5.3, the columns list the 4 level codebook, based on the scalar entries of the

eigenmatrix with M transmit antennas. The table shows that even for small number of
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transmit antennas (e.g., 3), the normalized probability distribution of the scalar entries

of the Haar matrix resemble the Gaussian distribution. Fig. 5.7 and 5.8 show that the

entries of the left singular matrix of the MIMO channel appear increasingly Gaussian

as the number of transmit antenna increases. This prompts us to use our proposed

Gaussian differential filter to feed back the eigen entries to the base station. We spend 2

bits to quantize each real and imaginary entry of the singular vector. Since the adaptive

differential quantization might change the norm of the eigen vector, the BS normalizes

the eigen vector after receiving the feedback entries.

Note that the degrees of freedom of the Haar unitary matrix i.e., matrix of singular
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vectors, is less than the total number of real and imaginary entries. The minimum

number of parameters to represent the Haar matrix can be extracted through Givens’

rotations [47]. In the literature, an adaptive controller for step size changes of Givens’

rotated parameters has only been provided for pedestrian velocities [47]. The phases and

Givens’ rotated angles are not Gaussian distributed and least square based predictors are

not optimum to track these parameters. Therefore, we stick to our proposed adaptive

differential quantization policy. This ensures greater flexibility of our model to adapt to

different vehicle speeds at the cost of higher feedback overhead.

5.6.1 Fixed quantization of singular value

In Chapter 4, we provided the eigenvalue distributions of a Wishart matrix. For mod-

erate sizes of a MIMO system, the eigenvalues are not Gaussian distributed. Therefore,

the proposed differential quantizers do not perform well in the adaptive tracking of the

eigenvalues. This leads us to perform fixed quantization of the eigenvalues of the ma-

trix using the standard Lloyd-Max quantizer [39]. The distribution of the eigenvalues is

provided in Appendix B.

In this approach, receivers feed back F̂ = ĤV̂ to the BS, instead of providing Ĥ. This

saves feedback overhead as long as L ≤ N . We used the transceiver design algorithm of

Chapter 3 for this feedback. The algorithm of Chapter 3 is again summarized here:

1. BS sends common pilots to the users so that each user can estimate its own channel.

2. Each user feeds back the entries of the dominant singular vectors using the proposed

adaptive differential quantizer and dominant singular values using fixed quantiza-

tion.

3. Virtual uplink power allocation: Let J = F̂QF̂H + σ2IM + σ2
EF
tr(Q)IM and

σ2
EF

be the quantization error variance of each scalar entry of F. Then Qopt =

minQ

(
σ2 +

σ2E
∑L

i=1 qi

M

)
tr(J−1) s.t. tr[Q] = Pmax; qk ≥ 0 is convex in Q.
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4. Uplink beamforming: ui = J−1f̂i
√
qi, ||ui|| = 1

5. Downlink power allocation: p = q.

6. BS sends dedicated pilot symbols for each of the data stream. Each user finds Vk

using (5.18) and training.

Here, F = A × Σ. The BS models each scalar entry of F̂ as F̂ij = ÂijΣ̂i where Σ̂i

is the corresponding quantized eigenvalue of the eigenvector associated with Aij. Since

the eigenvalues and eigenvector entries are quantized separately, using A = Â + Ã and

Σ = Σ̂ + Σ̃ in (5.3), it can be easily verified that

E
[
|F̃i,j|2

]
= E

[
|Ãi,j|2

]
Σ̂2
i + E

[
Σ̃2
i

]
Â2
i,j + E

[
|Ãi,j|2

]
E
[
Σ̃2
i

]
(5.21)

E
[
|F̃i,j|2

]
≈ E

[
|Ãi,j|2

]
Σ̂2
i (5.22)

Here, Ãi,j and Σ̃i are the quantization errors associated with the eigenvector and eigen-

value entry. (5.22) follows since the 1st term is much bigger than the other two terms

in (5.21). The BS can estimate E
[
|Ãi,j|2

]
online using g2nr + g2ni. Here, g2nr and g2ni

denote the variance of the real and imaginary part of the scalar entries of the eigenvector

respectively. Since the BS also knows Σ̂2
i instantly, σ2

EF
can be calculated in real time.

