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Abstract

Integrating Internet of Things (IoT) devices with the cloud has several benefits, in-

cluding expanding local IoT resources and improving cloud-IoT application performance.

Cloud computing can benefit from IoT devices and applications by extending its scope to

include real-world surroundings. On the other hand, IoT can use the cloud’s unlimited

computing and storage power. Modern cloud-based applications, including smart cities,

home automation, and eHealth, require a highly scalable and available framework that

enables computing, storage, and data analysis. Cloud computing cannot respond to the

growing number of IoT devices due to its remote location, and cloud providers are strug-

gling to meet the quality of service (QoS), such as low latency. Cloud applications have a

high probability of failure as they operate in a large-scale environment, including physical

and virtual machines. The Coronavirus pandemic (COVID-19) has tested cloud providers

in many ways, none of which could have been predicted. Although the public cloud has

proven remarkably resilient in overcoming an unprecedented stress test, there are remark-

able exceptions to cloud failure problems that occurred in the first half of 2020.

In this thesis, the main objective is to design and implement a cloud-IoT framework that

has been developed utilizing proactive fault tolerance techniques to provide high reliability

and availability for IoT applications. The framework aims to decrease the number of task

failures and minimize the time and cost of using the cloud. This thesis also analyzes and

characterize the behaviour of failed and finished tasks using publicly accessible traces.
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A design of highly reliable and available IoT applications has been proposed based on

the development of Edge-Cloud architecture to support modern IoT applications. The eval-

uation results show a significant correlation between unsuccessful tasks and the resources

requested. The results indicate that the proposed framework performance has improved,

as well as the throughput efficiency increases by 55% after integrating the local resources

with the cloud. The machine and deep learning-based failure prediction model can reduce

the number of failed tasks for cloud-IoT applications. Moreover, the failure prediction

model can predict failed tasks with a high rate of precision, recall, and F1-score.

Keywords: Fault Tolerance; Failure Analysis; Failure Prediction; Internet of Things;

Cloud computing; Edge Computing; Machine Learning; Deep Learning

iv



Author’s Declaration

I hereby declare that this thesis consists of original work of which I have authored. This is a

true copy of the thesis, including any required final revisions, as accepted by my examiners.

I authorize the University of Ontario Institute of Technology (Ontario Tech University) to

lend this thesis to other institutions or individuals for the purpose of scholarly research.

I further authorize the University of Ontario Institute of Technology (Ontario Tech Uni-

versity) to reproduce this thesis by photocopying or by other means, in total or in part,

at the request of other institutions or individuals for the purpose of scholarly research. I

understand that my thesis may be made electronically available to the public.

Mohammad S. Jassas

v



Acknowledgements

First and foremost, I would like to praise Allah the Almighty, the Most Gracious, and

the Most Merciful for His blessing given to me during my study and in completing this

thesis.

I am deeply grateful to my supervisor Dr. Qusay H. Mahmoud for his valuable guidance,

continuous support, and patience during my PhD study. He provided me with the tools

that I needed to choose the right direction and complete writing my thesis.

I would also like to express my gratitude to the other members of my thesis committee,

Dr. Masoud Makrehchi, Dr. Akramul Azim, Dr. Richard W. Pazzi, Dr. Cherie Ding, and

Dr. Khalid Elgazzar, for their support, feedback and insightful comments.

I would like to thank all the members in the Devices, Networks and Applications (DNA)

Lab. It is their kind help and support that have made my study and life in Canada a

wonderful time.

I would also like to give special thanks to my wife, daughters, and son for their patience

and understanding when undertaking my research and writing my thesis.

Finally, I would like to express my gratitude to Umm Al-Qura University in Saudi

Arabia for providing financial support.

vi



Dedication

This thesis is dedicated to my wonderful parents who have raised me to be the person I

am today.

vii



Statement of Contributions

Results from this thesis research have been disseminated in the following publications:

1. M. S. Jassas, and Q. H. Mahmoud, “ Analysis of Job Failure and Prediction Model

for Cloud Computing using Machine Learning,” Sensors 22, no. 5 (2022): 2035, DOI:

10.3390/s22052035.

2. M. S. Jassas and Q. H. Mahmoud, “Evaluation of Failure Analysis of IoT Applica-

tions Using Edge-Cloud Architecture,” in 2022 IEEE International Systems Confer-

ence (SysCon), IEEE, 2022 (accepted, 8 pages).

3. M. S. Jassas and Q. H. Mahmoud, “A Failure Prediction Model for Large Scale Cloud

Applications using Deep Learning,” in 2021 IEEE International Systems Conference

(SysCon), pp. 1-8. IEEE, 2021, DOI: 10.1109/SysCon48628.2021.9447141.

4. M. S. Jassas and Q. H. Mahmoud, “Evaluation of a failure prediction model for large

scale cloud applications,” in Canadian Conference on Artificial Intelligence. Springer,

pp. 321–327, 2020, DOI: 10.1007/978-3-030-47358-7 32.

5. M. S. Jassas and Q. H. Mahmoud, “Failure characterization and prediction of schedul-

ing jobs in google cluster traces,” in 2019 IEEE 10th GCC Conference & Exhibition

(GCC), pp. 1-7. IEEE, 2019, DOI: 10.1109/GCC45510.2019.1570516010.

6. M. S. Jassas and Q. H. Mahmoud, “Failure analysis and characterization of schedul-

ing jobs in google cluster trace,” in IECON 2018-44th Annual Conference of the IEEE

viii

https://www.mdpi.com/1424-8220/22/5/2035
https://ieeexplore.ieee.org/document/9447141
https://link.springer.com/chapter/10.1007/978-3-030-47358-7_32
https://ieeexplore.ieee.org/document/9087621


Industrial Electronics Society, pp. 3102-3107. IEEE, 2018,

DOI: 10.1109/IECON.2018.8592822.

7. M. S. Jassas, J. Mathew, A. Azim, and Q. H. Mahmoud, “A framework for extending

resources of embedded systems using the Cloud,” in In 2017 IEEE 30th Canadian

Conference on Electrical and Computer Engineering (CCECE), pp. 1-5. IEEE, 2017,

DOI: 10.1109/CCECE.2017.7946662.

ix

https://ieeexplore.ieee.org/document/8592822
https://ieeexplore.ieee.org/document/7946662


Table of Contents

Abstract iii

Author’s Declaration v

Acknowledgements vi

Statement of Contributions viii

List of Tables xv

List of Figures xvii

List of Abbreviations xxi

Chapter 1: Introduction 1

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Motivation and Problem Statement . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Research Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.5 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Chapter 2: Background and Related Work 11

x



2.1 Modern Compute Resources . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Cloud Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.2 Edge, Fog, and Mist Computing . . . . . . . . . . . . . . . . . . . . 14

2.2 Internet of Things . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Fault Tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.1 Fault Tolerance Elements . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.2 Fault Tolerance in the Cloud . . . . . . . . . . . . . . . . . . . . . . 24

2.4 Dependability of Cloud Computing . . . . . . . . . . . . . . . . . . . . . . 29

2.5 Extending Local Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.6 Failure Analysis and Prediction . . . . . . . . . . . . . . . . . . . . . . . . 33

2.6.1 Statistical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.6.2 Failure Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.6.3 Failure Prediction using ML and DL . . . . . . . . . . . . . . . . . 37

2.7 Edge-Cloud Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Chapter 3: Proposed Framework 45

3.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2 Framework Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2.1 Local Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2.2 Management System and Local Load Balancer . . . . . . . . . . . . 51

3.2.3 Cloud Resources and External Cloud Load Balancer . . . . . . . . . 52

xi



3.3 Extending IoT Local Resources . . . . . . . . . . . . . . . . . . . . . . . . 52

3.3.1 Load Balancer and Task Offloading . . . . . . . . . . . . . . . . . . 54

3.3.2 Classification Task Analysis . . . . . . . . . . . . . . . . . . . . . . 56

3.3.3 Scalability and Availability in the Cloud . . . . . . . . . . . . . . . 59

3.4 Job and Task Failure Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.5 Failure Prediction using Machine Learning . . . . . . . . . . . . . . . . . . 62

3.5.1 Failure Prediction Model . . . . . . . . . . . . . . . . . . . . . . . . 64

3.5.2 Data Preprocessing and Filtering . . . . . . . . . . . . . . . . . . . 68

3.5.3 Feature Selection Algorithms . . . . . . . . . . . . . . . . . . . . . 68

3.5.4 Prediction Techniques . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.6 Failure Prediction using Deep Learning . . . . . . . . . . . . . . . . . . . . 69

3.6.1 Data Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.6.2 Feature Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.6.3 Traditional Machine Learning and ANNs Algorithms . . . . . . . . 73

3.7 IoT Application using Edge-Cloud Architecture . . . . . . . . . . . . . . . 75

3.8 Resource Allocation and Cloud Load Balancing . . . . . . . . . . . . . . . 79

3.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Chapter 4: Experimental Evaluation and Results 81

4.1 Extending IoT Local Resources . . . . . . . . . . . . . . . . . . . . . . . . 82

4.1.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.1.2 Core Implementation Components . . . . . . . . . . . . . . . . . . . 83

xii



4.1.3 Local Load Balancer and Scheduling Algorithm . . . . . . . . . . . 85

4.1.4 Evaluation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.2 Failure Analysis of Traces . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.2.1 Google Cluster Traces . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.2.2 LANL Mustang Cluster . . . . . . . . . . . . . . . . . . . . . . . . 106

4.2.3 LANL Trinity Supercomputer . . . . . . . . . . . . . . . . . . . . . 109

4.3 Failure Prediction Model using ML . . . . . . . . . . . . . . . . . . . . . . 111

4.3.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.3.2 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.3.3 Classifiers and Prediction Techniques . . . . . . . . . . . . . . . . . 115

4.3.4 Feature Selection Algorithms . . . . . . . . . . . . . . . . . . . . . 119

4.4 Failure Prediction Model using Deep Learning . . . . . . . . . . . . . . . . 122

4.4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

4.4.2 Building Neural Network . . . . . . . . . . . . . . . . . . . . . . . . 124

4.4.3 Evaluation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

4.5 IoT Application using Edge-Cloud Architecture . . . . . . . . . . . . . . . 133

4.5.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

4.5.2 Simulation Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

4.5.3 Evaluation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

4.7 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

xiii



4.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

Chapter 5: Conclusion and Future Work 147

5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

References 153

xiv



List of Tables

2.1 The differences among cloud, fog, edge, and mist . . . . . . . . . . . . . . . 18

2.2 SLA for public cloud storage . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3 Summary of the state of the art in the field of cloud computing for failure

analysis and prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.4 Summary of the state of the art in the field of cloud computing for failure

analysis and prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.1 Logic to switch between available resources according to priority and com-

putation power required . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.2 Different types of IoT applications and their requirements . . . . . . . . . . 78

4.1 Basic cluster description and attributes from the Atlas repository and Google

cluster traces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.2 Google trace overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.3 Training and testing time and accuracy for all applied ML classifiers . . . . 117

4.4 Evaluation results of performing different feature selection techniques . . . 121

xv



4.5 The description of the server used for the experiment . . . . . . . . . . . . 123

4.6 Basic description of each trace . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.7 Hyperparameter tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

4.8 Classification precision, recall, F1-score, training and testing time (in sec-

ond) achieved through the ANN, DTs, and RF (in percentage) . . . . . . . 132

4.9 Edge devices types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

4.10 Application types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

4.11 The simulation parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

xvi



List of Figures

2.1 Types of cloud services and deployment models . . . . . . . . . . . . . . . 13

2.2 The architecture of cloud, edge, mist computing . . . . . . . . . . . . . . . 14

2.3 Fault tolerance elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4 Fault tolerance cloud architecture . . . . . . . . . . . . . . . . . . . . . . . 25

3.1 The proposed framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2 Framework architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3 Flowchart of the proposed scheduling algorithm . . . . . . . . . . . . . . . 56

3.4 Distinction between failure analysis and failure prediction . . . . . . . . . . 62

3.5 Failure predication model . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.6 Evaluation process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.7 Failure prediction model based on the deep learning model . . . . . . . . . 71

3.8 A sample neural network architecture . . . . . . . . . . . . . . . . . . . . . 75

3.9 Proposed framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.10 Resource allocation architecture . . . . . . . . . . . . . . . . . . . . . . . . 79

xvii



4.1 Prototype implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.2 Implementation of cloud components . . . . . . . . . . . . . . . . . . . . . 85

4.3 System performance using only local resources. . . . . . . . . . . . . . . . . 87

4.4 System performance after integrating local and cloud resources. . . . . . . 89

4.5 Local resources throughput vs combined throughput . . . . . . . . . . . . . 89

4.6 Distribution of task status for Google traces . . . . . . . . . . . . . . . . . 91

4.7 Distribution of job status for Mustang and Trinity traces . . . . . . . . . . 92

4.8 Event types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.9 A comparison between job and task event failure behaviour in 29 days of

Google trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.10 Number of failed tasks for the Google trace, focusing on days 2 and 10 . . 98

4.11 Priority level for failed and finished tasks . . . . . . . . . . . . . . . . . . . 100

4.12 Scheduling class for failed and finished tasks . . . . . . . . . . . . . . . . . 101

4.13 Memory was requested for both unsuccessful and finished tasks . . . . . . . 102

4.14 CPU was requested for both unsuccessful and finished tasks . . . . . . . . 104

4.15 Disk space was requested for both unsuccessful and finished tasks . . . . . 105

4.16 The average number of tasks requested from 2011 to 2016 for cancelled,

failed and finished jobs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.17 The average number of nodes from 2011 to 2016 for cancelled, failed and

finished jobs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

xviii



4.18 The average number of nodes for cancelled, failed and finished jobs in the

month intervals between 2011 and 2016 . . . . . . . . . . . . . . . . . . . . 108

4.19 The correlation between the execution time and the failed, cancelled and

finished jobs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.20 The correlation between types of Trinity required class and job status . . . 110

4.21 The correlation between types of Trinity computing resources and job status 111

4.22 Performance evaluation of different algorithms applied to the Google trace 116

4.23 Performance evaluation of different Machine Learning algorithms applied to

the Mustang and Trinity traces . . . . . . . . . . . . . . . . . . . . . . . . 116

4.24 Performance evaluation of different algorithms applied to the Google cluster

trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.25 Performance evaluation of different algorithms applied to the Mustang and

Trinity traces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.26 Architecture of Artificial Neural Network (ANN) based on the proposed model125

4.27 The model accuracy rate of applying different optimizers . . . . . . . . . . 128

4.28 The model loss rate of applying different optimizers . . . . . . . . . . . . . 128

4.29 The model accuracy rate history of applying different learning rates . . . . 129

4.30 The model loss rate history of applying different learning rates . . . . . . . 129

4.31 The model accuracy for different three traces . . . . . . . . . . . . . . . . . 131

4.32 The model loss rate for different three traces . . . . . . . . . . . . . . . . . 131

4.33 Architecture components and computing resources for the Hajj environment 135

xix



4.34 Number of failed tasks for different architectures . . . . . . . . . . . . . . . 140

4.35 Network traffic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

4.36 Average VM CPU utilization for the edge data centers . . . . . . . . . . . 142

4.37 Total tasks executed in the edge data centers . . . . . . . . . . . . . . . . . 142

xx



List of Abbreviations

API Application Programming Interface

DL deep learning

DTs Decision Trees

FNR False Negative Rate

FPR False Positive Rate

HPC High-Performance Computing

IaaS Infrastructure as a Service

IoT Internet of Things

KNN K-Nearest Neighbor

ML machine learning

NB Naive Bayes

xxi



PaaS Platform as a Service

QDA Quadratic Discriminant Analysis

QoS quality of services

RF Random Forest

SaaS Software as a Service

SLA Service Level Agreement

xxii



Chapter 1

Introduction

This chapter first provides an overview of cloud-IoT integration and fault tolerance tech-

niques, followed by motivation and problem statement, research objectives, research con-

tributions and thesis structure.

1.1 Overview

Cloud computing and the Internet of Things (IoT) are two of the most powerful technolo-

gies in today’s modern world. Enterprises are increasingly moving workloads to public

clouds and adopting multi-cloud strategies to save cost, enhance agility, and increase flexi-

bility. The popularity of cloud computing over traditional distribution systems has resulted

in cloud providers building massive data centres worldwide. The data centres operate in

1



different geographical regions to efficiently meet the enormous demand of their users. The

value of cloud computing is to store, manage, and analyze user data in the data centers via

the Internet instead of using local machines. Cloud providers are responsible for manag-

ing and maintaining the operation of these data centres to provide cloud consumers with

high quality of services (QoS). Cloud users have full access to cloud services such as vir-

tual machines or cloud storage using Application Programming Interface (API), enabling

applications and data sources to communicate with each other. Another feature of cloud

computing is scalability, which allows cloud users and organizations to scale in or out based

on their business requirements.

Innovative IoT applications are being used in various fields, including health care and

transportation, thanks to the advancement of IoT devices. According to [16], the num-

ber of Internet-connected devices and machines will reach 38.6 billion by 2025, with an

economic impact between $3.9 trillion and $11.1 trillion. Even though IoT systems have

economic advantages in transportation, energy, construction, and healthcare, deploying an

efficient IoT platform becomes a bottleneck. This research study focuses on the context

of Software as a Service (SaaS), and performance parameters include scalability, avail-

ability, throughput, and response time. The study [122] found that response time has a

significant impact on cloud computing performance and availability. Increasing numbers

of IoT applications connected to the cloud to take advantage of the flexibility, scalability,

and minimal initial costs that cloud computing provides. The combination of local IoT

resources with modern computing resources, such as edge and cloud computing, opens up

2



new research opportunities. As an illustrative example of the power of combining cloud

computing and IoT, smart cities are considered a significant driver of healthcare and other

industry development [90] because they rely on integrating multiple city systems such as

transportation, healthcare, and operations research to provide a high quality of life for

their residents. With advancements in data connection techniques, an increasing number

of devices are getting closer to forming a system that significantly enhances the capabilities

of devices through the combination of IoT and cloud computing. As a result, a framework

that can use both cloud and IoT technologies is becoming increasingly important. This

framework could be applied to IoT applications that require scalability, high availability

and high performance.

The utilization of edge computing technologies, such as intelligent terminals, enables

data storage and processing in real time. Compared to cloud computing, edge computing

reduces the challenge of high energy consumption, saves costs, and reduces network band-

width congestion. Many industries benefit from edge computing’s capabilities, including

manufacturing, energy, smart homes, and transportation [20]. Edge computing models are

therefore important for the development of cloud-IoT applications.

Fault tolerance is the ability of cloud computing to continue providing services, even

if one or more cloud components fail for any reason. Due to heterogeneity and its large-

scale nature, cloud architectures have become more complex than traditional distributed

systems. Many organizations plan to use the public cloud, but they are concerned about

the reliability of the current cloud computing environment. Therefore, the need to design
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and implement a reliable cloud computing environment has been increased because several

real-time applications use the cloud and require high availability computing. Research

focuses on developing a framework that can achieve the required level of reliability while

meeting the business requirements of cloud consumers.

As demand for the cloud increases, the uptime of 24x7 services becomes one of the

biggest challenges facing cloud providers, as it is challenging to escape service outages.

Furthermore, cloud applications have a high probability of failure [107, 32, 103] because

they run in a large-scale environment, including data centres and virtual servers. The

reliability and availability of cloud computing remain the main concern of cloud consumers.

For example, Amazon Web Services (AWS) has experienced a failure in one of its services,

Elastic Block Storage (EBS). This failure brings down thousands of hosted websites and

applications for 24 hours [64]. After certificates securing client data expired in February

2013, Microsoft’s Azure cloud service faced a global outage [52]. In February 2017, AWS’

Simple Storage Service (S3), which hosts entire websites and apps, broke down for four

hours in the US-EAST-1 region due to debugging progress more slowly than expected [117].

Host applications and websites require fault tolerance to overcome the effects of failure and

to perform their tasks correctly when failures occur. As a result, cloud providers focus on

increasing the availability of services to ensure that cloud systems continue to function

correctly in the event of faults.

This thesis investigates the impact of integrating local IoT resources with cloud and edge

computing and presents approaches for increasing the reliability and availability of cloud-
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IoT applications based on task failure analysis and prediction. This thesis also discusses

two approaches to fault tolerance: task failure analysis and failure prediction. Failure

analysis techniques help detect misconduct in operating cloud applications and determine

the cause of software failure. However, the main aim of failure prediction is to detect task

or job failures early before they occur to increase the performance of cloud applications

and reduce the number of failed tasks. This thesis also provides an architecture for a

highly reliable IoT application based on the Edge-Cloud architecture development and can

support modern IoT applications [98].

