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Online social media, such as Facebook, has become a norm in our social and personal

lives. The explicit or implicit social relationships established on social networks can be

leveraged to market products or make recommendations. However, the open nature of

online social media provides a favorable environment for malicious users to spread in-

correct information, either for financial gains or to increase social influence. Therefore,

social media analysis, such as social trust investigation, has attracted increasing atten-

tion from multiple disciplines. On the other hand, graph convolutional neural networks

(GCNs) recently have shown to be powerful in learning on graphs. Their advantages

provide great potential to analyze online social networks represented as graph data. In

this dissertation, we investigate significant research problems in the context of graph

convolutional networks, tackling complex social media analysis.

We begin by reviewing some key concepts and unique properties and principles of

graph convolutional networks and network representation learning — a fundamental step

for analyzing social networks. Then we present Guardian to evaluate social trust in

online social networks. More specifically, Guardian is an end-to-end framework that

stacks multiple trust convolutional layers, designed to discover hidden and predictive

latent factors of trust in online social networks. With Guardian, we can effectively

and efficiently estimate the value of trustworthiness between any two users who are not

explicitly connected. Many real-world relationships can be represented as networks with

positive and negative links, called signed networks, where the sign of links may indicate

trust or distrust, and like or dislike relationships. Thus, complementary to Guardian,
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we propose SiGCN, to learn low-dimensional representations of signed networks. With

SiGCN, we can learn effective user embedding for downstream signed network analysis.

Finally, to investigate the robustness of GCNs, we also study the adversarial attacks on

graph-structured data, particularly mounting attacks against link prediction algorithms

based on GCNs. Evaluations and validations to our frameworks are not only analytical

but also experimental. We conducted extensive experiments on benchmarking datasets,

and our experimental results demonstrated that our approach effectively achieves the

best possible performance for accuracy, efficiency, and scalability.
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Chapter 1

Introduction

The algorithmic and architectural design and implementations, for modern social media

analysis using graph convolutional networks, are motivated by a close examination on

graph convolutional networks on learning graphs. Graph convolutional networks have

been shown remarkable performance compared with the challenges and difficulties in the

traditional approaches of analyzing social media data. In this chapter, we first intro-

duce the background and discuss the motivations of our work, then present the main

contributions of the dissertation, and finally outline the rest of the dissertation.

1.1 Background

Online social media, such as Twitter and Facebook, has become popular as a medium

for producing and disseminating information, and connecting like-minded people. In-

dividuals routinely share their opinions and life experiences in social networking sites,

which holds great promise to reach large audiences. Enterprises and governments can

leverage the explicit or implicit social relationships established on these online social net-

works for delivering their services to citizens and customers. Specifically, enterprises and

governments analyze social media networks to perform analytics, interest analysis, and

sentimental analysis or find influencers to aid in making more informed decisions.

However, the open nature and the popularity of online social networks provide a
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favorable environment for malicious users to spread negative or malicious information,

either for financial gains [22] or to increase social influence [6]. Therefore, establishing

trust communities – the environment where users can share their opinions and life ex-

perience in an open and interactive way without concerns about privacy leakage – has

become essential in online social networks. In general, social trust has been regarded as

a foundation for building trust communities, which has been studied in many different

disciplines including psychology [17], sociology [58], economics [33], and computer sci-

ence [71]. Derived from psychology and sociology [59], “user” trust can be defined as “a

subjective expectation a user has about another’s future behavior.” Online marketplaces

are often operated based on mutual trust, which enables the transacting peers to release

the concerns about the uncertainty and risk inherent in the public environment [68]. In

this context, trust is established based on past interactions between users.

Estimates of social trustworthiness in online social networks help indicate to what

extent a user could expect someone else to perform given actions [85]. Therefore, it has

many applications. [24] was proposed for semantic web content filtering, by combining

provenance information and trust annotations in semantic web-based social networks.

Golbeck et al. [25] integrated the value of social trust to create predictive movie rec-

ommendations. In trust-aware recommender systems, social trust value may be a good

supplement to the sparse rating data and therefore may provide more accurate prediction

rating [30]. With the importance of social trust, in the first part of this dissertation, we

mainly focus on analyzing social trust in online social networks, in particular, evaluating

the pairwise trust relationship between any two users who are not directly connected

within online social networks.

In essence, an online social network is modeled as a graph, where nodes represent

users and edges denote the explicit social relationships. For the sake of clarity, an ex-

ample network is shown in Fig. 1.1, where the numbers are associated trustworthiness of

the established relationships in online social networks. More specifically, 1 represents the
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lowest trustworthiness, and 3 denotes the highest trustworthiness (the actual trustwor-

thiness domain is typically application-specific). Therefore, the problem of social trust

evaluation is to measure the trustworthiness of any two users, for example, A and E,

given the established trust relationships in the network.

H

G

D

A

B

E

C

F 2

1 1

1

3

3 1

3

2

Figure 1.1: Network graph: nodes represent users, directional edges denote trust rela-
tionships of the trustor-trustee pairs, and the numbers are the associated trustworthiness
(1 for the lowest trustworthiness and 3 for the highest trustworthiness).

To date, an extensive amount of work on evaluating pairwise social trust has been

reported in the literature [45, 50–52, 84, 85]. For example, OpinionWalk [50] evaluated

trust relationships by performing path searches throughout the network. Discounting

and combining operators are designed to model trust propagation and aggregation along

network paths. These hand-crafted rules rely heavily upon the knowledge of domain

experts and may be difficult to be generalized to different domains. Liu et al. [51]

proposed NeuralWalk, a framework based on neural networks, to learn trust propagation

and aggregation rules with machine learning techniques. However, it required a significant

amount of computation resources for its matrix operations, which is not scalable to real-

world online social networks.

Apart from modeling social relationships with a value of social trust, many real-world
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relationships on social media often reflect a mixture of positive and negative interactions.

For example, people can be friends (positive interactions) or foes (negative interactions).

These social networks can be represented as network graphs with positive and negative

links, called signed networks. In general, signed networks in social media represent social

relationships among users, where positive links indicate trust, like or friendships, and

negative links show distrust, dislike, or foes. For example, Epinions1, a product review

site, allows users to establish both positive (trust) and negative (distrust) links to other

users. Such a network can be modeled as a graph, where nodes represent users, an edge

with a +1 sign denotes a positive link, and −1 represents a negative link, shown in

Fig. 1.2. Both positive and negative links in such networks convey a much richer set of

information that can be leveraged to enhance network mining tasks, such as link sign

prediction, node ranking, and community detection [73].

Figure 1.2: A signed directed network: an example. +1 represents a positive link, −1
denotes a negative link, and the arrow denotes the direction of the link.

Evidence from existing achievements in social network analysis suggests that consid-

ering both positive and negative links can significantly improve the performance of social

network analysis [43]. Therefore, it is crucial to modeling social relationships with a

mixture of positive and negative links and conducting analysis on these signed networks.

1https://epinions.com
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Complementary to the first component of the dissertation, we shift our focus to the prob-

lem of signed network analysis. With the prevalence of signed networks, many theories

from social psychology have been developed to characterize the social phenomenon in

signed networks. Structural balance theory [12, 32] and status theory [44] have been

proven to be very helpful in mining signed social networks. These formed social theories

and the increasing availability of signed networks have significantly advanced signed net-

work analysis. In particular, an extensive amount of work on signed network embedding

— a methodology to learn low-dimensional dense representations of nodes, facilitating

signed network analysis — has been reported in the literature.

Concretely, the task of signed network embedding is to learn a mapping function,

which is able to encode each user with a dense vector, given a signed social network.

Such a vector is informative that preserves the original network information, including

network structure, established relationships (positive connection or negative connection)

and user attributes, therefore may be effective for downstream signed network analysis.

For example, as shown in Fig. 1.2, with learned dense vectors, we can infer whether the

link from user u to v is positive or negative, given the established relationships (illustrated

with solid arrows) in the network graph.

With relatively few exceptions (e.g., BESIDE [16]), research on representation learn-

ing of signed networks has focused on characterizing social structural balance theory (e.g.,

SIGNet [35], SIDE [39], SiNE [79], SNE [87]), which defines an organizing principle for

signed links on signed networks and implies that cycles with an even number of negative

signs are more plausible, thus should be more prevalent in real-world networks. However,

structural balance theory is initially defined for signed undirected networks [44], and may

not effectively capture the direction information of links for signed directed networks. A

new approach that explicitly designed for signed directed networks, considering efficacy,

efficiency and scalability, thus leads to the second component of the dissertation.

In general, a social network can be represented as a graph, which models a set of
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nodes/ users and their relationships/ edges. Due to the expressive capability of graphs,

there has been receiving increasing attention on analyzing graphs with machine learn-

ing. Graph convolutional neural networks (GCNs) are deep learning-based models that

operate on the graph, a non-Euclidean data structure [31, 41, 86]. Designed explicitly

for graph-structured data, GCNs have shown to achieve state-of-the-art performance in

many graph learning tasks, such as node classification, graph classification, and link pre-

diction [31,41,86]. The above difficulties in analyzing large-scale social networks motivate

the study of graph convolutional networks on social media analytics.

1.2 Motivation

1.2.1 Advantages of Graph Convolutional Networks

In essence, graph convolutional networks were designed to capture the homophily nature

of network graphs [31, 41], indicating that more similar users are more likely to con-

nect with each other. More specifically, feature/attribute information from local graph

neighborhoods is iteratively aggregated. By stacking multiple convolutions and transfor-

mations, local information can be propagated throughout the entire graph.

Among others, a particular variant of GCNs falls into the category of inductive rep-

resentation learning algorithms that generate node embeddings by aggregating features

from a node’s local neighborhood [31,86]. These inductive learning algorithms best target

large graphs. They are capable of inductively generating embeddings for unseen nodes

based on their features and local graph neighbors. Their key computational workhorse

is the notion of localized graph convolutions. More concretely, parameters of multiple

localized convolutions are shared across all nodes, making the parameter complexity

independent of the input graph size.

This range of efficiency provides great potential to social media analytics, of which

the social networks typically are very large and can be represented as graph-structured

data. Though the advantages of graph convolutional networks on graph learning tasks
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are obvious, there are difficulties for these models to be directly applied to analyze such

complex social networks. These issues are enumerated as follows.

1.2.2 Challenges in Social Trust Evaluation

In online social networks, social trust can be similarly represented as graph data, in-

cluding both social network structures and associated trust relationships between users.

Thus, given the advantages graph convolutional networks, excellent opportunities may

exist in use of the graph convolutional neural networks to evaluate social trust relation-

ships between pairs of users.

Existing trust evaluation approaches were designed based on the propagative and

composable nature of social trust in online social networks. In particular, the propaga-

tive nature of social trust refers to the fact that trust may be passed from one user to

another, creating chains of social trust that connects two users who are not explicitly

connected [76]. The composable nature of social trust refers to the fact that trust needs to

be aggregated if several chains of social trust exist [76]. In a nutshell, trust propagation

and aggregation rules are the keys to effectively evaluate pairwise social trust in online

social networks.

Yet, evaluating social trust using graph convolutional neural networks to capture

trust propagation and aggregation rules is quite challenging. Online social networks

not only contain the social graph structure (social connections between users) but also

include pairwise social trust relationships. In this context, the first challenge is how

social connections and associated trust relationships can be represented jointly so that

the propagative nature and composable nature of social trust are able to be captured

simultaneously. In addition, social trust is typically asymmetric; one user may trust

someone else more than she is trusted back. Therefore, the second challenge is how to

characterize such an asymmetric property in social trust.
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1.2.3 Challenges in Signed Network Embedding

Though GCNs have been proved to be capable of effectively and efficiently encoding

the structural information of the network and node feature information jointly, for those

unsigned networks (networks contain positive links only) [31,41]. In the context of signed

directed networks representation learning, excellent opportunities may exist in the use

of the GCNs to capture the node features and the graph structure, including sign and

direction information of the links.

However, representation learning in signed networks using graph convolutional neural

networks is quite challenging. GCNs were originally designed to capture the homophily

nature of unsigned networks [31, 41], indicating that more similar users are more likely

to connect with each other. The notion of homophily is not applicable when both posi-

tive and negative links are jointly considered for signed network representation learning.

In this context, the first challenge is how the network connections and associated sign

information can be jointly represented in the embedding space. Though signed GCNs

were proposed to address the problem of representation learning on signed networks (e.g.,

SGCN [19]), they were designed to use structural balance theory where the direction in-

formation of links are not explicitly aggregated and propagated, thus may not work very

well in signed directed networks. Therefore, the second challenge is how to effectively

characterize the direction information of links on signed directed networks.

1.2.4 The Robustness of Graph Convolutional Networks

Experimental evaluation results demonstrated that our approaches effectively achieve

the best possible performance of analyzing social networks in the literature, in terms

of accuracy, efficiency, and scalability. However, as effective as they may be, recent

studies have also shown that neural networks, in general, are vulnerable to malicious

adversaries, who are able to craft specific sets of adversarial examples so that neural

network models will generate desired outputs of their choice. Typically, these selected
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adversarial inputs are derived from regular inputs by introducing minor — yet carefully

selected — perturbations. Such adversarial attacks have been widely demonstrated with

high success rates in the contexts of image recognition [10] and malware detection [27].

Interestingly, it remains unclear how effective such adversarial attacks may be for link

prediction algorithms based on graph neural networks.

Link prediction refers to the problem of identifying the existence of a link between two

nodes in a network [54]. It is an essential problem with practical applications in a diverse

set of research fields, including friend recommendation in online social networks [20], pre-

diction, and ranking algorithms in complex networks (e.g., co-authorship graphs) [63],

and criminal networks [9]. In criminal networks, for example, links between entities indi-

cate that potential connections between these entities exist, such as having commercial

ties or memberships in the same criminal organization. These potential links provide

useful underlying information about network structures and may be readily detected by

link prediction algorithms.

Adversarial perturbations on the graphs underlying complex networks, especially on

social networking sites, are easily conceivable and quite common in practice. As link

prediction may reveal connections which associated parties prefer to keep hidden – either

for the sake of profit or to evade the law enforcement. For example, in online recommen-

dation systems, fraudsters frequently manipulate online reviews to affect reader opinion

in recommendation networks [15]. In a criminal network, criminals may try to hide their

links to bypass the detection of criminal groups [9, 60]. Therefore, in the third part

of this dissertation, we move our focus on the adversarial attacks on graph-structured

data, particularly mounting attacks for link prediction algorithms based on graph neural

networks.
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1.2.5 Challenges on Attacking a Graph

Attacking the graph in a complex network effectively involves several non-trivial chal-

lenges. First, due to the inherent learning characteristics of graph convolutional networks,

our problem of crafting perturbations on graph data contains dependent variables as the

adjacency matrix and node information matrix are coupled, and existing solutions of

gradient-based approaches are not applicable. Second, unlike existing adversarial attacks

in the domain of image recognition [10] consisting of continuous data, graph-structured

data are typically discrete and combinatorial. With the data’s discreteness and the large

number of model parameters of graph neural networks, solving the optimization problem

for a complex network graph is highly challenging. Finally, adversarial perturbations —

such as adversarial images in the context of image recognition — should not be notice-

able by humans in general. Yet, in complex network graphs, the notion of “unnoticeable

changes” needs to be clearly defined first.

1.3 Contributions

In general, the objectives of this dissertation are to investigate the problem of online

social network analysis with a focus on trust evaluation of any two users, representation

learning when the social networks are represented as signed network graphs. To be able

to address the robustness of used techniques, graph convolutional networks, we also study

the adversarial attacks on graph-structured data, particularly mounting attacks against

link prediction based on graph convolutional neural networks. Following such objectives,

this dissertation makes the following contributions.

1.3.1 Evaluating Trust in Online Social Networks

We first present Guardian, to address the challenges in social trust evaluation based on

graph convolutional neural networks. With Guardian, we are able to effectively and effi-

ciently estimate the value of trustworthiness between any two users who are not explicitly
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connected, given the social network structure and associated trust relationships between

users. Guardian is an end-to-end framework that stacks multiple trust convolutional lay-

ers, which is designed to discover hidden and predictive latent factors of trust in online

social networks.

The key component of Guardian is the trust convolutional layer, which employs the

notion of localized graph convolutions [31]. It is designed to capture the propagative

nature and composable nature of social trust. The parameters to be learned in each layer

are shared across all users, making the parameter complexity of our proposed framework

independent of the size of the input network graph. In particular, in order to capture the

asymmetric property of the social trust, each of our trust convolutional layers consists

of two components: popularity trust propagation and engagement trust propagation.

The former is used to learn the extent that a user is trusted by the others, while the

latter is for capturing the willingness that a user trusts the others. Finally, by stacking a

fully-connected layer, Guardian is able to explicitly represent both popularity trust and

engagement trust of individual users in a collaborative manner. As such, effective pairwise

trust relationships can be established. Extensive experimental results on benchmarking

datasets demonstrated that Guardian can speedup trust evaluation by up to 2, 827× with

comparable accuracy, as compared to the state-of-the-art in the literature.

1.3.2 Signed Network Embedding Based on Status Theory

Then we propose SiGCN, to address the challenges in representation learning of signed

directed networks based on status theory via graph convolutional neural networks. With

SiGCN, we can effectively and efficiently learn low-dimensional dense representations for

users, such that the representations of users in the embedding space are effective for

downstream signed network analysis. SiGCN is a new framework that learns represen-

tations of users for signed directed networks with graph convolutional neural networks.

SiGCN is designed based on status theory, a fundamental theory from social psychology
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that provides an organizing principle of signed links for signed directed networks [44]. In

signed directed networks, social status can be represented in many different ways, such as

the rankings of nodes in social networks, and it represents the prestige/trustworthiness of

nodes [73]. These relative levels of status can be propagated and aggregated throughout

the networks.

The key component of SiGCN is the status convolutional layer, which employs the no-

tion of localized graph convolutions [31,41]. In order to capture the direction information

of links, each of our status convolutional layers consists of two components: receptive-

based status aggregation and generative-based status aggregation. A plausible analogy for

these two components can be represented in the context of social networks: receptive-

based status aggregation is used to characterize the status that a user endorsed by the

others (e.g., the popularity of the user), while generative-based status aggregation is for

capturing the extent that a user is willing to endorse to the others (e.g., the deference

of the user to the others). By doing so, SiGCN can distill comprehensive information

from the diverse relationships in a signed graph based on the theory of status. Further,

by stacking fully-connected layers, SiGCN can obtain a status score for each node. The

relative relationship between any two entities, therefore, can also be established with

their status scores.

An extensive array of experimental results on benchmarking datasets demonstrated

that SiGCN can speedup representation learning for link sign prediction by up to 6.5×

as compared with the baselines. More specifically, SiGCN achieves up to a 4× speedup,

as well as comparable accuracy as compared to BESIDE [16]. SiGCN also increases

its accuracy by up to 18.8% compared with SIDE [39], and achieves state-of-the-art

robustness and scalability compared to the literature. We also show that SiGCN can

learn effective status scores of each node, which can be used for link sign prediction and

node ranking and yield state-of-the-art performance.
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1.3.3 Adversarial Attacks on Link Prediction Algorithms

Finally, we mount adversarial attacks on link prediction via applying existing evasion

attacks in adversarial machine learning, to systematically study the ability of an “adver-

sary” to manipulate link prediction. We first formulate the problem of crafting adversarial

examples to deceive graph convolutional neural networks-based link prediction models as

an optimization problem. In particular, we focus on evasion attacks against a state-of-the-

art link prediction algorithm, called SEAL [89], which learns missing/unobserved links

from local enclosing subgraphs. Essentially, SEAL is proposed based on a Υ-decaying

heuristic theory, which shows that graph structure features can be well approximated

from the local subgraphs and is able to unify a wide range of heuristics in a single frame-

work. In this regard, we can envision that the mounted attacks may be transferred to

the heuristics which can be well incorporated into the Υ-decaying heuristic framework.

Inspired by Zugner et al. [95], we first propose a greedy heuristic that perturbs the

network graph incrementally by manipulating the graph structure. We then propose an

efficient variant that utilizes the link formation mechanism and the Υ-decaying heuristic

theory. To validate the effectiveness of our crafted attacks, we use real-world datasets to

perform an extensive array of experiments. Our results have shown convincing evidence

that the performance of link prediction in SEAL has been negatively affected by a signif-

icant margin using our adversarial attack, even with very limited knowledge of complex

network graphs. More importantly, our experimental results have also shown that our

adversarial attack can be readily transferred to several link prediction heuristics in the

literature.

