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Abstract 

Disruption of transit service is a common occurrence in many cities around the world, and these 

incidents may have serious impacts on the transit user’s journey. The purpose of this study is to 

investigate transit user commuting mode choice in response to rapid transit service disruption in 

the City of Toronto. A joint Revealed Preference and Stated Preference survey is designed to 

gather information on the respondent’s actual response to the most recent service disruption and 

also responses under a set of hypothetical service disruption scenarios. A transit trip planner tool 

is developed to generate alternative transit options to avoid the disrupted segment. Econometric 

models are presented, including a joint RP-SP model, showing that the following factors, in 

addition to travel time and cost, are significant at 95% confidence: frequency of subway trip, trip 

purpose, subway delay, shuttle bus delay, weather, age, and income. Policy implications are also 

discussed.   
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Chapter 1  
 

1 Introduction  

1.1 Problem Statement 

Public transit service disruption is common across different transit modes at different times and 

days for all transit agencies. Due to the significantly higher occupancy compared to personal 

vehicles and a smaller transit network compared to the road network, the impacts are significant 

for the transit agencies and users. Different transit users have different ways of coping with the 

service interruption. Even the same passenger may respond differently to various types of 

incidents, depending on the cause and severity of disruption.  

While any disruption usually affects network reliability adversely, the nature of the resulting 

reliability issues and their effect on user behaviour are distinct from those related to general 

reliability issues under normal transit services. Sikka and Hanley (2013) classified expected 

delays or travel time variability under “general reliability” and unexpected delays under 

“disruption”. Similarly, Carrel, Halvorsen and Walker (2013) considered recurrent issues under 

“general reliability” and incident-related occurrences under “disruption”. While there has been 

many studies on the effects of general reliability of both auto and transit on passenger behaviour 

and decision making, including meta-analyses synthesizing various reliability studies (Tseng et 

al., 2008; Carrion & Levinson, 2012), there is disproportionately much less attention dedicated to 

the subject area of transit user behaviour in response to service disruptions. 

Disruptions to the road network have very different consequences from those occurring in the 

transit network, due to the much smaller size of the latter and its limited number of route 

alternatives, especially within the rapid transit network. Zhu and Levinson (2011) reviewed a 

wide range of studies on transit and road network disruptions, such as transit strikes, bridge 

closures, special events and earthquakes, and they summarized the behavioural changes of both 

auto and transit users. However, the causes of transit service disruption are typically different 

from those of the road network and the effects on traveller behaviour are likely to vary. 

Moreover, information on unexpected road disruptions is usually more readily available to 

drivers through TV or radio channels, while the information seeking behaviour and information 
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availability for transit users are likely very different. Compared to the auto mode, transit service 

disruption is not examined as extensively despite the potential of severe delays they could cause 

to overcrowded rapid transit systems. 

Many transit agencies have established practices to respond to service disruptions, and there exist 

many studies on service recovery and management measures, including a synthesis study by 

Pender et al. (2013) of 71 international transit agencies. However, the effects of these disruptions 

and response strategies on transit user behaviour is not well understood (Papangelis, et al., 2013). 

Similarly, performance indicators which are widely used in the transit industry are usually 

operator oriented and less passenger oriented (Barron et al., 2013), for example focusing on train 

delay instead of passenger delay. Furthermore, some disruption studies are sometimes event 

driven, conducted due to an occurrence of a major disruption that provided a great opportunity to 

study passenger behaviour in response to that particular disruption. While the findings can be 

informative, these studies have limited ability to draw more generalized conclusions. In most 

cases, transit user behaviour in the event of a disruption is not well understood, and as a result 

disruption management and recovery may not be optimal. 

Of special significance are disruptions to rapid transit services which may have severe impacts 

on transit users’ journeys and experiences. User behavioural responses can vary across different 

time periods such as an immediate decision-making, pre-planned intention or gradual adaptation. 

The immediate response happens when a disruption has just occurred and been communicated 

(with or without relevant information) to a passenger, and he/she has to make a make a decision 

quickly for a single trip; this situation can be subdivided into pre-trip and en-route scenarios. For 

example, a passenger encountering an en-route transit service disruption may decide to take the 

replacement shuttle buses (if applicable) or other buses, walk to the destination, take a taxi, or 

wait until the disruption is over, while finding out about the disruption before starting the trip 

opens up other options such as a departure time change without route change. The pre-planned 

response refers to planned disruptions which are announced beforehand, allowing for alternate 

arrangements of travel. For example, a passenger informed of a planned disruption to a particular 

subway route may decide to utilize the subway system on a different route, change the 

destination or cancel the trip during the ongoing closure and return to the original choice after the 

disruption (no long-term change). The gradual response occurs after multiple encounters of 

disruptions, leading to behavioural changes in both the short and long terms. After the disrupted 
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trip(s), the passenger may decide to change the departure time, switch to a different route or 

mode, or make no changes for the next trip. In the long run, the passenger may decide to 

permanently switch away from this route or mode, change the destination, cancel the trip, or 

simply continue the same routine without changes. Table 1-1 outlines the options that are usually 

considered for different time periods. 

Table 1-1: Common Mode Alternatives at Different Stages 

Immediate action  

(Pre-trip and en-route) 

Pre-planned intention  

(Short and long term) 

Gradual adaptation  

(Short and long term) 

Wait until service restored (no change) 

Departure time change only (pre-trip) 

Route change only 

Transit mode shift 

Mode shift 

Trip cancellation 

No change (long-term) 

Route change only 

Transit mode shift 

Mode shift 

Destination change 

Trip cancellation 

No change 

Route change only 

Transit mode shift 

Mode shift 

Destination change 

Trip cancellation 

The passenger experience and behaviours can also differ based on the various causes of 

disruptions. For unplanned disruptions, passengers have to make a decision very quickly among 

a limited number of options at a different emotional state. For example, passengers are likely less 

understanding and angrier for disruptions where the transit agency is at fault or responsible; on 

the other hand, malicious attacks such as bombings can affect passenger behaviours beyond the 

incident occurrence. Pre-planned disruptions can happen due to maintenance and upgrade or 

labour strike. Passengers are likely going to behave differently given that they can find out about 

the severity and consider viable alternatives beforehand. Additionally, there are many service-

oriented and user-oriented factors that affect passengers such as the availability and media of 

information, duration of delay, weather, purpose of trip, comfort, and habit, to name a few. These 

considerations demonstrate that passenger behavioural responses and adaptations can be 

extremely complex, requiring a more thorough empirical investigation. 
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The main purpose of this research is to understand the mode choice behaviour of transit users in 

response to service disruptions in the immediate response situation (pre-trip and en-route), which 

is the most common situation faced by transit passengers. The study aims to develop a transit 

user mode choice model when encountering a service disruption and gain a better understanding 

of what factors influence the transit user’s choice making behaviour.  

1.2 Motivation 

The population in the Greater Toronto and Hamilton Area (GTHA) has been rising on average 

by 2% annually and number of trips taken has also been increasing at the same pace (Data 

Management Group, 2012). The Toronto Transit Commission (TTC, local transit agency of the 

City of Toronto) ridership has been steadily rising at a rate of approximately 2.5% annually since 

2009 and these trends are likely to continue in the near future (Toronto Transit Commission, 

2016). In response to the growing ridership and demand, the TTC and Metrolinx (the regional 

transportation agency of Government of Ontario) have many ongoing and planned expansion 

projects, including many LRT, subway, and regional express rail projects across the region 

(Metrolinx, 2008). With the increased transit network and service, there is more exposure to 

delay and more passengers to be affected should a delay occurs. How the agencies manage the 

disruption response and recovery currently and for the expanding network is critical in the 

reliability and resiliency of the transit system.   

While transit agencies may have strategies to reduce the likelihood of breakdowns such as 

preventative maintenance, malfunctioning of transit infrastructure or fleet cannot be avoided 

completely. In addition, external factors such as medical emergency, security, or weather are 

beyond the agency’s control. On the other hand, planned disruptions are also not uncommon for 

maintenance and upgrade as well as the occasional labour strike. These disruptions and service 

closures likely have varying degree of impacts on the transit users. The impacts of disruptions, 

including the impacts on transit users, are of great interest to the transit agencies. The top priority 

for the agencies is to resume service as soon as possible and minimize length of closure in terms 

of time and distance. On the other hand, the top priority for passengers is to get to their 

destinations as fast as possible. The priorities do not necessarily align if the system cannot 

resume service immediately. Therefore, understanding the transit user behaviour can help 

improve the agency response that addresses both priorities. 
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Transit user behaviour during a disruption can be significantly different from the regular travel 

pattern depending on the circumstances, availability of choices, and the attractiveness of these 

choices. Therefore, it is important to consider transit user behaviour under conditions of service 

disruptions separately from their behaviour under normal conditions, in order to capture the 

actual decision making and trade-offs. Traditional household travel surveys do not capture travel 

patterns under disruption conditions; neither do customer satisfaction surveys conducted by 

transit agencies have details on incidents and how customers respond to service disruptions. 

Therefore, available survey data provide very limited information for this study and there is a 

clear need to collect more specific data to better understand the user behavior during service 

disruptions. 

1.3 Objectives 

The objectives of this  research are as follows: 

1. Design an individually customized joint reveal preference (RP) and stated preference 

(SP) survey to gain a better understanding on how different factors affect rapid transit 

users’ mode choice behaviour in response to service disruption. 

2. Develop a web-based survey tool to collect data on the respondent’s mode choice in the 

last encounter of service disruption and in a set of hypothetical scenarios. 

3. Develop a mode choice model to understand how disruptions affect transit users’ 

commuting trips and how transit users get to their destinations, incorporating factors that 

are usually not considered in traditional travel survey data or mode choice models. 

4. Discuss the policy implications based on the findings on transit user mode choice 

behaviour and make recommendations on how transit agencies can make use of this 

information in service response and recovery during a service disruption.  

1.4 Methodology 

A joint RP-SP survey was designed where the RP part gathers information on the respondent’s 

actual response to the most recent service disruption while the SP part solicits the respondent’s 

responses under a set of hypothetical but realistic service disruption scenarios using a customized 
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disruption generator tool. The SP experimental design adopted the state-of-the-art efficient 

design to minimize the number of scenarios required while incorporating many important factors 

with different variations of each factor. A transit trip planner tool was developed to search for 

alternative transit options in the event of a service. Socio-demographic information was also 

collected in order to investigate its effect on choice behaviour.  

A web-based survey was developed using Bootstrap, HTML, CSS, JavaScript, jQuery, PHP, 

MySQL, and cPanel. The transit trip planner tool was implemented using Google Directions 

API. Data collection was done online through an email invitation sent to randomly selected 

participants in a market research panel.  

A mode choice model was developed to gain a better understanding on how transit users respond 

to service disruptions and what factors influence their decisions. In particular, factors associated 

with information availability and length of delay, which are key factors in the decision-making 

process but are difficult to capture, were further analyzed to facilitate a more comprehensive 

discussion and to reach a more generalized understanding of the effects of disruption. A joint 

RP-SP specification was developed to overcome the respective limitations in RP and SP data.  

Policy implications based on the findings are discussed. With a better understanding of transit 

user behaviour, policies related to customer-oriented response and recovery strategies are 

discussed. The effect of information provision and media of information on transit user mode 

choice behaviour are also discussed.  

1.5 Thesis Layout 

There are six chapters in this thesis. The content of remaining chapters is outlined here. Chapter 

2 presents an overview of the literature on transit service disruption, survey methodology, and 

econometric modelling. Chapter 3 provides the methodology of the Subway User Behaviour 

When Affected by Incidents in Toronto (SUBWAIT) survey. Chapter 4 presents the 

implementation of SUBWAIT survey and the descriptive statistics of the survey data. Chapter 5 

presents the empirical work of the research and a discussion on policy implications. Chapter 6 

highlights the research summary, research contributions and directions for future work.   
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Chapter 2  
 

2 Literature Review 

2.1 Disruption Type and Frequencies 

Given that different types of disruptions can result in different transit user behavioural responses 

and adaptations, it is important to understand what the root causes of disruptions are and classify 

the disruptions by type of cause. Nielsen classifies the causes of service disruptions into external 

and internal incidents where external events include weather, accidents, and network outages 

while internal events include fleet breakdown, crew shortage, and malfunctioning infrastructure 

(2011). Expanding on this classification, transit disruptions can generally be classified into the 

following four categories of causes: natural, human accidental, human intentional, and operating 

environment. These categories can each be subdivided, if applicable, into external causes and 

internal causes. External causes are instances where the transit agency has no control and the 

cause of incident is not related to the transit personnel or properties, while internal causes are 

those with some level of involvement or responsibility of the transit agency. Given that the 

geographic scope of this study is the City of Toronto with emphasis on rapid transit, the 2013 

TTC subway incident report was reviewed to obtain the number of occurrence and duration of 

each type of disruption. The incidents with delays less than 10 minutes were considered minor 

incidents related to recurring reliability issues and thus were not included in the analysis while 

incidents with a 10-minute delay or longer, 627 recorded in 2013, were considered as major 

incidents (or simply referred to as incidents henceforth) or disruptions. Table 2-1 summarizes the 

types of disruptions by cause and the likely consequences with relation to transit service, while 

Table 2-2 provides the incident counts and average durations in the TTC rapid transit system in 

2013. 

All of the natural causes identified here are considered external and are weather related. Weather 

related incidents can result from hurricanes, thunderstorms, or blizzards and consequently 

flooding, power outage, and heavy snow. These natural disasters can result in a shutdown of the 

transit system due to damages, inoperable conditions or precautionary closures. Not surprisingly, 

natural causes of incidents, while rare, had the longest delays from the 2013 TTC incident report, 
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accounting for 6 of the 8 lengthiest delays in 2013 and each lasting many hours. Furthermore, the 

report does not include extended closure from the July 8th storm and December 22nd storm that 

saw partial or full closure on all subway lines where full service was not resumed until the third 

day of each incident respectively (Toronto Transit Commission, 2013a; Toronto Transit 

Commission, 2013b). It should be noted, however, that 2013 was not a typical year and that 

having two major system wide weather disruptions is not a common occurrence. 