1.2 Motivation and Problem Statement

The integration of IoT devices with the cloud offers many advantages, including extend-

ing the IoT resources and increasing the performance of cloud-IoT applications. Cloud

computing can benefit from IoT devices and applications by extending its scope to include

real-world surroundings. On the other hand, the IoT can benefit from the cloud’s unlimited

computing and storage resources. In many scenarios, cloud-IoT integration can provide

an intermediate layer between IoT devices world and cloud services. However, many chal-

lenges face the integration of cloud-IoT, including reliability, availability, and performance.

Thus, many modern applications, such as smart cities, smart homes, and eHealth, require

a new architecture of cloud-IoT that can increase the reliability and availability and re-

duce the network latency of IoT applications. Also, while the number of cloud services has
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increased, the cloud architecture has become more complicated due to its large scale and

heterogeneity nature. As a result, cloud consumers are concerned about the availability

and reliability of cloud services, as several cloud services, including software and infras-

tructure services, have recently experienced failures. In fact, the reliability and availability

concerns have become one of the most significant challenges facing both the traditional

High-Performance Computing (HPC) and the cloud environments so that the complexity

of cloud architectures can increase the probability rate of failure [124, 34, 104].

In recent years, cloud service providers have encountered reliability-related issues sim-

ilar to those we faced in the past. These challenges are power outages, unexpected hard-

ware failures, failed deployments, software bugs, and human errors. The reliability and

availability of cloud computing remain the primary concern among cloud consumers. The

Coronavirus pandemic (COVID-19) has tested cloud providers in many ways, none of which

could have been predicted. Although the public cloud has proven remarkably resilient in

overcoming an unprecedented stress test, there are remarkable exceptions to cloud failure

problems that occurred in the first half of 2020. For example, on March 3, 2020, almost all

Azure services in Microsoft’s East US region had a more than six-hour outage across most

of its services, starting at 9:30 a.m., according to the Azure status history website [126].

Edge-Cloud architecture is urgently needed for IoT application development since cloud

computing cannot meet the growing number of IoT devices and the data they generate and

meet its QoS standards, including low latency. As the number of smart devices connected

to the Internet is rising rapidly, leading to large-scale data; this causes several problems:

6



slow response times, poor security and privacy, high bandwidth load in traditional cloud

computing models [27]. Advanced edge computing solutions have arisen because traditional

cloud computing is no longer sufficient to meet the diversified data processing requirements

of today’s intelligent society. Edge computing, as compared to cloud computing, is closer

to the user and the data source. Although many research studies focus on cloud-IoT

integration in general, there is limited research investigating the reliability and availability

of cloud-IoT integration. Our motivation is to provide a new framework for integrating the

local IoT resources with the cloud. This thesis focuses on designing and implementing a

framework that improves fault tolerance mechanisms in cloud computing and IoT platforms

to enhance the reliability, availability, and performance of cloud-IoT applications.

The main challenge that needs to be addressed at an application level is handling tasks

between local IoT resources and the cloud. Our goal is to distribute resources efficiently

in order to develop a scalable and available cloud-IoT framework. To achieve this goal,

we focus on two aspects: providing a computational mechanism that reduces the response

time of connected devices while increasing throughput.

Failed tasks consume considerable computational resources, including memory and

CPU. Cloud resources are therefore wasted as the number of failed tasks increases. Many

previous studies [48, 104] have analyzed and characterized the workload features of Google

traces [106]. The most recent studies have focused mainly on analyzing and studying failure

behaviour, while there are limited research findings in the development of job failure pre-

diction models [46, 32, 112, 107]. Thus, the design and implementation of failure prediction
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models using machine learning (ML) and deep learning (DL) algorithms is an additional

challenge that should be taken into account.

1.3 Research Objectives

The main objective of this thesis research is to design and implement a cloud-IoT frame-

work that delivers high reliability and availability for IoT applications through the use of

proactive fault tolerance techniques. The framework aims to decrease the number of task

failures and minimize the time and cost of using the cloud.

The objectives of this thesis are:

1. Investigate job and task failure in the cloud to study the behaviour of failed tasks

and examine the correlation between failed jobs and requested resources.

2. Design a framework for extending local IoT resources using cloud and edge computing

in order to provide scalability and high availability for cloud-IoT applications using an

offloading technique that can minimize the cloud’s execution time and computation

cost.

3. Design a failure prediction model for cloud-IoT applications that answers the follow-

ing question: how can we accurately classify and predict incoming task event types

(fail, success) before the management system schedules them on the cloud?
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1.4 Research Contributions

This thesis provides new techniques which improve the reliability and availability of cloud-

IoT applications based on the design and implementation of failure prediction models. Also,

the proposed framework provides an offloading technique based on a scheduling algorithm

for distributing incoming tasks between local IoT resources and the cloud. In summary,

the main contributions of this thesis are:

� Design and implementation of failure prediction models based on machine learning

and deep learning approaches.

� Study and analyze the characterization of large-scale workloads based on understand-

ing the failure behavior and the correlation between failed tasks and cloud attributes.

� Design and implementation of a framework for extending local IoT resources using the

cloud. This framework can be used in IoT applications that require high performance

and scalability.

� Design and implement an offloading technique that transfers incoming tasks based

on the required computation and priority levels.

� A highly reliable and available design of IoT applications based on the development

of Edge-Cloud architecture to support modern IoT applications. The Edge-Cloud

architecture has been evaluated in terms of response time, bandwidth, VM CPU

utilization and task failure rate.
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1.5 Thesis Outline

The remainder of this thesis is organized as follows. Chapter 2 presents the background and

related work to provide an overview of previous research. Chapter 3 illustrates the proposed

framework for cloud-IoT integration, failure analysis, and failure prediction. Chapter 4

reports and discusses the results and evaluation. Finally, Chapter 5 concludes the thesis

and presents some future research directions.
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Chapter 2

Background and Related Work

This chapter presents an overview of the leading research areas related to this thesis,

namely, cloud computing, edge computing, the Internet of Things (IoT), and fault toler-

ance. Furthermore, this chapter reviews previous studies on failure analysis and failure

prediction in the cloud and other computing research areas such as HPC, and virtualiza-

tion.

2.1 Modern Compute Resources

The IoT, cloud computing, edge computing, fog computing, and mist computing [83] have

received much interest in academia and industry in recent years. However, a clear and

direct definition of these computing paradigms and their relationships is difficult to find in
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the literature. Thus, this section will discuss each paradigm in detail, outlining its essential

characteristics and their relationship to the others.

2.1.1 Cloud Computing

Cloud computing enables consumers to access, configure and manage cloud resources, in-

cluding software and hardware services via the Internet. Visualization is a key component

of cloud computing because it allows users to access resources more rapidly and reduce

costs. Cloud computing offers scalability, management and availability, as well as cost-

effectiveness, on-demand service, convenience, multi-tenancy, and elasticity.

The National Institute of Standards and Technology (NIST) has published the popular

definition of cloud computing, which is: “Cloud computing is a model for enabling con-

venient, on-demand network access to a shared pool of configurable computing resources

(e.g., networks, servers, storage, applications, and services) that can be rapidly provisioned

and released with minimal management effort or service provider interaction. This cloud

model promotes the availability and is composed of five essential characteristics, three ser-

vice models, and four deployment models [84]”. As shown in Figure 2.1, there are three

different service types and four different development models for a cloud computing en-

vironment. Cloud computing primarily provides three service models: Infrastructure as

a Service (IaaS), Platform as a Service (PaaS) and Software as a Service (SaaS). NIST

defines four cloud development models: private, public, community and hybrid [123].
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Figure 2.1: Types of cloud services and deployment models

The public cloud becomes one of the best solutions for increasing scalability and avail-

ability as well as decreasing the cost-effectiveness of business applications. Recently, many

organizations have migrated to the public cloud because they can eliminate or decrease

the size of their infrastructure. The reduction of physical servers and software costs can

significantly reduce IT costs [47].
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Figure 2.2: The architecture of cloud, edge, mist computing

2.1.2 Edge, Fog, and Mist Computing

This section explains the differences and comparisons between edge, fog and mist. The use

of these computing terms has been increasing in recent years, but they are still not well

understood by many people. The edge, fog and mist computing components are shown in

Figure 2.2.
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Edge Computing

Data can currently be processed using edge computing on devices connected to sensors or

gateway devices near sensors. As a result, edge computing enables devices to process data

without the assistance of the cloud or fog. Edge computing allows devices to process data

in near real-time by bringing data processing closer to the edge; this reduces centralized

cloud overheads [116]. In a connected smart home, edge computing can be used to perform

near-real-time operations, such as turning on lights. Additionally, edge computing may

aid in predictive maintenance by providing timely alerts when a device is going to fail.

Edge computing is suited for addressing privacy, latency, and connection issues. However,

the response time in edge computing might be higher than in the fog or cloud if the local

processing unit is not powerful enough [134]. As a result, edge computing can cut service

costs and latency while simultaneously reducing power consumption by being closer to IoT

devices [6]. As shown in Figure 2.2, an IoT gateway serves as a network router, allowing

data to flow between IoT devices and the cloud. A new model of IoT gateway devices is

designed to handle both inbound and outbound traffic. Some IoT gateways are designed

to pre-process data locally at the edge rather than transmitting it to the cloud.

Computing at the edge could improve internal communication by combining physical

assets with IoT devices to collect and evaluate vital data. Data can be saved locally

and transferred to the cloud for further analysis after being processed by IoT devices,

so it is important to note that sensitive data can be safely handled at the point of origin.
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Edge computing devices can also perform near-real-time analytics that can help to optimize

performance and uptime. The primary downside of edge computing is that it is less scalable

than cloud computing.

Task offloading can be accomplished via user devices, edge devices, and edge nodes.

Offloading is used to deal with a variety of problems that impact on optimization. Data

management, application computing restrictions, latency control and energy management

are some of the challenges that need to be addressed. If fog nodes are not performing

well on their primary resource, offloading is utilized to move the task to another resource.

Edge-Cloud applications could also be improved by using offloading strategies. When a

low-speed CPU cannot accomplish a task, it may be offloaded to a high-speed processor

[119, 1].

Fog Computing

Fog computing is a network architecture that extends from the point of data creation

to the point of data storage in the cloud or the organization’s data centres. Gateways,

routers, and cloud services are among the components of the fog computing architecture.

A computational layer that functions between the cloud and the edge is also known as fog.

Fog computing extends the cloud to the network edge and enables decentralized computing

by processing data on the fog node. For this purpose, any device with storage, computation

and network connectivity can be used as a fog node. Fog computing could be useful in

smart cities, where many devices rely on real-time data to perform various functions.
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For example, autonomous vehicles use fog computing because real-time data processing is

essential. The downside of fog computing is that it relies on many connections to send

data from the physical asset chain to the digital layer, which leads to network failure.

Mist Computing

Mist computing can be used to process data at the extreme edge of a network, where micro-

controllers and sensors are present. Mist computing can harvest resources by operating at

the extreme edge of the sensor and using the processing and communication capabilities

of the sensors. In the field of mist computing, data is transferred to fog computing nodes

and then to the cloud using micro-controllers and microcomputers. Many edge nodes,

including mobile phones, connected vehicles, and intelligent home appliances, have become

mist computing components that process data at the extreme edge.

One example of the value of mist computing is the deployment of a network of real-time

cameras using a machine learning model. A private mesh computer can use a mist node

to transmit live streaming videos to other camera mist nodes. The mist nodes with static

video frames may help other mist nodes with moving video frames in computing machine

learning algorithms that check for human counts, behaviours, guns, etc. For example, when

a gun is detected, the mist can begin to transmit frames to cloud-based mist nodes with

face detection databases to identify criminals in the live video stream. The distinctions

among cloud, fog, edge, and mist are summarized in Table 2.1.
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Table 2.1: The differences among cloud, fog, edge, and mist

Cloud computing

- Central processing based model.
- Highly scalable and unlimited storage space.
- High latency and response time.
- High power consumption.
- Downtime

Fog computing

- Extending the cloud to the edge of the network.
- Decentralized computing. (millions of small nodes)
- Fog is a computational layer that functions between the cloud and the edge.
- Fog computing relies on several links to transport data from the physical resource to
the cloud, which might fail.

- Fog does not have the same scalability as the cloud.
- Fog nodes can be public, private, or hybrid.

Edge computing

- Edge computing, unlike fog computing may operate without the use of a cloud or fog.
- Close to the source of information.
- Low latency.
- Less scalable than fog computing.

Mist computing
- Utilization of microcontrollers and microchips to provide lightweight computing within
the network.

- Local Decision-making data.

2.2 Internet of Things

IoT refers to the use of intelligent devices that are connected to the Internet. The essen-

tial features of the cloud-IoT application architecture are connectivity, sensing, scalability,

intelligence and integration. IoT devices can be connected via various types of network

communication, such as Bluetooth, Wi-Fi, and radio waves. IoT devices should be de-

signed and implemented to be scaled down or scaled up based on business and application

requirements. According to [16], the study estimates that by 2025, the number of Internet-

connected devices and machines will reach 38.6 billion. It is expected to have a total

economic impact of between $3.9 trillion and $11.1 trillion. IoT systems have economic

benefits in transport, energy, construction and health.
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On the other hand, cloud computing has faced numerous obstacles due to its rapid

growth and remote geographical location. Cloud computing cannot support the growing

number of IoT devices and their generated data while maintaining QoS standards such

as low latency. As more intelligent devices connect to the Internet, traditional cloud

computing models suffer from poor response times, a lack of security and privacy, and high

bandwidth usage [27]. Advanced edge computing solutions have emerged as standard cloud

computing no longer meets the variety of data processing demands of today’s intelligent

society. Compared to cloud computing, edge computing is closer to the user and the data

source.

With the development of IoT applications, edge computing models are urgently needed.

The impact of IoT and edge computing integration on failure analysis and prediction is

also addressed in this thesis. In addition, we present an architecture for a highly reliable

and available IoT application based on the development of the Edge-Cloud architecture,

which can support a new model of IoT applications [98].

2.3 Fault Tolerance

A fault, error, and failure are related abnormal conditions in a system. The formal defini-

tions of fault, error, and failure are [19]:

� Fault: A fault or bug is defined as a defect or abnormal state. This fault can affect

one or several parts of a system, and it may be consequences in preventing the system

19



from performing a specific function.

� Error: Incorrect behaviour caused by a fault (a manifestation of a fault).

� Failure: A failure occurs when the system cannot deliver its intended function.

The methods of fault tolerance are divided into two categories:

� Proactive fault tolerance prevents fault, error, and failure based on applying pre-

diction methods such as software rejuvenation, self-healing, and preemptive migration

[118]. The main objective of proactive fault tolerance is to discover the failure before

it occurs.

� Reactive fault tolerance is attempting to reduce the impact of failure after the

failure effectively occurs. Several techniques can be applied as reactive fault tolerance,

such as check-pointing, replication, job migration, and Retry [12, 10].

2.3.1 Fault Tolerance Elements

Dependability includes reliability, safety, resiliency, and redundancy. The term reliability

refers to the capability of cloud components to perform without failure consistently. The

following sections will define these elements and explain how they can affect the system’s

dependability [23, 69]. Figure 2.3 presents the correlation between fault tolerance elements

and system dependability.
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Figure 2.3: Fault tolerance elements

� Reliability: Reliability refers to the capability of a specific system to be able to

operate correctly over a period of time. For a system, reliability can be calculated by

determining the system’s probability of functioning correctly for a given time interval

t [23].

� Safety: Safety can be defined as a feature of the system that does not cause harm

to humans or damage the environment.

� Resilience: The main objective of resiliency is to increase the ability of the cloud

management system to recover different types of failures and continue operating

without bringing down the entire system. Applying resilience techniques helps to

respond to the failures and to avoid data loss and downtime. High Availability (HA)

and Disaster Recovery (DR) are the most significant aspects of resiliency [23, 69].

– High Availability: Many cloud consumers are concerned about the availabil-

ity of cloud computing. HA refers to the ability of the cloud component to

continue functioning in an active state without unacceptable downtime. We

can also express the availability in terms of average downtime. When we de-

sign applications to be reliable and resilient, we should consider the availability
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requirements and the acceptable amount of downtime. Business owners can an-

swer this question when they investigate the cost of downtime. Based on the

business requirements, owners can decide how much they should invest in order

to ensure that the application has high availability. The following formula is

commonly used to calculate the availability of a system or application:

Availability =
Uptime

Uptime−Downtime
(2.1)

The formula returns a percentage value, for example, 99.99 % (“four nines”) or

99.999 % (“five nines”).

The agreed-upon service time is the system’s estimated operational time ev-

ery month. The system’s scheduled downtime is specifically excluded from the

agreed-upon service time.

– Disaster Recovery (DR): Cloud DR is a cloud-based solution that enables

the backup and recovery of remote devices. In other words, DR is the system’s

capability to recover main incidents such as wide-scale and non-transient failures

such as service disruption that can affect an entire region. Disasters include

practically any circumstance that causes systems in a data center to fail, such

as fires, equipment failures, and weather conditions. Many approaches are used

in disaster recovery to reduce the impact of failure, including archiving and data
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backup.

Recovery Time Objective (RTO) and Recovery Point Objective (RPO) are two

important metrics related to business requirements. RTO is calculated based

on the maximal acceptable time that a cloud component can be unobtainable

after an incident, and RPO is the maximal time of data loss that can be accept-

able during a disaster. For any reason, if the Mean Time to Restore (MTTR)

surpasses the RTO, this failure will lead to unacceptable business disruption

[23, 69].

� Redundancy: Redundancy refers to the duplication of components. The main

objective of resiliency is to bring back the cloud application to a complete health

state after an incident occurs. The more redundancy there is in the components of a

system, the more resilient it will be.

In cloud computing, a failure occurs for any reason, such as hardware failures or tran-

sient network failures. Additionally, a disruption may affect an entire region in some

instances. Consequently, we must develop methods to avoid or mitigate the impacts of

these failures. Recent research focuses on minimizing the Mean Time to Restore (MTTR)

instead of preventing failures and optimizing Mean Time Between Failures (MTBF). Focus-

ing on MTTR helps to reduce the impact of the failure. Many advantages of designing and

implementing fault tolerance techniques include failure recovery, improved performance,

and lower cost.
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2.3.2 Fault Tolerance in the Cloud

There have been several studies that present surveys of fault-tolerance in the cloud com-

puting environment. The authors in [55, 56, 92] have discussed various fault tolerance

approaches and different fault types in cloud computing. All resources are offered as cloud

services in cloud computing and include SaaS, PaaS, and IaaS [17, 84]. The architecture of

cloud layers should be designed and implemented with advanced fault tolerance techniques

in order to reduce the probability of failure that can occur in one or more cloud compo-

nents. Figure 2.4 presents the fault tolerance cloud architecture that includes all cloud

service layers with the types of faults that can occur at each layer. A failure may occur

suddenly, and impacting the cloud service layers offered to consumers by cloud providers.

For instance, a fault in a PaaS layer might generate errors at the application level or SaaS,

which is running on top of PaaS. Cloud providers offer cloud services that run in differ-

ent data centers, and these data centers operate in various regions. A single data center

includes different cloud layers that could produce different fault types. Thus, the new

architecture of cloud computing requires varying levels of fault-tolerant methods to ensure

that cloud services are reliable.

Fault Tolerance for SaaS

SaaS provides remote access to software applications and their functions as a web-based

service. Also, in order to build SaaS, it is important to take into consideration three
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Figure 2.4: Fault tolerance cloud architecture

aspects: SaaS providers, cloud providers, and SaaS users [17]. The SaaS fault types can be

classified into two fault types: a software service fault and a third-party software fault. If

SaaS has any types of failure, it causes immediate effect for users. In order to have a high

quality of service, the most important aspect is to ensure that all functions continue to

work correctly even though a fault suddenly occurs. Correctness is necessary when users

expect specific results from the software.

Reliable software can be defined as systems that execute their functions correctly during

a particular period and meet the users’ expectations. One of the main parts of software en-

gineering is software reliability, and the primary roles of software reliability are measuring,

analyzing, and improving the reliability of software systems.

Tsai et al. [129] proposed an adaptive test configuration to identify different types

of faults in the SaaS layer. In [53], the authors presented a method that can be used
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to detect silent failures. These types of failures may produce high impacts such as silent

data corruption and silent data loss. Their proposed solution has been designed using the

combination of invariant violation checks and FSM analysis in order to detect silent failures.

