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Most inverse optimization models impute unspecified parameters of an objective function to

make an observed solution optimal for a given optimization problem. In this thesis, we propose

two approaches to impute unspecified left-hand-side constraint coefficients in addition to a cost

vector for a given linear optimization problem. The first approach minimally perturbs prior

estimates of the unspecified parameters to satisfy strong duality, while the second identifies

parameters minimizing the duality gap, if it is not possible to satisfy the optimality conditions

exactly. We apply these two approaches to the general linear optimization problem. We also

use them to impute unspecified parameters of the uncertainty set for robust linear optimization

problems under interval and cardinality constrained uncertainty. Each inverse optimization

model we propose is nonconvex, but we show that a globally optimal solution can be obtained

by solving a finite number of tractable optimization problems.
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Chapter 1

Introduction

Inverse optimization (IO) aims to determine the unspecified parameters of an optimization

problem (the forward problem) that make a given solution optimal. To date, most of the

literature has focused on formulating and solving IO problems that determine parameters of

the objective function, under the assumption that parameters specifying the feasible region are

fixed. These methods are appropriate regardless of whether the given solution is or is not a

candidate to be exactly optimal (e.g., a boundary vs. interior point in a linear optimization

problem). In the former case, the optimality conditions can be satisfied exactly (Ahuja and

Orlin, 2001, Iyengar and Kang, 2005, Schaefer, 2009), and to choose among multiple satisfactory

imputations, it is typical to include an objective function that minimally perturbs “prior”

estimates such that the observed solution is exactly optimal. In the latter case, the imputed

parameters minimize some measure of suboptimality (Chan et al., 2014, 2017, Keshavarz et al.,

2011).

While most IO literature has focused on imputing an objective function, some recent work

has considered imputing constraint coefficients in a linear optimization problem. The problem

of imputing a cost vector alone can be solved by a linear IO model, but the models for imputing

constraint coefficients are all nonconvex. In particular, only a small number of these papers

consider imputing “left-hand-side” constraint coefficients: Birge et al. (2017) use observed

electricity prices to impute parameters of electricity market structure in the economic dispatch

problem, and Brucker and Shakhlevich (2009) use an observed job schedule to impute job

processing times in the minimax lateness scheduling problem. In both cases, the authors exploit

characteristics of their particular forward problem to derive a tractable inverse problem.

The goal of this thesis is to solve the IO problem of imputing unspecified constraint param-

eters for the general linear programming problem, such that an observed solution is optimal

with respect to some nonzero cost vector. The motivation for this problem is that we may

have estimates of constraint parameters, but due to inaccuracy in these estimates the observed

solution is not a candidate to be optimal for the forward problem; or we may altogether lack

estimates of some constraint coefficients. Accordingly, the first part of this thesis considers

the problem of recovering a left-hand-side constraint matrix for a general linear programming
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Chapter 1. Introduction 2

problem, given an observed solution and a known “right-hand-side” constraint vector.

In the second part of this thesis, we adapt this IO approach to the situation that the

forward problem is a robust optimization problem: this can be viewed as a special case of

the general problem from the first part of the thesis, but we will first motivate this problem

independently. Suppose that we have estimates of all constraint parameters, but the observed

solution is apparently not a candidate to be optimal for the forward problem: the reason

for this may be that we have failed to take into account a model of uncertainty the decision

maker incorporated into her decision-making process. Given the growing adoption of robust

optimization in both the research and practitioner community, it will increasingly be the case

that robustly optimized decisions may be observed in a variety of settings and IO models

will be taking such solutions as input. Accordingly, we consider the problem of recovering

unspecified parameters of an uncertainty set, given an observed solution and nominal estimates

of all constraint coefficients for a linear optimization problem. In particular, we will solve this

problem for two different uncertainty sets, interval uncertainty (Ben-Tal and Nemirovski, 2000)

and cardinality constrained uncertainty (Bertsimas and Sim, 2004). In both cases, the robust

problem is itself a linear optimization problem, and hence imputing unspecified uncertainty set

parameters is a special case of the general problem considered in the first part of this thesis.

For each of the three forward problems we have introduced, we consider two IO problem

variants distinguished by whether or not it is possible to guarantee a priori that there exist

parameters making the observed solution exactly optimal. In inverse linear optimization models

that impute a cost vector only, the candidacy of an observed solution to be optimal depends

on whether or not the solution is on the boundary of the feasible set. However, because in

this work we are imputing parameters that determine the feasible set, the candidacy of the

observed solution to be optimal depends on the extent to which the unspecified parameters are

allowed to change the feasible set. Limitations on this ability to change the feasible set may

arise from external constraints on the unspecified parameters, motivated by the application

domain. Accordingly, we will propose two alternative IO models for each forward model: the

first will require the observed solution to be exactly optimal, and the second will minimize

suboptimality, in case optimality cannot be achieved exactly.

In this work, we study three different linear optimization problems as forward problems,

each with a different set of constraint parameters to be imputed. For each forward problem,

we make two contributions:

1. We derive a tractable solution method for the nonconvex IO problem of minimally per-

turbing prior estimates of constraint parameters, such that an observed solution is exactly

optimal for some nonzero cost vector. When the forward problem is the general linear

programming problem or a robust linear program with interval uncertainty, the method

requires solving a finite number of convex optimization problems (linear when the extent

of perturbation is measured by a linear objective function.) When the forward problem

is a robust linear program with cardinality constrained uncertainty, the method requires
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solving a finite number of linear optimization problems.

2. We derive a tractable solution method for the nonconvex IO problem of imputing du-

ality gap-minimizing constraint parameters, subject to external (application-motivated)

constraints on the parameters to be imputed. When the forward problem is the general

linear programming problem, the method requires solving a finite number of optimiza-

tion problems which are linear whenever the external constraints are linear. When the

forward problem is a robust linear optimization problem, the method requires solving a

single mixed integer optimization problem, which is mixed integer linear whenever the

external constraints are linear.

1.1 Related literature

In this section, we provide an overview of related literature in two areas: inverse optimization

and robust optimization.

1.1.1 Inverse optimization

Ahuja and Orlin (2001) formalized the classical approach to inverse linear optimization, which

assumes that a single observed solution is on the boundary of a known feasible region, and

minimally perturbs a prior cost vector such that the observed solution is optimal. Chan et al.

(2014) generalized this approach by allowing that the observed solution may not be a candidate

to be an optimal solution, and instead impute a cost vector that minimizes the duality gap.

Chan et al. (2017) further generalized this approach by proposing a model that minimizes a

general error function, and showing that the duality gap-minimizing model can be derived as a

special case.

Recently, some methods have been developed to impute both the right-hand-side and cost

vectors for a linear optimization problem. This problem is in general nonconvex, and the authors

who have addressed this problem have either derived an approximate solution, or exploited

characteristics of their particular problem instance to derive a globally optimal solution. In the

former group of papers, Dempe and Lohse (2006) propose an IO model that minimally perturbs

an observed solution such that there exist right-hand-side and cost vectors making it exactly

optimal, and they derive a local optimality condition for this model. Saez-Gallego et al. (2016)

and Saez-Gallego and Morales (2017) also formulate models to recover these two vectors, and

apply the methods to inverse problems in electricity markets: the first paper minimizes the

sum of perturbations of the observed solutions such that they are exactly optimal, whereas the

second paper minimizes the sum of duality gaps for the observed solutions. Both models are

solved using approximate solution methods that first estimate the right-hand-side vector, and

then fix its value to linearize the IO model.

Several papers exploit problem-specific characteristics to impute globally optimal right-

hand-side and cost vectors. Černỳ and Hlad́ık (2016) assume that the observed solution is
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optimal with respect to the prior estimates of these vectors, and determine the maximum

distance that each vector can be perturbed in the direction of a given perturbation vector.

Chow and Recker (2012) reduce the complexity of the IO problem by exploiting the structure

of their forward problem, the household activity pattern problem. We also note two papers

that impute right-hand-side coefficients under the assumption that the cost vector is known:

Güler and Hamacher (2010) consider the problem of minimally perturbing edge capacities in

the minimum cost flow problem such that an observed solution is optimal, and they solve this

problem using an optimality condition specific to the minimum cost flow problem. Xu et al.

(2016) assume that multiple observed solutions in the feasible set Ax ≤ b are all exactly

optimal, and therefore the optimality conditions will be satisfied by a right-hand-side vector

in which each component has the minimum possible value such that all observed solutions are

feasible.

Few papers have addressed the problem of imputing the unspecified parameters of the coef-

ficient matrix, and those that do exploit specific problem characteristics or make assumptions

to derive a tractable problem. Birge et al. (2017) assume partial access to both the primal and

dual solutions, to eliminate bilinearities in the IO problem. Brucker and Shakhlevich (2009)

make use of the necessary and sufficient optimality conditions for their forward problem, the

minimax lateness scheduling problem.

Chassein and Goerigk (2016) propose IO models that recover parameters of the uncertainty

set for a robust optimization problem, but their work is distinct from ours in several respects.

Their forward problem is a discrete optimization problem in which only the cost vector is

subject to uncertainty, and they consider interval uncertainty but not cardinality constrained

uncertainty. Their inverse problem assumes that the feasible set is known and the observed

solution is optimal with respect to the nominal cost vector, and seeks to determine the greatest

degree of uncertainty in the cost vector such that the nominal optimal solution remains optimal

for the robust problem. Hence their IO models do not recover constraint parameters for the

forward problem.

Although we have focused on IO models for which the forward problem is linear, we note that

IO models have also been proposed for forward problems that are nonlinear, including conic

(Iyengar and Kang, 2005), convex (Keshavarz et al., 2011), and discrete (Heuberger, 2004,

Schaefer, 2009). IO models have furthermore been proposed for problems where parameters of

the forward problem must be imputed from multiple observed solutions (Aswani et al., 2015,

Bertsimas et al., 2015, Keshavarz et al., 2011).

1.1.2 Robust optimization

Robust optimization solves the problem of optimization under parameter uncertainty by requir-

ing a feasible solution to satisfy the constraints for all possible realizations of uncertain param-

eters. In this thesis we are concerned with an uncertain linear program min{cᵀx : Ax ≥ b},
where the matrix A contains nominal estimates of uncertain quantities. The corresponding
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robust counterpart min{cᵀx : Ãx ≥ b, ∀Ã ∈ U} minimizes the same objective function over

the robust feasible region, which requires a solution to satisfy the constraints for all possible

realizations of Ã in the uncertainty set U , which includes the nominal estimate A. The ro-

bust feasible region is thus a subset of the nominal feasible region. For any given uncertainty

set, some transformations may be required to derive a tractable optimization problem that is

equivalent to the robust counterpart.

The first robust optimization model was proposed by Soyster (1973), who defined an uncer-

tainty set where the columns of the constraint matrix are elements of independent convex sets.

He then showed that the robust counterpart is equivalent to a linear program in which each

constraint coefficient is obtained by taking the maximum value over the convex set defining the

allowable realizations of that coefficient’s respective column. This approach was then applied

by Ben-Tal and Nemirovski (2000) to a special case of Soyster’s uncertainty set referred to as

interval uncertainty, in which each and every constraint coefficient is allowed to vary indepen-

dently within a symmetric interval centered on the nominal estimate (see also Ben-Tal et al.

(2009, p. 19)).

The interval uncertainty approach can be considered over-conservative because the robust

counterpart effectively assumes that all uncertain coefficients may take their worst-case values

simultaneously, leading to the exclusion of good solutions that may be feasible with high prob-

ability. Accordingly, several authors proposed ellipsoidal uncertainty sets that allow the user to

better tune the degree of conservatism. The simplest ellipsoidal uncertainty set (Ben-Tal et al.,

2009, p. 19) allows that for a given constraint, each coefficient may vary within some fraction

of its interval of uncertainty, and the vector of fractions must be within a Euclidean ball of

some fixed radius, where the radius controls the degree of conservatism. A more sophisticated

variant intersects simple ellipsoidal with interval uncertainty (Ben-Tal and Nemirovski, 2000).

A disadvantage of the ellipsoidal uncertainty set is that the resulting robust counterpart is

a second order conic program and hence more computationally demanding than the original

uncertain linear program. To preserve the advantages of the ellipsoidal uncertainty set while

also preserving the complexity of the original problem, Bertsimas and Sim (2004) proposed the

cardinality constrained uncertainty set, which is similar to the ellipsoidal uncertainty set, but

requires the vector of fractions to be within a ball of the L1 norm rather than the Euclidean

norm. It can furthermore be shown that the cardinality constrained uncertainty set is a special

instance of the polyhedral uncertainty set, in which each row of the constraint matrix is allowed

to vary within a polyhedron, and for which the robust counterpart is also a linear program

(Bertsimas et al., 2011).

Several other approaches have been proposed in the literature, including norm uncertainty

(Bertsimas et al., 2004), distributional robustness (Delage and Ye, 2010), and data-driven uncer-

tainty (Bertsimas et al., 2017). Moreover, while we have focused on uncertain linear programs,

robust counterparts have also been proposed for nonlinear optimization problems, including

quadratic (Ben-Tal et al., 2002) and discrete (Kouvelis and Yu, 1997). Applications of robust
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optimization have included finance (Goldfarb and Iyengar, 2003), revenue management (Ball

and Queyranne, 2009), supply chain management (Bertsimas and Thiele, 2006), medicine (Un-

kelbach et al., 2007), and energy systems (Jiang et al., 2012). For fuller surveys on robust

optimization, we refer the reader to Bertsimas et al. (2011), Gabrel et al. (2014), and the

reference book by Ben-Tal et al. (2009).

