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Abstract 

Tumour-induced angiogenesis involves growth of new blood vessels from existing 

vasculature in response to signals induced by the undernourished part of tumour tissue. 

Due to high costs and ethical issues associated with in vivo experiments, significant 

efforts have been undertaken to develop computational models and physiologically 

relevant 3D in vitro assays to study angiogenesis in a highly controllable and 

accessible manner. Our goal was to utilize existing modelling techniques and apply 

them to an in vitro environment to model endothelial cell (EC) migration and 

angiogenesis inside the tubeless microfluidic angiogenesis assay. Here we leverage 

two continuum models which are implemented using the Method of Lines and 

discretized in space using the finite difference approximation. The aim was to simulate 

EC angiogenic response under different VEGF concentrations and investigate 

microfluidic device geometry as a potential parameter that can accelerate 

angiogenesis.   
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Chapter 1 

1  Introduction 
Angiogenesis is the growth or extension of new blood vessels from existing vasculature, and 

can occur in normal physiological processes such as wound healing and embryogenesis, or in 

disease processes such as tumour development. Tumour angiogenesis occurs in response to 

secretion of soluble factors from tumour sites at a stage when diffusion of oxygen and other 

nutrients from the local vasculature becomes insufficient to nourish the central region of the 

tumour. As a result, the central region becomes hypoxic, resulting in cell death and 

development of a necrotic core. For the tumour to continue its growth, tumour cells secrete 

various growth factors including vascular endothelial growth factor (VEGF) and fibroblast 

growth factor (FGF), which induce tumour cell proliferation and aid in the recruitment of 

new blood vessels [1]. When pro- and anti-angiogenic factors are imbalanced in favour of 

pro-angiogenic factors, the angiogenic switch is activated, and endothelial cells (ECs) that 

line the vasculature differentiate into tip and stalk endothelial cells [2]. Tip endothelial cells 

sense and respond to tumour-generated chemokine gradients by migrating into and invading 

the nearby stroma, while stalk cells enable expansion of the vessels and possess elevated 

proliferative capacity – process referred to as chemotaxis. Another well-established 

angiogenesis process is haptotaxis. It involves migration of ECs along an adhesive chemical 

gradient, such as fibronectin (FN). As ECs move through the extracellular matrix (ECM) 

they bind to FN macromolecules via cell-surface receptors. Although the character of the 

vascular network within the tumour is critical to tumour development [3], migration of tip 

endothelial cells is often viewed as the governing mechanism of tumour angiogenesis, and 
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thus migration and angiogenesis are associated processes. To date, our understanding of how 

growth factors ultimately drive angiogenesis remains incomplete. Advancing our 

fundamental knowledge of the mechanisms of cell migration and angiogenesis is critical to 

understanding tumour development, improving cancer therapy, and accelerating drug 

discovery [4]. Illustrated below are the key steps involved in angiogenesis (Figure 1.1).  

 

 

Figure 1.1. Angiogenesis process. Undernourished tumour tissue secretes angiogenic factors 
which signal the initially quiescent vessel to start proliferating. Endothelial cells that line the 
vessel wall differentiate into tip and stalk cells and subsequently follow the increasing 
growth factor gradients. As the newly formed vessels proliferate towards the tumour, they 
can branch, fuse together (anastomise) or regress. [5] 

Cancer cell metastasis is a highly complex process which is widely studied up to this day. 

Although we are learning much about specific cell-cell and cell-ECM interactions, certain 

steps in the process are nonetheless well established. In order for cancer cells to metastasize 



3 

 

to other body parts, they must first break from the local tumour tissue. Once detached, they 

must penetrate the vasculature and survive in the circulation. Moreover, they must overcome 

the immune response and extravasate from the vasculature to enter other tissues [6]. 

Naturally, should blood vessels penetrate the tumour tissue itself, intravasation into 

circulation is more likely to occur.  

Standard in vitro methods for studying cell migration and angiogenesis include tube 

formation assays [7], chemotaxis (Boyden chamber) assays [8], and hanging drop assays [9], 

to name a few. Each platform offers different benefits for different applications. For instance, 

tube formation assays involve culturing cells on a gel substrate and observing the formation 

of tubule networks, and are suitable for drug screening applications due to its scalability and 

arrayable format. Boyden chamber (and similar Transwell) assays are useful for studying 

chemotactic cell migration due to the simplicity of its experimental setup and the ease of cell 

counting for quantification. Hanging drop assays involve incorporating endothelial cells into 

multicellular spheroids formed by traditional hanging drops, which enables formation of 

tubular networks and luminal structures for modelling tumour-EC interactions. Besides in 

vitro assays, numerous in vivo assays have also been developed for studying angiogenesis, 

including mouse cornea micropocket assays [10] and dorsal chamber assays [4]. Detailed 

reviews of in vitro and in vivo angiogenesis assays are available for the interested reader 

[11,12].   

Recently, microfluidics has become a useful platform for studying cell migration, 

angiogenesis, and other cancer-associated cellular phenomena, particularly within microscale 

environments with improved spatiotemporal control and physiological relevance. Besides the 

conventional in vitro methods, Kim and Wu [13] categorized microfluidic devices for cell 
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migration studies into four broad categories, namely: (i) convection flow-based devices [14], 

(ii) diffusion-based devices [15], (iii) hybrid convective-diffusive devices [16], and (iv) 

hydrogel-based devices [17]. In convective flow-based microfluidic devices, fluid flow with 

different chemical concentrations are introduced directly into the microchannel, which 

establishes a chemical gradient for chemotactic cell migration. Diffusion-based devices have 

source and sink microchannels that are used to establish the chemical gradient by diffusion, 

allowing cells to sense the chemical gradient without direct exposure to the flow. In hybrid 

convective-diffusive devices, sink and source microchannels are separated by 

microcapillaries, which allow efficient diffusion of molecules while also preventing cells 

found in the middle chamber to sense the flow. Hydrogel-based devices typically consist of 

three parallel microchannels, including source and sink channels on the sides with the 

hydrogel-filled microchannel in the middle [17]. Our lab has developed hydrogel-based 

devices [18], where sink and source microchannels are connected via interconnecting 

migration channels or “migration ports” that are filled with hydrogel to allow chemical 

gradients to be established. In one configuration, the source channel is loaded with a high 

concentration of VEGF, while the sink channel is seeded with endothelial cells and fed with 

culture media without VEGF. Besides allowing a gradient to form, the hydrogel also serves 

as a 3D scaffold for 3D migration of ECs, which is representative of the extracellular matrix 

(ECM) found in vivo. 

It is evident that microfluidic systems are becoming increasingly useful as experimental 

tools, with various research groups developing microfluidic systems to study angiogenic 

sprouting [18–20], endothelium migration [21,22], and applications in drug development 

[23]. However, challenges remain in several aspects of designing and using microfluidic 
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systems, namely: (1) device design and operation rely heavily on trial-and-error methods 

with limited systematic optimization; and (2) the effects of microenvironmental factors on 

migration and angiogenesis processes are mostly empirical with limited theoretical basis. 

Mathematical and computational modelling of cell migration and angiogenesis have been 

performed previously for various in vitro and in vivo assays to provide additional insights 

and offer a theoretical basis for cellular processes. Integrating mathematical and 

computational modelling with microfluidic-based assays has potential to enable greater 

control over experimental parameters, provide new insights into fundamental angiogenesis 

processes, and assist in accelerating design and optimization of operating conditions. The 

purpose of this thesis was to apply mathematical and computational modelling of cell 

migration and angiogenesis specifically to microfluidic cell culture systems, with the goal of 

establishing an approach that would serve as a guide to designing and optimizing 

microfluidic devices and cell culture protocols.   

In Chapter 2, a literature review is provided on current mathematical models of cell 

migration and angiogenesis.  Namely, three major types of approaches are discussed: 

continuum, discrete and hybrid models.  In Chapter 3, several initial models chosen for 

investigation are discussed in the context of their appropriateness and feasibility for 

application with microfluidic systems. In Chapter 4, we present two continuum models that 

were adopted in our analysis. In the chapter we present methodology, EC migration and 

angiogenesis simulations, model validation against experimental data and application to 

microfluidic device design optimization for the purpose of enhancing angiogenesis.  Lastly, 

in Chapter 5 we present conclusions and potential ways of extending the models in future 

work. 
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Chapter 2 

2 Background and Literature Review – Mathematical 
Modelling of Cell Migration and Angiogenesis 

In this chapter, we review the literature on the three general types of mathematical models of 

angiogenesis: (i) continuum, (ii) discrete and (iii) hybrid models. A comprehensive review of 

these models is presented in [24]. Most of continuum models are derived from the mass 

conservation law and use coupled Partial Differential Equations (PDEs) to provide average 

description of variables. Although discrete and hybrid models provide qualitative description of 

vessel network morphology, they are theoretically more complex and computationally more 

intensive. Since our aim was to develop a computational framework that would assist researchers 

pursuing cell culture experiments with the design of microfluidic devices, average description of 

cell and vessel densities as well as VEGF concentration was deemed sufficient to model 

chemotactic cell migration and angiogenesis. Hence, this thesis primarily utilizes continuum 

approaches, but all three types of methodologies will be reviewed.    

2.1 Continuum Models 

In 1976, Deakin et al. [25] proposed a model which consisted of two convection-diffusion 

equations and captured tip endothelial cell (TEC) migration under general tumour angiogenic 

factor (TAF) which was assumed to be secreted by the tumour. Numerous later continuum 

models adopt a similar approach and add additional levels of complexity to make the model 

more physiologically relevant. 

The next important step in continuum modelling was differentiation between stalk (vessels) and 

leading TECs. This distinguishing feature was incorporated by Balding and McElwain in 1985 
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[26]. They extended the mathematical framework proposed by Edelstein et al. [27] since it 

modelled the growth and branching of fungal morphologies and could therefore be applied to 

angiogenesis and capture its processes such as branching and anastomosis. Balding and 

McElwain’s work can be viewed as a corner stone due to the assumption that vessel creation 

takes place because of TEC migration; a method referred to as ‘snail-trail-approach’. The name 

‘snail-trail’ refers to the fact that the TEC migration creates behind itself a continuous blood 

vessel and acts as the primary mechanism responsible for creation of blood vessels.  

