
1

DYNAMIC SAFETY ASSESSMENT OF

FPGA-BASED SAFETY CRITICAL SYSTEMS WITH

APPLICATIONS IN NUCLEAR POWER GENERATION

By:

PHILLIP MCNELLES

A THESIS SUBMITTED TO THE FACULTY OF ENERGY SYSTEMS AND NUCLEAR SCIENCE AT THE

UNIVERSITY OF ONTARIO INSTITUTE OF TECHNOLOGY IN PARTIAL FULFILMENT OF THE

REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILIPSOPHY IN NUCLEAR ENGINEERING

© PHILLIP MCNELLES

FACULTY OF ENERGY SYSTEMS AND NUCLEAR SCIENCE

UNVIVERSITY OF ONTARIO INSTITUTE OF TECHNOLOGY

2000 SIMCOE STREET NORTH, OSHAWA, ONTARIO, CANADA, L1H 7K4

December, 2016

2

DYNAMIC SAFETY ASSESSMENT OF FPGA-BASED SAFETY CRITICAL SYSTEMS WITH

APPLICATIONS IN NUCLEAR POWER GENERATION

DR. LIXUAN LU, SUPERVISOR

DR. ANTHONY WAKER, COMMITTEE MEMBER

MR. JOHN FROATS, COMMITTEE MEMBER

DR. WALID MORSI IBRAHIM, UNIVERSITY EXAMINER

DR. ZHIGANG TIAN, EXTERNAL EXAMINER

PHILLIP MCNELLES, CANDIDATE

3

Abstract

Field Programmable Gate Arrays (FPGAS) are a type on integrated circuit that is configured by the end

user to perform desired digital logic functions. FPGAs do not run any software or operating system, as

the logic functions are configured as a hardware implementation on the FPGA chip. Documentation

from the International Atomic Energy Agency (IAEA) states that FPGA implementations of I&C systems in

Nuclear Power Plants (NPPs) is expected to increase significantly in the future. One issue facing FPGAs in

the nuclear field is a lack of technical standards and design/review documentation. Therefore, the

research program undertaken during this thesis considered the application of a new safety analysis

methodology for the modelling and analysis of FPGA-based systems. The methodology chosen is a

modern, dynamic (time-dependant) methodology known as the Dynamic Flowgraph Methodology

(DFM), which is intended to be applied to digital I&C systems. Initially, a Failure Modes and Effects

Analysis (FMEA) was performed to ascertain the potential failure modes that could affect FPGA-based

systems, and that FMEA data was used to create and FPGA failure modes taxonomy. Using that FMEA

data to provide information for fault injection, DFM was applied to analyze several FPGA-based test

systems, and the results of the DFM analyses were compared and contrasted with results from Fault

Tree Analysis (FTA), to determine the potential advantages and disadvantages of DFM. It was seen that

DFM had several advantages when modelling clock delays, oscillating clock signals, and Multiple-Valued

Logic, however for large systems DFM continues to experience the “state explosion” problem, limiting

its effectiveness to small-medium sized systems. Potential avenues of future work are also presented.

4

ACKNOWLEDGEMENT

I would like to thank my supervisor, Dr. Lixuan Lu for taking me on as her student for PhD degree, and

for all of her support and guidance throughout my degree. I am also greatly appreciative of her allowing

me to intern at the Canadian Nuclear Safety Commission (CNSC) for the final two years of my doctorate,

as that was another great experience.

I would also like to thank Dr. Anthony Waker and Professor John Froats for agreeing to be on my

committee, as well as Dr. Walid Morsi Ibrahim and Dr. Zhigang Tian for being the examiners at my

defence. All of these individuals provided me with excellent feedback and comments regarding

improvements to my thesis document, and for suggestions for potential topics for the continuation of

this research.

Lastly, I would like to thank Zhao Chang (Charles) Zeng and Guna Renganathan for supervising my

research at the CNSC. They were always happy to help with the research projects and answer any of my

questions, and I was able to learn a great deal from them. Additionally, I want to thank my directors at

the CNSC, Greg Lamarre and Yolande Akl, for bringing me in to work with their divisions, as well as

Sophie Gingras and Marc Leblanc, for allowing me to continue with the research program during my

time in the Secretariat.

5

TABLE OF CONTENTS

LIST OF FIGURES 10

LIST OF TABLES 13

GLOSSARY 16

1 INTRODUCTION 21

1.1 Thesis Outline 21

1.2 Research Motivation 23

1.2.1 Motivation for FPGA Research 23

1.2.2 Motivation for the Selection of a Dynamic Reliability Analysis Methodology 26

1.2.3 Motivation for the Selection of the Dynamic Flowgraph Methodology 28

1.3 Novelty and Contribution of this Thesis 31

1.4 Chapter Summary 32

2 BACKGROUND 34

2.1 FPGA Background 34

2.1.1 FPGA Descriptions 34

2.1.2 FPGAs in the Electronic Logic Family 35

2.1.3 FPGA Architecture 39

2.1.4 FPGA Technologies 43

2.1.5 FPGA Programming 46

2.1.6 FPGA-Based I&C System Lifecycle 56

2.1.7 Advantages of FPGAs 58

2.1.8 Disadvantages of FPGAs 61

2.1.9 Comparison of FPGAs and Other Electronic Control Technologies 63

2.1.10 Additional Uses For FPGAs 66

2.2 FPGA Literature Review 68

2.2.1 FPGA Developments in North America 68

2.2.2 FPGA Developments in Asia 78

2.2.3 FPGA Developments in Europe 85

2.2.4 Other FPGA Developments 88

2.2.5 Recent Developments 88

2.2.6 Research Directions Based On Literature Review 89

6

2.3 Reliability Analysis Techniques 90

2.3.1 Fault Tree Analysis 91

2.3.2 Dynamic Flowgraph Methodology 121

2.4 Chapter Summary 147

3. FPGA FAILURE MODES TAXONOMY 148

3.1. FPGA Failure Modes Research 148

3.1.1. Failure Mode and Effects Analysis (FMEA) 149

3.1.2. FPGA Failure Modes Categorization 150

3.1.3. Sets of Failure Modes 152

3.1.4. Failure Set Mapping 163

3.2. OECD-NEA Digital Failure Modes Taxonomy 165

3.2.1. OECD-NEA Taxonomy Introduction 166

3.2.2. Levels of Abstraction and Failure Effects 166

3.2.3. Failure Propagation 169

3.2.4. Failure Effects Categories 169

3.2.5. Fault Uncovering 170

3.2.6. OECD-NEA Taxonomy Basis 171

3.2.7. OECD-NEA Categorization and the FPGA FMEA 172

3.3. FPGA Failure Mode Taxonomy 172

3.3.1. Purpose of Developing the FPGA Taxonomy 172

3.3.2. Taxonomy Integration 174

3.3.3. Sub-Component Level of Abstraction 176

3.3.4. Sub-Component Hardware Taxonomy 177

3.3.5. Sub-Component HDL Code Taxonomy 181

3.3.6. FPGA Taxonomy Demonstration 185

3.3.7. FPGA Taxonomy PSA Demonstration 197

3.3.8. Conclusions from the FPGA Taxonomy 200

3.4. Chapter Summary 201

4. APPLICATION OF DFM TO FPGA-BASED SYSTEM ANALYSIS 202

4.1. FPGA PAMS 202

4.1.1. System Description 203

4.1.2. System Design 203

4.1.3. FPGA PAMS DFM Models 205

4.1.4. Conclusions from FPGA PAMS DFM Modelling 209

4.2. Comparisons Between DFM and FPGA/HDL Simulations 210

4.2.1. FPGA Aspects 210

7

4.2.2. Results of DFM/ModelSim Comparisons 218

4.2.3. Conclusions of the DFM and Modelsim Comparisons 227

4.3. PRELIMINARY DFM AND FTA COMPARISONS 228

4.3.1. Reliability Analysis Methods and DFM/FTA Comparisons 228

4.3.2. Software Calculation Methods 228

4.3.3. DFM vs FTA Literature Comparisons 229

4.3.4. FPGA-Based Test System for DFM/FTA Comparisons 229

4.3.5. Fault Tolerant Design 230

4.3.6. Subsystem Descriptions 231

4.3.6.1. Analog-To-Digital Conversion (ADC) and Sanity Check 232

4.3.6.2. Trip Parameter (Over Temperature) Calculation 234

4.3.6.3. Comparator 236

4.3.7. Failure Modes 237

4.3.8. Common Cause Failure (CCF) 239

4.3.9. DFM and FTA Model Construction 240

General Model Construction 240

DFM SHE Failure Mode Implementation 241

FTA SHE Failure Mode Implementation 242

DFM and FTA Model Differences 243

4.3.10. Test System Results for DFM/FTA Comparisons 244

4.3.10.1. Register Results 244

4.3.10.2. CAFTA Results 245

4.3.10.3. DFM Results 247

4.3.11. Discussion of Test System Results for DFM/FTA Comparisons 248

4.3.11.1. Test System Results for DFM/FTA Comparison 248

4.3.11.2. Birnbaum Structural Importance Comparison 250

4.3.11.3. Discussion on Possible Reasons for DFM/FTA Differences 253

4.3.11.4. Overall Difference 256

4.3.12. Conclusions from the Preliminary DFM/FTA Comparisons 257

4.4. ADVANCED DFM AND FTA COMPARISONS 258

4.4.1. Theoretical DFM and FTA Comparisons 258

8

4.4.1.1. Static Comparisons 258

4.4.1.9. Dynamic MVL Comparisons 272

4.4.2. Theoretical Reasons for Differences in Reactor Trip Logic Loop Results 282

4.4.2.1. Prime Implicants vs Implicants 283

4.4.2.2. Missed PIs/Consensus Law 284

4.4.2.3. Probabilistic Differences 284

4.4.3. Dynamic Comparisons with Applications to FPGAs 285

4.4.3.1. Modified Test System 285

4.4.3.5. Differences Between Dynamic MCS/PIs 290

4.4.4. Risk Importance Measures 292

4.4.4.1. Traditional and Dynamic Risk Importance Measures 292

4.4.4.2. Safety Significance of RIMs 294

4.4.4.3. Risk Importance Measure Results 294

4.4.5. Conclusions from Advanced DFM/FTA Comparisons 295

4.5. CHAPTER SUMMARY 296

5. DISCUSSION ON THE USE OF DFM FOR FPGA-BASED SYSTEM MODELLING AND

ANALYSIS 297

5.1. Advantages of DFM 297

5.1.1. Advantages of DFM Over Static Methods (General) 297

5.1.2. Advantages of DFM Over FTA 299

5.1.3. Advantages of DFM Over Simulation 302

5.2. Disadvantages of DFM 303

5.2.1. Computational Intensity/State Explosion 303

5.2.2. Dynamic Probabilities and Importance Measures 305

5.3. Comparison of DFM and Formal Methods 306

5.4. Chapter Summary 307

6. CONCLUSIONS AND FUTURE WORK 308

6.1. Conclusions 308

6.2. Recommendations 310

6.3. Potential Topics for Future Work 311

9

6.4. Chapter Summary 314

REFERENCES 315

APPENDICES 326

Appendix I: DFM and FTA Results for the “SEU High Register” Model 326

Appendix II: List of Papers and Presentations 331

Appendix III: Definitions 333

Appendix IV: Permission Letters for Use of Copyright 339

Permission Letter From National Instruments 339

Permission Letter From VTT 341

Permission Letter From IEEE 342

Permission Letter From EPRI 343

10

List of Figures

Figure 1: Electronic Logic Family Block Diagram ... 36

Figure 2: Diagram of “P-Type” and “N-Type” Transistors ... 39

Figure 3: Outline of an FPGA chip showing the three main components... 40

Figure 4: Basic FPGA Architecture with Block RAM and CLB Close-Up ... 41

Figure 5: CLB Implemented with an LUT ... 42

Figure 6: CLB Implemented with MUXs .. 42

Figure 7: FPGA Configuration Storage Technologies .. 45

Figure 8: FPGA Switchbox/Interconnect Structure for Different Technologies .. 46

Figure 9: Comparison of FXP and Floating Point Representation ... 50

Figure 10: Methods for Solving FXP Round OFF/Resolution Errors .. 51

Figure 11: FPGA Programming Process (V-Shape) .. 53

Figure 12: Block Diagram of the “Implementation” Stage of FPGA-Based Systems Programming 55

Figure 13: Overall Lifecycle of FPGA-Based NPP I&C Systems ... 56

Figure 14: Complexity and Capability of Selected Digital Logic Devices ... 58

Figure 15: HDL Code Portability .. 60

Figure 16: System Architecture of the FPGA-based SDS-1 ... 69

Figure 17: System Description of the FPGA based Trip Channel for SDS-1 .. 70

Figure 18: HIL Simulation for Functionalization Test .. 70

Figure 19: Set-Up of Response Time Measurement ... 71

Figure 20: CATHENA Simulation Model for LOCA Study ... 72

Figure 21: Comparison of Neutronic Power Between the FPGA Trip and Simulator Trip Channels 73

Figure 22: US NRC FPGA Design Flow ... 76

Figure 23: Proposed Safety I&C System for Wolf Creek ... 77

Figure 24: Schematic of an ABWR Feedwater Controller ... 79

Figure 25: Block Diagram of the FLC in the FPGA ... 80

Figure 26: Performance Comparison for the Water Level after a 15cm increase in Set Point 81

Figure 27: Toshiba FPGA Structure ... 82

Figure 28: PRM for a BWR Plant ... 82

Figure 29: LPRM Module with FPGAs ... 83

Figure 30: One Division of the PRNM for ABWR ... 84

Figure 31: Generic Fault Tree Example of a Computer System .. 93

Figure 32: Three Cases of Non-Decreasing Structure Functions .. 95

Figure 33: Decreasing Structure Function .. 96

Figure 34: Example Fault Tree for FTA Demonstration ... 102

Figure 35: Example of a Generic SFBDD .. 107

Figure 36: BDD Representations of Common Fault Tree Logic Gates .. 107

Figure 37: Example Fault Tree for BDD Demonstration .. 108

Figure 38: Resulting BDD for the Fault Tree from Figure 37 ... 109

11

Figure 39: Example of a Non-Coherent Fault Tree ... 110

Figure 40: Equivalence Library for the transformation of “NOR”, “XOR” and “NAND” Gates 114

Figure 41: BDD Representation of the Example Non-Coherent Fault Tree .. 117

Figure 42: Example of a Simple MVL Tree .. 125

Figure 43: Operators (Op4 and Op5) For the Example MVL Tree (© 1985 IEEE) 125

Figure 44: Graphical Example of Select MRCs (© 1985 IEEE) ... 126

Figure 45: Graphical (Cartesian) PI Determination Using the "Tabular Method" (© 1985 IEEE) 127

Figure 46: Generic "AND" Gate ... 130

Figure 47: DFM Nodes and Transfer Boxes ... 141

Figure 48: DFM Connectors .. 141

Figure 49: DFM Model for DFCS Benchmark Example in NRC Report (NUREG/CR-6985) 145

Figure 50: FPGA Failure Mode Categories (“Failure Sets”) ... 152

Figure 51: Elementary Fault Classes ... 165

Figure 52: Simplified RTS/ESFAS Test System ... 167

Figure 53: Relationship between Failure Effects and Failure Modes Between Levels of Abstraction 168

Figure 54: Fault Uncovering Situations for Digital I&C Systems ... 171

Figure 55: Extended Taxonomy Using “Logic Process” ... 175

Figure 56: Relationship Between “Basic Component”, “Sub-Component”, and “Failure Categories” 176

Figure 57: FPGA Chip/Board Hardware Failures ... 178

Figure 58: Effects of failures of CLBs and Programmable Interconnects .. 179

Figure 59: FPGA “Software” Failures (Parameter Trip) ... 182

Figure 60: FPGA “Software” Failures (State Machine) .. 182

Figure 61: Modules Included in the Example RTS/ESFAS System ... 186

Figure 62: OECD-NEA Taxonomy Fault Tree for a spurious division-X “EFW-OFF” Event 198

Figure 63: Fault Tree For “HW Module #6” (Sub-Component Level) ... 199

Figure 64: Fault Tree For “HW Module #6” (Sub-Component Level) Using Failure Categories 200

Figure 65: Lab-Scale PAMS Set-Up with NI Equipment ... 204

Figure 66: General PAMS Subsystem DFM Model .. 205

Figure 67: General Logic DFM Model (FPGA PAMS) ... 209

Figure 68: DFM Model for Logic and Mathematical Functions .. 211

Figure 69: DFM Model of an FPGA Register ... 212

Figure 70: CLB Flowgraph with Either “AND” Gate or “OR” Gate LUT ... 214

Figure 71: Block Diagram for the FPGA-based Platinum Signal Compensator ... 216

Figure 72: ModelSim Results for “OR_OUT” and “G_OUT” Top Event ... 219

Figure 73: ModelSim Results for FPGA Register Analysis (Top Event “Output =1”. 221

Figure 74: ModelSim results for FPGA register analysis (Top Event "Output = X") 222

Figure 75: ModelSim results for “AND” logic block “Top Event = 1 at TS = 0 and TS =-1”........................ 223

Figure 76: ModelSim Results for “OR” Logic Block Inductive Analysis ... 224

Figure 77: ModelSim results for “Trip” and “Total Flux High" .. 225

Figure 78: ModelSim results for “No Trip”.. 226

Figure 79: High level block diagram for the one-channel FPGA-based test system 230

file:///C:/Users/Phill/Dropbox/Draft%20PhD%20Thesis%20P.%20McNelles%20Rev.%202.docx%23_Toc468823339

12

Figure 80: ADC and Sanity Check Block Diagram .. 233

Figure 81: Overtemperature Calculation Block Diagram .. 235

Figure 82: Lead-lag filter block diagram (part of OT calculation) ... 236

Figure 83: Comparator Block Diagram .. 237

Figure 84: DFM Model Section for “P” Register ... 241

Figure 85: Fault Tree for the “High” Output of the “P” Register ... 242

Figure 86: Simplified Water Level Measurement System ... 259

Figure 87: Fault Tree for Simplified Feed Water System .. 260

Figure 88: Fault Tree for Simplified Feed Water System (PIs Only) .. 264

Figure 89: SFBDD for TS 1 Fault Tree .. 265

Figure 90: Switching "MF_1" with "Complement MF_1” in the Figure 89 BDD 266

Figure 91: Feed Water Fault Tree with “MF”, “WL” and “WLM” Complements 267

Figure 92: BDD for Fault Tree with “MF”, “WL” and “WLM” Complements .. 267

Figure 93: Simple Feed Water Tank Fault Tree (TS = 2) .. 277

Figure 94: Fault Tree for Simplified Feed Water System (PIs Only, TS = -2) ... 278

Figure 95: Disallowed Basic Event Combinations (Sink State) .. 280

Figure 96: Modified Comparator (COMP) FPGA-Based Test System .. 286

Figure 97: Dynamic Top Event Probabilities (PFD) for DFM and FTA Methods .. 288

Figure 98: Computational Time vs The Number of Time Steps for the “SEU High Register” Model 304

Figure 99: Computational Time vs Number of PIs for "SEU High Register" Model 304

13

List of Tables

Table 1: Dynamic Methodologies and Acceptance Requirements ... 29

Table 2: A Comparison of Important Technology Attributes of FPGAs and CPLDs 38

Table 3: Comparison of FPGA Technologies ... 46

Table 4: Comparison of FPGAs and Other Electronic Control Technologies .. 64

Table 5: MVL Terms and Definitions ... 97

Table 6: Steps in MOCUS Example .. 101

Table 7: MOCUS Algorithm for Non-Coherent Fault Tree .. 111

Table 8: PIs Determined from BDD ... 117

Table 9: Truth Table for a Generic “AND” Gate .. 130

Table 10: Aspects of Decision Tables .. 131

Table 11: Example Decision Table for Credit Approval ... 131

Table 12: Variables and States for the Literature Method of Generalized Consensus Example 135

Table 13: Initial Decision Table for the Example "TOP" Function ... 135

Table 14: Decision Table for the Example “TOP” Function after the “Merging” Operation..................... 136

Table 15: Irredundant Decision Table for the Example “TOP” Function .. 136

Table 16: Consensus Term and all PIs for the Example “TOP” Function .. 137

Table 17: SG Low Level Prime Implicant No. 1 .. 145

Table 18: SG High Level Prime Implicant No. 1 ... 146

Table 34: FMEA Fault Category Mapping.. 164

Table 35: Effects of SEU on Register Storage Values ... 179

Table 36: Sub-Component Level Failure Modes and Failure Effects (Hardware) 180

Table 37: Uncovering Situation Examples for Sub-Component Level (Hardware) 181

Table 38: Sub-Component Level Failure Modes and Failure Effects (Software) 183

Table 39: Uncovering Situation Examples for Sub-Component Level (Software) 185

Table 40: Basic Component Level FPGA FMEA for the OECD-NEA AIM.. 187

Table 41: Sub-Component Level FPGA Taxonomy PSA Demonstration (Step 1) - Hardware 189

Table 42: Sub-Component Level FPGA Taxonomy PSA Demonstration (Step 2-3) - Hardware 190

Table 43: Sub-Component Level FPGA Taxonomy PSA Demonstration (Step 4) - Hardware 191

Table 44: Sub-Component Level FPGA Taxonomy PSA Demonstration (Step 1) – Software 194

Table 45: Sub-Component Level FPGA Taxonomy PSA Demonstration (Steps 2-4) - Software 196

Table 19: FPGA PAMS C-Series Module Description ... 204

Table 20: FPGA PAMS Sensor Description .. 204

Table 21: Implicants for “False Alarm” Top Event (FPGA PAMS) .. 206

Table 22: Sequences for “Calibration Logic Fails (High)” Initiating Event (FPGA PAMS) 207

Table 23: DFM Probability Calculations (FPGA PAMS) .. 208

Table 24: Implicants for Code Section “False Alarm” Top Event (FPGA PAMS) .. 209

Table 25: Sample Decision Table for Simplified Register (DFM/ModelSim Comparisons) 213

14

Table 26: Sample FMEA for FPGA Aspects .. 217

Table 27: Sample Implicants for “OR_OUT = 0” and “G_OUT = 0” Top Events .. 219

Table 28: Prime Implicant for DFM FPGA Register Analysis (Top Event “Output = 1”) 220

Table 29: Prime Implicants for “Top Event = X” .. 221

Table 30: Prime Implicant for DFM FPGA Logic Block Analysis (Top Event “Logic Block Out = 1”) 222

Table 31: Sequence for “OR = 1” Inductive Analysis ... 223

Table 32: Implicant for “Trip” and “Total Flux High” .. 225

Table 33: Implicant for “No Trip” .. 226

Table 46: Selected SEE FPGA failure modes.. 238

Table 47: Additional FPGA failure modes ... 239

Table 48: Sample of “P Register” Decision Table .. 241

Table 49: Sample of “SHE” Failure Decision Table .. 242

Table 50: DFM Results for Register with SEU ... 245

Table 51: FTA Results for Register with SEU ... 245

Table 52: FTA Results for “Missed Trip” Top Event .. 246

Table 53: FTA Results for “Spurious Trip” Top Event .. 246

Table 54: Impossible CAFTA Minimal Cut Sets .. 246

Table 55: FTA Results for Individual Clock States ... 247

Table 56: DFM Results for “Missed Trip” Top Event with one Time Step... 248

Table 57: DFM Results for “Spurious Trip” Top Event with one Time Step .. 248

Table 58: Similar DFM PI and CAFTA MCS for “Missed Trip” .. 249

Table 59: Different DFM PI and CAFTA MCS for “Missed Trip” .. 249

Table 60: Similar DFM PI and CAFTA MCS for “Spurious Trip” ... 250

Table 61: Different DFM PI and CAFTA MCS for “Spurious Trip” .. 250

Table 62: BSI Comparison for “Missed Trip” Top Event .. 251

Table 63: DFM State BSI Comparison for “Missed Trip” Top Event .. 251

Table 64: FTA State BSI Comparison for “Missed Trip” Top Event ... 252

Table 65: Node BSI Comparison for “Spurious Trip” Top Event ... 253

Table 66: DFM State BSI Comparison for “Spurious Trip” Top Event ... 253

Table 67: DFM State BSI Comparison for “Spurious Trip” Top Event ... 253

Table 68: Simplified Feed Water System Node Discretization ... 259

Table 69: Decision Table for “WLM = 1” TE .. 259

Table 70: Feed Water Test System Probabilities .. 260

Table 71: DFM PIs for the Simple Feed Water System ... 261

Table 72: Critical Transition Table after Merging Rows 3 and 6 ... 261

Table 73: Critical Transition Table after Reduction-Merging (new) Rows 1-3 .. 262

Table 74: Critical Transition Table after Reduction-Merging (new) Rows 2-4 .. 262

Table 75: Simple Feed Water Tank DFM PI Probabilities .. 262

Table 76: Simple Feed Water Tank DFM Top Event Probabilities .. 263

Table 77: Simple Feedwater Tank MCS Determination via MOCUS Algorithm .. 263

Table 78: Simple Feed Water Tank FTA PI Probabilities ... 263

15

Table 79: Simple Feed Water Tank FTA Top Event Probabilities .. 264

Table 80: Select “MF_1 C” Implicants ... 268

Table 81: “ALL C” Implicants ... 269

Table 82: Coherent Approximation Implicants ... 269

Table 83: Non-Coherent FTA Top Event Comparison ... 270

Table 84: DFM PIs for the Simple Feed Water System (TS = 2) .. 273

Table 85: Simple Feed Water Tank DFM PI Probabilities (TS = 2) ... 273

Table 86: Simple Feed Water Tank DFM Top Event Probabilities (TS = 2) .. 274

Table 87: Simple Feed Water Tank DFM PI Probabilities (TS=2, Sink State MF = 1) 274

Table 88: Simple Feed Water Tank DFM PI Probabilities (TS=2, WL = “Strictly Decreasing”) 275

Table 89: Simple Feed Water Tank FTA Top Event Results (TS = 2) .. 277

Table 90: Simple Feed Water System Fault Tree MCS/PI for Two Time Steps ... 279

Table 91: PIs vs Implicants for “FPGA-Based Reactor Trip Logic Loop” .. 283

Table 92: Identical PIs with DFM and FTA for the “FPGA-Based Reactor Trip Logic Loop” 283

Table 93: “Missed” PI from “FPGA-Based Reactor Trip Logic Loop” .. 284

Table 94: HDL Code FPGA Failure Modes ... 287

Table 95: Number of Returned PI/MCS .. 289

Table 96: “TS = 2” Prime Implicant ... 291

Table 97: “TS = 3” Prime Implicant ... 291

Table 98: “TS = 4” Prime Implicant ... 291

Table 99: Risk Importance Measures for Nuclear Power Plants ... 293

Table 100: DFM/FTA FV Comparison .. 295

Table 101: PI for Missed Trip Due to Clock Delays.. 298

16

Glossary

Acronym Definition

AECL Atomic Energy of Canada Ltd.