1.2 Organization and notation

The remainder of this thesis is organized as follows. In Chapter 2, we propose IO models

and solution methods to impute left-hand-side coefficients for the general linear programming

problem. First we consider a model that requires the imputed parameters to satisfy strong

duality, second we consider a model that minimizes a duality gap, and then we provide nu-

merical examples to illustrate the two approaches. In Chapter 3, we propose IO approaches to

impute uncertainty set parameters for the robust linear optimization problem under interval

uncertainty, and cardinality constrained uncertainty. For each of the two cases we again pro-

pose strong duality and duality gap-minimizing variants, and numerical examples. In Chapter

4, we provide concluding remarks. Proofs which do not appear in the body of the thesis are

contained in the appendix.

We define the following notation. Let e be the vector of all ones. Let ei be the unit vector

with i-th coordinate equal to 1. Let ai be the i-th row of A. If we have a set of vectors with

common index but differing lengths (e.g., αi for all i ∈ I), we will sometimes abuse notation

and use α to denote the set of vectors {αi}i∈I . In some optimization models, we will abuse

notation and write A as a variable, although we are minimizing over the vectors {ai}i∈I rather

than a matrix A. We define sgn(x) = 1 if x ≥ 0 and −1 otherwise.



Chapter 2

Inverse linear optimization

In this chapter, we consider the general linear optimization problem

minimize
x

∑
j∈J

cjxj

subject to
∑
j∈J

aijxj ≥ bi, ∀i ∈ I.
(2.1)

Given b and an observed solution x̂, the IO problem aims to identify a constraint matrix

A that makes the observed solution x̂ optimal for some nonzero cost vector. In particular, we

consider two variants of this problem. The goal of the first problem is to minimally perturb

prior constraint vectors âi such that x̂ is exactly optimal for some nonzero cost vector. The

goal of the second problem is to identify constraint vectors ai in some predefined set Ω such

that there exists a nonzero cost vector minimizing the duality gap. The set Ω corresponds to

external constraints on the constraint coefficients, motivated by the application domain, and if

these constraints are sufficiently restrictive then a duality gap of zero (i.e., exact optimality)

will not be possible.

We note here that the problem of recovering both A and b can be subsumed by the problem

of recovering A only. To show this, we first note that problem (2.1) is equivalent to

minimize
x,q

cᵀx + hq

subject to
(
A b

)(x

q

)
≥ 0,

q = −1.

(2.2)

The auxiliary variable q can be assigned an arbitrary coefficient h in the objective function

because the value of q is fixed to −1, and thus the particular value of its coefficient in the

objective function is inconsequential. Let our forward problem be minx{c̄ᵀx : Āx ≥ b̄}, with

Ā =
(
A b

)
, b̄ = 0, c̄ = (c, h), and x̄ = (x̂,−1). The IO problem recovers Ā, and hence it

effectively recovers A and b.

7
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The remainder of this chapter is organized as follows. Sections 2.1 and 2.2 introduce

the strong duality and duality gap problems respectively, and describe tractable solution ap-

proaches. Subsection 2.1.1 will demonstrate that the strong duality formulation may produce

trivial solutions in some situations. Section 2.3 provides numerical examples to illustrate the

solutions to the IO problems, including examples with trivial solutions.

2.1 Strong duality

We assume x̂ 6= 0 (otherwise, unless bi = 0 for some i ∈ I, it would not be possible for any

constraint to be active, and hence it would not be possible to achieve strong duality.) We assume

that prior constraint vectors âi 6= 0 are given for all i ∈ I. Let π be the dual vector associated

with the constraints of the forward problem (2.1). The following formulation minimizes the

weighted deviations of the vectors ai from âi, while enforcing strong duality, and primal and

dual feasibility:

minimize
A,c,π

∑
i∈I

ξi‖ai − âi‖ (2.3a)

subject to
∑
j∈J

cj x̂j −
∑
i∈I

biπi = 0, (2.3b)

∑
j∈J

aij x̂j ≥ bi, ∀i ∈ I, (2.3c)

∑
i∈I

πi = 1, (2.3d)∑
i∈I

aijπi = cj , ∀j ∈ J, (2.3e)

πi ≥ 0, ∀i ∈ I. (2.3f)

In the objective function (2.3a), ‖·‖ is an arbitrary norm, and ξ is a vector of real-valued weights

that is user-tunable. Unlike previous IO approaches that minimize deviation of c from some

prior ĉ, we do not include such an objective since our goal is to determine a constraint matrix

A that makes x̂ optimal; the variable c is simply needed to ensure x̂ is optimal with respect to

some cost vector.

Constraints (2.3b), (2.3c), and (2.3e)-(2.3f) represent strong duality, primal feasibility, and

dual feasibility, respectively. Notice that the strong duality and dual feasibility constraints can

trivially be satisfied by (c,π) = (0,0). Formulation (2.3) would then only require A to ensure

primal feasibility, which is insufficient to guarantee x̂ is optimal with respect to some nonzero

c. Accordingly, constraint (2.3d) is a normalization constraint that prevents π = 0 from being

feasible, and requires c to be in the convex hull of {ai}i∈I . This set of feasible cost vectors may

still include c = 0, but whether c = 0 will be optimal depends on the choice of norm, and on

the problem data. We will comment further on this possibility in Section 2.1.1.
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Before proceeding with the solution of formulation (2.3), we briefly note that it has a feasible

solution.

Proposition 1. Formulation (2.3) is feasible.

All constraints of formulation (2.3) are linear except for the dual feasibility constraint (2.3e),

which is bilinear in A and the dual vector π. Nevertheless we can determine an efficient solution

method. To do so, we first show that the constraints of formulation (2.3) effectively formalize

the geometric intuition that an optimal solution for a linear program must be on the boundary

of the feasible region.

Lemma 1. Every feasible solution for formulation (2.3) satisfies∑
j∈J

aîj x̂j = bî, for some î ∈ I, (2.4a)

∑
j∈J

aij x̂j ≥ bi, ∀i ∈ I. (2.4b)

Conversely, for every A satisfying (2.4), there exists (c,π) such that (A, c,π) is feasible for

formulation (2.3).

Proof: To prove the first statement, we assume
∑

j∈J aij x̂j > bi for all i ∈ I and derive a

contradiction. Substituting (2.3e) into (2.3b), we get∑
i∈I

πi
∑
j∈J

aij x̂j =
∑
i∈I

πibi. (2.5)

Constraint (2.3d) ensures that I := {i ∈ I : πi > 0} 6= ∅. Since we have assumed
∑

j∈J aij x̂j >

bi for all i ∈ I, we have

πi
∑
j∈J

aij x̂j > πibi, ∀i ∈ I,

and since πi ≥ 0 for all i ∈ I, ∑
i∈I

πi
∑
j∈J

aij x̂j >
∑
i∈I

πibi,

which contradicts equation (2.5).

To prove the second statement, let A satisfy (2.4), î be defined by (2.4a), c = aî and π = eî.

This solution is feasible for formulation (2.3).

Lemma 1 allows us to characterize an optimal solution for formulation (2.3) and devise an

efficient solution method:
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Theorem 1. For all i ∈ I, let

fi = min
ai

ξi‖ai − âi‖ :
∑
j∈J

aij x̂j = bi

 , (2.6)

gi = min
ai

ξi‖ai − âi‖ :
∑
j∈J

aij x̂j ≥ bi

 , (2.7)

and let afi and agi be optimal solutions for (2.6) and (2.7), respectively. Let i∗ ∈ arg mini∈I{fi−
gi}. Then the optimal value of formulation (2.3) is fi∗+

∑
i 6=i∗,i∈I gi, and there exists an optimal

solution of (2.3) with

ai =

{
afi if i = i∗,

agi if i 6= i∗, i ∈ I,
(2.8)

c = ai∗ . (2.9)

Remark 1. Theorem 1 shows that an optimal solution to the nonconvex inverse problem (2.3)

can be found by solving 2|I| convex problems (linear with appropriate choice of ‖·‖).

Proof: By Lemma 1, solving formulation (2.3) is equivalent to solving the following opti-

mization problem for all î ∈ I, and taking the minimum over all |I| optimal values:

minimize
A

∑
i∈I

ξi‖ai − âi‖

subject to
∑
j∈J

aîj x̂j = bî,∑
j∈J

aij x̂j ≥ bi, ∀i ∈ I.

(2.10)

Suppose we fix some î ∈ I. Since formulation (2.10) is separable by i, the optimal value of the

î-th formulation (2.10) is fî +
∑

i 6=î,i∈I gi. Therefore, the optimal value of formulation (2.3) is

min
î∈I

fî +
∑

i 6=î,i∈I

gi

 .

Clearly, the optimal index i∗ must satisfy i∗ ∈ arg mini∈I{fi − gi}. An optimal A is derived

from the optimal solutions of (2.6) and (2.7),

ai =

{
afi if i = i∗,

agi if i 6= i∗, i ∈ I,

and an optimal cost vector is c = ai∗ .
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Theorem 1 can be interpreted as follows. For all i ∈ I, fi is the minimal value of the i-th

term in objective function (2.3a) such that constraint i is rendered active. Similarly, gi is the

minimal value for constraint i to be rendered feasible; clearly, gi 6= 0 only if x̂ is infeasible with

respect to âi. For x̂ to be optimal for the forward problem, some constraint i∗ must have ai∗ set

such that x̂ is on the boundary. The optimal choice of this constraint is the one that requires

the minimal additional increase in ξi‖ai− âi‖ for the constraint to be active rather than merely

feasible, i.e., i∗ ∈ arg min{fi − gi}. To satisfy the optimality conditions, the cost vector is set

perpendicular to this active constraint.

Because problems (2.6) and (2.7) are the projection of a point onto a hyperplane and

halfspace respectively, they have analytical solutions when the projection uses the Euclidean

norm (Boyd and Vandenberghe, 2004, p. 398). We omit the proof of this result, which is

straightforward.

Corollary 1. Let the norm in objective function (2.3a) be the Euclidean norm. Then for all

i ∈ I,

fi = ξi

∥∥∥∥ âᵀ
i x̂− bi
‖x̂‖22

x̂

∥∥∥∥
2

, (2.11)

afi = âi −
âᵀ
i x̂− bi
‖x̂‖22

x̂, (2.12)

gi =

ξi
∥∥∥ âᵀ

i x̂−bi
‖x̂‖22

x̂
∥∥∥

2
if âᵀ

i x̂ < bi,

0 otherwise,
(2.13)

agi =

âi −
âᵀ
i x̂−bi
‖x̂‖22

x̂ if âᵀ
i x̂ < bi,

âi otherwise.
(2.14)

2.1.1 Possibility of trivial solutions

In general, it is possible that the optimal solutions for formulation (2.3) described in Theorem

1 are trivial, by which we mean that c = 0 and/or ai = 0 for any i ∈ I. The conditions on

the problem data (A,b, x̂) that cause this issue depend on the choice of norm in the objective

function (2.3a). Only for the Euclidean norm will we be able to characterize the problem data

under which this issue occurs. For the remainder of this section, we assume the norm in (2.3a)

is the Euclidean norm.

To determine when (2.8)-(2.9) give a trivial solution, we must first determine when afi = 0

or agi = 0. The following two results establish necessary and sufficient conditions on âi, bi, and

x̂ for these trivial solutions to occur:

Proposition 2. Let the norm in objective function (2.3a) be the Euclidean norm. For all i ∈ I,

afi = 0 if and only if bi = 0 and x̂ = δiâi for some δi ∈ R.

Proof: (⇒) Since ai = afi = 0 must satisfy aᵀ
i x̂ = bi, we get bi = 0. Using equation (2.12),
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afi = 0 and bi = 0 imply âi =
âᵀ
i x̂

‖x̂‖22
x̂. Since âi 6= 0 by assumption, âᵀ

i x̂ 6= 0, and we can deduce

x̂ = δiâi with δi =
‖x̂‖22
âᵀ
i x̂

.

(⇐) If bi = 0 and x̂ = δiâi, then it is easy to see from equation (2.12) that afi = 0.

Proposition 3. Let the norm in objective function (2.3a) be the Euclidean norm. For all i ∈ I,

agi = 0 if and only if âᵀ
i x̂ < bi, bi = 0 and x̂ = δiâi for some δi ∈ R.

Proof: (⇒) Since âi 6= 0 by assumption, agi = 0 and the cases in equation (2.14) imply that

âᵀ
i x̂ < bi. In the case that âᵀ

i x̂ < bi, the Euclidean projection of âi onto the halfspace x̂ᵀai ≥ bi
is equivalent to projection onto the boundary of the halfspace, x̂ᵀai = bi. The latter equation

must be satisfied by ai = agi = 0, which implies that bi = 0. As in the proof of Proposition (2),

equation (2.14), agi = 0, and bi = 0 imply x̂ = δiâi with δi =
‖x̂‖22
âᵀ
i x̂

.