Human related incidents include those occurring accidentally or intentionally. Accidental 

incidents include but are not limited to collisions and crashes. In the form of collisions, accidents 

can be external or internal depending on the involvement with other traffic or within the transit 

system, and they include crashes with other vehicles, the infrastructure, or other obstacles. In 

addition, external accidents also include passenger illnesses, passenger related issues that require 

assistance, or false alarms. Internal accidents on the other hand include fire incidents, operator 

errors, crew illnesses and crew availability issues. Accidents accounted for the majority of all 

2013 subway incidents, at 56%. Approximately half of those were external, mostly due to 

passenger illness or injury, while the other half were internal, mostly due to fire related accidents 

at transit infrastructure. The average durations of delay for external and internal accidents, 

however, were the smallest, at 15 minutes and 19 minutes, respectively, as the incidents are 

usually local. 

Human intentional incidents have varying degrees of consequences and can be subdivided into 

external and internal as well. External causes range from security issues and suicide attempts to 

malicious terrorist attacks. Internal causes include actions with a specific agenda, such as a pre-

planned maintenance or upgrade of the infrastructure or rolling stock, as well as labour shortage 

in the form of a labour strike. There were no acts of terrorism in 2013 and external incidents 

were dominated by security issues, averaging 27 minutes of delay, 2nd longest behind weather, 

and accounting for 21.5% of total incidents. Pre-planned maintenance or upgrade were not 

included in the dataset but there were many occurrences during the weekends. There was also no 

labour strike of the TTC in 2013 with the last occurrence in 2008 (Toronto Transit Commission, 

2008). 

Operating environment disruptions can also be subdivided into external and internal causes. The 

external causes are network outage, such as power outage or communication outage, or external 
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interruptions, such as the lone instance in 2013 due to wildlife. Network outages due to weather 

were classified under weather and as such there were no network outage incidents reported due 

to non-weather causes. The internal causes can be infrastructure, rolling stock or other 

breakdowns of the properties of the transit agency. Internal operating environment incidents 

contributed to 21.4% of all 2013 incidents with an average delay of 23 minutes. 

Table 2-1: Taxonomy of Disruption Causes and Consequences 

 External Causes 

[length of suspension, damages to 

transit properties] 

Internal Causes 

[length of suspension, damages to 

transit properties] 

Natural 

(Weather) 

Hurricanes, thunderstorms, flooding 

Blizzards, heavy snow 

Extreme temperature 

[medium to long term, yes] 

N/A 

Human 

Accidental 

(collisions, 

passenger 

and operator 

issues) 

Medical issues, passenger assistance 

required 

False alarms 

Collisions (external party involved) 

[temporary to short term, (for 

collisions) yes] 

Operator error 

Crew illness or availability issues 

Collisions 

Fire, smoke, debris (fire hazard) 

[temporary to short term, (for fire, 

error, and collisions) yes] 

Human 

Intentional 

(crime 

related, 

labour strike, 

maintenance) 

Security issues and terrorist attacks 

Vandalism 

Suicide attempt 

Disorderly patron and assault 

[temporary to medium term, yes] 

Pre-announced or last-minute 

announcement of labour strike 

Pre-announced maintenance or 

upgrade 

[medium to long term, no] 

Operating 

Environment 

(outage, 

breakdown) 

Power outage 

Communication (internet, signal) 

outage 

[short to long term, usually no] 

Breakdown of infrastructure or 

rolling stock  

Unreliable or unsafe to operate 

[temporary to medium term, yes] 
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Table 2-2: Summary of 2013 TTC Subway Incidents Statistics 

 External 

Incidents 

External 

Average Delay 

(minutes) 

Internal 

Incidents 

Internal 

Average Delay 

(minutes) 

Natural 7 >600 N/A N/A 

Human 

Accidental 

191 15 159 19 

Human 

Intentional 

135 27 0 N/A 

Operating 

Environment 

1 12 134 23 

Total 334 32.3 293 21.0 

2.2 Transit User Behaviour in Response to Service Disruptions 

Studies on transit user response to rapid transit disruptions can be classified into four types (with 

number of studies reviewed in parentheses): general (5), multi-type (0), single type (1), and 

single event (8). General transit disruption studies are not concerned with incident types and look 

into service interruptions or suspensions, which were all conducted for en-route situations only. 

There are no multi-type disruption studies that investigate how different types of incidents affect 

user behaviour in a controlled environment. Single-type disruption studies have recurring 

disruptions so they are potentially applicable to similar incidents in the future with a focus on 

long-term behaviour. Studies focused on a specific event or incident tend to have larger impacts 

immediately after the incident and possibly in the long term. Due to their specificity, the findings 

may only be applicable to a particular type of disruption at a geographical area, or possibly only 

the incident itself if it is very unique. Given the limited number of studies in the literature, 

studies that implicitly considered transit user choice behaviour or include information that can 

infer such information are also included; only 8 of the 14 studies reviewed conducted 

disaggregate mode choice analysis, which is summarized in Table 2-3. 
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Table 2-3: Summary of Disaggregate Transit Disruption Mode Choice Studies 

Year Author Stage Mode Location Disruption Sample 

Size 

Survey Logit 

Model 

2014 Bai En-route LRT Calgary, 

Canada 

General 505 SP MNL 

2015 Teng En-route Subway Shanghai, 

China 

General 500, 

300 

RP, SP MNL 

2008 Bachok En-route Commuter 

Rail 

Kuala 

Lumpur, 

Malaysia 

Derailment 537 SP MNL 

2011 Pnevmatikou Pre-

planned 

short-

term 

Subway Athens, 

Greece 

Pre-planned 

maintenance 

and upgrade 

1116 RP None 

2015 Pnevmatikou Pre-

planned 

short-

term 

Subway Athens, 

Greece 

Pre-planned 

strike 

1944 SP MNL/

NL 

2009 van Exel Pre-

planned 

short-

term 

Regional 

Rail 

Netherlands Pre-planned 

strike 

1263, 

976 

SP, 

RP* 

MNL 

2013 Ministry of 

Transport 

Gradual 

short- 

and long-

term 

Regional 

Rail 

Wellington, 

New 

Zealand 

Weather 

(Storm) 

1072 RP None 

2014 Murray-

Tuite 

Gradual 

long-

term 

Subway Washington 

DC, USA 

Accident 304 RP MNL 

*before and after study 

The following five studies looked into general disruptions and the immediate response of 

passengers. Tsuchiya, Sugiyama, and Arisawa (2007) conducted a revealed preference (RP) 

survey that required extensive collection of reliable data during a month-long study period that 

saw 18 service disruptions of the regional rail systems in Japan. The study showed four possible 

route recommendations for users updated every minute: original route recommended, detour 

route recommended, no detour available (wait for service resumption), and not affected. The 

study, however, was focused on the traveller perception and accuracy of information provision 

without a thorough analysis of passengers’ choice behaviour.  

Fukasawa et al. (2012) conducted a stated preference (SP) survey of passenger behaviour in 

response to an en-route disruption in Japan to compare their departure time and level of service 

(local vs. express) choices between scenarios with and without information provision of the 

estimated travel time and crowding. The study found that there would be more instances of 

switching to other trains if information on alternative options was provided. Both studies in 
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Japan found that passengers prefer having some information about the delays even if it is not 

always accurate.  

Bai and Kattan (2014) conducted an SP survey to study the effect of information provision on the 

passengers’ en-route mode choice given LRT delays and found that a significant mode and 

transit mode shift would occur (over half) when information on the length of delay is not 

provided, compared to less than 25% with next train arrival information given and not too long 

(10 minutes). Given a headway of 3 minutes, the additional wait time that is as short as 7 minutes 

might induce behaviours in response to service reliability as opposed to extended delays or 

disruptions.  

Teng and Liu (2015) used the responses from an RP survey to design the attribute levels for an 

SP survey for Shanghai Metro where service disruptions are rare and found that the majority of 

the respondents would consider the replacement shuttle bus while crowding is less important. 

The extensive metro system offers multiple competitive transit options such as alternative metro 

routes, shuttle and metro, and shuttle only (with the last option being taxi) that may not be 

applicable in smaller rapid transit systems.  

Bachok (2008) investigated disruptions due to train derailment but it appeared that the study 

might be considering service suspension in general. The study considered different media of 

information and delay duration and found that those who have previously switched travel modes 

would likely to switch again (instead of waiting) but encountered challenges with findings of 

insignificant travel time and cost. 

Only one study investigated a single type of incident (implicitly) without focusing on an event 

although there is little information on the transit user mode choice behaviour. The UK 

Department for Transport (2008) conducted a study on the experiences and perceptions of anti-

social behaviour and crime. The study found that 3% of infrequent bus users or non-users did not 

use the bus more often due to concerns about crime and 2% of infrequent train users or non-users 

did not use the train more often due to the same reason. The study showed that security issues 

(most likely recurring) can change long-term behaviours due to psychological factors in addition 

to the impacts from disruptions. 
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The following four single-event studies reviewed pre-planned closures due to maintenance and 

upgrades as well as labour strikes. Mojica (2008) studied the station closure and service 

reduction (partial disruption) of Chicago’s rail lines using smart card data and concluded that 

79% of all riders continued to use rail with 8.4% for bus, 4% for non-transit and the rest 

unknown. There was no strong evidence of boarding time change, as a proxy for departure time 

change. The study found that long-term changes (post-disruption) are negligible using limited 

data collected 2 to 4 weeks after restoration of full service.  

Pnevmatikou & Karlaftis (2011) conducted an RP study on transit mode and route choice in 

response to a five-month pre-announced closure of an Athens Metro Line. The results showed 

that 58% of the respondents took the replacement bus service, 9% switched to modes involving 

auto and 13% chose to walk (only 15-20 minutes between closed stations). The results provided 

insights on passengers’ choice behaviours for pre-planned and pre-announced closures and 

showed a low percentage of mode switch to auto in this study. The study, however, only 

recruited respondents who took the closed metro line after the re-opening and thus induced 

sampling bias by excluding those who no longer took the same line or transit mode or those who 

did not transition back to transit immediately.  

Pnevmatikou, Karlaftis, & Kepaptsoglou (2015) then extended the study with an SP 

questionnaire during a series of planned strikes and found that the joint RP-SP estimation with 

nested logit model performed better than the RP-only or SP-only model. The study found 

income, trip purpose and work schedule flexibility to be significant but only considered three 

options (auto, bus, and taxi) for investigating short-term and long-term behavioural changes.  

Van Exel and Rietveld conducted a synthesis study on passenger behaviour in the event of a 

crew shortage due to a labour strike (2001) and also conducted a case study on the pre-planned 

and pre-announced one-day rail strike in the Netherlands in 2004 (2009). It was found that 62% 

of the people who intended to travel did not take the trip and 24% chose to drive. The study also 

showed that almost half of those who intended to travel using auto mode also changed their 

behaviour in anticipation of major mode shifts due to the transit network disruption. The study 

did a before-and-after comparison among four available options (drive, other mode, travel on 

another day by train, cancel trip) and found that 86% of all respondents chose the same option as 
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their intended choice beforehand; in addition, the number increased to 91% when the last two 

options (no travel on the day of disruption) were combined. 

The following four single-event studies reviewed unplanned disruptions due to weather, an 

accident, and terrorist attacks. The New Zealand Ministry of Transport (2013) conducted a study 

following the June 2013 storm that resulted in a 6-day partial closure of one commuter rail line 

and found substantial short-term changes in rail mode share for the area served by this rail line 

from 51% to 22% (the latter using rail and shuttle bus). More than half of the commuters in the 

affected area chose an earlier departure time over the closure period (short-term) despite the 

comparable travel times before and during peak periods. The study also showed that 11% of 

riders changed their departure time or mode in the long term (a month after the incident), but the 

agency drew the conclusion that long-term changes were not observed as a result of the storm.  

Murray-Tuite, Wernstedt, and Yin (2014) studied the behavioural changes due to a fatal rapid 

transit accident in Washington DC and observed that 17% of Metrorail users avoided the front or 

rear car of the train while 10% switched to a different transit mode or travel mode. The data 

collection started 5 months after the incident but it was unclear whether the observations referred 

to the short-term or long-term changes. The study noted the sampling bias due to the data 

collection method which omitted passengers who no longer took transit.  

Lopez-Rousseau (2005) analyzed the travel patterns after the March 2004 Madrid train bombing 

using aggregate data and found that both train and car trips decreased after the incident. In 

contrast to the 9-11 attack in the U.S., the study noted that psychological (scale of incident), 

cultural (car dependency), social, and political (preparedness) differences led to different 

behaviours, suggesting that there is a limitation in the transferability of findings.  

Rubin et al. (2007) examined the short to long term effects of the July 2005 London 

Underground bombing and found that 30% of passengers would travel less in an SP survey 2 

weeks after the incident while only 19% confirmed their reduction of travel in an RP survey 7 

months after. The study noted some limitations, namely that the RP respondents might not be 

representative of the SP respondents or the general population and that heightened perception of 

threats of terrorism could have led to behavioural changes prior to the incidents which could 

have been incorrectly captured in post-incident survey.  