AES Advanced Encryption Standard

AF Address Fault

AIAA American Institute of Aeronautics and Astronautics

ALS Advanced Logic System

APRM Average Power Range Monitor

ASIC Application Specific Integrated Circuit

ASTS Automatic Seismic Trip System

BC Boundary Conditions

BDD Binary Decision Diagrams

BER Bit Error Rate

BI Birnbaum Importance Measures (Risk Importance Measure)

BIST Built-In Self-Test

BPA Bent Pin Analysis

BTI Bias Thermal Instability

CAFTA Computer Aided Fault Tree Analysis

CB Complete Base

CCF Common Cause Failure

CCMT Cell-To-Cell Mapping Technique

CCSF/SCCF Common Cause Software Failure

CDC Clock Domain Crossing

CDM Charged Device Model

CFMA Cable Failure Matrix Analysis

CIM Component Interface Module

CNSC Canadian Nuclear Safety Commission

CPLD Complex Programmable Logic Device

CRC Cyclic Redundancy Check

CSA Canadian Standards Association (CSA Group)

CSNI Committee on the Safety of Nuclear Installations

D3 Defence in Depth

DAS Diverse Actuation System

DB/DBI Dynamic Birnbaum Importance (Risk Importance Measure)

DCC Digital Control Computers

DCM Digital Clock Management

DFCS Digital Feedwater Control System

DFM Dynamic Flowgraph Methodology

DFV Dynamic Fussel-Vesely (Risk Importance Measure)

DI Dynamic Risk Increase Worth

DI&C Digital Instrumentation and Control

17

Acronym Definition

DICREL Digital Instrumentation and Control Reliability Group

DICWG Digital Instrumentation and Controls Working Group

DMR Double Modular Redundancy

DPC Direct Probability Calculator

DPS Diverse Protection System

DR Dynamic Risk Decrease Worth

DRF Data Retention Fault

E/E/PE Electrical/Electronic/Programmable Electronic

ECC Error Correction Codes

EDAC Error Detection and Correction

EDC Error Detection Codes

EEPROM Electrically Erasable Programmable Read-Only Memory

EM Electromigtration

EOS Electrical Overstress

ESA European Space Agency

ESA SA European Space Agency Sneak Analysis

ESFAS Emergency Safety Features Actuation System

ESD Electrostatic Discharge

EPRI Electric Power Research Institute

EQ Exact Quantification

ET Event Tree

EXC Extensive Conditions

FBD Functional Block Diagrams

FIFO First-In First-Out

FMEA Failure Mode Effects and Analysis

FPAA Field Programmable Analog Array

FPGA Field Programmable Gate Array

FSM Finite State Machine

FTA Fault Tree Analysis

FV Fussel-Vesely (Risk Importance Measure)

FXP Fixed Point Data Representation

HBM Human Body Model

HCE/HCI/HCD Hot Carrier Effects/Hot Carrier Injections/Hot Carrier Degradation

HDL Hardware Description Language

HER Hard Error Rate

HIL Hardware in the Loop

HPD HDL Programmed Device

HPS Hard Processor System

HSI Human-System Interface

I&C Instrumentation and Control

IAEA International Atomic Energy Agency

IB Irredundant Base

IC Integrated Circuit

18

Acronym Definition

IEC International Electrotechnical Commission

IEEE International Institute of Electrical and Electronics Engineers

I/O Input/Output

IP Intellectual Property

ISO International Organization for Standardization

JEDEC Joint Electron Device Engineering Council

JEP JEDEC Publication

JTAG Joint Test Action Group

LPRM Local Power Range Monitor

LSELS Load Shedder and Emergency Load Sequencer

LUT Look-Up Table

MATLAB Matrix Laboratory

MBU Multiple Bit Interrupt

MCS Minimal Cut Set

MCSUB Minimal Cut Set Upper Bound

MCU Multiple Cell Interrupt

MEI Mutually Exclusive Implicant

MFTE Main Feedwater Turbine Electron-Hydraulic

MHD Moving Head Disk

MFV Main Feed Valve

MIU Multiple Independent Upset

MTBF Mean Time Between Failure

MTBMO Mean Time Between Metastability Occurrence

MTTE Mean Time To Event

MTTF Mean Time To Failure

MUX Multiplexer

MVL Multi-Valued/Many-Valued Logic

MSFS Main Steam and Feedwater Isolation System

NEA Nuclear Energy Agency

NBTI Negative Bias Thermal Instability

NPP Nuclear Power Plant

NUREG

US NRC Technical Report Designation (Nuclear Regulatory

Commission)

OECD Organization for Economic Co-operation and Development

OPG Ontario Power Generation

ORNL Oak Ridge National Laboratory

OS Operating System

OTP One-Time Programmable

PAL Programmable Logic Array

PAR Place-and-Route

PBTI Positive Bias Thermal Instability

PCB Printed Circuit Board

PCM Phase Change Memory

19

Acronym Definition

PDD Programmable Digital Device

PI Prime Implicant

PID/PDI Proportional Integral Derivative (Controller)

PLA Programmable Logic Array

PLC Programmable Logic Controller

PLD Programmable Logic Device

PLL Phase Locking Loop/Phase Locked Loop

PNPSF Passive Neighbourhood Pattern Sensitive Fault

PPS Process Protection System

PSA/PRA Probabilistic Safety Assessment/Probabilistic Risk Assessment

PRBS Pseudo-Random Binary Sequence

PRM Power Range Neutron Monitor (BWR)

PRNM Power Range Neutron Monitor (ABWR)

PRPS Primary Reactor Protection System

PRWS Pseudo-Random Word Sequence

PUF Physically Uncloneable Function

REGDOC Regulatory Document (CNSC)

RAM Random Access Memory

RAW Risk Achievement Worth

RCS Rod Control System

RDR Risk Decrease Ratio

Regt Register

RIC Reactor In-Core Measurement System

RIH Reactor Inlet Header

RIR Risk Increase Ratio

ROH Reactor Outlet Header

ROM Read Only Memory

RPCLS Reactor Power Control and Limitation System

RPS Reactor Protection System

RRW Risk Reduction Worth

RTIS Reactor Trip and Isolation System

RTL Register Transfer Level

SART Smart Alternative Routing Technique

SBU Single Bit Interrupt

SCA Sneak Circuit Analysis

SDS Shutdown System

SEB Single Event Burnout

SED Single Event Disturb

SEDB Single Event Dielectric Breakdown

SEE Single Event Effect

SEFI Single Event Functional Interrupt

SEGR Single Event Gate Rupture

SEL Single Event Latch-up

20

Acronym Definition

SEMT Single Event Multiple Transient

SEMU Single Event Multiple Upset

SER Soft Error Rate

SESB Single Event Snapback

SET Single Event Transient

SEU Single Event Interrupt

SFBDD Structure Function Binary Decision Diagram

SFT Standard/Static Fault Tree

SHE Single Hard Error

SM Stress Migration

SMHA State Machine Hazard Analysis

SNR Signal to Noise Ratio

SOC System on a Chip

SOF Stuck-Open Fault

SPAR Standardized Plant Analysis Risk

SRAM Static Random Access Memory

SRNM Start-Up Neutron Monitor

SSLC Safety System Logic and Control

SSN Simultaneous Switching Noise

SSPS Solid State Protection System

SSWA Sneak Software Analysis

STA Static Timing Analysis

SUM Rare Event Approximation

TC Thermal Cycling

TDDB Time-Dependant Dielectric Breakdown

TDRFP Turbine Driven Feedwater Reactor Pumps

TG-FAN

Topical Group on Field Programmable Gate Array Applications in

Nuclear Power Plants

TMR Triple Modular Redundancy

TPI Timed Prime Implicant

TSP Trip Setpoint

TTL Transistor-Transitory Logic

USNRC United States Nuclear Regulatory Commission

V&V Verification and Validation

VBMC VHDL Bounded Model Checker

VHDL Very High Speed Integrated Circuit HDL

VHSIC Very High Speed Integrated Circuit

VLSI Very Large Scale Integration

VTT

Valtion Teknillinen Tutkimuskeskus (Technical Research Centre of

Finland)

WGRISK Working Group on Risk Assessment

YADRAT Yet Another Dynamic Reliability Analysis Tool

21

1 Introduction

Chapter 1 provides an introduction to the research program, as well as an introduction to the actual

thesis document. Sub-section 1.1 provides a brief outline of thesis, including the topics discussed in each

chapter. Sub-section 1.2 discusses the motivation for the topics considered in this research program:

FPGAs and the dynamic reliability analysis methodologies. Sub-Section 1.3 presents the novelty of the

research done in this thesis, as well as the contribution of this work with regards to scientific and

technical knowledge. Sub-section 1.4 provides a summary of the topics discussed in this chapter.

1.1 Thesis Outline

This thesis document is organized in the following chapters/sections. Chapter 1 provides a basic outline

of the chapters in the overall thesis document, as well as a discussion on the overall motivation

regarding the selection on the research program. This includes the importance of FPGA-based systems

research to the nuclear power industry, and the importance of employing modern dynamic reliability

analysis techniques to those FPGA-based systems.

Chapter 2 provides the background information on two important topics regarding this thesis:, a

description of FPGAs and FPGA-based systems, and a description of the reliability analysis

methodologies that were applied during the research program. Regarding the information on FPGAs, the

specific properties of FPGAs, types of FPGAs, individual sub-components, and the unique advantages

and challenges posed by FPGAs with regards to safety-critical systems will be considered. A detailed

literature review of the use of FPGAs in I&C systems in nuclear power plants is provided, highlighting

international FPGA implementations and research projects. Afterwards, a detailed discussion of the

reliability methodologies is presented. The two methods considered were Fault Tree Analysis (FTA), and

the Dynamic Flowgraph Methodology (DFM). The discussion on FTA will consider coherent and non-

coherent logic, and popular methods algorithms for analyzing Fault Trees, including cut-set methods and

Binary Decision Diagram (BDD) methods. The information regarding DFM will include Multiple-

Valued/Many Valued Logic (MVL), methods for solving DFM models, DFM models, tools and features,

and advanced rules for solving DFM models.

22

Chapter 3 presents a failure mode taxonomy of FPGA failure modes. An extensive literature survey was

performed that compiled and categorized the potential failure modes of FPGA-based systems. A failure

modes taxonomy, for digital (software-based) systems was previously published by the OECD-NEA, and

was used to re-categorize the FPGA failure modes. The OECD-NEA taxonomy was extended to include

FPGAs, and an additional layer of abstraction was added to fully incorporate the hardware and

“software” (HDL code) errors. The same example system in the original OECD-NEA taxonomy (Reactor

Trip System/Engineered Safety Features Actuation System) was used, to showcase the FPGA taxonomy.

Chapter 4 provides the results of research on the application of DFM for modelling and analyzing FPGA-

based systems. It will first focus on introductory modelling of an FPGA-Based Post Accident Monitoring

Systems (PAMS), to demonstrate basic deductive, inductive, qualitative and quantitative DFM analyses.

Secondly, DFM will be used to model four important aspects of FPGA-based system, and the DFM

analysis results are compared to simulations from the ModelSim logic simulator software, to confirm the

accuracy of the DFM results. Following that preliminary research, in-depth comparisons on the use of

DFM and FTA for analyzing FPGA-based systems (which include the failure mode information from

Chapter 3) were performed. A one-channel, one-parameter FPGA-based trip logic loop, based off of the

“Over-Temperature” trip parameter for an AP1000 nuclear reactor, was used as a test system. The DFM

models and FTA fault trees were created for “Missed Trip” and “Spurious Trip” Top Events. Comparisons

of the results included comparisons of the Top Event probabilities, Prime Implicants/Minimal Cut Sets

and the Birnbaum Structural Importance measure. Potential reasons for these differences are

discussed, including a detailed analysis of the underlying theory and algorithms used by FTA and DFM.

Finally, a modified test system was used to compare dynamic results for an FPGA-test system, including

dynamic Top Event probabilities, dynamic Prime Implicants, and dynamic Fussel-Vesely importance

measures.

Chapter 5 provides an overall discussion on the use of DFM for the modelling and analysis of FPGA-

based system, based on the results of the research program. These discussions will include the

advantages and disadvantages of the application of DFM to FPGA system, as well as comparisons to the

other reliability analysis methodologies considered during this research program.

Chapter 6 with discuss the conclusions of the research program, and present potential future avenues of

research.

23

The list of references is found following Chapter 6. Several appendices are found after, which list the

presentations/publications, a glossary of terms and definitions found in this research, and permission

letters for the use of certain figures included in this thesis.

1.2 Research Motivation

The overall research program revolved around the analysis of FPGA-based systems using the Dynamic

Flowgraph Methodology. There were several factors behind the selection of these two elements. Sub-

section 1.2.1 will explain the importance of FPGA research in the nuclear domain. Sub-section 1.2.2 will

explain the rationale behind dynamic methods, and sub-section 1.2.3 discusses the motivation for the

selection of DFM as the main reliability analysis methodology.

1.2.1 Motivation for FPGA Research

Information published in the technical literature from international organizations such as the

International Atomic Energy Agency (IAEA) and the Electric Power Research Institute (EPRI) discusses the

importance of FPGA-based systems with respect to the nuclear field. Sub-section 1.2.1.1 presents the

international perspective on the importance of the potential for expanded use of FPGA-based NPP

systems in the future. Sub-section 1.2.1.2 discusses the specific uses that FPGAs are likely to see

regarding NPP I&C systems.

1.2.1.1 International Perspectives on the Importance of FPGA-Based Systems

According to documents from the Topical Group on Field Programmable Gate Array Applications in

Nuclear Power Plants (TG-FAN) of the IAEA, “An increased number of FPGA based applications can be

expected as nuclear operators and regulators become more familiar with the advantages of the

technology” and that “…the technology is expected to be applicable to large scale replacement of I&C

systems in modernization projects, as well as providing complete I&C systems (safety and non-safety) in

new nuclear power plant designs” [1]. It was also stated that “The implementation of FPGA based safety

and non-safety related applications in operating and new plants is expected to grow substantially” [1].

24

Therefore, the perspective from the international community is that there will be significantly more

FPGA-based system implementation in the future, making the design, analysis and review of those

systems an increasingly important field of work.

 Furthermore, the effect of FPGAs and similar technologies has been listed as one of the seventeen

“technical challenges” facing digital I&C systems in NPPs, according to the IAEA [2]. This is in part,

because although FPGAs have seen increased implementations in NPP I&C functions, those are mainly

recent implementations, so information regarding “lessons learned” and international technical

standards are not prevalent. Briefly, these challenges are summarized as [2]:

1.) Limited information on operational experience and lessons learned in FPGA NPP applications

2.) Only one international standard, published by the International Electrotechnical Commission

(IEC) exists, but has not been universally adopted

3.) Few suppliers of FPGAs, design tools, and FPGA-based I&C systems specific to NPPs

4.) FPGA-based system design/review is not always user friendly

5.) FPGA design tools may be less mature than equivalent design tools for software-based systems,

and changes in those tools may affect the suitability of FPGAs in NPP systems

A more detailed discussion on the limits of FPGA-based systems with regards to NPPs is given in Section

3.0.

However, FPGAs are still expected to see expanded use in a variety of NPP I&C systems, and many

implementation and research projects have/are taking place worldwide [3–7]. Therefore, the increased

use of FPGA systems and the need for more technical information makes the modelling, safety and

reliability analysis of FPA-based systems an important and practical endeavour.

1.2.1.2 Potential Uses for FPGAs in Nuclear Power Plants

Typically, an FPGA is intended to carry out relatively simple, well-defined and well-bounded digital logic

functions [5]. These types of functions are found in safety function actuation logic, priority logic,

component control logic, data communication, etc. IT has been stated that FPGAs are principally suited

25

for safety systems and other high-reliability applications, due to their fast response time, reduced

complexity, and that safety-critical systems often utilize relative simple logic functions [5].

Out of all the expected applications, the implementation of primary reactor protection systems was said

to be the most critical in the NPPs. Several other systems/applications of particular interest have been

identified, including emergency diesel generators and load sequencers, diverse actuation systems and

post-accident monitoring systems. Additionally, FPGAs have been considered for non-safety systems,

and also for use in simple human-system interfaces [1].

In terms of replacement systems, FPGAs have seen use (or are being considered for) the replacement of

obsolete systems in existing NPPs. In certain cases, complex logic is still implemented in analog systems,

which requires a large number of circuit boards, wiring and cabinetry. The same logic functions could be

implemented in a single (or a small number of FPGAs), significantly decreasing the amount of

components, wiring and space that is required by the equivalent analog system [1]. Furthermore, FPGAs

are considered for the replacement of digital systems as well, for obsolete components that are no

longer supported, and replacement parts cannot be obtained [3].

FPGAs are also being considered for use alongside software-based systems (such as in diverse systems

or back-up systems), for the purpose of increased diversity and defence-in-depth [1]. Diversity is seen as

a method to mitigate common cause failures, and as such, the use of different technologies will increase

the level of diversity, and therefore reduce the risk of a common cause failure. Examples of this include

a system with a primary microprocessor and FPGA-backup, primary FPGA with microprocessor back-up,

or primary FPGA with diverse FPGA back-up (such as different chip model, manufacturer or technology)

[5]. Similarly, FPGAs are considered for use as dedicated communication links in complex I&C systems,

as those links are thought to be another source of common cause failure, to defend against the

propagation of failures through an I&C system. This increased level of defence-in-depth is also a

recommended defence against cyber-security attacks, making the diverse system more resistant to

tampering and other malicious acts [1,5].

An additional consideration is the reduced complexity of FPGAs and the resulting FPGA-based systems.

As the final logic in an FPGA-based system will be a pure hardware implementation, and there is no

actual software or operating system running on the FPGA chip, it is believed that the Verification and

Validation (V&V) process for FPGA-based systems would be much simpler than for traditional software-

26

based systems, such as PLCs [1,4]. This, in turn would simplify the licensing process for the FPGA-based

systems, potentially allowing for a shorter, less expensive licensing process for the system vendors, as

well as the operators of the nuclear power plants, when compared to the licensing process for software-

based systems. A more detailed discussion on the potential advantages of FPGA-based systems is

provided in sub-section 2.1.7.

Overall, the replacement of aging, obsolete digital and analog I&C systems, the construction of brand

new systems based on FPGA technology, and the use of FPGAs as a diverse back-up/primary system are

areas that are likely to see increased implementations in the future [1].

1.2.2 Motivation for the Selection of a Dynamic Reliability Analysis Methodology

A “Dynamic Methodology” is defined as “those that can account for the coupling between systems

through explicit consideration of the time element in system evolution”[8]. With the increased use of

digital technology in NPPs, dynamic methodologies have garnered more attention in recent years. The

Committee on the Safety of Nuclear Installations (CSNI), as part of the Organization for Economic Co-

operation and Development Nuclear Energy Agency (OECD-NEA), published a document in 2015 entitled

“Failure Modes Taxonomy for Reliability Assessment of Digital I&C Systems for PRA” [9]. The work

showcased in that taxonomy report represents an extensive research project, where initial results were

published in a previous document (NEA/CSNI/R(2009)/18) entitled “Recommendations on Assessing

Digital System Reliability in Probabilistic Risk Assessments of Nuclear Power Plants” [10]. Although this

second document is older than the recently-published taxonomy report, that taxonomy report states

that “many of the recommendations in given in the previous digital I&C report (NEA/CSNI/R(2009)/18)

are still valid” [9].

The OECD-NEA taxonomy document states the most of the participants used FTA for the modelling,

however it is also stated that it is not clear if FTA can “capture all dependencies, fault tolerant features

and software hardware interactions”, with regards to digital I&C systems [9]. For this purpose, the

United States Nuclear Regulatory Commission (USNRC) sponsored several recent studies on the use of

dynamic methodologies for modelling/analyzing digital I&C systems. In the NEA/CSNI/R(2009)/18

document, it was stated that “dynamic modelling” would be a topic of future/continued research. Also

27

regarding dynamic methods, it stated was that“…several participants indicated that such methods might

be warranted when modelling software-based control systems. Several organisations are carrying out

research projects in this area and some pointed out that the benefits of the research include evaluating

the added value of dynamic methods and helping to identify weaknesses of a system” [10].

A similar sentiment is presented in the NUREG/CR-6901 report, which states “While the static event-

tree/fault-tree (ET/FT) approach has been used in the reliability modeling of digital l&C systems in

nuclear power plants, numerous concerns have been raised in the reliability literature in the past about

the capability of the ET/FT approach to properly account for Type I interactions. Studies reported in the

literature indicate that such interactions may lead to coupling between the triggered or stochastic

logical events (e.g., valve openings, pump start-ups) during an accident with significant impacts on the

predicted system failure probabilities. Similar arguments can be made for Type II interactions as well,

based on the computational evidence for very simple situations. The lack of treatment of such dynamic

interactions means that potentially significant dependencies between the failure events may not be

identified or properly quantified.” [8].

These two types of interactions, “Type I” and “Type 2” are defined as [8,11,12]:

Type 1 Interactions:

Dynamic Interactions between physical process variables (e.g. temperature, pressure, etc.) and the I&C

systems that monitor and manage the process.

Type 2 Interactions:

Dynamic Interactions within the I&C system itself due to the presence of software/firmware (i.e. multi-

tasking and multiplexing).

Furthermore, the issue of “Reliability”, with regards to the Probabilistic Risk Assessment of digital

systems, was also included as one of the “Technical Challenges” by the IAEA [2]. In that document, it was

stated that “Digital systems present difficulties for traditional methods owing to their use of software

for which systematic failure modes dominate the random modes of failure normally modelled in PRAs.

28

This introduces the potential for complex interdependencies as I&C systems influence most aspects of

plant control, protection and monitoring” [2].

As FPGAs are a form of digital technologies, that FPGA-based systems would be digital systems, and

would share some properties of other digital systems. Therefore, it was decided to apply a more

modern, dynamic methodology, for the purpose of modelling and analyzing the FPGA-based I&C

systems.

1.2.3 Motivation for the Selection of the Dynamic Flowgraph Methodology

After the choice to employ a dynamic methodology was made, the exact methodology had to be

selected. Several of these dynamic methodologies exist, and have been reviewed in the literature [13].

In the end, the Dynamic Flowgraph Methodology (DFM) was selected [14]. This decision was based on

information obtained from the literature, including the review and assessment of dynamic

methodologies from NUREG/CR-6901 [8].

1.2.3.1 NUREG/CR-6901 Review and Assessment

A US NRC contractor report entitled “Current State of Reliability Modeling Methodologies for Digital

Systems and Their Acceptance Criteria for Nuclear Power Plant Assessments” provided a detailed review

and assessment of dynamic reliability analysis methodologies [8]. This report reviewed 13 potential

dynamic methodologies (including DFM), against eleven assessment criteria. The results of that

assessment are shown in Table 1, with the acceptance requirements discussed afterwards [8]. In Table

1, the “X” denotes that the methodology fulfills the requirement, the “O” denotes that the methodology

does not fulfill the requirement and a value of “?” means that more research is needed to make

determination of if the methodology will or will not meet the requirement.

29

Table 1: Dynamic Methodologies and Acceptance Requirements

Requirement/

Methodology

1 2 3 4 5 6 7 8 9 10 11

Continuous

Event Tree

X X X X O ? ? X ? ? O

Dynamic

Event Tree

X X X ? X ? ? ? X X O

Markov

Models

X X X X O ? X X ? ? O

Monte Carlo

Simulation

X X X X ? ? ? ? ? ? O

Petri Net X X X X O ? ? ? ? ? O

DFM X X X ? X ? ? ? X X X

Dynamic

Fault Tree

X ? ? ? X ? X ? X ? X

ESD X X X X O ? ? ? X X O

Go-Flow X ? X ? O ? ? ? X X X

Bayesian

Methods

X ? ? ? O O ? ? ? ? X

Test Based

Approaches

? ? X O X ? X X ? O X

Software

Metrics

O ? O O ? ? X X O O X

Schneidewind

Model

X ? ? ? ? ? ? ? O O X

Acceptance Requirements:

1.) The model needs to accurately predict encountered failures and future failures

2.) The model needs to account for the important parameters of the system being analyzed/modelled

3.) The assumptions used in the model must be reasonable

4.) The model needs to give an accurate representation of the quantitative values of the dependencies

between failure events

5.) The model must not be hard to understand and implement

30

6.) The quantitative data used in the model construction/analysis needs to be credible

7.) The model needs to differentiate states that fail one safety check from states that fail multiple

stafety checks

8.) The model needs to differentiate between faults that cause intermittent failures and faults that

cause function failures.

9.) The model needs to provide useful information to the users (such as cut sets, failure probabilities and

uncertainty values)

10.) The methodology needs to model the digital components of the I&C system(s) under accident

scenarios with a level of accuracy so that the non-digital components of the I&C can be properly

analyzed

11.) The model does not need continuous state or strongly time-dependant plant state information

The assessment in the literature returned two methodologies with “… the most positive features and

least negative or uncertain features when evaluated against the requirements for the reliability

modeling of digital I&C systems”, although it should be noted that none of the methodologies were able

to meet all eleven acceptance criteria. [11,12]. These methods were DFM, and an extension of Markov

Modelling, known as the Cell-to-Cell Mapping Technique (CCMT). Overall, it was stated in NUREG/CR-

6901 that “…DFM ranks as the most preferable methodology”[8]. Research projects were carried out

using DFM and Markov CCMT, for modelling a generic digital feedwater controller for an NPP, with

results published in the literature [11,12,15].

1.2.3.2 Additional DFM Literature Review

On top of the NUREG reports cited in this section, DFM has been used and positively reviewed in

scientific literature for its ability to model the hardware/software/firmware interactions in digital

control systems in the nuclear field [13,15–18]. DFM has also seen use in the modelling and analysis of

accident management [19,20], human factors [21], and the analysis of advanced reactors [22]. Outside

31

the nuclear field, DFM has been used for general modelling analysis of control systems/process control

systems [23–26], and for the modelling of control systems software by the National Aeronautics and

Space Administration (NASA) [27,28].