Chaplain and Stuart [28] casted the model onto a finite one-dimensional domain and accounted 

for TAF consumption by ECs. Their model did not differentiate between blood vessels and 

leading TECs. It consisted of only two variables: endothelial cell density and TAF concentration. 

On the other hand, Byrne and Chaplain in 1995 [29] differentiated between the vessel and TEC 

density, and further extended Balding and McElwain’s model to capture secondary TEC creation 

(Fig. 2.1).  

In order to provide insight into blood vessel recruitment process, Byrne and Chaplain 

investigated parameters that dictate success of tumour neovascularization. Their model consisted 

of three independent variables: n–tip cells per unit area in the cross-sectional plane perpendicular 

to the front propagation, ρ–vessel density length per unit cross-sectional area, and a–TAF 

concentration, measured in mean concentration per unit of cross-sectional area. Their numerical 

simulations confirm the phenomena discovered by Muthukkaruppan et al. [30] where the vessel 

density is higher behind the leading TECs – referred to as ‘brush-border’ effect. Furthermore, the 

aim of their work was to study the balance between chemotaxis and cell death, which has strong 

impact on the outcome of tumour neovascularization and therefore ability to provide useful 

information regarding the measurable quantities that can be experimentally tested.  
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Orme and Chaplain [31] focused on the role of haptotaxis (Fig. 2.1). Besides migrating in 

response to an increasing TAF gradient, TECs also migrate in response to an increasing 

fibronectin concentration in the extracellular matrix (ECM). In addition, the authors investigated 

anti-angiogenesis strategies through parameter variation. Anderson and Chaplain [32] extended 

the Orme and Chaplain’s model to two dimensions.  

Continuum models kept evolving and in 2000, Levine et al. [33] studied the role of chemotaxis, 

haptotaxis, ECM degradation, and angiogenesis inhibition with a rather complex mathematical 

model which required 60 parameters to be calibrated. Plank et al. [34] extended continuum 

approaches to account for random walk of TECs. Holmes and Sleeman [35] studied 

mechanochemical interaction between cells and the ECM.   

Another branch of models which focuses primarily on modelling chemotaxis is particularly 

relevant to this thesis. Costanzo et al. [36] developed a continuum model to study endothelial cell 

migration in Boyden Chamber. Serini et al. [37] utilized a model proposed in [38] to model 

formation of vascular patterns under the influence of a chemoattractant (Fig. 2.1). Cell density is 

coupled to diffusion of VEGF through the differential equation which describes the cell velocity 

and views increasing gradients as cues for migration.  



9 

 

 

Figure 2.1. Continuum models. Cell density propagation from the right towards the tumour 
implant on the left [29] (Reproduced with permission from Elsevier). Endothelial cell 
distribution following the TAF gradient c = 1 – y [31] (Reproduced with permission from Oxford 
University Press). Vascular network formation [38] (Reproduced with permission from 
American Physical Society). 
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In addition, recent work performed by Connor et al. [39] utilized a continuum approach 

introduced by Balding & McElwain [26], and Byrne & Chaplain [29]. Integration of image 

analysis, computational modelling and mouse cornea experiments allowed them to make 

hypotheses regarding the synergistic effect between VEGF and FGF. The model simulated 

growth of mature and immature vessel length density, sprout tip cell density migration and 

diffusion of VEGF and FGF inside cornea as well as the implanted nylon pellet domain. 

Computational results were in good agreement with experiments, proving the continuum 

approach useful not only in modelling angiogenesis but also in generating hypotheses that can be 

experimentally tested. Authors conducted a local parameter sensitivity analysis and investigated 

coefficient significance relative to one another. First, they defined 3 metrics which characterized 

the vascular density profiles and individually then tuned model parameters to observe the 

changes. By varying the parameters by approximately ±10% from the values used in their model, 

which were selected based on literature values that were experimentally determined, they could 

compare the changes in the metrics. They concluded that the most significant parameters which 

influenced the availability of VEGF were the distance between the limbal vessels and the VEGF 

source, diffusion coefficient and decay coefficient of VEGF. In terms of coefficients that 

characterized the EC response to VEGF, were the chemotactic coefficient, together with 

coefficients which quantified the sprouting of new vessels and the amount of vessels left behind. 

Finally, they concluded that the most significant parameter is the distance between the limbal 

vessel and the VEGF source, which was twice as influential than any other parameter. They used 

coefficient values reported in literature whenever possible and manually tuned the parameters 

whenever necessary, while ensuring that they are physically realistic. In fact, we also adopt this 

approach to parameter tuning in our methodology. These mathematical models have proven to be 
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powerful tools to help understand angiogenesis that happens in mouse eye experiments, but these 

have yet to be applied to microfluidic systems. 

In this thesis we pursue the simpler continuum approach of Gamba’s [38] together with Connor’s 

model [39], as we are interested in average response of cells to VEGF gradients inside our 

microfluidic device and agreement between the two models. We refer to them as cell and vessel 

models, respectively. 

2.2 Discrete Models 

The first probabilistic model of angiogenesis was developed by Stokes and Lauffenburger in 

1991 [40]. In contrast to continuum models which provide average description and are useful in 

determining vessel network expansion rate, Stokes and Lauffenburger’s model was able to 

generate results regarding detailed vessel length and morphology of the vessel network (Fig. 

2.2). The primary focus was on random motion and chemotaxis of TECs. The model captures 

fundamental processes of angiogenesis such as: cell proliferation, migration (chemotaxis and 

random motility), anastomosis, and budding off from the newly formed vessels. It is a two-

dimensional, agent-based lattice-free model which also rests upon the snail-trail assumption 

(TEC movement creates/leaves vessels behind). Stochastic ordinary differential equation (ODE) 

is utilized to describe 2D velocity of the TECs. Cells are exposed to a steady-state profile of 

acidic Fibroblast Growth Factor (aFGF) which is released by a source (tumour) at the opposite 

end of the domain and ultimately governs cell migration. The model parameters, such as 

chemotactic coefficient, are determined from the in vitro experiments (Stokes et al.[41]). Their 

results were consistent with in vivo assays which lead to the conclusion that the TEC migration 

is crucial in determining the growth of vessel network.  
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Plank and Sleeeman [34] build on the work of Hill and Häder [42] and develop a discrete, biased 

random walk model of angiogenesis to assess the inhibitor role of angiostatin. Similarly, in 2008 

Milde et al. [43] develop a detailed 3D discrete model which captured the effects of soluble 

growth factors as well as the matrix-bound growth factors found in the ECM. Breakthrough in 

discrete modelling happened in 2009 when Bentley et al. [44] proposed a hierarchical agent-

based model which accounted for DII-4 lateral inhibition, responsible for tip and stalk cell 

differentiation. The model was successful at reproducing the observed experimental pattern 

where tip cells are differentiated from stalk cells at the start of angiogenesis (Fig. 2.2). This 

phenomena is sometimes referred to as a ‘salt and pepper pattern’ formation. Moreover, special 

models are the so called Cellular Potts models, initially proposed by Glazier and Granner in 1991 

[45]. They assume that cells occupy certain lattice sites and are assigned bond and spin energies 

through the Hamiltonian energy function. The methodology was later developed by Bauer et al. 

in 2007 [46] to include random motion, chemotaxis, haptotaxis and interaction with the ECM.  

An innovative approach was proposed by Anderson and Chaplain in 1998 [32] where they 

developed a discrete Cellular Automata model by discretizing nonlinear PDEs to simulate 

migration of TECs. The model captures random motility of cells, chemotaxis and interaction 

with extracellular matrix (ECM) through incorporating fibronectin macromolecule. In addition, 

the model allowed for anastomosis, mitosis and branching to be included. Once the PDEs were 

discretized it became possible to solve for probabilities, determined by chemotactic and 

haptotactic stimuli, which governed movement of TECs. This model was later extended to three 

dimensions by Chaplain et al. [47] and accounted for blood flow in the model of McDougall et 

al. [48]. Their findings were in good qualitative agreement with in vivo experiments for rabbit 

and mouse eye cornea angiogenesis assays.  
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In 2001 Tong et al. [49] developed a model of angiogenesis for the cornea pocket assay 

geometry. Their model captured well-established processes such as: random motility, 

chemotaxis, anastomosis, growth from existing vessels but also cellular uptake and chemical 

inactivation of angiogenic factors in ECM. This was the first model to impose a circular structure 

of limbus vessels as the initial condition and a source of angiogenic factors inside rectangular 

Cartesian coordinates. The model was later extended by Harington et al. [50] where they, besides 

source of TAF, such as basic Fibroblast Growth Factor (aFGF), also incorporate an inhibitor 

source, such as thrombospondin-1 (TSP). As expected, results showed that vascular growth is 

deterred in the domain where inhibitor is present. In addition, Tong et al. [51] improved the 

model by modelling diffusion of bFGF more accurately.  

Mathematical modelling of angiogenesis is highly desirable to provide a theoretical basis for 

advancing angiogenesis microfluidic systems. Das et al.  [52] recently showed that discrete 

modelling can reproduce morphology that is observed in angiogenesis microfluidic assays and is 

very useful in understanding the fundamental processes of angiogenesis (Fig. 2.2). 
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Figure 2.2. Discrete models. Angiogenesis with moderate chemotactic response under attractant 
source [40] (Reproduced with permission from Elsevier). Angiogenesis simulations illustrating 
initial tip/stalk pattern selection [44] (Reproduced with permission from PLOS Computational 
Biology). Simulations and experimental angiogenesis results [52] (Reproduced with permission 
from The Royal Society). 
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2.3 Hybrid Models 

One disadvantage to discrete modelling is that they become computationally intensive as number 

of cells increase. Although most discrete models adopt the snail-trail approach, computational 

intensity is still very high. Benefit of the hybrid models is that they can take advantage of 

continuum model’s computational effectiveness and produce relevant vessel network 

morphologies through the phase-field approach. One such model is proposed by Travasso et al. 