15 

 

2.3 Available Travel Mode Options 

Understanding the available and feasible choices in a service disruption is important for 

analyzing transit user’s choice behaviour. Table 2-4 shows the available modes of the eight 

disaggregate mode choice studies. The auto option includes auto driving, auto passenger, 

carpooling, and taxi. All eight mode choice studies reviewed above include the auto option and 

four of those subdivide the private vehicle option into various choices such as auto drive, auto 

passenger, and taxi. Taxi is also used as a response strategy where Munich tram passengers are 

offered free rides for delays less than one hour (Zeng et al., 2012). Bus bridging (providing 

replacement bus service for rail disruption) is the most common response for agencies with 85% 

of surveyed agencies implementing it (Pender et al., 2013), but it was only considered in two 

studies based on the nature of these studies and availability from the transit agency. Re-routing 

within the transit network using other routes or transit modes is also an option that some transit 

agencies advertise to help passengers and divert some demand to other parts of the network; Van 

Exel’s study on rail strike was the only one without the re-routing option. Waiting (until the 

disruption is over and following the same route to destination) is also an option for passengers, 

particularly for long-distance heavy rail services or incidents with short delays. Two of the three 

temporary disruption studies provided this option for the survey respondents. Bai and Kattan 

(2014) included productive waiting (doing something) and unproductive waiting as two different 

options and found that 40% of the waiting passengers did not engage in any activities 

(unproductive) while waiting. Active transportation modes such as biking and walking are only 

feasible for shorter distances for subway disruptions. Destination change and trip cancellation are 

also possible, but are more likely for the pre-planned disruptions and gradual adaptations. Van 

Exel’s study (2009) is the only pre-planned disruption study with the trip cancellation option 

(and also a trip rescheduling option); the only unplanned extended disruption study also 

considered trip cancellation as an option (New Zealand Ministry of Transport, 2013). With the 

emergence of telecommuting and flexible work hours, it is possible that trip cancellation can 

become a feasible and considered alternative for unplanned disruption. It is important to 

recognize that the available and considered choices may change throughout the trip, for example, 

being close enough to walk to the destination or willing to take a taxi. It is also important to 

provide all the possible choices to survey respondents if appropriate to obtain more accurate 

data. 
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Table 2-4: Summary of Available Modes in Transit Disruption Mode Choice Studies 

Year Author Available Modes 

2014 Bai Driving or taxi, bus, walk access to same route, productive 

waiting, unproductive waiting, other 

2015 Teng Other subway, shuttle direct, shuttle indirect, other (taxi) 

2008 Bachok Wait, other buses, private vehicle 

2011 Pnevmatikou Auto driver, auto passenger, bus, other subway, tram, commuter 

rail, bike, walk, motorbike, taxi, other 

2015 Pnevmatikou Auto, bus, taxi 

2009 van Exel Auto driver, auto passenger, trip cancellation, bike 

2013 Ministry of 

Transport 

Auto driver, auto passenger, bus, shuttle bus, bike, walk, trip 

cancellation, departure time 

2014 Murray-Tuite Bus, auto, bike/walk, commuter rail and seat location change 

2.4 Influential Factors to Transit Users 

Human behaviour and decision making is extremely complex. It is essential to have a good 

understanding of the factors that influence transit user behaviour in the choice making process. 

The factors that are usually considered in the literature include travel time and cost as well as 

socio-demographic variables such as age and income (see Table 2-5). Based on the literature, the 

following factors are also believed to have a potential effect on the mode choice of travellers in 

response to a disruption: cause of incident, stage of trip, trip purpose, anticipated delay 

information, uncertainty of delay duration, attitudes (desire to experiment, habit, grievance), 

subjective level-of-service attributes (comfort, cleanliness), flexibility, and weather. The extent 

to which the aforementioned variables are considered in the literature is discussed below. From a 

transit user’s perspective, the following information needs were identified as important in a UK 

study: transparency of agency, length of delay, information provision for passengers before 

starting their journeys, information media (live announcement preferred), acknowledgement and 

announcement of short delays, information on alternative routes, display of information at 

station, timetable display if altered, overview of service changes on website, and style of 

information (Passenger Focus, 2011). For customers faced with incidents en-route, the three 

most important pieces of information are length of delay, route alternative and reason for delay. 
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On the other hand, customers informed of an incident before entering the transit system have the 

same set of priorities in a different order: length of delay, reason for delay, and route alternative.  

Table 2-5: Summary of Attributes in Transit Disruption Mode Choice Studies 

Year Author LOS variables Other variables 

2014 Bai delay length, 

IVTT 

age, gender, auto ownership, license, weather, 

main mode, familiarity with system, familiarity 

with APIS, perceived accuracy 

2015 Teng cost, relative 

speed, crowding 

age, gender, income, luggage, purpose 

2008 Bachok travel time, trip 

length, cost 

age, gender, vehicle ownerships, household 

characteristics, trip purposes, previous choice, 

delay information on previous trips 

2011 Pnevmatikou travel time departure time, trip purpose, auto availability 

2015 Pnevmatikou IVTT, cost, 

OVTT, number 

of transfers 

age, gender, income, employment, flexible work 

hours,  

2009 van Exel trip distance age, gender, purpose, fare type, opinion on 

strike, opinion on union, opinion on reputation 

damage of agency, opinion on info provision 

2013 Ministry of 

Transport 

N/A N/A 

2014 Murray-Tuite travel time, cost age, gender, income, children, education, 

frequency of usage, 1st and 2nd preferred mode, 

previous experience 

Based on the literature review on different causes of disruption, it is clear that transit users prefer 

to know what the cause of disruption is and this information can affect their choice behaviour. 

None of the studies in Section 2.2 examined how different types of disruption causes, in a 

controlled experiment, affect the transit user choice making. In fact, many transit disruption 

studies are event driven, conducted due to an occurrence of a major disruption that provided an 

opportunity to study passenger behaviour in response to that particular disruption. While the 

findings can be informative, these studies have limited ability to draw more generalized 

conclusions.  

When riders are faced with an unplanned transit service disruption, finding out about the incident 

before or during the trip can make a significant difference. Kattan, de Barros, & Saleemi (2013) 

considered pre-trip and en-route stages for the auto mode and found significant differences, 

especially with the option of mode switching at the pre-trip stage (22%). For transit user 

behaviour, all of the studies reviewed in Section 2.2 are concerned with passengers facing a 
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service disruption during their trips. For pre-planned scenarios, most studies focused on short-

term behaviours (during the closure, regardless of how long the closure is). Only Mojica (2008) 

considered long-term (post-disruption) behaviours but the data were limited. The long-term 

behaviour can have more significant implications for the transit agencies than it appears because 

a 10% loss of ridership during a one-month closure results in a smaller reduction in total 

ridership count compared to a 1% loss for the year following the closure. For gradual 

adaptations, short-term and long-term periods are harder to distinguish and sometimes not 

explicitly stated in the studies. Generally, short-term is up to a few months after the incident(s) 

and long-term is beyond a few months and sometimes related to recurrent major disruptions. 

Most studies focus on behavioural changes after a particular major disruption, providing a good 

opportunity to conduct such study. The impacts of recurring events are very difficult to capture 

and requires information over a longer period of time across many disruptions.  

The purpose of the trip has been considered in several studies in terms of its effect on the transit 

users’ choice behaviour. Not surprisingly, business and commuting trips were more likely to be 

shifted to another mode than cancelled for pre-planned disruptions (Van Exel & Rietveld, 2009) 

and unreliable metro service during partial closure led to shifts to another transit mode for work 

trips (Pnevmatikou & Karlaftis, 2011). Two studies that investigated en-route behavioural 

responses to service disruption considered trip purpose (Bachok, 2008; Teng & Liu, 2015) but 

there was no strong evidence on the significance of trip purpose in the choice behaviour. More 

investigation is needed to reach a more meaningful conclusion. 

Information regarding the disruption is important for the passengers, and it is well understood 

that such information may not always be available to them. For the cause of disruption, the 

agency might not know it right away before a preliminary investigation or diagnosis; sometimes, 

the agency may not want to reveal the actual cause (e.g. suicide) for fear of triggering similar 

actions and instead opt for a generic and less transparent reference (e.g. medical emergency). 

Even when the cause is identified and announced, it is unlikely that all riders are made fully 

aware of the incident. For the length of delay, the agency usually has a ballpark estimate of the 

duration but in most instances, it does not share it due to the uncertainty and the possibility of 

heightened frustration of customers if underestimated; even if shared, not all passengers would 

receive the information despite multiple channels of information provision. Therefore, it is 

important to consider scenarios where the information is not available. Among the studies 
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reviewed, Bai and Kattan (2014) designed scenarios between a 10-minute delay and no 

information while Bachok (2008) considered three different media of information (audio, visual, 

and text) and three different lengths of delay (30, 45, and 60 minutes). However, both studies 

modelled the different levels of information separately so it does not reveal the individual effect 

of information availability and delay duration. 

While it is known that uncertainty of the delay information provided (e.g. range of estimate for 

delay duration) can lead to a wide range of possible responses of the transit users, it has not been 

well studied other than the reliability aspects of travel, which are usually considered recurring 

and expected. Unexpected service disruptions lead to delays where the duration is often unknown 

to the passengers and sometimes even to the agency.  

There are other factors that are more subjective and hard to capture that may influence transit 

user choice-making behaviour. In addition to the commonly used variables such as travel time 

and cost as well as the factors mentioned above, Goodwin (2008) lists the following 

considerations for choosing among different modes such as a desire to experiment, habit, 

grievance, comfort, cleanliness, and flexibility. Desire to experiment and habit are hard to 

capture but may be inferred from previous experiences and choices. Murray-Tuite et al. (2014) 

confirmed the hypothesis that travel inertia and mode inertia would decrease the tendency to 

switch away from the transit mode after a fatal incident. Grievance can be explained by 

resentment and negative emotion towards the incidents as a reason for mode shifting, such as less 

frequent transit trips due to security issues (Department for Transport, 2008). Teng and Liu 

(2015) found that crowding is not important in disruption scenarios while Fukasawa et al. (2012) 

had similar findings for comfort relative to the importance of speed. Pnevmatikou et al. (2015) 

found that flexible work hours had a negative correlation with mode switch to auto. Depending 

on the duration of the disruption, it could be beneficial to consider departure time change if the 

disruption is known to the transit user before the start of the trip. Most studies did not consider 

weather conditions with the exception of the consideration of temperature by Bai and Kattan 

(2014), which was found significant for switching to auto.  

2.5 Current Practice of Discrete Choice Models 

Discrete choice (or qualitative choice) situations are characterized by a decision maker choosing 

an alternative from a finite, mutually exclusive and exhaustive choice set (Train, 1986). 
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McFadden provides a good overview of the discrete choice modelling and applications (1973; 

1984). The study of choice behaviour includes three components: the choices available to the 

decision makers, the observed attributes of the decision makers, and a model to describe 

individual choice and behaviour and distribution of behavioural patterns in the population 

(McFadden, 1973). A model is a tool to explain observed phenomena using available 

information and intuitive assumptions. A behavioural model requires understanding of the 

underlying behaviour and formulating a set of rules to describe this process. In discrete choice 

models, RUM (random utility maximization) is a decision making rule which assumes that an 

individual chooses the alternative that maximizes his or her utility with some randomness (or 

unobserved component); in mathematical representation, the utility function consists of a 

systematic (representative) component and an error (idiosyncratic) component (McFadden, 1973; 

Manski & McFadden, 1981). The systematic component is usually a linear function of 

explanatory variables and the error component is a random variable with an assumed distribution 

(Train, 1986), as shown in Equation 1:  

𝑈𝑚 = 𝑉𝑚 + 𝜀𝑚 = (𝛽 ∙ 𝑥)𝑚 + 𝜀𝑚, 

where U is the utility of alternative m, V is the systematic utility component of alternative m, β is 

a vector of the coefficients (weights) of the explanatory variables, x is a vector of explanatory 

variables, and ε is the error term to capture the unobserved portion of utility. In the simplest 

form, the probability of choosing mode m is proportional to the exponential value of the utility 

for mode m, as shown in Equation 2: 

𝑃𝑚 =
𝑒𝑉𝑚

∑ 𝑒
𝑉
𝑚′𝑀

𝑚′

 , 

where P is the probability of choosing mode m, and M is the total number of mode alternatives 

available. This formulation is very convenient because the probability of each alternative is 

necessarily between 0 and 1 and the probabilities of all alternatives necessarily sum up to 1. 

The most widely used mathematical models in discrete choice modelling are the logit models due 

to their simplicity of mathematical formulation and parameter estimation (Train, 1986). The 

binary logit (for 2 alternatives) and multinomial logit (MNL, for more than 2 alternatives) 

models are the simplest forms of the logit formulation and are based on the assumption that the 
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error terms are identically and independently distributed (IID) type I extreme value, meaning that 

the variance of the error terms are the same for all alternatives and are uncorrelated. This leads to 

the independence of irrelevant alternatives (IIA) property where the introduction of a new 

alternative (or removal of an existing alternative) does not change the ratio of choice probability 

(or relative attractiveness) of the other alternatives. In other words, alternatives are assumed to be 

distinct and uncorrelated and exhibit proportional substitution patterns. Such assumption can be 

confirmed through hypothesis testing to see if MNL is appropriate.  

GEV models can overcome the IIA restriction by allowing the partition of alternatives into 

subsets (nests) where alternatives across subsets are uncorrelated and those within are correlated 

(McFadden, 1986; Train, 2002). This means that the IIA property only holds within a subset and 

the ratio of choice probability between two alternatives in the same subset is independent of the 

alternatives in other subsets. The most widely used model in the GEV family is the Nested Logit 

(NL) model (Train, 1986). In the NL formulation, alternatives across subsets have zero 

covariance and alternatives within the same subset have the same covariance. The MNL is a 

special case of NL where all co-variances between alternatives are 0. While IIA does not hold in 

NL, it has a similar property where the alternatives are independent from irrelevant nests. 

Sometimes an alternative may be similar to different groups of alternatives, such as park and ride 

to both auto and transit. In this case, the alternative may be placed in more than one nest and this 

type of model is called a cross-nested logit model. 

Both logit and GEV models cannot represent random taste variations and capture unobserved 

factors over time for repeated choices such as a panel data. To overcome these restrictions 

multinomial probit (MNP), and mixed logit (ML) have been developed (Train, 2002). MNP 

assumes that the unobserved factors follow a normal distribution, though this can sometimes be 

inappropriate. The MNP and ML do not have closed form expressions and require simulation for 

their estimation. This can be computationally intensive and limit their applications in the early 

stages of development. However, with the advancement in computation power and the ability to 

overcome various limitations, probit and mixed logit models have become more widely used. 

