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Abstract 

Instructions from the genome are first copied to make messenger RNAs, which are then translated 

to make proteins.  To expand the repertoire of these instructions, cells can modify the messenger 

RNAs in different ways.  Two such modifications are alternative polyadenylation and alternative 

splicing.  Using RNA-Seq data and deep learning, we trained computational models that can be 

applied to sequences in the genome to predict tissue-specific polyadenylation and splicing patterns.  

Presented with multiple alternative polyadenylation sites, the polyadenylation model can predict 

the probability each site would be selected for cleavage and polyadenylation.  Similarly, given 

alternative exons, the splicing model can predict which exon would more likely be included.  The 

performance of these models in predicting polyadenylation and splicing patterns for genomic 

regions not observed during training is evaluated, and an analysis of what the models have learned 

reveals sequence elements that are known to influence these cellular processes.  Importantly, these 

computational models are trained on genome-wide patterns based on the reference genome but can 

generalize to individual variations.  Each model can thus be viewed as a simulator, where the 

genotype of an individual can be fed in as an input, and the output describes how the individual's 

mutations affect the mechanisms of polyadenylation and splicing in different tissue types.  The 

relevance of these models for problems in genomic medicine is described, and proof-of-concept 

applications are demonstrated. 
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Chapter 1  
Machine Learning Models of Biological Systems for Genomic 

Medicine 

The concept of precision medicine is not entirely new.  Physicians have been using blood type to 

tailor blood transfusions for over a century (Collins and Varmus, 2015).  What is different today 

is the rapid growth in genomic data that can be quickly and cheaply collected from the patient and 

the wider community, and the potential for insights from analyzing and sharing that data.  

Specifically, the theme of this thesis is on machine learning models of transcriptional modification 

and their relevance in genomic medicine, namely to assist the discovery of targeted therapies and 

to identify disease risks for potential preventative measures.  This introductory chapter is based on 

the publication (Leung et al., 2016): 

M. Leung, A. Delong, B. Alipanahi, and B. Frey. (2016) “Machine Learning in Genomic Medicine: 

A Review of Computational Problems and Data Sets”.  Proceedings of the IEEE, 104(1), 179-197. 

 Introduction 

1.1 The Genome 

A genome can be viewed as an instruction book for building an organism.  It has long been 

understood that DNA molecules are the physical medium of genetic information storage (Watson 

and Crick, 1953), and by 2001 the Human Genome Project had drafted the content of a typical 

human genome (Lander et al., 2001; Lander, 2011).  However, the bigger challenge was to 

interpret the structure, function, and meaning of the genetic information itself.  Biologist Eric 

Lander summarized the situation in seven words (Lander, 2012): “Genome: Bought the book; Hard 

to read.”  Still, much is known about how genetic information is organized into distinct genes.  

Each gene is a like a chapter in the instruction book, describing how to build a particular family of 

molecules.  Protein-coding genes describe how to build large molecules made from amino-acid 

chains (proteins), whereas non-protein-coding genes describe how to build small molecules made 

from ribonucleic acid (RNA) chains (Strachan and Read, 2010; Alberts et al., 2002).  Roughly, the 

human genome contains 20,000 protein-coding genes (de Klerk and ‘t Hoen, 2015), and 25,000 

non-coding genes (Harrow et al., 2012).  Some genes are crucial for life, some are crucial for 

health, and some can be deleted in their entirety without apparent harm. 
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Currently, protein-coding exons are the most understood regions in the genome.  The 

universal genetic code for proteins was experimentally confirmed over 50 years ago (Crick et al., 

1961), and knowing how a coding mutation changes the corresponding amino acid sequence is a 

standard feature in genome diagnostic pipelines.  For example, if a mutation introduces a ‘stop 

codon’ into the sequence (called a ‘nonsense’ mutation) then it is known that the protein will be 

truncated as a general rule.  However, predicting whether a mutation will disrupt the stability or 

structure of the final protein molecule is a long-standing open problem (Moult et al., 2014).  

Furthermore, coding regions make up only ~1.5% of the human genome, even though there is 

evidence that at least 5% of positions undergo purifying selection – this means that ~3.5% of the 

genome may consist of non-coding elements with functional roles (Lindblad-Toh et al., 2011).  

Disease-causing mutations are increasingly being found outside of protein-coding regions 

(Hindorff et al., 2009), indicating that analysis tools for coding regions are not enough to study 

genetic diseases.  Many of the functional non-coding positions are regulatory sequences, meaning 

they instruct the cell how to regulate important processes such as gene expression and the reliable 

identification of exons.  This underscores the importance of developing computational models that 

can automatically identify and understand regulatory instructions in the genome.  These regulatory 

elements contribute significantly to the complexity of cell biology, which cannot be accounted for 

only by the sheer number of genes (King and Jukes, 1969) (e.g. balsam poplar trees have twice as 

many genes as humans (Tuskan et al., 2006)) or the coding regions themselves (e.g. less than 1% 

of human genes have protein-coding regions that are distinct from those of mice and dogs (Clamp 

et al., 2007)). 

Genetic diseases can arise from mutations outside the protein-coding region of the genome.  

One example is spinal muscular atrophy (SMA) which is the leading genetic cause of infant 

mortality in North America (Cartegni and Krainer, 2002).  It results if a baby’s genome is missing 

the SMN1 gene, or contains a damaged version of it, resulting in the deficient production of the 

survival motor neuron (SMN) protein.  Another version of the gene, called SMN2, can compensate 

for the production of the SMN protein.  Figure 1-1 shows the nucleotide sequence from the seventh 

exon of the protein-coding gene SMN2.  Due to differences in nucleotides at the four positions 

shown, the cell’s machinery usually fails to include the exon, resulting in a protein that does not 

function properly, and thereby is unable to compensate for the production of the SMN protein.  

Researchers are evaluating therapies that restore the function of exon 7 in SMN2 (Hua et al., 2011; 
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Naryshkin et al., 2014).  SMA is well-studied and can be diagnosed by outward symptoms, but 

genetic testing is crucial for confirmation and therapeutic development.  In other genetic diseases, 

the mechanisms are more complex.  Cancer is a prime example of a heterogeneous disease, that is, 

a disease with multiple causal pathways all leading to similar symptoms but requiring different 

treatments (Hanahan and Weinberg, 2011).  For cancer, genomic data is becoming essential for 

providing more detailed diagnoses and targeted treatments (Rubin, 2015). 

 

Figure 1-1.  An exon and the regulatory instructions identified using machine learning.  If an infant is homozygous 

in a version of the survival motor neuron gene, SMN2, the result is spinal muscular atrophy, a leading cause of infant 

mortality.  Three of the nucleotides lie within genomic instructions that a neural network identified as being important 

for including this exon when building the protein (Xiong et al., 2015). 

How can we learn to read the genome to help diagnosis and treat genetic diseases?  Unlike 

familiar cognitive tasks such as visual object detection and speech recognition, humans are not 

naturally equipped to perceive and interpret genomic sequences nor to understand all the 

mechanisms, pathways, and interactions that go on inside a living cell.  To overcome this, one 

strategy is a data-driven approach wherein the inputs and outputs of a biological system are 

measured, and then a predictive model is built.  If the model can generalize to unseen input, for 

example, a previously uncharacterized region of the genome, it likely has uncovered features that 

are predictive of the output.  The model can subsequently be probed to reveal insights related to 

the regulation of the output phenomenon.  This task of mapping an input to an output is a common 

problem in machine learning, specifically supervised learning. 

protein-coding exon

...ttgtaggcatgagccactgcaagaaaaccttaactgcagcctaataattgttttctt

tgggataacttttaaagtacattaaaagactatcaacttaatttctgatcatattttgtt

gaataaaataagtaaaatgtcttgtgaaacaaaatgctttttaacatccatataaagcta

tctatatatagctat tatgtctatatagctattttttttaacttcctttattttcctta

cagggttt agacaaaatcaaaaagaaggaaggtgctcacattccttaaattaaggagta

agtctgccagcattatgaaagtgaatcttacttttgtaaaactttatggtttgtggaaaa

caaatgtttttgaacatttaaaaagttcagatgtta aaagttgaaaggttaatgtaaaa

caatcaatattaaagaattttgatgccaaaactattagataaaaggttaatctacatccc

tactagaattctcatacttaactggttggtt tgtggaagaaacatactttcacaat...

putative regulatory instructions

*

chr5:70,247,528*

SMN1 gene, exon 7

70,248,061

mutations causing spinal muscular atrophy

*

*

*

*

*hg19 coordinates



 

4 

1.2 Computational Models of Biology 

Predicting phenotypes (e.g., traits and disease risks) from the genome is in principle, a supervised 

machine learning problem. The inputs are a stretch of DNA sequence (genotype) relevant to the 

underlying biology, and the outputs are the phenotypes.  In this thesis, the mapping from the 

sequence elements and cell state (such as a tissue type) to the prediction of a regulatory pattern is 

referred to as a ‘regulatory code’.  The task is akin to ‘traditional’ machine learning problems like 

computer vision or natural language processing.  However, there are important differences in 

prediction tasks that are found in computational models of biology.  In traditional machine learning 

problems, a human ‘oracle’ is able to provide reasoning and truths as to why a model (e.g. a 

classifier) ought to make a particular prediction given some input.  However, in biology (and many 

other physical sciences for that matter), such information is not generally available.  Another 

difference is the ‘completeness’ of information in the inputs.  For example, in computer vision, all 

the information needed for a prediction is more or less completely given from the pixels of an 

image.  In biology, one can only get a glimpse of what’s happening inside a cell or a population of 

cells, often in constrained regions, from available choices of experimental techniques.  These 

limited measurements mean that the computational model must infer many of the hidden factors 

that contribute to regulation which are not readily available via current measurement technologies, 

from data.  Arguably, this makes computational biology more difficult than traditional machine 

learning problems. 

1.2.1 Assessing Disease Risks via Molecular Phenotype Prediction 

One of the goals of genomic medicine is to predict phenotypes, such as disease risks, from a 

genotype.  However, there are two reasons in which directly mapping genomic sequences to 

complex phenotypes and diseases may not be ideal.  First is the complexity of the relationship 

between a full genotype and its phenotype.  Even within a single cell, the genome directs the state 

of the cell through many layers of intricate and interconnected biophysical processes and control 

mechanisms that have been shaped ad-hoc by evolution.  Attempting to infer the outcomes of these 

complex regulatory processes by observing only genomes and phenotypes is rather like trying to 

learn how computer chess playing programs work by examining binary code and wins and losses, 

while ignoring which moves were taken.  Second, even if one could infer such models (those that 

are predictive of disease risks), it is likely that the parameters of these models would not 

correspond to biological mechanisms that can be acted upon.  Insight into disease mechanisms is 
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important for the purpose of developing targeted therapies, but can also provide complementary 

information for phenotypic screens, which traditionally identifies chemicals with desired 

biological effects without knowledge of the precise targets (Moffat et al., 2014). 

 An alternative approach is to train computational models to predict measurable variables 

of the cell, also known as molecular phenotypes, and then these variables can be linked to 

phenotype.  For example, in the case of spinal muscular atrophy described above, the cell variable 

could be the frequency with which the exon is included when the gene is being copied to make a 

protein.  Other examples of cell variables include the locations where a protein binds to a strand 

of DNA containing a gene, the number of copies of a gene (transcripts) in a cell, the distribution 

of proteins along the transcript, and concentration of proteins.  This approach addresses the two 

aforementioned problems.  Since these cell variables are more closely related to and more easily 

determined from genomic sequences than phenotypes like diseases, learning models that map from 

DNA to cell variables can be more straightforward.  High-throughput assay technologies are 

generating massive amounts of data profiling these cell variables under diverse conditions, and 

these datasets can be used to train larger and more accurate models.  Also, since the cell variables 

correspond to intermediate biochemically active quantities, such as the concentration of a gene 

transcript, they are good targets for therapies.  If high disease risk is associated with a change in a 

cell variable compared to a healthy individual, an effective therapy may consist of restoring that 

cell variable to its normal state.  In the above example of spinal muscular atrophy, therapies that 

modify the genomic instructions to increase the frequency with which the exon is included in the 

protein are currently being tested in clinical trials (Hua et al., 2011). 

1.3 Role of Machine Learning to Model Biological Systems 

In recent years, machine learning researchers have focused their most high-profile efforts on 

speech recognition (Graves et al., 2013) and computer vision (Krizhevsky et al., 2012).  Computer 

vision in particular has a long history in machine learning due to its intuitive, accessible nature.  

Human beings are exceedingly good at computer vision tasks, and so when our learning algorithms 

do not satisfy our own expectations we often find new insights.  In fact, the hand-written digit 

recognition dataset known as MNIST (Y. LeCun, Cortes, et al., 1998) has been called ‘the 

Drosophila of machine learning’—a reference to the fruit fly model organism in biology—owing 

to MNIST’s widespread use as a testbed for new learning algorithms. 
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The situation in biology is fundamentally different from the situation in computer vision. 

The visual world is directly accessible to us, and researchers exploit our knowledge of how images 

are generated through light, occlusion, and projection.  The nano-scale world of a cell’s machinery 

is not directly accessible and, despite decades of painstaking effort, our knowledge of the 

mechanisms at play is woefully incomplete (Ritchie et al., 2015; Albert and Kruglyak, 2015).  This 

is true even for single-cell organisms like yeast (Costanzo et al., 2010; Lehner, 2013).  Determining 

how genotype affects phenotype is arguably orders of magnitude more complex than the pixels-

to-labels relationship in high-profile vision challenges such as ImageNet (Deng et al., 2009).  The 

details of many interactions, quantities, and processes in the cell are ‘hidden’ from us because we 

do not have the technology to systematically measure them.  In other words, the few cell variables 

that we can observe are the outcome of many layers of interacting cell variables that we cannot. 

To build computational models of molecular phenotypes, assays to measure the 

corresponding biological quantities must exist, and training data must be collected under many 

conditions.  Well into the 1990s, biological assays typically required several manual steps and 

generated small amounts of data.  Such techniques are useful for developing and testing 

hypotheses, but do not provide sufficient data to infer accurate predictive models of complex 

outcomes.  With the commoditization of high-throughput assay technologies, it is now 

commonplace to acquire hundreds of thousands of measurements for a cell variable in a single 

low-cost experiment.  For example, microarray technology has been used to peer into living cells 

for decades (Schena et al., 1995), but new assays and new chemistry are still being developed 

around this fundamental approach, such as universal protein binding microarrays (Berger et al., 

2006), ChIP-chip (Ren et al., 2000) and RNAcompete (Ray et al., 2009).  High-throughput 

sequencing technologies are likewise being used for a wide range of tasks (Metzker, 2010), for 

example, identifying protein binding sites, sequencing the genomes of different organisms in 

evolutionary studies, and profiling the genomes of individuals in medical studies for the purpose 

of discovering variations, either in regions of interest or across the entire genome. 

In addition to measuring genotypes on a large scale, high-throughput technologies can be 

used to measure molecular phenotypes, such as the abundances of different transcripts (Mortazavi 

et al., 2008).  Although somatic mutations, which are alterations in the DNA after conception, can 

occur in cancers and some neurological diseases (Watson et al., 2013; Poduri et al., 2013), the 

genome of an individual is relatively stable.  The ‘transcriptome’ on the other hand, varies from 
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cell to cell, and is affected by the cell’s surrounding environment, for example, the tissue type it 

represents.  Previously, microarrays were used to measure transcripts on a large scale, but now 

high-throughput sequencing is the method of choice.  Another application of high-throughput 

sequencing is to profile how proteins interact with specific regions of DNA (Johnson et al., 2007).  

Binding of proteins can influence how the instructions in the genome are utilized, offering a layer 

of complexity that can be exploited for regulation of cell biology.  Data such as these, which 

measure particular cell variables of interest, allow us to peer into the underlying workings of the 

cell, at the most fundamental level of the instructions that define an organism.  High-throughput 

assay technologies have made it feasible to measure cell variables of interest covering vast portions 

of the genome at various cell states, including disease conditions, and a wealth of data is now 

publicly available.  This presents an exceptional opportunity for data scientists to infer predictive 

models of cell variables using machine learning techniques. 

The inputs to the computational model include sequence characteristics from a stretch of 

DNA, such as the frequency of particular nucleotides or presence of certain motifs, some of which 

can be learned from the sequence themselves (Alipanahi et al., 2015).  To account for instructions 

encoded in the DNA that impact cell variables through biochemical processes and structures, 

additional features can be derived, for example, the binding of proteins to DNA and RNA, 

nucleosome positioning and occupancy profiles (van der Heijden et al., 2012), and RNA secondary 

structures (Lorenz et al., 2011).  Generally, it is beneficial that the model’s inputs be fully 

extractable from DNA sequences.  For a computational model to be practical in making predictions 

in the context of genomic medicine, it is desirable for the inputs to be easily obtainable. Given that 

the cost of whole genome sequencing continues to rapidly decrease, a growing number of genomes 

will be available for training purposes, and within the context of genomic medicine, it will likely 

become standard for a patient’s genome to be available. 
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Figure 1-2.  A simplified view of how biologists, data scientists, and medical researchers can work towards genomic 

medicine (Leung et al., 2016).  Machine learning plays a central role by turning high-throughput measurements into 

specialized or general-purpose predictive models for cell variables—quantities that are relevant to cell function.  By 

knowing how mutations affect disease via cell variables, diagnosticians and pharmacogeneticists can more easily find 

direct correlates with disease, develop treatments, and plan targeted therapies for individual patients. 

Figure 1-2 illustrates a workflow through which different actors participate towards the 

goal of genomic medicine.  An important aspect of the approach is the use of machine learning to 

infer models that are capable of generalizing to new genetic contexts.  For example, one may infer 

a model using the publicly available reference genome and data profiling transcripts in healthy 

tissues, but then apply it to the genome of a diseased cell and ascertain how the distribution of 

transcripts changes in the diseased cell.  This notion of generalization is a crucial aspect of the 

models that need to be inferred.  From a modeling perspective, a greater ability to generalize to 

new genetic context is expected for those cell states that were observed during training.  

Consequently, an important aspect of model development is validation using DNA sequences that 

the model has never seen before and using data for cell states that are different from those used 

during training.  One cannot expect the models to be accurate for any DNA sequences and cell 

states that are extremely different from those used during training, so the validation procedure 

should also attempt to characterize the inputs for which the model is reliable.  If a model is good 

at generalization, it can analyze mutated DNA sequences that lead to changes in cell variables that 

may be indicative of disease state, without needing experimental measurements from diseased 
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cells. In practice, this kind of ‘zero-shot’ learning has been successfully used to identify mutations 

that cause a variety of diseases, using a model that was trained using the reference genome and 

healthy tissues (Xiong et al., 2015). 