(⇐) If âᵀ
i x̂ < bi, bi = 0 and x̂ = δiâi, then it is easy to see from equation (2.14) that

agi = 0.

The geometric interpretation of Proposition 2 is that afi = 0 occurs if and only if the

prior vector âi is parallel to x̂, and the boundary of the constraint intersects the origin. The

interpretation of Proposition 3 is similar, except that agi = 0 additionally requires x̂ to be

infeasible with respect to âi.

Propositions 2 and 3 characterize the problem data for which problems (2.6) and (2.7) have

trivial solutions, but we are interested in when formulation (2.3) has a trivial solution. There are

two slightly different ways this can occur. First, if afi = 0 for all i ∈ I∗ := arg mini∈I{fi − gi},
then ai∗ = 0 and c = 0 (it is necessary that afi = 0 for all i ∈ I∗ because if there exists any

i ∈ I∗ such that afi 6= 0, then that index can be set as i∗.) Second, for any i 6= i∗, if agi = 0

then ai = 0. In both scenarios, there are an infinite number of nonzero vectors ai which could

take the place of ai∗ or agi , but it is unclear that there is any reasonable general approach to

choosing among them. In the first scenario, we may alternatively choose i∗ ∈ I \ I∗ such that

that afi∗ 6= 0 (in general, if |I| > 1, we may assume that there exists i ∈ I such that afi 6= 0

because if afi = 0 for all i ∈ I, then all (âi, bi) would be linearly dependent.) Regardless of

how we do so, if we take some ad hoc approach to choosing a nontrivial solution to formulation

(2.3), such a solution would be suboptimal, which suggests that the IO problem is somehow

ill-posed for such problem data.

2.2 Duality gap minimization

In this section we propose an alternative IO model that can be used when it is not clear a

priori that strong duality can be achieved exactly, such as when there are external constraints

on A motivated by the application domain of the problem. In this case, we consider a model

variant which minimizes the duality gap, subject to some constraints A ∈ Ω and the remaining
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constraints from formulation (2.3):

minimize
A,c,π

∑
j∈J

cj x̂j −
∑
i∈I

biπi (2.15a)

subject to A ∈ Ω, (2.15b)

(2.3c)− (2.3f). (2.15c)

Whereas the previous IO model was feasible regardless of the problem data, the feasibility

of formulation (2.15) is determined by whether or not Ω allows for primal feasibility of the

forward problem. We omit the proof of this result, which is straightforward.

Proposition 4. Formulation (2.15) is feasible if and only if there exists A ∈ Ω such that

aᵀ
i x̂ ≥ bi for all i ∈ I.

Formulation (2.15) is nonconvex for the same reason as formulation (2.3), but the inclusion

of constraints A ∈ Ω will require a different solution method:

Theorem 2. For all i ∈ I, let

ti = min
A

∑
j∈J

aij x̂j − bi : A ∈ Ω,Ax̂ ≥ b

 , (2.16)

and let Ai be an optimal solution for (2.16). Let i∗ ∈ arg mini∈I{ti}. Then the optimal value

of formulation (2.15) is ti∗, and an optimal solution (A, c,π) is

ai = ai
∗
i , ∀i ∈ I, (2.17)

c = ai
∗
i∗ , (2.18)

π = ei∗ . (2.19)

Remark 2. Theorem 2 shows that an optimal solution to the nonconvex inverse problem (2.15)

can be found by solving |I| optimization problems which are linear whenever the set Ω is linear.

Proof: Substituting (2.3e) into the objective function (2.15a), we get the problem

minimize
A,π

∑
i∈I

πi

∑
j∈J

aij x̂j − bi


subject to A ∈ Ω, Ax̂ ≥ b,

eᵀπ = 1, π ≥ 0.

(2.20)

For a given feasible A, it is clear that an optimal π = ei∗ , where i∗ ∈ arg mini∈I{
∑

j∈J aij x̂j −
bi}. Problem (2.20) is therefore equivalent to mini∈I

{
minA

{∑
j∈J aij x̂j − bi : A ∈ Ω,Ax̂ ≥ b

}}
.
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By definition, Ai is an optimal solution for the inner problem, and the optimal value of the

outer problem is mini∈I{ti}. Finally, π = ei∗ and (2.3e) imply that c = ai
∗
i∗ .

Theorem 2 and its proof can be interpreted as follows. For all i ∈ I, ti is the minimum

achievable surplus for constraint i, while respecting primal feasibility and the constraints A ∈ Ω.

Because of the normalization constraint (2.3d), the duality gap is equal to a convex combination

of the surpluses of the constraints of the forward problem. The minimum possible duality gap

will therefore equal the surplus of some constraint i∗, and the optimal choice of this constraint

is the one with the minimum possible surplus, i.e., i∗ ∈ arg mini∈I{ti}. The constraint vectors

are then chosen such that the surplus of constraint i∗ equals ti∗ , and the cost vector is set

perpendicular to constraint i∗.

In Sections 2.1 and 2.2, we have derived tractable solution approaches for the nonconvex

IO models (2.3) and (2.15), which recover a constraint matrix A. The former model minimally

perturbs prior estimated parameters such that there exists a nonzero cost vector rendering the

observed solution exactly optimal; the latter model identifies parameters from a predefined set

Ω such that there exists a cost vector minimizing the duality gap. The choice of which model to

use thus depends on whether the application domain motivates constraints of the form A ∈ Ω.

If the model (2.15) is found to have an optimal value of zero, then this implies that the observed

solution was in fact exactly optimal with respect to some A ∈ Ω, in which case a reasonable

next step would be to attempt to solve model (2.3) with the addition of the constraints A ∈ Ω.

Although not shown here, this variant of the IO problem is also solvable, following similar

reasoning as in the proof of Theorem 2.

2.3 Numerical examples

In this section, we give numerical examples to illustrate how the optimal inverse solutions are

found for formulations (2.3) and (2.15), and the geometric characteristics of these solutions.

2.3.1 Strong duality

We give three examples illustrating the solution of formulation (2.3). For all examples in this

subsection, we let the norm in the objective function (2.3a) be the Euclidean norm, and we let

ξ = e for simplicity. For our first example, let the observed solution be x̂ = (−2, 0.6), and let

the remaining problem data be

Â =

 1 0

0 1

−2 −1

 , b =

 −6

−6

−10

 .

The prior feasible region defined by (Â,b) is shown in Figure 2.1a. We next apply Theorem 1.

Since x̂ is feasible with respect to (Â,b), we find that gi = 0 for all i ∈ I. We also find that

f = (0.63, 1.90, 1.26), thus i∗ = 1. This means that while the other two constraints will remain
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(a) Strong duality. Because the observed solution
is an interior point of the prior feasible region, the
optimal solution of the IO model (2.3) only needs
to adjust a single constraint such that it is rendered
active, and sets the cost vector perpendicular to this
constraint.
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c
x1
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Imputed feasible region

(b) Duality gap minimization. The constraints on
the unspecified coefficients do not allow for a feasible
region with the observed solution on its boundary.
The IO model (2.15) instead minimizes the surplus
of a single constraint, and sets the cost vector per-
pendicular to this constraint.

Figure 2.1: Numerical examples of the IO models. Both examples share the same observed
solution.

at their prior settings, the first constraint will be adjusted such that a1 = af1 = (1.2,−6),

rendering the constraint active. Additionally, we set the cost vector perpendicular to the first

constraint, as shown in Figure 2.1a.

Next, we give two examples to illustrate that formulation (2.3) can have a trivial solution

in some situations. Consider a problem in which the observed solution is x̂ = (2, 2), and our

remaining problem data is

Â =


1 0

0 1

1 1

−1 −1

 , b =


−3

−3

0

−10

 .

The prior feasible region is illustrated in Figure 2.2a. Applying Theorem 1, we find g = 0 and
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(a) Trivial cost vector. The observed solution is an
interior point of the prior feasible region, so the IO
model is expected to adjust a single constraint such
that it becomes active. The IO model achieves this
artificially by setting all coefficients of one constraint
equal to zero, effectively eliminating the constraint
and implying a zero cost vector.
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Imputed feasible region

(b) Elimination of prior infeasible constraint. The
observed solution is infeasible with respect to the
one of the prior constraints, and active with respect
to another. The IO model is expected to adjust the
infeasible constraint to achieve feasibility, but it does
so by setting all constraint coefficients to zero, thus
eliminating the constraint altogether.

Figure 2.2: Numerical examples in which formulation (2.3) produces trivial solutions.

f = (1.77, 1.77, 1.41, 2.12), thus i∗ = 3. However, b3 = 0 and x̂ = 2â3, thus a3 = af3 = (0, 0) and

c = 0 as per Proposition 2. This solution effectively means that the imputed feasible region is

obtained from the prior feasible region by eliminating the third constraint, as shown in Figure

2.2a. The observed x̂ remains an interior point, thus is not optimal with respect to any nonzero

cost vector.

Next, consider a problem using the same x̂ = (2, 2), but with the following constraint data:

Â =

 1 0

0 1

−1 −1

 , b =

 2

−4

0

 .

This example differs from our previous examples in two respects. First, x̂ sits on the boundary

of the first constraint of the prior feasible region. As we expect from this scenario, i∗ = 1 and

c = â1 = (1, 0). Second, x̂ is infeasible with respect to â3, and thus the third constraint must

be adjusted such that x̂ becomes feasible. However, b3 = 0 and x̂ = −2â3, thus ag3 = (0, 0) as

per Proposition 3. In other words, the third constraint is eliminated and the feasible region is

rendered unbounded, as shown in Figure 2.2b. This solution is meaningful insofar as x̂ does

lie on the boundary of the imputed feasible region and is therefore optimal, but it appears

unreasonable to claim that the best way to shift the third constraint to achieve feasibility is

simply to eliminate it entirely; we can imagine nonzero candidates for a3 that achieve feasibility

and re-shape the feasible region less drastically.
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2.3.2 Duality gap minimization

Finally, we give an example illustrating the solution of formulation (2.15). Let the observed

solution be x̂ = (−2, 6), let b = (−6,−6,−10), and define the following constraints on A:

Ω := {0.5 ≤ a11 ≤ 1.5,

0.5 ≤ a22 ≤ 1.5,

a12 = 0,

a21 = 0,

a31 ≤ −1.5,

− 2 ≤ a32 ≤ −0.5,

a31 + 2a22 ≤ −1}.

It is easy to check that there exists A ∈ Ω such that Ax̂ ≥ b, and hence formulation (2.15)

is feasible. Applying Theorem 2, we find that t = (3, 9, 2) and hence i∗ = 3. The duality

gap-minimizing constraint matrix is then

A3 =

0.5 0

0 0.5

−2 −2

 ,

and the optimal cost vector is c = a3 = (−2,−2). These results are illustrated in Figure 2.1b.

In contrast to the example in Figure 2.1a, x̂ is an interior point of the imputed feasible region

due to the constraints A ∈ Ω. To minimize the duality gap, the cost vector is set perpendicular

to the constraint with the minimum surplus.



Chapter 3

Inverse robust linear optimization

In this chapter, we consider the robust linear optimization problem minx{cᵀx : Ãx ≥ b, ∀Ã ∈
U}, for two basic types of uncertainty set U : interval uncertainty and cardinality constrained

uncertainty. Given b, the nominal estimate A, and an observed solution x̂, the IO problem aims

to recover unspecified parameters of the uncertainty set such that x̂ is optimal for some nonzero

cost vector. As in Chapter 2, we consider two variants of this problem: the first induces a zero

duality gap, and the second minimizes the duality gap in case it may not be possible to make

x̂ exactly optimal. We have restricted our forward problem to only include uncertainty on the

left-hand-side constraint matrix, but using similar reasoning as in the discussion of formulation

(2.2), we can show that the problem remains general enough to account for uncertainty on all

constraint coefficients.

The remainder of this chapter is organized as follows. Sections 3.1 and 3.2 propose IO

models for interval uncertainty and cardinality constrained uncertainty, respectively. These

two sections are conceptually similar to Chapter 2, so we will draw parallels to previous results

and omit details wherever we believe they would be redundant. Section 3.3 provides numerical

examples that illustrate how the geometries of the two types of robust feasible region are

controlled by the inverse solutions.

3.1 Interval uncertainty

In this section, we consider a robust linear optimization problem with interval uncertainty. Let

Ji ⊆ J index the coefficients in the i-th row of A that are subject to uncertainty, and let

ai, bi,αi be given for all i ∈ I. Following is the robust problem:

minimize
x

∑
j∈J

cjxj

subject to
∑
j∈Ji

ãijxj +
∑
j /∈Ji

aijxj ≥ bi, ∀ãij ∈ [aij − αij , aij + αij ], i ∈ I.
(3.1)

18
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The constraints can be written as
∑

j∈J aijxj −
∑

j∈Ji αij |xj | ≥ bi, ∀i ∈ I, which leads to the

following linearization (Ben-Tal and Nemirovski, 2000):

minimize
x,u

∑
j∈J

cjxj (3.2a)

subject to αijxj + uij ≥ 0, ∀j ∈ Ji, i ∈ I, (3.2b)

− αijxj + uij ≥ 0, ∀j ∈ Ji, i ∈ I, (3.2c)∑
j∈J

aijxj −
∑
j∈Ji

uij ≥ bi, ∀i ∈ I. (3.2d)

Given ai, bi and Ji for all i ∈ I, and a feasible x̂ for the nominal problem (i.e., formu-

lation (3.1) with Ji = ∅ for all i), the goal of the IO problem is to determine nonnegative

parameters αi for all i ∈ I defining the uncertainty set. For simplicity, we assume that every

row has at least one coefficient that is subject to uncertainty (if we did not make this assump-

tion, we would define Î := {i ∈ I : Ji 6= ∅} and replace I with Î in relevant places throughout

the following development). Additionally, we assume that there is some i ∈ I and j ∈ Ji such

that x̂j 6= 0 (otherwise, all αij would be multiplied by zero and modifying α would not change

the robust feasible region).