1.4 Overview and Roadmap

The remainder of this dissertation is organized as follows.

Chapter 2 introduces the necessary knowledge about network representation learn-
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ing/network embedding, and graph convolutional networks.

Chapter 3 presents our study on the problem of evaluating trust in online social net-

works with graph convolutional networks. This chapter is based on our work

published in IEEE International Conference on Computer Communications [47],

collaborated with Zhaolin Gao, and Baochun Li.

Chapter 4 presents our study on the problem of signed network embedding based on

status theory with graph convolutional networks. This chapter is based on our

work submitted to ACM International Conference on Information and Knowledge

Management [49], collaborated with Baochun Li.

Chapter 5 extends our scope to the context of adversarial attacks on link prediction

algorithms based on graph convolutional networks. This chapter is based on our

work published in ACM ASIA Conference on Computer and Communications Se-

curity [48], collaborated with Shengxiang Ji, and Baochun Li.

Chapter 6 concludes this dissertation, with a summary of our work and a discussion

on future directions.



Chapter 2

Preliminaries

In this chapter, we review some important background material regarding key concepts

from graph neural networks and network embedding/representation learning. This ma-

terial is included in a separate introductory chapter, since it forms the basis for much

of the development in the remainder of this dissertation. Other background knowledge

— such as social-psychological theories used in mining signed networks, heuristic link

prediction algorithms, graph neural network-based link prediction, adversarial attacks,

and their transferability — is more localized to particular chapters in the dissertation.

This chapter is intended to focus only on the minimal subset of ideas required to under-

stand our contributions and discussion in the remainder of this dissertation, rather than

to provide a comprehensive overview of the topics in this dissertation.

2.1 Representation Learning on Graphs

The goal of network representation learning is to learn low-dimensional representations

for all nodes, which can be used for many different tasks of network analysis, such as link

prediction [89], node classification, and community detection.

Network Embedding/Network Representation Learning: Formally, given a network

G = (V ,A)1, the task of network representation learning is to learn a mapping function

1We are aware of the drawbacks of elaborate notations. Each chapter is a self-contained unit, in which
all the relevant notations are fully explained. Although, whenever appropriate, individual notations are

15
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f : v → xv, where xv ∈ Rd is the learned representation of user v with dimension d. The

transformation function f preserves the original network information, including network

structure and node features, such that any representations of users, in the embedding

space, are effective for downstream network analysis.

To transform networks from original network space to embedding space, different

models can be adopted to incorporate different types of information or address differ-

ent goals. The commonly used models include matrix factorization, random walk (e.g,

node2vec [28], Line [74], and DeepWalk [66]), graph neural networks and their variations.

Among these models, walk-based approaches and matrix factorization-based approaches

usually suffer from several drawbacks. Firstly, the number of model parameters grows

linearly with the size of the input graph. In other words, they may be inefficient for large

graphs. Secondly, these methods lack the ability of generalization, which means that

they could not be directly used in dynamic graphs or be generalized to new graphs. In

this dissertation, we focus on graph neural network-based approaches, which are compu-

tationally efficient and can be generalized to new graphs/unseen nodes.

We do not attempt to provide a comprehensive literature review on graph neural

network-based representation learning models. Instead, we selectively provide the base-

line methods adopted by top performers on node classification tasks, such as graph con-

volutional networks proposed by Kipf&Welling [41] and GraphSage [31], an inductive

framework for large graphs, either in terms of their simplicity or expressiveness. Further-

more, we think that these methods are of great value, not the least because they lead to

state-of-the-art performance in the literature and can readily be applied to many tasks

learning with graph-structured data.

used in more than one chapter, the corresponding definitions will be repeated in each of the chapters
concerned.
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2.2 Graph Convolutional Networks

Graph neural networks are designed specifically to generalize existing neural networks for

processing graph-structured data. Formally, a graph G = (V ,A,X ) is given with n = |V|

vertices, where V = {v1, v2, · · · , vn} is the set of vertices, A ∈ {0, 1}n×n is the adjacency

matrix representing the connections, and X = {x1, x2, · · · , xn}T ∈ Rn×m is the feature

matrix of vertices, and xv ∈ Rm is the m-dimensional feature vector of vertex v.

Given a set of labeled nodes Vl ⊂ V , with class labels from Y = {y1, y2, y3, · · · , yK}

and a set of unlabeled nodes Vu ⊂ V/Vl, the goal of node classification is to map each

node v ∈ V to one class in Y .

Graph convolutional neural networks (GCNs) is a generalization of traditional con-

volutional neural networks to the graph domain. In [41], the GCN model applied for

semi-supervised classification is a two-layer GCN followed by a softmax classifier on the

output features:

Z = softmax(ÂReLU(ÂXΘ(0))Θ(1)) (2.1)

where Ã = A + I, D̃ii =
∑

j Ãij, Â = D̃− 1
2 ÃD̃− 1

2 , softmax(xi) = 1
Z

exp(xi) with

Z =
∑

i exp(xi). The optimization loss function is defined as the cross-entropy error over

all labeled samples:

Lce = −
∑
i∈Vl

K∑
k=1

Yik lnZik (2.2)

where Vl is the set of node indices that have labels, and K is the number of classes/labels.

Discussion In essence, for semi-supervised learning to work, a certain assumption,

called the smoothness assumption, has to hold. It implies that if two inputs x1, x2

in a high-density region are close, then so should be the corresponding outputs y1, y2.

Semi-supervised GCN has been proved to perform very well on many classification tasks.

These can be explained as that graph convolution is a special form of Laplacian smooth-
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ing, which computes the new representation of a vertex by averaging over itself and its

neighbors.

2.3 Inductive Representation Learning on Graphs

In [41], the GCN model is inherently transductive that focuses on embedding nodes from

a single fixed graph, and does not naturally generalize to unseen nodes. GraphSage, by

contrast, is an inductive framework that leverages node feature information (e.g., text

attributes) to efficiently generate node embeddings for previously unseen data.

This inductive representation learning algorithm was given by Hamilton&Ying [31]

and its forward process is described in procedure GraphSage. Essentially, GraphSage

follows a neighborhood aggregation strategy, where it iteratively updates the represen-

tation of a node by aggregating representations of its neighbors. After l iterations of

aggregation, a node’s representation captures the structural information within its l-hop

network neighborhood. We call the operator for aggregating information from the lo-

cal graph as aggregation operator, or aggregator. The choice of aggregator, denoted as

AGGREGATE, is crucial. A number of architectures for AGGREGATE have been

proposed.

In the pooling variant of GraphSage, AGGREGATE has been formulated as:

AGGREGATEpool
l = max

(
{σ(Wpoolh

l
u + b),∀u ∈ N (v)}

)
(2.3)

where max denotes the element-wise max operator and σ is a nonlinear activation

function. By applying the max-pooling operator to each of the computed features, the

model is able to capture different aspects of the neighborhood set. Note that, any sym-

metric vector function, such as element-wise mean operator, could be used in place of

the max operator.

For mean aggregator, the node embedding update process (line 5− 6 in procedure

GraphSage) can be replaced as:
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hlv ← σ
(
W ·MEAN({hl−1

v } ∪ {hl−1
u ,∀u ∈ N (v)}

)
(2.4)

1: procedure GraphSage: embedding generation (i.e, Forward Propaga-
tion)

INPUT: Graph G = (V , E); input features xv, ∀v ∈ V ; depth L, weight matrices W l,
l ∈ [1, L]; non-linearity σ; differentiable aggregator functions AGGREGATEl, l ∈
[1, L]; neighborhood function N : v → 2|V|

OUTPUT: Vector representations zv, ∀v ∈ V
2: h0

v ← xv, ∀v ∈ V
3: for l = 1 · · ·L do
4: for all v ∈ V do
5: hlN (v) ← AGGREGATEl

(
{hl−1

u ,∀u ∈ N (v)}
)
;

6: hlv ← σ
(
W l ·CONCAT(hl−1

v , hlN (v))
)

7: hlv ← hlv/||hlv||2,∀v ∈ V
8: zv ← hLv ,∀v ∈ V

Instead of training individual embeddings for each node, GraphSage learns a func-

tion that generates embeddings by sampling and aggregating features from a node’s local

neighborhood. The parameters of GraphSage can be learned in a fully unsupervised

setting. To do so, a graph-based loss function is applied to the output representations,

zv, ∀v ∈ V , and the weight matrices, W l, ∀l ∈ {1, ..., L}, and parameters of the aggre-

gator functions are tuned via stochastic gradient descent. For supervised setting, the

parameters can be learned according to the classification cross-entropy loss, shown in

Eq. 2.2.

Applications Graph neural networks are widely being used in various applications,

such as social network prediction [19, 31, 41], recommendation systems [21], and traffic

forecasting [80].



Chapter 3

Evaluating Trust in Online Social

Networks

Due to the popularity and open nature of online social networks, social trust has become

an important concern in online social networks. Therefore, it is helpful to evaluate the

pairwise trust relationship between any two users who are not directly connected within

online social networks. In this chapter, we propose Guardian, a new end-to-end frame-

work that learns latent factors in social trust with graph convolutional neural networks.

Guardian is designed to incorporate social network structures and trust relationships to

estimate social trust between any two users.

Highlights of our original contributions in this chapter are as follows. First, we intro-

duce a principled methodology to jointly capture both social connections and associated

trust relationships of the users within online social networks. Second, we propose a new

approach to jointly characterize the popularity trust and engagement trust of users so

that the asymmetric property of the social trust can be captured implicitly. Third, we

demonstrate the effectiveness and efficiency of our proposed framework using two on-

line social networks from different domains — Advogato and Pretty Good Privacy. Our

extensive array of experiments on benchmarking datasets demonstrated that Guardian

can speedup trust evaluation by up to 2, 827× with comparable accuracy as compared

to NeuralWalk [51], and increase accuracy by up to 18.8% and 19.8% compared with

20
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Matri [85] and OpinionWalk [50], respectively.

The remainder of this chapter is organized as follows. We first introduce some back-

ground, and formulate social trust evaluation problem in Sec. 3.1. In Sec. 3.2, we present

the details of our framework designed to evaluate social trust in online social networks

effectively and efficiently. In Sec. 3.3, we present an extensive array of experimental re-

sults to evaluate the performance of our framework. Sec. 3.4 discusses related work and

Sec. 3.5 concludes this chapter.

3.1 Problem Setup

We consider a social trust evaluation problem in an online social network, which is mod-

eled as a directed graph, denoted as G = (V , E ,W), where any vertex u, v ∈ V represent

users, and eu→v ∈ E denotes the observed trust relationships. wu→v measures the trust-

worthiness of the trustor-trustee pair 〈u, v〉, where the trustworthiness domain is typically

application-specific. For example, in Epinion1, w ∈ {Trust, Distrust}, while in Advogato2

and in Pretty-Good-Privacy3 (PGP), w ∈ {Observer, Apprentice, Journeyer, Master}.

Let W = {〈u, v〉, wu→v|eu→v ∈ E} be the set of observed trust relationships in the given

online social graph. W̃ = {〈u, v〉, w̃u→v|ẽu→v /∈ E} denotes the set of unobserved/missing

trust relationships that are to be evaluated.

Notably, as in most existing online social networks, trustworthiness is represented by

categorical values. In this context, the social trust evaluation problem is equivalent to

a social trust prediction problem. We can define |w| to be the total number of types of

trustworthiness, which is application-specific. For example, in PGP or Advogato, |w| = 4.

Before we formulate the problem of pairwise social trust evaluation, we introduce

some important notations and necessary properties of social trust to facilitate a better

understanding of the problem and our solution. For any user u ∈ V , let NO(u) be the

1https://snap.stanford.edu/data/soc-Epinions1.html
2http://www.trustlet.org/datasets/advogato/
3http://networkrepository.com/arenas_pgp.php
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Table 3.1: Notations

Notation Descriptions

wu→v the trustworthiness of v from the perspective of u

W the set of observed pairwise trust relationships

|w| the number of trustworthiness types

NO(u) the set of observed trustees

whom u endorses her trust on (out-neighbors of u)

NI(u) the set of observed trustors

who endorse trust on u (in-neighbors of u)

x[u] initial embedding of user u

De the dimension of initial embedding vector

pTr, eTr the popularity trust and the engagement trust

hI [u] the latent factor of the popularity trust

from in-neighbors NI(u) of user u

hO[u] the latent factor of the engagement trust

from out-neighbors NO(u) of user u

h[u] the trust latent factor of user u

h̃u→v the pairwise trustworthiness latent factor

w̃u→v predicted trust relationship

⊗ the concatenation operator of two vectors

⊕ the mean aggregator

σ non-linear activation functions, e.g., tanh(·), softmax(·)
W , b the model parameters (weight matrices and bias) in Guardian

set of observed trustees whom u endorses her trust on (out-neighbors of u), NI(u) be the

set of observed trustors who endorse trust on u (in-neighbors of u). In this sense, we can

define |NI(u)| and |NO(u)| to represent in-degree and out-degree of u, respectively. The

mathematical notations used in this chapter are summarized in Table 3.1.

In the literature [71], widely used trust properties include the propagative nature,

composable nature, and asymmetric property. For the sake of clarity, we use the same

example in Chapter 1 to illustrate the properties of social trust, which will also be used

throughout this chapter.
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(a) Asymmetry: the trustwor-
thiness of user G from the
perspective of user E (E →
G) is different from that of E
from G (G→ E), even though
they endorse trust explicitly
to each other.
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(b) Propagative nature: user A trusts user B
with a trust value of 3 and user B trusts user
C with 2, user A trusts user C with 2. In this
example, A → B → C forms a trust chain for
A → C.
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(c) Composable nature: to establish a trust
relationship for A → E, there exist two trust
chains that need to be aggregated. Because
both the trust value for B → E and D → E
are 1, it is unlikely for A → E to achieve a
high trust value.

Figure 3.1: The property illustrations of social trust: an example.

Fig. 3.1b illustrates the propagative nature of social trust. Since user A trusts user

B with a trust value of 3 and user B trusts user C with 2, user A trusts user C with

2. In this example, A → B → C forms a trust chain (path) for A → C. To establish

a trust relationship for A → E as shown in Fig. 3.1c, there exist two trust chains that

need to be aggregated. Because both the trust value for B → E and D → E are 1, it is

unlikely for A → E to achieve a high trust value. In other words, while evaluating the

trust value between any two users, the trust chains in between should be considered and
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aggregated in an effective way, such as the weighted mean. The asymmetric property of

the social trust can also be illustrated in Fig. 3.1a: the trustworthiness of user G from

the perspective of user E (E → G) is different from that of E from G (G → E), even

though they endorse trust explicitly to each other.

With the aforementioned notations and definitions, we can now formally define the

problem of social trust evaluation (or prediction). Given an online social network G =

(V , E ,W), the social trust evaluation problem aims to evaluate (or predict) the trustwor-

thiness of the trustor-trustee pair w̃u→v, where u, v ∈ V , u 6= v and ẽu→v /∈ E .

3.2 Guardian: Proposed Framework

We now present Guardian, our proposed framework for social trust evaluation, the archi-

tecture of which is illustrated in Fig. 3.2. There are three components in the framework:

(1) an embedding layer that offers an initialization of user embeddings; 2) multiple trust

convolutional layers that refine the popularity trust embedding and engagement trust

embedding by injecting high-order social trust relationships; and 3) a prediction layer

that consists of a fully-connected layer followed by a softmax function. It first transforms

the latent representations of users into the latent factor of trust, and then outputs the

probability of the prediction. In what follows, we first conceptually discuss the efficiency

and effectiveness of our proposed framework, and then discuss more influential factors

for social trust evaluation and limitations of our framework.

3.2.1 Embedding Layer

With the recent emergence of representation learning, the network embedding technique

has been extensively studied to discover and encode network structural properties into a

low-dimensional latent space. More formally, network embedding learns a representation

vector x[u] ∈ RDe×1 for each user u in the network graph G. In Guardian, we use a

pre-trained embedding layer to map each user into a De-dimensional representation. To
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Figure 3.2: Illustration of Guardian framework: (1) an embedding layer that offers an
initialization of user embeddings; 2) multiple trust convolutional layers that refine the
popularity trust embedding and engagement trust embedding by injecting high-order
social trust relationships; and 3) a prediction layer that consists of a fully-connected
layer followed by a softmax function. To optimize Guardian, the full pipeline in our
architecture is used.

be more specific, user embeddings are generated based on users’ social friendship, which

were created whenever two users interact. As indicated by social correlation theories [55,

57], users’ social behaviors, such as interactive behaviors with others, are similar to or

influenced by their directly connected friends. Widely used pre-trained models for user

embeddings are node2vec [28] and DeepWalk [66].

It is worth noting that these representations serve as an initial state for user embed-
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dings, to be optimized in an end-to-end fashion. In Guardian, we refine the embeddings

by propagating them along the online social network graph. With a specially designed

transformation layer, these refined user embeddings can be transformed into pairwise

trustor-trustee embeddings for trustworthiness prediction.

3.2.2 Trust Convolutional Layers

As an online social network graph contains not only social connections between users

but also trust interactions between the trustors and the trustees, we provide a principled

approach to jointly capture the social connections and associated trust relationships for

learning the embeddings h[u] of the users. In particular, due to the asymmetric property

of social trust, a user can assume different roles, either as a trustor or a trustee. To

be able to capture the asymmetric property of social trust, we first separate pairwise

trust interactions into two groups: popularity interactions and engagement interactions.

Popularity-based interactions refer to the trustworthiness of a user as observed by the

others. In this sense, the more a user is trusted by the others, the more popularity-based

trust this user gains. Similarly, engagement-based interactions refer to the trustworthi-

ness of the others from a user’s perspective. The popularity trust indicates the extent

that a user is trusted by the others, while the engagement trust reveals the willingness

that a user trusts the others.

In what follows, we consider two types of trust aggregation to characterize the pop-

ularity trust and engagement trust, represented as hI [u] and hO[u], respectively. For

each of them, we use mean-aggregator to aggregate its associated trust interactions with

its neighbors. It is worth mentioning that, mean-aggregator is the main operation of

aggregating information from local graph neighborhoods [31,41].

Let’s see an example in our example social network graph, originally shown in Fig. 1.1.

With our trust model, the popularity interactions of user A and E are depicted in green

in Fig. 3.3, while the engagement interactions are shown in blue. More specifically, for
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user E, there are four incoming neighbors, all of which have a trust value of 1. The

popularity trust of E is, therefore, 1 by averaging over its incoming trust relationships,

and the engagement trust of E is 3. Similarly, the popularity trust of A is 2, as there is

only one incoming neighbor with trust value 2, while its engagement trust is 3, averaging

over its two outgoing trust relationships.

D

A

B

3

3

AF 2

Popularity 

Engagement 

(a) The popularity trust of A is 2, as there is only
one incoming neighbor with trust value 2, while
its engagement trust is 3, averaging over its two
outgoing trust relationships.

GE 3

H

G

D

B

E

1 1

1

1

(b) For user E, there are four incoming neighbors,
all of which have a trust value of 1. The popularity
trust of E is, therefore, 1 by averaging over its
incoming trust relationships, and the engagement
trust of E is 3.

Figure 3.3: The popularity trust and the engagement trust: an example. With our
trust model, the popularity interactions of user A and E are depicted in green, while the
engagement interactions are shown in blue.

Popularity Trust Propagation (pTr). Intuitively, the incoming social connections and

associated trust relationships provide direct evidence on the popularity trust of a user

in online social networks. We build upon this basis to propagate the popularity trust

between connected users.

In particular, to model categorical trustworthiness, we first use one-hot encoding to

represent each type of trustworthiness. Taking the Advogato dataset as an example, for

trustworthiness wu→v ∈ {Observer, Apprentice, Journeyer, Master}, we model them as

the following one-hot representations: [0, 0, 0, 1]T , [0, 0, 1, 0]T , [0, 1, 0, 0]T , and [1, 0, 0, 0]T .