5.6.2 Discussion

Sections 5.3 and 5.6 show that, since we assumed the channel to be Gaussian and the

difference of two correlated Gaussian random variables leads to another Gaussian random

variable, the model shown in Fig. 5.1 provides great flexibility and can hold for different

vehicle speeds. To the best of our knowledge, the proposed algorithms are the only

works in the adaptive differential limited feedback literature, which can provide both the

following advantages:

1. Unlike the Gauss-Markov models of [24,35,36], our model works when the normal-

ized autocorrelation between successive channel samples drops below 0.5.
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Figure 5.9: Comparing feedback methods at 11 kmhr, M = 4, N = [4 4], L = [2 2]

2. Unlike the feedback model proposed by [47, 56], the controlling parameters of the

predictor and variance estimator in our model do not depend on the knowledge of

the correlation between two successive channel samples.

5.7 Numerical Results

Fig. 5.9 and fig. 5.10 show the average bit error rate (BER) performances of different

feedback models with their respective overheads per second at 11 km/hr speed and 32

km/hr speed respectively. We used the linear transceiver of [32] and [25] to simulate the

performance of channel and eigen-matrix quantization respectively. Figure 5.9 shows that

the 2-bit adaptive differential feedback outperforms 3-bit fixed feedback and performs

very close to the full feedback scenario at 11 km/h . As Fig. 5.10 indicates, even at a high

speed of 32 km/h (corresponds to a normalized correlation of 0.1 with a 0 degree arrival

angle [17]), the proposed adaptive differential feedback reduces the BER by a factor of 2,
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Figure 5.10: Comparing feedback methods at 32kmhr, M = 4, N = [4 4], L = [2 2]

with respect to 2-bit fixed feedback per channel entry i.e., with same feedback overhead.

In both Fig. 5.9 and 5.10, “2 bit adap eig” indicates the use of 2 bits to quantize each

of the real and imaginary parts of the scalar entries of the eigenvector in an adaptive dif-

ferential manner. Since, we assumed N = [4 4] and L = [2 2] in our simulation, spending

2 bits per scalar eigen-entry is equivalent to spending 1 bit per real and imaginary compo-

nent of the scalar channel entry. At low speeds like 11 km/hr, the eigen-entry quantizer

performs approximately as well as the 2-bit fixed quantizer and reduces the feedback

overhead by a factor of 2 for almost same BER. Thus both the adaptive differential feed-

back methods save 1 bit per real and imaginary entry of the channel matrix at low speed

(20 km/h for the channel trakcer and 8-9 km/h for the eigen tracker). This leads to a

saving of 2MNFs bits in feedback overhead per second. Using the channel parameters

of Table 5.1 the proposed systems provide a feedback reduction of 12.8 kBit/sec.



Chapter 6

Conclusions and Future Work

6.1 Contributions

This thesis primarily focuses on different quantization algorithms of linear precoded mul-

tiuser MIMO channels that employ limited feedback. The algorithms developed in the

thesis can be readily applied in frequency division duplexing systems. Since the channel

reprocity between uplink and downlink does not hold in broadband time division duplex-

ing systems, the mentioned schemes can be utilized to broadband time division duplex

systems, too [19].

Chapter 3 separated the design of the transmitter and the receiver between the base

station and individual user end. There have been lot of works in the literature that focus

on joint transmitter-receiver optimal design at the base station. The separate design

of precoding and decoding matrix allowed low feedback overhead at the expense of a

sub-optimal receiver. The proposed subobtimal algorithm was shown to outperform the

optimal methods with quantized channel knowledge. The major novel contribution of

Chapter 3 lies in the extension of the maximum expected signal combining (MESC) to the

multiple data streams per user scenario. This algorithm retains the benefits of eigenbased

combining and quantization based combining at low and high SNR respectively. Our

86
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proposed algorithm was shown to outperform several other available linear precoding

based MU MIMO systems.