[53] where TECs are treated as discrete entities while the rest of the variables are modelled 

through the continuum approach (vessel density and TAF concentration). The model was further 

improved by Vilanova et al. [54] where they utilize computationally effective isogeometric 

analysis to model angiogenesis and study the importance of vascular regression and regrowth 

(Fig. 2.3). Although discrete and hybrid models provide qualitative description of vessel network 

morphology, they are theoretically complex and computationally intensive. Since the needs of 

our lab are centered around utilizing mathematical modelling as a microfluidic device design 

tool, average description of cell density that would be able to predict the migration distance 

under various growth factor concentrations was deemed as sufficient which led us to pursue 

continuum models 
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Figure 2.3. Hybrid models. Growth of capillary network [53] (Reproduced with permission from 
PLOS One). Tumour induced angiogenesis [54] (Reproduced with permission from The Royal 
Society). 
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2.4 Thesis Objectives  

These reports have demonstrated how mathematical models can be powerful tools for advancing 

our understanding of angiogenesis, specifically in mouse cornea experiments. To date, however, 

these mathematical models have not yet been integrated with microfluidic systems. Applying 

mathematical models to microfluidic systems has potential to enable researchers and 

microfluidics engineers to better design and operate their microsystems, and offer new insights 

based on hypotheses generated from highly controlled in vitro experiments. 

Objective of this thesis was to develop and apply a combined mathematical and computational 

modelling framework and specifically tailor it for microfluidic cell migration and angiogenesis 

systems. The goal was to allow optimization of the engineering design of microfluidic systems, 

where the model may be used to test the impact of various geometric parameters on cell 

migration and angiogenesis processes, and assist in identifying optimal device dimensions to 

achieve desired readouts. With this goal in mind, we pursued the following two specific aims: 

1. Explore the implementation of 3 independent computational modelling approaches to 

assess their feasibility for application to microfluidic systems, and select one of the 

approaches for further analysis.  

2. Using the chosen modelling approach, extend the mathematical model to cell migration 

and angiogenesis with microfluidic geometries, and establish for use as a guide for 

microfluidic design and geometry optimization. 

We chose to employ a continuum mathematical models based on the work of Gamba et al. [38] 

and Connor et al. [39] and focused on examining the average response of cells to VEGF 
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gradients inside our microfluidic device, including the time-dependent changes in cell density 

and vessel density, and how they are affected by changes in migration port width and length. Our 

work demonstrates how mathematical modelling may be integrated with microfluidics to offer 

new perspectives on emerging problems in biomicrofluidics and cancer biology. 
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Chapter 3 

3 Investigated Models 
As part of this thesis we have investigated numerous modelling approaches and will report only 

two models which were pursued, besides the actual 1D continuum models which are presented in 

Chapter 4.  

3.1 Two-dimensional (2D) Continuum Model  

The model utilized in our initial study was based on the continuum model proposed by Anderson 

and Chaplain [32]. The model was derived from the conservation of mass equation for ECs.  The 

governing Equation (3.1) of EC density captures random motility, chemotaxis and haptotaxis due 

to VEGF and FN, respectively.  

 

!"
!"
= 𝐷!∇!𝑛 − 𝜒!∇ ∙ 𝑛∇𝑐 − 𝜌!∇ ∙ 𝑛∇𝑓        (3.1) 

where 𝑛 is number of ECs per unit area, 𝐷! is EC random motility coefficient, 𝜒! is chemotactic 

coefficient, 𝑐 is VEGF concentration, 𝜌! is haptotactic coefficient and 𝑓 is FN concentration.  

The nature of the model implies migration of cells towards a positive VEGF and FN gradients. 

The first term on the right side, indicates random motility of ECs, while the second and third 

terms indicate chemotactic and haptotactic responses, respectively. Eq. (3.2) presents the model 

in dimensionless form.  

 
!!!

!!!
= 𝐷′∇!𝑛! − 𝜒′∇ ∙ 𝑛!∇𝑐! − 𝜌′∇ ∙ 𝑛!∇𝑓!        (3.2) 

 

where 

𝑛’ =
𝑛
𝑛!
, 𝑐’ =

𝑐
𝑐!
, 𝑓! =

𝑓
𝑓!
, 𝑡’ =

𝑡
𝜏 ,      𝑥

! =
𝑥
𝐿 ,      𝑦

! =
𝑦
𝐿 
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𝐷′ =
𝐷!
𝐷!
, 𝜒′ =

𝜒!𝑐!
𝐷!

, and  𝜌′ =
𝜌!𝑓!
𝐷!

 

with 𝑛!, 𝑐!, 𝑓! and 𝜏 being the characteristic variables used for non-dimensionalization. Model 

coefficients were obtained based on experiments performed by Stokes et al. [41].  

To implement the model in FEniCS [55], the governing Eq. (3.1) had to be cast into variational 

form as presented in Eq. (3.3).  

 

!!!!! !!!

!!!
𝑣 + 𝐷! ∇!𝑛! ∙ ∇!𝑣 + 𝜒!∇!𝑣 ∙ 𝑛!∇!𝑝! + 𝜌!∇!𝑣 ∙ 𝑛!∇!𝑐! 𝑑𝛺 = 0  (3.3) 

where 𝑣 is the test function. The system was solved using Newton solver with a time-step of 

𝑑𝑡 = 0.05 (dimensionless), on a 30 x 30 unit-square grid. Due to VEGF and FN diffusion 

coefficients being significantly larger than the EC random motility coefficient, VEGF and FN 

distributions were assumed to be in steady-state. A zero-flux Neumann boundary condition (BC) 

was applied on all four sides of the domain for the EC (𝑛) field.  

Anderson and Chaplain assumed approximately circular tumour at dimensionless coordinates 

(x’, y’) of (1, 0.5) to act as the source of VEGF. The steady-state distribution of VEGF is applied 

through Eqs. (3.4) – (3.5) and illustrated in Figure 3.1a. 

 𝑐 𝑥,𝑦, 𝑡 =  !!! !

!!!.!
                       (3.4) 

 𝑟 =  𝑥 − 1 ! + 𝑦 − !
!

!
                  (3.5) 

where 𝑘 is another parameter. 

It was also of interest to investigate the influence of an increasing FN distribution described by 

Eq. (3.6) and illustrated in Fig. 3.1b. 
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𝑓 𝑥,𝑦, 𝑡 = 0.75𝑥                        (3.6) 
 

In our analysis, we simplify the diffusion port geometry to a uniform square. Initial condition for 

EC density was assumed to resemble semicircular cell clusters (Fig. 3.1c). Chemotactic cell 

migration at 1.125 days is illustrated in Fig. 3.1d.  

 

Figure 3.1 Initial development of Anderson and Chaplain’s model [32]. (a) Steady-state VEGF 
distribution. (b) Linear steady-state FN distribution. (c) Initial EC distribution. Red indicates 
high and blue indicates low EC density. (d) EC migration due to VEGF and FN gradient at t = 
1.125 days.  



22 

 

As we assumed that there is a tumour at the right end which serves as a source of VEGF and the 

diffusion port in our microfluidic device to be coated unevenly (linearly) with FN, induced both 

chemotaxis and haptotaxis due to increasing VEGF and FN gradients, respectively.  However, as 

this is a continuum model, we realized that no significant information regarding qualitative 

description of the morphology can be obtained and since our microfluidic channels are uniformly 

coated with FN, the two-dimensional model did not have much advantage over the one-

dimensional model. 

3.2 Three-dimensional (3D) Discrete Model 

Next, we investigated the open-source code through the so-called Microvessel Cancer, Heart and 

Soft Tissue Environment (CHASTE) platform [56]. Simulations are based on an off-lattice, cell-

center discrete model and are implemented according to approach presented in [39]. The 

framework shares many features as the spatial models of vascularized tissues proposed in [57]. 

The governing probabilistic model which describes EC random biased walk, influenced by space 

availability and VEGF gradient, is presented in Eq. (3.7).  

Pr 𝑥,𝑦, 𝑡 =  !"#
!!!"!

 !!!! !,!
!!

 1+  !
!!

𝑉 𝑦, 𝑡 − 𝑉 𝑥, 𝑡       (3.7) 

where 𝑁 is the number of cells, 𝑁! is the carrying capacity for movement, 𝑉 is the VEGF 

concentration, 𝐷 is the maximum random motility, and 𝜒 is the chemotactic coefficient. 

To solve for the steady-state VEGF diffusion, Eq. (3.8) is solved. 

𝐷∇!𝑐 +  𝜌 𝑐! − 𝑐 + 𝑘𝑐 −  𝜆𝑐 = 0        (3.8) 
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where 𝑐 is the extravascular concentration of VEGF, 𝐷 is an effective diffusivity, 𝑐! is the 

vascular concentration, 𝜌 is an effective vascular permeability that is nonzero and positive only 

on lattice sites occupied by vessels, 𝑘 is a cell consumption or release rate, and 𝜆 is a positive 

rate of natural VEGF decay.  

In our simulations, a parent vessel is placed at the left side of the diffusion port to represent cells 

seeded in the channel. The source of VEGF is placed at the right end and resulting steady-state 

diffusion is modelled according to Eq. (3.8). Summarized in Fig. 3.2 are results for a 

microfluidic diffusion port geometry with dimensions of (100 µm wide x 100 µm tall x 320 µm 

long). 
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Figure 3.2 Angiogenesis simulations created by open-source software Microvessel CHASTE 
[56] inside the diffusion port geometry (100x100x320 µm). (a) Initial parent vessel used to 
represent seeded ECs in the left channel and source of VEGF from the right channel. (b) Vessel 
growth at t = 1 day. (c) Vessel growth at t = 2 days. 