While the model that predicts cell variables does not directly take into account information 

pertaining to disease, if the model accurately reflects how the instructions in the genome are 

processed, then it should be able to detect diseases that are caused by mutations that change cell 

variables.  This approach has been shown to work very well for a large number of mutations and 

disease (Xiong et al., 2015), but of course it makes errors.  If mutations are scored by how much 

they cause a change in the cell variables, then false positives will arise when a mutation causes a 

large change in cell variables that have no impact on disease.  For example, a mutation can change 

a cell variable which leads to a change in hair color.  False negatives will arise for mutations that 

act through cell variables that are not being modeled.  Both kinds of error will also arise due to 

inaccuracies in the computational models.  When investigating specific diseases, scores for 

mutations can be combined with disease-specific data, such as population data.  In this way, sets 

of candidate mutations can be filtered to identify the ones that are most likely to have a causal 

effect on a cell variable.  More generally, these scores can be used as input features for models that 

are specific to certain diseases, where the models may utilize many such scores across multiple 

regions in the genome. 

Computer systems that can read the text of the genome can be used in a variety of ways to 

support genomic medicine. For example, a recent breakthrough in ‘gene editing’ is allowing 

scientists to alter the genomes of already-living cells, with an efficacy no one thought possible just 

a few years ago.  Gene therapies can now include targeted modifications, such as removing 

deleterious mutations or even inserting new sequences at pre-determined locations in a genome. 

Genome editing technology (Cong et al., 2013; Mali et al., 2013) opens a door to unprecedented 

opportunities in genomic medicine, making it more important than ever that we can predict the 

effects of these edits in silico. In other words, knowing how to write is not the same as knowing 

what to write. 
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1.4 Other Approaches to Model the Genetic Basis of Disease 
Risks 

In this section, some approaches to associate genetic variants with disease risks are described.  

These methods directly model the genotype-to-phenotype relationship and are in common use.  

The goal is to provide a more holistic view of other methods that tackle this problem, which do 

not necessarily require the use of machine learning, and their challenges. 

1.4.1 Genome-Wide Association Studies 

The goal of genome-wide association studies (GWAS) is to detect how traits within a population 

can be related to variants in particular genomic locations, or loci.  Early GWAS experiments used 

microarrays that were designed to find common variants in the human population, called single-

nucleotide polymorphisms (SNPs), which are variations that are relatively frequent across humans 

(frequency greater than 1%).  Modern GWAS analysis use more comprehensive sets of variants 

and even whole genome sequencing data, which is not restricted to a subset of variants.  Here, we 

focus on some of the challenges of GWAS (Visscher et al., 2012). 

From a data analysis point of view, one of the main difficulties with GWAS is establishing 

statistical significance between a potentially causal variant with a change in risk for particular 

diseases between the affected group of individuals compared to a control. The main problem in 

GWAS and any association-based technique (e.g., expression quantitative trait loci or eQTLs) is 

that they indicate correlation, not causation.  Due to confounding hidden variables, such as 

correlations between nearby variants caused by crossing over (linkage disequilibrium) or 

differences in subpopulations caused by factors such as migration, two or more genomic loci might 

be correlated, and a SNP could be picked up by GWAS, simply because some other genomic locus 

is causal (Pritchard and Przeworski, 2001).  The causal variant is often not even observed in the 

GWAS study.  GWAS furthermore provides a huge number of putative causal mutations, and 

researchers may be biased towards candidates that have greater ‘narrative potential’ (Goldstein et 

al., 2013). 

Some of the bigger GWAS studies involve tens of millions of SNPs that are conducted on 

thousands of individuals.  Assessing the statistical significance of an immense number of SNPs is 

challenging and requires careful multiple-hypothesis correction or false discovery rate analysis 

(Johnson et al., 2010).  The problem is compounded by the fact that many common variants have 



 

11 

weak effects, and those that have strong effects tend to be rare (Gibson, 2012).  To improve 

significance, some studies limit the profiling of SNPs to the coding region of the genome (Bamshad 

et al., 2011), with the assumption that mutations in these regions are more likely to impact risks 

as they can alter the function of the proteins (Ng et al., 2009).  Another way to address this problem 

is by increasing the sample size.  Significant resources have been channeled into large population 

study initiatives such as The Cancer Genome Atlas (TCGA) and The International Haplotype Map 

(HapMap) Project, which have raised debates within the research community on the cost-benefit 

ratio of these projects (The International HapMap Consortium, 2005; Altshuler et al., 2010; 

Ledford, 2015).  Another major hurdle is population structure and its stratification.  A recent paper 

(Skafidas et al., 2014) that used a genetic classifier based on SNPs for Autism Spectrum Disorder 

detection, raised some controversy (Robinson et al., 2014) and it was alleged that most of the 

observed signal was due to ‘potential population stratification’ (genetic differences due to 

ancestry). 

One approach to make better use of GWAS data beyond statistical associations is to use 

computational models that take as input the SNP profiles of individuals to predict disease risks.  

These SNP profiles tend to be high-dimensional, and typically have a large proportion of SNPs 

that are not relevant to the disease at hand (and therefore noisy).  Several tools are available for 

prioritizing causal variants (e.g. PolyPhen (Adzhubei et al., 2010), SIFT (Kumar et al., 2009), 

SPANR (Xiong et al., 2015)), and machine learning algorithms have been used for learning 

predictive models of disease risks (Kooperberg et al., 2010; Kruppa et al., 2012). 

1.4.2 Evolutionary Conservation 

Comparative genomics is a powerful way to identify genomic sequences that have function.  The 

most well-known resource that comparative genomics provides is sequence conservation.  The 

rationale behind sequence conservation is as follows.  First consider evolution as being driven by 

two forces: the slow accumulation of random mutations, and selective pressures against mutations 

that damage reproductive fitness within a population (Ureta-Vidal et al., 2003).  Now consider the 

genomes of several species that diverged from a common ancestor long ago; long enough that 

random mutations have had plenty of time to occur.  When we compare the genomes, we find 

many long distinct sequences that are nearly identical, or ‘conserved’, across species.  When a 

sequence is conserved, it is strong evidence that evolution is exerting selective pressure on the 
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positions within those sequences.  Studies estimate at least 5-6% of the human genome is 

conserved with mammals (Dermitzakis et al., 2003; Lindblad-Toh et al., 2011). 

Detection of conserved sequences has been instrumental in annotating functional elements 

in the human genome (Lindblad-Toh et al., 2011), such as exons.  Conservation scores are 

available for multiple organisms from the software tool phastCons (Siepel et al., 2005).  For each 

position in a genome, phastCons provides a number between 0 and 1, where 0 indicates no 

discernible conservation, and 1 indicates 100% conservation across all species considered.  Other 

methods for quantifying conservation include GERP (Cooper et al., 2005) and phyloP (Pollard et 

al., 2010).  Conservation scores for each position in the human genome can be viewed online as a 

‘track’ within the UCSC Genome Browser (James Kent et al., 2002). 

A mutation that lowers reproductive fitness is called deleterious, whereas a mutation that 

causes a disease is called pathogenic (Goldstein et al., 2013).  Many mutations are of course both 

deleterious and pathogenic, such as mutations causing Tay Sachs disease, but it is important to 

understand that conservation only suggests regions of the genome that are ‘constrained’ via 

purifying selection (Cooper et al., 2010).  Even so, conservation-based techniques have been an 

extremely useful input feature for predictive models of disease.  One recent example is the 

combined annotation dependent depletion (CADD) method (Cooper et al., 2010).  Kircher et al. 

first developed a ‘mutation simulator’ that generates realistic synthetic mutations without regard 

to selective pressure.  They then trained an ensemble of ten linear support vector machines to 

discriminate between synthetic mutations (assumed deleterious) and the ~16 million actual human 

mutations that have survived selective pressure (non-deleterious) since the human-chimpanzee 

common ancestor. 

1.5 Machine Learning Models of Molecular Phenotypes 

The underlying theme of this thesis is to apply machine learning to model molecular phenotypes 

that can be assayed via next-generation sequencing.  Specifically, the molecular phenotypes to be 

modeled are splicing and polyadenylation, and the input to the model are genomic sequences.  

These models are viewed in the context of genomic medicine, where we provide proof-of-concept 

applications.  The concept of applying machine learning to model molecular phenotypes is by no 

means novel.  However, this approach has gained significant momentum by two recent 

developments. 
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The first of these is the arrival of next-generation sequencing technologies that made it 

possible to profile many organisms at scales larger than ever before at manageable costs (Metzker, 

2010).  This introduced petabytes of data in the public domain, and is growing exponentially each 

year (Marx, 2013).  Starting out as a means to profile differences in the genome of species and 

individuals, it has extended into the cataloging of the transcriptome of individual cell types and 

tissues.  For example, technologies such as RNA-Seq has been responsible for generating 

transcriptomic data volumes that are exceeding that of genomic profiling (Wang et al., 2009), and 

has largely displaced technologies like microarray.  The availability of larger than ever before 

volumes of data means that one can potentially afford to train larger computational models for 

certain biological processes. 

The second of these developments is a field of machine learning called ‘deep learning’, 

which generally refer to methods that map data through multiple levels of abstraction, where higher 

levels represent more complex entities (Bengio, 2009).  One of the promises of deep learning is 

they can learn complex functions that map inputs to outputs, without using hand-crafted features 

or rules.  Given enough data, these models have large capacities for representing complex 

relationships efficiently, and their highly-parallel nature means they can be trained rapidly with 

many processing cores hardware like graphics processing units (GPU).  In recent years, deep 

learning methods have surpassed the state-of-the-art performance for many machine learning tasks 

in computer vision and natural language processing (Bengio et al., 2013).  There are three 

ingredients for their successes (Deng and Yu, 2014).  The first is the availability of lower-cost 

hardware with increased processing capabilities, like those offered by GPUs.  The second is due 

to new advances in deep learning methods that can effectively train these complex models.  The 

final ingredient is the availability of large datasets that these models can learn from.  The first two 

ingredients are not domain-specific.  With the increasingly rapid growth in the volume of ‘omic’ 

(e.g. genomics, transcriptomics, and proteomics) data, one may now have the final ingredient 

necessary for the successful application of deep learning to problems in biology.  Due to their 

layered structure, deep learning has the potential to produce meaningful and hierarchical 

representations that can efficiently be used to describe complex biological phenomena.  For 

example, deep neural networks may be useful for modeling multiple stages of a regulatory 

mechanism at the sequence level followed by higher levels of abstraction.  A large body of work 
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now exists which leverages deep learning in the life sciences (Ching et al., 2018), which was not 

the case in as little as five years ago at the beginning of this thesis. 

 In the following chapters, the application of deep learning to model next generation 

sequencing assays of alternative splicing and alternative polyadenylation is described. 
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Chapter 2  
Inference and Analysis of a Mouse Splicing Code 

Transcriptional modifications refer to the processes by which cells modify the primary transcript, 

the single-stranded ribonucleic acid (RNA) transcribed from the DNA, that contains the 

instructions to maintain the identity of a cell and direct its function.  By modifying the transcript, 

cells can have different functions even though they share the same genome.  Modification of these 

messages is a regulated process that depends on the complex interactions between sequences on 

the RNA and the presence of other proteins.  The major processes in transcriptional modifications 

are 5’-end capping, splicing, and 3’-end cleavage and polyadenylation (Bentley, 2014).  This 

chapter describes the development of a computational model to infer alternative splicing patterns 

from mouse RNA-Seq data, building upon the work from (Barash et al., 2010).  The content here 

is based on the publication (Leung et al., 2014): 

M. Leung, H. Xiong, L. Lee, and B. Frey. (2014) “Deep learning of the tissue-regulated splicing 

code”.  Bioinformatics, 30(12), i121-i129. 

 The Mouse Splicing Code 

2.1 Introduction 

Alternative splicing (AS) is a process whereby the exons of a primary transcript may be connected 

in different ways during pre-mRNA splicing.  This enables the same gene to give rise to splicing 

isoforms containing different combinations of exons, and as a result different protein 

products, contributing to the cellular diversity of an organism (Wang and Burge, 2008).  

Furthermore, AS is regulated during development and is often tissue-dependent, so a single 

gene can have multiple tissue-specific functions.  The significance of AS lies in the evidence 

that at least 95% of human multi-exon genes are alternatively spliced, and that the frequency 

of AS increases with species complexity (Pan et al., 2008; Barbosa-Morais et al., 2012). 

One mechanism of splicing regulation occurs at the level of the sequences of the 

transcript.  The presence or absence of certain regulatory elements can influence which exons 

are kept, while others are removed, before a primary transcript is translated into proteins.  

Computational models that take into account the combinatorial effects of these regulatory 

elements have been successful in predicting the outcome of splicing (Barash et al., 2010). 
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Previously, a ‘splicing code’ that utilizes a Bayesian neural network (BNN) was developed 

to infer a model that can predict the outcome of alternative splicing from sequence information in 

different cellular contexts (Xiong et al., 2011).  One advantage of Bayesian methods is that they 

are more robust against overfitting by integrating over models.  Rather than using a single set of 

parameters (typical of methods based on maximum likelihood or maximum a posterior) which 

defines, for instance a neural network, when making predictions, the Bayesian approach uses a 

distribution of the parameters of the model.  This means that instead of relying on a specific 

configuration of the parameters (which may fit the training data well, but not the test data), the 

Bayesian approach makes predictions based on different configurations of the parameters of the 

model from a posterior distribution.  When the training data is sparse, as is the case for many 

datasets in the life sciences, the Bayesian approach can be beneficial.  It was shown that the BNN 

outperforms several common machine learning algorithms, such as multinomial logistic regression 

and support vector machines, for AS prediction in mouse trained using microarray data. 

There are several practical considerations when using BNNs.  They often rely on methods 

like Markov Chain Monte Carlo (MCMC) to sample models from a posterior distribution, which 

can be difficult to speed up and scale up to a large number of hidden variables and a large volume 

of training data.  Furthermore, computation-wise, it is relatively expensive to get predictions from 

a BNN, which requires computing the average predictions of many models. 

Recently, deep learning methods have surpassed the state-of-the-art performance for many 

tasks (Bengio et al., 2013).  Deep learning generally refers to methods that map data through 

multiple levels of abstraction, where higher levels represent more abstract entities.  The goal is for 

an algorithm to automatically learn complex functions that map inputs to outputs, without using 

hand-crafted features or rules (Bengio, 2009).  One implementation of deep learning comes in the 

form of feedforward neural networks (LeCun et al., 2015), where levels of abstraction are modeled 

by multiple non-linear hidden layers. 

With the increasingly rapid growth in the volume of ‘omic’ data (e.g. genomics, 

transcriptomics, proteomics), deep learning has the potential to produce meaningful and 

hierarchical representations that can efficiently be used to describe complex biological 

phenomena.  For example, deep networks may be useful for modeling multiple stages of a 

regulatory network at the sequence level and at higher levels of abstraction. 
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Ensemble methods are a class of algorithms that are popular due to their generally good 

performance (Caruana and Niculescu-Mizil, 2006), and are often used in the life sciences (Touw 

et al., 2013).  The strength of ensemble methods comes from combining the predictions of many 

models.  Random forests is an example, as is the Bayesian model averaging method previously 

used to model the regulation of splicing.  Recently, training neural network has been improved 

using a technique called dropout, which makes neural networks behave like an ensemble method 

(Hinton et al., 2012).  Dropout works by randomly removing hidden neurons during the 

presentation of each training example.  The outcome is that instead of training a single model with 

N hidden variables, it approximates the training of 2N different networks, each on a different subset 

of the training data.  It is described as an ‘extreme form of bagging’, and is a very computationally 

efficient way of doing model averaging (Hinton et al., 2012). 

With large datasets, learning with MCMC methods can be slow, and can be outperformed 

by stochastic optimization methods in practice (Ahn et al., 2012).  These algorithms process small 

subsets (minibatches) of data at each iteration, and update model parameters by taking small steps 

in the direction of the gradient to optimize the cost function (usually the log likelihood).  It is 

common to use stochastic gradient descent to train feedforward neural networks (Y. A. LeCun et 

al., 1998).  The learning algorithm (backpropagation) is also conceptually simple.  Briefly, training 

a feedforward neural network involves: 

1. Given a set of B training inputs (a minibatch) x = x1, x2, … xB, for all hidden units in a 

layer, scale x by the weights that connects x to the hidden unit, perform a summation, and 

compute the activation of the hidden unit.  Repeat this step for any additional layers, where 

the activations of the previous layer serve as input for the following layer.  This is the 

forward propagation step. 

2. Compute the gradient of the cost function.  This is a generally a function of the output of 

the neural network after the feedforward step h = h1, h2, … hB and the training target y = 

y1, y2, … yB (Bishop, 2006).  The magnitude of the gradient is large when the difference 

between y and t is large. 

3. Using the chain rule, compute the gradient of the cost function with respect to all weights 

and biases (the parameters) of the neural network.  The gradients are computed in reverse 

topological order of the forward propagation step.  This is the back propagation step. 
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4. Each parameter of the neural network is updated with the average of the B gradients from 

the minibatch, scaled by a learning rate. 

These computations are highly parallel and consist of, for the most part, matrix operations, which 

makes them suitable for speed up using graphics processing units (GPU). 

In this chapter, we show that the use of large (many hidden variables) and deep (multiple 

hidden layers) neural networks can improve the predictive performances of the splicing code 

compared to previous work.  We also provide an evaluation method for researchers to improve 

and extend computational models for predicting AS.  Another goal is to describe the procedure for 

training and optimizing a deep neural network (DNN) on a sparse and unbalanced biological 

dataset.  Furthermore, we show how such a DNN can be analyzed in terms of its inputs. 

We show results supporting that DNN with dropout can be a competitive algorithm for 

doing learning and prediction on biological datasets, with the advantage that they can be trained 

quickly, have enough capacity to model complex relationships, and scale well with the number of 

hidden variables and volume of data, making them potentially highly suitable for 'omic' datasets. 

Different from the previous BNN, which used 30 hidden units, our architecture has 

thousands of hidden units with multiple non-linear layers and millions of model parameters.  We 

also explored a different connection architecture compared to previous work.  Before, each tissue 

type was considered as a different output of the neural network.  Here, tissues are treated as an 

input, requiring that the complexity of the splicing machinery in response to the cellular 

environment be represented by a set of hidden variables that jointly represent both the genomic 

features and tissue context. 

Besides a different model architecture, we also extended the code's prediction capability.  

In previous work, the splicing code infers the direction of change of the percentage of 

transcripts with an exon spliced in (PSI), relative to all other tissues (Katz et al., 2010).  Here, 

we perform absolute PSI prediction for each tissue individually without the need for a baseline 

averaged across tissues.  We also predict the difference in PSI (ΔPSI) between pairs of tissues to 

evaluate the model's tissue-specificity.  We show how these two prediction tasks can be trained 

simultaneously, where the learned hidden variables are useful for both tasks. 
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We compare the splicing code's performance trained with the DNN with the previous BNN 

and additionally optimized a multinomial logistic regression (MLR) classifier on the same task for 

a baseline comparison.  A GPU was used to accelerate training of the DNN, which made it feasible 

to perform hyperparameter search to optimize prediction performance with cross-validation. 