Samir [114] presents the common important attributes for SaaS; the author also extracts the

critical SaaS quality attributes based on business values and cloud providers. Reliability is

one of the essential characteristics of SaaS quality. Reliability is one of the most important

characteristics of SaaS quality. Alannsary and Tian [9] developed a technique for predicting

the reliability of SaaS by taking advantage of analyzing web server logs. The Cloud-ODC

model has been designed based on three phases: the first phase is the data source analysis,

the second phase is the classification, and the final phase is the result analysis. The authors

of [43] examined Service Level Agreement (SLA) violations on a production SaaS platform,

identified the underlying causes, identified numerous important failure modes, and then

proposed various solution options to increase the perceived availability of the platform

for end-users. According to Pham and Roy [109], a forecasting technique was proposed to

examine and improve the reliability of web applications. Kallepalli et al. [67] developed web

testing and reliability techniques in order to ensure the quality of web services. Cotroneo

et al. [38] proposed an approach that uses application logs to detect the reasons behind the

failure. However, mining interleaved logs for underlying distributed system infrastructure

should be considered throughout the analysis phase. Abderrahim et al. [2] propose an

architecture that aims to ensure that the cloud providers have successfully achieved the

requirement of dependability properties for cloud services.
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Fault Tolerance for PaaS

PaaS clouds allow consumers to develop, run, and manage their applications without con-

cerns about the infrastructure’s design, maintenance, and management. PaaS services

provide a ready platform to developers, including servers, networks, operating systems,

storage, programming languages run time, web server and other services that help de-

velopers host their applications. Thus, developers only need to deploy their applications

and apply the configuration settings. Even though PaaS services provide an easier and

faster application deployment and built-in function for horizontal scalability, the current

deployment mechanisms have become insufficient with critical applications. Critical appli-

cations require high availability, disaster recovery, and high performance. Li and Kapitza

[72] present BFT-DEP a framework for automatically deploying Byzantine Fault-Tolerant

(BFT) services in a PaaS cloud. The main objective of their framework is to ensure that

all deployment requirements have been achieved. They designed the BFT protocol to be

integrated with the cloud platform as a built-in service. Addo et al.[3] present a proposed

solution for implementing automatic fail-over between PaaS cloud provider platforms.

Fault Tolerance for IaaS

IaaS offers a pool of cloud computing resources, including hardware, servers, networking

components, and vast storage spaces. The essential IaaS components are physical servers,

including virtual servers, CPU, memory, and storage. Different types of faults may occur,
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including physical server faults, VM faults, and container faults. One of the major chal-

lenges in cloud computing is maintaining the availability of cloud services. Nabi et al. [94]

described the issues and challenges related to the upgrade of cloud computing in terms of

availability. Wang et al. [132] proposed a mechanism that provides high availability for

software services running on the VMs. Muthumanikandan et al. [93] developed a Switch

Failure Detection (SFD) technique in order to detect switch failures in Software Defined

Networking (SDN). When a link fails, SFD determines whether it failed as a single link

or as a result of a subsequent switch failure. The proposed method reduces the amount

of time required for other links connected to the failed switch to be detected, and their

proposed technique also boosts the network’s throughput.

Many commercial virtual servers support a high availability technique such as VMware

[24]. VMware uses heartbeats in order to detect VM failures. Wang et al. [132] use three

different approaches to detect VM availability based on physical servers: a FRU check, a

watchdog-timer check, and a sensor check. The FRU is used to check if a server exists

and investigate the server status in terms of the stage of booting, serving, or turning off.

The sensor check verifies whether the temperature and the voltage of the servers are in a

normal state. The watchdog-timer is responsible for diagnosing the health status of the

servers.
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2.4 Dependability of Cloud Computing

The capability of a system to avoid service failures that are more frequent and more se-

vere than is tolerable is referred to as dependability. Dependability measures a system’s

reliability, availability, durability, and, in some situations, maintainability, safety, and secu-

rity. Dependability in real-time computing refers to delivering services that can be trusted

across time [69].

Jhawar et al. [65] introduce an approach for creating and managing fault tolerance

in cloud computing. The main feature of this approach is to enable cloud consumers to

select and apply the desired level of fault tolerance based on system requirements without

requiring knowledge of fault tolerance techniques and implementation.

Zhao et al. [138] present middleware called Low Latency Fault Tolerance (LLFT). The

primary goal of their approach is to provide fault tolerance for distributed applications

deployed within a data center running in the cloud. Their approach has been implemented

using the replication technique. Other researchers also provide fault tolerance techniques

for web services [111, 136, 18]. Meshram et al. [86] propose a model called Fault Tolerance

Model for Cloud Computing (FTMC). The primary function of the FTMC model is to

tolerate the failures of each computing node. If a computing node does not perform well

for applications, it will be deleted.

Cloud computing architecture focuses on three important aspects: computing, storage,

and network services. Most public cloud providers offer computing resources as Infrastruc-
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ture as a Services. The main objective of providing these resources to cloud consumers is

to deliver the required infrastructure and assist in deploying applications faster without

concern in maintaining the infrastructure. AWS [22], Microsoft Azure [25], Google, and

IBM SoftLayer provide persistent storage for storing virtual machine data. Furthermore,

the cloud providers offer multiple availability sets and regions across the world to increase

dependability and disaster recovery capability. AWS and Google cloud providers offer a

monthly uptime to cloud consumers of at least 99.95% using two or more virtual machines.

However, guarantees are not provided for using only one virtual machine. Microsoft Azure

also provides a high SLA rate with 99.95% uptime for at least one of all virtual machines

running on different availability sets. Microsoft Azure also offers 99.9% of uptime for any

single virtual machine that uses premium storage for all data disks and operating system

disks. IBM SoftLayer does not provide a specific SLA rate for the virtual server in terms

of storage, but it offers a service level agreement of 100% for a public network. In terms

of public cloud storage, we have studied three different storage types: file storage, block

storage, and object storage. AWS, Microsoft Azure, and Google clouds offer file storage

services. These cloud providers allow cloud consumers to access their file storage via API.

However, the protocols used for connections differ from one cloud provider to another.

For example, AWS provides Elastic File System (EFS) using NFSv4 while Microsoft Azure

provides a file storage service called Azure File Storage (AFS) based on the standard Server

Message Block (SMB) protocol. Other features such as snapshot, replication, high avail-

ability, and flexible customization and configuration are similar among all public cloud
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Table 2.2: SLA for public cloud storage

AWS Azure Google IBM
File

Storage
no guarantees
of uptime

Read Write Availability
99.95% for Multi-Regional

99.9% for Regional Storage

99.0% for Nearline, Coldline

no guarantees
of uptime

Availability
99.99% for RA-GRS

99.9% for LRS, ZRS, GRS

Availability
99.9%
for RA-GRS,
LRS, ZRS, GRS

Block
Storage

99.95% SLA

Object
Storage

Durability
99.999999999%
Availability
99.9% for Standard
99.0% for Standard IA

Backup
and Archive

Durability
99.999999999%

99.9% SLA 99% SLA
no guarantees
of uptime

providers.

The SLA describes availability for uptime and connectivity. If the SLA for a cloud

service is 99.9%, this service must be available 99.9% of the time. In order to achieve four

9’s, the cloud provider should take into consideration to design the cloud components to

be self-diagnosing and self-healing instead of using manual intervention to recover from

failures. Cloud providers recommend especially for critical applications to have several

redundant components deployed across several data centers to increase the application

availability by failing over if one of the data centers failed. However, deploying components

or hosted applications in multiple regions is very expensive. Thus, if high availability is

not one of the business requirements, the application should be running in a single data

center. Table 2.2 presents the reliability and SLA for public cloud storage.

2.5 Extending Local Resources

In their study, Lee et al. [71] have addressed the issues of meeting dynamic computational

needs in a distributed environment. A key shortcoming in the current sensor network
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approach is a limitation of elasticity in sensing and local resources. The study team has

demonstrated that Amazon Elastic Compute Cloud (EC2) can meet the system require-

ments. The evaluation of their paper proves that unpredictable computational demands

that are generated by real-world environmental sensing and monitoring applications can be

dealt with sufficiently elastic cloud computing. Cloud-IoT integration has been extensively

studied in terms of its integration applications, challenges and issues [79, 102].

Marshall et al. [81] have proposed a model of an elastic site. They extend the local

site cluster with cloud services and resources to solve the local resources’ limitations and

adapt to the dynamic demands of new model applications. The core component of this

model is an elastic site manager, which is responsible for resource provisioning. In order

to implement and evaluate the elastic site model, the authors applied different types of

technologies and tools such as the Nimbus toolkit and Amazon Web Services (AWS).

One of the most significant features of using the cloud is providing high availability and

scalability. Thus, applying the load balancing techniques in the cloud environment plays an

essential role in increasing the availability and performance of cloud applications. The load

balancing technique has been explained in a white paper by Adler [4]. The paper presents

the techniques and tools that have been commonly used for applying load balancing in the

cloud environment. However, the author states that the load balancing technique still has

some challenges in adapting to the many changes in the cloud. Zenon et al. [28] illustrate

the important role of load balancing to improve availability and performance. Randles

et al. [101] investigate three different distribution methods that could be used for load
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balancing. These solutions are Biased Random Sampling, Honeybee Foraging Behavior,

and Active Clustering. In [87], various performance parameters for load balancing are

explained in detail. DCBT is a hybrid scheduling algorithm proposed by Shridhar and

Ram [45] that combines the Divide-and-Conquer and Throttled algorithm methodologies.

Their algorithm efficiently distributes the incoming load to maximize resource utilization

in a cloud environment.

2.6 Failure Analysis and Prediction

This section discusses current literature studies that are relevant to this thesis research.

Based on the study areas in task failure analysis and prediction, we divide the related work

into the following three subsections:

2.6.1 Statistical Analysis

A forecasting technique based on Generalized Autoregressive Conditional Heteroscedastic

(GARCH) and Autoregressive Integrated Moving Average (ARIMA) models were presented

by Amin et al. [11] to estimate the time between failures and response time in web services.

Khan et al. [68] found the repetitive workload patterns of virtual machines. They then

developed a technique based on Hidden Markov Modeling to describe and forecast the

workload patterns of virtual machines. Zhao et al. [140] approach the topic of disk failure

prediction from a completely different perspective than the previous researchers. They use

33



different characteristics measured at successive time intervals for a disk drive as a time

series, and they utilize Hidden Markov Model (HMM) and Hidden Semi-Markov Model

(HSMM) to model such time series in order to identify “failed” disks from “good” disks.

Morais et al. [88] developed a framework for the development of auto-scaling services based

on a variety of CPU usage prediction algorithms, including Linear Regression (LR), Auto

Correlation (AC) and Autoregressive Integrated Moving Average (ARIMA). Moreover, a

pattern matching and state-driven technique were used to estimate workloads by Gong et

al. [54] in order to build the workload prediction system called Predictive Elastic reSource

Scaling (PRESS). It begins by employing signal processing techniques to determine whether

or not the CPU used in a virtual machine displays recurrent activity patterns. If the answer

is yes, the repeated patterns are utilized to estimate future workloads; if the answer is no,

PRESS utilizes a statistical state-driven technique. A discrete-time Markov chain is used

to predict demand for the upcoming few days or weeks.

2.6.2 Failure Analysis

Failure analysis and characterization have been extensively researched in cloud computing,

grid computing, and supercomputers [32]. Some studies focus more on characterizing the

reliability of cloud computing hardware. For example, Vishwanath et al. [130] presented a

detailed analysis of failure predictors and failure characteristics. The main objective of their

study is to understand the hardware dependability in the cloud computing environment.

They found that hard disks are one of the less reliable components, and approximately 8%

34



of all servers can expect a minimum of one hardware failure per year.

Pan et al. [96] propose an approach called Ganesha, a black-box diagnosis technique

that utilizes the operating system metrics in order to identify and diagnose faults in MapRe-

duce systems. Zhang [137] studied the workload characterizations that are generated by

applying realistic performance benchmarks in order to evaluate the performance impact

of the cloud system changes. Fadishei et al. [48] examine workload characteristics such

as CPU speed and memory usage, task execution time, and other monitoring data. They

discover a relationship between unsuccessful jobs and workload characteristics.

The Google cluster traces [106, 105] are used in different research studies, including

workload trace characterization [32] and applying statistical methods in order to compare

Google datacentres – a cloud environment – to Grid or HPC systems [42].

Reiss et al. [104] analyze the Google dataset to highlight the big-data trace’s hetero-

geneous and highly dynamic behaviour. However, this study does not consider job failure

analysis and prediction, so their work is limited to the general analysis of the Google cluster

trace. Liu et al. [76] studied and analyzed the Google traces, including the distribution of

machines. The authors have summarised statistical data relevant to tasks, jobs, and ma-

chine events. Garraghan et al. [50] have used the same set of Google traces to analyze the

server characteristics and resource utilization on the Google platform. They also study the

impact of tasks that are terminated before completed in terms of wasted resource utiliza-

tion per server. Mesbahi et al. [85] offer a dependability study and a Markov model based

on Google cluster usage traces. They also have investigated the reliability of Google cluster
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traces using various physical machine failure rates and characteristics, such as steady-state

availability, Mean time to repair (MTTR), and Mean time to failure (MTTF). Ruan et

al. [110] have introduced a comprehensive multi-view approach to comparing two cloud

workloads and conducted a case study on Alibaba and Google cluster traces. Ahmed et

al. [5] have utilized the Google cluster workload to discover the distribution function for

the time to repair and the time to failure for the cloud servers.

Some studies have used unsupervised learning in machine learning in order to character-

ize cloud applications based on jobs and tasks events [41, 8]. Di et al. [41] have identified

cloud apps based on task events and resource utilization using the K-means clustering

technique with an optimal number of sets. The number of applications in the K-means

clustering sets is distributed in a comparable way to the Pareto distribution. Alam et al.

[8] conducted a statistical analysis of resource usage and workload traces. Although there

has been much earlier workload analysis of Google clusters, the key contributions of this

study are Google workload patterns clustering and job categorization based on K-means

clustering.

Amvrosiadis et al. [15, 13] have introduced four novel traces, two from private clusters

and two from HPCs. According to their findings, workloads in private clusters, consisting of

data analysis tasks that are likely to be more closely linked to Google’s workload, are more

similar to those in HPC clusters. This observation shows that other cloud traces should

be considered when evaluating the generality of new findings. Their new traces include

two from Two Sigma’s private cloud and two from Los Alamos National Laboratory’s
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high-performance computing clusters (LANL) [14].

In [59], we examined workload characteristics such as memory utilization, CPU speed,

and storage space. We observe a direct correlation between unsuccessful jobs and workload

characteristics. Additionally, there is strong evidence that killed and unsuccessful tasks

utilized a sizable part of cloud resources. A small percentage of failed tasks were resub-

mitted several times in an attempt to complete them successfully. However, because these

unsuccessful tasks consumed many resources, they were classified as killed jobs. Moreover,

all jobs with a scheduling class of (3) failed. This issue demonstrates a direct relationship

between the scheduling class and failure.

2.6.3 Failure Prediction using ML and DL

Earlier research on job failure has focused mainly on the study and characterization of

failures. However, some studies have been published on predicting job or task failures

[73, 107, 46, 32, 120, 125, 7].

Samak et al. [113] have applied the Naive Bayes classification algorithm to the execu-

tion logs of scientific processes to predict task failure. Then, they have shown in some cases

that when an incoming task that is predicted as failed, it can be successfully scheduled to

a different available resource. Liang et al. [73] utilize log files from IBM’s BlueGene ma-

chine to predict failure based on investigating the characteristics of fatal failure events and

finding the correlation between non-fatal and fatal events. Bala and Chana [21] proposed
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architecture for task failure prediction using data analysis and machine learning algorithms

to classify their approach under proactive fault tolerance techniques. Thus, their approach

is applied during the execution time of the applications before the failure occurs. El-Sayed

et al. [46] have designed a job failure prediction model based on the Random Forest (RF)

machine learning algorithm. The results show that they can successfully recall up to 94%

of all failed jobs with at least 95% precision. Rosa et al. [107] have created an approach for

predicting the outcome of task events. Their methodology is based on the integration of

three distinct algorithms: Quadratic Discriminant Analysis (QDA), Linear Discriminant

Analysis (LDA), and Linear Regression (LR). Their proposed model has been designed to

be updated every 24 hours. Shetty et al. [120] have proposed a model based on the XG-

boost classifier that uses three distinct resampling strategies. They obtained an accuracy

of 92% and a recall of 94.8%. Machine learning classifiers were tested to predict job failures

by Hongyan et al. [57]. They evaluated the performance of four different algorithms: RF,

KNN, KDT, and LR. In order to test the classifier’s accuracy, the OpenCloud dataset is

used. Additionally, Sun et al. [127] used a deep learning model to predict a software fail-

ure. They used a mechanism for creating new samples to generate failure data. Different

machine learning classifiers were used by Padmakumari and Umamakeswari [95] to predict

task failure in scientific applications. Classifiers were trained and tested on a simulated

dataset. The results reveal that the NB classifier has a high degree of accuracy (up to

94.9%).

Deep learning has been used by Gao et al. [49] to predict job and task failures. They
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used the Bidirectional Long Short Term Memory (Bi-LSTM) model with many layers. In

order to model training and testing data sets, the authors extract static attributes and

generate dynamic ones. According to the results, Bi-LSTM predicted task failure with an

accuracy of up to 93% and job failure with an accuracy of up to 87%. Moreover, Islam and

Manivannan [58] found important attributes related to cloud application failure. In order

to predict the application’s termination state, they used the LSTM model. The results

indicate that LSTM achieves up to 87% accuracy.

The primary shortcoming of earlier work is that the majority of previous research as-

sessed their models against a single classification method without comparing them to other

classifiers to guarantee that their results were accurate. As a result, we used a variety of

classification techniques, including Decision Trees (DTs), RF, K-Nearest Neighbor (KNN),

XGBoost, Naive Bayes (NB), Gradient Boosting and Quadratic Discriminant Analysis

(QDA). Then, we determined the optimal model based on applying various assessment

criteria and feature selection strategies. In previous work, we have [62] proposed a failure

prediction model based on an RF classifier and enhanced the model’s accuracy using sev-

eral feature selection algorithms. Our failure prediction model outperformed prior work in

[46, 125]. Table 2.3 and Table 2.4 summarize the current state-of-the-art in cloud comput-

ing for failure analysis and prediction. In comparison with the previous studies, we have

achieved the highest precision, recall, F1-score, and we have applied different evaluated

methods to ensure that our failure prediction model is accurate.
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2.7 Edge-Cloud Architecture

Devices at the edge of the network offload tasks to the cloud for processing in traditional

cloud computing. Due to insufficient processing capabilities in some devices, devices with

capacity-limited batteries are forced to offload their tasks in order to extend battery life.

The offloading mechanism is similar in edge and mist computing. Edge nodes can collab-

orate to enhance system throughput by offloading tasks. Deng et al. [40] developed an

approximation method for transferring load on fog devices and looked into the trade-off

between transmission latency and power consumption. Yousef-pour et al. [135] developed

a basic paradigm for task distribution in IoT applications. Their framework aims to mini-

mize response time and apply job distribution decisions based on how simple or complex

the jobs are to be processed.

In [139], an approach to offloading energy-sensitive tasks has been developed. The

architecture enables devices to select whether to transfer their tasks to the cloud or the

Fog based on their delay tolerance and power consumption. According to the findings, this

technique improves cloud-only and fog-only solutions. Mtibaa et al. [89] have developed

a technique to distribute the computing load across the nodes of a mobile device cloud

(MDC) in a way that minimizes power consumption.

Mukherjee et al. [91] proposed a framework for performing data analysis in the IoT by

utilizing connected devices at the network edge. Capacity-based partitioning, which divides

data into chunks based on the device’s capabilities, was designed to address this issue.

42



Performance has been reduced due to using these devices, but cloud demand has decreased,

perhaps resolving the cloud scalability. Based on resource availability, the authors [115]

provide a framework that schedules tasks across IoT gateways, fog servers, and the cloud.

In [29], Chamola et al. focused on reducing latency in Mobile Edge Computing by looking

for the optimal fog node to perform tasks. Compared to the standard approach, which

simply uses the closest fog node, this algorithm has reduced latency. Cao et al. [26] also

presented the multi-access edge computing (MAEC) concept and its key uses. They also

looked at the most important research using various machine learning methods. In state-

of-the-art research, the authors highlighted the need for improved intelligence in MAEC

and investigated fundamental concepts of common ML-based techniques.

We aim to design and implement highly available IoT applications that integrate cloud

and edge computing to minimize the failure rate and reduce the time and cost of using

the Cloud. As a result, one of the approaches that can be applied is the offloading and

scheduling techniques. We have also studied and proposed various failure prediction mod-

els [62, 63]. We are interested in evaluating the performance of IoT applications in the

integration of edge and cloud environments.