1.2.3.3 Final Discussion on the Selection of DFM

The information in sub-sections 1.2.2 and 1.2.3 provide the rationale for selecting DFM for use in this

research program, as opposed to the other available dynamic methodologies. However, all of the

references discussed in those sub-sections considered only software-based digital I&C systems, and did

not consider programmable hardware technology, such as FPGAs. Therefore, expanding on the previous

research on the DFM analysis of digital I&C systems to model/analyze FPGA-based systems represents a

new and unique avenue of research.

1.3 Novelty and Contribution of this Thesis

There were two overall sub-topics in this thesis that made a large contribution to technical and

engineering knowledge; the FPGA FMEA and Taxonomy, as well as the DFM modelling of FPGA-based

systems. The specifics of both of these sub-topics are discussed in this sub-section.

1.) FPGA FMEA and Taxonomy

- Compiled a comprehensive list of FPGA failure modes data (failure modes, effects,

causes, etc).

- Categorized these first by stage in the lifecycle (“Design” and “Operation”), then by

“Cause”

- “Failure Sets” grouped based on similar causes and effects, in order to provide detailed

information on avoidance and/or mitigation methods

- FMEA data used to construct a plug-in to interface with the OECD-NEA digital I&C failure

modes taxonomy, creating the FPGA taxonomy and fulfilling an important topic of

future work as stated by an international working group (WGRISK)

32

2.) DFM Modelling of FPGA-based systems

- DFM not previously applied to analyze FPGA-based systems (only generic SW-based

systems)

- Confirmed the usefulness and accuracy of DFM for modelling FPGA-based systems using

an industry standard simulator

- First detailed comparison of FTA/DFM model of FPGA-based system:

o At the chip/board level

o Failure mode “fault injection”

o In-depth discussion on several reasons for the differences, including both

theoretical (algorithms), to practical (model construction/analysis)

- Identified several advantages of DFM over general static analysis methods, with special

consideration given to the advantages of DFM over FTA and simulation.

- Determined several potential avenues of future research regarding the reliability

analysis of digital I&C/safety systems

1.4 Chapter Summary

In this chapter, the overall motivation for the research program undertaken as part of this thesis is

presented and discussed. FPGAs are a relatively new technology in the nuclear domain, and

documentation from the IAEA states that the use of FPGAs in various I&C systems and nuclear plants will

increase greatly in the future. However, the IAEA documents also states that there is not a great deal of

available standards and operating experience in the nuclear field, so any additional research workinto

the reliability and safety of FPGA-based systems is of use to the international community. With regards

to the reliability analysis methodology, information in the literature has stated that traditional, static

methods may not fully capture the unique characteristics of digital systems, such as FPGAs, leading to

the selection of a dynamic methodology for this research program. Furthermore, the Dynamic

Flowgraph Methodology was the dynamic methodology of choice for this research program, based on

the results of research performed in NRC NUREG reports, and from a survey of technical publications.

The results from this research program will provide additional data and information that can be used to

improve upon the design, modelling and review of FPGA-based systems in NPPs. The novelty and

33

contribution of this research work is also presented, and a brief outline of this thesis document is

included at the beginning of this section.

34

2 Background

This chapter presents the background information relevant to the overall research work. It includes both

the background information for FPGAs and FPGA-based systems, as well as the background information

on the reliability analysis methods used during this thesis (FTA and DFM). Sub-section 2.1 provides the

background information on FPGAs, and sub-section 2.2 presents a detailed literature review of FPGA-

based systems in the nuclear field, which was subsequently published in the literature [6]. Subs-section

2.3 describes the reliability analysis methods, FTA and DFM. Sub-section 2.4 provides a summary of the

information discussed in this chapter.

2.1 FPGA Background

As FPGAs are the focal point of this research work, so are more in-depth description of FPGAs is

important and necessary, with this chapter providing that information. This sub-section provides a

detailed description of FPGAs, how they relate to other electronic logic technologies, FPGA architecture

and technology, advantages and disadvantages of FPGAs, as well as providing a brief discussion of FPGAs

in other industries and related technologies.

2.1.1 FPGA Descriptions

FPGAs were first created in 1985 by Ross Freeman, a co-founder of the Xilinx Company, which is

currently a top supplier of FPGAs [29]. The main suppliers of FPGAs in modern times are the

aforementioned Xilinx, and Altera (now owned by Intel) [30]. Other chip manufacturers include Lattice

[31] and Microsemi [32]. Several other companies provide development boards using Xilinx and Altera

chips, such as Opal Kelly [33], Digilent [34] and Terasic [35].

FPGAs are a form of large scale integrated circuits programmed to perform digital logic functions. The

internal hardware of the FPGA is “programmed” (configured) by the user after the chip is manufactured,

to perform it’s desired logic function(s), as FPGA chips contain no logic after they are manufactured

[1,3,4]. The end user will program logic functions onto the blank FPGA chip using Hardware Description

35

Languages (HDL). FPGAs can be reprogrammable or be One-Time Programmable (OTP), depending on

the type of technology used. Like microprocessors (including Programmable Logic Controllers (PLCs)),

FPGAs are considered to be a form of Programmable Digital Device (PDD) [36]. Unlike a microprocessor,

the FPGA logic is synthesized directly into the hardware of the FPGA chip, so the FPGA does not run any

software or operating system, it is purely a hardware implementation at that stage. The capacity of

FPGAs has increased many times since their inception, and the current models are capable of carrying

out parallel executions with very fast response times.

2.1.2 FPGAs in the Electronic Logic Family

 The way that FPGAs fit into the overall family of electronic hardware is shown in Figure 1 [1,4], with

some important definitions given afterwards.

HDL Programmed Devices (HPD)

An HDL Programmed Device (HPD) is defined as an “Integrated circuit configured (for NPP I&C systems)

with Hardware Description Languages and related software tools” [37]. They contain arrays of logic

elements that are connected by the end user to configure the device to perform the needed logic

function [1].

Hardware Description Language (HDL):

“Language Used to formally describe the functions and/or structure of an electronic component for

documentation, simulation or synthesis” [37].

36

Figure 1: Electronic Logic Family Block Diagram

Application Specific Integrated Circuit (ASIC):

An Application Specific Integrated Circuit (ASIC) is defined as an “Integrated Circuit designed for specific

applications” [37]. Unlike FPGAs, ASICs are not configurable/reconfigurable after they are

manufactured, as their functionality is custom designed/fabricated by the manufacturer at the time of

construction [1].

37

It should be noted that there is some disagreement as to whether an ASIC should be considered as an

HPD. Documentation from the IAEA [1] and Electric Power Research Institute (EPRI) [4] does not

consider ASICs as HPDs. However, documentation from the Multinational Design Evaluation Program

(MDEP) does list ASICs as HPDs [38]. Therefore, there is still some discussion among the international

community as to the exact categorization of the different electronic logic technologies.

Field Programmable Gate Array (FPGA):

An integrated circuit that can be programmed in the field by the instrumentation and control (I&C)

manufacturer. It includes programmable logic blocks (combinatorial and sequential), programmable

interconnections between them and programmable blocks for inputs and/or outputs. The function is

then defined by the I&C designer, not by the circuit manufacturer [1,37].

Programmable Logic Device (PLD):

A Programmable Logic Device (PLD) is defined as an “Integrated circuit that consists of logic elements

with an interconnection pattern, parts of which are user programmable” [37]. HPDs began as simple

Programmable Logic Devices (PLDs), with includes Programmable Logic Arrays (PLA) and Programmable

Array Logic (PAL). Complex Programmable Logic Devices (CPLDs) are descended from PALs, and are

basically combinations of multiple PALs onto a single chip with configurable interconnections [1]. FPGAs

are not considered to be PLDs, as FPGAs are more complex, more powerful devices, however the exact

determination between PLD and FPGA is not entirely defined [37].

In general, FPGAs differ in terms of the routing methods and their logic blocks. A brief comparison is

shown in Table 2 [1,4].

Programmable array logic (PAL):

“A type of simple programmable logic device that consists of a programmable AND-plane followed by a

fixed OR-plane” [1,4].

38

Programmable logic array (PLA):

“A type of simple programmable logic device that consists of two levels of logic, an AND-plane and an

OR-plane, both of which are programmable” [1,4].

Table 2: A Comparison of Important Technology Attributes of FPGAs and CPLDs

Technology Attribute FPGA CPLD

Configurable Logic Block Gate Array Logic Array

Density >500,000 gates <500,000 gates

Speed Design and Application Dependent Fast and Predictable

Interconnect Routing Crossbar

Power Consumption Low-Medium High

The important differences between CPLD include [1,4]:

1.) CPLD logic cells have a larger granularity that FPGAs, so it takes less logic cells to implement a

certain function on a CPLD than on an FPGA

2.) Intellectual Property (IP) cores can be embedded into FPGAs for the purpose of performing

complex logic functions, however this is generally not possible with CPLDs.

3.) CPLDs possess a larger logic-to-interconnect ratio than FPGAs, so they are typically faster for

very simple applications. Alternatively, this allows FPGAs to have greater flexibility and more

design capacity.

4.) CPLDs have a continuous interconnecting structure, resulting in high performance and

functional predictability, specifically considering signal propagation delays. On the other hand,

FPGAs have a segmented interconnect structure, where the number of segments needed to

route the signals is established by the software tools. Due to this, the exact timing of the signal

propagation in FPGAs cannot be known until the full design is placed and routed.

5.) The “routing” interconnections used by FPGAs permits far more signal paths to be constructed,

than is allowed by the crossbar routing of CPLDs.

39

2.1.3 FPGA Architecture

FPGA Logic Gate Composition

FPGAs, like many other forms of digital logic, are based on Complementary Metal Oxide Semiconductor

(CMOS) technology. The building blocks of CMOS technology are referred to as Metal Oxide

Semiconductor Field Effect Transistors (MOSFETS) [3]. CMOS technology makes use of two types of

transistors; “P-Type” and “N-Type”. The “P-Type” transistors allow current to pass between the drain

and source when the gate electrode voltage is negative. On the other hand, the “N-Type” transistors

allow current to pass between the drain and source when the gate electrode voltage is positive. CMOS

technology uses complementary pairs of these two types of transistors to form the logic gates, to

perform the digital logic functions (such as “OR”, “AND”, etc.) [3].

During operation, if one of the transistors in the complementary pair is “On”, the other transistor will be

“Off”. Due to this, the electric current, and therefore the power usage, is only needed for a short

amount of time, when the logic gates change their states. The reduced power usage is an advantage of

CMOS technology.

When considering CMOS technology, the “Complementary” term denotes the complementary pairs of

those two transistor types. A visual representation of the basic components of a MOSFET transistor is

seen in Figure 2 [3].

Figure 2: Diagram of “P-Type” and “N-Type” Transistors

Generic FPGA Chip Architecture

Regardless of the chip make, model or manufacturer, FPGAs are composed of several basic parts: I/O

connections mounted on the edges, programmable/configurable logic components (logic blocks or CLB),

40

and the wiring between the logic blocks that is routed through switchboxes (sometimes referred to as a

programmable interconnect) [39]. The CLBs are the logic units of the FPGAs, and are sometimes referred

to as Logic Array Blocks (LABs). These are comprised of flip-flops and Look-Up Tables (LUT), but the exact

packaging of these components can vary between FPGA series and manufacturers. In many cases, FPGAs

will include additional application data memory [1,4]. More advanced FPGAs may also have additional

components, but the ones listed above are common to all FPGAs. An outline of a basic FPGA is shown in

Figure 3 and Figure 4. A more detailed description of the main components of the FPGA are given below

[1,3,4].

Figure 3 is a simplified representation of an FPGA chip, and it outlines the placement of the three main

components that were previously discussed [39]. The logic blocks are represented by squares, the I/O

blocks are shown by the circles, and the lines connecting the blocks denote the programmable

interconnects. The exact set-up can vary between makes and models of FPGAs. Figure 4 expands on the

basic FPGA architecture, including application data memory, and highlighting the inner components of

the CLBs [4].

Figure 3: Outline of an FPGA chip showing the three main components

41

Figure 4: Basic FPGA Architecture with Block RAM and CLB Close-Up

Configurable Logic Blocks (CLB):

The CLBs are the FPGA component that will perform the digital logic functions. Based on the FPGA

configuration (programming), the CLBs will configured to perform their specified function (“AND”, “OR”,

etc. Therefore, each CLB will feature X Boolean inputs with Y Boolean outputs, and is configured to

implement an X-to-Y Boolean operation. Classically, this implementation could be performed using logic

gates, or through LUTs [4].

As seen in Figure 4, a generic logic block could be constructed using an LUT, a Flip-Flop/Register for data

storage, and a Multiplexer (MUX), that can bypass the Flip-Flop/Register if desired/ Generally though,

the CLB outputs are synchronized through that Flip-Flop/Register, to maintain a synchronous design in

the FPGA. In order to perform more complex digital logic functions, multiple CLBs can be strung

together. A more detailed view of an LUT-based CLB is seen in Figure 5, and an expanded view of the

MUX-based CLB is given in Figure 6 [4].

42

Figure 5: CLB Implemented with an LUT

Figure 6: CLB Implemented with MUXs

Figure 5 shows an LUT-based implementation of a CLB. LUTs are composed of a MUX and a small

amount of RAM, and can be used to implement basic logic functions. The example shown in Figure 5

represents the logic function “y = (a AND b) OR c”, denoted as y = (a & b) | c in the literature [4]. Here, y

denotes the single output, whereas a, b¸ and c represent three separate inputs. The truth table is

implemented in the FPGA using 8-bit RAM and an 8-to-1 MUX.

Conversely, Figure 6 shows the Mux-based implementation of the CLB. It would function in a similar way

as a tree of simple, 2-to-1 MUXs, where each MUX performs one logic equation operand that has been

configured into the CLB. Using the same logic function example (“y = (a AND b) OR c”,), it would be

implemented in the FPGA using a set of 4 MUXs, with the final configuration being determined by the

FPGA design/synthesis toolset.

43

Programmable Interconnects (Internal Connection Grid):

The interconnects are the internal wiring of the FPGA, and consist of sets of vertical and horizontal

wires. These wires are originally unconnected, but contacts can be made at the intersection of the wires,

with those contacts being controlled by the switchboxes. The interconnect contacts are used to connect

the CLBs to each other, as well as the CLBs to the FPGA chip I/O.

Input/Output (I/O) Connectors (Blocks):

The I/O connections are used to propagate signals into, and out of, the FPGA chip. They are electrical

boundaries between the higher voltages/currents used by external electrical/electronic components

that the FPGA is connected to, and the low voltage/current signals used inside the FPGA. The I/O ports

connect to CLBs inside the FPGA chip, and can be configured to be either inputs or outputs. In the case

of some more advanced FPGAs, the I/O connectors are also able to act as analog-to-digital converters

(ADCs).

Application Data Memory:

While this is not strictly a base component of FPGAs, it has become very common in FPGAs, especially in

modern times. This additional memory is used to make up for the small amount of memory available in

the CLBs. Typically, they involve blocks of SRAM (often referred to as “Block RAM”), but could also be

blocks of Flash memory, if greater radiation tolerance and/or configuration data retention is required.

2.1.4 FPGA Technologies

There are three main forms of FPGA technologies; Static Random Access Memories (SRAM), Flash, and

Antifuse [1,3,4]. By these technologies, it is meant how the FPGA stores logic on the chip, and how the

chip retains its configuration logic (programming). A fourth type can be considered, if Electically Erasable

44

Programmable Read Only Memory (EEPROM) is considered a distinct type, however it is similar to Flash

memory, which is a more modern technology. A discussion of these technologies is given below [1,3,4].

It should be noted that regardless of the choice of FPGA technology, the logic gates are all based on

CMOS technology.

SRAM:

SRAM is the most common technology used in commercial FPGAs, and is the same as the working

memory found in computers. SRAM FPGAs are all based on Complementary Metal Oxide Semiconductor

(CMOS) technology. Typically, SRAM technology allows for the most powerful/highest performing FPGAs

(fastest and largest logic programs). They are reprogrammable, and are generally the fastest to

program/reprogram. SRAM FPGAs work by keeping the configuration (program) as the state of groups of

cross-coupled transistors. Each transistor group forms a single memory bit, and decides if a

switch/interconnect is closed or open. When power is supplied to the FPGA, the transistors will hold the

system in a state of either “0” or “1”. Conversely, if power is lost, the state of the transistor will also be

lost.

As SRAM FPGAs will only retain their programming when powered on, and if they lose power, then the

FPGA must be reconfigured. In some cases, an external configuration system will be used to reconfigure

the FPGA on start-up. Therefore, SRAM FPGAs are said to have “volatile” memory. This also makes

SRAM FPGAs the most susceptible to power glitches, and to suffer memory upsets or configuration

errors from radiation strikes known as Single Event Effects (SEE). Therefore, extra care must be taken

when using SRAM FPGAs in operating environments where radiation interactions are expected.

Flash and EEPROM:

Flash memory is considered to be a more modern version of EEPROM, and has often replaced that

technology in FPGAs. Flash FPGAs work by using “floating gate” transistor, where that gate determines

the transistor behaviour. Flash FPGAs require only one transistor, as opposed to the six transistors used

in an SRAM FPGA. As the floating gate is electrically insulated, a Flash FPGA will retain its configuration

when powered off, and as such is said to be “non-volatile”. Flash FPGAs are reprogrammable, but will

only handle a certain number of Program/Erase (P/E) cycles, usually on the orders of 100,000-1,000,000.

Similarly, the Flash FPGA will retain its configuration for a limited time, usually on the order of 10-20

years.

45

The “Flash” term in this context is due to the erasure of large block of date at once during the P/E cycles.

The main difference between Flash and EEPROM FPGAs is the way the configuration memory is written.

In Flash FPGAs, large blocks of memory can be written at once, while in the case of EEPROM, the

memory bits must be written individually, making it in slower process. In general, Flash and EEPROM

FPGAs will be slower and hold less data than SRAM FPGAs. However, Flash FPGAs have also been seen

to have a lower sensitivity to SEEs than SRAM FPGAs.

Antifuse:

Antifuse FPGAs are configured by sending a high current through the wires of the interconnection grid,

to create a contact between those two wires. Since the connections (between CLBs and I/Os) are

created by links made heated conduction, which is the opposite method of how a fuse works, these

FPGAs earned the name of “antifuse”. Like Flash FPGAs, antifuse FPGAs are “non-volatile”, however

unlike SRAM and Flash, antifuse FPGAs cannot be reprogrammed (OTP). In order to change the logic on

an antifuse FPGA, the entire chip would have to be replaced. Antifuse FPGAs are less common than

other SRAM or Flash FPGAs. They tend to be the lowest in terms of performance (speed and chip

density), however they also have the highest resistance to SEEs, and from tampering with the system, as

the FPGA logic cannot be changed.

Figure 7: FPGA Configuration Storage Technologies

A visual overview of the FPGA technologies is given in Figure 7, with the structure of the connecting

wires being seen in Figure 8 [3].

46

Figure 8: FPGA Switchbox/Interconnect Structure for Different Technologies

A simple comparison of the three main FPGA technologies is given in Table 3 [4]

Table 3: Comparison of FPGA Technologies

Attribute Antifuse Flash EEPROM SRAM
Speed Best Worst Medium Worst

Power Near Best Best Worst Varies

Density Second Best Worst Medium

SEE Tolerance Best Medium Medium Worst

Reprogrammable No Yes Yes Yes

2.1.5 FPGA Programming

As mentioned previously, FPGAs utilize a form of low-level programming language known as a Hardware

Description Language (HDL). Popular versions include Verilog (IEE standard 1364) [40], VHDL (Very High

Speed Integrated Circuit HDL, IEEE standard 1076) [41], and SystemVerilog (IEEE standard 1800) [42].

HDLs are used to provide a description of a hardware system, for the purpose of system programming,

modelling and analysis, as their name implies. These languages use a Register Transfer Level (RTL) design

abstraction, in order to model digital circuits, such as those used in FPGAs [1]. This design abstraction is

independent of the physical hardware implementation, and shows the necessary logic operations and

signal propagation for the desired application, such as a circuit on an FPGA. The gate-level description

(also referred to as a “netlist”), for a certain FPGA logic model is created by the logic synthesis of the RTL

design abstraction. The output of that logic synthesis is transferred to a physical implementation for the

actual FPGA chip through the synthesis tools, using a method called “Place and Route (PAR)”. Once this

47

configuration has been loaded onto the desired FPGA chip, the FPGA is said to be configured, or

“programmed” [1]. The definitions of several important terms are given below:

Register Transfer Level (RTL):

“Synchronous parallel model of an electronic circuit, describing its behaviour by means of signals

processed according to combinatorial logic and transferred between registers and clock pulses. The RTL

model is typically written in HDL or generated out of HDL source code” [37].

Netlist (Gate Level):

“Description of an electronic component in terms of interconnections between its terminal elements”

[37].

Place and Route (PAR):

“The step in integrated circuit or printed circuit board design that determines the physical locations of

components, circuitry and logic elements, and the wiring paths required to connect the components”

[1].

Bitstream:

“A contiguous sequence of bits (binary digits), representing a stream of data, serially transmitted

continuously over a communications path. It is frequently used to describe the configuration data to be

loaded into an FPGA” [1].

When working in one of the HDL Languages, there are several software packages available to program

the FPGA. Xilinx provides the ISE line of products, including the free ISE Webpack (later replaced by

Vivado), which includes the simulator program ISim [43]. Xilinx also supplies more expensive packages,

such as ISE Design Suite, needed to program higher grade FPGA chips, and includes logic analyzers.

Altera provides the Quartus II set of software packages, which include the free Quartus II Web Edition

(now Quartus Prime), along with the ModelSim simulator and the SignalTap logic analyzer [44].

48

Traditionally, many people did not possess the skills and expertise needed to program the FPGA using

HDLs due to the multiple steps required for this process. In more recent years, FPGA suppliers have

developed more user friendly programming software that is available to users. Graphical programing

languages, such as LabVIEW be used to program National Instruments (NI) FPGA-based devices directly,

avoiding the need to master an HDL language [39]. Other program languages such as MATLAB/SIMULINK

[45] and Python [46] have modules to convert their respective code into synthesizable HDL code.

2.1.5.1 Comparison of HDLs and Common Programming Languages

There are several notable differences between HDLs and common high level programming languages

(like C, C++, etc.) that were discussed in the literature. These include [1]:

- Software source code is written in a high level language, compiled and generates binary code

which is executed sequentially on the selected microprocessor. HDL code is also considered a

high-level language, however in that case the RTL abstraction is translated through the synthesis

and PAR methods into a bitstream, to physically configure the FPGA chip. This results in a

parallel execution on the FPGA, as opposed to the sequential execution of traditional software-

based systems

- The HDL code for the FPGA is only used to configure the FPGA hardware, and is not actually

executed like on a microprocessor

- FPGAs do not run any Operating System (OS), which introduces an additional level of

complexity. As the FPGA implementation is purely hardware, no OS is used

- If a simple FPGA configuration is used (i.e. no soft-processor cores are implemented), software-

based run-time problems such as task scheduling and interruptions/exceptions are not seen in

HDL programmed devices

49

Overall, one of the main differences is that the HDL implementation will be executed in parallel, while

traditional microprocessor software executes sequentially. It should be noted that there are also

notable similarities between HDLs and traditional programming languages, including [1]:

- The use of formal methods for logic verification

- Logic and/or syntax errors in software and HDL can manifest into implementation errors when the logic

is downloaded onto the respective device

- Overall development process for software-based systems and FPGAs are treated the same by some

regulators, such as the United States Nuclear Regulatory Commission (USNRC) [7], as is the current

recommendation from other international organizations [2]

2.1.5.2 FPGA Mathematics

Mathematical calculations performed by FPGAs are most frequently performed using the Fixed-Point

Data Type (FXP), as the calculations are performed faster, with less chip resources than calculations with

equivalent floating point numbers [47]. A fixed point number is composed of two parts: the integer

(containing the sign if needed) and the fraction. The integer portion represents the whole number and

sign (the part of the number before the decimal point), while the fraction portion represents the

decimal (section of the number after the decimal point) [47]. When using fixed point math, the decimal

point is often referred to as the radix point. The term “fixed-point” means that the number has a fixed

number of digits after the decimal point, as opposed to floating-point numbers, where the decimal point

can be moved (“floats”). To synthesize a fixed point number, one must specify two parameters: a “Word

Length” and an “Integer Length”. The word length gives the total number of bits for the number, while

the integer length gives the number of bits for the integer portion. Any leftover bits then become the

bits used by the fraction (decimal) [47]. The most common word lengths are 16 and 32 bit, however

there other sizes can be used, and the sizes are limited by the FPGA development tool.

When using the fixed point data type, there is always the possibility for some loss of precision with the

decimal portion of the number. If the calculated value does not land exactly on certain numbers, then

50

there will be some shifting of the decimal numbers. This due to the resolution of the fixed point number,

as it will only be able to exactly represent certain values within a certain range. If the floating point data

is above/below the range that can be represented by the FXP numbers, then there is an

“Overflow/Underflow” Error. If the floating point data is inside the FXP range, but does not exactly

match the FXP values, then rounding must occur, and one has a “Resolution Error”. This is visualized in

Figure 9, where grey bars denote the values that FXP numbers can take, and the orange circles represent

the actual floating point data.

Figure 9: Comparison of FXP and Floating Point Representation

The methods for dealing with these problems are discussed below, as are good FXP FPGA design

practices (general guidelines) for avoiding these issues.

Overflow/Underflow [47]:

There are two main ways for dealing with the overflow/underflow conditions: wrap and saturation. In

the “wrap” mode, the maximum value is wrapped around to the minimum value once the maximum is

exceeded, and then minimum value is wrapped around to the maximum value when the value drops

below the minimum range. When considering the “Saturation” mode, floating point values outside of

the fixed point range will be capped at the minimum/maximum values, regardless of how far from the

maximum/minimum values they drift

Rounding (Resolution Issue) [47]:

There are three separate methods that can be applied to round off the floating point numbers to match

the fixed point numbers: truncate, round half up, and round half even. With truncate, the left

neighbouring gird (digit), will always be selected, as this method would eliminate the Least Significant

51

Bits (LSB). Round half up will select the closest neighbour digit, but will always round up if it is exactly

between the two numbers. Round half even will also select the closest neighbour digit, but can round up

or down (depending on which number has an LSB of zero) when it is exactly between two numbers.