2.2 Methods 

2.2.1 Dataset 

The dataset consists of 11,019 mouse alternative exons profiled from RNA-Seq data prepared by 

(Brawand et al., 2011).  The exons are based on a set of cassette exons (an exon that can be spliced 

out or retained, flanked by two constitutive exons) derived from EST/cDNA sequences (Barash et 

al., 2010, 2013).  Five tissue types are available, including whole brain, heart, kidney, liver, and 

testis.  To estimate the splicing level for each exon and tissue, we mapped the 75 nucleotide reads 

to splice junctions, requiring a minimum overhang of 8 nucleotides on each side of the junction, 

giving 60 mappable positions.  A bootstrap method that takes into account position-dependent read 

biases in RNA-Seq was then used to obtain an estimate of PSI that reflects its uncertainty 

(Kakaradov et al., 2012).  This generates a distribution of PSI for each exon and tissue, which 

represent the probability that the given exon within a tissue type has PSI value ranging from these 

intervals.  Three real-values are then calculated by summing this probability mass over equally 

split intervals of 0 to 0.33 (low), 0.33 to 0.66 (medium), and 0.66 to 1 (high), representing targets 

for classification.  Table 2-1 shows the distribution of exons in each category in this dataset, 

counted by selecting the label with the largest value.  It can be seen that most of the exons in the 

dataset are included in the transcript (high PSI), followed by exons that are excluded (low PSI).  

Exons that are sometimes included or excluded (medium PSI) are the minority. 

Table 2-1.  The number of exons classified as low, medium, and high for each mouse tissue.  Exons with large tissue 

variability (TV) are displayed in a separate column.  The proportion of medium category exons that have large tissue 

variability is higher than the other two categories. 

 Brain Heart Kidney Liver Testis 

 All TV All TV All TV All TV All TV 

Low 1782 579 1191 460 1287 528 1001 413 1216 452 

Medium 669 456 384 330 345 294 254 220 346 270 

High 5229 1068 4060 919 4357 941 3606 757 4161 887 

Total 7680 2103 5635 1709 5989 1763 4861 1390 5723 1609 
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To obtain the distribution denoting the difference in PSI, or ΔPSI, the difference between 

bootstrap samples was calculated for all pairs of tissues to generate a distribution in the same 

manner.  The possible values range from 0 to 1 for the PSI distribution, and -1 to 1 in the ΔPSI 

distribution.  To test whether the model generalizes to a different dataset, RNA-Seq data from 

(Barbosa-Morais et al., 2012) was processed in the same manner for brain and heart, which was 

used only for testing. 

For each exon, a set of intronic, exonic, and structural features was derived from sequences 

in the alternative exon (A), flanking constitutive exons (C1 and C2), and introns between C1 and 

A (I1) and A and C2 (I2), forming a feature vector of length 1393.  These features include those 

originally described in (Barash et al., 2010) and the extended feature set from (Barash et al., 2013).  

Features related to the premature termination codon have been removed since they rely on knowing 

the splicing pattern a priori and cannot be computed by just the local genomic sequences.  Instead, 

four binary ‘translatability’ features are introduced, which describe whether exons can be 

translated without a stop codon in one of three possible reading frames.  The features are 

summarized in Appendix A. 

2.2.2 Model 

We formulate splicing prediction as a classification problem with multiple classes.  Figure 2-1 

shows the architecture of the DNN.  The nodes of the neural network are fully connected, where 

each connection is parameterized by a real-valued weight θ.  The DNN has multiple layers of non-

linearity consisting of hidden units.  The output activation a of each hidden unit v in layer l 

processes a sum of weighted outputs from the previous layer, using a non-linear function f: 

𝑎𝑣
𝑙 = 𝑓(∑ 𝜃𝑣,𝑚

𝑙 𝑎𝑚
𝑙−1)𝑀𝑙−1 

𝑚   

where Ml represents the number of hidden units in layer l, and a0 and M0 are the input into the 

model and its dimensionality, respectively.  We used two different activation functions for the 

hidden units, namely the TANH function, and the rectified linear unit (RELU), which is defined as 

(Glorot et al., 2011): 

𝑓𝑅𝐸𝐿𝑈(𝑧) = max (0, 𝑧) 
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The RELU unit was used for all hidden units except for the first hidden layer, which utilized TANH 

units, based on empirical performance on validation data during hyperparameter optimization (see 

Section 2.2.3). 

 

Figure 2-1.  Architecture of the deep neural network used to predict alternative splicing patterns.  It contains three 

hidden layers, with hidden variables that jointly represent genomic features and cellular context (tissue types). 

Inputs into the first hidden layer consist of N = 1393 genomic features xn=1...N describing 

an exon, neighboring introns, and adjacent exons.  To improve learning, the features were 

normalized by the maximum of the absolute value across all exons.  The purpose of this hidden 

layer is to reduce the dimensionality of the input and learn a better representation of the feature 

space. 

The identity of two tissues, which consists of two 1-of-T binary variables (one-hot 

encoding) ti=1...T and tj=1...T, is then appended to the vector of outputs of the first hidden layer, 

together forming the input into the second hidden layer.  For this work, T = 5 for the 5 tissues 

available in the RNA-Seq data.  We added a third hidden layer as we found it improved the model's 

performance.  The weighted outputs from the last hidden layer are used as input into a softmax 

function for classification in the prediction hj(x,t,θ), which represents the probability of each 

splicing pattern j (e.g. low, medium, or high) for j = 1, … , K: 
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ℎ𝑗 =
exp(∑ 𝜃𝑗,𝑚

𝑙𝑎𝑠𝑡  𝑎𝑚
𝑙𝑎𝑠𝑡  𝑚 )

∑ exp (∑ 𝜃𝑘,𝑚
𝑙𝑎𝑠𝑡  𝑎𝑚

𝑙𝑎𝑠𝑡) 𝑚
𝐾
𝑘

 

To learn a set of model parameters θ, we used the cross-entropy cost function E on predictions 

h(x,t,θ) given targets y(x,t), which is minimized during training: 

𝐸 = − ∑ ∑ 𝑦𝑏,𝑘 𝑙𝑜𝑔(ℎ𝑏,𝑘)

𝐾

𝑘=1𝑏

 

where b denotes the training examples, and k indexes K classes. 

We are interested in two types of predictions.  The first task is to predict the PSI value 

given a particular tissue type and a set of genomic features.  To generate the targets for training, 

we created K = 3 classes which we label as low, medium, and high categories.  Each class contains 

a real-valued variable obtained by summing the probability mass of the PSI distribution over 

equally split intervals of 0-0.33, 0.33-0.66, and 0.66-1.  They represent the probability that a given 

exon and tissue type has a PSI value ranging from these corresponding intervals, hence are soft 

class labels.  We will refer to this as the ‘low, medium, high’ (LMH) code, with targets 𝑦𝑘
𝐿𝑀𝐻(𝑥, 𝑡𝑖). 

The second task describes the difference in PSI between two tissues for a particular exon.  

We again generate 3 classes, and call them decreased inclusion, no change, and increased 

inclusion, which are similarly generated, but from the ΔPSI distributions.  We chose an interval 

that more finely differentiates tissue-specific AS for this task, where a difference of greater than 

0.15 would be labeled as a change in PSI levels.  We summed the probability mass over the 

intervals of -1 to -0.15 for decreased inclusion, -0.15 to 0.15 for no change, and 0.15 to 1 for 

increased inclusion.  The purpose of this target is to learn a model that is independent of the chosen 

PSI class intervals in the LMH code.  For example, the expected PSI of two tissues ti and tj for an 

exon could be 0.40 and 0.60.  The LMH code would be trained to predict medium for both tissues, 

whereas this tissue difference code would predict that tj has increased inclusion relative to ti.  We 

will refer to this as the ‘decrease, no change, increase’ (DNI) code, with targets 𝑦𝑘
𝐷𝑁𝐼(𝑥, 𝑡𝑖, 𝑡𝑗). 

Both the LMH and DNI codes are trained jointly, reusing the same hidden representations 

learned by the model.  For the LMH code, two softmax classification outputs predict the PSI for 
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each of the two tissues that are given as input into the DNN.  A third softmax classification function 

predicts the difference in PSI, or ΔPSI, for the two tissues.  We note that two PSI predictions are 

included in the model's output so we have a complete set of predictions that utilize the full input 

features.  The cost of the model used during optimization is the sum of the cross-entropy functions 

for both prediction tasks. 

The BNN architecture used for comparison is the same as previously described (Xiong et 

al., 2011), but trained on RNA-Seq data with the expanded feature set and LMH as targets.  This 

is shown in Figure 2-2.  Although hidden variables were shared across tissues in both the BNN 

and DNN, a different set of weights were used following the single hidden layer to predict the 

splicing pattern for each tissue separately in the BNN. 

 

Figure 2-2.  Architecture of the Bayesian neural network (Xiong et al., 2011) used for comparison, where low-

medium-high predictions are made separately for each tissue. 

In the current DNN, the tissue identities are inputs and are jointly represented by hidden variables 

together with genomic features.  In order for the BNN to make tissue difference predictions in the 

same manner as the DNI code, we fitted a MLR on the predicted LMH outputs for each tissue pair.  

This is illustrated in Figure 2-3. 
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Figure 2-3.  Input and output configuration for training a multinomial logistic regression classifier to utilize the 

outputs of the low-medium-high code to make tissue difference predictions. 

2.2.3 Training 

The first hidden layer was trained as an autoencoder to reduce the dimensionality of the feature 

space in an unsupervised manner.  An autoencoder is trained by supplying the input through a non-

linear hidden layer, and reconstructing the input, with tied weights going into and out of the hidden 

layer.  This method of pretraining the network has been used in deep architectures to initialize 

learning near a good local minimum (Hinton and Salakhutdinov, 2006; Erhan et al., 2010).  We 

used an autoencoder instead of other dimensionality reduction techniques like principal component 

analysis because it naturally fits into the DNN architecture, and that a non-linear technique may 

discover a better and more compact representation of the features. 

In the second stage of training, the weights from the input layer to the first hidden layer 

(learned from the autoencoder) are fixed, and ten additional inputs corresponding to tissues are 

appended.  A one-hot encoding representation is used, such that specifying a tissue for a particular 

training example can take the form [0 1 0 0 0] to denote the second tissue out of 5 possible types.  

We have two such inputs totaling 10 variables that specify tissue types.  The reduced feature set 

and tissue variables become input into the second hidden layer.  The weights connected to this and 

the final hidden layer of the DNN are then trained together in a supervised manner, with targets 
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being PSI and ΔPSI.  After training these final two layers, weights from all layers of the DNN 

were fine-tuned by backpropagation. 

Each training example consists of 1393 genomic features and two tissue types as input.  

The targets consist of (1) PSI for each of the two tissues, and (2) ΔPSI between the two tissues.  

Given a particular exon and 5 possible tissue types, we constructed 5 x 5 = 25 training examples.  

This construction has redundancy in that we generate examples where both tissues are the same in 

the input to teach the model that it should predict no change for ΔPSI given identical tissue indices.  

Also, if the tissues are swapped in the input, a previously increased inclusion label should become 

decreased inclusion.  The same rationale extends to the LMH code.  Generating these additional 

examples is one method to incorporate this knowledge without explicitly specifying it in the model 

architecture. 

We applied a threshold to exclude examples from training if the total number RNA-Seq 

junction reads is below 10.  This removed 45.8% of the total number of training examples.  We 

further define exons as having large tissue variability if ΔPSI >= +/-0.15 for at least one tissue pair 

profiled.  These exons make up 28.6% of the total number of remaining exons that have more than 

10 junction reads. 

To promote the neural network to better discover the meaning of the inputs representing 

tissue types, we biased the distribution of training examples in the minibatches.  We first selected 

all events which exhibit large tissue variability, and constructed minibatches based only on these 

events.  At each training epoch, we further sampled (without replacement) training cases from the 

larger pool of events with low tissue variability, of size equal to one-fifth of the minibatch size.  

The purpose is to have a consistent backpropagation signal that updates the weights connected to 

the tissue inputs and bias learning towards the event with large tissue variability early on before 

overfitting occurs.  As training progresses, the splicing pattern of the events with low tissue 

variability is also learned.  This arrangement effectively gives the events with large tissue 

variability greater importance (i.e. more weight) during optimization.  A side effect is that it also 

places more importance to the medium category of the LMH code during training, since they tend 

to be present more often in exons with tissue-specific splicing patterns. 

Both the LMH and DNI codes are trained together.  Since each of these two tasks might be 

learning at different rates, we allowed their learning rates to differ.  This is to prevent one task 
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from overfitting too soon and negatively affecting the performance of another task before the 

complete model is fully trained (Silver and Mercer, 1996).  This is implemented by having 

different learning rates for the weights between the connections of the last hidden layer and the 

softmax functions for each task. 

The performance of the model was assessed using the area under the ROC curve (AUC) 

metric.  To evaluate the PSI predictions for the LMH code, we used the 1 vs. all formulation.  This 

produces three AUCs (AUCLow, AUCMed, AUCHigh), one for each class.  For ΔPSI predictions, 

since the no change class is much more abundant, we find that the multi-class 1 vs. all formulation 

tends to overestimate the tissue-specificity performance of the model due to class skew (Fawcett, 

2006).  Furthermore, the model can predict, based on the genomic features alone, that there is 

tissue-specific splicing for a given exon (which is biologically meaningful), but not necessarily 

how different tissues change the splicing pattern.  We therefore provide two metrics to evaluate 

the DNI code.  The first is to compute the AUCDvI based on the decrease vs. increase class between 

two tissues.  The second is to compute AUCChange by comparing no change vs. the other two 

classes. 

To train and test the DNN, data was split into approximately five equal folds at random for 

cross-validation.  Each fold contains a unique set of exons that are not found in any of the other 

folds.  Three of the folds were used for training, one used for validation, and one held out for 

testing.  We trained for a fixed number of epochs (1500, see below) and selected the 

hyperparameters that give the optimal AUC performance on the validation data.  The model was 

then re-trained using these selected hyperparameters with both the training and validation data.  

Five models were trained this way from the different folds of data.  Predictions from all five models 

on their corresponding test set were used to evaluate the code's performance.  To estimate the 

confidence intervals, the data was randomly partitioned five times, and the above training 

procedure was repeated. 

The DNN weights were initialized with small random values sampled from a zero-mean 

Gaussian distribution and a variance selected via hyperparameter optimization (see Table 2-2).  

Learning was performed with stochastic gradient descent with momentum and dropout, where 

minibatches were constructed as described above.  A small L1 weight penalty (see Table 2-2) was 

included in the cost function (Tibshirani, 1994).  The model's weights were updated after each 
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minibatch.  The learning rate ε was decreased with epochs e, and also included a momentum term 

μ that starts out at 0.5, increasing to 0.99, and then stays fixed.  The momentum term accelerates 

learning and stabilizes learning near the end of training when the momentum is high by distributing 

gradient information over many updates.  The weights of the model parameters θ were updated as: 

𝜃𝑒 = 𝜃𝑒−1 + 𝛥𝜃𝑒 

𝛥𝜃𝑒 = 𝜇𝑒𝛥𝜃𝑒−1 − (1 − 𝜇𝑒)𝜀𝑒∇𝐸(𝜃𝑒)  

where ∇E(θ) is the gradient of the cost function with respect to the model parameters. 

We used a dropout rate of 50% for all layers except for the input layer (the autoencoder), 

where we did not use dropout, as it empirically decreased the model's predictive performance.  

Training was carried out for 1500 epochs for both the pretraining with the autoencoder and 

supervised learning. 

The performance of a DNN depends on a good set of hyperparameters.  Instead of doing a 

grid search over the hyperparameter space, we used a Bayesian framework called spearmint to 

automatically select the model's hyperparameters that optimize the model's performance on 

validation data (Snoek et al., 2012).  The method uses a Gaussian Process to search for a joint 

setting of hyperparameters that optimizes an algorithm's performance on validation data.  It 

uses the performance measures from previous experiments to decide which hyperparameters 

to try next, taking into account the trade-off between exploration and exploitation.  This 

method eliminates many of the human judgments involved with hyperparameter optimization and 

reduces the time required to find such hyperparameters.  The algorithm requires only the search 

range of hyperparameter values to be specified, as well as how long to run the optimization for.  

We used the expected improvement criterion in the optimization, as it does not require its own 

tuning parameter, unlike other methods in the framework.  We score each experiment by the sum 

of the AUCs from both the LMH and DNI codes, requiring the set of hyperparameters to perform 

well on both tasks. 

Data were split into 5 approximately equal folds at random for cross-validation.  Each fold 

contained a unique set of exons that are not found in any of the other folds.  Three of the folds 

were used for training, one used for validation, whose performance was used for hyperparameter 
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selection, and one for testing.  For each fold of the data partition, a separate hyperparameter 

optimization procedure was performed to ensure a set of test data is always held out from the 

optimization.  The model performance of each selection of hyperparameter was scored by the sum 

of the AUCs from both the LMH and DNI codes on validation data, and therefore required the 

setting to perform well on both tasks.  The optimal set of hyperparameters were then used to re-

train the model using both training and validation data.  Five models were trained this way from 

the different folds of data.  Predictions made for the corresponding test data from all models were 

then evaluated and reported. 

The hyperparameters that were optimized and their search ranges are:  (1) the learning rate 

for each of the two tasks (0.1 to 2.0), (2) the number of hidden units in each layer (30 to 9000), (3) 

the L1 penalty (0.0 to 0.25), (4) the standard deviation of the normal distribution used to initialize 

the weights (0.001 to 0.200), (5) the momentum schedule defined as the number of epochs to 

linearly increase the momentum from 0.50 to 0.99 (50 to 1500), and (6) the minibatch size (500 to 

8500).  The number of training epoch was fixed to 1500.  In our experience, a good set of 

hyperparameters were generally found in approximately 2 days, where experiments were run on a 

single GPU (Nvidia GTX Titan).  The selected set of hyperparameters are shown in Table 2-2.  

There is a large range of acceptable values for the number of hidden units in the second layer. 

Table 2-2.  The hyperparameters selected to train the deep neural network.  Some are listed in ranges to reflect the 

variations from the different folds as well as hyperparameters from the top performing runs within a given fold. 