2.6 Current Practice in RP-SP Survey Design 

The two main types of travel surveys are revealed preference (RP) and stated preference (SP) 

surveys. Traditionally, RP surveys collect data from a sample of respondents on trips they have 
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made in a previous time period (e.g. the previous day). The stated preference approach was 

conceived in the 1960’s, with applications starting in 1970’s in market research (Green & 

Srinivasan, 1978; Kroes & Sheldon, 1988). SP data capture the preferences and choices of 

respondents when presented with hypothetical scenarios of various travel options that may or 

may not be available in the real-world transportation system at the time of the survey.  

The SP approach has recently gained more traction due to several disadvantages of RP data, 

including limited data variation, treatment of strong correlation of variables, limitations in 

evaluating hypothetical conditions, and objectiveness of variables (Kroes & Sheldon, 1988). 

Firstly, RP data are limited to observations only and can have insufficient number and variation 

of the variables within the collected data to conduct insightful analysis on the effects of the 

variables of interest. This can also lead to incorrect conclusion of insignificance of variables 

simply because there is not enough variation in the observed data (Train, 2002). Secondly, the 

variables considered may be strongly correlated, such as travel time and cost, and it is hard to 

capture the effect of each variable and the trade-off in between from RP. Thirdly, RP data are 

based on observations and thus cannot be used to evaluate hypothetical scenarios while SP data 

allow for investigation of hypothetical scenarios that do not exist yet (such as a new policy or 

mode of transportation). Fourthly, RP data usually include objective and quantifiable measures 

of variables, such as travel cost and time, and the evaluation of other qualitative variables, such 

as comfort and convenience, is difficult due to their subjectivity. SP, on the other hand, can 

incorporate these subjective variables by quantifying them (e.g. crowding level for comfort) to 

include more variables of interest. Due to the difficulty to collect observational (RP) data, SP 

data collection is usually less time consuming and cheaper (Louviere 2000 Stated Choice 

Models).  

However, SP data also have its limitations. The main issue of SP is the inherent bias or 

inaccuracy of the collected data, as the respondents might not actually choose the option selected 

in the SP survey in real life. This issue can be more prominent in situations where it is difficult 

for respondents to understand the hypothetical scenarios, such as creating and describing 

scenarios that induce long-term transit user behavioural adaptation. SP data are also subject to 

other biases such as policy bias and justification bias (Kroes & Sheldon, 1988; Ben-Akiva & 

Morikawa, 1990).  
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In the context of transit user behaviour under conditions of service disruption, pre-trip and en-

route behavioural investigations are hard to conduct using RP surveys due to the impracticality to 

observe certain types and scenarios of disruptions of interest and also due to the challenge in 

avoiding sampling bias. RP surveys tend to target transit users who continue to use the service 

without behavioural changes and thus the sampling frame excludes respondents who already 

switched transit route, transit mode, travel mode, or made other behavioural changes. On the 

other hand, transit service disruptions in SP scenarios can lead to the respondent not choosing the 

same alternative in real life, especially because the respondent might not be making the decision 

completely rationally in irregular and unfamiliar situations.  

Due to the issues with RP and SP data mentioned above, studies have been done to compare the 

performance of RP and SP data. Ben-Akiva and Morikawa (1990) compared model estimations 

using RP only, SP only, and joint RP-SP formulations and found that the joint model had more 

accurate parameter estimates. The study demonstrated that combining RP and SP together can 

address the limitations of each type while utilizing the strengths of both. While the RP-SP 

approach has overcome the issues of RP and SP respectively and has become more widely used, 

it has not been adopted for mode choice studies on transit disruptions. 

2.7 SP Experimental Design 

Stated preference experimental design was proposed by Louviere and Hensher (1983) and 

Louviere and Woodworth (1983) in order to determine the individual effects of the factors on the 

observed choices, which is validated through the test of statistical significance. Significance of a 

variable depends on the sample size, which is a major constraint. Experimental design provides 

multiple scenarios to a single respondent with changing attributes to collect information on the 

trade-offs between these attributes; these scenarios can be arbitrarily constructed by the 

researcher. However, designs that can maximize information gain or minimize the number of 

respondents required (or number of responses per respondent) are much more effective.  

The consideration of experimental design includes the following: labelling of alternatives, 

attribute levels, attribute range, balancing attribute level, and the number of choice tasks 

(ChoiceMetrics, 2014). If alternatives are specific, e.g. car vs. transit, they should be labelled in 

general to account for the inherent properties of the alternatives. The number of attribute levels 

should be minimized and kept at the same number (or with a common denominator) between 
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different attributes to minimize the number of choices required. Two levels can be sufficient to 

capture linear effects. Balancing of attribute levels means all attribute levels are equally 

represented, which is usually desired and satisfied for attributes with only two or three levels, 

even if it leads to suboptimal design. Sometimes, it might not be possible depending on the 

number of choice tasks and the number of attribute levels required. The attribute range should 

also be balanced and realistic such that it is not too wide to be reasonable or too small to capture 

the effects and lead to higher errors. The number of choice tasks (scenarios) for each respondent 

is a trade-off between information gain and respondent fatigue. There is no single number that 

should not be exceeded as the complexity of choice tasks can vary greatly so some judgement is 

required. 

There are two main types of SP experimental design: full factorial design, where all possible 

choice situations (all combinations of different attribute levels of all variables) are included, and 

fractional factorial design, where only a subset of the full factorial design is included 

(ChoiceMetrics, 2014). Full factorial design is usually not feasible due to the large number of 

choice situations and sometimes not reasonable in terms of certain combinations of attribute 

levels. There are three main types of fractional factorial design: random, orthogonal, and 

efficient. Random design selects choice situations randomly and can lead to biased results due to 

unbalanced attributes. Orthogonal design requires a balancing of attribute levels since it 

measures the independent effects of each variable. It has been widely used due to the widespread 

use of simple linear models in the past that is more suitable for orthogonal design and the lack of 

studies to evaluate different design methods (Bliemer & Rose, 2011). However, its properties do 

not align with the properties of the ensuing analysis, i.e. econometric models such as the logit 

model formulation.  

Efficient design tries to minimize the standard errors for the parameter estimates. Without the 

parameter estimates, the standard errors cannot be computed and minimized. However, often 

times some prior knowledge is available through a test survey, pilot study, intuition and basic 

concepts in economics (Zwerina et al., 1996). The knowledge of a parameter sign, without any 

information on its magnitude, is still useful. Prior estimates allow generation of choice set with 

utility balance and more even attractiveness or probability of choice. A dominant alternative in a 

choice set provides no new information but the same can happen for no dominant alternative if 
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there is an easy choice; however, there are strategies that increase the efficiency while at the 

same time avoid dominant alternatives. 

The asymptotic standard errors are the square roots of the diagonal of the asymptotic variance-

covariance (AVC) matrix, which is the negative of the inverse of the second derivative of the 

log-likelihood function (ChoiceMetrics, 2014). The standard errors are proportional to the 

reciprocal of the square root of the sample size, so increasing the sample size can lower the 

standard errors. However, the incremental improvement diminishes as the sample size increases; 

on the other hand, finding a design with a higher efficiency can substantially lower the standard 

errors. 

Finding the best efficient design requires using a well-defined criterion for comparison. For 

simplicity, a measure of efficiency is defined to evaluate the experimental design as opposed to 

comparing the entire AVC matrix. Several measures have been proposed, such as D-error or A-

error. The most common measure of efficiency is D-error, which takes the determinant of the 

AVC matrix. A design with the lowest D-error is called a D-optimal design but it is very difficult 

to find in practice. A design with sufficiently low D-error, called D-efficient design, is usually 

good enough (ChoiceMetrics, 2014; Zwerina et al., 1996). Rose and Bliemer proposed that a 

theoretical lower bound of sample size requirement can be derived from the t-ratio of each 

parameter (Bliemer & Rose, 2005). They suggested that some parameters might be harder to 

estimate and require a much larger sample size to achieve statistical significance; it is possible 

that the researcher is more interested to minimize the lower bound sample size requirement, 

which is referred to as the S-estimate. 

Huber and Zwerina showed that design without orthogonality that minimizes asymptotic 

standard errors of parameter estimates can increase information gain or decrease sample size 

while maintaining the same information gain (1996). Efficient design, in theory, should perform 

better than orthogonal design or at worst perform equally well with orthogonal design if no prior 

information can be obtained. Recent studies have shown that the efficient design outperforms 

orthogonal design empirically (Bliemer & Rose, 2011; Rose et al., 2008). Therefore, efficient 

design presents an improvement over orthogonal design, and obtaining prior estimates to 

construct efficient design would be crucial to make the design efficient. 
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2.8 RP-SP Data in Mode Choice Models 

The method for estimating joint RP-SP mode choice models can be found in Ben-Akiva & 

Morikawa (1990), Hensher and Bradley (1993) and Ben-Akiva et al. (1994). For simple logit 

models, explicit normalization or scaling is not necessary. However, it is important to note that 

the unobserved factors in RP and SP are likely different (Train, 2002). In RP data, there is almost 

always unobserved factors as the researcher is limited to the information available and 

observable; in SP scenarios, sometimes respondents are asked to make choices based on 

attributes provided and assume all else are the same. Even though they may still make decision 

based on attributes not known to the researcher, the extent to which it does is still probably 

different from that of RP. To account for this difference, a scale parameter is introduced to 

quantify the relative magnitude of the variances in RP and SP. Usually RP scale is set to 1 such 

that the SP scale is relative to RP scale because the RP data is assumed to be the correct data 

reflecting actual behaviour (Brownstone et al., 2000). SP scale parameter is usually smaller than 

1 and it scales down the explanatory variables because of overstating the intention of switching 

(Ben-Akiva & Morikawa, 1990). Scale parameters can also be used to capture other differences, 

such as the respondent’s fatigue over a series of SP scenarios in an experimental design (Bradley 

& Daly, 1994). With the repeated observations in SP and also the corresponding RP observation, 

advanced econometric models have been developed to capture the correlation among repeated 

observations by the same respondent through simulation techniques. Brownstone et al. (2000) 

demonstrated that mixed logit models for joint RP-SP data outperform MNL models.  
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Chapter 3  
 

3 Survey Methodology  

3.1 Data Needs 

Transit user behaviour during a transit service disruption can be significantly different from 

regular and repeating trips depending on the circumstances, availability of choices, and the level 

of service (LOS) of various choices, and whether the transit users are aware of these choices and 

their LOS attributes. The primary mode choice can become unavailable due to a service 

disruption while sometimes alternative choices may become available (such as the replacement 

shuttle bus service), feasible (such as walking to destination), or considered (such as taking a 

cab). The level of service attributes including travel time, travel time variation, information 

provision, comfort, and other factors can also vary greatly and be perceived differently. 

Therefore, it is important to consider transit user behaviour under conditions of service 

disruptions separately from their behaviour under normal conditions in order to properly capture 

the actual decision making and trade-offs. Traditional household travel surveys do not capture 

travel patterns under disruption conditions; customer satisfaction surveys conducted by travel 

agencies do not have details on incidents and how customers respond to service disruptions 

either. Therefore, available survey data provide very limited information for this study and there 

is a clear need to collect specific data to better understand the user behavior during service 

disruptions.  

The Subway User Behaviour When Affected by Incidents in Toronto (SUBWAIT) survey was 

conducted to collect data on transit user behaviour in response to rapid transit service disruption. 

The survey methodology is discussed in the remainder of the chapter and the survey 

implementation is discussed in Chapter 4.   

3.2 Survey Study Area 

The survey study area is the City of Toronto, the largest city in Canada with the largest transit 

system in Canada as well. The study aims to investigate rapid transit trips within the city where 

at least one rapid transit segment is included. The TTC rapid transit network currently includes 

two major subway lines (Yonge-University-Spadina Line and Bloor-Danforth Line), a third short 
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subway line (Sheppard Line), and an LRT (Scarborough RT). Figure 3-1 shows the rapid transit 

system map of Toronto with 3 subway lines and 1 LRT (blue) enclosed by the city boundary 

(black) on Google Maps. 

 

Figure 3-1: Rapid Transit Map of City of Toronto 

This study focuses on rapid transit trips, as rapid transit is the mode subject to the highest 

potential impacts. Subway (Metro) services, in particular, have higher frequency than regional 

rail services. For this study, rapid transit trips include only rail transit with exclusive right-of-

way operations (such as subway, LRT) and exclude rubber-tired transit or lower order right-of-

way operations such as Bus Rapid Transit. This is due to the fundamental difference between rail 

rapid transit and other transit modes, where the isolation of the rail transit line makes the system 

unique in terms of disruption causes, recovery, alternative options for transit users, and the 

accessibility of those alternative options. For example, a bus that breaks down while in service 

can be removed more easily from a dedicated lane or general purpose lane compared to a train on 

a track, possibly underground. The number of stranded bus passengers is much lower than that of 

a subway train, and other buses along the route are not significantly impacted. On the other hand, 

a malfunctioning train can shut down part or all of the line indefinitely until removed and fixed.   
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3.3 Survey Sample Design 

3.3.1 Target Population 

The target population of the SUBWAIT survey is defined as 18-year-old or older users of TTC 

subway or Scarborough RT system for school-bound or work-bound trips that start and end in 

the City of Toronto. According to the Transportation Tomorrow Survey (TTS) conducted every 5 

years on household travel of 5% of the population of the region, the total number of rapid transit 

commuters aged 18 or over within the City of Toronto is around 293,300.  

3.3.2 Sample Unit and Method 

This is a person travel survey targeting subway commuters as opposed to a household travel 

survey. Therefore, the sampling unit is a person. Random sampling was used to reduce selection 

bias.  

3.3.3 Sample Size Estimation 

The initial estimate of the sample size required given a margin of error of 0.05 and 95% 

confidence interval for simple random sampling, adjusted for population size, is 384 (Hasnine, A 

Comprehensive Study on the Effectiveness of Office-based TDM Policies, 2015). The sample 

size required for the survey also depends on the requirement for the D-efficient experimental 

design, which was found to be 610. Therefore, the higher requirement of 610 for D-efficient 

design determines the sample size requirement; however, only 384 is required to achieve 

statistical significance. The total number of invitations required would depend on the estimated 

contact rate, qualification rate, and completion rate. 

