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Building self-driving vehicles is exciting and promising. It is going to transform the way we live and provide

safety, efficiency, and mobility for everyone. In this thesis, I present a collection of our work in the direction

of building smart self-driving vehicles from understanding convolutional neural networks (CNNs) to the full

autonomy stacks, including perception, prediction, and planning.

First, we study the property of CNNs and provide theoretical analysis on the receptive field. We use Fourier

transform and center limit theorem to show that the effective receptive field only occupies a fraction of the theo-

retical one, especially in deep models. This can provide insights for future CNNs design.

Next, we push the state of the art for tasks in the autonomy stacks using deep CNNs. For depth estimation

with stereo cameras, we develop a deep matching network that simplifies previous approaches by using a dot-

product layer and incorporates a multi-class classification loss, allowing the network to calibrate scores among

larger contexts. These greatly improve the runtime and achieve much better matching results. Furthermore, we

extend the idea to optical flow where the matching is done in 2D space. Combined with an instance segmentation

algorithm, we achieve state-of-the-art results on KITTI optical flow benchmark.

Third, we propose new formulations for the self-driving system, i.e. using a joint model for 3D detection,

prediction, and tracking. Our model takes a sequence of consecutive LiDAR sweeps and predicts the bounding

boxes for vehicles at the current time step as well as one second into the future. Tracking is done by greedily

checking the overlap between current detections and predictions from the past. This approach bridges the gap

between perception and prediction to achieve better performance both in accuracy and runtime. Then, we take

this one step further to construct a deep structured model for interpretable neural motion planning, where the CNN

also predicts a 3D cost volume, expanding on time and x-y spatial dimensions. The final planning trajectory is

generated with a sampling-based inference algorithm. We conduct offline testing and show that our approach is

better than several baselines.
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Chapter 1

Introduction

Technology has significantly driven the development of our society and transformed our daily life, from the usage
of fire to electricity. Self-driving vehicles have drawn more and more attention over the past few years as we
keep pushing the boundaries of technology and maturing self-driving techniques. It is widely recognized that
fully self-driving vehicles would bring lots of benefits, including increased safety and mobility, reduced costs,
increased efficiency, etc. Safety benefits include the reduction of traffic accidents and corresponding injuries
as well as damages. It can provide enhanced mobility for everyone, including children, the elderly, disabled
people, etc. It is also able to increase the efficiency from the perspective of fuel usage, less congestion, better
traffic flow, and significantly less requirement for parking space, leading to lower personal cost as well as a lower
environmental burden.

While self-driving is exciting, it is undoubtedly a difficult task. The problems range from hardware and
software to government regulations and concerns on privacy and security. While all of these are important factors,
the scope of this thesis will be on autonomy software. Thus throughout this thesis, we use the term “self-driving
technology” interchangeably with “autonomy software”.

The development of self-driving can date back to the 1920s [149]. Significant engineering efforts were put
into this area since then, and machine learning technology is playing an increasingly important role over time. It
is worth mentioning the breakthrough of deep neural networks on image recognition tasks [93], where Krizhevsky
et al. showed the superior performance of deep learning models over previous hand-engineered approaches. Since
then, various deep learning models and different convolutional neural networks (CNNs) have been proposed to
tackle a broad set of tasks with multiple types of sensor data such as RGB images/videos, LiDAR point clouds,
and magnetic resonance images (MRI). It is certainly interesting to see how much further we can push self-
driving technology with the help of deep learning models, from both accuracy and runtime perspectives. On the
other hand, despite the great success of CNNs, there is not much theoretical understanding about them, making
them black-box algorithms. A theoretical analysis would help better understand the behavior of CNNs and bring
more intuition to architectural design for specific problems, i.e., we could potentially develop new algorithms for
existing tasks in the autonomy stacks for better performance on both accuracy and runtime. In addition, with more
advanced and powerful tools in hand, it is also worthwhile to revisit some of the design choices we made a long
time ago on the autonomy stacks, to research in a different direction that could potentially bring a revolutionary
solution.

With that in mind, this thesis is tackling problems in the following three directions, with the ultimate goal of
building a smarter self-driving vehicle:

1



CHAPTER 1. INTRODUCTION 2

Understanding CNNs: We provide theoretical analysis on the receptive field (i.e. field of view) of convolutional
neural networks. The receptive field is a fundamental attribute of a CNN. It describes the size of the area one
network can see on the input. It is crucial for model design; for example, if a network has a receptive field size
smaller than an object in the image, it would not be able to detect the object. In theory, we can compute the size
of the receptive field directly by considering the number of layers, convolutional kernel size and corresponding
stride. However, this number might not reflect the real effective receptive field. Thus, we provide theoretical
analysis on the receptive field and introduce the notion of effective receptive field size. We show that the effective
receptive field size does not grow as fast as we used to think. This work provides good intuitions on modern neural
network architectural design and can lead to better models for solving different tasks in the self-driving stack.

Pushing state of the art: While CNNs have been shown to outperform previous approaches in different high-
level perception tasks such as image recognition and detection, they are not widely used for low-level vision tasks
such as depth estimation and optimal flow. These tasks are essential for self-driving as they provide richer, critical
information about the surrounding world with a cheaper camera sensor. We first proposed a deep matching
network to incorporate context information for depth estimation using stereo cameras. It achieves much better
matching performance in the context of depth estimation while being two orders of magnitude faster than previous
methods. We also adapted it to optical flow, where the matching is performed in 2D space. Together with object-
aware techniques, we achieved state-of-the-art optical flow performance on the KITTI [53] benchmark at the time
of publication of the corresponding paper. These works apply deep neural networks to low-level vision tasks
and achieve better results than previous approaches. It provides an excellent alternative solution for self-driving
sensing with cheaper sensors.

New formulation for the autonomy stacks: The success of deep neural networks on various perception and
prediction tasks brings a natural question: should we rethink about the architecture of autonomy stacks? The
separation of perception, prediction, and planning, in general, might not be optimal. Thus, in this direction, we
look at an alternative approach to formulate the problem. Firstly, we propose a joint model for perception and
short-term prediction. In particular, we train a neural network to only take a few consecutive LiDAR sweeps
of data as input and output 3D detection, tracking across time as well as the prediction into the future. This is a
real-time solution with the advantage of jointly training for better performance, and uncertainty can be propagated
throughout the whole network. Secondly, we take this one step further to predict a time-dependent spatial cost-
volume. The cost-volume is widely used in planning to tell whether the self-driving vehicle should be driving on
a specific location at a particular time. Given the predicted cost-volume, we utilize a sampling-based inference
algorithm with the help of a trajectory sampler to generate the final planning trajectory. Together, these give an
interpretable neural planner that consumes raw LiDAR data and a high-definition (HD) map. The model also
provides intermediate 3D detection and prediction results for interpretability purposes.

1.1 Background

The physical region one lives in on a daily basis has expanded dramatically over the past decades. There is an
increasing demand for mobility, resulting in more and more people relying on vehicles every day. It is not difficult
to imagine that self-driving technologies can benefit our society. The potential benefits include increased safety,
mobility, efficiency, and user experience, in addition to reduced costs and environmental impact.

To be more specific, human drivers inevitably make mistakes for various reasons, including distraction, lack
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of sleep, and alcohol consumption. However, a self-driving vehicle controlled by a computer would not feel tired,
i.e., it will maintain the same performance over time. As a result, self-driving vehicles would provide a much
safer driving service statistically. Secondly, human drivers need serious training for different driving scenarios,
and there are minimum and maximum age limits. In Ontario (one of the largest provinces in Canada), one has to
practice at least one year with an experienced driver before taking a road test. The driver’s license system also
has different categories, which require different training for operating different types of standard vehicles, such as
passenger vehicles, school buses, etc. It is indeed a nontrivial task to obtain a driver’s license; thus a self-driving
vehicle could provide mobility to a much broader set of people, including children, the elderly, disabled people
or others unable to drive. Thirdly, as we have more vehicles on the road, we would experience more congestion
and traffic jams. In busy or confusing areas such as intersections, traffic lights are used to control the traffic flow.
There are also efforts using AI techniques to predict the traffic flow and make better control signals accordingly.
However, this is not an optimal solution, as vehicles on the road still need to decelerate and accelerate constantly.
In a world with only self-driving vehicles, it can be more collaborative so that vehicles coming from any direction
can go through an intersection without stopping, making traffic flow more efficient. As a result, better traffic flow
permits a better usage of fuel, reducing the cost for everyone while being more environmentally friendly. Self-
driving vehicles also facilitate business models of transportation as a service, especially via the sharing economy.
Furthermore, vehicles are only used 5% of the time on average, i.e., vehicles are idle in parking lots most of the
time. Thus, one self-driving vehicle can serve many people to not only save the cost of owning/maintaining a
vehicle, but also the space for parking.

While the future world of self-driving vehicles looks very exciting, it also introduces new problems, such as
liability, legal frameworks, government regulations, privacy, security as well as the potential loss of driving-related
jobs in the transportation industry. The liability issue brings up a difficult but realistic question: if a self-driving
vehicle causes an accident, who should be blamed? It also involves legal frameworks and government regulations
to ensure that each self-driving vehicle on the road has been properly tested and has sufficient backup plans when
unexpected issues arise. This is even more crucial during the transition phase when we have both human drivers
and self-driving vehicles on the road. Additionally, as we enter the cyber world and rely more and more on
computers, privacy and security become an important issue. A hacker could potentially get the trace of specific
users or even take over the control of the self-driving vehicles. Another concern, which is generally relevant for
all AI technology, is the loss of related human jobs. As one can imagine, self-driving technology will reduce the
demand for human drivers. Despite the various problems related to self-driving vehicles, we are optimistic that
society can gradually adapt to new technology, as we have seen many times throughout history.

1.1.1 Definition of Self-Driving:

The self-driving vehicle (sometimes referred to as a robot car, autonomous car, or driverless car) is a vehicle that
can sense the surrounding environment and move to desired destinations with little or no human input. There are
different definitions for the level of self-driving-ness, and the widely used one is from the Society of Automotive
Engineers (SAE), which consists of 6 levels [179] (SAE J3016 Standard).

• Level 0: Automated system issues warnings and may momentarily intervene but has no sustained vehicle
control.

• Level 1 (“hands on”): The driver and the automated system share control of the vehicle. Examples are Adap-
tive Cruise Control (ACC), where the driver controls steering and the automated system controls speed; and
Parking Assistance, where steering is automated while speed is under manual control. The driver must be

https://web.archive.org/web/20170903105244/https://www.sae.org/misc/pdfs/automated_driving.pdf
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Figure 1.1: Decodes ago, horses were trained to take us home. Drawing by Tianxing.

ready to retake full control at any time. Lane Keeping Assistance (LKA) Type II is a further example of
level 1 self-driving.

• Level 2 (“hands off”): The automated system takes full control of the vehicle (accelerating, braking, and
steering). The driver must monitor the driving and be prepared to intervene immediately at any time if the
automated system fails to respond properly. The shorthand ”hands off” is not meant to be taken literally. In
fact, contact between hand and wheel is often mandatory during SAE 2 driving, to confirm that the driver
is ready to intervene.

• Level 3 (“eyes off”): The driver can safely turn their attention away from the driving tasks, e.g., the driver
can text or watch a movie. The vehicle will handle situations that call for an immediate response, like
emergency braking. The driver must still be prepared to intervene within some limited time, specified by
the manufacturer, when called upon by the vehicle to do so. As an example, the 2018 Audi A8 Luxury
Sedan was the first commercial car to claim to be capable of level 3 self-driving. This particular car has
a so-called Traffic Jam Pilot. When activated by the human driver, the car takes full control of all aspects
of driving in slow-moving traffic below 60 kilometers per hour (37 mph). The function works only on
highways with a physical barrier separating one stream of traffic from oncoming traffic.

• Level 4 (“mind off”): As level 3, but no driver attention is ever required for safety, e.g., the driver may safely
go to sleep or leave the driver’s seat. Self-driving is supported only in limited spatial areas (geofenced) or
under special circumstances, like traffic jams. Outside of these areas or circumstances, the vehicle must be
able to safely abort the trip, e.g., park the car, if the driver does not retake control.

• Level 5 (“steering wheel optional”): No human intervention is required at all.
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Figure 1.2: Nowadays, the self-driving vehicle is developed to take everyone and everything everywhere. Drawing
by Tianxing.

1.1.2 History

Developing robots to help humans with various tasks has always been a focus for both the research community
and industry. We have seen a great number of robots invented that indeed make our daily life easier and more
enjoyable. For example, we have vacuum robots that can clean the house automatically, drones that can follow
people and take pictures or videos automatically, and autopilot planes that fly millions of people every day. Among
all these areas, mobility is one of the most important factors. We used to train horses to take us home (Fig. 1.1).
Nowadays we are training robots to move everyone, everything everywhere (Fig. 1.2).

While it may seem like self-driving vehicles have gone from blockbuster or science fiction to reality in just
a few years, and the technology emerged overnight, the development of self-driving has a long history. It dates
back to at least the 1920s [149], when people started talking about it. More promising attempts took place in
the 1950s, and the development of self-driving vehicles has taken on a faster pace. In the early 1980s, Ernst
Dickmanns and his team equipped a Mercedes-Benz van with cameras and other sensors and re-engineered it to
control the steering wheel, throttle, and brake via computer command. They performed initial experiments in
Bavaria on streets without traffic. Later in 1986/1987, they made the car capable of driving fully by itself up to
96 kilometers per hour, but only on empty roads. In the early 1990s, Dean Pomerleau from Carnegie Mellon
University proposed a neural network to output the steering angle directly from raw image input [136]. This is
the first known attempt of self-driving vehicles using a neural network with an end-to-end training procedure. It
was demonstrated to work in certain conditions and was far more efficient than alternative attempts at the time,
which manually divided images into “road” and “non-road” categories. Furthermore, in 1995, Pomerleau and
fellow researcher Todd Jochem took their self-driving vehicle on the road. They managed to drive autonomously
approximately 3K miles coast-to-coast from Pittsburgh, Pennsylvania to San Diego, California (although they
needed to control speed and to brake themselves), of which 98.2 % was autonomously controlled. It was dubbed
“No Hands Across America”. In the 2000s, the U.S. government started to get involved. It funded military efforts
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to demonstrate the ability of crewless ground vehicles to navigate miles without crashing into obstacles such as
trees and rocks. There is also a demonstration for a hierarchical system, where not only individual vehicles are
controlled, but also groups of vehicles are coordinated with each other in order to achieve given high-level goals
together. Entering the 2010s, self-driving vehicles have become superstars. Advances in artificial intelligence
technology, including algorithms, computing power, and huge amounts of data, all play important roles in this
progress. Numerous major companies and research organizations have developed working self-driving prototype
vehicles, including car manufacturers such as Mercedes-Benz, General Motors, Continental Automotive Systems,
Autoliv Inc., Bosch, Nissan, Toyota, Audi, and Volvo. Technology companies such as Google, Baidu, and Uber
started self-driving efforts as well. The bright future of self-driving also spins off many startups, such as Zoox,
Pony.ai, Argo.ai, Aurora, and Nuro. We refer interested readers to related materials and the references [178], a, b,
c. In the following, we will briefly talk about two noticeable projects in the history of self-driving development.

DARPA Grand Challenge: The DARPA Grand Challenge is a series of prize competitions for developing long-
distance autonomous vehicles. They were hosted by the Defense Advanced Research Projects Agency (DARPA),
which is the most prominent research organization of the United States Department of Defense. The U.S. Congress
authorized DARPA to offer prize money of one million dollars for the first Grand Challenge to facilitate robotic
development, with the ultimate goal of making one-third of ground military forces autonomous by 2015. Fol-
lowing the 2004 event, the prize money increased to two million [176]. The competition was open to teams and
organizations from around the world, as long as there was at least one U.S. citizen on the team. It attracted major
universities and large corporate interests such as CMU, Stanford, and MIT to participate. The first DARPA Grand
Challenge (2004) was created to spur the development of technologies needed to create the first fully autonomous
ground vehicles capable of completing a substantial off-road course within a limited time. None of the robot
teams at the time could finish the route of 240 km along the Interstate 15. The third event (2007), the DARPA
Urban Challenge, extended the initial Challenge to autonomous operation in a mock urban environment, where
multiple teams were able to finish the 96 km course. In particular, Tartan Racing, a team from CMU and GM with
a 2007 Chevy Tahoe car, won the first place and claimed the 2 million dollar prize. The second-place finisher,
earning the 1 million dollar prize, was the Stanford Racing Team with their entry ”Junior,” a 2006 Volkswagen
Passat. Coming in third place was team VictorTango, winning the $500,000 prizes with their 2005 Ford Es-
cape hybrid, ”Odin.” The most recent Challenge, the 2012 DARPA Robotics Challenge, focused on autonomous
emergency-maintenance robots. We refer interested readers to [176] for more details.

EUREKA Prometheus Project: The Eureka PROMETHEUS Project (PROgraMme for a European Traffic of
Highest Efficiency and Unprecedented Safety, 1987-1995) was a project from the European Union and was one
of the largest R&D projects in the domain of self-driving vehicles. It received 749,000,000 euros in funding from
various EUREKA member states. It also attracted many universities and car manufacturers to participate. As
the partners recognized the wide variety of skills required for fully autonomous vehicles, the project was formu-
lated differently for different sub-projects. In particular, the committee proposed three sub-projects on industrial
research, including driver assistance by computer systems (PRO-CAR), vehicle-to-vehicle communication (PRO-
NET), vehicle-to-environment communication (PRO-ROAD), and four on basic research including methods and
systems of artificial intelligence (PRO-ART), custom hardware for intelligent processing in vehicles (PRO-CHIP),
methods and standards for communication (PRO-COM), traffic scenario for new assessments, and the introduc-
tion of new systems (PRO-GEN). The project spurred progress on different aspects of self-driving technology,
including vision enhancement, lane keeping support, and collision avoidance. We refer interested readers to [177]

https://www.wikiwand.com/en/History_of_self-driving_cars
https://www.titlemax.com/resources/history-of-the-autonomous-car
https://www.wired.com/brandlab/2016/03/a-brief-history-of-autonomous-vehicle-technology/


CHAPTER 1. INTRODUCTION 7

for more details.

1.2 Challenges

From decades of development on self-driving technology, it is now clear that a full self-driving system involves
a diverse and advanced set of techniques, including hardware design and maintenance; accurate high-definition
mapping; accurate and real-time localization systems; robust perception pipelines, including but not limited to
detection; tracking; and prediction, as well as planning and control modules that compute plausible trajectories
and execute them in real-world environments. While all of them have drawn lots of attention and been widely
studied in the research community, in the following, I highlight some of the challenges this thesis will focus on.

Sensing: When a human driver is on the road, she or he would first take information from the surrounding
world using human sensors, e.g. eyes. Human eyes can be treated as stereo cameras, and our visual system can
correspondingly infer the depth of the scene from these sensor inputs. Similarly, this 3D information about the
surrounding environment is also crucial for self-driving vehicles as we need to navigate to destinations without
collision and obey rules on the road. Currently, there are two different ways to get 3D information: one is to use
a 3D sensor such as LiDAR, while the other is to use stereo cameras similar to the setting of the human visual
system. Using LiDAR sensors provides very accurate 3D information as they actively shoot out light and measure
the distance via the time-lapse upon receiving the reflection. However, due to the nature of this approach and
the limitation of current LiDAR technology, the point cloud we receive from one LiDAR sweep is usually very
sparse, and the sparsity grows exponentially over distance. The working range for a standard Velodyne HDL-64E
is only up to 100 meters. The other cheaper option is to use stereo cameras. However, they bring more significant
challenges—estimating depth from stereo cameras is not a trivial task. From geometry, we know that depth is
inversely proportional to the disparity between rectified images. Thus, it is often treated as a matching problem
between image patches. We have seen useful algorithms in datasets with manually controlled environments such
as the Middlebury dataset; however, in the real-world environment, the performance is heavily affected and limited
by specularities, occlusions, repetitive patterns, and even saturation due to improper exposure. Additionally, self-
driving systems would require real-time performance, thus leaving a very limited budget for perception in general,
not to mention sensing which is only a small part of perception.

3D Detection: Given 3D information of the scene, another essential ingredient for perception is 3D detection,
where the task is to detect surrounding objects in the 3D space. This is a challenging task as it requires recognizing
the target objects and localizing them in 3D space, with excellent accuracy and low latency. Failing to do either
of these tasks could lead to a catastrophic failure of the whole system. Imagine if the self-driving system fails to
detect an obstacle in front—it could just run into it, causing damage or even injuries. The 3D detection task has
two main-stream approaches based on what type of 3D sensing framework it relies on, i.e., the first one utilizes
LiDAR sensor data and the other one utilizes information from stereo images. The LiDAR detection approach can
produce more accurate 3D detection results since the sensor data (LiDAR point cloud) can provide more accurate
depth information. The limitation for utilizing LiDAR is that currently it only works for short distances, e.g. a
commonly-used Velodyne LiDAR could only give very sparse LiDAR points at the distance beyond 100 meters,
bringing extra challenges on long-range detections. In practice, the effective range could be even shorter due to
different environmental and weather conditions. Additionally, the computation limit is also a key challenge for
LiDAR-based methods, as LiDAR data genuinely lives in 3D space. A naive 3D convolution approach would be

https://vision.middlebury.edu/stereo/
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orders of magnitude slower than what we can afford for self-driving systems. On the other hand, image-based
methods have an advantage on long-distance objects as we could easily have access to high-resolution cameras,
as well as cameras designed specifically for long range. However, the drawback is also clear that high-resolution
brings heavy computation, and the depth information could be very noisy due to the limitation of current stereo
techniques.

Prediction: Knowing where all the surrounding objects are only at the current time (i.e. 3D detection) is not
enough; a self-driving system would also need to know where each object goes into the future. This allows
planning for a safe and smooth trajectory that avoids collision and provides a comfortable riding experience, i.e.,
without jerk and sharp turns. There are several challenges for prediction. Firstly, it is a multi-modal problem.
Each object could potentially take on very different trajectories, even from the same starting point. For example, a
pedestrian standing at the intersection could go straight to cross the intersection or stand there waiting for others;
similarly, a vehicle at an intersection could either go straight or make a turn. The self-driving vehicle needs to
take into account all these possibilities to make its corresponding movement. Secondly, since there are multiple
objects on the road, the prediction system would need to consider the interaction among them. This is also a
non-trivial task for human drivers, and in practice, we often use hand gestures or make eye-contact to signal each
other. For the self-driving system, however, it is challenging to model the interaction as the possibility of all
interactions grows exponentially with time and number of objects. Also, each object’s action and location live
in continuous space, which makes the problem even more challenging. Thirdly, the prediction of other objects
should also comply with traffic rules most of the time. This brings extra challenges to the system, especially in a
dynamically changing environment.

Planning & Cost Map: The planning module takes the output from previous perception and prediction to plan
a safe, smooth, and progressive trajectory towards a given destination. This is a difficult task as we need to comply
with traffic rules and other dynamic objects. It is often achieved by manually designing a cost map representing the
‘goodness’ of each position that the self-driving car can take within the planning horizon. As there is no ground-
truth for this cost map, it requires enormous engineering effort and domain knowledge to design a proper cost map
that can encode the rules and driving behavior we want. In practice, this process often takes a long time and does
not scale to all kinds of driving scenarios. In addition, we need to consider the mistakes from previous perception
and prediction systems. A robust planning system would require rigorous safety checks and consideration of both
uncertainties from previous modules and the potential inability to generate feasible trajectory due to the noise in
perception and prediction results. Currently, there is still no perfect solution for all of these issues. Furthermore,
in contrast to supervised tasks, such as image classification and detection, there is no standard metric for planning.
Simply taking a ride in the self-driving vehicle cannot provide comprehensive information about the status of the
system. It requires a sophisticated simulation system to test it, usually at the level of driving millions or even
billions of miles.

Interpretability: While deep neural networks have been successfully applied to a wide variety of problems,
their lack of interpretability is a common criticism. This is a crucial factor for safety-critical applications such
as self-driving vehicles. It is essential for both online and offline settings. In an online setting, interpretability
can provide safety checks and make users confident about the system. In an offline setting, interpretability can
give a better analysis of failure cases. However, getting the interpretability of the decision made by a deep
neural network is not obvious, as it is a highly non-linear function. Previously, researchers have conducted
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different experiments and proposed various ways to understand neural networks from the perspective of activation
visualization [196, 203, 118] showing how the network evolves during training and how different layers can extract
different levels of abstraction. There are also studies about neural networks from the perspective of adversarial
samples [131, 48, 126] showing that neural networks are not as robust as we used to think. However, these
studies are mostly on the empirical side, while theoretical analysis on understanding neural networks remains a
challenging and promising research direction.

All these problems involve fundamental computer vision techniques ranging from the low-level perception of
depth estimation and optical flow to the high-level perception of object detection, recognition, and tracking. It also
requires better machine learning techniques, including but not limited to how to perform training and inference
efficiently, use data more efficiently, build insight into the model, and have interpretability of all these algorithms.

1.3 Contributions

The contribution of this thesis can be summarized as moving from manually tuned rules to learning-based methods

for self-driving. Previous self-driving techniques utilized many manually-tuned rules or hand-crafted features for
each of the building blocks; for example, Birchfield and Tomasi[12] uses slanted surfaces for depth estimation,
and hand-crafted features such as SIFT[110] and HOG [40] were among the best choice for detection tasks in the
early days. On the other hand, with the help of large-scale datasets [41, 53] and advanced computing architecture,
especially NVIDIA GPUs and CUDA computing platform, deep neural networks achieve amazing results on
various tasks [72, 6, 93, 69]. In this thesis, I present a list of my work during my Ph.D. studies to provide a
theoretical understanding of CNNs from the perspective of the receptive field, improving the performance on
existing tasks in the self-driving stack, as well as proposing new formulations that jointly reason on multiple
tasks. All these efforts are towards the goal of building a smarter self-driving vehicle. In detail:

• CNNs have been widely used for various tasks ranging from dense prediction of depth estimation [195]
and segmentation [23] to high-level tasks of image classification [93] and detection [140, 69]. However,
they are not necessarily well understood, especially regarding the receptive field, which plays an important
role in designing network architectures. In Chapter 2, we give a theoretical analysis on the receptive field of
CNNs, introduce the notion of the effective receptive field (ERF), which is the area that has a non-negligible
influence on the output. We prove, using Fourier analysis and central limit theorem, that the effective
receptive field follows a Gaussian distribution and the size shrinks at the rate of 1√

n
w.r.t. theoretical

receptive field size, where n is the number of layers. We also discuss ERF behavior on different non-
linearities, dropout, sub-sampling, and dilated convolution.

• Presented in Chapter 3, we develop a deep learning method for depth estimation from stereo images. We
utilize the geometric property for stereo images and formulate the depth estimation as image patches match-
ing along the epipolar line. Previously, Zbontar and LeCun[195] adopt a siamese network to perform deep
matching; however, it comes with the limitations of being too slow, requiring 1 minute of GPU compu-
tation, and providing inadequate matching because the scores are not calibrated along the epipolar line.
Instead, we utilize a simple dot product on top of the siamese network as our matching network, allowing
us to do deep matching two orders of magnitude faster. Also, we treat it as a multi-class classification with
cross entropy loss instead of a binary classification. This gives a much better matching performance as the
matching scores are calibrated and the network can exploit context information as well. Experiments on
KITTI [53] show significant improvement in matching.
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• In Chapter 4, we take the previous model one step further to do optical flow, where the problem can be
formulated as patch matching in 2D space. Previous methods exploit different matching techniques but
ignore the semantic information of the scene. In this work, we extend our deep matching method to 2D
space and introduce a voting mechanism for post-processing. This can filter out regions with noisy matching
results caused by occlusions, specularities, etc. Furthermore, we exploit the semantic information of the
scene by splitting dynamic objects and infer their rigid transformations separately. Experiments on KITTI
[53] show state-of-the-art performance at the time.

• Equipped with neural networks, we are rethinking the design choices of the past on the self-driving stack,
especially from the perspective of the split between different subtasks, including 3D detection, tracking, and
prediction. Previously there are lots of successful algorithms in each of these domains [138, 107, 50, 116, 4];
however, optimizing different tasks separately cannot guarantee a good solution for the whole system, as
uncertainty can hardly be propagated through different modules, and the heavy feature computation cannot
be shared between different modules. In Chapter 5, we take a different approach and propose to use one
model for both perception and prediction tasks. It utilizes temporal information and optimizes the objective
function of multiple tasks jointly. The benefits are two-fold. First, it is more accurate as we optimize
jointly. Second, it is much faster, achieving real-time performance, as heavy feature computation can be
shared between both perception and prediction. Experiments on a large-scale self-driving dataset show our
method achieves better results on detection, tracking, and prediction tasks than previous real-time solutions.

• Following the direction of Chapter 5, in Chapter 6, we take it one step further and build an end-to-end neural
planner with interpretable intermediate results. Previous work on planning took perception and prediction
output as input to construct the cost map manually and solved the corresponding constrained optimization
problem. However, the design of manual cost functions requires lots of engineering efforts, and it is not easy
to scale to all driving scenarios. In this work, we design a holistic model that takes as input raw LIDAR data
and an HD map and produces interpretable intermediate representations in the form of 3D detections and
their future trajectories, as well as a cost volume defining the goodness of each position that the self-driving
car can take within the planning horizon. We then sample a set of diverse, physically-possible trajectories
and choose the one with the minimum learned cost. Importantly, our cost volume can naturally capture
multi-modality and uncertainty. We demonstrate the effectiveness of our approach in real-world driving
data captured in several cities in North America. Our experiments show that the learned cost volume can
generate safer planning than all the baselines.

1.4 Relationship to Published Work

All related research works in this thesis have been peer-reviewed and published in computer vision or machine
learning related conferences. In the following, I list the corresponding papers for each chapter. Note * denotes
equal contribution:

Chapter 2: Wenjie Luo*, Yujia Li*, Raquel Urtasun, and Richard Zemel. Understanding the Effective Re-
ceptive Field in Deep Convolutional Neural Networks. Poster in Neural Information Processing Systems (NIPS),
2016.