Round half even is considered to be the most accurate rounding mode. A visual representation of these

methods is seen in Figure 10 [47].

Figure 10: Methods for Solving FXP Round OFF/Resolution Errors

FXP FPGA Design Practices

As previously discussed, the use of FXP numbers/mathematics has the potential to introduce certain

errors into the FPGA calculations. While methods exist to mitigate these errors to a certain extent, all of

those mitigation methods will still lead to some loss in accuracy. In order to use FXP

representations/mathematics with the greatest accuracy, one should pre-calculate the ranges of all

input values [48]. If the total range of the floating point numbers is known, then an appropriate FXP

range can be determined, to eliminate overflow. With regards to the issue of FXP resolution, it can be

mitigated to an extent. An acceptable loss of resolution should be determined in the specification stage,

which will allow for the proper integer and word lengths to be selected, minimizing the round

off/resolution errors [48].

52

In more recent times, advanced packages for FXP [49] and floating point numbers [46] have been

developed, and have been incorporated into the most recent VHDL standard [41]. However, not all FPGA

synthesis/development tools fully support these packages, so additional care must be taken when

applying those advanced packages, especially when considering a safety-critical system.

2.1.5.3 FPGA Programming Process

The overall programming process for FPGAs can be broken down into four main categories; “Component

Requirement Specification”, “Preliminary Design”, “Design”, and “Implementation”, with verification

occurring at each one of those stages [1,4,37,38]. The final two categorises, “System Integration” and

“System Validation” occur after the FPGA has been programmed/configured. These consider the FPGA

aspects of system integration and validation, after the total system has been assembled. This is often

represented as a “V-Shaped” programming model, as seen in Figure 11 [1,4,37,38]. The first four stages

in that process are discussed in this sub-section. The final two stages represent the FPGA-specific

aspects of their specific phases. Those overall phases are discussed in more detail in sub-section 2.1.6.

 Component Requirements Specification:

Define and state all requirements applicable to the final, configured FPGA. Those requirements generally

stem from the overall I&C system architecture [1,4].

Preliminary Design:

Determine the important design choices such as the amount of sequential vs combinatorial logic,

intended modules, IP cores and pre-developed code, application-specific code, fault tolerant design

techniques, library functions, and the intended device/device family [1,4].

53

Figure 11: FPGA Programming Process (V-Shape)

Design:

Develop the detailed description of the intended logic functions needed to be performed by the FPGA. It

is often device independent, and the design is generally done using one form of HDL. The HDL code in

turn describes the RTL, which can then undergo simulation and/or formal verification to test for

logical/behaviour errors [1,4].

Implementation:

This is the stage where the actual FPGA chip is configured. It generally considers two steps, synthesis,

and then PAR. The goal of the synthesis phase is to convert the (circuit independent) RTL into a

description that can be applied to the desired FPGA. The resulting circuit-dependent description

54

becomes the netlist. Additional simulations and formal verification can be performed at this point.

Additionally, timing simulations are performed more accurately, due to the timing files generated during

synthesis.

After the synthesis step, the PAR occurs. The design tool will compute the most efficient configuration

for the FPGA. Additional timing files are generated, to allow for more accurate timing simulations than

in the synthesis phase, as the PAR timing files consider the actual hardware routing. At the end of the

“Implementation” stage the bitstream is generated, to program/configure the FPGA chip [1,4]. A block

diagram of the total “Implementation” step is seen in Figure 12 [4].

.

55

Figure 12: Block Diagram of the “Implementation” Stage of FPGA-Based Systems Programming

56

2.1.6 FPGA-Based I&C System Lifecycle

This section focuses on the lifecyle of the total FPGA-based system, not just the FPGA chip itself. It

would include all the necessary processes, documentation and organization needed to develop an FPGA-

based system. The system could use either a pre-developed platform (components combined into a

system architecture and configured for implementing certain tasks), or be designed completely from

scratch. A block diagram of the FPGA-based I&C system life cycle is seen in Figure 13 [1]. Several

important stages in that lifecycle are discussed proceeding that figure.

Figure 13: Overall Lifecycle of FPGA-Based NPP I&C Systems

57

System Requirements Specification:

In this step, important requirements for the I&C system are specified. These include the system

boundaries and interfaces with other systems and human operators, the environmental operating

conditions, the design constraints, and the actual function(s) that the system is intended to perform [1].

System Architectural Design:

The system architecture will be based on the system requirements (including the use of any pre-

developed items, if needed). The architectural design phase will determine the architecture of the total

system, including the organization, functions, requirements and interfaces between

modules/subsystems (if any are included). The design documentation for those aforementioned system

aspects will also be produced at this stage [1].

FPGA Requirements Specification:

This step matches up with the “Component Requirement Specification” phase seen in Figure 11. The

required for the FPGA(s) will be based on the system architecture and the overall system requirements.

It includes requirements for the function(s) each FPGA will perform, interfaces and I/O, operation

parameters and operating environment, performance/timing requirements, and fault tolerance features

[1].

System Integration and System Integration Testing:

In this stage, the overall system is constructed from new and pre-developed components. System

verification Is generally done through testing, to check the overall system function and system interfaces

[1].

System Validation:

This represents the final step in the process. The compliance of the entire system is checked against the

system requirements, using a validation test plan and test specification [1].

58

2.1.7 Advantages of FPGAs

There are certain potential advantages to using FPGAs in the I&C systems in NPPs. Several of those

advantages are listed and discussed in brief in this sub-section.

Reduced Complexity and Easier V&V Process [1,3–5,51]:

FPGAs are seem to be less complex than traditional software-based systems. The use of OS and/or

application software would make even specifically designed safety PLCs, microprocessors or Distributed

Control Systems (DCS) more complex than standard FPGAs. This, in turn helps reduce the testing and

qualification process. A comparison of Complexity vs Capability is shown in Figure 14 [1]. More advanced

FPGAs can include soft processor IP cores, or Hard Processor Systems (HPS). This will increase their

functionality, but also their complexity. The drawbacks of FPGA capabilities are discussed in sub-section

2.1.8.

Figure 14: Complexity and Capability of Selected Digital Logic Devices

Faster Processing Speed (Reduced Response Time) [1,3,52]:

FPGAs have faster processing speeds, and in turn a lower execution time than software-based systems.

This is because FPGAs do not need to run any software (the logic functions are executed as pure

59

hardware), and that the FPGAs are capable of true parallel processing, if hardware resources are not

shared.

Logical Separation (Separation of Safety Functions) [1,4,5]:

As FPGAs can perform logical operations in true parallel execution, logical functions can be separated on

the FPGA chip. For example, monitoring functions can be separated from safety functions, or

independent safety functions can be separated from each other on the same chip, so that failures in one

function will not affect other safety functions. This is in contrast with a microprocessor, where sharing

an OS or other software services makes the independence of functions more difficult to achieve.

Useful for a Wide Range of Applications [1,4,5] :

FPGAs have the ability carry out a large variety of logic functions, making them applicable to most NPP

systems. They are especially well-suited to safety systems, as those systems tend to rely on simple logic

functions (making FPGA programming easier), and require has response times.

Code Portability and Reduced Obsolescence (Longer Lasting Technical Support) [1,3–5,51]:

If only HDL code is used to program the FPGA chip (i.e. vendor specific IP cores are not used), the FPGA

code becomes very portable, and can be ported to other FPGAs, FPGA families, and even FPGAs from

other manufacturers. Additionally, as portions of the FPGA programming cycle are circuit independent,

so they will not have to be repeated on replacement chips, reducing the obsolesce of the HDL code. A

block diagram of this aspect is given in Figure 15 [4].

60

Figure 15: HDL Code Portability

Increased Diversity [1,3,4]:

Including FPGAs along with other forms of digital/analog logic in a system will increase the diversity of

components in that system, thus reducing the likelihood of Common Cause Failures (CCF). The use of

FPGAs is techniques to help meet diversity requirements, such as those set out in NUREG/CR-6303 [53],

NURREG/CR-7007 [54] and EPRI-1002835 [55].

Reduced Vulnerability to Cyber security Attacks [1,3,4]:

FPGAs are generally more resistant to cyber security attacks than software-based systems. FPGA-based

systems can be implemented without high-level general purpose components that are more easily

altered/tampered with. The system itself can be designed such that physical access to the FPGA is

needed to alter the program, and in the case of OTP FPGAs, the configured FPGA logic cannot be

altered.

Increased Cost Effectives [1,4]:

The potential factors of reduced complexity, reduced V&V process, and the use of pre-developed tools

are believed to lead to more cost-effective implementations of FPGA-based systems.

61

FPGA Prototyping [1]:

Reprogrammable FPGAs allow for quicker and more cost-effective prototyping for final systems using

other technologies.

2.1.8 Disadvantages of FPGAs

FPGAs are not without certain drawbacks and limitations, however. Several of the potential issues

regarding FPGA-based systems are discussed in this sub-section.

Lack of Experience with FPGAs in the Nuclear Industry [1–4]:

The implementation of FPGA-based systems is relatively new in the nuclear industry. This means that

there is not a wealth of knowledge from which to draw design experience, operating experience, lessons

learned and best practices, with regards to FPGA-based NPP I&C systems. In addition, there is little

technical documentation for FPGAs, with only one international standard published [37] at the time of

this thesis, however additional design documentation is said to be in the works.

Use of Vendor Specific Design Products [1,4]:

The use of vendor-specific design aspects, such as hard macros, synthesis/timing directives and IP cores,

will reduce the portability of the FPGA logic, as the code cannot be directly copied into a different FPGA

make/model from a different vendor. The transparency of the IP cores is a second issue, and can

complicate the regulatory review process (negating advantages of FPGAs in the V&V process), as the

internal works of the IP core would not be known to the end-user, and the vendor may change the IP

core over time.

62

Availability of FPGA Design Tools/Products [1,4,7]:

There are not a large number of vendors for FPGA chips and design/tools, which limits the options

regarding the choice of FPGA technology. Similarly, there are not many FPGA-based I&C systems

available for NPPs, that have gone through the approval/qualification process.

A separate issue involves the transparency of the design tools. As the PAR process is performed

automatically using the synthesis/PAR tools there is the question of how well the end design will reflect

the original HDL code.

Need for Specialized Experts (FPGA Hardware/Software) [1,4]:

The development, analysis and review of FPGA-based systems require personnel with expertise specific

to those FPGA-based systems. The differences between FPGA hardware/software from analog devices

and traditional software-based devices (i.e. HDL coding, RTL, timing analysis, design tool usage) means

that FPGAs would need their own specific design/review process, performed with FPGA technical

experts. The lack of FPGA experience in the nuclear field adds to this problem, as fewer qualified

personnel would be employed in the industry, with regards to FPGA-based systems.

Decreased Access to Internal Signals [1,4]:

In general, there will be reduced access to internal signals of FPGAs, when compared to a micro-

processor or conventional electronics. This can create issues with regards to monitoring/testing the

FPGA system and system logic. Implementing test access ports can help mitigate this issue, but it cannot

be guaranteed that all signals will be connected to that test access port. Additionally, any code

optimization algorithms used by the design tools may inadvertently eliminate signal outputs, making

testing/monitoring of the internal signals more difficult.

63

Issues with Graphics and Human System Interfaces (HSI) [1,4]:

The hardware-based solutions of FPGAs do not lend itself to complex graphical and HSI applications as

well as a software-based solution. Additionally, HSIs generally need to be modified more often than

safety or control algorithms, and those modifications may be easier to implement in traditional software

(especially if OTP FPGAs are used).

2.1.9 Comparison of FPGAs and Other Electronic Control Technologies

Previous sub-sections in Section 2 have provided some discussion on the advantages/disadvantages of

FPGA based I&C systems in NPPs, and comparisons between FPGAs and other hardware or software-

based electronic logic technologies. In this sub-section, a brief summary of the characteristics of various

FPGA utilizations and other forms of electronic logic will be considered, from information in the

literature [4].

 There are several different ways FPGAs can be utilized as an electronic design technology. This ranges

from the pure hardware implementation (“flat hardware logic”) in the simplest form, to FPGAs with

embedded microprocessors (soft processor IP cores). In between those two, there are FPGAs utilizing IP

cores to ease in the application of repeated and/or more complex functions, and FPGAs that serve as

emulators, to emulate legacy software functions. While some of these implementations increase the

functionality of the FPGA, and in turn, the applications the FPGA can be applied to, they will also

increase the complexity of the device, potentially negating some of the advantages of FPGAs.

64

Table 4: Comparison of FPGAs and Other Electronic Control Technologies

Technology

Design Process End Product Safety

Justification

Technology

Support

Length

Level of

Functional

Capability

(Examples/

Comments)

Conventional

Hardware

Hardware

Design

Hardware Design Review

(HW)

Long Low

Analog circuits, relays

and discrete digital

electronics (e.g. TTL)

Conventional HW

Design and HW QA

process

Discrete HW

Components (e.g.

TTL)

Functional Testing

Conventional HW

design, design

controls and QA

Components

Obsolete

(Used to be long)

Difficult to

implement self-tests

and complex

algorithms

FPGA

(Flat HW Logic)

HW Design
(SW Assisted)

Hardware Software-similar

HW design

process review

Long Moderate-High

FPGA HW logic only

configured in IC

IC Design/V&V,

assisted by software

tools

Formal Methods

IC Review design and

V&V processes

(software)

Review HW Design

Functional Testing

Similar to

conventional HW

(code portability

may extend support

length further)

Parallel,

independent logic

Self-Test features

Difficulty with

complex HSI

FPGA

(Flat HW and IP

Cores)

HW Design
(SW Assisted)

IP Core
Integration

Hardware Software-similar
HW design

process review
Evaluation of IP

Cores

Moderate-Long Moderate-High

Flat HW logic used
alongside IP core(s)

HW design plan
evaluation (SW
assisted), with

integration/
evaluation of IP

core(s)

IC HW Design Process
Review

Assessment of IP

Core(s)
(COTS review

process)

Similar to Flat HW
Logic FPGA, but is

partially dependant
on support of IP

core(s)

Same as Flat HW
Logic FPGAs

IP core(s) may
simplify new/

complex functions

FPGA Emulator HW Design

(SW Assisted)

SW Re-Use

Hardware and

existing

Software

(qualified)

Software-similar

HW design

process review

SW evaluation

Long Existing SW

Functionality

FPGA emulates an

existing processor

(legacy SW)

HW design (SW

assisted) for

emulator

IC Emulator

Legacy Software

HW design process

review

Assessment of

emulator

Typically the same as

for flat HW logic

FPGAa

Same functionality

as the original

(legacy) software

65

SW Functionality

Re-use of legacy SW functionality

Technology

Design Process End Product Safety

Justification

Technology

Support

Length

Level of

Functional

Capability

(Examples/

Comments)

FPGA with

Microprocessor

(SoC)

HW Design
(SW Assisted)

SW Design

Hardware

Application-

Specific SW

Software-similar

HW design

process review

SW Design

process/ design

review

Moderate-Long High

Flat HW logic with an

Embedded

Microprocessor

HW Design
(SW Assisted) for IC

SW Design/QA for

SW (Processor)

IC

Application SW

and/or

PDS Components

HW Design/ Process

Review

SW Development

and V&V Process

Review

Dependent on PDS

components and OS

(if used)

Self-tests

More complex

functions (than flat

HW)

Limited HSI

Conventional

SW-Based

System

SW Design Software and

Hardware

SW Design

process/ design

review

Short High-Very High

Microcontrollers,

DCS, PLCs, etc.

SW Design and QA,

assistance of SW

tools

Conventional

Microprocessor

Application and

basic system SW

SW Development

and V&V process

Review based on SW

engineering

standards

Microprocessors and

their basic SW have

shorter lifecycles

than conventional

HW

Complex algorithms

Self-Tests

Information display

and complex HSI

A summary of the information from the literature comparing the various ways FPGAs can be deployed,

as well as comparisons with conventional hardware and microprocessors is given in Table 4 [4]. That

table is ordered in increasing order of complexity/functionality.

Notes:

SW: Software

66

HW: Hardware

Safety Justification:

It should be noted that the safety justification discussed in Table considers only the freedom from

design errors and the assurance of design correctness. Other facets of safety justification, such as HW

qualification, QA of the manufacturing process, etc., were not considered by the literature source.

Pre-Developed Software (PDS):

“Software part that already exists, is available as a commercial or proprietary product, and is being

considered for use” [37,56]

2.1.10 Additional Uses For FPGAs

While FPGAs have received only recent consideration in the nuclear industry, they have seen more use

in a variety of other fields, for a much longer time. Additionally, technologies similar to FPGAs have

sprouted off in more recent years, each with their own benefits and drawbacks. These additional facets

of FPGA-related technology is briefly discussed in this section.

2.1.10.1 FPGAs in Similar Industries

The aerospace field is sometimes seen as similar to the nuclear field, because both require a high level

of reliability and quality. In addition, in some high altitude and space applications, radiation can be

encountered, which could affect unshielded hardware components. Although shielding is present in

nuclear power plants, special consideration should be given to the effects of different forms of radiation

on the FPGAs in case of an accident or leak. Several examples and solutions have previously been

investigated and published by the aerospace industry. In the end, the use of FPGAs in aerospace

applications could be used as a guide for implementing FPGA based systems in the nuclear field [3,57].

67

2.1.10.2 System on a Chip

A System-On-A-Chip (SOC) combine an FPGA and a HPS onto a single chip, with interconnections

between the two parts of the chip [3]. Additional components, such as extra RAM, ROM, analog-to

digital and/or digital-to-analog converters, etc. This allows for the implementation of FPGA and

traditional software-based functions (either with or without an OS), on the same chip, utilizing the

benefits of each system. As an example, an HSI function could be implemented on the HPS, with the

high-speed digital logic functions performed on the FPGA, and data shared between the two, using the

interconnections. While this increases the functionality of the chip, it also increases the complexity of

those systems [4].

2.1.10.3 Field Programmable Analog Array

The Field Programmable Analog Array (FPGAA), is thought of as the analog cousin of the FPGA. The idea

behind FPAAs is similar to that of FPGAs, however the FPAA contains Configurable Analog Blocks (CAB)/

Configurable Analog Modules (CAM), instead of the CLBs used by FPGAs. The FPAA is then configured to

carry out the desired analog function(s). FPAA technology is newer and less developed than FPGA

technology, and at the time of this thesis, had not achieved the level of mainstream use as FPGAs [3,58].

68

2.2 FPGA Literature Review

An extensive literature survey was undertaken at the start of the research work, in order to understand

the latest developments regarding FPGA systems in nuclear power plant I&C. This survey included

journal publications, conference papers and reports form industry and engineering groups. The results

were categorized an included in a review paper entitled “A Review of the Current State of FPGA Systems

in Nuclear Instrumentation and Control”, that was published in the ICONE-21 conference proceedings

[6]. The results published in that review paper are shown in sub-sections 2.2.1 - 2.2.4. Sub-section 2.2.5

will briefly discussion developments in FPGA-based I&C systems that were published after the review

paper was accepted. Sub-section 2.2.6 discusses the potential gaps in the (published) knowledge with

regards to FPGA-based systems, and how the literature review results provided guidance for the

research in this thesis.

2.2.1 FPGA Developments in North America

In Canada, there are certain projects underway (some just for test and research purposes) by a variety of

organizations studying the usage of FPGAs for safety systems in CANDU nuclear plants. A few research

cases involving the SDS-1 Safety Systems are presented here, as are the experiences of Ontario Power

Generation (OPG) with FPGAs at their Darlington facility. So far in the USA, only one NPP has begun

using FPGA based systems during its operations, and it is not for a safety critical system. This NPP is the

Wolf Creek plant located in Kansas, and it was granted a license for an FPGA based system

implementation in 2009. There are plans to introduce more of them in the near future. The Diablo

Canyon Plant is planning to perform similar system upgrades

System Design: Canada (SDS-1)

A recent paper by Jiang and She from 2011 studied the use of FPGAs in Shutdown System No. 1 (SDS-1,

the use of shutdown rods dropping into the reactor core) in the CANDU power plants [59]. The goal of

this project was to compare the response time of an FPGA based shutdown system, with the response

time of an operating system (software) based system used in current CANDU plants. To carry out this

69

project, a Hardware in the Loop (HIL) nuclear power plant training simulator was used to simulate real-

life operation of a CANDU NPP, where a trip parameter of the SDS-1 trip logic is used for the study.

The design and implementation of this FPGA system involved the use of some basic operations, such as

“range checking” and “sorting” that were carried out in parallel. Range checking involves comparing a

measured value against the upper and lower bounds simultaneously (due to parallel circuits). The

sorting function creates a sorting network that allows pipeline implementation that will increase the

processing speed and enhance the efficiency of the system.

Figure 16: System Architecture of the FPGA-based SDS-1

Figure 16 provides a basic outline of the overall digital system architecture of the FPGA based SDS-1

[59]. This figure shows the relationships between the different functionalities and subsystems. The

aforementioned functions were programmed using a HDL variant known as Very High Speed

Integrated Circuits (VHSIC) HDL. The design of the FPGA chip was completed, and the designed

system was downloaded onto the FPGA chip to be tested.

Figure 17 is a more detailed system description of the FPGA based SDS-1 Trip Channel [59]. It

demonstrates the circuits and logic blocks involved with this system. After the trip thresholds have

been determined, the processing logic will determine if the trip conditions have been met. If that

occurs, a signal is sent to the output circuit to trip the system. The “Extensive Conditions (EXC)” logic

block is used to determine if an extensive condition would be an effective trip condition. This is

done because the reactor can have some special operating status. This block also controls the

70

output circuit and can overwrite the trip signal. The output circuit will then send out the trip signal

under the right conditions.

Figure 17: System Description of the FPGA based Trip Channel for SDS-1

System Testing and Simulation (SDS-1): During the test, the response time and the functionalities of the

FPGA-based system were analyzed. The experimental set-up consisted of connecting this FPGA trip

channel to the HIL simulation through the use of the NPP simulator. In this experiment, “Channel E” of

the SDS-1 simulator was replaced by the FPGA based SDS-1 [59].

Figure 18: HIL Simulation for Functionalization Test

71

Figure 19: Set-Up of Response Time Measurement

Figure 18 shows the block diagram for the experimental test set-up of the HIL simulation, used to test

the functionality of the FPGA based SDS-1. It consists of the NPP training simulator, an A/D converter,

data acquisition system and the FPGA system. The simulation data (from the NPP simulator) is sent to

the FPGA board via a data acquisition system and a UDP/IP Ethernet connection. Data is passed back to

the simulator the same way [59].

Using the set-up shown in Figure 19, the response time of the aforementioned HIL setup was

determined. This was done separately since the time step of the simulator is longer than the clock

frequency of the FPGA. This new setup applied a sinusoidal signal to the FPGA, and the output responses

were recorded by an oscilloscope [59].

The functionality chosen for this test was known as “Steam Generator (SG) Low Level”. The

measurements of the response time of the FPGA trip channel were done using the set-up in Figure 19.

The simulations were performed over a variety of operating conditions.

System Results (SDS-1): The functionality tests showed that the FPGA based SDS-1 trip functions

properly under the “SG low level” operating condition. It was seen that the proper trip signals were sent

by the FPGA trip channel. The results recorded during the simulation showed a very fast response time

for the FPGA based system—faster than that of software based PLCs used in NPP applications [60] . After

analysis of the timing simulation, it was seen that the FPGA trip channel had an average response time

of 10.50 ms, whereas the aforementioned software based PLC system had a response time of 78.69 ms

[60]. These results show that the FPGA trip channel has an average response time that is about 86.66%

lower (faster) than the response time of the software trip channel. By this value, the authors meant that

72

the response time of the FPGA-based system accounted for 13.34% of the response time of the PLC

system. It should be noted that this test was done solely to evaluate the speed of the FPGA response,

and did not take into account other advantages that these PLCs possess such as triple redundancy for

the PLC, as opposed to no redundancy with this FPGA channel. The author’s (Jiang and She) concluded

that there were four advantages to using FPGA based shutdown systems, including faster response time,

fewer failure modes, faster licensing process, and a better resistance to obsolescence [59].

Further Work on SDS-1: In 2012 Jiang and She performed more research into improving SDS-1 response

times through the use of FPGA systems [61]. Again, the HIL and the NPP simulator were used. However,

this test was expanded to also include an offline, industry-standard thermal hydraulic simulator known

as CATHENA. In this situation, a Large Loss of Coolant Accident (LOCA) emergency event is studied,

where the response time will have an impact on safety.

Figure 20: CATHENA Simulation Model for LOCA Study

Figure 20 demonstrates the simulation model used in that paper [61]. In this model, the core is broken

up into seven regions. These regions are then connected to Feeder Pipes, which are in turn connected to

the Reactor Inlet Header (RIH) and the Reactor Outlet Header (ROH). Boundary Conditions (BC) are then

applied on either end. In reality there would be two independent loops, but this model is simplified to

consider one combined loop. The arrows on either side of the core denote Feeder Pipes.

The CATHENA software was used to show how the behaviour of the critical parameters of the reactor

during the accident are dependent on the shutdown time. The Neutron Overpower measurement was

used as the trip signal in the FPGA trip logic implementation, as it is the most important parameter in

73

this situation. The HIL simulator was used to model a LOCA event in real-time. The FPGA trip logic was

again used to replace the standard logic in one of the channels of the trip system. The experiment

followed a similar set-up with similar components as in the 2011 paper, with a key difference being that

the response time of the FPGA was not being directly measured. Instead, they measured the speed at

which the neutron power in the (simulated) reactor dropped. The FPGA system used was a NI PXI-

7811R system from National Instruments with a Virtex-II 1M gate FPGA chip, programmed using

LabVIEW.

Figure 21: Comparison of Neutronic Power Between the FPGA Trip and Simulator Trip Channels

In Figure 21, the results of the simulations are presented [61]. It was found that the FPGA Trip channel

had a lower response time (faster response) than the simulator software trip channel. This in turn

means that the peak transient of the power is lower in the instance of the FPGA trip system than in the

case of the simulator software trip channel, due the fact that the transient response is a function of the

response time of the SDS. From the results discussed above, Jiang and She again found that the FPGA-

based system reduced the response time of the SDS-1, leading to increased safety, due to a faster

reactor shutdown. These authors also feel that this could lead to the reactors operating at a higher

power, since the reactors could be safely shut down more quickly than before.