3.1.1 Strong duality

Let λij , µij , πi be the dual variables corresponding to constraints (3.2b)-(3.2d), respectively.

The following formulation minimizes the weighted deviation of the uncertainty set parameters

αi from given values α̂i while enforcing strong duality, and primal and dual feasibility:

minimize
α,c,u,π,λ,µ

∑
i∈I

ξi‖αi − α̂i‖ (3.3a)

subject to
∑
j∈J

cj x̂j −
∑
i∈I

biπi = 0, (3.3b)

αij x̂j + uij ≥ 0, ∀j ∈ Ji, i ∈ I, (3.3c)

− αij x̂j + uij ≥ 0, ∀j ∈ Ji, i ∈ I, (3.3d)∑
j∈J

aij x̂j −
∑
j∈Ji

uij ≥ bi, ∀i ∈ I, (3.3e)

αij ≥ 0, ∀j ∈ Ji, i ∈ I, (3.3f)∑
i∈I

πi = 1, (3.3g)∑
i∈I

aijπi +
∑

i∈I : j∈Ji

αij(λij − µij) = cj , ∀j ∈ J, (3.3h)

πi = λij + µij , ∀j ∈ Ji, i ∈ I, (3.3i)

πi, λij , µij ≥ 0, ∀j ∈ Ji, i ∈ I. (3.3j)
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Formulation (3.3) is constructed in a conceptually similar manner as formulation (2.3). Con-

straints (3.3b), (3.3c)-(3.3e), and (3.3h)-(3.3j) represent strong duality, primal feasibility, and

dual feasibility, respectively. To prevent the trivial solution (c,π) = (0,0) from being feasible,

we again include the normalization constraint (3.3g). All constraints of formulation (3.3) are

linear except for the bilinear dual feasibility constraint (3.3h), but nevertheless we will be able

to determine an efficient solution method.

First, we show that feasibility of (3.3) is entirely determined by feasibility of x̂ with respect

to the nominal problem.

Proposition 5. Formulation (3.3) is feasible if and only if
∑

j∈J aij x̂j ≥ bi for all i ∈ I.

The geometric intuition underlying Proposition 5 is twofold: the robust feasible region is a

subset of the nominal feasible region for any choice of α, and x̂ must lie on the boundary of the

robust feasible region in order to be optimal. Hence if x̂ is feasible for the nominal problem, it

is possible to set α that shrinks the feasible region such that x̂ renders some constraint active.

And conversely, if x̂ is not feasible for the nominal problem, then there is no way to grow the

feasible region such that x̂ lies on the boundary, or is even feasible. Whereas Proposition 5

formalizes this intuition into a condition that can be used to check whether the IO problem

is feasible, the following Lemma formalizes this intuition in a way that will be useful for our

solution method (cf. Lemma 1):

Lemma 2. Every feasible solution for formulation (3.3) satisfies∑
j∈J

aîj x̂j −
∑
j∈Jî

αîj |x̂j | = bî, for some î ∈ I, (3.4a)

∑
j∈J

aij x̂j −
∑
j∈Ji

αij |x̂j | ≥ bi, ∀i ∈ I, (3.4b)

αij ≥ 0, ∀j ∈ Ji, i ∈ I. (3.4c)

Conversely, for every α satisfying (3.4), there exists (c,u,π,λ,µ) such that (α, c,u,π,λ,µ)

is feasible for formulation (3.3).

Proof: To prove the first statement, we first note that constraints (3.3c)-(3.3f) imply (3.4b).

To complete the proof, we assume
∑

j∈J aij x̂j −
∑

j∈Ji αij |x̂j | > bi for all i ∈ I and derive a

contradiction. Substituting (3.3h) into (3.3b), we get∑
i∈I

πi
∑
j∈J

aij x̂j +
∑
i∈I

∑
j∈Ji

(λij − µij)αij x̂j =
∑
i∈I

πibi.

Let sij = λij − µij for all j ∈ Ji, i ∈ I. By Lemma 5 (see appendix), (λ,µ) satisfies (3.3i) and

(3.3j) if and only if sij ∈ [−πi, πi] for all j ∈ Ji, i ∈ I. Thus, the feasible region of (3.3) is
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equivalent to ∑
i∈I

πi
∑
j∈J

aij x̂j +
∑
i∈I

∑
j∈Ji

sijαij x̂j =
∑
i∈I

πibi, (3.5a)

− πi ≤ sij ≤ πi, ∀j ∈ Ji, i ∈ I, (3.5b)

eᵀπ = 1,π ≥ 0, (3.5c)

(3.3c)− (3.3f). (3.5d)

Constraint (3.5c) ensures that I := {i ∈ I : πi > 0} 6= ∅. Since we have assumed∑
j∈J aij x̂j −

∑
j∈Ji αij |x̂j | > bi for all i ∈ I, we have

πi
∑
j∈J

aij x̂j − πi
∑
j∈Ji

αij |x̂j | > πibi, ∀i ∈ I.

For all j ∈ Ji, i ∈ I, sij ∈ [−πi, πi] implies that
∑

j∈Ji sijαij x̂j ≥ −πi
∑

j∈Ji αij |x̂j |, and

therefore

πi
∑
j∈J

aij x̂j +
∑
j∈Ji

sijαij x̂j > πibi, ∀i ∈ I.

Since sij = 0 if πi = 0, ∑
i∈I

πi
∑
j∈J

aij x̂j +
∑
i∈I

∑
j∈Ji

sijαij x̂j >
∑
i∈I

πibi,

which contradicts constraint (3.5a).

To prove the second statement, let α satisfy (3.4), î be defined by (3.4a), and (c,u,π,λ,µ)

be defined as in the proof of Proposition 5. This solution is feasible for formulation (3.3).

Lemma 2 allows us to characterize an optimal solution to (3.3) and devise an efficient

solution method (cf. Theorem 1):

Theorem 3. For all i ∈ I, let

fi = min
αi≥0

ξi‖αi − α̂i‖ :
∑
j∈J

aij x̂j −
∑
j∈Ji

αij |x̂j | = bi

 , (3.6)

gi = min
αi≥0

ξi‖αi − α̂i‖ :
∑
j∈J

aij x̂j −
∑
j∈Ji

αij |x̂j | ≥ bi

 , (3.7)
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and let αfi and αgi be optimal solutions for (3.6) and (3.7), respectively. Let

cij =

{
aij − sgn(x̂j)α

f
ij if j ∈ Ji,

aij if j ∈ J \ Ji,
∀i ∈ I, (3.8)

i∗ ∈ arg min
i∈I

{fi − gi}. (3.9)

Then the optimal value of formulation (3.3) is fi∗ +
∑

i 6=i∗,i∈I gi, and there exists an optimal

solution of (3.3) with

αi =

{
αfi if i = i∗,

αgi if i 6= i∗, i ∈ I,
(3.10)

c = ci
∗
. (3.11)

Remark 3. Theorem 3 shows that an optimal solution to the nonconvex inverse problem (3.3)

can be found by solving 2|I| convex problems (linear with appropriate choice of ‖·‖).

Proof: By Lemma 2, solving formulation (3.3) is equivalent to solving the following opti-

mization problem for all î ∈ I, and taking the minimum over all |I| optimal values:

minimize
α

∑
i∈I

ξi‖αi − α̂i‖

subject to
∑
j∈J

aîj x̂j −
∑
j∈Jî

αîj |x̂j | = bî∑
j∈J

aij x̂j −
∑
j∈Ji

αij |x̂j | ≥ bi, ∀i ∈ I,

αij ≥ 0, ∀j ∈ Ji, i ∈ I.

(3.12)

Suppose we fix some î ∈ I. Since formulation (3.12) is separable by i, the optimal value of the

î-th formulation (3.12) is fî +
∑

i 6=î,i∈I gi. Therefore, the optimal value of formulation (3.3) is

min
î∈I

fî +
∑

i 6=î,i∈I

gi

 .

Clearly, the optimal index i∗ must satisfy i∗ ∈ arg mini∈I{fi − gi}. An optimal α is derived

from the optimal solutions of (3.6) and (3.7) for i∗,

αi =

{
αfi if i = i∗,

αgi if i 6= i∗, i ∈ I,
(3.13)

and the optimal cost vector is c = ci
∗
, where the structure of ci is derived in the proof of

Proposition 5.

The interpretation of Theorem 3 is conceptually identical to the interpretation of Theorem
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1. The primary difference between the two results is that although both set the cost vector

perpendicular to the active constraint, equation (3.11) more specifically sets the cost vector

perpendicular to the part of constraint i∗ that is contained in the same orthant as x̂. Note that

the vector perpendicular to a robust constraint changes as the constraint crosses into different

orthants (cf. Figure 3.1). The optimal cost vector ci
∗

captures this geometric situation.

3.1.2 Duality gap minimization

As in Chapter 2, we propose an alternative model that minimizes the duality gap, subject to

some constraints α ∈ Ω and the remaining constraints from formulation (3.3):

minimize
α,c,u,π,λ,µ

∑
j∈J

cj x̂j −
∑
i∈I

biπi (3.14a)

subject to α ∈ Ω, (3.14b)

(3.3c)− (3.3j). (3.14c)

The feasibility of x̂ with respect to the nominal problem remains a necessary condition for the

feasibility of (3.14). However, it is not sufficient anymore because the constraints on α may

result in a robust feasible region that excludes x̂. The feasibility of (3.14) is thus determined

by whether or not Ω allows for primal feasibility of the robust optimization problem. We omit

the proof of this result since it is very similar to the proof of Proposition 5.

Proposition 6. Formulation (3.14) is feasible if and only if there exists nonnegative α ∈ Ω

such that
∑

j∈J aij x̂j −
∑

j∈Ji αij |x̂j | ≥ bi for all i ∈ I.

Formulation (3.14) is again nonconvex due to constraint (3.3h), but we were unable to find

a general solution of the form in Theorem 3 because of the constraints on α. However, we

will show that optimal solutions for (3.14) can be found by solving the following mixed integer

optimization model, which is mixed integer linear when the constraints on α are linear:

minimize
α,u,π,t

t (3.15a)

subject to α ∈ Ω, (3.15b)

(3.3c)− (3.3f), (3.15c)∑
i∈I

πi = 1, (3.15d)

t ≥
∑
j∈J

aij x̂j −
∑
j∈Ji

αij |x̂j | − bi −M(1− πi), ∀i ∈ I, (3.15e)

πi ∈ {0, 1}, ∀i ∈ I. (3.15f)

Formulation (3.15) can be interpreted as follows. Constraints (3.15b) and (3.15c) are retained

from formulation (3.14), requiring that external constraints on α and primal feasibility be
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satisfied. The duality gap is represented by the auxiliary variable t, and as a result of the

normalization constraint, the duality gap is equal to the surplus of a single constraint i ∈ I.

The choice of this constraint is encoded in the binary vector π and the optimal choice i∗

corresponds to the constraint with the minimum surplus.

Although formulation (3.15) does not explicitly include the variable c, it can be determined

post-optimization using the equation

cj =
∑
i∈I

aijπi −
∑

i∈I : j∈Ji

αij sgn (x̂j)πi, ∀j ∈ J, (3.16)

which is derived from equation (3.3h) and by letting (λij−µij) = − sgn (x̂j)πi, for all j ∈ Ji, i ∈ I
(cf. proof of Theorem 4 below). The geometric interpretation of this solution is the same as in

formulation (3.3): if π = ei∗ , then the cost vector is set perpendicular to the part of constraint

i∗ that is contained in the same orthant as x̂.

We now formally characterize and prove the correspondence between formulations (3.14)

and (3.15):

Theorem 4. Let M ≥ maxi∈I{
∑

j∈J aij x̂j − bi}. Formulations (3.14) and (3.15) have the

same optimal objective value, and a solution α is optimal for formulation (3.14) if and only if

it is optimal for formulation (3.15).

Proof: First, we eliminate c by substituting the dual feasibility constraint (3.3h) into the

objective function (3.14a). The resulting model has an objective function that is bilinear in

variables whose corresponding feasible sets P = {(α,u) : α ∈ Ω, (3.3c) − (3.3f)} and D =

{(π,λ,µ) : (3.3g), (3.3i)− (3.3j)} are disjoint:

minimize
(α,u)∈P,

(π,λ,µ)∈D

∑
i∈I

∑
j∈J

aijπix̂j +
∑
i∈I

∑
j∈Ji

αij(λij − µij)x̂j −
∑
i∈I

biπi. (3.17)

Since D is a bounded polyhedron and disjoint from P , an optimal solution to (3.17) exists

among the vertices of D (Horst et al., 2000, Proposition 3.1). The constraints
∑

i∈I πi = 1 and

πi ≥ 0 for all i ∈ I imply that a vertex of D will satisfy πî = 1 for some î ∈ I, and πi = 0 for

all i ∈ I, i 6= î. So it suffices to consider binary πi. Let sij = λij − µij for all j ∈ Ji, i ∈ I.