3.4 Travel Mode Options 

There are seven alternative mode options included in this study: auto (including taxi), waiting 

(and continue with subway on the same route), taking the shuttle bus, taking alternative TTC 

routes, biking, walking and cancelling the trip. There are three different transit options provided 

as a result of the transit service disruption. While cancelling trips are not considered in a typical 

travel survey, the effect of the disruption and the inclusion of pre-trip scenarios in this study 

make this option much more likely to be considered and chosen. 
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There are three restrictions on modal feasibility, affecting the number of alternatives available to 

a transit user. These include the availability of the cycling mode only for pre-trip disruptions 

with non-zero household bike ownership, availability of cycling only if the trip distance is less 

than 15 km, and availability of walking only if the distance is less than 5 km. The threshold 

distances for cycling and walking are higher than the usual ranges of acceptable distances with 

journeys possibly taking up to one hour to complete (Habib et al., 2012). This is due to the 

removal of the most desired alternative due to the disruption and several factors that make 

cycling and walking more attractive in this situation, including lowest variability of travel time, 

no wait time, and no availability or crowding issues. Taxi is included in the auto mode option, so 

possession of a driver’s license or a vehicle is not required for the auto alternative.  

3.5 SP Experimental Design 

The main advantage of SP data over RP data is the ability to capture choice behaviours in 

hypothetical scenarios that are otherwise difficult or impossible to obtain from RP data. The SP 

experiment includes different attributes and levels of potentially influential characteristics and 

factors, some of which are very difficult to capture in RP data, to study the effects of each 

attribute on the individual’s choice making. Given the importance of capturing all effects of the 

numerous attributes and the importance of minimizing the number of scenarios (and thus survey 

length) to avoid fatigue and inaccurate responses, D-efficient design will be used for the SP 

experiment. D-efficient design requires prior estimates of attribute parameters from similar 

studies or a pilot study. Since no comparable study can be found for the initial estimates of the 

parameters, a pilot survey was developed and conducted among the same target population as the 

full-scale survey.  

Ngene, a software program for stated preference experimental design, was used to for the stated 

preference experiments for the pilot survey and the full survey (ChoiceMetrics, 2014). The utility 

equations were entered in the software for each alternative (mode choice) along with the 

attributes (variables) of interest and their levels (values). The number of scenarios was 

determined based on the lowest number that could generate a design in Ngene. Attribute balance 

in this SP experimental design was not possible because there are attributes with 4 and 5 levels in 

the specification (see Table 3-2). There was a total of seven SP scenarios for the pilot and the full 

survey.  
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A multinomial logit model was estimated using the pilot survey data to obtain parameter 

estimates from a small subset of the target population. These parameter estimates were used to 

re-design the SP experiments for the full-scale survey and therefore the pilot survey does not 

need to meet the sample size requirement or achieve statistical significance. A sample size of 50 

was used for the pilot round. The pilot survey results and the re-design are discussed in Section 

4.2 and 4.3. 

3.6 Survey Instrument Design 

3.6.1 Survey Data Model 

The joint RP-SP survey consists of three main sections: RP, SP, and socio-economic 

information. In Section A, the RP component collects information on the individual’s last 

encounter of service disruption, the choice made during the disruption and the relevant 

information of the trip. In Section B, the SP component presents hypothetical scenarios of 

service disruptions by providing various attributes and levels of travel mode alternatives to the 

respondent to obtain his or her stated choices and the effects of individual variables on the 

choices made. In Section C, background and socio-economic information captures individual and 

household characteristics to analyze the demographics and its representativeness of the 

population. The survey data model is presented in Figure 3-2. 
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Figure 3-2: Survey Data Model 
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3.6.2 Trip Planner Tool 

The survey provides hypothetical scenarios reflective of the respondent’s usual commute by 

customizing the trip using the origin-destination (OD) pair of the respondent’s commute. The 

attributes for these scenarios can be specified by either constructing a trip planner tool that can 

compute alternative routes online or looking up the level of service attributes for a particular OD 

zone pair from a pre-calculated attribute table. The trip planner is more accurate and reflective of 

the respondent’s actual OD pair but requires extensive design and testing of the trip planning 

application as well as online computation of all the required trip attributes for each alternative. 

On the other hand, the lookup table allows computation of all required attributes offline at a 

zonal aggregate level for each mode without providing the route using a network assignment 

model. Based on the trade-offs between complexity, computation efficiency and accuracy, both 

methods were utilized. The auto travel time and cost were retrieved from the EMME network 

assignment model (a travel demand modelling system for transportation forecasting developed 

INRO) using 2011 trip data and 2012 network model. The taxi cost was calculated based on the 

published cab fare from the City of Toronto website (City of Toronto, 2016). The access, egress, 

in-vehicle time, transfer time, and number of transfers were calculated for all choices involving 

transit using the trip planner to enable generation of multiple routes. Cycling and walking 

distance is calculated offline using GPS coordinates.  

Google Directions API (application programming interface) was used to construct the mode and 

route alternatives for the customized trip planner tool. While Google API can retrieve transit 

mode specific travel times (e.g. with subway or with surface transit), it cannot be instructed to 

remove or block a specific segment of the subway line to represent a transit service disruption 

scenario. This was found to be problematic because the best alternative route often times 

involves using the subway in the non-disrupted section. The trip planner tool was later modified 

such that the API would be used for surface transit only and the subway travel time and transfers 

were pre-calculated offline using GTFS (General Transit Feed Specification) data for each pair 

of subway stations to provide realistic and competitive options to get to the destination.  

3.6.3 Section A: Revealed Preference 

In Section A, the following information is collected regarding the respondent’s last encounter of 

subway service disruption: origin and destination of the commuting trip, TTC subway access 
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station, access mode, egress station, egress mode, number of subway/LRT transfers, date and 

time of last encounter of service disruption, location (subway station) of disruption, incident 

type, length of disruption (delay), purpose of trip, departure time, expected arrival time, parking 

cost at destination, weather condition, information provided pre-trip and en-route, availability of 

replacement bus service, chosen alternative, additional travel time, additional travel cost, 

possession of a driver’s license, household bike and auto ownership. The Google Maps API was 

used for the respondents to enter the origin and destination of the trip so it can be geocoded 

based on a variety of inputs (address, postal code, name of place) and displayed on a map. 

3.6.4 Section B: Stated Preference 

The attributes to be included in the survey are various factors that can influence transit user 

behaviour. There are many variables of interest and relevance but only the 10 most important 

attributes were selected to be varied in the survey to limit the length of the survey. In order to 

minimize the total number of possible scenarios, all but two of the attributes have only two 

levels, which are deemed sufficient to distinguish among different circumstances. The only 

exceptions are the disruption type by cause where the top three incident categories were 

included. The list of disruption types is discussed in the following paragraph and the list of all 

other attributes and their levels is summarized in Table 3-1. 
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Table 3-1: Summary of SP attributes and levels 

Attribute name First level Second level Third level Fourth level 

Stage of trip Pre-trip 

disruption 

En-route 

disruption 

 
 

Weather 

condition 

Comfortable Not comfortable 

(heat, cold, snow, 

extreme temp) 

  

Incident type No information  Signal or train 

problem 

Medical 

emergency 

Fire 

investigation 

Delay information 

on subway 

Unavailable Available 
 

 

Length of delay or 

wait time 

(subway) [1] 

25 minutes 50 minutes 
 

 

Accuracy of delay 

duration (subway) 

[1] 

Up to 10 

minutes longer 

Up to 30 minutes 

longer 

 
 

Wait time (delay) 

information on 

replacement 

shuttle 

Unavailable Available 
 

 

Length of delay or 

wait time (shuttle) 

[2] 

10 minutes 20 minutes 
 

 

Accuracy of delay 

duration (shuttle) 

[2] 

Up to 5 minutes 

longer 

Up to 20 minutes 

longer 

 
 

Auto cost [3] Pre-trip normal En-route low  

(-25%) 

En-route 

normal  

 

Transit cost [4] $0 $2.9   
[1] dependent on “Delay information on subway”; [2] dependent on “Wait time information on shuttle”; [3] 

dependent on “Stage of trip”, low level for alternative ride hailing service; [4] entirely dependent on “Stage of trip” 

(fixed) 

The following types of disruption will be considered in the survey: breakdowns of subway 

infrastructure or fleet (with signal and train problems being the most frequent), medical 

emergencies (caused by passenger illness, contact with train or other injuries), and fire 

investigations (mostly smoke or odour of smoke at track or on platform) (see Table 2-1). The 

other types of disruptions occur less frequently and have been excluded. There is also an 

additional level for the lack of information on the disruption type to represent situations when 

passengers are not informed of the type of incident. 
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A hypothetical disruption event needs to be created before the SP experiment can be constructed. 

A disruption generator tool was developed based on the respondent’s commuting route, the 

frequency of service disruption at each station, and how disruptions propagate across the system. 

The location of disruption was selected from the list of subway stations that the respondent 

passes by to create realistic scenarios that the respondent can easily relate to or may have 

encountered before. The station selection was randomly generated based on the relative 

probability (frequency) of incident occurrence at each station in the 2013 incident report. This 

weighted probability helps account for the higher incident frequency at certain stations or 

segments, such as those near the terminal stations or yards as shown in Figure 3-3 on Google 

Maps. Once the location (subway station) of the disruption was determined, the segment of the 

subway line that would be closed was determined based on track cross-over location so that the 

“new” origin of the en-route disruption scenario could be presented (while the pre-trip origin 

remains the same) along with the level of service attributes for the respondent. This process was 

repeated for each SP scenario so the respondent would likely see a number of different disruption 

locations in the set of seven scenarios.  



37 

 

 

Figure 3-3: Incident Frequency by Station in 2013 (10 minutes delay or longer) 

The SP scenarios were created by changing the attribute levels of different variables based on D-

efficient design using the Ngene software (ChoiceMetrics, 2014). Each respondent was presented 

with seven scenarios with up to seven alternatives and asked to select a preferred mode choice 

for each of the scenarios as well as indicate a confidence level for each choice. Upon completion 

of the last scenario, the respondent was asked to identify the alternatives in the presented choice 

set he/she considered while making these choices because the respondent might not consider all 

possible alternatives provided in the choice set. The seven SP scenarios are summarized in Table 

3-2. 
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Table 3-2: SP Scenarios with Attribute Levels 

Scenarios Stage Weather Shuttle Delay Type Subway Delay 

1 En-route Not Comfortable 10-30 Signal/Train 

Breakdown 

25-55 

2 En-route Comfortable 20-40 Fire 

Investigation 

25-35 

3 At home 

(pre-trip) 

Comfortable Unknown Medical 

Emergency 

Unknown 

4 At home 

(pre-trip) 

Comfortable 20-25 Unknown Unknown 

5 At home 

(pre-trip) 

Comfortable Unknown Medical 

Emergency 

25-35 

6 En-route Not Comfortable 10-30 Signal/Train 

Breakdown 

50-60 

7 En-route Not Comfortable 10-15 Fire 

Investigation 

50-80 

3.6.5 Section C: Socio-demographic Information 

The socio-economic information includes those pertaining to the individual and his/her 

household. Household information includes dwelling type, home tenure status, household size, 

and household income. Individual information includes age, gender, highest level of education, 

employment type, student status, possession of a TTC monthly Metropass, and subway trip 

frequency. 
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Chapter 4  
 

4 Survey Implementation and Data Collection 

4.1 Data Collection 

The date collection was done in September of 2016 for pilot the survey and in October to early 

December of 2016 for the full-scale survey with the help of a market research company. The 

average completion time for the survey was 12 minutes. The survey has been approved by the 

Research Ethics Board of the University of Toronto. Respondents were randomly selected from a 

panel of survey participants who previously agreed to be contacted. Invitations to the online 

survey were sent by email from the market research company. Feedback from the pilot survey 

was reviewed and improvements were made prior to the launch of the full-scale survey.  

4.2 Pilot Survey Result 

A multinomial logit model was estimated using Biogeme (Bierlaire, 2003). Despite a small 

sample size, the t-stats for some key variables such as travel time and cost were high. Table 4-1 

shows the summary statistics for the pilot model. 