2.8 Summary

This chapter discussed recent advances in cloud-IoT integration, cloud fault-tolerance, and

failure analysis and prediction utilizing machine learning and deep learning. We conducted
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a comprehensive study of the literature on failure analysis and prediction, utilizing Google

cluster traces. First, we studied the big picture of fault tolerance by focusing on the re-

liability and availability of cloud computing to comprehend the dependability challenges

related to cloud-IoT applications. We then addressed related works on task failure pre-

diction from three relevant perspectives: statistical analysis, machine learning, and deep

learning. The next chapter describes the proposed solutions for designing highly available

and reliable cloud-IoT applications.
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Chapter 3

Proposed Framework

This chapter presents a framework for providing high reliability and availability of cloud-

IoT integration. The main objective is to design and apply proactive fault-tolerance tech-

niques to increase the reliability and availability of cloud-IoT applications. We also aim

to improve the computing performance of cloud-IoT applications and reduce the time and

cost of using public cloud.

We have developed a scheduling algorithm for transferring incoming tasks based on

the required computation. Moreover, we have studied and characterized different cloud

workload traces focusing on failure analysis. Then, we have applied several failure predic-

tion models based on machine learning and deep learning approaches to select the best

performance among all classifiers. The proposed model can be used in large data centers

in order to detect failed jobs before the cloud management system schedules them. Finally,
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we have designed a highly reliable and available Edge-Cloud architecture that can serve

the new model of IoT applications.

3.1 Assumptions

The scope of this research is limited to the cloud and edge computing for IoT applications

that require fault tolerance and high scalability. The proposed framework aims to increase

the reliability and availability of cloud-IoT applications. Additionally, it demonstrates

fault-tolerance techniques for cloud-IoT architectures through the use of load balancers

and availability zones. The following assumptions apply to the framework described in

this thesis:

� Incoming tasks have already been classified in terms of priority levels, scheduling

classes, and required computation.

� If incoming tasks are not classified, the load balancer (LB) server executes the task

for a fixed period in order to find out the required type of computation. The specified

of execution could be changed according to system requirements.

� The IoT devices presented in the proposed framework are assumed to have compu-

tation power.

� The workload traces used in this research were collected from the cloud, and high-

performance computing environments, such as Google cluster traces. Monitoring
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data indicate cloud characteristics, such as the required resources (CPU, memory,

disk storage) to perform a task. As a result, the proposed failure prediction model

has been designed and implemented for cloud deployment. However, the task failure

prediction model could be adapted to various forms of computing, such as edge, fog

or local servers, because the observed data is similar.

� The failure prediction models were designed and implemented to predict task failures,

but the proposed model might also be used to predict job failures. Based on our

assumption, the failure prediction model is trained and tested offline, as it requires

a long training time and a high computation power.

3.2 Framework Architecture

As a preliminary step, a cloud-IoT framework has been developed by utilizing cloud com-

puting to enhance local IoT resources, which are significantly limited in processing, mem-

ory, and storage. The proposed framework considers the local load balancer because it is

essential for allocating incoming workloads to available resources. As shown in Figure 3.1,

IoT sensors are connected to the local resources, which act as a gateway, to collect data

from different sensors. The scheduling algorithm transfers incoming tasks to appropriate

resources based on the required computation and classification of receiving tasks. The

cloud computing environment executes incoming tasks if these tasks require high compu-

tation. Otherwise, local resources can handle these tasks with low latency. Thus, instead
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of sending all incoming tasks to the cloud, the local scheduling algorithm assigns received

tasks to appropriate resources. The external cloud load balancer plays an important role

in applying the failure prediction model before scheduling incoming tasks to the available

resources in the cloud environment. Moreover, the framework provides different avail-

ability levels based on business and application requirements. As a result, the proposed

framework reduces the cost of using public clouds and increases cloud-IoT availability and

performance.

Figure 3.1: The proposed framework

Modern cloud-based applications, including smart homes and cities, require high levels
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of reliability and availability. All cloud services, including hardware and software, expe-

rience failures because of their large scale and heterogeneous nature. We have stated the

problem as thus: using the cloud workload attributes to answer the essential question: Can

we build a failure prediction model that can decrease the number of failed tasks and save

cloud resources?

Some features of the framework, components, concepts, and techniques that are de-

signed to build this framework are explained in the following sections:

3.2.1 Local Resources

Local resources include local servers, IoT devices, and sensors. IoT sensors are connected

to local resources such as Raspberry Pi, which act as a getaway. Recently, Raspberry Pi

devices have become more powerful; they can be used to transfer collected sensor data

to the cloud in order to be processed and analyzed. Therefore, instead of processing this

data in the cloud, part of the most current data has been stored locally for low-latency

processing. For example, if users want to monitor their house temperature for the last three

days, the data will be saved in local resources, resulting in high-performance outcomes.

Local Servers

The local servers are responsible for executing the medium computational tasks. Instead

of fully executing all operations in the cloud, we can reduce the cost of using the cloud and
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avoid the latency challenge by performing some operations on local servers.

IoT Devices and Sensors

In general, IoT devices communicate with IoT gateways, local servers, or edge devices,

from which sensor data can be processed locally and sent to the cloud for analysis. The

data processing capabilities are incorporated in specific devices, which reduces the quantity

of data that must be transmitted to the cloud or data centre. Machine learning is often

used to process data from IoT devices, and it is growing in popularity as more IoT devices

generate data.

IoT Gateway and IoT Integration Hub

An IoT gateway connects IoT devices and sensors to the cloud IoT platform and provides

a bridge between different communication technologies, which often have different connec-

tivity, protocols, or interfaces. An IoT gateway may connect to hundreds of sensors and

communicate with them using a variety of protocols such as Message Queuing Telemetry

Transport (MQTT), ZigBee, and Bluetooth. Another important capability of IoT gateway

is to filter out unnecessary data to reduce the amount of data that is delivered to the cloud

or edge computing [99].

The cloud-based IoT Integration Hub manages communication between IoT applica-

tions and connected devices. Millions of devices and backend systems can be consistently
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and safely connected. In addition, the sensor data is called telemetry; it generally enables

robust data collection and transfer to centralized systems for effective use. Telemetry is

data acquired by sensors and is read-only [99].

3.2.2 Management System and Local Load Balancer

The management system and local load balancer are significant components because the

management system plays an important role in monitoring the local resources in terms of

availability. The load balancer is responsible for transferring incoming tasks to the healthy

nodes based on the required computation [70].

Local Load Balancer

The task scheduling will be applied based on the classification of the tasks and the

computation power required . Local servers are suitable for high-priority tasks that

require low or medium computing power. In a home automation system, for example,

temperature monitoring and control should be performed on local resources, not in the

public cloud. High-priority operations that require real-time execution are performed near

IoT devices to meet the expected response time.
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3.2.3 Cloud Resources and External Cloud Load Balancer

We integrate local resources with the cloud to increase the rate of availability to ensure

that the framework provides high availability. Some machine learning tasks require high

computation, so the cloud is responsible for handling this type of task. In order to increase

the availability of the proposed framework, we have also developed a new approach for the

external cloud load balancer. We have designed our new cloud load balancer to predict the

failed tasks before they are transferred to the available VMs. This approach will help to

use cloud resources efficiently.

3.3 Extending IoT Local Resources

Modern IoT devices generate a large volume of data that requires a highly scalable and

available framework that enables computing, storage, and data analysis. Many cloud

providers offer unlimited storage as well as a flexible processing infrastructure, allowing for

executing a large number of tasks with high performance. Even though digital information

technology is widespread, IoT devices have limited storage, computation, and memory

capacity. Sensors, actuators, or smartphones generate vast amounts of data within a short

time. These data need to be stored, monitored, managed and analyzed in order to extract

useful information. Thus, integrating local IoT resources and cloud computing can be one

of the best solutions to increase the capability of IoT devices. In an application level,

the main challenge that needs to be addressed is handling tasks between local resources
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and the cloud. Our goal is to distribute resources efficiently to design an available and

scalable framework for IoT applications. In order to accomplish this goal, we will focus

our attention on three issues. To begin, developing a computing strategy that minimizes

the response time of connected devices. The second step is to devise a method for increasing

throughput. Finally, minimizing the amount of time spent in the cloud reduces the expense

of using public cloud services.

This thesis presents a framework for extending the local resources of IoT devices, which

are limited in terms of computing, memory, and storage, using cloud computing. This

framework provides scalability and high availability for cloud-IoT applications. Moreover,

a scheduling algorithm is implemented to minimize the execution time and computation

cost of using the cloud, according to a logic that directly depends on tasks’ classification

and computation requirements.

The core of the framework is to design and implement an architecture for integrating

IoT devices and local resources with the cloud to increase the computing performance of

IoT applications and reduce the cost of using the public cloud. The aim is to extend local

IoT resources with public cloud services to solve the limitations of the local resources, in-

cluding local servers and IoT devices such as Raspberry Pi, Arduino, and microcontrollers.

Figure 3.2 shows the framework architecture for extending local resources to the cloud.

Sensors are connected to IoT devices, which act as a gateway to collect data from different

types of sensors. The scheduling algorithm transfers incoming tasks from local resources

to appropriate resources based on the priority levels and computation requirements. The
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cloud computing environment executes incoming tasks if these tasks require high compu-

tation. Otherwise, local resources can handle these requests with low latency. Instead of

sending all incoming requests to the cloud, the scheduling algorithm assigns received tasks

to appropriate resources. As a result, the proposed framework reduces the cost of using the

public cloud as well as the proposed framework increases the IoT application performance.
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Figure 3.2: Framework architecture

3.3.1 Load Balancer and Task Offloading

Load balancing is responsible for ensuring that only healthy VMs receive requests by

detecting unhealthy VMs and changing the new request path towards the remaining healthy
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VMs. The following are the primary advantages of load balancing [100]:

� It serves in traffic control and tracking.

� It increases availability of resources.

� It optimizes network load distribution depending on node capabilities.

� It enhances resource utilization.

Cloud providers employ a variety of load balancer scheduling algorithms, including

round-robin, weighted round-robin, least-connection, and dynamic feedback. On the other

hand, modern cloud-IoT systems require a new offloading approach to balance numerous

tasks between local IoT resources and the cloud. This technique should take task compu-

tation and priority levels into account. Based on the failure analysis explained in detail in

Chapter 4, we have noticed that failed tasks and jobs consumed many resources because the

management system has resubmitted the failed tasks hundreds of times to be completed.

The task offloading will be applied based on the classification of the tasks and

the computation power required . The logic for switching or scheduling between local

resources and cloud resources are clearly presented in Table 3.1. Figure 3.3 shows the

flowchart of the proposed scheduling algorithm.
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Figure 3.3: Flowchart of the proposed scheduling algorithm

3.3.2 Classification Task Analysis

High priority tasks are required to be executed in a high-security environment with low

latency, so local servers resources are the best choice in order to execute these types task.

Algorithm 1 presents the proposed model to be applied to local scheduler. The phrase

“embedded systems” is occasionally used to describe IoT devices with the built-in process-
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Table 3.1: Logic to switch between available resources according to priority and computation power required

Low priority High priority

Low computation
IoT devices will be utilized, or
if local IoT resources are busy with other tasks,
the new task can be executed in the cloud.

IoT devices will be utilized.

Medium computation
Local servers will be utilized, or if the local servers
are busy with other tasks, the new task can be
executed in the cloud.

Local servers will be utilized.

High computation Cloud computing will be utilized.
Cloud computing with
high-security mechanisms.

ing power. The algorithm input has two parameters: number of incoming requests or tasks,

t1, t2....tn, and available resources, including Embedded System (ES ), Local Servers (LS ),

and Cloud Servers (CS ). The algorithm output is the assignment of tasks t1, t2....tn to

the appropriate computation resources (ES ,LS , or CS ). At the beginning of the proposed

algorithm, TaskResAllocationList and AvailableResList are initialized with a Null value

(line 1 and 2). The TaskResAllocationList is a list for storing the appropriate allocation for

each task based on classification of the tasks and the computation power required .

The scheduling algorithm transfers the classified task or incoming requests to the ap-

propriate resources (ES ,LS , or CS ) depending on the healthy resources. Initially, the

algorithm checks if an incoming task is classified or not, so if it is classified, it will be

normally scheduled and executed in the appropriate compute resources. Otherwise, If the

task is unclassified, the algorithm attempts to execute the task for a period of time. We

assume that the maximum execution time is 600 ms, but this value can be changed based

on the system requirements.

Then, the task will be terminated to the appropriate resources whether the task has

been completely executed or not (line 5 - 11). If the task execution time is less than 300
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Algorithm 1: Proposed algorithm to be applied in local scheduler

Input : T : Incoming tasks (t1, t2....tn)
AvailableResList : Available Resources

Output: Task resources allocation (ES,LS,or CS)
1 TaskResAllocationList = Null;
2 AvailableResList = Null
3 T ← (t1, t2....tn)
4 foreach t in T do
5 find all available resources
6 AvailableResList←
7 if (taskType == classified) then
8 Assign task to an appropriate resources
9 TaskResAllocationList←

10 else
11 Execute the task for a specific time, say, 600ms
12 if (taskExecutionT ime < 300ms) then
13 Assign task to ES or IoT devices
14 TaskResAllocationList←
15 else if (300ms ⩽ taskExecutionT ime ⩽ 600ms) then
16 Assign task to LS
17 TaskResAllocationList←
18 else
19 Assign task to CS
20 TaskResAllocationList←
21 end
22 end
23 end
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ms, it can be considered a low computational task. In this case, the task will be transferred

and executed on the IoT devices. Otherwise, if the task execution time is between 300-600

ms, the task will be transferred and executed on the local servers. Finally, if the task

execution time exceeds 600 ms, the task will be assigned and performed in the cloud (lines

12 - 20).

Task scheduling plays a significant role in combining local resources and cloud com-

puting. In the proposed solution, we apply the scheduling technique in order to map

users’ tasks to appropriate resources based on the task criticality and computation types,

as shown in Table 3.1. We classify the task into two types: high priority and low prior-

ity. Also, computational tasks have been classified into three types: high, medium, and

low. Thus, the scheduling algorithm will be configured based on some policies in order

to minimize the execution time and execution cost of using cloud computing resources.

Small tasks should not be assigned to high-computing resources, which wastes time and

cost of using the cloud. In this case, small tasks can be handled by IoT devices in a low

response time and high performance without relying on cloud computing. Pseudocode for

a scheduling algorithm to offload tasks is shown in Algorithm1.

3.3.3 Scalability and Availability in the Cloud

The proposed framework has been designed to provide scalability and high availability

using cloud services. After applying the scalability techniques, the proposed framework
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can efficiently serve a large number of tasks. Horizontal scaling will be selected as this type

of scaling allows the system to scale in or scale out based on the system requirements.

Auto-scaling service is one of the best features of cloud computing, and it could be done

according to some available metrics, such as CPU average. If the average CPU usage for

all operating VMs is more significant than 50%, cloud users can automatically set metrics

to create three additional virtual machines (VMs).

When we launch a single VM, we are launching a VM running on a physical server at

one of the data centers. As a result, one of the following events could take down the VM:

� The VM itself could fail, or the hard drive volume could become corrupted;

� The physical server on which the VM resides could fail;

� The data center, which houses physical machines, could fail.

The following section introduces a failure prediction model that can be applied to

the load balancer algorithm to increase the reliability and availability of cloud computing

resources and local IoT resources.

3.4 Job and Task Failure Analysis

Modern applications, such as smart cities, home automation, and eHealth, demand a new

approach to improve cloud application dependability and availability. Due to the enormous
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scope and diversity of the cloud environment, most cloud services, including hardware and

software, have encountered failures. In this thesis, we first analyze and characterize the

behaviour of failed and completed jobs using publicly accessible traces. Then, in the next

section, we have designed and developed a failure prediction model to determine failed jobs

before they occur. The primary objective of this work is to enhance the understanding of

job failure in cloud computing environments. The results show a clear correlation between

failed jobs and requested resources, including memory, CPU, and disk space. Based on

our results, we find that many techniques can be applied to increase the reliability and

availability of cloud applications, such as developing scheduling algorithms, predicting job

failure, limiting task resubmission or changing the priority policies.

Failure analysis is different from failure prediction. Failure analysis techniques play

an important role in observing some misbehaviour in a running cloud system to identify

the cause of hardware and software failure. On the other hand, the main goal of failure

prediction is to detect faults before they occur early. A failure prediction model is developed

based on measuring the most important metrics and characteristics of cloud applications.

The primary aim of failure analysis and prediction is to study the frequent changes and

the behaviour of cloud applications to increase cloud applications’ performance and reduce

the number of failed tasks. Figure 3.4 presents the relationship between failure analysis

and failure prediction [77]. We are interested in studying the effect of job/task scheduling

and their priority policies on failure.

As researchers, we value how well prediction models work when tested against real-
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Figure 3.4: Distinction between failure analysis and failure prediction

world workloads. However, anyone who has tried to find data to accomplish this kind of

analysis knows that there are few available public workload traces. Legal and cultural

barriers to disclosing data are often responsible for this data availability. Even when data

sets are made publicly available, they are presented in noncanonical forms, remove elements

valuable to researchers, and are published separately on websites that eventually become

inaccessible to researchers [14].

3.5 Failure Prediction using Machine Learning

This section discusses the main components of the proposed framework for task failure

prediction. The failure prediction model has been designed and implemented to predict

the termination status of submitted tasks before the execution time. The proposed model

aims to enhance resource consumption and cloud application efficiency. We evaluate the

proposed model using publicly available cloud traces such as Google cluster traces [103].

In addition, the traces are also subjected to various machine learning and deep learning

models to find the most accurate one. Several solutions, such as predicting job failure,

developing scheduling algorithms, changing priority policies, or limiting re-submission of
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tasks, can improve the reliability and availability of cloud services.

Four important phases of the failure prediction model design are as follows: 1) The

cloud management system monitors the application metrics and the requested resources

such as memory, CPU, and disk space. Then, the monitored data will be stored in the cloud

storage in order to be used for the data prepossessing and failure analysis and prediction

phases. 2) Applying data prepossessing and filtration techniques is essential in data science.

The quality of the failure prediction model is based on this step. 3) The machine learning

algorithm will be applied to the cloud workload traces in order to predict failed jobs or

tasks. 4) Finally, the cloud management system will make the appropriate decision based

on the prediction results. If the job is predicted as a successful job, the job continues to

be submitted and typically scheduled to the available nodes. Otherwise, failure mitigation

techniques will be applied if the job is predicted as a failed job. Figure 3.5 presents the

phases of the failure prediction model.

Figure 3.5: Failure predication model
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3.5.1 Failure Prediction Model

The main aim of the proposed framework is to predict the job/task failure in the cloud

with high accuracy using available machine learning classification algorithms, and this

technique assists in reducing waste cloud resources and improving the utilization of cloud

infrastructures.

Algorithm 2 describes the failure prediction model. The algorithm inputs cloud trace

workload D, which includes a number of tasks. The algorithm also applies and tests dif-

ferent feature selection techniques and classifier models to the selected cloud trace. The

algorithm returns the termination status failed/finished. Set D represents the dataset that

is extracted from the input cloud trace. The data preprocessing has applied to the selected

dataset. The data preprocessing steps include the cleaning and filtering out of all tasks

that were submitted hundreds of times. After that, the management system kills them

after they have consumed many resources. The selected cloud trace is used for training

and testing the prediction models. The M indicates the selected model used in the predic-

tion for classifying failed and finished tasks. At the beginning of the proposed algorithm,

performanceList and topRankFeaturesList are initialized with a Null value (line 1). The

topRankFeaturesList is a list for storing the best features for each feature selection tech-

nique to be used as input for the selected model M. The algorithm then tests different

feature selection techniques (SelectKBest, Feature Importance, RFE) with different predic-

tion models (RF, DS, NB, QDA, KNN, XGBoost, and Gradient boosting), which present in
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Algorithm 2: Failure Prediction Algorithm

Input : D : Data Workload Trace
M : Model
F : Feature Selection Technique

Output: Termination status Failed/Finished
1 performanceList = Null; topRankFeaturesList = Null;
2 M ← (RF,DS,NB,QDA,KNN,XGBoost,GBoosting)
3 F ← (RFE,FeatureImportance, SelectBest)
4 Data preprocessing
5 for d ∈ D do
6 Clean d;
7 Delete mising data;
8 Filter out those tasks that resubmitted hundreds of times;
9 end

10 forall elements of F do
11 Apply feature selection technique to the D
12 Select the top ranked features
13 topRankFeaturesList←
14 forall elements of M do
15 Apply classifer to the D
16 Evalute performance (accuracy, precision, recall, F1-score);
17 Add (Acc,Prec.,Rec.,F1-score) to performanceList ;
18 end
19 end
20 return [performanceList]
21 Select the best model performance from performanceList

22 foreach task in the job do
23 predict the task termination status;
24 if (terminationStatus > 0) then
25 terminationStatus == “Failed”
26 Apply failure mitigation techniques;
27 else
28 terminationStatus == “Finished”
29 end
30 end
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Figure 3.6: Evaluation process

lines 2 and 3. The algorithm also considers data preprocessing as one of the most important

steps before applying the proposed model (lines 4-9). The algorithm then applied different

selection techniques to different prediction models (lines 10-15). Then, the algorithm eval-

uates the performance and stores the results to the performanceList (line 16 and 17); after

that, the algorithm selects the proposed model based on the best performance results (line

21). The algorithm predicts the termination status (line 23) of using the failure prediction

model. If the termination status of greater than 0 is predicted as “failed”, and then apply

one of the failure mitigation techniques (lines 24-26). Otherwise, if the termination status

of t is predicted as “finished” (line 28). Additionally, the proposed evaluation process for

the failure prediction model is depicted in Figure 3.6.