Blood vessel growth is directed towards the increasing VEGF gradient and probability of 

sprouting increases with higher VEGF concentration. Results provide realistic and detailed 
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vessel network morphology that would develop in vivo. However, due to complexity of the 

source code and lack of documentation we were unable to know with certainty what each model 

feature did to be able to tailor it to our microfluidic environment. For instance, the software 

assumed the parent vessel to be fixed and we had difficulties representing individual cells that 

would be lined along the lumen in the left channel. The fact that ECs in our engineered vessel-

like lumen structure may not behave exactly like the ECs in a typical blood vessel together with 

the necessity to model transient VEGF diffusion, led us to develop our own one-dimensional 

continuum models. 
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Chapter 4 

4 Integration of Computational Modelling with 
Microfluidic Cell Culture Experiments 

4.1 Rationale  

The model of Anderson and Chaplain [32] was useful in predicting chemotactic and haptotactic 

EC responses in 2D. However, since our microfluidic device is uniformly covered with FN (i.e., 

no gradient) reduced the necessity for modelling haptotaxis. Secondly, since the model is 

continuous, it is unable to provide qualitative description of vessel network morphology except 

the travel distance data. With the goal to develop models that would accurately predict EC 

migration and angiogenesis and could be validated against our experimental data, the model did 

not provide significant benefits over the 1D models and therefore we decided to pursue the latter.    

Although the investigated 3D discrete model was relatively easy to adopt due to Microvessel 

CHASTE [56] tutorials and provide realistic qualitative description of vessel morphology, it was 

unfeasible to adopt in our study due to lack of flexibility in terms of tailoring it to our system. 

For instance, we were unable to vary the parent vessel diameter and ‘tune’ it to our lumen 

dimensions. Furthermore, it was difficult to precisely extract travel distance data of the vessel 

network and validate it against our experimental EC migration data. Hence, to study EC 

migration and angiogenesis in microfluidic environments we pursued 1D continuum approaches.  
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4.2 Theory and Methodology 

Geometric Domain: The Microfluidic System 

Our group has developed microfluidic cell culture systems to study both chemotactic cell 

migration and angiogenic vessel growth. Our most recent system was developed to study 

comigration behaviour of mammary epithelial cells and neighbouring endothelial cells in a breast 

cancer context. Our system enabled formation of parallel double lumens (PDLs) that modelled 

the 3D tubular structures of both endothelial-lined blood vessels and epithelial-lined mammary 

ducts. The present study in mathematical and computational modelling focuses specifically on 

this system. 

The microfluidic system consisted of two parallel microchannels (500 µm wide x 350 µm tall x 7 

mm long) connected by three connecting migration channels (i.e., “ports”, 320 µm wide x 100 

µm tall x 720 µm long) (Fig. 4.1a, 4.1b). Inlet and outlet reservoirs (1- and 2-mm diameters 

respectively, each 1-mm tall) were located at the ends of the microchannels. To form the parallel 

double lumens, the entire system was initially filled with a prepolymerized mixture of Matrigel 

(#354230, Corning) and Type I collagen (#354249, Corning). Lumens were created in both left 

and the right microchannels via a modified version of the viscous finger patterning technique. To 

study endothelial cell migration or angiogenic sprouting, human umbilical vein endothelial cells 

(HUVECs) were introduced and allowed to adhere to the inner surface of the left lumen for 24 h. 

Afterwards, VEGF was introduced into the right lumen, establishing a chemical gradient across 

the migration ports and marking the start of the experiment (t = 0). For a more detailed 

description of the protocol please refer to [18].  
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Computational Approach 

We were interested in applying two existing one-dimensional (1D) continuum models to our 

microfluidic geometry, one based on the work of Gamba [38] to model the density of the cell 

population as a continuous function, and the other based on the work of Balding & McElwain 

[26], Byrne & Chaplain [29], and Connor et al. [39] to model the density of vessels as a 

continuous function. Accordingly, we refer to the former as the “cell model”, and the latter as the 

“vessel model” henceforth. To apply these two models to our system, we used an integrated 

computational approach, combining each continuum model with 3D numerical simulations 

(performed in COMSOL) to determine the biotransport of VEGF throughout the microfluidic 

system. Specifically, we utilized the Transport of Diluted Species COMSOL module to simulate 

VEGF diffusion (Fig. 4.1c). Because the microfluidic system consisted of three identical 

migration ports, we assumed that identical cell behaviour would occur in each migration port due 

to symmetry, and thus focused on only the middle migration port as our region of interest. After 

simulating VEGF diffusion over time, we extracted VEGF concentration values at the point in 

the 3D domain corresponding to the right boundary in our 1D domain (red point in Fig. 4.1d, 

𝑥′ = 1 in Fig. 4.1f). VEGF concentration values in 15-min intervals were captured (Fig. 4.1e) 

and imposed as a time-dependent Dirichlet boundary condition (BC) at 𝑥′ = 1 in both the cell 

and vessel models. All equations in both models have been solved using the semi-analytic 

Method-of-Lines [58] technique. The spatial derivatives have been discretized using the finite 

difference method, with 150 nodes, and the system was solved using the MATLAB’s ode15s 

routine. The advantages of Method-of-Lines are the computational efficiency, numerical stability 

and the well-developed state of the art solvers, such as ode15s.  
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Figure 4.1. Microfluidic device geometry, nomenclature, and general methodology. (a) Image of 
microfluidic device used to study cancer cell migration and angiogenesis (scale bar ~ 5 mm). 
Device consists of 2 x 2 array of microfluidic cell culture systems. (b) Geometry of single 
microfluidic cell culture system, consisting of left and right microchannels and interconnecting 
migration channels. This geometry was employed for our 3D COMSOL simulations. (c) Plot of 
VEGF concentration in 3D microfluidic system after 24 h of diffusion from VEGF source. (d) 
Outline of microfluidic system showing location (x'=1; red point) where VEGF concentration is 
exported every 15 min and imposed as time-dependent Dirichlet boundary condition in our 1D 
mathematical models. (e) VEGF concentration at x'=1 over 24 h. (f) Top view projection of 3D 
domain. Inset illustrates the domain of interest for our 1D mathematical models (x’-axis is 
horizontal direction). 
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Cell Model 

The chemotactic migration model developed by Gamba et al. [38], which we refer to here as the 

cell model, is governed by the following set of partial differential equations (PDEs):  

𝜕𝑛
𝜕𝑡 +  

𝜕
𝜕𝑥 ∙ 𝑛 𝑢 = 0 (4.1) 

𝜕𝑢
𝜕𝑡 + 𝑢 ∙

𝜕𝑢
𝜕𝑥 = 𝜒

𝜕𝑐
𝜕𝑥 (4.2) 

𝜕𝑐
𝜕𝑡 = 𝐷∇!𝑐 −  λ 𝑐 (4.3) 

where n is endothelial cell (EC) density, u is velocity (a scalar here because our model is one-

dimensional), c is VEGF concentration, 𝜒 is chemotactic coefficient, and D and λ are diffusion 

and inverse degradation coefficients of VEGF, respectively. Neumann BC (zero flux) was 

imposed on Eq. (4.1) for EC density n and zero-velocity (u) on Eq. (4.2) at the left and right 

boundaries. For VEGF concentration c in Eq. (4.3), a zero-value Dirichlet BC was imposed at 

the left boundary, and a time-dependent Dirichlet BC 𝑐 = 𝑐𝑔!(𝑡) was imposed at the right 

boundary, based on concentration values extracted from our time-dependent 3D COMSOL 

simulations (as described above, Fig. 4.1). Thus, the BCs are: 

x = 0: ∇ ∙ 𝑛𝑢 = 0, 𝑢 = 0, 𝑐 = 0           (4.4) 

x = L: ∇ ∙ 𝑛𝑢 = 0, 𝑢 = 0, 𝑐 = 𝑐𝑔!(𝑡) (4.5) 

To model the initial condition (IC) of our experimental setup, we used a piecewise continuous 

function as follows: 

 
𝑛 =

                               1, 0 ≤ 𝑥 ≤ 𝜉

𝑛! exp −
𝑥!

2𝜎! , 𝜉 ≤ 𝑥 ≤ 𝐿  (4.6) 
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where 𝜉 represents the edge of the lumen. Essentially, our IC consisted of first applying a step 

function from the lumen centerline (𝑥 =  0) to the edge of the lumen 𝜉, and then smoothing out 

minor cell spread with a normal distribution function from 𝜉 ≤ 𝑥 ≤ 𝐿. We note that validation of 

our numerical results with our experimental data led us to hypothesize that different percentages 

of cells are activated under different VEGF concentrations. Thus, we investigated three different 

VEGF concentrations of 30, 100 and 500 ng/mL, where normalized values of 0.2, 0.8 and 1 were 

imposed as EC density (cell model) and vessel density (vessel model) step functions, 

respectively. For convenience, we non-dimensionalized Eqs. (4.1) – (4.5), resulting in: 

𝜕𝑛!

𝜕𝑡! + 𝑢
! 𝜕𝑛

!

𝜕𝑥! + 𝑛
! 𝜕𝑢

!

𝜕𝑥! = 0 (4.7) 

𝜕𝑢!

𝜕𝑡! + 𝑢
! 𝜕𝑢

!

𝜕𝑥! = 𝜒′
𝜕𝑐!

𝜕𝑥! 
(4.8) 

𝜕𝑐!

𝜕𝑡! = D′
𝜕!𝑐!

𝜕𝑥!!
− 𝜆′𝑐! (4.9) 

x’ = 0: ∇′ ∙ 𝑛!𝑢! = 0, 𝑢′ = 0, 𝑐′ = 0           (4.10) 

x' = 1: ∇′ ∙ 𝑛!𝑢! = 0, 𝑢′ = 0, 𝑐′ = 𝑐𝑔′!(𝑡) (4.11) 

where the dimensionless quantities are defined as: 

 𝑛! =
𝑛
𝑛!
, 𝑢! =

𝑢
𝑈!
,

𝑐! =
𝑐
𝑐!
,      𝑐𝑔!! =

𝑐𝑔!
𝑐!
,       𝑡! =

𝑡
𝜏  ,         𝑥! =

𝑥
𝐿∗ 

 

  𝜒′ =
𝜒 𝑐!
𝐷   ,               𝐷′ =

𝐷
𝐷 ,               𝜆′ = 𝜆𝜏     

Please note that the characteristic variables used for non-dimensionalization of the cell model 

have been summarized in Table 3. 
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Vessel Model 

The vessel model developed by Connor et al. [39] was used here to simulate the average 

migration of sprout tip density 𝑛 and the average growth vessel length density 𝜌 in response to 

the average VEGF concentration 𝑣. The model was derived based on the mass conservation 

principle: 

 𝜕𝜌!
𝜕𝑡 =  

𝜕𝐽!
𝜕𝑥 +  𝜎! (4.12) 

where  𝜌! is the species density,  𝐽! is the flux, and 𝜎! is the net rate of production per unit 

volume. The model captures established angiogenic processes, including: EC random motility, 

chemotaxis, vessel sprouting, tip-to-vessel anastomosis, tip-to-tip anastomosis and cell death. 