 Range Selected 

Hidden Units (layer 1) 450 - 650 

Hidden Units (layer 2) 4500 - 6000 

Hidden Units (layer 3) 400 - 600 

L1 Regularization 0 - 0.05 

Learning Rate (LMH code) 1.40 - 1.50 

Learning Rate (DNI code) 1.80 - 2.00 

Momentum Rate 1250 

Minibatch Size 1500 

Weight Initialization 0.05 - 0.09 

The DNN was implemented in Python, making use of Gnumpy for GPU-accelerated 

computation (Tieleman, 2010).  The GPU used was a Nvidia GTX Titan.  For the configuration 

with the optimal hyperparameters, the GPU provided ~15-fold speedup over our original CPU 

implementation.  This was crucial as otherwise hyperparameter optimization would not have been 

practical. 
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We compared the splicing code's performance trained with the DNN with the BNN, as well 

as a MLR classifier as a baseline.  The MLR was trained by removing the hidden layer while 

keeping the training methodology identical to the neural networks.  Since the predictions of the 

BNN consist only of the PSI prediction for each tissue separately at the output (Xiong et al., 2011), 

in order for the BNN to make tissue difference predictions in the same manner as the DNI code, 

we used a MLR on the predicted outputs for each tissue pair.  For a fair comparison, we similarly 

trained a MLR on the LMH outputs of the DNN to make DNI predictions, and report that result 

separately.  In both cases, the inputs to the MLR are the low, medium, high predictions for two 

tissues as well as their logarithm.  Schematic of the BNN and MLR architecture is shown in Figure 

2-2 and 2-3. 

2.3 Results and Discussion 

We present three sets of results that compare the test performance of the BNN, DNN, and MLR 

for splicing pattern prediction.  The first is the PSI prediction from the LMH code tested on all 

exons.  The second is the PSI prediction evaluated only on targets where there are large variations 

across tissues for a given exon.  These are events where ΔPSI >= +/- 0.15 for at least one pair of 

tissues, to evaluate the tissue-specificity of the model.  The third result shows how well the code 

can classify ΔPSI between the five tissue types.  Hyperparameter tuning was used in all methods.  

The averaged predictions from all partitions and folds are used to evaluate the model's performance 

on their corresponding test dataset.  Similar to training, we tested on exons and tissues that have 

at least 10 junction reads. 

For the LMH code, since the same prediction target can be generated by different input 

configurations, and there are two LMH outputs, we compute the predictions for all input 

combinations containing the particular tissue, and average them into a single prediction for testing.  

To assess the stability of the LMH predictions, we calculated the percentage of instances in which 

there is a prediction from one tissue input configuration that doesn't agree with another tissue input 

configuration in terms of class membership, for all exons and tissues.  Of all predictions, 91.0% 

agreed with each other, 4.2% have predictions that are in adjacent classes (i.e. low and medium, or 

medium and high), and 4.8% otherwise.  Of those predictions that agreed with each other, 85.9% 

correspond to the correct class label on test data, 51.2% for the predictions with adjacent classes, 

and 53.8% for the remaining predictions.  This information can be used to assess the confidence 
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of the predicted class labels.  Note that predictions spanning adjacent classes may be indicative 

that the PSI value is somewhere between the two classes, and the above analysis using hard class 

labels can underestimate the confidence of the model. 

2.3.1 Performance Comparison 

Table 2-3(a) reports AUCLMH_All for PSI predictions from the LMH code on all tissues and exons.  

The performance of the DNN in the low and high categories are comparable to the BNN, but excels 

at the medium category, with especially large gains in brain, heart, and kidney.  Since a large 

portion of the exons exhibit low tissue variability, evaluating the performance of the model on all 

exons may mask the performance gain of the DNN.  This assumes that exons with high tissue 

variability are more difficult to predict, where a computational model must learn how AS interprets 

genomic features differently in different cellular environments.  To more carefully see the tissue-

specificity of the different methods, Table 2-3(b) reports AUCLMH_TV evaluated on the subset of 

events that exhibit large tissue variability.  Here, the DNN significantly outperforms the BNN in 

all categories and tissues.  The improvement in tissue-specificity is evident from the large gains in 

the medium category, where exons are more likely to have large tissue variability.  In both 

comparisons, the MLR performed poorly compared to both the BNN and DNN. 

Table 2-3.  Comparison of the LMH code's AUC performance on different methods.  (a) Tested on all exons 

(AUCLMH_All). (b) Tested on the subset of exons with large tissue variability (AUCLMH_TV). 

(a) 

    Low  Medium High 

Brain 

MLR 0.813±0.001 0.724±0.003 0.815±0.001 

BNN 0.892±0.004 0.752±0.003 0.880±0.004 

DNN 0.893±0.005 0.794±0.009 0.883±0.006 

Heart 

MLR 0.846±0.001 0.731±0.003 0.836±0.001 

BNN 0.911±0.003 0.747±0.003 0.895±0.002 

DNN 0.907±0.006 0.797±0.012 0.894±0.011 

Kidney 

MLR 0.867±0.001 0.756±0.002 0.863±0.001 

BNN 0.925±0.004 0.783±0.004 0.916±0.004 

DNN 0.919±0.006 0.826±0.011 0.912±0.009 

Liver 

MLR 0.865±0.002 0.756±0.002 0.865±0.001 

BNN 0.927±0.003 0.779±0.006 0.923±0.005 

DNN 0.922±0.005 0.805±0.010 0.911±0.008 

Testis  

MLR 0.856±0.001 0.723±0.004 0.852±0.001 

BNN 0.911±0.003 0.755±0.006 0.904±0.003 

DNN 0.907±0.006 0.766±0.007 0.897±0.007 
 

(b) 

    Low  Medium High 

Brain 

MLR 0.711±0.002 0.588±0.002 0.708±0.001 

BNN 0.779±0.005 0.611±0.005 0.765±0.007 

DNN 0.828±0.010 0.695±0.011 0.81.1±0.004 

Heart 

MLR 0.739±0.003 0.586±0.004 0.727±0.001 

BNN 0.781±0.003 0.589±0.003 0.757±0.003 

DNN 0.820±0.011 0.674±0.013 0.797±0.012 

Kidney 

MLR 0.797±0.003 0.643±0.002 0.794±0.002 

BNN 0.839±0.005 0.664±0.005 0.833±0.006 

DNN 0.862±0.006 0.732±0.013 0.853±0.012 

Liver 

MLR 0.801±0.005 0.637±0.003 0.794±0.003 

BNN 0.849±0.007 0.654±0.007 0.844±0.007 

DNN 0.877±0.006 0.694±0.012 0.848±0.008 

Testis  

MLR 0.773±0.002 0.608±0.003 0.770±0.001 

BNN 0.811±0.005 0.639±0.009 0.810±0.005 

DNN 0.846±0.011 0.678±0.009 0.835±0.009 
 

Next, we look at how well the different methods can predict ΔPSI between two tissues, 

where it must determine the direction of change.  As described above, ΔPSI predictions for the 

BNN was made by training a MLR classifier on the LMH outputs (BNN-MLR).  To make the 
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comparison fair, we included the performance of the DNN in making ΔPSI predictions by also 

using a MLR classifier (DNN-MLR) on the LMH outputs.  Finally, we evaluated the ΔPSI 

predictions directly from the DNI code, as well as the MLR baseline method, where the inputs 

include the tissue types. 

Table 2-4(a) shows the AUCDvI for classifying decrease vs. increase inclusion for all pairs 

of tissue.  Both the DNN-MLR and DNN outperform the BNN-MLR by a good margin.  

Comparing the DNN with DNN-MLR, the DNN shows some gain in differentiating brain and 

heart AS patterns from other tissues.  The performance of differentiating the remaining tissues 

(kidney, liver, and testis) with each other is similar between the DNN and DNN-MLR.  We note 

that the similarity between the DNN and DNN-MLR in terms of performance can be due to the 

use of soft labels for training.  Using MLR directly on the genomic features and tissue types 

performs rather poorly, where predictions are no better than random. 

Table 2-4.  Comparison of the DNI code's performance on different methods.  (a) AUC for decrease vs. increase 

(AUCDvI) (b) AUC for change vs. no change (AUCChange) 
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MLR 
0.503 

±0.002 

0.488 

±0.008 

0.483 

±0.011 

0.512 

±0.005 

0.500 

±0.015 

0.478 

±0.017 

0.511 

±0.005 

0.494 

±0.008 

0.519 

±0.005 

0.513 

±0.006 

BNN-MLR 
0.653 

±0.003 
0.737 

±0.002 
0.691 

±0.004 
0.729 

±0.005 
0.726 

±0.003 
0.667 

±0.004 
0.683 

±0.007 
0.547 

±0.006 
0.650 

±0.008 
0.650 

±0.009 

DNN-MLR 
0.779 

±0.001 

0.830 

±0.001 

0.816 

±0.001 

0.823 

±0.002 

0.824 

±0.001 

0.813 

±0.001 

0.824 

±0.001 

0.768 

±0.005 

0.799 

±0.002 

0.791 

±0.001 

DNN 
0.794 

±0.007 

0.833 

±0.008 

0.825 

±0.006 

0.829 

±0.007 

0.861 

±0.010 

0.851 

±0.011 

0.848 

±0.008 

0.762 

±0.010 

0.825 

±0.010 

0.818 

±0.013 
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MLR 
0.747 

±0.001 

BNN-MLR 
0.766 

±0.008 

DNN-MLR 
0.799 

±0.008 

DNN 
0.865 

±0.010 

The models are further evaluated on predicting whether or not there is a difference in 

splicing patterns for all tissues, without specifying the direction.  AUCChange is computed on all 

exons and tissue pairs.  This is shown in Table 2-4(b).  The results indicate that this is a less 

demanding task since the models can potentially utilize just the genomic features to determine 
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whether an exon will have tissue variability.  The difference in performance between all methods 

is less compared to AUCDvI.  However, since the evaluation is over all pairs of tissues, the DNN, 

which has access to the tissue types in the input, does significantly better.  Although this is also 

true for the MLR, it still performed worst overall.  This suggests that in the proposed architecture 

where tissues types are given as an input, the MLR lacks the capacity to learn a representation that 

can jointly utilize tissue types and genomic features to make predictions that are tissue-specific.  

Both results from Table 2-4 show that there is an advantage to learning a DNI code rather than just 

learning the LMH code. 

To test whether the predictions generalize to RNA-Seq data from a different experiment, 

we selected data for two mouse tissues, namely the brain and the heart, from (Barbosa-Morais et 

al., 2012), and analyzed how our model, which is trained with data from (Brawand et al., 2011), 

performs.  Table 2-5 shows the set of evaluations on the DNN identical to that of Tables 2-3 and 

2-4, tested on this RNA-Seq data.  For the brain, there is an ~1-4% decrease in AUCLMH_All and 

~4-5% decrease for AUCLMH_TV.  For the heart, the model's performance on both datasets is 

equivalent to within one standard deviation for both AUCLMH_All and AUCLMH_TV.  A decrease in 

performance of ~7% is observed in AUCDvI for brain vs. heart.  There is an increase in AUCChange 

but that is due to only two tissues being evaluated as opposed to five, where the AUC would be 

pulled down by the other tissues with lower performances if they were present. 

Table 2-5.  Performance of the DNN evaluated on a different RNA-Seq experiment.  (a) AUCLMH_All (b) AUCLMH_TV 

(c) AUCDvI (d) AUCChange 

(a) 

    Low  Medium High 

Brain 0.881±0.005 0.761±0.010 0.870±0.006 

Heart 0.907±0.005 0.784±0.013 0.890±0.010 
 

   (b) 
    Low  Medium High 

Brain 0.791±0.009 0.661±0.010 0.776±0.008 
Heart 0.826±0.010 0.653±0.012 0.788±0.011 

 

(c)    (d) 
 Brain 

vs. 

Heart 

   Change 
vs. 

No Change 

DNN-MLR 0.729±0.001   DNN-MLR 0.817±0.010 
DNN 0.742±0.015   DNN 0.919±0.007 

Overall, the decrease in performance is not unexpected, due to differences in PSI estimates 

from variations in the experimental setup.  To see how PSI differed, we computed the expected 

PSI values for brain and heart in all exons from both sets of experiments and evaluated their 
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Pearson correlation.  For the brain, the correlation is 0.945, and for the heart, it is 0.974.  This can 

explain why there is a larger decrease in performance for the brain, which is a particularly 

heterogeneous tissue, and hence can vary more between experiments depending on how the 

samples were prepared.  We note that the performance of the DNN on this dataset is still better 

than the BNN's predictions on the original dataset.  Viewed as a whole, the results indicate that 

our model can indeed be useful for splicing pattern predictions for PSI estimates computed from 

other datasets.  It also shows that our RNA-Seq processing pipeline is consistent. 

We believe there are several reasons why the proposed DNN has improved predictive 

performance in terms of tissue-specificity compared to the previous BNN splicing code.  One of 

the main novelties is the use of tissue types as an input feature, which stringently required the 

model's hidden representations be in a form that can be well-modulated by information specifying 

the different tissue types for splicing pattern prediction.  This requirement would be relaxed if each 

tissue was trained separately.  Furthermore, this hidden representation is described by thousands 

of hidden units and multiple layers of non-linearity.  In contrast, the BNN only has 30 hidden units 

to represent the variables that can be used by the model to modulate splicing based on the cellular 

condition, which may not be sufficient.  Another difference is that for the DNI code, a training 

objective was specifically designed to learn to predict ΔPSI, which is absent from the BNN.  

However, the performance gain of the DNN-MLR over BNN-MLR shows that this is only part of 

the improvement. 

In addition, we performed hyperparameter search to optimize the DNN, where we gained 

considerable improvements over our original hand-tuned models, at ~4.5% for the DNI code and 

~3.5% for the LMH code.  Interestingly, the final set of hyperparameters found opts for a much 

larger (~4x) number of hidden units than our initial attempt (with matching hyperparameters).  

Manually trying to find these hyperparameters would have been difficult, where a user may settle 

for a sub-optimal set of hyperparameters due to the substantial effort and time required for training 

a model with millions of parameters. 

  Another performance boost came from the use of dropout, which contributed ~1 to 6% 

improvement in the LMH code for different tissues, and ~2 to 7% in the DNI code, compared to 

without.  The performance difference would likely be larger if hyperparameter optimization was 

not performed on the model that did not use dropout.  We note also that even with dropout, a small 
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L1 weight penalty was found to be beneficial, which may explain our model's tolerance for a large 

number of hidden units with very sparse weights. 

One additional difference compared with previous work is that training was biased towards 

the tissue-specific events (by construction of the minibatches), thereby promoting the model to 

learn a good representation about cellular context.  We were able to get some small performance 

gains (within 2 standard deviations) of ~1 to 2% in AUCLMH_TV and AUCDVI using this 

methodology compared to training with all events treated equally.  More importantly, biasing the 

training examples encourages the model to learn about the tissues as input, which has a 

significantly different meaning compared to the genomic features and make up only a small 

number of the input dimension.  We find that without this learning bias, the model more frequently 

settles to a bad local minimum, or doesn't learn to utilize the tissues as input at all.  Together, all 

these changes allowed us to train a model that significantly improves upon previous work. 

With regards to training the two tasks jointly, we found that with hyperparameter tuning, 

the performance of the model when each task was trained separately compared to being trained 

together was not statistically different.  This is likely because both tasks are too similar for any 

transfer learning to take place, as evident by the similarity in performance in the DNI code between 

the DNN and DNN-MLR models.  Nevertheless, we find that training both codes together 

stabilizes learning, specifically, training becomes more tolerant to a larger range of 

hyperparameters leading to reduced variance between models. 

2.3.2 Model and Feature Analysis 

A major contribution to the success of splicing pattern predictions that generalize well comes from 

the richness of our feature set.  For example, we observed a significant decrease in the performance 

of the splicing code if the reduced feature vector dimension is too small by either principal 

component analysis or an autoencoder with a small number of hidden units.  We found that the 

performance of both the LMH code and the DNI code drops by up to 4% when the reduced 

dimension is at 150 (down from 1393).  This suggests a sufficiently large number of hidden 

variables denoting genomic features are required to interact with tissue inputs to achieve good 

performance. 
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It can be useful to see how the genomic features are used by the DNN to perform splicing 

pattern predictions.  We analyzed our model in two different ways. 

In the first method, in order to see which features types are important to the model, we 

substituted genomic features to their median across all exons and looked at how the predictive 

performance changed.  We divided the full feature set into 55 groups based on what they represent.  

The grouping, along with additional descriptions, can be found in Appendix A.  Here, the 

performance measure is defined as the sum of the three classes from AUCLMH_All.  The decrease in 

test performance (as a fraction of that obtained with the full feature set) when each group of 

features is substituted by their median is shown in Figure 2-4. 

 

Figure 2-4.  Plot of the change in AUCLMH_All performance by substituting the values in each feature groups by their 

median.  Feature groups that are more informative to the predictive performance of the model have lower values.  The 

groups are sorted by the mean over multiple partitions and folds, with the standard deviations shown.  The number of 

features for each feature group is indicated in brackets. 

Feature groups that cause a large decrease in performance are presumably more 

informative for splicing pattern predictions for the current mouse alternative exon dataset.  The 

standard deviation is computed from the five trained models with random partitions of the data as 

described above.  The order of the feature group towards the right of the plot should not be used 

to determine their order of importance due to the small difference they make to the model relative 

to their standard deviations.  It is interesting to see how small the decrease in AUC is when each 

feature group is effectively removed.  Many features contain redundant information, and therefore 

can compensate for missing features from other groups.  For example, some of the motifs for 
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splicing factors are represented in features representing n-mer counts.  The most influential 

features describe the translatability of the exon, conservation scores, and whether the alternative 

exon introduces a frameshift.  The feature groups corresponding to counts of 3-mers and 5-mers 

are also important. 

To examine how each individual feature affects the DNN's predictions, we adapted the 

method from (Simonyan et al., 2014).  Briefly, examples from the dataset are given as input to the 

trained model and forward propagated through the neural network.  At the output, the target is 

modified to a different value, for example, in classification, by changing the class label.  The error 

signal is then backpropagated to the inputs.  The resulting signal describes how much each input 

feature needs to change in order to make the modified prediction, as well as the direction.  The 

computation is extremely quick, as it only requires a single forward and backward pass through 

the DNN, and all examples can be calculated in parallel.  We used this procedure on exons with 

low tissue variability, and modified the low PSI targets to high, and the high PSI targets to low.  

Table 2-6 lists the top 25 features with the largest backpropagated signal magnitude (which 

indicate that these features need to change the least to affect the prediction the most, and are hence 

important; note also that all of our features are normalized).  The table also indicates general trends 

in the direction of change for each feature over the dataset.  If more than 5% of the examples do 

not follow the general direction of change, it is indicated by both an up and down arrow.  Some of 

the splicing rules inferred by the model can be seen.  For example, the presence of splicing 

silencers inhibits the splicing of the alternative exon leading to higher inclusion, a shorter 

alternative exon is more likely to be spliced out, and the strength and position of acceptor and 

donor sites can lead to different splicing patterns. 