Current Project: Canada (Radiy and AECL)

In a 2010 project by Xing et al., Radiy and AECL collaborated to create an application development

process based on the Radiy FPGA platform, for the purpose of a pilot project for implementing

shutdown systems in CANDU plants. The goal of this would ultimately be to create a FPGA development

74

process that will meet regulatory and safety requirements [3,62]. Research into the SDS for CANDU

plants is ongoing.

Current and Future Project: Canada (OPG and Darlington)

In the 1990s, FPGA technology began to see some use in CANDU plants located in Canada. The first

application was a FPGA-based emulator for the once popular, but now defunct PDP-11 computer. They

were used for several non-safety systems such as the Fuel Handling System for about 10 years. Recent

plans include using a more modern version of the emulator in Digital Control Computers (DCCs) that are

used in the control of the reactors. Peripheral devices that are used alongside the DCCs are going to be

replaced by FPGA-based technology. In some cases this has already been done. These systems included

the Moving Head Disks (MHDs) and magnetic tape drives, and were part of Stage 1 of the replacement.

Stage 2 is ongoing, and will encompass more complex components, such as the CPU and Operator

Console Panel. OPG is also considering implementing an FPGA-based reactor protection system,

potentially in the near future [4,5].

Current Project: USA (Wolf Creek Upgrade)

Main Steam and Feedwater Isolation System: The old Main Steam and Feedwater Isolation System

(MSFIS) was replaced with a new FPGA-based system in 2009. The system was based on the Advanced

Logic System (ALS), by CS Innovations, and includes flash technology based FPGAs. The purpose of the

MSFIS is to receive the signals from the Solid State Protection System (SSPS), (or alternatively manual

signals), and then send signals to individual valves [3].

The MSFIS is considered a simple system, as it does not receive any measurements from sensors or

detectors. Due to its simplicity, and also that it was a system that needed to be replaced, it was easier to

get NRC approval for the FPGA technology than in most cases involving software. In this case, it took

about 2 years for the NRC to grant approval for this project, which is much faster than the approval for

traditional software that can last up to 10 years in certain cases [63,64].

75

The ALS is a scalable, modular system that can be modified after installation if desired. It provides

dedicated and redundant control logic to maximize safety. It is believed, (by Wolf Creek and CS

Innovations), that this new system will lead to increased integrity and reliability, reduce the cost and

effort required for modifications, and reduce the impact of obsolescence in the future. It would also

allow for more advanced testing and diagnostics [63,64].

Since the MSFIS was the first NRC approved FPGA-based system, it meant that there were no regulatory

documents available on the issue of qualifying FPGA systems. The Safety Evaluation Report (SER) for the

replacement MSFIS at Wolf Creek serves as one of the best guides for getting NRC approval of FPGA-

based systems (more recently, NRC guidelines have been developed, as discussed in a later section) [5].

There has not been much data published regarding the performance of the FPGA based systems at Wolf

Creek, however there have been no publically reported problems with the system.

Current Project: USA (NRC Guidelines)

Due to the recent interest in FPGAs for Nuclear I&C, it would be pertinent to discuss the guidelines set

out by nuclear regulators. The US NRC published a report in 2009 entitled “Review Guidelines for Field

Programmable Gate Arrays in Nuclear Power Plant Safety Systems” [65].

The report compiled design practices for FPGAs that would be utilized by NRC members to review any

and all FPGA-based safety systems in NPPs. It is comprised of previous regulatory documents as well as

new information to cover issues not previously discussed in past reports. It breaks down the FPGA

design practices into three main groups; FPGA design entry methods, FPGA design practices, and FPGA

design methodologies.

The report further breaks down these design practices into four important attributes; reliability,

robustness, traceability and maintainability, according to existing frameworks. It states that the FPGA

should be treated as a device composed of hardware and software, and is similar to other Complex

Programmable Logic Devices (CPLDs). A recommended design flow (including design path and

verification path) is illustrated Figure 22 [65].

76

Figure 22: US NRC FPGA Design Flow

The flow chart found in Figure 22 showcases the design flow that is recommended by the US NRC. This

includes the design path and the verification path, where all the design path steps correspond to a step

in the verification path. The design steps might need to be revised based on the results of the

verification steps. These verification steps may also need to be changed if the initial requirements of the

FPGA change, and this could, in turn, require changes to be made to previous design steps. Overall, the

goal of the report was to describe and list the FPGA design practices that were considered to be

acceptable, as well as listing the design practices considered to be unsafe. The report was compiled at

the Oak Ridge National Laboratory by the Office of Nuclear Regulatory Research of the US NRC.

The NRC is also currently reviewing five new reactor designs that plan to utilize FPGA technology for I&C

systems. This includes the AP1000 by Westinghouse, the US-APWR by Mitsubishi, the US EPR by Areva,

the ESBWR from GE-Hitachi, and the ABWR from the South Texas Project [5].

77

Future Project: USA (Wolf Creek Continued Upgrade Plan)

Figure 9 is a representation of the planned Safety I&C system upgrades based on ALS (FPGA) systems. It

was outlined in 2008/2009, and is meant to take place over 5 years [63,64]. This plan includes

milestones such as the Load Shedder and Emergency Load Sequencer (LSELS) to be installed in 2012. It

consists of other components, such as the SSPS, Balance of Plant Emergency Safety Features Actuation

System (BOP ESFAS), etc. and shows the overall architecture of the proposed safety systems. The dashed

box represents the FPGA-based MSFIS system, which has been installed. To date, there has not been any

information published publically regarding the state of the project.

Figure 23: Proposed Safety I&C System for Wolf Creek

Future Project: USA (Diablo Canyon Upgrade Plan)

Officials at The Diablo Canyon nuclear plant, located in California, are considering replacing some of its

systems with FPGA technology. The plan is to replace the Process Protection System (PPS), which

currently employs a microprocessor, and was originally implemented in 1994. This system performs and

processes bistable functions on the inputs from the SSPS, and then sends activation signals to the ESFAS

and RTS. The new PPS will also use microprocessor technology, and will utilize FPGAs with internal

diversity for tasks that would normally be done by the Diverse Actuation System (DAS), or be done

manually as a way to mitigate common cause failures. The FPGA systems would be based on the

platform used by Wolf Creek (but with added internal diversity), which is already approved by the NRC

78

[5]. The Defense-in-Depth (D3) assessment was approved by the NRC in 2011, and the plant applied for

a license amendment request later in October 2011 [66]. The NRC review is ongoing, as it came up with

a number of items that it wants addressed. The NRC requested that additional information be included

for their review by October 31st, 2013 [67] .

Regional Results

From the research presented in the work regarding SDS-1, it was seen that the FPGA technology can

perform all of the necessary functions of a CANDU shutdown system. It was also seen that the FPGA-

based systems had a faster response time, and thus the shutdown system had a faster response time,

than a software based shutdown system. When considering the existing FPGA-based system at Wolf

Creek, due to a lack of publicly available data, it is difficult to draw conclusions about the effectiveness

of that system. However, there still remains interest in FPGA upgrades for Wolf Creek and Diablo

Canyon, as well as from the NRC, and some procedures for implementing FPGAs are now in place. It has

been demonstrated that FPGA-based system are fast, functional, and have had an easier time clearing

certain regulatory hurdles than other control technologies.

2.2.2 FPGA Developments in Asia

Overview

In Asia, there is work being done involving FPGAs for the Lungmen NPP in Taiwan, as well as by Toshiba

for use in different types of NPPs. At Lungmen, a Reactor Protection System (RPS) is being designed

based on FPGAs, as is a Feedwater Controller. At Toshiba, they are working on several FPGA-based

safety systems for Boling Water and Advanced Boiling Water Reactors (BWR and ABWR, respectively). In

South Korea, some projects have begun for systems in the new APR-1400 reactors.

System Design: Taiwan (Lungmen NPP RPS)

As of 2010, an FPGA based RPS is in the design phase, as the Lungmen NPP has not been completely

constructed yet. The plan is to test it using a full-scale simulator (similar to the work done for the

CANDU plants) against very detailed reactor core and NPP system models. These simulations will be run

with a variety of operating conditions, as well as abnormal and accident scenarios.

79

The instrumentation and control systems at the upcoming Lungmen plant are to be completely digital,

utilizing microprocessor and software technologies. However, on occasion software problems can go

unnoticed and cause failures in these systems. To counteract this, the researchers investigated the use

of quadruple redundant FPGA based technology for the RPS. The high reliability of the FPGA based

systems would serve as a backup and safeguard against software faults [68].

The RPS is part of a larger system, known as the Safety System Logic and Control (SSLC), and is used in

both power generation and safety applications. The new FPGA based system contains an advanced,

flash-based Actel SmartFusion chip that includes its own microprocessor, internal memory, internal

monitors, signal processors, and A/D and D/A converters. The RPS is also designed to have four circuit

boards on it, with two separate sets of hardware logic to maximize reliability. This is accomplished by

using different logic inputs, such as Verilog or VHDL [3].

System Design: Taiwan (Lungmen ABWR Feedwater Controller)

In an ABWR, the water level is an important parameter for reactor operation, and must be maintained

within certain levels. If the water level in the reactor is too low or too high, it could trip a safety system,

so precise control of the feedwater system is necessary. For systems at the Lungmen NPP, a possible

control method is a Fuzzy Logic Controller (FLC). Here, the FLC was implemented using a modern FPGA.

The full-scope simulator at the Lungmen NPP would then be used to test this new FPGA based system

[69].

Figure 24: Schematic of an ABWR Feedwater Controller

80

The schematic shown in Figure 24 is that of a Feedwater controller for an ABWR [69]. A sensor

measures the water level in the tank, and sends a signal to the three element controller, which in turn

sends a signal to the Main Feedwater Turbine Electron-hydraulic controller (MFTE) in order to change its

rotation rate. The MFTE then transforms the signal and controls the MCV in order to change the rotation

speed of the Turbine Driven Feedwater Reactor Pumps (TDRFP), therefore adjusting the flow rate. The

dashed arrows represent steam or water, and the solid arrows denote the signals.

Software and Hardware: The simulation software used is known as the “3KEYMASTER”

software, a powerful software tool based on Microsoft Windows. It can be used to develop, model and

run simulation software. For the simulations done here, the MASTER Graphical Engineering Station was

used to verify and validate the FLC. These tests were run at the full power state, with four transitions

(changes in the water level). The hardware component of the test included the FPGA model “Spartan-3E

XC3S1600E”, from the Xilinx corporation. The design software used was the ISE 11.1, also from Xilinx,

and the FPGA itself was programmed by the embedded supporting software. The two Look-Up Tables of

the FPGA were calculated and used for offline FLC.

Figure 25: Block Diagram of the FLC in the FPGA

Figure25 1 is the block diagram for the FLC in the FPGA [69]. It consists of a receiver and a transmitter to

receive and send data, respectively, using the RS232 protocol. The program will check if the data is E

(water level error), EC (water level error change) or DFS (difference between feed water flow and steam

flow), and pass the data accordingly. The two offline Look-Up Tables are also seen in the above figure,

81

and they are checked using a C program to ensure the values in those tables are correct. The “Level 2”

Output is sent to the computer (PC) to control the pump speed.

Feedwater Controller Simulation Results: Several simulations were run to determine the

system response with respect to the water level and feed water flow rate. This was done by changing

the set point through a 15 cm increase (425 cm to 440 cm) and then a 15cm decrease (440 cm to 425

cm). The simulation result for the water level is shown in the figure below. Additional tests were done,

with the thermal power being reduced from 100% to 90%, and also from 100% to 80%.

Figure 26: Performance Comparison for the Water Level after a 15cm increase in Set Point

Figure 26 compares the performance of the FPGA-based FLC and the Element (3E) control system, which

is made up of two PI controllers [69]. In this test, the set point was raised from 425 cm to 440 cm (15 cm

difference), and the resulting changes in water level were graphed. It was found that the FLC performed

better than the 3E controller. The FLC had a lower overshoot (of water level) and a lower settling time

than the PI controller. However, the rise time (of water) of the FLC was longer than the PI controller, and

it did have some undershoot. The authors believe that this can be overcome by refining the rules tables

(rule matrices used in the calculations) of the FLC. In the future, the authors plan on including other

parameters (such as core pressure and temperature), as well as integrating the FPGA based FLC with

other systems in the ABWR.

System Design: Japan (Toshiba ABWRs and BWRs)

Toshiba has been developing several FPGA based systems for safety applications for ABWRs and BWRs

[3]. Some of these systems include signal generation (isolation system and reactor trip), and monitoring

82

systems, like the Power Range Neutron Monitor (PRM). Toshiba utilized Non-Rewritable (NRW) FPGAs

for this purpose. These NRWs have added security over standard FPGAs, since they cannot be re-

programmed (although it will make them more vulnerable to obsolescence). The PRM for the BWR was

the first to be developed, and the design process was then used for future modules. Later Toshiba

moved onto other safety systems, such as the RPS, the Power Range Neutron Monitor for the ABWR

(PRNM), Start-Up Neutron Monitor (SRNM), and the Reactor Trip and Isolation System (RTIS).

Figure 27: Toshiba FPGA Structure

Figure 27 displays the basic structure of the FPGAs used by Toshiba [70]. The functional element (FE) is

said to be the minimum logical function element of an FPGA. The FEs encompass a basic logic function

that (in this case) is verified using full pattern testing. The FPGA would be programmed using

combinations of already verified FEs, and Figure 27 shows a conceptual FPGA made up of a small

number of FEs (including verification). There would be some input, there would be logical operations

applied to it, and then the output would be passed on.

Figure 28: PRM for a BWR Plant

83

The PRM (shown in Figure 28) measures the neutron level in the BWR core from 10-125% of full power

[70]. In that figure, PCV is the Primary Containment Vessel, PLR is the Primary Loop Recirculation, RBM

stands for Rod Block Monitor, and the RMCS is the Reactor Manual Control System. It will acquire the

electrical signals from the differential pressure transmitters located at the recirculation loops, as well as

the neutron detectors placed inside the core. The location of the PRM in the overall reactor schematic is

shown in the above figure. In the new system, each module would be composed of at least one Printed

Circuit Board (PCB), with FPGAs for signal processing and Human Machine Interface (HMI). The PRM also

contains the Flow Unit, the Average Power Range Monitors (APRM), the Local Power Range Monitor

(LPRM) modules, where FPGAs are used to filter an electric signal that is input from a detector [70].

Figure 29: LPRM Module with FPGAs

The LPRM is shown in more detail in Figure 15 [70]. There is an LPRM for each neutron detector. It will

acquire an electrical signal from one of the neutron detectors, then amplifies it and converts it to a

digital signal. A digital filter is used to reduce the noise. After a gain value is applied to the filtered signal,

it produces the LPRM level and sends that to the APRM, as well as other analog devices. The LPRM also

compares the LPRM level to a setpoint, and will trigger an alarm if the level is higher than that setpoint.

Most of the electronics in this module are FPGAs, which are represented by the dashed boxes in Figure

29.

For the ABWRs, there is a larger selection of FPGA-based technologies that are available. Similar to the

PRM of the BWR, the PRNM of the ABWR has also been redesigned to include FPGA technology. The

PRNM is one of the plant safety systems, consisting of four independent divisions that contain antifuse

type FPGAs to ensure safe and reliable operation. In Figure 30, the layout of one of these divisions is

illustrated [71]. In the PRNM, the LPRM detectors are connected to four APRM channels (which would

correspond to four divisions), so each APRM channel acquires 52 LPRM detector signals. Each PRNM

84

division contains four LPRMs, and each one will acquire 13 LPRM detector signals. It is a similar set-up to

the PRM in the BWR plants. The FPGAs are used for signal processing in both the LPRM and APRM [71].

Figure 30: One Division of the PRNM for ABWR

The signal is then sent into the Reactor Trip and Isolation system (RTIS), an important part of the RPS

and main steam isolation system. The RTIS has also been adapted to utilize FPGA technology.

Current Project: Japan (Toshiba Implementation)

The Toshiba modules described in the papers in the above sections have seen actual service. In 2004 the

Tokyo Electric Power Company (TEPCO) began installing the SRNM, PRNM and RTIS in existing BWRs. In

2007, the first PRNM system was installed in an ABWR, and was considered to be the first safety related

FPGA-based system used in these plants. The installation of non-safety critical radiation monitors began

in 2003, and by 2008 TEPCO announced that it had over 200 FPGA-based neutron monitoring and

radiation monitoring systems, encompassing over 3500 FPGA ICs [4,5].

Current Project: South Korea (APR-1400)

In South Korea, FPGAs have been utilized for self-diagnostic functions, as well as component control

functions as part of the engineered safety features in the new APR-1400 power plants that are currently

under construction [5].

85

Regional Results

A large amount of research into and installation of, FPGA-based systems has occurred in Asia. Toshiba

especially has put in a large amount of work in these systems, installing a variety of both safety and non-

safety neutron monitors, radiation detectors, and reactor trip systems, in reactors operated by TEPCO.

Regarding the Lungmen plant in Taiwan, both an RPS and a Feedwater controller have been developed

using FPGAs, and both systems are very important for reactor operations. Simulations have shown the

effectiveness of these systems, and in some cases have performed better than previously used control

technology. FPGAs can be used effectively for a variety of safety and non-safety control, monitoring and

detection systems, as well as serve as an important part of technology diversification.

2.2.3 FPGA Developments in Europe

Overview

Over in Europe, Radiy RPC (Research and Production Corporation) is a Ukrainian based company that

has become a major name in FPGA systems. However, they are not the only organization in Europe that

is doing a large amount of work with FPGA technology. Electricite de France and Rolls Royce are working

together to upgrade certain components of France’s large nuclear fleet. In addition, system upgrades

have occurred in the Czech Republic and Sweden.

Current Project: Ukraine and Bulgaria (Radiy)

There are a few nuclear plants in Eastern Europe that have been using FPGA based technology for a

variety of systems, including safety systems for several years now. In Ukraine there are four nuclear

power stations (Zaporozhye, South Ukraine, Rovno, and Khmelnitskiy) and one Bulgarian nuclear plant

(Kozloduy) that employ FPGA based systems. In all, over 60 FPGA systems have been implemented by

Radiy. These systems include Reactor Trip Systems, Engineering Safety Features Actuation System,

Reactor Power Control and Limitation System (RPCLS), Rod Control System and Regulation, and a

Control and Protection System for a research reactor [72–74].

The RPS functions by measuring the neutron power, and comparing it to a Trip Set Point (TSP). If the

neutron power reaches the TSP, a signal is sent to activate the shutdown systems. The ESFAS has

86

multiple safety functions, including automatic process control, protection, blocking and operation of

actuators, as well as manual remote control of those actuators. The RPCLS is used to regulate the

neutron power of the reactor, as well as the steam pressure of the main line of the turbine. The RCS

accounts for the position of the control and safety rods, as well as the drive control that will move them.

Lastly, the Control and Protection System was installed in the VVR-M research reactor in 2008. Radiy has

been working on these modern I&C systems for nuclear plants since 2000, with the first installation

occurring in 2003. These systems were designed for the VVER-440 and VVER-1000 Model Reactors

(Russian Water-Cooled Water-Moderated Energy Reactor) [72–74]. In the time these systems have been

functioning, there have been no reported problems [75]. Currently, there are 28 RTS, 18, ESFAS, 9

RPCLS, and 1 each of the RCS and research reactor I&C systems installed in the aforementioned plants.

Current and Future Project: France (Electricite de France (EDF) and Rolls Royce Modernization)

FPGAs have seen some use in French reactors. EDF contracted the instrumentation and control

department of Rolls Royce to perform a large modernization project at the 34 900 MWe reactors [3]. All

of the Reactor In-Core measurement systems (RIC) and the Rod Control Systems (RCS) were going to be

replaced with FPGA based systems. The RCS is designed to generate control signals that will move the

control rods, verify the rod position; interface with the PLC based control and diagnostic unit, as well as

allowing for the human system interface. The speed of FPGAs allows them to attain the required

millisecond time resolution, which would be difficult to achieve with a microprocessor. These FPGAs are

flash based, so they can be reprogrammed, but only with special tools and at the Rolls Royce facilities.

This is done to minimize the chance of FPGAs being tampered with. The RCS is not strictly considered a

safety system; however it does require a high degree of reliability. The project was started in 2005, with

the first replacements coming in 2010. As of 2011, The Tricastin Unit 1 power plant had the RIC and RCS

systems installed, and the second and third installations at Bugey Unit 2 and Fessenheim Unit 1 plants

are ongoing. The plan is to have this refurbishment completed by 2020 [10,52].

EDF is carrying out additional research for FPGA-based technology in its 1300 MW series of plants. EDF

recently developed and verified a replacement for the obsolete Motorola 6800 microprocessor that is

based on an FPGA-based emulator. These systems would be used for a variety I&C tasks, including safety

critical functions like reactor protection systems. This upgrade would allow for the replacement of the

Motorola 6800, without losing the current software that is already qualified for safety applications [5].

87

Current Project: Czech Republic (Temelin 1 and 2)

The Temelin 1 and 2 plants in the Czech Republic have begun using FPGAs for Non-Programmable Logic

(NPL). The implementation program began in the 1990s and was completed in 2000 when the Temelin 1

plant was commissioned. This NPL performs multiple functions, including the safety load interface. At

that interface, the priority logic arbitration amongst the microprocessor-based Diverse Protection

System (DPS), the Primary Reactor Protection System (PRPS), and the fixed-wire component control

signals transpires. The NPL is also used to make sure the loads reach a safety state in case of a variance

between the DPS and PRPS occurs. A third task of the NPL is the implementation of the Safety Diesel

Load Sequencer, which also encompasses the sequencer automation tests [5].

Current Project: Sweden (Ringhals 2)

The Ringhals 2 plant in Sweden is utilizing FPGA based technology due to a replacement of some of the

plants I&C systems. This project had been in the works since 1990s, and was completed in 2010. The

FPGAs are used in a component of the replacement safety system known as the Component Interface

Module (CIM). This module is used as an interface connecting the plant equipment to the

microprocessor based safety actuation system. The CIM also responds to the signal from the

independent Diverse Actuation System (DAS) and from operator commands. This module contains

priority logic, to make sure that the correct signal is sent to each component, and in case of a conflict

the component will be put into a safe state [5].

Regional Results

Radiy has become one of the largest suppliers of FPGA-based systems, including a number of safety

systems, which has led to a large number of installations in reactors in Eastern Europe. Smaller projects

have also occurred recently in Sweden and the Czech Republic, encompassing several systems. A large

implementation project in France is aimed to replace older, high-reliability systems with FPGAs, and

additional research is being carried out to introduce safety-critical FPGA-based systems. It was seen in

this section that FPGAs can be used effectively for safety systems and other high reliability systems

without issue and that are a viable replacement for obsolete technology in nuclear plants.

88

2.2.4 Other FPGA Developments

Overview

It is worth mentioning other uses of FPGA-based systems in this field. These include seismic sensors in

case of an earthquake, measurement of nuclear pulses, as well as detectors for health physics purposes.

Furthermore, other developments have occurred since the publication date, and are also briefly

discussed here.

Automatic Seismic Trip System: There has been some work using a Petri Net, or PN (mathematical

modelling language used to describe distributed systems) design of a FPGA based controller for

Automatic Seismic Trip System (ASTS). This system is applied to the RPS, and contains earthquake

sensors to measure seismic activity. It was found through simulations that this sort of FPGA based

system would be feasible, and more work would be put into it in the future [76].

Measurement and Detectors: There has also been interest in using FPGAs for applications such as

measurement of nuclear pulses, and for various radiation detectors. The speed and reliability of FPGAs

make them good candidates to measure the pulse heights and speeds for nuclear applications (such as

nuclear pulse detectors) [77]. FPGA systems are also being looked into for the electronics in radiation

detectors and other health physics applications [78]. Due to many of these systems not being

considered safety critical, some of them are already in use.

2.2.5 Recent Developments

Overview

Information was published regarding several other developments/applications regarding FPGA- based

systems, after the literature review was published. This sub-section briefly considers those aspects, to

provide a more complete picture of recent FPGA applications in NPP I&C systems.

89

ALS Approval: It was announced in September 2013 through a press release from Westinghouse that

the full ALS has received final approval from the US NRC in a SER. This would make the installation of

FPGA-based safety systems in US nuclear plants a possibility [79].

PLC to FPGA Platform Change: As mentioned previously, FPGAs have been thought of as a replacement

for PLCs in safety systems. However, a lot of knowledge and experience has been built up over the years,

and completing discarding that information in order to implement a new development process would be

a long and risky endeavour for these safety systems. The purpose of this work was to implement the

software development process for an RPS, but in this case the platform would be an FPGA, not the PLC,

but would keep all the outputs from the original design. The Functional Block Diagram (FBD) designs

from the PLC were transformed into the equivalent HDL (Verilog) process, using a prototype RPS (based

on a real-word system) in South Korea [80].

Development Systems: In India, there has been a good deal of work done regarding newer I&C systems,

for use in newer and future nuclear power plants. Many of these newer systems are digital, and include

the use of software, making software reliability an important facet of the design and qualification

program. In addition, a good deal of that work was focused on FPGA-based systems, due to increased

reliability, reduced component counts, and reduced obsolescence. Another benefit sited was the re-

configurability of the FPGA, allowing it to be programmed in the field, to meet different needs. In order

to ensure the reliability of the FPGA-based systems, the same verification techniques that are applied to

software systems were applied to the FPGA-based systems. Additionally, a hardware verification tool

known as VBMC (VHDL Bounded Model checker) was developed to verify the design logic used in FPGAs

[81].

2.2.6 Research Directions Based On Literature Review

The literature review provided a comprehensive overview of the recent uses and developments of

FPGA-based systems in the international nuclear community. This literature review surveyed numerous

implementations and planned future implementations of FPGA-based systems, as well as the research

performed on FPGA-based systems and published in the scientific literature. On the results of that

literature review with respect to the research plan in this thesis, two important points were noted:

90

1. The majority of the implementations and research programs surrounding FPGA-based systems

considered either safety-critical systems, or systems for which a high degree of safety/reliability

is required. Systems with lower reliability requirements (relative to safety-critical systems),

received less consideration regarding FPGA-based systems

2. The bulk of the information in the literature focused on the design and implementation of FPGA-

based systems, but it was seen that there was less focus on the reliability and safety analysis of

the FPGAs and the overall FPGA-based systems.