By Lemma 5 (see appendix), constraint (3.3i) and nonnegativity of (λ,µ) are equivalent to

sij ∈ [−πi, πi] for all j ∈ Ji, i ∈ I. Thus, formulation (3.17) is equivalent to

minimize
(α,u)∈P,π,s

∑
i∈I

∑
j∈J

aij x̂j − bi

πi +
∑
i∈I

∑
j∈Ji

αij x̂jsij (3.18a)

subject to − πi ≤ sij ≤ πi, ∀j ∈ Ji, i ∈ I, (3.18b)∑
i∈I

πi = 1, (3.18c)

πi ∈ {0, 1}, ∀i ∈ I. (3.18d)
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By inspection, we see that for a given (α,u,π), an optimal s satisfies sij = − sgn (x̂j)πi.

This fact allows us to eliminate s:

minimize
(α,u)∈P,π

∑
i∈I

∑
j∈J

aij x̂j −
∑
j∈Ji

αij |x̂j | − bi

πi (3.19a)

subject to
∑
i∈I

πi = 1, (3.19b)

πi ∈ {0, 1}, ∀i ∈ I. (3.19c)

It is clear that given (α,u), the optimal value of (3.19) is

min
i∈I

∑
j∈J

aij x̂j −
∑
j∈Ji

αij |x̂j | − bi

 , (3.20)

and an optimal π equals ei∗ where

i∗ ∈ arg min
i∈I

∑
j∈J

aij x̂j −
∑
j∈Ji

αij |x̂j | − bi

 .

Since the objective in formulation (3.15) minimizes t, we can ensure the optimal t equals the

expression in (3.20) by using the constraint (3.15e) if M is sufficiently large (the constraint

will be active for i∗ and inactive for other i). To show that M = maxi∈I{
∑

j∈J aij x̂j − bi} is

sufficient, we substitute it into the right-hand side of constraint (3.15e). For i 6= i∗, the resulting

expression is nonpositive, due to the nonnegativity of αi:∑
j∈J

aij x̂j − bi

−max
k∈I

∑
j∈J

akj x̂j − bk

−∑
j∈Ji

αij |x̂j | ≤ 0, ∀i 6= i∗, i ∈ I. (3.21)

For i = i∗, the resulting expression is nonnegative due to constraints (3.3c)-(3.3e):

0 ≤

∑
j∈J

ai∗j x̂j − bi∗

− ∑
j∈Ji∗

αi∗j |x̂j |. (3.22)

Therefore the optimal t for formulation (3.15) equals the right-hand-side of (3.22), which equals

the optimal objective value for formulation (3.14). In the process of deriving formulation (3.15)

from (3.14), we have not manipulated α. That is, all steps in this proof are equivalences as far

as α is concerned. Hence α is optimal for (3.15) if and only if it is optimal for (3.14).

In this section, we have derived tractable solution approaches for two nonconvex IO models,

(3.3) and (3.14), which recover interval uncertainty parameters α. Analagous to the models

in Chapter 2, the choice of which model to use depends primarily on whether the application
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domain motivates constraints of the form α ∈ Ω, which we have only included in the latter

model. However, although we have not shown it here, it is possible to solve a variant of

formulation (3.3) with the addition of α ∈ Ω.

3.2 Cardinality constrained uncertainty

In this section, we consider a robust linear optimization problem with a cardinality constrained

uncertainty set (Bertsimas and Sim, 2004), assuming a nearly identical setup as in the previous

section. For each constraint i ∈ I, this uncertainty set bounds the number of uncertain coeffi-

cients ãij that can deviate from their nominal value aij within the range [aij − αij , aij + αij ],

for all j ∈ Ji, using a budget parameter Γi. In particular, bΓic coefficients can take any value

within their uncertain intervals, and up to one coefficient can change by at most (Γi−bΓic)αij .

minimize
x

∑
j∈J

cjxj (3.23a)

subject to
∑
j∈J

aijxj − max
{Si∪{ti} : Si⊆Ji,
|Si|=bΓic,ti∈Ji\Si}

∑
j∈Si

αij |xj |+ (Γi − bΓic)αiti |xti |

 ≥ bi, ∀i ∈ I.

(3.23b)

We refer to the embedded maximization problem in the constraint (3.23b) as the protection

function. When Γi = |Ji|, the protection function equals
∑

j∈Ji αij |x̂j | and (3.23b) becomes

equivalent to the corresponding constraint of the robust linear program with interval uncer-

tainty. Constraint (3.23b) can be linearized to yield the equivalent robust counterpart (Bertsi-

mas and Sim, 2004):

minimize
x,y,z,u

∑
j∈J

cjxj (3.24a)

subject to αijxj + uij ≥ 0, ∀j ∈ Ji, i ∈ I, (3.24b)

− αijxj + uij ≥ 0, ∀j ∈ Ji, i ∈ I, (3.24c)

yij + zi − uij ≥ 0, ∀j ∈ Ji, i ∈ I, (3.24d)∑
j∈J

aijxj −
∑
j∈Ji

yij − Γizi ≥ bi, ∀i ∈ I, (3.24e)

yij , zi ≥ 0, ∀j ∈ Ji, i ∈ I. (3.24f)

Given ai, bi, Ji and αi for all i ∈ I, and a feasible x̂ for the nominal problem, our IO problem

aims to determine parameters Γi ∈ [0, |Ji|] for all i ∈ I such that x̂ is optimal for some nonzero

cost vector. Note the slight difference from the interval uncertainty case: here, αi is fixed as

opposed to variable, and the new parameter Γi is the primary variable in the inverse problem
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that determines the uncertainty set.

As in the interval uncertainty case, we propose two IO models: the first requires the optimal-

ity conditions to be satisfied exactly, while the second minimizes the duality gap. Previously,

in the case of interval uncertainty, the first model identified uncertainty set parameters such

that some constraint of the robust problem was rendered active, while the second model iden-

tified uncertainty set parameters such that the surplus for a single constraint was minimized.

In the case of cardinality constrained uncertainty, the two approaches have the same interpre-

tation. However, due to the upper bound on Γi, it may be the case that a constraint i ∈ I

cannot be rendered active at x̂ for any feasible choice of Γi. Therefore, we define the set

Î := {i ∈ I :
∑

j∈J aij x̂j − bi ≤
∑

j∈Ji αij |x̂j |} ⊆ I to identify the constraints that can be made

active by a feasible choice of Γi. That is, constraints in Î have a nominal surplus less than or

equal to the maximum possible value of the protection function (achieved when Γi = |Ji|). The

set Î depends on the given x̂ and may thus be more accurately denoted by Î(x̂), however, we

use Î for simplicity.

For i ∈ Î, we also need to determine the value of Γi that will render the corresponding

constraint active. First, let jik index the k-th largest element in the set {αij |x̂j |}j∈Ji , for all

k = 1, . . . , |Ji|, i ∈ I. Then for all i ∈ Î, let Γi = Γi satisfy

∑
j∈J

aij x̂j − bi =

bΓic∑
k=1

αijik
|x̂jik |+ (Γi − bΓic)αijidΓie

|x̂jidΓie
|. (3.25)

In other words, Γi ∈ [0, |Ji|] is a budget parameter such that the nominal surplus of constraint

i equals the value of the protection function, thereby rendering constraint i active. For each

i ∈ Î, Γi can be computed as the optimal value of the following linear optimization problem:

minimize
w

∑
j∈Ji

wj

subject to
∑
j∈Ji

αij |x̂j |wj =
∑
j∈J

aij x̂j − bi,

0 ≤ wj ≤ 1, ∀j ∈ Ji.

(3.26)

Unless the data ai, bi,αi, x̂ meet some specific conditions, there exists a unique Γi that

satisfies equation (3.25). To see this, first notice that the right-hand side of equation (3.25)

is strictly increasing in Γi if αij |x̂j | > 0 for all j ∈ Ji. If there exists any j ∈ Ji such that

αij |x̂j | = 0, and we let vi be the number of such indices, then the right-hand side of equation

(3.25) is strictly increasing for Γi ∈ [0, |Ji| − vi] and constant for Γi ∈ [|Ji| − vi, |Ji|], at which

point the expression equals
∑

j∈Ji αij x̂j , the maximum possible value of the protection function.

We can see that there are multiple Γi satisfying equation (3.25) if vi > 0 and
∑

j∈J aij x̂j − bi =∑
j∈Ji αij x̂j .

For simplicity, we assume that there exists a unique Γi that satisfies equation (3.25). Under



Chapter 3. Inverse robust linear optimization 28

this assumption, constraint i will be infeasible for Γi > Γi, and will have positive surplus for

Γi < Γi. If we did not make this assumption, then equation (3.25) would be satisfied by

Γi ∈ [Γi,Γi], where

Γi =

|Ji| if
∑

j∈J aij x̂j − bi =
∑

j∈Ji αij |x̂j |,

Γi otherwise,
(3.27)

and correspondingly, constraint i would be infeasible for Γi > Γi, and would have positive

surplus for Γi < Γi. The results in the remainder of this section would change by requiring

Γi ∈ [0,Γi] wherever we currently have Γi ∈ [0,Γi], and Γi ∈ [Γi,Γi] wherever we currently have

Γi = Γi.

3.2.1 Strong duality

Let λij , µij , ϕij , πi be the dual variables corresponding to constraints (3.24b)-(3.24e), respec-

tively. The following formulation minimizes the deviation of Γ from given values Γ̂. We assume

without loss of generality that Γ̂i ∈ [0, |Ji|] for all i ∈ I, since any Γ̂i outside the interval can

be moved to the closest end point of the interval without changing the solution.

minimize
Γ,c,u,y,z,
π,ϕ,λ,µ

‖Γ− Γ̂‖ (3.28a)

subject to
∑
j∈J

cj x̂j −
∑
i∈I

biπi = 0, (3.28b)

αij x̂j + uij ≥ 0, ∀j ∈ Ji, i ∈ I, (3.28c)

− αij x̂j + uij ≥ 0, ∀j ∈ Ji, i ∈ I, (3.28d)

yij + zi ≥ uij , ∀j ∈ Ji, i ∈ I, (3.28e)∑
j∈J

aij x̂j −
∑
j∈Ji

yij − Γizi ≥ bi, ∀i ∈ I, (3.28f)

yij , zi ≥ 0, ∀j ∈ Ji, i ∈ I, (3.28g)

0 ≤ Γi ≤ |Ji|, ∀i ∈ I, (3.28h)∑
i∈I

πi = 1, (3.28i)∑
i∈I

aijπi +
∑

i∈I : j∈Ji

αij(λij − µij) = cj , ∀j ∈ J, (3.28j)

ϕij ≤ πi, ∀j ∈ Ji, i ∈ I, (3.28k)

ϕij = λij + µij , ∀j ∈ Ji, i ∈ I, (3.28l)∑
j∈Ji

ϕij ≤ Γiπi, ∀i ∈ I, (3.28m)

πi, ϕij , λij , µij ≥ 0, ∀j ∈ Ji, i ∈ I. (3.28n)
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The construction of (3.28) parallels that of (3.3). Constraints (3.28b), (3.28c)-(3.28g), and

(3.28j)-(3.28n) represent strong duality, primal feasibility and dual feasibility, respectively. We

use the same normalization constraint (3.28i) to prevent the trivial solution (c,π) = (0,0) from

being optimal.

First, we characterize the feasibility of (3.28).

Proposition 7. Formulation (3.28) is feasible if and only if
∑

j∈J aij x̂j ≥ bi for all i ∈ I, and

Î 6= ∅.

The first condition (
∑

j∈J aij x̂j ≥ bi, ∀i ∈ I) is required for primal feasibility of the robust

problem (3.24) to be satisfied. The second condition (Î 6= ∅) is required for strong duality to

be satisfied. For the rest of this section, we assume that (3.28) is feasible.

There are many similarities but some important differences between the inverse cardinality

constrained robust problem (3.28) and the inverse interval uncertainty problem (3.3). Most

importantly, while both formulations have bilinear constraints ((3.28f) and (3.28m) in (3.28)

and (3.3h) in (3.3)), the structure of these constraints is different, and therefore different analysis

and solution methods are required. First, we present a result that enables us to tractably deal

with the bilinearity in (3.28f). For convenience, we define

Θ = {Γ : Γi ∈ [0,Γi], i ∈ Î; Γi ∈ [0, |Ji|], i ∈ I \ Î},

which will be used in several results below.

Lemma 3. If (Γ,u,y, z) satisfies constraints (3.28c)-(3.28h), then Γ ∈ Θ. Conversely, if

Γ ∈ Θ, then there exists (u,y, z) such that (Γ,u,y, z) satisfies constraints (3.28c)-(3.28h).

