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The Kazhdan-Lusztig tensor equivalence is a monoidal functor which sends modules over an

affine Lie algebra at negative level to modules over the associated quantum group. A positive

level Kazhdan-Lusztig functor is defined using Arkhipov-Gaitsgory’s duality between positive

and negative level affine Lie algebras. Our main result proves that under the positive level

Kazhdan-Lusztig functor, the semi-infinite cohomology functor corresponds to the quantum

group cohomology functor with respect to the positive part of Lusztig’s quantum group.

Monoidal structures of a category can be interpreted as factorization data on the associated

global category. We describe a conjectural reformulation of the Kazhdan-Lusztig tensor equiv-

alence in factorization terms. In this reformulation, the semi-infinite cohomology functor at

positive level is naturally factorizable, and it is conjectured that the factorizable semi-infinite

cohomology functor is essentially the positive level Kazhdan-Lusztig tensor functor modulo the

Riemann-Hilbert correspondence. Our main result provides an important technical tool in a

proposed approach to a proof of this conjecture.

ii



Acknowledgements

I am deeply grateful to my advisors Joel Kamnitzer and Alexander Braverman for countless

stimulating discussions, during which they shared with me their broad mathematical knowledge

and insights.

I am hugely indebted to Dennis Gaitsgory, who formulated and introduced to me the problem

which this thesis addresses, and patiently taught me all the key concepts required to carry out

this work.

I would like to thank Reimundo Heluani for carefully reading the thesis and providing helpful

feedback and many suggestions for improvements on readability and writing in general.

I would also like to thank Shun-Jen Cheng and Jonq Juang for their encouragement and

mentorship when I was an undergraduate student and a research assistant in Taiwan.

Gratitude also goes to Dylan Buston, Tsao-Hsien Chen, Dinakar Muthiah, Sam Raskin, Nick

Rozenblyum, Alex Weekes, and Philsang Yoo for many inspiring conversations on representation

theory and factorization algebra.

I would not enjoy my graduate life as much without all my friends who supported me in

the past seven years. I also thank the staff in the Department of Mathematics at University of

Toronto for their warmth and help.

Above all, I thank my family for everything.

iii



Contents

1 Introduction 1

1.1 The goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Basic setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.3 Semi-infinite cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.4 The Kazhdan-Lusztig equivalence . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.5 Toy example: the finite type case . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.6 Irrational level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.7 Rational level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.8 Factorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.9 Application to quantum local geometric Langlands . . . . . . . . . . . . . . . . . 9

1.10 Relation to A conjectural extension of the Kazhdan-Lusztig equivalence [30] . . . 11

1.11 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.12 Conventions on D-modules and sheaves . . . . . . . . . . . . . . . . . . . . . . . 13

2 Preparation: algebraic constructions 15

2.1 Root datum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Affine Lie algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Quantum groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 Kazhdan-Lusztig equivalence at negative level . . . . . . . . . . . . . . . . . . . . 21

2.5 Kazhdan-Lusztig functor at positive level . . . . . . . . . . . . . . . . . . . . . . 22

3 Preparation: geometric constructions 24

3.1 Affine flag variety and Kashiwara-Tanisaki Localization . . . . . . . . . . . . . . 24

3.2 Convolution action on categories . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3 Spherical category . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4 Wakimoto modules 29

4.1 First construction, via chiral differential operators . . . . . . . . . . . . . . . . . 29

4.2 Digression: Modules over affine Kac-Moody algebras and contragredient duality . 31

4.3 Camparing Wakimoto and Verma modules at negative level . . . . . . . . . . . . 33

4.4 Second construction, via convolution . . . . . . . . . . . . . . . . . . . . . . . . . 36

iv



4.5 Relations to semi-infinite cohomology . . . . . . . . . . . . . . . . . . . . . . . . 36

5 Semi-infinite cohomology vs quantum group cohomology: positive level 38

5.1 Weyl modules revisited . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.2 Generalized semi-infinite cohomology functor . . . . . . . . . . . . . . . . . . . . 40

5.3 The formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.4 Proof of Theorem 5.3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.5 Proof of Theorem 5.3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6 The parallel story at negative level 46

6.1 Generalized semi-infinite cohomology functors at negative level . . . . . . . . . . 46

6.2 Formulas at negative level and duality pattern . . . . . . . . . . . . . . . . . . . 46

7 An algebraic approach at irrational level 48

7.1 BGG-type resolutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

7.2 Commutativity of the diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

8 Bringing in the factorization 51

8.1 The Kac-Moody factorization categories . . . . . . . . . . . . . . . . . . . . . . . 51

8.2 Lurie’s functor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

8.3 Quantum Frobenius revisited . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

8.4 Towards a factorization Kazhdan-Lusztig equivalence . . . . . . . . . . . . . . . . 56

9 Appendix 61

9.1 Lie-* algebras and chiral algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

9.2 Semi-infinite cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

9.3 Chiral differential operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

9.4 Factorization algebras and categories . . . . . . . . . . . . . . . . . . . . . . . . . 69

Bibliography 73

v



Chapter 1

Introduction

1.1 The goal

The thesis studies the semi-infinite cohomology of modules over affine Lie algebras. Our main

result is a formula (Theorem 5.3.1) which relates the semi-infinite cohomology to the quantum

group cohomology, as the modules over affine Lie algebras are linked to modules over quantum

groups via the Kazhdan-Lusztig tensor equivalence.

The significance of this formula is twofold:

1. Integrated with the factorization structures appearing naturally in these objects, the

formula paves the way for an alternative proof of the Kazhdan-Lusztig tensor equivalence,

which is widely considered overly technical. Moreover, this new approach is valid for any

non-critical level κ, whereas the original Kazhdan-Lusztig equivalence was only developed

for negative levels. Hence our result indicates how to generalize the Kazhdan-Lusztig

equivalence to arbitrary (non-critical) level conjecturally. We will further elaborate on

factorization Kazhdan-Lusztig equivalences later in the Introduction in Section 1.8.

2. The formula is instrumental in the recent progress on the quantum local geometric Lang-

lands theory. The approach, proposed by D. Gaitsgory and J. Lurie, to the correspondence

is to relate the Kac-Moody brane and the Whittaker brane by passing both to the quan-

tum group world. The correspondence is “quantum” in the sense that we should have

a family of correspondences parametrized by a non-critical level, with the critical level

being the degenerate case. Our formula helps to understand computationally the bridge

from the Kac-Moody brane to the quantum group world for any positive level. A brief

account of the quantum local geometric Langlands theory is given in Section 1.9

1.2 Basic setup

Let G be a complex simple algebraic group, B (resp. B−) the Borel (resp. opposite Borel)

subgroup, N (resp. N−) the unipotent radical in B (resp. B−), and T = B ∩B− the maximal

1



Chapter 1. Introduction 2

torus. Let g, b, n, b−, n−, t be the corresponding Lie algebras. Let W be the Weyl group of G,

and h∨ the dual Coxeter number of G. Denote by Ǧ the Langlands dual of G.

Throughout this thesis there is an important parameter κ ∈ C×, called the level. The level κ

is called negative if κ+h∨ /∈ Q>0, positive if κ+h∨ /∈ Q60, and critical when κ = κcrit := −h∨.

Given a positive level κ, the reflected level κ′ := −κ − 2h∨ is negative. Clearly, if κ is both

positive and negative, then κ is irrational.

All objects of algebro-geometric nature will be over the base field C. Unless specified

otherwise, by category we mean a DG category, i.e. an accessible stable ∞-category enriched

over Vect, the DG category of complexes of C-vector spaces. We denote the heart of the

t-structure in a DG category C by C♥.

Let DGCatcont denote the (∞, 1)-category of all DG categories with all 1-morphisms being

continuous functors (i.e. those which commute with all colimits). From [49, Section 2.4.1],

there is a tensor product functor ⊗ : DGCatcont × DGCatcont → DGCatcont, which makes

(DGCatcont,⊗) a symmetric monoidal (∞, 1)-category with unit object Vect.

Denote by O the ring of functions on the formal disk at a point, and by K the ring of

functions on the punctured formal disk. The C-points of K after taking a coordinate t is the

Laurent series ring C((t)), and that of O becomes its ring of integers C[[t]]. For a C-vector space

V we write V (K) for V ((t)) ≡ V ⊗ C((t)). For a scheme Y we write Y (K) as the formal loop

space of Y , whose C-points are Maps(SpecC((t)), Y ). Similarly we define V (O) and Y (O).

Consider the loop group G(K) and its subgroup G(O). Define the evaluation map ev :

G(O)→ G by t 7→ 0. The Iwahori subgroup of G(O) is defined as I := ev−1(B). We also define

I0 := ev−1(N).

1.3 Semi-infinite cohomology

The main player of the thesis, the semi-infinite cohomology, was first introduced by B. Feigin in

[16], as the mathematical counterpart of the BRST quantization in theoretical physics. While

the notion of semi-infinite cohomology was later generalized to broader settings [61, 1, 2, 11],

our study stays within the original framework, namely, that for the affine Lie algebras. However,

with the geometric interpretation of affine Lie algebras as chiral/vertex algebras, the definition

of semi-infinite cohomology is naturally adapted to the geometric formulation [9, 23]. This is

the version of the definition we recall in the Appendix.

Purely in terms of algebra, the setting includes a vector space M , a (finite-dimensional) Lie

algebra V , and a Lie algebra action of V (K) on M . Note that the Lie bracket on V (K) is given

by

[v1 ⊗ f(t), v2 ⊗ g(t)] := [v1, v2]⊗ (f(t) · g(t)).

We can roughly describe the semi-infinite cohomology with respect to V (K) as follows1: we first

1This description resembles the spectral sequence interpretation of the usual Lie algebra cohomology. We will
give the formal definition of semi-infinite cohomology in the Appendix (Section 9.2).
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take the Lie algebra cohomology along V (O), and then take the Lie algebra homology along

V (K)/V (O). The resulting complex in Vect is denoted by C
∞
2 (V (K),M).

We will consider a finite-dimensional reductive Lie algebra g over C, and the semi-infinite

cohomology with respect to certain Lie subalgebras of g(K). The modules we apply the semi-

infinite cohomology to, however, will be modules over the affine Lie algebra associated to the

loop algebra g(K). Recall that an affine Lie algebra is a central extension of g(K) by the central

part C1, with the extension determined by specifying a complex parameter κ. We obtain the

notion of modules over ĝκ, the affine Lie algebra at level κ, by requiring that 1 always acts

by the number 1. The semi-infinite cohomology with respect to n(K) of such modules comes

naturally with an action of the Heisenberg algebra t̂, which is a central extension of t(K) by

C1.

A key feature here is that the semi-infinite cohomology introduces a canonical level shift,

called the Tate shift. More precisely, the semi-infinite cohomology C
∞
2 (n(K),M) of a ĝκ-module

M turns out to be a module over t̂κ+shift, the central extension whose 2-cocycle is determined

by κ−κcrit. This is the true reason that we regard κcrit as the point of origin when introducing

the terminology of positive and negative level.

The abelian category of smooth representations of the Heisenberg algebra t̂ is semi-simple,

whose simple objects are called the Fock modules πλ determined by their highest weights λ ∈ t∗

[41, Section 9.13]. Therefore we often take the multiplicity of πµ in C
∞
2 (n(K),M) for each weight

µ, and call the resulting functor the µ-component of the semi-infinite cohomology functor. This

will appear on one side of our formula.

1.4 The Kazhdan-Lusztig equivalence

What appears on the other side of our formula is a functor on the category of representations

of the quantum group associated to g. The bridge from modules of the affine Lie algebra to

that of the quantum group is provided by the Kazhdan-Lusztig equivalence [44].

Since the far-reaching work of Moore and Seiberg [51], in which they discovered deep re-

lations between tensor categories and rational conformal field theories, to construct and un-

derstand non-trivial tensor categories had been a common goal for both mathematicians and

physicists.

Related to the construction (with incomplete proof) of tensor structure on the category of

integrable affine Lie algebra modules at a positive integral level in [51], Kazhdan and Lusztig

constructed a non-trivial tensor structure on the G(O)-integrable affine Lie algebra modules at

any negative level [44]. The construction generalized Drinfeld’s tensor category [15], and was

later used in an essential way in Finkelberg’s proof of the Moore-Seiberg tensor structure at

positive integral level [20].

Also in [44], Kazhdan-Lusztig further constructed an equivalence between their tensor cat-

egory on affine Lie algebra modules and the tensor category of modules over the corresponding
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quantum group. Although the functor was constructed almost explicitly, the proof is highly

technical and fairly difficult to follow. Hence, in the following we will treat the original negative

level Kazhdan-Lusztig equivalence as a black box, and whenever necessary cite results from

[44].

1.5 Toy example: the finite type case

Our formula can be seen as a semi-infinite analog of Kostant’s Theorem on Lie algebra coho-

mology for finite-dimensional simple Lie algebras. We illustrate this in this section.

Recall that the complete set of finite-dimensional irreducible representations of a finite-

dimensional simple Lie algebra g is given by {Vλ : λ dominant integral weights}. Kostant’s

Theorem [47] says that there is an isomorphism of t-modules

H i(n, Vλ) ∼=
⊕
`(w)=i

Cw·λ,

where the direct sum runs over Weyl group elements w with length `(w) = i. By interpreting

Lie algebra cohomology as the right derived functor of Homn(C,−), this identity becomes a

simple consequence of the BGG resolution.

On the other hand, the quantum group Uq(g) is known to have almost identical representa-

tion theory as g when the quantum parameter is not a root of unity. In particular, we consider

the quantum group cohomology H•(Uq(n),Vλ); namely, we take the right derived functor of

HomUq(n)(C,−) applied to the finite-dimensional irreducible Uq(g)-representation Vλ. The re-

sulting cohomology space is endowed with an action of the quantum torus Uq(t), which splits

as a direct sum of 1-dimensional weight spaces. We denote the µ-weight component of the

quantum group cohomology functor by H•(Uq(n),−)µ, for µ ∈ t∗.

A quantum analog of the BGG resolution implies

H i(Uq(n),Vλ) ∼=
⊕
`(w)=i

Cw·λ.

Hence obviously

H i(n, Vλ) ∼= H i(Uq(n),Vλ).

The formula we are after will be the one above with Lie algebra cohomology replaced by semi-

infinite cohomology on the left hand side. This will be made precise in the next section.

1.6 Irrational level

At the level of abelian categories, we can model the semi-simple category g-modf.d.of finite-

dimensional g-modules by the category ĝκ-modG(O) of G(O)-integrable representations of ĝκ

with κ an irrational number. The category ĝκ-modG(O) is semi-simple with simple objects given
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by the Weyl modules Vκλ, and the canonical equivalence g-modf.d. ' ĝκ-modG(O) is induced by

Vλ 7→ Vκλ.

The ĝκ-modules when κ is irrational and the Uq(g)-modules when q is not a root of unity

are related by the Kazhdan-Lusztig equivalence at irrational level. This is an equivalence of

abelian categories

KLirrG : ĝκ-modG(O) ∼−→ Uq(g)-mod

which sends the simple object Vκλ to the simple object Vλ.

Now, a computation (Corollary 7.1.2) using the BGG-type resolution of Vκλ shows that

H
∞
2

+i(n(K),Vκλ) ∼=
⊕
`(w)=i

πw·λ.

Taking the µ-components we get an isomorphism

H
∞
2 (n(K),Vκλ)µ ∼= H•(Uq(n),KLirrG (Vκλ))µ.

The Kazhdan-Lusztig equivalence allows to formulate the identity for arbitrary module M

in ĝκ-modG(O). We would like to further generalize the isomorphism to the setting of DG

category, which means that we should upgrade it to an isomorphism of complexes. We arrive

at the desired formula at irrational level:

C
∞
2 (n(K),M)µ ∼= C•(Uq(n),KLirrG (M))µ. (1.1)

An algebraic proof of (1.1) is given in Section 7.2.

1.7 Rational level

Situations are drastically more complicated at rational levels. First, the abelian category

ĝκ-modG(O) is no longer semi-simple when κ is rational. Second, the theory starts to bifurcate

into the positive level case and the negative level case, and the Kazhdan-Lusztig equivalence

only covers the negative one.

We deal with the negative rational level case first. We have the Kazhdan-Lusztig equivalence

at negative level, which relates the negative level κ′ and the quantum parameter q by

q = exp(
π
√
−1

κ′ − κcrit
).

Clearly q is now a root of unity. To add further complication, there are more than one variants

of quantum groups at a root of unity: the Lusztig form ULus
q , the Kac-De Concini form UKD

q ,

and the small quantum group uq. They fit into the following sequence

UKD
q � uq ↪→ ULus

q . (1.2)
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The Kazhdan-Lusztig equivalence in this case is KLκ
′
G : ĝκ′-modG(O) ∼−→ ULus

q (g)-mod, which

sends Weyl modules to the so-called quantum Weyl modules. The formula at negative rational

level (Conjecture 6.2.2) is

C
∞
2 (n(K),M)µ ∼= C•(UKD

q (n),KLκ
′
G (M))µ (1.3)

for M in ĝκ′-modG(O).

Now we consider the positive rational level case. There is a duality between negative and

positive level modules, due to Gaitsgory and Arkhipov [7]. We denote the duality functor by

DG(O) : ĝκ′-modG(O) ∼−→ ĝκ-modG(O),

where κ is positive (and so κ′ is negative). A Kazhdan-Lusztig type functor at positive level

can be defined using the duality as

KLκG := Dq ◦KLκ
′
G ◦ D−1

G(O),

where Dq : ULus
q (g)-mod

∼−→ ULus
q (g)-mod is the contragredient duality for modules over quan-

tum groups.

The crucial difference here is that the functor KLκG at positive level only makes sense in the

derived world. This is due to the fact that the duality functor DG(O) is only defined on derived

categories and does not preserve the heart of the t-structures. However, the functor KLκG does

send Weyl modules to quantum Weyl modules.

The formula at positive rational level (Theorem 5.3.1) is

C
∞
2 (n(K),M)µ ∼= C•(ULus

q (n),KLκG(M))µ (1.4)

for M in ĝκ-modG(O). Note that the duality involved in the definition of KLκG has the effect of

swapping the quantum groups in the sequence (1.2). This is just another incarnation of the fact

that the Verdier duality swaps the standard (!-) and costandard (*-) objects, while preserving

the intermediate (!*-) objects. Indeed, we can realize the positive and negative level categories

geometrically as D-modules on the affine flag variety by the Kashiwara-Tanisaki localization,

and the functor DG(O) corresponds to the Verdier dual.

The main result of this thesis is a proof of the positive level formula (1.4), whereas the

negative level formula (1.3) is the subject of [29], and is still a conjecture with partial results

obtained. We now explain the idea of proof at positive level, which follows the same pattern as

in the work loc. cit. by Gaitsgory.

The quantum Frobenius gives rise to a short exact sequence of categories

0→ Rep(B̌)→ ULus
q (b)-mod→ uq(b)-mod→ 0. (1.5)
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The strategy is to first characterize the cohomology functor on the Kac-Moody side that cor-

responds to C•(uq(n),−)µ, and then pass to C•(ULus
q (n),−)µ using the sequence (1.5). For this

purpose we construct the !*-generalized semi-infinite cohomology functor C
∞
2

!∗ (n(K),−), which

is made possible by the recent discovery [28] of a non-standard t-structure on the category

D-mod(GrG)N(K) of N(K)-equivariant D-modules on the affine Grassmannian GrG, and along

with the discovery the construction of a semi-infinite intersection cohomology (IC) object IC
∞
2

in D-mod(GrG)N(K).

We prove (Theorem 5.3.2):

C
∞
2

!∗ (n(K),M)µ ∼= C•(uq(n),KLκG(M))µ. (1.6)

Identifying the coweight lattice as a sublattice of the weight lattice (depending on the parameter

κ), we consider all ν̌-components C
∞
2

!∗ (n(K),M)ν̌ at the same time; i.e. we take the direct sum

over all coweights ν̌. The resulting object acquires a B̌-action, and its B̌-invariants is precisely

C
∞
2 (n(K),M)0 by the theory of Arkhipov-Bezrukavnikov-Ginzburg [4]. On the quantum group

side this procedure produces C•(ULus
q (n),KLκG(M))0 by the sequence (1.5). Thus we have

established

C
∞
2 (n(K),M)0 ∼= C•(ULus

q (n),KLκG(M))0,

and for general µ the same procedure applies to the identity with a µ-shift.

Remark 1.7.1. There exist several different variants of categories of ĝ-modules at a fixed level κ.

Among which, Finkelberg [19, 20] considered the abelian category of integrable ĝ-modules at a

positive integral level κ, which is generated by irreducible modules of dominant integral highest

weights λ restricted in a certain region in the weight lattice specified by κ. The category is semi-

simple by the Linkage Principle. The main result in [20] showed that this category is equivalent

to a certain semi-simple subquotient category of ULus
q (g)-mod, building on the Kazhdan-Lusztig

equivalence at negative level.

All of these variants were studied along with the respective non-trivial tensor structures on

them. A discussion of these variants and review on the related literature can be found in [40].

1.8 Factorization

The category ĝκ-modG(O) has a non-trivial braided monoidal structure constructed by Kazhdan

and Lusztig via the Knizhnik-Zamolodchikov equations [44]. The most remarkable part of

the Kazhdan-Lusztig equivalence is that it is an equivalence respecting the braided monoidal

structures, where the braided monoidal structure on the quantum group side is given by the

R-matrix.

As early as in the works of Felder-Wieczerkowski [18], Schechtman [58] and Schechtman-

Varchenko [59, 60], mathematicians realized that the R-matrix of a quantum group is related

to topological factorizable objects on certain inductive limit of configuration spaces. The works



Chapter 1. Introduction 8

in this direction culminated in [10] where Bezrukavnikov-Finkelberg-Schechtman established a

topological realization of the category of modules over the small quantum group in terms of

factorizable sheaves.

On the other hand, Khoroshkin-Schechtman [45, 46] constructed the algebro-geometric

factorizable objects which they call the factorizable D-modules. Their construction gives an

algebro-geometric realization of the category ĝκ-modG(O) for κ irrational (more precisely, Drin-

feld’s tensor category of g-modules), and via the Riemann-Hilbert correspondence it corresponds

to the BFS factorizable sheaves.