Random motility and chemotaxis are incorporated through a flux term, while vessels are created 

when tips leave a control volume, a methodology known as the ‘snail-trail-approach’ [26]. 

Here, we employed a simplified model that neglects vessel maturity and the effects of fibroblast 

growth factor (FGF), resulting in the following set of governing equations for 𝑛,𝜌, and 𝑣: 

 𝜕𝑛
𝜕𝑡 =

∂
∂𝑥 ∙ 𝜇

∂𝑛
∂𝑥  −  𝜒 𝑛

∂v
∂𝑥  + 𝛼!

𝑣
𝑣 + 𝑣!.!

 𝜌 − 𝛽! 𝜌 𝑛 − 2𝛽!𝑛! −  𝛾 𝑛 
𝑣!.!

𝑣 + 𝑣!.!
   (4.13) 

 𝜕𝜌
𝜕𝑡 = 𝜅 𝜇

∂𝑛
∂𝑥 − 𝜒 𝑛

∂v
∂𝑥  −  𝛾 𝜌 

𝑣!.!
𝑣 + 𝑣!.!

 (4.14) 

 𝜕𝑣
𝜕𝑡 =  𝐷

𝜕!𝑣
𝜕𝑥! − 𝜆𝑣 (4.15) 

where 𝜇 is the random motility coefficient for sprout tips; 𝜒 is the chemotactic coefficient for 

sprout tips to VEGF; 𝛼! is the maximum rate of VEGF-induced tip production per vessel length; 
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𝑣!.! is the VEGF concentration at which VEGFR-2 receptors are half occupied; 𝛽! is the rate of 

tip-to-vessel anastomosis per unit vessel length density per unit tip density per unit volume; 𝛽! is 

the rate of tip-to-tip anastomosis per unit tip density squared per unit volume; 𝛾 is the maximum 

rate of EC death in low VEGF concentrations;  𝜅 is the coefficient which quantifies the length of 

vessel left behind as the sprout tip leaves unit volume; D is the VEGF diffusion coefficient, and  

𝜆 is the inverse natural decay rate of VEGF. 

Similar to the cell model above, zero-flux BCs were imposed for tip cell density n, while a zero-

value Dirichlet BC for VEGF concentration was imposed at the left boundary and a time-

dependent VEGF concentration 𝑣 = 𝑣𝑔!(𝑡) was imposed at the right boundary based on 

COMSOL simulations. Eqs. (4.13) and (4.15) both had zero ICs. For vessel density 𝜌, BCs were 

not required, while its IC was the same piecewise continuous function used for the cell model. In 

summary, the BCs and ICs for the vessel model were: 

x = 0: 
𝜇 
∂𝑛
∂𝑥  −  𝜒𝑛 

∂v
∂𝑥 = 0, 𝑣 = 0 (4.16) 

x = L: 
          𝜇 

∂𝑛
∂𝑥  −  𝜒 𝑛 

∂v
∂𝑥 = 0, 𝑣 = 𝑣𝑔!(𝑡) (4.17) 

 
𝜌 =

                               1, 0 ≤ 𝑥 ≤ 𝜉

𝜌! exp −
𝑥!

2𝜎! , 𝜉 ≤ 𝑥 ≤ 𝐿  (4.18) 

 

where 𝜌! was manually adjusted as an experimental parameter to fit the experimental data. Non-

dimensionalized form of Eqs. (4.13) – (4.17) is presented below: 
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𝜕𝑛!

𝜕𝑡! =
∂
𝜕𝑥! ∙ 𝜇!

𝜕𝑛!

𝜕𝑥! − 𝜒′𝑛
! 𝜕𝑣

!

𝜕𝑥! + 𝛼!!
𝑣!

𝑣! + 𝑣!.!!
𝜌! − 𝛽!!𝜌

!𝑛! − 2𝛽!!𝑛
!!

− 𝛾!𝑛!
𝑣!.!!

𝑣! + 𝑣!.!!
 

(4.19) 

𝜕𝜌!

𝜕𝑡! = 𝜅 𝜇!
𝜕𝑛!

𝜕𝑥! − 𝜒′𝑛
! 𝜕𝑣

!

𝜕𝑥! − 𝛾
!𝜌!

𝑣!.!!

𝑣! + 𝑣!.!!
 (4.20) 

𝜕𝑣!

𝜕𝑡! = 𝐷′
𝜕!𝑣!

𝜕𝑥!!
− 𝜆′𝑣! (4.21) 

x’ = 0: 
𝜇!
∂𝑛!

∂𝑥!  −  𝜒′𝑛!
∂𝑣!

∂𝑥! = 0,         𝑣! = 0       (4.22) 

x’ = 1: 
𝜇!
∂𝑛!

∂𝑥!  −  𝜒′ 𝑛!
∂𝑣!

∂𝑥! = 0, 𝑣! = 𝑣𝑔!! (4.23) 

where the dimensionless quantities are defined as: 

 𝑛! =
𝑛
𝑛!

   , 𝜌! =
𝜌
𝜌!

    , 𝑣! =
𝑣
𝑣!

    ,         𝑡! =
𝑡
𝜏     ,           𝑥! =

𝑥
𝐿∗  

 𝜇! =
𝜇
𝐷 ,                    𝜒′ =

𝜒 𝑣!
𝐷   ,               𝐷′ =

𝐷
𝐷     

 
𝛼′! =

𝛼!𝜏 𝜌! 
𝑛!

, 𝑣!.!! =
𝑣!.!
𝑣!

  ,              𝜅! =
𝜅 𝑛! 𝐿∗

𝜌!
    

 
 

We simplified our vessel model to focus on only one growth factor (VEGF), and to consider 

primarily random motility, chemotaxis, sprouting from vessels, anastomosis and regression 

(Table 1). Endothelial cell release and consumption of VEGF was neglected due to slight 

difference in derivation of two models and insignificant influence on results (which was verified 

in our vessel model simulations). In our models, we adopted coefficient values presented by 

Connor for the vessel model, except for the chemotactic coefficient, which we increased to 

185%, and the maximum rate of VEGF-induced tip production coefficient, which we decreased 
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to 10% of the values reported in literature (Table 2). Moreover, the chemotactic coefficient in the 

cell model was decreased to 55% of the literature value. VEGF diffusion and decay coefficients 

used in the cell model were the same as in the vessel model.  By manually tuning the mentioned 

parameters in both models, numerical results were matched against the experimental data. 

Connor and co-workers used coefficient values from the literature wherever possible. In 

instances where it was not feasible, they made reasonable assumptions and approximate 

coefficients that provided physically realistic results. Detailed justifications for each of the 

coefficients can be found in supplementary material of [39] and references listed in Table 2. The 

characteristic variables used for non-dimensionalization of the vessel model have been 

summarized in Table 3.  

Table 1. Model Capabilities 

Capability	 Cell	Model	 Vessel	Model	
Random motility 	 ü 	
Chemotactic migration ü 	 ü 	
Sprouting from vessels 	 ü 	
Anastomosis 	 ü 	
Regression 	 ü 	
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Table 2. Definition of coefficients and reference values [39] 

Coefficient Symbol Values Units References 

VEGF diffusion coefficient 𝐷 1.95 x 10-7 [m2 h-1] [59], [60], [61] 

Random motility coefficient 𝜇 6 x 10-11 [m2 h-1] [29], [62], [41] 

Chemotactic coefficient  𝜒 1.837 [m2 h-1 M-1] [26], [29], [63] 

The maximum rate of VEGF-
induced tip production per vessel 
length  

𝛼! 2600  [tips h-1 ·(m of vessel)-1] [39] 

The VEGF concentration at 
which VEGFR-2 receptors are 
half occupied  

𝑐!.!(𝑣!.!) 6.5 x 10-10 [M] = [mol L-1] [64], [65] 

Rate of tip-to-vessel anastomosis 
per unit vessel length density per 
unit tip density per unit volume  

𝛽1 1.56 x 10-9 [anastomosis instances h-1 m-3 
(m of vessel m-3)-1 (cells m-3)-1] [39] 

Rate of tip-to-tip anastomosis per 
unit tip density squared per unit 
volume  

𝛽2 1.03 x 10-15 

 

[anastomosis instances h-1 m-3 
(cells m-3)-2]	

 

[39] 

Maximal regression rate of ECs 𝛾 2.27 x 10-3 [h-1]  [66] 

Coefficient for vessel length left 
behind as sprout tip leaves unit 
volume  

𝜅 3.15 [(m of vessel) · cells-1 m-1]  [39] 

Inverse Natural decay constant 
of VEGF  𝜆 0.8 [h-1]  [39], [59] 
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Table 3. Characteristic values used for non-dimensionalization of the cell and vessel models. 

Cell model 

Characteristic parameter Symbol Values Units 

EC density normalization factor. 𝑛! 1 [cells m-3]  

Velocity normalization factor. 𝑈! 1 [m h-1] 

VEGF normalization factor. 𝑐! 12.8 x 10-9 [M] 

Time normalization factor. 𝜏 =
𝐿∗!

𝐷
  5.5 [h] 

Distance between the centerlines 
of the left and right channel. 𝐿∗ 1220 x 10!! [m] 

Vessel model 

Characteristic parameter Symbol Values Units 

EC density normalization factor. 𝑛! 1 x 10-12 [cells m-3]  

Vessel density normalization 
factor. 𝜌! 5.85 𝑥 10!    [m of vessel  m-3] 

VEGF normalization factor. 𝑣! 12.8 x 10-9 [M] 

Time normalization factor. 𝜏 =
𝐿∗!