From the literature review, it is seen that focusing this research on safety-critical FPGA-

based systems is warranted, as those are the systems that would see the most use in actual

NPPs. Additionally, it was seen that there is a gap in the knowledge with regards to the

(published) information on the reliability and safety analysis of those FPGA-based systems.

Therefore, the performance of the FPGA FMEA/taxonomy construction, and subsequent

DFM analysis, will provide important research and information to fill that knowledge gap.

2.3 Reliability Analysis Techniques

This research work considered the use of two reliability analysis methodologies, Fault Tree Analysis

(FTA), and DFM. While the overall goal of the research program was to model/analyze FPGA-based

systems using DFM, part of that research included a comparison of DFM and FTA for analyzing those

systems. As discussed in sub-sections 1.2.1 and 1.2.3, there have been concerns about the ability of FTA

(and other traditional reliability analysis methods) to accurately analyze modern digital I&C systems.

However, at the time of writing this thesis, there had been little information published on the topic of

direct comparisons between the two methods. Therefore, a direct comparison of FTA and DFM was

carried out, and is discussed in detail in sub-section 4.4. In this section, the theory and background

information for FTA and DFM is presented. The discussion on FTA is given in sub-section 2.3.1, and the

information regarding DFM will be presented in sub-section 2.3.2.

91

2.3.1 Fault Tree Analysis

FTA is one of the most common and well-established methods of reliability analysis, has seen extensive

use in the nuclear industry, as stated in the literature [8,11,12]. This sub-section will provide background

information and calculation methods used during FTA.

Fault Tree Analysis [82]: A deductive technique that starts by hypothesizing and defining failure events

and systematically deduces the events or combinations of events that caused the failure events to

occur.

2.3.1.1 Introduction to Fault Trees

Fault Trees are deductive methods that consist of directed, acyclic graphical models that are constructed

using properties called “gates” and “events” [83]. Gates show how failure states can travel through the

system being analyzed, and common gates include “OR”, “AND”, “INHIBIT, and “Voting” gates, among

others. Events are referred to as “occurrences” within the system being analyzed, and generally

represent failures of a component or subsystem. The original, and most basic form of fault trees are

Static (or Standard) Fault Trees (SFT) [83]. SFTs originate from Bell Labs in the 1960s, where they were

used for the safety analysis of ballistic missiles [84].

Due to the prevalence of FTA in the nuclear field, the US NRC published their own “Fault Tree

Handbook”, as means of providing training material to NRC personnel, contractors, and others that work

on the construction and evaluation of fault trees [85]. This handbook was in response to

recommendations given in a report by the Risk Assessment Review Group, which stated that “the fault

tree/event tree methodology both can and should be used more widely by the NRC” [86]. FTA has also

seen extensive use in other fields, where reliability and safety is an important concern. For example,

NASA produced their own handbook on FTA, entitled “Fault Tree Handbook with Aerospace

Applications” [87], to provide training and guidance for FTA practitioners in the aerospace field.

Additionally, the International Electrotechnical Commission (IEC) published a standard on FTA [88].

92

Fault Trees are used to find Cut Sets, which are considered to be a “set of basic events, such that, if all

events in a Cut Set occur, the Top Event will occur” [83,85]. A type of Cut Set, known as a Minimal Cut

Set (MCS), is defined as “A Cut Set that does not contain other Cut Sets as a subset” [83]. Generally, the

MCSs are what are desired when using FTA, as well as the probability of each MCS and the Top Event. An

example of a generic Fault Tree is given in Figure 31 [83].

Figure 31 provides an example of a Fault Tree of a computer system. It contains the following

components; Power Supply (PS), non-redundant Bus (B), redundant CPUs (C1 and C2) and redundant

memory units (M1, M2, M3). These components would contribute to the Top Event, which in this case is

designated as a “System Failure”. G6 represents a “2-out-of-3” (2oo3) “VOTING: gate, where 2 of the

gate inputs must occur to propagate a failure. G4, G5, and G2 denote “OR” gates, while G3 represents

an “AND” gate. Lastly, G1 denotes an “INHIBIT” gate. This type of fault tree gate requires the input and

the enabling event to occur (“In Use (U)”), before the output will occur.

93

Figure 31: Generic Fault Tree Example of a Computer System

2.3.1.2 Structure Functions

In a binary, it can be considered to be in one of two possible states. These states are the “Working” and

the “Failed” state, so a binary system must take on one of those states [89]. Fault trees are considered

represent binary systems, and as such are confined to these two states as well. If one takes component I

94

and associates it with the binary indicator variable xi, it is said that if xi =1 the component fails, and if xi =

0, the component works.

The overall system state can then be defined in terms of the state of its components. Therefore, one can

define a function, known as the “Structure Function”, that represents the system state [89]. Denoting

the structure function as (x), the system will be in a failed state when (x) = 1, and the system will be in

a working state when (x) = 0. Here, x = (x1, x2, …, xn), and is a vector of all n component states [89].

2.3.1.3 Coherent and Non-Coherent Logic

Fault trees can be said to be either “coherent” or “non-coherent”. In theoretical terms, the issue of

coherence/non-coherence can be determined from the structure function of the fault tree. A fault tree

is considered coherent if it satisfies two conditions [89,90]:

1.) Each component is relevant. Each component listed in the fault tree contributes to the system state.

This is seen is Equation 1 [89]:

 () () (1)

In other words, the structure function will be different, based on if component I is in the “1” or “0”

state.

2.) The fault tree structure function is non-decreasing (also called monotonically increasing), as given in

Equation 2 [89]:

 () () (2)

This is seen visually in Figure 32 (a)-(c) [89]. In that figure, the X-axis represents the component state,

and the y-axis represents the state of the structure function. In Figure 32 (a), it is seen that when the

component state changes from “0” to “1” (representing a component failure), the structure function

remains at “0” (system does not fail), hence non-decreasing. In Figure 32 (b), the component state

changes from “0” to “1”, and the structure function remains at “1” (system remains in a failed state),

and is also non-decreasing. In Figure 32 (c), it is seen that when the component state changes from “0”

95

to “1”, the structure function also changes from “0” to “1” (component failure causes system failure). In

this case, the structure function is said to be “increasing”, but as that is still “non-decreasing”, the

system itself is still said to be coherent.

Figure 32: Three Cases of Non-Decreasing Structure Functions

On the other hand, Figure 33 shows a “decreasing” structure function. In that case, as the component

fails (transitions from “0” to “1”), the system structure function transitions from “0” to “1”. As this

represents a “decreasing” structure function, the system is said to be non-coherent. This would entail

that the component failure would result in a failed system returning to its working state.

96

Figure 33: Decreasing Structure Function

In more applied terms, a fault tree is considered to be “coherent” if it only contains “AND” and “OR”

logic (as well as combinations of those gates, such as voting gates) [89,91,92]. In a coherent fault tree, if

any of the basic events had their value change from “f” to “T” (i.e. from the “unfaulted” to the “faulted”

state), the Top Event could not go from “T” to “F” [93]. In other words, if the system is considered to be

in a failed state, it could not return to the normal/working state, due to the failure of another

component [93]. When considering FTA, much of the work performed and calculation methods was

focused on coherent fault trees [85].

However, not all systems are best described using only “AND” or “OR” gates [94]. The use of “NOT” logic

[95], and/or logic such as “XOR” gates that directly reference “NOT” logic [89,96], cause the resulting

fault tree to be non-coherent. In the case of non-coherent fault trees, the analysis will return “Prime

Implicants (PIs), which are defined as “minimal combinations of component states (working or failed)

which cause the fault tree Top Event” [92,96]. PIs are thought of as the non-coherent logic equivalent of

Minimal Cut Sets (MCS) [93]. The analysis of non-coherent fault trees requires different methods than

coherent fault trees, however certain algorithms and software packages have been extended to

incorporate non-coherent FTA [83].

97

2.3.1.4 Many-Valued/Multi-Valued Logic

In both the coherent and non-coherent cases discussed in sub-section 4.1.3, the system considered only

binary logic, as the components, and the system itself can only take on one of two states. However, in

reality, many systems and system components could exist in more than just the “Works” or “Fails” state.

In a Many-Valued/Multi-Valued Logic (MVL) system, one is not restricted to using only binary logic, as

every variable (component and system state) can be discretized into an arbitrary number of states. Take

for example a pressure tank. The tank pressure could be discretized into many states such as “Very

Low”, “Low”, “Normal”, “High” and “Dangerously High” [14]. These states could correspond to different

numerical ranges for the tank pressure, for which the system may react differently. FTA would not be

able to represent the five states of the pressure tank in the same way. This extra flexibility of MVL may

allow for more detailed modelling than the standard binary logic employed by FTA. In the case of DFM,

it has been developed to incorporate MVL, and binary logic may also be included if desired (i.e. to

represent a component like a switch, which is “ON” or “OFF”). MVL is also said to be non-coherent logic,

and as such utilizes PIs instead of MCS. A list of terms/definitions pertaining to MVL is given in Table 5

[93]:

Table 5: MVL Terms and Definitions

Cut Set A set of events that will cause a top event if all those events occur

Minimal Cut Set A cut set that does not contain other cut sets as a subset.

Binary Logic Two states described by True or False

Multi Valued Logic States are discretized into an arbitrary number of states

Literal A primary variable taking on one state (e.g. A1)

Monomial A conjunction of literals (e.g. A1B2C3D4)

Boolean Function Top A disjunction of monomials

Implicant A monomial of C of the disjunctive form of the Boolean TOP such that TOP ∩ X=X

Subsume A monomial X subsumes the monomial Y if every literal of Y is contained in X.

Prime Implicant X is an Implicant of TOP, and any other monomial Y subsumed by X is not an Implicant

of TOP

Base of Boolean

Function TOP

Any disjunction of prime Implicants which is equivalent to the function TOP

Irredundant Base A base which ceases to be a base if one of its Prime Implicants is removed

Complete Base The disjunction of all Prime Implicants

98

2.3.1.5 Qualitative Fault Tree Analysis (Coherent Fault Trees)

There are several methods to find them the MCS from coherent SFTs. These include traditional methods

for finding the MCS, as well as methods based on Binary Decision Diagrams (BDDs). In the case of

incoherent fault trees, several modifications and or/approximations to these methods need to be

applied in order to obtain the correct MCSs.

Top Down Method (MOCUS)

A very common method for obtaining the MCS of a coherent SFT is a “Top Down” methodology [89,97],

through the use of the “MOCUS” algorithm [85,97]. The MOCUS algorithm uses the property of fault

trees, where the “AND” gate increases the size of individual cut sets, while the “OR” gates will increase

the number cut sets, and then works via the following procedure [97]:

1.1 Name each logic gate

2.1 Number all basic events

3.1 Construct a matrix, with the top-most gate in the first column and row of that matrix

4.1 Repeat the following permutations from the top to the bottom of the fault tree:

a. Substitute each “OR” gate with a vertical array of all the gate inputs, and then increase

the number of cut sets

b. Substitute each “AND” gate with the a horizontal array of all the gate inputs, and then

increase the cut set size

5.1 Once this procedure has been completed for all gates (all cut sets have been found), removal all

supersets of cut sets, to determine the MCS.

It should be noted that since the MOCUS algorithm only considers “AND” and “OR” gates, it cannot be

directly applied to non-coherent fault trees without a loss of some accuracy.

An example of the MOCUS algorithm is performed, using the fault tree shown in Figure 34 [97]. To find

all of the MCS of that fault tree, the MOCUS algorithm would be performed as such [97]:

99

Step 1:

The top gate in that fault tree is “G0”, so that would go in the first row/column of the matrix. It is an

“OR” gate, to it is replaced by its individual input events (“1”, “2”, “G1”), each placed in their own row.

1

2

G1

Step 2:

As the “G1” gate is an “OR” gate as well, it is again replaced by its individual input events in separate

rows, yielding:

1

2

G2

G3

Step 3:

As the “G2” gate is an “AND” gate, it is replaced by its inputs in the same row, but separate column,

giving:

1

2

G4, G5

G3

100

Step 4:

“G3” is another “OR” gate, and is thus expanded as follows:

1

2

G4, G5

3

G6

Step 5:

The “G4” “OR” gate must now be expanded, to include its two basic events, “4” and “5”. Similarly, the

“G6” “AND” gate is expanded using basic events “5” and “6”. This yields:

1

2

4, G5

5, G5

3

5, 6

Step 6:

In the final step, the “AND” gate G5 is expanded using basic events “6” and “7”, resulting in:

1

101

2

4, 6, 7

5, 6, 7

3

5, 6

The seven rows seen in “Step 6” represent the six cut sets of the example fault tree. It should be note

Cut Set {5, 6,7} is not a MCS, as {5, 6} is also a Cut Set. Therefore, {5, 6, 7} is actual a superset of Cut Set

{5, 6}, and would have to be removed, resulting in the following five Cut Sets:

{1}, {2}, {4, 6, 7}, {5, 6}, {3}

The steps for this example can be summarized in Table 6 [97]:

Table 6: Steps in MOCUS Example

Step 1 2 3 4 5 6

 1 1 1 1 1 1

 2 2 2 2 2 2

 G1 G2 G4, G5 G4, G5 4, G5 4, 6, 7

 G3 G3 4 5, G5 5, 6, 7

 G6 3 3

 5, 6 5, 6

102

Figure 34: Example Fault Tree for FTA Demonstration

Bottom-Up Method

Performed in the opposite fashion to the MOCUS method, this algorithm starts from the bottom-most

gate, and uses the following procedure [34]:

1. Take the bottom-most gate

a. Set “OR” gates equal to the union of input basic

b. Set “AND” gates equal to the intersection of input events

2. After all gates at the bottom level have been replaced, Boolean logic rules are used to

reduce the formulas [30,34]

3. Repeat steps “1” and “2” in a bottom-to-top fashion, until the Top Event formula is found.

For SFTs, the “MOCUS” and “Bottom-Up” Methods should produce the same results for the MCS. As in

the case with “MOCUS”, the “Bottom-Up” method can only be directly applied to coherent fault trees.

The use of the “Bottom-Up” method employs additional logical reduction rules, to simplify the logical

expressions(s) that are returned after each step in the algorithm. These logic reduction rules are [97]

103

Binary Fault Tree Logical Reduction Rules:

1.) A + A = A

2.) A*A = A

3.) A+B = B+A

4.) A*B = B*A

5.) A*(B+C) = A*B+A*C

6.) A+A*B = A

7.) A+B*C = (A+B)*(A*C)

In the case of these logical reduction rules, the “+” refers to the union of the input events (logical “OR”),

and the “*” denotes the intersection of the input events (logical “AND”).

An example using the “Bottom-Up” method, also using the fault tree in Figure 34, is given below [97].

From Figure 34, it is seen that lowest gates (bottom-most) on the fault tree are gates “G4” (“OR” gate),

“G5” and “G6” (“AND” gates). These gates are expanded as:

G4 = X4+ X5

G5 = X6* X7

G6 = X5* X6

The next level of gates (one level above the three aforementioned gates) are “G2” (“AND” gate), and

“G3” (“OR” gate). Thus, these gates are expanded as:

G2 = G4 *G5 = (X4+ X5)*(X6*X7) = X4*X6*X7 + X5*X6*X7 (Using Rule 5)

G3 = X3 + G6 = X3+X5*X6

104

The next step of logic gates consists only of the “OR” gate “G1, which is expanded as:

G1 = G2 + G3

G1 = X4*X6*X7 + X5*X6*X7 X3+X5*X6

Using Rule 6:

X5*X6 + X5*X6*X7 = X5*X6

For “G1”, this yields:

G1 = X4*X6*X7 + X3 + X5*X6

Lastly, reaching the top gate of “G0”, another “OR” gate returns:

G0 = X4*X6*X7 + X3 + X5*X6 + X1 + X2

Each of the above terms corresponds to one of the five MCS as shown below:

{1}, {2}, {4, 6, 7}, {5, 6}, {3}

These are the same MCS determined using the MOCUS method in sub-section 4.1.4.1. The only

difference being that the MOCUS algorithm required deleting (non-minimal) Cut Sets at the end of the

algorithm, however in the “Bottom-Up” method, logical reduction is performed after every level, so only

the MCS were produced. As the MOCUS and “Bottom-Up” method will yield the same results, only the

MOCUS algorithm was considered further

105

Binary Decision Diagram (BDD) Method

BDDs have become a popular method for performing FTA, due to the speed at which the analysis can be

performed [83,98]. A BDD is a form acyclic, directed graph. All BDD paths will terminate at either a “0”

state (system works), or a “1” state (system failure), referred to as “terminal vertices” [92]. Non-terminal

branches in the vertices represent the basic events of the fault tree, represented as “nodes” in the BDD.

If a path ends at a “1” state, then it is a cut set of that Top Event. However, if the path ends at a “0”

vertex, then the system is said to be in the “working” state.

Before the BDD is constructed, the “variable ordering” must be determined. As an example, a fault tree

with basic events “X1”, “X2” and “X3” could be ordered as X1<X2<X3, X3<X2<x1, etc. The variable

ordering can affect the computational efficiency of the model analysis. Different methods have been

explored in the literature to determine variable ordering [83,99], however that is beyond the scope of

this paper. Computationally, BDDs are usually solved using the “If-Then-Else (ITE)” method [89], based

on “Shannon’s Theorem” or “Shannon’s Decomposition” [100,101]. In common terms:

ITE(X, f1, f2) = ̅ (3)

Implies [89,98]:

If X1 fails:

Consider f1

Else:

Consider f2

In terms of BDDs, this is given as X = ITE(X, 1, 0). This process will continue until all variables have been

converted, in order of the variable ordering, and will end with all the “1” and “0” vertices being

determined. This conversions are determined by the use of either “AND” or “OR” gates, as described in

the literature [98,102] :

Consider two arbitrary basic events, “G” and “H”:

G = ite(x, g1, g2)

106

H = ite (y, h1, h2)

The conversions of the fault tree to the BDD occurs based on the variable ordering:

If (x<y) ite(x, g1^H, g2^H) (4)

 If (x = y)  ite(x, g1^h1, g2^h2) (5)

Where, “^” is taken as either the “OR” or “AND” operator. Both cases are considered below:

When “^” = “OR”:

0^G = G, 1^G = 1

When “^” = “AND”:

0^G = 0, 1^G = G

 The MCS are the failure events on path(s) that end at a “1” terminal. The final BDD is said to represent

the structure function of the fault tree, and therefore is often referred to as the “Structure Function

BDD” (SFBDD) . An example of what a generic SFBDD looks like is seen in Figure 35 [102].A second

example, showing the BDD representation of “OR”, “AND” and a “COMBINATION” (2oo3 Voting) gates is

given in Figure 36 [103].

107

Figure 35: Example of a Generic SFBDD

Figure 36: BDD Representations of Common Fault Tree Logic Gates

An example of the FTA  BDD conversion, using the fault tree shown in Figure 37, is given below [104].

.

108

Figure 37: Example Fault Tree for BDD Demonstration

Employing the “ite” method, a “top-down left-right” path through the fault tree was used to determine

the variable ordering, resulting in an ordering of c < a < d < b. Employing Equations 3-5 for the gates

“G1” and “G2” (both “OR” gates”) yields:

G1 = c + a + d

G1 = ite(c,1,0) + ite (a,1,0) + ite(d,1,0)

G1 = ite(c,1,ite(a,1, ite(d,1,0)))

G2 = a + b

G2 = ite (a,1,0) + ite(b,1,0)

G2 = ite (a,1,ite(b,1,0))

109

The top gate, denoted as “TOP” is an “AND” gate, with gates “G1” and “G2” as its inputs. The top gate is

represented as:

TOP = G1*G2

TOP = ite(c,1,ite(a,1, ite(d,1,0))) * ite (a,1,ite(b,1,0))

TOP = ite(c, ite(a, 1, ite(b,1,0)), ite(a,1,ite(d,ite(b,1,0),0)))

The function for the “TOP” gate seen above determines the construction of the corresponding BDD for

the fault tree seen in Figure 37. The resulting BDD is shown in Figure 38 [104].

Figure 38: Resulting BDD for the Fault Tree from Figure 37

110

2.3.1.6 Qualitative Fault Tree Analysis (Non-Coherent Fault Trees)

The analysis methods discussed in sub-section 2.3.1.5 considered only coherent fault trees, and

modifications to those methods need to be made, in order to apply them to the analysis of non-

coherent fault trees. The reasoning for those modifications, and the methods for performing qualitative

analyses of non-coherent fault trees are explored in this sub-section.

Consider the fault tree shown in Figure 39 [92]. This fault tree represents the ignition of a gas release in

a gas transport system.

Figure 39: Example of a Non-Coherent Fault Tree

If a gas leak happens in the part of the gas transport system after the Isolation Valve (VAL), a gas

detection system would close the isolation valve to prevent a gas build-up in an area where an ignition

source (I1) could occur. If the valve works correctly and the gas is isolated, the pressure due to the gas

would burst the pipe, and a separate leak will occur, before the isolation valve. It is assumed that there

111

is a second, permanent ignition source (I2, not shown in the fault tree), gas ignition would be prevented

by shunting the gas flow elsewhere, using a Pressure Relief Valve (PRV). If the gas leak happens before

the Isolation Valve, it was assumed that the ignition of the gas would always occur.

MOCUS Method for Non-Coherent Fault Trees

Applying the MOCUS algorithm from subsection 2.3.1.5 would result in Table 7. As this is a simplistic

fault tree, the MOCUS methods returns two MCS, one from the expansion of the “AND” gate “G1”, and

the other from the expansion of the “AND” gate “G2”.

Table 7: MOCUS Algorithm for Non-Coherent Fault Tree

Step 1 2 3

 G1 L, ̅̅ ̅̅ ̅̅ , PVR L, ̅̅ ̅̅ ̅̅ , PVR

 G2 G2 L, I1, VAL

According to the MOCUS algorithm, there are two PIs (Prime Implicants, now that the fault tree is non-

coherent). They are {L, ̅̅ ̅̅ ̅̅ , PVR} and {L, I1, VAL} However, there is actually a third PI, which is {L, I1,

PVR}. In relation to the gas transport system, that third PI represents the case where a leak occurs, the

Pressure Relief Valve fails, and an Ignition Source is present in the section after the Isolation Valve. If

those three events occur, then the state of the Isolation Valve (Works/Fails) does not matter. In order to

identify these additional PI(s), the “Consensus Law” must be applied.

Consensus Law

In a non-coherent fault tree, the Consensus Law is applied to the MCS identified using

conventional methods (such as the MOCUS algorithm). The Consensus Law is given in Equation

6 [89,92,96]:

 ̅ ̅ (6)

112

The Consensus Law would be applied to all sets of PIs that contain both a normal and negated literal.

This would result in the complete set of PIs. In the case of simple fault trees, this method is relatively

easy to apply, however it can become computationally demanding for more complex fault trees [89]. In

the case of the example for the fault tree in Figure 39, the Consensus Law would be applied to the two

returned PIs, since those are PI pairs with a normal and negated literal. The application of the Consensus

to this case is performed as follows [92]:

TOP = L* ̅̅ ̅̅ ̅̅ *PVR + L*I1*VAL (7)

TOP = L*(̅̅ ̅̅ ̅̅ *PVR + I1*VAL) (8)

The Consensus Law is applied to Equation 8:

 ̅̅ ̅̅ ̅̅ *PVR + I1*VAL = ̅̅ ̅̅ ̅̅ *PVR + I1*VAL+I1*PVR (9)

Plugging the results of the Consensus Law back into the “TOP” function yields:

 TOP = L*(̅̅ ̅̅ ̅̅ *PVR + I1*VAL+ I1*PVR) (10)

 TOP = L* ̅̅ ̅̅ ̅̅ *PVR + L* I1*VAL + L* I1*PVR (11)

This includes all three PIs. In general PIs will be of higher order (more basic events) than MCS.

Additionally, due to the Consensus Law, there are often far more PIs than there would be MCS

[92].

Additional Qualitative Methods for Non-Coherent FTA

Additional methods may be applied to non-coherent FTA, if needed. In non-coherent fault trees where

gates such as “NOT”, “NOR”, “NAND” and “XOR” are used, they can be “Pushed-Down” the fault tree, so

that more traditional FTA methods may be applied. Alternatively, another method is to simply assume

an approximate version of the fault tree without the “NOT”-type logic, assuming the loss of accuracy is

not significant.

113

Pushing Down

If “NOT” gates (including “NAND”, “NOR”, “XOR” etc.) are present in the fault tree, they must be

removed in some fashion. This can be done by “pushing down” the “NOT” logic, through the use of De

Morgan’s Laws [89]:

(̅̅ ̅̅ ̅̅ ̅̅) ̅ ̅ (12)

(̅̅ ̅̅ ̅̅) ̅ ̅ (13)

The “NOT” logic is “pushed down” the fault tree from top to bottom, until all “NOT” gates are removed,

leaving only “AND” and “OR” gates, as well as negated Basic Events. The same process is applied to

“NOR”, “NAND” and “XOR” gates by transforming them into their composite “NOT”, “OR” and/or “AND”

logic, and then pushing the equivalent “NOT” logic down the fault tree. These transformations are seen

in Figure 40 [94].

114

Figure 40: Equivalence Library for the transformation of “NOR”, “XOR” and “NAND” Gates

Once all “NOT”-type gates have been removed, the complete set of PIs can be determined using “Top-

Down” or “Bottom-Up” methods, including the application of the “Consensus Law”.

Coherent Approximation

The methods discussed earlier in this sub-section will produce the full set of PIs, however it can be a very

computationally intensive procedure, especially when the fault trees become large or complex [89]. To

avoid this issue, the “Coherent Approximation” can be applied to non-coherent fault trees [89,92,96]. In

this approximation, it assumes that all of the component “working” states are “True”, and therefore

allows for the removal of any negated logic in the Basic Events. This permits traditional fault tree

115

analysis methods to be applied. In this case, only the positive section of PI sets will be identified, which

are sometimes referred to as “minimal p-cuts” [89]. In order to apply this approximation, “NOT”-type

logic gates would have to first be pushed down the fault tree, leaving only the negated Basic Events. As

an example, if we set logic Gate “ ” as ̅, then the coherent approximation would become

 , as the negated term is discounted. This method can reduce the computational burden of

determining the PIs/minimal p-cuts, however depending on the probability that was assigned to the

negated Basic Event, the accuracy of the TE calculation may be reduced [89].