Therefore, after the respective realization as factorizable objects, the Kazhdan-Lusztig

equivalence at irrational level is deduced from the Riemann-Hilbert correspondence, which

clearly preserves the factorization structures retaining the braided monoidal structures in the

original categories.

The general philosophy [52, Section 1.8 and 1.9] is that there should be a correspondence

between factorization categories and braided monoidal categories. It is hence expected that a

factorization form of the Kazhdan-Lusztig equivalence (for not just the irrational levels) exists.

We digress temporarily to discuss the notion of strong group actions on categories. We say

a category C is acted on strongly by a group H if C is a module category of D-mod(H). We

can twist the category D-mod(H) by a multiplicative Gm-gerbe on H, which is equivalent to

the data of a central extension ĥ of the Lie algebra h = Lie(H), with a lift of the adjoint action

of H on h to ĥ, c.f. [38].

In the case of the loop group G(K) of a reductive group G, corresponding to the affine

Kac-Moody extension ĝκ we have the κ-twisted category D-modκ(G(K)). A category is acted

on strongly by G(K) at level κ if it is a module category of D-modκ(G(K)). We will return to

twisted loop group actions in the next section.

From the algebro-geometric perspective, factorization structures arise naturally from (strong)

actions of a loop group [36]. The category ĝκ-modG(O) is acted on strongly by G(K) at level

κ, which essentially comes from the action of the loop algebra g(K) on ĝ. Then we obtain the

factorization category (ĝκ-modG(O))Ran(X).

The main difficulty to achieve a factorization Kazhdan-Lusztig equivalence lies in the quan-

tum group side. Since the braided monoidal structure for quantum group modules is of topolog-

ical nature, the most natural factorization structure in this case should be of topological flavor.

The theory of topological factorization categories was developed by J. Lurie in terms of algebras

over the little disks operad in the (∞, 2)-category of DG categories [49]. As an example, tau-

tologically the topological factorization category associated to the braided monoidal category

Repq(T ) of representations of the quantum torus is Shvq(GrŤ ,Ran(X)), the constructible sheaves

on the Beilinson-Drinfeld Grassmannian of Ť , twisted by a factorizable gerbe specified by q.

Now the question is, how to explicitly build the topological factorization category associated to

ULus
q (g)-mod?

Owing to Lurie’s theory, the answer is positive, if we replace the quantum group ULus
q (g) by
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the small quantum group uq(g), or by a mixed quantum group U+Lus,−KD
q (g) which has positive

part in Lusztig form and negative part in Kac De Concini form. Nevertheless, we are still unable

to construct explicitly the topological factorization category Fact(ULus
q (g)-mod) associated to

ULus
q (g)-mod.

We can, however, modify the factorization category associated to U+Lus,−KD
q (g)-mod in al-

gebraic terms to get a factorization category Fact(U
1
2
q (g)-mod) that contains Fact(ULus

q (g)-mod)

as a full subcategory. Even better, under the Riemann-Hilbert correspondence, the cate-

gory RH(Fact(U
1
2
q (g)-mod)) is the natural recipient of a certain factorizable functor, called

the Jacquet functor, from (ĝκ-modG(O))Ran(X).

The factorization Kazhdan-Lusztig equivalence can now be formulated as

Conjecture 1.8.1. The Jacquet functor is fully faithful, with its essential image identified with

Fact(ULus
q (g)-mod)

under the Riemann-Hilbert correspondence.

The upshot is that, in the positive level case, the Jacquet functor is precisely the semi-

infinite cohomology functor. Our formula (1.4) therefore plays an instrumental role in tackling

Conjecture 1.8.1. Moreover, as the definition of the semi-infinite cohomology is purely alge-

braic, one sees in this characterization that the transcendental nature of the Kazhdan-Lusztig

equivalence exactly comes from that of the Riemann-Hilbert correspondence.

We remark that, at negative level, the definition of the Jacquet functor involves the !-

generalized semi-infinite cohomology functor, which is briefly discussed in Chapter 6 and Section

8.4.

1.9 Application to quantum local geometric Langlands

Let κ be a non-critical level. Let κ̌ be the Langlands dual parameter such that (·, ·)κ−κcrit and

(·, ·)κ̌−κcrit induce mutual inverse maps between t and ť ≡ t∗.

We denote by G(K)−ModCatκ the (∞, 2)-category of DG categories acted on by G(K)

strongly at level κ. In its latest form ([32], circa January, 2018), the quantum local geometric

Langlands conjecture is stated as

Conjecture 1.9.1. Assume that κ is positive. There is a canonical equivalence of (∞, 2)-

categories

LκG : G(K)−ModCatκ
∼−→ Ǧ(K)−ModCat(κ̌)′ .

An expected feature of the above ambitious conjecture is that the Kac-Moody brane goes

over to the Whittaker brane, and vice versa.
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To be more precise, if C ∈ G(K)−ModCatκ and Č := LκG(C), then we should have KM(C) '
Whit(Č) and Whit(C) ' KM(Č), where the Kac-Moody category attached to C is

KM(C) := FunctG(K)(ĝκ-mod,C)

and the Whittaker category attached to C is

Whit(C) := CN(K),χ,

i.e. theN(K)-invariants in the category C with respect to a non-degenrate character χ : N(K)→
Gm (c.f. [31]).

Recall from Section 1.8 that G(K)-actions give rise to factorization structures. By the above

definitions, the Kac-Moody category KM(C) acquires a strong G(K)-action at level κ′ (notice

that the level is changed to the reflected one as theG(K)-action changes side), and the Whittaker

category Whit(C) is also acted on strongly by G(K) at level (κ̌)′. We therefore expect that the

resulting equivalence KM(C) 'Whit(Č) is factorizable, and same for Whit(C) ' KM(Č).

A more down-to-earch conjecture, arising as a consequence of the 2-categorical conjecture

above, addresses the fundamental case when C = D-modκ(GrG). The expectation of what the

category Č ≡ LκG(C) would be is the natural one:

Č ' D-mod(κ̌)′(GrǦ).

In this case, one evaluates the Kac-Moody category of C as

KM(D-modκ(GrG)) ' ĝκ′-modG(O),

and we denote the Whittaker category for Č by

Whit(GrǦ)(κ̌)′ := D-mod(κ̌)′(GrǦ)N(K),χ.

What the 2-categorical conjecture predicts in this case is called the fundamental local equivalence

(FLE) at negative level:

Conjecture 1.9.2 ([33]). There is a canonical factorizable equivalence

FLEκ′ : ĝκ′-modG(O) ∼−→Whit(GrǦ)(κ̌)′ .

Switching the roles of G and Ǧ in Conjecture 1.9.1 and plugging in C := D-modκ̌(GrǦ), we

obtain the FLE at positive level:

Conjecture 1.9.3 ([33]). There is a canonical factorizable equivalence

F̃LEκ : ĝκ-modG(O) ∼−→Whit(GrǦ)κ̌.
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Note that by duality, F̃LEκ is equivalent to the inverse of the dual functor of FLEκ′ .

We now explain how formula (1.4) (resp. formula (1.3)) can help in the outline of proof of

the FLE at positive (resp. negative) level, proposed again by D. Gaitsgory. We will discuss the

positive level case, and the negative level case is similar.

Our formula only concerns the Kac-Moody side of the FLE. The treatment on the Whittaker

side follows a parallel construction that is beyond the scope of this thesis. We refer the interested

reader to [32, Section 5.1].

First, we note that the FLE for the group being a torus is known. Over a point (ignoring

the word “factorizable”), the FLE is tautological. The factorization version follows from the

Contou-Carrère’s duality [55].

Recall the Jacquet functor from Section 1.8. At positive level, it is a factorization functor

(ĝκ-modG(O))Ran(X) → RH(Fact(U
1
2

q−1(g)-mod))

and is conjectured to be fully faithful. The category RH(Fact(U
1
2

q−1(g)-mod) by construction can

be described as certain enlargement of the category of factorization modules of a factorization

algebra denoted by Ω−,KM,Lus
κ ∈ (̂tκ-modT (O))Ran(X).

On the Whittaker side, we also construct the Jacquet functor for the Whittaker category,

and the recipient is described similarly by a factorization algebra denoted by ΩWhit,Lus
κ̌ ∈

D-modκ̌(GrŤ ,Ran(X)).

Conjecture 1.9.4 ([34]). Under the FLE for the torus T , the factorization algebras Ω−,KM,Lus
κ

and ΩWhit,Lus
κ̌ are identified.

The upshot is, if Conjecture 1.9.4 is proven, the proof of the FLE at positive level is reduced

to showing that the essential images of the two Jacquet functors (for the Kac-Moody side and

the Whittaker side) match each other.

Now, the formula (1.4) comes in to provide a possible way to prove Conjecture 1.9.4. The

idea is to pass both the Kac-Moody side and the Whittaker side to the quantum group world,

and try to verify that Ω−,KM,Lus
κ and ΩWhit,Lus

κ̌ give rise to the same topological factorization

algebra, the one induced from the quantum group ULus
q−1 (n). Since at positive level the Kac-

Moody Jacquet functor is given by the semi-infinite cohomology functor, a formula comparing

the semi-infinite cohomology with the quantum group cohomology with respect to ULus
q−1 (n)

should make the verification a manageable task.

1.10 Relation to A conjectural extension of the Kazhdan-Lusztig

equivalence [30]

After the current manuscript was written, a paper on a conjectural extension of the Kazhdan-

Lusztig equivalence has appeared [30]. In this section we give a brief account of the relation

between the two texts.
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The proposed conjectural equivalence in [30],

Fκ′ : ĝκ′-modI ' U+Lus,−KD
q (g)-mod, (1.7)

enlarges the categories on both sides of the negative level Kahzdan-Lusztig equivalence. More-

over, for any weight λ, the standard object Ind
U+Lus,−KD
q (g)

ULus
q (b)

Cλ in U+Lus,−KD
q (g)-mod is stipulated

to correspond under Fκ′ to the Wakimoto module Wκ′,∗
λ in ĝκ′-modI defined in Section 4.4.

In view of the forgetful functor obliv : ĝκ′-modG(O) → ĝκ′-modI and the restriction func-

tor res : ULus
q (g)-mod → U+Lus,−KD

q (g)-mod, the conjectural extension should be compatible

with the original negative level Kazhdan-Lusztig equivalence as in the following commutative

diagram:

ĝκ′-modG(O)

obliv
��

KLκ
′
G // ULus

q (g)-mod

res
��

ĝκ′-modI
Fκ′ // U+Lus,−KD

q (g)-mod

(1.8)

Considering the left adjoint functors Av
G(O)/I
! and Ind

ULus
q (g)

U+Lus,−KD
q (g)

of obliv and res, respectively,

we obtain from (1.8) the following commutative diagram:

ĝκ′-modG(O) KLκ
′
G // ULus

q (g)-mod

ĝκ′-modI

Av
G(O)/I
!

OO

Fκ′ // U+Lus,−KD
q (g)-mod

Ind
ULus
q (g)

U
+Lus,−KD
q (g)

OO
(1.9)

Then, assuming the conjectural equivalence Fκ′ , for any weight λ one deduces that

Av
G(O)/I
! Wκ′,∗

λ

KLκ
′
G7−→ Ind

ULus
q (g)

U+Lus,−KD
q (g)

Ind
U+Lus,−KD
q (g)

ULus
q (b)

Cλ ∼= Ind
ULus
q (g)

ULus
q (b)

Cλ. (1.10)

Note that if λ is dominant, Av
G(O)/I
! Wκ′,∗

λ
∼= Vκ′λ is the Weyl module, and Ind

ULus
q (g)

ULus
q (b)

Cλ is

the quantum Weyl module. The identity (1.10) can be seen as generalizing the dominant λ

situation, which characterizes the negative level Kazhdan-Lusztig equivalence.

One of the main result in [30] is an unconditional proof of (1.10) (without assuming the

equivalence (1.7)). The isomorphism (1.10) is equivalent to our main result (Theorem 5.3.1)

on the correspondence between semi-infinite cohomology at positive level and quantum group

cohomology. One can see this by realizing the semi-infinite cohomology functor as pairing with

Av
G(O)/I
! Wκ′,∗

λ (for the definition of the pairing see (2.2)), and similarly realizing the quantum

group cohomology functor as pairing with Ind
ULus
q (g)

ULus
q (b)

Cλ, i.e. HomULus
q (g)(Dq Ind

ULus
q (g)

ULus
q (b)

Cλ ,−).
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1.11 Structure

The thesis is organized as follows.

In Chapter 2 and Chapter 3 we recall standard constructions and results from Lie theory

and geometric representation theory. In particular, in Section 2.2 we define the duality functor

between negative level and positive level modules, and calculate the image of affine Verma

modules and Weyl modules. In Section 2.5 we define the positive level Kazhdan-Lusztig functor

by means of the duality functor.

Chapter 4 introduces the Wakimoto modules. We give two constructions, one in terms of

the free field realization in the language of chiral algebra (Section 4.1), the other in terms of

convolution actions on affine Verma modules (Section 4.4). To relate the two constructions,

we prove Theorem 4.3.3, which identifies the type w0 Wakimoto module with the dual affine

Verma module of the same highest weight under certain conditions on the highest weight and

the level. In Section 4.5 we present two formulas which compute semi-infinite cohomology using

Wakimoto modules.

Chapter 5 is the main thrust of the thesis. In Section 5.2 we introduce the generalized

semi-infinite cohomology functor at positive level, and define the semi-infinite IC object IC
∞
2
,−

used in defining the !*-generalized functor. Section 5.3 states our main results, the formula for

the !*-functor (Theorem 5.3.2) and the formula for the original semi-infinite functor (Theorem

5.3.1).

Chapter 6 summarizes part of the results in [29], and contains a discussion on the duality

pattern among the formulas at positive and negative level.

Chapter 7 gives an algebraic proof of the main formula when the level is assumed irrational.

Finally, in Chapter 8 we discuss the factorization aspect of the theory. In Section 8.1 we

construct the factorization categories associated to Kac-Moody representations. In Section 8.2

we review the correspondence between Hopf algebras and topological factorization algebras,

and describe the quantum group categories in factorization terms. Section 8.3 introduces the

metaplectic Langlands dual group as the cokernel of Lusztig’s quantum Frobenius morphism.

This ultimately enables us to state the conjecture on factorization Kazhdan-Lusztig equivalence

at arbitrary non-critical level in Section 8.4.

The Appendix contains definitions on chiral algebras, factorization algebras and categories,

chiral differential operators, and repeats a technical construction of the semi-infinite cohomology

complex in the chiral language, from [9].

1.12 Conventions on D-modules and sheaves

For a scheme Z, let OZ (resp., TZ , ωZ , DZ) denote its structure sheaf (resp., tangent sheaf,

sheaf of top forms, sheaf of differential operators).

Let X be a scheme of finite type. The DG category of right (resp. left) DX -modules is

denoted by D-mod(X) (resp. D-mod(X)l). For M in D-mod(X)♥, denote by M l := M⊗OXω
−1
X
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the corresponding left DX -module in (D-mod(X)l)♥. This induces the side-change functor

−l : D-mod(X)→ D-mod(X)l.

The inverse functor is denoted by −r : D-mod(X)l → D-mod(X).

With the aid of higher category theory [48], we extend the notion of D-modules to arbitrary

prestacks: for a prestack Y, D-mod(Y) is defined as the limit of D-mod(S) over the category

of schemes of finite type S over Y, with structure functors given by !-pullbacks. For details see

[53].

Similarly, for a scheme X of finite type, we let Shv(X) denote ind-completion of the DG

category of constructible sheaves in the analytic topology on C-points X(C). Then we extend

the definition to arbitrary prestack Y by taking the limit of Shv(S) over all S → Y.

The Riemann-Hilbert correspondence is a fully-faithful functor

RH : Shv(Y)→ D-mod(Y)

whose essential image is the full subcategory of holonomic D-modules with regular singularities.

The perverse t-structure on Shv(Y) matches with the usual t-structure on D-mod(Y) via RH.

On only one occasion in this thesis (Section 5.5), we mention the ind-coherent sheaves

IndCoh(Y) of a prestack Y. The only feature we use there is the pushforward functor f∗ :

IndCoh(Y) → IndCoh(Y ′) of a morphism f : Y → Y ′. Note that under the induction functor

from IndCoh(Y) to D-mod(Y), the IndCoh pushforward corresponds to the usual de Rham (*-)

pushforward of right D-modules, whenever the functors are defined. We refer the reader to [39]

for a full treatment of the theory of ind-coherent sheaves.



Chapter 2

Preparation: algebraic constructions

2.1 Root datum

Recall notations from Section 1.2 for algebraic groups and their Lie algebras. Let Λ (resp. Λ̌)

be the weight (resp. coweight) lattice of G. Then by definition Λ̌ (resp. Λ) is the weight (resp.

coweight) lattice of Ǧ. Write Λ+ (resp. Λ̌+) for the set of dominant weights (resp. coweights).

Let R, R+, and Π denote the set of roots, positive roots, and simple roots of G, respectively.

Let ρ denote the half sum of all positive roots.

We have the standard invariant bilinear form on g

(·, ·)st : g⊗ g→ C,

which restricts to a form on t and thus on the lattice Λ̌ ⊂ t. We also have the natural pairing

〈·, ·〉 between t∗ and t, which restricts to

〈·, ·〉 : Λ⊗ Λ̌→ Z

on the lattices. For each simple root αi and coroot α̌i, let di ∈ {1, 2, 3} be the integer such

that (α̌i, µ̌)st = di〈αi, µ̌〉. Then there is an induced form on Λ, also denoted by (·, ·)st when no

confusion can arise, characterized by the relations (µ, αi)st = d−1
i 〈µ, α̌i〉 for all i.

For a number κ ∈ C×, we set

(·, ·)κ := κ(·, ·)st : g⊗ g→ C.

We then have the corresponding form (·, ·)κ on Λ which satisfies

(α̌i, α̌j)κ
(α̌i, α̌i)κ

· di = dj ·
(αi, αj)κ
(αi, αi)κ

.

Define the isomorphism φκ : t→ t∗ by the relation (λ, φκ(µ̌))κ−κcrit = 〈λ, µ̌〉. We will abuse

the notation by writing µ̌ in place of φκ(µ̌) when both weights and coweights are present in an

15
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expression. For example, we will write λ+ µ̌ instead of λ+φκ(µ̌). When κ is a rational number

such that φκ : Λ̌→ Λ, let φT : T → Ť be the map induced from φκ.

2.2 Affine Lie algebras

The affine Lie algebra ĝκ at level κ is a central extension of g(K) by the 1-dimensional trivial

module C1, with Lie bracket defined by the 2-cocycle

f, g 7→ −Rest=0(f ,
dg

dt
)κ, f, g ∈ g(K).

We have the Cartan decomposition of the affine Lie algebra ĝκ:

ĝκ = n(K)⊕ t̂κ ⊕ n−(K),

where the subalgebra t̂κ := t(K)⊕ C1 is the Heisenberg algebra at level κ.

We define ĝκ-mod♥ as the abelian category whose objects are ĝκ-modules M where (1) the

central element 1 acts as the identity, and (2) each vector m ∈ M is annhilated by g(tnC[[t]])

for some n ≥ 0. The morphisms are ordinary ĝκ-equivariant maps. The corresponding DG

category is denoted by ĝκ-mod.

The full subcategory (ĝκ-modG(O))♥ ⊂ ĝκ-mod♥ consists of those modules whose g(O)-

action comes from a G(O)-action. As explained in [27, Section 1.2], the G(O)-action integrating

a given g(O)-action is unique at the abelian level, but not so at the derived level since higher

cohomologies of G(O) are non-trivial. Consequently, the DG category ĝκ-modG(O) of G(O)-

equivariant (equivalently, G(O)-integrable) ĝκ-modules is no longer a full subcategory of the

DG category ĝκ-mod. Nevertheless, one can construct the DG category ĝκ-modG(O) by “boot-

strapping” from the abelian category (ĝκ-modG(O))♥. The details of this construction appear

in Section 2 of loc. cit. and [30, Section 1.1]. A different approach to construct ĝκ-modG(O),

using derived algebraic geometry and higher category theory, is given in Section 4 of loc. cit.,

which might be of interest to the reader.

For a given finite-dimensional representation V of g, we extend it to a module over g(O)⊕C1

by setting the action of t as 0 and the action of the central element 1 as 1. Then we perform

induction to ĝκ:

V κ := Indĝκ
g(O)⊕C1 V.

The resulting ĝκ-module V κ is obviously G(O)-integrable.

Let Vλ be the finite-dimensional irreducible representation of g with dominant integral

highest weight λ. The corresponding ĝκ-module Vκλ := (Vλ)κ is called the Weyl module of

highest weight λ. The category ĝκ-modG(O) is compactly generated by the subcategory of Weyl

modules.

Recall the Verma module Mλ := Indg
bCλ of highest weight λ over g. Then we define the
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affine Verma module as Mκ
λ := (Mλ)κ. Equivalently, Mκ

λ = Indĝκ
Lie(I) Cλ, where we regard Cλ

as an Lie(I)-module via the evalution map. By definition affine Verma modules are objects in

(the heart of) the DG category ĝκ-modI of I-equivariant ĝκ-modules.

Let Cµ be the 1-dimensional t-module of weight µ. Then similar to the definition of V κ

above we define the Heisenberg module

πκµ := Indt̂κ
t(O)⊕C1Cµ, (2.1)

called the Fock module of highest weight µ.

We recall from [7] a perfect pairing between negative level and positive level ĝ-modules:

〈−,−〉 : ĝκ′-mod× ĝκ-mod→ Vect

given by 〈N,M〉 = C
∞
2 (g(K), N ⊗C M). Here the semi-infinite complex is taken with respect

to the lattice g(O) ⊂ g(K). Suppose that a group K acts on ĝ-mod. Then

〈−,−〉K : ĝκ′-modK × ĝκ-modK
〈−,−〉−→ VectK

H•K−→ Vect (2.2)

defines a pairing between negative and positive level K-equivariant categories. Let DK :

ĝκ′-modK → ĝκ-modK be the (contravariant) duality functor which satisfies

〈A,B〉K = Homĝκ(DKA,B). (2.3)

Let H be a subgroup of K. The pairing for equivariant categories naturally commutes with

the forgetful functor obliv : ĝ-modK → ĝ-modH ; i.e. the following diagram commutes:

ĝκ′-modK

obliv
��

DK // ĝκ-modK

obliv
��

ĝκ′-modH
DH // ĝκ-modH

Recall that the *-averaging functor Av
K/H
∗ (resp. !-averaging functor Av

K/H
! ) is defined as

the right (resp. left) adjoint to the forgetful functor obliv : ĝ-modK → ĝ-modH . Then it follows

from the definitions that

DK ◦Av
K/H
∗ ' Av

K/H
! ◦ DH . (2.4)

More generally, let C be a category acted on by a group G. Given categories CK ,CH

equivariant with respect to subgroups K,H of G, for convenience we write AvK? : CH → CK to

mean the composition of functors

CH
forget−→ C

AvK?−→ CK , (2.5)
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where ? = ∗ or !. The averaging functors AvK? are clearly well-defined and agree with Av
K/H
?

if H is a subgroup of K.