We can summarise the proposed model’s process as follows:
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1) The workload data was loaded from three distinct traces, with the primary goal of

ensuring that the proposed model can be applied to traces of varying lengths.

2) Analysis, pre-processing, and filtering techniques have been used to ensure that the

data is ready for classification and modeling.

3) Three feature selection techniques have been applied to the traces to improve the

proposed model’s accuracy and performance. After that, we can rank the most

important features based on the results.

4) To predict failed and finished jobs, seven machine learning classification approaches

were used to the traces.

5) Finally, the cloud management system determines the appropriate failure prediction

model based on the best prediction findings. If the job is predicted to be finish, it will

be submitted and typically scheduled to available nodes. Otherwise, failure mitigation

strategies will be applied if the incoming job is predicted to be fail ; however, it is

important to highlight that this phase will be handled in future work.

The primary goal of the failure prediction model is to early predict failed/finished tasks

in the cloud-IoT applications with high rate of accuracy using ML classification algorithms.

The proposed model helps to reduce computational time and resource consumption, and

it increases the efficiency and performance of cloud-IoT infrastructure.
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3.5.2 Data Preprocessing and Filtering

The model’s input is a set of features that can describe the job/task attributes and the

behaviour of a cloud system. We have filtered out all event types of jobs/tasks that have

not occurred within the Google trace window (from May 1 to May 29), and these jobs and

tasks are presented as a time of 0 in the trace window. We have also converted all jobs and

tasks timestamp microseconds to daytime. In Google cluster trace, we investigated why the

number of failed tasks is very high compared to the number of failed jobs, so we found that

some tasks are resubmitted thousands of times to be successfully finished. However, these

tasks were killed after they had consumed considerable resources. As a result, we have

removed these tasks, including these types of tasks, because they are considered outlier

cases. During this period, we expect a data centre outage to occur.

3.5.3 Feature Selection Algorithms

First, we manually select the most relevant characteristics to save training time for the

classification algorithm and avoid over-fitting. Then, in order to increase the accuracy of

the proposed model, we used feature selection algorithms including Feature Importance,

SelectKBest and Recursive Feature Elimination (RFE).
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3.5.4 Prediction Techniques

The Decision Trees (DTs) classifier is one of the supervised learning algorithms that we

employ in our research. In order to learn from data characteristics, the DTs algorithm

incorporates many decision-making principles, which are discussed more below. The “en-

tropy” of a split is the criterion we employ to evaluate its overall quality. The DTs algo-

rithm uses “entropy” to determine the homogeneity (number of equivalent values). The

cost complexity of a tree may be calculated using the number of leaves in the tree and

the error rate of the tree. It may be necessary to employ other classification algorithms

to discover the most accurate, efficient, and dynamic model solution within a reasonable

situation. We utilized seven Machine Learning (ML) classification algorithms: RF, DTs,

KNN, QDA, Gradient Boosting, XGBoost and NB.

3.6 Failure Prediction using Deep Learning

Many cloud service providers face significant challenges in preventing hardware and soft-

ware failure from occurring. Due to the large-scale and heterogeneous nature, cloud services

continue to experience failures in their components. Although a number of prior studies

have concentrated on characterizing unsuccessful jobs, others have focused on improving

failure prediction models by enhancing their accuracy. This thesis presents the develop-

ment and implementation of a failure prediction model using a deep learning approach.

The proposed model can identify and detect failed tasks early on before they occur. The
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key feature of the failure prediction model is to improve the performance of cloud applica-

tions by reducing the number of failed jobs. In order to investigate the behaviour of failure

and apply the prediction of failure to the large-scale environment, we used three different

traces, namely Google Cluster Trace, Mustang and Trinity. Moreover, we have evaluated

the proposed model performance using different evaluation metrics to ensure that the pro-

posed model provides the highest accuracy of predicted values. The proposed model is

designed and implemented to achieve high accuracy for failure prediction, regardless of

whether the model uses a large or small trace size.

In recent times, deep learning algorithms have been used in many areas, such as cloud

computing, computer vision, and the Internet of Things (IoT). Deep learning algorithms

require a high volume of data in order to achieve high accuracy of prediction. Figure 3.7

presents our model architecture for failure prediction. There are three essential stages in

order to complete the failure prediction process. First, the model is designed to check

the number of trace observations to assist in ensuring that the utilized trace has enough

observations for prediction, and it can be utilized for training a deep learning model.

After that, data preprocessing will be applied to the utilized traces to ensure that the

data is ready for analysis and prediction. Second, if the trace has enough observations

for deep learning, the Artificial Neural Networks (ANNs) algorithm will be applied to the

trace. Otherwise, traditional machine learning algorithms will be applied. This technique

will assist in saving cloud resources that can be consumed for deep learning training and

testing time, which require high-performance computing. Finally, the failure prediction
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Figure 3.7: Failure prediction model based on the deep learning model

model will be evaluated to ensure that the model has achieved the expected accuracy. If

the ANN-based model is unable to achieve high accuracy, the traditional ML algorithms

will be applied. Then, the proposed model will be selected based on the higher accuracy.

The main objective of the proposed model is to apply a proactive fault-tolerance ap-

proach that can predict the status of the failure in a large-scale environment such as cloud

computing. The proposed model has been designed and implemented based on machine
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learning and deep learning classification algorithms. This approach can increase cloud

application efficiency by reducing wasted resources and enhancing the utilization of cloud

resources and other existing local computational infrastructure.

3.6.1 Data Pre-processing

The input of our failure prediction model is a feature set that represents the most important

attributes of job and task events. It is important to note that some observations were

filtered out from the utilized Google traces because they are considered outliers and might

affect the model accuracy. Section 4.2 presents the data preprocessing steps for Google

cluster trace in detail.

3.6.2 Feature Selection

At the beginning of our experiment for machine learning algorithms such as RF and DTs,

we manually select the most important features because selecting effective and relevant

features is crucial for classification. This helps avoid the impact of extremely high data

dimensionality, decrease preprocessing training time, and reduce the risk of over-fitting.

Then, we have increased the accuracy of our proposed model by applying different selection

algorithms such as SelectKBest, Feature Importance, and Recursive Feature Elimination

(RFE). In contrast, deep learning algorithms do not require the use of feature selection

methods. Deep learning algorithms learn the best features from data, without any human
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guidance.

3.6.3 Traditional Machine Learning and ANNs Algorithms

Several supervised learning algorithms have been applied to evaluate and select the pro-

posed model based on the performance metrics, including precision, recall, and F1-score.

The following subsection explains most algorithms used in this thesis.

Decision Trees

We have applied Decision Trees (DTs) to the three different traces with three different

sizes. Google trace has a large number of observations, while Mustang and Trinity have

medium and small sizes, respectively. DTs are one of the most popular supervised learning

models in data science. The main objective of applying a DTs classifier to cloud traces is

to build a model that accurately predicts the value of a target variable from multiple input

variables. The splitting criterion that we have utilized in order to evaluate the quality of

a split is “entropy”. The decision trees classifier has used the entropy in order to calculate

the homogeneity of the sample. The cost complexity can be evaluated using error rating

and the number of leaves in the decision tree.
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Random Forest

We also applied the Random Forest (RF) classifier to the utilized traces. RF is implemented

based on an ensemble learning method that works by constructing a series of decision trees

at training time. Accordingly, the Random Forest algorithm builds several decision trees

by randomly sampling a certain subset. In order to achieve high efficiency, RF reduces

the correlation between trees by randomly selecting the most important features that can

be used to increase the prediction accuracy. RF classifier provides more advantages than

other classifiers such as Näıve Bayes, SVM, KNN, and Logistic Regression. Some of these

advantages include: RF can overcome and avoid the risk of over-fitting. Second, RF has the

substantial advantage of being less sensitive to outliers than other classification algorithms.

Third, the RF classifier can estimate the importance of each feature that can be used in

the model. Finally, RF provides high accuracy of prediction on many types of applications.

Artificial Neural Networks

The majority of deep learning architecture has been built based on the framework of ANNs.

ANNs architecture is constructed of many interconnected nodes/neurons. These nodes are

constructed in layers, as illustrated in Figure 3.8. Neurons that are not incorporated in

the input or output layers are called hidden units. Each hidden unit stores a set of weights

W, which are updated during the model’s training.
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Figure 3.8: A sample neural network architecture

3.7 IoT Application using Edge-Cloud Architecture

The most important features of the IoT application architecture are connectivity, detec-

tion, scalability, intelligence and integration. The IoT architecture should be developed

and implemented to be scaled up or down, depending on the business and application re-

quirements. Cloud computing has faced various challenges due to its rapid expansion. As

the number of IoT devices and their data grows, cloud computing is unable to respond and

maintain its quality-of-service criteria, such as low latency. Edge computing models are ur-

gently needed to develop the IoT applications. In this thesis, we also investigate the effects

of combining IoT, cloud, and edge computing for failure analysis and prediction. Further-

more, based on the Edge-Cloud architecture, we offer a highly reliable and available IoT

application that can support the new paradigm of IoT applications. The proposed model

can reduce the number of failed tasks for cloud-IoT applications. We have also examined

how many tasks fail when different architectures are used. The evaluation results show that
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failed tasks and CPU usage have decreased in the use of the “Edge-Cloud” architecture.

In addition, using “Edge-Cloud” architecture can also control network traffic compared to

other architectures.

Edge computing, such as intelligent terminals, is close to the data source. The data

is stored and processed quickly, securely in real-time at the edge of the network. Edge

computing can also help reduce the challenge of high energy consumption compared to

cloud computing, reduce costs, and reduce network bandwidth congestion. Edge comput-

ing is used in a variety of industries, including manufacturing, energy, smart homes, and

transportation [20].

Edge computing models are urgently needed to develop the Internet of Things (IoT).

We study the impact of of IoT and edge computing integration for failure analysis and

prediction. In addition, we present an architecture for a highly reliable and available IoT

application based on the development of the Edge-Cloud architecture, which can support

the new model of IoT applications.

Figure 3.9 shows the model architecture for an Edge-Cloud architecture. After analyz-

ing the workload of various IoT applications, the management system will classify these

applications according to several features, including network and security requirements,

backup services, bandwidth, throughput, response time and latency. The required level of

availability and computation is estimated based on all of the relevant features. After cal-

culating the required availability and computation for each application, the management

system transfers incoming tasks to the cloud or edge computing according to the appli-
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Figure 3.9: Proposed framework
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Table 3.2: Different types of IoT applications and their requirements

IoT applications Requirements Execution location

Elderly Care
Monitoring

High availability, low computation,
low latency, high security

Edge computing

Smart home
automation

Low computation, low latency,
high security

Edge computing

Predictive machine
maintenance

High computation Cloud computing

Storing and backup
services

High reliability and availability Cloud computing

Software failure
analysis and testing

High computation Cloud computing

cation requirements. For example, Table 3.2 presents various IoT applications and their

requirements. The management system then checks whether the edge computing resources

are sufficient or not. If edge resources are sufficient, incoming tasks are scheduled in the

edge environment. Otherwise, the computation is performed in the cloud, even if we do not

achieve the desired response time. Finally, the failure prediction model is used before the

management system schedules the submitted tasks in order to predict the failed tasks early.

Applying the failure prediction model to all unclassified tasks helps decrease the number of

failed tasks by scheduling them to more available resources with more computation power.

The proposed scheduling algorithm [61] is designed and implemented to check the com-

putation required for each application. As a result, if the incoming task requires a high

computation, it is transmitted to the cloud. Otherwise, if the incoming task belongs to an

application that requires low computation, it is transmitted to the edge. For example, all

tasks belonging to an intensive computation, including machine and deep learning tasks,

are performed in a cloud computing environment. The eHealth and real-time applications
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do not require high computation, so their tasks are executed in edge computing.

3.8 Resource Allocation and Cloud Load Balancing

In order to decrease the cost of using the cloud, we have classified the availability levels

into three types: high, medium, and low, as shown in Figure 3.10. The main objective of

offering different availability levels is to provide the cloud consumers multiple options for

availability in order to choose the desired level of fault tolerance based on their application

requirements.

Figure 3.10: Resource allocation architecture
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3.9 Summary

This chapter has presented a fault-tolerance framework to increase the reliability and avail-

ability of cloud-IoT applications. This framework considers local IoT resources and cloud

resources, so we developed a cloud-based solution to expand local IoT resources. We have

developed a scheduling algorithm for transferring incoming tasks based on the required

computation. We have developed machine learning and deep learning models for task fail-

ure. The proposed model can be applied to large data centers in order to detect failed jobs

before the cloud management system schedules them. The following chapter presents the

experimental evaluation and results of our proposed framework.
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Chapter 4

Experimental Evaluation and Results

This chapter describes the experimental design and analysis of the evaluation results for the

previously proposed framework in Chapter 3. It includes a detailed implementation and

evaluation for integrating local IoT and cloud resources to improve cloud-IoT application

scalability and availability. Following that, a presentation of failure analysis to characterize

the behaviour of failed and finished tasks using publicly accessible traces. This chapter then

presents a performance evaluation of failure prediction models, followed by a simulation

analysis of an Edge-Cloud architecture for IoT applications and evaluation results.

Integrating local IoT resources and the cloud increases the redundant components in

multiple availability zones in local resources, edge, and cloud computing levels. The data

center receives a user’s application request via a job, which is consisting of several tasks

after a scheduling module allocates computing and storage resources. Fault tolerance
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strategies based on redundancy have been invented to minimize the occurrence of failures

and maintain acceptable failure rates. However, rather than adding redundancy after fault

happens, it is preferable to predict failures and take proactive responses. In general, fail-

ure prediction can be accomplished by examining the cloud platform’s monitoring log and

analyzing the relationship between task termination status and system and dynamic pa-

rameters during execution. At an earlier stage of the task’s lifecycle, forecasting the task’s

termination status and applying appropriate scheduling actions will save more resources

and effectively reduce the task’s running time.

4.1 Extending IoT Local Resources

This section describes the design and implementation architecture for integrating local

resources with cloud computing services. Then, a comprehensive implementation of the

local load balancer and scheduling algorithm, responsible for allocating incoming tasks to

appropriate resources, is provided.

4.1.1 Experimental Setup

The design and implementation architecture of the integration between local resources and

cloud computing resources is presented in this section. As shown in Figure 4.1, the Rasp-

berry Pi has been used to collect data from different types of sensors, such as temperature

and humidity sensors. The local load balancer and scheduling algorithm transfer incoming
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tasks to appropriate resources. In the Azure cloud provider, we also configure a load bal-

ancing technique that plays an important role in order to increase the availability of IoT

applications by handling incoming tasks across multiple VMs.

Figure 4.1: Prototype implementation

4.1.2 Core Implementation Components

Local resources in this prototype consist of three components: an embedded system –an IoT

device–, a local server, and a local load balancer. On the other hand, the main components

of the cloud resources are the virtual machines (VMs) and the Azure load balancer. In this

implementation, the Microsoft Azure cloud has been utilized. The following subsection

discusses the components of the architecture and technologies applied to implement this
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framework.

Local Resources

Local resources in this prototype consist of three components: an embedded system, a

local server, and a local load balancer.

� Embedded System: A Raspberry Pi 2 Model B with 900MHz quad-core ARM

Cortex-A7 CPU and 1GB RAM has been used as an embedded system.

� Local Server: A 64 bit Windows 10 PC with Intel(R) Core(TM) i5-4210U CPU @

1.70 GHz 2.40 GHz processor and 8GB RAM has been setup to serve as the local

server in this prototype implementation.

� Load Balancer and Scheduling Algorithm: A 64 bit Windows 10 PC with

Intel(R) Core(TM) i7-3630QM CPU @2.40 GHz processor and 16GB RAM is used

as the load balancer. The load balancer in this implementation has been coded in

C# in order to implement the scheduling algorithm shown in Figure 4.1.

Cloud Resources

The main components of the cloud resources are the virtual machines (VMs) and Azure

Load Balancer. The cloud Microsoft Azure has been used in this implementation. [30, 37].
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� Virtual Machines (VMs):

In the implementation, 4 VMs have been created across EAST US and CENTRAL

US regions with 2 VMs each. The VMs used Windows Server 2012 as the operating

system. All VMs are in the standard pay-as-you-go plan provided by Azure and come

with eight cores and 14 GB of memory, as shown in Figure 4.2.

� Cloud Load Balancer: In each region where VMs are deployed, there will be an

internal load balancer in that region to balance the load between the deployed VMs.

Also, there will be an external load balancer to balance the load between the regions

as well, as shown in Figure 4.2.

Figure 4.2: Implementation of cloud components

4.1.3 Local Load Balancer and Scheduling Algorithm

The scheduling algorithm plays a significant role in transferring incoming requests based

on task and computation types. We classify the task in terms of priority into two types:
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low priority task and high priority task. In addition, we classify the task in terms of

computation into three types low, medium, high computation.

For the purpose of simulating various types of computing task (low, medium, and high),

the Bubble sort algorithm was used. For the prototype implementation, three sets having

set 1:{1-10}, set 2:{1-100} and set 3:{1-1000} numbers have been considered. Sorting set

1 using Bubble sort algorithm will be considered a low computational task, sorting set 2

as a medium computational task, and sorting set 3 as a high computational task. In order

to do the evaluation, a local load scheduler has been implemented on a local machine. A

task will be generated whenever the load balancer is called, which could be a low, medium

or high computation task. If a low computation task is generated, it will be executed on

Raspberry Pi which consider as an embedded local resource. When a medium computation

task occurs, an application that does bubble sort will be called, running on the local server.

4.1.4 Evaluation Results

Evaluation of the prototype implemented has been done based on :

� Response time: measuring the performance of the system by comparing the average

response when using local resources only and when integrated with the cloud. Re-

sponse time is the difference between the time when the request was sent and the

time when the response has been fully received.

� Throughput : it is the number of requests per unit of time. We divide the total average
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time by 1000 to convert from ms to seconds, as shown in equation 4.1.

Throughput =
Numberofrequests

TotalResponseT ime/1000
(4.1)

All test cases are done with various ranges of the number of requests to understand

the effect of loading. In order to simulate this scenario, we used Apache JMeter , which

could generate a large number of tasks to the assigned server and get back the results such

as response times and throughput [66].

Figure 4.3: System performance using only local resources.
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Figure 4.3 shows the performance result of executing the classified tasks using local

resources. The results indicate that the system has high performance when the number

of tasks is less than 80. Following this, the average response time increases, to a peak of

220 ms, for executing 160 tasks. In addition, we noticed that, at this point, some tasks

are executed with a low-performance peak of 1433 ms. There was a sharp increase in the

average response time when the number of tasks rose to 640. At this point, we noticed

that some requests failed while others took a longer period to be processed. As a result,

when a low number of tasks are executed on the local resources, the system can handle the

incoming tasks with high performance. However, when the number of tasks is increased,

the average response time peaks to high response time. Thus, local resources are not able

to execute a large number of tasks with high performance.

In order to complete the experiment, the local resources have been extended using

Azure, and we added a cloud endpoint to the scheduling algorithm and load balancer.

Then, we generated a different number of tasks. Figure 4.4 shows the performance result

of executing different types of tasks after integrating local resources with the cloud. The

results indicate that the system’s performance improved after extending the local resources

to the cloud. Thus, it is evident that, after using the cloud, the system was able to serve

up to 640 tasks with high performance within a low response time. We noticed that when

requests surpassed 640, the response time of some requests increased.