Chapter 3: Wenjie Luo, Alexander G. Schwing, and Raquel Urtasun. Efficient Deep Learning for Stereo
Matching. Spotlight in Conference on Computer Vision and Pattern Recognition (CVPR), 2016.



CHAPTER 1. INTRODUCTION 11

Chapter 4: Min Bai*, Wenjie Luo*, Kaustav Kundu and Raquel Urtasun. Exploiting Semantic Information
and Deep Matching for Optical Flow. Poster in European Conference on Computer Vision (ECCV), 2016.

Chapter 5: Wenjie Luo, Bin Yang, and Raquel Urtasun. Fast and Furious: Real Time End-to-End 3D Detec-
tion, Tracking and Motion Forecasting with a Single Convolutional Net. Oral in Conference on Computer Vision
and Pattern Recognition (CVPR), 2018.

Chapter 6: Wenyuan Zeng*, Wenjie Luo*, Simon Suo, Abbas Sadat, Bin Yang, Sergio Casas, Raquel Urtasun.
End-to-end Interpretable Neural Motion Planner. Oral in Conference on Computer Vision and Pattern Recognition
(CVPR), 2019.

1.5 Thesis Structure

For the rest of this thesis, I will present the main technical part in Chapter 2-6 in the following order: the study
of convolutional neural networks from the receptive field perspective; depth estimation from stereo images with
our deep matching networks; optical flow using monocular camera using our object-aware algorithm; joint 3D
detection, tracking and prediction framework and finally the end-to-end neural interpretable planner that learns
the time-dependent cost-volume and generates corresponding planning trajectory. Lastly, I conclude in Chapter 7
with future research directions.



Chapter 2

Understanding CNNs from Effective
Receptive Field

Self-driving requires solving a broad set of problems in computer vision, ranging from low-level depth estimation
and flow estimation to high-level tasks, such as 3D detection and tracking. One of the fundamental problems in
computer vision is how to extract useful features from sensor data, such as images. Researchers have developed
different hand-crafted features for various tasks using domain knowledge of the problem [110, 40]. These ap-
proaches dominated all kinds of computer vision tasks for a long time until the emergence of convolutional neural
networks (CNNs). This was especially the case since Krizhevsky et al.[93] showed ground-breaking results on
Imagenet challenge.

The availability of large-scale datasets and powerful computation resources, especially GPUs, certainly played
an essential role in this process. At the same time, convolutional neural networks do have certain design advan-
tages. Firstly, they can learn to adjust their weights to extract desired features. Secondly, the multi-layer structure
allows the network to extract features from different semantic levels. For example, in image recognition tasks,
the network would learn to extract simple features in the first few layers, such as lines and circles, while for
the top layers, the network would be tailored for high-level features. Thirdly, it shares parameters among ker-
nels at different spatial locations. This gives spatial invariance that benefits most vision tasks and makes the
training/optimization easier since it reduces the total number of parameters significantly.

Despite the success of convolutional neural networks, the theoretical understanding underneath is still limited,
and it is often treated as a black-box algorithm. Researchers have been looking at different visualization techniques
on convolutional neural networks [154, 204, 118] as well as developing adversary samples [94, 131], in order to
get a better understanding of them.

In this chapter, we take a different perspective and look at the receptive field for theoretical analysis. The
Receptive field, or field of view, is one of the basic concepts in deep convolutional neural networks. Each unit
in a particular layer in the network has a receptive field over the original input tensor (e.g. images). Unlike
in fully connected networks, where the value of each unit depends on the entire input to the network, a unit in
convolutional networks only depends on a region of the input. This region in the input is the receptive field for
that unit.

The concept of the receptive field is important for understanding and diagnosing how deep CNNs work. Since
anywhere in an input image outside the receptive field of a unit does not affect the value of that unit, it is necessary
to control the receptive field carefully to ensure that it covers the entire relevant image region. In many tasks,
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especially dense prediction tasks like semantic segmentation, stereo depth estimation, and optical flow estimation,
it is critical for each output pixel to have a big receptive field, such that no important information is missing when
making the prediction. Consider the task of semantic segmentation of an urban scene for autonomous driving. The
output pixels should have a receptive field big enough to cover large objects that span a significant region in the
image, like buses and trucks that are close to the camera. If these receptive fields are too small, prediction errors are
unavoidable. In fact, this is indeed one of the common failure modes of deep CNN based segmentation systems.
A similar argument applies equally well for object detection. Even for image-level recognition tasks like object
classification, where the information across the whole image is usually aggregated with a few fully connected
layers on top of the convolution feature maps, having a big receptive field for the units in the convolutional layers
may still be beneficial. With bigger receptive fields, the convolutional layers can aggregate information across
larger input regions, and the network can potentially make use of the convolutional layers more efficiently.

The receptive field size of a unit can be increased in many ways. One option is to stack more layers to
make the network deeper, which increases the receptive field size linearly in theory, as each extra layer increases
the receptive field size by the kernel size. Sub-sampling, on the other hand, increases the receptive field size
multiplicatively. Modern deep CNN architectures like the VGG networks [153] and Residual Networks [70, 69]
use a combination of these techniques.

However, simply stacking more layers might not be as good as we used to think. In this chapter, we carefully
study the receptive field of deep CNNs, focusing on problems in which there are many output units (e.g. pixel-wise
dense prediction, such as segmentation). In particular, we discover that not all pixels in a receptive field contribute
equally to an output unit’s response. We measure the effect of an input pixel on an output pixel by the magnitude
of the gradient backpropagated directly from that output to the input pixel. The magnitude of the gradient tells us
how much a change in the input changes the output and is a natural measure of importance. Intuitively, it is easy
to see that pixels at the center of the receptive field have a much larger impact on the output. In the forward pass,
central pixels can propagate information to the output through many different paths, while the pixels in the outer
area of the receptive field have very few paths to propagate its impact. In the backward pass, gradients from an
output unit are propagated across all the paths, and therefore the central pixels have a much larger magnitude for
the gradient from that output.

This observation leads us to further study the distribution of impact within a receptive field on the output.
Surprisingly, we can prove that in many cases, the distribution of impact in a receptive field distributes as a
Gaussian. Note that in earlier work [182], this Gaussian assumption about a receptive field is used without
theoretical justification. This result further leads to some intriguing findings, in particular, that the effective area
in the receptive field, which we call the effective receptive field, only occupies a fraction of the theoretical receptive

field, since Gaussian distributions generally decay quickly from the center.

In the following, we first present the theoretical study in Section 2.1 followed by some empirical observations
in Section 2.2 that support our theory and aim to understand the effective receptive field for deep CNNs better. In
addition, we discuss a few potential ways to increase the effective receptive field size in Section 2.3.

2.1 Properties of Effective Receptive Fields

Convolutional neural networks were inspired by biological processes in that the connectivity patterns between
neurons resembles the organization of the animal visual cortex. Individual cortical neurons respond to stimuli
only in a restricted region of the visual field known as the receptive field. In CNNs, the receptive field of a neuron
at the top layer corresponds to all the locations on the input, where there exists a path from the input location to
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the target neuron. In theory, it can be easily computed with standard convolution kernels. For example, if the
kernel has a spatial size of 3x3, stacking n layers of such a kernel will give a receptive field of size: (3−1)∗n+1

by (3− 1) ∗ n+ 1.

In this chapter, we aim to mathematically characterize how much each input pixel in a receptive field can
impact the output of a unit n layers up the network, and study how the impact distributes within the receptive field
of that output unit. To simplify notation, we consider only a single channel on each layer, but similar results can
be easily derived for convolutional layers with more input and output channels.

Assume the pixels on each layer are indexed by (i, j), with their center at (0, 0). Denote the (i, j)th pixel on
the pth layer as xpi,j , with x0i,j as the input to the network, and yi,j = xni,j as the output on the nth layer. We want
to measure how much each x0i,j contributes to y0,0. We define the effective receptive field (ERF) of this central
output unit as the region containing any input pixel with a non-negligible impact on that unit.

The measure of the impact we use in this chapter is the partial derivative ∂y0,0/∂x0i,j . It measures how much
y0,0 changes as x0i,j changes by a small amount; it is, therefore, a natural measure of the importance of x0i,j with
respect to y0,0. However, this measure depends not only on the weights of the network, but is in most cases also
input-dependent, so most of our results will be presented in terms of expectations over the input distribution.

The partial derivative ∂y0,0/∂x0i,j can be computed with back-propagation. In the standard setting, back-
propagation propagates the error gradient with respect to a certain loss function. Assuming we have an arbitrary
loss l, by the chain rule we have ∂l

∂x0
i,j

=
∑
i′,j′

∂l
∂yi′,j′

∂yi′,j′

∂x0
i,j

.

Then to get the quantity ∂y0,0/∂x0i,j , we can set the error gradient ∂l/∂y0,0 = 1 and ∂l/∂yi,j = 0 for all
i 6= 0 and j 6= 0, then propagate this gradient from there back down the network. The resulting ∂l/∂x0i,j equals
the desired ∂y0,0/∂x0i,j . Here we use the back-propagation process without an explicit loss function, and the
process can be easily implemented with standard neural network tools.

In the following, we first consider linear networks, where this derivative does not depend on the input and
is purely a function of the network weights and (i, j), which clearly shows how the impact of the pixels in the
receptive field distributes. Then we move forward to consider more modern architecture designs and discuss the
effect of nonlinear activations, dropout, sub-sampling, dilation convolution and skip connections on the ERF.

2.1.1 The simplest case: a stack of convolutional layers of weights all equal to one

Consider the case of n convolutional layers using k × k kernels with stride one, one single channel on each layer
and no nonlinearity, stacked into a deep linear CNN. In this analysis, we ignore the biases on all layers. We begin
by analyzing convolution kernels with weights all equal to one.

Denote g(i, j, p) = ∂l/∂xpi,j as the gradient on the pth layer where p ranges from 1 to n−1, and let g(i, j, n) =

∂l/∂yi,j . Then g(·, ·, 0) is the desired gradient image of the input. The back-propagation process effectively
convolves g(·, ·, p) with the k × k kernel to get g(, , p− 1) for each p.

In this particular case, the kernel is a k × k matrix of 1’s, so the 2D convolution can be decomposed into the
product of two 1D convolutions. Therefore, we focus exclusively on the 1D case. We have the initial gradient
signal u(t) and kernel v(t) formally defined as

u(t) = δ(t), v(t) =

k−1∑
m=0

δ(t−m), where δ(t) =

{
1, t = 0

0, t 6= 0
(2.1)

and t = 0, 1,−1, 2,−2, ... indexes the pixels.

The gradient signal on the input pixels is simply o = u ∗ v ∗ · · · ∗ v, convolving u with n such v’s. To compute
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this convolution, we can use the Discrete Time Fourier Transform to convert the signals into the Fourier domain,
and obtain

U(ω) =

∞∑
t=−∞

u(t)e−jωt = 1, V (ω) =

∞∑
t=−∞

v(t)e−jωt =

k−1∑
m=0

e−jωm (2.2)

Applying the convolution theorem, we have the Fourier transform of o is

F(o) = F(u ∗ v ∗ · · · ∗ v)(ω) = U(ω) · V (ω)n =

(
k−1∑
m=0

e−jωm

)n
(2.3)

Next, we need to apply the inverse Fourier transform to get back o(t):

o(t) =
1

2π

∫ π

−π

(
k−1∑
m=0

e−jωm

)n
ejωtdω (2.4)

1

2π

∫ π

−π
e−jωsejωtdω =

{
1, s = t

0, s 6= t
(2.5)

We can see that o(t) is simply the coefficient of e−jωt in the expansion of
(∑k−1

m=0 e
−jωm

)n
.

Case k = 2: Now let’s consider the simplest nontrivial case of k = 2, where
(∑k−1

m=0 e
−jωm

)n
= (1+e−jω)n.

The coefficient for e−jωt is then the standard binomial coefficient
(
n
t

)
, so o(t) =

(
n
t

)
. It is quite well known that

binomial coefficients distributes with respect to t like a Gaussian as n becomes large (see for example [109]),
which means the scale of the coefficients decays as a squared exponential as t deviates from the center. When
multiplying two 1D Gaussian together, we get a 2D Gaussian, therefore in this case, the gradient on the input
plane is distributed like a 2D Gaussian.

Case k > 2: In this case the coefficients are known as “extended binomial coefficients” or “polynomial coeffi-
cients”, and they too distribute like Gaussian, see for example [46, 129]. This is included as a special case for the
more general case presented later in Section 2.1.3.

2.1.2 Random weights

Now let’s consider the case of random weights. In general, we have

g(i, j, p− 1) =

k−1∑
a=0

k−1∑
b=0

wpa,bg(i+ a, i+ b, p) (2.6)

with pixel indices properly shifted for clarity, and wpa,b is the convolution weight at (a, b) in the convolution kernel
on layer p. At each layer, the initial weights are independently drawn from a fixed distribution with zero mean
and variance C. We assume that the gradients g are independent of the weights. This assumption is in general not
true if the network contains nonlinearities, but for linear networks, these assumptions hold. As Ew[wpa,b] = 0, we
can then compute the expectation

Ew,input[g(i, j, p− 1)] =

k−1∑
a=0

k−1∑
b=0

Ew[wpa,b]Einput[g(i+ a, i+ b, p)] = 0, ∀p (2.7)
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Here the expectation is taken over w distribution as well as the input data distribution. The variance is more
interesting, as

Var[g(i, j, p− 1)] =

k−1∑
a=0

k−1∑
b=0

Var[wpa,b]Var[g(i+ a, i+ b, p)] = C

k−1∑
a=0

k−1∑
b=0

Var[g(i+ a, i+ b, p)] (2.8)

This is equivalent to convolving the gradient variance image Var[g(, , p)] with a k × k convolution kernel full of
1’s, and then multiplying by C to get Var[g(, , p− 1)].

Based on this we can apply the same analysis as in Section 2.1.1 on the gradient variance images. The
conclusions carry over easily that Var[g(., ., 0)] has a Gaussian shape, with only a slight change of having an
extra Cn constant factor multiplier on the variance gradient images, which does not affect the relative distribution
within a receptive field.

2.1.3 Non-uniform kernels

More generally, each pixel in the kernel window can have different weights, or as in the random weight case,
they may have different variances. Let’s again consider the 1D case, u(t) = δ(t) as before, and the kernel
signal v(t) =

∑k−1
m=0 w(m)δ(t −m), where w(m) is the weight for the mth pixel in the kernel. Without loss of

generality, we can assume the weights are normalized, i.e.
∑
m w(m) = 1.

Applying the Fourier transform and convolution theorem as before, we get

U(ω) · V (ω) · · ·V (ω) =

(
k−1∑
m=0

w(m)e−jωm

)n
(2.9)

the space domain signal o(t) is again the coefficient of e−jωt in the expansion; the only difference is that the
e−jωm terms are weighted by w(m).

These coefficients turn out to be well studied in the combinatorics literature, see for example [46] and the
references therein for more details. In [46], it was shown that if w(m) are normalized, then o(t) exactly equals
the probability p(Sn = t), where Sn =

∑n
i=1Xi and Xi’s are i.i.d. multinomial variables distributed according

to w(m)’s, i.e. p(Xi = m) = w(m). Notice the analysis there requires that w(m) > 0. But we can reduce to
variance analysis for the random weight case, where the variances are always nonnegative while the weights can
be negative. The analysis for negative w(m) is more difficult and is left to future work. However, empirically,
we found the implications of the analysis in this section still applies reasonably well to networks with negative
weights.

From the central limit theorem point of view, as n → ∞, the distribution of
√
n( 1

nSn − E[X]) converges
to Gaussian N (0,Var[X]) in distribution. This means, for a given n large enough, Sn is going to be roughly
Gaussian with mean nE[X] and variance nVar[X]. As o(t) = p(Sn = t), this further implies that o(t) also has a
Gaussian shape. When w(m)’s are normalized, this Gaussian has the following mean and variance:

E[Sn] = n

k−1∑
m=0

mw(m), Var[Sn] = n

 k−1∑
m=0

m2w(m)−

(
k−1∑
m=0

mw(m)

)2
 (2.10)

This indicates that o(t) decays from the center of the receptive field squared exponentially according to the Gaus-
sian distribution. The rate of decay is related to the variance of this Gaussian. If we take one standard deviation
as the effective receptive field (ERF) size, then this size is

√
Var[Sn] =

√
nVar[Xi] = O(

√
n).
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On the other hand, as we stack more convolutional layers, the theoretical receptive field grows linearly, there-
fore relative to the theoretical receptive field, the ERF actually shrinks at a rate of O(1/

√
n), which we found

surprising.

In the simple case of uniform weighting, we can further see that the ERF size grows linearly with kernel size
k. As w(m) = 1/k, we have

√
Var[Sn] =

√
n

√√√√ k−1∑
m=0

m2

k
−

(
k−1∑
m=0

m

k

)2

=

√
n(k2 − 1)

12
= O(k

√
n) (2.11)

Remarks: The result derived in this section, i.e., the distribution of impact within a receptive field in deep
CNNs converges to Gaussian, holds under the following conditions: (1) all layers in the CNN use the same set
of convolution weights. In general, this is not true; however, when we apply the analysis of variance, the weight
variance on all layers are usually the same up to a constant factor. (2) The convergence derived is convergence
“in distribution”, as implied by the central limit theorem. This means that the cumulative probability distribution
function converges to that of a Gaussian, but at any single point in space, the probability can deviate from the
Gaussian. (3) The convergence result states that

√
n( 1

nSn − E[X]) → N (0,Var[X]), hence Sn approaches
N (nE[X], nVar[X]), however the convergence of Sn here is not well defined as N (nE[X], nVar[X]) is not a
fixed distribution, but instead it changes with n. Additionally, the distribution of Sn can deviate from Gaussian
on a finite set. But the overall shape of the distribution is still roughly Gaussian.

2.1.4 Nonlinear activation functions

Nonlinear activation functions are an integral part of every neural network. We use σ to represent an arbitrary
nonlinear activation function. During the forward pass, on each layer, the pixels are first passed through σ and
then convolved with the convolution kernel to compute the next layer. This ordering of operations is a little non-
standard but equivalent to the more usual ordering of convolving first and passing through nonlinearity, and it
makes the analysis slightly easier. The backward pass, in this case, becomes

g(i, j, p− 1) = σpi,j
′
k−1∑
a=0

k−1∑
b=0

wpa,bg(i+ a, i+ b, p) (2.12)

where we abused notation a bit and use σpi,j
′ to represent the gradient of the activation function for pixel (i, j) on

layer p.

For ReLU nonlinearities, σpi,j
′ = I[xpi,j > 0] where I[.] is the indicator function. We have to make some

extra assumptions about the activations xpi,j to advance the analysis, in addition to the assumption that it has zero
mean and unit variance. A standard assumption is that xpi,j has a symmetric distribution around 0 [67]. If we
make an extra simplifying assumption that the gradients σ′ are independent from the weights and g in the upper
layers, we can simplify the variance as Var[g(i, j, p − 1)] = E[σpi,j

′2]
∑
a

∑
b Var[wpa,b]Var[g(i + a, i + b, p)],

and E[σpi,j
′2] = Var[σpi,j

′] = 1/4 is a constant factor. Following the variance analysis we can again reduce this
case to the uniform weight case.

Sigmoid and Tanh nonlinearities are harder to analyze. Here we only use the observation that when the
network is initialized, the weights are usually small and therefore, these nonlinearities will be in the linear region,
and the linear analysis applies. However, as the weights grow bigger during training, their effect becomes hard to
analyze.
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2.1.5 Dropout

Dropout [157] is a technique that sets each unit in a neural network randomly to zero during training, which has
found great success as a regularizer to prevent deep networks from over-fitting. Assume the network has a dropout
probability of r uniformly across all units. Here we do the variance analysis, Eq. 2.6 becomes

g(i, j, p− 1) =

k−1∑
a=0

k−1∑
b=0

wpa,bz
p
i+a,j+bg(i+ a, j + b, p) (2.13)

where zpi+a,i+b are independent Bernoulli variables with probability 1− r to be 1. In this case it is easy to see the
expectation of gradient is still 0, and E[zpi+a,j+b] = 1− r, Eq. 2.8 becomes

Var[g(i, j, p− 1)] = C(1− r)2
k−1∑
a=0

k−1∑
b=0

Var[g(i+ a, j + b, p)]. (2.14)

Note the variance now does not factorize into a product of individual variances, as the Bernoulli variables has a
non-zero mean. Nevertheless, this case again reduces to the uniform weight case.

2.1.6 Subsampling and dilated convolutions

Subsampling reduces the resolution of the convolutional feature maps and makes each of the following convolu-
tional layers operate on a larger scale. Therefore, it is a great way to increase the receptive field.

Subsampling followed by convolutional layers can be equivalently implemented as changing all the convo-
lutional layers after subsampling from dense convolutions to dilated convolutions[191]. Thus we can apply the
same theory we developed above to understand networks with subsampling layers. However, with exponentially
growing receptive field introduced by the subsampling or exponentially dilated convolutions, many more layers
are needed to see the Gaussian shape clearly.

For models with small depth, it is more practical to understand the effective receptive field as a mixture
of Gaussians for networks with subsampling. For example, consider a network with a stack of convolutional
layers, followed by a subsampling layer and then another stack of convolutional layers. For the lower stack
of convolutional layers before subsampling, each pixel has a Gaussian effective receptive field as the previous
analysis showed. For the higher stack of convolutional layers, the effective receptive field for an output unit is
Gaussian distributed across the pixels immediately after subsampling, which translates to a mixture of Gaussians,
where the mixture weights are themselves Gaussian distributed.

2.1.7 Skip connections

Skip-connections have been found in the human brain. They have also been introduced to deep neural networks
and have since become another type of popular architecture designs for deep neural networks in general. Recent
state-of-the-art models for image recognition, in particular, the Residual Networks (ResNets) [69] make extensive
use of skip connections. The ResNet architecture is composed of residual blocks; each residual block has two
pathways, one is a path of q (usually 2) convolutional layers plus nonlinearity and batch-normalization, the other
one is a path of a skip connection that goes directly from the input to the output. The output is simply a sum of
the results of the two pathways.

In a ResNet of D residual blocks, there are 2D possible paths to go from input to the output. On a path that
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5 layers, theoretical RF size=11 10 layers, theoretical RF size=21

Uniform Random Random + ReLU Uniform Random Random + ReLU
20 layers, theoretical RF size=41 40 layers, theoretical RF size=81

Uniform Random Random + ReLU Uniform Random Random + ReLU

Figure 2.1: Comparing the effect of number of layers, random weight initialization and nonlinear activation on the
ERF. Kernel size is fixed at 3×3 for all the networks here. Uniform: convolutional kernel weights are all ones, no
nonlinearity; Random: random kernel weights, no nonlinearity; Random + ReLU: random kernel weights, ReLU
nonlinearity.

selects d skip connections in all D residual blocks, we get an effective CNN with (D − d)q layers which has
an ERF that is Gaussian. The overall ERF is a sum of all these Gaussians, weighted by binomial coefficients(
D
d

)
. We don’t have an explicit expression for the ERF size yet, but it is smaller than the biggest receptive field

possible, which is achieved when the pathway that goes through the convolutional layers are chosen in all residual
blocks. This translates to an ERF size proportional to

√
Dq. On the other hand, the term with the biggest binomial

coefficient has approximately D/2 · q convolutional layers and the ERF size is proportional to
√
Dq/2, which is

1/
√

2 of the biggest receptive field, and an even smaller fraction of the theoretical receptive field size.

2.2 Experiments

In this section, we empirically study the ERF for various deep CNN architectures. We first use artificially con-
structed CNN models to verify the theoretical results in our analysis. We then present our observations on how
the ERF changes during the training of deep CNNs on real datasets. For all ERF studies, we place a gradient
signal of 1 at the center of the output plane and 0 everywhere else. We can than back-propagate this gradient map
through the network to get a response map as Ĩ . Notice the response map will be input dependent, i.e., different
input image I will have different response map Ĩ .

2.2.1 Verifying theoretical results

We first verify our theoretical results in artificially constructed deep CNNs. For computing the ERF, we use
random inputs, and for all the random weight networks, we followed [67, 57] for proper random initialization. In
this section, we verify the following results:

ERFs are Gaussian distributed: As shown in Fig. 2.1, we can observe perfect Gaussian shapes for uniformly
and randomly weighted convolution kernels without nonlinear activations, and near-Gaussian shapes for randomly
weighted kernels with nonlinearity.

Adding the ReLU nonlinearity makes the distribution a bit less Gaussian, as the ERF distribution depends on
the input as well. Another reason is that ReLU units output exactly zero for half of its inputs and it is very easy
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ReLU Tanh Sigmoid

Figure 2.2: Effective receptive field visualization for 20 layer networks of different nonlinearities. The result is
averaged across 100 runs with random weights as well as random inputs.

Conv-Only Subsample Dilation

Figure 2.3: Effective receptive field visualization for 15 layer networks of different architectures. The result is
averaged across 100 runs with random weights as well as random inputs.

to get a zero output for the center pixel on the output plane, which means no path from the receptive field can
reach the output; hence the gradient is all zero. Here the ERFs are averaged over 20 runs with a different random
seed. Fig. 2.2 shows the ERF for networks with 20 layers of random weights, with different nonlinearities. Here
the results are averaged both across 100 runs with different random weights as well as different random inputs. In
this setting, the receptive fields are a lot more Gaussian-like.

√
n absolute growth and 1/

√
n relative shrinkage: In Fig. 2.4, we show the change of ERF size and the

relative ratio of ERF over theoretical receptive field w.r.t number of convolution layers. The best fitting line for
ERF size gives a slope of 0.56 in the log domain, while the line for ERF ratio gives a slope of -0.43. This indicates
ERF size is growing linearly w.r.t

√
N and ERF ratio is shrinking linearly w.r.t. 1√

N
. Note here we use 2 standard

deviations as our measurement for ERF size, i.e. any pixel with a value greater than (100− 95.45)% of the center
point is considered as in ERF. The ERF size is represented by the square root of the number of pixels within ERF,
while the theoretical RF size is the side length of the square in which all pixel has a non-zero impact on the output
pixel, no matter how small. All experiments here are averaged over 20 runs.

Subsampling & dilated convolution increases receptive field: In this experiment, we show the effects of
different architecture components. In particular, Fig. 2.3 shows the effect of subsampling and dilated convolution.
The reference baseline is a convolutional neural network with 15 dense convolution layers only. Its ERF is shown
in the left-most figure. We then replace 3 of the 15 convolutional layers with stride-2 convolution to get the ERF
for the ‘Subsample’ figure and replace them with dilated convolution with factor 2,4 and 8 for the ‘Dilation’
figure. As we can see, both of them are able to increase the effective receptive field significantly. Note the
‘Dilation’ figure shows a rectangular ERF shape typical for dilated convolutions.
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Figure 2.4: Absolute growth (left) and relative shrink (right) for ERF.

2.2.2 How the ERF evolves during training

In this part, we take a look at how the ERF of units in the top-most convolutional layers of a classification CNN
and a semantic segmentation CNN evolve during training. For both tasks, we adopt the ResNet architecture which
makes extensive use of skip-connections. As the analysis shows, the ERF of this network should be significantly
smaller than the theoretical receptive field. This is indeed what we have observed initially. Intriguingly, as the
network learns, the ERF gets bigger, and at the end of the training, it is significantly larger than the initial ERF.

Classification - CIFAR10 For the classification task, we trained a ResNet with 17 residual blocks on the
CIFAR-10 dataset. At the end of the training, this network reached a test accuracy of 89%. Note that in this ex-
periment, we did not use pooling or downsampling, and exclusively focus on architectures with skip-connections.
The accuracy of the network is not state-of-the-art but still quite high. In Fig. 2.5 we show the effective receptive
field on the 32×32 image space at the beginning of training (with randomly initialized weights) and at the end
of training when it reaches best validation accuracy. Note that the theoretical receptive field of our network is
actually 74 × 74, bigger than the image size, but the ERF is still not able to fully fill the image. Comparing the
results before and after training, we see that the effective receptive field has grown significantly.

Semantic Segmentation - CamVid For the semantic segmentation task, we used the CamVid dataset for urban
scene segmentation. We trained a “front-end” model [191] which is a purely convolutional network that predicts
the output at a slightly lower resolution. This network plays the same role as the VGG network does in many
previous works [108]. We trained a ResNet with 16 residual blocks interleaved with 4 subsampling operations,
each with a factor of 2. Due to these subsampling operations, the output is 1/16 of the input size. For this model,
the theoretical receptive field of the top convolutional layer units is quite big at 505× 505. However, as shown in
Fig. 2.5, the ERF only gets a fraction of that with a diameter of 100 pixels at the beginning of training. Again we
observe that during training the ERF size increases and at the end it reaches almost a diameter around 150 pixels.

Notice those two tasks are very different in terms of the receptive field. For the classification task, it only
outputs a single vector for each input, and it only has one error signal spatially for each image. While for the
semantic segmentation task, the output consists of a vector for each pixel in the output image, correspondingly
we will have more error signal. Thus the ERF could be aggregated and suffer less from the Gaussian effect of the
receptive field.
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CIFAR 10 CamVid

Before Training After Training Before Training After Training

Figure 2.5: Comparison of ERF before and after training for models trained on CIFAR-10 classification and
CamVid semantic segmentation tasks. CIFAR-10 receptive fields are visualized in the image space of 32× 32.

2.3 Reduce the Gaussian Damage

The above analysis shows that the ERF only takes a small portion of the theoretical receptive field, which is
undesirable for tasks that require a large receptive field such as dense prediction problems like semantic image
segmentation, stereo, optical flow estimation, etc. Even for classification tasks, having a larger receptive field
for the convolution layers may help the model learn better as each pixel in the higher layers of the convolutional
network then takes information from a larger area of the input.

New Initialization: One simple way to increase the effective receptive field is to manipulate the initial weights.
We propose a new random weight initialization scheme that makes the weights at the center of the convolution
kernel have a smaller scale than the weights on the outside; this diffuses the concentration on the center out to
the periphery. Practically, we can initialize the network with any initialization method, then scale the weights
according to a distribution that has a lower scale at the center and higher scale on the outside.

In the extreme case, we can optimize the w(m)’s to maximize the ERF size or equivalently the variance
in Eq. 2.10. Solving this optimization problem leads to the solution that put weights equally at the 4 corners
of the convolution kernel while leaving everywhere else 0. However, using this solution to do random weight
initialization is too aggressive, and leaving a lot of weights to 0 makes learning slow. A softer version of this idea
usually works better.