We end this section by two simple but important calculations of the duality functor.

Lemma 2.2.1. For any weight µ, DI(Mκ′
µ ) ∼= Mκ

−µ+2ρ[dim(G/B)].

Proof 1. From [7, Section 2.2.8], we have

DI(Ind
ĝκ′
I Cν) ∼= Indĝκ

I C−ν ⊗ det. rel.(Lie(I), g(O)).

Note that

det. rel.(Lie(I), g(O)) ∼= det(g/b)∗

is the graded 1-dimensional B-module of weight 2ρ concentrated at degree −dim(G/B).

Proof 2. For L ∈ ĝκ-modI , we have

〈Mκ′
µ , L〉I ∼= H•I (C

∞
2 (g(K), (Ind

ĝκ′
I Cµ)⊗ L)) ∼= HomI-mod(C−µ ⊗ det(g(O)/Lie(I))∗, L)

∼= HomI-mod(C−µ+2ρ[dim(G/B)], L) ∼= Homĝκ-modI (M
κ
−µ+2ρ[dim(G/B)], L).

Then the assertion follows from (2.3) and compactness of ĝκ-modI .

As this lemma reveals, the duality functor D (and its equivariant versions) does not preserve

the usual t-structures. However, it does preserve the compact objects:

Lemma 2.2.2. For λ ∈ Λ+, DG(O)(Vκ
′
λ ) ∼= Vκ−w0(λ).

Proof. Similar to the proofs of Lemma 2.2.1. Note that the lowest weight of Vλ is w0(λ).

2.3 Quantum groups

Let ` be a sufficiently large positive integer divisible by all di’s, and put `i := `/di. Recall the

following variants of quantum groups associated to g and a primitive `-th root of unity q (c.f.

[6] and [12]):

• The Drinfeld-Jimbo quantum group Uv, generated by Chevalley generators Ei, Fi and

Kt for i = 1, ..., rankg and t ∈ T over C(v), the rational functions in v, subject to a list of

relations.

• The (Lusztig’s) big quantum group ULus
q (g) ≡ Uq(g): Take R := C[v, v−1](v−q) ⊂ C(v).

The algebra Uq(g) is the specialization to v = q of the R-subalgebra of Uv generated by

Ei, Fi, Kt, and divided powers E
(`i)
i , F

(`i)
i .

• The Kac-De Concini quantum group UKD
q (g): the specialization to v = q of the R-

subalgebra of Uv generated by Ei, Fi, Kt, and
Ki −K−1

i

v − v−1
.



Chapter 2. Preparation: algebraic constructions 19

• The small quantum group uq(g), defined as the C-subalgebra of Uq(g) generated by (i)

KiEi, Fi, and Kt for t ∈ Ker(φT ) when ` is even, or (ii) Ei, Fi, and Ki when ` is odd.

• The small quantum group with full Lusztig’s torus
•
uq(g), defined as the C-subalgebra of

Uq(g) generated by Ei, Fi and all the Kt’s.

Let A be one of the above quantum groups. A-mod denotes the category of finite-dimensional

modules over the Hopf algebra A.

We define the quantum Frobenius functor

Frq : Rep(Ǧ)→ ULus
q (g)-mod

as follows: given V ∈ Rep(Ǧ), let Kt act on V according to φT : T → Ť , and let E
(`i)
i , F

(`i)
i act

as Chevalley generators ei, fi of U(ǧ), whereas Ei and Fi act by 0. Then the small quantum

group uq(g) is the Hopf subalgebra of ULus
q (g) universal with respect to the property that uq(g)

acts trivially on Frq(V ) for V ∈ Rep(Ǧ). Namely, we have the following exact sequence of

categories

0→ Rep(Ǧ)→ ULus
q (g)-mod→ uq(g)-mod→ 0. (2.6)

We can also define quantum groups for b, n, t ...etc. In particular, we will consider the

positive part of the various versions of quantum group defined above. In the remainder of

this section we give an alternative construction of these quantum groups, where the quantum

parameter q and our level κ are related in a more transparent way. Our main reference for this

construction is [30, Section 4-7].

Recall the root lattice ZΠ of G. We start with a bilinear form b : ZΠ×ZΠ→ C×. Consider

the braided monoidal category Repq(Tad) of representations of the quantum adjoint torus:

the objects are ZΠ-graded vector spaces, bifunctor the usual tensor product ⊗, and braiding

operator induced by

x⊗ y 7→ b(λ, µ) y ⊗ x (2.7)

for x ∈ Cλ and y ∈ Cµ. Consider the object ⊕i∈ΠCEi in Repq(Tad), where each Ei is in degree

αi ∈ Π. Let

U free
q (n) := the graded free associative algebra generated by ⊕i∈Π CEi in Repq(Tad).

Similarly, we define U free
q (n−) generated by ⊕i∈ΠCFi with each Fi in degree −αi. Then set

U cofree
q (n) := ⊕

λ∈Z≥0Π
((U free

q (n−))−λ)∗.

We have the canonical bialgebra structure on U free
q (n), which induces the canonical bialgebra

structure on U cofree
q (n). We have a canonical bialgebra map ϕ : U free

q (n) → U cofree
q (n) which

sends Ei to δFi .
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For each i ∈ Π, choose vi := b(αi, αi)
1/2. For arbitrary i, j ∈ Π, assume that b(αi, αj) =

b(αj , αi) = v
〈αi,α̌j〉
i . For integers n,m, define the quantum binomial coefficient[

n

m

]
i

=
[n]!i

[m]!i[n−m]!i

where [n]i =
vni −v

−n
i

vi−v−1
i

and [n]!i = Πn
s=1[s]i. The quantum Serre relation corresponding to i, j ∈ Π

is the element ∑
p+p′=1−〈αi,α̌j〉

(−1)p
′

[
1− 〈αi, α̌j〉

p

]
i

Epi EjE
p′

i .

We define UKD
q (n) as the quotient of U free

q (n) by the quantum Serre relations for all i, j ∈ Π.

Similarly we define UKD
q (n−) by considering the quantum Serre relations with all E’s replaced

by F ’s. It is verified in [56] that the quantum Serre relations are sent to zero under ϕ. Hence

ϕ induces a map ϕ̃ : UKD
q (n) → U cofree

q (n). Define ULus
q (n) ⊂ U cofree

q (n) as the sub-bialgebra

linearly dual to UKD
q (n−). It is shown in loc. cit. that ϕ̃ factors through ULus

q (n). Finally, the

small quantum group uq(n) is defined as the image ϕ̃(UKD
q (n)), regarded as a sub-bialgebra of

ULus
q (n). Therefore we have the following diagram

U free
q (n) // //

ϕ

��

UKD
q (n)

ϕ̃

}}||||||||||||||||||||

ϕ̃

��

'' ''OOOOOOOOOOOO

uq(n)
J j

wwoooooooooooo

U cofree
q (n) ULus

q (n)? _oo

Various versions of representation category of the full quantum group can now be obtained

by applying the notion of relative Drinfeld center to the category of modules over ULus
q (n).

Suppose that b is extended to a bilinear form on Λ, and recall Repq(T ) the braided monoidal

category of Λ-graded vector spaces, with the braiding operator given by the same formula as

(2.7). Let ULus
q (n)-mod be the category consisting of objects in Repq(T ) together with action

by ULus
q (n) compatible with the grading.

Consider the category ULus
q (b)-mod whose objects are unions of finite-dimensional ULus

q (n)-

submodules. We let ULus
q (n) act on the usual tensor product of modules by

x · (v ⊗ v′) :=
∑

b(deg(v),deg(x(2))) (x(1) · v)⊗ (x(2) · v′).

Then both ULus
q (n)-mod and ULus

q (b)-mod are now braided monoidal categories.

We first define the category U+Lus,–KD
q (g)-mod of representations over a “mixed” quantum

group, whose positive part is of Lusztig form and negative part is of Kac-De Concini form. Con-

cretely, the category U+Lus,–KD
q (g)-mod is the relative Drinfeld center DrRepq(T )(U

Lus
q (b)-mod),
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whose objects are pairs (M, c), where M is in ULus
q (b)-mod and

cM,X : M ⊗X−̃→X ⊗M

are isomorphisms functorial in X, such that cM,X⊗Y = (IdX⊗cM,Y )·(cM,X⊗IdY ) and cM,Cν (m⊗
x) = b(deg(m), ν) · x⊗m for all ν ∈ ZΠ.

The collection c of functorial isomorphisms of an object (M, c) in U+Lus,–KD
q (g)-mod gives

rise to a right coaction ιM : M →M ⊗ ULus
q (n) of ULus

q (n) on M , defined by

ιM (m) := (cM,ULus
q (n))

−1(1⊗m).

This induces a left (ULus
q (n))∗-action and hence a UKD

q (n−)-action, as we have seen that ULus
q (n)

and UKD
q (n−) are dual to each other.

Now we define U
1
2
q (g)-mod as the full subcategory of U+Lus,–KD

q (g)-mod consisting of objects

whose induced UKD
q (n−)-action factors through UKD

q (n−)� uq(n
−). Finally, we can recover the

category ULus
q (g)-mod of representations over the full (Lusztig’s) quantum group as consisting

of objects (V, ϑ) where V is in U
1
2
q (g)-mod and ϑ : ULus

q (n−) ⊗ V → V an action extends the

uq(n
−)-action on V along uq(n

−) ↪→ ULus
q (n−).

One can show that the forgetful functor ULus
q (g)-mod→ U

1
2
q (g)-mod is fully faithful. There-

fore we have the following embeddings of categories:

ULus
q (g)-mod ↪→ U

1
2
q (g)-mod ↪→ U+Lus,–KD

q (g)-mod (2.8)

Although we define the above representation categories in terms of abelian categories, in

practice we will consider the corresponding DG categories and the notations we use above

will always mean DG categories. The abelian categories will be denoted by the heart of the

respective DG categories. It is claimed in [56] that the embeddings in (2.8) still hold true for

DG categories, but no proof or reference to one was given in loc. cit.. This claim is not needed

for the main results of this thesis, and is only used to formulate the conjectural statements in

Chapter 8.

2.4 Kazhdan-Lusztig equivalence at negative level

Let κ′ be a negative level and q = exp( π
√
−1

κ′−κcrit
). Given bilinear pairing (·, ·)κ′ on Λ̌, we define

bκ′ : Λ⊗ Λ→ C× to be

bκ′(·, ·) := exp
(
π
√
−1
(
(·, ·)κ′−κcrit

|t
)−1
)
≡ q(·,·)st .

Note that the exponent (·, ·)st of q in the right most term is the induced form on Λ, c.f. Section

2.1. Then vi = q
(αi,αi)st

2 and indeed bκ′(αi, αj) = bκ′(αj , αi) = v
〈αi,α̌j〉
i . Then the constructions



Chapter 2. Preparation: algebraic constructions 22

from Section 2.3 apply here.

The Kazhdan and Lusztig equivalence is a tensor equivalence of braided monoidal categories:

KLG : (ĝκ′-modG(O))♥−̃→(ULus
q (g)-mod)♥.

Note that while the braided monoidal structure on (ULus
q (g)-mod)♥ is given explicitly by the

R-matrix and the Hopf algebra structure of ULus
q (g), that on (ĝκ′-modG(O))♥ is a nontrivial con-

struction by Kazhdan and Lusztig, inspired by Drinfeld’s construction of the Drinfeld associator

via the Knizhnik-Zamolodchikov equations, c.f. [44].

We define the quantum Weyl module Vλ of highest weight λ as the image of the Weyl module

Vκ′λ under the (negative level) Kazhdan-Lusztig functor; i.e.

Vλ := KLG(Vκ
′
λ ) ∈ (ULus

q (g)-mod)♥.

From [44, Lemma 38.2], our quantum Weyl module coincides with what is commonly called the

Weyl module of a quantum group in the literature. Explicitly, for λ ∈ Λ+

Vλ ∼= Ind
ULus
q (g)

ULus
q (b)

Cλ.

2.5 Kazhdan-Lusztig functor at positive level

The original Kazhdan-Lusztig functor KLG is for negative level only. In order to define a

Kazhdan-Lusztig type functor for positive level modules, we invoke the duality functor DG(O)

defined in Section 2.2. However, as we have seen in Lemma 2.2.1, the functor DG(O) does not

preserve t-structures. Consequently our definition of the Kazhdan-Lusztig functor at positive

level must involve DG categories.

Let κ be positive (which implies that κ′ is negative) and q = exp( π
√
−1

κ′−κcrit
). We first

derive the original Kazhdan-Lusztig equivalence to an equivalence of DG categories KLG :

ĝκ′-modG(O) ∼−→ ULus
q (g)-mod (since the DG category ĝκ′-modG(O) can be recovered from its

heart by “bootstrapping”; see Section 2.2). Consider the contragredient duality functor for

quantum group modules

Dq : ULus
q (g)-mod→ ULus

q (g)-mod,

induced by the usual Hopf module dual at the level of abelian category. I.e. for M ∈
(ULus

q (g)-mod)♥, we take the linear dual Dq(M) := HomC(M,C) with ULus
q (g)-action twisted

by the antipode. Then we can define the Kazhdan-Lusztig functor at positive level κ

KLκG : ĝκ-modG(O) → ULus
q (g)-mod,
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such that the following diagram commutes:

ĝκ′-modG(O)

KLG
��

DG(O) // ĝκ-modG(O)

KLκG
��

ULus
q (g)-mod

Dq
// ULus
q (g)-mod

(2.9)

The functor KLκG is not t-exact, because DG(O) is not. Nonetheless it becomes t-exact when

restricted to the full subcategory of compact objects. In fact, all arrows in (2.9) become t-exact

equivalences when restricted to the full subcategories of compact objects.



Chapter 3

Preparation: geometric

constructions

3.1 Affine flag variety and Kashiwara-Tanisaki Localization

Recall I := ev−1(B) the Iwahori subgroup of G(O). The affine flag variety is defined as

Fl := G(K)/I, and the set of I-orbits of Fl is known to be indexed by the affine Weyl group

W aff := Λ̌ o W . For w̃ ∈ W aff, corresponding to the I-orbit Iw̃I ⊂ Fl we denote by jw̃,∗

(resp. jw̃,!) the costandard (resp. standard) object in the heart of the category D-mod(Fl)I ∼=
D-mod(I\G(K)/I).

Let µ be a weight. In [43], Kashiwara and Tanisaki constructed the category D-mod(Fl)I,µ of

µ-twisted I-equivariant right D-modules on the affine flag variety, and proved a correspondence

between D-mod(Fl)I,µ and the category of I-equivariant modules over the affine Lie algebra at

the negative level. (See [43, Section 2] for the detailed construction of D-mod(Fl)I,µ.)

The µ-twisted category admits the twisted standard and costandard objects, which will still

be denoted by jw̃,! and jw̃,∗. Recall the irreducible object jw̃,!∗ in the category D-mod(Fl)I,µ,

defined as the image of the canonical morphism jw̃,! → jw̃,∗. Let D-mod(Fl)I,µ0 be the full

subcategory of D-mod(Fl)I,µ consisting of objects whose composition factors are isomorphic to

jw̃,!∗ for some w̃ ∈W aff. We state the result of Kashiwara-Tanisaki precisely as follows:

Theorem 3.1.1. Let κ′ be a negative level. Suppose that µ ∈ Λ satisfies 〈µ+ ρ, α̌i〉 ≤ 0 for all

simple coroots α̌i. There is a functor between derived categories

H• : D-mod(Fl)I,µ → ĝκ′-modI

with the following properties:

1. When restricted to D-mod(Fl)I,µ0 , Hn is trivial for all n 6= 0 and Γ ≡ H0 is exact.

2. Γ(jw̃,!) ∼= Mκ′
w̃·µ.

24
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Recall the dot action of w̃ ≡ λ̌w on a weight µ given by

λ̌w · µ = λ̌+ w(µ+ ρ)− ρ.

In order to be compatible with the ordinary (non-twisted) left D-modules on G/B ↪→ Fl and

the Beilinson-Bernstein Localization Theorem for G/B, we choose the twisting to be µ − 2ρ.

Therefore, Γ(jλ̌w,!)
∼= Mκ′

λ̌+w(µ−ρ)−ρ.

For a weight ν = λ̌+w(µ−ρ)−ρ, we define the dual affine Verma module of highest weight

ν as Mκ′,∨
ν := Γ(jλ̌w,∗). It is shown in [43] that this agrees with the contragredient dual of the

affine Verma module Mκ′
ν . We recall the contragredient duality in Section 4.2.

More generally, H• intertwines the Verdier duality on D-mod(Fl)I,µ with the contragredient

duality on ĝκ′-modI . We can similarly define the dual Weyl module Vκ
′,∨
ν , either algebraically

via the contragredient duality or geometrically through Verdier duality by virtue of Kashiwara-

Tanisaki’s theorem (c.f. the discussion following the proof of Lemma 5.1.1.)

3.2 Convolution action on categories

Let K ⊂ G(O) be a compact open subgroup, and C be a DG category acted on strongly by K

on the left. This means that C is a left module category of D-mod(K).

Following [24, Section 22.5], the category D-mod(G(K)/K) of rightK-equivariant D-modules

on the loop group acts on CK by convolution, denoted by

− ?K − : D-mod(G(K)/K)⊗ CK → C.

The convolution is associative in the sense that, for K,K ′ two open compact subgroups of

G(O), we have

(M1 ?K M2) ?K′ X 'M1 ?K (M2 ?K′ X)

for M1, M2, X objects in D-mod(G(K)/K), D-mod(K\G(K)/K ′) and CK
′

respectively. The

identity object for the convolution action is δK,G(K)/K , the delta function D-module supported

on the identity coset.

Recall the DG category D-mod(GrG) of (right) D-modules on the affine Grassmannian

GrG := G(K)/G(O). For a subgroup H ⊂ G(K), we have the H-equivariant category

D-mod(GrG)H ' D-mod(H\GrG)

by considering the left H-action on D-mod(GrG). In particular, we will consider the N(K) or

N−(K)-equivariant categories as defined in [28], where a special t-structure is constructed. The

convolution action of D-mod(GrG)N
−(K)T (O) on ĝκ-modG(O) is:

− ?G(O) − : D-mod(GrG)N
−(K)T (O) ⊗ ĝκ-modG(O) → (ĝκ-mod)N

−(K)T (O).
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We often consider the convolution action − ?I − : D-mod(Fl)I ⊗ ĝκ-modI → ĝκ-modI and

− ?I − : D-mod(Fl)I ⊗D-mod(GrG)I → D-mod(GrG)I . Since I\Fl ≡ I\G(K)/I 'W aff as sets,

for w̃ ∈ W aff and M ∈ ĝκ-modI we define the naive dot action w̃ ·M by precomposing the

representation ĝκ → End(M) with the adjoint action Adw̃, regarding w̃ as its representative

in G(K). For D-modules, the dot action w̃ · F on F ∈ D-mod(GrG)I is induced by the sheaf-

theoretic direct image along w̃ regarded as an automorphism on GrG.

We prove below some identities involving convolutions that is important for our calcula-

tions of semi-infinite cohomology. Unless otherwise specified, all convolution products in the

remainder of this section are with respect to I and will be denoted − ?−.

Lemma 3.2.1. Let A ∈ ĝκ′-modI and B ∈ ĝκ-modI . Then we have

〈A, jλ̌,∗ ? B〉I = 〈j−λ̌,∗ ? A,B〉I .

Proof 1. Recall from (2.2) that the pairing 〈−,−〉I is characterized by

〈M,N〉I ∼= H•I (C
∞
2 (g(K),M ⊗N)).

By [24, Proposition 22.7.3], we have

H•I (C
∞
2 (g(K), A⊗ (jλ̌,∗ ? B)) ∼= H•I (C

∞
2 (g(K), (A ? jλ̌,∗)⊗B),

where the ‘right convolution action’ A ? jλ̌,∗ is through the left I-equivariance structure of

jλ̌,∗ in D-mod(I\G(K)/I), opposite to the right I-equivariance structure we use for the left

convolution action. As a consequence of this side change we have A? jλ̌,∗
∼= j−λ̌,∗ ?A, hence we

get 〈A, jλ̌,∗ ? B〉I = 〈j−λ̌,∗ ? A,B〉I .

Proof 2 (Sketch). The lemma will follow from the identity

j−λ̌,! ? DIA = DI(j−λ̌,∗ ? A), (3.1)

for we will have

〈A, jλ̌,∗ ? B〉I = Homĝκ(DIA, jλ̌,∗ ? B) = Homĝκ(j−λ̌,! ? DIA,B)

= Homĝκ(DI(j−λ̌,∗ ? A), B) = 〈j−λ̌,∗ ? A,B〉I

by combining the identity with (2.3). But then, since DI commutes with convolution actions

(where DI operates on D-modules to the same effect as taking the Verdier dual, c.f.[3, Theorem

1.3.4]), (3.1) follows from that j−λ̌,∗ is Verdier dual to j−λ̌,!.

Lemma 3.2.2. Let w̃ ∈ W aff and Iw̃I be the closure of the orbit Iw̃I in Fl. For F ∈
D-mod(GrG)I , we have the following identities:

1. AvI! (w̃ · F ) ∼= jw̃,! ? F [dim Iw̃I],
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2. AvI∗(w̃ · F ) ∼= jw̃,∗ ? F [−dim Iw̃I].

We recall the definition of averaging functors from (2.5).

Proof. Unravelling the definition, we see that w̃ · F ∼= δw̃ ? F , where δw̃ is the delta-function

D-module at the coset w̃I ∈ Fl. Since F is I-equivariant, the shift w̃ ·F is Adw̃(I)-equivariant.