Chapter 4, at first, derived the quantization error variance of the gain and shape of a

vector for a given number of feedback bits. Thereafter, it provided optimal bit allocation

across different eigenvalues and eigenvectors of a matrix. This led to the reduction of

the overall SMSE of a multiuser MIMO system based on limited feedback. The derived

algorithms can be readily applied to MU MIMO systems that use eigenbased combining.

Using the norm of the effective vector downlink channel in quantization based combining

(QBC), the obtained result can be applied in QBC based MU MIMO systems, too.

Chapter 5 focused on adaptive differential feedback algorithms in time varying chan-

nels. Two adaptive differential scalar quantization models were proposed in the work.

They are: i) channel quantization and ii) eigenentry quantization. The differential

quantzers were shown to outperform fixed quantizers as long as the correlation between

two successive channel samples remained postivie. Unlike most of the previous works on

differential limited feedback literature, the proposed algorithms did not require the ex-

plicit exchange of channel correlation or control parameter information between the base

station and the user end. Both the algorithms were shown to provide several kBit/sec

feedback overhead up to 15 − 16 km/hr in present wireless communication standards.

6.2 Future Work

This thesis incorporates several limited feedback based quantization techniques in mul-

tiuser MIMO channel. We suggest that this thesis may form a basis for future research

that builds upon some of the ideas expressed here. The possible areas of future research

are furnished below:

1. Allocation of optimal bits across gain and shape of the channel led to superior

result, in terms of BER, in 16QAM modulation based system. However, allocating the
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total number of bits in the shape outperformed optimal bit allocation in terms of BER in

QPSK modulation based system. More investigation is needed to explore the correlation

between quantization error variance, SMSE and BER of different modulations.

2. As explained in Chapter 5, Givens’ rotation allows to extract necessary and suf-

ficient parameters to construct the Haar matrix. Therefore, the feedback overhead of

scalar adaptive differential quantization can be reduced by tracking Givens rotated pa-

rameters. Due to the non-linear nature of the Givens rotated parameters, our LLS and

RLS based differential quantizers could not track these. The use of non-linear filters

like particle filters in the tracking of givens rotated parameters should be investigated in

future.

3. Chapter 3 shows that the knowledge of quantization error variance is required in

designing the precoding beamformer and power allocator matrix. The quantization error

variance of EBC and QBC have already been derived in the literature. MESC converges

to EBC and QBC at low and high SNR respectively. Therefore, the quantization error

variance of MESC should follow that of EBC and QBC at low and high SNR respectively.

The error variance of MESC at intermediate areas of SNR remains an open area of future

work.

4. We only focused on multiuser MIMO systems with flat fading channels in our

work. An important adjunct to this work would be the extension of this work to systems

employing orthogonal frequency division multiplexing.



Appendix A

Quantization Error Analysis and

Code book Generation

A.1 Quantization Error Analysis

Due to the structure of the receive combining, the quantization error in the quantized

feedback effective MISO channel varies from low to high SNR. Thus, the variance of f̃i

varies, too. In the following, we give a brief explanation of the quantization error variance

in the high and low SNR scenario.

A.1.1 Quantization Error at Low SNR

In the low SNR region, we can assume, σ2 ≫
(∑

n 6=j
P
L

∣∣∣fHkjukn
∣∣∣
2

+
∑

m6=k,l∈[1,Lm]
P
L

∣∣∣fHkjuml

∣∣∣
2
)

in (3.19). Therefore, the proposed scheme leads to maximizing signal power and the quan-

tization problem can be formulated as finding the decoding vector that would maximize

the signal power and then finding the quantized code vector that is closest to the newly

formed vector downlink MISO channel.