We have trained a CNN for the CIFAR-10 classification task with this initialization method, with several
random seeds. In a few cases we get a 30% speed-up of training compared to the more standard initialization
[57, 67]. But overall the benefit of this method is not always significant. We note that no matter what we do to
change w(m), the effective receptive field is still distributed like a Gaussian so the above proposal only solves the
problem partially.

Architectural changes: A potentially better approach is to make architectural changes to the CNNs, which may
change the ERF in more fundamental ways. For example, instead of connecting each unit in a CNN to a local
rectangular convolution window, we can sparsely connect each unit to a larger area in the lower layer using the
same number of connections. Dilated convolution [191] belongs to this category, but we may push even further
and use sparse connections that are not grid-like.

An alternative way to increase the ERF given a fixed number of weights is to do weight sharing within kernels.
There are different variants of ‘weight sharing’ previous developed. [62] proposes to prune the network by throw-
ing away connections that have small weights and cluster weights into groups to share the same weights. [24]
proposes to use a hashing function to represent the index mapping. thus it would be more memory efficient as it
does not need to store the index table for all the locations of every kernel. But it also loses the ability to potentially
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learn better sharing scheme within kernels as it is determined by the hashing function. Dilation convolution[191]
is also a special case of ‘weight sharing’ as it has a fixed sharing scheme and the shared weights are all zeros.
Other architecture changes are also possible, and the space is open for exploration.

2.4 Discussion

Deep convolutional neural networks have recently been the driving force behind the significant improvement
of the state-of-the-art for many computer vision tasks, including image recognition [93, 70], object detection
[140, 26], semantic segmentation [108, 5], image captioning [182]. The receptive field is a fundamental notion in
CNNs’ designs for many vision tasks, as the output must respond to large enough areas in the image to capture
information about large objects (that is also the reason why bottom layers can only learn local features, while top
layers can learn more global features).

In this chapter, we study the characteristics of receptive fields of units in deep convolutional neural networks.
We introduce the notion of an effective receptive field and show that it has a Gaussian distribution and only occu-
pies a fraction of the full theoretical receptive field. We analyze the effective receptive field in several architectural
designs and how it is affected by nonlinear activations, dropout, sub-sampling, and skip connections. This analysis
leads to suggestions for ways to address its tendency to be too small.

The theory we develop for the effective receptive field also correlates well with some empirical observations.
One such empirical observation is that the current commonly used random initialization leads some deep CNNs
to start with a small effective receptive field, which then grows during training. This potentially indicates a bad
initialization bias.

Connection to biological neural networks: In our analysis, we have established that the effective receptive
field in deep CNNs actually grows a lot slower than we used to think. This indicates that a lot of local information
is still preserved, even after many convolution layers. This finding contradicts some long-held relevant notions in
deep biological networks. A popular characterization of mammalian visual systems involves a split into “what”
and “where” pathways [165]. Progressing along the “what” or “where” pathway, there is a gradual shift in the
nature of connectivity: receptive field sizes increase, and spatial organization becomes looser until there is no
obvious retinotopic organization; the loss of retinotopy means that single neurons respond to objects such as faces
anywhere in the visual field [86]. This functional difference between ventral (object) and dorsal (spatial) pathways
has been discovered in both monkeys and humans by measuring neural activity while subjects performed object
identity and spatial location tasks [65].

A second relevant effect of our analysis is that it suggests that convolutional networks may automatically
create a form of foveal representation. The fovea of the human retina extracts high-resolution information from
an image only in the neighborhood of the central pixel. Sub-fields of equal resolution are arranged such that their
size increases with the distance from the center of the fixation. At the periphery of the retina, lower-resolution
information is extracted from larger regions of the image. Some neural networks have explicitly constructed
representations of this form [97]. However, because convolutional networks form Gaussian receptive fields, the
underlying representations will naturally have this character.

Connection to previous work on CNNs: While receptive fields in CNNs have not been studied extensively,
He et al.[67], Glorot and Bengio [57] conduct similar analyses, in terms of computing how the variance evolves
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through the networks. They developed a good initialization scheme for convolution layers following the principle
that variance should not change much when going through the network.

Researchers have also utilized visualizations in order to understand how neural networks work. Mahendran
and Vedaldi [118] showed the importance of using natural-image priors as well as what the activation of the
convolutional layer would represent. Zeiler and Fergus [196] used deconvolutional nets to show the relation of
pixels in the image and the neurons that are firing. Zhou et al.[203] did an empirical study involving receptive
field and used it as a cue for localization. There are also visualization studies using gradient ascent techniques
[48] that generate interesting images [126]. These all focus on the unit activations, or feature map, instead of the
effective receptive field, which we investigate here.

Connection to later work on CNNs: Following our study, researchers have also developed various architec-
tures that we found interesting and related to our analysis on effective receptive field. Zhao et al. [202] proposed a
network that aggregates features from different layers in deep CNNs with proper upsampling. This is equivalent to
adding skip connections between different layers on different spatial locations. From our analysis, this can greatly
increase the effective receptive field size, which can also explain the effectiveness of their model. Furthermore,
deformable convolution [39, 205] was proposed to operate on the learned location instead of the regular grid used
by conventional convolution operator. Following our analysis, this can also reduce the Gaussian damage, thus in-
creasing the effective receptive field size as it breaks the symmetry of the standard convolutions across the spatial
locations. They have also shown great visualization on how the receptive field changed with their model, which
also demonstrates the increase of ERF.

To summarize, in this chapter, we carefully studied the receptive fields in deep CNNs and established a few
surprising results about the effective receptive field size. In particular, we have shown that the distribution of
impact within the receptive field is asymptotically Gaussian, and the effective receptive field only takes up a
fraction of the full theoretical receptive field. Empirical results echoed the theory we established. We believe this
is just the start of the study of the effective receptive field, which provides a new angle to understand deep CNNs.
In the future, we hope to study further the factors that impact effective receptive field in practice and how we can
gain more control over them.



Chapter 3

Efficient Deep Learning for Stereo
Matching

In chapter 2, we studied in detail the effective receptive field of convolutional neural networks. From this chapter
onwards, we will look at specific problems in the domain of self-driving. One of the most important tasks in
the self-driving stack is sensing and capturing information of the surrounding world. In particular, reconstructing
the scene in 3D is one of the most important tasks for autonomous driving as we need to know how far we are
from different obstacles in order to avoid them. 3D sensors such as LiDAR are commonly employed to ease
this process. However, LiDAR sensors are very expensive and each could cost about 80K dollar, a price that is
much higher than a standard vehicle. Thus, utilizing cameras is an attractive alternative as it is typically a more
cost-effective solution. Despite decades of research, estimating depth from a stereo pair is still an open problem.
Dealing with occlusions, large saturated areas, and repetitive patterns are some of the remaining challenges.

Many approaches have been developed that try to aggregate information from local matches. Cost aggregation,
for example, averages disparity estimates in a local neighborhood. Similarly, semi-global block matching [74]
and Markov random field based methods [156, 184] combine pixelwise predictions and local smoothness into an
energy function. However, all these approaches employ cost functions that are hand-crafted or where only a linear
combination of features is learned from data.

In the past few years, we have witnessed a revolution in high-level vision where deep representations are
learned directly from pixels to solve many scene understanding tasks with unprecedented performance. These
approaches are currently state of the art in tasks such as detection, segmentation, and classification.

Very recently, convolutional networks have also been exploited to learn how to match for the task of stereo
estimation [195, 193]. Current approaches learn the parameters of the matching network by treating the problem
as binary classification; Given a patch in the left image, the task is to predict if a patch in the right image is
the correct match. Towards this goal, they generate training examples by randomly sampling patches in the left
image and generating for each patch either a positive or a negative example. While [194] showed great perfor-
mance in challenging benchmarks such as KITTI [54], it is computationally very expensive, requiring a minute
of computation in the GPU. This is because they exploited a siamese architecture followed by concatenation and
further processing via a few more fully-connected layers to compute the final score, and accordingly, the memory
requirements are also high.

In contrast, in this chapter, we propose a matching network which can produce very accurate results in less
than a second of GPU computation. Towards this goal, we exploit a product layer which simply computes the

25
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Figure 3.1: To learn informative image patch representations, we employ a siamese network which extracts
marginal distributions over all possible disparities for each pixel.

inner product between the two representations of a siamese architecture. We train our network by treating the
problem as multi-class classification, where the classes are all possible disparities. This allows us to get calibrated
scores, resulting in much better matching performance when compared to [194]. We refer the reader to Fig. 3.1
for an illustration of our approach. We demonstrate the effectiveness of our approach on the challenging KITTI
benchmark and show competitive results when exploiting smoothing techniques. For this work, the code and data
can be found online at: http://www.cs.toronto.edu/˜wenjie/cvpr16.html.

3.1 Background

In order to build a self-driving vehicle, or any robotic system that interacts with the environment, we need sensors
to collect information from the surrounding world. Cameras are the most popular sensors as they are cost-effective
and robust to different lighting or weather conditions. Various types of cameras have been developed for different
use cases; for example, long-range cameras can provide more detail on objects far away, though with a narrow field
of view. Fisheye cameras, on the other hand, can see a wider field of view, which is suitable for observing objects
very close to the camera. Although cameras can provide rich information about the surrounding environment,
the data we get from them (i.e. images) is a projection of the 3D world to the 2D image plane; thus, the depth
information is lost. As we know, humans (along with many other animals) evolved to have two eyes, providing a
stereo vision so they can compute depth.

In self-driving, depth is one of the most critical pieces of information we need. As we live in a 3D world, in
order to navigate and drive in real-world environments, we need to know the position and status of all surrounding
objects (e.g. vehicles, pedestrians, and traffic lights/signs) in 3D world. A simple example is when drivers are
following the preceding vehicle, they need to estimate how far it is from them, i.e. the depth of the vehicle.

Luckily, we live in a structured world. We can use the domain knowledge of geometry for the stereo vision
problem. In the remaining of this chapter, we will first introduce the geometry background on stereo vision in
Section 3.1.1 that translates the depth estimation problem to the matching problem. Next, in Section 3.1.2, we
provide related work on depth estimation using stereo images.

http://www.cs.toronto.edu/~wenjie/cvpr16.html
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3.1.1 Stereo Geometry

Image is the projection of the 3D world onto a 2D image plane; thus, depth is lost. However, if we use two
cameras that provide stereo images, we could reconstruct the depth. This is also how humans estimate the depth
of the scene, with human eyes acting as stereo cameras.

Given a rectified image pair (IL, IR), the depth of every pixel can be computed via

z =
k

d
,

where k is the distance between the two cameras multiplied by the distance from the lens to the image, and d is the
disparity, which is the horizontal distance in the rectified image pair. Under this framework, the most important
thing is to find the corresponding image pixels between the two images. This is a non-trivial task, as (1) finding
correspondences between pixels involves modeling/comparing subtle differences, (2) it requires a large amount
of computation, since each pixel could have appeared at hundreds of possible locations on the right image(large
space of d) and we could easily have hundreds of thousands of pixels in a single image.

3.1.2 Related Work

Over the past decades, many stereo algorithms have been developed. In this section, we restrict ourselves mostly
to a subset of methods that exploit learning, where we can formulate the problem as an energy minimization task.

Intensity-based methods typically employ a combination of building blocks to perform matching cost com-
putation, cost aggregation, disparity computation, and disparity refinement, as shown in the Middlebury leader-
board [147].

Among the most successful methods in the KITTI benchmark [54, 124] is the work by Vogel et al. [168]. The
authors introduce a collection of planar and rigidly moving local segments. They design a sophisticated energy
function which includes terms for occlusion, shape, motion, and segmentation.

Early learning based approaches focused on correcting an initially computed matching cost [91, 92]. Learning
has also been utilized to tune the hyper-parameters of the energy-minimization task. Among the first to train these
hyper-parameters were [199, 146, 101], which investigated different forms of probabilistic graphical models,
ranging from Markov random fields and its conditional counterpart to structured support vector machines.

Slanted plane approaches model groups of pixels with slanted 3D planes. They are very competitive in au-
tonomous driving scenarios, where robustness is the key. They have a long history, dating back to [12] and were
shown to be very successful on the Middleburry benchmark [147, 90, 16, 172] as well as on KITTI [184, 185, 186].

Holistic models which solve jointly many tasks have also been explored. The advantage is that many tasks
in low-level and high-level vision are related, and one can benefit from solving them together. For example, a
combination of approaches which jointly solve for object segmentation and depth have been developed [14, 15,
13, 96, 60]. Guney and Geiger [59] investigated the utility of high-level vision tasks such as object recognition
and semantic segmentation for stereo matching.

Estimating the confidence of each match is key when employing stereo estimates as a part of a pipeline.
Learning methods were successfully applied to this task, e.g., by combining several confidence measures via a
random forest classifier [61], or by incorporating random forest predictions into a Markov random field [156].

Convolutional neural networks(CNN) have been shown to perform very well on high-level vision tasks such
as image classification, object detection, and semantic segmentation. More recently, CNNs have been applied
to low-level vision tasks such as optical flow prediction [42]. In the context of stereo estimation, [194] utilize
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CNN to compute the matching cost between two image patches. In particular, they used a siamese network which
takes the same sized left and right image patches with a few fully-connected layers on top to predict the matching
cost. They trained the model to minimize a binary cross-entropy loss. In similar spirit to [194], [193] investigated
different CNN based architectures for comparing image patches. They found concatenating left and right image
patches as different channels works best but at the cost of being very slow.

Our work here is most similar to [194, 193] with two main differences. First, we propose to learn a probability
distribution over all disparity values using a smooth target distribution. Our model learns to refine the entire cost
volume which results in a much smoother prediction across all possible disparities. As a consequence, we are
able to capture correlations between the different disparities implicitly. This contrasts to [194] which performs
independent binary predictions on image patches where extracted information is more local and correlations
between different disparities are harder to capture. Second, on top of the convolution layers, we use a simple
dot-product layer to join the two branches of the network instead of a few fully-connected layers. This allows
us to do orders of magnitude faster computation. We note that the concurrent work unpublished at the time of
submission of our paper [195, 29] also introduced a dot-product layer.

We will describe the details of our architecture in the following Section 3.2, as well as different smoothing
techniques that can further enhance the performance in Section 3.3. We conduct a detailed evaluation of the design
choices in Section 3.4.

3.2 Deep Learning for Stereo Matching

We are interested in computing a disparity image given a stereo image pair. Throughout this chapter, we assume
that the image pairs are rectified; thus the epipolar lines are aligned with the horizontal image axis, and we follow
the large body of existing literature by phrasing this disparity map estimation task as an energy minimization
problem.

Let yi ∈ Yi represent the disparity associated with the i-th pixel, and let |Yi| be the cardinality of the set
(typically 128 or 256). Stereo algorithms estimate a 3-dimensional cost volume by computing for each pixel in
the left image a score for each possible disparity value. This is typically done by exploiting a small patch around
the given pixel and a simple hand-crafted representation of each patch. In contrast, in this work, we exploit
convolutional neural networks to learn how to match.

In detail, the score for each pixel is typically computed by exploiting a patch around the given pixel. For each
pixel i in the left image, we can compute the cost volume by computing the scores for the different disparity values.
The score is obtained by matching a patch defined on the neighborhood of the i-th pixel with all |Yi| locations
along the epipolar line of the corresponding rectified right image. The employed neighborhood is typically small,
and simple hand-crafted feature representations are exploited. Recently [194] proposed to use a convolutional
neural net for stereo estimation, the idea being to learn how to match two image patches.

Convolution neural networks (CNNs) are very powerful in learning representations for high-level vision tasks,
such as object recognition. In this chapter, we design a CNN architecture, which is suitable for the low-level vision
problem of stereo estimation.

We utilize a siamese architecture, where each branch processes the left or the right image respectively. We
refer the reader to Fig. 3.2 for an illustration. In particular, each branch takes an image patch as input, and passes
it through a set of layers, each consisting of a spatial convolution with a small filter-size (e.g., 5 × 5 or 3 × 3),
followed by spatial batch normalization and a rectified linear unit (ReLU). Note that we remove the ReLU from
the last layer in order to not lose the information encoded in the negative values. In our experiments, we exploit a
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Left image patches Right image patches

Inner product

Patch representation

pi(yi)

Figure 3.2: Our four-layer siamese network architecture which has a receptive field size of 9.

different number of filters per layer, either 32 or 64, and share the parameters between the two branches.

In contrast to existing approaches which exploit concatenation followed by further processing, we use a prod-
uct layer which simply computes the inner product between the two representations to compute the matching
score. This simple operation speeds up the computation significantly as the resulting representation is much lower
dimensional. Fig. 3.2 depicts an example of a 4-layer network with filter-size 3 × 3, which results in a receptive
field of size 9× 9.

Our network can learn a good representation of an image pixel using its surrounding neighborhood. At the
same time, we introduce a dot-product operation to compute the similarity metric efficiently.

3.2.1 Training

We use small left image patches extracted at random from the set of pixels for which ground truth is available to
train the network. This strategy provides us with a diverse set of examples and is memory efficient. In particular,
each left image patch is of a size equivalent to the size of our network’s receptive field. We use a larger patch for
the right image which expands both the size of the receptive field as well as all possible disparities (i.e., displace-
ments). The output of the two branches of the siamese network is hence a single 64-dimensional representation for
the left branch, and |Yi| × 64 for the right branch. These two vectors are then passed as input to an inner-product
layer which computes a score for each of the |Yi| disparities. This allows us to compute a softmax for each pixel
over all possible disparities.

During training, we minimize cross-entropy loss with respect to the weights w that parameterize the network

min
w

∑
i,yi

pgt(yi) log pi(yi, w).

Since we are interested in a 3-pixel error metric we use a smooth target distribution pgt(yi), centered around the
ground-truth yGT

i , i.e.,

pgt(yi) =


λ1 if yi = yGTi
λ2 if |yi − yGTi | = 1

λ3 if |yi − yGTi | = 2

0 otherwise

.
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> 2 pixel > 3 pixel > 4 pixel > 5 pixel End-Point Runtime(s)
Non-Occ All Non-Occ All Non-Occ All Non-Occ All Non-Occ All

MC-CNN-acrt [194] 15.02 16.92 12.99 14.93 12.04 13.98 11.38 13.32 4.39 px 5.21 px 20.13
MC-CNN-fast [194] 17.72 19.56 15.53 17.41 14.41 16.31 13.60 15.51 4.77 px 5.63 px 0.20
Ours(19) 10.87 12.86 8.61 10.64 7.62 9.65 7.00 9.03 3.31 px 4.2 px 0.14

Table 3.1: Comparison of the output of the matching network across different error metrics on the KITTI 2012
validation set.

Unary CA SGM[195] Post[195] Slanted[186] Ours(9) Ours(19) Ours(29) Ours(37) MC-CNN-acrt[194] MC-CNN-fast[194]

X 16.69 8.61 7.64 6.61 12.99 15.53
X X 12.14 7.48 6.86 6.09 6.32 -
X X X 4.57 3.99 4.12 3.96 3.34 4.53
X X X X 4.11 3.73 3.99 3.88 3.22 3.73
X X X X X 3.96 3.64 3.81 3.83 3.36 3.83

Table 3.2: Comparison of different smoothing methods. The table illustrates non-occluded 3 pixel error on the
KITTI 2012 validation set.

In this work, we set λ1 = 0.5, λ2 = 0.2 and λ3 = 0.05. Note that this contrasts with cross entropy for
classification, where pgt(yi) is a delta function placing all its mass on the annotated groundtruth configuration.

We train our network using backpropagation with stochastic gradient descent AdaGrad [45]. Similar to
moment-based stochastic gradient descent, AdaGrad adapts the gradient based on historical information. Con-
trasting moment based methods, it emphasizes rare but informative features. We adapt the learning rate every few
thousand iterations as detailed in the experimental section.

3.2.2 Inference

In contrast to the training procedure where we compose a mini-batch by randomly sampling locations from dif-
ferent training images, we can improve the performance during testing. Our siamese network computes a 64-
dimensional feature representation for every pixel i. To efficiently obtain the cost volume, we compute the 64-
dimensional representation only once for every pixel i, and during computation of the cost volume, we re-use its
values for all disparities that involve this location.

3.3 Smoothing Deep Net Outputs

Given the unaries obtained with a CNN, we compute predictions for all disparities as well as its probability at each
image location. Note that simply outputting the most likely configuration for every pixel is not competitive with
modern stereo algorithms, which exploit different forms of cost aggregation, post-processing, and smoothing.
This is particularly important to deal with complex regions with occlusions, saturation, or repetitive patterns. To
be more specific, even though our proposed CNN architecture uses more global information than networks trained
for binary prediction, we have not yet considered the correlations between the outputs at nearby pixels.

Over the past decade, many different MRFs have been proposed to solve the stereo estimation problem. Most
approaches define each random variable to be the disparity of a pixel and encode smoothness between consecutive
or nearby pixels. An alternative approach is to segment the image into regions and estimate a slanted 3D plane
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for each region. In this chapter, we investigate the effect of different smoothing techniques that leverage the cost
volume returned by our matching network. Towards this goal, we formulate the stereo matching as inference in
several different Markov random fields (MRFs) in order to smooth the matching results produced by our convo-
lutional neural network. In particular, we investigate cost aggregation, semi-global block matching as well as the
slanted plane approach of [186] as means of smoothing. In the following, we briefly review these techniques:

Cost aggregation: We exploited a very simple cost aggregation approach, which simply performs average pool-
ing over a window of size 5× 5. This is a local smoothing technique, which refines the unaries by averaging the
marginal probabilities pi(yi) of neighboring pixels.

Semi global block matching: Semi-global block matching augments the unary energy term obtained from
convolutional neural nets by introducing additional pairwise potentials which encourage smooth disparities. In
this chapter we assume the energy to be composed of unary and pairwise terms, specifically,

E(y) =

N∑
i=1

Ei(yi) +
∑

(i,j)∈E

Ei,j(yi, yj),

where E refers to 4-connected grid and the unary energyEi(yi) is the output of the neural net. We use the standard
four-connected neighborhood system.

We define the pairwise energy as

Ei,j(yi, yj) =


0 if yi = yj

c1 if |yi − yj | = 1

c2 otherwise

,

with variable constants c1 < c2. We follow the approach of [194], where c1 and c2 is decreased if there is strong
evidence for edges at the corresponding locations in either the left or the right image. We refer the reader to their
paper for more details.

Slanted plane: To construct a depth-map, this approach performs block-coordinate descent on energy involv-
ing appearance, location, disparity, smoothness, and boundary energies. More specifically, we first over-segment
the image using an extension of the SLIC energy [2]. For each superpixel, we then compute slanted plane esti-
mates [186] which should adhere to the depth-map evidence obtained from the convolutional neural network. We
then iterate these two steps to minimize the energy function. We refer the interested reader to [186] for details.

Sophisticated post-processing: In [195], a three-step post-processing is designed to perform interpolation, sub-
pixel enhancement, and refinement. The interpolation step resolves conflicts between the disparity maps computed
for the left and right images by performing a left-right consistency check. Subpixel enhancement fits a quadratic
function to neighboring points to obtain an enhanced depth-map. To smooth the disparity map without blurring
the edges, the final refinement step applies a median filter and a bilateral filter. We only use the interpolation step
as we found that the other two do not always further improve the performance in our case.
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> 2 pixel > 3 pixel > 4 pixel > 5 pixel End-Point Runtime(s)
Non-Occ All Non-Occ All Non-Occ All Non-Occ All Non-Occ All

MC-CNN-acrt [194] 15.20 16.83 12.45 14.12 11.04 12.72 10.13 11.80 4.01 px 4.66 px 22.76
MC-CNN-fast [194] 18.47 20.04 14.96 16.59 13.18 14.83 12.02 13.67 4.27 px 4.93 px 0.21
Ours(37) 9.96 11.67 7.23 8.97 5.89 7.62 5.04 6.78 1.84 px 2.56 px 0.34

Table 3.3: Comparison of the output of the matching network across different error metrics on the KITTI 2015
validation set.

Unary CA SGM[195] Post[195] Slanted[186] Ours(9) Ours(19) Ours(29) Ours(37) MC-CNN-acrt[194] MC-CNN-fast[194]

X 15.25 8.95 7.23 7.13 12.45 14.96

X X 11.43 8.00 6.60 6.58 7.78 -

X X X 5.18 4.74 4.62 4.73 3.48 5.05

X X X X 4.41 4.23 4.31 4.38 3.10 4.74

X X X X X 4.25 4.20 4.14 4.19 3.11 4.79

Table 3.4: Comparison of smoothing methods using different CNN output. The table illustrates the non-occluded
3 pixel error on the KITTI 2015 validation set.

3.4 Experimental Evaluation

We evaluate the performance of different convolutional neural network structures and different smoothing tech-
niques on the KITTI 2012 [54] and 2015 [124] datasets.

Before training, we normalize each image to have zero mean and standard deviation of one. We create our
training image patches by randomly selecting image pixels with available ground truth disparity as not all pixels
in the image have ground truth depth associated with them. Depending on the architecture of the network, we then
crop the pixels’ surrounding image patch of appropriate dimension w × h. As input for the other branch of the
siamese network, we extract a wider image region containing patches for all possible disparities |Yi|. Therefore
the resulting dimension is (w + |Yi|)× h.

We initialize the parameters of our networks using a uniform distribution. We employ the AdaGrad algo-
rithm [45] and use a learning rate of 1e−2. The learning rate is decreased by a factor of 5 after 24k iterations and
then further decreased by a factor of 5 every 8k iterations. We use a batch size of 128. The network is trained for
40k iterations which take around 6.5 hours on an NVIDIA Titan-X.

3.4.1 KITTI 2012 Results

The KITTI 2012 dataset contains 194 training and 195 test images. To compare the different network architectures
described below, we use as a training set 160 image pairs randomly selected, and the remaining 34 image pairs as
our validation set.

Comparison of Matching Networks: We first show our network’s matching ability and compare it to existing
matching networks [194, 195]. In this experiment, we do not employ smoothing or post-processing, but just
utilize the raw output of the network. Following KITTI, we employ the percentage of pixels with disparity errors
larger than a fixed threshold as well as an end-point error as metrics. We refer to our architecture as ‘Ours(19).’
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> 2 pixels > 3 pixels > 4 pixels > 5 pixels End-Point Runtime
Non-Occ All Non-Occ All Non-Occ All Non-Occ All Non-Occ All (s)

StereoSLIC [185] 5.76 7.20 3.92 5.11 3.04 4.04 2.49 3.33 0.9 px 1.0 px 2.3
PCBP-SS [185] 5.19 6.75 3.40 4.72 2.62 3.75 2.18 3.15 0.8 px 1.0 px 300

SPS-st [186] 4.98 6.28 3.39 4.41 2.72 3.52 2.33 3.00 0.9 px 1.0 px 2
Deep Embed [29] 5.05 6.47 3.10 4.24 2.32 3.25 1.92 2.68 0.9 px 1.1 px 3

MC-CNN-acrt [195] 3.90 5.45 2.43 3.63 1.90 2.85 1.64 2.39 0.7 px 0.9 px 67
Displets v2 [59] 3.43 4.46 2.37 3.09 1.97 2.52 1.72 2.17 0.7 px 0.8 px 265

Ours(19) 4.98 6.51 3.07 4.29 2.39 3.36 2.03 2.82 0.8 px 1.0 px 0.7

Table 3.5: Comparison to stereo state-of-the-art (as of 2016) on the test set of the KITTI 2012 benchmark.

All/All All/Est Noc/All Noc/Est Runtime
D1-bg D1-fg D1-all D1-bg D1-fg D1-all D1-bg D1-fg D1-all D1-bg D1-fg D1-all (s)

MBM [47] 4.69 13.05 6.08 4.69 13.05 6.08 4.33 12.12 5.61 4.33 12.12 5.61 0.13
SPS-St [186] 3.84 12.67 5.31 3.84 12.67 5.31 3.50 11.61 4.84 3.50 11.61 4.84 2

MC-CNN [195] 2.89 8.88 3.89 2.89 8.88 3.88 2.48 7.64 3.33 2.48 7.64 3.33 67
Displets v2 [59] 3.00 5.56 3.43 3.00 5.56 3.43 2.73 4.95 3.09 2.73 4.95 3.09 265

Ours(37) 3.73 8.58 4.54 3.73 8.58 4.54 3.32 7.44 4.00 3.32 7.44 4.00 1

Table 3.6: Comparison to stereo state-of-the-art (as of 2016) on the test set of KITTI 2015 benchmark.

It consists of 9 layers of 3 × 3 convolutions resulting in a receptive field size of 19 × 19 pixels. As shown in
Table 3.1, our 9-layer network achieves a 3-pixel non-occluded stereo error of 8.61% after only 0.14 seconds of
computation. In contrast, [194] obtains 12.99% after a significantly longer time of 20.13 seconds. Their faster
version [195] requires 0.20 second, which results in a much lower performance of 15.53%. As shown in the table,
our network outperforms previously designed convolutional neural networks by a large margin on all criteria.

Smoothing Comparison: Next, we evaluate different algorithms for smoothing and post-processing when em-
ploying different network sizes. In particular, we evaluate cost aggregation, semi-global block matching, and
slanted plane smoothing which were described in the previous section. We also experiment with different recep-
tive field sizes for our network which corresponds to changing the depth of our architecture. As before, we use
‘Ours(n)’ to refer to our architecture with a receptive field size of n× n pixel. We investigated n = 9, 19, 29, 37.
We use kernels of size 3× 3 for n = 9 and n = 19, while the kernels were of size 5× 5 for n = 39. To achieve a
receptive field of 29, we use five layers of 5×5 and four layers of 3×3. This keeps the number of layers bounded
to 9.