Then Guardian employs a linear transformation to convert the one-hot encodings into

dense vector embeddings through Eq. (3.1) and Eq. (3.4). For a trust relationship with
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trustworthiness wu←v (u is being a trustee in this trust relationship), we model the

popularity trust of u as observed by v with a combination of v’s embedding x[v] and the

embedding of associated trustworthiness ewu←v .

ewu←v = Wu←v · wu←v (3.1)

pTru←v = x[v]⊗ ewu←v (3.2)

where Wu←v ∈ RDe×D|w| is a trainable transformation matrix, ⊗ denotes the concate-

nation operation between two vectors, and |w| denotes the number of trustworthiness

types.

We now take the element-wise mean of the vectors in {pTru←v,∀v ∈ NI(u)}. This

mean-based aggregator is a linear approximation of a localized spectral convolution [41],

as the following function:

hI [u] =
1

NI(u)
·
∑

v∈NI(u)

pTru←v (3.3)

Engagement Trust Propagation (eTr). Accordingly, we characterize the engagement

trust of a user through its outgoing social connections and associated trust relationships.

We build upon this basis to perform the propagation and aggregation of engagement trust

between the connected users. Thus, the engagement trust of user u can be captured by

the following functions:

ewu→v = Wu→v · wu→v (3.4)

eTru→v = x[v]⊗ ewu→v (3.5)
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hO[u] =
1

NO(u)
·
∑

v∈NO(u)

eTru→v (3.6)

where eTru→v denotes the involvement trust of the user u to user v in online social

networks.

Learning Trust Latent Factors of Users. In order to learn better latent factors of users

for downstream trustworthiness prediction, the popularity trust and engagement trust

are needed to be considered jointly. Here, we propose to combine these two types of trust

through a standard fully connected (FC) layer, where hI [u] and hO[u] are concatenated

before feeding into the FC. Formally, the latent factor of user u, h[u], can be characterized

as follows:

h[u] = σ (W · (hI [u]⊗ hO[u]) + b) (3.7)

where W is a trainable transformation matrix, b is a learnable bias, and σ denotes the

non-linear activation function.

Higher-order Trust Propagation. By stacking l trust convolutional layers, a

user is capable of receiving the social trust (the popularity trust and engagement trust)

propagated from its l-hop neighbors. In the l-th step, the representation of user u is

recursively formulated as Eq. (3.8) - Eq. (4.12):

pTrlu←v = hl−1[v]⊗ {W l
u←v · wu←v} (3.8)

eTrlu→v = hl−1[v]⊗ {W l
u→v · wu→v} (3.9)

hlI [u] =
1

NI(u)
·
∑

v∈NI(u)

pTrlu←v (3.10)
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hlO[u] =
1

NO(u)
·
∑

v∈NO(u)

eTrlu→v (3.11)

hl[u] = σ
(
W l · (hlI [u]⊗ hlO[u]) + bl

)
(3.12)

where h0[u] = x[u] is the pre-trained embedding of user u obtained in the embedding

layer, wu→v and wu←v are the observed trust relationships, and W l
u←v, W

l
u→v, W

l, and

bl are the model trainable parameters, to be optimized in an end-to-end fashion with

Guardian. Note that, by stacking multiple trust convolutional layers, we not only enrich

the initial user embedding with its propagated popularity trust and engagement trust

in online social networks, but also allow controlling the range of trust propagation by

adjusting l.

3.2.3 Prediction Layer

In order to learn the latent factor of trust relationship, we first concatenate the latent

embeddings of the trustor and the trustee, and then fit them to a standard fully-connected

(FC) layer followed by a softmax layer. Formally, the latent representation of the trustor-

trustee pair is formulated as Eq. (3.13), where Wfc is a trainable weight matrix defined

in the FC layer, and σ is the softmax function, defined as softmax(xi) = exp (xi)
Z

with

Z =
∑

i exp (xi).

h̃u→v = σ (Wfc · (h[u]⊗ h[v])) (3.13)

The advantage of using concatenation lies in its simplicity and expressiveness, which

have been shown in a recent work of graph convolutional neural networks [31]. In addition,

the fully connected layer leads to a more effective representation of a trust relationship for

prediction, as this step explicitly injects the popularity trust and the engagement trust of

individual users in a collaborative fashion. The outcome of this step is the probabilistic
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prediction values of the trustworthiness. As a consequence, the trustworthiness of user v

from the perspective of user u is computed as w̃u→v = argmax
j

(h̃u→v). Note that w̃u→v 6=

w̃v→u, due to the asymmetric property of social trust in online social networks. The

detailed forward propagation algorithm of Guardian is shown as procedure Guardian.

3.2.4 Model Training

To learn the model parameters in Guardian, we define the objective function as the cross-

entropy loss between the predicted values and the ground-truth trustworthiness from the

observed set W . Formally, it is formulated as:

L = − 1

|W|
∑

(〈u,v〉,wu→v)∈W

log h̃u→v,wu→v + λ · ||Θ||22 (3.14)

where W = {〈u, v〉, wu→v} is the set of observed trustor-trustee pairs and associated

trust relationships, Θ = {{W l
u←v,W

l
u→v,W

l, bl}Ll=1,Wfc} denotes all trainable model pa-

rameters, and λ controls the L2 regularization strength to prevent over-fitting. In partic-

ular, we adopt Adam [40] as the optimizer in our implementation, as it has been shown

to be effective in updating the model parameters [31].

3.2.5 Analysis and Discussions

Different from the state-of-the-art trust evaluation solutions in the literature [50,51], our

framework does not have any assumptions on the existence of paths between the trustor

and the trustee while we compute the pairwise trustworthiness values. This reflects

the real-world situation where some of the users are new in the society and may not

have any social connections with the other users. However, these newly added users are

still able to trust the existing users who have a significant popularity trust (e.g., the

authenticated/official users) to some extent. Surprisingly, Guardian can still achieve the

best prediction accuracy even if we do not make any assumptions, which, as shown in

Sec. 3.3, can be empirically verified later.



Chapter 3. Evaluating Trust in Online Social Networks 32

1: procedure Guardian: Trust Relationship Prediction (i.e, Forward
Propagation)

INPUT: Observed Network Graph G = (V , E ,W), W = {〈u, v〉, wu→v}
OUTPUT: The prediction vector of trust relationship h̃u→v, for all 〈u, v〉 ∈ W

2: Generate initial states of user embeddings for G
3: h0[u]← x[u], for all u ∈ V

. Trust latent factors of observed users
4: for all u ∈ V do
5: for l = 1 · · ·L do

. Popularity Trust
6: hlI [u] = 1

NI(u)
·
∑

i∈NI(u) pTrlu←i

. Engagement Trust
7: hlO[u] = 1

NO(u)
·
∑

i∈NO(u) eTrlu→i

8: hl[u] = σ
(
W l · (hlI [u]⊗ hlO[u]) + bl

)
. Trust relationship prediction vector

9: for all 〈u, v〉 ∈ W do
10: h[u]← hL[u]
11: h[v]← hL[v]
12: h̃u→v = σ (Wfc · (h[u]⊗ h[v]))

The key computational operations of our framework are the notion of localized graph

convolutions [31]. To be able to implicitly capture the asymmetric property of social

trust, each trust convolutional layer learns how to aggregate the popularity trust and

engagement trust of users from a small graph neighborhood in the social graph. By

applying multiple trust convolutional layers that aggregate the trust information from the

local neighborhood of users, our approach can obtain the popularity trust and engagement

trust of users from their local network topology.

Theoretically, our proposed framework inherits the capability of inductively generat-

ing embeddings for unseen users based on their features and local graph neighbors. At

the prediction step, we are able to compute the embeddings for users that were not seen

in the training phase. More specifically, the inductive capability allows us to train on a

subgraph to obtain the model parameters. It is able to estimate the pairwise trustworthi-

ness for users that were not seen during the training phase. Sec. 3.3 empirically verified

that training on a subgraph containing 40% could achieve favorable performance, i.e.,

increases in the training set size did not seem to much help.
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It is also worth mentioning that parameters of our proposed trust convolutional layers

are shared across all users, making the parameter complexity of Guardian independent

of the input graph size. It is easy to computer embedding of new users that get added

into the graph over time, as it does not require any retraining process as the pre-trained

parameters can be used for inference for the unseen users. The computation cost of our

framework main comes from the localized graph convolutions, of which the complexity is

coming from the model parameter complexity. Sec. 3.3 empirically verified the efficiency

and scalability of our framework.

Incorporating context-aware features. Except for the social network graph and asso-

ciated trust interactions, context is also an important influential factor for social trust

evaluation [61]. In different contexts, trust relationships are typically different. For

example, user A trusts user B for movie recommendations, while A may not trust B

for restaurant recommendations. Movies and restaurants here represent different con-

texts. Therefore, it is crucial to distinguish between the different contexts of trust. Our

framework can be readily extended to incorporate such context-aware features to further

improve prediction accuracy, e.g, concatenating context features and graph structure

embedding as the initial representation of a user.

Limitations. One important property of the social trust is that it is dynamic. More

precisely, social trust can increase or decrease with new interactions and observations.

It may also decay with time. A more recent interaction or observation may be more

important than those that have happened earlier. It is intriguing to find out how our

proposed framework responds to dynamics in social trust relationships, which will be left

as our future work.
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Table 3.2: Statistical Description of Advogato and PGP Datasets.

Dataset # of Nodes # of Edges Avg. Degree Diameter

Advogato 6, 541 51, 127 19.2 4.82

PGP 38, 546 317, 979 16.5 7.7

3.3 Experimental Evaluation

3.3.1 Description of Datasets Used

In our experiments, we choose two widely used, real-world and benchmarking datasets

for performance comparisons of different trust evaluation models [51]. The first dataset

is Advogato, which is an online social network for open source developers. To allow users

to certify each other, this network provides four different levels of trustworthiness. More

specifically, the types of trustworthiness are {Observer, Apprentice, Journeyer, Master}.

The second dataset is Pretty-Good-Privacy (PGP), an encryption program that pro-

vides cryptographic privacy and authentication for data communication by adopting the

concept of “web of trust.” Similarly, the web of trust in PGP dataset contains four dif-

ferent levels of trustworthiness. The statistics of these two datasets are presented in

Table 3.2.

3.3.2 Experimental Settings

Baselines for comparisons. To demonstrate the effectiveness, we compared Guardian,

our proposed framework against three groups of methods including traditional walk-

based approach, matrix factorization-based approach, and deep neural network-based

approach. For each group, we selected a representative baseline and below we will detail

them. All experiments run 20 times to ensure statistical significance.

OpinionWalk [50]: This approach modeled the pairwise trustworthiness using sta-

tistical distributions in three-valued subjective logic. In order to establish a trust rela-
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tionship between two indirectly connected users, it walked throughout the network in a

breadth-first search manner. In particular, trust propagation and aggregation along the

social paths were modeled with its predefined discounting and combining operators.

Matri [85]: This methodology was proposed to combine trust tendency and trust

propagation under a collective matrix factorization framework. Under this framework,

the trustor and trustee are mapped into a joint latent space. The trustworthiness of each

trustor-trustee pair is modeled as the similarity (measured by the inner product of two

vectors) between the latent vector of the trustor and the latent factor of the trustee in

the learned latent space.

NeuralWalk [51]: This model was the state-of-the-art trust evaluation solution in

the literature, in terms of its prediction accuracy. Its core is to learn single-hop trust

propagation and aggregation rules with a neural network architecture, WalkNet. By

iteratively executing the learning process of WalkNet multiple times, NeuralWalk is able

to evaluate multi-hop social trust within online social networks.

Evaluation metrics. In order to evaluate the effectiveness of our proposed framework,

two popular metrics were adopted to evaluate the prediction accuracy, including F1-score

and Mean Absolute Error (MAE). All results are reported based on the results of 20 runs.

Note that, larger values of F1-score, smaller values of MAE indicate better prediction

accuracy. A small improvement in these evaluation metrics implies a significant influence

on the quality of prediction. For efficiency and scalability, we used the average wall-clock

time over 20 runs.

All the experiments were performed on a machine with Intel Core i7-9700K 8-core

3.6GHz CPU, 32GB RAM, 500GB SSD, and GeForce GTX 1660 Ti GPU.

Data preprocessing. We followed the data preprocessing as reported in NeuralWalk [51].

Specifically, as OpinionWalk is deductive, there is no need to separate the datasets for

training and inference. Instead, we randomly selected 1, 000 trustor-trustee pairs for

each dataset to statistically compare OpinionWalk with our framework. As for Matri,
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NeuralWalk, and Guardian, we randomly split each dataset into two portions: 80% of

the trustor-trustee pairs to constitute the training set, and the remaining 20% as the

test set. More precisely, the 20% of trustor-trustee pairs were removed from the network

graph to compose the training set.

OpinionWalk [50] and Matri [85] mapped four trustworthiness levels into scalar values,

aka {Observer: 0.1, Apprentice: 0.4, Journeyer: 0.7, Master: 0.9}, and they used MAE

as their performance metric. Similarly, to be comparable, we did the same mapping for

NeuralWalk and Guardian (both are categorical classifiers) to obtain the model MAE.

Regarding F1-score, the outputs of OpinionWalk and Matri were rounded to the nearest

categorical values, aka {Observer: 0, Apprentice: 1, Journeyer: 2, Master: 3}.

As illustrated in Sec. 3.2, to model categorical trustworthiness, we used one-hot en-

coding to represent each type of trustworthiness. As the benchmark datasets we used

all contain four different types of trustworthiness, we transformed {Observer, Appren-

tice, Journeyer, Master} as following one-hot representations: {[0, 0, 0, 1]T , [0, 0, 1, 0]T ,

[0, 1, 0, 0]T , and [1, 0, 0, 0]T}. Note that, our framework can be readily generalized to any

application domains containing an arbitrary number of trustworthiness levels.

Parameter settings. We implemented our proposed framework in Pytorch4. node2vec [28]

was used to generate the initial embeddings for each user5. The embedding dimension

was fixed to 128 for all datasets. In terms of hyperparameters, we applied a grid search

for hyperparameters: the learning rate was tuned amongst {0.001, 0.005, 0.01, 0.05}, the

coefficient of L2 normalization was searched in {10−5, 10−4}, and the dropout ratio was

in {0.0, 0.1, . . . , 0.8}. We used the Xavier initializer [23] to initialize the model param-

eters. In addition, early stopping strategy was performed, i.e., premature stopping if

training loss does not increase for 10 successive epochs. Without specification, we report

the results of three trust propagation layers [32, 64, 32], learning rate of 0.01, dropout

ratio of 0.0 and normalization coefficient of 10−5. The detailed parameter settings for

4https://pytorch.org
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Table 3.3: Prediction Accuracy on Advogato

Approaches F1-Score MAE

Guardian 74.3% 0.082

NeuralWalk 74.0% 0.081

OpinionWalk 64.3% 0.228

Matri 65.6% 0.127

OpinionWalk, NeuralWalk, and Matri refer to [50,51,85], respectively.

3.3.3 Performance Comparisons

Effectiveness. The Advogato dataset is used to evaluate the performance of different ap-

proaches. The results are reported in Table 3.3. Guardian offers the best F1-score with

0.3% improvement on NeuralWalk — the state-of-the-art solution — and even higher

improvement on Matri, about 8.7%. As F1-score is scaled between 0 and 1, the increases

in performance are significant. In terms of MAE, NeuralWalk and Guardian achieved ap-

proximately the same prediction accuracy, which implies the powerful learning capability

of machine learning techniques.

To test that Guardian does not rely on datasets, we also evaluated our framework on

PGP. We were not able to report the performance of NeuralWalk on PGP, as it ran out

of the memory after one out of three iterations on our machine. As shown in Table 3.4,

Guardian consistently offers the best F1-score by increasing the accuracy 18.8% for Matri

and 19.8% for OpinionWalk. The results reported successfully verify that our proposed

trust convolutional layers are able to characterize the trust latent factors of users to

establish effective social trust.

Matri was not able to offer comparable performance on two datasets, which indicates

that either the collected matrix for factorization or the inner product in the learned latent

5As the benchmarking datasets do not contain context information, we do not consider context-aware
feature in our experiments.
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Table 3.4: Prediction Accuracy on PGP

Approaches F1-Score MAE

Guardian 87.1% 0.083

NeuralWalk − −

OpinionWalk 67.3% 0.249

Matri 68.3% 0.122

Table 3.5: Training and Inference Time (on the full test set)

Process Approach Advogato PGP

Training Time (s)

Guardian 28.580 304.370

Matri 176.395 1, 593.285

Inference Time (s)

Guardian 0.102 0.583

Matri 0.008 0.044

space of users may not be sufficient to capture the complex relations among the trustors

and trustees. We also observed that OpinionWalk achieved the worst performance on

both datasets, which shows that the path-search manner or the predefined trust propa-

gation and aggregation rules may not be effective to provide accurate estimations.

Efficiency. For efficiency comparisons, we evaluated different approaches on the same

machine as listed above. Because OpinionWalk is a deductive method - evaluating one

trustor-trustee pair at a time, it does not generate any model parameters/user latent

space for new trustor-trustee pair evaluation. In other words, the time for trust evaluation

increases linearly with the number of trustor-trustee pairs to be evaluated. As such, we

report the average runtime for evaluating 1, 000 trustor-trustee pairs in Fig. 3.4 but

exclude this method from the following discussions.

We compared the total runtime of three approaches (Matri, NeuralWalk and Guardian)

6Due to RAM issue, we are not able to reproduce NeuralWalk on PGP with our machine.
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Figure 3.4: Wall-clock time on Advogato and PGP6.

and the results are also shown in Fig. 3.4. It is worth noting that Guardian consistently

outperforms all other baselines on all datasets. In particular, Guardian shortens the

processing time significantly on NeuralWalk by 2, 827×. Note that, when we run Neu-

ralWalk on PGP, running one of three iterations has already cost us around 52 hours

before it ran out of memory. Comparing to Matri, Guardian is 6.17× and 5.23× faster on

Advogato and PGP respectively. It demonstrates that our proposed trust convolutional

layer greatly speeds up trust evaluation process in online social networks and shows its

promising that can be applied to large-scale network applications.

To enhance the understanding of the time cost for training7and inference respec-

tively, we measured the time used for these two processes separately on both datasets.

Table 3.5 summarizes the training and inference time for different approaches. As re-

ported, Guardian is 6.17× faster than Matri on the training phase, which shows the total

time cost of Matri mainly comes from its matrix factorization phase. We also noticed

that our framework bears longer inference time as compared with Matri. However, Matri

can not evaluate the trust relationship for users that were not seen during the learning

phase, while our proposed Guardian is an inductive model that can be generalized to

unseen users. Therefore, a retraining of the dataset is needed for newly added users for
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Matri. Guardian, on the other hand, does not require retraining because the pre-trained

parameters can be saved for later inference.
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Figure 3.5: Scalability: Guardian vs. Matri.

Scalability. The scalability of Guardian is evaluated by measuring the wall-clock

times with a different number of users and a different number of trustor-trustee pairs,

respectively. Both of the selected users and pairs are subgraphs from the main graph of

the dataset, and each node in the subgraphs has at least one edge (no singleton node). We

observe that the results, shown in Fig. 3.5, are consistent with the complexity discussions

in Sec. 3.2.5.

More specifically, as Fig. 3.5a and Fig. 3.5b show, the wall-clock time of Matri in-
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Table 3.6: Robustness with Different Sizes of Training Set on Advogato

Approach Training Set(%) F1-Score MAE

Guardian

80% 74.3%± 0.4% 0.082± 0.002

60% 72.9%± 0.2% 0.087± 0.001

40% 70.7%± 0.1% 0.094± 0.001

Matri

80% 65.6%± 0.4% 0.127± 0.001

60% 63.9%± 0.3% 0.132± 0.001

40% 61.7%± 0.3% 0.139± 0.001

creases sharply with the number of users while Guardian consistently performs well as

the number of users increases. The computation cost of our framework main comes from

the localized graph convolutions, of which the complexity depends on the model param-

eter complexity. Because the parameters of our proposed trust convolutional layers are

shared across all users, making the parameter complexity of the trust convolution opera-

tion independent of the number of users. we observe a slightly increase on runtime when

increasing the number of users.