Due to the formulation of the MSIP approach, the error variance of quantization
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error, σ2
E , is measured in terms of the angle spread between the original and quantized

vectors. In [48], the quantization error of f̃ was given in the following form,

σ2
E = E

[
sin2

(
∠

(
fkj , f̂kj

))]
≤ 2

−B
M−1 (A.1)

A.1.2 Quantization error at high SNR

In Section A.1.1, we showed that our proposed algorithm is equivalent to QBC at high

SNR for one data stream per user. Simulation results in Section 3.8 showed the simu-

lation of the convergence of this algorithm to QBC for multiple data streams per user.

Therefore, we analyze the high-SNR quantization error of our receiving combining scheme

using the concepts of QBC.

When each user receives one data stream, QBC chooses the codevector with the least

quantization error and thus converts a MIMO channel into an effective MISO channel [30].

The quantization error in this case is upper bounded by 2
−B

M−Nk [30]. Using the same

notion, for a multiple data stream per user scenario, the effective MISO channel of the

jth stream of a particular user can be chosen to generate the jth least quantization error

with respect to its original MIMO channel. The expected quantization error of the jth

data stream (in terms of error tolerance) of the kth user in this method satisfies [18, 30],

σ2
E ≤ j × 2

−B
M−Nk (A.2)

Here, j ∈ [1, Lk]. Therefore, quantization error of any stream of the kth satisfies,

σ2
E ≤ Lk × 2

−B
M−Nk . Note that the quantization method described in the previous pas-

sage can lead to intra-user interference due to the correlation of two codevectors of a

particular codebook. Our proposed algorithm avoids this scenario by incorporating the

intra-user interference in receiver combining. However, the codevectors chosen for two

different streams of a user vary with time and become mutually statistically uncorrelated

in the long term of multiple channel realizations. Therefore, we hypothesize that the

quantization error of our algorithm matches with that given by (A.2) at high SNR.
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The proposed receive combining scheme incorporates both an increase in signal power

and reduction in (intra and inter user) interference. The trade-off between these two de-

pends on the SNR. Due to the adaptive nature of this method, the expected quantization

errors for intermediate SNR cases are very hard to derive. In our simulations we assumed

the quantization error to take the form of (A.1) at low SNR (0 dB) and changed this

value linearly with transmitted power so that it converged to the form of (A.2) at high

SNR (30 dB). Investigating the expected quantization error at the intermediate SNR

remains an open research problem.

In summary, the quantization error of the proposed algorithm ranges between 2
−B
M−1

and Lk × 2
−B

M−Nk .

A.2 Mean Square Inner Product based Vector Quan-

tization

The concept of MSIP VQ appeared in [48]. We include a brief description of MSIP VQ

here to make the thesis self-sufficient.

Let B be the feedback rate. The total number of codevectors, N = 2B. Let f represent

a large set of random unit norm vectors in CM . Design a quantizer C to maximize the

MSIP,

(c1, · · · , cN) = max
C(·)

E |< f , C (f) >|2 (A.3)

Here C (f) = f̂ is the quantized channel.

Nearest Neighbour Criterion

For given code vectors (ci; i = 1, · · · , N), the optimum partition cells satisfy,

Ri =
(
f ∈ C

M : | < f , ci > | ≥ | < f , cj > | , j 6= i
)

(A.4)
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For i = 1, · · · , N ; where Ri is the partition cell (Voronoi region) for the ith codevector

ci.

Centroid Condition

For a given partition (Ri; i = 1, · · · , N) , the optimum code vector is given by,

ci = (principal eigenvector) of E
[
ffH |f ∈ Ri

]
.

The above two conditions are iterated until the MSIP E |< f , C (f) >|2 converges.



Appendix B

Quantization Distortion and Bit

Allocation Proofs

B.1 Finding ||fg(r)||1
3

in gain quantization

Taniguchi et al. [54] has provided the following probability density function of the eigen-

values of a MIMO channel,

f(λe) =
1

(L(e) − 1)!