𝐷
  5.5 [h] 

Distance between the centerlines 
of the left and right channel. 𝐿∗ 1220x 10 − 6 [m] 
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4.3 Results 

Model Demonstration 

To study chemotactic EC migration and angiogenesis, we applied the cell and vessel models 

respectively to determine cell density n and sprout density ρ as functions of distance into the 

migration port, beginning with the study of 500 ng/mL initial VEGF concentration. Both models 

have been implemented using MATLAB’s ode15s routine through the Method-of-Lines [58]. 

Using the cell model, we simulated cell migration, where t = 0 represented the beginning of cell 

migration starting at the center of the lumen. After 24 h, the EC density profile n traveled ~25% 

into the migration port. EC density did not exceed unity at any point since the cell model only 

accounted for chemotaxis (Fig. 4.2, a-c). Similarly, the vessel model predicted the vessel density 

profile 𝜌 traveled ~25% to ~50% into the migration port (Fig. 4.2, d-f). Vessel density exceeds 

unity in some locations because the vessel model accounted for sprouting from vessels (𝛼0𝑣) and 

displayed slight curvature at the quarter distance which reflected tip-to-vessel and tip-to-tip 

anastomosis (𝛽1, 𝛽2), as well as regression (𝛾).  

Because both models are applied to the same set of cell culture experiments, the initial EC 

density distribution in the cell model and the blood vessel density distribution in the vessel 

model had to be identical in form. In other words, ICs for the cell and vessel models had to have 

the same standard deviation (𝜎 =  75 µm). As mentioned, chemotactic coefficients of the cell 

and vessel models were tuned to 55% and 185%, respectively, of the values used by Connor et 

al. [39] to match our experimental results (discussed below).  
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Figure 4.2. Cell migration and angiogenic sprouting as predicted using the cell and vessel 
models, respectively. Cell model results for (a) t = 0, (b) t = 12 h, and (c) t = 24 h. Vessel model 
results for (d) t = 0, (e) t = 12 h, and (f) t = 24 h. Illustrations are included to visually represent 
and help interpretation of the graphs. ECs are shown in blue, dead cells are shown in red (for d, 
e, and f only). Hydrogel regions are grey, channels filled with media are pink, and the VEGF 
gradient is shown as green. Graphs show EC density (𝑛′) and VEGF concentration (𝑐′) for the 
cell model, and sprout tip density (𝑛′), vessel length density (𝜌′) and VEGF concentration (𝑣′) 
for the vessel model, all as dimensionless quantities. Distance is represented by a dimensionless 
x’-axis. 
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Fitting Experimental Data to the Models 

We used data from experiments performed in our microfluidic systems, with three different 

VEGF concentrations of 30, 100 and 500 ng/mL over a 24 h period. As described previously, 

cells were fluorescently labeled, and images were obtained by fluorescence microscopy (EVOS 

FL Cell Imaging System) at 24 h. Image analysis software (ImageJ) was utilized to determine 

travel distance of each individual cell. To obtain a spatial distribution of cell migration distance, 

we divided the horizontal axis into 10-µm bins, and counted the number of cells in each bin 

using MATLAB. This allowed us to obtain experimental cell density “profiles” against which 

numerical simulations could be validated. Cell density profiles for all three VEGF concentrations 

were normalized against the maximum cell count (84 cells) in the 500 ng/mL VEGF experiment 

(thus ensuring that maximum normalized density was equal to unity). We hypothesized that 

different levels of VEGF concentrations resulted in different fraction of ECs being activated, 

leading us to impose values of 0.2, 0.8 and 1 for 𝑛! and 𝜌! step-functions for 30, 100 and 500 

ng/mL VEGF concentrations, respectively. Fig. 4.3 shows results from our comparison of the 

cell model (dotted lines), the vessel model (solid lines), and experimental data (filled points). 

Both models were in good agreement with experimental data. The reason why the vessel model 

had slight ‘overshoots’ is due to its complexity and higher level of physiological relevance. 

Perhaps future improvement in our lab’s in vitro methods will produce experimental results that 

will be in better agreement with this model.  
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Figure 4.3. Experimental data fitted with both the cell and vessel models. (Dotted lines) EC 
density of the cell model; (solid lines) vessel length density of the vessel model; (filled data 
points) experimental data. VEGF concentrations tested included: 30 ng/mL (blue), 100 ng/mL 
(red), and 500 ng/mL (purple), and all results represent 24-h periods. 

 

Using the Model as a Design Tool: Geometric Changes 

We investigated the potential of geometric parameters such as migration port width and length to 

impact cell migration and angiogenic sprouting. Our integrated methodology (COMSOL 

together with the cell and vessel mathematical models) enabled us to conveniently adjust 

geometric parameters and test the effect of these changes on cell density and vessel density.  We 

reasoned that such a demonstration will prove to be a useful strategy for facilitating both 

microsystem design and experimental design. 

We focused on adjusting the dimensions of the migration ports, motivated by the idea that 

diffusion of growth factors such as VEGF is strongly impacted by the cross-sectional area, while 
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the strength of a chemotactic response is strongly governed by the strength or “steepness” of the 

chemical gradient. Furthermore, the distances traveled by individual cells, or the sprout length of 

vessels, must be measured within a reasonable timeframe, and developing models can help 

predict the proper timecourse to consider for experimentation. Migration port widths were 

adjusted to 50% (160 µm) and 150% (480 µm) of the original width (320 µm), and migration 

port lengths were adjusted to 75% (540 µm) and 150% (1.44 mm) of the original length (720 

µm). Migration port lengths less than 75% of the original length led to ECs entering the right 

microchannel in our simulations, and so we chose not to discuss these cases. Representative 

geometries of these adjusted dimensions are illustrated in Fig. 4.4.  

First, we obtained VEGF concentration curves with respect to time for each of these sets of 

migration port dimensions (Fig. 4.4c and f), where VEGF concentration was measured at the 

VEGF source location (x’ = 1). Increasing port width (Fig. 4.4b) led to a more rapid decrease in 

VEGF concentration at the source location, indicating a significant increase in diffusive flux 

through migration ports with larger cross-sections. In contrast, increasing port length (Fig. 4.4e) 

led to a slower decrease at the source location, indicating a more controlled diffusion through the 

longer migration ports.  
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Figure 4.4. Adjusted geometries: changes in migration port width (a-c) and length (d-f). (c) 
VEGF concentration profiles over 24 h, at x' = 1 for different widths. (f) VEGF concentration 
profiles over 24 h, at x' = 1 for different lengths. 
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Geometric Effects on Cell Behaviour 

For different sets of migration port width and length, we employed our cell and vessel models to 

determine the geometric effects on migration and angiogenic sprouting behaviour. Figures 4.5 

and 4.6 show the effects of changing the width for the 500-ng/mL VEGF concentration case, as 

predicted by the cell and vessel models, respectively. 

 

	

Figure 4.5. Changing widths with the cell model. Cell model chemotactic migration simulations 
for different migration port widths (w’ = 0.5, 1.0 and 1.5) occurring over 24 h with VEGF 
concentration at 500 ng/mL. 
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Figure 4.6. Changing widths with the vessel model. Vessel model simulations for different 
migration port widths (w’ = 0.5, 1.0 and 1.5) occurring over 24 h with VEGF concentration at 
500 ng/mL. 
 

As mentioned, decreasing migration port width (cross section) impedes diffusion, thus leading to 

higher VEGF concentration at the right end of the domain (x’ = 1), and lower VEGF 

concentration at the left end (x’ = 0). Higher VEGF concentration means a steeper (and steadier) 

gradient across the migration port. Our simulations also suggest that the smallest width results in 

the farthest cell migration, although the increase in average migration distance is small. The 

vessel model also illustrates that steeper gradient results in stronger angiogenic response 
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observed through higher vessel length density and farther migration. However, due to the 

complexity of the vessel model and the presence of other effects not present in the cell model, it 

may be difficult to notice the increase in migration. 

Figures 4.7 and 4.8 show the effects of changing migration port length for the 500-ng/mL 

VEGF concentration case, as predicted by the cell and vessel models, respectively. Based on the 

cell model (Fig. 4.7), we observed that the optimal migration port length among the three tested 

cases is the 540 µm length (i.e., the shortest). As expected, for the same VEGF concentration, 

ECs migrate at similar (but not identical) rates, and reach the right channel sooner. Importantly, 

these predictions could have been used as a guide during the device design stage prior to 

performing the actual experiments. To illustrate this point, Fig. 4.3 may be revisited, where it can 

be observed that cell responses for the 30 and 100 ng/mL VEGF concentration scenarios are 

difficult to delineate. However, if 540-µm long migration ports were used instead of 720-µm 

long migration ports, it may be hypothesized that a greater difference between the two cases may 

be detected, allowing effects of VEGF gradients to be pronounced. We note that the vessel 

model (Fig. 4.8) provides the same prediction as the cell model, with only slight differences 

regarding travel distance. Hence, both models predict that the optimal migration length for 

detecting angiogenesis after 24-h of 500 ng/mL VEGF exposure (in terms of providing the most 

information) is the 540-µm length.  
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Figure 4.7. Changing lengths with the cell model. Cell model simulations for different migration 
port lengths (l’ = 0.75, 1.0 and 1.5) occurring over 24 h with VEGF concentration at 500 ng/mL. 
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Figure 4.8. Changing lengths with the vessel model. Vessel model simulations for different 
migration port lengths (l’ = 0.75, 1.0 and 1.5) occurring over 24 h with VEGF concentration at 

500 ng/mL. 
 
 

To summarize the findings regarding changing widths and lengths of migration ports, we plotted 

on the same graph EC migration (the cell model) and angiogenesis (the vessel model) at 24 h 

under 500 ng/mL VEGF concentration. 
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Figure 4.9. Assessing geometric features potential to enhance angiogenesis. Three different 
diffusion port widths (top) and lengths (bottom). 
 