For the increasing number of trustee-trustor pairs, the time of Matri increases dra-

matically and shows similar trends on both datasets, shown in Fig. 3.5c and Fig. 3.5d.

It is noteworthy that Guardian consistently performs well on all benchmarking datasets,

indicating that Guardian is more scalable and can readily be generalized to large-scale

network applications. Note that, the wall-clock time of Guardian tends to increase slightly

with the increase of the input graph size. That can be explained by the fact that the

computation cost of Guardian main comes from the localized trust convolution. The

size of neighborhood increases when the number of users increases, leading to more local

aggregation computations.

Robustness. We evaluated the approaches with different training and test set ratio to

7For simplicity, in this dissertation, we described the factorization phase of Matri as training phase.
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Table 3.7: Robustness with Different Sizes of Training Set on PGP

Approach Training Set(%) F1-Score MAE

Guardian

80% 87.1%± 0.1% 0.083± 0.001

60% 86.5%± 0.1% 0.088± 0.001

40% 85.3%± 0.2% 0.096± 0.001

Matri

80% 68.3%± 0.7% 0.122± 0.0003

60% 64.7%± 0.1% 0.131± 0.0004

40% 60.5%± 0.1% 0.144± 0.0001

measure their robustness. The portions of the training set were set as 80%, 60%, 40% of

the entire dataset. Table 3.6 and Table 3.7 show the evaluation results of both datasets.

As reported, Guardian has a minor performance decrease of 3.6% for Advogato and 1.9%

for PGP when the size of the training set is reduced to 40% of the entire graph, while

Matri has a decrease of 3.9% and 7.8%, respectively. This indicates that our proposed

framework has better robustness, with respect to the size of the training set. Notably,

Guardian also consistently offers the best prediction accuracy, even when the model was

trained with 40% training data as compared to Matri with 80% training data. Training

on a subgraph containing 40% could achieve favorable performance, i.e., increases in the

training set size did not seem to much help. This further suggests that the proposed

framework inherits the capability of inductively estimating the pairwise trustworthiness

for users that were not seen during the training phase, which allows us to train on a

subgraph to obtain the model parameters.

3.4 Related Work

In this section, we present and discuss some related works on pairwise social trust eval-

uation and recent advancements in applying convolutional neural networks to graph-

structured data.
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3.4.1 Pairwise Social Trust Evaluation

Walk-based approaches: In the past decade, most of the existing trust evaluation

models were based on the trust propagation along the paths from the trustor to the

trustee. For example, ModelTrust [56] and TidalTrust [25] evaluated the pairwise trust-

worthiness by searching the paths throughout the network. The propagated trust from

multiple paths, between the trustor and the trustee, then are aggregated to be the es-

timated value of trust. Aiming for higher accurate trust evaluation, AssessTrust [52]

and OpinionWalk [50] modeled the value of trust using statistical distributions in three-

valued subjective logic. In particular, in order to establish a trust relationship between

two indirectly connected users, OpinionWalk [50] walked throughout the network in a

breadth-first search manner and modeled the trust propagation and aggregation via its

predefined discounting and combining operators.

Matrix factorization-based approaches: [91] and Matri [85] are matrix factorization-

based approaches, which are proposed to analyze the observed trustworthiness to identify

the unobserved/missing trust relationships. In this category, the trustor-trustee pairs

were analogous to user-item pairs in a recommender system. In general, the matrix fac-

torization methods are used to map the trustors and the trustees to a joint latent factor

space, so that the trustworthiness of the trustor-trustee pairs can be modeled as their

inner products in that space. In particular, Matri [85] was designed to combine trust

tendency and trust propagation under a collective matrix factorization framework, while

[91] further considered the similarity of users’ trust rating habits. Since these approaches

are inherently transductive, expensive re-training process may be required to estimate

the trust values for users that were not seen during the training phase.

Neural network-based approach: In contrast to the aforementioned approaches, Neu-

ralWalk [51] was designed to capture the trust propagation and aggregation rules using

machine learning techniques. The main component of this model is WalkNet, a neural

network architecture, that was designed to model single-hop trust propagation and ag-
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gregation. By iteratively employing WalkNet, NeuralWalk is capable of establishing a

trust relationship between the trustor and the trustee, as long as there exists at least

one social path from the trustor to the trustee. Even though NeuralWalk can achieve

state-of-the-art prediction accuracy in the literature, it is highly inefficient due to the

massive matrix operations for training and test set selection.

3.4.2 Graph Convolutional Neural Networks

More recently, graph convolutional neural networks (GCNs) have been proven to be

capable of learning on graph structure data [31, 41, 89], leading to new state-of-the-art

results on benchmarks such as node classification and link prediction. These GCN-

based approaches consistently outperformed techniques based upon matrix factorization

or random walks (e.g, node2vec [28], Line [74], and DeepWalk [66]).Their success has led

to a surge of interest in applying GCN-based frameworks to applications ranging from

recommendation systems [86], drug design [93], to social influence prediction [67].

Despite the compelling success achieved by previous work, little attention has been

paid to social trust evaluation with graph convolutional neural networks. Here we fill

this gap and show the effectiveness and efficiency of graph convolutional neural networks-

based representation learning for social trust evaluation.

3.5 Summary

In this chapter, we devised a new framework Guardian, to model social trust for trust

evaluation. In this framework, we explicitly incorporated the popularity trust and engage-

ment trust into the latent representations of users to learn effective trust relationships.

The key of Guardian is the newly proposed trust convolutional layer, which is able to

jointly capture social graph structure and associated trust interactions. Extensive exper-

iments on two real-world datasets have demonstrated the rationality and effectiveness of

our proposed Guardian. In the meanwhile, it enjoys high efficiency due to the notion of
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localized graph convolutions. In the future, we are interested in improving Guardian by

incorporating the attention mechanism during trust propagation. Moreover, we will in-

vestigate the capability of Guardian to address trust dynamics. It will also be interesting

to incorporate the context-aware information to further enhance prediction performance.



Chapter 4

Signed Network Embedding Based

on Status Theory

Apart from modeling social relationships with a value of social trust, many real-world

relationships on social media often reflect a mixture of positive and negative interactions.

For example, people can be friends (positive interactions) or foes (negative interactions).

In this context, online social networks can be represented as signed graphs, containing

positive and negative links. Complementary to chapter 3, we shift our focus to the prob-

lem of signed network analysis in this chapter. Except for the difference of relationship

modeling, this chapter studies the use of graph convolutional network to generate signed

network embeddings, which encodes the network topology — including sign and direction

information of links — on signed networks. Such representations are useful to carry out

various tasks in signed network analysis, such as link sign prediction and node ranking.

In this chapter, we propose SiGCN, a new framework that learns representations for

users on signed networks with graph convolutional neural networks. SiGCN is designed

based on status theory, a social-psychological theory specifically developed for directed

networks. Different with Guardian proposed in chapter 3, SiGCN can learn effective

representations and obtain the status score of each user. According to the principles of

status theory, the link sign can be derived from the relative difference of users’ status

scores. Except for the link sign prediction task, the learned status score can be used for

46
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node ranking tasks.

Highlights of our original contributions are as follows. First, we introduce a principled

methodology to jointly capture both the graph structure and associated sign information

of links within signed directed networks. Second, we utilize status theory to capture

the status of individual users such that both sign and direction information of links

can be captured in the embedding space. Third, we demonstrate the effectiveness and

efficiency of our proposed framework using four signed directed networks from different

domains. Our extensive array of experiments on benchmarking datasets demonstrated

that SiGCN can speedup representation learning for link sign prediction by up to 6.5×

as compared with the baselines. More specifically, SiGCN speeds up to 4× faster and

achieves comparable accuracy as compared to BESIDE [16], increases accuracy by up

to 18.8% compared with SIDE [39], and achieves the state-of-the-art robustness and

scalability as reported in the literature. We also show that SiGCN can learn effective

status score of each user, which can be used for link sign prediction and node ranking

and yield state-of-the-art performance.

The remainder of this chapter is organized as follows. We first introduce some back-

ground knowledge, particularly about the social-psychological theories used in mining

signed networks in Sec. 4.1. Then we formulate the problem of network representation

learning on signed directed networks in Sec. 4.2. In Sec. 4.3, we illustrate the details

of our framework designed to learn signed network embedding effectively and efficiently.

In Sec. 4.4, we present an extensive array of experimental results to evaluate the per-

formance of our framework. Sec. 4.5 discusses related work and Sec. 4.6 concludes this

chapter.

4.1 Preliminaries

Before we formulate the problem of network representation learning on signed directed

networks, we introduce some necessary definitions to facilitate a better understanding of
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the problem and our proposed solution.

Definition 4.1.1. Social status: Status is broadly defined as the position of users, either

communities or individuals, in a social hierarchy that results from accumulated acts of

deference. It has been widely recognized by the sociologists that status is fundamentally

rooted in the accumulation of deference behaviors [26, 69]. In signed social networks,

social status can be represented in many different ways, such as the rankings of nodes in

social networks, and it represents the prestige/trustworthiness of nodes [73].

Definition 4.1.2. Status theory: Status theory defines an organizing principle for signed

links on signed directed networks. In the theory of status [44], a positive link eu→v implies

that v has a higher status from the perspective of u (shown in Fig. 4.1c), while a negative

link eu→v indicates that v is regarded as having a lower status, as shown in Fig. 4.1d.

In signed networks, these relative levels of status can be propagated and aggregated

throughout the networks.

Definition 4.1.3. Structural balance theory: Balance theory [12] classifies cycles in a

signed network as being balanced or unbalanced. It implies that cycles with an even

number of negative signs are more plausible, hence should be more prevalent in real net-

works. For simplicity, we illustrate balanced structures with triangles. More specifically,

balanced triangles with three positives, shown in Fig. 4.1a, capture the notion that “the

friend of my friend is my friend,” while those with two negatives, shown in Fig. 4.1b, im-

plies that “the enemy of my enemy is my friend.” Balance theory was initially developed

for undirected networks.

Comparisons of two theories. Status theory and balance theory both provide insights

into ways in which users use linking mechanisms in social computing applications. Sta-

tus theory is specialized in directional links, as it posits a status differential from the

source node of a link to its target node. Balance theory was initially proposed for undi-

rected networks, though it has been widely applied to directed networks (e.g., SIDE [39],



Chapter 4. Signed Network Embedding Based on Status Theory 49

+1

+1

+1

(a)

-1

+1

-1

(b)

u v+1

(c)

u v-1

(d)

Figure 4.1: (a) (b) Balanced triangle examples: balanced triangle with zero negative and
balanced triangle with two negatives, respectively; (c) (d) Status theory illustration: a
positive link eu→v implies that v has a higher status from the perspective of u. A negative
link eu→v indicates that v is regarded as having a lower status.

SigNet [35]). Structural balance theory can be viewed as modeling like and dislike re-

lationships [44], while in some important domains, such as Epinions and Wikipedia, a

positive link from u to v can be interpreted as “v has higher status than I do” and

a negative link can be viewed as a model of “v has lower status than I do” [29]. In

these domains, status theory has been proved to have more expressiveness than balance

theory [44].

4.2 Problem Setup

In this chapter, we consider a signed directed network, which is modeled as a signed

directed graph, denoted as G = (V , E+, E−), where V is the set of nodes, and E+, E−

represent the sets of positive links and negative links, respectively. Any node v ∈ V

represents an user in the social network and each link eu→v ∈ {E+∪E−} is a directed link

from u to v associated with a positive or negative sign. More precisely, +1 represents

a positive link and −1 denotes a negative link. As nodes typically represent users in

social media, we use the terms “node” and “user,” “links/edges” and “relationships”

interchangeably in this dissertation. To differentiate direction information between any
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two users, we define the source node as the creator of a link, while the target node as the

receiver of a link. This reflects real-world application domains, such as rating reviewers

on Epinions and voting for Adminship on Wikipedia (WikiRfA) [82], where both ratings

and votes are created by the source nodes of the links.

For any node u ∈ V , let NO(u) be the set of out-neighbors of node u, and NI(u) be

the set of in-neighbors of u. In this sense, we can define |NI(u)| and |NO(u)| to represent

in-degree and out-degree of u, respectively. The mathematical notations used in this

chapter are summarized in Table 4.1.

Signed Network Embedding/Network Representation Learning: Given a signed di-

rected network G = (V , E+, E−), the task of signed network representation learning is to

learn a mapping function f : u→ S[u], where S[u] ∈ Rd is the learned representation of

user u with dimension d. The transformation function f preserves the original network

information, including network structure, and both sign and direction information of the

links, such that any representations of users, in the embedding space, are effective for

downstream signed network analysis, e.g., link sign prediction and node ranking. An

example of a signed directed network is shown in Fig. 1.2, which will be used throughout

this chapter.

4.3 SiGCN: Proposed Framework

In this section, we first introduce the limitations of balance theory on signed directed net-

works. Then, we introduce our proposed signed graph convolutional network with status

theory, SiGCN, a dedicated effort towards the construction of signed graph convolutional

networks specialized for signed directed networks.

In particular, we examine the percentage of triangles satisfying balance theory. There

are 92.4% triangles satisfying balance theory on Epinions, while on WikiRfA, only 73.62%

triangles are balanced based on the balance theory. This indicates that signed graph

convolution networks based on the balance theory may not work very well on signed
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Table 4.1: Notations

Notation Descriptions

NO(u) the set of out-neighbors of u

NI(u) the set of in-neighbors of u

G, R the generative status and receptive status

Sg[u] the latent factor of generative status

propagated from the out-neighbors of user u

Sr[u] the latent factor of receptive status

propagated from in-neighbors of user u

S[u] the latent factor of status for user u

signu→v observed sign of link eu→v

˜signu→v predicted sign of link eu→v

⊗ the concatenation operator of two vectors

⊕ mean aggregator

σ non-linear activation functions, e.g., sigmoid(·)
W , b the model parameters of SiGCN

directed networks. Let’s see an example in our signed directed network graph, originally

shown in Fig. 1.2. User v links positively to user i and u links positively to user i; balance

theory would suggest a positive link of eu→v, as shown in Fig. 4.2a. However, as shown

in Fig. 4.2b, user u links positively to user j and j links negatively to user v; balance

theory would suggest a negative link of eu→v. The predicted sign of link eu→v based on

the balance theory with triangles are contradictory.

Before formalizing our signed graph convolutional network with status theory, we

provide some intuitions behind our construction. In signed networks, both positive and

negative links need to be jointly considered for network representation learning. As

such, the notion of homophily becomes not applicable, which can also be explained by

the theory of status. According to the theory of status, the positive in-neighbors and

the negative out-neighbors of a node increase its status. In contrast, the positive out-

neighbors and negative in-neighbors decrease its status. In this sense, status aggregation
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and propagation in signed networks desire new principles though the status of each user

is determined by its local topological connections.

To illustrate the modeling with status theory in our example, we simplify the status

modeling as follows: each user was initially assigned a status of 0. If user u links positively

to another user, or another user links negatively to user u, we increase user u a status of

1; otherwise, we decrease the status of u by 1. With the same rule, the status value of

each user is assigned as shown in Fig. 4.3. As u has a status of −4 and v has a status

of −2, status theory would suggest a positive link of eu→v. It is worth mentioning that

status is propagated and aggregated throughout the networks, which is more complex in

the real situation. In what follows, we detail our proposed framework for representation

learning on signed directed networks, the architecture of which is illustrated in Fig. 4.5.

v

i u

?

+1

+1

(a) Predicted as positive

v

u j

-1

+1

?

(b) Predicted as negative

Figure 4.2: Contradictory predictions of eu→v with balance theory in our example.

4.3.1 Modeling Social Status of Users

In this chapter, we consider the richness of interactions between users within signed

directed networks as social status. Social status can be represented in many different

ways depending on the interpretations of positive and negative links, which are typically

distinct across different application domains. In the context of signed social media, status

theory allows deriving the relationship of any two users based on their status in the social

graph.

In particular, to be able to capture the social status of each user, we first separate
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Figure 4.3: Predicted as positive: modeling with status theory in our example.

pairwise interactions of users into two groups: receptive interactions and generative in-

teractions. Taking the Epinions, a who-trust-whom dataset, as an example, receptive

interactions can be interpreted as the measurement of the popularity of a user. In this

context, some users are more likely trusted by others, such as the officials, who are re-

ferred to as having higher popularity in a society. Therefore, the social status of these

users is relatively higher. According to the theory of status, receptive interactions with

positives increase the social status of the receiver of the links, whereas those with nega-

tives decrease the social status of the receiver.

Similarly, generative interactions are to measure the engagement of a user. In the

context of Epinions, users are more likely to trust others with higher social status, hence

their social status is relatively lower than those users they trust. Generative interactions

with negatives increase the social status of the creator of the link, while those with

positives lower the social status of the creator.

4.3.2 Status Convolutional Layers

Accordingly, we consider two types of status aggregation to characterize the receptive-

based status and generative-based status, represented as Sr[u] and Sg[u], respectively.
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Figure 4.4: The receptive interactions (in yellow) and generative interactions (in green):
an example.
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Figure 4.5: Illustration of SiGCN framework.

For each of them, we use mean-aggregator to aggregate its associated interactions with

its neighbors. It is worth mentioning that, mean-aggregator is the main operation of

aggregating information from local graph neighborhoods [31,41].

Let’s see an example in our example social network graph, shown in Fig. 1.2. With

our link modeling, the receptive interactions of user u and v are depicted in yellow in

Fig. 4.4, while the generative interactions are shown in green. More specifically, for user

u, there are three outgoing neighbors. The generative-based status of u is, therefore, 1
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by averaging over its outgoing links, and the receptive-based status of u is −1. Similarly,

the receptive-based status of v is −1 while its engagement is 1.

Receptive-Based Status Propagation (R). Intuitively, the incoming social connections

and associated receptive link with sign information provide direct evidence on the pop-

ularity of a user in online social networks. We build upon this basis to propagate the

receptive-based status between connected users.

In particular, to model sign information of the links, we first use one-hot encoding to

represent positive and negative links, respectively. More specifically, we model positive

and negative links as the following one-hot representations: [1, 0]T , and [0, 1]T . Then

SiGCN employs a linear transformation to convert the one-hot encodings into dense

vector embeddings through Eq. (4.1) and Eq. (4.4). For a link with sign signu←v (v

is the creator of the link), we model the receptive-based status of u created by v as a

combination of v’s feature vector x[v] and the embedding of sign information esignu←v
.

esignu←v
= Wu←v · signu←v (4.1)

Ru←v = x[v]⊗ esignu←v
(4.2)

where Wu←v ∈ RDe×2 is a trainable transformation matrix, ⊗ denotes the concatena-

tion operation between two vectors.

We now take the element-wise mean of the vectors in {Ru←v,∀v ∈ NI(u)}. This

mean-based aggregator is a linear approximation of a localized spectral convolution [41],

as the following function:

Sr[u] =
1

NI(u)
·
∑

v∈NI(u)

Ru←v (4.3)

Generative-Based status Propagation (G). Accordingly, we characterize the engage-

ment of a user through its outgoing social connections and associated sign information of
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generative links. We build upon this basis to perform the propagation and aggregation

of the generative-based status between the connected users. Thus, the generative-based

status of user u can be captured by the following functions:

esignu→v
= Wu→v · signu→v (4.4)

Gu→v = x[v]⊗ esignu→v
(4.5)

Sg[u] =
1

NO(u)
·
∑

v∈NO(u)

Gu→v (4.6)

where Gu→v denotes the engagement of user u to user v in signed social networks.

Learning Status Latent Factors of Users. In order to learn better latent factors of

users for downstream signed directed network analysis, the receptive-based status and

generative-based status are needed to be considered jointly. Here, we propose to combine

these two types of status through a standard fully connected (FC) layer, where Sr[u] and

Sg[u] are concatenated before feeding into the FC. Formally, the status latent factor of

user u, S[u], can be characterized as follows:

S[u] = W · (Sr[u]⊗ Sg[u]) + b (4.7)

where W is a trainable transformation matrix, b is a learnable bias, and ⊗ represents the

concatenation operator. The advantage of using concatenation lies in its simplicity and

expressiveness, which have been shown in a recent work of graph convolutional neural

networks [31].