λ
L(e)−1
e

βL(e)
exp

(
−λe
β

)
(B.1)

Here, λ denotes an eigenvalue of the Wishart matrix (i.e., HHH or HHH). e denotes

the order of the eigenvalue. L(e) = (M − e)(N − e). β is a constant whose value is given

through the following equation,

β =
λ̃e
L(e)

(B.2)

Here λ̃e is the mean of the eigenvalue. (B.1) provides the probability distribution function

of the eigenvalue of the Wishart matrix, λe. In our proposed algorithm, we are trying to

quantize the singular values of the gaussian matrix, g. Now, λe = g2.

Using Jacobian transformation [52], the probability distribution of the singular values
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of the gaussian matrix can be found as follows,

fg(r) =
1

(L(e) − 1)!

(r2)L(e)−1

βL(e)
exp

(
−r

2

β

)
2r (B.3)

Therefore,

||fg(r)|| 1
3

=
2

(L(e) − 1)!

1

βL(e)

(∫ ∞

0

r
2L(e)−1

3 exp

(
− r2

3β

)
dr

)3

(B.4)

From standard mathematical tables ( [4], P - 380, eqn - 662),

∫ ∞

0

xnexp (−axp) dx =
Γ
(
n+1
p

)

pa(n+1
p )

(B.5)

Comparing (B.5) with (B.4), we find, n = 2L(e)−1
3

, a = 1
3β

, p = 2. Therefore,

(∫ ∞

0

r
2L(e)−1

3 exp

(
− r2

3β

)
dr

)
=

Γ

(
2L(e)−1

3
+1

2

)

2
(

1
3β

) 2L(e)−1
3 +1

2

(B.6)

(∫ ∞

0

r
2L(e)−1

3 exp

(
− r2

3β

)
dr

)
=

1

2
(3β)

L(e)+1
3 Γ

(
L(e) + 1

3

)
(B.7)

(∫ ∞

0

r
2L(e)−1

3 exp

(
− r2

3β

)
dr

)3

=
1

8
(3β)L(e)+1 Γ3

(
L(e) + 1

3

)
(B.8)

So, (B.4) takes the following form,

||fg(r)|| 1
3

=
2

(L(e) − 1)!

1

βL(e)
1

8
3L(e)+1βL(e)+1Γ3

(
L(e) + 1

3

)
(B.9)

=
3 × 3L(e)β

4(L(e) − 1)!
Γ3

(
L(e) + 1

3

)
(B.10)

B.1.1 Finding mean of the eigenvalues

Taniguchi et. al. [54] provided the following analytical expression of the mean of the

dominant eigenvalue,

λ̃0 = MN

(
M +N

MN + 1

) 2
3

(B.11)

(B.11) holds as long as MN ≤ 250. [54] shows estimation methods to find the mean

other eigenvalues of the Wishart matrix. Using these values of the mean in (4.30), one

can find the appropriate Cg, i.e. gain constant term.
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B.2 Shape Quantization Proof

Proof of Lemma 2:

Using (4.24),

Pr[min
i∈N

||s− ŝi||2 ≤ b] =

(
1 − (2M − 1)C2M−1

∫ cos−1(1−0.5b)

0
sin2M−2φdφ

2MC2M

)N

(B.12)

=

(
1 −K1

∫ cos−1(1−0.5b)

0

sin2M−2φdφ

)N

(B.13)

≈
(

1 −K1

∫ cos−1(1−0.5b)

0

φ2M−2dφ

)N

(B.14)

=
(

1 −K2

(
cos−1 (1 − 0.5b)

)2M−1
)N

(B.15)

In (B.13), we assumed K1 = (2M−1)C2M−1

2MC2M
. (B.14) follows from the fact that, given a large

number of codevectors i.e., at high bit rate, the complementary cumulative distribution

function (CCDF) is significant only for smaller values of φ. For these smaller angles, we

can assume sinφ ≈ φ. Fig. B.1 compares the simulated shape quantization distortion

with the original and approximate analytical shape quantization distortion of a 2×1 CM

vector. The original and approximate analytical distortions were plotted using (B.13)

and (B.14) respectively. The simulated distortion curve was plotted using the following

way:

1. We used 1024 (i.e. 210) unit norm random codevectors in our codebook.

2. We generated 10,000 random unit norm codevectors and assigned those to their closest

codevector, stored in the codebook, in terms of Euclidean distance.