As shown in Table 3.2, networks with different receptive field sizes result in errors ranging from 6.61% (for
n = 37 to 16.69% for n = 9. The corresponding error for [195] is 12.99% for their slow and more accurate
model, and 15.53% for their fast model. After smoothing, the differences in stereo error achieved by the networks
are no longer significant. All of them achieve an error of slightly less than 4%. Since depth-maps tend to be very
smooth, we think that an aggressive smoothing helps to flatten the noisy unary potentials. Also, we observe that
utilizing simple cost aggregation to encourage local smoothness further helps to improve the results slightly. This
is because such techniques eliminate small isolated noisy areas. From column 3, we can see adding some local
smoothness does help improve the results as it can eliminate small isolated noise due to image imperfection, etc.
While the post-processing proposed in [195] focuses on occlusions and sub-pixel enhancement, [186] adds extra
robustness to non-textured areas by fitting slanted planes to model depth discontinuities. Both methods improve
the semi-global block matching output slightly. Our best performing model combination achieves a 3-pixel stereo
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(a) Stereo error using only the matching network (unar-
ies).

(b) Runtime and number of parameters over the receptive
field size.

Figure 3.3: Evaluation of stereo error (a), runtime and number of parameters (b).

error of 3.64%.

We note that with our naive implementation of the algorithm, using the larger models, we cannot fit the entire
image into GPU memory at once during test time. For consistency, we drop the top 100 rows of all the images
since there is no ground-truth for the top of the image in KITTI. This operation results in a 0.01% difference in
computing stereo error.

Comparison to state of the art1: To evaluate the test set performance we trained our model having a receptive
field of 19 pixels, i.e., “Ours(19),” on the entire training set. The obtained test set performance is shown in
Table 3.5. Since we did not particularly focus on finding a good combination of smoothness and unaries, our
performance is slightly below the current state-of-the-art.

Qualitative Analysis: Examples of stereo estimates by our approach are depicted in Fig. 3.4. Each row rep-
resents one example, and the first column represents the left input image out of the stereo image pair, the center
column shows the final depth estimation in terms of disparities and the rightmost column give the stereo error im-
age in terms of the error in disparities, higher value (brighter) means bigger error. We can see that our algorithm
gives a smooth depth image, while also able to capture the shapes of trees and vehicle etc. Looking at the error
image, we found that our approach suffers from texture-less regions such as the window of the vehicle, repetitive
patterns such as fences, etc.

3.4.2 KITTI 2015 Results

The KITTI 2015 dataset is an augmented dataset over KITTI 2012. It consists of 200 training and 200 test images.
Instead of the gray-scale images used for the KITTI 2012 dataset, it provides RGB stereo images. To compare the
different network architectures, we randomly selected 160 image pairs as the training set and use the remaining
40 image pairs for validation purposes.

Comparison of Matching Networks: We first show our network’s matching ability and compare it to existing
matching networks [194, 195]. In this experiment, we do not employ smoothing or post-processing, but just

1We are comparing to the ‘state of the art’ at the time of publication of the corresponding paper [112], i.e. year of 2016
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Figure 3.4: KITTI 2012 test set: (left) original image, (center) stereo estimates, (right) stereo errors.

utilize the raw output of the network. We refer to our architecture via ‘Ours(37).’ It consists of 9 layers of
5 × 5 convolutions resulting in a receptive field size of 37 × 37 pixels. As shown in Table 3.3, we compare the
stereo prediction error using a different pixel range and provide results for both the occluded and non-occluded
version. Our 9-layer network achieves a 3-pixel stereo error of 7.23% after only 0.34 seconds of processing
time, whereas [194] obtains 12.45% after a significantly longer processing time of 22.76 seconds. Their faster
version [195] requires 0.21 seconds but results in a much lower performance of 14.96% when compared to our
approach. Again, our network outperforms previously designed convolutional neural networks by a large margin
on all criteria.

Smoothing Comparison: Table 3.4 shows results of applying different post processing techniques to different
network architectures. Similar to KITTI 2012 dataset, we observe that the difference in network performance
vanishes after applying smoothing techniques. Our best performing combination achieves a 3-pixel error of 4.14%

on the validation set.

Influence of Depth and Filter Size: Next, we evaluate the influence of the depth and receptive field size of our
CNNs in terms of matching performance and running time. Fig. 3.3a shows matching performance as a function
of the networks’ receptive field sizes. Notice that the depth of the networks depends linearly on the theoretical
receptive field size as we are using a fixed kernel size of 3 × 3 for each layer. We observe that an increasing
receptive field size achieves better performance. However, when the receptive field is very large, the improvement
is subtle, since the network starts to overlook the details of small objects and local regions with occlusions and
depth discontinuities. Our findings are consistent for both non-occluded and all pixels. As shown in Fig. 3.3b, the
running time and number of parameters are highly correlated. Note that models with larger receptive field do not
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Figure 3.5: KITTI 2015 test set: (left) original image, (center) stereo estimates, (right) stereo errors.

necessarily have more parameters since the number of trainable weights also depends on the number of filters and
the channel size of each convolutional layer.

Comparison to state of the art2: To evaluate the test set performance, we choose the best model with current
smoothing techniques which has a receptive field of 37 pixels, i.e., “Ours(37).” The obtained test set performance
is shown in Table 3.6. We achieve on-par results with state of the art in significantly less time.

Qualitative Results: We provide results from the test set in Fig. 3.5. Similar to Fig. 3.4, each row gives one
example, and the first column shows the sample left input image (notice it is an RGB image comparing to grayscale
image in Fig. 3.4.1), the second column shows the predicted disparity image, while the third column shows the
error image (red color tone indicates big error). Again, we observe that our algorithm can produce smooth and
consistent disparity images, but it suffers from texture-less regions as well as regions with repetitive patterns such
as the sky.

3.5 Discussion

In this chapter, we looked at the depth estimation problem using stereo cameras. Getting depth information (i.e.

3D information) about the scene is crucial for self-driving, as driving is performed in 3D world. In contrast to
the traditional approaches that use hand-crafted features, convolutional neural networks have been recently shown
to perform extremely well for stereo estimation. However, the previous architectures rely on siamese networks

2We are comparing to the ‘state of the art’ at the time of publication of the corresponding paper [112], i.e. year of 2016
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which exploit concatenation followed by further processing layers, requiring a minute on the GPU to process a
stereo pair. In this chapter, we have proposed a matching network which can produce very accurate results in less
than a second of GPU computation. Our key contribution is to replace the concatenation layer and subsequent
processing layers by a single product layer that computes the matching score. We trained the networks using
cross-entropy over all possible disparities. This allows us to get calibrated scores because the network can exploit
more contextual information which results in much better matching performance when compared to existing
approaches. We have also investigated the effect of different smoothing techniques to improve the performance
further.

Despite the big improvement in accuracy, there are also limitations to our approach. Firstly, our approach
is still based on matching with image patches; this has the limitation that the learned feature can only capture
local information. As a result, the matching purely based on these features would fail in a region that requires
global context for discrimination. Secondly, the running time of our approach, although improved by two orders
of magnitude, is still not good enough for online usage, especially with limited GPU resources.

Since the development of our approach, the field of stereo depth estimation has advanced a lot. First, DispNet
[120] was proposed as an end-to-end framework for depth estimation that directly regress depth from input image
pairs. They achieve real-time performance, i.e. 60 ms per frame, since there is no explicit matching for all pixels.
Further, Kendall et al. [88] incorporated the epi-polar matching into the network by exhaustively concatenat-
ing features from all possible disparities locations. Correspondingly, their intermediate representation was a 4D
feature volume. In addition, they proposed a differentiable soft argmin operation to enable sub-pixel disparity
regression directly from the 4D feature volume. Later, PSM-Net [20] further improved the performance by ex-
tending the idea to include stacked hourglass network [130] and spatial pyramid pooling [68]. All these works
rely on the neural networks to have large receptive fields to capture global information, either by designing deeper
models or utilizing spatial pyramid pooling operation. On the other hand, Liu et al. [106] proposed spatial prop-
agation network that embedded a feature propagation procedure in the network. This can generate more global
image features and was shown to work well for semantic segmentation. Later, Cheng et al. [31, 32] extended
this idea to feature propagation in 3D in the context of stereo depth estimation. Their experiments showed that
matching using those aggregated features greatly improved the performance of stereo depth estimation in different
datasets and achieved state of the art results on the KITTI dataset [53].



Chapter 4

Deep Matching for Optical Flow

In chapter 3, we developed a new depth estimation algorithm exploiting deep neural networks. Stereo depth
estimation does provide richer information, i.e., 3D information about the surrounding environment allowing the
self-driving vehicle to operate in the 3D real world. However, it is still reasoning for one timestep. For self-
driving, it is essential to look at temporal information, to understand how the environment is changing over time.
Optical flow is one of the crucial tasks falling in this domain and has been widely studied for years. It operates
on image pairs from adjacent time frames and is used to estimate the motion of all pixels in the image. Fig. 4.1
shows an example of the desired output of optical flow, where each pixel has an associated vector indicating their
motion into the next frame.

Different than stereo depth estimation, where a stereo image pair is used, in this chapter, we focus on the
optical flow problem using a monocular camera. This is the fundamental problem of flow estimation, comparing
to using stereo cameras to estimate depth and flow together (often referred to as scene flow). Despite many
decades of research, estimating dense optical flow is still an open problem. Large displacements, textureless
regions, specularities, shadows, and big changes in illumination continue to pose difficulties. Furthermore, flow
estimation is computationally very demanding, as the typical range for a pixel’s potential motion can contain more
than 30K possibilities. This poses many problems for discrete methods. Therefore most recent methods rely on
continuous optimization [141, 159]. Similar to depth estimation, where we can formulate the problem as image
patch matching along the epipolar line, optical flow can be formalized as an image patch matching problem in 2D
search space. Thus, it is straightforward to utilize deep neural networks for optical flow as well.

In this chapter, we are interested in computing optical flow in the context of autonomous driving. We argue
that strong priors can be exploited in this context to make the estimation more robust (and potentially faster). In
particular, we build on the observation that the scene is typically composed of a static background, as well as a
relatively small number of traffic participants which move rigidly in 3D. To exploit such intuition, we need to
reliably identify the independently moving objects and estimate their motion. Past methods typically attempt to
segment the objects based solely on the motion. However, this is a chicken and egg problem: an accurate motion
estimation is necessary for accurate motion segmentation, yet the latter also circularly depends upon the former.

In contrast, we propose an alternative approach, which relies solely on exploiting semantics to identify the po-
tentially moving objects. Note that semantic segmentation is not sufficient as different vehicles might move very
differently, yet form a single connected component due to occlusion. Instead, we exploit instance-level segmen-
tation, which provides us with a different segmentation label for each vehicle. Given the instance segmentation,
our approach then formulates the optical flow problem as a set of epipolar flow estimation problems, one for each

38
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Figure 4.1: Optical flow example.

moving object. We treat the background as a special object, whose motion is solely due to the ego-car’s motion.
This contrasts [183, 95], as we estimate a different epipolar geometry (i.e., fundamental matrix) for each moving
object instead of assuming that the whole scene is static and the ego-car is the only thing moving. As shown in
our experimental evaluation, this results in much better flow estimates for moving objects. Since we formulate
the problem as a set of epipolar flow problems, the search space is reduced from a 2D area to a 1D search along
the epipolar line. This has benefits both in terms of the computational complexity, as well as the robustness of our
proposed approach. We refer the reader to Fig. 4.2 for an illustration of our approach.

The success of our approach relies on accurate fundamental matrix estimation for each moving object, as
well as accurate matching. To facilitate this, our second contribution is a new convolutional net that learns to
perform flow matching and can estimate the uncertainty of its matches. This allows us to reject outliers, leading to
better estimates for the fundamental matrix of each moving object. We smooth our predictions using semi-global
block matching [73], where each match from the convolutional net is restricted to lie on its epipolar line. We
post-process our flow estimate using left-right consistency to reject outliers, followed by EpicFlow [141] for the
final interpolation. Additionally, we take advantage of slanted plane methods [95] for background flow estimation
to increase smoothness for texture-less and saturated regions. For the background, we take advantage of slanted
plane methods [95], which provide further smoothness for texture-less and saturated regions.

We demonstrate the effectiveness of our approach in the challenging KITTI 2015 flow benchmark [122] and
show that our approach outperforms all previously published approaches by a large margin at the time of publish-
ing the corresponding paper [7].

In the following, we first review related work in Section 4.1 and then discuss our convolutional net for flow
estimation in Section 4.2. We then present our novel approach that encodes flow as a collection of rigidly moving
objects in Section 4.3, followed by our experimental evaluation in Section 4.4.

4.1 Related Work

The classical approach for optical flow estimation involves building an energy model, which typically incorporates
image evidence such as gradient consistency [111, 75], warping [134], or matches [141] as unary terms. Addi-
tionally, there is a pairwise term to encourage smoothness. There are various methods for energy minimization
and embedding of additional priors. This section summarizes several major categories.

The study of [159] shows that classical approaches to optical flow estimation are mainly gradient based meth-
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Figure 4.2: Full pipeline of our approach. We take the input image, segment the potentially moving vehicles from
the background, estimate the flow individually for every object and the background, and combine the flow for the
final result.

ods [111, 75]. Unfortunately, these are typically unsuitable for estimating large displacements (often encountered
in traffic scenes) due to inconsistent image patch appearances. Both coarse-to-fine strategies [44] as well as in-
ference at the original image resolution are employed [1, 173]. EpicFlow [141] is a global approach that is very
often used to interpolate sparse flow fields taking into account edges [174]. As shown in our experiments, its
performance can be improved even further when augmented with explicit reasoning about moving objects.

Many approaches formulate flow as inference in a Markov random field (MRF) [188, 11, 99, 123, 34]. Mes-
sage passing or move making algorithms are typically employed for inference. One of the most successful optical
flow methods in the context of autonomous driving is DiscreteFlow [123], which reduces the search space by uti-
lizing only a small number of proposals. These are shared amongst neighbors to increase matching performance
and robustness. An MRF is then employed to encourage smoothness. After some post processing, the final flow
is interpolated using EpicFlow [141]. [189] segments images using superpixels and approximates flow of each
superpixel as homographies of 3D planes. Unlike our method, these methods do not exploit the fact that the
background is static and only a few objects move.

Concurrent to our work, [150] also employs semantics to help optical flow. In particular, they identify three
classes of components: static planar background, rigid moving objects, and elements for which a compact motion
model cannot be defined. A different model is then adapted for each of the three classes to refine DiscreteFlow
[123]. An affine transformation and a smooth deformation is fitted to moving vehicles, and homographies are
fitted to planar backgrounds. In contrast, we use a stronger 3D epipolar motion constraint for both foreground
vehicles and the entire static background. Our experiments shows that this results in much better flow estimates.

In a series of papers, Yamaguchi et al. [183, 95] exploited epipolar constraints to reduce the correspondence
search space. However, they assume that the scene is static and only the camera moves, and thus cannot handle
independently moving objects. 3D priors about the physical world have been used to estimate scene flow. [167]
assumes a piecewise planar scene and piecewise rigid motions. Stereo and temporal image pairs are used to track
these moving planes by proposing their position and orientation. [122] tracks independently moving objects by
clustering super-pixels. However, both [122, 167] require two cameras.

Our approach is also related to multibody flow methods (e.g., [166, 198, 143]), which simultaneously seg-
ment, track, and recover structure of 3D scenes with moving objects. However, [166] requires noiseless corre-
spondences, [198] uses a stereo setup, and [143] has a simple data term which, unlike our approach, does not
exploit deep learning.

Recent years have seen a rise in the application of deep learning models to low level vision. In the context
of stereo, [194] uses a siamese network to classify matches between two input patches as either a match or not.
Combined with smoothing, it achieves the best performance on the KITTI stereo benchmark. Similarly, [30]
uses convolutional neural nets (CNNs) to compute the matching cost at different scales. Different CNN architec-
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tures were investigated in [193]. Luo et al. [113] exploited larger context and trained the network to produce a
probability distribution over disparities, resulting in better matching. Deep learning has also been used for flow
estimation [42], where the authors proposed a convolution-deconvolution network (i.e., FlowNet) which is trained
end-to-end, and achieves good results in real-time.

4.2 Deep Learning for Flow Estimation

The goal of optical flow is to estimate a 2D vector encoding the motion between two consecutive frames for each
pixel location on the first image frame, i.e., we need to find the correspondent location on the second image. The
typical assumption is that a local region (e.g., image patch) around each pixel will look similar in both frames.
Flow algorithms then search for the pixel displacements that produce the best score. This process is referred to as
matching. It thus requires computing the similarity of two candidate locations. While a pixel itself contains very
limited information, various methods usually leverage its surrounding patch to generate representative features for
later comparison. Traditional approaches adopt hand-crafted features, such as SIFT [110], DAISY [164], census
transform [144] or image gradients to represent each image patch. These are matched using a simple similarity
score, e.g., via an inner product on the feature space. However, these features are not very robust. Flow methods
based on only matching perform poorly in practice. To address this, sophisticated smoothing techniques have
been developed [183, 141, 174, 123].

Deep convolutional neural networks have been shown to perform extremely well in high-level semantic tasks
such as classification, semantic segmentation, and object detection. Recently, they have been successfully trained
for stereo matching [113, 194], producing state-of-the-art results in the challenging KITTI benchmark [53]. Fol-
lowing this trend, in our work, we adopt a deep convolution neural network to learn feature representations that
are tailored to the optical flow estimation problem. Our network can learn a good representation of pixels using
its surrounding neighborhood. In the following, we will describe how we can apply deep convolution neural
networks to image matching in the context of flow estimation.

4.2.1 Network Architecture

Our network takes two consecutive frames as input and processes them in two branches of a siamese network to
extract features. The two branches are then combined with a product layer to create a matching score for each
possible displacement. We refer the reader to Fig. 4.3 for an illustration of our convolutional net. In particular, it
consists of two parts: a Siamese network at the bottom and a matching network at the top. The Siamese network
contains two branches whose weights are shared and extracts features that are useful for matching. It will process
the first and second image frame separately at the same time. The matching network is a dot product layer, which
is used to compute similarity score using features generated from the bottom network.

Our network uses nine convolutional layers, where each convolution is followed by batch normalization [84]
and a rectified non-linear unit (ReLU). We use 3× 3 kernels for each convolution layer. With a stride of one pixel
and no pooling, this gives us a receptive field size of 19 × 19. The number of filters for each convolution layer
varies. As shown in Fig. 4.3, we use the following configuration for our network: 32, 32, 64, 64, 64, 128, 128,
128. Note that although our network has nine layers, the number of parameters is only around 620K. Therefore,
our network is much smaller than networks used for high-level vision tasks, such as AlexNet or VGG, which have
60 and 135 million parameters, respectively. As our last layer has 128 filters, the dimension of our feature vector
for each pixel is also 128.
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Figure 4.3: Network Overview: A siamese convolutional net is followed by a product layer that computes a
score for each displacement. During training, for each pixel we compute a softmax over a horizontal or vertical
1D displacement, and minimize cross-entropy.

4.2.2 Learning

To train the network, we use small image patches extracted at random from the set of pixels for which ground
truth is available. This strategy is beneficial, as it provides us with a diverse set of training examples (as nearby
pixels are very correlated). Furthermore, it is more memory efficient. Let I and I ′ be two images captured by the
same camera at two consecutive times. Let (xi, yi) be the image coordinates of the center of the patch extracted at
random from I, and let (fxi

, fyi) be the corresponding ground truth flow. We use a patch of size 19×19 since this
is the size of our total receptive field. Since the magnitude of (fxi

, fyi) can be very large, we create a larger image
patch in the second image I ′. Including the whole search range is computationally very expensive, as this implies
computing 30K scores. Instead, we reduce the search space and construct two training examples per randomly
drawn patch, one that searches in the horizontal direction and another in the vertical direction, both centered on
the ground truth point (x + fxi

, y + fyi). The horizontal training example is shown in Fig. 4.3. Thus, their size
is 19× (19 +R) and (19 +R)× 19, respectively. Note that this poses no problem as we use a convolutional net.
In practice, we use R = 200. We find the network performance is not very sensitive to this hype-parameter.

As we do not use any pooling and a stride of one, the siamese network outputs a single feature vector from the
left branch and (1 +R) feature vectors from the right branch corresponding to all candidate flow locations. Note
that by construction, the ground truth is located in the middle of the patch extracted in I ′. The matching network
on top then computes the corresponding similarity score for each possible location. We simply ignore the pixels
near the border of the image and do not use them for training.

We learn the parameters of the model by minimizing cross entropy, where we use a soft-max over all possible
flow locations. We thus optimize:

min
w

N∑
i=1

∑
si

pGTi (si) log pi(si,w).

where w are the parameters of the network, and N is the total number of training examples. N is double the
number of sample patches, as we generate two training examples for each patch. In practice, we generate 22
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million training examples from the 200 image pairs. Further, si is the ground truth location index for patch i in
the second image. Recall that the second image patch was of size (19 +R) or (R+ 19). Finally, pGTi is the target
distribution, and pi is the predicted distribution for patch i according to the model (i.e., output of the soft-max).

Note that when training neural nets, pGT is typically assumed to be a delta function with non-zero probability
mass only for the correct hypothesis. Here, we use a more informative loss, which penalizes depending on the
distance to the ground truth configuration. We thus define

pGTi (si) =


λ1 if si = sGTi
λ2 if |si − sGTi | = 1

λ3 if |si − sGTi | = 2

0 o.w.

.

This allows the network to be less strict in discriminating patches within 3-pixels from the ground truth. In
practice we choose λ1 = 0.5, λ2 = 0.2 and λ3 = 0.05.

4.2.3 Inference

In contrast to training where we select small image patches, during inference, we need to evaluate all the pixels
for the first image frame. Using the same routine as for learning would result in as many forward passes as
the number of pixels in the image, which is computationally very expensive. Similar to the following stereo
approaches [194, 113] that focus on stereo estimation with a similar network architecture, we can efficiently
compute the feature vectors for all pixels with the siamese network using only one forward pass. A similar trick
was also used when training FastRCNN [56], where features for all regions proposal are computed by one forward
pass.

Optical flow is more challenging than stereo matching because the search space is approximately 200 times
larger, as one has to search over a 2D space. A standard searching window of size 400×200 would require 300GB
space to store the whole cost volume for a single image, which is prohibitive. Instead, we propose to use only the
first top-K candidates for every location. This also enables the network to handle better texture-less regions as
detailed in the next section. Notice that the matching is performed at each location independently, thus in order to
get smooth matching results, we apply different simple post-processing techniques. This can improve the results,
especially at textureless regions, as well as to better deal with occlusion and specularities.

Cost aggregation: We first utilize a simple cost aggregation to smooth the matching results, which can be noisy
as the receptive field is only 19× 19. Cost aggregation is an iterative process which, for every location i, updates

the cost volume ci using the cost values of neighborhood locations i.e., cti(si) =
∑

j∈N(i) c
t−1
j (si)

N , where N (i) is
the set of neighbor locations of i, cti(si) is the cost volume at location i during the t-th aggregation iteration, si
is the flow configuration id, and c0i (si) is the raw output from our network. Note that applying cost aggregation
multiple times is equivalent to performing a weighted average over a larger neighborhood. In practice, we use 4
iterations of cost aggregation and a 5 × 5 window size. Because we only store top-K configurations in our cost
volume to reduce memory usage, neighboring locations have different sets of label ids. Thus, we perform cost
aggregation on the union of label sets and store only the top-K results after aggregation as final results cTi (si).
Note that one can interpret cTi (si) as a score of the network’s confidence. We thus threshold the cost cTi (si)

to select the most confident matches. The threshold is selected such that on average 60% of the locations are
estimated as confident. This simple thresholding on the cost aggression allows us to eliminate most specularities
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Figure 4.4: Top left: KITTI image. Top right: Instance segmentation masks overlaid on input image. Bottom
left: Car segmentation masks from [201]. Bottom right: Segmentation instances augmented by 3D detection
[25] followed by CAD model fitting [51].

and shadows. In texture-less regions, the sparse top-K predicted matches sets of neighboring pixels have very
little overlap. Combined with cost aggregation, scores of erroneous matches decrease through the aggregation
iterations, thus eliminating erroneous matches. Another possible solution would be using uncertainty estimation
by computing the entropy at each pixel. However, our experiments show that selecting top-K combined with
simple thresholding works much better than thresholding the entropy. In practice, we used K = 30 as it balances
memory usage and performance.

4.3 Object-Aware Optical Flow

In this section, we discuss our parameterization of the optical flow problem as a result of the projection of the
3D scene flow. In particular, we assume that the world encountered in autonomous driving scenarios consists
of independently moving rigid objects. The ego-car, where the camera is located, is a special object, which is
responsible for the optical flow of the static background.

Our approach builds on the observation that if the 3D motion of an object is rigid, it can be parameterized
with a single transformation. This is captured by the fundamental matrix, which we denote by F ∈ R3×3 with
rank(F ) = 2. Let I and I ′ be two images captured by a single camera at two consecutive times, then for any
point in a rigidly moving object, the following well-known epipolar constraint holds

p̃′i
>
F p̃i = 0

where pi = (xi, yi) and p′i = (x′i, y
′
i) are the projection of a 3D point pi into the two images, and p̃ = (x, y, 1) is

p in homogeneous coordinates. Further, the line defined by l′i = Fip̃i is the epipolar line in I ′ corresponding to
point p, passing through both the epipole in I ′ and p′i.

4.3.1 Segmenting Traffic Participants

Since only pixels belonging to one independently moving vehicle obey the same epipolar constraint, it is necessary
to obtain a segmentation of the scene into independently moving objects. This is traditionally done by clustering
the motion estimates. In this chapter, we take an alternative approach and use semantics to infer the set of
potential traffic participants. Towards this goal, we exploit instance-level segmentation, which segments each
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traffic participant into a different component. Note that we aim at an upper bound on the number of moving
objects, as some of the vehicles might be parked.

To compute instance-level segmentations, we exploit the approach of [201], which uses a multi-resolution
CNN followed by a fully connected conditional random field to create global labeling of the scene in terms of
instances. Since only labeled training data for cars was available; the method is unable to detect vans and trucks.
This results in high precision but lower recall. To partially alleviate this shortcoming, we augment the instance
segmentation results with extra segmentations which are computed by performing 3D detection [25] followed by
CAD model fitting. In particular, we simply go over all the CAD models and select the one which best aligns
with the 3D box, following the technique in [51]. Since this process has higher recall but lower precision than
the instances of [201], we only add new segmentation masks if they do not overlap with the previously computed
masks. We refer the reader to Fig. 4.4 for an example. This process provides us with a segmentation of the scene
in terms of rigidly moving objects. We now discuss how to estimate flow for each moving object as well as for
the background.

4.3.2 Foreground Flow Estimation

Our first goal is to reliably estimate the fundamental matrix describing the motion of each moving object. We
consider this motion to be the combination of the vehicle’s motion and the motion of the ego-car, that is the
3D motion whose projection we observe as optical flow. This is a challenging task, as moving objects can be
very small and contain many specularities. We take advantage of the fact that our convolutional net outputs an
uncertainty estimate, and only use the most confident matches for this task. In particular, we use RANSAC with
the 8 point algorithm [64] to estimate the fundamental matrix of each moving object independently. We then
choose the hypothesis with a smaller median squared error, where the error is defined as the shortest distance
between each matching point

Following [183], we consider the optical flow up = (ux, uy) at point p to decompose into its rotational and
translational components. Thus

upk = uw(pk) + ut(pk, Zpk)

, where uw(p) is a component of the flow of pixel p due to the rotation, and ut(p, Zp) is a component of the flow
from the translation of the object relative to the camera. Note that the direction Z here is perpendicular to the
image plane of I ′. If the rotation is small, the rotational component can be linearized. We estimate the linear
coefficients using matched point pairs, with the additional constraint that the point p + uw(p) must lie on the
epipolar line in the second image.

Upon application of the aforementioned linear transformation to I, the image plane of the image patches
corresponding to the object is now parallel and related to each other only by a relative translation. This reduces
the problem to either an epipolar contraction or epipolar expansion, where matching point pairs both lie on the
same epipolar line. Therefore, the search for a matching point is reduced to a 1D search along the epipolar
line. The flow at a given point is then parameterized as the disparity along the epipolar line between its rectified
coordinates and its matching point.

To smooth our results, we exploit semi-global block matching (SGM) [73]. In particular, we parameterized
the problem using disparity along the epipolar line as follows:

E(d) =
∑
pk

C ′(pk, dpk) +
∑

pk,p
′
k∈N

S(dpk , dp′k)
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with C ′(pk, dpk) being the matching similarity score computed by our convolutional net with local cost aggrega-
tion to increase robustness to outliers. Note that the vz-ratio parameterization of disparity in [183] is unsuitable
for foreground objects, as it relies on a significant relative motion in the z-direction (perpendicular to the image
plane). This assumption is often violated by foreground vehicles, such as those crossing an intersection in front
of the static observer. We use a standard smoothing term

S(dpk , dp′k) =


λ1 if |dpk − dp′k | = 1

λ2 if |dpk − dp′k | > 1

0 otherwise

with λ2 > λ1 > 0. In practice, λ2 = 256 and λ1 = 32. After SGM, we use left-right consistency check to filter
out outliers. The output is a semi-dense flow estimate.

Occasionally, the fundamental matrix estimation for an object fails due to either too few confident matches or
too much noise in the matches. In this case, we directly use the network’s matching to obtain a flow-field. Finally,
we use the edge-aware interpolation of EpicFlow [141] to interpolate the missing pixels by performing one step
of variational smoothing. This produces a fully dense flow-field for all objects.

4.3.3 Background Flow Estimation

To estimate the background flow, we mostly follow Yamaguchi et al. [183]. However, we make two signifi-
cant changes which greatly improve its performance. First, we restrict the matches to the areas estimated to be
background by our semantic segmentation. We use RANSAC and the 8-point algorithm with SIFT to estimate
the fundamental matrix. Note that this simple approach is sufficient as background occupies most of the scene.
Similar to the foreground, the flow up at a point p is considered to be a sum of a rotational and a translational
component: up = uw(p) + ut(p, Zp). Again, we linearize the rotational component. To find the matching point p′

for p, we search along the epipolar line l′, and parameterize the displacement vector as a scalar disparity.

Further, the disparity at point pi can be written as

d(p, Zp) = |p + uw(p)− o′|
vz
Zp

1− vz
Zp

where vz is the forward (Z) component of the ego-motion, o′ is the epipole and ωp = vz
Zp

.