Higher-order Status Propagation. By stacking l status convolutional layers, a

user is capable of receiving the status (the generative-based status and receptive-based

status) propagated from its l-hop neighbors. In the l-th step, the representation of user

u is recursively formulated as Eq. (4.8) - Eq. (4.12):
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Rl
u←v = Sl−1[v]⊗ {W l

u←v · signu←v} (4.8)

Gl
u→v = Sl−1[v]⊗ {W l

u→v · signu→v} (4.9)

Sl
r[u] =

1

NI(u)
·
∑

v∈NI(u)

Rl
u←v (4.10)

Sl
g[u] =

1

NO(u)
·
∑

v∈NO(u)

Gl
u→v (4.11)

Sl[u] = W l · (Sl
r[u]⊗ Sl

g[u]) + bl (4.12)

where S0[u] = x[u] is the feature vector of node u, signu→v and signu←v are the

observed signed link, and W l
u←v, W

l
u→v, W

l, and bl are the model trainable parameters,

to be optimized in an end-to-end fashion with SiGCN. Note that, by stacking multiple

status convolutional layers, we not only enrich user embedding with its receptive-based

status and generative-based status in signed social networks, but also allow controlling

the range of status propagation throughout the graph by adjusting l.

4.3.3 Modeling Relationships of Users Based on Status Theory

In the theory of status, a signed link, from creator u to receiver v, can be interpreted as

the intention of u in creating the link to v [29]. Status theory characterizes the sign of

the links from the relative difference of their status score.

In order to further model status score for each user, we fit the latent factor of the user

status to fully-connected (FC) layers. In particular, we use two different fully-connected

layers to learn the status scores for the creator and receiver, respectively. Formally, the

status scores are formulated as Eq. (4.13) and Eq. (4.14), where Wsrc and Wrev are

trainable weight matrices defined in two FC layers, and bsrc and brev are corresponding
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biases. The FC layers lead to more effective representations of user status, as this step

explicitly injects the receptive-based status and generative-based status of individual

users in a collaborative fashion.

Ssrc[u]← Wsrc × SL[u] + bsrc (4.13)

Srev[v]← Wrev × SL[v] + brev (4.14)

With status theory, the sign of a link can be captured by its relative differential of

the creator and receiver. Formally, it is formulated as:

S∆u→v = Ssrc[u]− Srev[v] (4.15)

Therefore, the sign of link eu→v can be computed as:

˜signeu→v
=

−1 if σ(S∆u→v) > 0.5

+1 otherwise

where σ is a sigmoid function to normalize the status differential to the range of (0, 1),

defined as sigmoid(x) = 1
1+exp (−x)

. The detailed forward propagation algorithm of SiGCN

is shown as procedure SiGCN.

4.3.4 Model Training

We define an objective function to learn the model parameters in SiGCN. In particular,

the objective function contains two terms, both of which are to encourage the represen-

tations to be able to understand associated status so as to obtain sign information of the

links based on status theory. More specifically, the first term is to minimize the status

differential of positive links, while the second term is to maximize the status differential

of negative links. The overall objective function is formalized as follows:
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L = (signeu→v
) · 1

|E+|
∑

eu→v∈E+

σ(S∆u→v)

+(signeu→v
) · 1

|E−|
∑

eu→v∈E−
σ(S∆u→v)

+λ · ||Θ||22

(4.16)

where signeu→v
represents the ground-truth (Eq. 4.17), and Θ = {{W l

u←v,W
l
u→v,W

l}Ll=1,

Wsrc,Wrev} denotes all trainable model parameters, and λ controls the L2 regularization

strength to prevent over-fitting. In particular, we adopt Adam [40] as the optimizer in

our implementation, as it has been shown to be effective in updating the model param-

eters [31].

signeu→v
=

−1 if eu→v ∈ E−

+1 if eu→v ∈ E+
(4.17)

1: procedure SiGCN: Representation Generation (i.e. Forward Propaga-
tion)

2: S0[u]← x[u], for all u ∈ V , where X is node feature matrix
. Status latent factors of observed users

3: for all u ∈ V do
4: for l = 1 · · ·L do

. Receptive Status
5: Sl

r[u] = 1
NI(u)

·
∑

i∈NI(u) Rl
u←i

. Generative Status
6: Sl

g[u] = 1
NO(u)

·
∑

i∈NO(u) Gl
u→i

7: Sl[u] = W l · [Sl
r[u]⊗ Sl

g[u]] + bl

. Status Score
8: for all 〈u, v〉 ∈ W do
9: Ssrc[u]← Wsrc × SL[u] + bsrc

10: Srev[v]← Wrev × SL[v] + brev
11: S∆u→v = σ(Ssrc[u]− Srev[v])

Analysis. The key computational operations of our framework are the notion of

localized graph convolutions [31,86], which can be made inductive. At the representation
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Table 4.2: Statistical Description of the Datasets.

Dataset # of Nodes # of Edges + Edges (%) - Edges (%)

Epinions 131, 828 841, 372 85.30 14.70

Slashdot 82, 140 549, 202 77.40 22.60

WikiRfA 11, 258 179, 418 77.92 22.08

WikiElec 7, 126 104, 167 78.78 21.22

generation step, we are able to compute embeddings for nodes that were not in the

training set. This allows us to train on a subgraph to obtain model parameters, and then

generate embeddings for nodes that have not been observed during training. Specifically,

each status convolutional layer learns how to aggregate social status of users from a small

graph neighborhood in the social graph. Therefore, SiGCN not only can compute nodes

embeddings but also can evaluate status scores that can be used for node ranking as

well as link sign prediction. It is worth mentioning that parameters of our proposed

status convolutional layers are shared across all users, making the parameter complexity

of SiGCN independent of the input graph size. Sec. 4.4 empirically verified the efficiency

and scalability of our model. In addition, as SiGCN is an inductive learning model, it is

able to estimate the sign of links between any two users that were not seen during the

training phase.

4.4 Experimental Evaluation

4.4.1 Description of Datasets Used

To evaluate the effectiveness and efficiency of SiGCN, we conduct experiments on four

benchmark datasets: Epinions, Slashdot [44], WikeRfA [82], and WikiElec [43], which

are publicly accessible signed social network datasets. The statistics of these datasets

are presented in Table 5.2.
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Epinions: This is a who-trust-whom online social network, where users create signed di-

rected relations to each other indicating trust (corresponding to positive links) or distrust

relationships (represented as negative links).

Slashdot: Slashdot is a technology-related news website known for its specific user

community. Users in the network designate others as ”Friends” (positive links) or ”foes”

(negative links).

WikiRfA: This network is defined by votes for Wikipedia administrator candidates.

Any member can cast a supporting, neutral or opposing vote for a Wikipedia editor.

We discard neutral votes and construct a signed directed network as did in BESIDE [16]

and [82]. WikiElec: is the elections and voting data of Wikipedia administrator. The

definition of this dataset is similar to that of WikiRfA. The details on how the signed

edges are defined can also refer to the website1.

4.4.2 Link Sign Prediction Based on Learned Node Represen-

tations

Baselines. To demonstrate the effectiveness of learned embedding on link sign prediction,

we compared SiGCN, our proposed framework against the state-of-the-art methods on

signed network embedding and below we will detail them. We do not include unsigned

methods (e.g., LINE [74], Node2Vec [28]) and spectral clustering algorithms based on

signed Laplacian matrix (e.g., SSE [42]), since previous signed network embedding work

(BESIDE [35] and SGCN [19]) has shown their superiority over these methods.

SNE [87] adopted a log-bilinear model and used random walk sampling to generate

samples. SNE was designed without any specific theories of signed networks.

SiNE [79] proposed a multi-layer neural network to learn the embeddings by optimiz-

ing an objective function satisfying structural balance theory. SiNE only concentrated

on the immediate neighborhoods rather than on the global balance structure.

SIDE [39] provided a linearly scalable approach with regard to the number of nodes.

1https://snap.stanford.edu/data/index.html
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Table 4.3: Sign Prediction Results #1

Dataset Metric SNE SiNE SIDE SigNet

Epinions

auc 0.8282 0.8589 0.8768 0.9071

F1-binary 0.9206 0.9082 0.9487 0.9484

F1-macro 0.7634 0.6968 0.7817 0.8031

F1-micro 0.8529 0.8332 0.9094 0.9104

Slashdot

auc 0.6447 0.7736 0.7180 0.8759

F1-binary 0.8726 0.8671 0.8675 0.8994

F1-macro 0.4663 0.6341 0.5360 0.7579

F1-micro 0.7740 0.7654 0.7728 0.8406

WikiRfA

auc 0.6954 0.8610 0.6824 0.7903

F1-binary 0.8823 0.8730 0.8748 0.9012

F1-macro 0.6503 0.7365 0.4713 0.7454

F1-micro 0.8095 0.7746 0.7793 0.8407

WikiElec

auc 0.8169 0.7214 0.6682 0.7274

F1-binary 0.8960 0.8787 0.8836 0.8777

F1-macro 0.6803 0.6393 0.4833 0.5985

F1-micro 0.8259 0.7836 0.7924 0.7596

SIDE aggregated the direction and sign information of the links along the paths based on

structural balance theory. It was proposed to optimize the likelihood over both directed

and undirected signed connections.

SIGNet [35] was built upon the traditional word2vec family of embedding approaches.

It leveraged a targeted node sampling strategy to maintain structural balance in higher-

order neighborhoods.

SGCN [19] was proposed to fill the gap between the recent advances in unsigned

GCNs and the domain of singed network embedding. It was a graph convolutional net-

work specialized for signed network analysis. Balance theory was leveraged to aggregate

and propagate the information of signed networks across signed GCN layers.
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Table 4.4: Sign Prediction Results #2

Dataset Metric SGCN-UD SGCN-D BESIDE-tri BESIDE SiGCN

Epinions

auc 0.8997 0.8926 0.9304 0.9437 0.9397

F1-binary 0.9486 0.9528 0.9601 0.9637 0.9640

F1-macro 0.8212 0.8079 0.8478 0.8661 0.8722

F1-micro 0.9119 0.9171 0.9306 0.9368 0.9381

Slashdot

auc 0.8444 0.8409 0.8769 0.9108 0.8975

F1-binary 0.8918 0.8942 0.9039 0.9148 0.9118

F1-macro 0.7023 0.6904 0.7592 0.7990 0.7957

F1-micro 0.8230 0.8245 0.8460 0.8657 0.8616

WikiRfA

auc 0.8512 0.8393 0.8931 0.8969 0.8979

F1-binary 0.9024 0.9001 0.9081 0.9101 0.9136

F1-macro 0.7411 0.7285 0.7679 0.7740 0.7848

F1-micro 0.8408 0.8369 0.8526 0.8560 0.8619

WikiElec

auc 0.8523 0.8534 0.8981 0.9003 0.9008

F1-binary 0.9058 0.9073 0.9142 0.9145 0.9190

F1-macro 0.7446 0.7433 0.7723 0.7735 0.7899

F1-micro 0.8463 0.8480 0.8608 0.8612 0.8692

BESIDE [16] was the state-of-the-art representation learning on signed directed net-

works in the literature. Its core is to incorporate both balance theory and status theory

for signed network embedding. By incorporating both triangles and ”bridge” edges,

BESIDE is able to learn effective embeddings for nodes and edges on signed directed net-

works. In particular, BESIDE-tri is a component of BESIDE, which only uses triangles

with balance theory to learn user embeddings.

Among the baselines, SiNE can only deal with undirected signed social networks

and SGCN only evaluated their model on undirected networks, while the others were

designed in the context of directed signed networks. To be comparable, we follow the
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sampling method of [39] to generate associated undirected networks of the benchmark

datasets. Then we evaluated SiNE over the undirected signed networks. As SGCN works

for both undirected and directed networks, we run SGCN over undirected (SGCN-UD)

and directed (SGCN-D) networks, respectively.

Evaluation metrics. Four standard metrics are used to measure link-sign prediction ac-

curacy, including AUC, binary-F1, macro-F1, and micro-F1. Note that, larger values

of these metrics indicate better prediction accuracy. As commonly did in the litera-

ture [16], all experiments were run 5 times to obtain the average values. For efficiency

and scalability, we used the average time over 5 runs as well.

All the experiments are performed on a computer with Intel Core i7-9700K 8-core

3.6GHz CPU, GeForce GTX 1660 Ti GPU, 32GB RAM and 500GB SSD.

Parameter Settings. We implemented our proposed framework in Pytorch2. We split

each dataset into two parts: 80% edges for training and 20% for testing. For each run,

we run with different train-test splits. As there is no node attributes in the datasets, we

randomly initialize the node embeddings with 64 dimensions. In terms of hyperparame-

ters, we applied a grid search for hyperparameters: the learning rate was tuned amongst

{0.001, 0.005, 0.01, 0.05}, the coefficient of L2 normalization was searched in {10−5, 10−4}.

The model parameters are initialized using Xavier initializer [23]. In addition, the max-

imum epoch is set as 600 and early stopping strategy was performed, i.e., premature

stopping if training loss does not increase for 10 successive epochs. Without specifica-

tion, we report the results of three status convolutional layers [32, 64, 32], learning rate

of 0.01 and normalization coefficient of 10−5.

To evaluate the performance of learned user representations on link sign prediction,

we follow the method in BESIDE [16] to get link features through concatenation, i.e.,

the feature of eu→v is [Ssrc[u] : Srev[v]]. For fair comparisons, all methods train a

logistic regression model with learned link features for link sign prediction. We used the

2https://pytorch.org
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released source code for SNE3, SiNE4, SIDE5, SIGNet6, SGCN7, and BESIDE8, of which

parameters were initialized as in the corresponding papers.

Prediction accuracy . Table 4.4 reports the performance comparison results, where the

bold scores underlined are the best and the ones underlined are the second best. We have

the following observations:

SNE achieves poor performance over four datasets, demonstrating the importance

of social-physiological theories on signed network analysis. The performance of SiNE is

reported on undirected networks. SGCN-UD consistently outperforms than SiNE across

all datasets, which indicates that graph convolutional neural networks can effectively

capture the complex relationships between users on signed networks.

Compared to SIDE and SIGNet, the experimental results of SIGNet verify that main-

taining structural balance in higher-order neighborhoods can improve the expressiveness

of nodes representations. SGCN-D generally achieves better performance than SIGNet

in Epinions and WikiElec, while performing slightly worse in Slashdot and WikiRfA.

Overall, the prediction performance of SGCN and SIGNet are comparable. It makes

sense since SGCN introduces structural balance in higher-order connectivity by stacking

multiple graph convolutional layers. Both SGCN and SIGNet, therefore, demonstrate

the importance of maintaining structural balance theory in higher-order neighborhoods.

BESIDE achieves the best performance among the baselines in all cases. Such im-

provements might be attributed to the cooperation of structural balance theory and

status theory, which incorporating both triangle and ”bridge” edges in a complementary

manner. This indicates the benefits of applying status theory in directed signed networks.

SiGCN generally yields the best performance as compared with all of the baselines.

Note that, a small improvement in the reported evaluation metrics implies a significant

3https://bitbucket.org/bookcold/sne-signed-network-embedding/src/master/
4http://www.public.asu.edu/~swang187/codes/SiNE.zip
5https://datalab.snu.ac.kr/side/
6https://github.com/raihan2108/signet
7https://github.com/benedekrozemberczki/SGCN
8https://github.com/yqc01/BESIDE
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influence on the quality of link sign prediction. In particular, comparing to BESIDE-tri

(the one only considers structural balance theory), SiGCN consistently performs better on

all datasets, indicating that status theory can better capture the complex relationships in

directed signed network. Interestingly, SiGCN outperforms BESIDE in most cases, even

though BESIDE incorporated structural balance theory and status theory. On Slashdot,

BESIDE can slightly perform better than SiGCN. This can be explained by the fact that

balance theory — ”the enemy of my enemy is my friend” and ”the friend of my friend

is my friend”— is more coherent with Slashdot than status theory. In a nutshell, by

modeling user relationships with status and stacking multiple status propagation layers,

SiGCN is capable of learning more expressive representations on signed directed networks.

Epinions Slashdot Wikirfa WikiElec
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Figure 4.6: Time comparisons.

Efficiency. For efficiency evaluation, we compared the total runtime of our SiGCN with

the baselines. As the released code of SiNE, SIGNet, and SIDE are not available on GPU,

we report the comparison results with the baselines that can run on GPU. The results are

shown in Fig. 5.5. It is worth noting that SiGCN consistently outperforms in all cases.

In particular, SiGCN speeds up the processing time by up to 6.5× as compared with
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the baselines. In particular, comparing to the state-of-the-art in the literature, BESIDE,

SiGCN is 4× and 2.7× faster on Slashdot and Epinions, respectively. It demonstrates

that our proposed status convolutional layer greatly speeds up the sign prediction process

in signed networks and shows its promising that can be applied to large-scale network

applications.

Robustness. We evaluated the approaches with different training and test set ratios to

measure their robustness. The portions of the training set were set as 80%, 60%, 40%

of the entire dataset. Due to the space limitation, we report the evaluation results on

Epinions and WikiRfA, shown in Table 4.5. Both of SiGCN and BESIDE have good

robustness. In particular, SiGCN has a minor F1-binary decrease of 0.0026 in Epinions

and 0.0054 in WikiRfA when the size of the training set is reduced to 40% of the entire

graph, while BESIDE has a decrease of 0.0041 and 0.0106, respectively. This indicates

that our proposed framework has better robustness, with respect to the size of the training

set.

Scalability. The scalability of SiGCN is evaluated by measuring the wall-clock times with

a different number of users and a different number of user pairs (links/edges), respectively.

Both of the selected users and pairs are subgraphs from the main graph of the dataset,

and each node in the subgraphs has at least one edge (no singleton node). Due to the

space limitation, we only report the results on Epinions and WikiRfA, shown in Fig. 4.7.

More specifically, as Fig. 4.7a and Fig. 4.7c show, the wall-clock time of BESIDE

increases sharply with the number of users while SiGCN consistently performs well as

the number of users increases. This is because the parameters of our proposed status

convolutional layers are shared across all users, making the parameter complexity of our

approach independent of the number of users. For the increasing number of user pairs,

the time of BESIDE increases dramatically and shows similar trends on both datasets,

shown in Fig. 4.7b and Fig. 4.7d. It is noteworthy that SiGCN consistently performs well

on all benchmarking datasets, indicating that SiGCN is more scalable and can readily
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Table 4.5: Robustness

Dataset Test Size metric SIDE SGCN BESIDE SiGCN

Epinions

0.2

auc 0.8768 0.8926 0.9437 0.9396

F1-binary 0.9487 0.9528 0.9637 0.9642

F1-macro 0.7817 0.8079 0.8661 0.8726

F1-micro 0.9094 0.9171 0.9368 0.9385

0.4

auc 0.8788 0.8278 0.9393 0.9366

F1-binary 0.9495 0.9479 0.9615 0.9616

F1-macro 0.7830 0.7598 0.8597 0.8632

F1-micro 0.9108 0.9071 0.9335 0.9340

0.6

auc 0.8700 0.8215 0.9340 0.9295

F1-binary 0.9481 0.9470 0.9596 0.9616

F1-macro 0.7719 0.7553 0.8519 0.8634

F1-micro 0.9080 0.9054 0.9303 0.9340

WikiRfA

0.2

auc 0.6824 0.8393 0.8969 0.8979

F1-binary 0.8748 0.9001 0.9101 0.9136

F1-macro 0.4713 0.8295 0.7740 0.7848

F1-micro 0.7793 0.8369 0.8560 0.8619

0.4

auc 0.6801 0.8281 0.8901 0.8948

F1-binary 0.8761 0.8970 0.9068 0.9122

F1-macro 0.4716 0.7220 0.7633 0.7814

F1-micro 0.7813 0.8321 0.8503 0.8597

0.6

auc 0.6710 0.8069 0.8729 0.8858

F1-binary 0.8750 0.8941 0.8995 0.9082

F1-macro 0.4626 0.7090 0.7394 0.7717

F1-micro 0.7791 0.8268 0.8378 0.8533

be generalized to large-scale network applications.
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Figure 4.7: Scalability: SiGCN vs. BESIDE.