BDD Analysis of Non-Coherent Fault Trees

If BDDs are selected for the analysis of a non-coherent fault tree, then there are several methods that

can be applied, as discussed briefly in this sub-section. It should be noted that the “Coherent

Approximation” can be applied to BDDs as well, so it is not discussed further in this sub-section [89]. For

a simple fault tree/SFBDD, the PIs may be determined manually using the following method. The

complement of a variable is given using the ITE method as [92]:

 ̅ () (14)

The BDD would then be constructed as normal. To produce the PIs, the nodes are searches individually,

in a bottom-up method, considering three possibilities;

a.) PIs containing “X”

b.) PIs containing “ ̅”

c.) PIS without the “X” literal

A full description and example using this method is found in the literature [92]. Referring to the non-

coherent fault tree seen in Figure 39, it can be represented as a BDD, using the following process [92]:

Normally, each of the basic events in a fault tree would be represented in this manner:

VAL = ite(VAL, 1, 0) (15)

However, in the case of the negated logic, the compelement of that node can be represented by:

 ̅̅ ̅̅ ̅̅ = ite(VAL, 0, 1) (16)

116

The rest of the BDD construction process then proceeds as normal. The two gates, “G1” and “G2” are

both “AND” gates, so applying the rules set out in sub-section 2.1.3.5 will yield the following

transformations:

G1 = ite(L, 1, 0)*ite(VAL, 0, 1)*ite(PRV, 1, 0)

G1 = ite(L, ite(PRV, ite(VAL, 0, 1), 0), 0)

G2 = ite(L, 1, 0)*ite(VAL, 1, 0)*ite(I1, 1, 0)

G2 = ite(L, ite(I1, ite(VAL, 1, 0), 0), 0)

The top gate, “TOP”, is an “OR” gate, so it is represented as:

TOP = G1 + G2

TOP = ite(L, ite(PRV, ite(VAL, 0, 1), 0), 0) + ite(L, ite(I1, ite(VAL, 1, 0), 0), 0)

TOP = ite(L, ite(PRV, ite(I1, 1, ite(VAL, 0, 1)), ite(I1, ite(VAL, 1, 0,) 0), 0)

From the above function for the “TOP” gate, the corresponding BDD is created:

117

Figure 41: BDD Representation of the Example Non-Coherent Fault Tree

To ascertain the MCS from the BDD shown in Figure 41, that BDD will be traversed in a bottom-up

manner, using the three rules described at the beginning of this sub-section. The results of that method

is shown in Table 8 [92]. In this case, each node (N) is labelled in Figure 4, to make the process easier to

follow.

Table 8: PIs Determined from BDD

Node (N) Prime Implicants

N_1 {L* ̅̅ ̅̅ ̅̅ *PVR}, {L* I1*VAL}, {L* I1*PVR}

N_2 {I1*PRV}, {I1*VAL}, { ̅̅ ̅̅ ̅̅ *PRV}, {VAL*I1* ̅̅ ̅̅ ̅̅ ,}
(Not a PI)

N_4 {VAL, I1}

N_3 {I1}, { ̅̅ ̅̅ ̅̅ }, { ̅* ̅̅ ̅̅ ̅̅ } (Not a PI)

N_5 { ̅̅ ̅̅ ̅̅ }

N_6 {VAL}

At the end of that process, the same three PIs are returned, as seen in the second row of Table 8.

118

Additional Methods for Non-Coherent BDD FTA

Additional methods were considered, with each of these methods containing their own benefits and

drawbacks, as discussed in the literature [96].

Ternary BDDs (TDD)

The TDD method includes a third branch from every node (on top of the traditional “1” and “0” branch).

This third branch is referred to as the “consensus branch”, and denotes the additional PI sets that are

uncovered by applying the “consensus law” discussed in Sub-section 2.3.1.6. After the BDD is

constructed, non-minimal paths are removed using minimization algorithms [96].

Meta-Products BDDs

In this method, every component (“X”), is assigned two variables, and . represents relevancy,

and represents the form of relevancy (repair relevant or failure relevant).The “Meta-Product” MP(),

is then the “intersection of all the system components according to their relevancy in the system state”,

with  denoting the PI set within meta-product MP() [89,96]. Once solved, the Meta-Products BDD will

always be minimal, therefore it will solve for the exact PIs.

Zero-Suppressed BDDs (ZDDs)

ZDDs represent a more computationally efficient method for applying BDDs. ZDDs use reduction rules to

simplify BDD calculations. These rules involve eliminating all nodes which have their “1” branch

connecting to a terminal vertex in state “0”. That branch is then connected to the BDD structure

beneath the “0” branch of the eliminated node [96]. In terms of non-coherent FTA, the ZDD will include

labelling of the nodes with the working/failed states of the Basic Events, and then decompose the PIS

sets based on the occurrence of certain states of each Basic Event. ZDDs represent a computationally

efficient method of determining the PIs from non-coherent fault trees [96,105].

Labelled BDD (L-BDD)

L-BDDs involve labelling each node based on one of three possible variable types. These types are

“Single Form Positive” (SP), where the variable only appears in its normal form, “Single Form Negative”

(SFN), where the variable only appears in the negated form, and “Double Form” (DF), where the variable

119

appears in both normal and negated forms [96,105]. The nodes belonging to different variable types

involve different algorithms for analysis, so correct variable labelling is important. The DF nodes are of

special note, which add the most to computationally intensity of the analysis, making it prudent to

minimize the number of DF nodes in the L-BDD [96,105].

2.3.1.7 Quantitative Methods for Fault Tree Analysis

The methods discussed in sub-sections 2.3.1.5 and 2.3.1.7 deal with the qualitative analysis of fault

trees, however they do not directly consider any quantitative behaviour. Once the PI/MCS have been

determined, the probabilities of each PI/MCS, and the probability of the Top Event (TE), may also need

to be calculated. Several methods have been formulated to perform the quantitative calculations used

in FTA and DFM, with the various methods incorporated into the software tools.

MCS/PI and Top Event Probabilities

Regardless of the methodology used to determine the MCS or PIs, (i.e. DFM or FTA), there are

similarities in the quantitative calculations. The probability of the individual PI or MCS is found by [93]:

 ⋂
()
 ∏

()

 (17)

Where
()

 is the Boolean variable for the ith primary event in the jth minimal MCS/PI, and n is the

number of primary events in that MCS/PI. Once the PI/MCS and their probabilities has been determined,

there are several ways to calculate the Top Event probability that are found in the literature. The

simplest method is to take a straight sum of all MCS/PI probabilities, sometimes referred to as the “Rare

Event”, and is given by [93,98,106]:

 ⋃

 (18)

A second common method is referred to as the “Upper Bound Approximation” or “Minimal Cut Set

Upper Bound” (MCSUB), performed using the formulation [93,98,106] :

 . ∏ . ()/

 / (19)

120

Here () represents the probability of the jth MCS/PI, while n signifies the total number of

MCS/PI.

While the methods shown in Equation (6) and (7) are computationally efficient, they have the potential

to overestimate the Top Event probability, as they do not account for the mutually exclusiveness of the

MCS/PI. The exact TE probability is found using the Inclusion-Exclusion principle [98,106]:

 ⋃ ∑ ∑ (⋂) ()
 (⋂ ⋂ ⋂)

)

 (20)

where represents the number of MCS/PI. Although the method shown in Equation 12 will account

for the mutual exclusive behaviour of MCS/PI, it can be computationally intensive to perform. Therefore,

the “Sum” or “MCSUB” methods are often implemented to give approximations of the TE probability. In

terms of system reliability, overestimating the TE probability would be less serious than underestimating

the TE probability. In general, the TE calculations between these methods compare as [98]:

where, represents the lower bound on the TE probability. As this method could underestimate

the TE probability, it is not directly used in this thesis, although it is considered during the

computation procedure. It should be noted that for systems with basic events that have small

probabilities of failure (i.e. Probability of Failure << 1), the difference between the results from the

“SUM” approximation and “Rare Event” approximation is negligible [107].

121

2.3.2 Dynamic Flowgraph Methodology

The reliability assessment is performed using the Dynamic Flowgraph Methodology (DFM), and it has

seen use in both the nuclear and aerospace industries. This sub-section will provide for detailed

information into the background, theory, calculations and software tools for DFM analysis.

2.3.2.1 Introduction and Background for DFM and Dymonda

This methodology represents the system being analyzed with a directed graph (digraph) model. This

model is similar to that of a signal flow graph, which is used in control systems engineering. This model

will explicitly show the timing and the cause-and-effect relationships between states and parameters

that will best describe the system. After the model is built, it can be analyzed by automated inductive

and deductive algorithms built into the methodology [8,11,12,15]. The inductive procedures can be

applied to the model to analyze how a certain combination of basic component states can result in

different possible event sequences and the ensuing system-level states. The deductive process works in

the opposite fashion, where it is applied to identify how system states (possibly representing certain

failure or success conditions) can be produced through sequences and combinations of the basic

component states. DFM is also able to incorporate time dependency into the system, allowing for both

static and dynamic (time dependant) models.

The DFM deductive analysis will return what are known as Prime Implicants (PI), which are sets of

occurrences that would cause the Top Event (possibly a failure event). Alternatively, the results

produced by the inductive analysis are referred to as Sequences. When discussing

software/programming failures, any Prime Implicant that does not include some form of component

failure would indicate a programming issue, and can therefore uncover hidden faults in the system

[24,93].

One other facet of DFM/Dymonda is the ability to include probabilities and uncertainty calculations. The

probability of each state of each node in the model can be entered (by the user or calculated by the

program), to determine the probability of each Implicant or Sequence occurring. The program will

automatically calculate the probabilities, and display the total probability of each Implicant or Sequence

in descending order. Afterwards, the results can be pruned, to eliminate events with a probability of

122

occurring below a certain user-defined threshold. The inclusion of probabilities allows for exact

quantification calculations, to determine the exact probability of the Top Event occurring.

2.3.2.2 DFM Theory

DFM shares certain similarities, as well as several differences with traditional methods (i.e. static, binary

methods) used in reliability modelling/analysis. DFM has been touched on briefly earlier in this thesis,

however this sub-section will provide more detailed information behind the theory of DFM, as well as

ways to perform a DFM analysis on a model of an MVL system. In the case of DFM theory, the following

definitions are important:

Disjunction:

The logical “OR” (union) operator, generally represented as “+”, “ ”, or “ ”.

Conjunction:

The logical “AND” (intersection) operator, generally represented by “*”, “ ”, “ ” or “ ”.

DFM Prime Implicants

DFM is based on the use of Multi Valued Logic (MVL, also referred to as Many Valued Logic), as opposed

to the binary logic of methods such as fault trees. The deductive analysis is performed similarly to a

standard fault tree analysis, as both methods start with a top event, and work backwards in time to

uncover root conditions. For standard Fault Tree analysis, the official notation for a Minimal Cut Set

(MCS) is given (as the conjunction of primary events) by [14,93]:

 ⋂
()

 (21)

123

Where
()

 is the Boolean variable for the ith primary event in the jth PI, and n is the number of primary

events in that cut set. Setting TOP to be the Boolean variable for the top event, which takes the values

of either True (T) or False (F) that the top event can be shown in a disjunctive form by [14,93]:

 ⋃

 ⋂ ()

 (22)

Where m is the number of PI. The use of nodes by DFM to represent variables (voltage, current,

temperature, pressure, etc), and software states means that binary logic is inadequate, and multi-valued

logic is implemented instead. Alternatively, 1 and 0 could be used in place of True and False,

respectively. Using MVL, each node can be discretized into an arbitrary number of states. During the

analysis, the intermediate transition tables are generated (comparable to a MVL fault tree), which

contain non-binary primary events. However, these events can be expressed in a comparable binary

form by using “Binary Algebra with Restrictions on Variables”[108] .

Additionally, the disjunctive form found through the Boolean reduction does not have to contain all

Prime Implicants. The Prime Implicants are said to be unique and finite. Moreover, unlike with coherent

Fault Trees, the MVL tree is said to be “non-coherent”, as variables can change from higher to lower

states, as well as lower to higher states, and higher states are not always considered to be increasingly

faulted when compared to lower states

More generally, DFM Prime Implicants are considered to be the MVL variant of a minimal cut set used

by fault trees, but are more difficult to find. In a DFM analysis, the goal is to determine the PIs that will

cause the Top Event to occur. A set of Prime Implicants that are the logical analog of the TOP function

(i.e. the set of PIs that result in the Top Event) are referred to as a base, of which two distinct types

exist. The “Complete Base (CB)” being the set of all of the PIs that will result in the Top Event, and the

“Irredundant Base (IB)”, which would not be a base if any PI was removed [93]. It should be noted that

the IB and CB are generally different, and only the CB will be unique [93]. General definitions for

Implicants and Prime Implicants are given below, with the more technical definitions being seen in Table

5.

Implicant/Implicant Set:

 A combination of basic events (success or failure) which produces the top event. An Implicant/Implicant

set can be considered as the MVL equivalent of a “Cut Set” [98].

124

Prime Implicant/Prime Implicant Set:

A combination of basic events (success or failure) which is both necessary and sufficient to cause the

Top Event. A Prime Implicant/Prime Implicant set can be thought of as the MVL equivalent of a “Minimal

Cut Set” [98].

Introduction to DFM Analysis Procedures

In the literature, there have been several methods considered for determining the CB. These include the

“Tabular Method” [93,109], the “Nelson Method”[93,109,110] , and the “Method of Generalized

Consensus” [93,109,111], based on the Quine method [112,113]. Of these methods, the “Tabular

Method” is performed graphically, making it a realistic choice only for small, simple systems [93,109].

However, both the “Nelson Method” (especially when factoring methods are involved [114]) and

“Method of Generalized Consensus” can be implemented into software codes, allowing them to solve

much more complex systems [93,115]. An example from the literature, regarding the process for

applying the “Tabular Method” and “Nelson Method” will be provided in this sub-section. As the

“Method of Generalized Consensus” was the method employed during this research program, it will be

discussed in more detail later on in this sub-section. In the examples given in this sub-section, it should

be noted that the “ ” refers to the “AND” operator, and the “+” refers to the “OR” operator.

Tabular Method

Consider the MVL tree, shown in Figure 42 [109]. It contains three variables; “X”, “Y”, and “Z”. Variables

“X” and “Y” are both discretized into three states; “0”, “1” and “2”, while “Z” is discretized into four

states; “0”, “1”, “2”, and “3”. This tree contains two Operators, designated as “Op4” and “Op5”, seen in

Figure 43 [109]. The output of “Op5” is denoted as “Q” on the MVL tree. The Top Event (“TOP”), comes

directly from “Op4”, and as such is also discretized into three states; “0”, “1” and “2”, i.e. TOP = {0, 1, 2}.

125

Figure 42: Example of a Simple MVL Tree

Figure 43: Operators (Op4 and Op5) For the Example MVL Tree (© 1985 IEEE)

Determining the PIs using the “Tabular Method” involves breaking down the MVL “Top” function into a

graphical representation in Cartesian space, from its disjunctive form. That Cartesian representation is

seen in Figure 45 [109], and is similar to that of a Karnaugh Map [116]. Also seen in that figure, are the

corresponding PIs to the different values of the “TOP” function. As the total TOP function contains three

states, each of those states (), will have its own truth function (), determined by the PIs. In the case of

the “Tabular Method”, it is seen that with a number of variables, m, the PIs for each truth function, ,

will be corresponding to Maximum Rectangular Coverings (MRCs), of dimension m [109].

126

Maximum Rectangular Covering (MRC):

A Maximum Rectangular Covering is defined as consisting “…of the largest rectangular arrangement of

cells of the operator, where cells contain values belonging to ” [109]. In this case, an analyst would

start with the TOP function, and from that function, select the subset, , corresponding to the truth

function . These sets, denoted as , must be covered by at least one of the MRCs. Each MRC is

obtained from a conjunction of two literals. The rectangular arrangement of the MRCs must be kept

intact, however the MRCs can be composed of arrangements of non-adjacent cells.

As an example, consider “Op 4” in Figure 43. The overall truth function, “TOP”, contains states “0”, “1”

and “2”. If a set * + is selected, the MRCs corresponding to that set are and .

Alternatively, if the set * + is selected, then the corresponding MRCs are and . An

example of an MRC composed of non-adjacent cells occurs when the set * + is selected. One of the

resulting MRCs is , composed of the arrangement of the non-adjacent cells and

 . The graphical representation of these MRCs is seen in Figure 44 [109].

Figure 44: Graphical Example of Select MRCs (© 1985 IEEE)

Karnaugh Map (K-Map):

A Karnaugh Map, or K-Map is a graphical method for simplifying Boolean logic expressions. The

necessary Boolean logic information is taken from a truth table, and ordered into a two-dimensional

grid. Inside that grid, the position of each cell represents one input combination, while each cell value

denotes the corresponding output value. Optimal groupings of the Boolean logic values (“0s” and “1s”)

are found, to write the reduced (simplest) Boolean logic function that represents the overall truth table

[116].

127

Figure 45: Graphical (Cartesian) PI Determination Using the "Tabular Method" (© 1985 IEEE)

The truth functions for the three values of TOP (“0”, “1”, and “2”), are denoted as (), () and (),

respectively. These truth functions are a disjunction of the PIs, with the PIs obtained from Figure 44.

These truth functions and corresponding PIs are found to be [109]:

 (23)

 (24)

 (25)

In Equations 23-25, the superscript values denote the states of the variable (e.g. “X2” denotes state “2”

of variable “X”).

It is noted from the above example, this method would not be a realistic way to solve for the PIs of a

large or complex system [109], and a such will not be considered further in this thesis.

Nelson Method

The “Nelson Method” (or “Nelson Algorithm”) was originally intended to be used for Boolean logic

[110], however it has been shown in the literature that it is easily extended to be applicable to MVL logic

as well [109]. The process for the “Nelson Method” starts with the disjunctive form of the selected truth

function. That truth function is negated, and the resulting conjunctive form is expanded. The expanded

conjunctive form is then simplified using logic reduction rules, such as the “Absorption Rule”, which

removes subsuming values. Additional logic simplifications, such as removing zero products (̅)

128

and repeated literals () occur if needed. Factoring the expanded conjunctive form may also

simplify the process [114]. The next step is to negate the simplified conjunctive function, to turn it back

into its disjunctive form. Further simplification will then leave the original truth function, defined by the

disjunction of the PIs. An example of this is seen in the literature, and presented below [109]:

A truth function, equivalent to the truth function of Equation 25 is used as the example. However, in

this case, the truth function is given as a disjunction of Implicants only, not PIs, so the actual PIs must be

determined. In this example, the truth function is shown in Equation 26.

 (26)

Negating yields:

 ̅̅ ̅ (
) () () (27)

Expanding and then simplifying the conjunctive form produces the simplified disjunctive form gives:

 ̅̅ ̅
 (28)

Negating Equation 28 returns the truth function back into a conjunctive form:

 ̅̅ ̅
 () (29)

Expansion and simplification of Equation 29 produces a disjunctive form, corresponding to the

disjunction of PIs:

 (30)

It is seen that Equation 30 corresponds to the same truth function and Prime Implicants as seen in

Equation 25. During the negation process, De Morgan’s Laws (Equations 12 and 13) are applied.

Additionally, the use of “NOT” logic in MVL can be slightly different than in the binary case. For example,

consider the literal . As “X” has been discretized into three states (“0”, “1” “2”), then ̅̅̅̅ .

129

Applying one of De Morgan’s Laws, namely Equation 13 to the first term of Equation 26 and negating it

results in ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ .

While the “Nelson Method” does lend itself to a computational implementation of DFM, it was not the

method used in this research program, and as such will not be discussed further.

Method of Generalized Consensus (Theory)

The original Quine implementation of this method considered binary logic; however it has been

expanded to consider MVL systems too. The determination of the PIs is performed iteratively using two

steps, “reduction” and “development” [109]. In the “reduction” step, the terms in the “critical transition

table” are reduced using logic reduction rules. The rules that are considered are “absorption”,

“reduction”, “merging” and “reduction-merging”, with the binary and MVL formulations discussed in the

literature [21,117].

 In the “development” step, monomials are added to the (now reduced) set of implicants. These

monomials are found through the merging of other couples of implicants, if merging is allowed by logic

rules. These new monomials are referred to as the “consensus terms”, and could be implicants or PIs.

These two steps are repeated, until no more new consensus terms are generated, and at this point all

consensus terms are also PIs. The total set of PIs will include the reduced implicants (now PIs) from the

original “critical transition table”, as well as the new PIs generated to make the consensus term(s) [109].

Decision Tables

The concept of a truth table is well-known and well-defined. These are mathematical tables used to

calculate the output values of Boolean logic functions, based on all combinations of the input variables

[118]. The truth table for a generic “AND” gate (Figure 46), is given in table 9.

130

 Table 9: Truth Table for a Generic “AND” Gate

Figure 46: Generic "AND" Gate

A related concept to a truth table, is that of a “Decision Table” [117,119]. A decision able can be thought

of as a more advanced truth table, and is a tabular representation of certain sets of “Conditions”,

“Actions”, “Rules” and “Entries”. These are defined as [119]:

Conditions:

Variables that are considered in order to obtain a decision

Actions:

The operations that must occur when a certain set of conditions is present.

Rules:

 Particular sets of conditions and the resulting actions required by those conditions.

Entries:

Any additional information regarding an action or condition relevant to a certain rule.

These aspects are represented in a decision tables as [119]:

1.) Condition statement

2.) Condition Entry

Input Output

A B A*B

0 0 0

0 1 0

1 0 0

1 1 1

131

3.) Action Statement

4.) Action Entry

5.) Rule

Those above aspects make up a theoretical decision table, separated by double line, as shown in Table

10, with the example of a decision table for a credit approval process shown in Table 11 [119]. In that

example, if “Credit is OK”, then “Approve Order”. Alternatively, if “Credit is OK” is not true, but “Pay

Experience Favourable” is true, then “Approve Order”. If neither is true, then the order is “Return to

Sales”. It should be noted that with decision tables, the “-“ is generally used to denote a “Don’t Care”

value. It should be noted that in the case of decision tables, one is not limited to binary logic, as in the

case of decision tables. The entries in decision tables can take on any terms that the analyst requires.

Table 10: Aspects of Decision Tables

 Rule(s)

Condition Statement Conditions Entry

Action Statement Action Entry

Table 11: Example Decision Table for Credit Approval

 Rule 1 Rule 2 Rule 3

Credit “OK” Y N N

Pay Experience “Favourable” - Y N

Approve Order X X -

Return to Sales - - X

In the case of DFM, decision tables are used to represent the interactions between the process variables

of the system. The credit check example shown in Table 11 was used to explain the design and

132

implementation of decision tables in a more accessible way. An example of how decision tables are used

in DFM is seen later on in this sub-section, in Table 12.

Critical Transition Table

In the literature, methods have been developed to compute the PIs of a system, using the decision

tables for individual components [21,117]. During the analysis in DFM, those component decision tables

(represented by the decision tables that connect the nodes together) are merged into one “critical

transition table” [21,117,120]. This merging is based on the structure of the DFM model, as well as the

selected Top Event(s). Once this table is constructed, logical merging and absorption operations are

used on the “critical transition table” to determine the complete base of PIs, based on the “Method of

Generalized Consensus” [111–113].

5.1.1.1. Logic Reduction Operations

The logical reduction of the critical transition table is performed using four logical reduction operations,

“Absorption”, “Merging”, “Reduction” and “Reduction-Merging”. Most of these have a binary and MVL

equivalent, which are discussed below.

Type-1 Absorption Rule:

A term, denoted as will subsume (absorb) a second term, denoted as , in a decision table if both

terms have the same outputs, and id every input event in is also seen in . It this case, the longer

 term is cut from the table, and is said to be “absorbed” by the shorter term [113]. This logic

operation is applicable to the binary and MVL case, without modification.

 (31)

Type-2 Merging Rule:

If two terms in a decision table are identical, except for just one input entry, and that entry in the two

terms has opposite (logic) values, then the terms cab be merged [112]. For example, in the binary case

 ̅ , shown in Equation 32.

133

 (32)

 This is easily extended to the MVL, with a small modification. If one considers m terms in a decision

table that are identical, save for one m-input entry, and all possible states of m exist in there terms, then

the m terms can be “merged”. The MVL case, assuming B can have states {-1, 0, 1},a and if it is assumed

A is in an arbitrary state W, is seen in Equation 33 [117].

 (33)

Type-3 Reduction Rule:

When considering binary logic, If two of the terms in a truth/decision table are the same, except just one

input entry, then the larger of those two terms is obtained using that input variable, when it has

opposite values (normal/complement) in those two terms. This rule is visualized in Equation 34 [117].

 (34)

When considering the MVL, there are some modifications made to rule three in order for it to be

applicable. In that case, if we consider the variable B to be a variable with m events (states), and assume

that those states are {N, R, F}, then for the largest term to be reduced, all of the m states in variable B

must be present in other comparable terms. The example for the MVL case is seen in Equation 35 [117].

 (35)

134

Type-4 Reduction-Merging Rule:

Unlike the previous three rules, this fourth rule is a new rule introduced in the reference, and is only

applicable to MVL systems (there is no direct binary equivalent). It is used to reduce an MVL decision

table into its irredundant (most reduced) form. Originally, “Reduction” and “Merging” operations would

be performed in separate steps. The example of this is shown in Equations 36-38 [117]. First, it is

assumed that the variable B is composed of states {-1, 0, 1}, and the starting table is given in Equation

36.

 (36)

Applying the Type-3 operation (“Reduction”) to the starting table, will reduce it to the decision table

seen in Equation 37.

 (37)

After the “reduction” operation is utilized, it is seen that the “absorption” rule can be applied, allowing

Row 2 of Equation 37 to be absorbed by Row 1, resulting in the simplified decision table shown in

Equation 38.

 (38)

The implementation of a “Reduction-Merging” rule allows for the above process to occur in one step,

instead of two. It is given the following definition in the literature: If a decision table includes terms

where all of the m possible states of the output variable exits, and if none of the other variables have

opposite entries, then those terms can be simplified. The larger of those terms is reduced by that input

variable, and all other terms with identical input entries are also removed from the table [117].

135

The above four logical reduction rules are applied to the “Critical Transition Table”, to determine the PIs

for that system/Top Event.