We use SGM [73] to smooth the estimation. However, we parameterize the flow in terms of the vz-ratio instead
of directly using disparity as in the case of foreground flow estimation. We perform inference along four directions
and aggregate the results. Finally, we post-process the result by checking left-right consistency to remove outliers.
This provides us with a semi-dense estimate of flow for the background pixels.

Unfortunately, no matches are found by the matching pair process in occluded regions such as portions of road
or buildings that disappear from view as the vehicle moves forward. An additional significant improvement over
[183] is a 3D geometry-inspired extrapolation. Let δp = |p + uw(p)− o′| be the distance between the point p and
o′. For a planar surface in the 3D world, δp is inversely proportional to Zp. Since vz is constant for all points after
the linearized rotational flow component uw(p) is removed, the vz-ratio is also proportional to δp. For each point
p where the vz-ratio is not estimated, we search along the line segment joining p to o′ to collect a set of up to
50 vz-ratios at pixels p′ and calculate their associated δp′ . We take advantage of semantic information to exclude
points belonging to moving foreground vehicles. Using this set, we fit a linear model which we use to estimate
the missing vz-ratio at p.
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Method Non occluded px All px
Fl-bg Fl-fg Fl-all Fl-bg Fl-fg Fl-all

HS [159] 30.49 % 50.59 % 34.13 % 39.90 % 53.59 % 42.18 %
DeepFlow [173] 16.47 % 31.25 % 19.15 % 27.96 % 35.28 % 29.18 %
EpicFlow [141] 15.00 % 29.39 % 17.61 % 25.81 % 33.56 % 27.10 %

MotionSLIC [183] 6.19 % 64.82 % 16.83 % 14.86 % 66.21 % 23.40 %
DiscreteFlow [123] 9.96 % 22.17 % 12.18 % 21.53 % 26.68 % 22.38 %

SOF [150] 8.11 % 23.28 % 10.86 % 14.63 % 27.73 % 16.81 %
Ours 5.75 % 22.28 % 8.75 % 8.61 % 26.69 % 11.62 %

Table 4.1: KITTI Flow 2015 Test Set: we compare our results with top scoring published monocular methods
that use a single image pair as input

Method Non occluded px All px
Fl-bg Fl-fg Fl-all Fl-bg Fl-fg Fl-all

EpicFlow [141] 16.14 % 28.75 % 18.66 % 27.28 % 31.36 % 28.09 %
MotionSLIC [183] 6.32 % 64.88 % 17.97 % 15.45 % 65.82 % 24.54 %
DiscreteFlow [123] 10.86 % 20.24 % 12.71 % 22.80 % 23.32 % 22.94 %

Ours 6.21 % 21.97 % 9.35 % 9.38 % 24.79 % 12.14 %

Table 4.2: KITTI Flow 2015 5-Flod Validation: we compare our results with the state of the art (at the time of
publication of the corresponding paper [7]) by averaging performance over 5 different splits of the KITTI training
dataset into training/testing.

We employ a slanted plane model similar to MotionSLIC [183] to compute a dense and smooth background
flow field. This assumes that the scene is composed of small, piecewise planar regions. In particular, we model the
vz-ratios of the pixels in each superpixel with a plane defined as vz

Zp
= A(x−xc)+B(y−yc)+C. Here, (A,B,C)

are the plane parameters, and (xc, yc) are the coordinates of the center of the superpixel. We simultaneously
reason both about the assignments of pixels to planes, the plane parameters, and the types of boundaries between
superpixels (i.e., coplanar, hinge, occlusion). The inference is performed by block coordinate descent.

4.4 Experimental Evaluation

We evaluated our approach on the widely used self-driving dataset: KITTI Optical Flow 2015 benchmark [53],
which consists of 200 training and 200 testing image pairs. There are several challenges, including speculari-
ties, moving vehicles, sensor saturation, large displacements, and texture-less regions. The benchmark’s scoring
method is as follows. Image pixels have two attributes - occluded / non-occluded and background/foreground.
The former attribute indicates whether the same 3D world point visible in I is still visible in I ′. The latter attribute
indicates whether the pixel belongs to a moving foreground object (Fl-fg) or the static background (Fl-bg). The
foreground and background pixels can be combined into Fl-all. The estimated flow at a pixel is deemed correct
when it deviates less than 3 px or 5 % (whichever is greater) from the ground truth flow. All of our analysis,
henceforth also uses these definitions.

We trained our siamese convolutional network for 100k iterations using stochastic gradient descent with Adam
[89]. We used a batch size of 128 and an initial learning rate of 0.01 with a weight decay of 0.0005. We divided
the learning rate by half at iterations 40K, 60K, and 80K. Note that since we have 22 million training examples,
the network converges before completing one full epoch. This shows that 200 images are more than enough to
train the network. Training takes 17 hours on an NVIDIA-Titan Black GPU. However, performance improves
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Method Non occluded px All px
Fl-bg Fl-fg Fl-all Fl-bg Fl-fg Fl-all

[139] 6.17 % 25.30 % 9.98 % 9.31 % 28.11 % 12.69 %
[201] 6.18 % 24.61 % 9.82 % 9.35 % 27.31 % 12.54 %

[139] augmented with [25] 6.17 % 22.06 % 9.35 % 9.31 % 25.08 % 12.15 %
[201] augmented with [25] 6.21 % 21.97 % 9.35 % 9.38 % 24.79 % 12.14 %

Table 4.3: Flow estimation with various instance segmentation algorithms

Within Detected Object Masks Within Ground Truth Object Masks
Method Non-occ px error % All px error % Non-occ px error % All px error %
EpicFlow [141] 26.77 % 29.93 % 28.75 % 31.36 %
DiscreteFlow [123] 18.76 % 22.42 % 20.24 % 23.32 %
Ours 15.91 % 19.72 % 15.42 % 18.62 %

Table 4.4: Foreground flow estimation within detected object masks and within ground truth masks

Source for Matches for F Estimation Non-occluded px error % All px error %
EpicFlow [141] 25.02 % 27.58 %

DiscreteFlow [123] 23.40 % 26.05 %
Our Matching Network 21.97 % 24.79 %

Table 4.5: Foreground flow estimation errors when F is estimated from various sources

only slightly after 70k iterations.

In this section, we first analyze our method’s performance in comparison with the state-of-the-art. Addition-
ally, we explore the impact of various stages of our pipeline.

Comparison to state of the art1: We first present our results2 on the KITTI Optical Flow 2015 test set, and
compare our approach to published monocular approaches that exploit a single temporal image pair as input. As
shown in Table 4.1, our approach significantly outperforms all published approaches. Our approach is particularly
effective on the background, outperforming MotionSLIC [183]. Moreover, our method’s foreground performance
is on par with the leading foreground estimation technique DiscreteFlow [123]. The test set images are fairly
correlated, as many pairs are taken from the same sequence. To provide further analysis, we also computed
results on the training set with 5-fold validation. In particular, for each fold, 160 images are used for training, and
the remaining 40 are used for testing. The same improvements on the test set can be seen in Table 4.2.

Influence of instance segmentation: Table 4.3 shows performance when using [139] and [201] to create the
instance segmentations. We also explore augmenting them by fitting CAD models with [51] to the 3D detections
of [25]. Note that a combination of segmentation and detection is beneficial. A limiting factor of our foreground
flow estimation performance arose when we missed moving vehicles when estimating our instances. Using our
five folds on the training set, we explore what happens when we have perfect objects masks. Towards this goal,
we first examine the foreground flow estimation performance only on our detected vehicle masks. The left half of
Table 4.4 shows that within the vehicle masks we detect, our flow estimation is significantly more accurate than
our competitors in the same regions. Moreover, the right half of the same table shows that the same is true within

1We are comparing to the ‘state of the art’ at the time of publication of the corresponding paper [7], i.e. year of 2016
2We exploit the instances of [139] for our submission to the evaluation server.
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(a) (b) (c)

(d) (e) (f)

Figure 4.5: Examples of successful flow estimations. Within each group, from top to bottom: first frame of input
image, confident flow produced by our network, 3D car detection results, instance segmentation output augmented
by 3D car detection, final flow field, and flow field error.
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(a) (b) (c)

Figure 4.6: Failure cases for our algorithm: (a) fails to segment the van; (b) incorrect CAD model fitting; (c)
Incorrect estimation of fundamental matrix

the ground truth object masks. Thus, if the instances were further improved (e.g., by incorporating temporal
information when computing them), our method can be expected to achieve more improvement over the leading
competitors.

Estimating Fundamental Matrix: Having an accurate fundamental matrix is critical to the success of our
method. While the strong epipolar constraint offers great robustness to outliers, it can also cause many problems
if it is wrongly estimated. We now compare different matching algorithms employed to compute the fundamental
matrices and use the rest of our pipeline to estimate flow. As shown in Table 4.5, selecting only confident matches
from our network to estimate the fundamental matrix is significantly better than using the flow field estimations
from other algorithms, including DiscreteFlow.

Qualitative Analysis: Fig. 4.5 shows qualitative results, where each column depicts the original image, the
network most confident estimates, the 3D detections of [25], our final instance segmentations, our final flow field,
and its errors. Our convolutional net can predict accurate results for most regions in the image. It leaves holes
in regions including textureless areas like the sky, occlusion due to the motion of the car and specularities on the
windshield. The 3D detector can detect almost all cars, regardless of their orientation and size. Our final object
masks used to label foreground objects are very accurate and contain many cars of different sizes and appearances.
Note that different shades represent distinct car instances whose fundamental matrices are estimated separately.
As shown in the last two rows, we produce very good overall performance.
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Failure Modes: Our technique has several failure modes. If a car is not segmented, the estimation of flow
defaults to using the epipolar constraint of the background. This happens particularly often with trucks and vans,
as we do not have training examples of these types of vehicles to train our segmentation and detection networks.
Fig. 4.6(a) shows an example where a van is not segmented. By coincidence, its true epipolar lines are almost
identical with those calculated using the background fundamental matrix. As such, its flow estimation is still
mostly correct. If object masks contain too many background pixels (which are outliers from the perspective
of foreground fundamental matrix estimation), our algorithm can also fail. This is commonly associated with
objects identified by the 3D object detector rather than the instance-segmentation algorithm, as the 3D detection
box might be misaligned with the actual vehicle. Moreover, fitting CAD models to monocular images is not a
trivial task. The right-most car in Fig. 4.6(b) is such an example. The other failure mode of our approach is
the wrong estimation of the fundamental matrix, which can happen when the matches are very sparse or contain
many outliers. Fig 4.6(c) shows such an example, where the fundamental matrix of the left-most car is incorrectly
estimated due to the sparseness in confident matching results (demonstrated in the second row).

4.5 Discussion

In this chapter, we tackled the problem of estimating optical flow from a monocular camera in the context of
autonomous driving. We built on the observation that the scene is typically composed of a static background, as
well as a relatively small number of traffic participants that move rigidly in 3D. We have shown how instance-
level segmentation and 3D object detection can be used to segment the different vehicles and proposed a new
convolutional network that can accurately match patches. We proposed to estimate the traffic participants using
instance-level segmentation. For each traffic participant, we used the epipolar constraints that govern each inde-
pendent motion for faster and more accurate estimation. Our second contribution is a new convolutional net that
learns to perform flow matching and can estimate the uncertainty of its matches. This is a core element of our
flow estimation pipeline. We demonstrated the effectiveness of our approach on the challenging KITTI 2015 flow
benchmark. We have shown in extensive experiments that our approach outperforms published approaches (at the
time of publication of the corresponding paper [7]) by a large margin.

On the other hand, there are different ways to improve our approach further. First of all, a better instance
segmentation mask would improve the performance of optical flow in our case. Different superior methods on
instance segmentation have been proposed since the development of our approach in this chapter i.e. year of 2016.
Bai and Urtasun [8], inspired by watershed transform, proposed an end-to-end convolutinal network that achieved
state of the art results on Cityscapes dataset [36]. Li et al. [102] proposed a fully convolutional instance-aware
segmentation method that combined instance mask proposals [37] and fully convolutinal segmentation networks
[108]. The idea is to predict a set of position-sensitive output channels that simultaneously predict object classes,
boxes, and masks. Later, Mask-RCNN [66] was proposed to use two parallel headers to jointly predict object
mask and perform recognition. It utilized RoIAlign operation to address the issues [102] had on overlapping
instances and spurious edges. Secondly, the application of optical flow in the domain of autonomous driving is
not only limited to rigid object, i.e. vehicles, but also other non-rigid dynamic objects such as pedestrians, cyclists.
Further, the self-driving vehicle needs to detect unknown/non-categorized moving objects, e.g. flying plastic bags
or basketball, on the road. A safe autonomous driving system needs to be robust to these rare cases. Using optical
flow could help in these cases by first generating the optical flow of all pixels. Then, we can perform clustering
to group pixels, which will inform us if there exist moving objects in the scene. Thirdly, due to the limitation
of computation resources on the vehicle, we need to further improve the algorithm from the runtime perspective.
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Nowadays, lots of tasks in the autonomy stacks require GPU hungry algorithms, i.e. deep learning models. We
would need to share both the computation power (i.e. GPU time) as well as the limited GPU memory. Various
end-to-end flow estimation models [83, 82] have been proposed following FlowNet [42]. They all directly regress
optical flow from images, without explicitly doing image patch matching. These end-to-end frameworks could
run faster since there is no need for dense patch matching. However, in order to comparable performance, they all
utilize very large neural networks that make these approaches less applicable. SPyNet [137], being 96% smaller
than FlowNet in terms of model parameters, utilizes spatial pyramid network to handle large motions and achieves
similar performance as FlowNet. Following this idea, PWC-Nets [161, 160] also utilize pyramid processing and
incorporate warping as well as cost volume into their networks, making the models 17 times faster with better
performance than FlowNet. Hui et al. [79, 80] proposed LiteFlownet that also outperforms FlowNet while being
25.3 times smaller and 3.1 times faster. Recently, Yin et al. [190] propose a hierarchical matching procedure for
optical flow with the help of pyramid features. They are able to achieve state-of-the-art performance on KITTI
and run real time, i.e. 80ms per frame.



Chapter 5

Joint 3D Detection, Tracking and
Prediction

In previous chapters, we have developed algorithms to help the self-driving vehicle better understand the environ-
ment from the low-level vision perspective. In particular, we have developed a convolutional neural network to
estimate the depth of the scene in chapter 3. In chapter 4, we took it one step further to apply the underlying deep
matching method to estimate optical flow, i.e. the motion of each pixel in the image.

All the previous algorithms focus on image data which can provide very detailed information about the sur-
rounding environment. There are different kinds of cameras with different user cases, i.e. long-range cameras
with long focal length for seeing things far away and fish-eye cameras with extreme short focal length for seeing
close objects. In certain cases, modern cameras can perform better than human eyes, e.g. some cameras perform
better in low-light condition, while other cameras have wider field-of-view or can see further. Another advantage
of using cameras is that it is a cost-effective solution. The price of high-quality cameras dropped significantly
over the past decades. This makes it easier for large scale deployment. One of the good examples is Tesla, which
heavily relies on cameras for their L3 self-driving package: autopilot. Comparing to a standard LiDAR, cameras
can be three orders of magnitude cheaper, costing around 100 dollars while a LiDAR could cost 100 thousand
dollars.

However, there are also limitations for cameras. Modern cameras still use the pin-hole camera model, where
image data is a projection of the 3D real-world on the 2D image plane. Thus, the depth information is lost.
For self-driving, we need to know not only where the objects are on the 2D image plane, but also where they
are w.r.t. self-driving vehicle in 3D space, i.e. the depth for each object. There are two kinds of approaches
we can take to tackle this problem. First, one can compute the depth for all pixels using stereo images, then
perform 2D detection on the 2D image to locate objects. In chapter 3, we developed a deep neural network based
algorithm for estimating depth from stereo images, where we achieved two orders of magnitude faster runtime
then previous methods. However, it is still not ready yet for real-world self driving both from speed and accuracy
perspectives. While it is important to acquire dense depth for the surrounding environment, in practice, not all
pixels are equally important. Thus, lots of computation for stereo algorithms are not needed. Another approach
is to do 3D detection from stereo images directly, without directly reasoning the depth of all pixels in the image.
While this is an interesting and promising direction [25], the accuracy is still not good enough for self driving.
The fundamental challenge here is the difficulty of estimating depth from 2D image data.

LiDAR can come to our rescue. LiDAR uses pulsed laser light with a sensor to receive the laser bounding

53
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Figure 5.1: Top-down view of LiDAR point cloud data.

back. It measures the time each laser traverses forward and backward. It requires careful mechanical engineering
to make it work properly and precisely, i.e., it is hard to build and maintain, correspondingly very expensive.
However, since LiDAR uses light and measure the delta time, the depth it measures is very accurate. This tech-
nology has been widely used in different areas such as geodesy, geomatics, archaeology, etc. It has also been used
to build units that are suitable for self driving. One of the widely used LiDAR unit for self driving is Velodyne
HDL-64. It is mounted on top of the self-driving vehicle and has a rotation unit spreading out laser; thus, it
provides 360-degree 3D information around the self-driving vehicle. Fig. 5.1 shows a top-down view of a sample
LiDAR point cloud.

Having accurate 3D information is not enough for self-driving; we need to have a high-level understanding
of the surrounding environment. This includes 3D detection, tracking, and motion forecasting. In a traditional
autonomy stack, these modules are usually learned independently, and uncertainty is rarely propagated. This can
result in catastrophic failures as downstream processes cannot recover from errors that appear at the beginning of
the pipeline.

An alternative solution could be to jointly reason about 3D detection, tracking, and motion forecasting given
data captured by a 3D sensor i.e. LiDAR. Instead of tackling these three problems separately, a joint reasoning
pipeline has three advantages: (1) we can share the heavy feature computation among different modules. As most
perception tasks employ large convolutional neural networks, GPU computation is becoming a scarce resource.
Thus, sharing feature computation among different modules can save computation and makes a large model run
real-time; (2) it can fix the distribution mismatch between different modules. A sequential but separate pipeline
would pass information through the specific format, e.g. objects’ bounding boxes, between detection, tracking,
and motion forecasting. This requires heavy engineering effort to make sure that the downstream system is
tuned accordingly. Furthermore, it is difficult to propagate uncertainty throughout different tasks as downstream
modules cannot affect previous modules; (3) from the optimization perspective, learning and optimizing jointly
would achieve better results compared to learning separately.

Thus, in this chapter, we propose a novel deep neural network that performs 3D convolutions across space and
time over a bird’s-eye-view representation of the 3D world. It generates 3D detection bounding boxes, tracklets,
and correspondingly motion forecasting for all vehicles in the scene at the same time. It is very efficient in terms
of both memory and computation compared to using 4D convolution on 3D space and time dimensions. By
jointly reasoning about these tasks, our holistic approach is more robust to occlusion as well as sparse data at the
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Figure 5.2: This figure shows the top down view of LiDAR point cloud with our 3D detection results on vehicles,
the color for each bounding box represents tracking information while the dots (waypoints) associated to each
vehicle represent its future location in discrete time steps. Notice when the waypoints overlap, it means the
vehicle is static.

range. Our experiments on a new large-scale dataset captured in several North American cities show that we can
outperform the state of the art by a large margin. Importantly, by sharing computation, we can perform all tasks
in as little as 30 ms. Fig. 5.2 gives an example of the problem we are tackling.

5.1 Related Work

Over the past few years many methods that exploit convolutional neural networks to produce accurate 2D object
detections, typically from a single image, have been developed. Convolutional neural networks have shown great
performance on perceiving images, learning to extract related features. With better features extracted, we see
better performance on all kinds of detection tasks, including 2D and 3D. On the other hand, tracking and motion
forecasting also benefits from the powerful feature extractor and achieve better results when incorporating human
domain knowledge. In the following, we introduce the advances in these areas in the past years briefly.

2D Object Detection: 2D object detection advances a lot over the past few years with the help of the convo-
lutional neural network. People have developed different algorithms with different intuition; these approaches
typically fell into two categories depending on whether they exploit a first step dedicated to creating object pro-
posals. Modern two-stage detectors [140, 66, 38, 77], utilize region proposal networks (RPN) to learn the region
of interest (RoI) where potential objects are located. In a second stage, the final bounding box locations are pre-
dicted from features that are average-pooled over the proposal RoI. Mask-RCNN [66] also took this approach,
but used RoI aligned features addressing the boundary and quantization effect of RoI pooling. Furthermore, they
added segmentation branch to take advantage of dense pixel-wise supervision, achieving state-of-the-art results
on both 2D image detection and instance segmentation. On the other hand, one-stage detectors skip the proposal
generation step, and instead learn a network that directly produces object bounding boxes. Notable examples are
YOLO [138], SSD [107] and RetinaNet [105]. One-stage detectors are computationally very appealing and are
typically real-time, especially with the help of recently proposed architectures, e.g. MobineNet [76], SqueezeNet
[180]. One-stage detectors were outperformed significantly by two stage-approaches until Lin et al.[105] shown
state-of-the-art results by exploiting a focal loss and dense predictions.
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Figure 5.3: Overview of our approach: Our FaF network takes multiple frames as input and performs detec-
tion, tracking and motion forecasting.

3D Object Detection: In robotics applications such as autonomous driving, we are interested in detecting ob-
jects in 3D space. The ideas behind modern 2D image detectors can be transferred to 3D object detection in
various ways. Chen et al.[27] used stereo images to perform 3D detection. Li [100] used 3D point cloud data
and proposed to use 3D convolutions on a voxelized representation of point clouds. Chen et al.[28] combined
image and 3D point clouds with a fusion network. They exploited 2D convolutions in BEV; however, they used
hand-crafted height features as input. They achieved promising results on KITTI [55] but only ran at 360ms per
frame due to heavy feature computation on both 3D point clouds and images. This is very slow, particularly if
we are interested in extending these techniques to handle temporal data, which will be more problematic when
including temporal data.

Object Tracking: Detection by itself is not enough for Self-driving; we also need to track objects over time.
Over the past few decades, many approaches have been developed for object tracking. In this section, we briefly
review the use of deep learning methods in tracking. In [115], pretrained convolutional neural networks were used
to extract features and perform tracking with correlation, where similarly in [170, 71], regression is used. In con-
trast, Wang and Yeung [171] used an autoencoder to learn a good feature representation that helps tracking. Tao
et al.[163] used siamese matching networks to perform tracking. Nam and Han [128] fine-tuned a convolutional
neural network at inference time to track object within the same video.

Motion Forecasting: In addition to tracking, motion forecasting looks at the problem of predicting where each
object will be in the future given multiple past frames. Lee et al.[98] proposed to use recurrent networks for long
term prediction. Alahi et al.[4] used LSTMs to model the interaction between pedestrian and perform predic-
tion accordingly. Ma et al.[116] proposed to utilize concepts from game theory to model the interaction between
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(a) (b)

Figure 5.4: a Voxel Representation: treat height dimension directly as input feature dimension. b Sample Data:
Overlaid temporal & motion forecasting data. Green represents ground truth bbox w/ 3D point. Grey represents
ground truth bbox w/o 3D point.

pedestrian while predicting future trajectories. Other work has also focussed on short term prediction of dynamic
objects [58, 135]. [169] performed prediction for dense pixel-wise short-term trajectories using variational au-
toencoders. [158, 119] focused on predicting the next future frames given a video, without explicitly reasoning
about per-pixel motion.

Multi-task Approaches: Feichtenhofer et al.[50] proposed to do detection and tracking jointly from videoes.
They model the displacement of corresponding objects between two input images during training and decode
them into object tubes during inference time.

5.2 Joint 3D Detection, Tracking, and Motion Forecasting

Different from all the above related work, in this chapter we propose a single network that takes advantage of
temporal information and tackles the problem of 3D detection, tracking, and short term motion forecasting in the
scenario of self driving. Our input representation is a 4D tensor encoding an occupancy grid of the 3D space over
several time frames. We exploit 3D convolutions over space and time to produce fast and accurate predictions. As
point cloud data is inherently sparse in 3D space, our approach saves lots of computation as compared to doing
4D convolutions over 3D space and time. We demonstrate the effectiveness of our model on a large-scale dataset
captured from multiple vehicles driving in North-America and show that our approach significantly outperforms
the state-of-the-art. We name our approach Fast and Furious (FaF), as it can create very accurate estimates in as
little as 30 ms.

In the following, we first describe our data parameterization in Sec. 5.2.1 including voxelization and how we
incorporate temporal information. In Sec. 5.2.2, we present our model’s architecture followed by the objective we
use for training the network (Sec. 5.2.3).

5.2.1 Data Parameterization

In this section, we first describe our single frame representation of the surrounding world. We then extend our
representation to exploit multiple frames.
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Voxel Representation: In contrast to image detection where the input is a dense RGB image, point cloud
data is inherently sparse and provides geometric information about the 3D scene. To get a representation where
convolutions can be easily applied, we quantize the 3D world to form a 3D voxel grid. We then assign a binary
indicator for each voxel encoding whether the voxel is occupied. We say a voxel is occupied if there exists at least
one LiDAR point in the voxel’s 3D space. As the grid is a regular lattice, convolutions can be directly used. We
do not utilize 3D convolutions on our single frame representation as this operation will waste most computation
since the grid is very sparse, i.e., most of the voxels are not occupied. Instead, we performed 2D convolutions and
treated the height dimension as the channel dimension. This allows the network to learn to extract information in
the height dimension. This contrast approaches such as MV3D [28], which perform quantization on the x-y plane
and generate a representation of the z-dimension by computing hand-crafted height statistics. Note that if our
grid’s resolution is high, our approach is equivalent to applying convolution on every single point without losing
any information. We refer the reader to Fig. 5.4a for an illustration of how we construct the 3D tensor from 3D
point cloud data.

Adding Temporal Information: In order to perform motion forecasting, it is crucial to consider temporal infor-
mation. Towards this goal, we take all the 3D points from the past n frames and perform a change of coordinates
to represent them in the current vehicle coordinate system. This is important in order to undo the ego-motion of
the vehicle where the sensor is mounted. This transformation can be easily performed using the transformation
matrix. In this work, we assume the transformation matrix is given. In practice, this is usually computed by
information from GPS/IMU etc with proper localization algorithms. After performing this transformation, we
compute the voxel representation for each frame. Now that each frame is represented as a 3D tensor, we can
append multiple frames’ along a new temporal dimension to create a 4D tensor. This not only provides more 3D
points as a whole but also gives cues about the vehicle’s heading and velocity, enabling us to do motion forecast-
ing. As shown in Fig. 5.4b, we overlay multiple frames for visualization purposes. As we can see, static objects
are well aligned with denser LiDAR points while dynamic objects have ‘shadows’ which represents their motion.

5.2.2 Model Formulation

We have seen exciting results on image detection from Faster-RCNN [140], R-FCN [38], Mask-RCNN [66],
YOLO [138], SSD [107], where they shown carefully designed CNNs can extract the features to predict both
bounding box coordinates and semantic information. In this work, we follow the single-stage detector approach
and tailor it for detection using point cloud data.

Our single-stage detector takes a 4D input tensor and regresses directly to object bounding boxes at different
timestamps without using region proposals. We investigate two different ways to exploit the temporal dimension
on our 4D tensor: early fusion and late fusion. They represent a tradeoff between accuracy and efficiency, and
they differ on at which level the temporal dimension is aggregated. We will introduce the detail in the following.

Early Fusion: Our first approach aggregates temporal information at the very first layer. As a consequence,
it runs as fast as using a single frame detector. However, it might lack the ability to capture complex temporal
features as this is equivalent to producing a single point cloud from all frames, but weighing the contribution of
the different timestamps differently. In particular, as shown in Fig. 5.5, given a 4D input tensor, we first use a
1D convolution with a kernel size n on temporal dimension to reduce the temporal dimension from n to 1. We
share the weights among all feature maps, i.e., also known as group convolution. We then perform convolution
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(a) Early fusion (b) Later fusion

Figure 5.5: We propose two ways for modeling temporal information.

and max-pooling following VGG16 [155] with each layer number of feature maps reduced by half. Note that we
remove the last convolution group in VGG16, resulting in only ten convolution layers.

Late Fusion: In this case, we gradually merge the temporal information. This allows the model to capture
high-level motion features. We use the same number of convolution layers and feature maps as in the early fusion
model, but instead perform 3D convolution with a kernel size 3× 3× 3 for 2 layers without padding on temporal
dimension, which reduces the temporal dimension from n to 1, and then perform 2D spatial convolution with a
kernel size 3× 3 for other layers. We refer the reader to Fig. 5.5 for an illustration of our architecture.

Both early and late fusion models produce feature maps with width and height 1
8 to the original input size and

a feature vector of dimension 256. We then add two branches of convolution layers, as shown in Fig. 5.6. The first
one performs binary classification to predict the probability of each bounding box being a vehicle. The second
one predicts the bounding box over the current frame as well as n− 1 frames into the future. Motion forecasting
is possible as our approach exploits multiple frames as input, and thus can learn to estimate useful features such
as velocity and acceleration.

Following SSD [107], we use multiple predefined boxes for each feature map location. As we utilize a BEV
representation, our network can exploit priors about physical sizes of objects. Here we use boxes corresponding to
5 meters in the real world with the aspect ratio of 1 : 1, 1 : 2, 2 : 1, 1 : 6, 6 : 1 and 8 meters with an aspect ratio of
1 : 1. In total, there are 6 predefined boxes per feature map location denoted as aki,j where i = 1, ..., I, j = 1, ..., J

is the location in the feature map and k = 1, ...,K ranges over the predefined boxes (i.e., size and aspect ratio).
Using multiple predefined boxes allows us to reduce the variance of regression target, thus makes the network
easy to train. Notice that we do not use predefined heading angles. Furthermore, we use both sin and cos values
to avoid the 180 degrees ambiguity.

In particular, for each predefined box aki,j , our network predicts the corresponding normalized location offset
l̂x, l̂y , log-normalized sizes ŝw, ŝh and heading parameters âsin, âcos.

We build our model based on the intuition that so long as the feature vector encodes temporal information with
big enough receptive field, it could also capture objects’ velocity, acceleration, etc., capable of performing short
term prediction. Thus, we make the bounding box regression branch predict multiple frames into the future. This
can also give a clue about whether a car is static or not, which is crucial for motion planner in the downstream for
developing the self-driving vehicle.