Table 4.6: Link Sign Prediction Accuracy Based on Status (%)

XXXXXXXXXXXdataset
method

PageRank BESIDE-sta BESIDE SiGCN

Epinions 65.15 85.28 91.52 92.40

Slashdot 62.73 82.77 86.01 85.58

WikiRfA 66.37 80.67 82.39 85.28

WikiElec 72.83 79.65 81.72 85.71
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Table 4.7: Global Ranking Results on WikiRfA: never elected (red), elected once (black),
and elected twice (blue)

XXXXXXXXXXXRank
Method WikiRfA

PageRank BESIDE SiGCN

1 West.andrew.g Can’t sleep... Nev1

2 Cobi SarahStierch Legoktm

3 ProtectionBot Phaedriel NCurse

4 Anomie DerHexer Dabomb87

5 Jason Quinn Alex Bakharev PeterSymonds

6 RedirectCleanupBot Werdna DerHexer

7 lustiger seth HJ Mitchell Can’t sleep...

8 Dinoguy1000 Everyking Phaedriel

9 Bellhalla Dabomb87 HJ Mitchell

10 TommyBoy PeterSymonds SarahStierch

4.4.3 Link Sign Prediction Based on Status

Baselines. According to the theory of status, a positive edge indicates that the receiver

has a higher status than the creator, which can be interpreted as ”I trust people who have

higher status than me” and vice versa. For example, if signeu→v
is +1, then Srev[v] −

Ssrc[u] should be positive. To illustrate the effectiveness of the learned status score of

each user, we select three baselines that can obtain the status scores of users. We do

not include other methods, (e.g., such as Prestige [94], MPR [70], and Troll-Trust [83]),

because BESIDE has shown its superiority over these methods.

PageRank [8] was a classical ranking algorithm for unsigned networks. For this

implementation, we follow the same method in BESIDE to obtain the status score of

each user, applying it to the positive subgraph (graph contains positive links only) to

obtain the global values (status scores) for users.

BESIDE [16] uses both triangles and ”bridge” edges to train the model and ob-
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Table 4.8: Global Ranking Results on WikiElec: never elected (red), elected once (black),
and elected twice (blue)

XXXXXXXXXXXRank
Method WikiElec

PageRank BESIDE SiGCN

1 alkivar sarah ewart bd2412

2 cambridgebayweather khoikhoi derhexer

3 graft amidaniel wjbscribe

4 guanaco2 elonka arjun01

5 schissel alex bakharev duja

6 andyz Can’t sleep... ncurse

7 savidan ncurse Can’t sleep...

8 sebastiankessel halibutt amidaniel

9 peruvianllama phaedriel newyorkbrad

10 slambo derhexer phaedriel

tain associated user status. BESIDE-sta is a component of BESIDE, which only uses

”bridge” edges with status theory to learn the status of each user.

We use 80% edges for training and 20% edges for test. The result is obtained by

comparing the status differential of two users and associated ground-truth (link sign) in

the test set. Experiments are performed on four datasets, including Epinions, Slashdot,

WikiRfA, and WikiElec. We use accuracy as the evaluation metric, as did in BESIDE.

The results are shown in Table 4.6, in which we have the following observations:

In general, SiGCN outperforms all baselines over Epinions, WikiRfA, and WikiElec,

while BESIDE performs slightly better on Slashdot. More precisely, SiGCN has signif-

icantly better results, a 2.89% improvement on WikiRfA and a 3.99% improvement on

WikiElec, respectively, which verifies that these two datasets can be better characterized

with status. Moreover, SiGCN improves the accuracy by up to 7.12% as compared with

BESIDE-sta, indicating that our proposed status convolutional layers can capture the
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status property very well. Among all methods, PageRank obtains poor performance,

implying the importance of both positive links and negative links in signed network

analysis.

4.4.4 Global Node Ranking Based on Status

To determine if the status scores are plausible for ranking on the global scale, we also

compare the top 10 nodes ranked based on PageRank, BESIDE, and SiGCN, respectively.

For PageRank, each node has a single ranking score which can be directly used to find

the top 10 nodes. As for BESIDE and SiGCN, we use the combination equation as did

in BESIDE [16] to obtain the ranking score for each node based on the learned status

scores.

Sv =
∑

u∈NI(v)+

Su

No(u)
−

∑
u∈NI(v)−

Su

No(u)
(4.18)

Sv is the status score of node v, NI(v)+ and NI(v)− are two sets of source nodes pointing

to the node v with positive or negative edges respectively, Su is the source status score

of node u and No(u) is the out-degree of node u.

The experiments are conducted on WikiRfA and WikiElec since they have a clear

indication of the global ranking. For WikiRfA, among 3949 candidates, 1885 and 18

users are elected once and twice respectively. For WikiElec, there are 2391 candidates,

among which, 1223, 11, and 1 users are elected once, twice, and thrice respectively. More

times of successful election indicate higher status. The results are shown in Table 4.7

and Table 4.8 with never-elected (in red), once-elected (in black), and twice-elected (in

blue), respectively.

We can observe that SiGCN and BESIDE both have three twice-elected users on

WikiRfA. In particular, the average ranks of these twice-elected users are higher in SiGCN

than BESIDE. On WikiElec, both PageRank and BESIDE include never-elected candi-

dates, while the top 10 users selected by SiGCN are all once-elected. The result indicates
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SiGCN can capture better global ranking features.

• PageRank performs the worst overall: with one and two never-elected candidates

for WikiRfA and WikiElec respectively, indicating that excluding negative links

would not effectively rank the candidates.

• Excluding the overlapped candidates selected by BESIDE and SiGCN on WikiRfA,

the average number of negative links on the rest four candidates is significantly less

in SiGCN, 8.75 selected by SiGCN comparing to 123.25 by BESIDE. This result

shows that SiGCN may give lower scores for candidates with a higher number of

negative links.

• For the twice-elected candidates on WikiRfA, ”Everyking” has the highest num-

ber of negative links—334—which might be the reason why this candidate is not

included in the top-10 selected candidates by SiGCN.

• BESIDE has ”halibutt” as one of its top-10 candidates. This candidate has 69

positive and 28 negative links, respectively. Allowing a high ratio of negative links

may result in inaccurate ranking.

4.5 Related Work

In this section, we present and discuss some related works on network representation

learning and recent advancements in applying graph convolutional neural networks.

4.5.1 Network Representation Learning

The goal of network representation learning is to learn low-dimensional representations

for all nodes, which can be used for many different tasks of network analysis, such as link

prediction [89], node classification, and community detection. An extensive amount of

work has been developed in this area, including Node2Vec [28], Line [74], DeepWalk [66],
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and GCN [41], all of which are proposed for unsigned networks. With the prevalence

of social media that can be represented as signed networks, signed network embedding

has emerged as a promising direction that leverages both positive and negative links to

enhance network mining performance on signed networks [35,39,79,87].

Two social-psychological theories, structural balance theory and status theory, have

been widely used in mining signed networks. These two theories provide insights into

ways in which users use linking mechanisms in social computing applications. Status

theory is specialized in directional links, as it posits a status differential from the source

node of a link to its target node. Balance theory was initially proposed for undirected

networks, though it has been widely applied to directed networks. According to the social

theories they built on, we can roughly divide existing works into two categories: struc-

tural balance theory-based, including SiNE [87], SIDE [39], SIGNet [35] and SGCN [19];

status theory-based. Most existing works mainly focused on representation learning with

structural balance theory, while rare efforts were on signed networks analysis with status

theory. BESIDE [16] was the state-of-the-art solution on signed network embedding,

which proposed to incorporate both balance theory and status theory.

4.5.2 Graph Convolutional Neural Networks

Graph convolutional neural networks (GCNs) have been proven to be powerful on rep-

resentation learning on unsigned network graphs [31,41], leading to new state-of-the-art

results on benchmarks such as node classification and link prediction. These GCN-based

representation learning on unsigned networks consistently outperformed techniques based

upon random walks (e.g, node2vec [28], Line [74], and DeepWalk [66]). Therefore, signed

graph convolutional network, SGCN [19] has been proposed to solve the representation

learning on signed networks. SGCN introduced the definitions of balanced and unbal-

anced paths based on the structural balance theory. By providing a recursive definition

for calculating the balanced and unbalanced sets, SGCN aggregated and propagated
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information, extracted from both positive and negative links, across signed GCN layers.

Despite the compelling success achieved by previous work on signed network embed-

ding, limited attention has been paid to signed directed networks with status theory,

not to mention signed GCN based on status theory. Here we fill this gap by proposing a

GCN-based framework with status theory, a specialized model for representation learning

on signed directed networks.

4.6 Summary

In this chapter, we devised a new framework SiGCN, to learn signed network represen-

tations based on status theory via graph convolutional networks. The key of SiGCN is

the newly proposed status convolutional layer, which can jointly capture graph structure

and associated sign and direction information of the links. Extensive experiments on four

benchmark datasets have demonstrated the rationality and effectiveness of our proposed

SiGCN. In the meanwhile, it enjoys high efficiency, scalability, and robustness due to the

notion of localized graph convolutions.



Chapter 5

Adversarial Attacks against

GCN-Based Link Prediction

Link prediction is one of the fundamental problems for graph-structured data. However,

a number of applications of link prediction, such as predicting commercial ties or mem-

berships within a criminal organization, are adversarial, with another party aiming to

minimize its effectiveness by manipulating observed information about the graph. In this

chapter, we focus on the feasibility of mounting adversarial attacks against link predic-

tion algorithms based on graph neural networks. We first propose a greedy heuristic that

exploits incremental computation to find attacks against a state-of-the-art link prediction

algorithm, called SEAL. We then design an efficient variant of this algorithm that incor-

porates the link formation mechanism and Υ-decaying heuristic theory to design more

effective adversarial attacks. We used real-world datasets and performed an extensive

array of experiments to show that the performance of SEAL is negatively affected by

a significant margin. More importantly, our experimental results have shown that our

adversarial attacks mounted based on SEAL can be readily transferred to several existing

link prediction heuristics in the literature.

The remainder of this chapter is organized as follows. We first present some prelimi-

nary background in Sec. 5.1. Our attack model and problem formulation are introduced

in Sec. 5.2. In Sec. 5.3, we present the details of our algorithm designed to craft ad-
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versarial examples for link prediction effectively and efficiently. In Sec. 5.4, we present

an extensive array of experimental results to evaluate the performance of our approach.

Sec. 5.5 discusses related work and Sec. 5.6 concludes this chapter.

5.1 Preliminaries

Throughout this chapter, we consider link prediction task in a single large graph. For-

mally, let G = (V , E) be an undirected graph, where V = {v1, v2, · · · , vN} is the set of

nodes, and E ⊆ V × V is the set of observed links/edges. Its observed global adjacency

matrix is A, where Ai,j = 1 if (i, j) ∈ E and Ai,j = 0 otherwise. For any nodes x, y ∈ V ,

let Γ(x) be the 1-hop neighbors of x, Γd(x) be the set of nodes whose distance to x is

shorter than or equal to d, d = 1, 2, · · · and d(x, y) be the shortest path distance be-

tween x and y. Given two nodes x, y ∈ V , the h-hop enclosing subgraph for (x, y) is the

subgraph that induced from G by the set of nodes Γh(x) ∪ Γh(y).

Given a graph containing a set of observed links, the goal of link prediction is to

learn a function F : V × V → C that maps the link existence between two given nodes

(x, y) ∈ V × V to a class c in C = {0, 1}, where c = 0 implies that the link does not exist

(called a negative link), and c = 1 implies that the link exists (called a positive link). For

clarity, the link to be predicted is called the target link throughout this chapter.

5.1.1 Heuristics for Link Prediction

A large category of link prediction algorithms is based on some heuristics that com-

pute the proximity between nodes to predict whether they are likely to have a link. In

this category, each heuristic is predefined and has a strong assumption on when two

nodes are likely to have a link. Popular heuristics including common neighbors (CN),

Jaccard [46], preference attachment (PA) [4], Adam-Adar (AA) [2], resource allocation

(RA) [92], Katz index [38], PAGERANK [7], and SimRank [36]. Table 5.1 summarizes

eight popular heuristics and associated heuristic formula, which will be used to analyze
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the transferability of our mechanisms. Note that due to the large literature, we could

not analyze to every heuristic, but to some popular ones.

Table 5.1: Popular Heuristics for Link Prediction

Algorithm Heuristic Formula

common neighbors (CN) |Γ(x) ∩ Γ(y)|

Jaccard [46] |Γ(x)∩Γ(y)|
|Γ(x)∪Γ(y)|

preference attachment (PA) [4] |Γ(x)| × |Γ(y)|

Adam-Adar (AA) [2]
∑

z∈Γ(x)∩Γ(y)
1

log |Γ(z)|

resource allocation (RA) [92]
∑

z∈{Γ(x)∩Γ(y)}
1
|Γ(z)|

Katz index [38]
∑∞

l=1 β
l|path(x, y) = l|

PAGERANK [7] qxy + qyx

SimRank [36] γ
∑

a∈Γ(x)

∑
b∈Γ(y) score(a,b)

|Γ(x)|×|Γ(y)|

Note: Γ(x) and Γ(y) denote the sets of x and y’s one-hop neighboring nodes,
respectively; β is a damping factor; |path(x, y) = l| represents the number of
length-l paths between nodes x and y; qxy is the station probability distribution
of y under the random walk from x.

5.1.2 Graph Neural Networks

Graph neural networks (GNNs) represent a new type of neural networks that are capable

of learning from graphs. A graph neural network for graph classification typically consists

of two main components: graph convolutional layers that extract local substructure

features for individual nodes, and a graph aggregation layer that aggregates node-level

features into a graph-level feature vector.

Deep graph neural networks (DGNN) are GNNs equipped with propagation-based

graph convolution layers. They have been shown to achieve state-of-the-art graph clas-

sification performance on various benchmark datasets [90]. The aggregation layer in a

DGNN is a SortPooling layer, which sorts the final node states to obtain an isomorphism

invariant node ordering, and enables a traditional 1-D convolutional neural network on



Chapter 5. Adversarial Attacks against GCN-Based Link Prediction 79

the node sequence. Its last layer is a fully-connected layer followed by a log-softmax

layer.

5.1.3 The SEAL Framework

In this chapter, we focus on the problem of crafting adversarial examples for link pre-

diction based on graph neural networks. In particular, we consider a state-of-the-art

link prediction framework, called SEAL [89], which learns heuristics from local enclosing

subgraphs using a graph neural network. In essence, the SEAL framework is designed to

automatically learn a function that maps local enclosing subgraph patterns to link exis-

tence. The foundation of this framework is a Υ-decaying heuristic theory, which shows

that local enclosing subgraphs reserve rich information for link existence prediction.

Particularly in [89], Zhang et al. proposed a Υ-decaying heuristic theory that is able

to unify a wide range of heuristics in a single framework, and proved that several existing

heuristics, including Katz index [38], PAGERANK [7], and SimRank [36] can be well

approximated from local enclosing subgraphs. The Υ-decaying heuristic for (x, y) has

the following form:

H(x, y) = η
∞∑
l=1

Υlf(x, y, l) (5.1)

where Υ ∈ (0, 1) is a decaying factor, η > 0 is either a constant or a function of Υ

bounded by a constant, f is a nonnegative function under the given network.

The Υ-decaying heuristic theory for link prediction: Given a Υ-decaying

heuristic, if f(x, y, l) satisfies the following two conditions:

• f(x, y, l) ≤ λl where λ < 1
Υ

;

• f(x, y, l) can be achieved from the h-hop subgraph of (x, y) for l = 1, 2, 3, . . . , g(h),

where g(h) = ah+ b, a, b ∈ N , a > 0.
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Then the Υ-decaying heuristic for (x, y) can be approximated from the h-hop enclosing

subgraph of (x, y) and the approximation error decreases at least exponentially with h.

Following this theory, as illustrated in [89], several existing heuristics inherently share

the same Υ-decaying heuristic form, which implies that from the small enclosing sub-

graphs extracted around links, it is able to approximate a wide range of heuristics with

small errors.

In this regard, the SEAL framework is designed to automatically learn a ‘heuristic’

function that maps local enclosing subgraph patterns to link existence instead of using

predefined ones. It contains three stages: extracting an h-hop local subgraph, either for

a training or a testing link; constructing the node information matrix (X) for each link,

and then learning with a graph neural network. The input of the graph neural network

consists of (A,X) tuples, where A represents the adjacency matrix of the subgraph, and

the output of the graph neural network consists of link labels c. The optimal model

parameters W are learned by minimizing the cross-entropy on the output of the training

links. At test time, the link existence of two nodes then can be predicted by applying

the trained SEAL model.

For clarity, let’s see a running example as illustrated in Fig. 5.1. In this example, the

SEAL framework learns the ‘heuristic’ function using 1-hop enclosing subgraphs. The

learned heuristic may contain information about its graph structure features, such as the

number of common neighbours, Jaccard, and Katz index, etc. (A,B) and (C,D) are the

links with labels and regarded as training links.

Essentially, the node information matrix X contains information about each node,

including the structural node labels, embeddings, or node attributes. As the structural

node label is used to mark the different roles (topological structure) of nodes in an

enclosing graph, it is a kind of graph structural feature. By incorporating the node

information matrix, SEAL can learn the mapping function from its graph structure and

node attributes. Our work focuses on mounting adversarial attacks on link prediction



Chapter 5. Adversarial Attacks against GCN-Based Link Prediction 81

Enclosing 
subgraph 
extraction

Learn graph 
structure features:

common 
neighbours

Jaccard
Katz
…

c=1

A

B

C
D C

D

A

B

Graph Neural Network 

c=0

Figure 5.1: The SEAL framework: learning graph structure features from 1-hop local
enclosing subgraphs: (A,B) and (C,D) are links with labels and regarded as training
links.

algorithms based on graph neural network, particularly targeting the link prediction

algorithm in SEAL. We assume that the link prediction model is trained with graph data

that is clean and attack-free.

5.1.4 Attack Transferability

Existing work in the literature on adversarial machine learning demonstrated that adver-

sarial examples produced to mislead a specific model are highly likely to mislead other

models; such property is referred to as transferability. A practical impact of this property

is that it leads to oracle-based black-box attacks. More specifically, the adversary is able

to use the target model as an oracle to label a synthetic training set for the surrogate,

so the adversary need not even observe the full data to mount the attack [53,64].

The transferability of adversarial machine learning has been extensively studied in

the literature [64, 65, 75]. In this dissertation, the definition of transferability is more

general and not only limited among machine learning models. Note that, we aim to offer

a comprehensive algorithmic investigation of the problem of attacking link prediction

algorithms based on graph neural networks. For this purpose, we focus on evasion attacks

against a GNN-based framework, called SEAL, which is proposed based on a Υ-decaying



Chapter 5. Adversarial Attacks against GCN-Based Link Prediction 82

heuristic theory. Regarding the Υ-decaying heuristic framework, we can envision that

the mounted attacks may be transferred to the heuristics.

To illustrate the effectiveness of our attacks, we will empirically analyze their trans-

ferability to existing heuristics in Sec. 5.4.

5.2 Problem Setup

In this section, we will describe our threat model and explain our attacks as modifications

to a graph. In practice, the adversary changes the graph based on the underlying data

that are explored for the prediction of missing (or unobserved) links. For example, in

criminal networks, the adversary aims to hide connections between the entities to avoid

being detected in criminal investigations.

5.2.1 Notations

An undirected graph G is defined by the sets of nodes V and edges E . G is such a graph

that represents the underlying data — a defender analyses the missing links based on its

observed information (e.g., observed graph structure, etc).

Often when applied, a defender learns a prediction model — described as F in Sec. 5.1

— according to its observed graph and seeks to predict the link existence e(x, y) given

any two target nodes x, y ∈ V . In this dissertation, an adversary controls an attacker

subset Vs ∈ V . The adversary is capable of accessing and performing perturbations on

this subset within a graph G = (V , E), leading to the graph G ′ = (V ′, E ′), such that the

link prediction model learned is fooled.

5.2.2 Threat Model

Before describing the adversary’s knowledge, we first discuss the knowledge that is avail-

able to the adversary. We assume that the adversary has an active infection set to

manipulate, or Vs ∈ V . This reflects the real-world situation that some of the links are
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Figure 5.2: Small perturbations on the graph lead to wrong prediction of the target link
by SEAL: ((E,F ) is a testing link without knowing its label).

intensively monitored and can be easily detected if an attack occurs.