Table 4-1: Pilot Summary Statistics 

Variables Values 

Final log-likelihood -286.277 

Null log-likelihood -338.86 

Adjusted rho-square 0.093 

Number of individuals 50 

The parameter estimates are presented in Table 4-2 and with the corresponding utility equation 

shown in Table 4-3. The signs of the parameters match with general intuition. The following 

variables are categorical: stage of trip (at origin), weather, subway incident type (cause), and 

availability of information (subway info and shuttle info). The units for time, delay and delay 

range variables are in minutes while the cost variables are in Canadian dollars. The subway 

incident type (cause) parameters are in reference to an unknown subway incident.  
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Table 4-2: Parameter Estimates for Pilot Survey Data 

Name Parameter t-statistic 

ASC_AUTO 0 (fixed) 
 

ASC_BIKE 0.616 0.72 

ASC_CANCEL -2.14 -2.47 

ASC_OTHERTTC 0.687 1.5 

ASC_SHUTTLE 0.518 0.99 

ASC_SUBWAY -0.586 -0.62 

ASC_WALK 1.51 2.5 

B_AT_ORIGIN 0.702 0.88 

B_BAD_WEATHER_ACTIVE -1.55 -2.13 

B_BAD_WEATHER_AUTO 0.183 0.44 

B_BAD_WEATHER_CANCEL -0.293 -0.39 

B_CAUSE_FIRE 0.875 1.16 

B_CAUSE_MEDICAL 1.39 1.54 

B_CAUSE_SUBWAY 1.74 1.85 

B_COST -0.0276 -2.1 

B_SHUTTLE_DELAY -0.116 -2.55 

B_SHUTTLE_DELAY_RANGE -0.0158 -0.56 

B_SHUTTLE_INFO 1.11 1.42 

B_SUBWAY_DELAY -0.0812 -2.93 

B_SUBWAY_DELAY_RANGE -0.033 -0.95 

B_SUBWAY_INFO 1.82 1.4 

B_TIME -0.0323 -3.82 
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Table 4-3: Utility Equations for Pilot Design 

Name Specification 

SUBWAY ASC_SUBWAY * one + B_TIME * SUBWAY_TT + B_COST * 

SUBWAY_COST + B_SUBWAY_INFO * SUBWAY_INFO + 

B_SUBWAY_DELAY * SUBWAY_DELAY + 

B_SUBWAY_DELAY_RANGE * SUBWAY_DELAY_RANGE + 

B_CAUSE_SUBWAY * CAUSE_SUBWAY + B_CAUSE_MEDICAL 

* CAUSE_MEDICAL + B_CAUSE_FIRE * CAUSE_FIRE 

SHUTTLE ASC_SHUTTLE * one + B_TIME * SHUTTLE_TT + B_COST * 

SHUTTLE_COST + B_SHUTTLE_INFO * SHUTTLE_INFO + 

B_SHUTTLE_DELAY * SHUTTLE_DELAY + 

B_SHUTTLE_DELAY_RANGE * SHUTTLE_DELAY_RANGE 

OTHERTTC ASC_OTHERTTC * one + B_TIME * OTHERTTC_TT + B_COST * 

OTHERTTC_COST 

AUTO ASC_AUTO * one + B_TIME * AUTO_TT + B_COST * 

AUTO_COST + B_BAD_WEATHER_AUTO * BAD_WEATHER 

CANCEL ASC_CANCEL * one + B_TIME * CANCEL_TT + 

B_BAD_WEATHER_CANCEL * BAD_WEATHER + 

B_AT_ORIGIN * AT_ORIGIN 

BIKE ASC_BIKE * one + B_TIME * BIKE_TT + 

B_BAD_WEATHER_ACTIVE * BAD_WEATHER 

WALK ASC_WALK * one + B_TIME * WALK_TT + 

B_BAD_WEATHER_ACTIVE * BAD_WEATHER 

4.3 Re-design of SP Experiments 

The estimated parameters in Table 4-2 provide an improvement over the initial (pre-pilot) 

estimate used to generate the pilot design and these estimates was used to generate the SP 

experimental design for the full survey. The updating of these parameters makes the final design 

more efficient due to the usage of reliable prior estimates. More information on efficient design 

and parameter updating can be found in Hasnine (2015) and ChoiceMetrics (2014). 

4.4 Implementation for Full-Scale Survey 

The full-scale survey was conducted in the fall of 2016 from October to early December. The 

full survey implementation statistics are summarized in Table 4-4. There was a total of 2,478 

invitations sent with 2,288 accepted invitations, giving a contact rate of 92%. The high contact 

rate can be attributed to the long period of availability to fill out the survey and the reminders 

sent to the respondents to participate. Most of the participants who accepted the invitation 

qualified for the survey, with a total count of 2,052 and a qualification rate of 90%. The total 
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number of complete responses is 556, giving a completion rate of 27%. The overall response rate 

for this study is 24%.  

Table 4-4: Full Survey Implementation Statistics 

Number of invitations sent 2,478  

Contact rate 92% 
 Number of invitations accepted 2,288 

Qualification rate 90% 

Response rate 24% Number of qualified respondents 2,052 

Completion rate 27% 

Number of complete responses 556 
 

4.5 Descriptive Data Statistics 

As shown above, there are a total of 556 completed survey responses. However, the RP section 

has fewer responses for two reasons: (1) some respondents have not experienced a major 

disruption in the past year and (2) some respondents reported a disruption not on their 

commuting trip and thus we do not have enough information to model their choice behavior. It 

was also found that the RP data was difficult to process automatically without misinterpreting the 

data. Therefore, all RP trip records were reviewed manually by re-creating the scenario using the 

data available in order to ensure high accuracy of the data, especially when some of the 

information was missing or could not be recalled by the respondent. The final RP data set 

contains 414 records, including 324 work-bound or school-bound trips and 90 homebound 

(return) trips from work or school. It is also important to note that while the survey asked for the 

experience of a major subway disruption, some respondents reported a non-major disruption or a 

potential major disruption that resulted in minor delay in the end. These trip records were all kept 

in the final data set.     

4.5.1 Revealed Preference Data 

There are no comparable datasets to compare to the mode split of SUBWAIT survey and it is 

expected that the mode split would differ from a typical RP travel survey due to targeting of the 

subway users only and the unavailability of their most preferred mode during a service 

disruption. The RP data indicated that the majority of the respondents reported experiencing a 

subway delay within the last two weeks of completing the survey, while trip records of 
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respondents reporting a disruption more than a year ago were not included. Figure 4-1 shows the 

RP mode split of SUBWAIT survey. Nearly two-thirds of the respondents chose to wait for the 

subway to resume services and continued on the same route to destination. As mentioned above, 

some of the choices were made in situations where the disruption was not necessarily a major 

disruption. Walking to the destination was the second most chosen option at 11%. As discussed 

in Section 3.4, walking is assumed to be considered when the total walking distance is less than 5 

kilometres, (i.e. 60 minutes of walking time assuming an average walking speed of 5km/h); 

among those respondents, the percentage that chose walking is 24%. Taking the shuttle buses is 

the third most chosen option at 10%. Similar to walking, shuttle buses were not available or 

considered by the respondent for the majority of the incidents; among those 96 respondents that 

recalled shuttle buses being deployed, 42% took the shuttle bus. The other TTC option includes 

using all transit modes of the TTC to get to the destination: buses, streetcars, and subway lines or 

segments not affected by the disruption. There were only 2 records of trip cancellation upon 

encountering a service disruption. Of the 6 respondents that had biking as an option (based on 

the mode availability discussed in 3.4), none of them chose to bike to their destination.    

 

Figure 4-1: RP Mode Split 

Figure 4-2 shows the mode share of walking to destination by the distance to the destination. 

There were no trip records where the distance was less than 500 m; this is not surprising as the 
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trip makers would most likely be at least one subway station away from their destination to be 

affected by the disruption. For mode choice studies in the GTHA, walking is usually considered 

feasible if the distance is less than 3 km (Habib et al., 2012). However, in the event of a subway 

disruption where the subway option is not immediately available and other options may be 

affected by worse traffic in the road network, the trip makers may be willing to walk longer 

given that it is the most reliable mode of transportation and there is no wait time. This is evident 

in Figure 4-2 where 30% of trip makers chose to walk for distances between 3 km and 3.5 km. 

However, once the distance exceeds 4.5 km (which is approximately 54 minutes of walking 

time), the mode share of walk option drops to 0%. This trend in walking mode share confirmed 

the assumption in SP scenarios where walking is only available if the distance is less than 5 km.     

 

Figure 4-2: Walk Mode Share by Distance Range 

4.5.2 Stated Preference Data 

As discussed earlier, there are no comparable studies for comparison of mode splits. The mode 

splits for the SP data is shown in Figure 4-3. When there is a major disruption and travel time 

information on all options is given, the most chosen option in the hypothetical scenarios is using 

other TTC routes to get to the destination (39%). Taking the shuttle buses, assumed to be 
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available in all SP scenarios, were the second most chosen option at 17% while driving or taking 

the taxi was a close third at 16%.  

 

Figure 4-3: SP Mode Split 

The mode splits by different categorical SP attributes are shown in Table 4-5. When informed of 

a major subway disruption before the start of the trip, a higher percentage of respondents wait for 

the subway to resume service (or hope that the service is resumed by the time they reach the 

subway station). When the weather is not comfortable (e.g. extreme temperature or heavy 

rain/snow), respondents are more likely to choose the auto option and less likely to use active 

modes. When subway delay information is given and respondents were told that there is a major 

disruption, a much lower percentage of respondents chose to wait for the subway. On the other 

hand, when the shuttle delay information is given, a higher percentage of respondents chose to 

take the shuttle bus. 
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Table 4-5: SP Mode Split by SP Categorical Variables 

Stage of trip Wait  Shuttle Other TTC Auto Cancel Bike Walk 

Not at origin 8% 21% 39% 17% 5% 0% 9% 

At origin 15% 11% 38% 16% 5% 8% 7% 

Weather        

Good weather 15% 12% 39% 15% 5% 6% 9% 

Bad weather 7% 24% 39% 18% 5% 0% 7% 

Subway delay info        

No subway delay info 19% 9% 36% 15% 6% 7% 7% 

With subway delay info 8% 20% 40% 17% 5% 2% 9% 

Shuttle delay info        

No shuttle delay info 14% 13% 37% 16% 5% 7% 7% 

With shuttle delay info 10% 18% 39% 16% 5% 2% 9% 

Overall 11% 17% 39% 16% 5% 3% 8% 

The mode splits by different length of delay variables are shown in Table 4-6. When a longer 

subway delay is provided, respondents are proportionally choosing the wait option less often; 

this is observed similarly for shuttle delay on choosing shuttle buses. When a longer subway 

delay variation or a higher uncertainty is provided, respondents are proportionally choosing the 

wait option less often, but not by a big margin. The shuttle delay variation does not show a big 

difference between the two levels of variability. 

Table 4-6: SP Mode Split by SP Delay Variables 

Subway Delay Length  Wait  Shuttle Other TTC Auto Cancel Bike Walk 

25 minutes 11% 16% 41% 16% 4% 3% 11% 

50 minutes 4% 26% 39% 18% 6% 0% 6% 

Shuttle Delay Length 
       

10 minutes 7% 24% 39% 18% 5% 0% 7% 

20 minutes 16% 10% 40% 14% 5% 4% 12% 

Subway Delay Variation 
       

Up to 10 minutes more 9% 17% 40% 16% 5% 3% 10% 

Up to 30 minutes more 7% 24% 39% 17% 4% 0% 8% 

Shuttle Delay Variation 
       

Up to 5 minutes more 11% 18% 39% 16% 6% 4% 7% 

Up to 20 minutes more 10% 19% 40% 17% 5% 0% 10% 

Overall 11% 17% 39% 16% 5% 3% 8% 

One of the limitations of the SP data is that respondents might not necessarily make the same 

choices in real life. In the SP scenarios, a question was added after the scenario about the 

likelihood of making the same choice in real life to better understand the confidence or certainty 
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of their choices. Figure 4-4 shows the distribution of the likelihood. Less than 4% of the choice 

scenarios would be unlikely or very unlikely chosen in real life.  

 

Figure 4-4: Distribution of Likelihood of Making Same Choice in Real Life 

4.5.3 RP and SP Comparison 

The RP and SP mode splits of this study are presented in Figure 4-5 where the inner ring 

represents the RP data and outer ring represents the SP data. The percentage of waiting is much 

higher in the RP data. The percentage of staying in the transit system (combining wait, shuttle 

and other TTC routes) is also higher in the RP data. The mode splits for biking and cancelling 

trips are also much higher in SP as these options are not necessarily available or considered in 

general in the revealed preference context.  
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Figure 4-5: RP and SP Mode Split 

4.5.4 Socio-demographic Information 

The socio-demographic distribution of the 556 respondents in the SUBWAIT survey is compared 

against the 2011 Transportation Tomorrow Survey. The socio-demographic information 

pertaining to individuals are presented in Figure 4-6, Figure 4-7, Figure 4-8, and Figure 4-9. The 

SUBWAIT survey has a lower percentage of the population who are 24 years old or younger 

compared to that of the TTS and this is possibly due to the small sample size and the difficulty 

reaching young respondents.  
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Figure 4-6: Age Distribution 

 

Figure 4-7: Gender Distribution 
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Figure 4-8: Employment Status Distribution 

 

Figure 4-9: Student Status Distribution 

The socio-demographic information pertaining to households are presented in Figure 4-10, 
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SUBWAIT survey. Household income data is not available in the TTS. The income groups with 

the highest percentage are 40k to 60k and 60 to 80k; they combined for 37% of the sample.  

 

Figure 4-10: Dwelling Unit Distribution 

 

Figure 4-11: Household Size Distribution 
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Figure 4-12: Household Annual Income Distribution 

The distribution of mobility tools are shown in Figure 4-13, Figure 4-14, Figure 4-15, and Figure 

4-16. There is a higher percentage of SUBWAIT respondents without a household vehicle and 

also a higher percentage without a TTC monthly Metropass, which allows unlimited trips in the 

transit system. 
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Figure 4-13: Vehicle Ownership Distribution 

 

Figure 4-14: Possession of Driver's License Distribution 
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Figure 4-15: Metropass Ownership Distribution 

 

Figure 4-16: Bicycle Ownership Distribution 
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Chapter 5  
 

5 Mode Choice Modelling of TTC Subway Users 

5.1 Survey Data 

5.1.1 Generating Level-of-Service Attributes for RP 

The level-of-service (LOS) attributes, i.e. travel time and cost, for all modes considered in the 

RP situation are generated in the same manner as the SP scenarios (see 3.6.2). The total auto 

driving cost also includes the parking cost reported by the respondent.  

5.1.2 Data preparation 

There are three datasets prepared for empirical investigations: RP-only, SP-only, and joint RP-SP 

datasets. The RP-only dataset contains 414 trip records and data related to the RP trip. The SP-

only dataset contains 556 individuals with 7 scenarios each for a total of 3892 observations. The 

joint RP-SP dataset combines the two datasets for a total of 556 individuals and 4306 trip 

records.  

5.2 Econometric Model Formulation 

An overview of discrete choice modelling was presented in Section 2.5. Multinomial logit 

models (MNL) are widely used in mode choice models and were used here to estimate the three 

empirical models: RP MNL, SP MNL and joint RP-SP MNL models. The joint RP-SP model 

requires a scale parameter to capture the difference in unobserved variances between RP and SP 

(Hasnine et al., 2016). All models were estimated using Biogeme (Bierlaire, 2003). 

5.3 Empirical MNL Models 

5.3.1 RP MNL Model 

The RP MNL model was estimated with 414 observations. Only six respondents had biking as a 

feasible option and all of them indicated in the corresponding SP scenarios that they would not 

consider biking. Therefore, biking was removed from the choice set. The definitions of the 

variables used in the model specification are summarized in Table 5-1. All potential explanatory 

variables, including LOS variables, delay-related variables, and socio-economic variables, were 
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tested for significance and the final model includes a combination of significant variables and 

variables that provide important insight to the mode choice behaviour.  