3. We found the overall Euclidean distance based quantization error.

Here, the CCDF of the original and approximate analytical expressions are super-

imposed with the simulated CCDF. Therefore, (B.13) and (B.14) accurately model the

actual distortion. Now, for smaller distances (i.e., for small b), the CCDF of the orig-

inal and approximate analytical expressions are very close to each other. This justifies

the transition from (B.13) to (B.14). Note that, this similarity holds only for smaller
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Figure B.1: Comparison of the original and approximated CCDF of the shape distortion

of a 2x1 vector (10 bit quantization)

distances since sinφ 6= φ for larger φ. Therefore, although the square of the Euclidean

distance of two random unit norm vectors can vary from 0 to 4, (B.15) will only hold

for smaller distances. Since the CCDF of the original function is negligible outside this

range, the limited boundary of (B.15) does not have any significant affect on the calcu-

lation of the expected value of the distortion. Note that, (B.15) follows from assuming

K2 = K1

2M−1
.

Now,

E(b) =

∫ 4

0

Pr[min
i∈N

||s− ŝi||2 ≤ b]db (B.16)

=

∫ a

0

(
1 −K2

(
cos−1 (1 − 0.5b)

)2M−1
)N

db (B.17)

= 2

∫ ψ

0

(
1 −K2θ

2M−1
)N

sin(θ)dθ (B.18)
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≈ 2

∫ ψ

0

(
1 −K2θ

2M−1
)N

θdθ (B.19)

≈ 2

∫ 1

0

(
1 −K2θ

2M−1
)N

θdθ (B.20)

= 2

∫ 1

0

(
N∑

i=0

(
N

i

)
(−1)iKi

2θ
i(2M−1)+1

)
dθ (B.21)

= 2
N∑

i=0

(
N

i

)
(−1)iKi

2

i(2M − 1) + 2
(B.22)

Although the original value of the expected distortion ranges from between 0 and 4 in

(B.16), (B.17) holds only for small values d due to the results explained in the previous

section. The value of d can be approximated as long as it does not have significant

affect on the expected value. In (B.18) we assumed, θ = (cos−1 (1 − 0.5b)). Therefore,

ψ = (cos−1 (1 − 0.5b)). Since only smaller angles of θ contribute to E(b), we assumed

sin θ ≈ θ in (B.19). In (B.21), we assumed ψ = 1 to simplify the other calculations.

Fig. B.2 justifies the approximations that we used in the derivations of shape distortion

calculation. Here, approx1 and approx2 denote sin(θ) ≈ θ (ref: eq. B.19) and ψ ≈ 1 (ref:

eq. B.20) respectively. As Fig. B.2 shows, the three curves are superimposed with each

other. Therefore, our justifications are valid, especially for high bit rate quantization.

Applying
(
N

i

)
= (−1)i(−N)i

i!
, where (−N)i = Γ(−N+i)

Γ(−N)
[3], (B.22) takes the following

form,

N∑

i=0

(−1)i(−N)i(−1)iKi
2

i!(i(2M − 1) + 2)
=

2

2M − 1

N∑

i=0

(−N)iK
i
2

i!(i + 2
2M−1

)
(B.23)

=
2

2M − 1

N !
2

2M−1

(
1 + 2

2M−1

)
N

K
−2

2M−1

2 (B.24)

=
N !Γ

(
1 + 2

2M−1

)

Γ
(
N + 1 + 2

2M−1

)K3 (B.25)

=
NΓ(N)Γ

(
2M+1
2M−1

)

Γ
(
N + 2M+1

2M−1

) K3 (B.26)

= Nβ

(
N,

2M + 1

2M − 1

)
K3 (B.27)

(B.24) was found using ( [21], 6.6.8). In (B.25), we assumed K3 = K
− 2

2M−1

2 . (B.27) was
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Figure B.2: Justification of the approximations used in Shape quantization distortion

calculation

obtained using the relation between gamma and beta function, β(a, b) = Γ(a)Γ(b)
Γ(a+b)

[44].