On the other hand, the adversary has full knowledge of the link prediction algorithms,

including the generation of the node information matrix, as well as its learning algorithm.

In other words, we assume in this dissertation that the adversary has complete access

to the graph neural networks, including the architecture and model parameters, and can

use them in a white-box manner. This is a conservative and realistic assumption: due to

the transferability property as illustrated in Sec. 5.1.4, it is possible to train a surrogate

model given black-box access to a target model, and by attacking the surrogate model,

the adversary can transfer the attacks to the target [53,64].

As in the literature [95], we also assume that the adversary has perfect knowledge

of the graph G, obtained from the defender. Given the full dataset and the knowledge

of the modeling process, the adversary can completely reconstruct the link prediction

results as the defender does to evaluate the effectiveness of their attacks. Ideally, this

data would be well guarded, making this level of knowledge only realistic for the most

sophisticated adversaries. Nevertheless, considering the damage that could be done by a

perfectly knowledgeable adversary is important as a security evaluation, since it allows
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us to find potential weaknesses in link prediction models.

Our attack architecture is shown as Fig. 5.2. During the testing phase, a testing link

(E,F ) is predicted as a negative link, while with a perturbation (adding an edge denoted

as a blue link in Fig. 5.2), it is predicted as a positive link. Since X contains information

about a node, including node structural labels, manipulating perturbations on the graph

structure (adding or deleting edges) would lead to changes in both A and X (coupled

variables while performing perturbations). Without loss of generality, attacks induced by

adding or deleting edges are referred to as graph structure attacks. Directly manipulating

the target link is easy to be detected; thus we also assume that the adversary would

not add or delete an edge between the target nodes. To summarize, as the inputs of

the prediction model are (A,X) tuples representing the enclosing subgraph of two given

target nodes x and y, perturbations causing changes on A and X may lead to an incorrect

prediction of the target link e(x, y).

5.2.3 Unnoticeability Constraint

In typical application domains, a successful adversarial example is crafted under some

simple constraints to ensure its unnoticeability. For example, in the image recognition

domain, the perturbation constraint is measured by the distance (l0, l1, l2, l∞-norm, etc.)

between the adversarial example and its normal example. Its effectiveness can be easily

verified by human vision [10, 14]. However, in a complex network graph, manipulating

the input data to fool its learning model is much harder.

To quantitatively evaluate unnoticeability, we use the perturbation constraint mea-

sured by l1-norm distance of the graph adjacency matrices before and after perturbations.

It can be formulated as:

|A− A′| ≤ ∆ (5.2)

where A,A′ are the adjacency matrices of the subgraphs before and after perturbations.

It sets the maximum bound that the adversary can change the graph, and with this
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constraint it is more likely to satisfy the unnoticeability constraint.

Instead of verifying by human vision, we employ the graph property preservation

technique to ensure its unnoticeable perturbations, which has been discussed by Zugner

et al. [95]. Precisely, we use degree distribution preservation to ensure unnoticeable

perturbations in the graph — likelihood ratio test for the power-law degree distribution

of the two graphs [95]. The intuition is that two highly similar graphs would follow

similar power-law behaviour regarding their degree distributions. According to [95], the

graph structure perturbations G ′ = (V ′, E ,X ′) can be accepted only when the degree

distribution satisfies:

Λ(G(0),G ′) < τ ≈ 0.004 (5.3)

where Λ denotes the log-likelihood ratio test statistic according to the graphs’ power-

law degree distributions; it follows a χ2 distribution with one degree of freedom. τ is

approximated using the critical p-value setting in the χ2 distribution.

5.2.4 Attacks as an Optimization Problem

As is commonly done on evasion attacks in other application domains, such as image [10]

and audio [11], we formulate the problem of generating adversarial perturbations for the

link prediction task as follows: given any two target nodes x, y, we solve the following

problem:

maximize
(A′,X′)

F (A′, X ′)c′ − F (A′, X ′)c

subject to |A− A′| ≤ ∆

Λ(G(0),G ′) < τ ≈ 0.004

(5.4)

where F is the pre-trained model that the adversary aims to fool, F (A′, X ′) is the

output of the log-softmax layer of the graph neural network, G(0) represents the initial

graph, (A,X) and (A′, X ′) denote the enclosing subgraphs of the target nodes (x, y)

extracted from G(0) and G ′, respectively. c and c′ indicate the predicted labels of e(x, y)
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before and after perturbations. For simplicity, we use f(A′, X ′) to represent the loss

function {F (A′, X ′)c′ − F (A′, X ′)c}, which is designed to measure how close (A′, X ′) is

to a successful attack.

5.3 Generating Adversarial Attacks

Solving the optimization problem as illustrated in Sec. 5.2.4 is non-trivial. While the

optimization-based problem for adversarial attacks has been addressed in the literature

using gradient-based computations [10,11,27], these existing solutions are not applicable

in our case.

Except for its discreteness property and non i.i.d of the graph data, the perturbation

variables used to optimize the objective function are not independent. Precisely, as

discussed in Sec. 5.1.3, the node information matrix contains the node structural label,

which is one kind of graph structural features. With a graph structure attack, not only

the adjacency matrix but also the node information matrix would be changed, which

implies that perturbations on A and X are coupled variables in our problem.

In this section, we will describe the algorithms that we use to overcome the challenges

of crafting adversarial examples to fool the link prediction model. In particular, the goal

of generating adversarial examples in the complex network graph is to mislead the SEAL

framework, causing the link predicted results to be incorrect.

5.3.1 Greedy Graph Structure Perturbation

To cope with data discreteness and variable dependencies, we adopt a locally optimal

strategy that perturbs the graph one at a time using an optimal way to manipulate

the graph structure (by adding or deleting an edge). To be unnoticeable, the total

perturbation magnitude is limited by ∆ as shown in Eq. (5.2).

For each particular perturbation, we select the one that can achieve the maximum

loss function as Eq. (5.4), from its current feasible graph structure perturbation space
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— Sstruct (constructed based on procedure GGSP or procedure OGSP which will

be explained later). After each effective perturbation, the enclosing subgraph of the

target nodes is changed and requires to be re-extracted from the perturbed graph. With

this renewed subgraph, a new pair of (A
(t)
xy , X

(t)
xy ) is generated as the current state of

the subgraph and would be the input of the next perturbation. The graph structure

perturbation would terminate either due to a successful attack (f(A′, X ′) > 0) or the

maximum perturbation constraint ∆.

As we mentioned above, the variables (A′, X ′) that are used to optimize the loss

function, regarding the structure attack, are dependent. Thus, the typical approaches

of using gradient-based search for each perturbation are not applicable in our case. To

solve Eq. (5.4) with dependent variables, the most intuitive way to construct Sstruct is

to employ a heuristic search under its unnoticeability constraint (see line 6 and 9 in

procedure GGSP).

1: procedure (GGSP): Greedy Graph Structure Perturbation

2: Input: Graph G(t)(V(t), E (t)), h-hop subgraph G
(t)
xy .

3: Output: Sstruct

4: Sstruct ← ∅
5: for all u ∈ Γh−1(x) ∪ Γh−1(y) do
6: for all v ∈ Vs do
7: if e(u, v) = 1 and Λ(G(t),G(t) − e(u, v)) < 0.004 then
8: G ′ ← G(t) − e(u, v)
9: Sstruct ← Sstruct ∪ {G ′}

10: if e(u, v) = 0 and Λ(G(t),G(t) + e(u, v)) < 0.004 then
11: G ′ ← G(t) + e(u, v)
12: Sstruct ← Sstruct ∪ {G ′}

According to the Υ-decaying heuristic theory [89], given two target nodes, their h-hop

enclosing subgraphs are very informative for link prediction, which means the perturba-

tions are likely feasible when they lead to changes on its subgraph; h = 1 or 2 is typically

sufficient for accurate link prediction. Hence, we only have to inspect the optimal pertur-

bations that can make changes to the h-hop subgraph. In other words, at least one end

of the edge added/deleted should be included in the enclosing subgraph to be a possible
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Figure 5.3: An illustration of effective edge perturbations: add perturbations in its global
graph (left) and corresponding effects in its subgraph (right), where the red edges denote
the ineffective perturbations, the blue edges indicate the effective perturbations, bold
dash lines represent edge deletion, and bold solid lines denote addition.

feasible perturbation. Precisely, one end of the perturbed edge should be included in its

set of (h− 1)-hop nodes, denoted as {Γh−1(x) ∪ Γh−1(y)} (see procedure GGSP).

Let’s see an example with h = 2 as shown in Fig. 5.3. x, y are the target nodes and

the link in between is requested for link existence prediction. As shown in Fig. 5.3, only

when one end of edge added/ deleted (the blue lines) is included in their 1-hop node

set (1-hop neighbours of x/ y), the perturbations can lead to changes to the subgraph.

However, the ends of the perturbed edges (the red lines) are not in their 1-hop node set

(not 1-hop neighbours of x/ y), could not change the subgraph.

The search time complexity in procedure GGSP would be O(|Vs| × (|Γh−1(x)| +

|Γh−1(y)|)), where |Vs| is the number of nodes that the adversary is able to manipulate

and it can reach N as the capability of the adversary increases. With rapidly growing

volumes of data, the size of the graph (N) is typically very large; for example, there were

300 millions of Amazon customer accounts in 2018 as reported 1. Even we only consider

the search space from its h-hop subgraph, the perturbation search time cost is still very

high. Can we further improve our attack efficiency? The answer is affirmative.

1https://expandedramblings.com/index.php/amazon-statistics/
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1: procedure (OGSP): Optimized Graph Structure Perturbation

2: Input: Graph G(t)(V(t), E (t)), h-hop subgraph G
(t)
xy .

3: Output: Sstruct

4: Sstruct ← ∅
. decrease common neighbours

5: if F (A
(0)
xy , X

(0)
xy ) = 1 then

6: for {∀u, v ∈ Vs ∩ {Γh(x) ∩ Γh(y)}} ∧ {e(u, v) = 1} do
7: if Λ(G(t),G(t) − e(u, v)) < 0.004 then
8: G ′ ← G(t) − e(u, v)
9: Sstruct ← Sstruct ∪ {G ′}

. increase common neighbours
10: if F (A

(0)
xy , X

(0)
xy ) = 0 then

11: for all u ∈ Vs ∩ {Γh(x)/Γh(y)} ∧ v ∈ {Γh−1(y)/Γh(x)} do
12: if {Λ(G(t),G(t) + e(u, v)) < 0.004} ∧ (u, v) 6= (x, y) then
13: G ′ ← G(t) + e(u, v)
14: Sstruct ← Sstruct ∪ {G ′}
15: for all u ∈ Vs ∩ {Γh(y)/Γh(x)} ∧ v ∈ {Γh−1(x)/Γh(y)} do
16: if {Λ(G(t),G(t) + e(u, v)) < 0.004} ∧ (u, v) 6= (x, y) then
17: G ′ ← G(t) + e(u, v)
18: Sstruct ← Sstruct ∪ {G ′}
19: for all v ∈ Vs/{Γh(x) ∪ Γh(y)}, ∀i ∈ Γh−1(x), and ∀j ∈ Γh−1(y) do
20: if Λ(G(t),G(t) + e(i, v) + e(v, j) < 0.004 then
21: G ′ ← G(t) + e(i, v) + e(v, j)
22: Sstruct ← Sstruct ∪ {G ′}

5.3.2 Optimized Graph Structure Perturbation

Inspired by the intuition of link formation mechanism — the more common neighbours

two target nodes have, the more likely they are connected — we construct Sstruct based

on the common neighbours that the target nodes share. In this context, a common

neighbour is defined as the intersectional neighbours of the two target nodes within their

h-hop subgraphs.

We consider two different kinds of attacks when constructing Sstruct. On the one hand,

to force a positive link to be a negative link (link hidden), we delete edges to reduce the

number of common neighbours in the subgraph (see line 4 − 8 in procedure OGSP).

On the other hand, to encourage a negative link to become a positive link, we add edges

to force more nodes to become the common neighbours of the target nodes. Precisely,
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we first consider the nodes in the h-hop subgraph but are not common neighbours. For

these nodes, we add one edge for each perturbation under the unnoticeability constraint

(see line 10 − 17 in procedure OGSP). Besides, we consider the nodes that are not

included in the h-hop subgraph. In this case, we add two edges simultaneously and force

the nodes, outside of the h-hop subgraph, to become the common neighbours under the

unnoticeability constraint (see line 18− 21 in procedure OGSP).

Regarding the search time complexity, the best-case complexity is max(O(|Γh(x)|),

O(|Γh(y)|)), which can be achieved when only considering link-hidden attack. The worst-

case complexity is O(|Vs| × (|Γh−1(x)| + |Γh−1(y)|)), which is equal to the average com-

plexity of procedure GGSP. The benefit of procedure OGSP is more significant in

applications where the adversary is more focusing on hiding links.

5.4 Experimental Evaluation

We have conducted an extensive array of experiments to evaluate our proposed meth-

ods, including our greedy algorithm (GGSP) and its efficient variation (OGSP). Our

results show that both of them are able to reduce the availability of the SEAL frame-

work significantly, achieving strong performance on various datasets. More importantly,

our experimental results have also shown that our adversarial attacks mounted based on

SEAL can be readily transferred to several existing heuristics in the literature. We run

the experiments 5 times and then use the average attack success rate (ASR) and the

average AUC as our evaluation metrics. To make direct comparisons, we use the same

model architectures as SEAL shown in Table 5.3, where k is set to ensure that 60% of

the subgraph nodes are larger than k [89, 90].

Datasets. We have selected four datasets as the benchmarks to evaluate our methods.

The datasets statistics are given in Table 5.2. USAir is a network of US Airlines [5], which

average node degree is 12.81. NS is a collaboration network of researchers in network

science [62], which average node degree is 3.45. Celegans [81] is a neural network of
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Table 5.2: Dataset Statistics and AUC using SEAL

Network #nodes/ #edges #training/ #testing AUC

USAir 332/2, 126 3, 400/424 0.959

NS 1, 589/2, 742 4, 386/548 0.959

Celegans 297/2, 148 3, 436/428 0.885

PB 1, 222/16, 714 26, 742/3, 342 0.940

C.elegans, which average node degree is 14.46 and PB is a network of US political blogs [1],

which average node degree is 27.36.

Similar to SEAL, we split the existent links randomly into a positive training set

(80%) and testing set (10%). As for negative sets, we randomly sample an equal number

of non-existent links as the negative training set and testing set, respectively. We retrain

SEAL for 50 epochs for each dataset, and select the model with the smallest loss on 10%

validation data; these pre-trained models are used as our target models to mount attacks.

Note that, we remove the edges between the two target nodes in the enclosing sub-

graphs while we train graph neural network, as did in [89]. This is because these edges

would contain the link existence information, while is not available in the enclosing sub-

graphs of testing links. As observed, we report the model AUC on clean data in Table 5.2.

We report success if the attack produces an adversarial example with the incorrect

prediction within the perturbation bound ∆, and the associated perturbed graph still

satisfies the unnoticeability constraint. In our experiments, we set ∆ as the target link

degree, which is the sum of degrees of two nodes. This is inspired by the observation

that high-degree links are harder to attack than the low-degree ones.

Within the testing set, we select 10 links with the highest prediction margin, including

5 positive links and 5 negative links, i.e., they clearly are correct predictions (best-set).

We also select 10 links with the lowest prediction margin (but still correctly predicted),

including 5 positive links and 5 negative links (worst-set). Finally, we select 20 links



Chapter 5. Adversarial Attacks against GCN-Based Link Prediction 92

randomly sampled from the links that are correctly predicted, including 10 positive links

and 10 negative links, respectively (random-set). These will serve as the target links

for our attack. By default, the average ASR and AUC are reported according to the

prediction results of the links randomly selected.

Table 5.3: Model Architecture of SEAL

Layer Type Parameter

4 Graph Convolutions + Tanh 32, 32, 32, 1 channels

Max-K SortPooling k

1-D Convolution + ReLU 16 output channels,

filter size 2, step size 2

1-D Convolution + ReLU 32 output channels,

filter size 5, step size 1

Dense Layers 128 units

Log-Softmax 2 channels

5.4.1 Attacks on SEAL

We start by analyzing both of our two algorithms, GGSP and OGSP, by inspecting their

influences on link prediction performance of SEAL (with full knowledge of the network

graph). In Table 5.4, we report the average ASR and average AUC over 5 runs when

performing attacks on SEAL. For each run, we use the random-set as our target links.

We can see GGSP achieves very high ASR on NS — 100%, and its AUC degrades to

0.000. Even OGSP has an attack performance degradation on this dataset, it still can

decline its model AUC to 0.038.

In Fig. 5.4, we report how our methods affect different testing sets (best, worst and

random). We define the prediction margin as the difference between the ground truth

label probability with SEAL and the target label probability. The smaller prediction
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margin indicates better attack performance (margin less than 0 indicates a successful

attack). As observed in Fig. 5.4, most of the average margins are under 0, represented

as ‘star’. best-set is harder to attack as its initial prediction margin are large (typically

close to 1). Overall, it still can achieve reasonably good attack performance with our

algorithms.

Table 5.4: Average Attack Success Rate/Average AUC

Data GGSP OGSP

USAir 96.3%/0.050 98%/0.000

NS 100%/0.000 79%/0.038

Celegans 87.5%/0.133 82%/0.166

PB 82.5%/0.207 78%/0.294

Furthermore, to inspect and compare the time cost of our two attack algorithms,

we also report the average attack time per link across different datasets. As Fig. 5.5

shows, OGSP is way more efficient than GGSP; it can even be approximately 10× faster

on Celegans. Note that our time cost is averaged over the target links, containing 50%

positive links and 50% negative links. We suspect that OGSP can achieve even better

performance at runtime while the adversary is more focused on hiding links.

To analyze the performance of our attack with respect to the adversary capability,

we run four sets of experiments when |Vs| are in different settings for each dataset. We

set the number of nodes that the adversary is capable of manipulating as 25%, 50%, 75%

and 100% of the entire node set, respectively. For each run, the node set Vs is selected

randomly. As shown in Fig. 5.5, as |Vs| becomes larger, GGSP produces better results.

As observed, even with only 25% perturbable nodes, our algorithm can still achieve a

high ASR.

We further report how the target link surrounding structure affects the attack perfor-
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Table 5.5: Average ASR (GGSP)

|Vs|/N USAir NS Celegans PB

0.25 66.3% 97.5% 72.5% 69.9%

0.50 91.3% 100% 81.3% 79.3%

0.75 92.5% 100% 84.3% 81.2%

1.00 96.3% 100% 87.5% 82.5%

mance. We run three sets of experiments in USAir when the adversary can perturb 25%

of the entire node set. The target links are categorized according to their link degrees.

As seen in Table 5.6, the target links with higher degrees achieve lower ASRs, indicating

that higher-degree links are harder to attack. The ASR of the target links in the range

[1 : 30) can achieve as high as 90.96%.

Table 5.6: ASR: Target Link Surrounding Structure Complexity

Degree range [1 : 30) [31 : 90) [90 :∞)

#target links 188 93 78

Attack success rate 90.96% 64.52% 43.58%

Inspecting an adversarial example. Fig. 5.6 illustrates a real adversarial example

mounted for NS. We first randomly select a pair of nodes as the target nodes (grey); the

link (dash line) is to be predicted using the pre-trained SEAL. Fig. 5.6a shows its 1-hop

enclosing subgraph; the link is initially predicted as c = 0 by SEAL, indicating the link

is negative. Fig. 5.6a shows its 1-hop enclosing subgraph with our attack method. The

edge in blue is suggested to be added by our attack. Even just with this edge addition,

the link is predicted as positive.