Next, we wanted to see how features are used in a tissue-specific manner.  Using the set of 

exons with high tissue variability, we computed the backpropagation signal to the inputs with the 

output targets changed in the same manner as above, for each tissue separately.  Figure 2-5 shows 

the sum of the magnitudes of the gradient, normalized by the number of examples in each tissue 

for the top 50 features.  We can observe that the sensitivity of each feature to the model's 

predictions differs between tissues.  The profile for kidney and liver tend to be more similar to 

each other than others, which associates well with the model's weaker performance in 

differentiating these two tissues.  This figure also provides a view of how genomic features are 

differentially utilized by the DNN, modulated by the input tissue types.  In both Table 2-6 and 
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Figure 2-5, the backpropagation signals were computed on examples from the test set, for all five 

partitions and folds. 

Table 2-6.  The top 25 features (unordered) of the splicing code that describes low and high percent inclusion.  The 

direction in which each feature can increase (↑) or decrease (↓) the PSI predictions is shown.  Features whose effect 

on PSI is context-dependent (i.e. they depend on other features) is indicated with (↑↓).  Feature details can be found 

in Appendix A. 

Feature Description* Direction 

strength of the I1 acceptor site ↑ 

strength of the I2 donor site  ↑ 

strength of the I1 donor site  ↓ 

mean conservation score of first 100 bases in 3' end of I1 ↑↓ 

mean conservation score of first 100 bases in 5' end of I2 ↑↓ 

counts of Burge's exonic splicing silencer in A ↑ 

counts of Chasin's exonic splicing silencer in A ↑ 

log base 10 length of exon A ↑ 

log base 10 length ratio between A and I2 ↑ 

whether exon A introduces frameshift ↑↓ 

predicted nucleosome positioning in 3' end of A ↑↓ 

frequency of AGG in exon A ↓ 

frequency of CAA in exon A ↑ 

frequency of CGA in exon A ↑ 

frequency of TAG in exon A ↓ 

frequency of TCG in exon A ↑ 

frequency of TTA in exon A ↓ 

translatability of C1-A ↑ 

translatability of C1-A-C2 ↑ 

translatability of C1-C2 ↓ 

counts of Yeo's 'GTAAC' motif cluster in 5' end of I2 ↑ 

counts of Yeo's 'TGAGT' motif cluster in 5' end of I2 ↑ 

counts of Yeo's 'GTAGG' motif cluster in 5' end of I2 ↑ 

counts of Yeo's 'GTGAG' motif cluster in 5' end of I2 ↑ 

counts of Yeo's 'GTAAG' motif cluster in 5' end of I2 ↑ 
 

*C1 and C2 denote the flanking constitutive exons; A denotes the alternative exon; I1 denotes the intron between C1 

and A; I2 denotes the intron between A and C2 
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Figure 2-5.  Magnitude of the backpropagated signal to the input of the top 50 features computed when the targets are 

changed from low to high, and high to low.  White indicates that the magnitude of the signal is large, meaning that 

small perturbations to this input can cause large changes to the model's predictions.  The features are sorted left to 

right by the magnitude across all tissue types. 

2.4 Conclusion 

In this chapter, we introduced a computational model that extends the previous splicing code with 

new prediction targets and improved tissue-specificity, using a learning algorithm that scales well 

with the volume of data and the number of hidden variables.  The approach is based on deep neural 

networks, which can be trained rapidly with the aid of graphics processing units, thereby allowing 

the models to have a large set of parameters and deal with complex relationships present in the 

data.  We demonstrate that deep architectures can be beneficial even with a sparse biological 

dataset.  We further described how the input features can be analyzed in terms of the predictions 

of the model to gain some insights into the inferred tissue-regulated splicing code. 

Our architecture can easily be extended to the case of more data from different sources.  

For example, utilizing the same architecture, we may be able to learn a hidden representation that 

spans additional tissue types as well as multiple species.  Through transfer learning, training such 

a model with multiple related targets might be beneficial particularly if the number of training 

examples in certain species or tissues is small. 
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Chapter 3  
Inference and Analysis of a Human Polyadenylation Code 

Processing of transcripts at the 3'-end involves cleavage at a polyadenylation site followed by the 

addition of a poly(A)-tail.  By selecting which site is cleaved, the process of alternative 

polyadenylation enables genes to produce transcript isoforms with different 3'-ends.  To facilitate 

the identification and treatment of disease-causing mutations that affect polyadenylation and to 

understand the sequence determinants underlying this regulatory process, a predictor that can 

accurately infer polyadenylation patterns from genomic features is desirable.  In this chapter, the 

development of a computational model to infer alternative polyadenylation patterns from human 

RNA-Seq data is described.  The model is trained to predict which polyadenylation site is more 

likely to be selected in genes with multiple sites.  Using the same model, we show that the predictor 

can also be used to scan the 3’ untranslated region to find candidate polyadenylation sites.  To 

illustrate its potential for genomic medicine, we furthermore demonstrate how it can be used to 

classify the pathogenicity of variants near annotated polyadenylation sites in ClinVar, and to 

anticipate the effect of an antisense oligonucleotide experiment to redirect polyadenylation.  The 

content of this chapter is based on the publication (Leung et al., 2018): 

M. Leung, A. Delong, and B. Frey. (2018) “Inference of the Human Polyadenylation Code”.  

Bioinformatics, 34(17), 2889-2898. 

 The Human Polyadenylation Code 

3.1 Introduction 

Polyadenylation is a pervasive mechanism responsible for regulating mRNA function, stability, 

localization, and translation efficiency.  As much as 70% of human genes are subject to alternative 

polyadenylation (APA) and wide-spread mechanisms have been found which influence its 

regulation (Elkon et al., 2013).  By selecting which polyadenylation site (PAS) is cleaved, different 

transcript isoforms that vary either in their coding sequences or in their 3' untranslated region (3’-

UTR) can be produced.  Transcripts differentially cleaved can influence how they are regulated.  

For example, longer variants can harbor additional destabilization elements that alter a transcript’s 

stability (Shaw and Kamen, 1986), and shortened variants can escape regulation from microRNAs, 

which have been observed in various cancers (Lin et al., 2012; Di Giammartino et al., 2011).  
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Furthermore, APA can be tissue-dependent, so a single gene can generate different transcripts, for 

instance, based on the tissue in which it is expressed (Tian and Manley, 2016).  One mechanism 

of APA regulation occurs at the level of the sequences of the transcript.  The presence or absence 

of certain regulatory elements can influence which PAS is selected.  PAS selection is also 

influenced by a site’s position relative to other sites.  A computational model that can accurately 

predict how polyadenylation is affected by genomic features as well as cellular context is highly 

desirable to understand this widespread phenomenon.  Moreover, several inherited diseases have 

been linked to errors in 3’-end processing (Danckwardt et al., 2008).  Such model would enable 

the exploration of the effects of genetic variations on polyadenylation and their implications for 

disease. 

In this chapter, we present the polyadenylation code, a computational model that can 

predict alternative polyadenylation patterns from transcript sequences.  While there have been 

previous works in classifying whether a stretch of sequence contains a PAS (Cheng et al., 2006; 

Akhtar et al., 2010; Chang et al., 2011; Kalkatawi et al., 2012; Xie et al., 2013; Ho et al., 2013), 

or characterizing whether a PAS is tissue-specific (Hafez et al., 2013; Weng et al., 2016), many 

of them are aimed at improving gene annotations and understanding which features are involved 

in APA regulation, and do not address the question of predicting how APA sites are variably 

selected.  Here, we tackle this question by developing a model that can predict a score, which we 

refer to as PAS strength (Shi, 2012), that describes the efficiency in which a PAS is recognized by 

3’-end processing machinery for cleavage and polyadenylation.  The ability to predict PAS 

strength enables this model to generalize to multiple prediction tasks, even though it is not 

explicitly trained for them.  For example, the model can be applied to a gene with multiple PAS to 

determine the relative transcript isoforms that would be produced, in a tissue-specific manner.  The 

model can predict the consequence of nucleotide substitutions on PAS strength, which can be used 

to prioritize genetic variants that affect polyadenylation.  It can be used to assess the effects of 

antisense oligonucleotides to alter transcript abundance.  It can also scan the 3’-UTR of the human 

genome to find potential PAS.  We demonstrate examples of these applications and provide 

analysis on how different features affect the predictions of the model. 
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3.2 Methods 

3.2.1 Inferring the Strength of a Polyadenylation Site 

The goal of this work is to infer a score that describes the strength of a PAS, or the efficiency in 

which it is recognized by the 3’-end processing machinery.  The problem would be straightforward 

if this target variable is directly measurable.  However, current sequencing protocols only provide 

a measurement of the relative transcript abundance from APA.  Various approaches exist in the 

literature which attempt to quantify the strength of a PAS.  For example, normalized read counts 

are often used, but quantification can be affected by factors such as sequencing biases, transcript 

length, and RNA decay (Oshlack and Wakefield, 2009; Gallego Romero et al., 2014).  Some 

studies classify PAS strength based on whether a canonical polyadenylation signal or other known 

sequence elements are present near the PAS (Akhtar et al., 2010).  We believe a more principled 

approach to predict a quantitative description of the strength of a PAS is to model it as a hidden 

variable, and infer it from data.  Moreover, the position of a PAS relative to neighboring sites 

affects its selection.  Some biological processes and tissues tend to favor PAS at the distal end, 

whereas cells under disease states tend to utilize PAS that are more proximal (Elkon et al., 2013).  

Therefore, the model should include a variable that accounts for the distance between neighboring 

sites during training.  Even though the position of a PAS is modeled, a desirable characteristic of 

the predictor is that during inference, positional information should be optional.  This can be useful 

in regions of the genome where there are insufficient annotation sources to ascertain the distance 

to a nearby PAS.  This would also enable one to apply this model to any DNA sequence associated 

with a site, optionally modify the bases within, and see the predicted effect on polyadenylation 

regulation.  To determine which PAS in a gene with multiple sites is more likely to be selected, 

the model can be applied to each PAS separately to compare their relative strengths.  Optionally, 

their positions can be factored into the model’s prediction if annotation sources are available in 

order to get a better estimate. 

3.2.2 The Polyadenylation Code 

The polyadenylation code is a model that can infer tissue-specific PAS strength scores from 

sequence, and optionally account for the influence of position if it is provided.  It takes as input a 

sequence of length 200 bases centered on a PAS.  We benchmark two models which operate on 

the sequence differently. 
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The first model is built on hand-crafted features derived from the literature of sequence 

elements associated with polyadenylation (Appendix B).  The genomic sequence is processed by 

a feature extraction pipeline, which divides the sequence into 4 regions relative to the PAS (Hu et 

al., 2005).  Some features are limited to specific regions, namely the polyadenylation signals in 

the 5’-5’ and 5’-3’ regions, and hexamers defined in (Hu et al., 2005).  Other features are computed 

in all regions, including counts of RNA-binding protein (RBP) motifs that may be involved in 

polyadenylation, all possible 1 to 4 n-mers counts, and nucleosome positioning features from (van 

der Heijden et al., 2012).  The feature vector is mapped to a fully-connected neural network.  We 

will refer to this model as the Feature-Net. 

The second model directly learns from the genomic sequence, using a convolutional neural 

network (Conv-Net) architecture (Y. LeCun, Bottou, et al., 1998), which can efficiently discover 

sequence patterns without prior knowledge even when the location of the patterns is unknown.  

The Conv-Net comprises of tunable motif filters which are free to adapt to the input sequence to 

optimize the predictive performance of the model.  It also contains pooling operations that enable 

the model to focus on select locations in the input sequence whose composition maximally activate 

the motif filters.  The use of convolutional neural networks to learn from raw genomic sequences 

have been successfully applied in other areas of biology (Alipanahi et al., 2015; Zhou and 

Troyanskaya, 2015; Kelley et al., 2016; Angermueller et al., 2017). 

To account for the positional preference of PAS, the log distance between sites is also an 

input feature for both models.  Given two sites, the proximal (5’) site has a position feature of 0, 

whereas the distal (3’) site has a position feature that is equal to the logarithm of the distance 

between the distal and proximal site. 

Figure 3-1 shows the schematic of both models.  After the sequences are transformed by 

the Feature-Net and Conv-Net into a hidden representation, it is processed by separate fully-

connected hidden layers to make tissue-specific predictions.  The architecture therefore factors 

predictions into two components: a score that describes the tissue-specific PAS strength, followed 

by predictions that represent the relative abundance of transcripts from RNA-Seq experiments 

between two competing PAS.  The parameters of the fully-connected layers model the cell state of 

tissues, which describes the steady-state environment of the cell, such as the protein concentrations 

in the cytosol, that can affect transcriptional modifications.  We do not explicitly define what these 
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cell state parameters consist of or how they factor in the predictions, but rather simply model them 

as hidden variables and learn them from data.  A similar approach has been described in the 

splicing regulatory model by Xiong et al. (Xiong et al., 2015). 

 

Figure 3-1.  (left) A schematic of the components of the neural network that represent the polyadenylation model.  

The genomic sequence surrounding a polyadenylation site is an input to the strength predictor, which outputs eight 

tissue-specific scores describing the efficiency of the site for cleavage and polyadenylation. The model is trained from 

the relative strength between pairs of competing sites.  (right) Two architectures are compared for the sequence model, 

a convolutional neural network that operates directly on sequences and a fully-connected neural network that takes in 

a feature vector processed by a feature extraction pipeline. 

Seven distinct tissue types are available in the dataset used to train the models.  Since there 

are two sets of sequencing reads for the naïve B-cells obtained from different donors (Lianoglou 

et al., 2013), we treat them as separate tissues, and so our models have eight polyadenylation 

strength prediction outputs.  We choose not to rely on evolutionary conservation to force the 

models to learn patterns from the genome itself (Leung et al., 2016).  We also do not want to make 

use of additional data sources such as conservation tracks or expression data as input.  For our 

model to be widely applicable to multiple tasks, it is beneficial for the input to be easily obtainable, 
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such as sequences.  Requiring anything beyond sequences makes a model more difficult to apply 

across diverse problem domains. 

A training example consists of two PAS from the same gene, and requires the model to 

predict their relative strengths, which can be interpreted as the probability that each site would be 

selected for cleavage and polyadenylation.  The relative strength is measured by the count of reads 

from RNA-Seq that have been mapped to each site.  As shown in Figure 3-1, a softmax function 

is used to squash the real-valued predictions from the PAS strength predictor into a normalized 

score that can be interpreted as the probability that one PAS is chosen over the other.  The 

predictions are penalized against training targets of the relative abundances of transcripts for these 

PAS, which is measured from the sequencing experiment.  Most of the results presented in this 

work are based on the predictions from the PAS strength predictor (i.e. the logits) instead of the 

relative strength predictions that follow the softmax. 

In this work, we apply the predictive model to multiple tasks, even though it is trained only 

to the task of modeling competing site selection.  All the predictions for these other tasks are 

evaluated without any additional task-specific training or data augmentation to demonstrate the 

general applicability of this model. 

3.2.3 Assembling the Polyadenylation Atlas 

Analysis of human polyadenylation events is confined to the 3’-UTR, where PAS are most 

frequently located.  To identify the 3’-UTR regions of the human genome, 3'-UTR annotations 

from UCSC (Kent et al., 2002), GENCODE (Harrow et al., 2012), RefSeq (Pruitt et al., 2005), 

and Ensembl (Yates et al., 2016) are combined, where overlapping regions are merged, and each 

3'-UTR segment is further extended by 500 bases to capture potential uncharacterized regions.  

Then, to generate a comprehensive atlas of PAS, multiple polyadenylation annotations and reads 

from different 3’-end sequencing experiments are mapped to the 3’-UTR to generate an atlas of 

human PAS.  The polyadenylation annotations used include PolyA_DB 2 (Lee et al., 2007), 

GENCODE (Harrow et al., 2012), and APADB (Müller et al., 2014).  Mapped reads that lie in the 

3’-UTR from PolyA-Seq (Derti et al., 2012) and 3'-Seq (Lianoglou et al., 2013) are also used to 

expand the repertoire of PAS, where the genomic positions of reads from these sequencing 

experiments are used to mark the locations of PAS in the genome.  PAS from different sources 

largely overlap, but some sites can be unique to one study due to differences in cell lines or tissue 
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types as well as sequencing protocol.  Due to the inexact nature of 3'-end processing (Proudfoot, 

2011), PAS that are within 50 bases of each other are clustered, and the resulting peak marked as 

the location of the PAS.  The final PAS atlas contains 19,320 3’-UTR regions with two or more 

PAS from genes in the hg19 assembly for a total of 92,218 sites. 

3.2.4 Quantifying Relative Polyadenylation Site Usage 

The model is trained from the relative abundance of transcripts from a 3’-end sequencing 

experiment of seven distinct human tissues, including the brain, breast, embryonic stem (ES) cells, 

ovary, skeletal muscle, testis, and two samples of naïve B cells (Lianoglou et al., 2013).  Other 

cell lines are also available in the dataset, but they are not used.  The version of aligned reads 

which have been processed through the study’s computational pipeline is used, which include 

removal of internally primed and antisense reads, as well as the application of minimum expression 

requirements to reduce sequencing noise.  These reads are assigned to our PAS atlas, resulting in 

read counts associated with each PAS. 

To quantify the relative PAS usage for each gene which acts as the target to train the model, 

we adopted the Beta model derived from Bayesian inference described in (Xiong et al., 2016), 

treating the percent read counts of one site relative to another site as the parameter of a Bernoulli 

distribution.  With this model, the relative PAS usage of one site relative to another, referred to as 

Φ, is p(Φ) = Beta(1+Nsite1, 1+Nsite2), where Nsite1 and Nsite2 are the number of reads from two 

different sites.  We use the mean of this distribution as the target to train the model, that is, the 

PAS usage of site 1 relative to site 2 is (1 + Nsite1) / (2 + Nsite1 + Nsite2).  For 3’-UTR regions with 

more than 2 PAS, different combinations of pairs of sites are generated as training targets and 

quantified as above.  The assumption is that the relative strength of neighboring PAS can be 

described by the relative read counts at those sites, even if there are other sites present in the same 

gene.  This assumption simplifies the architecture of the computational model and quantification 

of relative strength between sites. 

3.2.5 Training the Neural Networks 

The model is constructed and trained in Python using the TensorFlow library (Abadi et al., 2015; 

Rampasek and Goldenberg, 2016).  All hidden units of the neural network consist of rectified 

linear activation units (Glorot et al., 2011).  For the Feature-Net, the feature vectors are normalized 

with mean zero and standard deviation of one.  For the Conv-Net, the input uses a one-hot encoding 
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representation for each of the 4 nucleotides.  For a sequence of length n, the dimension of the input 

would be 4 x n.  Padding is inserted at both ends of the input so that the motif filters can be applied 

to each position of the sequence from beginning to end.  For a motif filter of length m, the additional 

padding on each side of the sequence would be 4 x (m - 1), where these additional padding would 

be filled with the value 0.25, equivalent to an N nucleotide in IUPAC notation.  This is similar to 

what is done in (Alipanahi et al., 2015). 