Let Iw̃ := I∩Adw̃(I). We define the usual action and projection maps act,pr : I×Iw̃ GrG →
GrG by act([x, y]) := xy and pr([x, y]) := y, where x ∈ I and y ∈ GrG. The twisted tensor

product sheaf M�̃N on I ×Iw̃ GrG is defined to be the unique sheaf such that q∗(M�̃N) '
M �N , where q : I ×GrG → I ×Iw̃ GrG is the canonical map.

Then we have

AvI! (w̃ · F ) = act! ◦ pr!(δw̃ ? F ) ∼= act!(OI�̃(δw̃ ? F ))[dim Iw̃I] ∼= jw̃,! ? F [dim Iw̃I],

proving (1).

For (2), we apply the Verdier duality on D-modules to (1). Since the Verdier duality

commutes with convolution product, we get

AvI∗(w̃ · DF ) ∼= jw̃,∗ ? DF [−dim Iw̃I].

Since D is an equivalence, (2) is proven.

3.3 Spherical category

We define the spherical category as

SphG := D-mod(GrG)G(O),

the DG category of (left) G(O)-equivariant D-modules on GrG, which is a categorical analogue

of the spherical Hecke algebra in number theory. The G(O)-orbits of GrG are parametrized by

the dominant coweights of G. For each dominant coweight λ̌ ∈ Λ̌+, the corresponding G(O)-

orbit is G(O)tλ̌G(O) =: Grλ̌G. Let ICλ̌ ∈ (SphG)♥ be the IC D-module supported on the closure

Grλ̌G. It is known that (SphG)♥ is semisimple with simple objects given by these IC D-modules.

Recall from [50] that the spherical category is equipped with a convolution product −?G(O)

−, which makes (SphG)♥ a symmetric monoidal category. In fact, this coincides with the

convolution defined in Section 3.2 by taking C = D-mod(GrG) and K = G(O).

Denote by Sat : Rep(Ǧ)♥ → (SphG)♥ the geometric Satake equivalence, a tensor equiv-

alence of symmetric monoidal categories. For λ̌ ∈ Λ̌+, the functor Sat sends the irreducible

representation Vλ̌ of Ǧ to the IC D-module ICλ̌.

We define the semi-infinite orbits Sµ̌ as the N(K)-orbit N(K)tµ̌G(O) inside GrG. The

opposite semi-infinite orbit Tν̌ is defined to be N−(K)tν̌G(O). It is known that the semi-infinite
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orbits and the opposite semi-infinite orbits are both parametrized by the coweight lattice Λ̌ of

G.

The theory of weight functors developed in [50] enables us to compute cohomology of objects

in the spherical category by representation theory. In particular, we will compute the !-stalk of

ICλ̌ at the point tw0(λ̌)G(O) ∈ GrG. Denote the inclusions

tw0(λ̌)G(O) �
� ι //
� t

k ''OOOOOOOO
GrG

Sw0(λ̌)

+ � s

99sssssss

Then the !-stalk of ICλ̌ at tw0(λ̌)G(O) is

ι! ICλ̌
∼= k!s∗ ICλ̌[2〈ρ, w0(λ̌)− λ̌〉] ∼= H•c (Sw0(λ̌), ICλ̌)[2〈ρ, w0(λ̌)− λ̌〉].

But then the cohomology H•c (Sw0(λ̌), ICλ̌) vanishes except at degree 〈2ρ, w0(λ̌)〉, and the non-

vanishing part is precisely the weight functor that computes the weight multiplicity of Vλ̌ at

weight w0(λ̌). The representation theory tells us that it is one-dimensional. We conclude

ι! ICλ̌
∼= C[−〈2ρ, λ̌〉] ∼= C[〈2ρ, w0(λ̌)〉]. (3.2)

For arbitrary level κ, we define an action of Rep(Ǧ) on ĝκ-modG(O) by

V,M 7→ Sat(V ) ?G(O) M.

According to [3, Theorem 1.3.4], we have

KLG(Sat(V ) ?G(O) M) ∼= Frq(V )⊗KLG(M) (3.3)

for V ∈ Rep(Ǧ) and M ∈ ĝκ′-modG(O) where κ′ is negative.
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Wakimoto modules

The Wakimoto modules are a class of representations of affine Kac-Moody algebras, originally

introduced by M. Wakimoto [62] for ŝl2 and generalized to arbitrary types by B. Feigin and E.

Frenkel [17]. In this section, we will give two geometric constructions of Wakimoto modules,

following [24] and [29]. A more algebraic construction of Wakimoto modules can be found in

[22].

4.1 First construction, via chiral differential operators

In the first construction, we follow [24]. This approach is inspired by the localization theorem

of Beilinson and Bernstein [8] for finite-dimensional Lie algebras. Namely, the construction can

be seen as an infinite-dimensional analog of taking sections of twisted D-modules on the big

Schubert cell in G/B.

Naively one would try to make sense of D-modules on G((t))/B((t)). But as explained

in [23, Section 11.3.3] and [24], the semi-infinite flag manifold G((t))/B((t)) is an ill-behaved

infinite-dimensional object, and it is still not known whether a good theory of D-modules on

G((t))/B((t)) exists. Nevertheless, the theory of chiral differential operators are created to

address this issue (see [5, Section 6]). To model D-modules on G((t))/B((t)), we consider chiral

modules over the chiral algebra Dch(
◦

G/B)κ defined below.

Fix an arbitrary level κ ∈ C×, we recall from the Appendix the chiral algebra of differential

operators Dch(G)κ (by setting the pairing Q as κ(·, ·)st). Denote by
◦
G the open cell Bw0B ⊂ G.

Then we have the induced chiral differential operators Dch(
◦
G)κ on

◦
G. We have the left- and

right-invariant vector fields maps from Lg,κ and L′g,κ′ into Dch(G)κ, respectively. In particular,

we have a morhpism Ln → Dch(
◦
G)κ given by the composition

Dch(
◦
G)κ ← Dch(G)κ

r← L′g,κ′ ← Ln.

This enables us to define the semi-infinite complex C
∞
2 (Ln, D

ch(
◦
G)κ). It is known [24, Lemma

29
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10.3.1] that this complex is acyclic away from degree zero. We therefore define the chiral

differential operators on
◦

G/N as

Dch(
◦

G/N)κ := H
∞
2 (Ln, D

ch(
◦
G)κ).

Now, consider the Lie-* subalgebra L′b,κ′ ⊂ L′g,κ′ whose structure as a central extension of Lb

by ωX comes from that of L′g,κ′ (defined in Section 9.3). We define L̂′t,κ as the central extension

of Lt induced from L̂′b,κ, which is the Baer sum of the Tate extension L[b and L′b,κ′ . We also

define the Lie-* algebra L̂t,κ as the Baer negative of L̂′t,κ. The map r : L′g,κ′ → Dch(
◦
G)κ induces

a Lie-* morphism

L̂′t,κ → Dch(
◦

G/N)κ,

which gives rise to the chiral algebra morphism

U ch(L̂′t,κ)→ Dch(
◦

G/N)κ.

Note that this involves the Tate shift owing to the construction of semi-infinite cohomology

with respect to Ln, as in (9.1).

The chiral algebra Dch(
◦

G/B)κ is defined as the Lie-* centralizer of the image of U ch(L̂′t,κ) in

Dch(
◦

G/N)κ. Since the left-invariant vector fields map l commutes with r, we obtain a morphism

of chiral algebras

l : Ag,κ → Dch(
◦

G/B)κ. (4.1)

In fact, it is shown in [24, Section 10.4] that if we identify
◦
G ' Nw0B with the product

N ×B, then we have isomorphisms

Dch(
◦
G)κ ' Dch(N)⊗Dch(B)κ′

Dch(
◦

G/N)κ ' Dch(N)⊗ D̂ch(H)κ

where D̂ch(H)κ admits chiral left- and right-invariant fields morphisms

lt : U ch(L̂t,κ) −→ D̂ch(H)κ ←− U ch(L̂′t,κ) : rt.

The centralizer of rt(U
ch(L̂′t,κ)) is precisely U ch(L̂t,κ). Hence we derive from (4.1) the free field

realization

l : Ag,κ → Dch(
◦

G/B)κ ∼= Dch(N)⊗ U ch(L̂t,κ). (4.2)

In addition, by C
∞
2 (Lt, D̂

ch(H)κ ⊗ U ch(L̂t,κ)) ∼= U ch(L̂t,κ) [24, Section 22.6] we have

Dch(
◦

G/B)κ ∼= C
∞
2 (Lt,D

ch(
◦

G/N)κ ⊗ U ch(L̂t,κ)), (4.3)
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where the semi-infinite complexes are taken with respect to the left-invariant vector field map

of Lt.

Let us now consider the chiral Dch(
◦
G)κ-module

Distch
G (I0wI)κ

supported at a fixed point x ∈ X, corresponding to the *-extension of the D-module Fun(I0wI)

on
◦
G[[t]]. Then C

∞
2 (Ln,Distch

G (I0wI)κ) is naturally a Dch(
◦

G/N)κ-module. Let π−κ
′−shift

µ be the

chiral Fock module over U ch(L̂t,κ) of highest weight µ. Then for a Weyl group element w, we

define the type w chiral Wakimoto module Wκ,w
λ of highest weight λ at level κ as

Wκ,w
λ := C

∞
2 (Lt,C

∞
2 (Ln,Distch

G (I0wI)κ)⊗ π−κ′−shift
w−1(λ+ρ)+ρ

),

which is acted on by Dch(
◦

G/B)κ due to (4.3), and becomes a chiral Ag,κ-module via the free

field realization (4.2). As in Example 9.1.1, a chiral Ag,κ-module supported at a point x ∈ X
amounts to a module over the affine Lie algebra ĝκ. The ĝκ-module induced by Wκ,w

λ is called

the type w Wakimoto module of highest weight λ at level κ, and will still be denoted by Wκ,w
λ

by abuse of notation.

A crucial property of Wakimoto modules following this line of construction is:

Proposition 4.1.1 ([24] Proposition 12.5.1). For a dominant coweight λ̌ ∈ Λ̌+, we have

jλ̌,! ?I W
κ,1
µ
∼= Wκ,1

µ+λ̌
and jλ̌,∗ ?I W

κ,w0
µ
∼= Wκ,w0

µ+λ̌
.

4.2 Digression: Modules over affine Kac-Moody algebras and

contragredient duality

In order to compare Verma modules and Wakimoto modules algebraically, we need to introduce

the notion of character of a module over affine Lie algebras. However, characters are well-defined

only when weight spaces are finite-dimensional, which prompts us to introduce the action of

the degree operator t∂t and affine Kac-Moody algebras ĝoCt∂t.
Let ĝ := ĝ1. Consider the affine Kac-Moody algebra ĝ o Ct∂t, where the degree operator

t∂t acts on ĝ by

t∂t(g) := t
dg

dt
for g ∈ g(K) and t∂t(1) := 0.

Given any g-module V , if we let t∂t act on V by 0 and 1 act by κ, then the induction makes

V κ := IndĝoCt∂t
g(O)⊕C1⊕Ct∂t V

a module over the affine Kac-Moody algebra. We will consider the category of affine Kac-Moody

modules where the central element 1 acts by κ, and we will call its objects ĝκ o Ct∂t-modules
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or modules over ĝκ o Ct∂t. Clearly, a ĝκ o Ct∂t-module is equivalent to a ĝκ-module with the

same t∂t-action.

Clearly we can define the Verma module Mκ
λ and Weyl module Vκλ over ĝκ o Ct∂t by the

same induction procedure. To make the Wakimoto modules Wκ,w
λ an affine Kac-Moody module,

we let the operator t∂t act by loop rotation. Namely, the action is the unique compatible action

induced from the requirement that the vacuum vector of weight λ is annihilated by t∂t.

A weight of an affine Kac-Moody algebra is a tuple (n, µ, v) ∈ (Ct∂t ⊕ t ⊕ C1)∗, with the

natural pairing given by (n, µ, v) · (pt∂t, h, a1) = np+ µ(h) + va. From the structure theory of

affine Kac-Moody algebras, the set of roots of ĝoCt∂t is

R̂ = {(n, α, 0) : n ∈ Z, α ∈ R t 0} − {(0, 0, 0)},

where R is the root system of g. The roots of the form (n, 0, 0) are called imaginary roots, each

of which has multiplicity equal to dim t. All the other roots are called real, with multiplicity

one. The set of positive roots is

R̂+ = {(0, α, 0) : α ∈ R+} t {(n, α, 0) : n > 0, α ∈ R t 0}.

We denote by M(µ̂) the µ̂-weight space of an affine Kac-Moody module M . Note that,

due to the grading given by the action of t∂t, all weight spaces of V κ for any V ∈ g-mod are

finite-dimensional. For an affine Kac-Moody module M with finite-dimensional weight spaces,

we define the character of M to be the formal sum

chM :=
∑

µ̂∈(Ct∂t⊕t⊕C1)∗

dimM(µ̂) eµ̂.

The Cartan involution τ on g is a linear involution which sends the Chevalley generators as

follows:

τ(ei) = −fi, τ(fi) = −ei, τ(hi) = −hi.

For a g-module V , let V ∨ := ⊕µ∈t∗V (µ)∗ be the usual contragredient dual, with its g-action

defined by x · f(v) := f(−τ(x) · v) for f ∈ V ∗ and x ∈ g.

We extend τ to an involution τ̂ on ĝo Ct∂t by setting τ̂(fθ ⊗ t) := −eθ ⊗ t−1, τ̂(1) := −1

and τ̂(t∂t) = −t∂t. Here θ denotes the longest root of g.

Given any affine Kac-Moody modules M with finite-dimensional weight spaces, we similarly

define its contragredient dual M∨ as the restricted dual space⊕
µ̂∈(Ct∂t⊕t⊕C1)∗

M(µ̂)∗

with the ĝoCt∂t-action given by the same formula with τ replaced by τ̂ .

The following basic properties are evident by definition:
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Proposition 4.2.1.

1. For an affine Kac-Moody module M with finite-dimensional weight spaces, (M∨)∨ = M .

2. Taking contragredient dual of a representation preserves its character.

4.3 Camparing Wakimoto and Verma modules at negative level

When the level is negative, we show that the Wakimoto module of type w0 is isomorphic to the

dual Verma module of the same highest weight λ if λ is sufficiently dominant (Theorem 4.3.3,

originally proved in [21, Theorem 2]).

Let us fix a negative level κ′ from now on. The character of Mκ′
λ is by its definition

chMκ′
λ = e(0,λ,κ′)

( ∏
α̂∈ R̂+

(
1− e−α̂

)mult(α̂)
)−1

.

The following lemma describes the character of the Wakimoto module Wκ′,w0

λ . In particular,

we see that the characters of Verma module Mκ′
λ and Wakimoto module Wκ′,w0

λ are identical.

Lemma 4.3.1.

chWκ′,w0

λ = e(0,λ,κ′)

( ∏
α̂∈ R̂+

(
1− e−α̂

)mult(α̂)
)−1

.

Proof. Consider the chiral module Distch
N (ev−1(N)) over the chiral algebra Dch(N) correspond-

ing to the D-module Fun(N [[t]]) on N [[t]]. Then we can rewrite Wκ′,w0

λ
∼= Distch

N (ev−1(N)) ⊗
π−κ−shift
w0(λ) [24, formula (11.6)] 1. As a Ct∂t ⊕ t⊕ C1-module, Wκ′,w0

λ is equal to

C[x∗α,n]α∈R+,n≤0 ⊗ C[xα,m]α∈R+,m<0 ⊗ C[yi,l]l<0,i=1,...,dim t, (4.4)

where the weights of x∗α,n, xα,m and yi,l are (n,−α, 0), (m,α, 0) and (l, 0, 0), respectively, and

the vector 1⊗ 1⊗ 1 has weight (0, λ, κ′). Note that C[yi,l]l<0,i=1,...,dim t corresponds to the Fock

module π−κ−shift
w0(λ) over the Heisenberg algebra, the tensor factor C[x∗α,n]α∈R+,n≤0 corresponds to

Fun(N [[t]]), and C[xα,m]α∈R+,m<0 arises from the induction of Fun(N [[t]]) to a chiral module

over Dch(N). The character formula follows immediately from (4.4).

We recall the Kac-Kazhdan Theorem [42] on possible singular weights appearing in a Verma

module over ĝκ oCt∂t (where κ is arbitrary):

Theorem 4.3.2 (Kac-Kazhdan). Let µ̂ = (n, µ, κ) be a singular weight of Mκ
λ, namely, µ̂ is a

highest weight of some subquotient of Mκ
λ . Then the following condition holds: There exist a

1We recall the level shift of the Heisenberg algebra t̂κ+shift described in Section 1.3 and its Fock module
defined in (2.1)
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sequence of weights (0, λ, κ) = λ̂ ≡ µ̂1, µ̂2, . . . , µ̂n ≡ µ̂ and a sequence of positive roots α̂k ∈ R̂+,

k = 1, 2, . . . , n, such that for each k, there is bk ∈ Z>0 satisfying

µ̂k+1 = µ̂k − bk · α̂k

and

bk · (α̂k, α̂k) = 2 · (α̂k, µ̂k + (0, ρ, h∨)).

Here (·, ·) is the standard invariant bilinear form on the weights of ĝoCt∂t.

The main result of this section is the following:

Theorem 4.3.3.

1. Let κ′ be negative and rational. Suppose that λ ∈ Λ+ is sufficiently dominant. Then

Wκ′,w0

λ is isomorphic to (Mκ′
λ )∨ as ĝκ′-modules.

2. Let κ′ be irrational and λ be integral. Then Wκ′,w0

λ is isomorphic to (Mκ′
λ )∨ as ĝκ′-modules.

Proof of 2. We will prove Mκ′
λ
∼= (Wκ′,w0

λ )∨.

First of all, since (Wκ′,w0

λ )∨ has highest weight the same as that of Mκ′
λ , the universal

property of Verma module implies the existence of a canonical morphism

Φ : Mκ′
λ → (Wκ′,w0

λ )∨.

Using Lemma 4.3.1 and Proposition 4.2.1, we see that Mκ′
λ and (Wκ′,w0

λ )∨ have the same char-

acter. Hence Φ is injective if and only if it is surjective.

Suppose that Φ is not injective. Then we can pick a highest weight vector u ∈ Ker(Φ)

of weight µ̂. By the equality of characters, there exists v ∈ (Wκ′,w0

λ )∨/Im(Φ) of the same

weight µ̂. Now we claim that v cannot lie in (n−[t−1] ⊕ t−1b[t−1])(Wκ′,w0

λ )∨. Indeed, if v ∈
(n−[t−1]⊕ t−1b[t−1])(Wκ′,w0

λ )∨, then we can find a vector v′ ∈ (Wκ′,w0

λ )∨ of weight higher than

µ̂ such that x · v′ = v for some x ∈ ĝ. By the assumption on µ̂, we obtain a vector u′ ∈ Mκ′
λ

with Φ(u′) = v′, but then v = x · Φ(u′) = Φ(x · u′) ∈ Im(Φ) is a contradiction.

Hence, the vector v projects nontrivially onto the coinvariants

(Wκ′,w0,∨
λ )n−[t−1]⊕t−1b[t−1].

Recall that there is a natural filtration on Wκ′,w0,∨
λ , and the associated graded is isomorphic to

the same expression as in (4.4), with n−[t−1] acting on the factor C[x∗α,n]α∈R+,n≤0. This follows

from the fact that the associated graded of chiral differential operators Dch(N) is nothing but

the usual algebra of differential operators on N [[t]].

Therefore, as Ct∂t ⊕ t⊕ C1-modules,

(Wκ′,w0,∨
λ )n−[t−1]⊕t−1b[t−1] � (Wκ′,w0,∨

λ )n−[t−1]⊕t−1t[t−1]
∼= C[xα,m]α∈R+,m<0
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(for the notation xα,m, see the proof of Lemma 4.3.1). We conclude that the weight µ̂ must be

of the form

µ̂ = (−n, λ+ β, κ′) (4.5)

for n ∈ Z>0, β ∈ Span+(R+).

On the other hand, since µ̂ is a highest weight of a submodule of Mκ′
λ , there exist a sequence

of weights (0, λ, κ′) = λ̂ ≡ µ̂1, µ̂2, . . . , µ̂n ≡ µ̂ and a sequence of positive roots α̂k, k = 1, 2, . . . , n,

satisfying the conditions in the Kac-Kazhdan Theorem. For each k = 1, 2, . . . , n, either α̂k is

real or it is imaginary. We write µ̂k = (nk, µk, κ
′), α̂k = (mk, αk, 0),mk ≥ 0, αk ∈ R if α̂k is

real, and α̂k = (mk, 0, 0),mk > 0 if α̂k is imaginary.

Suppose that α̂k is real with mk nonzero. Then

bk = p · (α̂k, µ̂k + (0, ρ, h∨))

= p · ((mk, αk, 0), (nk, µk + ρ, κ′ + h∨))

= p · (κ′ + h∨)mk + p · (µk + ρ, αk),

(4.6)

where p is some nonzero positive rational number. From our assumption that κ′ is irrational

and λ is integral, we get an irrational number bk, which contradicts the condition in the Kac-

Kazhdan Theorem.

Therefore, α̂k has to be either real with mk = 0 or imaginary for each k. This implies

µk+1 = µk − αk for αk ∈ R+ t 0, and so

µ̂ = (−n, λ− β, κ′), (4.7)

where β ∈ Span+(R+) t 0. But then this is a contradiction to the form of µ̂ we obtained in

(4.5).

Proof of 1. The same argument as in the previous proof leads to formula (4.6) for bk when α̂k is

real. Now since κ′ is assumed rationally negative and λ is sufficiently dominant, bk can possibly

be positive only when αk is a positive root of g. Therefore either α̂k is imaginary, or α̂k is real

and µk+1 = µk − bkαk for αk ∈ R+. Again we arrive at the expression

µ̂ = (−n, λ− β, κ′)

where β ∈ Span+(R+) t 0, contradicting (4.5).

Remark 4.3.1. We thank Reimundo Heluani for pointing out that Theorem 4.3.3 (1) was origi-

nally proved in [21]. A different proof using the Kashiwara-Tanisaki localization is given in [30,

Section 3].
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4.4 Second construction, via convolution

Following [29], the second approach to construct the Wakimoto modules incorporates into its

definition the feature that Wakimoto modules are stable under convolution with jλ̌,! or jλ̌,∗
(Proposition 4.1.1). It is sufficient for our purpose to define two types of Wakimoto modules,

Wκ′,∗
λ and Wκ′,w0

λ , at a negative level κ′.