Table 5-2 shows the final empirical model. The adjusted rho-square is 0.489 against the null 

model, meaning that log-likelihood of the final model is around 49% less in magnitude compared 

to the null model (without any parameters). Travel time (in minutes) has a negative coefficient at 

95% confidence as expected. The travel cost (in Canadian dollars) was found to have a negative 

impact but not significant at 95% confidence. This is possibly due to the small sample size and 

also the fact that cost may not be the most significant factor in the events of subway service 

disruption that can potentially lead to emergency situations. The variables pertaining to the 

subway option, including long delay, subway info, and train announcement are also significant at 

95%. The effect of subway delay and information provision can be interpreted using the 

alternative specific constant of subway and the subway-related parameters. Without other 

estimated parameters present, the ASC of subway represent the relative utility of taking subway 

(compared to other modes) when there is a subway delay and no information on the delay is 

provided. Therefore, the ASC of subway shown in the model includes two components: the true 

ASC of subway and an unknown but most likely negative value associated with the disutility an 

unknown subway delay. This means the true ASC of subway without a delay is likely higher 

than the 3.78 shown in the model; the high ASC is not surprising because the survey targeted 

subway users who have identified subway as the top choice in their mode choice decision. If 

delay information is provided (subway info = 1) and the delay is not too long (long subway delay 

= 0), passengers are more likely to wait for the subway. However, if the information is provided 

(subway info = 1) and the delay is going to be long (long subway delay = 1), passengers are less 

likely to wait compared to the above scenario and compared to the scenario when no information 

is provided. This matches with the general understanding of how passengers respond to subway 

disruption. The limitation here is that the exact length of delay is usually unknown to the trip 

maker and completely unknown to the researcher, so only a categorical variable (long subway 

delay) was used based on limited information. There are two main reasons why the respondents 

were not asked to report the exact length of delay: (1) the likelihood of them knowing and 

remember this information is low; (2) more importantly, the respondents may report post-

incident information (based on how long they had to wait if they chose to wait) that was not 

available when the mode choice decision was made, which would lead to incorrect parameter 
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estimates. Nevertheless, in the SP data, where a length of delay is provided to the trip maker, 

quantitative approaches to the length of delay can be further investigated.  

The subjective value of travel time was found to be $84/hr. This is much higher than that of a 

typical mode choice study from a traditional household travel survey. There are several reasons 

why the value is expected to be much higher in this context. Firstly, the taxi fare is much higher 

than the cost of driving, which is no longer possible when encountering a service disruption en-

route to your destination. Secondly, in the event of a service disruption, the expected arrival time 

can be severely affected and the travel cost might become much less important for these 

commuting trips than the desired arrival time. Thirdly, the cheaper option of Uber that 

respondents considered or chose could not be fully captured and properly accounted for in the 

model as this information was not available. The model assumed that the full taxi fare was paid 

for by the respondent when in reality, the respondent might have taken an Uber ride, thus 

overstating the true value of time (VOT) of the trip makers.  

Table 5-1: RP Variable Description 

RP Variable Name Description 

Good Income 1 if annual household income is greater than $40,000;  

0 otherwise 

Long Subway Delay 1 if shuttle buses were dispatched;  

0 otherwise 

Subway Info 1 if respondent indicated that the length of subway 

delay was provided;  

0 otherwise 

Train Announcement 1 if respondent was informed of the disruption via 

announcement onboard the TTC subway train;  

0 otherwise 
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Table 5-2: RP-only MNL Model 

Variables Value 

Final log-likelihood -313.595 

Null log-likelihood -636.618 

Adjusted rho-square 0.489 

Number of individuals 414 

Variables Modes Parameter t-statistic 

Alternative Specific Constant Auto 0 (fixed)   

Alternative Specific Constant Cancel -1.63 -1.45 

Alternative Specific Constant Other TTC 1.93 2.19 

Alternative Specific Constant Shuttle 3.22 3.56 

Alternative Specific Constant Subway 3.78 4.44 

Alternative Specific Constant Walk 3.75 4.24 

Good Income Auto 1.25 1.64 

Long Subway Delay Auto 0.739 1.48 

Long Subway Delay Subway -2.09 -5.59 

Subway Info Subway 0.992 2.42 

Train Announcement Subway 0.726 2.61 

Travel Time All -0.0371 -3.78 

Travel Cost All -0.0264 -1.43 

5.3.2 SP MNL Model 

The SP MNL model was estimated with 556 individuals with 7 observations each for a total of 

3892 observations. The definitions of the variables used in the model specification are 

summarized in Table 5-3. All potential explanatory variables, including LOS variables, all 

variables in the SP experimental design, and socio-demographic variables were tested for 

significance and the final model includes a combination of significant variables and variables 

that provide important insight to the mode choice behaviour. 

Table 5-4 shows the final empirical model. The adjusted rho-square is 0.178, which is lower than 

that of the RP-only model; this is usually observed when comparing RP-only and SP-only 

models because the former type usually has a more dominant alternative. The model accounts for 

repeated observations by the same individual by dividing the t-stats by the square root of 7 (the 

number of the repeated observations of each individual) as an approximation (Louviere & 

Woodworth, 1983). This allows for a correction to reflect the actual sample size (556) instead of 

the number of observations (3892). Travel time and travel cost both have negative coefficients at 
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95% confidence as expected. The subway delay and shuttle delay, which are the waiting time in 

minutes for the service to resume or to become available respectively, also have negative 

coefficients at 95% confidence as expected. The parameter value for subway and shuttle delay 

are also higher in magnitude than that of travel time, showing that the wait time is perceived 

more negatively than travel time. The shuttle info has a positive coefficient, though not 

significant at 95% confidence. The subway info parameter, which is the availability of 

information on the length of delay, was found to have a small and insignificant value and was not 

included in the final model. This can suggest that in lengthy delays, which is the focus of the 

study, the information provided to differentiate a long delay from a very long delay is not very 

critical anymore in terms of mode choice. These results are consistent with the general 

understanding of transit user responses to subway and shuttle delays. In addition to travel time 

and travel cost, all seven modes include at least one other significant parameter that helps explain 

the choice behaviour.  

The VOT was found to be $44/hr. This is also much higher than that of a typical mode choice 

study from a traditional household travel survey but lower than that of the RP-only model. The 

higher VOT compared to a typical mode choice model can be attributed to the high cab/Uber fare 

compared to driving and possibly relative higher value of time in disruption or emergency 

situations. The pricing of a cheaper ride hailing option (e.g. Uber) compared to the cab fare, was 

included as a variable in the SP experimental design but as an unlabeled alternative where 

respondents were not explicitly told if the fare displayed is a regular cab fare or a discounted cab 

fare.  
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Table 5-3: SP Variable Description 

Variable Description 

Bad Weather 1 if the weather is bad (extreme temperature, heavy 

rain, heavy snow); 

0 otherwise 

Frequent User 1 if the individual uses the TTC subway 9 times or 

more per week; 

0 otherwise 

High Income 1 if annual household income is greater than 

$120,000;  

0 otherwise 

Optional Trip 1 if the individual indicates that the RP trip is not 

essential 

0 otherwise 

Shuttle Delay The waiting time until boarding a shuttle bus in 

minutes 

Shuttle Info 1 if Shuttle Delay is available; 

0 otherwise 

Subway Delay The waiting time until the subway resumes service in 

minutes 

Young 1 if the individual's age is under 40; 

0 otherwise 
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Table 5-4: SP-only MNL Model 

Variables Value 

Final Log-Likelihood -5442.194 

Null Log-Likelihood -6642.915 

Adjusted Rho-square 0.178 

Number of Observation 3892 

Variables Modes Parameter t-statistic 

Alternative Specific Constant Auto 0 (fixed)   

Alternative Specific Constant Bike -0.416 -0.77 

Alternative Specific Constant Cancel -2.61 -7.10 

Alternative Specific Constant Other TTC 1.58 5.65 

Alternative Specific Constant Shuttle 0.77 2.31 

Alternative Specific Constant Subway 0.841 3.03 

Alternative Specific Constant Walk 2.11 5.98 

Bad Weather Bike, Walk -0.777 -2.14 

Bad Weather Auto 1.02 3.45 

Bad Weather Cancel 1.08 2.50 

Frequent User Other TTC 0.402 2.20 

High Income Auto 0.53 1.89 

Optional Trip Cancel 1.31 2.32 

Shuttle Delay Shuttle -0.0735 -2.29 

Shuttle Info Shuttle 0.831 1.62 

Subway Delay Subway -0.0403 -4.81 

Young Bike 1.18 1.97 

Travel Cost All -0.0542 -4.85 

Travel Time All -0.0396 -7.54 

5.3.3 Joint RP-SP MNL Model 

The joint RP-SP MNL dataset combines the data in the RP-only dataset and the SP-only dataset. 

This includes a single RP observation with seven repeated SP observations for a total of 556 

individuals and 4306 observations. Since some RP records were removed, only 414 have the 

complete RP and SP observations while the other 142 have SP observations only. Similar to the 

RP-only model, biking in the RP portion of the joint RP-SP model was also removed from the 

choice set. The definitions of the variables used in the model specification can be found in Table 

5-1 and Table 5-3. All potential explanatory variables, were tested for significance and the final 

model includes a combination of significant variables and a few variables that provide important 

insight to the mode choice behaviour. 
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Table 5-4 shows the final empirical model. The adjusted rho-square is 0.205, which is higher 

than the SP-only model. The model accounts for up to eight repeated observations by the same 

individual by dividing the t-stats by the square root of 8 as an approximation (Louviere & 

Woodworth, 1983). The parameters were estimated jointly with the same coefficient (before 

accounting for the scale parameter) if data is available in both RP and SP records and separately 

otherwise. The ASC’s were estimated separately to account for the difference in mode share 

between the RP and SP datasets. Travel time and travel cost both have negative coefficients at 

95% confidence as expected. The subway delay and shuttle delay, which are the waiting time for 

the service to resume or to become available respectively and only available in SP data, also 

have negative coefficients at 95% confidence as expected. The parameter value for subway and 

shuttle delay are also higher in magnitude than that of travel time, showing that the wait time is 

perceived more negatively than travel time. The subway delay info is not available in the RP data 

so a categorical variable (long subway delay) was used instead as a proxy for the severity of 

delay. The shuttle info has a positive coefficient, though not significant at 95% confidence. The 

subway info parameters, indicating the availability of information on the length of delay, were 

not identical in the RP and SP context and therefore were estimated separately. The RP data 

includes a range of incidents from minor to major disruptions, so it captures the effect of 

information when the severity of disruption is unknown. The SP data only includes major 

disruptions, so it would capture the effects between major disruptions. The SP subway info 

parameter, found to have a small and insignificant value, was not included in the final model. 

The subway info parameter suggests that when the severity of disruption is unknown, there is 

some value in knowing whether it is a minor or major disruption; on the other hand, if the 

disruption is known to be a major disruption, there is less value in distinguishing between a 

severe and very severe delay. These results are consistent with the general understanding of 

passenger responses to subway and shuttle delays.    

The VOT was found to be $45/hr. This is also much higher than that of a typical mode choice 

study from a traditional household travel survey. The higher VOT compared to a typical mode 

choice model can be attributed to the high cab/Uber fare compared to driving and relative higher 

value of time in disruption or emergency situations.  

When joining the RP and SP datasets, scale parameters were estimated to capture the differences 

between the two datasets. The SP scale parameter was fixed at 1 and the RP scale parameter was 
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estimated to be 0.81. The null hypothesis states that the of the RP scale parameter is equal to 1; 

hence the t-stat is negative. The RP scale parameter is not significant at 95% confidence, 

possibly due to the small sample size of the survey. The smaller RP scale means that the variance 

in RP data is higher (though not significant at 95% confidence), which is different from most 

joint RP-SP models. This is likely due to the unique nature of the SUBWAIT survey RP dataset 

where information, specifically delay information, was very limited to the trip maker. Therefore, 

it is difficult to make the most rational decision in a highly uncertain situation and thus difficult 

to model the behaviour in such situation. This was also evident when 142 trip records were 

excluded because the response did not add up to form a coherent scenario and the respondent’s 

situation could not be recreated with enough certainty.  
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Table 5-5: Joint RP-SP MNL Model 

Variables Value 

Final Log-Likelihood -5760.172 

Null Log-Likelihood -7279.533 

Adjusted Rho-square 0.205 

Number of Observation 4306 

Variables Modes Parameter t-statistic Parameter t-statistic 

    RP   SP   

Alternative Specific Constant Auto 0 (fixed)   0 (fixed)   

Alternative Specific Constant Bike 0 (fixed)   -0.405 -0.70 

Alternative Specific Constant Cancel -4.03 -1.26 -2.62 -6.67 

Alternative Specific Constant Other 

TTC 

0.206 0.20 1.6 5.39 

Alternative Specific Constant Shuttle 1.92 1.25 0.786 2.21 

Alternative Specific Constant Subway 3.25 1.41 0.853 2.88 

Alternative Specific Constant Walk 2.74 1.72 2.11 5.61 

Bad Weather Bike 0 (fixed)  -0.721 -1.88 

Bad Weather Walk -0.721 -1.88 -0.721 -1.88 

Bad Weather Auto 1.03 3.31 1.03 3.31 

Bad Weather Cancel 1.11 2.40 1.11 2.40 

Frequent User Other 

TTC 

0.407 2.10 0.407 2.10 

High Income Auto 0.529 1.79 0.529 1.79 

Long Subway Delay Subway -2.89 -1.30 0 (fixed)   

Optional Trip Cancel 1.34 2.23 1.34 2.23 

Shuttle Delay Shuttle 0 (fixed)   -0.0744 -2.17 

Shuttle Info Shuttle 0 (fixed)   0.847 1.55 

Subway Delay Subway 0 (fixed)   -0.0402 -4.48 

Subway Info Subway 1.09 0.70 0 (fixed)   

Young Bike 1.18 1.84 1.18 1.84 

Travel Cost All -0.0535 -4.55 -0.0535 -4.55 

Travel Time All -0.0399 -7.17 -0.0399 -7.17 

Scale   0.813 -0.99 1 (fixed)   
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5.4 Comparison of Models and Discussions 

The joint RP-SP model combines the strength of SP (testing of variables unavailable in RP) with 

the strength in RP (representing actual behaviour). The joint model also has a higher rho square 

compared to the SP-only model. While the scale parameter in the joint RP-SP model was not 

found to be significant at 95% confidence, it still provides important insights that would 

otherwise be difficult to capture in the RP-only or SP-only model. The SP scenarios presented 

various types of major disruptions to the respondents, ranging from 25-35 minutes of delay to 

50-80 minutes of delay. The RP part was intended for major disruptions only as well. However, 

due to a variety of factors, including the difficulty of recalling the last major disruption and 

perhaps respondents having a different interpretation of a major disruption, some medium and 

minor delays were also reported, providing a range of different delay durations that are different 

from the SP counterpart. With a wider range of length of delay in the RP data, the value of 

subway info could be captured, whereas the SP subway info was found to be small and 

insignificant for capturing the difference between a long delay and very long delay. However, the 

SP data were able to capture the value of shuttle info, as severe disruptions do not necessarily 

imply severe shuttle delays. Wai time (delay) from 10-15 minutes to 20-40 minutes were used 

for shuttle. The shorter delays were included to account for some passengers arriving at the 

disruption location when the shuttle buses are already en-route or on-scene. The ASC for subway 

in all the models is a combination of the true ASC of subway and the disutility of knowing a 

disruption occurrence. The ASC of subway for SP was found to be smaller than that of RP and 

this is likely due to the higher disutility of knowing a major disruption compared to that of 

knowing a disruption with no information.  