As shown in Figure 4.5, the throughput also has been increased significantly when cloud

resources are integrated into the system.
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Figure 4.4: System performance after integrating local and cloud resources.

Figure 4.5: Local resources throughput vs combined throughput
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In summary, we have designed and implemented a framework for extending the local

resources of IoT devices, which are very limited in terms of computing, memory, and stor-

age, using cloud computing. This framework provides scalability and high availability for

IoT applications. Furthermore, a scheduling algorithm is designed to reduce the execution

time and computing cost associated with using the cloud, and it operates according to a

logic that is directly dependent on the priority and computation requirements of the tasks

being scheduled. Windows Azure services have been used to implement the framework,

and it has been evaluated in terms of performance. The results reveal that after integrat-

ing the local resources, including the embedded system and IoT devices, to the cloud, the

framework’s performance and throughput efficiency increased by 55%.

4.2 Failure Analysis of Traces

We have analyzed and utilized three large-scale traces accumulated by a variety of entities,

including Google and the Los Alamos National Laboratory (LANL). The following sub-

sections provide a more extensive explanation of the traces utilized. The basic description

and characteristics of the clusters having traces in the Atlas repository and Google clus-

ter traces are shown in Table 4.1. In comparison to other traces, the Google trace has a

significant failure rate, but it also contains over 28 million tasks submitted, making it the

most comprehensive trace available. The LANL Mustang trace has the longest trace time

compared to the other traces.
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Table 4.1: Basic cluster description and attributes from the Atlas repository and Google cluster traces.

Dataset Nodes Sample size Features Failed ratio (%) Length

Google Cluster 12550 28,546,501 11 36.2 29 days

LANL Mustang 1600 2,113,175 9 7.2 5 years

LANL Trinity 9408 20,277 14 16.5 3 months
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Figure 4.6: Distribution of task status for Google traces

We used all of the tasks submitted during the 29-day Google trace (500 files). All

job events that did not occur in the trace window have been filtered out. This section

aims to examine failure behaviour by concentrating on the most significant events (“Fail”

and “Finish”), which are represented as “3”, and “4” in the Google trace, respectively.

Figure 4.6 (a) depicts the Google trace distribution for failed and completed tasks over

seven days. On the first and second days of the trace, around 97% of tasks are performed,

with a minimal rate of failed jobs (roughly 3%). Between the third and fourth days of the

Google trace, the percentage of finished tasks decreased to approximately 71%, while the

rate of failed tasks increased to 29%. Figure 4.6 (b) depicts the Google trace distribution
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Figure 4.7: Distribution of job status for Mustang and Trinity traces

for failed and completed tasks over 29 days. Between the day 10 and day 16, the number

of unsuccessful tasks increased sharply.

Figure 4.7 (a) shows the distribution of Mustang trace for failed and finished tasks.

The number of tasks submitted in 2011 and 2012 is very low. However, the number of

tasks submitted has increased from the end of 2012 to the first three months of 2014. We

also noticed that the number of completed tasks had increased significantly between the

last four months of 2013 and the first three months of 2014.

Figure 4.7 (b) depicts the distribution of the Trinity trace for successful and unsuccessful

tasks. For the second, third, and fourth months, the Trinity trace received 8,601, 5,699,

and 7,203 jobs, respectively. Thus, the submitted jobs in the second and fourth months

are high compared to the third month. However, the failure rate is approximately 15% for

the fourth month, which is very high compared to the failure rate in the months two and

three 1% and 8%, respectively. The overall failure rate is 7.2%, and almost 65% of failure
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happens in month four of the trace.

4.2.1 Google Cluster Traces

Google has made a massive dataset called Google cluster traces publicly accessible. This

dataset contains a large number of monitored data files that were created by a extensive

system with over 12,500 nodes. There are 672,074 jobs and over 28 million tasks in the

Google cluster traces submitted between May 1st and May 29th. In this study, we have

used a version 2 of this dataset which is ClusterData2011-2 [106]. Each job consists of

one or several tasks, and each task contains some processes. In addition, we have found

that each task has different event types, including submit, fail, finish, kill, and evict. Also,

the submitted tasks have different characteristics such as priority, class schedule, requested

resources (CPU, memory, disk space), and actual resource usage. This dataset includes

five different tables: Jobs Events, Task Events, Task Resource Usage, Machine Events, and

Machine Attribute tables. A brief description of each of the tables are presented as follows:

Task Events Table

This table presents a detailed description of each task related to a particular job. Each job

consists of one or several tasks, and each task contains some processes. Task Events Table

includes thirteen features, including a timestamp, missing information, index of tasks,

event type, the priority of a task which can be free priorities or a production priority or
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perhaps a monitoring priority, information about resource requests. Our analysis primarily

focuses on this table because it includes many features that can be used for failure analysis,

such as task scheduling class, priority level, and requested resources.

Task Resource Usage Table

Task Resource Usage Table consists of a report of resource usage every 5 minutes. This

table includes sixteen features, including a start time and end time, task index, CPU rate,

memory usage information, the amount of assigned memory, cache memory usage, disk

I/O time, sampling rate, cycles, MAI. Local disk space usage and aggregation type as the

fields.

Machine Events Table

This table gives a detailed description of each machine, including machine ID and times-

tamp that indicates when this machine was started, the size of RAM, CPU capacity, and

the status of the different events, which are ADD (0), REMOVE (1) and UPDATE (2).

Machine Attributes Table

This table shows properties description of available machines such as a version of ma-

chine kernel and clock speed. Machine Attributes Table contains five features, including

timestamp, name, attribute value, and machine ID.
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In this study, we are interested in analyzing the scheduling jobs and tasks behaviour in

the available workload, especially “Fail” and “Finish” jobs/tasks. Thus, we have used the

“Job and Task Events Tables” because they include the event type of each task and other

features related to the required CPU and RAM for each task.

Table 4.2: Google trace overview

Trace characteristic Value

Total number of users 933 users

Submitted jobs 676,975 jobs

Scheduling jobs 676,967 jobs

Finished jobs 386,218 jobs

Failed jobs 10,133 jobs

Killed jobs 272,609 jobs

Evict jobs 22 jobs

Lost jobs 16 jobs

Submitted tasks 48,330,301 tasks

Scheduling tasks 47,306,307 tasks

Finished tasks 18,187,970 tasks

Failed tasks 13,828,583 tasks

Killed tasks 10,337,327 tasks

Evict tasks 5,864,223 tasks

Lost tasks 8754 tasks

A further observation is that each task has distinct features depending on its scheduling

class, priority, requested resources, and actual resource consumption. We summarize basic

statistical information of Google traces in Table 4.2. In the following subsections, we

explain the correlation between failed tasks and priority levels, scheduling classes and

requested resources.

The basic scenario of the job or task life cycle is shown in Figure 4.8; a job is submitted

and then inserted into a pending queue. Then, the job is scheduled onto an available
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Figure 4.8: Event types

machine, and it starts running. Then, after a period which considers as execution time,

the job is finished successfully. If a job or task has just failed, the cluster system attempts

to restart tasks that have failed. Some jobs have been recorded with the timestamps are 0,

these jobs or tasks were submitted before the trace began. There is no information about

the cause of task failure. More details on Google cluster trace can be found in [106].

Trace processing and Data Filtering

Data preprocessing is the most important step in the data science world. Thus, we have

to filter out some records from the dataset in order to be ready for our purpose analysis.

The preprocessing steps are presented as follows:

1. Filtering out all jobs/tasks events that did not occur within the trace window which

are presented as a time of 0.
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2. Converting timestamp from microsecond to daytime in order to be more usable.

3. Our analysis is based on the first week of the trace. Basic statistics about Google

cluster trace is summarized in Table 4.2.

4. Once the Google cluster trace has been analyzed, we observed that the number of

failed tasks is much higher than the number of failed jobs in the Job Event table.

As a result of our investigation, we found that some tasks have been resubmitted

numerous times before being successfully finished. However, these tasks were killed

after lots of resources is being consumed. Thus, we decided to filter out these five

jobs because they are considered as outlier cases. Moreover, these jobs have increased

the number of task failure up to 3,942,709. We also note that most failures occur on

the second day, especially between 1 a.m. and 8 a.m. The number of failures has

significantly increased on the second day to be 2,450,884, as shown in Figures 4.9

and 4.10. Thus, we expect that a part of the data center had an outage during this

time.

We investigate the failure behaviour for 29 days in the preprocessing data phase. Figure

4.9 shows a comparison between job and task event failure behaviour in 29 days of Google

trace. In Figure 4.9(a) show that failed and finished jobs follow normal behaviour. However,

as shown in Figure 4.9(b), the number of failures has significantly increased in the second

and tenth days of Google’s trace. Figure 4.10 presents many failed tasks during the Google

trace period, focusing on the trace’s second and tenth days. On the second day of the
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Figure 4.9: A comparison between job and task event failure behaviour in 29 days of Google trace
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(a) Day 2 of the Google traces
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(b) Day 10 of the Google traces

Figure 4.10: Number of failed tasks for the Google trace, focusing on days 2 and 10

trace, we noticed that most task failures occurred between 1 a.m. and 8 a.m., as shown

in Figure 4.10(a). On the tenth day of the trace, most task failures occurred between 6

a.m. and 12 p.m, as shown in Figure 4.10(b). Therefore, we estimate a portion of the data

centre to be unavailable during this time.
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Failure and Priority Levels

A priority level is assigned to each task, represented by a tiny number that is translated

into a sorted collection of values, with (0) being the lowest priority (least significant). Tasks

with higher priority numbers often receive more resources than tasks with lower priority

numbers. The average priority level for failed and completed jobs during the trace period

is shown in Figure 4.11. The results indicate that most unsuccessful jobs, notably on the

third day of Google’s trace, are medium or high priority. In the case of tasks with priority

levels of more than 3, the likelihood of them falling increases significantly. As a result, a

positive correlation exists between failed tasks and task priority levels. In order to increase

the productivity of cloud infrastructure and applications while reducing the risk of failure,

priority strategies must be developed. Nearly half of all tasks have a priority level of (0)

out of (9), and 28.4% have a medium priority level of (4).

Moreover, resource demands indicate the maximum amount of CPU, memory, or disc

space used by a task. Tasks that use more than their allocation of resources may be

throttled or terminated. Consider the possibility that a machine’s scheduler may over-

commit resources. Even if each job is using less than its maximum, there may not be

enough resources to meet all of the task’s runtime requirements. This might result in the

termination of one or more lower-priority tasks.
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Figure 4.11: Priority level for failed and finished tasks

Failure and Scheduling Class

All jobs and tasks are assigned a scheduling class that corresponds to how latency-sensitive

they are. A single number expresses the scheduling class, with 3 denoting a more latency-

sensitive job. The relationship between the scheduling class and failed/finished tasks is

depicted in Figure 4.12. Only roughly 1% of all tasks have a scheduling class of (3) while

73% and 18%, respectively, have scheduling classes of (0) and (1). There is no obvious

correlation between failed or completed tasks and lower scheduling classes. However, most

completed and unsuccessful jobs have a lower scheduling class (0,1), while a smaller per-

centage of completed and failed tasks have a medium scheduling class (2). All tasks with a

high scheduling class (3) are also unsuccessful. As a result, there is a correlation between
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unsuccessful tasks and having a high scheduling class (3). As a result, a scheduling algo-

rithm must be applied in order to improve the distributed efficiency of incoming tasks in

terms of system availability and computing requirements.
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Figure 4.12: Scheduling class for failed and finished tasks

The primary aim of the requested resource is to present the maximum amount of CPU,

memory and disk space allowed. As a result, no task should be allowed to surpass its

limits. When some jobs reach their limits, the management system can terminate them

because they consume additional resources, such as memory. After submitting the tasks

to be processed in certain cases, these tasks do not find sufficient resources to be fully

executed, even if those tasks do not exceed their limits. Therefore, one or more tasks with

low priority can be killed [106].
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Figure 4.13: Memory was requested for both unsuccessful and finished tasks

Failure and Requested Memory

The failure of the task and the required memory have a clear relationship, as illustrated

in Figure 4.13. Google trace does not provide the actual memory size consumed by tasks

but rather its scaled value in comparison to the maximum memory and CPU capacity of

each node. Assume the maximum memory capacity of a host is 64GB. 0.03 memory size

corresponds to 0.03 x 64 = 1.92GB [41]. On the third day of the trace, for example, the

number of failed tasks has climbed dramatically, and we see that most of these tasks demand

more memory than the completed tasks. When the incoming tasks need a medium/high

quantity of memory resources, the chances of failure have increased. When the requested
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memory is greater than 0.03, the majority of tasks fail. On the other hand, completed tasks

occur when the requested memory is less than 0.03. Scheduling algorithms need to consider

the required amount of computation for each task to distribute incoming tasks to the right

level of resource availability. As a result of this strategy, the number of unsuccessful tasks

is reduced, resulting in enhanced cloud application availability.

It is important to note that the majority of resource use and request metrics have

been normalized, including memory (bytes), disk space (bytes), CPU (core count or core-

seconds/second), and disk time fraction (I/O seconds/second). Separate normalizations

are computed for each of the primary variables. The scaling used for normalization is

based on the greatest resource capacity of each machine in the trace (which is 1.0) [106].

Failure and Requested CPU

A positive correlation is also found between task failure and the requested CPU. Figure

4.14 shows how much the CPU has requested to perform most failed and completed tasks.

When the requested CPU is more than 0.03, most tasks fail. On the other hand, finished

tasks occur when the desired CPU is less than 0.03.

In the second and third days of the trace, the number of failed tasks has increased

dramatically, similar to the desired memory performance. These tasks require a higher

amount of memory than the tasks completed. As a result, we conclude that improving the

existing scheduling strategy would increase the availability of cloud applications while also

controlling the cloud infrastructure’s resource usage.
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Figure 4.14: CPU was requested for both unsuccessful and finished tasks

Failure and Requested Disk Space

There is no clear correlation between task failure and the requested disk space, except on

the seventh day of the trace, which shows a considerable increase in failed tasks when the

requested disk space is more than 0.0006, as shown in Figure 4.15.

To this end, the results of our study contribute to investigating the behaviour of failed

jobs and the relationship between failed jobs and other factors, including task scheduling

and task priority. The job failure analysis can be used as a starting point for developing a

new failure prediction model that can predict the types of cloud job events failed/finished

in advance.
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Figure 4.15: Disk space was requested for both unsuccessful and finished tasks

Cloud providers can employ novel solutions to limit unsuccessful tasks and jobs. For

example, cloud providers can optimize a scheduling algorithm to maximize the efficiency

of a cloud load balancer. The load balancer distributes incoming jobs based entirely on

the resource computation required. Consequently, the number of unsuccessful tasks will

be reduced, as all tasks will be allocated to the resources required regardless of resource

availability, and all resources will be utilized effectively and efficiently.

Furthermore, we have found that failed jobs have significantly longer running times

and consume significantly more resources than completed jobs. As a result, significant

resources were spent on jobs that were not completed. The development of an early failure
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prediction model would assist minimizing failure. We also noticed that failed jobs have

a high number of resubmissions. In order to save cloud resources, it is recommended to

reduce the number of resubmissions. Jobs and tasks at a high priority level are more likely

to fail. As a result, the relationship between job priority and job failure should be taken

into account when developing a fault prediction model.

4.2.2 LANL Mustang Cluster

Mustang is one of the HPC clusters used by LANL from October 2011 to November 2016 for

capacity computers. We can thus conclude that the Mustang trace is the longest publicly

available trace to date. The Mustang consisted of 1600 computing nodes with 102 TB

RAM and 38,400 AMD Opteron 6176 2.3 GHz cores. The cluster was fundamentally used

by software developers, engineers, and scientists at LANL. The trace contains 2.1 million

jobs, and 565 users submit these jobs. Collected data include: start and end time for a

job, job event types such as completed, failed, and cancelled [14, 15].

A positive correlation is also found between failed jobs and the number of tasks re-

quested for each job. Figure 4.16 shows the average number of tasks requested between

2011 and 2016 for cancelled, failed and finished jobs. Most failed and cancelled jobs oc-

curred when the average requested tasks were approximately over 500 tasks. In contrast, on

average, tasks have been completed when the number of requested tasks is approximately

300 or less, particularly from 2013 to 2016.
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Figure 4.16: The average number of tasks requested from 2011 to 2016 for cancelled, failed and finished jobs

Additionally, there is a strong association between failed jobs and the number of nodes

assigned to each job. Figure 4.17 shows the average number of nodes for cancelled, failed

and finished jobs between 2011 and 2016. Most failed and cancelled jobs occurred when

nodes were approximately over 18. In most cases, completed tasks occur when the number

of nodes is about 11 tasks, especially from 2013 to 2016. Figure 4.18 illustrates the average

number of nodes for cancelled, failed, and finished jobs at monthly intervals between 2011

and 2016.

There is also a significant correlation between the execution time and the number of

failed, cancelled and finished jobs. As shown in Figure 4.19, the majority of failed jobs

occurred when the average execution time exceeded 17500 seconds. However, most finished
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Figure 4.17: The average number of nodes from 2011 to 2016 for cancelled, failed and finished jobs
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Figure 4.18: The average number of nodes for cancelled, failed and finished jobs in the month intervals between 2011 and
2016
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Figure 4.19: The correlation between the execution time and the failed, cancelled and finished jobs

jobs were successfully completed, with a short execution time of fewer than 2500 seconds.

4.2.3 LANL Trinity Supercomputer

Trinity is the largest supercomputer at Los Alamos National Laboratory (LANL) and is

used for capacity computing. Trinity has 9408 compute nodes, each having 301,056 Intel

Xeon E5-2698v3 2.3 GHz cores and 1.2 PB RAM. As a result, Trinity Trace is the largest

cluster with a publicly available trace in terms of CPU cores. From February to April 2017,

this data collection covers three months. This data set consists of 25,237 multi-node jobs

issued by 88 users [14, 15].

As shown in Figure 4.20, Trinity trace has three categories of required class: “STAN-

DARD”, “DAT” and “CCM QUEUE”. Only 9% of submitted jobs are classified as “DAT”

and less than 1% as “CCM QUEUE”, compared to more than 60% of submitted jobs
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Figure 4.20: The correlation between types of Trinity required class and job status

classified as “STANDARD”. We have found that most failed jobs are classified as “STAN-

DARD”. However, no failed job classified as “CCM QUEUE”. As a result, there is a high

correlation between failed jobs and the required class attribute of the submitted jobs in

the LANL Trinity trace. Hence, future work should consider designing and implementing

a load balancer responsible for transferring incoming tasks based on the required class.

As presented in Figure 4.21, Trinity trace contains two distinct categories of resources:

“trinity” and “internal”. approximately 60% of submitted jobs were scheduled to utilize

“internal” resources, whereas roughly 40% were scheduled using “trinity” resources. We

have found that most failed jobs are scheduled in internal resources. There is a high

correlation between failed jobs and the attribute of the resource manager. We expected

that one or more components could fail due to a failure of a network, hardware or software

component.
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Figure 4.21: The correlation between types of Trinity computing resources and job status

4.3 Failure Prediction Model using ML

This section describes how the proposed failure prediction model is implemented using

several machine learning algorithms. The evaluation results are then presented by compar-

ing our proposed model to other ML models using different evaluation matrices, including

precision, recall, and F1-score.

4.3.1 Experimental Setup

Comma Separated Value (CSV) files are used to store all used traces. Google, Mustang,

and Trinity have a trace size of around 15 GB, 280 MB, and 14 MB, respectively. Python

data frames are used to store data. The failure prediction model is then implemented using

scikit-learn, a python machine learning program [97]. We have performed this experiment
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on “Google Colab Pro+” because Google Trace has a big data size that requires a high

computational processing power to analyze and predict. The Google Colab Pro+ resources

that we used were 64GB of RAM and 256 GB of disc storage.

4.3.2 Evaluation Metrics

An essential part of data science is evaluating the accuracy of a model’s predictions. It is

crucial to take into account the following metrics in the evaluation of the proposed model:

accuracy, precision, recall and F1-score. Before we dive into the detailed examination

of model performance, we introduce the concept of the confusion matrix and evaluation

metrics.