When λ is sufficiently dominant, set Wκ′,∗
λ := Mκ′

λ . For general λ, write λ = λ1 − µ̌, where

λ1 is sufficiently dominant and µ̌ ∈ Λ̌+, and define

Wκ′,∗
λ := j−µ̌,∗ ?I Wκ′,∗

λ1
.

Note that this is well-defined as Mκ′
µ̌+λ
∼= jµ̌,! ?I Mκ′

λ for λ sufficiently dominant and any µ̌ ∈ Λ̌+

by Kashiwara-Tanisaki localization, and j−µ̌,∗ ? jµ̌,! ?− ' Id for µ̌ ∈ Λ̌+. Then by definition

Wκ′,∗
λ−µ̌
∼= j−µ̌,∗ ?I Wκ′,∗

λ (4.8)

holds for all λ ∈ Λ and µ̌ ∈ Λ̌+. If λ is sufficiently anti-dominant, it can be shown that

Wκ′,∗
λ
∼= Mκ′,∨

λ .

We define Wκ′,w0

λ analogously. Put Wκ′,w0

λ := Mκ′,∨
λ when λ is sufficiently dominant. For

general λ, again write λ = λ1 − µ̌, where λ1 is sufficiently dominant and µ̌ ∈ Λ̌+, and define

Wκ′,w0

λ := j−µ̌,! ?I Wκ′,w0

λ1
.

We have seen that the type w0 Wakimoto modules defined in Section 4.1 satisfies Wκ′,w0

λ
∼=

j−µ̌,! ?I Wκ′,w0

λ+µ̌ for dominant µ̌ (Proposition 4.1.1) and Wκ′,w0

λ
∼= Mκ′,∨

λ for sufficiently dominant

λ (Theorem 4.3.3). Consequently Wκ′,w0

λ defined here using convolution agrees with the type

w0 Wakimoto module defined in Section 4.1. One can similarly show that Wκ′,∗
λ is identified

with Wκ′,1
λ .

From this construction, it is clear that both Wκ′,∗
λ and Wκ′,w0

λ lie in the category ĝκ′-modI .

4.5 Relations to semi-infinite cohomology

As its construction involves semi-infinite cohomology, it is not surprising that Wakimoto mod-

ules are closely related to semi-infinite calculus. Below we present two formulas for computing

semi-infinite cohomology, one at negative level and the other at positive level.

The first formula is a result from [24]:

Proposition 4.5.1 ([24] Proposition 12.4.1). C
∞
2 (n(K),Wκ′,w0

λ ) is isomorphic to the Fock mod-

ule πκ
′+shift
λ (placed at homological degree 0) as complexes of modules over the Heisenberg algbera

t̂κ′+shift.
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The second formula concerns the semi-infinite cohomology of modules at a positive level κ.

Let M ∈ ĝκ-modI . We claim

Proposition 4.5.2. 〈Wκ′,∗
−µ−2ρ[dim(G/B)] , M〉I ∼= C

∞
2 (n(K),M)µ.

Proof. The µ-component of the semi-infinite complex can be computed by

C
∞
2 (n(K),M)µ ∼= colim

λ̌∈Λ̌
C•(Lie(I0),AvI∗(t

λ̌ ·M))λ̌+µ[〈λ̌, 2ρ〉],

as in [29, Proposition 1.2.3]. On the other hand, by Lemma 3.2.1 and Lemma 2.2.1 we have

〈Wκ′,∗
−µ−2ρ[dim(G/B)] , M〉I ∼= colim

λ̌∈Λ̌
〈j−λ̌,∗ ?I M

κ′

−µ−2ρ+λ̌
[dim(G/B)] , M〉I

∼= colim
λ̌∈Λ̌

〈Mκ′

−µ−2ρ+λ̌
[dim(G/B)] , jλ̌,∗ ?I M〉I ∼= colim

λ̌∈Λ̌
Homĝκ-modI (M

κ
µ+λ̌

, jλ̌,∗ ?I M).

Now, Lemma 3.2.2 gives

Homĝκ-modI (M
κ
µ+λ̌

, jλ̌,∗ ?I M) ∼= Homĝκ-modI (M
κ
µ+λ̌

, AvI∗(t
λ̌ ·M))[〈λ̌, 2ρ〉]

∼= C•(Lie(I0),AvI∗(t
λ̌ ·M))λ̌+µ[〈λ̌, 2ρ〉].

The proposition follows.
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Semi-infinite cohomology vs

quantum group cohomology:

positive level

This chapter presents the main result of this thesis, Theorem 5.3.1, which compares the semi-

infinite cohomology at positive level and the quantum group cohomology. For the proof of

the theorem, we introduce the generalized semi-infinite cohomology functors, with the usual

semi-infinite cohomology being a special case. It turns out that some generalized semi-infinite

cohomology functors are interesting in its own right, as these functors fit into a duality pattern

explained in Section 6.2.

5.1 Weyl modules revisited

In this section we prove two technical lemmas concerning Weyl modules.

Lemma 5.1.1. Let λ be a dominant integral weight. We have isomorphic ĝκ′-modules

Av
G(O)/I
! Mκ′

λ
∼= Vκ

′
λ .

Proof. By viewing the induction Ind
ĝκ′
g(O)⊕C1 as the left adjoint functor to the restriction functor,

it is easy to verify that

Av
G(O)/I
! ◦ Ind

ĝκ′
g(O)⊕C1 ◦ Indg

b ' Ind
ĝκ′
g(O)⊕C1 ◦Av

G/B
! ◦ Indg

b

as functors from b-mod to ĝκ′-modI .

We have Av
G(O)/I
! Mκ′

λ
∼= Ind

ĝκ′
g(O)⊕C1 ◦Av

G/B
! Mλ as Mλ

∼= Indg
bCλ. Thus it remains to prove

the isomorphism as g-modules

Av
G/B
! Mλ

∼= Vλ.

38
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By the Beilinson-Bernstein localization combined with the translation functor (c.f. [25]),

we have

M∨λ
∼= Γ(G/B,Dist(Bw0B)⊗OG/B L−w0(λ)),

where Dist(Bw0B) is the *-pushforward of the sheaf of regular functions on Bw0B ⊂ G/B,

considered as a left D-module on G/B, and L−w0(λ) is the line bundle induced from OG ⊗B
Cw0(λ). It is easy to see that

Av
G/B
∗ (Dist(Bw0B)⊗OG/B L−w0(λ)) ∼= OG/B ⊗OG/B L−w0(λ)

∼= L−w0(λ). (5.1)

The global sections of the line bundle L−w0(λ) (regarded as a twisted D-module) matches the

irreducible g-module Vλ by the Borel-Weil-Bott Theorem. Finally, we apply the Verdier dual

on both sides of (5.1) and take the global sections to conclude Av
G/B
! Mλ

∼= Vλ, as the Verdier

duality on D-mod(G/B) corresponds to the contragredient duality on g-modules.

Interpreting Lemma 5.1.1 by Kashiwara-Tanisaki’s theorem (Theorem 3.1.1) , we see that

the Weyl module Vκ′λ can be constructed geometrically as the global section of the µ-twisted

D-module Av
G(O)/I
! jw̃,! for some w̃ ∈ W aff and µ ∈ Λ. Note that, Av

G(O)/I
! jw̃,! is precisely the

!-pushforward of OG(O)w̃I , the sheaf of regular functions on the G(O)-orbit G(O)w̃I ⊂ Fl. This

enables us to define the dual Weyl module as

Vκ
′,∨
λ := Γ(DAv

G(O)/I
! jw̃,!) = Γ(Av

G(O)/I
∗ jw̃,∗).

Lemma 5.1.2. Av
G(O)/I
∗ Mκ′,∨

−λ [dimG/B] ∼= Vκ
′,∨
−w0(λ)−2ρ for any dominant integral weight λ.

Proof. By the discussion preceeding this lemma, it suffices to prove the dual version of this

isomorphism, namely

Av
G(O)/I
! Mκ′

−λ[−dimG/B] ∼= Vκ
′

−w0(λ)−2ρ.

The same argument as in the proof of Lemma 5.1.1 reduces this to proving the g-module

isomorphism

Av
G/B
! M−λ[−dimG/B] ∼= V−w0(λ)−2ρ.

Since λ is assumed dominant and integral, there is a unique dominant integral weight µ

such that w0(µ + ρ) = −λ + ρ. Let B1B be the identity B-orbit on G/B. We consider

the −w0(µ)-twisted D-module Dist(B1B) ⊗OG/B L−w0(µ), which corresponds to M∨−λ by the

(twisted) Beilinson-Berstein localization. Then we have Av
G/B
∗ (Dist(B1B) ⊗OG/B L−w0(µ)) ∼=

L−w0(µ)[−dimG/B]. Taking global sections we obtain

Av
G/B
∗ M∨−λ[dimG/B] ∼= Vµ ≡ V−w0(λ)−2ρ.

The assertion follows.
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5.2 Generalized semi-infinite cohomology functor

Let C be a category acted on by G(K). We define a functor p− : CN
−(K)T (O) → (CT (O))N(K) as

the composition of the forgetful functor CN
−(K)T (O) → C with AvI∗ : C → CI followed by the

equivalence q : CI ' (CT (O))N(K). That q is an equivalence is a non-trivial result in [54, Section

6].

Lemma 5.2.1. The functor p− is equivalent to obliv : CN
−(K)T (O) → CT (O) post-composed by

the projection functor proj : CT (O) → (CT (O))N(K).

Proof. This is essentially Section 2.1.3 in [29].

Recall from Section 1.2 the symmetric monoidal ∞-category (DGCatcont,⊗). We say a DG

category C in DGCatcont is dualizable if there exists a DG category C∨ in DGCatcont with

1-morphisms (continuous functors)

Vect→ C⊗ C∨ and C∨ ⊗ C→ Vect

satisfying the usual axioms of a dualizable object [49, Section 4.6.1].

Assume that C is dualizable. Let 〈〈−,−〉〉 : (C∨)N(K)T (O) × (CT (O))N(K) → Vect be the

natural pairing. Note that the natural pairing is characterized by

〈〈Av
N(K)
! c∨, q(c)〉〉 ∼= 〈c∨, c〉I , (5.2)

for c∨ ∈ (C∨)I and c ∈ CI . In the followings, we take C = ĝκ-mod and its dual category

C∨ = ĝκ′-mod as in Section 2.2.

We define generalized semi-infinite cohomology functors (at positive level κ) by the following

procedure: An object F in D-mod(GrG)N
−(K)T (O) defines a functor

p−(F ?G(O) −) : ĝκ-modG(O) → (ĝκ-modT (O))N(K).

We pair the resulting object with Av
N(K)
! Wκ′,∗

−µ−2ρ[dim(G/B)] to get the generalized semi-infinite

cohomology functor corresponding to F and weight µ:

C
∞
2
F (n(K),−)µ := 〈〈Av

N(K)
! Wκ′,∗

−µ−2ρ[dim(G/B)] , p−(F ?G(O) −)〉〉 : ĝκ-modG(O) → Vect. (5.3)

To justify that it really is a generalization of the usual semi-infinite cohomology, we let F =

δG(O) be the identity with respect to ?G(O). Indeed, by (5.2) and Proposition 4.5.2

C
∞
2
δG(O)

(n(K),M)µ ∼= 〈〈Av
N(K)
! Wκ′,∗

−µ−2ρ[dim(G/B)] , p−(M)〉〉 ∼=

∼= 〈Wκ′,∗
−µ−2ρ[dim(G/B)] , AvI∗(M)〉I ∼= C

∞
2 (n(K),M)µ.

The most important generalized semi-infinite cohomology functor for us will be the !*-semi-
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infinite cohomology functor, given by the semi-infinite IC object IC
∞
2
,− in D-mod(GrG)N

−(K)T (O)

which we construct below.

Consider Λ̌+ as a poset with the (non-standard) partial order

λ̌1 ≤ λ̌2 ⇔ λ̌2 − λ̌1 ∈ Λ̌+.

Recall the semi-infinite IC object

IC
∞
2
,− := colim

λ̌∈Λ̌+
tλ̌ · Sat((Vλ̌)∗)[〈2ρ, λ̌〉] ∈ D-mod(GrG)N

−(K)T (O),

analogous to IC
∞
2 ∈ D-mod(GrG)N(K)T (O) constructed and studied in [28]. For µ̌ ∈ Λ̌+, the

transition morphsim

tλ̌ · Sat((Vλ̌)∗)[〈2ρ, λ̌〉]→ tλ̌+µ̌ · Sat((Vλ̌+µ̌)∗)[〈2ρ, λ̌+ µ̌〉]

in the colimit is given by

tλ̌ · Sat((Vλ̌)∗)[〈2ρ, λ̌〉]→ tλ̌ · (tµ̌ · Sat((Vµ̌)∗)[〈2ρ, µ̌〉]) ? Sat((Vλ̌)∗)[〈2ρ, λ̌〉]

→ tλ̌+µ̌ · Sat((Vλ̌)∗ ⊗ (Vµ̌)∗)[〈2ρ, λ̌+ µ̌〉]→ tλ̌+µ̌ · Sat((Vλ̌+µ̌)∗)[〈2ρ, λ̌+ µ̌〉].
(5.4)

Here the first arrow is given by the natural map δt−µ̌G(O) → Sat((Vµ̌)∗)[〈2ρ, µ̌〉], which in turn

is induced from the identification of the !-fiber of Sat((Vµ̌)∗) at the coset t−µ̌G(O) with C (see

(3.2)). The second arrow follows from the geometric Satake equivalence, and the third arrow

arises from the dual of the embedding Vλ̌+µ̌ → Vλ̌ ⊗ Vµ̌.

If λ̌ is dominant, it is well-known that dim Itλ̌I = 〈2ρ, λ̌〉. Then by Lemma 3.2.2 we have

AvI∗(t
λ̌ · F ) ∼= jλ̌,∗ ? F [−〈2ρ, λ̌〉] for any G(O)-equivariant F . Applying the functor AvI∗ to

IC
∞
2
,−, we see that the transition morphism (5.4) becomes

jλ̌,∗ ? Sat((Vλ̌)∗)→ jλ̌,∗ ? (jµ̌,∗ ? Sat((Vµ̌)∗)) ? Sat((Vλ̌)∗)

→ jλ̌+µ̌,∗ ? Sat((Vλ̌)∗ ⊗ (Vµ̌)∗)→ jλ̌+µ̌,∗ ? Sat((Vλ̌+µ̌)∗),

where the first arrow comes from δG(O) → jµ̌,∗ ? j−µ̌,! ? δG(O) → jµ̌,∗ ? Sat((Vµ̌)∗), induced by

the natural morphism Sat(Vµ̌) ∼= ICGrµ̌G
→ jµ̌,∗ ? δG(O). We conclude that

AvI∗(IC
∞
2
,− ?G(O) M) ∼= colim

λ̌∈Λ̌+
jλ̌,∗ ?I Sat((Vλ̌)∗) ?G(O) M (5.5)

in the category D-mod(Gr)I .

Now we consider the generalized semi-infinite cohomology functor C
∞
2

IC
∞
2 ,−(n(K),−)µ. By
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definition

C
∞
2

IC
∞
2 ,−(n(K),M)µ =〈〈Av

N(K)
! Wκ′,∗

−µ−2ρ[dim(G/B)] , p−(IC
∞
2
,− ?G(O) M)〉〉

= 〈〈Av
N(K)
! Wκ′,∗

−µ−2ρ[dim(G/B)] , q ◦AvI∗(IC
∞
2
,− ?G(O) M)〉〉,

which again by (5.2), (5.5) and Proposition 4.5.2 is isomorphic to

〈Wκ′,∗
−µ−2ρ[dim(G/B)] , AvI∗(IC

∞
2
,− ?G(O) M)〉I

∼= C
∞
2 (n(K),AvI∗(IC

∞
2
,−) ?G(O) M)µ ∼= colim

λ̌∈Λ̌+
C
∞
2 (n(K), jλ̌,∗ ?I Sat((Vλ̌)∗) ?G(O) M)µ.

(5.6)

Definition 5.2.1. The functor C
∞
2

!∗ (n(K),−)µ : ĝκ-modG(O) → Vect defined by

M 7→ colim
λ̌∈Λ̌+

C
∞
2 (n(K), jλ̌,∗ ?I Sat((Vλ̌)∗) ?G(O) M)µ

is called the µ-component of the !*-generalized semi-infinite cohomology functor.

We similarly define the µ-component of the !-generalized semi-infinite cohomology functor

as

C
∞
2

! (n(K),−)µ := colim
λ̌∈Λ̌+

C
∞
2 (n(K), jλ̌,∗ ?I j−λ̌,∗ ?G(O) −)µ

The original semi-infinite cohomology functor should then be regarded as the *-version of the

construction.

5.3 The formulas

Recall that we have fixed a positive level κ and the quantum parameter is set to q = exp( π
√
−1

κ′−κcrit
).

Let A be one of the algebras UKD
q (n), uq(n), or ULus

q (n) defined in Section 2.3. Set C•(A,−)

to be the derived functor of A-invariants, and C•(A,−)µ the µ-component of the resulting

(complex of) Λ-graded vector spaces. Here, we take as input a ULus
q (g)-module, regarded as an

A-module via restriction.

The goal of this chapter is to prove the following formula:

Theorem 5.3.1. For each weight µ we have an isomorphism in Vect:

C
∞
2 (n(K),M)µ ∼= C•(ULus

q (n),KLκG(M))µ.

Our proof of Theorem 5.3.1 relies on the following analogous formula for the !*-generalized

semi-infinite cohomology at positive level:

Theorem 5.3.2. The isomorphism

C
∞
2

!∗ (n(K),M)µ ∼= C•(uq(n),KLκG(M))µ
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holds for all weights µ.

The proofs of Theorem 5.3.1 and Theorem 5.3.2 will occupy the remaining sections of this

chapter.

We state the corresponding conjectural formula for the !-generalized semi-infinite cohomol-

ogy functor:

Conjecture 5.3.3. For all µ ∈ Λ,

C
∞
2

! (n(K),M)µ ∼= C•(UKD
q (n),KLκG(M))µ.

5.4 Proof of Theorem 5.3.2

By the definition of the !*-functor

C
∞
2

!∗ (n(K),M)µ ∼= colim
λ̌∈Λ̌+

〈Wκ′,∗
−µ−2ρ[dim(G/B)] , jλ̌,∗ ?I Sat((Vλ̌)∗) ?G(O) M〉I .

We have by Lemma 3.2.1

〈Wκ′,∗
−µ−2ρ[dim(G/B)] , jλ̌,∗ ?I Sat((Vλ̌)∗) ?G(O) M〉I

∼= 〈j−λ̌,∗ ?I W
κ′,∗
−µ−2ρ[dim(G/B)] , Sat((Vλ̌)∗) ?G(O) M〉I ,

and by (4.8) the latter is isomorphic to

〈Wκ′,∗
−λ̌−µ−2ρ

[dim(G/B)] , Sat((Vλ̌)∗) ?G(O) M〉I .

When λ̌ is sufficiently dominant, the above pairing becomes

〈Mκ′,∨
−λ̌−µ−2ρ

[dim(G/B)] , Sat((Vλ̌)∗) ?G(O) M〉I ,

which is then isomorphic to

Homĝκ-modI

(
DI (Mκ′,∨

−λ̌−µ−2ρ
[dim(G/B)]) , Sat((Vλ̌)∗) ?G(O) M

)
by (2.3).

Since Sat((Vλ̌)∗)?G(O)M is G(O)-equivariant, by the left adjointness of Av
G(O)/I
! and (2.4),

the above is isomorphic to

Homĝκ-modG(O)

(
DG(O) Av

G(O)/I
∗ (Mκ′,∨

−λ̌−µ−2ρ
[dim(G/B)]) , Sat((Vλ̌)∗) ?G(O) M

)
,

and from Lemma 5.1.2 this becomes

Homĝκ-modG(O)

(
DG(O) V

κ′,∨
−w0(λ̌+µ)

, Sat((Vλ̌)∗) ?G(O) M
)
. (5.7)
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Recall the dual quantum Weyl module V∨ν , defined as the image of Vκ
′,∨
ν under the negative

level Kazhdan-Lusztig functor; i.e. V∨ν := KLG(Vκ
′,∨
ν ). Then with Dq(V∨ν ) ∼= V−w0(ν) and the

definition of KLκG, we deduce that (5.7) is isomorphic to

HomULus
q (g)

(
Vµ+λ̌,KLκG(Sat((Vλ̌)∗) ?G(O) M)

)
.

Since Sat(Vν̌) ∼= ICν̌ is Verdier self-dual, DG(O)(Sat(Vν̌)?M) ∼= Sat(Vν̌)?DG(O)(M) by the same

argument as in the proof of (3.1). Combined with (3.3) we have

KLκG( Sat((Vλ̌)∗) ?G(O) M ) ∼= Dq ◦KLG( Sat((Vλ̌)∗) ?G(O) DG(O)M ) ∼=
∼=Dq(Frq((Vλ̌)∗))⊗KLκG(M) ∼= Frq(Vλ̌)⊗KLκG(M).