Decoding Tracklets: At each timestamp, our model outputs the detection bounding boxes for n timestamps.
Reversely, each timestamp will have current detections as well as n−1 past predictions. Thus we can aggregate the
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Figure 5.6: Motion forecasting: each feature vector is used to predict the bounding box offset and detection score
for current time step t as well as future time step t+1, ..., t+n-1.

information for the past to produce accurate tracklets without solving any trajectory-based optimization problem.
Note that if detection and motion forecasting are perfect, we can decode perfect tracklets. In practice, we use the
average as the aggregation function. When there is overlap between detections from current and future predictions
from the past, they are considered to be the same object, and their bounding boxes will be averaged. Intuitively,
the aggregation process helps particularly when we have strong past predictions but no current evidence, e.g., if
the object is currently occluded or a false negative from detection. This allows us to track through occlusions over
multiple frames. On the other hand, when we have strong current evidence but no prediction from the past, then
there is evidence for a new object.

5.2.3 Loss Function and Training

We train the network to minimize a combination of classification and regression loss. In the case of regression we
include both the current frame as well as our n frames forecasting into the future. That is

`(w) =
∑α · `cla(w) +

∑
i=t,t+1,...,t+n

`treg(w)

 (5.1)

where t is the current frame and w represents the model parameters.

We employ as classification loss binary cross-entropy computed over all locations and predefined boxes:

`cla(w) =
∑
i,j,k

qi,j,k log pi,j,k(w) (5.2)

Here i, j, k are the indices on feature map locations and predefined box identity, qi,j,k is the class label ( i.e. qi,j,k
=1 for vehicle and 0 for background) and pi,j,k is the predicted probability for vehicle.

To define the regression loss for our detections and future predictions, we first need to find their associated
ground truth. We defined their correspondence by matching each predefined box against all ground truth boxes.
In particular, for each predicted box, we first find the ground truth box with the biggest overlap in terms of
intersection over union (IoU). If the IoU is bigger than a fixed threshold (0.4 in practice), we assign this ground
truth box as āki,j and assign 1 to its corresponding label qi,j,k. Following SSD [107], if there exists a ground
truth box not assigned to any predefined box, we will assign it to its highest overlapping predefined box ignoring
the fixed threshold. Note that multiple predefined boxes can be associated to the same ground truth, and some
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predefined boxes might not have any correspondent ground truth box, meaning their qi,j,k = 0.

Thus we define the regression targets as

lx =
x− xGT

wGT
ly =

y − yGT

hGT

sw = log
w

wGT
sh = log

h

hGT

asin = sin(θGT ) acos = cos(θGT )

We use a weighted smooth L1 loss over all regression targets where smooth L1 is defined as:

smoothL1
(x̂, x) =

 1
2 (x̂− x)2 if |x̂− x| < 1

|x̂− x| − 1
2 otherwise

(5.3)

Hard Data Mining Due to the imbalance of positive and negative samples, we use hard negative mining during
training. We define positive samples as those predefined boxes having corresponding ground truth box, i.e.,
qi,j,k = 1. For negative samples, we rank all candidates by their predicted score pi,j,k from the classification
branch and take the top negative samples with a ration of 3 in practice.

5.3 Experiments

In this section, we will evaluate our algorithm on real-world data for all tasks. In order to do that, we would need
a large scale dataset that provides sequential LiDAR point cloud data, accurate ego-motion, as well as ground
truth labels across time for both detection and tracking. Unfortunately, there is no such publicly available dataset
that can evaluate 3D detection, tracking, and motion forecasting together. The biggest public autonomous driving
dataset currently is KITTI [55]; however, KITTI detection benchmark does not provide 3D point cloud data with
temporal information, and tracking benchmark is only on 2D image. Thus we collected a more comprehensive
dataset that provides accurate temporal information. It is two orders of magnitude bigger in scale involving more
dynamic scenes and also allows us to evaluate detection, tracking and motion forecasting at the same time.

5.3.1 Experiment Setup

Dataset: Our dataset is collected by a roof-mounted LiDAR on top of a vehicle driving around several North-
American cities over different time in the day and different seasons in the year. It consists of 546,658 frames
collected from 2762 different scenes. Each scene consists of a continuous sequence with an average length of 20
seconds. Our validation set consists of 5,000 frames collected from 100 scenes, i.e., 50 continuous frames are
taken from each sequence. There is no overlap between the geographic area where the training and validation are
collected in order to showcase strong generalization. Our labels might contain vehicles with no 3D point on them
as the labelers have access to the full sequence in order to provide accurate annotations. Our labels contain 3D
rotated bounding box as well as track id for each vehicle, allowing to evaluate tracking on the whole sequence.
Notice the dataset only provides 3D point cloud data for each frame without the ground information, i.e., each
LiDAR point’s height is necessarily positive as the reference height 0 is from the first frame. For example, if the
car is driving downhill, then the LiDAR point received later will have a negative height as the reference height 0
location is up on the hill. This makes the detection more challenging as it requires the algorithm to be more robust
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Figure 5.7: P/R curve

IoU 0.5 0.6 0.7 0.8 0.9 Time [ms]
SqueezeNet v1.1 [81] 85.80 81.06 69.97 43.20 3.70 9

SSD [107] 90.23 86.76 77.92 52.39 5.87 23
MobileNet [76] 90.56 87.05 78.39 52.10 5.64 65

FaF 93.24 90.54 83.10 61.61 11.83 30

Table 5.1: Detection performance on 144× 80 meters region, with object having ≥ 3 number 3D points.

to the change on height dimension. Although the dataset contains label for different dynamic objects including
vehicles, pedestrian, cyclists etc, in this work, we focus on vehicles only, which includes car, van, and bus.

Training Setup: At training time, we use a spatial X-Y region of size 144 × 80 meters, where each grid cell
is 0.2 × 0.2 meters. On the height dimension, we take the range from -2 to 3.5 meters with a 0.2-meter interval,
leading to 29 bins. Notice we use -2 as bottom height as the dataset does not provide ground height information.
This gives us a tensor of 29x400x720 for one frame of LiDAR point cloud data. For temporal information, we
take all the 3D points from the past five timestamps. Thus our input is a four-dimensional tensor consisting of
time, height, X, and Y.

For both our early-fusion and late-fusion models, we train from scratch using Adam optimizer [89] with a
learning rate of 1e-4. The model is trained on a 4 Titan XP GPU server with a batch size of 12. We train the
model for 100K iteration with learning rate halved at 60K and 80K iterations respectively. Also we use α = 2 in
Eq. 5.1 to re-weight loss from box size and heading, and γ = 3 as the ratio of negative-positive samples during
hard data mining.

5.3.2 Quantitative Results

Here we provide detailed quantitative results for 3D detection, tracking, and motion forecasting.

Detection Results: We compare our model against state-of-the-art real-time detectors including SSD [107],
MobileNet [76] and SqueezeNet [81]. Note that these detectors are all developed to work on 2D detection from
RGB images. To make them competitive, we also build our predefined boxes into their system, which further easy
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(a) (b)

Figure 5.8: a: mAP on different number of minimum 3D points. b: mAP over distance.

the task for those detectors. The region of interest is 144 × 80M centered at ego-car during inference time. We
keep the same voxelization for all models and evaluate detections against the ground truth vehicle bounding boxes
with a minimum of three 3D points. Vehicles with less than three points are considered don’t care regions. We
consider a detection correct if it has an IoU against any ground-truth vehicle bounding box larger than 0.7. Note
that for a vehicle with a typical size of 3.5× 6 meters, 0.7 IoU means we can have at most miss 0.35 meters along
the width and 0.6 meters along the length. Fig. 5.7 shows the precision recall curve for all approaches, where our
model can achieve better performance, especially higher recall at the same precision level, which is crucial for
autonomous driving.

Furthermore, Tab. 5.1 shows mAP numbers using different IoU thresholds for all detectors. We can see that our
method can outperform all other methods. Particularly at IoU 0.7, we achieve 4.7% higher mAP than MobileNet
[76] while being twice faster, and 5.2% better than SSD [107] with similar running time. This direct comparison
shows the effectiveness of our approach that using temporal information and learning jointly can achieve much
better performance.

Also, in order to have a more comprehensive understanding of the performance of different approaches, we
report mAP performance as a function of the minimum number of 3D points, which is used to filter ground truth
bounding boxes during test time. This provides specific information on how the model performances on objects
with sparse LiDAR points. Note that a high level of sparsity is due to occlusion or long distance vehicles. As
shown in Fig. 5.8a, our method can outperform other methods at all levels. We also evaluate with a minimum of
0 point, to show the importance of exploiting temporal information.

Furthermore, we are also interested in knowing how the model performs as a function of vehicle distance.
Towards this goal, we extend the predictions to be as far as 100 meters away. Fig. 5.8b shows the mAP with IoU
0.7 on vehicles within different distance ranges. We can see that all methods are doing well on nearby vehicles,
while our method is significantly better at long range. Note that all methods perform poorly at 100 meters due to
lack of 3D points at that distance.

Ablation Study: We conducted ablation experiments within our framework to show how important each of the
components is. We fixed the training setup for all experiments. As shown in Tab. 5.2, using temporal information
with early fusion gives 3.7% improvement on mAP at IoU 0.7 compared to a model trained with single frame
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5 Frames Joint IoU Threshold Runtime
Single Early Later Forecasting Tracking 0.5 0.6 0.7 0.8 0.9 [ms]
X 89.81 86.27 77.20 52.28 6.33 9

X 91.49 88.57 80.90 57.14 8.17 11
X 92.01 89.37 82.33 58.77 8.93 29
X X 92.02 89.34 81.55 58.61 9.62 30
X X X 93.24 90.54 83.10 61.61 11.83 30

Table 5.2: Ablation study, on 144× 80 region with vehicles having ≥3 number 3D points.

MOTA MOTP MT ML
FaF 80.9 85.3 75 10.6
Hungarian 73.1 85.4 55.4 20.8

Table 5.3: Tracking performance

input. While later fusion uses the same information as early fusion, it can get 1.4% extra improvement as it
can model more complex temporal features. Besides, adding prediction loss gives similar detection results on
the current frame alone, however it enables us to decode tracklets and provides evidence to output smoother
detections, thus giving the best performance, i.e. 6% points better on mAP at IoU 0.7 than single frame detector.

Tracking: Our model can output detections with track ids directly. In this part, we evaluate the raw tracking
output without adding any sophisticated tracking pipeline on top. Tab. 5.3 shows the comparison between our
model’s output and a Hungarian method on top of our detection results. We follow the KITTI protocol [55] and
compute MOTA, MOTP, Mostly-Tracked (MT) and Mostly-Lost (ML) across all 100 validation sequences. The
evaluation script uses IoU 0.5 for the association and score of 0.9 for thresholding both methods. We can see that
our final output achieves 80.9% in MOTA, 7.8% better than Hungarian, as well as 20% better on MT, 10% lower
on ML, while still having similar MOTP.

Motion Forecasting: We evaluate the forecasting ability of the model by computing the average L1 and L2
distances of the vehicles’ center location. As shown in Fig. 5.9, we can predict ten frames into the future with
L2 distance only less than 0.33 meter. Note that due to the nature of the problem, we can only evaluate on true
positives, which in our case has a corresponding recall of 92.5% on all objects. Also, as we can tell, the L1/L2
error grows exponentially over time. This shows the inherent difficulty of the motion forecasting problem, as
long term forecasting can be multi-modality while our approach only gives uni-model. It might also require more
information such as a high-definition map to better prediction where each vehicle would go into the future.

5.3.3 Qualitative Results

In this section, we show the visualization of different sets of samples from the validation set. As shown in
Fig. 5.10, we use the top-down view image over a 144× 80 meters region. We draw LiDAR point cloud in white
and all vehicles in color. Each vehicle has its unique color, and it is consistent over time, showing the effect
of tracking. We use waypoints for each vehicle to represent their future location as motion forecasting. In our
work, we prediction ten waypoints for each vehicle, corresponding to 1 second into the future. By looking at the
waypoints, we can tell the speed of each vehicle. For example, the last row in Fig. 5.10 gives an example where
predicted waypoints are far away from each other, showing the high speed of these vehicles. On the contrary,
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Figure 5.9: Motion forecasting performance

in the first row of Fig. 5.10, we can see lots of vehicles with predicted waypoints overlap at the same location,
meaning they are static vehicles. In total, we provide 5 sequences in Fig. 5.10, including heavy traffic, complex
scenes and fast-changing scenarios, etc. We can see that our algorithm can give accurate bounding boxes for
vehicles with a good heading estimate. Furthermore, the consistent color across different time shows that our
algorithm can track all vehicles at the same time, even with very heavy traffic such as the second row in Fig. 5.10.

On the other hand, we also provide a set of failure cases in Fig. 5.11 to better understand the limitations of
our algorithm, as well as inspire future work. The first row in Fig. 5.11 gives an example where the predicted
waypoints are not consistent (check the green car in the middle, turning right). This is because the waypoints are
independently predicted in our algorithm. Thus, there is no guarantee that the predicted waypoints are physically
feasible, giving a weird trajectory in this case. The second example shows a failure case where the detection
is incorrect. Check the red car in the middle whose rotation is predicted wrong. This results in inconsistent
detection/prediction results across time and can be very confusing for the whole self-driving system. This is
because LiDAR points are sparse, being occluded in this case. The third example shows a failure case on turning.
Check the green car in the middle that is turning left. We also draw the ground truth waypoints in white. As we
can see, our predicted waypoints do not perform a good turn, i.e. not as sharp as it should be. This reveals the fact
that making prediction only based on the motion is difficult. We should exploit more input, such as the HD map,
to better regularize where each vehicle can drive.

5.4 Discussion

The traditional self-driving solution includes different models/components to address the sub-problems of 3D de-
tection, tracking, and motion forecasting. It is indeed a good solution in practice as it allows a big organization
to utilize divide and conquer method. They can split teams to focus on each of these sub-tasks and progress
at the same time. However, the limitation is that massive engineering effort is required to hook up these mod-
els/components. We need to tune carefully to make sure the output of the upstream modules is compatible and
optimized for the input of downstream modules. It is also not efficient to iterate the system to achieve better
performance since a small change in upstream modules would require fine-tuning the whole system again. As a
result, often, when people upgrade the upstream module, they do not necessarily see a direct improvement of the
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t = 0s t = 0.5s t = 1s

Figure 5.10: Visualization: Each row represents one sequence. Each figure the top-down view of our model
output, including detection (represented by oriented bounding boxes), tracking (represented by color) and motion
forecasting (represented by waypoints).

entire system, making it challenging to integrate real improvement to the full stack.

On the contrary, we have proposed the holistic model that reasons jointly about 3D detection, motion fore-
casting, and tracking. We exploit the temporal information and provide two ways of incorporating temporal in-
formation, i.e., early-fusion and later-fusion that exploit the trade-off between runtime and accuracy. Using large
scale real-world driving data, we demonstrate that our model performs better on all tasks compared to baselines.
This is because we can train the model jointly with temporal information, as well as optimize it jointly with all
tasks. More importantly, as we use one model for different tasks, the heavy feature computation is shared among
all tasks, making our algorithm very efficient in terms of computation. In practice, we can achieve real-time
performance, running at 30Hz, without substantial code optimization.

Despite the promising results we have seen, there are also certain limitations to our approach. First of all,
a real-world self-driving vehicle would need to understand the movement of all surrounding objects, not only
limited to vehicles. We need to extend this work to pedestrians, cyclists, etc. Secondly, the information our model
uses to make motion forecasting is only from objects’ history motion. This, however, could be problematic in
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t = 0s t = 0.5s t = 1s

Figure 5.11: Failure Cases: Each row represents one sequence. Each figure the top-down view of our model
output, including detection (represented by oriented bounding boxes), tracking (represented by color) and motion
forecasting (represented by waypoints).

many cases. For example, when the vehicle is approaching a STOP sign, our model would not predict it to stop
as we do not have traffic sign and traffic lights as input. Another example is when the vehicle is approaching an
intersection; our model would not predict it making a turn unless the vehicle starts making the turn (i.e., generating
the motion of turning). To fix these issues, we need to input an HD map as well as the dynamic element of the map
(i.e., traffic lights, etc.) to our model. In fact, [19] did the work along this direction. They also took it one step
further to predict high-level actions that can better help motion planner understand the surrounding environment.
Bansal et al. [10] and Chou et al. [33] also utilized temporal information to help predict motion using a single
neural network.



Chapter 6

Neural Interpretable Planner

In the previous chapters, we developed methods based on deep learning to help self-driving vehicles understand
the surrounding environment. In particular, chapter 3 was about estimating the depth of the scene using stereo
cameras. In chapter 4, we extended the deep matching method to flow estimation. Moreover, a joint model
for detection, tracking, and motion forecasting was introduced in chapter 5. It unified different components in
traditional autonomy software systems to achieve better results. While previous chapters focus on improving the
performance of important tasks such as perception and prediction, we also need to examine the impact of these
improvements on the end task, i.e. self-driving capability. This involves optimizing the usage of the output of
the perception and prediction models for the downstream modules. In other words, how can we transform the
understanding of the world into something more suitable for downstream modules?

In traditional self-driving autonomy systems, a cost map would be constructed to represent the good region
for a self-driving vehicle to drive through. This cost map is manually designed to incorporate human knowledge
and handcrafted rules to make sure that a self-driving vehicle behaves as expected. More explicitly, the cost
map is required to encode the information about the surrounding environment. For example, it takes as input the
information of the present and predicted future locations of both dynamic and static objects. If a detection model
detects a vehicle in front of the ego car, there should be a much higher cost at the detected location, implying
that the self-driving vehicle should not be driving there. This can also be interpreted as the penalty of driving to
a specific location at a specific time step. In the context of reinforcement learning, people have been using value
function to represent the same idea, i.e., each state has a value that indicates how good or bad it is if the agent
arrived there.

Although we can manually design the cost map based on the results from perception and prediction, the per-
formance will be bounded by the perception and prediction models as information can only be passed through
specific and limited forms, e.g. detection bounding boxes. To be more specific, we have various types of sensors
giving comprehensive information represented as A as the input to our system. The perception and prediction
modules can be treated as encoders that transform the information A into another form understandable by humans
represented as B, e.g. objects’ bounding boxes and their future locations. Later, the planning module, which can
be treated as a decoder, takes this information B to perform corresponding actions to drive safely toward the
desired location. However, this approach is suboptimal, as the information captured by B is limited. Useful infor-
mation such as uncertainty and unknown obstacles are ignored when we only use bounding boxes and predicted
future locations from successful detections. Alternatively, we can use a deep learning model to learn the cost map
instead of manually constructing it. The advantages include a reduced dependency on human domain knowledge,

68
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ease of scaling and maintenance. It also removes the limitation on the flow of information introduced by the
explicit and restrictive bounding box representation.

In this chapter, we propose a neural motion planner for self driving in complex urban scenarios, including
perceiving traffic-light, yielding, and handling simple interactions with multiple road-users. We bridge the gap
between perception, prediction, and planning modules by learning the cost map directly from sensor data. Towards
this goal, we design a holistic model that takes as input raw LiDAR data and an HD map, and produces a space-
time cost volume defining the goodness of each position that the self-driving car can occupy within the planning
horizon. At the same time, our model gives interpretable intermediate representations in the form of 3D detections
and their future trajectories. Our planner then samples a set of diverse, physically feasible trajectories and selects
the one with the minimum learned cost for execution. Importantly, the non-parametric cost volume can capture
the uncertainty and multi-modality in various possible SDV trajectories, e.g., changing lane vs. keeping lane.

We demonstrate the effectiveness of our approach using a real-world driving dataset captured in several cities
in North America. Our experiments show that our model provides good interpretable representations and better
performance. For detection and motion forecasting, our model outperforms recent neural architectures specifically
designed on these tasks. For motion planning, our model generates safer planning compared to the baselines.

6.1 Background

As is the case in many application domains, the field of autonomous driving has been transformed in the past few
years by the success of deep learning. Existing approaches that leverage this technology can be divided into two
main types: models that are trained in an end-to-end fashion and traditional engineering systems.

End-to-end driving approaches [136, 17] take the output of the sensors (e.g., LiDAR, images) and use it as
input to a neural network that outputs control signals, e.g., steering command and acceleration. The main benefit
of this framework is its simplicity, as only a few lines of code can build a model. As well, labeled training data can
be easily obtained automatically by recording human driving using a self driving vehicle platform. In practice, this
approach suffers from compounding errors due to the nature of self-driving control being a sequential decision
problem, and the requirement of massive amounts of data to generalize. Furthermore, interpretability is difficult
to obtain for analyzing the mistakes of the network. It is also hard to incorporate sophisticated prior knowledge
about the scene, e.g., vehicles should not collide with other actors and should drive on the road surface.

In contrast, most self-driving car companies, utilize a traditional engineering system, where the problem is
divided into subtasks: perception, prediction, motion planning, and control. Perception is in charge of estimating
all actors’ position and motion given the current and past evidence. This involves solving tasks such as 3D object
detection and tracking. Prediction, on the other hand, tackles the problem of estimating the future positions of
all actors as well as their intentions (e.g., changing lanes, parking). Finally, motion planning takes the output
from previous modules and generates a safe trajectory for the SDV to execute. This framework has interpretable
intermediate representations by construction, and prior knowledge can be easily exploited, for example, in the
form of high definition maps (HD maps).

However, solving each of these subtasks is hard. Most self-driving companies have large engineering teams
working on each sub-problem in isolation. As a consequence, an advance in one sub-system does not easily
translate to an overall system performance improvement. In addition, uncertainty estimates are difficult to prop-
agate, and computation is not shared among different modules. This leads to longer reaction times of the SDV
and makes the overall system less reliable. Furthermore, each of the sub-systems is trained with a different task-
specific objective, which is not directly related to the overall system performance. For example, 3D detection tries
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to maximize AP, where each actor has the same weight. However, in a driving scenario, high-precision detec-
tion of actors that may influence the SDV motion, e.g., through interaction (cutting in, sudden stopping), is more
critical.

In the following, we first give a brief introduction about related work for motion planning in the domain of
self-driving. Then, we introduce the basics about inverse reinforcement learning as well as deep structured models
which form the fundamentals of our approach.

6.1.1 Related Work

Imitation Learning: Imitation learning (IL) uses expert demonstrations to learn a policy that maps states to
actions directly. It is arguably able to bypass the problem of disconnection between different modules as informa-
tion can flow through the whole module instead of only by the form of detected objects. Using IL for self-driving
vehicles was introduced in the pioneering work of [136] where a direct mapping from the sensor data to steer-
ing angle and acceleration is learned. A similar philosophy has been followed since then, e.g., in [17], but with
much larger neural networks and massive training data recorded by manual driving. In contrast, with the help
of a high-end driving simulator CARLA [43], Codevilla et.al. [35] exploit conditional models with additional
high-level commands such as continue, turn-left, turn-right. Muller et.al. [127] incorporate reasoning about road
segmentation as intermediate interpretable representations. During training, they use segmentation as supervi-
sion, and at inference time, steering commands are converted from learned segmentation mask from camera data,
i.e. the segmentation is trained separately. In practice, IL approaches suffer from the compounding error due to
the nature of self-driving control being a sequential decision problem. Furthermore, these approaches require a
massive amount of data, and generalize poorly, e.g., to situations drifting out of the lane. Also, another limitation
is on interpretability. It is very hard to diagnose when IL fails as there is no intermediate output showing if the
self-driving vehicle understands the surrounding world well. It is essentially a black-box to human and could not
provide safety guarantee for critical usage such as self-driving vehicles.

RL & IRL: On the other hand, reinforcement learning (RL) is a natural fit for sequential decision problems as
it considers the interaction between the environment and the agent (a self-driving car in this case). It is designed
to learn from the interaction between an agent and the environment; thus it can avoid the compounding error issue
as the agent can explore everywhere in the environment instead of in a fixed set of roads that human drives on. A
good simulator is essential to do that. In particular, it needs to be able to simulate the worst case scenario. Follow-
ing the success of Alpha GO [152], RL has been applied to self-driving in [133, 87]. In contrast to reinforcement
learning, inverse reinforcement learning (IRL), as the name suggests, looks at the inverse problem of reinforce-
ment learning, i.e. learning the reward function for a given task through human demonstration. [181, 206] develop
IRL algorithms to learn drivable region for self-driving cars. [142] further infer possible trajectories with a sym-
metrical cross-entropy loss. However, all these approaches have only been tested on the simulated dataset or small
real-world dataset, and it is unclear if RL and IRL can scale to more realistic settings. Furthermore, these methods
do not produce interpretable representations, which are desirable in safety-critical applications.

Optimization Based Planners: Motion planning has long been treated as an independent task that uses the out-
puts of perception and prediction modules to formulate an optimization problem, usually by manually engineering
a cost function [18, 125, 208, 49]. The preferred trajectory is then generated by minimizing this cost function.
In practice, to simplify the optimization problem, many approaches assume the objective to be, for example,
quadratic [22], decompose lateral and longitudinal planning as two tasks [49, 3] or represent the search space into
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speed and path [85, 52]. In [3] A* is used to search the space of possible longitudinal and lateral motions in a
traffic scene and find a low-cost, collision-free trajectory. Similarly, the Baidu motion planner [49] uses dynamic
programming to find an approximate path and speed profile, followed by a quadratic programming optimization
of a manually designed cost function. In [207], the trajectory planning problem is formulated as a continuous
optimization and used in practice to demonstrate 100km of autonomous driving. In sampling-based approaches, a
set of trajectories is generated and evaluated against a predefined cost, among which, the one with minimum cost
is chosen [175, 148]. Such approaches are attractive since they are highly parallelizable [121]. The drawback of
all these hand-engineered approaches is that they require perfect perception and prediction output, thus are not
robust to real-world driving scenarios. Also, it is not easy to propagate uncertainty through different modules. In
practice, tremendous engineering efforts are required to fine-tune the whole system for the real world.

Planning under uncertainty: Planning methods for robust and safe driving in the presence of uncertainty have
also been explored [9, 197, 63]. Uncertainty in the intention of other actors is the main focus of [9, 197]. In
[63], possible future actions of other vehicles and collision probability are used to account for the uncertainty
in obstacles positions. Compared to these approaches, our planner naturally handles uncertainty by learning a
non-parametric cost function.

Holistic Models: These models can provide interpretability while achieving great performance on perception,
prediction. Chen et.al. [21] propose to learn a mapping from the sensor data to accordance, such as distance to
left boundary/leading vehicle. This is then fed into a controller that generates steering command and acceleration.
Sauer et.al. [145] further propose a conditional version of this model that takes direction command as additional
input. Unfortunately, these methods are only demonstrated in simulation and still far away from real-world usage.
On the other hand, Luo et al. [114] propose a joint model for perception and prediction from raw LiDAR data and
[19] extends it to predict each vehicles’ intention. All the methods above are trained for tasks that provide inter-
pretable perception/prediction outputs to be used in motion planning. However, no feedback is back-propagated
from the motion planning module.

6.2 Deep Structured Interpretable Planner

The end-to-end learnable motion planner model we proposed here generates accurate 3D trajectories over a plan-
ning horizon of a few seconds. Our model takes as input LiDAR point clouds and a high definition map (HD-map)
and produces interpretable intermediate representations in the form of 3D detections as well as their future motion
forecast over the planning horizon. Our final output representation is a space-time cost volume that represents the
“goodness” of each possible location that the SDV can take within the planning horizon. The initial cost volume
is computed solely via the feed-forward convolutional neural network. Then, our final plan can be estimated by
sampling a set of physically plausible trajectories, evaluating them using our learned cost volume, and selecting
the trajectory with the lowest cost.

Existing imitation learning approaches [136, 17, 35] directly regress the steering angle from raw sensor data,
but do not generalize well and have difficulty capturing the multi-modality nature of the problem. In contrast, our
approach can provide great interpretability through the form of detection and motion forecasting for each dynamic
object as well as handling multimodality naturally (e.g., changing lanes vs. keeping current lane). This is encoded
in the cost volume, as it can give multiple low-cost regions. Traditional planners use manually designed cost
functions using the outputs of perception and prediction systems. However, these individual components suffer
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Figure 6.1: Our interpretable and end-to-end motion planner. Backbone network takes LiDAR data and maps as
inputs, and outputs bounding boxes of other actors for future time steps (perception), as well as a cost volume
for planning with T filters. Next, for each trajectory proposal from the sampler, its cost is indexed from different
filters of the cost volume and summed together. The trajectory with the minimal cost will be our final planning.

from distribution mismatch between their inputs and outputs, as they are trained and tuned separately. In contrast,
our approach is trained jointly and can learn better representations for the end task. Furthermore, our model can
handle uncertainty naturally as this is represented in the cost. It does not require the costly parameter tuning
when constructing the cost volume from perception/prediction outputs, and can learn concepts that are difficult to
specify by hand, such as “slowing down when approaching occlusion”.

We learn our model end-to-end with a multi-task objective. Our planning loss encourages the human-driven
trajectories to have lower cost computed from our learned cost volume compared to other trajectories. Note that
this loss is sparse, as a ground-truth trajectory only occupies a small portion of the space of all possible trajectories.
As a consequence, learning with this loss alone is slow and difficult. To mitigate this problem, we introduce
another perception loss that encourages the intermediate representations to produce accurate 3D detections and
motion forecasting. This ensures the interpretability of the intermediate representations, and provides a direct
explanation of the model’s perception of the surroundings. On the other hand, it enables much faster learning.

6.2.1 Deep Structured Planning

More formally, let s = {s0, s1, · · · , sT−1} be a trajectory spanning over T time steps into the future, with st

the location in bird’s eye view (BEV) at time step t. We formulate the planning problem as a deep structured
minimization problem as follows

s∗ = arg min
s

∑
t

ct(st) (6.1)

where ct is our learned cost volume indexed at time step t, which is a 2D tensor with the same size as our region
of interest. Notice in Eq. 6.1, s represents how the vehicle can move in the real world; thus, there are constraints
on how the vehicles can move. For example, there is a limit on acceleration, deceleration, and the angle a vehicle
can turn. In this work, the minimization problem in Eq. 6.1 is approximated by sampling a set of physically valid
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Figure 6.2: Visualization of rasterized map data. Different color represents different map component.

trajectories s and picking the one with minimum cost. Our base model employs a convolutional network backbone
to compute this cost volume. It first extracts features from both LiDAR and maps and then feeds this feature map
into two branches of convolution layers that output 3D detection and motion forecasting as well as the planning
cost volume respectively. In this section, we describe our input representation and network in details.