It is very difficult to properly capture the effect of delay (certain or uncertain) on mode choice 

behaviour. However, the modelling exercises provide an overall direction on how to better 

understand it. At the beginning when a delay is detected by the passengers (e.g. subway not 

moving accompanied by an undecipherable announcement) or communicated to the passengers 

(through various channels), the ASC represents the relative preference of waiting for the subway 

compared to the other modes without considering LOS attributes and other factors. If the delay 

information is disclosed to the passengers, the passengers perceive the availability of information 

positively (positive subway info parameter estimate) but at the same time perceive the length of 

delay negatively (negative subway delay parameter estimate). If the length of delay is short, the 
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positive utility of information availability would outweigh the negative utility of delay, and the 

passengers are more likely to wait. On the other hand, long delays would offset the positive 

utility of information provision and make passengers less likely to wait. Furthermore, there exists 

a breakeven point when the perceived disutility of an unknown incident matches that of a known 

length of delay, which can be calculated by equating the net utility to be 0. This value, the ratio 

of subway info to subway delay, represents the perceived expected wait time or delay of an 

incident when no information is provided. Since the subway info estimate was not found to be 

significant at 95%, the value found in this study may not be accurate. However, with a larger 

sample size and further investigation, the perceived average delay of an unknown incident can be 

derived with higher confidence. The perceived average delay of shuttle buses can also be derived 

similarly. It is also important to note that this perceived average delay with unknown information 

can vary greatly between individuals and thus have a very high variance. Finally, it is important 

to note that if certain types of minor delays are recurrent and already expected by passengers, 

such as slower travel speed, crew change, or delays due to crowding, they would not be 

perceived as unplanned disruptions and would not influence their choice behaviour the same way 

unplanned disruptions do. 

In all three models, it was found that the delay (wait) time of subway and shuttle was perceived 

more negatively than the overall uninterrupted travel time. The weight factor of shuttle delay, 

defined as the ratio of delay parameter to travel time parameter, was unknown in the RP-only 

model and 1.86 for in the SP-only and the joint model. This suggests that passengers perceive 

one minute of waiting on shuttle buses to be about the same as 1.86 minutes of uninterrupted 

travel time, due to other factors such as anger, anxiety, or impatience associated with the 

disutility. The weight factor of subway delay was only slightly over 1, suggesting that waiting 

for subway is not perceived as negatively as waiting for the shuttle buses, and almost the same as 

travel time. There are different ways this can be interpreted but more investigation is needed to 

draw conclusions. Firstly, passengers can perceive subway wait time as productive wait time, 

especially with Wi-Fi available at many TTC subway stations. Secondly, this can be an 

indication that subway delays no longer come as a complete surprise. The RP data indicated that 

the majority of the respondents reported experiencing a subway delay within the last two weeks 

of completing the survey, so the expected trip time and perception of overall trip time might not 

be the same as the uninterrupted trip time.  
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The value of time was very high in the RP-only model ($84/hr) compared to the SP-only model 

($44/hr) or the joint model ($45/hr). This is possibly due to the difficulty in capturing the 

consideration of private automobile option, specifically between the regular cab fare and cheaper 

options such as Uber. As a result, the RP analysis was conducted based on the assumption that 

regular cab fare was paid for by the respondent if selecting that option. In the SP scenarios, 

alternative taxi options that are cheaper were built into the SP experimental design and thus they 

were able to capture the cost and VOT better.   

5.5 Practical Implications 

Gaining a full understanding of the transit user mode choice behaviour under conditions of 

service disruptions is extremely difficult. However, this study can provide many insights on key 

factors affecting the transit user behaviour that can assist the transit agencies in making more 

informed decisions when responding to and recovering from service disruptions as well as 

communicating with the customers.  

When there is a service disruption, the single most important piece of information to the 

passengers is usually the length of delay. While there are instances where the transit agency does 

not have a reliable estimate of the delay due to the nature of the problem, this information, even 

if highly uncertain, would assist the passengers in their decision making if shared. As shown in 

the joint RP-SP model, providing some information on delay duration is still better than 

providing no information.    

There is a significant difference in the mode share of other TTC routes between the RP and SP 

data, which shows that passengers are willing to seek alternatives that helps them get to their 

destinations if the alternative transit route information is available to them. However, they might 

not be familiar with TTC network beyond their regular trips. Providing information on 

alternative routes can significant reduce the issues of overcrowding at station platforms, on the 

subway trains or on shuttle buses, and reduce anxiety. While other routes may be impacted more 

by the service disruption if more passengers are diverted, it helps reduce the total number of 

shuttle buses needed. As a result, fewer buses in service would need to be pulled out of service 

and this leads to higher capacity in other TTC routes to help with the extra passenger loads while 

saving or eliminating the deadheading time. This information can be made available for the 

whole network prior to disruptions, such as the information on the Philadelphia transit agency 
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website (Southeastern Pennsylvania Transportation Authority, n.d.), provided specifically to 

each disruption and location through public announcement (when the incident is announced), and 

sent out to individuals based on their pre-selected routes or stations (when alerts are sent out). 

The incident type was found to be insignificant and therefore not included in the final models. 

This suggests that when information on the length of delay is available, the cause of the incident 

is not as important. However, it is important to distinguish the need and desire for incident 

information and whether this information will influence mode choice behaviour. The analysis 

suggests that the latter is not significant at 95% confidence while the former is not investigated 

explicitly.  

As discussed in Section 2.4, the three most important pieces of information for customers faced 

with service disruptions, according to a UK study, are length of delay, route alternative and 

reason for delay (Passenger Focus, 2011). Based on the SUBWAIT survey findings, length of 

delay was found to have a negative impact on choosing the delayed mode. Frequent users of the 

TTC subway system are more likely to choose alternative routes as they are probably more 

familiar with the transit system. While the passengers usually want to know the type of incident, 

it does not necessarily change their mode choice behaviour.   

The weather condition was found to have an influence the passenger’s mode choice, shifting 

them towards auto and trip cancellation as well as shifting them away from biking and walking. 

While this finding is not surprising, policies can be put in place to help manage the service 

disruption. In clement weather conditions, for example, partnering with Toronto Bike Share can 

encourage active modes of transportation as an alternative without being constrained by the lack 

of access to bikes when away from home. In inclement weather conditions, the higher auto mode 

share and its impact on the road traffic and thus shuttle buses and other surface transit routes 

should be cautioned when managing service disruptions.  

The media of information provision was collected in the RP data and it was found that 49% of 

respondents were informed of a service disruption at a subway station and 40% were informed 

on the train. It was also found that passengers learning of a disruption via train announcement are 

more likely to wait for the subway to resume services. This suggests that the channel of 

communication can influence mode choice behaviour and should be taken into consideration 

when managing the disruptions and crowding.     
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Providing information in a timely manner and to passengers not yet in the subway system can 

also help avoid the overcrowding issue in the subway network. Although not found to be 

significant, a higher percentage of passengers chose to cancel their trip if they have not started 

their trip. Being informed of a disruption when at home can also lead to additional options such 

as biking (if the trip maker has a bike) or departure time change.  

Whether there is a service disruption or not, travel time is always a major factor in mode choice. 

While there is little room to improve the travel time on the subway and the surface routes, and 

practically impossible in the event of a service disruption, there is an opportunity to minimize the 

travel time through more creative operations of shuttle buses. For example, when a series of 

subway stations is closed due to a service disruption, running non-stop shuttle buses bridging the 

closed segments can reduce the travel time on shuttle buses. Running express or non-stop shuttle 

buses to another subway line can also be effective to divert passengers to the other parts of the 

transit network with the highest capacity while providing competitive options. In particular, this 

can be effective for bridging the northern portion of Yonge Subway Line to the northern portion 

of University-Spadina Subway Line where no express buses are available between the two 

sections of the subway line. This idea of a hybrid choice (shuttle bus and other TTC route) can 

also be considered for other modes to help the passengers find the most optimal route to 

destination, such as walking and continue onto the uninterrupted subway segment.   

Transit agencies can also consider facilitating alternative options beyond the TTC network. This 

includes utilizing the services on regional transit, specifically the rail corridors of the GO Transit 

network or Union Pearson Express. The auto option can relieve crowding in the transit system 

but cause further traffic congestion, so it is important to know the priorities of service disruption 

response. Active modes should be encouraged and the availability of bike share, especially with 

close proximity to subway stations, can help with diversion of passenger loads at overcrowded 

stations. 
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Chapter 6  
 

6 Conclusions 

6.1 Research Summary 

In this study, the Subway User Behaviour When Affected by Incidents in Toronto (SUBWAIT) 

survey, a joint RP-SP survey, was designed, developed, and deployed online to collect data on 

the transit user behaviour when affected by service disruptions, incorporating key factors that 

may influence the mode choice behaviour. Three mode choice models, RP-only, SP-only, and 

joint RP-SP, were presented and compared. Policy implications were discussed based on the 

findings to highlight how transit agencies can make use of this information in service response 

and recovery during a service disruption. 

6.2 Research Contributions 

This dissertation has several major contributions. Firstly, a web-based joint RP-SP survey was 

designed with state-of-the-art efficient design, a transit trip planner tool to find alternatives 

avoiding the disruption, and individually customized survey with realistic disruption scenarios 

based on TTC incident reports and respondent’s subway route. Secondly, it provides a deeper 

understanding of how transit users (in the immediate-term) respond to service disruptions by 

incorporating many factors while keeping the survey length reasonable (around 12 minutes). The 

factors incorporated in the experimental design includes the stage of the trip (at origin or en-

route), weather condition, type of incident, location of incident, availability of information on 

subway and shuttle buses, length of delay for subway and shuttle buses, and uncertainty or range 

of delay for subway and shuttle buses. In particular, the stage of trip, type of incident, availability 

of information on delay duration, delay duration and associated uncertainty of delay duration 

were not explicitly considered in prior literature. With the literature lacking RP surveys, and 

therefore joint RP-SP surveys, on transit user behaviour during service disruptions, the joint RP-

SP survey was a significant improvement that provided useful insights on transit user behaviour 

that were otherwise difficult to capture in RP-only or SP-only studies. This study also allows for 

a broader understanding of transit use behaviour without limiting the findings to a past incident 

or specific situations, and therefore provides more generalized conclusion that can be useful for 
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the transit agencies. Thirdly, this study attempts to quantify the value of information on delay, 

the length of delay, the variance/uncertainty of delay for both subway and its replacement mode 

(shuttle bus) and how it compares to the travel time of the journey. Due to the complex nature of 

imperfect information and how it influences the decision making of transit users, the study 

provides insights in a quantitative way on how to compare among various disruption situations, 

such as a disruption with no information, a major disruption with no additional information, a 

disruption with an expected length of delay, and a disruption with an highly variable length of 

delay.   

6.3 Directions for Future Research 

Given the limited literature in this topic, there are many areas of future research, including 

expansion of scope, advanced econometric modelling, and applications. This survey focuses on 

situations where the respondent is informed of a disruption during a trip or just before a trip; 

however, if advance notice is provided, departure time change can be incorporated into decision 

making of trip makers with a joint departure time and mode choice model. Given that the 

majority of the respondents reported to have encountered a service disruption within the last two 

weeks, it is reasonable to hypothesize that passenger behaviour in response to disruptions can 

also change over time if encountering them frequently. It would be interesting to see if there are 

any short-term or long-term changes to their behaviour over time, specifically major changes 

such as commuting mode choice. Given that TTC has more weekends with a pre-planned 

subway service closure than those without any closure, it would be of great interest to see how 

trip makers’ behaviour change given that they have the opportunity to plan ahead and explore 

alternatives. On the modelling side, the analysis in this study only considered the fact that 

individuals had repeated observations but did not consider the correlation between observations 

made by the same individual. A more advanced modelling technique, such as the mixed logit 

model, would be able to capture this relationship and provide more accurate results. The study 

also did not consider the confidence of choice in the SP scenarios and it can be incorporated in 

more advanced models. Finally, this study aims to fill a gap of transit user mode choice in a 

multimodal simulation framework designed to model the effect of a transit service disruption on 

the entire transportation network. By providing information on how the transit users choose to 

get to their destination, this simulation tool can better model the crowd flows at a local level such 

as a station platform or at a network wide level. 
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