Confusion matrix

A confusion matrix is a table indicating the effectiveness of a classification model. The

matrix rows correspond to observations in a target class, while the columns correspond to

observations in an actual class. All evaluation metrics can be calculated using the values of

the confusion matrix. True Positive (TP) and True Negative (TN) observations are made

for the correct prediction results. Because False Positive (FP) and False Negative (FN) are

observations of inaccurate prediction results, we are interested in lowering false positive

and false negative to increase the accuracy of our failure prediction model.
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Accuracy

The first important step in evaluating the classification model is to verify the accuracy of

prediction. The ratio of correctly predicted samples to total samples is used to determine

the accuracy. It is incorrect to guarantee that our model is the best if we have only achieved

high accuracy. If the False Negative Rate (FNR) and False Positive Rate (FPR) are nearly

equal, accuracy is an acceptable metric. As a result, other metrics must be considered when

evaluating the proposed model results. For our failure prediction model, we have achieved

a high accuracy of 0.99. The following equation is used to determine the accuracy.

Accurcy =
TP + TN

TP + FP + FN + TN
(4.2)

Precision

Another metric of model performance is precision, which is calculated as the ratio of

correctly predicted positive samples to total predicted positive samples. This metric will

address a critical question: how many jobs/tasks succeed (finish) out of all jobs/tasks

tagged as finished? We have a high precision since we have a low FPR. We achieved high

precision in both event classes (failure and success), with the precision of 0.99 and 0.99,

respectively. The precision has been measured using the following formula:

Precision =
TP

TP + FP
(4.3)
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Recall

Another metric for measuring model performance is recall, which is calculated by dividing

the number of correctly predicted positive samples by the total number of samples in the

actual class. The recall provides an important answer to an important question: how many

jobs/tasks did we correctly label as completed (finish) out of all the jobs/tasks that have

been successful? We achieved a high recall in both classes of Google traces (failure and

success), with values of 0.99 and 0.99, respectively. The overall recall rate is 0.99. The

recall was computed using the following equation:

Recall =
TP

TP + FN
(4.4)

F1-score

The weighted average of recall and precision is the F1-score. In some instances, the F1-

score is more significant than accuracy. F1-score, in many cases, is more important than

accuracy. We have achieved a high F1-score in both classes of event types (fail, success),

which are 0.99 and 0.99, respectively. The overall average of the F1-score is 0.99. Based

on the following equation, the F1-score was calculated:

F1− score =
2 ∗ (Recall ∗ Precision)

Recall + Precision
(4.5)
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4.3.3 Classifiers and Prediction Techniques

The aim is to build a prediction model that can predict the value of the target variables

after preprocessing the datasets. Several ML classification algorithms can be applied to the

cloud workload traces. However, we are interested in finding the most accurate classifiers,

which can be learned with limited training data.

For Google Trace, our proposed model [60] has achieved high accuracy in predicting

failed jobs using DTs and RF algorithms. However, our proposed model should be generic

and applicable to various datasets. Therefore, we are interested in applying multiple classi-

fication algorithms to three different traces in order to select the best model with the highest

accuracy. This section examines some classification algorithms, which can be applied and

evaluated with different traces. The performance of each algorithm is then assessed using

multiple evaluation metrics. We separated the Google, Mustang, and Trinity traces into

two parts: a training set containing 75% of the data and a testing set containing 25% of

the data.

Figure 4.22(a) depicts the evaluation results of various classification algorithms when

applied to the first week of the Google trace. Precision, Recall, and F1-score accuracy for

both the RF and DT classifiers are 93%, 86%, and 89%, respectively. However, the results

of the evaluation metrics have increased to 98%, 95% and 97%, respectively, after applying

DTs and RF to all Google cluster trace observations (one-month period of the trace) as

shown in Figure 4.22(b).
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(a) Google trace in 7 days
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(b) Google trace in 29 days

Figure 4.22: Performance evaluation of different algorithms applied to the Google trace
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(a) Mustang trace
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(b) Trinity trace

Figure 4.23: Performance evaluation of different Machine Learning algorithms applied to the Mustang and Trinity traces

The same classifiers were applied to the traces of Mustang and Trinity, as shown in

Figure 4.23. The results show a comparison of the performance of various algorithms on

the Mustang and Trinity traces. RF and DTs have the highest accuracy compared to

other classifiers. The DTs algorithms’ precision, recall, and F1-score for Mustang trace are

94%, 94%, and 94%, respectively. The precision, recall, and F1-score accuracy for the RF

algorithms are 95%, 94%, and 95%, respectively. Also, for medium and small traces, the
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RF classifier has achieved the highest accuracy compared to other classifiers.

For Trinity trace, the number of observations is 20,277, which is less than other traces.

Therefore, all classifiers in Trinity have achieved lower accuracy than the other traces.

The DTs algorithm has precision, recall, and F1-score accuracy of 88%, 85%, and 87%,

respectively. The RF has precision, recall, and F1-score accuracy of 89%, 85%, and 87%,

respectively. The DT and RF have achieved the highest accuracy for Trinity trace than

other classifiers.

KNN, XGBoot, and Gradient Boosting have performed well compared to NB and QDA,

with the lowest evaluation metrics for all traces. However, DTs and RF classifier has

achieved the highest accuracy compared to other classifiers. Table 4.3 shows the training

and testing time of Google, Mustang, and Trinity traces for utilized classifiers.

Table 4.3: Training and testing time and accuracy for all applied ML classifiers

DTs RF KNN NB Gradient boosting XGBoost

Google (29 days)
Training time 53.8 247.6 45.7 5.2 2093.8 2180.5
Testing time 1.03 11 – 1 10.9 20.5
Accuracy 98 98 – 78 96 96

Google (7 days)
Training time 13.23 75.7 5.6 0.8 344.46 182.1
Testing time 0.16 1.9 2114.3 0.2 1.3 3.1
Accuracy 98 98 97 92 97 97

Mustang
Training time 4.8 11.5 2.9 0.16 67.7 37.8
Testing time 0.03 0.3 5.8 0.06 0.3 0.3
Accuracy 99 99 95 86 97 97

Trinity
Training time 0.08 0.21 0.05 0.01 0.84 0.21
Testing time 0.0009 0.007 0.16 0.001 0.007 0.007
Accuracy 96 96 92 65 94 93

The results show that the DTs and RF can reach the highest accuracy, precision,

recall, and F1-score. On the other hand, the RF-based model has the longest time, at
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247.6 seconds, with a Google trace of 29 days, while DT has only 53.8 seconds. Thus, DT

has less complexity than RF.

We attempted to apply KNN to all observations of Google cluster trace, but the pro-

cessing time took more than 24 hours then the memory error occurred. Thus, even though

the KNN ranks third in terms of all accuracy evaluation metrics, KNN is not recommended

for failure prediction due to its log processing time.
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(a) ROC for the first week of Google trace
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Figure 4.24: Performance evaluation of different algorithms applied to the Google cluster trace
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Figure 4.25: Performance evaluation of different algorithms applied to the Mustang and Trinity traces

Figure 4.24 depicts the Receiver Operating Characteristic (ROC) curves of the various
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machine learning models for the first week of the Google trace compared to one month of

the Google trace. When all Google trace observations are considered, DTs and RF have

reached the maximum AUC (Area under Curve) with a high score of 100%, as shown in

Figure 4.24(b). Gradient Boosting and XGBoost, on the other hand, come in second place

with 98%.

Figure 4.25 depicts the Receiver Operating Characteristic (ROC) curves of the various

machine learning models for the Mustang trace compared to the Trinity trace. RF has

reached the maximum AUC (Area under Curve) for Mustang and Trinity with a high

score of 99% and 98%, respectively, as shown in Figure 4.25(a) and Figure 4.25(b).

In the following part, we will discuss how to increase the accuracy of these two classifiers,

RF and DTs, by using additional methods, such as feature selection.

4.3.4 Feature Selection Algorithms

Feature selection is one of the most important methods to improve the accuracy of our

model by automatically selecting several features that contribute significantly to model

performance. The predictive accuracy model will be reduced if the model has been trained

based on irrelevant features. There are other advantages of using feature selection, such as

reducing overfitting and training time.
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SelectKBest:

The SelectKBest technique uses statistical analyses to select attributes with the closest

relationship to the target variable. We obtained the most important features after using

this technique for Google trace: job ID, task index, machine ID, priority, and scheduling

class.

Feature Importance:

Bagged decision trees, such as RF, can be used to estimate which features contribute

the most and can then be used as input to a failure prediction model to predict failure

accurately. We obtained the most important features after applying this technique to

Google trace: job ID, day, machine ID, disk space, and scheduling class.

Recursive Feature Elimination:

One of the most well-known feature selection techniques is recursive feature elimination

(RFE). RFE works by eliminating features one by one and building a model based on the

ones that remain. RFE uses the model accuracy to determine the most useful features

in predicting the output target. After applying the RFE feature selection technique to

Google trace, we obtained the most relevant features: job ID, hour, task index, machine

ID and CPU.

Table 4.4 presents the evaluation results for the various feature selection algorithms
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Table 4.4: Evaluation results of performing different feature selection techniques

Decision Tree Classifier Random Forest Classifier
Prec. Rec. F1-score Train.(t) Test.(t) Prec. Rec. F1-score Train.(t) Test.(t)

Google
SelectKBest 97% 97% 97% 491.3 4.17 98% 97% 97% 2683 39.5
Feature

Importance
93% 93% 93% 518.3 7.9 95% 93% 94% 2924 60.40

RFE 99% 99% 99% 542.18 3.39 99% 99% 99% 2812 36.43

Mustang
SelectKBest 92% 93% 93% 0.9 0.03 94% 94% 94% 9.66 0.32
Feature

Importance
94% 94% 94% 1.2 0.09 95% 94% 95% 10.3 0.56

REF 93% 93% 93% 1.4 0.12 94% 93% 93% 11.1 0.73

Trinity
SelectKBest 72% 69% 70% 0.05 0.0008 72% 65% 69% 0.27 0.008
Feature

Importance
88% 85% 87% 0.07 0.001 89% 85% 87% 0.38 0.02

RFE 84% 83% 84% 0.09 0.008 85% 81% 83% 0.58 0.09

used. The DTs and RF classifiers used the RFE technique to achieve the highest precision,

recall and F1-score to predict failed classes, which were 99%. As a result, feature selection

algorithms can improve the accuracy of the proposed model. When the feature selection

algorithms are applied to Mustang training data, the RF classifier can more accurately

predict the failed class. We achieved the highest accuracy for Trinity trace when combining

the feature importance algorithm and the RF classifier. Precision, recall, and F1-score are

89%, 85%, and 87%, respectively.

We found that Decision Tree (DT) and Random Forest (RF) provided accurate re-

sults after evaluating the performance of various classification algorithms using three cloud

traces. However, when it comes to the traces of Trinity and Mustang, the RF classifier

surpasses the DTs. As a result, we have chosen the RF algorithm as a failure prediction

model, which can be used on various traces to produce the most reliable results.

El-Sayed et al. [46] have developed a failure prediction model based on the Random
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Forest (RF). The findings show that they can correctly recall up to 94% of all failed jobs

with at least 95% accuracy. We have the highest precision, recall, and F1-score compared

to previous studies. The DTs and RF classifiers used the RFE technique to obtain the

highest accuracy for predicting failed class, which was 99% for precision, recall, and F1-

score. However, we did not achieve the desired precision in the other two traces due to the

small number of observations in Mustang and Trinity. Therefore, the classifier does not

have sufficient data for the failed class to distinguish between the two classes.

4.4 Failure Prediction Model using Deep Learning

This section details the implementation of the proposed failure prediction model using the

ANNs deep learning approach. The evaluation results are then provided by comparing

the proposed deep-learning model with previously applied machine-learning models using

a variety of evaluation matrices, including precision, recall, and F1-score. The following

subsection presents a brief description of the data sets, experimental setup, model hyper-

parameters and performance, and evaluation results.

4.4.1 Experimental Setup

All utilized traces are stored in Comma Separated Value (CSV) files. The workload trace

sizes of Google, Mustang and Trinity are almost 15 GB, 280 MB and 14 MB, respectively.

Datasets were stored in Python data frames. We have used two libraries of Python that
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are designed for implementing Neural Networks, which are Keras and TensorFlow. Keras

is a simple tool for building a neural network, and it is a high-level neural network API

written in the Python programming language. Keras is running on top of Tensorflow or

Theano. Tensorflow is an open-source software library for machine learning that is used in

Google environments. Keras can be used as a deep learning library, and it also supports

Convolutional and Recurrent Neural Networks. Keras operates seamlessly on both CPU

and GPU [35, 36]. Our objective is to implement a failure prediction model that can

early predict failure before happening. We run this experiment on our local server because

Google Trace has big data that require high-performance computing (HPC) for analysis

and prediction. Table 4.5 provides a comprehensive characterization of the server used for

the experiment.

Table 4.5: The description of the server used for the experiment

Size CPU Cores Memory Disk Size

Cisco UCS C220 16 128 GB 1024 GB

Our experiments use three different data sets with massive traces collected by various

organizations, namely Google and Los Alamos National Laboratory (LANL). The follow-

ing subsections describe in more detail the used traces, and Table 4.6 provides a general

characterization of each trace. The Google cluster trace has a high failure rate compared

to other traces. However, Google trace has more than 28 million of submitted tasks, so

Google trace is the most extensive available trace.
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Table 4.6: Basic description of each trace

Dataset Num of nodes Sample size Features
Failed sample
ratio (%)

Google (29 days) 12550 28,546,501 11 36.2
Google (7 days) 12550 4,615,419 11 10.2

Mustang 1600 997,961 13 10.6
Trinity 9408 20,277 14 16.5

4.4.2 Building Neural Network

There are three different types of layers, namely input, hidden and output layers. We

pass our matrix of features and labels through the input layer. The perceptron functions

are responsible for calculating an initial set of weights and then passing them on to a

number of hidden layers. The final solution is presented in the output layer. The network’s

hyperparameters are the number of layers and the number of neurons in each layer. In order

to find the most accurate solution, the data scientist should experiment with alternative

hidden layer counts and hyperparameters. Figure 4.26 presents ANN architecture based

on the proposed model.

In Google trace, the input is a feature of 11 values, and the output is a failed or

successful task. We have tested several combinations of hyperparameter values to find the

best selection that can achieve the highest accuracy, as shown in Table 4.7. Comparing the

results of applying multiple hyperparameters requires a significant amount of processing

time to test various values, resulting in expensive and intensive computations. To avoid

this, we focused on the three most essential factors: the number of epochs, batch size, and

optimizer.

124



X1

X2

X3

Xn

Task index

Scheduling 
 class

 CPU

Feature n

Input Layer 
(Nodes=11)

Hidden Layer 
(Nodes=13)

Hidden Layer 
(Nodes=40)

Hidden Layer 
(Nodes=30)

Hidden Layer 
(Nodes=13)

Output 
(Y) 

Output Layer 
(Nodes=1)

Termination Status 
Fail or Fininsh

X1

X2

X3

Xn

Task index

Scheduling 
 class

 CPU

Feature n

Output 
(Y) 

Termination Status 
Fail or Fininsh

Figure 4.26: Architecture of Artificial Neural Network (ANN) based on the proposed model

Table 4.7: Hyperparameter tuning

Hyperparameter Value Tested Best Value

Number of epochs 10,30, 70, 100, 150 30

Batch size 32,64,128, 256, 512 512

Optimizer
“Adam”, “Adagrad”
“SGD”, “RMSprop”

Adam

Hidden layers

Our neural network consists of four hidden layers. The hidden layers have 13, 40, 30, and

13 nodes, respectively. We have tried another number of layers until we finally find the

optimal number of hidden layers and dimensions.
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Activation function

The most significant aspect of an ANN architecture is the activation functions. The spec-

ified activation function has a major impact on the neural network’s performance, and

different activation functions are used in different parts of the model. We have used the

Rectified Linear Unit (ReLU) function as an activation function for hidden layers. The

ReLU function is a popular non-linear activation function in deep learning. We select the

Sigmoid function for the output layer as our activation function. Equation (4.6) represents

the ReLU function, while equation (4.7) represents the Sigmoid function.

f(x) = max(0, x) (4.6)

f(x) =
1

1 + e−x
(4.7)

Loss function

Loss or error function is a method of determining how effectively a specific algorithm models

the provided data. If the predicted outcome differs considerably from the actual output,

the loss function will return a large value. Gradually, with the aid of some optimization

function, the loss function learns to minimize prediction error. The main aim of the neural

network (NN) is to minimize the loss function. We have selected “binary cross-entropy”

as a loss function because our proposed model is designed to solve a binary classification
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problem. Thus, because we have applied “binary cross-entropy” as a loss function, the

outcome value is passed via a sigmoid activation function, with the output range being

(0–1).

Optimizer

We have experimented with different optimizers such as Adaptive Moment Estimation

(Adam), Stochastic Gradient Descent (SGD), and RMSprop. The best accuracy was ob-

tained when the Adam optimizer was used with a learning rate of 0.001. In our experiment,

we were particularly interested in evaluating the model’s behaviour when different optimiz-

ers were used. Figures 4.27 and 4.28 present the accuracy and loss of our model when the

different optimizers have applied to the Google trace. The Adam optimizer has achieved

a lower test loss rate than other optimizers, as well as Adam and RMSprop optimizers

have the highest accuracy rate. However, we selected Adam to be the optimal optimizer

for the proposed model because it has less test loss rate than RMSprop. Additionally, we

experiment with various learning rates for the Adam optimizer in order to determine the

optimal rate for achieving the highest accuracy. Figures 4.29 and 4.30 present the accuracy

and loss of our model when the different learning rates have applied to the Google trace.

Training model

We split the utilized traces into 75% for training and 25% for testing sets. Our proposed

model has trained many times using different epochs 10, 30, 60, 100, and 150. An epoch
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Figure 4.27: The model accuracy rate of applying different optimizers

Figure 4.28: The model loss rate of applying different optimizers

128



Figure 4.29: The model accuracy rate history of applying different learning rates

Figure 4.30: The model loss rate history of applying different learning rates
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is a single pass through the entire training set, followed by testing the verification set.

We find that the required number of epochs is different among all traces. Thus, we have

applied the early-stopping technique. We have applied the early stopping technique, which

is an important technique that helps the model stop early to avoid over-fitting. The

early stopping technique has been designed based on the loss function so that whenever

the loss function stops changing, the loss is minimized, and the model has achieved the

best accuracy by reaching the minimum. The advantage of applying the early stopping

technique is to save computing power by using as few iterations as possible. Moreover, the

early stopping technique prevents over-fitting.

We utilize batch size since the dataset is big and so cannot fit all observations simulta-

neously. This technique divides the utilized trace into small batches equal to the selected

batch size. Only this number of observations is loaded and processed into the machine

memory. When a batch is completed, the system flushes it from memory and begins

processing the next batch.

4.4.3 Evaluation Results

In order to ensure that our failure prediction model is general, we apply an ANN deep

learning approach to three different traces. We examined many classification models in a

previous experiment and then picked the best one to perform as a failure prediction model.

We discover that the DTs and RF achieve the highest levels of accuracy.

130



(a) Model accuracy for Google trace (b) Model accuracy for Mustang trace (c) Model accuracy for Trinity trace

Figure 4.31: The model accuracy for different three traces

(a) Model loss for Google trace (b) Model loss for Mustang trace (c) Model loss for Trinity trace

Figure 4.32: The model loss rate for different three traces

The accuracy and loss graphs for training and testing operations on various traces are

shown in Figures 4.31 and 4.32. The line plots for both accuracy and loss show satisfying

convergence behaviour for Google trace. The model is well configured, given no sign of

under or over-fitting. The model has a high degree of accuracy while the loss score on the

training set is fast decreasing, indicating that the network is efficiently learning to classify

failed and successful tasks. However, once we apply the proposed model to the Trinity

trace, the accuracy decreases compared to other traces. The drop in accuracy is due to the

model lacking sufficient observations for training in the Trinity trace. We used a callback

mechanism to save the weights when validation loss is minimal. We also use early stops to
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Table 4.8: Classification precision, recall, F1-score, training and testing time (in second) achieved through the ANN, DTs,
and RF (in percentage)

Artificial Neural Network Decision Tree Classifier Random Forest Classifier
Prec. Rec. F1-score Train.(t) Test. (t) Prec. Rec. F1.score Train.(t) Test.(t) Prec. Rec. F1.score Train.(t) Test.(t)

Google (29 days) 99% 99% 99% 11631.2 451.8 99% 99% 99% 542.18 3.39 99% 99% 99% 2812 36.43
Google (7 days) 99% 92% 95% 3244.8 46.4 93% 94% 94% 34.63 0.24 97% 93% 95% 133.82 2.37

Mustang 92% 85% 89% 4686.5 16.8 94% 94% 93% 1.2 0.09 95% 94% 95% 10.3 0.56
Trinity 87% 62% 72% 75.83 0.34 88% 85% 87% 0.07 0.008 89% 85% 89% 0.38 0.02

avoid over-fitting of training data, which can occur when the number of epochs is increased.