Input representation: Our approach takes raw point clouds as inputs, captured by a LiDAR mounted on top of
the SDV. We employ T ′ = 10 consecutive sweeps as observations; this can help the model capture the motion
of all actors to make accurate predictions on where they are going. This information is crucial to plan a safe
trajectory avoiding future collisions.

Each LiDAR sweep consists of an unstructured point cloud collected at different timestep, with around 100K
points on average. For those sweeps, we first compensate ego-motion, i.e. project the point clouds from the
past ten frames into the same coordinate system centered at SDV’s current location. The transformation requires
accurate ego-motion estimation, which is not in the scope of this section. Thus here we assume it is known and
provided by the dataset. In practice, it can be estimated using GPS/IMU with standard localization algorithms.
On the other hand, raw LiDAR points are sparse and characterized by continuous coordinates, preventing us from
doing standard convolution operation directly. Thus to make the input point cloud data amenable to standard
convolutions, we follow [19] and rasterize the space into a 3D occupancy grid, where each voxel has a binary
value indicating whether it contains a LiDAR point. This results in a 3D tensor of size HxWx(ZT ′), where
Z,H,W represents the height and x-y spatial dimensions respectively. Note that we have concatenated different
time steps along the Z dimension to avoid using 3D convolutions, which are memory and computation intensive.

Access to a map is also a key for accurate motion planning, as we need to drive according to traffic rules (e.g.,
stop at a red light, follow the lane, change lanes only when allowed). Towards this goal, we exploit HD maps
that contain information about the semantics of the scene such as the location of lanes, their boundary type (e.g.,
solid, dashed) and the location of stop signs. Also, dynamic elements such as the status of a traffic light are crucial
for real-world driving. Similar to [19], we rasterize the map to form a M channels tensor, where each channel
represents a different map element, including road, intersections, lanes, lane boundaries, traffic lights, etc. In
detail, we represent each semantic component in the map with a binary map (i.e., 1 or -1). Roads and intersections
are represented as filled polygons covering the whole drivable surface. Lane boundaries are parameterized as
poly-lines representing the left and right boundaries of lane segments. Note that we use three binary masks to
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Figure 6.3: Details on backbone network.

distinguish lane types, as lane boundaries can be crossed or not, or only in certain situations. Lane surfaces
are rasterized to differentiate between straight, left, and right turns, as this information is helpful for intention
prediction. We also use two extra binary masks for bike and bus lanes as a way to input a prior of non-drivable
road areas. Furthermore, traffic lights can change the drivable region dynamically. We encode the state of the
traffic light into the lanes they govern. We rasterize the surface of the lane, succeeding the traffic light in one out
of three binary masks depending on its state: green, yellow or red. One extra layer is used to indicate whether
its governing traffic light protects those lanes, i.e., cars in other lanes must yield. This situation happens in turns
when the arrow section of the traffic light is illuminated. We estimate the traffic light states using cameras in our
self-driving vehicle. We also infer the state of some unobserved traffic lights that directly interact with known
traffic light states. For example, a straight lane with unknown traffic light state that collides with a protected turn
with green traffic light state can be safely classified as being red. Lastly, traffic signs are also encoded into their
governed lane segments, using two binary masks to distinguish between yields and stops. In total, there are 17
binary masks used as map features, resulting in a 3D tensor that represents the map. Fig. 6.2 shows an example,
where different elements (e.g., lane markers in cyan, crossings in magenta, alpha blended traffic lights with their
state colored) are depicted.

Our final input tensor is thus 3D tensor of size HxWx(ZT ′ +M).

Backbone: Our backbone is adapted from the detection network of [187] and consists of five blocks. Each
block has {2, 2, 3, 6, 5} Conv2D layers with filter number {32, 64, 128. 256, 256}, filter size 3x3 and stride 1.
There are MaxPool layers after each of the first 3 blocks. A multi-scale feature map is generated after the first four
blocks as follows. Similar to [202], we resize the feature maps from each of the first four blocks to 1/4 of the input
sizes and concatenate them together to increase the effective receptive field [112]. These multi-scale features are
then fed into the 5-th block. The whole backbone has a downsampling rate of 4. We refer the reader to Fig. 6.3
for more details.

Perception Header: The perception header has two components formed of convolution layers, one for classifi-
cation and one for regression.

To reduce the variance of regression targets, we follow SSD [107] and employ multiple predefined anchor
boxes aki,j at each feature map location, where subscript i, j denotes the location on the feature map and k indexes
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Figure 6.4: Trajectory Representation

over the anchors. In total, there are 12 anchors at each location, with different sizes, aspect ratios, and orientations.
The classification branch outputs a score pki,j for each anchor indicating the probability of a vehicle at each
anchor’s location. The regression branch also outputs regression targets for each anchor aki,j at different time-
steps. This includes localization offset ltx, l

t
y , size stw, s

t
h and heading angle atsin, a

t
cos. The superscript t stands

for time frame, ranging from 0 (present) to T − 1 into the future. Regression is performed at every timestep, thus
producing motion forecasting for each vehicle.

Cost Volume Head: The cost volume head consists of several convolution and deconvolution layers. To produce
a cost volume c at the same resolution as our bird-eye-view (BEV) input, we apply two deconvolution layers on
the backbone’s output with filter number {128, 64}, filter size 3x3 and stride 2. Each deconvolution layer is also
followed by a convolution layer with filter number {128, 64}, filter size 3x3, and stride 1. We then apply a final
convolution layer with filter number T , which is our planning horizon. Each filter generates a cost volume ct for
a future timestep t. This allows us to evaluate the cost of any trajectory s by simply indexing in the cost volume c.
In our experiments, we also clip the cost volume value between -1000 to +1000 after the network. Applying such
bounds prevents the cost value shifting arbitrarily, and makes tuning hyper-parameters easier. We next describe
our output trajectory parameterization.

6.2.2 Efficient Inference

Given the input LiDAR sweeps and the HD map, we can compute the corresponding cost volume c by feed-
forward convolutional operations as described above. The final trajectory can then be computed by minimizing
Eq. (6.1). Note, however, that this optimization is NP-hard due to the exponentially large number of possible
trajectories. We thus rely on sampling to obtain a low-cost trajectory. Towards this goal, we sample a wide variety
of diverse trajectories that can be executed by the SDV and produce as final output the one with minimal cost
according to our learned cost volume. This is guaranteed by using a physically plausible trajectory sampler. For
this procedure to be successful, we need to be able to efficiently sample trajectories that are physically possible,
and we need to be able to evaluate the cost volume efficiently. In this section, we describe in detail how we
sample, as well as how we evaluate our cost volume efficiently.
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Output Parameterization: A trajectory can be defined by the combination of the spatial path (a curve in the
2D plane) and the velocity profile (how fast we go along this path).

For sampling a spatial path, the most naive way is to sample a set of points (x, y) ∈ <2 in space, corresponding
to the preferred location over different time steps. This approach has the advantage of diversity as it is guaranteed
to cover the best trajectories possible. However, the limitation is that the sampling space is way too large, while at
the same time most of them are not physically possible for self-driving cars due to the limits in speed, acceleration,
and turning angle. Thus a better way is to follow a dynamic model for self-driving car and sample only in the
space defined by the dynamic model. This can greatly reduce the sampling space while making sure all sampled
spatial path defined by the set of points in cartesian space are executable by the self-driving vehicle.

In this work, we employ the bicycle model [132], which is widely used for planning in self-driving cars. This
model implies that the curvature κ of the vehicle’s path is approximately proportional to the steering angle φ
(angle between the front wheel and the vehicle): κ = 2tan(φ)/L ≈ 2φ/L, where L is the distance between the
front and rear axles of the SDV. This is a good approximation as φ is usually small.

We then utilize a Clothoid curve, also known as Euler spiral or Cornu spiral, to represent the 2D path of
the SDV [151]. We refer the reader to Fig. 6.4 for an illustration. The curvature κ of a point on this curve is
proportional to its distance ξ alone the curve from the reference point, i.e., κ(ξ) = πξ, Considering the bicycle
model, this linear curvature characteristic corresponds to steering the front wheel angle with constant angular
velocity. The canonical form of a Clothoid can be defined as

s(ξ) = s0 + a

[
C

(
ξ

a

)
T0 + S

(
ξ

a

)
N0

]
(6.2)

S(ξ) =

∫ ξ

0

sin

(
πu2

2

)
du (6.3)

C(ξ) =

∫ ξ

0

cos

(
πu2

2

)
du (6.4)

Here, s(ξ) defines a Clothoid curve on a 2D plane, indexed by the distance ξ to reference point s0, a is a scaling
factor, T0 and N0 are the tangent and normal vector of this curve at point s0. S(ξ) and C(ξ) are called the
Fresnel integral, and can be efficiently computed. In order to fully define a trajectory, we also need a longitudinal
velocity ξ̇ (velocity profile) that specifies the SDV motion along the path s(ξ): ξ̇(t) = ξ̈t + ξ̇0, where ξ̇0 is the
initial velocity of the SDV and ξ̈ is a constant forward acceleration. Combining this and (6.2), we can obtain the
trajectory points s in Eq. (6.1).

Sampling: Since we utilize Clothoid curves, sampling a path corresponds to sampling the scaling factor a in
Eq. (6.2). This scaling factor controls the shape of a sampled path. Since the final trajectory can only come from
sampled candidates, we need to make sure the set of trajectories we sample diversified enough. On the other hand,
considering the standard city driving speed limit of 15m/s (equivalent to 54 km/h), we sample a from the range
of 6 to 80m. Once a is sampled, the shape of the curve is fixed. We then use the initial SDV’s steering angle
(curvature) to find the corresponding position on the curve. Note that Clothoid curves cannot handle circle and
straight line trajectories well; thus, we sample them separately. The probability of using straight-line, circle, and
Clothoid curves are 0.5, 0.25, 0.25, respectively. Also, we only use a single Clothoid segment to specify the path
of SDV, which we think is enough for the short planning horizon. In addition, we sample constant accelerations
ξ̈ ranging from −5m/s2 to 5m/s2 which specifies the SDV’s velocity profile. Combining sampled curves and
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velocity profiles, we can project the trajectories to discrete time steps and obtain the corresponding waypoints
(See Fig 6.4) for which to evaluate the learned cost.

6.2.3 End-to-End Learning

Our ultimate goal here in this chapter is to plan a safe trajectory while following the rules of traffic. We want
the model to understand where obstacles are and where they will be in the future to avoid collisions. Therefore,
we use a multi-task training with supervision from detection, motion forecasting as well as the human-driven
trajectories for the ego-car. Note that we do not have supervision for cost volume. We thus adopt max-margin loss
to push the network to learn to discriminate between good and bad trajectories. The overall loss function is then:

L = Lperception + βLplanning. (6.5)

This multi-task loss not only directs the network to extract useful features but also make the network output
interpretable results. This is crucial for self-driving as it helps understand failure cases and improves the system.
In the following, we describe each loss in more details.

Perception Loss: Our perception loss includes classification loss, for distinguishing a vehicle from the back-
ground, and regression loss, for generating precise object bounding boxes. For each predefined anchor box, the
network outputs a classification score as well as several regression targets. This classification score pki,j indicates
the probability of the existence of a vehicle at this anchor. We employ a cross-entropy loss for the classification
defined as

Lcla =
∑
i,j,k

(
qki,j log pki,j + (1− qki,j) log(1− pki,j)

)
, (6.6)

where qki,j is the class label for this anchor (i.e., qki,j = 1 for vehicle and 0 for background). The regression outputs
include information of position, shape and heading angle at each time frame t, namely

lx =
xa − xl

wa
ly =

ya − yl

ha
,

sw = log
wa

wl
sh = log

ha

hl
,

asin = sin(θa)− sin(θl) acos = cos(θa)− cos(θl),

where superscript a means anchor and l means label. We use a weighted smooth L1 loss over all these outputs.
The overall perception loss is

Lperception =
∑(

Lcla + α

T∑
t=0

Ltreg

)
. (6.7)

Note that the regression loss is summed over all vehicle correlated anchors, from the current time frame to our
prediction horizon T . Thus it teaches the model to predict the position of vehicles at every time frame.

To find the training label for each anchor, we associate it to its neighboring ground-truth bounding box,
similar to [107, 114]. In particular, for each anchor, we find all the ground-truth boxes with intersection over
union (IoU) higher than 0.4. We associate the highest one among them to this anchor and compute the class label
and regression targets accordingly. We also associate any non-assigned ground-truth boxes with their nearest
neighbor. The remaining anchors are treated as background and are not considered in the regression loss. Note
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that one ground-truth box may associate to multiple anchors, but one anchor can at most be associated with one
ground-truth box. During training, we also apply hard negative mining to overcome imbalance between positive
and negative samples.

Planning Loss: Learning a reasonable cost volume is challenging as we do not have ground-truth. To overcome
this difficulty, we minimize the max-margin loss where we use the ground-truth trajectory as a positive example,
and randomly sampled trajectories as negative examples. The intuition behind is to encourage the ground-truth
trajectory to have minimal cost, and others to have higher costs. More specifically, assume we have a ground-
truth trajectory {(xt, yt)} for the next T time steps, where (xt, yt) is the position of our vehicle at the t time step.
Define the cost volume value at this point (xt, yt) as ĉt. Then, we sample N negative trajectories, the ith among
which is {(xti, yti)} and the cost volume value at these points are cti. The overall max-margin loss is defined as

Lplanning =
∑

{(xt,yt)}

(
max

1≤i≤N

(
T∑
t=1

[
ĉt − cti + dti + γti

]
+

))
(6.8)

The inner-most summation denotes the discrepancy between the ground-truth trajectory and one negative trajec-
tory sample, which is a sum of per-timestep loss. []+ represents a ReLU function. This is designed to be inside the
summation rather than outside, as it can prevent the cost volume at one time-step from dominating the whole loss.
dti is the distance between negative trajectory and ground-truth trajectory ||(xt, yt)− (xti, y

t
i)||2, which is used to

encourage negative trajectories far from the ground-truth trajectory to have much higher cost. γti is the traffic rule
violation cost, which is a constant if and only if the negative trajectory t violates traffic rules at time t, e.g. mov-
ing before red-lights, colliding with other vehicles etc. This is used to determine how ‘bad’ the negative samples
are, as a result, it will penalize those rule violated trajectories more severely and thus avoid dangerous behaviors.
After computing the discrepancy between the ground-truth trajectory and each negative sample, we only optimize
the worst case by the max operation. This encourages the model to learn a cost volume that discriminates good
trajectories from bad ones.

6.3 Experiments

In this section, we evaluate our approach on a large scale real-world driving dataset. The dataset was collected
over multiple cities across North America, over different seasons. In order to create a balanced dataset for self-
driving, we need to consider different aspects and characteristics of the dataset. In particular, we take into account
the diversity of time of the day, season, traffic conditions. As a result, we made the dataset consists of 6,500
scenarios with about 1.4 million frames, the training set consists of 5,000 scenarios, while validation and test
have 500 and 1,000 scenarios, respectively. Our dataset has annotated 3D bounding boxes (bounding box size and
heading in top-down view) of all objects including vehicles, pedestrians, and cyclists for each frame. Each object
has a unique id; thus, it is tracked over time. In this chapter’s experiments, we focus our attention on the vehicle
to vehicle interactions and leave the detection of pedestrians, cyclists, and other road users to future work.

For all experiments, we utilize the same spatial region, which is centered at the SDV, with 70.4 meters both
in front and back, 40 meters to the left and right, and height from -2 meters to 3.4 meters. This corresponds to a
704x400x27 tensor with an interval of 0.2 meters per pixel on all dimensions. Each time step corresponding to
100ms and we use an input sequence of 10 frames at 10Hz, while the output is 7 frames at 2Hz, resulting in a
planning horizon of 3 seconds.
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Method L2 (m) Collision Rate (%) Traffic Violation (%)
1.0s 2.0s 3.0s 0.5s 1.0s 1.5s 2.0s 2.5s 3.0s 1.0s 2.0s 3.0s

Ego-motin 0.281 0.900 2.025 0.00 0.01 0.20 0.54 1.04 1.81 0.51 2.72 6.73
IL 0.231 0.839 1.923 0.00 0.01 0.19 0.55 1.04 1.72 0.44 2.63 5.38

Acc 0.403 1.335 2.797 0.05 0.12 0.27 0.53 1.18 2.39 0.24 0.46 0.64
Manual Cost 0.402 1.432 2.990 0.00 0.02 0.09 0.22 0.79 2.21 0.39 2.73 5.02

Ours(3s) 0.314 1.087 2.353 0.00 0.01 0.04 0.09 0.33 0.78 0.35 0.77 2.99

Table 6.1: Planning Metrics

In the following, we first show quantitative analysis for planning on a wide variety of metrics measuring
collision, similarity to the human trajectory, and traffic rule violations. Next, we demonstrate the interpretability
of our approach, through quantitative analysis of detection and motion forecasting, as well as visualization of
the learned cost volume. Last, we provide an ablation study to show the effects of different loss functions and
different temporal history lengths.

6.3.1 Planning Results

For open-loop planning evaluation, there is no standard well-recognized metrics. In order to get a comprehensive
understanding of our planner, we first explain the set of metrics we used in the following.

• L2 Distance to Real Trajectory: This evaluates how far away the planned trajectory is from the real
executed trajectory in the form of L2 distance between planned waypoints and real waypoints, i.e. Ldist =∑T
t=1

√
(xt − x̂t)2 + (yt − ŷt)2, where xt, yt are planned waypoint at time t and x̂t, ŷt are waypoint at

time t from human preferable trajectories. Notice real trajectory is just one of the many possible trajectories
that humans think is good; thus, a lower number indicates a higher precision.

• Future Potential Intervention Rate: This is used to evaluate if a planned trajectory will overlap with other
vehicles in the future. For a given time step t in future, We count the occurrence of all overlap up to time t
as one intervention and compute the percentage of this happening; thus, a lower number is preferred.

• Lane Violation: It counts the occurrence of SDV crossing a solid yellow line. The number shows the
accumulated percentage of this happening and lower is better. The crossing here is defined as if SDV
touches the line.

Given the metrics, the other important element is the baselines. In the following, we introduce a few baselines
from using learning algorithms to standard non-learning algorithms.

• Ego-motion forecasting (Ego-motion): Ego-motion provides a strong cue of how the SDV would move
in the future. This baselines takes only SDV’s past position as input and uses a 4-layer MLP to predict the
future locations. This baseline is expected to work well when driving in very simple driving condition, i.e.,
keep going straight; however, it has a significant drawback that it does not reason about the surrounding
vehicles, map information, etc.

• Imitation Learning (IL): We follow the imitation learning framework [136, 17, 35], and utilize a deep
network to extract features from raw LiDAR data and rasterized map. For fair comparison, we use the same
backbone described (Sec. 6.2.1) and same input parameterization (Sec. 6.2.1) as our approach. Also, the
same MLP from Ego-motion forecasting baseline is used to extract features from ego-motion. These two
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Input representation Detection Motion forecasting

Figure 6.5: Pipeline Visualization - Perception We show a sample input representation of our model and the
corresponding detection results (bounding boxes in cyan) as well as motion forecasting results (represented by
waypoints) for 3 seconds into the future.

t = 0.5 t = 1.0 t = 1.5

t = 2.0 t = 2.5 t = 3.0

Figure 6.6: Pipeline Visualization - Cost Map Here we show the cost-map for each time step into future. In total,
we prediction 6 frames into future on 2Hz. Cost-map are overlapped with different color for better visualization.

features are then concatenated and fed into a three-layer MLP to compute the final prediction. In addition to
reasoning from ego-motion, this baseline can reason from the surrounding environment; however, it lacks
the interpretability and generalization might be an issue.

• Adaptive Cruise Control (ACC): This baseline implements the simple behavior of following the leading
vehicle, which is widely used in the automation industry. The vehicle follows the lane center-line, while
adaptively adjusting its speed to maintain a safe distance from the vehicle ahead. When there is no lead
vehicle, a safe speed limit is followed. Traffic control, such as traffic lights and stop signs, are observed as
a stationary obstacle, similar to a stopped lead vehicle.

• Plan w/ Manual Cost (Manual): This baseline uses the same trajectory parameterization and sampling
procedure as our approach. However, it utilizes a manually designed cost using perception and motion
forecasting outputs. In detail, we rasterize all possible roads the SDV can take going forward and set it to a
low cost of 0; all detected objects’ bounding boxes is set to be 255 meaning a high-cost area; the cost of any
other area is set to a default value 100. This baseline is designed to show the effectiveness of our learned
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Figure 6.7: Overall visualization with planned trajectory in red.

cost volume as it utilizes the same sampling procedure as our approach but just a different cost volume.

The planning comparison results are shown in Tab. 6.1. Our approach has a lower future collision rate at all
time steps by a large margin. Note that Ego-motion and IL baselines give lower L2 numbers as they optimize
directly for this metric; however, they are not good from the planning perspective as they have difficulty reasoning
about other actors and frequently collide with others. Comparing to the manual cost baseline and ACC, we achieve
both better regression numbers and better collision rates, showing the advantage of our learned cost volume over
manually designed cost. For lane violation, Notice ACC is designed to follow the lane; thus, it has 0 violation by
definition. However, comparing to other baselines, we achieve a much smaller traffic violation number, showing
our model can reason and learn from the map.

6.3.2 Interpretability

Interpretability is crucial for self-driving, as it can help the diagnosis of failure cases both offline and online.
During an offline analysis, we can diagnose the system better with intermediate interpretation and more easily
identify the root cause of failure cases. During online testing, good interpretability provides a real-time feedback
of the performance of the system, and makes it easier for drivers or passengers to monitor the system.

In the following, we first show the visualization of the full pipeline, from the input representation to detec-
tion, motion forecasting, cost-map, and planning results. Then, we provide quantitative results on 3D detection
and motion forecasting, where our approach achieves on-par or better results on metrics compared to methods
designed specifically for these individual tasks. For the cost map, we show qualitatively that it provides multi-
modality naturally and learns to reason for different time steps in the future. Additionally, it produces trajectories
that obey traffic rules and avoid collisions.

Pipeline Visualization: As shown in Fig. 6.5, we give an example input on the left. Note that for better visual-
ization, we only show one frame LiDAR points with smaller spatial dimension, while our model uses ten frames
with a region of size 140x80 meters. The input tensor also encodes map information, including road, lane bound-
ary, crossing, etc. (detailed in 6.2.1), the red line means the boundary vehicles must not cross. In the middle, we
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Method Detection mAP @ IoU (pts ≥ 1)
0.5 0.6 0.7 0.8 0.9

MobileNet[76] 86.1 78.3 60.4 27.5 1.1
FaF[114] 89.8 82.5 68.1 35.8 2.5

IntentNet[19] 94.4 89.4 75.4 43.5 3.9
PIXOR[187] 93.4 89.4 78.8 52.2 7.6

Ours 94.2 90.8 81.1 53.7 7.1

Table 6.2: Detection mAP Result

Method L2 along trajectory (m) L2 across trajectory (m) L1 (m) L2 (m)
0s 1s 2s 3s 0s 1s 2s 3s 0s 1s 2s 3s 0s 1s 2s 3s

FaF[114] 0.29 0.49 0.87 1.52 0.16 0.23 0.39 0.58 0.45 0.72 1.31 2.14 0.37 0.60 1.11 1.82
IntentNet[19] 0.23 0.42 0.79 1.27 0.16 0.21 0.32 0.48 0.39 0.61 1.09 1.79 0.32 0.51 0.93 1.52

Ours 0.21 0.37 0.69 1.15 0.12 0.16 0.25 0.37 0.34 0.54 0.94 1.52 0.28 0.45 0.80 1.31

Table 6.3: Motion Forecasting Metric

show the detection bounding boxes (in cyan) from our model. We can see that our model captures all vehicles
with proper bounding boxes and consistent headings. On the right, we overlay the motion forecasting results on
top. Each vehicle’s future trajectory is shown with 6 points, representing its predicted location in 0.5, 1.0,..., 3.0
seconds into the future. By looking at the waypoints, we can also tell the predicted speed of the vehicles. In
particular, when all waypoints overlap with each other, it means the vehicle is static (either stopped or parked) at
the time.

In Fig. 6.6, we give an example on the learned cost map for all different time steps. Our model is trained to
predict the cost-map for 6 frames into future with 2Hz, i.e. at t = 0.5, 1.0, ..., 3.0 seconds. We can clearly see that
our model is able to learn time-dependent cost, and the cost follows the lane perfectly in this case.

In Fig. 6.7, we show the final visualization including all components of our approach for the example shown
in both Fig. 6.5 and Fig. 6.6. In addition to the input HD map and LiDAR data, detection bounding boxes,
motion forecasting, and cost-map, we show the planned trajectory in red. We can see that the planned trajectory
is following the lane perfectly in this example, and it is consistent with our learned cost-map, demonstrate the
effectiveness of our sampling-based inference algorithm.

Detection: Here we show quantitative results on detection. We compare against several state-of-the-art real-
time detectors, validating that our holistic model understands the environment. Our baselines include a MobileNet
adapted from [76], FaF[114], IntentNet[19] and PIXOR[187], which are specifically designed for LiDAR-based
3D object detection. The metric is mAP with different IoU thresholds, and vehicles without LiDAR points are
not considered. As shown in Tab. 6.2, our model archives best results on 0.7 IoU threshold, which is the metric of
choice for self-driving. In particular tit improves from PIXOR [187] by 2.3 points at 0.7 IoU threshold. Qualitative
results can also be found in Fig. 6.8, Fig. 6.9 and Fig. 6.10.

Motion Forecasting: Tab. 6.3 shows quantitative motion forecasting results, including L1 and L2 distance to
ground-truth locations. We also provide the L2 distance from our predictions to the ground-truth position along
and perpendicular to the ground-truth trajectory. These help to distinguish between errors due to wrong velocities
or direction estimations. We use baselines from [114, 19], which are designed for motion forecasting with raw
LiDAR data. Our model performances better in all metric and all time steps. In particular, we improve from FaF
[114] 1.52m to 1.15m for L2 along trajectory and 0.58m to 0.37m for L2 across trajectory at 3 second into future,
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t = 0s t = 2s t = 4s

Figure 6.8: Cost Volume across Time - Avoid Collision: Each figure shows the learned cost volume for different
future time steps overlapped using the color scheme in Fig. 6.6. Each row represents one sequence at different
time steps.

which is 25% and 36% improvement respectively. Compared to IntentNet [19] which uses high-level intentions as
additional information for training, we improve from 1.27m to 1.15m for L2 along trajectory and 0.48m to 0.37m
for L2 across trajectory at 3 second into future, which is 10% and 23% improvement respectively. Qualitative
results are shown in Fig. 6.8, Fig. 6.9 and Fig. 6.10.

Cost Map Visualization: In order to better demonstrate the effectiveness of our learned cost map, we provide
more visualizations of the learned cost map across different time steps in different scenarios as shown in Fig. 6.8,
Fig. 6.9 and Fig. 6.10. These figures give a top-down view of the scene, showing the map (using the format
same as Fig. 6.5), LiDAR point clouds in red and planning results (in red) as well as detection (in cyan), motion
forecasting (represented as cyan points and polyline connecting them) and learned cost map where we use the
same color scheme introduced in Fig. 6.6.

As shown in Fig. 6.8, each figure shows the learned cost map represented by different colors for different time
steps into the future. In particular, each row is one example and all figures are centered at the self-driving vehicle
for simplicity. As we can see, in the first row of Fig. 6.8, the cost map correctly captures the stopped vehicle in
front of the self-driving vehicle and provides the option to change lanes. The example in the second row from
Fig. 6.8 shows that the cost map can avoid obstacles, even if it is not detected as dynamic objects of predetermined
classes (i.e., vehicles in this case). This is a perfect example which shows that our model can learn more useful
information from the raw sensor compared to standard perception/prediction modules. The example in the last
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t = 0s t = 2s t = 4s

Figure 6.9: Cost Volume across Time - Follow Lane: Each figure shows the learned cost volume for different
future time steps overlapped using the color scheme in Fig. 6.6. Each row represents one sequence at different
time steps.

row gives another nudging case where our learned cost map can avoid the unexpected vehicle in front.

In a similar format, Fig. 6.9 gives three examples where the self-driving vehicle is driving in heavy traffic and
on narrow roads. As we can see, our model gives accurate time-dependent cost map, capturing proper speed and
direction. The final planned trajectories shown in red are stable and accurate.

Also, we provide another three examples shown in Fig. 6.10, where our model can learn multi-modality, i.e.,
giving multiple low-cost regions going forward. When the self-driving vehicle is approaching intersections, our
model provides multiple options, i.e. either going straight or making a turn. Once the self-driving vehicle is in or
passing the intersection, the cost map becomes more uni-modal and provides accurate cost map going forward.

6.3.3 Ablation Study

In this section, we conduct ablation studies for a detailed understanding of our approach. The corresponding
results are reported in Table 6.4. Our best model is Model 5. Compared to Model 1, which is optimized only for
detection and motion forecasting, it can achieve similar performance in terms of detection and motion forecasting.
Model 2 is trained only with planning loss, without the supervision of object bounding boxes. It performs worse
in terms of planning metrics, showing the importance of intermediate supervision. Model 3 exploits different
input length. As we can see, a longer input sequence gives better results on all metrics. This is again expected as
longer input sequence gives a better estimation of motion not only for self-driving vehicles but also surrounding



CHAPTER 6. NEURAL INTERPRETABLE PLANNER 85

t = 0s t = 1s t = 2s

Figure 6.10: Cost Volume across Time - Multi-Modality: Each figure shows the learned cost volume for differ-
ent future timesteps overlapped using the color scheme in Fig. 6.6. Each row represents one sequence at different
timesteps.

dynamic objects. Model 4 is trained without the traffic rule penalty γ in Eq. 6.8. It performs worse on planning,
as it has no prior knowledge about a collision, and is not explicitly trained to avoid collisions.