Transferability of attacks. Note that, our overall objective is to offer a comprehensive
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Table 5.7: Transferability (AUC)

Data SEAL CN Jaccard PA AA RA Katz PR SimRank WLK

USAir
Clean 0.967 0.926 0.902 0.843 0.943 0.947 0.910 0.920 0.790 0.960

Attacked 0.002 0.139 0.346 0.827 0.591 0.246 0.780 0.187 0.083 0.517

NS
Clean 0.987 0.934 0.934 0.631 0.934 0.934 0.934 0.934 0.935 0.982

Attacked 0.000 0.000 0.000 0.178 0.000 0.000 0.000 0.100 0.170 0.467

Celegans
Clean 0.872 0.834 0.782 0.745 0.849 0.853 0.849 0.881 0.751 0.880

Attacked 0.233 0.263 0.094 0.703 0.187 0.152 0.300 0.367 0.190 0.508

PB
Clean 0.940 0.908 0.859 0.899 0.913 0.916 0.919 0.934 0.766 0.929

Attacked 0.277 0.564 0.151 0.881 0.510 0.400 0.590 0.603 0.082 0.500

study on the ability of an “adversary” to manipulate link prediction via adversarial ma-

chine learning. For this purpose, we analyze the transferability of the adversarial attack,

generated based on SEAL, to existing heuristics, including common neighbors (CN),

Jaccard [46], preference attachment (PA) [4], Adam-Adar (AA) [2], resource allocation

(RA) [92], Katz index [38], PAGERANK (PR) [7], SimRank [36] and WLK [72]. We

report the associated average model AUC over 5 runs, including the model AUC tested

on clean graph data and model AUC tested on attacked graph data.

Note that, to be comparable, we trained SEAL purely using graph structure features

(the node information matrix contains structural node labels only as did in [89]). Then we

mount the adversarial attacks using our efficient design — OGSP. As shown in Table 5.7,

the performance of most existing heuristics is even worse than random guessing (the

model AUC is less than 0.5), indicating that our attacks can be readily transferred

to several existing heuristics in the literature. Noticeably, among all the datasets, the

mounted attacks perform extremely well for NS. We can observe that the mounted attacks

failed transfer to preference attachment. We suspect that is because the heuristic used
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by preference attachment only considers individual node degree of the target node and

does not contain any neighbour information, which is not consistent with the typical link

formation mechanism we considered.

Defense against attacks. The mounted attacks violate the fundamental assumptions

used for link predictions, i.e., the Υ-decaying theory and link formation mechanism, it is

very hard to completely eliminate the problem. As often applied in the image domain,

adversarial training would force the model to assign both clean and adversarial examples

to the same output labels [37]. This raises the idea of adding adversarial examples into

the training set while we are training the model, which we leave for our future work.

5.5 Related Work

In line with the focus of this work, we briefly describe deep neural networks (DNNs) for

complex network graphs aiming to solve the link prediction tasks.

Link prediction algorithms: A large number of link prediction algorithms have been

introduced in the literature. Existing approaches can be categorized into two classes.

The first is heuristic methods which use predefined similarity functions to measure the

likelihood of links [2, 36, 38, 54]. Although they worked well in practice, these heuristics

make strong assumptions on when links may exist, and none of them performs consistently

well across all complex networks [54].

The second is learning-based methods, which automatically learn a mapping function

from the network [3, 78, 88, 89]. Weisfeiler-Lehman Neural Machine (WLNM) proposed

by Zhang et al. is the first attempt to employ DNNs for link-prediction tasks [88]. In

particular, it learns general graph structure features by encoding enclosing subgraphs of

the training links into fixed-size adjacency matrices and trains a fully-connected neural

network on the adjacency matrices. As the typical neural networks only accept fixed-size

tensor, WLNM can only learn the link local patterns from the subgraphs with fixed-size.

Following this work, Zhang et al. proposed the SEAL framework for link prediction
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using graph neural network, called SEAL [89]. It has been shown its state-of-the-art

prediction performance empirically and theoretically. In particular, a Υ-decaying theory

has been developed to unify a wide range of existing heuristics for this task, which proved

that local subgraphs are informative for link prediction.

Adversarial attacks on link prediction: Zhou et al. investigated the problem of

mounting attacks on several heuristics for link prediction. In this work, they further

categorized the heuristics based on the maximum hop of neighbours needed to calculate

the similarity score. For each category, they proposed associated attack approaches via

deleting edges only. Chen et al. proposed an iterative gradient attack against graph auto-

encoder (GAE)-based link prediction [13]. In contrast, our attacks are mounted based

on SEAL under “unnoticeability” constraint and are more general, as they perform well

in several link prediction heuristics.

Adversarial attacks on machine learning: Huang et al. categorized attacks in ad-

versarial machine learning as either causative or evasion, with the former poisoning the

training dataset and the latter evading the pre-trained model by crafting adversarial ex-

amples [34]. Following the terminology of Huang et at. , our work focuses on the evasion

attacks that aim to create adversarial examples deliberately to mislead the state-of-the-

art link prediction framework — SEAL, yet still preserving its unnoticeability.

Adversarial attacks have been shown their capability of significantly degrading the

performance of deep learning models in various application domains, e.g., image [10],

audio [11] and malware detection [27]. These applications consider the data instances to

be independent and classify an instance based on features extracted from only that in-

stance. This directly enables evasion techniques such as gradient descent/ascent directly

in the feature space. For complex network graph as we considered in this dissertation,

data instances (e.g., links) are interrelated and treated as non i.i.d data.

Adversarial attacks against graph data. Works on adversarial attacks against com-

plex network graph for GNN-based graph learning tasks are exceedingly rare, in contrast
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to other application domains, not to mention adversarial attacks particularly for link

prediction. Very recently, Zugner et al. first proposed the work on adversarial attacks

against network graph particularly for node classification tasks [95]. As for the classifi-

cation model, they focused on a transductive learning setting. Zugner et al. ’s work is

inherently related to the causative/poisoning attacks [34]. Following this work, Zugner

et al. investigated the problem of training-time attacks on the overall performance of

node classification via the principle of meta learning [96].

Along with the work of Zugner et al. , Dai et al. proposed to employ reinforcement

learning approach to attack in both the graph-level learning tasks and the node-level

classification tasks [18]. Unlike Zugner et al. ’s causative/poisoning attacks, Dai et al. ’s

work focused on the evasion attacks particularly against node/graph classification tasks.

Except for Dai et al. ’s evasion attacks, Wang et al. studied evasion attacks against

collective classification methods via manipulating the graph structure [77]. In contrast,

our work focuses on adversarial GNN-based link prediction, which deals with coupled

perturbation variables and non i.i.d graph data. We also evaluate the different capabilities

of the adversary with various perturbable sets, and analyze its transferability to existing

link prediction heuristics.

5.6 Summary

We have shown that adversarial attacks on graphs can break the SEAL framework that

uses GNNs for link prediction. These attacks can often achieve significantly higher attack

success rates, and can degrade the model performance by a substantial margin, making

the prediction error even worse than random guessing. By incorporating the Υ-decaying

theory and the link formation mechanism, our attacks can be generated efficiently and

effectively. The prediction performance is consistently exacerbated, even when the adver-

sary’s capability is restricted to only parts of the network graph. Based on our extensive

experiments, we show that the attacks mounted based on GNN-based link prediction can
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be transferred to several existing heuristics with our design.
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Figure 5.4: Link prediction margin: GGSP vs. OGSP.
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Figure 5.5: Average attack time per link: GGSP vs. OGSP.
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Figure 5.6: Adversarial example from NS: given two target nodes (in grey) randomly
selected from NS, the link in between is un-observed (a) its initial 1-hop subgraph was
predicted as ‘non-existed’ by SEAL; (b) its 1-hop subgraph after perturbation (just one
edge perturbation — blue line — in this case) was predicted as ‘existed’ by SEAL.
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Concluding Remarks

6.1 Conclusion

In this dissertation, we have investigated the following important research problems cen-

tering on the theme of social relationship study, particularly social trust in online social

networks, involving social trust evaluation with graph convolutional networks, repre-

sentation learning with graph convolutional networks when the social relationships are

modeled as signed networks and the robustness of used techniques, graph convolutional

networks.

We first study the social trust evaluation problem with graph convolutional networks,

with the objective of accurately and efficiently estimating the value of trustworthiness

between any two users in online social networks. Though graph convolutional neural

networks (GCNs) have shown to be powerful in learning on graph data, which provide

great potential to the study of social trust, it is challenging to directly apply GCNs

to evaluate social trust in online social networks due to its inherent complexity nature.

Specifically, online social networks not only contain the social graph structure (social

connections between users) but also include pairwise social trust relationships.

To address the challenges, we first study the inherent properties of social trust re-

lationship — the propagative nature, composable nature, and asymmetric nature. We

then proposed Guardian, to address the challenges in social trust evaluation based on

102
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graph convolutional neural networks. Guardian is an end-to-end framework that stacks

multiple trust convolutional layers, which is designed to discover hidden and predictive

latent factors of trust in online social networks. We demonstrated the effectiveness and

efficiency of our proposed framework using two online social networks from different do-

mains — Advogato and Pretty Good Privacy. Our extensive array of experiments on

benchmarking datasets demonstrated that Guardian can speedup trust evaluation by

up to 2, 827× with comparable accuracy as compared to NeuralWalk [51], and increase

accuracy by up to 18.8% and 19.8% compared with Matri [85] and OpinionWalk [50],

respectively.

Then we focus on the problem of representation learning when the social relationships

are modeled as signed networks. Yet, representation learning in signed networks using

graph convolutional neural networks is challenging. GCNs were originally designed to

capture the homophily nature of unsigned networks, which is not applicable when both

positive and negative links are jointly considered. To address the challenges, we proposed

SiGCN, a new framework that learns representations of users for signed directed networks

with graph convolutional neural networks. SiGCN is designed based on status theory,

which provides an organizing principle of signed links for signed directed networks [44].

Then we demonstrated the effectiveness and efficiency of SiGCN using four signed

directed networks from different domains. Our extensive array of experiments on bench-

marking datasets demonstrated that SiGCN can speedup representation learning for link

sign prediction by up to 6.5× as compared with the baselines. More specifically, SiGCN

speeds up to 4× faster and achieves comparable accuracy as compared to BESIDE [16],

increases accuracy by up to 18.8% compared with SIDE [39], and achieves the state-of-

the-art robustness and scalability as reported in the literature. We also show that SiGCN

can learn effective status scores of each user, which can be used for link sign prediction

and node ranking and yield state-of-the-art performance.

We further study the robustness of used methodologies, graph convolutional networks,
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by studying the ability of an “adversary” to manipulate link prediction based on graph

convolutional networks. We formulate the problem of crafting adversarial examples to

deceive graph convolutional neural networks-based link prediction models as an opti-

mization problem. In particular, we focus on evasion attacks against a state-of-the-art

link prediction algorithm, called SEAL [89], which learns missing/unobserved links from

local enclosing subgraphs. We first proposed a greedy heuristic that perturbs the network

graph incrementally by manipulating the graph structure. We then proposed an efficient

variant that utilizes the link formation mechanism and the Υ-decaying heuristic theory.

To validate the effectiveness of our crafted attacks, we use real-world datasets to perform

an extensive array of experiments. Our results have shown convincing evidence that the

performance of link prediction in SEAL has been negatively affected by a significant mar-

gin using our adversarial attack, even with very limited knowledge of complex network

graphs. More importantly, our experimental results have also shown that our adversarial

attack can be readily transferred to several link prediction heuristics in the literature.

6.2 Future Directions

Our work on social trust study in online social networks and the robustness of graph

convolutional network-based methodologies are by no means complete.

Explaining the predictions of GCNs. Despite their capabilities for machine

learning on graphs, GCNs still lack transparency as they do not easily allow for human-

intelligible explanations of their predictions. Understanding the reasons behind the out-

come of graph convolutional networks is, however, quite important and useful for several

reasons. Firstly, it can be used to assess the “trustworthiness” of the model. Determin-

ing trust in individual predictions is a fundamental problem, especially when the model

is used in decision-critical applications pertaining to fairness, privacy and other safety

challenges. For example, when using GCNs for medical diagnosis or terrorism detection,

predictions cannot be acted upon on blind faith, as the consequences may be catastrophic.
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Secondly, the ability to understand GCNs’ predictions allows users to get an insight into

the network characteristics, identify and correct systematic mistakes made by models

before deploying them “in the wild.” However, prediction explanations, particularly for

graph convolutional network-based learning models, are far from maturity and require

further analytical investigations, engineering innovations, and implementation efforts.

Exploring the robustness by exploring the reliability of model explanation.

Including our adversarial attacks on link predictions, a growing body of work is exploring

the robustness question from the security perspective by proposing attacks — methods

for crafting adversarial examples and by proposing defenses, methods for making GCNs

robust to adversarial attacks on graph-structural data. However, it is still unclear the

reliability of the explanations in highlighting the true cause of the predictions, under

these carefully constructed adversarial attacks. We are interested in adversarial attack

algorithms that not only fool the machine learning models but also fool the network

interpretation.
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[4] Albert-László Barabási and Réka Albert. Emergence of Scaling in Random Networks.

Science, 286(5439):509–512, 1999.

[5] Vladimir Batagelj and Andrej Mrvar, 2006.

[6] Robert M Bond, Christopher J Fariss, Jason J Jones, Adam DI Kramer, Cameron

Marlow, Jaime E Settle, and James H Fowler. A 61-Million-Person Experiment in

Social Influence and Political Mobilization. Nature, 489(7415):295, 2012.

[7] Sergey Brin and Lawrence Page. The Anatomy of a Large-Scale Hypertextual Web

Search Engine. Computer Networks and ISDN Systems, 30(1-7):107–117, 1998.

[8] Sergey Brin and Lawrence Page. Reprint of: The Anatomy of a Large-Scale Hyper-

textual Web Search Engine. Computer networks, 56(18):3825–3833, 2012.

106



Bibliography 107

[9] Emrah Budur, Seungmin Lee, and Vein S Kong. Structural Analysis of Crimi-

nal Network and Predicting Hidden Links using Machine Learning. arXiv preprint

arXiv:1507.05739, 2015.

[10] Nicholas Carlini and David Wagner. Towards Evaluating the Robustness of Neural

Networks. In Proc. IEEE Symposium on Security and Privacy (S&P 2017), 2017.

[11] Nicholas Carlini and David Wagner. Audio Adversarial Examples: Targeted Attacks

on Speech-to-Text. arXiv preprint arXiv:1801.01944, 2018.

[12] Dorwin Cartwright and Frank Harary. Structural Balance: a Generalization of

Heider’s Theory. Psychological review, 63(5):277, 1956.

[13] Jinjin Chen, Ziqiang Shi, Yangyang Wu, Xuanheng Xu, and Haibin Zheng. Link

Prediction Adversarial Attack. arXiv preprint arXiv:1803.06373, 2018.

[14] Pin-Yu Chen, Yash Sharma, Huan Zhang, Jinfeng Yi, and Cho-Jui Hsieh. EAD:

Elastic-Net Attacks to Deep Neural Networks via Adversarial Examples. In

Proc. AAAI Conference on Artificial Intelligence (AAAI 2018), 2018.

[15] Yizheng Chen, Yacin Nadji, Athanasios Kountouras, Fabian Monrose, Roberto

Perdisci, Manos Antonakakis, and Nikolaos Vasiloglou. Practical Attacks against

Graph-Based Clustering. In Proc. ACM SIGSAC Conference on Computer and

Communications Security (CCS 2017), 2017.

[16] Yiqi Chen, Tieyun Qian, Huan Liu, and Ke Sun. Bridge Enhanced Signed Directed

Network Embedding. In Proc. CIKM. ACM, 2018.

[17] Karen S Cook, Toshio Yamagishi, Coye Cheshire, Robin Cooper, Masafumi Matsuda,

and Rie Mashima. Trust Building via Risk Taking: A Cross-Societal Experiment.

Social Psychology Quarterly, 68(2):121–142, 2005.

[18] Hanjun Dai, Hui Li, Tian Tian, Xin Huang, Lin Wang, Jun Zhu, and Le Song.

Adversarial Attack on Graph Structured Data. In Proc. International Conference

on Machine Learning (ICML 2018), 2018.



Bibliography 108

[19] Tyler Derr, Yao Ma, and Jiliang Tang. Signed Graph Convolutional Networks. In

Proc. ICDM. IEEE, 2018.

[20] Yuxiao Dong, Jie Tang, Sen Wu, Jilei Tian, Nitesh V Chawla, Jinghai Rao, and

Huanhuan Cao. Link Prediction and Recommendation across Heterogeneous Social

Networks. In Proc. IEEE International Conference on Data Mining (ICDM 2012),

pages 181–190, 2012.

[21] Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei

Yin. Graph Neural Networks for Social Recommendation. arXiv preprint

arXiv:1902.07243, 2019.

[22] Peixin Gao, Hui Miao, John S Baras, and Jennifer Golbeck. Star: Semiring Trust

Inference for Trust-Aware Social Recommenders. In Proc. International Conference

on Recommender Systems. ACM, 2016.

[23] Xavier Glorot and Yoshua Bengio. Understanding the Difficulty of Training Deep

Feedforward Neural Networks. In Proc. International Conference on Artificial In-

telligence and Statistics, pages 249–256, 2010.

[24] Jennifer Golbeck. Combining Provenance with Trust in Social Networks for Semantic

Web Content Filtering. In International Provenance and Annotation Workshop.

Springer, 2006.

[25] Jennifer Golbeck, James Hendler, et al. FilmTrust: Movie Recommendations using

Trust in Web-Based Social Networks. In Proc. International Conference on Con-

sumer Communications and Networking. IEEE, 2006.

[26] William Josiah Goode. The Celebration of Heroes: Prestige as a Control System.

University of California Press Berkeley, 1978.

[27] Kathrin Grosse, Nicolas Papernot, Praveen Manoharan, Michael Backes, and Patrick

McDaniel. Adversarial Examples for Malware Detection. In Proc. European Sym-

posium on Research in Computer Security (ESORICS 2017). Springer, 2017.



Bibliography 109

[28] Aditya Grover and Jure Leskovec. node2vec: Scalable Feature Learning for Net-

works. In Proc. SIGKDD. ACM, 2016.

[29] Ramanthan Guha, Ravi Kumar, Prabhakar Raghavan, and Andrew Tomkins. Prop-

agation of Trust and Distrust. In Proc. WWW. ACM, 2004.

[30] Guibing Guo, Enneng Yang, Li Shen, Xiaochun Yang, and Xiaodong He. Discrete

Trust-Aware Matrix Factorization for Fast Recommendation. In Proc. International

Joint Conference on Artificial Intelligence. AAAI Press, 2019.

[31] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive Representation Learn-

ing on Large Graphs. In Proc. International Conference on Neural Information

Processing Systems (NeurIPS 2017), 2017.

[32] Fritz Heider. Attitudes and Cognitive Organization. The Journal of Psychology,

21(1):107–112, 1946.

[33] Fali Huang. Building Social Trust: A Human-Capital Approach. Journal of Insti-

tutional and Theoretical Economics (JITE)/Zeitschrift für Die Gesamte Staatswis-

senschaft, pages 552–573, 2007.

[34] Ling Huang, Anthony D Joseph, Blaine Nelson, Benjamin IP Rubinstein, and JD

Tygar. Adversarial Machine Learning. In Proc. ACM Workshop on Security and

Artificial Intelligence, 2011.

[35] Mohammad Raihanul Islam, B Aditya Prakash, and Naren Ramakrishnan. SIGNet:

Scalable Embeddings for Signed Networks. In Pacific-Asia Conference on Knowledge

Discovery and Data Mining. Springer, 2018.

[36] Glen Jeh and Jennifer Widom. SimRank: A Measure of Structural-Context Simi-

larity. In Proc. ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining (KDD 2002), pages 538–543, 2002.

[37] Harini Kannan, Alexey Kurakin, and Ian Goodfellow. Adversarial Logit Pairing.

arXiv preprint arXiv:1803.06373, 2018.



Bibliography 110

[38] Leo Katz. A New Status Index Derived from Sociometric Analysis. Psychometrika,

18(1):39–43, 1953.

[39] Junghwan Kim, Haekyu Park, Ji-Eun Lee, and U Kang. SIDE: Representation

Learning in Signed Directed Networks. In Proc. WWW, 2018.

[40] Diederik P Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization.

arXiv preprint arXiv:1412.6980, 2014.

[41] Thomas N Kipf and Max Welling. Semi-Supervised Classification with Graph Con-

volutional Networks. In Proc. International Conference on Learning Representation

(ICLR 2017), 2017.
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