Proof: To prove the first statement, suppose to the contrary that Γi ∈ (Γi, |Ji|] for some i ∈ Î,

i.e., Γ /∈ Θ but Γi does satisfy constraint (3.28h). We will show that there is no (u,y, z) that

satisfies constraints (3.28c)-(3.28g). In particular, we will show that any (u,y, z) that satisfies

(3.28c)-(3.28e) and (3.28g) will never satisfy (3.28f).

Consider the following linear optimization problem:

minimize
ui,yi,zi

∑
j∈Ji

yij + Γizi

subject to yij + zi ≥ uij , ∀j ∈ Ji,

− uij ≤ αij x̂j ≤ uij , j ∈ Ji,

yij , zi ≥ 0, ∀j ∈ Ji.

(3.29)

By Lemma 6 (see appendix), an optimal solution to this problem is

u∗ij = αij |x̂j |, ∀j ∈ Ji,

y∗ij = max{u∗ij − z∗i , 0}, ∀j ∈ Ji,

z∗i = αijidΓie
|x̂jidΓie

|,
(3.30)
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which satisfies (3.28c)-(3.28e) and (3.28g) since the constraints of (3.29) are identical to (3.28c)-

(3.28e) and (3.28g). However, (u∗i ,y
∗
i , z
∗
i ) does not satisfy (3.28f), as shown below. Because

(u∗i ,y
∗
i , z
∗
i ) yields the smallest possible value of

∑
j∈Ji yij + Γizi, there cannot be any other

feasible solution for (3.28c)-(3.28e) and (3.28g) which will satisfy (3.28f).

For completeness, we substitute (u∗i ,y
∗
i , z
∗
i ) into the left-hand-side of constraint (3.28f) to

show that the constraint will not be satisfied:

∑
j∈J

aij x̂j −

∑
j∈Ji

max
{
αij |x̂j | − αijidΓie

|x̂jidΓie
|, 0
}

+ ΓiαijidΓie
|x̂jidΓie

|


⇔

∑
j∈J

aij x̂j −
bΓic∑
k=1

(
αijik
|x̂jik | − αijidΓie

|x̂jidΓie
|
)
− ΓiαijidΓie

|x̂jidΓie
|

⇔
∑
j∈J

aij x̂j −
bΓic∑
k=1

αijik
|x̂jik | − (Γi − bΓic)αijidΓie

|x̂jidΓie
|. (3.31)

Because Γi = Γi satisfies (3.25) we know that

∑
j∈J

aij x̂j −
bΓic∑
k=1

αijik
|x̂jik | − (Γi − bΓic)αijidΓie

|x̂jidΓie
| = bi, (3.32)

and since Γi > Γi by assumption,

∑
j∈J

aij x̂j −
bΓic∑
k=1

αijik
|x̂jik | − (Γi − bΓic)αijidΓie

|x̂jidΓie
|

=
∑
j∈J

aij x̂j −
bΓic∑
k=1

αijik
|x̂jik | −

bΓic∑
k=bΓic+1

αijik
|x̂jik | − (Γi − bΓic)αijidΓie

|x̂jidΓie
|

< bi,

that is, (u∗i ,y
∗
i , z
∗
i ) does not satisfy (3.28f).

To prove the second statement, suppose we are given Γ ∈ Θ. Then it is straightforward to

check that (u∗i ,y
∗
i , z
∗
i ), i ∈ I from (3.30) satisfies (3.28c)-(3.28h).

Lemma 3 not only eliminates the bilinear constraint (3.28f) but also the auxiliary variables

u,y, z, by showing that the bounds Γ ∈ Θ are both necessary and sufficient for primal feasibility

to be satisfied. Intuitively, primal feasibility requires for each constraint i ∈ I that the nominal

surplus be greater than or equal to the protection function, which is a function of Γi only. As

suggested by the definition of Î and formalized in Lemma 3, the protection functions i ∈ Î

meet this condition for Γi ∈ [0,Γi], and the protection functions i ∈ I \ Î meet this condition

for Γi ∈ [0, |Ji|].

Lemma 3 establishes conditions on Γ to ensure the primal feasibility constraints are satisfied
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in the IO problem. Next, Lemma 4 addresses the strong duality and dual feasibility conditions.

In particular, to satisfy optimality, Γ must be chosen such that x̂ lies on the boundary of the

robust feasible region, which corresponds to a choice of Γ such that for at least one constraint,

the protection function equals the nominal surplus. The next result formalizes this intuition

(cf. Lemma 1, Lemma 2):

Lemma 4. Every feasible solution for formulation (3.28) satisfies Γ ∈ Θ with Γî = Γî for a

specific î ∈ Î. Conversely, for every Γ ∈ Θ satisfying Γî = Γî for a specific î ∈ Î, there exists

(c,u,y, z,π,ϕ,λ,µ) such that (Γ, c,u,y, z,π,ϕ,λ,µ) is feasible for formulation (3.28).

Proof: To prove the first statement, we first note that by Lemma 3, constraints (3.28c)-

(3.28h) are equivalent to Γ ∈ Θ. So we only need to show that the constraints of (3.28) imply

Γî = Γî, for some î ∈ Î. If we substitute (3.28j) into (3.28b), let sij = λij − µij , and use

reasoning similar to the proof of Lemma 5 (see appendix), we get

∑
i∈I

πi

∑
j∈J

aij x̂j − bi

 ≤∑
i∈I

∑
j∈Ji

αij |x̂j |ϕij . (3.33)

For a given (Γ,π), the constraints applicable to ϕ are (3.28k), (3.28m), and nonnegativity. As

such, the maximum value of
∑

j∈Ji αij |x̂j |ϕij over feasible ϕi, for all i ∈ I, is the optimal value

of the following optimization problem:

maximize
ϕi

∑
j∈Ji

αij |x̂j |ϕij

subject to 0 ≤ ϕij ≤ πi, ∀j ∈ Ji,∑
j∈Ji

ϕij ≤ Γiπi.

(3.34)

Formulation (3.34) is an instance of the continuous knapsack problem, so its optimal value is

bΓic∑
k=1

αijik
|x̂jik |πi + (Γi − bΓic)αijidΓie

|x̂jidΓie
|πi,

and we can conclude that

∑
i∈I

πi

∑
j∈J

aij x̂j − bi

 ≤∑
i∈I

πi

bΓic∑
k=1

αijik
|x̂jik |+ (Γi − bΓic)αijidΓie

|x̂jidΓie
|

 . (3.35)

Now, assume to the contrary that Γi < Γi for all i ∈ Î. Using this assumption and the fact

that Γi = Γi satisfies (3.25), we can deduce a contradiction with (3.35).

To prove the second statement, let (c,u,y, z,π,ϕ,λ,µ) be defined as in the proof of Propo-

sition 7. With the assumed Γ, this solution is feasible for formulation (3.28).
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Lemma 4 allows us to easily characterize an optimal solution to (3.28) and devise an efficient

solution method (cf. Theorem 1, Theorem 3):

Theorem 5. Let

fi = Γi − Γ̂i, ∀i ∈ Î , (3.36)

gi = min
{

Γi − Γ̂i, 0
}
, ∀i ∈ Î , (3.37)

cij = aij − sgn(x̂j)ᾱij , ∀j ∈ J, i ∈ Î , (3.38)

i∗ ∈ arg min
i∈Î

{‖g + (fi − gi)ei‖}, (3.39)

where

ᾱij =


αij if j = jik, k = 1, . . . , bΓic,

αij(Γi − bΓic) if j = jibΓic+1,

0 otherwise,

(3.40)

for all i ∈ Î. Then the optimal value of formulation (3.28) is ‖g + (fi∗ − gi∗)ei∗‖, and there

exists an optimal solution of (3.28) with

Γi =


Γi if i = i∗,

min{Γ̂i,Γi} if i 6= i∗, i ∈ Î ,

Γ̂i if i ∈ I \ Î ,

(3.41)

c = ci
∗
. (3.42)

Remark 4. Theorem 5 shows that an optimal solution to the nonconvex inverse problem (3.28)

can be found by solving |Î| linear optimization problems of the form (3.26).

Proof: By Lemma 4, solving formulation (3.28) is equivalent to solving the following

optimization problem for all î ∈ Î, and taking the minimum over all |Î| optimal values:

minimize
Γ

‖Γ− Γ̂‖

subject to Γî = Γî,

0 ≤ Γi ≤ Γi, ∀i ∈ Î ,

0 ≤ Γi ≤ |Ji|, ∀i ∈ I \ Î .

(3.43)

Suppose we fix some î ∈ Î. For all i ∈ I, the variable Γi is included only in a term (Γi − Γ̂i)

in the objective function. For i ∈ I \ Î, because Γ̂i ∈ [0, |Ji|] by assumption, it is clear that the

optimal solution is Γi = Γ̂i and the corresponding term in the objective function equals 0. For

i 6= î, i ∈ Î, we require Γi ∈ [0,Γi], but we will have either Γ̂i ∈ [0,Γi] or Γ̂ ∈ [Γi, |Ji|]. Hence

the optimal solution is Γi = min{Γ̂i,Γi}, and the corresponding term in the objective function

equals gi. For i = î, we require Γi = Γ̂i and the corresponding term in the objective function
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equals fi. It follows that the optimal value of the î-th formulation (3.43) is ‖g + (fî − gî)eî‖.
Thus the optimal value of formulation (3.28) is minî∈Î

{
‖g + (fî − gî)eî‖

}
, and the optimal cost

vector is c = ci
∗
, where the structure of ci is derived in the proof of Proposition 7.

The interpretation of Theorem 5 is conceptually very similar to the interpretation of The-

orem 3. The two results are subtly different because fi and gi here correspond to the values

of the i-th component of the vector inside the norm in the objective function, whereas in the

former result they correspond to the values of the i-th term in the objective function, thus why

the expressions for i∗ differ. Due to our assumption that there is a unique value of Γi that

renders a given constraint active, the two results also differ in that fi and gi can be determined

analytically rather than by auxiliary optimization problems.

3.2.2 Duality gap minimization

Next, we formulate an IO model that minimizes the duality gap while enforcing primal and

dual feasibility, and external constraints Γ ∈ Ω:

minimize
Γ,c,u,y,z,
π,ϕ,λ,µ

∑
j∈J

cj x̂j −
∑
i∈I

biπi (3.44a)

subject to Γ ∈ Ω, (3.44b)

(3.28c)− (3.28n). (3.44c)

As in the interval uncertainty case, constraints on the uncertainty set parameters may prevent

strong duality from being achieved exactly, thus requiring an inverse model of the form (3.44).

However, in the case of cardinality constrained uncertainty there is a second possible motivation,

which is that Î may be empty. By Proposition 7, if Î = ∅ then formulation (3.28) will not be

feasible. In particular, it will be possible to satisfy both primal and dual feasibility, but not

strong duality.

Analogous to formulation (3.14) in the interval uncertainty case, the feasibility of x̂ for the

nominal problem, along with extra conditions on Γ, are necessary and sufficient conditions for

feasibility of the IO model (3.44). We omit the proof of this result, which is straightforward

and similar to the proof of Proposition 7.

Proposition 8. Formulation (3.44) is feasible if and only if
∑

j∈J aij x̂j ≥ bi for all i ∈ I, and

Θ ∩Ω 6= ∅.

Next, we reformulate (3.44), which is bilinear, into an equivalent mixed-integer optimization
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problem, which is linear whenever the external constraints are linear:

minimize
Γ,π,ϕ

∑
i∈I

∑
j∈J

aij x̂j − bi

πi −
∑
i∈I

∑
j∈Ji

αij |x̂j |ϕij (3.45a)

subject to Γ ∈ Ω, (3.45b)

Γ ∈ Θ, (3.45c)∑
i∈I

πi = 1, (3.45d)

0 ≤ ϕij ≤ πi, ∀j ∈ Ji, i ∈ I, (3.45e)∑
j∈Ji

ϕij ≤ Γi +M(1− πi), ∀i ∈ I, (3.45f)

∑
j∈Ji

ϕij ≤Mπi, ∀i ∈ I, (3.45g)

πi ∈ {0, 1}, ∀i ∈ I. (3.45h)

Formulation (3.45) can be interpreted as follows. Constraints (3.45b) are retained from for-

mulation (3.44), and (3.45c) replaces (3.28c)-(3.28h) as per Lemma 3. As a result of the

normalization constraint, the duality gap is equal to the surplus of a single constraint i ∈ I;

the choice of this constraint is encoded in the binary vector π, and the optimal solution for ϕ

will make
∑

i∈I
∑

j∈Ji αij |x̂j |ϕij equal to the protection function of constraint i. The optimal

choice i∗ will correspond to the constraint with the minimum surplus. Although formulation

(3.45) does not include the variable c, the cost vector c can be determined post-optimization

using

cj =
∑
i∈I

aijπi −
∑

i∈I : j∈Ji

αij sgn(x̂j)ϕij , ∀j ∈ J, (3.46)

which is derived from equation (3.28j).

We now formally characterize and prove the correspondence between formulations (3.44)

and (3.45) (cf. Theorem 4). When we reformulated the corresponding problem in the case

of interval uncertainty, we substituted the bilinear dual feasibility constraint (3.3h) into the

objective function to render the dual variables disjoint from the remaining variables, from

which we could conclude that there exists an optimal solution with binary π. In the case of

cardinality constrained uncertainty, the same reasoning cannot be applied because there is no

possible substitution that will render the dual variables disjoint from the remaining variables.