So far we have shown that

C
∞
2

!∗ (n(K),M)µ ∼= colim
λ̌∈Λ̌+

HomULus
q (g)(Vµ+λ̌,Frq(Vλ̌)⊗KLκG(M)). (5.8)

On the quantum group side, we follow the same derivation as in the proof of [29, Theorem

3.2.2]. Recall
•
uq(b)-mod the category of representations of the small quantum Borel with full

Lusztig’s torus (namely, generated by Ei and all Kt’s in the notations introduced in Section

2.3). The coinduction functor CoInd
ULus
q (b)
•
uq(b)

is the right adjoint to the restriction functor from

ULus
q (b)-mod to

•
uq(b)-mod. The functor CoInd

ULus
q (b)
•
uq(b)

sends the trivial representation to

CoInd
ULus
q (b)
•
uq(b)

(C) ∼= Frq(OB̌/Ť )

by [29, Section 3.1.4]. Moreover by [3, Proposition 3.1.2] we have OB̌/Ť ' colim
λ̌∈Λ̌+

C−λ̌ ⊗ Vλ̌ as

B̌-modules. Then

C•(uq(n),KLκG(M))µ := Hom•
uq(b)

(Cµ, Res
ULus
q (g)
•
uq(b)

KLκG(M))

∼= HomULus
q (b)(Cµ, CoInd

ULus
q (b)
•
uq(b)

◦ Res
ULus
q (g)
•
uq(b)

KLκG(M))

∼= HomULus
q (b)(Cµ, Frq(OB̌/Ť )⊗ Res

ULus
q (g)
•
uq(b)

KLκG(M))

∼= colim
λ̌∈Λ̌+

HomULus
q (b)(Cµ, Frq(C−λ̌ ⊗ Vλ̌)⊗ Res

ULus
q (g)
•
uq(b)

KLκG(M))

∼= colim
λ̌∈Λ̌+

HomULus
q (b)(Cµ+λ̌, Frq(Vλ̌)⊗ Res

ULus
q (g)
•
uq(b)

KLκG(M))

∼= colim
λ̌∈Λ̌+

HomULus
q (g)(Vµ+λ̌,Frq(Vλ̌)⊗KLκG(M)),

which agrees with (5.8).
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5.5 Proof of Theorem 5.3.1

The proof follows the same idea as in [29, Section 3.3] for the negative level case.

Let
•
F!∗ denote the object

⊕
ν̌∈Λ̌

(
colim
λ̌∈Λ̌+

jν̌+λ̌,∗ ? Sat((Vλ̌)∗)

)

in the category D-mod(GrG)I .

By the theory of Arkhipov-Bezrukavnikov-Ginzburg [4], we have an equivalence

D-mod(GrG)I ' IndCoh((pt×ǧ
˜̌N )/Ǧ).

Under this equivalence,
•
F!∗ corresponds to s∗O(B̌), where

s : pt/B̌ ' (Ǧ/B̌)/Ǧ ↪→ (pt×ǧ
˜̌N )/Ǧ.

Here ˜̌N denotes the Springer resolution of the nilpotent cone of the Langlands dual group Ǧ.

It follows that
•
F!∗ is equipped with a B̌-action, such that the B̌-invariant of

•
F!∗ corresponds to

s∗O(0), where O(0) is the trivial line bundle on pt/B̌.

Again by the equivalence in [4], the delta function δG(O) on the identity coset in GrG

corresponds to s∗O(0). Consequently, the B̌-invariant of
•
F!∗ is identified with δG(O).

Now, we consider the object

〈Wκ′,∗
−µ−2ρ[dimG/B] ,

•
F!∗ ?G(O) M〉I

in Vect. From the above discussion, this object inherits a B̌-action, such that the B̌-invariant

is equal to 〈Wκ′,∗
−µ−2ρ[dimG/B] , M〉I ∼= C

∞
2 (n(K),M)µ. By Theorem 5.3.2, we have

〈Wκ′,∗
−µ−2ρ[dimG/B] ,

•
F!∗ ?G(O) M〉I ∼=

⊕
ν̌∈Λ̌

C
∞
2

!∗ (n(K),M)µ+ν̌

∼=
⊕
ν̌∈Λ̌

C•(uq(n),KLκG(M))µ+ν̌ .

It follows that C
∞
2 (n(K),M)µ is isomorphic to the B̌-invariant of the space⊕

ν̌∈Λ̌

C•(uq(n),KLκG(M))µ+ν̌ ∼= Homuq(b)(Cµ,KLκG(M)),

which is identified with

HomULus
q (b)(Cµ,KLκG(M)) ∼= C•(ULus

q (n),KLκG(M))µ.



Chapter 6

The parallel story at negative level

In this chapter we briefly summarize the negative level counterpart of the theory, carried out

in [29]. Throughout this chapter we fix a negative level κ′.

6.1 Generalized semi-infinite cohomology functors at negative

level

Gaitsgory defined the !-Wakimoto modules at the positive level as

Wκ,!
µ := DI(Wκ′,∗

−µ ).

Let N be an object in ĝκ′-modG(O). Analogous to the positive level case, define the µ-component

of the !- and !*-generalized semi-infinite cohomology functors as

C
∞
2

! (n(K), N)µ := 〈N, Wκ,!
−µ〉I ,

C
∞
2

!∗ (n(K), N)µ := colim
λ̌∈Λ̌+

〈 j−λ̌,∗ ?I Sat(Vλ̌) ?G(O) N, W
κ,!
−µ〉I ,

whereas the *-functor is the original semi-infinite cohomology functor at negative level. As in

Section 5.2, one can also write the definitions in terms of the pairing 〈〈−,−〉〉 : (C∨)N(K)T (O) ×
(CT (O))N(K) → Vect, where we now take C = ĝκ′-mod and C∨ = ĝκ-mod.

6.2 Formulas at negative level and duality pattern

The formulas which compare generalized semi-infinite cohomology at negative level with quan-

tum group cohomology are stated below:

Theorem 6.2.1 ([28] Theorem 3.2.2 and Theorem 3.2.4). Let N ∈ ĝκ′-modG(O). The isomor-

phisms

C
∞
2

! (n(K), N)µ ∼= C•(ULus
q (n),KLG(N))µ (6.1)

46
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and

C
∞
2

!∗ (n(K), N)µ ∼= C•(uq(n),KLG(N))µ (6.2)

hold for all weights µ.

Conjecture 6.2.2 ([28] Conjecture 4.1.4). Let N ∈ ĝκ′-modG(O). The isomorphism

C
∞
2 (n(K), N)µ ∼= C•(UKD

q (n),KLG(N))µ (6.3)

hold for all weights µ.

Remark 6.2.1. Conjecture 6.2.2 is verified when µ = ν̌ − 2ρ for all ν̌ ∈ Λ̌ in [28].

Comparing the formulas here with those in Section 5.3, we see a consistent duality picture:

On the one hand, the positive level category ĝκ-modG(O) is dual to the negative level one via

the duality functor DG(O), which corresponds to the Verdier dual when rendered into geometry

using the Kashiwara-Tanisaki localization. Therefore DG(O) should swap standard (i.e. !-)

objects and costandard (i.e. *-) objects, and the intermediate (i.e. !*-) objects are preserved.

On the other hand, at the quantum group side we have seen the pattern of standard, costandard

and intermediate objects in the sequence

UKD
q (n)� uq(n) ↪→ ULus

q (n)

and that UKD
q (n−) ∼= (ULus

q (n))∗.



Chapter 7

An algebraic approach at irrational

level

The theory we developed so far is greatly simplified when we are in the case of irrational levels.

As the quantum parameter q is no longer a root of unity, Lusztig’s, Kac-De Concini’s and

the small quantum groups all coincide, with the category of representations being semi-simple.

The category of G(O)-equivariant representations of the affine Lie algebra is semi-simple at

irrational level as well, and in this case the (negative level) Kazhdan-Lusztig functor is an

equivalence tautologically. That Kazhdan-Lusztig functor is a monoidal functor can be seen as

a reformulation of Drinfeld’s theorem on Knizhnik-Zamolodchikov associators [44, Part III and

Part IV].

Fix an irrational level κ throughout this chapter. We will give an algebraic proof of the

formula that appears in Theorem 5.3.2 at an irrational level.

7.1 BGG-type resolutions

Let ` be the usual length function on the Weyl group W of g, and recall the dot action of the

Weyl group on weights by w ·µ := w(µ+ρ)−ρ. Then the celebrated Bernstein-Gelfand-Gelfand

(BGG) resolution is stated as follows:

Proposition 7.1.1. Let λ be a dominant integral weight of g. Then we have a resolution of

Vλ given by

0→Mw0·λ → · · · →
⊕
`(w)=i

Mw·λ → · · · →Mλ � Vλ.

Note that Vκλ ∼= (Vκλ)∨ since it is irreducible (when κ is irrational). We apply the induction

functor (·)κ to the BGG resolution and then take the contragredient dual to get

Vκλ ↪→ (Mκ
λ)∨ → · · · →

⊕
`(w)=i

(Mκ
w·λ)∨ → · · · → (Mκ

w0·λ)∨ → 0. (7.1)
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Combine Theorem 4.3.3 and (7.1) we get

Vκλ ↪→Wκ,w0

λ → · · · →
⊕
`(w)=i

Wκ,w0

w·λ → · · · →Wκ,w0

w0·λ → 0.

Now we can compute the semi-infinite cohomology of Weyl modules at irrational level by

applying Proposition 4.5.1:

Corollary 7.1.2. For λ ∈ Λ+, we have an isomorphism of t̂κ+shift-modules

H
∞
2

+i(n(K),Vκλ) ∼=
⊕
`(w)=i

πκ+shift
w·λ .

Now we turn to the quantum group side. When q is not a root of unity, the quantum Weyl

module Vλ coincides with the irreducible module Lλ, constructed by the usual procedure of

taking irreducible quotient of the quantum Verma moduleMλ. Analogous to the non-quantum

case, we have the BGG resolution for representations of Uq(g):

0→Mw0·λ → · · · →
⊕
`(w)=i

Mw·λ → · · · →Mλ � Vλ.

As a consequence, we deduce

H i(Uq(n),Vλ) =
⊕
`(w)=i

HomUq(n)(C,Mw·λ) =
⊕
`(w)=i

Cw·λ. (7.2)

7.2 Commutativity of the diagram

Recall the tautological equivalence KLT : t̂κ+shift-modT (O) → Repq(T ) which is induced by the

assignment

πκ+shift
λ 7→ Cλ.

We will verify the commutativity of the following diagram

ĝκ-modG(O)

KLG
��

C
∞
2 (n(K),−) // t̂κ+shift-modT (O)

KLT
��

Uq(g)-mod
C•(Uq(n),−) // Repq(T )

(7.3)

which clearly implies

C
∞
2 (n(K),M)µ ∼= C•(Uq(n),KLG(M))µ

for all µ.

We will need the theory of compactly generated categories. A detailed treatise of the theory

is given in [48]. For a brief review of definitions and facts, see [14]. We recall the following
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proposition from [48].

Proposition 7.2.1 ([48] Proposition 5.3.5.10). Let C be a cocomplete category, D be a small

category, and F : D → C be a functor. Then F uniquely induces a continuous functor F̄ :

Ind(D)→ C with F̄ |D = F . Here, Ind(D) denotes the ind-completion of the category D.

We shall take D to be the full subcategory of compact generators of ĝκ-modG(O), i.e., the

subcategory whose objects consist of Weyl modules Vκλ for dominant integral weights λ. Then

from the definition of compactly generated categories, we have Ind(D) = ĝκ-modG(O). Let C be

the category Repq(T ).

To prove the commutativity of (7.3), by Proposition 7.2.1 it suffices to show that the two

functors C•(Uq(n),−) ◦KLG and KLT ◦ C
∞
2 (n(K),−) restricted to D are the same.

Since KLG(Vκλ) = Vλ, from (7.2) and Corollary 7.1.2 we get

H i(C•(Uq(n),−) ◦KLG(Vκλ)) ∼= H i(KLT ◦ C
∞
2 (n(K),−)(Vκλ)) ∀i.

As objects in the category Repq(T )♥ have no nontrivial extensions, this shows that the two

functors C•(Uq(n),−) ◦KLG and KLT ◦ C
∞
2 (n(K),−) have the same image for objects in D.

Let λ and µ be arbitrary dominant integral weights of g, and let f be a morphism in

Homĝκ(Vκλ,Vκµ). It remains to show that the following two morphisms

C•(Uq(n),−) ◦KLG(f)

and

KLT ◦ C
∞
2 (n(K),−)(f)

are identical.

Since κ is irrational, by [44, Proposition 27.4] all Weyl modules Vκλ are irreducible. Then

Homĝκ(Vκλ,Vκµ) vanishes when λ 6= µ. Now, Homĝκ(Vκλ,Vκλ) is one-dimensional and generated

by the identity morphism IdVκλ . Clearly we have

C•(Uq(n),−) ◦KLG (IdVκλ) = IdC• = KLT ◦ C
∞
2 (n(K),−)(IdVκλ),

where C• is the complex in Repq(T ) with Ci =
⊕

`(w)=iCw·λ. It follows that C•(Uq(n),−)◦KLG

and KLT ◦ C
∞
2 (n(K),−) agree on morphisms in D. Therefore the two functors are isomorphic

when restricted to D and so the diagram (7.3) commutes.
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Bringing in the factorization

The goal of the chapter is to outline an approach to the factorization Kazhdan-Lusztig equiva-

lence at arbitrary non-critical level, proposed by D. Gaitsgory. In the negative level case, this

approach can be seen as giving a new proof of the original Kazhdan-Lusztig equivalence. We

will adopt the modern theory of factorization algebras and categories, systematically developed

in [9, 52]. A brief review of the theory is given in Section 9.4.

The contents in this chapter are entirely borrowed from the talk notes of Winter School on

Local Geometric Langlands Theory [32], in which most of the results are due to D. Gaitsgory

and the speakers. The exposition here is somewhat informal, with technical details omitted.

8.1 The Kac-Moody factorization categories

In Example 9.2.1 we defined the affine Kac-Moody chiral algebra Ag,κ associated to the bilinear

form (·, ·)κ, and by Proposition 9.1.1 the category Ag,κ-modch
x of chiral Ag,κ-modules supported

at a point x ∈ X is equivalent to the category ĝκ-mod.

By Theorem 9.4.1 and Theorem 9.4.2, we have the corresponding affine Kac-Moody factor-

ization algebra Υg,κ and the global category of chiral Ag,κ-modules on X is now equivalent to

Υg,κ-modfact(X).

Through the procedure of external fusion, we organize the factorization modules on XI for

any I into a factorization category

Υg,κ-modfact(Ran(X)),

whose fibre over the finite subset {x1, . . . , xn} ⊂ X is

ĝκ-modx1 ⊗ . . .⊗ ĝκ-modxn ↪→ Υg,κ-modfact(Ran(X))

via the above identification of module cateogries. We call Υg,κ-modfact(Ran(X)) the Kac-Moody

factorization category at level κ.

51
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We are most interested in the factorization category associated to ĝκ-modG(O). Let Ox be

the ring of functions on the formal disc centered at x ∈ X, and Dx := SpecOx be the formal

disc. For subset {x1, . . . , xn} ⊂ X, define

D{x1,...,xn} := Spec (Ox1 ⊗ . . .⊗Oxn) '
⊔
i

Dxi .

Consider the multi-jets space defined as the moduli

JetsXI (G) := {(xi) ∈ XI , φ : D{xi:i∈I} → G}.

From the trivial factorization property

D{x1,...,xn} = D{x1,...,xk}
⊔
D{xk+1,...,xn}

for {x1, . . . , xk} ∩ {xk+1, . . . , xn} = ∅, it is clear that the fibre of JetsXI (G) at {x1, . . . , xn}
with all xi distinct is equal to G(Ox1)× . . .×G(Oxn). Therefore we get a factorization category

I  D-mod(JetsXI (G))

whose fibre at {x1, . . . , xn} ⊂ X is equivalent to D-mod(G(Ox1)) ⊗ . . . ⊗ D-mod(G(Oxn)).

Denote this factorization category by D-mod(Jets(G))Ran(X).

The group G(Ox) acts on the category ĝκ-modx; i.e. ĝκ-modx ' Υg,κ-modfact(X)x is a

comodule category of D-mod(G(Ox)). Varying the point x in X, we see that Υg,κ-modfact(X)

becomes a comodule of D-mod(JetsX(G)). Then the D-mod(JetsX(G))-invariants(
Υg,κ-modfact(X)

)G(O)

is given by the standard Milnor construction

lim
(

Υg,κ-modfact(X) //// Υg,κ-modfact(X)⊗D-mod(JetsX(G))
// //// . . .

)
.

The resulting sheaf of categories on X has fibre at a point equivalent to ĝκ-modG(O).

Now, again through external fusion, we define the G(O)-invariant factorization module

categories on XI for any I and organize them into a factorization category which we denote by

(ĝκ-modG(O))Ran(X).

This is the sought after factorization category associated to ĝκ-modG(O).

Remark 8.1.1. Alternatively, one expects to obtain the same factorization category of ĝκ-modG(O)

by taking the Milnor construction of D-mod(Jets(G))Ran(X)-invariants of Υg,κ-modfact(Ran(X)).
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8.2 Lurie’s functor

Our goal in this section is to construct the topological factorization categories associated to

the braided monoidal categories of quantum group modules. In the case of the small quantum

group, the theory in [10] is recovered.

In the topological world, the analogy between braided monoidal categories and factorization

categories actually becomes a correspondence, constructed by Jacob Lurie using the notion of

E2-algebras [49]. We will treat the theory as a black box and only give a summary of its

consequences. The exposition here follows [35] and [26, Section 5], where some details of the

theory are given.

We start with a Hopf algebra A in a braided monoidal category C. Assume that the

augmentation comodule k of A is compact in A-comod, the category of A-comodules in C.

The Koszul dualtiy

A 7→ (HomA-comod(k, k))op =: Kosz(A)

defines an equivalence A-comod→ Kosz(A)-mod. Since A is a Hopf algebra, which by definition

is an associative algebra in the category of coassociative coalgebras, Kosz(A) becomes an E2-

algebra, i.e. an associative algebra in the category of associative algebras.

We consider the relative Drinfeld center DrC(A-comod).1 On the Kosz(A)-mod side, the

same procedure produces the category of E2-modules of the E2-algebra Kosz(A). Hence we

have the equivalence

DrC(A-comod) ' Kosz(A)-modE2 .

Lurie’s construction gives a functor Fact which sends an E2-algebra to a topological factor-

ization algebra on Ran(A1), c.f. [57]. The same construction is categorified to a functor from

E2-categories to topological factorization categories. Note that, if unwinding the definitions,

one sees that E2-categories precisely correspond to braided monoidal categories; see Section

2.1 in loc. cit. We thus obtain a factorization algebra Ω(A) := Fact(Kosz(A)) in the factor-

ization category Fact(C), and the category Kosz(A)-modE2 is then equivalent to the category

Ω(A)-modfact
0 of topological factorization modules at 0 ∈ A1 in Fact(C). In summary, there is

a canonical equivalence

DrC(A-comod) ' Ω(A)-modfact
0 .

We now describe the topological factoriztion category Fact(Repq(T )) corresponding to the

braided monoidal category Repq(T ) introduced in Section 2.3. Recall the Beilinson-Drinfeld

Grassmannian for the dual torus GrŤ ,Ran(X), the space over Ran(X) whose C-points are Λ-

colored subsets of X(C). The topological factorization category is

Fact(Repq(T )) ' Shvq(GrŤ ,Ran(A1)), (8.1)

1The definition of the relative Drinfeld center is briefly mentioned in Section 2.3
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where the subscript q in Shvq(GrŤ ,Ran(A1)) means that the factorization category is twisted by

a factorization gerbe specified by the parameter q (or equivalently, by the form b). For details

on this twisting, see [57, Section 2.3] and [26, Section 4.1].

Take the Hopf algebra UKD
q (n−) in Repq(T ). Denote the corresponding topological factor-

ization algebra by ΩLus
q := Ω(UKD

q (n−)). The above procedure gives the equivalence

DrRepq(T )(U
KD
q (n−)-comod) ' ΩLus

q -modfact
0 .

Recall from Section 2.3, the category U+Lus,−KD
q (g)-mod is defined as the relative Drinfeld

center DrRepq(T )(U
Lus
q (b)-mod). As UKD

q (n−) is linearly dual to ULus
q (n), we see that

U+Lus,−KD
q (g)-mod ' ΩLus

q -modfact
0 . (8.2)

Similarly, if we take ULus
q (n−) and denote ΩKD

q := Ω(ULus
q (n−)), then the relative Drinfeld

center gives the category U+KD,−Lus
q (g)-mod of representations of the quantum group which

has Kac-De Concini positive part and Lusztig negative part, and we have the equivalence

U+KD,−Lus
q (g)-mod ' ΩKD

q -modfact
0 . (8.3)

Consider the Hopf algebra uq(n
−) in Repq(T ) instead. Let Ωsmall

q := Ω(uq(n
−)). The same

construction gives the equivalence

•
uq(g)-mod ' Ωsmall

q -modfact
0 , (8.4)

as uq(n
−) is linearly dual to uq(n).

The factorization description of the categories ULus
q (g)-mod and U

1
2
q (g)-mod will be post-

poned to Section 8.4.

Back to the abstract setting, assume further that our braided monoidal category C is ribbon;

i.e. for each object M there is a ribbon automorphism θM : M → M compatible with the

braiding. Suppose that the Hopf algebra A is equivariant with respect to the ribbon structure of

C. Then for any curve X we can generalize the functor Fact to produce topological factorization

categories (and algebras inside them) on Ran(X) [57, Section 2.2]. Given x ∈ X, we can twist

the braided monoidal category DrC(A-comod) by the tangent line Tx(X) at x using the ribbon

structure of C. This amounts to attaching the factorization modules of Ω(A) to x ∈ X. Namely,

we have a canonical equivalence

DrC(A-comod)Tx(X) ' Ω(A)-modfact
x .

Define a ribbon structure θ on Repq(T ) by θCλ(m) = b(λ, λ + 2ρ) ·m. One can check that

UKD
q (n−), ULus

q (n−) and uq(n
−) are all equivariant with respect to the ribbon structure. Then

we update all three equivalences (8.2), (8.3) and (8.4) to the corresponding versions over an
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arbitrary point x ∈ X.

Similar to the algebro-geometric situation in Section 8.1, we organize topological factoriza-

tion modules over multiple points into a factorization category

Ω(A)-modfact(Ran(X)),

whose fibre over the finite subset {x1, . . . , xn} ⊂ X is

Ω(A)-modfact
x1
⊗ . . .⊗ Ω(A)-modfact

xn ↪→ Ω(A)-modfact(Ran(X)).

8.3 Quantum Frobenius revisited

Our approach to obtain a factorization description of ULus
q (g)-mod is to modify the factorization

category for U+Lus,−KD
q (g)-mod by using the quantum Frobenius map. This section serves to

give a reformulation of the quantum Frobenius for this purpose.