Table 4.8 shows the evaluation results of the implementation when we apply three

different classifiers to the utilized workload traces. When we apply the classifiers to the

Google trace collected in 29 days, all classification models have achieved the highest ac-

curacy with an average of 99% for precision, recall and F1-score. In order to increase the

accuracy of DTs and RF classifiers, we applied three different feature selection techniques

to all utilized traces. The RFE has achieved the best accuracy for Google trace. As a

result, incorporating feature selection techniques into our task failure prediction model has

a considerable impact on the model’s accuracy.

The highest performance achieved with the Google cluster trace is 99%. In comparison,

the accuracy of the Mustang trace is 95%, indicating that when we apply the model to

Google trace, all classification algorithms achieve the highest accuracy. As a result, with

enough observations, the model can have a high rate of accuracy, precision, recall, and

F1-score. The accuracy of the model, on the other hand, reduces when the model includes

a small number of observations, such as the Trinity trace.

When applied to medium and small traces, RF and DTs have better accuracy results

than an ANN-based algorithm. As a result, we strongly recommend that machine learning
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techniques be used to small-sized traces. The model does not achieve a high accuracy rate

when the ANN-based deep learning is applied to the Trinity trace, which is considered a

small-sized trace.

4.5 IoT Application using Edge-Cloud Architecture

This section describes the deployment and evaluation of our proposed Edge-Cloud architec-

ture using simulation analysis. The purpose of this analysis is to examine the performance

of Edge-Cloud integration in order to improve the reliability and availability of cloud-IoT

applications. Following that, evaluate reliability, availability, and scalability using metrics

such as CPU usage, failure rate, and network delays.

4.5.1 Experimental Setup

We have conducted our experiment with PureEdgeSim simulator [82], which is imple-

mented on the basis of CloudSim Plus [121] to simulate cloud, fog and edge computing

environments. PureEdgeSim includes a network model, mobility model, and description of

edge device features (such as CPU capacity, battery, mobility, storage, and so on), making

it appropriate for Cloud-Edge application scenarios.

Our goal is to simulate the Hajj environment, as most applications in this environ-

ment depend on applications for the Internet of Things. These applications require a high
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response time, as many sensors and cameras are monitored remotely. As a result, integra-

tion between the Cloud and the Edge is important in increasing efficiency, especially in

the eHealth application, which requires high response time. During Hajj, response time

and latency are crucial for this type of application, such as eHealth. For example, if the

pilgrim patient wears a device to measure the heart rate and percentage of oxygen in the

blood, the indicators suddenly drop from the normal range. In this case, it is crucial to

ensure that data transmission speed is very high and there is no delay.

4.5.2 Simulation Scenario

We designed a scenario to implement three separate applications: e-Health, real-time pil-

grim crowd monitoring, and Artificial Intelligence (AI) for IoT applications during Hajj

time to evaluate the performance of our proposed solution. Masjid al-Haram, Mina, Arafat

and Muzdalifah are the most important religious sites that we are interested in covering in

the simulation area. The specified area does not exceed 15 square kilometres.

Edge and Cloud Datacenters

Figure 4.33 describes the edge and cloud resources created in different locations to increase

the availability and reliability of cloud-IoT applications and meet business and application

requirements.
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Figure 4.33: Architecture components and computing resources for the Hajj environment

Edge devices types

The eHealth application uses various medical sensors, including body temperature, heart

rate, blood pressure and SPO2. Some latency-sensitive applications will offload their tasks

to edge computing data centres to minimize execution time. On the other hand, some tasks

require high computation and are not latency-sensitive, so these tasks are performed in the

cloud computing environment. Based on the requirements of Hajj applications, we carried
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Table 4.9: Edge devices types

Edge devices features Raspberry Pi 4 Smartwatches Sensor
Mobility No Yes No

Battery-powered No Yes No
Generate tasks Yes Yes Yes

Percentage of devices 20 40 40
Battery-capacity(Wh) - 19 -
Idle energy
consumption (Wh)

2 0.078 0.001

Max energy
consumption (Wh)

29 4.3 1.5

CPU (GIPS) 80 30 -
CPU cores 4 - -

RAM (Gbyte) 4 1 -
Storage(Gbyte) 128 4 -

out the experiment with 700 IoT devices, consisting of 280 smartwatches, 140 Raspberry

Pi, 200 medical sensors, and 80 cameras. We have developed our algorithm for scheduling

based on the “Trade-off” algorithm used in PureEdgeSim. Table 4.9 shows the features of

the various types of Edge devices. All concepts and device features mentioned in Table 4.9

are explained in detail in [82].

Applications Types

Table 4.10 shows the characteristics of smart Hajj applications. We have selected var-

ious application types to ensure that the proposed model can be applied with different

application requirements. Figure 4.33 shows the architecture components and computing

resources for the Hajj environment. The following subsections cover the most important
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benefits and functions of each application type.

Table 4.10: Application types

Application types eHealth
Real-time
Monitoring

Computation
intensive

Usage percentage (%) 40 40 20
Generation rate

(tasks per minute)
10 10 10

Latency sensitivity Yes Yes No
Task length in

Giga Instructions (GI)
60 80 200

Task size (Kbytes) 80 800 20000
Results size (Kbytes) 60 100 5000

� eHealth application: Many patients are served remotely through the eHealth appli-

cation on the busiest days. The eHealth application is designed and implemented to

prevent delays in arriving patients’ medical data to the health care providers, partic-

ularly in emergency and accident situations. Also, the system enables medical users

to determine the patient conditions that require immediate transport to the hospital.

The primary goal of the eHealth system is to provide pilgrims with a high-quality

health care system.

� Real-time crowd monitoring: The real-time monitoring system is intended to keep

an eye on the crowding percentage of pilgrims in order to assure everyone’s safety.

� Computation intensive: Sensor data is analyzed by ML and DL applications, which

extract the essential information that can be utilized to predict task failures using
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machine and deep learning approaches. The last type of application requires high

computational power.

Table 4.11: The simulation parameters

Parameters value
Simulation duration 30 (min)

Min number of Edge devices 100
Max number of Edge devices 700
Edge devices counter step size 700

Speed of mobile devices 1.4 (meters/seconds)
Edge devices range 20 (meters)
WLAN bandwidth 500 (Mbits/seconds)
WAN bandwidth 500 (Mbits/seconds)

Orchestration algorithm Trade-off

Architectures
Cloud-Only, Edge-only,

Edge-and-Cloud

Simulation parameters

Incoming tasks will be routed to the appropriate resources based on the amount of com-

puting required and the required delay or latency. If the incoming task requires high

computation and is not latency-sensitive, it will be transmitted to the cloud data cen-

ters. The edge data centers are used if incoming jobs demand low computation and are

time-sensitive. Table 4.11 identifies the simulation parameters for this scenario.
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4.5.3 Evaluation Results

In this section, our proposed model will be evaluated. We aim to evaluate the performance

of the integration of edge and cloud environments in order to increase the reliability and

availability of cloud-IoT applications. Therefore, we will focus on the evaluation metrics

that show reliability, availability and scalability, such as CPU utilization, failure rate and

network delays.

Figure 4.34 shows the number of failed tasks for different architectures. The number of

failed tasks has increased sharply when all incoming tasks are submitted to the Cloud only.

The delay is the main reason for the failure, as most tasks failed to meet the deadline for

meeting the application requirements. For example, the maximum delay for the eHealth

application is five seconds. However, it is clear that when we apply the “Edge only”

and “Edge-Cloud” architectures, the incoming tasks have a reasonable number of failures

compared to the number of failed tasks when using the “Cloud only” architecture. In

addition, the “Edge-Cloud” architecture has achieved the best performance because it has

been able to control the number of failures, even though the number of devices has increased

after each iteration during simulation time. Thus, integrating edge and cloud computing

has numerous benefits, including greatly improving the reliability and availability of Edge-

Cloud applications and decreasing the time and cost associated with cloud computing. The

use of the “Edge-Cloud” architecture also plays an essential role in reducing latency time

to meet the new modern IoT applications, such as smart cities and eHealth systems.
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Figure 4.34: Number of failed tasks for different architectures

In addition, the use of the “Edge-Cloud” architecture can control network traffic com-

pared to other architectures. As shown in Figure 4.35, when the “Edge-Cloud” architecture

is applied to the system, total network traffic is less than 1,500,000 MB for the use of 700

devices that generated thousands of tasks. The overall network traffic for “Cloud only”

and “Edge only” has grown dramatically to roughly 2,500,000 and 3,800,000 Mbytes, re-

spectively. As a result, the “Edge-Cloud” architecture reduces the distance that data

from devices must travel, decreasing latency and addressing bandwidth challenges, espe-

cially when new technologies such as 5G become available. The “Edge-Cloud” architecture

enables network traffic control since the scheduling algorithm distributes incoming tasks

between the cloud and the edge based on the required computing power and latency. As

a result, the management system monitors the CPU utilization of cloud and edge VMs to

schedule incoming tasks to the best VMs with a lower percentage of CPU utilization.

The average VM CPU utilization for the Edge data centers is shown in Figure 4.36. The
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Figure 4.35: Network traffic

“Edge only” architecture has consumed almost 60% of Edge VMs CPU usage to execute

a large number of tasks generated from 700 devices. Thus, in this case, all incoming tasks

are submitted to the Edge data centers, increasing the workload to serve a large number

of devices. On the other hand, when The “Edge-Cloud” architecture is applied to the

system, the workload of incoming tasks is distributed between edge and cloud to help the

management system control the VMs CPU usage with low consumption to be less than

12%.

In addition, the “Edge-Cloud” architecture has reduced the cost of using cloud ser-

vices by decreasing the number of tasks executed in the cloud, as shown in Figure 4.37.

When using the architecture of “Cloud only”, all generated tasks will be transmitted to

the cloud to increase the workload in the cloud environment. As shown in Figure 4.37,

more than 90,000 tasks were executed in the cloud, which increased the time and cost of

using the cloud. The “Edge-Cloud” architecture has reduced the time and cost associated
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Figure 4.36: Average VM CPU utilization for the edge data centers

Figure 4.37: Total tasks executed in the edge data centers

with cloud computing, with about 41,000 tasks conducted in the cloud. As a result, this

architecture can significantly minimize the cost and time associated with cloud computing.

Thus, modern IoT applications require the “Edge-Cloud” architecture to increase relia-

bility, availability, and performance, decrease application latency time, and reduce cloud

computing costs.
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4.6 Discussion

This section discusses our findings and evaluation results to investigate and analyze failure

behaviour for three different traces: Google cluster, Mustang and Trinity. The analysis

results show the behaviour of failed and finished jobs to understand the correlation be-

tween failed jobs and other cloud application attributes. We have studied job failure as a

starting point, which helps develop a new model for failure prediction. The primary goal

of our failure prediction model is to predict failed tasks in cloud applications with a high

accuracy rate using ML classification algorithms. The proposed model reduces compu-

tational time and resource consumption, and increases the efficiency and performance of

cloud infrastructure.

As a result of our findings, we notice that failed jobs with long-running times consume

considerable cloud resources compared to finished jobs. Another point regarding the job’s

priority is that high-priority jobs are likely to fail. Therefore, the correlation between job

failure and job priority should be taken into account in developing a failure prediction

model. Cloud providers can develop new policies for cloud applications based on our fail-

ure analysis results to decrease unsuccessful tasks and jobs. For instance, new scheduling

algorithms can be applied to increase availability and reliability. Instead of transferring

incoming jobs or tasks using the Round-robin technique, the incoming tasks can be trans-

ferred based on the required level of availability and computation. This technique will be

considered in future work.
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We found that Decision Trees (DTs) and Random Forest (RF) provided accurate re-

sults after evaluating the performance of various classification algorithms using three cloud

traces. However, when it comes to the traces of Trinity and Mustang, the RF classifier

surpasses the DTs. Therefore, our selected model is based on the RF method, as it applies

to a wide range of traces and provides the most accurate results. El-Sayed et al. [46]

developed a RF-based failure prediction model, and their findings show that the presented

model can accurately recall up to 94% of all unsuccessful jobs with an accuracy of at least

95%. We have the highest precision, recall, and f1 score compared to previous studies.

Our proposed model has achieved the best precision, recall, and f1-score for predicting

failed classes, which was 99% for all evaluated metrics. However, due to the small number

of observations in Mustang and Trinity, we could not obtain the desired results in the

other two traces. Thus, the classifier does not have enough data to distinguish between

the two classes. The failure prediction model is trained and tested offline, as it requires

a long training time and a high computation power. The workload traces used in this re-

search were collected from the cloud and high-performance computing environments, such

as Google cluster traces. Monitoring data indicate cloud characteristics, such as the re-

sources required to perform a task (CPU, memory, disk storage). As a result, the proposed

failure prediction model has been designed and implemented for cloud deployment. The

task failure prediction model could be adapted to various forms of computing, such as edge,

fog or local servers because the observed data is similar.
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4.7 Threats to Validity

Because the proposed model for failure analysis and prediction is more focused on the

Google cluster, it may not apply to other cloud and IoT infrastructures. This point can

be considered a threat to the validity of the study; hence other cloud workload failures

should be studied to mitigate this threat. As a result, we have applied the failure analysis

and failure prediction models to the other two cloud traces: Mustang and Trinity. We

also looked for IoT workload traces; however, there is no publicly accessible failure data

from real-world cloud-IoT apps that can be classified as IoT traces. Because there were no

public IoT datasets with task characteristics (CPU, memory, and disk space), we evaluated

our model on three different datasets of varying sizes to ensure it is applicable in various

scenarios (IoT to the cloud or edge). Trinity trace has a small number of observations

that can simulate the IoT and edge computing resources. Because Google cloud provider

is concerned about privacy, the Google traces are limited and unidentified, which poses a

major internal threat to validity. There are a few drawbacks to using Google cluster traces

that should be considered:

� The workload traces provide no information about the programs or applications,

such as whether they were MapReduce tasks or other types of task applications.

Also, there is no information has been provided about the job schedulers or other

applications operating on the nodes stored in task characteristics.

� It is unclear who the users are, their workflows, and why they perform these jobs
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and tasks. As a result, it is impossible to determine anything about the impact of

failures on the entire user experience.

� A task may fail due to poor performance such as lack of resources, or low reliability

such as software, hardware, and network failures. The workload traces do not include

sufficient evidence to determine task failure reasons.

4.8 Summary

This chapter presents and discusses the different experimental scenarios to verify the per-

formance of the various contributions in this thesis concerning the research objectives. We

also compare the results of the proposed failure prediction models with other leading stud-

ies and algorithms in this domain. The comparisons confirm our methodology that our

contributions in this thesis improve the reliability, availability, and scalability of cloud-IoT

applications with higher performance, including precision, recall, and F1-score.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

This thesis presents a framework for proactive fault tolerance in cloud-IoT applications.

The main objective of the proposed framework is to design and develop a cloud-IoT frame-

work that provides high reliability and availability for IoT applications using proactive

fault tolerance mechanisms such as the failure prediction model. The framework also aims

to decrease the number of task failures and minimize the time and cost of using the cloud.

This framework includes three major components: integrating local IoT resources with

the cloud, designing and implementing the task failure prediction model, and developing

Edge-Cloud architecture to support the new modern IoT applications. We have also ad-

dressed job failure in cloud computing environments by performing failure analysis on cloud
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services, analyzing the behaviour of failed tasks, and correlating failed jobs with required

resources such as memory, CPU, and disk space. Firstly, we introduce a framework for

extending the local resources of IoT devices, which are very limited in computing, memory,

and storage, using cloud computing. Then, the proposed scheduling algorithm has mini-

mized the execution time and computation cost of using the cloud. The results show that

extending local resources, including IoT devices, to the cloud improves framework per-

formance and throughput efficiency by 55%. Although this framework shows impressive

results in increasing the availability and scalability of cloud-IoT applications, this frame-

work does not consider fault tolerance techniques. Thus, modern IoT applications require

a high level of reliability and availability that can be achieved by studying the job and task

failure behaviour and the correlation between failed tasks and requested resources.

Secondly, in order to address the limitations of the initial cloud-IoT integrating frame-

work, we study job failures for cloud applications, analyze the behaviour of failed tasks,

and examine the correlation between failed jobs and requested resources such as memory,

CPU, and disk space. Then, we introduce a proactive fault-tolerance framework that can

accurately predict incoming task event types (fail, success) before the management sys-

tem schedules them. The failure prediction model can decrease resource waste, enhance

resource utilization, and increase the efficiency of cloud applications. We have the highest

precision, recall, and f1 score compared to previous studies. Based on machine learning,

our proposed model has the highest precision, recall and F1-score for predicting failed

classes, at 99% for all evaluated metrics. However, the model developed to predict failure
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requires a long time to identify the most relevant features in the dataset, and it requires

experimenting with several feature selection methods to determine which one is combined

with the classifier to achieve the best results.

Thirdly, we have increased the accuracy of our RF-based machine learning by apply-

ing different feature selection algorithms such as SelectKBest, Feature Importance, and

RFE. In contrast, deep learning algorithms do not require the use of feature selection

methods. Deep learning algorithms learn the best features from data without any human

guidance. Thus, we present a developed failure prediction model based on an ANN-based

deep learning approach to solve the limitation described in our prior framework, designed

and implemented based on a machine learning approach. We have also noticed that when

combined both RF-based and ANN-based models, the proposed framework can select the

optimal model based on the trace size. The IoT revolution has expanded the number of

IoT devices and IoT applications deployed in a wide variety of industries. However, due to

the limitation of availability and scalability of these applications, the IoT applications face

the scaling challenge. Moreover, cloud computing has experienced many challenges due to

its rapid expansion. With the sharp increase in the number of IoT devices and data they

generate, cloud computing cannot meet quality-of-service criteria such as low latency.

Fourthly, to solve the challenge of availability and scalability of the previous cloud-IoT

frameworks, we introduce a highly reliable and available framework based on developing

an “Edge-Cloud” architecture to serve the new generation of cloud-IoT applications. We

have analyzed cloud-IoT applications to see how well the Edge-Cloud integration performs.
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Using evaluation metrics to compare results before and after implementing the Edge-Cloud

architecture, we investigated essential elements of IoT applications, including CPU use,

failure rate, and network delays. The evaluation results show that failed tasks and CPU

usage have decreased in the use of the “Edge-Cloud” architecture. In addition, using “Edge-

Cloud” architecture can also control network traffic compared to other architectures.

Our experimental results in all the research described above confirm our proposed

solution, as we have obtained results that have outperformed previous frameworks that

used similar data for validation. We can recognize limitations at each phase of the process,

and then present a new contribution that resolves the challenges identified.

5.2 Future Work

The following issues of research will be investigated in the future:

� Availability Levels: We divided the availability levels into three categories to re-

duce the cloud cost: high, medium, and low. The primary objective of providing

different availability levels is to offer cloud consumers a variety of options for avail-

ability so that they can have the level of fault tolerance that best suits their needs.

Therefore, the availability levels will be considered in future studies, with each level’s

performance being designed, implemented, and analyzed.

� LSTM Deep Learning: We are interested in utilizing Long Short Term Memory
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(LSTM) to improve time interval accuracy. LSTM is a deep learning model has

developed based on a Recurrent Neural Network (RNN).

� Online Failure Prediction: Online failure prediction uses measurements of en-

tire system parameters taken at runtime to calculate the likelihood of a breakdown

occurring in the next few seconds or minutes. As a result, for modern cloud-IoT

applications, real-time failure prediction is essential. In comparison to traditional

dependability methods, online failure prediction is based on runtime monitoring and

various models and methodologies that take into account the current state of a sys-

tem and, in many cases, previous experiences. The outcome of an online failure

prediction model can be either a binary decision or a continuous metric determining

whether the present situation is more or less likely to fail.

� Mitigation Policies and Techniques: Further study needs to consider mitigation

techniques to be applied after predicting failed tasks, including migrating the tasks

to another availability zone with higher reliability and scalability. Thus, determining

why large-scale jobs fail in cloud-IoT applications is essential, followed by proposing

and evaluating task failure mitigation techniques.

� Scheduling Algorithms: The development of new scheduling algorithms will be a

primary focus of future work, as scheduling tasks between cloud and edge node re-

sources continue to be a significant challenge. The scheduling algorithm can decrease

the number of failed tasks. The proposed model for the scheduling algorithm will be
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compared to new scheduling techniques, such as those provided by the Kubernetes

type of orchestrator. The scheduling algorithm will be scalable and able to adapt its

decisions on the basis of LSTM prediction outcomes.
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