Although varying cross-sectional area can impede (or facilitate) diffusion, width did not appear 

to play a major role in affecting migration an angiogenesis for this specific VEGF concentration 

range (30 – 500 ng/mL). In contrast, length plays a significant role in enhancing angiogenesis 

due its strong effect on the gradient. This is in accordance with Fick’s law of diffusion, as shorter 

distances will establish steeper gradients, and therefore result in most prominent cell response. 
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Hence, we hope that these findings will serve as a design guide for the microfluidic community 

and provide computational basis that will improve current and future cell migration assays. 
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Chapter 5 

5 Conclusions and Future Work 
Angiogenesis is the key process that enables tumour growth past the avascular stage and 

metastasis. Hence, understanding angiogenesis is an important step in improving treatment plans 

and putting cancer into remission. High costs and ethical issues associated with animal testing 

has motivated researchers to develop highly accessible and controllable microfluidic devices for 

studying angiogenesis with better physiological relevance than conventional in vitro assays. 

Unfortunately, researchers often rely on trial-and-error approach at the beginning of the 

microfluidic device design process which is inefficient, time consuming and costly. In this work, 

we have tailored two existing mathematical models for EC migration and angiogenesis with the 

aim to create computational framework that could provide guidance with regards to geometric 

feature selection. More specifically, we have simulated chemotactic migration and angiogenesis 

inside the static diffusion microfluidic device under 30, 100 and 500 ng/mL VEGF 

concentrations over a 24h period. The models were successfully validated against experimental 

data and suggested potential ways of optimizing currently used devices.  

In the future, these models can be extended to study effects of drugs in conjunction with 

additional growth factors as well as migration of other cells. Microfluidics has the opportunity to 

improve current drug development and testing by providing insight into effectiveness of potential 

drug candidates early in the process and significantly reduce the development time and costs. To 

achieve this goal, the devices need to be optimized to provide appropriate gradients and 

concentration levels of various growth factors together with physiologically relevant drug 

concentrations. Computational modelling has a lot to offer to this end and our approach can be 
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extended to include various factors such as FGF and ANG-2, and study them in conjunction with 

anti-angiogenesis drugs.     Furthermore, besides the HUVECs, the model can be extended to 

study migration of different types of ECs and can be applied to coculture systems. The classic 

approach would be to treat tumour cells as sources of growth factors but due to their invasiveness 

in coculture systems, additional variables and appropriate BCs would need to be implemented.  
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Appendices  

We would like to express our gratitude to computational biology researchers from Oxford 

University for making their code open-source. We extended methodology proposed in Connor et 

al. [39]. Furthermore, graphing tools utilize source code found at 

http://www.che.utah.edu/department_documents/Projects_Lab/Projects_Lab_Handbook/MatlabP

lots.pdf. 

A1 – Cell Model  

A1.1 Main Code - Cell Model 
%Note: v in the cell model code represents velocity (u). 

clear all 

clc 

[ N, nsteps, x_dim_less, NonDimEndTime, chi_v, D_v, lamda_v]=CellCoeffs(); 

t=linspace(0,NonDimEndTime,nsteps); 

RELTOL = 1e-8; 

options = odeset('BDF','on'); 

options = odeset(options,'RelTol',RELTOL); 

[n, v, C ]=InitialDepVarCell1D(); 

                

y0 = [n, v, C]'; 

n_graph=zeros(N); 

vel_graph=zeros(N); 

vegf_graph=zeros(N); 

 

%fill up only the first row, other rows are reserved for other time steps 

n_graph(1,1:N)=n; 

vel_graph(1,1:N)=v; 

vegf_graph(1,1:N)=C;  

 

for ctr=2:nsteps                 

            t_interval = [t(ctr-1) t(ctr)]; 

            [jj, s] = ode15s('DiscLinesCell1D',t_interval,y0); 

            q=size(jj); % iterations 

            y(ctr,:) = s(q(1),:); 

            y0(:) = y(ctr,:); 

            n_graph(ctr,1:N)=y(ctr,1:N); 

            vel_graph(ctr,1:N)=y(ctr,N+1:2*N); 

            vegf_graph(ctr,1:N)=y(ctr,2*N+1:3*N);        
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end 

 

for ii = 1:48:nsteps 

    hh=figure('rend','painters','pos',[100 100 0.55*390 0.75*185]) 

     

    plot(x_dim_less,n_graph(ii,1:N),'*b',x_dim_less,vegf_graph(ii,1:N),'-

g','LineWidth',2,'MarkerSize',4) 

    %ylabel('Normalized Values','FontSize',28,'FontWeight','bold','FontName','Arial') 

    %xlabel('x''','FontSize',18,'FontWeight','bold','FontName','Arial') 

    legend({'n''','c'''},'Position',[0.80 0.75 0.1 

0.2],'Box','off','FontName','Arial','FontSize',18) 

    ax = gca; 

 

    xlim([0  1]) 

    ylim([0 1.2]) 

    grid off 

    GoodPlot('FontSize',18); 

    saveas(hh,sprintf('cell_500_FIG%d.png',ii)) 

end 

n_graph=n_graph'; 

A1.2 Method of Lines Discretization – Cell Model 
 
function [ yval ] = DiscLinesCell1D( t_interval,y ) 

[ N, nsteps, x_dim_less, NonDimEndTime, chi_v, D_v, lamda_v]=CellCoeffs(); 

load c500.txt; %COMSOL data 

% Unpack discretised dependent variables. 

n =y(1:N,1); 

v = y(N+1:2*N,1); 

C = y(2*N+1:3*N,1); 

%t_interval gives the lower limit from what was passed in main program 

dt_dim_less=NonDimEndTime/((nsteps-1)); 

v_ctr=floor(t_interval/dt_dim_less+1) 

V_0_d=12.8e-9;%[M] 

C_ghost0=0; 

C_ghost1=c500(v_ctr,2)/(V_0_d*1000);%COMSOL data 

dx=1/(N-1); 

dx2=dx*dx; 

%Method of Lines 

dVEGFdt(1) = (D_v/dx2)*(C(2) - 2*C(1) + C_ghost0)-lamda_v*C(1); 

dVEGFdt(2:N-1) = (D_v/dx2)*(C(3:N) - 2*C(2:N-1) + C(1:N-2))-lamda_v*C(2:N-1); 

dVEGFdt(N) = (D_v/dx2)*(C_ghost1 - 2*C(N) + C(N-1))-lamda_v*C(N); 

dVeldt(1) = chi_v*(1/(2*dx))*(C(2) - C_ghost0); 



62 

 

dVeldt(2:N-1) = chi_v*(1/(2*dx))*(C(3:N) -C(1:N-2))-v(2:N-1).*((v(3:N) -v(1:N-

2))/(2*dx));  

dVeldt(N) = chi_v*(1/(2*dx))*(C_ghost1 - C(N-1)); 

dndt(1) = 0; 

dndt(2:N-1) = -v(2:N-1).*((n(3:N) -n(1:N-2))/(2*dx))-n(2:N-1).*((v(3:N) -v(1:N-

2))/(2*dx)); 

dndt(N) = 0; 

yval=[dndt,dVeldt,dVEGFdt]'; 

end 

A1.3 Non-dimensionalization Function – Cell Model 
 
function [ N, nsteps, x_dim_less, NonDimEndTime, chi_v, D_v, lamda_v ] = CellCoeffs() 

nsteps=97; 

SimEndTime=24; %[hrs] 

N=150;  

%Physical values - characteristic length 

L_d=1220e-6;%[m] 75% -> 1040, 150% -> 1580 

D_v_d=1.95e-7;%[m^2/hr] 

tau_d=(L_d^2)/D_v_d;%[hr] 

NonDimEndTime=SimEndTime/tau_d;  

x_dim_less=linspace(0,L_d/L_d,N); 

%Physical values - characteristic dep. variables 

V_0_d=12.8e-9;%[M] 

%Physical values - characteristic coefficients 

chi_v_d=0.55*1.837;%[m^2 hr^-1 M^-1]  

lamda_v_d=0.8;%1/h 

%Non-dimensionalize variables 

 

chi_v=chi_v_d*V_0_d/D_v_d; 

D_v=D_v_d/D_v_d; 

lamda_v=lamda_v_d*tau_d; 

end 

A1.4 Initialization of Dependent Variables – Cell Model  
 
function [ n, v, C ] = InitialDepVarCell1D(  ) 

[ N, nsteps, x_dim_less, NonDimEndTime, chi_v, D_v, lamda_v]=CellCoeffs(); 

L_d=1220e-6;%[m] 75% -> 1040, 150% -> 1580 

sigma_d=75e-6; 

sigma_dim_less=sigma_d/L_d; 
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n = 1.0*sigma_dim_less*sqrt(2*pi)*normpdf(x_dim_less,121.95e-

6/L_d,sigma_dim_less);%[m] 75% -> 124.74, 150% -> 126.36 

n(1,1:15)=1.0;%[m] 75% -> 18, 150% -> 12 

v = 0*x_dim_less; 

C = 0*x_dim_less; 

end 

A2 – Vessel Model  

A2.1 Main Code - Vessel Model 
 
clear all 

clc 

[ N, nsteps, x_dim_less, NonDimEndTime,sigma_dim_less, V_0_d, chi_v, mu, D_v, lamda_v, 

K_EC_v, v_half, alpha_0_v, beta_1, beta_2, Gamma, kappa ]=Params_and_Coeffs(); 

t=linspace(0,NonDimEndTime,nsteps); 

RELTOL = 1e-8; 

options = odeset('BDF','on'); 

options = odeset(options,'RelTol',RELTOL); 

[ rho_i, n_i, v_i ]=InitialDepVar(); 

         

         

y0 = [rho_i,n_i,v_i]'; 

rho_graph=zeros(N); 

vegf_graph=zeros(N); 

n_graph=zeros(N); 

%fill up only the first row, other rows are reserved for other time steps 

rho_graph(1,1:N)=rho_i; 

n_graph(1,1:N)=n_i; 

vegf_graph(1,1:N)=v_i; 

 

for ctr=2:nsteps                 

            t_interval = [t(ctr-1) t(ctr)]; 

            [jj, s] = ode15s('DiscreteLines',t_interval,y0); 

            q=size(jj); % iterations 

            y(ctr,:) = s(q(1),:); 

            y0(:) = y(ctr,:); 

            rho_graph(ctr,1:N)=y(ctr,1:N); 

            n_graph(ctr,1:N)=y(ctr,1+N:2*N); 

            vegf_graph(ctr,1:N)=y(ctr,1+2*N:3*N);        

end 

% scrsz = get(0,'ScreenSize'); 