Recall from Section 2.3 that the quantum Frobenius is a functor Frq : Rep(Ǧ)→ ULus
q (g)-mod,

which fits into the following exact sequence of categories

0→ Rep(Ǧ)→ ULus
q (g)-mod→ uq(g)-mod→ 0. (8.5)

However, in order to understand the relations between ULus
q (g)-mod and uq(g)-mod when q

varies, we would like all categories in the above sequence to be “quantum”; namely, a version

of Rep(Ǧ) that is sensitive to the parameter q. This is given by what is called the metaplectic

Langlands dual of G, a reductive group that is determined combinatorially by G and q.

Recall from Section 2.4 that the parameter q is determined by the form b, which in turn is

defined by the bilinear pairing (·, ·)κ′ for a negative level κ′. We are in the setting that κ′ is

rational and each vi := b(αi, αi)
1/2 is a root of unity (but not equal to 1). Let li be the order

of v2
i .

Following [37] and [30, Section 6.5], we define the metaplectic Langlands dual group as

follows:

Let Λ̌] ⊂ Λ̌ be the sublattice

Λ̌] := {λ̌ ∈ Λ̌ : (λ̌, µ̌)κ′ ∈ Z,∀µ̌ ∈ Λ̌},

and Λ] be the dual lattice of Λ̌] in Λ ⊗ Q. Consider the embedding Ř ↪→ Λ̌ defined by

α̌i 7→ α̌]i := li · α̌i for each i. Denote the image as Ř]. Dually we define R] as the image of the

map R → Λ ⊗ Q, defined by αi 7→ α]i := (1/li) · αi. One checks that R] ⊂ Λ], Ř] ⊂ Λ̌] and

(R] ⊂ Λ], Ř] ⊂ Λ̌]) defines a finite type root datum. Then we define the metaplectic Langland’s

dual group H to be the reductive group associated to the root datum (Ř] ⊂ Λ̌], R] ⊂ Λ]).

Write BH , NH and TH for the Borel, the unipotent radical (inside the Borel) and the torus

of H, respectively. Let nH := Lie(NH). We can now reformulate the quantum Frobenius as a
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map ULus
q (n)→ U(nH) of Hopf algebras in Repq(T ), where U(nH) is regarded as an algebra in

Repq(T ) via Rep(TH)→ Repq(T ). The Frobenius map fits into the short exact sequence

1→ uq(n)→ ULus
q (n)→ U(nH)→ 1.

Dualizing the sequence, we get

1→ ONH → UKD
q (n−)→ uq(n

−)→ 1.

A key property that will be used in Section 8.4 is that ONH is mapped centrally (as associative

algebras) and cocentrally (as coassociative coalgebras) into UKD
q (n−).

For the full Lusztig’s quantum group, we have a short exact sequence of categories

0→ Rep(H)→ ULus
q (g)-mod→ uq(g)-mod→ 0. (8.6)

Remark 8.3.1. In (8.5), the category Rep(Ǧ) is fixed and the functor Frq deforms according to

q, while in (8.6) the category Rep(H) depends on q and the definition of the functor Rep(H)→
ULus
q (g)-mod is fixed for different q.

The sequence (8.6) gives an action of the monoidal category Rep(H) on ULus
q (g)-mod. We

have the following equivalences as consequences of the metaplectic Langlands dual construction:

ULus
q (g)-mod ⊗

Rep(H)
Rep(BH) ' U

1
2
q (g)-mod; (8.7)

ULus
q (g)-mod ⊗

Rep(H)
Rep(TH) ' •uq(g)-mod. (8.8)

By (8.7), the fact that the forgetful functor ULus
q (g)-mod → U

1
2
q (g)-mod is fully faithful now

follows from the fully-faithfulness of the restriction functor Rep(H)→ Rep(BH).

8.4 Towards a factorization Kazhdan-Lusztig equivalence

In this section we summarize the conjectural theory of factorization Kazhdan-Lusztig equiva-

lence. All constructions, results and conjectures are due to D. Gaitsgory [26, 32].

Let C·(nH) be the Chevalley complex of nH in the symmetric monoidal category Rep(TH),

regarded as a commutative DG algebra. Note that an E2-algebra in a symmetric monoidal

category is nothing but a commutative algebra. Then by Lurie’s functor Fact, we produce a

factorization algebra Ωcl := Fact(C·(nH)) in the factorization category Fact(Rep(TH)). Note

also that Ωcl ∼= Ω(ONH ).

The functor Fact actually gives more in the above situation: with the input of a commutative

algebra in a symmetric monoidal category, Fact outputs a commutative factorization algebra in

a commutative factorization category. We define these notions below.
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Recall from Section 9.4 that a factorization category CRan(X) is an assignment I  CI of

sheaf of categories on XI for each finite set I, with the equivalences

(CI � CJ)|[XI×XJ ]disj

∼−→ CItJ |[XI×XJ ]disj
. (8.9)

We say a factorization category is commutative if the equivalence (8.9) extend to a functor

CI � CJ −→ CItJ

for all I, J . We similarly define a commutative factorization algebra to be a factorization

algebra whose factorization isomorphisms (over the disjoint loci) extend to morphisms on the

whole space for any partition of products of the curve X.

We can further enhance the definition of a factorization module to a commutative factor-

ization module by similarly requiring extra morphisms extending isomorphisms (9.6). Now, if

a factorization algebra Υ is acted on by a commutative factorization algebra Υ′, then we define

the category

Υ-modfact
Υ′-com

as the category of factorization modules of Υ with a compatible commutative factorization

Υ′-module structure.

Now we can characterize the category U
1
2
q (g)-mod in factorization terms. The fact that ONH

is mapped centrally into UKD
q (n−) implies the existence of a canonical action of Ωcl on ΩLus

q .

The following proposition essentially follows from the identifications

U
1
2
q (g)-mod ' U+Lus,−KD

q (g)-mod ⊗
DrRep(TH )(Rep(BH))

Rep(BH),

DrRep(TH)(Rep(BH)) ' Ωcl-modfact,

and

Rep(BH) ' Ωcl-modfact
Ωcl-com.

Proposition 8.4.1 ([34] Proposition 2.2.4). There is a canonical equivalence

U
1
2
q (g)-mod ' ΩLus

q -modfact
Ωcl-com.

Consequently, there is an equivalence of factorization categories

Fact(U
1
2
q (g)-mod)

∼−→ ΩLus
q -modfact

Ωcl-com(Ran(X)).

As the forgetful functor ULus
q (g)-mod→ U

1
2
q (g)-mod is fully faithful, we realize the factorization

category Fact(ULus
q (g)-mod) as a full factorization subcategory of Fact(U

1
2
q (g)-mod).
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We turn to the Kac-Moody side of the Kazhdan-Lusztig functor. We will first describe

the (conjectural) factorization version of the Kazhdan-Lusztig equivalence at positive level. As

usual, let κ be a positive (rational) level.

Recall the generalized semi-infinite cohomology functor C
∞
2
F (n(K),−) : ĝκ-modG(O) →

Rep(T ) from Section 5.2. (We organize all the µ-components to a functor with output as

Λ-graded vector spaces.) The group N(K) and T (O) naturally factorizes, and the functor p−

factorizes due to Lemma 5.2.1. Therefore the generalized functors defined in (5.3) via natural

pairing of factorizable objects can be naturally upgraded to factorization functors. In particular,

we get a factorization functor

C
∞
2 (n(K),−)Ran(X) : (ĝκ-modG(O))Ran(X) −→ D-modκ+shift(GrŤ ,Ran(X)),

where the subscript κ+shift in D-modκ+shift(GrŤ ,Ran(X)) denotes the twisting given by a fac-

torization gerbe corresponding to the level κ and a Tate shift, which arises naturally from the

semi-infinite cohomology; c.f. (9.1). The twisting on Shvq−1(GrŤ ,Ran(X)) introduced in (8.1)

matches with the twisting here, in the sense that we have the twisted Riemann-Hilbert functor

RH : Shvq−1(GrŤ ,Ran(X)) ↪→ D-modκ+shift(GrŤ ,Ran(X)). (8.10)

The vacuum module Vκ0 is the unit object in the braided monoidal category ĝκ-modG(O). The

unit object is naturally upgraded to a factorization algebra in the corresponding factorization

category. Let

Ω−,Lus
κ ∈ D-modκ+shift(GrŤ ,Ran(X))

be the factorization algebra associated to C
∞
2 (n(K),Vκ0). Moreover, C

∞
2 (n(K),−)Ran(X) canon-

ically induces a functor

(ĝκ-modG(O))Ran(X) −→ Ω−,Lus
κ -modfact(Ran(X)). (8.11)

Conjecture 8.4.2. Under the twisted Riemann-Hilbert functor (8.10), Ω−,Lus
κ is identified with

ΩLus
q−1.

Assume Conjecture 8.4.2. Denote by

Ω−,Lus
κ -modfact

Ωcl-com

the category obtained by the same construction as ΩLus
q−1-modfact

Ωcl-com on the D-module side of

the Riemann-Hilbert correspondence. Then by Proposition 8.4.1 the twisted Riemann-Hilbert

identifies

Ω−,Lus
κ -modfact

Ωcl-com(Ran(X)) ' Fact(U
1
2

q−1(g)-mod). (8.12)

The following conjectural statement is the factorization Kazhdan-Lusztig equivalence at

positive level κ that we are after:
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Conjecture 8.4.3. The functor (8.11) induces a canonical fully faithful embedding of factor-

ization categories

(ĝκ-modG(O))Ran(X) ↪−→ Ω−,Lus
κ -modfact

Ωcl-com(Ran(X)).

Moreover, the essential image of the above functor is equivalent to Fact(ULus
q−1 (g)-mod) under

the identification (8.12).

We now briefly discuss the negative level case. As the duality pattern in Section 6.2 suggests,

we should start with the !-generalized functor C
∞
2

! (n(K),−) : ĝκ′-modG(O) → Rep(T ). However,

what makes things more complicated is that, C
∞
2

! (n(K),−) is known to be non-factorizable. To

remedy this, we define the Jacquet functor Jκ
′

! as the composition

ĝκ′-modG(O) ∆0?G(O)−−−−−−−−→ ĝκ′-modN(K)T (O) C
∞
2

! (n(K),−)
−−−−−−−−→ Rep(T )

where ∆0 ∈ D-mod(GrG)N(K)T (O) is the !-extension of the D-module ωS0 on the semi-infinite

orbit S0 ⊂ GrG.

Proposition 8.4.4. The Jacquet functor Jκ
′

! is factorizable.

We can now proceed with the construction similar to the positive level case. Namely, we

construct the factorization algebra

ΩLus
κ′ ∈ D-modκ′+shift(GrŤ ,Ran(X))

associated to Jκ
′

! (Vκ′0 ), which should conjecturally be identified with ΩLus
q via the twisted

Riemann-Hilbert functor

RH : Shvq(GrŤ ,Ran(X)) ↪→ D-modκ′+shift(GrŤ ,Ran(X)). (8.13)

The Jacquet functor induces a factorization functor

(ĝκ′-modG(O))Ran(X) −→ ΩLus
κ′ -modfact(Ran(X)), (8.14)

with the target identified with Fact(U
1
2
q (g)-mod) via (8.13). The main conjecture for the nega-

tive level case is

Conjecture 8.4.5. The functor (8.14) induces a canonical fully faithful embedding of factor-

ization categories

(ĝκ′-modG(O))Ran(X) ↪−→ ΩLus
κ′ -modfact

Ωcl-com(Ran(X)).
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Moreover, the essential image of the above functor is sent to Fact(ULus
q (g)-mod) under the

twisted Riemann-Hilbert functor (8.13).

We expect to recover the original (derived) Kazhdan-Lusztig equivalence at negative level

by taking the fibre of the functor in Conjecture 8.4.5 over any point x ∈ X.

Finally, for completeness we record what is conjectured to be the category on the Kac-Moody

side corresponding to U
1
2

q−1(g)-mod and U
1
2
q (g)-mod:

Conjecture 8.4.6.

• The functor C
∞
2 (n(K),−) defines an equivalence

ĝκ-modN(K)T (O)
∼−→ ΩLus

κ -modfact

(
' U

1
2

q−1(g)-mod

)
.

• The functor C
∞
2

! (n(K),−) defines an equivalence

ĝκ′-modN(K)T (O) ∼−→ ΩLus
κ′ -modfact

(
' U

1
2
q (g)-mod

)
.
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Appendix

In section 9.1 and 9.3, we recall the formalism of Lie-* algebras, chiral algebras and the con-

struction of chiral differential operators as developed in [9] and reviewed in [5].

9.1 Lie-* algebras and chiral algebras

Let X be a smooth algebraic curve over C. Denote by ∆ : X ↪→ X2 the diagonal map and

j : X2 \∆ ↪→ X2 the open embedding of the complement of diagonal.

We define a Lie-* algebra on X to be a right D-module L , equipped with a Lie-* bracket

{·, ·} : L� L→ ∆!L,

which is a morphism between right D-modules on X2 satisfying the following conditions:

• (Anti-symmetry) Let σ = (1, 2) ∈ S2 be the transposition acting on X ×X. Then

σ({·, ·}(s)) = −{·, ·}(σ(s)),

where s is a section of L� L.

• (Jacobi identity) Let τ = (1, 2, 3) ∈ S3 be the permutation acting on X ×X ×X. Then

{{·, ·}, ·}(s) + τ−1({{·, ·}, ·}(τ(s))) + τ−2({{·, ·}, ·}(τ2(s)))

equals the zero section of ∆!L, where s is a section of L� L� L.

Let A be a right D-module on X. We similarly define a chiral bracket on A as a morphism

{·, ·}ch : j∗j
∗A�A→ ∆!A

between D-modules on X2, which is anti-symmetric and satisfies the Jacobi identity. A (unital)

chiral algebra (A, {·, ·}chA , uA) is the data of a right D-module A with a chiral bracket {·, ·}chA ,

61
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and a unit morphism uA : ωX → A such that {·, ·}chA ◦ j∗j∗(uA � IdA) : j∗j
∗ωX � A → ∆!A is

the canonical map arising from the standard exact triangle

ωX �A→ j∗j
∗(ωX �A)→ ∆!∆

!(ωX �A) ∼= ∆!A→

associated to ωX �A.

For a chiral algebra A, we define a chiral module M over A as a right D-module with an

action morphism act : j∗j
∗(A �M) → ∆!M , such that chiral analogs of the usual axioms for

modules over a (universal enveloping algebra of) Lie algebra hold (c.f. [5, Section 1.1]).

We have the category Algchiral(X) (resp. AlgLie*(X)) of chiral (resp. Lie-*) algebras on X,

where morphisms are morphisms of D-modules respecting the chiral (resp. Lie-*) brackets. A

canonical tensor product structure can be defined for chiral brackets, which turns Algchiral(X)

into a symmetric monoidal category; c.f. [9, Section 3.4.15]. For a chiral algebra A and x ∈ X,

we will consider the category of chiral A-modules supported at x, denoted by A-modch
x . By

letting the point x vary in X, we obtain a global category (i.e. sheaf of categories) A-modch(X)

on X.

Given a chiral algebra A, by pre-composing the chiral bracket with the natural map A�A→
j∗j
∗A � A, we get a Lie-* bracket on A. This defines a forgetful functor from the category

of chiral algebras to the category of Lie-* algebras. We introduce the functor of universal

enveloping chiral algebra L 7→ U ch(L) as the left adjoint to the forgetful functor. Namely, for

a Lie-* algebra L and a chiral algebra A, we have

HomLie-*(L,A) = Homchiral(U
ch(L), A).

Proposition 9.1.1 (c.f. [5] Section 1.4). Let x ∈ X be any point, and L a Lie-* algebra.

1. U ch(L)x ∼= Ind
HdR(D∗x,L)
HdR(Dx,L)(C), where C is the trivial representation over the topological Lie

algebra HdR(Dx, L).

2. There is an equivalence between the chiral modules over U ch(L) supported at x and the

continuous modules over HdR(D∗x, L).

3. U ch(L) has a unique filtration U ch(L) =
⋃
i≥0 U

ch(L)i with the following properties:

(a) U ch(L)0 = ωX ;

(b) U ch(L)1/U
ch(L)0

∼= L;

(c) {·, ·}ch : j∗j
∗(U ch(L)i � U ch(L)j)→ ∆!(U

ch(L)i+j)

{·, ·}ch : U ch(L)i � U ch(L)j → ∆!(U
ch(L)i+j−1);

(d) The natural embedding L→ U ch(L) induces an isomorphism Sym(L) ∼= gr(U ch(L)).

(e) At the level of fibers, the filtration of

U ch(L)x ∼= Ind
HdR(D∗x,L)
HdR(Dx,L)(C) ∼= U(HdR(D∗x, L))⊗U(HdR(Dx,L)) C



Chapter 9. Appendix 63

comes from the natural filtration of the universal enveloping algebra U(HdR(D∗x, L)).

Example 9.1.1. Let g be a Lie algebra over C. Then Lg := g⊗CDX is naturally a Lie-* algebra.

Let Q : g⊗ g→ C be a G-invariant symmetric bilinear form, which defines an OX -pairing

φQ : g⊗OX × g⊗OX → ωX , φQ(a⊗ f, b⊗ g) := Q(a, b)g df.

Then φQ induces a DX -pairing Lg�Lg → ∆!ωX which satisfies the condition of a 2-cocycle (c.f.

[9, Section 2.5.9]). We define the Lie-* algebra extension Lg,Q of Lg by ωX using this 2-cocycle,

called the affine Kac-Moody extension of Lg.

Taking the de Rham cohomology HdR(D∗x, Lg,Q), we recover the usual affine Lie algebra

ĝQ = g(Kx) ⊕ C1 associated to the form Q. By Proposition 9.1.1 we have an equivalence

between ĝQ-modules and chiral U ch(Lg,Q)-modules supported at a point x ∈ X. On the other

hand,

U ch(Lg,Q)x ∼= Ind
HdR(D∗x,Lg,Q)

HdR(Dx,Lg,Q)(C) ∼= Ind
ĝQ
g(Ox)⊕C1(C) ≡ VQ(g)

is the space underlying the affine Kac-Moody vertex algebra associated to g and Q. It is proven

in [9] that chiral U ch(Lg,Q)-modules supported at a point are equivalent to modules over the

vertex algebra VQ(g).

9.2 Semi-infinite cohomology

Let L be a Lie-* algebra. Denote by L◦ its dual Lie-* algebra, and by

〈 , 〉 : L[1]� L◦[−1]→ ∆!ωX

the natural pairing in the DG super convention.

Now we consider L[1]⊕L◦[−1], and further extend the pairing 〈 , 〉 to a skew-symmetric (in

the DG super sense) pairing on L[1]⊕ L◦[−1]:

〈 , 〉L,L◦ : (L[1]⊕ L◦[−1])� (L[1]⊕ L◦[−1])→ ∆!ωX

by setting the kernel of 〈 , 〉L,L◦ as (L[1]�L[1])⊕(L◦[−1]�L◦[−1]). This defines a Lie-* algebra

(L[1] ⊕ L◦[−1])[ := L[1] ⊕ L◦[−1] ⊕ ωX , which is a central extension of L[1] ⊕ L◦[−1] via the

pairing 〈 , 〉L,L◦ .
We define the Clifford algebra associated to L as the twisted enveloping chiral algebra Cl

of the ωX -extension (L[1] ⊕ L◦[−1])[. By definition, this is the universal enveloping chiral

algebra U ch((L[1] ⊕ L◦[−1])[) modulo the ideal generated by 1 − 1[, where 1 is the section of

ωX = U ch((L[1] ⊕ L◦[−1])[)0 and 1[ is the section of ωX in (L[1] ⊕ L◦[−1])[ ∼= U ch((L[1] ⊕
L◦[−1])[)1/U

ch((L[1]⊕ L◦[−1])[)0.
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There is a canonical PBW filtration Cl· with

Cl1 = (L[1]⊕ L◦[−1])[

and the associated graded DX -algebra is equal to Sym·(L[1]⊕L◦[−1]). We define an additional

Z-grading (·) on Cl by setting

L[1] ⊆ Cl(−1), L◦[−1] ⊆ Cl(1) and ωX ⊆ Cl(0).

Clearly ωX = Cl(0)
0 , so by the PBW theorem Cl(0)

2 /ωX ∼= L ⊗ L◦. In other words, Cl(0)
2 is a

central extension of gl(L) ∼= L ⊗ L◦ by ωX , called the Tate extension and will be denoted by

gl(L)[. Consider the morphism ad : L → gl(L) induced from the adjoint action of L on itself.

Then we can pull-back the Tate extension along ad to get a central extension L[ of L by ωX .

Denote the morphism L[ → gl(L)[ by β.

Suppose that we are given a chiral algebra A and a morphism of Lie-* algebras α : L[ →
A with 1[ 7→ −1A. (We always denote the associated Lie-* algebra of a chiral algebra by

the same notation when no confusion can arise.) Consider the graded chiral algebra A ⊗
Cl(·)· . For simplicity of notations, let µ ≡ { , }ch

A⊗Cl denote the chiral product of A ⊗ Cl. The

BRST differential is an odd derivation d on A ⊗ Cl(·)· of degree 1 with respect to both the (·)

and the PBW (structural) gradings, as defined in the following.

Since α and β send 1[ ∈ L[ to −1A ∈ A and 1[ ∈ gl(L)[ respectively, we put

`(0) := α+ β : L→ A⊗ Cl(0).

Also set

`(−1) : L[1] ↪→ Cl(−1) ↪→ A⊗ Cl(−1).

Recall that we have the DG super Chevalley complex (Sym(L◦[−1]), δ) sitting inside Cl ⊂
A ⊗ Cl. The differential δ is induced (by taking Sn-coinvariants of L◦[−1]⊗n for each n) from

the map L◦[−1]⊗n → L◦[−1]⊗n+1 given by

φ 7→ −1

2
φ({ , }L ⊗ IdL[1] ⊗ · · · ⊗ IdL[1]).

It is easy to check that ad`(0) = δad`(−1) + ad`(−1)δ as ∗-operations

L� Sym(L◦[−1])→ ∆∗Sym(L◦[−1]) ↪→ ∆∗A⊗ Cl.