Each training example consists of a pair of PAS from a gene, where the input is the two 

sites’ genomic sequences, and the target is their relative read counts computed as described in 

Section 3.2.4.  For genes with more than 2 PAS, different combinations of pairs of sites are 

generated as examples.  Only examples with more than 10 reads are kept.  This resulted in a dataset 

of 64,572 examples, which is split for training and testing. 

The parameters of the neural network are initialized according to (Glorot and Bengio, 

2010), and trained with stochastic gradient descent with momentum and dropout (Hinton et al., 

2012).  Predictions from each softmax output are penalized by the cross-entropy function, and its 

sum across all tissue types is backpropagated to update the parameters of the neural network.  

Training and testing of the model are performed in a similar fashion as described in (Leung et al., 

2014).  Briefly, data is split into approximately five equal folds at random for cross-validation.  

Each fold contains a unique set of genes that are not found in any of the other folds.  Three of the 

folds are used for training, one is used for validation, and one is held out for testing.  By selecting 

which fold is held out for testing, five models are trained.  The predictions of these five models on 

their corresponding test set are used for performance assessment, as well as to estimate variances, 

for all the tasks analyzed in this work. 

The validation set is used for hyperparameters selection.  The selected hyperparameters for 

our models are shown in Table 3-1.  A graphics processing unit is used to accelerate training and 

hyperparameter selection by randomly sampling the hyperparameter space. 

  



 

47 

Table 3-1.  The following hyperparameters are determined by random sampling and selecting the set that provides 

the best validation performance.  The range each hyperparameter is sampled from is indicated.  The number of training 

epochs is fixed to 50. 

Hyperparameter LR Feature-Net Conv-Net 

Mini-batch size [50 to 2500] 1777 1520 2042 

Hidden units in the final fully connected layer per 

tissue [10 to 2000] 

--- 1384 119 

Learning rate [0.0001 to 0.5] 0.10066 0.09537 0.35714 

Initial momentum [0 to 0.99] 0.29108 0.21876 0.43301 

L1 decay [1e-8 to 5e-3] 0.000087 0.000177 0.000181 

Hidden units in the first hidden layer [50 to 2500] --- 1244 --- 

Number of filters [80 or 96] --- --- 80 

Filter width [9 or 12] --- --- 12 

Filter stride [fixed] --- --- 1 

Pool width [fixed] --- --- 20 

Pool stride [fixed] --- --- 10 

3.3 Results 

3.3.1 Polyadenylation Site Selection 

The performance of the model to predict the likelihood that a PAS is selected for cleavage and 

polyadenylation against a competing site in the same gene is shown in Table 3-2.  These are the 

tissue-specific relative strength predictions for pairs of PAS that’s shown in Figure 3-1.  

Performance is assessed using the area under the receiver-operator characteristic (ROC) curve 

(AUC) metric on held-out test data.  To compare the models’ performance against a baseline, we 

also trained a logistic regression (LR) classifier, which is essentially the Feature-Net with hidden 

layers removed.  Predictions from the model based on the Conv-Net architecture is consistently 

the best performer.  There is sizable performance gain from using the neural network models 

compared to the logistic regression classifier. 

For the more general task of predicting which PAS would be selected in a gene with 

multiple sites, the model is applied to all PAS in the 3’-UTR of each gene.  A score for each site 

is computed from the logits (the output of the PAS strength predictor shown in Figure 3-1), where 

a larger value suggests that the site is more likely to be selected.  The target is defined by the PAS 

in each gene which has the most measured reads in the 3’-Seq data.  The metric we report here is 

the prediction accuracy, or the percentage of genes in which the model has correctly predicted the 

PAS that has the most reads.  This is shown in Table 3-2 for genes with two to six sites, averaged 
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across all tissues.  The number of genes used in this evaluation is 2270, 2043, 1745, 1364, and 

1163, respectively, where a gene is included only if at least one of its sites has more than 10 reads. 

Table 3-2.  PAS selection performance between competing sites in different tissues. 

Tissue Type 
AUC 

LR Feature-Net Conv-Net 
Brain 0.826 ± 0.010 0.869 ± 0.007 0.895 ± 0.005 
Breast 0.825 ± 0.006 0.862 ± 0.003 0.886 ± 0.004 

ES Cells 0.849 ± 0.006 0.898 ± 0.002 0.911 ± 0.006 
Ovary 0.830 ± 0.009 0.873 ± 0.006 0.895 ± 0.003 

Skel. Muscle 0.828 ± 0.006 0.872 ± 0.005 0.893 ± 0.004 
Testis 0.787 ± 0.007 0.828 ± 0.005 0.856 ± 0.007 

B Cells 1 0.838 ± 0.005 0.880 ± 0.005 0.896 ± 0.004 
B Cells 2 0.832 ± 0.004 0.880 ± 0.008 0.893 ± 0.007 

All 0.824 ± 0.005 0.866 ± 0.004 0.889 ± 0.003 

Table 3-3.  PAS selection performance in genes with 2 to 6 sites. 

Number of 
Sites 

Accuracy (%) 
LR Feature-Net Conv-Net 

2 79.6 82.5 83.5 
3 68.3 73.0 75.5 
4 58.9 64.4 69.8 
5 55.6 62.8 64.0 
6 48.5 56.4 59.7 

3.3.2 Pathogenicity Prediction of Polyadenylation Variants 

An advantage of our model is that the PAS strength predictor can be used to characterize individual 

sites based only on the input sequence.  We evaluate whether this model can be used for 

pathogenicity prediction.  The basic approach involves applying the model to the 200 nucleotides 

sequence associated with a PAS from the reference genome to first generate a prediction of its 

strength, and then performing another prediction when one or more nucleotides in the sequence 

are altered.  A difference is then computed between the reference and variant predictions.  Since 

there are eight predictions, one for each tissue, we take the largest difference as the score to assess 

pathogenicity.  A similar approach has been applied to splicing variants (Xiong et al., 2015).  The 

postulate is that if a variant causes a large change to the strength of a PAS, this can change the 

relative abundance of differentially 3’-UTR terminated transcripts that deviates from normal, 

potentially indicating disease associations. 

To evaluate the efficacy of this approach, we extracted variants that overlap with our PAS 

atlas (within 100 bases on either side of an annotated PAS) from the ClinVar database (Landrum 

et al., 2014).  Some of these variants overlap with the terminal exon (e.g. missense mutations) and 

are removed.  Table 3-4 shows the 12 variants that are labeled as pathogenic (CLNSIG=5) and 48 
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that are labeled as benign (CLNSIG=2) according to the classification guideline recommended by 

the American College of Medical Genetics and Genomics and the Association for Molecular 

Pathology (see Table 5 in the standard) (Richards et al., 2015).  The guideline refers to variants in 

these two categories as being sufficiently supported by empirical data such that healthcare 

providers can use the testing information associated with these variants for clinical decision 

making. 

Table 3-4.  Variants are given in notation chromosome:position:reference:variant, based on the hg19 assembly. 

Pathogenic (CLNSIG=5): 
chr1:11082794:T:C,  chr8:22058957:T:C,  chr11:2181023:T:C,  chr11:5246715:T:C, 

chr11:5246716:T:A,  chr11:5246716:T:C,  chr11:5246717:T:C,  chr11:5246718:A:G, 

chr11:5246718:A:T,  chr11:46761055:G:A, chr16:223691:A:G,   chr22:51063477:T:C 

 

Benign (CLNSIG=2): 
chr1:156109644:G:A, chr1:197053394:G:A, chr2:71004492:T:C,  chr2:166847735:T:A, 

chr2:166847735:T:C, chr2:179326003:A:C, chr2:207656535:T:C, chr3:178952181:T:C, 

chr4:141471538:C:T, chr4:187131799:T:C, chr5:112180071:A:G, chr5:118877695:A:G, 

chr6:7586120:T:A,   chr6:116953612:A:G, chr6:158532382:T:C, chr10:27035405:A:G, 

chr11:74168280:G:A, chr11:77811990:T:C, chr12:64202890:C:G, chr16:15797843:G:C, 

chr18:48604848:C:T, chr18:52895244:C:T, chr19:1226654:C:T,  chr19:1395497:C:T, 

chr19:1395500:C:A,  chr19:1395500:C:T,  chr19:1395503:C:T,  chr19:4090577:G:A, 

chr19:4090588:G:A,  chr19:36494234:A:G, chr19:36595935:G:A, chr19:50364490:G:A, 

chr22:29083867:G:A, chr22:50964189:C:T, chr22:50964196:G:A, chr22:50964196:G:T, 

chrX:135126891:A:T, chrX:153287318:G:C, chrX:153294581:A:G, chrX:153294684:C:T, 

chrX:153294987:C:G, chrX:153295012:C:T, chrX:153295725:C:T, chrX:153295726:G:A, 

chrX:153295763:G:C, chrX:153295782:C:G, chrX:153295809:C:T, chrX:153295810:G:A 

Figure 3-2 shows the receiver-operator characteristic (ROC) curve for this classification 

task.  The model can predict pathogenic variants from benign ones with an area under the ROC 

(auROC) of 0.98 ± 0.02 and 0.97 ± 0.02, for the Conv-Net and Feature-Net respectively, both with 

a p-value of < 1x10-8.  Even though the auROC’s are effectively identical for both models, there 

is a clear advantage in the performance characteristic of the Conv-Net: it outperforms in the low 

false positive rate region where variant classification matters. 

The ROC curve is constructed by plotting the true positive rate (TPR) and false positive 

rate (FPR) at different threshold settings, however, these quantities are unaffected by class 

imbalance.  Sometimes, it is useful to look at the precision of a classifier, defined as the number 

of true positives out of all the predictions it classified as positive, which is a quantity that is affected 

by class imbalance.  For variant classification, the number of negatives (benign) is generally much 

higher than the positives (pathogenic), and it is important to know out of all the variants which are 

classified as pathogenic, how many of them are truly pathogenic.  Because of this, it is often 

preferable to use precision-recall curves (PRC) to compare models for imbalanced dataset (Saito 

and Rehmsmeier, 2015).  Figure 3-2 shows the PRC curves comparing the Conv-Net and Feature-
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Net, with an area under the PRC (auPRC) of 0.95 ± 0.05 and 0.91 ± 0.06 respectively.  It can be 

seen that the Conv-Net achieves higher precision when high recall (true positive rate) is desired. 

For these predictions, we used an input of zero for the position feature of the PAS strength 

model, since each variant is not analyzed with respect to neighboring sites.  However, in general, 

it may be advantageous to incorporate this information.  For example, a variant may cause a large 

change to a nearby PAS, but if there is a much stronger neighboring PAS in the same gene, the 

effects of the variant may be dwarfed by this neighbor, and therefore not have any significant 

mechanistic effects. 

 

 

Figure 3-2.  Classification performance of ClinVar variants near polyadenylation sites.  (top-left) ROC curves 

comparing the variant classification performance of the Conv-Net and the Feature-Net.  The shaded region shows the 

one standard deviation zone computed by bootstrapping.  (top-right) ROC curves comparing our model’s performance 

against other predictors.  (bottom) PRC curves comparing the classification performance of the Conv-Net and Feature-

Net.  The area under the curve values are shown in the figure legend. 
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We further evaluate how the model compares with four phylogenetic conservation 

scoring methods: Genomic Evolutionary Rate Profiling (GERP) (Cooper et al., 2005), 

phastCons (Siepel et al., 2005), phyloP (Pollard et al., 2010), and the 46 species multiple 

alignment track from the UCSC genome browser (Blanchette et al., 2004).  We also compare 

the predictions with Combined Annotation-Dependent Depletion (CADD), a tool which 

scores the deleteriousness of variants (Cooper et al., 2010).  Overall, as shown in Figure 3-2, 

the pathogenicity score from our model compares favorably, even though it has not been 

explicitly trained for this task.  It is worth noting that although the model performed well for 

this ClinVar dataset, in general, a large difference in PAS strength does not necessarily imply 

pathogenicity, which is a phenotype that can be many steps downstream of 3’-end processing 

(Manning and Cooper, 2017). 

The model can also be used to search for potential variants that would affect the regulation 

of polyadenylation.  To visualize this approach, we applied the model and generated a mutation 

map (Alipanahi et al., 2015) to a 100 nucleotide sequence in the human genome, where a ClinVar 

mutation that affects the polyadenylation signal is associated with β-thalassemia (Rund et al., 

1992).  As shown in Figure 3-3, the polyadenylation signal is identified as an important region 

relative to other bases in the sequence. 

 

Figure 3-3.  A mutation map of the genomic region chr11: 5,246,678-5,246,777.  Each square represents a change in 

the model’s score if the original base is substituted.  The substituted base is represented in each row in the order 

‘ACGT’.  Red/blue denotes a mutation that would increase/decrease the likelihood of the PAS for cleavage and 

polyadenylation. 

3.3.3 Polyadenylation Site Discovery 

The model is trained by centering the input sequence around a PAS at the cleavage site.  If a PAS 

is off-center of the 200 nucleotides input sequence, or when no PAS is present, it stands to reason 

that the predicted PAS strength of the sequence would be small, due to the lack of sequence 

elements necessary for cleavage and polyadenylation.  Alternatively, if the output of the PAS 

strength predictor is large, it would suggest that a PAS is present and is positioned near the center 
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of the input sequence.  Naturally, we ask whether the model can be translated across the genome 

to find potential PAS.  While there have been previous works on this task (Cheng et al., 2006; 

Akhtar et al., 2010; Chang et al., 2011), our model is not explicitly trained for this. 

To illustrate an example of a predicted PAS track, we selected a section of the human 

genome and applied the Conv-Net strength model to it in a base-by-base manner (Figure 3-4).  The 

average strength prediction from all eight tissues, without application of any filtering or 

thresholding, is shown.  For this example, we chose a region of the genome with multiple PAS, 

and where there are differences between annotation sources. 

 

Figure 3-4.  Example application of scanning the Conv-Net model across a section of the human genome to identify 

potential polyadenylation sites.  (Top) Snapshot from the UCSC genome browser, showing tracks from top to bottom: 

GENCODE gene annotations, GENCODE Poly(A) track, predicted and reported PAS from polyA_DB (Cheng et al., 

2006; Zhang et al., 2005), 3’-Seq (Lianoglou et al., 2013), and PolyA-Seq (fwd. and rev. strands) (Derti et al., 2012).  

(Bottom) Predictions from the model. 

The predicted peaks labeled region A are present in all annotation sources.  It is not a single sharp 

peak, indicating that various PAS are possible in this region.  This agrees with the GENCODE 

Poly(A) track, which indicates that there are two peaks in this region, as well as 3’-Seq, which 

shows that there are RNA-Seq reads that map across a broad region for various tissues.  As 

A

B

C
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mentioned earlier, the location of cleavage and polyadenylation is not exact.  Region B is less well-

defined, is weaker, and approximately aligns with the predicted positions from another PAS 

predictor (Cheng et al., 2006), as well as the muscle track from PolyA-Seq (in light gray).  Finally, 

a small peak is observed in Region C, predicted to be a very weak PAS, which is present in PolyA-

Seq.  Note that the model is trained only from 3’-Seq reads and has no knowledge of RNA-Seq 

information from other datasets or other annotation sources. 

To assess the model’s ability in discovering PAS, we created a dataset with positive and 

negative examples to assess its classification performance.  There is no general consensus from 

previous works on what constitutes a proper criterion to construct negative sequences or a 

standardized dataset for this task (Ji et al., 2015).  We therefore defined the evaluation dataset 

based on our annotations and reads from 3’-Seq.  Positive targets consist of annotated PAS in the 

3’-UTR that has 10 or more reads.  Since it is generally not appropriate to simply use random 

genomic sequences or locations for the negative set, we extracted the two immediately adjacent 

genomic regions near a PAS to ensure that both the negative and positive sequences have similar 

compositions (Figure 3-5).  Each sequence is fed as input into the strength predictor, and the output 

from all tissues are averaged into a single value which is used for classification.  The positional 

information of the sequence is not used (i.e. it has a position of zero).  The AUC for classifying 

sequences with a PAS from negative sequences (without a PAS) for the LR, Feature-Net, and the 

Conv-Net are respectively 0.887± 0.003, 0.895± 0.004, and 0.907± 0.004.  It is worth mentioning 

that of the negative sequences, 19% contain one of the two canonical polyadenylation signals 

(AAUAAA and AUUAAA), and 74% contain at least one of the known polyadenylation signals, 

meaning the model can distinguish real PAS from the background.  It does not simply look for the 

presence of polyadenylation signals to detect PAS in the genome. 

 

Figure 3-5.  Two regions immediately adjacent to each polyadenylation site (PAS) are defined as negatives for 

classification.  This ensures that the negatives have similar nucleotide composition compared to the positive sequences.  

Regions that are not between existing PAS are excluded to avoid including terminal exonic regions.  If the spacing 

between adjacent PAS cannot fit four negative regions, they are also excluded from the negative set. 

PAS PAS PAS- - - - - - - -3' UTR

- Negative Regions

PAS Poly(A) Sites, Positive Regions
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It is interesting to observe that there is a relatively smaller difference in the AUC’s for all 

models, especially between the Conv-Net and the logistic regression model, compared to previous 

tasks, which differed more drastically in performance.  Identification of PAS from the genome is 

a simpler problem, characterized by the presence of features that are generally well-documented 

in the literature (Tian and Manley, 2016).  For this, a logistic regression classifier may be sufficient.  

On the other hand, predicting the strength of a PAS given its sequence is arguably more complex.  

Instead of a binary classification problem, a strength predictor must quantify a PAS by integrating 

its genomic signature, and predict how it compares with another site, which may also contain all 

the core polyadenylation signatures, but differ in other ways with respect to its sequence.  This 

observation is supported by larger differences in the models’ performance to the PAS selection 

problems in Table 3-2 and 3-3, which require strength quantification. 

3.3.4 Predicting the Effect of Oligonucleotide Treatment 

Antisense oligonucleotides therapies involve targeting RNAs via complementary base pairing, and 

can modulate RNA function by blocking the access of cellular machinery to the RNA  (Kole et al., 

2012).  Application of this approach was demonstrated by Vickers et al. in the 3’-UTR, where 

oligonucleotides targeting polyadenylation signals and sites modulated the abundance of an 

mRNA (Vickers et al., 2001).  Based on this, we show the utility of our model to provide an in-

silico evaluation of oligonucleotides targeting regions near the PAS. 