%         h = figure('Position',[1 0 scrsz(3) scrsz(4)]) 
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%         set(gca,'FontSize',36) 

for ii = 1:48:nsteps 

    hh=figure('rend','painters','pos',[100 100 0.55*390 0.75*185]) 

    

plot(x_dim_less,n_graph(ii,1:N),'oc',x_dim_less,rho_graph(ii,1:N),'*b',x_dim_less,vegf

_graph(ii,1:N),'-g','LineWidth',2,'MarkerSize',4) 

    %ylabel('Scaled values','FontSize',18,'FontWeight','bold') 

    %xlabel('x (dimensionless)','FontSize',13,'FontWeight','bold') 

    legend({'n''','\rho''','v'''},'Position',[0.80 0.6 0.1 0.3],'Box','off') 

    GoodPlot('FontSize',18);  

    xlim([0 1]) 

    ylim([0 1.8]) 

    saveas(hh,sprintf('ang_500_FIG%d.png',ii)) 

end 

rho_graph=rho_graph'; 

A2.2 Method of Lines Discretization – Vessel Model 
 
function [ yval ] = DiscreteLines( t_interval,y ) 

[ N, nsteps, x_dim_less, NonDimEndTime,sigma_dim_less, V_0_d, chi_v, mu, D_v, lamda_v, 

K_EC_v, v_half, alpha_0_v, beta_1, beta_2, Gamma, kappa ]=Params_and_Coeffs(); 

load L_75_500.txt; 

% Unpack discretised dependent variables. 

rho =y(1:N,1); 

n = y(N+1:2*N,1); 

V= y(2*N+1:3*N,1); 

 

%t_interval gives the lower limit from what was passed in main program, hence +1 

dt_dim_less=NonDimEndTime/((nsteps-1)); 

v_ctr=floor(t_interval/dt_dim_less+1) 

v_ghost0=0; 

% Comsol_input=('c500.txt'); 

% ghost1_conc=importdata(Comsol_input); 

 

%V_0_d multiplied by 1000 in order to convert it (V_0_d) to mol/m^3 

v_ghost1=L_75_500(v_ctr,2)/(V_0_d*1000); 

 

dx=1/(N-1); 

dx2=dx*dx; 

 

n_ghost0 = n(2)  - (chi_v/(mu))*n(1)*(V(2)-v_ghost0); 

n_ghost1 = n(N-1)  + (chi_v/(mu))*n(N)*(v_ghost1 - V(N-1)); 
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dVdt(1) = (D_v/dx2)*(V(2) - 2*V(1) + v_ghost0)-lamda_v*V(1)- 

K_EC_v*rho(1)*V(1)/(v_half + V(1)); 

dVdt(2:N-1) = (D_v/dx2)*(V(3:N) - 2*V(2:N-1) + V(1:N-2))-lamda_v*V(2:N-1)... 

    -K_EC_v*rho(2:N-1).*V(2:N-1)./(v_half + V(2:N-1)); 

dVdt(N) = (D_v/dx2)*(v_ghost1 - 2*V(N) + V(N-1))- K_EC_v*rho(N)*V(N)/(v_half + V(N))-

lamda_v*V(N); 

 

dndt(1) = mu*(1/dx2)*(n(2) - 2*n(1) + n_ghost0) ... 

    - chi_v*(1/dx2)*n(1)*(V(2) - 2*V(1) + v_ghost0) ... 

    - chi_v*(1/(2*dx))*(1/(2*dx))*(n(2) - n_ghost0)*(V(2) - v_ghost0)... 

    + alpha_0_v*rho(1)*V(1)/(v_half + V(1))... 

    - (beta_1)*n(1)*(rho(1)) ... 

    - 2*(beta_2)*n(1)*n(1) ... 

    - Gamma*n(1)*(1 - V(1)/(V(1) + v_half)); 

     

dndt(2:N-1) = (mu)*(1/dx2)*(n(3:N) - 2*n(2:N-1) + n(1:N-2)) ... 

    - chi_v*(1/dx2)*n(2:N-1).*(V(3:N) - 2*V(2:N-1) + V(1:N-2)) ... 

    - chi_v*(1/(2*dx))*(1/(2*dx))*(n(3:N) - n(1:N-2)).*(V(3:N) - V(1:N-2))... 

    + alpha_0_v*rho(2:N-1).*V(2:N-1)./(v_half + V(2:N-1))... 

    - (beta_1)*n(2:N-1).*(rho(2:N-1)) ... 

    - 2*(beta_2)*n(2:N-1).*n(2:N-1) ... 

    - Gamma*n(2:N-1).*(1 - V(2:N-1)./(v_half + V(2:N-1))); 

 

dndt(N) = (mu)*(1/dx2)*(n_ghost1 - 2*n(N) + n(N-1)) ... 

    - chi_v*(1/dx2)*n(N)*(v_ghost1 - 2*V(N) + V(N-1)) ... 

    - chi_v*(1/(2*dx))*(1/(2*dx))*(n_ghost1 - n(N-1))*(v_ghost1 - V(N-1))... 

    + alpha_0_v*rho(N)*V(N)/(v_half + V(N))... 

    - (beta_1)*n(N)*(rho(N)) ... 

    - 2*(beta_2)*n(N)*n(N) ... 

    - Gamma*n(N)*(1 - V(N)/(V(N) + v_half)); 

 

drhodt(1) = abs(kappa*((mu)*(1/(2*dx))*(n(2) - n_ghost0)... 

    - chi_v*n(1)*(1/(2*dx))*(V(2) - v_ghost0)))... 

    - Gamma*rho(1)*(1 - V(1)/(V(1) + v_half)); 

 

drhodt(2:N-1) = abs(kappa*((mu)*(1/(2*dx))*(n(3:N) - n(1:N-2)) ... 

    - chi_v*(1/(2*dx))*n(2:N-1).*(V(3:N) - V(1:N-2))))... 

    - Gamma*rho(2:N-1).*(1 - V(2:N-1)./(v_half + V(2:N-1))); 

 

drhodt(N) = abs(kappa*((mu)*(1/(2*dx))*(n_ghost1 - n(N-1)) ... 

    - chi_v*n(N)*(1/(2*dx))*(v_ghost1 - V(N-1))))... 

    - Gamma*rho(N)*(1 - V(N)/(V(N) + v_half)); 
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yval=[drhodt,dndt,dVdt]'; 

 

end 

A2.3 Non-dimensionalization Function – Vessel Model 
 

function [ N, nsteps, x_dim_less, NonDimEndTime,sigma_dim_less, V_0_d, chi_v, mu, D_v, 

lamda_v, K_EC_v, v_half, alpha_0_v, beta_1, beta_2, Gamma, kappa ] = 

Params_and_Coeffs() 

nsteps=97; 

SimEndTime=24; %[hrs] 

N=150;  

%Physical values - characteristic length 

L_d=1040e-6;%[m] 75% -> 1040, 150% -> 1580 

D_v_d=1.95e-7;%[m^2/hr] 

tau_d=(L_d^2)/D_v_d;%[hr] 

NonDimEndTime=SimEndTime/tau_d;  

sigma_d=75e-6;%[m]0.75* 

dz_d=100e-6;%[m] 

rho_0_d=1.1/(((sqrt(2*pi))*sigma_d*dz_d));%[m of vessel/m^3] 

sigma_dim_less=sigma_d/L_d; 

x_dim_less=linspace(0,L_d/L_d,N); 

%Physical values - characteristic dep. variables 

n_0_d=1.0e12;%[cells/m^3]25* 

V_0_d=12.8e-9;%[M] 

%Physical values - characteristic coefficients 

lamda_v_d=0.8;%[1/hr] 

mu_d=6e-11;%[m^2/hr] 

chi_v_d=1.85*1.837;%[m^2 hr^-1 M^-1] try Dv/V0 = 15.2 [m^2 hr^-1 M^-1]2.2* 

alpha_0_v_d=0.1*2600;%[tips hr^-1 (m of vessel)^-1] 

beta1_d=1.56e-9;% 

beta2_d=1.03e-15;% 

kappa_d=3.15;%[(m of vessel/m^3)(cells/m^3)^-1 m^-1] 

Gamma_d=2.27e-3;%[hr^-1] 

K_EC_v_d=0;%4.8e-17;%[M hr^-1 m^3/(mof vessel)^-1] 

v_half_d=6.5e-10;%[M] 

%Non-dimensionalize variables 

lamda_v=lamda_v_d*tau_d; 

mu=mu_d/D_v_d; 

chi_v=chi_v_d*V_0_d/D_v_d; 

alpha_0_v=alpha_0_v_d*tau_d*rho_0_d/n_0_d; 

beta_1=beta1_d*rho_0_d*tau_d; 
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beta_2=beta2_d*n_0_d*tau_d; 

kappa=kappa_d*n_0_d*L_d/rho_0_d; 

Gamma=Gamma_d*tau_d; 

D_v=D_v_d/D_v_d; 

K_EC_v=K_EC_v_d*rho_0_d*tau_d/V_0_d; 

v_half=v_half_d/V_0_d; 

end 

A2.4 Initialization of Dependent Variables – Vessel Model 
 
function [ rho_i,n_i,v_i ] = InitialDepVar(  ) 

[ N, nsteps, x_dim_less, NonDimEndTime,sigma_dim_less, V_0_d, chi_v, mu, D_v, lamda_v, 

K_EC_v, v_half, alpha_0_v, beta_1, beta_2, Gamma, kappa ]=Params_and_Coeffs(); 

L_d=1040e-6;%[m] 75% -> 1040, 150% -> 1580 

rho_i=1.0*sigma_dim_less*sqrt(2*pi)*normpdf(x_dim_less,124.74e-

6/L_d,sigma_dim_less);%[m] 75% -> 124.74, 150% -> 126.36 

n_i = 0*x_dim_less; 

rho_i(1:18)=1.0;%[m] 75% -> 18, 150% -> 12 

v_i = 0*x_dim_less; 

end 