Here ad`(0) means the adjoint action of the image of `(0) via the Lie-* bracket of A ⊗ Cl,
and similar for ad`(−1) . Since δ acts as zero on ωX = Sym0(L◦[−1]), the relation restricts to

L◦[−1] ⊂ Sym(L◦[−1]) as

{`(0), IdL◦[−1]}A⊗Cl = {`(−1), δ|L◦[−1]}A⊗Cl,
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where { }A⊗Cl is the Lie-* bracket of A⊗ Cl.
Now we define

χ̃ := µ(`(0), IdL◦[−1])− µ(`(−1), δ|L◦[−1]),

a chiral operation j∗j
∗(L � L◦) → ∆∗(A ⊗ Cl(1)[1]). Since χ̃ vanishes under the pull-back

L� L◦ ↪→ j∗j
∗(L� L◦), it induces a morphism

χ : L⊗ L◦ → A⊗ Cl(1)[1].

Plugging in IdL ∈ End(L) = L ⊗ L◦, we obtain d := χ(IdL) ∈ A ⊗ Cl(1)[1]. Finally we define

the BRST differential d := {d, ·}A⊗Cl. Indeed, it has degree 1 with respect to both the two

gradings as desired. Moreover, it satisfies d2 = 0. (See [9] for the proofs of this fact and the

theorem below.) We call the DG chiral algebra (A⊗Cl(·), d) the BRST or semi-infinite complex

associated to L and α.

The following theorem is called the BRST property of d.

Theorem 9.2.1. The BRST differential d is a unique odd derivation of A⊗ Cl(·)· of structure

and (·) degrees 1 such that d ◦ `(−1) = `(0).

Given an A-chiral module M , we form (M ⊗ Cln, dM ), the chiral module complex over the

DG chiral algebra (A ⊗ Cln, d), with differential dM induced from d. When the morphism

L[ → A is clear from the context, we simply write

C
∞
2 (L,M) := (M ⊗ Cln, dM )

and call C
∞
2 (L,M) the semi-infinite complex of M with respect to L. We will denote by

H
∞
2

+i(L,M)

the i-th cohomology of the semi-infinite complex.

Example 9.2.1. Consider the OX -Lie algebra n ⊗ OX . It has dual n∗ ⊗ ωX , along with the

natural OX -pairing

( , ) : (n⊗OX)⊗ (n∗ ⊗ ωX)→ ωX .

We denote by Ln = n⊗DX and L◦n = n∗⊗ωX ⊗DX the corresponding right DX -modules, and

upgrade ( , ) to a pairing in the DG super setting

〈 , 〉 : Ln[1]� L◦n[−1]→ ∆!(ωX ⊗DX)→ ∆!ωX .

Then we have the Clifford algebra Cln associated to Ln. When restricted to the formal disc

Dx at x ∈ X, by Proposition 9.1.1.3(e) the chiral algebra Cln has fiber at x isomorphic to

the semi-infinite Fermionic vertex superalgebra associated to n, as defined in [23, section 15.1].

The pairing ( , ) restricts to the usual residue pairing on n(Kx). The induced Tate extension
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n(Kx)[ ⊂ gl(n(Kx))[ is given by the 2-cocycle

u⊗ f, v ⊗ g 7→ tr(aduadv)Resx(fdg),

where adu, adv are adjoint actions of u, v on n, respectively.

For κ ∈ C, consider the pairing Q = κ(·, ·)st, where (·, ·)st is the standard bilinear form on

g. Recall the affine Kac-Moddy extension Lg,Q ≡ Lg,κ constructed in Example 9.1.1. Set Ag,κ

as the twisted enveloping chiral algebra of Lg,κ.

By definition there is a canonical embedding Lg,κ ↪→ Ag,κ as Lie-* algebras. Since κ vanishes

on n, the Kac-Moody extension splits on Ln, and thus Ln ↪→ Lg,κ ↪→ Ag,κ. This map actually

lifts to L[n: the extension L[n is actually trivialized due to the fact that n has nilpotent adjoint

action. Hence we are free to send 1[ ∈ L[n to −1 ∈ Lg,κ. This defines α : L[n → Ag,κ, and we

form the BRST complex (Ag,κ ⊗ Cln, d) by the general construction above.

Now, the fiber Cln,x is a chiral module over Cln supported at x ∈ X. By Proposition

9.1.1.2, a ĝκ-module M corresponds to a chiral Ag,κ-module at x, also denoted by M by abuse

of notation. The BRST differential d induces a unique differential dM on the chiral module

M ⊗Cln,x compatible with the action of (Ag,κ⊗Cln, d). The resulting complex (M ⊗Cln,x, dM ),

called the semi-infinite complex of M with respect to n(K), is independent of the choice of x

and will be denoted by C
∞
2 (n(K),M). For an explicit algebraic construction of the complex

C
∞
2 (n(K),M), see [23, Section 15.1].

In the remaining of this section, we will show that the semi-infinite complex C
∞
2 (n(K),M)

of a ĝκ-module M admits a canonical structure of a (complex of) module over the Heisenberg

algebra.

Let Lb,κ be the Lie-* subalgebra of Lg,κ which normalizes Ln. Then clearly Lb,κ is a central

extension of Lb = b ⊗ DX by ωX , induced from the affine Kac-Moody extension. We have

another extension of Lb. The adjoint action of b on n induces a map Lb → gl(Ln), so the pull-

back of Tate extension gl(Ln)
[ gives an extension of Lb by ωX , denoted by L[b. By construction

we have a map L[n ↪→ L[b.

Let L\b be the Baer sum of the extensions Lb,κ and L[b. Note that 1[ ∈ L[n is sent to −1 ∈ Lb,κ

by α and to 1[ ∈ L[b, so we have an embedding s : Ln ↪→ L\b. We would like to define a map

`
(0)
b on L\b which extends `(0); namely, it satisfies `

(0)
b |Ln ≡ `

(0)
b ◦ s = `(0). Indeed, we set

`
(0)
b := αb + βb, where

αb : Lb,κ ↪→ Lg,κ ↪→ Ag,κ ⊗ Cl(0)
n

arises from the canonical embedding of Lb,κ as a subalgebra, and

βb : L[b → gl(Ln)
[ ↪→ Ag,κ ⊗ Cl(0)

n

is the natural map obtained from pulling back the Tate extension. Obviously this map satisfies

`
(0)
b |Ln = `(0). By the BRST property, `

(0)
b |Ln = `(0) = d`(−1), so the image of Ln under `

(0)
b lies
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in Im d. Moreover, we have the following lemma:

Lemma 9.2.2. The image of `
(0)
b is contained in Ker d.

Proof. We again write µ ≡ { , }chAg,κ⊗Cln (resp. µCl) as the chiral bracket of Ag,κ ⊗ Cln (resp.

Cln), for simplicity of notations. Recall that { , }Ag,κ⊗Cln is the corresponding Lie-* bracket of

Ag,κ ⊗ Cln.

We need to show {d, `(0)
b }Ag,κ⊗Cln = 0. Since d`

(0)
b |L = d`(0) = d2`(−1) = 0, it suffices to

show {d, `(0)
b (h)}Ag,κ⊗Cln = 0 for h ∈ L\b/(Ln ⊕ ωX).

Fix the structure constants cα,βγ such that [eα, eβ] =
∑

γ c
α,β
γ eγ , where α, β and γ run over

positive roots of g. We denote by e∗α ∈ L◦n the dual element to eα. Then explicitly we have

`(0)(eα) = eα ⊗ 1 + 1⊗

∑
β,γ

cα,βγ µCl(eγ , e
∗
β)

 ,

δ(e∗α) = −
∑
σ,ρ

cσ,ρα µCl(e
∗
σ, e
∗
ρ).

Now we consider χ(IdLn) where IdLn is written as
∑

α eα ⊗ e∗α for α runs over positive roots of

g.

χ(IdLn) =
∑
α

(
µ(`(0)(eα), 1⊗ e∗α)− µ(`(−1)(eα), 1⊗ δ(e∗α))

)
=
∑
α

(
µ
(
eα ⊗ 1 + 1⊗

(∑
β,γ

cα,βγ µCl(eγ , e
∗
β)
)
, 1⊗ e∗α

)
+ µ

(
1⊗ eα, 1⊗

(∑
σ,ρ

cσ,ρα µCl(e
∗
σ, e
∗
ρ)
))

=
∑
α

(
µ(eα ⊗ 1, 1⊗ e∗α) +

∑
β,γ

cα,βγ 1⊗ µCl(µCl(eγ , e∗β), e∗α) +
∑
σ,ρ

cσ,ρα 1⊗ µCl(eα, µCl(e∗σ, e∗ρ))
)
.

The second and third terms of the last line above can be simplified using the Jacobi identity:

(Here we omit the tensor factor 1 ∈ Ag,κ of Ag,κ ⊗ Cln.)∑
β,γ

cα,βγ µCl(µCl(eγ , e
∗
β), e∗α) +

∑
σ,ρ

cσ,ρα µCl(eα, µCl(e
∗
σ, e
∗
ρ))

=
∑
β,γ

cα,βγ

(
µCl(eγ , µCl(e

∗
β, e
∗
α)) + µCl(e

∗
β, µCl(e

∗
α, eγ))

)
−
∑
σ,ρ

cρ,σα µCl(eα, µCl(e
∗
σ, e
∗
ρ))

=
∑
β,γ

cα,βγ µCl(e
∗
β, µCl(e

∗
α, eγ)).
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Finally, we write `
(0)
b (h) = h⊗ 1 + 1⊗ adh, and then see that

{d, `(0)
b (h)}Ag,κ⊗Cln

=
{∑

α

µ(eα ⊗ 1, 1⊗ e∗α), `
(0)
b (h)

}
Ag,κ⊗Cln

+
{∑
α,β,γ

cα,βγ 1⊗ µCl(e∗β, µCl(e∗α, eγ)), `
(0)
b (h)

}
Ag,κ⊗Cln

=
∑
α,β,γ

cα,βγ (β(h) + α(h)− γ(h))1⊗ µCl(e∗β, µCl(e∗α, eγ)) = 0,

as the structure coefficient cα,βγ is nonzero only when α+ β = γ.

By the lemma we obtain a morphism of Lie-* algebras

L\t
∼= L\b/Ln → H•(Ag,κ ⊗ Cln, d).

The universal property of twisted enveloping chiral algebra then yields a morphism of chiral

algebras

U ch(Lt)
\ → H•(Ag,κ ⊗ Cln, d).

The Lie-* algebra L\t is a central extension of t ⊗ DX by ωX , and the corresponding Lie

algebra HdR(D∗x, L
\
t) is the Heisenberg algebra with the 2-cocycle given by the form (κ−κcrit)|t ·

( , )st (see [13]). We call L\t the Heisenberg Lie-* algebra with a Tate shift, and denote the

corresponding Lie algebra

HdR(D∗x, L
\
t) =: t̂κ+shift. (9.1)

9.3 Chiral differential operators

Recall the jet construction J(·)l as the left adjoint functor of the forgetful functor from the

category of D-algebras to the category of O-algebras. Namely, for a D-algebra Bl and an

O-algebra C we have

HomD-algebra(J(C)l, Bl) = HomO-algebra(C,Bl).

Let Z := X×G. Set ΘZ := TZ⊗OZ (J(OZ)l⊗OX DX), which becomes a Lie-* algebra when

endowed with a canonical Lie-* bracket (c.f. [5, Section 2.4]). The Lie-* algebra ΘZ is called

the Lie-* algebra of vector fields on Z. Let g := Lie(G). The map g → TG of left invariant

vector fields induces a canonical Lie-* morphism Lg → ΘZ .

By fixing a form Q on g as in Example 9.1.1, we can construct a canonical chiral algebra of

differential operators Dch(G)Q on Z = X×G, by imitating the construction of the ring of differ-

ential operators from the structure sheaf and the tangent sheaf [5, Theorem 3.4]. Similar to the

ring of differential operators case, there is a canonical filtration on Dch(G)Q =
⋃
i≥0(Dch(G)Q)i

with the following properties (see [5, Theorem 3.4 and Theorem 3.7]):
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• (Dch(G)Q)0
∼= J(Z) as chiral algebras.

• There is a morphism of Lie-* algberas ΘZ → (Dch(G)Q)1/(D
ch(G)Q)0, which induces an

isomorphism SymJ(Z)l(Θ
l
Z) ∼= gr(Dch(G)lQ) of D-algebras.

• (Left-invariant vector fields) There is an embedding of Lie-* algebras

l : Lg,Q → (Dch(G)Q)1,

such that ωX ⊂ Lg,Q is sent identically to ωX ⊂ J(Z) ∼= (Dch(G)Q)0 and the composition

Lg,Q → (Dch(G)Q)1/(D
ch(G)Q)0

∼= ΘZ agrees with the canonical morphism Lg,Q → Lg →
ΘZ that corresponds to left-invariant vector fields on G.

• (Right-invariant vector fields) Let Q′ be the bilinear form −(·, ·)Killing −Q. Let L′g,Q′ be

the Baer sum of the two central extensions L−[g (the Baer negative of the Tate extension)

and Lg,−Q. Then there is an embedding of Lie-* algberas

r : L′g,Q′ → (Dch(G)Q)1,

such that ωX ⊂ L′g,Q′ is sent identically to ωX ⊂ J(Z) ∼= (Dch(G)Q)0 and the composition

L′g,Q′ → (Dch(G)Q)1/(D
ch(G)Q)0

∼= ΘZ agrees with the canonical morphism L′g,Q′ →
Lg → ΘZ that corresponds to right-invariant vector fields on G.

• The morphisms l and r commute. I.e. the composition

Lg,Q � L
′
g,Q′

l�r−→ Dch(G)Q �Dch(G)Q
{,}−→ ∆!D

ch(G)Q

is identically zero.

9.4 Factorization algebras and categories

The (algebro-geometric) notion of factorization algebras was introduced by Beilinson and Drin-

feld in [9], for the purpose of introducing the chiral homology. As factorization algerbas and

chiral algebras are equivalent objects, the presentation of factorization algebras allows one to

define a categorified version of the structure, called the factorization categories (a.k.a. chiral

categories). The theory of factorization categories is developed in [52]. Here we will skip most

technical details and only give an informal review of the subject.

We start with an intuitive definition of factorization algebras. Let X be a smooth algebraic

curve. A factorization algebra Υ is defined as an assignment: to each subset {x1, x2, . . . , xn} of

X, we associate a vector space Υx1,x2,...,xn with isomorphism

Υx1,x2,...,xn
∼= Υx1 ⊗Υx2 ⊗ . . .⊗Υxn (9.2)
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such that when the points move or collide the assignment and the isomorphism (9.2) change

continuously. One can repeat the above word by word with vector spaces replaced by categories

to get an intuitive definition of factorization categories.

In algebro-geometric terms, the intuitive definition for factorization algebras is translated

to assigning a D-module ΥI on XI to each finite non-empty set I, together with the following

isomorphisms:

• (Ran condition) For each surjection I � J , an isomorphism

∆!
I/JΥI

∼−→ ΥJ

where ∆I/J : XJ ↪→ XI is the induced diagonal embedding.

• (Factorization condition) For finite sets I and J , let ι : [XI×XJ ]disj ↪→ XItJ be the open

locus where points in XI are disjoint from points in XJ . The isomorphism is

ι!(ΥI �ΥJ)
∼−→ ι!ΥItJ .

These isomorphisms are required to satisfy a list of compatibility relations that we choose to

omit. Finally, for |I| ≥ 2 we require that ΥI has no nonzero sections supported on diagonal

divisors.

Denote the category of factorization algebras (on the curve X) by Algfact(X). It has a

natural symmetric monoidal structure given by the usual tensor product.

Theorem 9.4.1 ([9] Theorem 3.4.9). The functor Algfact(X) → Algchiral(X) given by Υ 7→
(Υ{∗})

r is a monoidal equivalence.

We can repackage the assignment I  ΥI and the Ran condition as saying that Υ is a

D-module on the Ran space Ran(X). Explicitly, Ran(X) is the prestack defined as

Ran(X) := colim
I

XI

where the colimit is taken along the embedding XJ ↪→ XI for each surjection I � J . Given

a test scheme S, the S-point Ran(X)(S) = colim
I

X(S)I is the collection of non-empty finite

subsets of X(S). Define the prestack of disjoint locus of Ran(X)× Ran(X) as

[Ran(X)× Ran(X)]disj := colim
I,J

[XI ×XJ ]disj.

We have the canonical inclusion map (m1) and union map (m2):

Ran(X)× Ran(X)
m1←− [Ran(X)× Ran(X)]disj

m2−→ Ran(X). (9.3)

We refer to (9.3) as the chiral multiplicative structure of Ran(X), which abides by associativity
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and commutativity constraints (in the sense of an object in a ∞-category) and can thus be

seen as a commutative algebra object in a certain correspondence 2-category, c.f. [52, Section

5]. Now a factorization algebra A is equivalent to a D-module Υ on Ran(X) equipped with an

isomorphism

m!
1(Υ�Υ)

∼−→ m!
2 Υ (9.4)

and the corresponding n-ary multiplication analogues. The intuitive definition given above now

derscribes the behavior of stalks of Υ over finite subsets of X.

To categorify a sheaf of sets, one naturally considers a sheaf of categories. We thus define

a factorization category CRan(X) as a sheaf of D-mod(Ran(X))-module categories on Ran(X),

together with an equivalence

m!
1(CRan(X) � CRan(X))

∼−→ m!
2 CRan(X). (9.5)

and its n-ary multiplication analogues. Note that one should develop a theory of factorization

categories where the categories are derived, as this is often the case for applications in geometric

representation theory. However, in the setting of derived cateogries, to give a definition without

mentioning the Ran space and its chiral multiplicative structure, one has to specify a long

list of homotopically coherent compatibility conditions for Ran and factorization equivalences.

Although this approach is not impossible and actually is realized in [52, Section 8], we choose

to not discuss this approach here. We will nevertheless write CI to denote the corresponding

sheaf of categories on XI and make use of the factorization equivalences

(CI � CJ)|[XI×XJ ]disj

∼−→ CItJ |[XI×XJ ]disj

for convenience.

The machinery of commutative algebras in a correspondence 2-category automatically pro-

duces the notion of functors between factorization categories; c.f. [52, Section 5.23]. Intuitively

a factorization functor FRan(X) : CRan(X) → DRan(X) should induce functors over finite subsets

of X such that the following diagram commutes:

Cx1,...,xn

Fx1,...,xn //

'
��

Dx1,...,xn

'
��

Cx1 ⊗ . . .⊗ Cxn
Fx1⊗...⊗Fxn // Dx1 ⊗ . . .⊗ Dxn

Given a factorization category CRan(X), one define a factorization algebra object Υ in CRan(X)

as a sheaf of objects on Ran(X) equipped with isomorphisms as in (9.4). It should not be

surprising that a factorization algebra in CRan(X) is sent to a factorization algebra in DRan(X)

under a factorization functor FRan(X) : CRan(X) → DRan(X).

While Ran(X) is a commutative algebra object in the correspondence 2-category, one can
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define the notion of a Ran(X)-module object in the same category. Then a sheaf of categories

on a module object with action equivalences similar in form to (9.5) will be called a factorization

module category. Below we give a concrete account of a Ran(X)-module object of particular

interest.

Fix a (non-empty) finite set I. Consider the category fSetI whose objects are arbitrary

maps I → J for finite set J , and morphisms are commutative diagrams

I

����������

��???????

J // // J ′

The I-marked Ran space RanI(X) is defined as the prestack

RanI(X) := colim
(I→J)∈fSetopI

XJ ,

which becomes a Ran(X)-module in the correspondence 2-category via the following diagram

[Ran(X)× RanI(X)]disj

act1

ttiiiiiiiiiiiiiiiii
act2

))SSSSSSSSSSSSSS

Ran(X)× RanI(X) RanI(X)

Here the map act2 sends (K, (I → J)) to (I → J tK) for I, J,K finite subsets of X, whereas

the map act1 is obvious.

With the above setup, given a factorization category CRan(X), we define a factorization mod-

ule category MRanI(X) on XI (for CRan(X)) as a sheaf of D-mod(RanI(X))-module categories,

together with an equivalence

act!1(CRan(X) �MRanI(X))
∼−→ act!2 MRanI(X)

and its n-ary action analogues.

Example 9.4.1. There is a canonical map RanI(X) → XI . Given a factorization category

CRan(X), the corresponding sheaf of categories CI on XI can be regarded as a factorization

CRan(X)-module category on RanI(X) by pulling back along the canonical map. We abuse the

terminology and say that CI is a factorization module category on XI .

Again, the machinery of Ran(X)-module objects immediately gives the notion of a func-

tor between factorization module categories. In particular, a functor from a CRan(X)-module

MRanI(X) to a DRan(X)-module NRanI(X) specifies a factorization functor CRan(X) → DRan(X)

and a functor MRanI(X) → NRanI(X) compatible with the actions. For convenience we write

F : (CRan(X),MRanI(X))→ (DRan(X),NRanI(X))
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with F (1) and F (2) functors for the first and second component, respectively.

One categorical level down, given a factorization algerba Υ in CRan(X), we define a factor-

ization Υ-module in MRanI(X) as an object Ξ ∈ MRanI(X) with isomorphisms

act!1(Υ� Ξ)
∼−→ act!2 Ξ (9.6)

and its n-ary action analogues. Let Υ-modfact(MRanI(X)) denote the category of factorization

Υ-modules in MRanI(X). Consider a functor F : (CRan(X),MRanI(X))→ (DRan(X),NRanI(X)) and

a factorization algebra Υ ∈ CRan(X). We get a factorization algebra F (1)(Υ) ∈ DRan(X), and F

induces a canonical functor

Υ-modfact(MRanI(X)) −→ F (1)(Υ)-modfact(NRanI(X)).

Let CRan(X) be a factorization category and Υ ∈ CRan(X) a factorization algebra. As in

Example 9.4.1 CI is a factorization module category on XI . In the special case of I = {∗}, we

denote the category of factorization Υ-modules on X by Υ-modfact(X). In view of Theorem

9.4.1, let A := (Υ{∗})
r be the chiral algebra corresponding to Υ. The following theorem identifies

factorization modules and chiral modules:

Theorem 9.4.2 ([9] Proposition 3.4.19). There is a canonical equivalence of sheaves of cate-

gories

Υ-modfact(X)
∼−→ A-modch(X).

Finally, we discuss the external fusion of factorization modules. We consider the factoriza-

tion module category CI,J,disj defined by restricting CItJ to the locus [XI ×XJ ]disj. Then the

external fusion is a canonical functor

Υ-modfact(CI)⊗Υ-modfact(CJ)→ Υ-modfact(CI,J,disj).

For detailed constructions, see [52, Section 6.22-26]
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