Traffic Lights A/B Test: In addition to vehicles on the road, another type of important elements in real-world
driving is the traffic light. They direct traffic, assign right-of-way in an intersection, etc. Thus, the self-driving
vehicle needs to understand the implicit meaning of traffic lights and plan the action accordingly, i.e., following
the traffic rules. Traffic lights are dynamic elements, meaning the same light can have different states at different
time steps. We have shown the quantitative performance of our approach in the whole dataset in Tab. 6.1. Here,
we additionally present ablation studies (A/B test) to examine the effect of traffic lights on the behavior of our
model through changes in the resulting cost map. In particular, we pick a few interesting scenarios, especially
near intersections. We manually change the traffic light in front of a self-driving vehicle to be GREEN in one
experiment and RED in the other. By comparing the cost map from both experiments, we can see the effects of
traffic lights. As shown in Fig. 6.11, each column is a pair of examples. The first row has traffic lights being
RED and the second row has GREEN lights. We can see that when the lights are RED, the low cost regions in
the cost maps are less spread out and mostly concentrated at the same location. When the lights are GREEN,
the learned cost maps extend naturally forward, and at the same time avoid obstacles (e.g. third example). As
a result, the final planned trajectories represent a stop action under RED lights and driving forward action under
GREEN lights. This demonstrates that our model can learn to understand the concept of traffic lights and behave
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ID Loss Input Penalty mAP@IoU Prediction L2 (m) Collision Rate (%) Traffic Violation (%)
Det Plan 5 10 0.5 0.7 1s 2s 3s 1s 2s 3s 1s 2s 3s

1 X X 94.1 81.3 0.48 0.84 1.34 - - - - - -
2 X X - - - - - 0.01 0.23 1.42 0.37 1.06 3.85
3 X X X X 93.6 80.1 0.46 0.83 1.35 0.01 0.15 0.93 0.36 0.86 3.09
4 X X X 94.2 81.1 0.45 0.80 1.30 0.01 0.29 1.40 0.36 1.02 3.26
5 X X X X 94.2 81.1 0.45 0.80 1.31 0.01 0.09 0.78 0.35 0.77 2.99

Table 6.4: Ablation Study

Figure 6.11: Traffic Light A/B Test: We show the learned cost map with traffic light manually on and off on
same scenarios. First row has traffic light RED and second row has GREEN lights.

accordingly.

6.3.4 Close-Loop Test

In order to show the effectiveness of our approach for real-world self-driving situations, we need to perform
closed-loop tests. This is an essential step as the self-driving vehicle will always execute the trajectory it plans
during real-world online driving. There is no human intervention at every time step to change the execution (the
safety driver is only used to make sure self-driving vehicle do not go catastrophically wrong and would allow the
self-driving vehicle to choose an action when multiple options exist). In the following, we first describe the setup
we use and show a set of samples covering different aspects of the problem.

Close-Loop Setup: The ideal setup for these experiments is to use a simulator that allows the self-driving
vehicle to drive anywhere in that virtual world, and receive raw sensor data (LiDAR) as well as corresponding HD
maps in real-time. While there is no such simulator publicly available, we can simplify the problem by making
use of the recorded scenarios from the dataset we collected. In particular, we use the ground truth labels as input
instead of raw sensor data. First, we take a recorded scenario and the corresponding HD map, i.e., we know the
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t = 0s t = 2s t = 4s

Figure 6.12: Close-Loop Test: Here we use different settings for input, i.e. rasterization from ground-truth labels.
This is due to the limitation of sensor simulation.

location of all dynamic objects in different time steps. Also, the dynamic objects follow their existing trajectories,
i.e., they would not react to the self-driving vehicle. Second, we rasterize a top-down view image using dynamic
objects’ bounding boxes and locations in the past to generate the input tensor for our model. We train our model
using the same algorithm but with the simulated input data. During inference time, instead of executing the human
action, we make the self-driving vehicle take the first action from the previously planned trajectory exactly as a
closed-loop test would need. Note that [10] also uses a similar setting for the closed-loop test. In this way, we
can bypass the requirement of simulating LiDAR sensor data. This, however, is against the idea of learning from
sensor data and leverage the most information from it. However, this can demonstrate the generalization of our
algorithm in close-loop settings.

Sample Visualization Here we show a set of examples from the closed-loop test. We use the five frames
spanning the past 0.8 seconds as the input; our model is trained to predict the cost map and plan for the 16 frames
covering 3 seconds into the future. Fig. 6.12 shows three examples in the closed-loop test. Each row depicts
one example. The first column represents time 0, the second column represents 2 seconds later, and the third
column represents 4 seconds later. We observe that the intermediate 3D detection and motion forecasting remain
of high quality. This is expected as the problem is much simpler as compared to the real world application. More
importantly, the first example shows that we can nudge smoothly in response to a vehicle performing a parallel
parking maneuver. The other two examples show the case where our algorithm can follow the lane in heavy traffic
as well as make turns to avoid obstacles.
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6.4 Discussion

In this chapter, we have proposed a neural motion planner that learns to drive safely. To the best of our knowledge,
this is the first of its kind to learn to drive from sensor data directly with interpretable intermediate results. We have
designed a holistic model that takes LiDAR data and an HD map as input and produces interpretable intermediate
representations in the form of 3D detections and their future trajectories, as well as a time-dependent cost map
defining the goodness of each position that the self-driving car can take within the planning horizon. Our planer
then samples a set of physically possible trajectories and chooses the one with the minimum cost. We have
demonstrated the effectiveness of our approach in very complex real-world scenarios in several cities of North
America and show that we can learn to drive safely. We have demonstrated that our approach gives better planning
results in terms of future collision rate, traffic rule violation, etc. compared to standard approaches ranging
from simple ego-motion regression to complicated imitation learning, adaptive cruise control and planning with a
manual cost. We visualized the results including 3D detections, motion forecasting, time-dependent cost map as
well as planned trajectories. Furthermore, we performed A/B testing using traffic lights with manually determined
statuses to demonstrate that our approach can learn the concept of traffic lights and plan accordingly. Last but not
least, we perform closed-loop testing in a slightly different setting due to the lack of a perfect simulator. These
preliminary results on the closed-loop test show that our approach can drive appropriately in certain scenarios.

Despite the exciting and promising results we have achieved so far, there are certain limitations. First, our
sampler uses Euler spiral in order to get physically possible trajectories for the planner. The curvature of a target
point on the Euler spiral is proportional to the distance from the starting point to the target point. This is a natural
fit for vehicle that changes direction at most once, but not for complex long-term motion. A simple example is the
lane change behavior, where a single Euler spiral cannot model the full lane change trajectory. To fix this issue,
we can extend to multiple Euler spirals, while making sure the curvature is continuous among all segments. This
could potentially solve the problem of drifting too far away when we only need to make a quick lane change. On
the other hand, our approach currently only consider vehicles on the road; however, there are more categories of
dynamic objects in the real world, such as pedestrians and cyclists. We need to extend the target classes to cover
these traffic participants. Furthermore, we use rasterized HD maps as input to the network currently. However,
this may be suboptimal, and we should exploit different representation of the map, e.g., to encode the map in a
way that respects the traffic rules by definition.

Learning the cost map and the corresponding planner from sensor data is a hard problem. In this chapter,
we propose the first approach in this direction and show promising results. Additionally, it showcases the merit
of using deep structured models. In particular, we use a deep neural network to learn to produce useful unary
features from sensor data, and use a sampling-based inference method to generate the final planning trajectory.
We could potentially add more well-known prior knowledge into the structured model. This could improve the
performance because deep neural network models require a large amount of corresponding data to learn certain
behavior. Unfortunately, we often only have limited data on rare and important corner cases. Thus, we can
incorporate priors into the structured models to capture those rare cases, making the learning process of the whole
system easier. In conclusion, a hybrid system with learning and predefined rules could be the best way to achieve
autonomous driving.



Chapter 7

Conclusion

In this thesis, I present the work done during my Ph.D. studies on building smarter self-driving vehicles. In partic-
ular, I focus on developing algorithms that learn from data for better performance as well as a better understanding
of existing models. In the following, I will summarize the work and give a short discussion on future work.

7.1 Summary

Building a self-driving vehicle is an exciting but difficult task. While previous approaches utilize lots of manually
tuned rules, we exploit deep neural networks to tackle this problem.

First of all, as convolutional neural networks have been widely used in a variety of vision tasks, we provide
a theoretical analysis of CNNs from the perspective of the receptive field in chapter 2. We carefully study its
properties in deep CNNs and establish a few surprising results about the effective receptive field size using Fourier
transform. We have shown that the distribution of impact within the receptive field is asymptotically Gaussian,
even with a 2D rectangular kernel. In deep CNNs, the effective receptive field only takes up a small fraction of
the full theoretical receptive field. We have also conducted empirical experiments for image classification and
semantic segmentation tasks. The results echoed the theory we established. This work on the receptive field is
just a start on the study of CNNs’ properties that provides a different angle for a better understanding. It indeed
spurred later work on different state-of-the-art model architectures for various vision tasks.

Secondly, we exploit the power of deep neural networks in different well-defined vision tasks within the
autonomy stacks and achieve better performance in terms of both accuracy and runtime compared to previous
methods. In particular, chapter 3 looks at the problem of depth estimation using stereo cameras. Stereo depth
estimation can be treated as an image patch matching problem. Different than the previous method which builds
a cumbersome siamese network, we propose a simple siamese network with dot-product as an explicit distance
metric on top of the CNN. The intuition behind this is that we want the CNN to learn specific features tailored
to and compatible with the distance metric used. We also treat the patch matching problem as a multi-class
classification problem instead of binary classification. This allows the network to calibrate the matching score
across a larger context, thus being more accurate. We demonstrate the effectiveness of our algorithm on the KITTI
dataset and show much better matching performance while being two orders of magnitude faster. In the following,
chapter 4, we take it one step further to apply this novel matching network for the optical flow problem. We adopt
the matching network to the 2D searching space and perform smoothing only on the topK matching results due
to memory limitations. As a result, we can remove regions with repetitive patterns, specularity, etc. and provide
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more reliable matching results. Furthermore, we treat each traffic participant (obtained by an instant segmentation
algorithm) separately and assume rigid motion for each of them. We evaluate our proposed approach on the
challenging KITTI 2015 optical flow benchmark and achieve state-of-the-art results at the time of publication.

Thirdly, we revisit the design choices of current autonomy stacks and propose new formulations in chapter
5 and chapter 6. After witnessing the tremendous progress of neural networks in different machine learning
domains, it is straightforward to reconsider whether certain design choices are still the best options. In chapter
5, we propose a joint model for 3D detection, prediction, and tracking to close the gap between perception and
prediction. We utilize a single neural network to learn features from sequential LiDAR data. Multiple prediction
heads are used to detect bounding boxes at different time-stamps. Tracking is performed greedily via checking the
overlap between predicted bounding boxes using previous evidence and current evidence. The benefits include
(1) better accuracy, as we can learn them jointly and optimize globally; (2) faster runtime, as we can share the
heavy feature computation between different modules. We demonstrate the effectiveness of our algorithm on a
self-collected large-scale driving dataset. We show that our approach outperforms the state-of-the-art by a large
margin and is more robust to occlusion, as well as sparse data at long range. Importantly, by sharing computation,
we can perform all tasks in as little as 30 ms. Furthermore, in chapter 6, we take the framework one step further to
include a planning module. We propose a deep structure model that uses a CNN for bounding box detection and
prediction, as well as learning a time-dependent cost-map over the planning horizon. The cost-map defines the
‘goodness’ of each position that the self-driving vehicle can take within the planning horizon. Then, a sampling-
based inference procedure is used to infer the desire planning trajectory further. We utilize Clothoid curves to
achieve physically plausible trajectories. Furthermore, as we do not have the ground-truth labels for the cost
map, we adapt max-margin loss to train the neural network to output a cost map. We evaluate our approach on
a large-scale real-world driving dataset and achieve better performance than the baselines, including ego-motion
forecasting, imitation learning, adaptive cruise control, and manual-cost based approach. The ablation study
results also show that training jointly with perception and prediction can improve the planning performance, and
our model can understand the effect of traffic lights. Further, the corresponding visualization of the cost map as
well as the planned trajectories demonstrate lane following, collision avoidance, and multi-modality.

7.2 Future Work

While we developed different algorithms for self-driving from various perspectives, we are still far from building a
perfect self-driving stack. However, there are reasons to believe that learning-based methods, especially different
variances of deep neural networks, will be able to push the boundaries of modern self-driving techniques.

Various self-driving datasets [36, 53, 192, 78, 117] have been collected over the past few years, focusing on
different aspects of the self-driving stack including semantic segmentation, 3D detection, and tracking. These
large-scale datasets allow us to validate novel architectures and train bigger / complex models that are capable
of handling multiple tasks. We have seen clear improvement from using a larger dataset, as it can exploit the
power of deep neural networks while making it less prone to overfitting. However, the benefits of data decrease
as we keep increasing the size of the dataset, i.e. we have diminishing returns with data usage. In the real world,
we have the long-tail distribution of scenarios we need to consider. For a safety-critical application such as self-
driving, it is too expensive to ignore certain scenarios, even if they rarely happen. This brings up very interesting
research problems regarding how can we design models to easily adapt to new scenarios while not forgetting what
is learned, and how much data—or what type of data—should we be collecting to improve the current system?
Most of the current deep neural network models designed to perform supervised learning tasks such as perception
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or prediction are trained to minimize certain losses on the whole dataset. The model will likely ignore cases that
rarely happen, sacrificing performance there to make improvements on more popular scenarios. However, in the
self-driving domain, we care about rare/edge cases to deliver a safe self-driving vehicle. For the edge cases we
have seen in the datasets, we need to re-balance them during training, while for unseen edge cases, we need to
make our model easily adaptable while not forgetting what has been already learned. This is also referred to as
lifelong learning or continual learning. On the other hand, identifying the edge cases is also nontrivial. Different
models will have different properties and, correspondingly, different edge cases. While it is true that we could
use human labelers to identify specific cases and provide corresponding labels/corrections, it is certainly a very
expensive and non-scalable approach. Thus, it is promising to look at active learning, while the learning procedure
is performed by actively selecting samples that can best benefit the trained model.

Besides, with richer datasets and more insight about neural networks, various architectures [93, 153, 162,
69, 202] have been proposed that achieve better results on widely used benchmarks. We could also benefit from
adapting and exploiting new architectures. While previous researchers with domain knowledge have been de-
signing the architecture manually, it is worthwhile to use machine learning techniques to search for architectures
automatically. Neural architecture searching is one of the promising directions that exploits the power of deep
learning in the space of architecture design. More importantly, as the number of GPU hungry algorithms in the au-
tonomy stacks increases, the performance and runtime tradeoff becomes critical. One can always reduce the size
of the network to achieve lower runtime and less energy consumption; however, the performance would greatly
decrease. People have proposed various architectures that run real-time with a relatively small performance drop
[76, 200, 81]. However, there are still improvements needed for self-driving. On the other hand, model com-
pression looks at the problem of how to efficiently compress a trained model without too much performance drop
through quantization or clipping. Overall, exploring model architectures will certainly benefit the development of
self-driving vehicles.

Furthermore, in this thesis, I propose algorithms dealing with images or LiDAR data separately. As mentioned
before, each sensor has its advantages and disadvantages. They should be used together to get a full understanding
of the surrounding environment. A simple example is that using LiDAR mounted on top of the vehicle would result
in blind spots around the vehicle, i.e., it cannot see pedestrians walking close to the vehicle, etc. Thus, we would
need cameras to provide visual evidence for these areas. Another example is that both camera and LiDAR might
not work well in severe weather conditions. Additionally, image and LiDAR data cannot provide accurate speed
information, which is important for a self-driving vehicle, as it needs to understand the behavior of surrounding
traffic participants very accurately. Thus, we would need Radar that can operate in various weather conditions and
measure the velocity of other objects accurately. While using different models for different sensor data does work
well to some extent, the information is not shared across different domains, and the model can hardly reason about
different sensor data at the same time. Thus, it becomes clear that we need to develop algorithms that consume
multiple sensor data and optimize together, i.e., multi-sensor fusion [104, 103]. The advantages of multi-sensor
fusion are two-fold. First of all, it can reduce computation as certain neural network layers are shared across
different sensor domains. Secondly, learning jointly can achieve better results compared to training separately
and manually merging the results. The advantages of a multi-sensor fusion are clear; however, it is not a trivial
task. The challenge includes finding the correspondence between different sensor data and fusing them effectively
and efficiently, i.e., a LiDAR-image model should outperform a LiDAR-only or image-only model, while being
faster than running two models sequentially. Furthermore, the model should be designed to be robust to sensor
failure, i.e. a LiDAR-image model should still perform similarly to as LiDAR-only model while the camera fails
to capture images at certain times or areas.
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Another promising direction is to extend further the structure model we proposed in chapter 6. While a neural
network can be trained to perform well on all kinds of supervised learning tasks such as stereo depth estimation
(chapter 4), optical flow (chapter 2), 3D detection, prediction (chapter 5), etc., it is very hard to encode rules
into it. However, there are many predefined driving rules on the road, such as obeying the traffic lights, staying
under speed limits, and driving in proper lanes. We could indeed hope the neural network learn these behaviors
from large amounts of real-world driving data, but satisfying these rules at inference time is never guaranteed,
and driving rules could vary widely across different areas. For example, while in most cities a left-turn vehicle
will wait for an oncoming vehicle in an unprotected left-turn scenario, it is the opposite in the Pittsburgh area—
a practice often referred to as ‘Pittsburgh left.’ Thus, a better solution would be to explicitly specify different
driving rules as well as any fixed prior knowledge the human driver would have. A straightforward solution is to
encode this information as potential in a structured model, where neural network output also serves as a potential
term. Thus, the final output would be computed via inference on the structured model. Chapter 6 provides the first
attempt in this direction; however, the structure model part is still very limited and does not exploit predefined
rules during inference. On the other hand, building the structured model could introduce the causality (if using
a directed model) between different components explicitly and could provide better interpretability for the whole
system.

Finally, there are lots of remaining challenges in building a realistic simulator for self-driving. Real-world
tests for self driving would be very expensive and even dangerous in certain cases. Simulation, on the other
hand, provides a faster (e.g. utilizing parallelism) and safer test. Simulators have been used to test prediction
and planning modules with predefined traffic participants or real driving logs. However, simulating sensor data is
also essential. This enables us to test methods such as those proposed in chapter 5 and 6, where neural networks
consume sensor data directly. This would also allow us to create arbitrary adversary sensor data to test the
robustness of the system.

While I think all the above are promising directions for building a smart self-driving vehicle, it is indeed a
difficult problem involving both general research and engineering work. I feel very lucky to be able to witness and
participate in the development of self-driving. This thesis only scratches the surface of self-driving technology. I
will always stay humbled and excited to see further breakthroughs in this area and, of course, the bright future of
self-driving vehicles.



Bibliography

[1] A.Bruhn, J.Weickert, and C.Schnoerr. Lucas/Kanade Meets Horn/Schunck: Combining Local and Global
Optic Flow Methods. International Journal of Computer Vision, 61(3):211–231, 2004.

[2] Radhakrishna Achanta, Appu Shaji, Kevin Smith, Aurelien Lucchi, Pascal Fua, and Sabine Susstrunk. Slic
superpixels compared to state-of-the-art superpixel methods. IEEE Transactions on Pattern Analysis and

Machine Intelligence (PAMI), 2012.

[3] Zlatan Ajanovic, Bakir Lacevic, Barys Shyrokau, Michael Stolz, and Martin Horn. Search-based optimal
motion planning for automated driving. arXiv preprint arXiv:1803.04868, 2018.

[4] Alexandre Alahi, Kratarth Goel, Vignesh Ramanathan, Alexandre Robicquet, Li Fei-Fei, and Silvio
Savarese. Social lstm: Human trajectory prediction in crowded spaces. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition (CVPR), pages 961–971, 2016.

[5] Vijay Badrinarayanan, Ankur Handa, and Roberto Cipolla. Segnet: A deep convolutional encoder-decoder
architecture for robust semantic pixel-wise labelling. arXiv preprint arXiv:1505.07293, 2015.

[6] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly learning
to align and translate. arXiv preprint arXiv:1409.0473, 2014.

[7] Min Bai, Wenjie Luo, Kaustav Kundu, and Raquel Urtasun. Exploiting semantic information and deep
matching for optical flow. In The European Conference on Computer Vision (ECCV), pages 154–170.
Springer, 2016.

[8] Min Bai and Raquel Urtasun. Deep watershed transform for instance segmentation. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 5221–5229, 2017.

[9] Tirthankar Bandyopadhyay, Kok Sung Won, Emilio Frazzoli, David Hsu, Wee Sun Lee, and Daniela Rus.
Intention-aware motion planning. In Algorithmic foundations of robotics X, pages 475–491. Springer, 2013.

[10] Mayank Bansal, Alex Krizhevsky, and Abhijit Ogale. Chauffeurnet: Learning to drive by imitating the best
and synthesizing the worst. arXiv preprint arXiv:1812.03079, 2018.

[11] L. Bao, Q. Yang, and H. Jin. Fast edge-preserving PatchMatch for large displacement optical flow. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2014.

[12] Stan Birchfield and Carlo Tomasi. Multiway cut for stereo and motion with slanted surfaces. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 1999.

93



BIBLIOGRAPHY 94

[13] M. Bleyer, C. Rhemann, and C. Rother. Extracting 3D scene-consistent object proposals and depth from
stereo images. In The European Conference on Computer Vision (ECCV), 2012.

[14] M. Bleyer, C. Rother, and P. Kohli. Surface stereo with soft segmentation. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), 2010.

[15] M. Bleyer, C. Rother, P. Kohli, D. Scharstein, and S. Sinha. Object stereo - joint stereo matching and
object segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), 2011.

[16] Michael Bleyer and Margrit Gelautz. A layered stereo matching algorithm using image segmentation and
global visibility constraints. ISPRS Journal of Photogrammetry and Remote Sensing, 2005.

[17] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat Flepp, Prasoon Goyal,
Lawrence D Jackel, Mathew Monfort, Urs Muller, Jiakai Zhang, et al. End to end learning for self-driving
cars. arXiv preprint arXiv:1604.07316, 2016.

[18] Martin Buehler, Karl Iagnemma, and Sanjiv Singh. The DARPA urban challenge: autonomous vehicles in

city traffic, volume 56. springer, 2009.

[19] Sergio Casas, Wenjie Luo, and Raquel Urtasun. Intentnet: Learning to predict intention from raw sensor
data. In Aude Billard, Anca Dragan, Jan Peters, and Jun Morimoto, editors, Proceedings of The 2nd

Conference on Robot Learning, volume 87 of Proceedings of Machine Learning Research, pages 947–956.
PMLR, 29–31 Oct 2018.

[20] Jia-Ren Chang and Yong-Sheng Chen. Pyramid stereo matching network. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), pages 5410–5418, 2018.

[21] Chenyi Chen, Ari Seff, Alain Kornhauser, and Jianxiong Xiao. Deepdriving: Learning affordance for direct
perception in autonomous driving. In 2015 IEEE International Conference on Computer Vision (ICCV),
pages 2722–2730. IEEE, 2015.

[22] J. Chen, W. Zhan, and M. Tomizuka. Constrained iterative lqr for on-road autonomous driving motion
planning. In 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC), pages
1–7, Oct 2017.

[23] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and Alan L Yuille. Deeplab:
Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs.
IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 40(4):834–848, 2018.

[24] Wenlin Chen, James T Wilson, Stephen Tyree, Kilian Q Weinberger, and Yixin Chen. Compressing neural
networks with the hashing trick. arXiv preprint arXiv:1504.04788, 2015.

[25] X. Chen, K. Kundu, Z. Zhang, H. Ma, S. Fidler, and R. Urtasun. Monocular 3D Object Detection for
Autonomous Driving. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), 2016.

[26] Xiaozhi Chen, Kaustav Kundu, Yukun Zhu, Andrew Berneshawi, Huimin Ma, Sanja Fidler, and Raquel Ur-
tasun. 3d object proposals for accurate object class detection. In Advances in neural information processing

systems (NIPS), 2015.



BIBLIOGRAPHY 95

[27] Xiaozhi Chen, Kaustav Kundu, Yukun Zhu, Huimin Ma, Sanja Fidler, and Raquel Urtasun. 3d object
proposals using stereo imagery for accurate object class detection. IEEE Transactions on Pattern Analysis

and Machine Intelligence (PAMI), 2017.

[28] Xiaozhi Chen, Huimin Ma, Ji Wan, Bo Li, and Tian Xia. Multi-view 3d object detection network for
autonomous driving. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), 2017.

[29] Zhuoyuan Chen, Xun Sun, Liang Wang, Yinan Yu, and Chang Huang. A deep visual correspondence
embedding model for stereo matching costs. In The IEEE International Conference on Computer Vision

(ICCV), 2015.

[30] Zhuoyuan Chen, Xun Sun, Liang Wang, Yinan Yu, and Chang Huang. A deep visual correspondence
embedding model for stereo matching costs. In The IEEE International Conference on Computer Vision

(ICCV), pages 972–980, 2015.

[31] Xinjing Cheng, Peng Wang, and Ruigang Yang. Depth estimation via affinity learned with convolutional
spatial propagation network. In The European Conference on Computer Vision (ECCV), pages 103–119,
2018.

[32] Xinjing Cheng, Peng Wang, and Ruigang Yang. Learning depth with convolutional spatial propagation
network. arXiv preprint arXiv:1810.02695, 2018.

[33] Fang-Chieh Chou, Tsung-Han Lin, Henggang Cui, Vladan Radosavljevic, Thi Nguyen, Tzu-Kuo Huang,
Matthew Niedoba, Jeff Schneider, and Nemanja Djuric. Predicting motion of vulnerable road users using
high-definition maps and efficient convnets. 2018.

[34] C.Lei and Y.H.Yang. Optical Flow Estimation on Coarse-to-Fine Region-Trees using Discrete Optimiza-
tion. In The IEEE International Conference on Computer Vision (ICCV), 2009.
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[195] Jure Žbontar and Yann LeCun. Stereo matching by training a convolutional neural network to compare
image patches. arXiv preprint arXiv:1510.05970, 2015.

[196] Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional networks. In The European

Conference on Computer Vision (ECCV), pages 818–833. Springer, 2014.

[197] Wei Zhan, Changliu Liu, Ching-Yao Chan, and Masayoshi Tomizuka. A non-conservatively defensive
strategy for urban autonomous driving. In Intelligent Transportation Systems (ITSC), 2016 IEEE 19th

International Conference on, pages 459–464. IEEE, 2016.

[198] G. Zhang, J. Jia, and H. Bao. Simultaneous Multi-Body Stereo and Segmentation. In The IEEE Interna-

tional Conference on Computer Vision (ICCV), 2011.

[199] L. Zhang and S. M. Seitz. Estimating optimal parameters for MRF stereo from a single image pair. IEEE

Transactions on Pattern Analysis and Machine Intelligence (PAMI), 2007.

[200] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. Shufflenet: An extremely efficient convolu-
tional neural network for mobile devices. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), pages 6848–6856, 2018.

[201] Z. Zhang, S. Fidler, and R. Urtasun. Instance-Level Segmentation with Deep Densely Connected MRFs.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

[202] Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang Wang, and Jiaya Jia. Pyramid scene parsing
network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 2881–2890, 2017.

[203] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba. Object detectors emerge
in deep scene cnns. In Proceedings of the International Conference on Learning Representations (ICLR),
2015.

[204] Bolei Zhou, Yiyou Sun, David Bau, and Antonio Torralba. Interpretable basis decomposition for visual
explanation. In The European Conference on Computer Vision (ECCV), pages 119–134, 2018.

[205] Xizhou Zhu, Han Hu, Stephen Lin, and Jifeng Dai. Deformable convnets v2: More deformable, better
results. arXiv preprint arXiv:1811.11168, 2018.

[206] Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, and Anind K Dey. Maximum entropy inverse rein-
forcement learning. In AAAI, volume 8, pages 1433–1438. Chicago, IL, USA, 2008.

[207] J. Ziegler, P. Bender, T. Dang, and C. Stiller. Trajectory planning for bertha a local, continuous method. In
2014 IEEE Intelligent Vehicles Symposium Proceedings, pages 450–457, June 2014.



BIBLIOGRAPHY 107

[208] Julius Ziegler, Philipp Bender, Thao Dang, and Christoph Stiller. Trajectory planning for berthaa local,
continuous method. In Intelligent Vehicles Symposium Proceedings, 2014 IEEE, pages 450–457. IEEE,
2014.


	Introduction
	Background
	Definition of Self-Driving:
	History

	Challenges
	Contributions
	Relationship to Published Work
	Thesis Structure

	Understanding CNNs from Effective Receptive Field
	Properties of Effective Receptive Fields
	The simplest case: a stack of convolutional layers of weights all equal to one
	Random weights
	Non-uniform kernels
	Nonlinear activation functions
	Dropout
	Subsampling and dilated convolutions
	Skip connections

	Experiments
	Verifying theoretical results
	How the ERF evolves during training

	Reduce the Gaussian Damage
	Discussion

	Efficient Deep Learning for Stereo Matching
	Background
	Stereo Geometry
	Related Work

	Deep Learning for Stereo Matching
	Training
	Inference

	Smoothing Deep Net Outputs
	Experimental Evaluation
	KITTI 2012 Results
	KITTI 2015 Results

	Discussion

	Deep Matching for Optical Flow
	Related Work
	Deep Learning for Flow Estimation
	Network Architecture
	Learning
	Inference

	Object-Aware Optical Flow
	Segmenting Traffic Participants
	Foreground Flow Estimation
	Background Flow Estimation

	Experimental Evaluation
	Discussion

	Joint 3D Detection, Tracking and Prediction 
	Related Work
	Joint 3D Detection, Tracking, and Motion Forecasting
	Data Parameterization
	Model Formulation
	Loss Function and Training

	Experiments
	Experiment Setup
	Quantitative Results
	Qualitative Results

	Discussion

	Neural Interpretable Planner
	Background
	Related Work

	Deep Structured Interpretable Planner
	Deep Structured Planning
	Efficient Inference
	End-to-End Learning

	Experiments
	Planning Results
	Interpretability
	Ablation Study
	Close-Loop Test

	Discussion

	Conclusion
	Summary
	Future Work

	Bibliography