Nevertheless, we will be able to use an alternative line of reasoning to show that there exists

an optimal solution to (3.44) with binary π.

Theorem 6. Let M ≥ |J |. Formulations (3.44) and (3.45) have the same optimal objec-

tive value, and a solution Γ is optimal for formulation (3.44) if and only if it is optimal for

formulation (3.45).
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Proof: To prove the first statement, we will eliminate variables from formulation (3.44)

until we have an equivalent formulation in the variables Γ,π only, at which point we can

conclude by inspection that there exists an optimal solution with integer π. This conclusion

is then used to derive an equivalent mixed-integer linear optimization model in the variables

Γ,π,ϕ.

We begin by noting that by Lemma 3, constraints (3.28c)-(3.28h) (and thus variables u,y, z)

in formulation (3.44) can be replaced by Γ ∈ Θ. We now omit the details of several steps that

are conceptually similar to steps in the proof of Theorem 4: we eliminate c by substituting

constraint (3.28j) into the objective function of formulation (3.44), we let sij = λij − µij for all

i ∈ I, j ∈ Ji, we use Lemma 5 (see appendix) to replace constraints on (λ,µ) with constraints

on s, and then we eliminate s by identifying its optimal solution by inspection, giving us the

following optimization problem equivalent to (3.44):

minimize
Γ,π,ϕ

∑
i∈I

∑
j∈J

aij x̂j − bi

πi −
∑
i∈I

∑
j∈Ji

αij |x̂j |ϕij (3.47a)

subject to Γ ∈ Ω, (3.47b)

Γ ∈ Θ, (3.47c)∑
i∈I

πi = 1, (3.47d)

0 ≤ ϕij ≤ πi, ∀j ∈ Ji, i ∈ I, (3.47e)∑
j∈Ji

ϕij ≤ Γiπi, ∀i ∈ I, (3.47f)

πi ≥ 0, ∀i ∈ I. (3.47g)

By inspection we can describe the optimal ϕ for a given value of (Γ,π). In the objective

function, ϕ only appears in the term −
∑

i∈I
∑

j∈Ji αij |x̂j |ϕij , and the only constraints appli-

cable to ϕ are (3.47e)-(3.47f). This an instance of the continuous knapsack problem, equivalent

to (3.34) in the proof of Lemma 4, so an optimal ϕ has the form:

ϕijik
=


πi if k = 1, . . . , dΓie − 1,

(Γi − dΓie+ 1)πi if k = dΓie,
0 if k = dΓie+ 1, . . . , |Ji|, ∀jik ∈ Ji, i ∈ I.

(3.48)

Substituting (3.48) into formulation (3.47) we obtain an equivalent optimization problem:

min
Γ,π

{∑
i∈I

πili(Γ) : (3.47b)− (3.47d), (3.47g)

}
, (3.49)
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where

li(Γ) =
∑
j∈J

aij x̂j − bi −
dΓie−1∑
k=1

αijik
|x̂jik | − (Γi − dΓie+ 1)αijidΓie

|x̂jidΓie
|.

By inspection, we can see that for a given value of Γ, an optimal π for formulation (3.49)

equals ei∗ where i∗ ∈ arg mini∈I li(Γ). Note that we obtained (3.49) from (3.47) by setting ϕ

optimally given any feasible (Γ,π). Hence any π that is optimal for (3.49) must also be optimal

for (3.47). This means that, without changing the optimal value, we can restrict π to be binary

in problem (3.47), and the resulting formulation is identical to formulation (3.45) except that

(3.47f) is present in place of (3.45f)-(3.45g). Finally, if we substitute M = |J | into constraints

(3.45f)-(3.45g), it is straightforward to show that they are equivalent to (3.47f).

To prove the second statement, we note that in the process of deriving formulation (3.45)

from (3.44), all steps are equivalences as far as Γ is concerned. Hence Γ is optimal for (3.45) if

and only if it is optimal for (3.44).

In this section, we have derived tractable solution approaches for two nonconvex IO models,

(3.28) and (3.44), which recover the parameter Γ for a cardinality constrained uncertainty set

with given α. The choice of which model to use depends not only on whether the application

domain motivates constraints of the form Γ ∈ Ω, but also on whether there exists any constraint

in the forward model for which the protection function can equal the nominal surplus, and

thereby render the constraint active. We note that formulation (3.28) with the addition of the

constraint Γ ∈ Ω can also be shown to be efficiently solvable.

3.3 Numerical examples

In this section, we give numerical examples to illustrate the geometric characteristics of the

solutions for the interval uncertainty formulations (3.3) and (3.14), and the cardinality con-

strained uncertainty formulations (3.28) and (3.44). These examples will demonstrate how the

optimal inverse solution is found and how it relates to the geometry of the robust feasible region

induced by the uncertainty set parameters. We use the L1 norm for the objective functions of

the strong duality formulations (3.3) and (3.28).

For all examples, let x̂ = (−2, 6) be the observed solution, and let the nominal problem be

minimize
x

c1x1 + c2x2

subject to x1 ≥ −6,

x2 ≥ −6,

− 2x1 − x2 ≥ −10.

Let the constraints and variables be indexed by I = {1, 2, 3} and J = {1, 2} respectively, and
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(a) Strong duality. Since the observed solution is
an interior point of the prior robust feasible region,
the optimal solution of the IO model adjusts a single
constraint such that it is rendered active, and sets
the cost vector perpendicular to this constraint.
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(b) Duality gap minimization. The constraints on
the unspecified parameters prevent the feasible re-
gion from having the observed solution on its bound-
ary, thus the cost vector is set perpendicular to the
constraint with the minimum surplus.

Figure 3.1: Numerical examples of the interval uncertainty IO models. Both examples share
the same observed solution and nominal feasible region.

let the coefficients subject to uncertainty be defined by J1 = {1}, J2 = {2}, J3 = {1, 2}.

3.3.1 Interval uncertainty

For the strong duality formulation (3.3), let the robust optimization problem have the given

prior parameters α̂11 = 0.5, α̂22 = 0.5, α̂3 = (1, 0). For simplicity, we use the weight vector

ξ = e in the objective function. The nominal and robust (assuming α̂) feasible regions are

shown in Figure 3.1a; in particular, the robust counterpart of the third constraint is equivalent to

−2x1−x2−|x1| ≥ −10, thus the realization of the constraint depends on the sign of x1. We note

that the IO problem (3.3) is feasible, since x̂ is feasible for the nominal problem (see Proposition

5). To determine the optimal solution, we apply Theorem 3. First, we have gi = 0 for all i ∈ I,

meaning that x̂ is feasible for the robust problem with the prior α̂. The choice of the constraint

to perturb will then be determined by i∗ ∈ arg mini∈I fi, and evaluating all fi (by solving the

corresponding linear optimization problem (3.6)) we find i∗ = 3, f3 = 1,αf3 = (1, 1). Letting
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α3 = αf3 , the robust counterpart of the third constraint becomes −2x1−x2−|x1|− |x2| ≥ −10,

and x̂ is on the boundary of this constraint in the second quadrant. Accordingly, the imputed

cost vector c = c3 = (−1,−2) (see equation (3.8)) is perpendicular to the third constraint in

the second quadrant.

For the duality gap formulation (3.14), we will require that the imputed α be in the set

Ω :=

α : αij ≥ 0.5,∀i ∈ I, j ∈ Ji;
∑
i∈I

∑
j∈Ji

αij ≤ 2.5

 .

By Proposition 6, formulation (3.14) is feasible if and only if x̂ is robust feasible with respect

to some α ∈ Ω; in this example, α̂ meets this requirement, so the IO problem is feasible. To

determine the optimal solution, we solve the equivalent mixed integer linear program (3.15).

The nominal and imputed robust feasible regions are shown in Figure 3.1b. For the first and

second constraints, the imputed αi equals α̂i from the strong duality example. For the third

constraint, we impute α3 = (0.5, 1), which is a “smaller” uncertainty set than the one imputed

in the strong duality example, and hence the constraint is relaxed, and has a positive rather

than zero surplus. The minimum duality gap is obtained by the cost vector c = (−1.5,−2) (see

equation (3.16)), which is perpendicular to the third constraint in the second quadrant, and

hence corresponds to optimal π = e3.

3.3.2 Cardinality constrained uncertainty

For the strong duality formulation (3.28), we assume fixed parameters α11 = 2.5, α22 = 0.5,α3 =

(2, 1) and a prior Γ̂ = (0.2, 1, 1). The nominal and robust feasible regions are shown in Fig-

ure 3.2a. In particular, the robust counterpart of the third constraint is equivalent to

− 2x1 − x2 −max {2|x1|, |x2|} ≥ −10.

Thus, the realization of this constraint depends not only the sign of x (as in the interval

uncertainty example), but also the position of x relative to the lines x2 = 2x1 and x2 = −2x1.

Accordingly, Figure 3.2a depicts these two lines; wherever they intersect the boundary of the

constraint, the constraint changes slope.

First, we verify that constraints 1 and 3 (but not 2) have nominal surplus less than the

maximum value of the corresponding protection function, and therefore Î = {1, 3}. Solving

equation (3.26) results in Γ1 = 0.8,Γ3 = 1.5. Next, we determine that gi = 0 for all i ∈ Î,

meaning that x̂ is feasible with respect to the prior Γ̂ and the problem reduces to finding i∗ ∈
arg mini∈Î |fi|. Finally, we find the unique solution i∗ = 3 and f3 = 0.5. Letting Γ3 = Γ3 = 1.5,

the robust counterpart of the third constraint becomes

− 2x1 − x2 −max {2|x1|+ 0.5|x2|, |x1|+ |x2|} ≥ −10,
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(a) Strong duality. With a slight adjustment to
a single constraint, the observed solution is on the
boundary of the feasible region and therefore opti-
mal.
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(b) Duality gap minimization. The constraint with
the minimum surplus incidentally differs from the
constraint which is set active in the strong duality
example.

Figure 3.2: Numerical examples of the cardinality constrained uncertainty IO models.
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which is piecewise linear with five pieces (four breakpoints defined by the two coordinate axes

and the two equations x2 = 2x1 and x2 = −2x1). The observed x̂ is on the part of this

constraint in the region defined by x1 < 0, x2 ≥ 0, x2 ≥ −2x1, and the imputed cost vector

c = c3 = (−1,−2) is perpendicular to the constraint at x̂.

For the duality gap formulation (3.44), we will require that the imputed Γ be in the set

Ω :=

{
Γ : Γi ≥ 0.2, ∀i ∈ I;

∑
i∈I

Γi ≤ 1

}
.

Similar to the interval uncertainty duality gap formulation, we can verify the feasibility of the

IO problem by finding uncertainty set parameters that meet the condition in Proposition 8 (for

brevity, we omit this step). To determine the optimal solution of (3.44), we solve the equivalent

mixed integer linear problem (3.45). The nominal and imputed robust feasible regions are shown

in Figure 3.2b. The optimal inverse solution has Γ = (0.6, 0.2, 0.2), π = e1 and c = (2.5, 0) (see

equation (3.46)). In other words, the minimum possible surplus for any of the three constraints

is obtained by maximizing the degree of uncertainty associated with the first constraint. The

duality gap equals the surplus of the first constraint, and the cost vector is perpendicular to

the first constraint.

Lastly we note that in both the interval and cardinality-constrained strong duality examples,

the problem data were chosen such that all gi = 0, i.e., x̂ was feasible with respect to the

prior uncertainty set parameters. If we had any gi 6= 0, then in Figures 3.1 and 3.2, the

observed solution x̂ would be within the boundaries of the nominal feasible region but outside

the boundaries of the prior robust feasible region. For every constraint i which is infeasible

with respect to α̂i (or Γ̂i) and x̂, the minimal perturbation to α̂i (or Γ̂i) would have x̂ sit on

the boundary, and hence we could set i = i∗.
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Conclusion

In this thesis, we have considered three linear optimization models as forward problems. For

each forward problem, we have proposed two different IO approaches that recover unspecified

constraint parameters. The first approach minimally perturbs prior estimates of the parameters

to be imputed such that the observed solution is exactly optimal, while the second identifies

within some predefined set the parameters that minimize the duality gap.

Our three forward models differ in their structure and the parameters to be recovered: the

first is a general linear programming problem in which all left-hand-side constraint coefficients

are to be recovered, and the latter two are robust linear optimization problems in which con-

straint coefficients corresponding to parameters of the uncertainty set are to be recovered. In

spite of these differences, the key steps in the model construction and solution method for each

approach are common to all forward models. For the approach that makes the observed solution

exactly optimal, the IO model’s constraints are strong duality, primal and dual feasibility, and

a normalization constraint that effectively makes the duality gap equal to a convex combination

of constraint surpluses of the forward problem. This IO model is nonconvex due to at least

one bilinear constraint. The solution method depends on the insight that the constraints are

equivalent to requiring the observed solution to be on the boundary of the forward problem’s

feasible region. Thus the IO model can be solved by computing the minimum objective value

associated with making each constraint of the forward model active, and choosing the con-

straint that yields the minimum objective value. The cost vector is then set perpendicular to

this constraint.