Three distinct forms of the transcript, Type 1, 2, and 3 are described in the study.  A 

schematic of the E-selectin mRNA and the position of the polyadenylation signal, along with the 

targeted region of the oligonucleotides used are shown in Figure 3-6.  All three forms harbor the 

canonical polyadenylation signal AAUAAA.  A non-canonical polyadenylation signal AGUAAA 

is also present between the Type 1 and Type 2 cleavage sites, which is selected when the 

corresponding signals from Type 1 and Type 2 are blocked.  Here, it is referred to as the Type 4 

form of the transcript.  

According to the study, Type 3 is by far the dominant form of the transcript, followed by 

Type 1 and Type 2 (no differentiation is reported between them).  Type 4 is the least common.  

Using the model, the predicted strengths for the corresponding PAS for Type 1 to 4 transcripts are 

respectively: -0.242, -0.420, 0.020, -0.765.  These values do not account for the position of the 

PAS.  If the relative positions of the four PAS are provided to the model, then the strengths become: 
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-0.242, -0.170, 0.606, -0.584 (where Type 1 is assumed to be in position zero).  These predictions 

match the observed abundances of the mRNA from the study.  

The Vickers study performed a non-quantitative RT-PCR to assess the abundance of 

isoforms by administering different combinations of oligonucleotides targeting select regions of 

the transcript.  To simulate this, we blocked the same regions of the input sequence complementary 

to the oligonucleotides by replacing the nucleotides with an N base and predicted the resulting 

strengths of each PAS.  The results are depicted in Figure 3-6, where the predicted values are 

arranged in an image to match the gel from the original paper.  Each column is scaled such that 

the sum of the intensities of each column is constant, but otherwise, no additional processing is 

performed.  The original paper does not provide values from RT-PCR that would permit 

quantitative comparison with the output of our model, but qualitatively, the patterns of 

polyadenylation are generally captured.  Note that the original paper mentions that Type 1 and 2 

transcripts are shorter and therefore more efficiently amplified by PCR, and thus appear brighter 

than expected compared to Type 3.  This experimental bias does not affect our simulated RT-PCR 

results in Figure 3-6. 

 

Figure 3-6.  Predicting the effect of an antisense oligonucleotide experiment.  (left) Schematic of human E-selectin 

3′-UTR and the possible transcripts from polyadenylation site selection, reproduced from (Vickers et al., 2001).  The 

regions targeted by the oligonucleotides are shown.  (right) Predicted PAS strength, simulating the effects of blocked 

nucleotides due to oligonucleotide treatment.  (center) The figure from the original paper is reproduced here for ease 

of comparison.  The oligonucleotides applied are shown on top of each column. 
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3.4 Discussions 

3.4.1 Effect of Genomic Features on the Model’s Predictions 

To understand how different features contribute to performance, we train models using only 

individual feature groups.  Table 3-5 shows each model’s classification performance.  Even though 

the polyadenylation signals are generally considered to be a main signature of PAS, they only 

partially account for the predictive performance for PAS selection compared to the full feature set.  

Overall, n-mers features are major contributors to the Feature-Net’s performance, which is 

sufficiently rich to capture many motif patterns.  It should be noted that each feature group has a 

different number of features (Appendix B), and therefore individual features in the larger feature 

groups may contribute only weakly, but as a whole affect predictions considerably.  Position alone 

has very poor predictive capability, even though it was suggested to be a key feature in determining 

whether a PAS is used for tissue-specific regulation (Weng et al., 2016).  We also conducted an 

investigation on the uniqueness of each feature group, by training models with all features minus 

each feature group from Table 3-5.  Removing the polyadenylation signals from the feature set 

reduces the performance from 0.866 ± 0.004 to 0.840 ± 0.008.  All other groups, when removed, 

do not significantly reduce the performance of the model compared to the full feature set.  This 

suggests that many features are redundant, and if removed, can be compensated by features in 

another group. 

To see the contributions of individual features, we computed the gradient of the output with 

respect to the input feature vector of the neural network.  This is referred to as the feature saliency 

of a prediction, and the gradients of features with large magnitudes can be interpreted as those that 

need to change the least to affect the prediction the most (Simonyan et al., 2014).  For this, we 

computed the feature saliency of all sites in our test set and selected the features that on average 

have the largest magnitude.  Table 3-6 shows the top 15 features computed using this method and 

the direction in which the feature affects the strength of a PAS, where an up arrow indicates that 

the effect is positive. 
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Table 3-5.  Comparison of Feature-Net PAS selection performance between competing sites using feature subsets. 

Feature Group AUC 
All 0.866 ± 0.004 

Poly(A) Signal 0.728 ± 0.004 
Position 0.553 ± 0.004 

Cis-Elements 0.608 ± 0.009 
RBP Motifs 0.676 ± 0.009 

Nucleosome Occupancy 0.656 ± 0.006 
1-Mers 0.762 ± 0.004 
2-Mers 0.794 ± 0.002  
3-Mers 0.817 ± 0.004 
4-Mers 0.833 ± 0.005 

Table 3-6.  Top 15 features of the Feature-Net, and the direction in which each feature can increase (↑) or decrease 

(↓) the strength of a polyadenylation site. 

Rank Region Feature Name Direction 
1 5’-3’ PolyA Signal, AAUAAA ↑ 
2 --- Log distance between PAS ↑ 
3 5’-3’ PolyA Signal, AUUAAA ↑ 

4 
to 
15 

5’-3’ 1-mer, C ↓ 
5’-3’ 1-mer, U ↑ 
5’-3’ 2-mer, AG ↓ 
3’-5’ 2-mer, CA ↓ 
3’-5’ 3-mer, AAA ↑ 
5’-3’ 3-mer, UGU ↑ 
5’-5’ 3-mer, UGU ↑ 
3’-5’ 4-mer, AAAA ↑ 
5’-5’ Cleavage Factor Im, UGUA ↑ 
5’-3’ PolyA Signal, CAAUAA ↑ 
5’-3’ PolyA Signal, AUAAAG ↑ 
5’-5’ PolyA Signal, AGUAAA ↑ 

The top three features are consistent for all tissue types.  Other features vary slightly 

between tissues and are grouped together unordered.  As expected, the two most common 

canonical polyadenylation signals are the top features which increase the strength of a PAS.  The 

log distance between PAS is also deemed to be important.  Some features in this list are consistent 

with mechanisms of core elements known to be involved in cleavage and polyadenylation, 

including the upstream UGUA motif which the cleavage factor Im complex binds to, and a GU-

rich sequence near the polyadenylation site (Tian and Graber, 2012).  The genomic context 

upstream of the PAS appears to be more important, as most of the top features are in either the 5’-

5’ and 5’-3’ region.  Interestingly, three of the features reduce the strength of a PAS.  They are the 

frequencies of C and AG nucleotides in the upstream region and the CA nucleotides downstream 

of the cleavage site, the latter of which is aligned with the knowledge that the C-terminal domain 

of RNA polymerase II interacts with CA-rich RNA sequences, and is known to play a role in 

inhibiting polyadenylation (Kaneko and Manley, 2005). 



 

58 

3.4.2 Determining Tissue-Specific Polyadenylation Features 

Given that APA is used to achieve tissue-specific gene expression, we investigate whether our 

model can provide insights into this phenomenon.  Previous computational approaches to address 

this problem are present in the literature.  In Hafez et al., an A-rich motif was found to be enriched 

in brain-specific PAS (Hafez et al., 2013).  In Weng et al., the position of a PAS relative to another 

PAS and its position in the gene was found to be the strongest indicator of whether it is tissue-

specific (Weng et al., 2016).  The computational models for both these works were trained to 

directly classify whether a PAS is tissue-specific.  To be consistent with the methodology 

presented in this work, we will analyze our models without re-training them. 

We use the set of tissue-specific and constitutive PAS defined in (Weng et al., 2016) and 

apply the Feature-Net to generate predictions.  To determine which feature is associated with 

tissue-specific PAS, we use the same gradient-based method as described in Section 3.4.1 to 

examine the top 200 most confident predictions for tissue-specific PAS, where our model predicts 

that at least one of the tissue outputs is considerably different than the rest, and for constitutive 

PAS, where our model predicts that all tissue outputs do not differ significantly.  The magnitude 

of the gradients is then analyzed to see which features have a statistically greater effect on tissue-

specific PAS compared to constitutive PAS.  Statistical significance was determined by a 

permutation test by shuffling the predictions indicating whether a PAS is tissue-specific or 

constitutive.  Applying a conservative p-value of 0.05/1506 (# of features) = 3 x 10-5, 15 features 

were found to be associated with the model’s ability to predict tissue-specific PAS.  This is shown 

in Table 3-7.  In the column indicating direction, an up arrow means the presence of the feature 

makes the site more likely to be tissue-specific, and vice versa. 
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Table 3-7.  Features associated with the prediction of tissue-specific polyadenylation sites, and whether the presence 

of the feature makes a polyadenylation site more (↑) or less (↓) tissue-specific. 

Region Feature Name P-value Direction 

5’-5’ 4-mer, UUGU 8.0 x 10-11 ↓ 

3’-3’ 3-mer, UUG 9.9 x 10-09 ↑ 

3’-3’ 4-mer, CCCC 5.7 x 10-08 ↓ 

5’-5’ 3-mer, UGU 6.8 x 10-08 ↓ 

3’-3’ 4-mer, UCCC 1.1 x 10-07 ↓ 

5’-3’ 4-mer, CGGC 1.0 x 10-06 ↓ 

5’-5’ Cis-element, UUUGUA 1.7 x 10-06 ↓ 

5’-5’ Cleavage Factor Im, UGUA 2.2 x 10-06 ↓ 

5’-5’ 3-mer, UUG 3.4 x 10-06 ↓ 

5’-5’ 3-mer, AUC 7.4 x 10-06 ↑ 

3’-3’ 3-mer, UCC 1.2 x 10-05 ↓ 

5’-5’ 2-mer, UC 1.7 x 10-05 ↑ 

5’-5’ 4-mer, AUCC 1.9 x 10-05 ↑ 

5’-5’ 2-mer, UU 2.0 x 10-05 ↓ 

3’-3’ 3-mer, CCU 2.1 x 10-05 ↓ 

All but one of the entries in the table describe features that are in the 5’-5’ and 3’-3’ region, 

that is, most of them are located away from the cleavage site.  Various G/U-rich features top the 

list, where its position upstream suggests the PAS is more likely to be constitutive but if 

downstream, tissue-specific.  Polyadenylation signals are absent from the list.  No hexamers other 

than UUUGUA was found, which was previously identified as a feature by statistical analysis from 

(Hu et al., 2005).  However, we found no association of this hexamer with tissue-specific 

polyadenylation from the literature.  Given that the model only sees sequences from +/- 100 bases 

from the cleavage site, it may be possible that other more distal tissue-specific signatures may be 

present.  Alternatively, sequence signatures may not be fully predictive since tissue-specific 

proteins can act by modulating core polyadenylation proteins instead of directly binding to the 

transcript (MacDonald and McMahon, 2010). 

3.4.3 A Convolution Neural Network Model of Polyadenylation to Predict 
the Effect of Genomic Variations 

We initially began this work with a feature-based model, and subsequently added a Conv-Net for 

comparison expecting it to approach the performance of the Feature-Net, not necessarily 

surpassing it.  Given that the polyadenylation features were derived from many publications and 

multiple research groups, the prior work that went into obtaining the feature-based models, which 

include the logistic regression classifier used as a baseline in this work, should not be 

underestimated.  The fact that the Conv-Net could learn a better model absent any insights or 
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hypotheses about mechanism, is an interesting result on its own.  This is surprising at first, but 

perhaps not so if viewed in the context of other applications of machine learning like computer 

vision, where hand-crafted features have been largely superseded by models which learn directly 

from image pixels (LeCun et al., 2015). 

On top of this, the Conv-Net has additional advantages that are not available in feature-

based models.  For instance, it is completely free to discover novel sequence elements that may be 

relevant for polyadenylation regulation from data.  An example set of filters from the Conv-Net 

model is shown in Figure 3-7.  It also has the potential to be more computationally efficient.  

Feature extraction from sequences can be the most computationally intensive aspect of a model 

during inference.  This is not required for models that directly operate on sequences.  There are 

additional operations that are required in the Conv-Net, but these computations can be significantly 

sped up by graphics processing units, which can be important for application of the model to entire 

genomes. 

 

Figure 3-7.  An example set of the 80 filters that are learned by the Conv-Net.  All filters have been mean-subtracted 

and plotted with the same scale (i.e. the max and min for each filter plot is the same).  Red and blue denote positive 

and negative values respectively.  Various filters are blank, suggesting the number of filters in the Conv-Net model 

can be reduced.  A filter that detects the two most common polyadenylation signal motifs, ATTAAA and AATAAA 

can be seen in filter #23, which is followed by a strong avoidance of a T nucleotide.  Filters resembling GU-rich 

elements, such as filter #4 can also be found. 

Since the Conv-Net operates directly on the genomic sequence, it also enables one to 

perform analysis at the single-base resolution more naturally.  By analyzing the flow of gradients, 

the Conv-Net can determine how each base in the input sequence changes the output of the model.  
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If a model requires feature extraction, such as the Feature-Net, the output must be analyzed relative 

to each feature.  Furthermore, in the Feature-Net, many features are derived in discrete sections of 

the genome (four in this case, see Appendix B) to reduce the dimensionality of the input.  The 

Conv-Net on the other hand, is more efficient at sharing model parameters, thereby enabling the 

motif filters to be applied at much finer spatial steps across a genomic sequence (a stride of 1 is 

used, see Table 3-1), while still making overfitting manageable during training.  By computing the 

gradients (Simonyan et al., 2014), analysis regarding the magnitude and direction of the effect of 

each base on the model’s output can be performed.  This has the potential to offer a prescription 

to the design of oligonucleotides for antisense therapies.  Figure 3-8 shows the saliency map of a 

region of the oligo-targeted mRNA examined in the Section 3.3.4, which spans the first three 

polyadenylation signals.  This is different than the previous mutation map approach, which 

visualizes the change in the model’s predictions between the reference genome and mutation at 

each base for the alternate nucleotides.  Here, the gradient of each base relative to the model’s 

prediction is shown, which includes the reference genomic sequence.  It is also computed 

differently, involving a single backpropagation step in the Conv-Net.  This operation is not readily 

available in the Feature-Net, where the genomic sequence is separated from the model by a feature 

extraction pipeline, and therefore dependent on the design of the pipeline.  This saliency map can 

be generated for large stretches of the genome to look for potential sensitive regions to alter 

polyadenylation for therapeutic purposes. 

 

Figure 3-8.  Saliency map from the Conv-Net of a section of the oligo-targeted mRNA from (Vickers et al., 2001).  

The base is represented in each row in the order ‘ACGT’.  Red means the base increases the likelihood of the sequence 

for cleavage and polyadenylation.  Blue is the reverse.  The sum of the magnitude of the gradient is shown above the 

saliency map to suggest how sensitive the nucleotide is to the strength of the polyadenylation site.  The position of the 

oligonucleotide used in the study is shown at the top.  The Type 4 Poly(A) signal is labeled also but was not targeted 

in the original study. 

3.5 Conclusion 

Regulation of polyadenylation is a crucial step in gene expression, and mutations in DNA elements 

that control polyadenylation can lead to diseases.  Accurate, predictive models of polyadenylation 

Oligo Targeted Type 1 Poly(A) Signal Oligo Targeted Type 2 Poly(A) SignalLocation of Type 4 Poly(A) Signal
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will enable a deeper understanding of the sequence determinants of gene regulation and provide 

an important new approach to detecting and treating damaging genetic variations.  In this chapter, 

we have presented the polyadenylation code, a versatile model that can predict alternative 

polyadenylation patterns from transcript sequences and can generalize to multiple tasks that it was 

not trained on.  Beyond its original trained usage to predict PAS selection from competing sites, it 

can classify variants near PAS and can be used for PAS discovery.  We provided an analysis of 

what sequences increase and decrease the strength of a PAS and identified features that are 

associated with tissue-specific and constitutive PAS.  We also illustrate the potential of our model 

to infer, and design for, the effects of antisense oligonucleotide treatment in the 3’-UTR. 
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Chapter 4  
Discussion 

This chapter is a collection of various insights gained in the duration of this thesis work, as well 

as additional topics.  It includes subjects such as interpretability of computational models as 

viewed by the wider community and the role of machine learning in genomic medicine.  The 

section on interpretability includes partial content from the publication (Leung et al., 2016): 

M. Leung, A. Delong, B. Alipanahi, and B. Frey. (2016) “Machine Learning in Genomic Medicine: 

A Review of Computational Problems and Data Sets”.  Proceedings of the IEEE, 104(1), 179-197. 

 Discussion 

4.1 Interpretability of Machine Learning Models 

There is an inherent trade-off between the interpretability and the accuracy of a predictive model.  

Generally, linear models such as regression and models that depend on few variables are viewed 

to be more interpretable.  They are regarded as so because one can more easily look at the 

parameters of these models to assess which features may be important.  On the other hand, so-

called ‘black-box’ models, which tend to have more predictive capability and often rely on fewer 

assumptions, are viewed to be harder to interpret.  Neural networks for example, popularized by 

recent development in deep learning, can have many variables (hundreds of thousands to millions 

of parameters for typical vision and natural language processing problems), and many of these 

parameters are stacked in multiple layers such that they are not directly connected to the inputs 

and outputs of the model.  This leads to these ‘black-box’ models to sometimes be disfavored in 

some industries.  For example, the finance industry tends to have stricter regulatory and 

documentation requirements, which may require sacrificing predictive accuracy to instead use 

models with fewer variables such that a prediction can be ‘explained’.  It can be said that this 

sentiment is also true for the genome biology community, and likely will be for the drug 

development industries as well, which in the foreseeable future will more heavily rely on 

computational methods. 

One reason to strive for interpretable models stems from the fact that as humans, we find 

satisfaction in being able to explain (simply) why something works.  However, from a machine 

learning perspective, genome biology differs from domains such as image recognition, speech 
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recognition, and natural language processing in a very important way.  Humans are very good at 

these latter tasks, which involve human perception (e.g. seeing images, hearing speech) and human 

action (e.g. grabbing an object, responding to words).  In stark contrast, we can think of no reason 

why the genome should be interpretable by humans.  Whereas there has been evolutionary pressure 

for humans to perceive, interpret, and respond to patterns of light, such as that produced by an 

advancing tiger, there has been no pressure for the genome to be interpretable by humans or for 

humans to develop the capacity to interpret the genome.  Consequently, it is important to 

incorporate the latest biological knowledge and data into learning algorithms and to carefully and 

rapidly validate models in different ways, since the models cannot be ‘checked by eye’. 

In this section, we make a few remarks on the interpretability of machine learning models 

in the context of genome biology. 