Following a similar work of Jindal [29], we find,

Nβ

(
N,

2M + 1

2M − 1

)
= 2B

Γ(2B)Γ(1 + 2
2M−1

)

Γ(2B + 1 + 2
2M−1

)
(B.28)

≤ 2B
Γ(2B)

Γ(2B + 1 + 2
2M−1

)
(B.29)

=
Γ(2B + 1)

Γ(2B + 1 + 2
2M−1

)
(B.30)

The preceding inequality in (B.29) is justified with the following reasoning: due to the

convexity of the gamma function [29] and the fact that Γ(1) = Γ(2) = 1, Γ(x) ≤ 1 for

1 ≤ x ≤ 2 . Let, y = 2B+ 2
2M−1

, t = 1− 2
2M−1

, so that, y+t = 2B+1, y+1 = 2B+1+ 2
2M−1

.

By applying Kershaw’s inequality for the gamma function [31],

Γ(y + t)

Γ(y + 1)
<

(
y +

t

2

)t−1

∀ y > 0 , 0 < t < 1 (B.31)
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Using (B.31),

Γ(2B + 1)

Γ(2B + 1 + 2
2M−1

)
<

(
2B +

2

2M − 1
+ 0.5 − 1

2M − 1

) −2
2M−1

(B.32)

=

(
2B +

1

2M − 1
+ 0.5

) −2
2M−1

(B.33)

< 2
−2B
2M−1 (B.34)

Using (B.34) and the value of K3 we find,

2

N∑

i=0

(−1)i(−N)i(−1)iKi
2

i!(i(2M − 1) + 2)
<

(
C2M−1

2MC2M

)− 2
2M−1

2
−2B
2M−1 (B.35)

Using the values of C2M−1 and C2M one can obtain,

E(b) ≤ Cs2
−2Bs
2M−1 (B.36)

Here, Cs =

(
π

2M−1
2 Γ(M)

2πMΓ( 2M−1
2

+1)

) −2
2M−1

is a constant with respect to Bs.

B.3 Optimal Bit Allocation Proof

Taking the 1st and 2nd order derivatives of (4.30), we find,

dD

dBs

= C̄s(ln 2)2− 2Bs
2M−1

(
− 2

2M − 1

)
+ Cg(ln 2)

(
2−2(B−Bs)

)
2 (B.37)

d2D

d2Bs

= C̄s(ln 2)22− 2Bs
2M−1

(
− 2

2M − 1

)2

+ Cg(2 ln 2)2
(
2−2(B−Bs)

)
(B.38)

From (B.38), d2D
d2Bs

≥ 0. Therefore, the optimal bit allocation problem is convex [7]. Now,

equating the 1st derivative to be zero,

C̄s
2M − 1

2
−2Bs
2M−1 = Cg2

−2(B−Bs) (B.39)

2−2B+2Bs+
2Bs

2M−1 =
C̄s

Cg(2M − 1)
(B.40)

2Bs +
2Bs

2M − 1
− 2B = log2

(
C̄s

Cg(2M − 1)

)
(B.41)

2MBs

2M − 1
= B +

1

2
log2

(
C̄s

Cg(2M − 1)

)
(B.42)

Bs =
2M − 1

2M
B +

2M − 1

4M
log2

(
C̄s

Cg(2M − 1)

)
(B.43)
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Therefore, at the optimal point,

Bs =
2M − 1

2M
B +

2M − 1

4M
log2

(
C̄s

Cg(2M − 1)

)
(B.44)

Bg =
1

2M
B − 2M − 1

4M
log2

(
C̄s

Cg(2M − 1)

)
(B.45)
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