For the approach that minimizes the duality gap, the IO model’s constraints are primal

and dual feasibility, and external constraints on the unspecified parameters. This model is

also nonconvex, but can be shown to be equivalent to solving a finite number of optimization

problems which are linear whenever the external constraints are linear. The equivalent tractable

problems amount to checking the minimum duality gap that can be induced by setting the

cost vector perpendicular to each constraint, and then choosing the constraint that yields the

minimum objective value.

There are several directions for future work. First, it may be possible to apply our method

41
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to the robust linear optimization problem with ellipsoidal uncertainty. As in the cardinality

constrained case, the ellipsoidal uncertainty set has a budget parameter for each constraint

controlling the extent to which the coefficients in that constraint are allowed to vary within

their intervals. However, the robust problem with ellipsoidal uncertainty is a second order

conic program, thus an IO model would have to be formulated using the optimality conditions

of second order conic programs (Alizadeh and Goldfarb, 2003). Although Iyengar and Kang

(2005) have solved the inverse conic programming problem, we do not believe any author has

solved this problem when the parameters to be recovered are in the constraints.

Second, it may be possible to generalize our methodology in two ways that classical IO

models were also generalized. Our second IO approach minimizes the duality gap, and Chan

et al. (2017) showed that for an inverse linear optimization model that recovers the cost vector,

the duality gap is a special case of a more general error function. It may be possible that

for the inverse linear optimization model that recovers constraint coefficients in addition to a

cost vector, the duality gap can also be generalized. Another way that our IO models may

be generalizable is to the case of multiple observed solutions, as done by Aswani et al. (2015),

Bertsimas et al. (2015) and Keshavarz et al. (2011).

Finally, it may be beneficial to develop IO models that treat the imputation of the cost

vector as importantly as the imputation of the constraint parameters. Our IO approaches choose

constraint parameters such that the observed solution is optimal (or minimizes the duality gap)

with respect to some nonzero cost vector, but a shortcoming of this method is that the implied

cost vector may not be considered a reasonable fit for the application domain. More nuanced

IO approaches would allow for an objective function that minimizes the perturbation of a prior

cost vector in addition to the perturbation of prior constraint coefficients; and allow for external

constraints on the cost vector in addition to those on the constraint coefficients. This thesis

nevertheless serves as the first comprehensive attempt at solving the problems that we have

considered, and we believe may serve as a preliminary step toward more general IO approaches.
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Appendix A

Proofs

Proof of Proposition 1: By assumption on x̂, there exists ĵ ∈ J such that x̂ĵ 6= 0. Then, it

is easy to check that the following is a feasible solution for formulation (2.3):

π = eî, for some î ∈ I, (A.1)

aij =

{
bi
x̂j

if j = ĵ,

0 otherwise, ∀i ∈ I,
(A.2)

c = aî. (A.3)

Proof of Proposition 5: (⇒) Assume that
∑

j∈J aîj x̂j < bî for some î ∈ I. Constraints

(3.3c) and (3.3d) imply uîj ≥ 0 for all j ∈ Jî. It follows that
∑

j∈J aîj x̂j −
∑

j∈Jî
uîj < bî,

meaning that the constraint (3.3e) is violated for î.

(⇐) By assumption on x̂, there exists î ∈ I and ĵ ∈ Jî such that x̂ĵ 6= 0. Then, it is easy to

check that the following is a feasible solution for formulation (3.3):

π = eî, (A.4)

(λij , µij) =


(1, 0) if j ∈ Ji : x̂j ≤ 0, i = î,

(0, 1) if j ∈ Ji : x̂j > 0, i = î,

(0, 0) otherwise,

(A.5)

αij =

{ ∑
k∈J aikx̂k−bi
|x̂j | if j = ĵ, i = î,

0 otherwise,
(A.6)

uij = αij |x̂j |, ∀j ∈ Ji, i ∈ I, (A.7)

cj =

{
aîj − sgn(x̂j)αîj if j ∈ Jî,
aîj if j ∈ J \ Jî.

(A.8)
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Lemma 5. Let sij = λij − µij for all j ∈ Ji, i ∈ I. If (λ,µ) satisfies (3.3i) and non-negativity,

then sij ∈ [−πi, πi] for all j ∈ Ji, i ∈ I. Conversely, if sij ∈ [−πi, πi] for all j ∈ Ji, i ∈ I, then

there exists (λ,µ) satisfying (3.3i), non-negativity, and sij = λij − µij for all j ∈ Ji, i ∈ I.

Proof: To prove the first statement, note that since λij + µij = πi and λij , µij , πi ≥ 0, it

follows that λij ≤ πi, for all j ∈ Ji, i ∈ I. Since µij ≥ 0, it further follows that λij − µij ≤ πi,

i.e., sij ≤ πi. The proof of −πi ≤ sij is similar.

To prove the second statement, we will construct (λ,µ) satisfying the required conditions.

For all j ∈ Ji, i ∈ I, let λij = sij +
πi−sij

2 , µij =
πi−sij

2 if sij ≥ 0, and let λij =
πi+sij

2 ,

µij = −sij +
πi+sij

2 otherwise.

Proof of Proposition 7: (⇒) The proof of this implication is divided into two cases.

First, we show that feasibility of (3.28) implies that
∑

j∈J aij x̂j ≥ bi for all i ∈ I. We have∑
j∈J

aij x̂j ≥
∑
j∈J

aij x̂j − (
∑
j∈Ji

yij + Γizi) ≥ bi, ∀i ∈ I,

where the first inequality is implied by non-negativity of Γ,y, z, and the second inequality is

constraint (3.28f).

Second, assume that Î = ∅. We will show that formulation (3.28) is infeasible. Since Î = ∅,

we have

0 <
∑
j∈J

aij x̂j − bi −
∑
j∈Ji

αij |x̂j |, ∀i ∈ I, (A.9)

0 <
∑
j∈J

aij x̂j − bi −
∑
j∈Ji

αij x̂j , ∀i ∈ I, (A.10)

0 <
∑
i∈I

πi(
∑
j∈J

aij x̂j − bi −
∑
j∈Ji

αij x̂j) (A.11)

≤
∑
i∈I

πi(
∑
j∈J

aij x̂j − bi)−
∑
i∈I

∑
j∈Ji

ϕijαij x̂j (A.12)

≤
∑
i∈I

πi(
∑
j∈J

aij x̂j − bi) +
∑
i∈I

∑
j∈Ji

(λij − µij)αij x̂j , (A.13)

where the third inequality is implied by eᵀπ = 1,π ≥ 0; the fourth inequality is implied by

constraint (3.28k); and the fifth inequality is implied by −ϕij ≤ (λij − µij), itself implied by

constraints (3.28l) and (3.28n). Now substituting (3.28j) into (3.28b),∑
i∈I

πi(
∑
j∈J

aij x̂j − bi) +
∑
i∈I

∑
j∈Ji

(λij − µij)αij x̂j = 0, (A.14)

which is a contradiction.

(⇐) Assume that
∑

j∈J aij x̂j ≥ bi for all i ∈ I and Î 6= ∅. Let î ∈ Î be an arbitrary index.
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Then, it can be checked that the following is a feasible solution for formulation (3.28):

π = eî,

ϕijik
=


πi if k = 1, . . . , bΓic, i = î,

(Γi − bΓic)πi if k = dΓie, i = î,

0 otherwise,

(λij , µij) =


(ϕij , 0) if j ∈ Ji : x̂j ≤ 0, i = î,

(0, ϕij) if j ∈ Ji : x̂j > 0, i = î,

(0, 0) otherwise,

Γi =

{
Γi if i = î,

0 if i 6= î, i ∈ I,

uij = αij |x̂j |, ∀j ∈ Ji, i ∈ I,

yij =

{
max{uij − zi, 0} if j ∈ Ji, i = î,

0 otherwise,

zi =

{
αijidΓie

|x̂jidΓie
| if i = î,

maxj∈Ji{αij |x̂j |} if i 6= î, i ∈ I,

cij =


aij − sgn(x̂j)αij if j = jik, k = 1, . . . , bΓic,
aij − sgn(x̂j)αij(Γi − bΓic) if j = jibΓic+1,

aij otherwise, ∀i ∈ Î .

Lemma 6. The solution (u∗i ,y
∗
i , z
∗
i ) defined in (3.30) is an optimal solution to (3.29).

Proof: By inspection, it is clear that an optimal solution has u∗ij = αij |x̂j | and y∗ij =

max{u∗ij − zi, 0} for a given zi. We will prove by contradiction that z∗i = αijidΓie
|x̂jidΓie

| and

corresponding y∗i are optimal. First suppose z̃i 6= z∗i and corresponding ỹi is a better solution,

i.e., ∑
j∈Ji

ỹij + Γiz̃i <
∑
j∈Ji

y∗ij + Γiz
∗
i

⇔ Γi(z̃i − z∗i ) <
∑
j∈Ji

max{αij |x̂j | − z∗i , 0} −
∑
j∈Ji

max{αij |x̂j | − z̃i, 0}

⇔ Γi(z̃i − z∗i ) <
∑
j∈J1

i

max{αij |x̂j | − z∗i , 0}+
∑
j∈J2

i

max{αij |x̂j | − z∗i , 0} −
∑
j∈J1

i

(αij |x̂j | − z̃i),

(A.15)

where J1
i = {j ∈ Ji : αij |x̂j | > z̃i} and J2

i = {j ∈ Ji : z̃i ≥ αij |x̂j |}. We also define |J1
i | = k̂,

meaning that k̂ is the number of elements in {αij |x̂j |}j∈Ji that are strictly greater than z̃i.

We now distinguish two cases and in each case we will derive a contradiction. First consider
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the case z̃i > z∗i . We note that

αiji
k̂
|x̂ji

k̂
| > z̃i > αijidΓie

|x̂jidΓie
|, (A.16)

where the first inequality is implied by the definitions of J1
i and k̂, and the second inequality is

implied by the case distinction and the definition of z∗i . Because the inequalities are strict, it

follows that k̂ ≤ dΓie − 1. Now we rewrite (A.15) as

Γi(z̃i − z∗i ) <
∑
j∈J1

i

(αij |x̂j | − z∗i ) +

dΓie−1∑
k=k̂+1

(αijik
|x̂jik | − z

∗
i )−

∑
j∈J1

i

(αij |x̂j | − z̃i)

⇔ Γi(z̃i − z∗i ) < k̂(z̃i − z∗i ) +

dΓie−1∑
k=k̂+1

(αijik
|x̂jik | − z

∗
i )

⇔ (Γi − k̂)(z̃i − z∗i ) <

dΓie−1∑
k=k̂+1

(αijik
|x̂jik | − z

∗
i ). (A.17)

We note here that

z̃i ≥ αijik |x̂jik |, ∀k = k̂ + 1, . . . , dΓie − 1,

where the case k = k̂ + 1 follows from the definitions of k̂ and J2
i , and the case k = dΓie − 1

follows from z̃i > z∗i = αijidΓie
|x̂jidΓie

|. We use this observation to deduce a final inequality,

dΓie−1∑
k=k̂+1

(αijik
|x̂jik | − z

∗
i ) ≤ (dΓie − 1− k̂)(z̃i − z∗i ),

which contradicts (A.17), since Γi > dΓie − 1.

Second consider the case z∗i > z̃i. We can rewrite (A.15) as

Γi(z
∗
i − z̃i) > −

∑
j∈J1

i

max{αij |x̂j | − z∗i , 0} −
∑
j∈J2

i

max{αij |x̂j | − z∗i , 0}+
∑
j∈J1

i

(αij |x̂j | − z̃i)

⇔ Γi(z
∗
i − z̃i) > −

∑
j∈J1

i

max{αij |x̂j | − z∗i , 0}+
∑
j∈J1

i

(αij |x̂j | − z̃i).

Because z∗i = αijidΓie
|x̂jidΓie

|, we can write

Γi(z
∗
i − z̃i) > −

dΓie−1∑
k=1

(αijik
|x̂jik | − z

∗
i ) +

k̂∑
k=1

(αijik
|x̂jik | − z̃i).
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Because z∗i = αijidΓie
|x̂jidΓie

| > z̃i and k̂ = |J1
i | imply that dΓie ≤ k̂, we can write

Γi(z
∗
i − z̃i) >

k̂∑
k=dΓie

αijik
|x̂jik |+ (dΓie − 1)z∗i − k̂z̃i

⇔ Γiz
∗
i − Γiz̃i >

k̂∑
k=dΓie

αijik
|x̂jik |+ dΓiez

∗
i − z∗i − k̂z̃i

⇔ k̂z̃i − Γiz̃i >
k̂∑

k=dΓie

αijik
|x̂jik |+ dΓiez

∗
i − z∗i − Γiz

∗
i .

We substitute z∗i = αijidΓie
|x̂jidΓie

| and rearrange to obtain

(k̂ − Γi)z̃i > (dΓie − Γi)αijidΓie
|x̂jidΓie

|+
k̂∑

k=dΓie+1

αijik
|x̂jik |. (A.18)

Because dΓie ≤ k̂ and the definition of J1
i imply that αijik

|x̂jik | > z̃i, ∀k = dΓie, . . . , k̂, we can

write

(dΓie − Γi)αijidΓie
|x̂jidΓie

|+
k̂∑

k=dΓie+1

αijik
|x̂jik | > (k̂ − Γi)z̃i,

which contradicts (A.18).
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