4.1.1 An Alternate View on the Interpretability 

Within some application domains, interpretability is deemed to be quite important (Rudin and 

Wagstaff, 2013).  For example, the need to extract insights from computational models is a 

common theme from reviewers for published journal articles.  Following the movement to rely 

more on data-driven explanations rather than conceptual explanations, it may be more beneficial 

to adopt the mindset to focus on developing systems that can be queried by human experts.  In this 

view, less emphasis is placed on the internal workings of the system.  Instead, it is more desirable 

that the system more accurately reflects the task that is modeled.  In the context of deep learning, 

instead of examining the parameters of a neural network and coming up with an ‘interpretation’, a 

more useful exercise would be to ask the system about relationships between inputs and outputs.  

For instance, whether a cell variable will increase or decrease if a particular nucleotide is changed, 

or whether changing a pair of nucleotides leads to a change in the cell variable that cannot be 

accounted for by independent, additive contributions.  This question-and-answer interaction 

between the expert and the machine learning model provides a quantitative, data-driven 

interpretation. 

The community’s ability to derive interpretations from machine learning models is likely 

to improve as these models become more effective in practice.  However, consider for a moment 

what it would mean to wait for interpretability challenges to be ‘solved’, to forego the benefit of 

more accurate models in genomic and precision medicine. Throughout history, many advances 
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were made by noticing a pattern without understanding the precise causal mechanisms involved.  

For example, in 1847, Ignaz Semmelweis found that washing hands before delivering babies was 

correlated with fewer maternal deaths.  He achieved a two-thirds reduction in mortality rate a full 

25 years before Louis Pasteur established the relationship between germs and disease.  Viewed 

from a different perspective, if machine learning can be used to identify the genetic cause of a 

disease and an effective therapy, it is unlikely that the patient who benefits will care about 

interpretability.  Nevertheless, machine learning researchers working with biologists and clinicians 

should be prepared for a strong bias towards interpretable models.  

4.1.2 Interpreting Neural Network Models 

There have been many efforts to improve the interpretability of machine learning models, and in 

particular deep neural networks, to take advantage of their predictive capability while making them 

more accessible to a broader user base.  Erhan et al. introduced the idea of tuning the input to 

maximize the activation of a hidden unit.  This enables one to see what kind of inputs a hidden 

unit is sensitive to (Erhan et al., 2009).  The method has been applied to deep architectures trained 

on millions of images, where neurons that correspond to face, cat, and human body detectors have 

been found (Le et al., 2013).  They do so by designing a norm-constrained input that maximizes 

the activity of a neuron deep inside the network.  Zeiler and Fergus (Zeiler and Fergus, 2013) aim 

to visualize the input variations that high-level features respond to in a convolutional neural 

network.  They do so by generating several diverse inputs that each cause high activations in a 

feature map deep within the network.  Several compelling visualization approaches use 

backpropagation to efficiently visualize how deep architectures respond to input perturbations 

(Simonyan et al., 2014; Mahendran and Vedaldi, 2015).  This approach was used in the work in 

Chapters 2 and 3 to investigate how genomic features affect the predictions of the splicing and 

polyadenylation neural network models. 

4.1.3 Convolutional Neural Networks for Genomics 

Convolutional neural networks (CNN) have been highly successful in computer vision and are 

now the dominant approach in many image recognition tasks, approaching that of human 

performance.  The purpose of its architecture is two folds (LeCun et al., 2015).  First, images tend 

to contain local motifs, such as the eyes of the face, whose presence can be beneficial for face 

detection.  Second, a motif can appear anywhere in an image, whose position generally does not 
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affect common image recognition tasks, such as classifying whether a photo contains cats or not.  

For example, whether a cat is positioned in the top left corner or the bottom right corner of an 

image generally does not affect whether the image is classified as containing a cat.  CNN exhibits 

translational invariance in its input, meaning the values of the output tend to be robust to 

translations of local motifs in the input, which makes it suitable for this class of problems.  Note 

however that it is still possible to do localization of objects with a CNN, for example, by analyzing 

the input gradients (Simonyan et al., 2014). 

The characteristic of CNN is also appropriate to some problems related to the genome, 

which consists of motifs that the molecular machineries recognize and whose exact position along 

the genome can vary without significantly affecting the regulatory mechanisms.  For example, in 

the context of the polyadenylation, the polyadenylation signal which is usually present before a 

cleavage site can vary by tens of bases.  As a result, many works have since applied the use of 

CNNs to learn from genomic sequences for molecular phenotype predictions (Alipanahi et al., 

2015; Zhou and Troyanskaya, 2015; Kelley et al., 2016; Angermueller et al., 2017).  Used in the 

work discussed in Chapter 3 for the computational model of polyadenylation, another advantage 

of CNN’s is they are end-to-end, providing a mapping from the genomic sequences to a prediction, 

without additional processing steps, such as feature extraction.  Feature extraction is a significant 

computational bottleneck in the splicing code (Xiong et al., 2015).  In relation to interpretability, 

the filters learned by the CNN’s can provide the familiar sequence logos that computational 

biologists are used to (Alipanahi et al., 2015).  Other advantages of CNN’s in the context of 

problems in computational biology can be found in (Angermueller et al., 2016). 

4.2 Genotype-Phenotype Modeling 

In Chapter 1, we discussed the approach of predicting cell variables from genotype, which can act 

as an intermediate step for more complex phenotype, such as disease risks.  Bridging this genotype-

phenotype gap is not a new concept (Gjuvsland et al., 2013), and the capability to do so has been 

referred to by some scientists as the Holy Grail of genetics.  To build these computational models, 

data profiling cell variable under diverse input conditions are required.  Cell variables are more 

difficult to measure than phenotypic observations such as whether a patient is sick.  However, 

consider measuring few variables per patient for a large number of individuals, versus taking 

hundreds of thousands of cell variable measurements per patient for a smaller group of people.  

We believe that the latter approach gives us a better chance at deciphering the genomic instructions 
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of the cell, where there is much more information available about the biological mechanisms at 

play, and therefore more data overall for a model to learn from.  In a sense, we are making the 

‘genomic invariance’ assumption, that is, we assume that regulatory processes act the same across 

the entire genome and so we can learn the DNA-to-cell variable relationship by treating different 

locations in the genome as independent measurements. 

 On the other hand, even if we have computational models of many different cell variables, 

such as those in Table 4-1, it is not obvious how they can be combined to construct a model of the 

cell, much less to predict and decipher the molecular pathways of higher-order phenotypes like 

diseases.  For example, the two computational models described in this thesis have a very local, 

non-overlapping, view of the genome as input.  It is known however, that splicing and 

polyadenylation are coupled in both time and space (Bentley, 2014), that is, they occur 

simultaneously on a given transcript and can influence one another.  Also, joint modeling of 

splicing and polyadenylation is arguably orders of magnitude simpler than ‘long-range’ 

interactions of different parts of the genome that collectively influence a phenotype. 

Table 4-1.  A sample of cell variables related to genomic regulatory mechanisms. 

Cell Variable Brief Description Relevance to Disease Reviews Related Works 

Identification of 

structural and 

functional regions 

of the genome 

Attaching meaning to, or 

annotating, different 

regions of the DNA, such 

as marking the boundary 

of introns and exons, and 

identifying parts that have 

regulatory functions. 

Changes in genomic sequences 

can cause a region which 

previously served a particular 

function to become non-

functional and vice-versa, or 

changing its intended function, 

thereby affecting regulation. 

(Yandell and 

Ence, 2012; 

Alexander et al., 

2010; Yip et al., 

2013) 

(Sonnenburg et 

al., 2007; Saeys et 

al., 2007) 

Binding sites for 

transcription 

regulation 

Binding of proteins to 

specific sequence 

elements of the DNA 

controls whether 

transcription can occur, as 

well as the rate at which it 

happens. 

Sequence variations to 

sequence patterns that proteins, 

such as transcription factors 

and complexes that ‘unwind’ 

the DNA, bind to can alter 

whether a gene is transcribed. 

(Lee and Young, 

2013; Maston et 

al., 2006) 

(Alipanahi et al., 

2015; Li et al., 

2010) 

Splicing patterns Splicing modifies the pre-

mRNA by removing 

introns and selecting 

which exons are retained. 

Changes to the regulatory 

elements that control splicing 

can change the characteristics 

of the gene products, and in 

some cases, cause them to be 

non-functional. 

(Wang and 

Burge, 2008) 

(Barash et al., 

2010; Xiong et 

al., 2011, 2015; 

Leung et al., 

2014) 

Cleavage site 

selection and 

polyadenylation 

The ends of transcripts are 

cleaved and a stretch of 

adenine bases are attached 

before they are ready for 

translation. Cleavage can 

occur in one of multiple 

sites within a transcript. 

Modifications to sequence 

elements can alter where 

cleavage occurs, which 

determines whether binding 

sites for regulatory proteins are 

present or absent on the 

transcript. This alters its 

stability and translation 

efficiency. 

(Danckwardt et 

al., 2008; Elkon 

et al., 2013) 

(Akhtar et al., 

2010; Chang et 

al., 2011) 
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RNA structure The RNA folds into three-

dimensional (3D) 

structures, which influence 

how it interacts with other 

molecules in the cell. 

The mRNA, beyond the 

information it contains for 

encoding protein, has 3D 

structure. This structure can 

affect processes that it is 

involved with, such as 

transcription, splicing, and 

translation. 

(Laing and 

Schlick, 2011; 

Wan et al., 2011) 

(Lorenz et al., 

2011) 

Protein structure The outcome of translation 

is a sequence of amino 

acids that folds into a 

protein. The protein’s 3D 

structure is crucial for its 

function, as it interacts 

with DNA, RNA, and 

other proteins. 

Structure affects function. The 

ability to predict protein 

structure from sequences can 

help in understanding the 

biological function of a gene, 

and how misfolding of proteins 

contribute to disease. 

(Floudas, 2007) (Troyanskaya, 

2014; Di lena et 

al., 2012) 

In terms of genomic medicine, it is likely that the association of the genome to some 

diseases might simply be too complex to be modeled from a practical number of ‘inputs’.  This 

contrasts with image or speech recognition, where we know what the prediction ought to be given 

the input.  Furthermore, it should be noted that due to the inherent stochasticity of cellular 

processes, environmental factors that differ from person to person (even for identical twins), and 

uninherited variants from the parent that can affect offsprings, the genotype of an individual may 

not be sufficient to completely determine their phenotype (Burga and Lehner, 2012).  Therefore, 

we do not expect computational methods to be able to entirely replace laboratory and clinical 

diagnosis, but they should greatly shorten the time required for these methods of analysis by 

reducing the search space of hypotheses that need to be validated. 

Nevertheless, computational models of cell variables are a step in the right direction to 

augment an individual’s genotype profile with additional information which may be useful for 

genomic medicine.  With our current toolset, it is unlikely that a newly uncharacterized genetic 

disease can have its molecular mechanisms understood purely by computational approaches.  

Association of a cell variable with a disease will involve a collaboration of clinical, laboratory, 

and computational analysis to find the underlying cause.  However, after a cell variable is found 

to be associated with a disease, such as the spinal muscular atrophy example in Chapter 1, 

computational models can offer a prescription to how the disease can be alleviated by therapies.  

For example, the models can point to a part of a transcript that should be modified or blocked, to 

reverse the change in a cell variable associated with a disease, for example via RNA therapeutics 

like antisense oligonucleotides (Kole et al., 2012). 
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Appendix A: Splicing Code Features 

Table of features divided into 55 groups based on what they represent.  Detailed definitions of 

these features can be found in the supplementary information from (Barash et al., 2010) and 

(Barash et al., 2013). 

Group # Name Brief Description Type # of Features 
01 short-seq-1mer 

Frequency of nucleotide patterns of different lengths (1 to 3) in regions 

C1, A, C2, and their junctions. 
real (0-1) 

28 

02 short-seq-2mer 112 

03 short-seq-3mer 320 

04 translatable-C1 
Describes whether exons can be translated without a stop codon in one 
of three possible reading frames.  For example, C1A means the exons 

of interest are C1 + A. 

binary 

1 

05 translatable-C1A 1 

06 translatable-C1AC2 1 

07 translatable-C1C2 1 

08 mean-con-score-AI2 

Mean conservation score derived from the phastCons track (Siepel et 
al., 2005) for mouse assembly mm8 in the UCSC Genome Browser. 

real (0-1) 

1 

09 mean-con-score-I1A 1 

10 mean-con-score-I2C2 1 

11 mean-con-score-C1I1 1 

12 log-length Log base 10 lengths of regions C1, I1, A, I2, and C2. real 5 

13 log-length-ratio Log base 10 length ratios of exons A to I1, A to I2, and I1 to I2. real 3 

14 acceptor-site-strength Strength of acceptor and donor sites in I1 and I2, from (Itoh et al., 

2004). 
real 

2 

15 donor-site-strength 2 

16 frameshift-exonA Whether exon A introduces a frameshift. binary 1 

17 rna-sec-struct 
Score describing the probability of local stem-loop structure, computed 

using RNAfold (Hofacker, 2003). 
real (0-1) 32 

18 5mer-motif-down 

Counts of motif clusters of different lengths (5 to 7) weighted by 

conservation upstream and downstream of the alternative exon from 

(Yeo et al., 2007). 

real 

54 

19 6mer-motif-down 76 

20 7mer-motif-down 28 

21 5mer-motif-up 49 

22 6mer-motif-up 78 

23 7mer-motif-up 29 

24 ese-ess-A 
Counts of exonic splicing enhancers (Fairbrother et al., 2002) and 

silencers (Wang et al., 2004). 
real 

4 

25 ese-ess-C1 4 

26 ese-ess-C2 4 

27 pssm-SC35 PSSM scores of SC35 splicing regulator protein. 

real 

5 

28 pssm-ASF-SF2 PSSM scores of ASF/SF2 splicing regulator protein. 5 

29 pssm-SRp40 PSSM scores of SRp40 splicing regulator protein. 10 

30 nucleosome-position Nucleosome positioning from (van der Heijden et al., 2012). real 4 

31 PTB Counts of phosphotyrosine-binding domain motif. real 50 

32 Nova-counts Counts of Nova motif YCAY. integer 27 

33 Nova-cluster Nova cluster score (Ule et al., 2006). real 8 

34 T-rich 

Counts of motif with and without weighting by conservation. real 

24 

35 G-rich 8 

36 UG-rich 16 

37 GU-rich 32 

38 Fox 

Counts of RNA binding protein motifs with and without weighting by 

conservation. 
real 

24 

39 Quak 8 

40 SC35 22 

41 SRm160 11 

42 SRrp20/30/38/40/55/75 77 

43 CELF-like 2 

44 CUGBP 16 

45 MBNL 24 

46 TRA2-alpha 22 

47 TRA2-beta 22 

48 hnRNP-A 44 

49 hnRNP-H 22 

50 hnRNP-G 22 

51 9G8 22 

52 ASF/SF2 11 

53 Sugnet 2 

54 alt-AG-pos Position of the alternative AG and GT position. integer 2 

55 Alu Counts of ALU repeats. integer 12 

C1 and C2 denote the flanking constitutive exons ; A denotes the alternative exon ; I1 denotes the intron between C1 and A ; I2 denotes the intron 

between A and C2 
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Appendix B: Polyadenylation Code Features 

Feature Description of the Feature-Net 

 

 
Regions around a PAS (Hu et al., 2005) where 

features are extracted. 

 

 

 

 

 

* redundant features that are present in multiple 

feature groups are removed 

Feature Group* Regions # Features 

Poly(A) Signal1 5’-5’ 

5’-3’ 

26 

26 

AUE Elements2 5’-5’ 12 

CUE Elements2 5’-3’ 2 

CDE Elements2 3’-5’ 15 

ADE Elements2 3’-3’ 12 

RBP Motifs3 All 4 18 x 4 

1-mers All 4 4 x 4 

2-mers All 4 16 x 4 

3-mers All 4 64 x 4 

4-mers All 4 248 x 4 

Mean and Max 

Nucleosome 

Occupancy4 

5’ of PAS 

3’ of PAS 

Full Seq 

12 

Position --- 1 
 

 
1Polyadenylation Signals (Tian et al., 2005; Beaudoing et al., 2000; Ni et al., 2013; Derti et al., 2012): 
 

AATAAA, ATTAAA, TATAAA, AGTAAA, AAGAAA, AATATA, AATACA, CATAAA, GATAAA, AATGAA, TTTAAA, 

ACTAAA, AATAGA, AAAAAG, AAAATA, GGGGCT, AAAAAA, ATAAAA, AAATAA, ATAAAT, TTTTTT, ATAAAG, 

TAAAAA, CAATAA, TAATAA, ATAAAC 

 
2Cis-Elements, from Table 1 in (Hu et al., 2005): 
 

Auxiliary Upstream Elements (AUE):  GGGGAG, GUGGGG, GGGUGG, UUUGUA, GUAUUU, CUGUGU, 

UAUAUA, AUAUAU, UUUAUA, UGUAUA, AUGUAU, UGUAUU 

Core Upstream Elements (CUE):  UAUUUU, UGUUUU 

Core Downstream Elements (CDE): CCUCCC, CUCCCC, CACCCC, CCCGCC, CCCCGC, CCCGCG, GGUGGG, 

GGCUGG, GGGUGG, GGGCAG, GGCCAG, GGGGCC, GGGAGG, 

GGAGGG, GGGGAG 

Auxiliary Downstream Elements (ADE): GUGUCU, CUGCCU, UGUCUC, UUAUUU, UUUCUU, UGUUUU, 

UGUGUG, GUGUGU, CUGUGU, CUGGGG, UGUCUG, GUCUGU 

 
3RNA Binding Protein Motifs, in IUPAC notation (Cornish-Bowden, 1985): 
 

CPEB1: UUUUAU, hnRNP-H1: GGGAGG, hnRNP-H2: GGAGGG, MBNL_v1: GCUUGC, MBNL_v2: YGCY, MBNL_v3: 

YGCUKY, PABPN1: ARAAGA, PTBP1: UUUUCU, NOVA: UCAY, PCBP1: CCWWHCC, PCBP2: CCYYCCH, ESRP2: 

UGGGRAD, hnRNP-F/H_v1: GGGA, hnRNP-F/H_v2: UKKGGK, hnRNP-F/H_v3: GGSKG, CFIm: UGUA, CstF-64: 

UGUGU, SRSF1: GAAGAA 
 

where  R is G or A, Y is T or C, M is A or C, K is G or T, S is G or C, W is A or T,  

H is A or C or T, B is G or T or C, V is G or C or A, D is G or A or T, and 

N is any 

 
4Nucleosome Occupancy, computed using Equation 1 in (van der Heijden et al., 2012) with the suggested 

parameters in the paper.  The nucleosome occupancy is a measure of the probability that a DNA region is 

wrapped around a histone octamer. 

5’-5’ 5’-3’

60 40

3’-3’3’-5’

6040

5' 3'

Poly(A) Site
Regions

200 nucleotides sequence