Method of Generalized Consensus (Literature Example)

This sub-section presents an example of a generic MVL application, as seen in the literature. The

following arbitrary variables and their states are given in Table 12 [21,117]:

Table 12: Variables and States for the Literature Method of Generalized Consensus Example

Variable States

A -1 0 1 N/A

B N R F N/A

C -2 -1 0 1

D H N L N/A

From the variables/states in Table 12, a decision table for a top function, denoted as “TOP” (assumed to

have a value of “1”), was constructed and is shown in Table 13. This decision table is not in its

irredundant form, and as such must be reduced, using the logical reduction operations. The initial

decision table was given as [21,117]:

Table 13: Initial Decision Table for the Example "TOP" Function

Row A B C D TOP

1 - R -1 N 1

2 0 - 1 H 1

3 - R 0 - 1

4 - - -1 L 1

5 0 R -1 H 1

136

6 - N -2 - 1

7 -1 R -1 H 1

8 0 R -2 H 1

9 1 R -1 H 1

10 0 F - H 1

First, Row 7 and Row 9 will undergo a “Merging” operation with Row 5. This returns a “Don’t Care” (“-“)

value in Column 1 of that row. It also produces a new decision table, given in Table 14 [21,117].

Table 14: Decision Table for the Example “TOP” Function after the “Merging” Operation

Row A B C D TOP

1 - R -1 N 1

2 0 - 1 H 1

3 - R 0 - 1

4 - - -1 L 1

5 - R -1 H 1

6 - N -2 - 1

7 0 R -2 H 1

8 0 F - H 1

The next step is to apply a “Reduction” operation to Rows 6-8 in Table 14. This returns a “-“ value in

Column 2, Row 7. Additionally, Rows 1, 4 and 5 in Table 14 experience a “Reduction-Merging” operation,

resulting in Table 15 [21,117].

Table 15: Irredundant Decision Table for the Example “TOP” Function

Row A B C D TOP

1 - R -1 - 1

2 0 - 1 H 1

3 - R 0 - 1

4 - - -1 L 1

137

5 - N -2 - 1

6 0 - -2 H 1

7 0 F - H 1

At this point, table 15 is in its irredundant form, as no more logical reduction operations are applicable

to any of the terms in that table, so those seven entries all represent PIs of that Top Event. However,

there is one additional PI, which is generated from the consensus term using Rows 1-3 and 6. This final

PI (consensus term) is shown in Row 8 of Table 16, along with the other seven PIs [21,117].

Table 16: Consensus Term and all PIs for the Example “TOP” Function

Row A B C D TOP

1 - R -1 - 1

2 0 - 1 H 1

3 - R 0 - 1

4 - - -1 L 1

5 - N -2 - 1

6 0 - -2 H 1

7 0 F - H 1

8 0 R - H 1

From the example presented in this section, it becomes clearer that the “Variables” represent process

variables in a DFM model, and the “States” are the different values which the process variables are

allowed to take on. The example presented in this sub-section was a more generic, theoretical example,

to demonstrate the theory behind the “Method of Generalized Consensus”. A more practical example

from the literature, is discussed in sub-section 2.3.2.9.

138

2.3.2.3 Consistency Rules (Time Dependence)

The previous sub-sections of sub-section 2.3 have mainly focused on the theory and rules behind the

MVL aspect of DFM. However, the dynamic (time-dependant) behaviour of DFM is another important

aspect of this methodology. In order to allow for time-dependant modelling, certain consistency rules

are included. These can be divided into two categories, “physical consistency rules” and “dynamic

consistency rules”. Physical consistency rules are inherent rules, used to eliminate PIs that are physically

impossible to occur, while dynamic consistency rules are set by the user, and will eliminate PIs based on

the constraints on the dynamic behaviour of the system being modelled/analyzed [14,93]. The logic

behind the physical consistency rules is derived from “Binary Algebra with Restrictions on Variables”

[108]. If one assumes that a primary variable can be in any one of n states * +, then a variable in

state k would be considered as Ak. There are two restrictions forced upon the variable [14,93]:

 ⋃

 (39)

 ⋂ (40)

In Equations 39 and 40, the overall meaning is that the variable must take on a state, but it cannot take

on two different states at once. The use of these physical consistency rules are applied to prune out

impossible PIs that are returned when the logical reduction operations are applied. As an example of

physical consistency, the following is considered:

 <variable A=1 AND variable A=2> (41)

Equation 41 would violate the physical consistency rule given in Equation 40. If time-dependency is

considered, a PI in the form:

 <A = 1 @ time t = T1 AND A = 2 @ time t = T2> (42)

would be allowed, as it no longer violates Equation 40. Here, the Prime Implicant is referred to as a

Timed Prime Implicant (TPI).

In the case of dynamic consistency rules, they are optional, and can be set by the user, based on their

knowledge of the system under analysis. They are applied to allow certain variations of parameter

values across the time steps. Consistency Rules are discussed in more detail in sub-section 2.3.2.3

139

2.3.2.4 DFM Quantitative Analysis

The quantitative analysis for DFM is actually very similar to the quantitative process for FTA, once the PIs

have been determined. Despite the significant differences in the algorithms used to determine the

respective MCS/PIs, the methods for calculating the MCS/PI and Top Event probabilities almost the

same. The Pi probabilities are a product of all of the events inside of that PI, analogous to the calculation

of MCS probabilities in FTA, as stated in Equations 17 and 21. Regarding the Top Event probability, the

same overall methods as discussed in sub-section 2.3.1.7 The “SUM”, “MCSUB” and “EQ” methods are

all applicable to DFM, replacing the MCS with PIs.

There is one additional way in which the EQ value can be calculated using DFM. The set of Prime

Implicants is converted into a set of m Mutually Exclusive Implicants (MEI), denoted as MEI1 – MEIm:

 ⋁ ⋁ (43)

Where ⋀

As the MEI are basically the multi-valued logic version of cut sets that do not return a cross product

term, the sum of the probabilities of these MEI gives the probability of the top event [14,93]

 () () () (44)

2.3.2.5 DFM Tools

In this research program, the actual modeling and analysis, when applying DFM, was be performed using

a software package known as Dymonda, from ASCA Inc. [14]. Dymonda allows for the graphical

construction of the flowgraph that represents the model being analyzed. The Dymonda software

package utilizes the “Method of Generalized Consensus”, which is why that method was the focus

during this thesis [14,93].

In more modern versions of the software used optimized methods to reduce the section of the system

being analyzed into a single critical transition table to produce the complete set of Prime Implicants. The

software is also capable of calculating the complete base, from an irredundant base.

140

It should be noted that there exists an alternate implementation of DFM that has been performed by

VTT in Finland, using their “YADRAT” (Yet Another Dynamic Reliability Analysis Technique) tool. This

approach utilizes BDDs, and more specifically ZBBDs to determine the PIs for a system under analysis

[121–124]. However, as YADRAT is not a commercially-available tool, it could not be directly applied to

the analysis in this thesis [125].

2.3.2.6 Advantages and Disadvantages of DFM

DFM is a large improvement upon the stand static fault tree analysis. Normal fault trees create cut sets

for only one, static, binary top event. DFM will generate time-dependant and multi-valued logic Prime

Implicants for a large variety of possible top events for the system. The top event can be selected from

any of the possible states and variables in the model, including using multiple states and variables for

the same analysis. This means that one the DFM model has been created, it can be used to model a

large variety of possible top events [14,93]. However, DFM is not without any drawbacks, with the main

issues being the amount of information and computational resources required. In order to create an

accurate model, the user must have access to a large amount of data for the system in order to properly

discretize every node and transition table. In many cases, this information is obtained through a Failure

Mode and Effects Analysis (FMEA), and other available data. Additionally, for large systems, running the

analysis can require a lot of time (in the example shown in sub-section 2.3.2.9, it took more than 24

hours to run the analyses for each top event), making detailed analyses of a system a very time

consuming process.

2.3.2.7 DFM Modelling

The actual DFM model (constructed using Dymonda, during this thesis) relies on a series of process

variable nodes, connections and transitions/transfers between these nodes to show the relationship

between the parameters of the system [25,26]. The nodes and transition boxes (as of version 7.0) are

seen in Figure 47.

141

Figure 47: DFM Nodes and Transfer Boxes

The nodes are used to represent the parameters, variables or components of the system in question.

Continuous nodes represent a continuous behaviour, discrete nodes represent a discrete behaviour, and

logical nodes are there to show logic tests on the current state of the system. Under analysis, all 3 nodes

function the same way, but look different in the model to make it easier to understand what is being

represented. A process variably node could represent an output value, such as a current or voltage

output. A transfer box represents functional relationships between the components of the model (the

transfer function of the system). The transition box works in mostly the same way, but accounts for time

delay, allowing one to model the time dependence of the system and/or the system components. The

default time delay is 1 unit of time, but it can be altered. The connections between the various nodes

and boxes are done one of two ways [25,26]:

Causal Connection

Conditioning Connection

Figure 48: DFM Connectors

The causal connection shows the input and output of the transfer/transition boxes (cause-and-effect

behaviour). The conditioning connectors illustrate the connections between input and output of

functions and will determine what function is being used. Once the model has been constructed using

these tools, the analyses can be run on the system.

142

2.3.2.8 Additional Rules and Functionalities

DFM contains additional rules and functionalities to perform the requested analysis. Some of these rules

are applied automatically, to filter our impossible scenarios, while others are defined by the user, to

simplify or streamline the analysis. A discussion of some of these added rules and functionalities is

included here [14].

Physical Consistency Rules: Rules applied automatically by the software during analysis to eliminate and

impossible conditions found when creating the intermediate/timed fault trees. An example of this is

shown previously in Equations 40 and 41, where a system variable cannot be in two separate states in

the same time step.

Dynamic Consistency Rules: Similar to physical consistency, as they are applied to filter out impossible

scenarios. However, these rules are set by the user, and are used to constrain the system’s dynamic

behaviour. They are applied to allow certain variations of parameter values across the time steps.

State Dynamic Consistency Rules: Dynamic Consistency Rules that are applied to certain states of

nodes. There are three separate forms of these rules:

Sink: This rule creates a sink state, indicating that once a node enters into that sink state, it is

unable to transfer to another state for the rest of the analysis. Sink states can be used to model

unrecoverable failures.

Min/Max Duration: This rule will decide how long a node will remain in a certain state, once it

has entered that state, before it can transfer to a different state. An example would be for a

minimum duration of 3 would mean that the node must wait for 3 time steps before it can

transition.

Min/Max Intermittence: This rule controls how long a node needs to remain in different state(s)

after transitioning out of the state this rule was applied to. An example would be if a state had

an intermittence value of 3, then there would have to be a 3 time step wait period after

transitioning out, before transitioning back in.

Classification Nodes: Similar to logic nodes, classification nodes are used to group together similar

states into one node. These nodes are typically used when a distinction between similar states in early

143

points of the mode model are important, but not in the latter parts. They are not essential in the model,

and can be replaced using regular process variable nodes, but are sometimes used to simplify and clarify

the model for the use. In Dymonda, classification nodes are represented by a triangle shape.

Event Nodes: These nodes represent events (something that will either happen or not happen). The

main difference between these nodes and standard nodes is that with a standard node, the probability

assigned to it represents the probability of the node being in certain state(s). However, with an event

node, the probability characterizes the probability of transitioning into a particular state. An example

would be a control valve failure: the valve failure is the event, it fails in a particular moment and then

stays failed. With event nodes, the transition probabilities are given by a state transition matrix. Both

continuous and discrete nodes can be converted into event nodes, which are displayed differently in the

model viewer.

Condition Nodes: These are not a separate type of node, but rather represent a node that will affect the

outcome of the process, but is not itself affected by the process. Condition nodes characterize

parameters which will affect the overall logic structure of the system (often a digital system) by changing

the causal relations connecting the different process variable nodes. Condition nodes often represent

parameters like states for component failure, changes of process operation modes, and software

changes.

Boundary Conditions: Typically applied during inductive analyses, are defined to reflect the failure

profile of certain elements in order to determine the effects of that various combinations of

components failures will have on the overall system. In essence, the boundary can freeze a component

in a certain state for a certain number of time steps, so see the effect that it, or other components can

have on the evolution of the system.

2.3.2.9 DFM Example of a Digital I&C System (Digital Feedwater Controller)

A recent, well known example of applying DFM to nuclear I&C is the analysis of a Digital Feedwater

Control System (DFCS) for a Pressurized Water Reactor (PWR). The model was constructed using

DYMONDA, and then was first analyzed deductively for two separate top events: SG low level and SG

144

high level. Afterwards, the same model was analyzed inductively, for the initiating events “Main Feed

Valve (MFV) Stuck During Ramp Up” and “Main Feed Valve Stuck during Ramp Down”. The DFWCS was

chosen because it had been a major contributor of plant trips instances, although it is not strictly

defined as a safety system. These instances make use of the safety systems, and therefore are some of

the initiating events for accident scenarios in standard plant PRAs. The report states that these instances

are more likely to occur when the reactor power ramps up or ramps down, so those cases were chosen

for the analysis. A screenshot of the model is shown in Figure 49 [12,15].

The nodes were all discretized to include the relevant state information, and then the decision tables in

transfer/transition boxes were completed. Afterwards, the analyses were performed using the

aforementioned top events/initiating events, with a selection of the results being included here. In these

analyses, the probabilities were given as an hourly failure rate. It should also be noted that the time step

(t) is not actually negative, but in the case of the deductive analyses, the top event is generally said to be

at time zero (t = 0). Additionally, in the following tables, the bold entries illustrate the main failure

states, while the italicized entry shows the boundary condition(s) [12,15].

In Table 17, the Prime Implicant with the highest probability is shown. “Mode = 1” denotes that the

reactor is operating normally (70% power in steady state), “PDI-T = OP” means that the transition of the

PDI controller is operating normally, “MFV-T = Stuck” shows that the main feed valve transitions to

being stuck, while the “MFV-P = Comm” signifies that the previous main feed valve state was

communicating/operating normally. “MFVA-P = 2” is the size of the main feed valve aperture in the

previous state, given as 70-74%, and “LP = 0” corresponds to the previous SG level being in the range of -

0.17 to 0.17 feet. From this analysis, the most likely Prime Implicant involved the main feed valve getting

stuck in a largely open position such that the increase in steam flow cannot be counteracted by the

increase in feedwater which in turn leads to the SG level to decrease until it reaches and unacceptably

low level. The probability of this Prime Implicant occurring was found to be 3.33*10-4, out of a total

probability of 4.19*10-4 for the top event. The Prime Implicant given in Table 17 is one of 1197 Prime

Implicants.

145

Figure 49: DFM Model for DFCS Benchmark Example in NRC Report (NUREG/CR-6985)

Deductive: SG Low Level

Table 17: SG Low Level Prime Implicant No. 1

No. Prime Implicant Probability (Failures/hour)

1 Mode = 1 @ t = 0
PDI-T = OP @ t= -1

MFV-T = Stuck @ t = -1
MFV-P = Comm @ t = -1

MFVA-P = 2 @ t = -1
LP = 0 @ t = -1

Mode =1 @ t =-1

3.33*10-4

146

Deductive: SG High Level

Table 18: SG High Level Prime Implicant No. 1

No. Prime Implicant Probability (Failures/hour)

1 Mode = 1 @ t = 0
MFV-T = Stuck @ t = -1

MFV-P = Comm @ t = -1
MFVA-P = 4 @ t = -1
Main-T = OP @ t =-1

LP = 0 @ t = -1
Mode =1 @ t =-1

3.33*10-4

In Table 18, the “Main-T = OP” represents the transition of the main computer to an operational state.

Another difference in this analysis is that the previous state of the main flow valve (MFVA-P) is in state

4, not state 2, corresponding to a 78% position. In this instance, the MFV is again stuck, this time in the

78% position. The decrease in the steam flow cannot be offset by reducing the feed flow, which will lead

to the SG level to increase until it reaches an unacceptably high level. The probability was calculated to

be 3.33*10-4 failures/hour, with a total probability of this top event occurring being 3.3374*10-4. The

Prime Implicant given in Table 18 is one of 138 Prime Implicants.

Inductive: MFV Stuck (Ramp Up)

For this analysis, a number of initial and boundary conditions were selected, including the top Prime

Implicant from the SG Low Level deductive analysis. The analysis is then performed forwards in time, to

determine the effects of those initial conditions on the system. When the analysis was complete, it was

seen that the Main Feedflow Demand (MFF-D) attempts to follow along with the power increase, the

MFV gets stuck (fails), forcing the aperture (MFVA) to remain in same position, causing the SG level to

drop. The total probability was calculated to be 3.34*10-4.

147

Inductive: MFV Stuck (Ramp Down)

‘The inductive analysis was repeated for the Ramp Up case, using the top Prime Implicant from the SG

High Level deductive analysis as some of the initial conditions. After the analysis was finished, it was

found that the MFF-D attempts to keep up with the decrease in power, however the valve failure (valve

stuck) again forces the aperture to remain in its previous state, causing the SG level to increase. The

total probability was calculated to be 3.34*10-4.

The results from the NRC reports showcased several important factors regarding DFM. First, it is capable

of modelling a complex digital control system that is an important part of plant operation. Second, it

showed that by constructing one model allows for many difference analyses to be run on the system.

Third, that due to the dynamic capabilities of DFM, it can reveal how certain component failures can

lead to very different top events (i.e. the top Prime Implicant for both SG low and SG high were very

similar, with essentially the same major error), and fourth, that the inductive analyses can confirm both

the cause of the top event, but also the probability of it happening.

2.4 Chapter Summary

This chapter presented the relevant background information required for this thesis. It was divided into

two sections; background information on FPGAs, and the background information on the two reliability

analysis methodologies (DFM and FTA). The section on FPGA background included the descriptions of

FPGAs, how they relate to other forms of control logic, architectures, FPGA technologies, the

programming and lifecyle process, as well as potential advantages and disadvantages of FPGAs. A

detailed literature review on the use of FPGAs in NPP I&C systems was also presented. The section on

reliability analysis considered both FTA and DFM, covering topics such as coherent, non-coherent and

many-valued logic and qualitative and quantitative analysis methods. Additional DFM-specific

information considered consistency rules, potential advantages of DFM, as well as an example system

from research performed by the US NRC.

148

3. FPGA Failure Modes Taxonomy

An important component of this research program considered a detailed analysis of an FPGA-based

system, with realistic failure mode data. Therefore, an extensive literature review was undertaken, to

determine the potential failure modes, both hardware and software (HDL code), that could affect an

FPGA-based system. Furthermore, it was seen that this failure mode data could be categorized, to

present it in useful fashion to those designing and reviewing FPGA-based systems in NPPs.

While this research work into FPGA failure modes was occurring, the OECD-NEA published their failure

mode taxonomy for digital systems [9]. This taxonomy presented a great deal of information regarding

the failure modes of generic software-based I&C systems, however it did not specifically include FPGAs.

Therefore, the expansion of the collected FPGA failure mode data into an FPGA Taxonomy, became the

next step in the research work. The preliminary work from the FPGA failure mode work was presented

at the “7th International Conference on Modelling and Simulation in Nuclear Science and Engineering”

[126]. The full FPGA Taxonomy was submitted to the journal “Reliability Engineering and System Safety”,

and the revised version is currently under review [127]. The information obtained from the FPGA FMEA

and the resulting FPGA Taxonomy were used as a form of fault injection for the DFM and FTA models

used in sub-sections 4.3. and 4.4

Sub-section 3.1 details the results from the FPGA failure modes research, including the literature review,

failure sets/failure mode categorization, and failure mode mitigation methods. Sub-section 3.2 discusses

the OECD-NEA digital failure modes taxonomy, and the important aspects of it. Sub-section 3.3 presents

the new FPGA Taxonomy, including how it can interface with the original OECD-NEA taxonomy. Sub-

section 3.4 provides a summary of the information discussed in this chapter.

3.1. FPGA Failure Modes Research

The first step in creating the failure modes taxonomy for FPGA-based systems was to compile

information on all available failure modes that could apply to FPGAs. Not all of these may be specific to

FPGAs or FPGA-based systems, but they still apply to FPGAs. Over the course of that part of the research

149

program, the FPGA failure mode data was compiled, processed, and categorized to present clear, useful

information for the purpose of designing, analyzing and reviewing FPGA-based I&C systems. The

following sub-sections, detail the work on FPGA failure modes.

3.1.1. Failure Mode and Effects Analysis (FMEA)

Failure Modes and Effects Analysis (FMEA) is a commonly used method in reliability and safety analysis,

and are often performed at the start of a reliability/safety analysis program. FMEAs become an

important part of that program. The FMEA was performed on the FPGAs to identify data regarding the

failure modes. This includes identifying the potential failure modes, their causes, their potential effects

on FPGA-based systems, as well as providing information on how to eliminate or mitigate/control those

failure modes. Additionally, the FMEA can identify the effects of latent design errors, and/or determine

if the Single Fault Criteria is established [128]. To obtain the data required for this FMEA, an extensive

literature review was performed, taking into account a wide variety of information from the

international community. This documentation included the aforementioned reports from the US NRC

and ORNL, reports from VTT, EPRI and the OECD-NEA, and standards from IEC, IEEE and CSA.

Documentation, such as reports and white papers from FPGA manufacturers (Xilinx, Altera and

Microsemi) were considered, as was research published in scientific journals and conferences. The data

from the literature review was further processed during this research, to provide a more detailed

analysis of the failure mode information

The FMEA resulted in a list of potential failure modes, based on the literature review. These failure

modes were then broken down in categories based on the point in the FPGA-based system lifecycle

where the failures occur, as well as the Failure Types. The FMEA was also used to document the

potential cause(s) of each failure mode, its potential effect(s) on an overall FPGA-based system, and

identify the methods to eliminate or mitigate those failure modes. Recommendations are noted from

the study of the literature available for these failure modes. These include recommendations for

regulatory review of the FPGA-based system(s). The FMEA results from this work provides additional

information for use in future modelling and reliability analysis of FPGA-based systems, to further analyze

the failures and the methods to mitigate those failures and to develop regulatory review guidelines to

implement FPGA-based safety systems.

150

Some important definitions with regards to FMEA are given below [129]:

FMEA: A systematic procedure for the analysis of a system to identify the potential failure modes, their

causes and effects on system performance. In the IEC 60812 standard, “system” is used as

representation of hardware, software (with their interactions) or a process.

Failure Mode: Manner in which in item

Failure Effect: Consequence of a failure mode in terms of the operation, function or status of the item

Item: Any part, component, device, sub-system, functional unit, equipment or system that can be

individually considered

The results for the FPGA FMEA include a breakdown of the different failure categories and the sets of

general failure modes (as discussed in Section 5.2.3 “Failure Mode Determination” of IEC 60812) [129].

Additionally, the FMEA presents information on the failure modes, effects of those failure modes, as

well as potential mitigation methods. It should be noted that this research did not consider a specific

system. Instead, the FMEA focused on general FPGA-based systems, and only considered the effects of

failures at the board level. The effects mentioned in this paper are the effects that the failure modes

would have on the system elements that are under consideration. These are referred to as “Local

Effects” in Section 5.2.5.2 “System Initiation, Operation, Control and Maintenance” of IEC 60812 [129].

3.1.2. FPGA Failure Modes Categorization

The results of the FMEA were modelled using two main categories; “Design” and “Operation”. The

“Design” category consists of two groups “Design Defects” and “Manufacturer Defects”, while

“Operation” is broken down into “Environmental”, “Stress/Aging”, and “Maintenance Induced (Human

Factors)”. These terms are explained in more detail below, and a visual representation is given Figure 50.

151

These groups are again divided into smaller subsections, based on their effects on the system and the

remedy actions to eliminate, mitigate and control these potential failure modes.

Design: Modelled failures with the logic or the chip itself that occur in the design or fabrication stage.

Design Defects: Failures due to problems with the FPGA logic and/or the system hardware.

Manufacturer Defects: Defects in the physical FPGA chip from the manufacturing process.

Operation: Modelled failures that occur while the FPGA is in operation inside the nuclear power plant.

Environmental: Failures that occur due to the environment that the FPGA is operating in.

Possible failures would include radiation-induced failures such as SEEs.

Aging/Stress: Failures that occur due to the aging effects experienced by semiconductors, as

well as thermal and/or mechanical stress on the FPGA.

Human Factors: Failures that occur during maintenance, such as tampering with the FPGA, that

is either intentional or unintentional.

This categorization was done in this research for the ease of discussing the remedy actions, and was not

present in the literature that was surveyed. For example, for the failure modes considered as “Design

Defects”, efforts should be made to eliminate/mitigate those failure modes during the design state. In

the case of residual failure modes, Built-In Self-Test (BIST) should be incorporated into the design to

detect errors that occur during operation.

152

Figure 50: FPGA Failure Mode Categories (“Failure Sets”)

A detailed description of all of the failure sets shown in Figure 50 is presented in sub-section 3.1.3.

3.1.3. Sets of Failure Modes

IEC 60812 describes the different failure groups as a “Failure Effects Summary”, so that terminology was

used in this report. IEC 60812 defines “failure effect” to be the “consequence of a failure mode in

terms of the operation, function or status of the item” [129]. The categories mentioned in sub-section

3.1.2 were then broken down into several “Sets of Failure Modes”, based on their similar causes and/or

failure effects. Each set that was identified in the FMEA includes a description of the set, and methods to

eliminate or mitigate those failures. This section is organized with the description of each set of failure

modes, followed by the discussion of the avoidance and/or mitigation methods.

3.1.3.1. Design Defects

Design defects considered in this section focus on logic failures, as well as potential hardware “Faults

and Failures to be assumed when quantifying the effect of random hardware failures or to be taken into

FPGA

Failure Modes

Design

Design

Defects

Clock/Timing
Logic Errors

(HDL)

State

Machines

Sneak

Circuit

Input and Data

Type

Board

Level

Common Cause

Failure

Soft
Processor

Maintainability COTS

Design
Security

Manufacturer

Defects

Chip and

Board

Operation

Environmental

Radiation

Induced

Hard

Errors

Radiation

Induced

Soft

Errors

Environmental

Qualification

Stress/Aging

Bit Error
Aging

Process

(Clock)

Aging

Process

(FPGA

Chip)

Human Factors

Maintenance

Induced

Security

Breach

Hardware

Software

Hardware or Software

Cause

Lifecycle

153

account in the derivation of safe failure fraction”, as specified in IEC 61508-2, Table A.1 that were

deemed to be relevant to FPGA-based systems [130].

Clock/Timing Failure Modes

Proper timing is critical for FPGA systems to function as intended, so any design or logic errors that

affect the clock, upset the system timing, or in general create timing errors can cause the system to

behave incorrectly. Therefore, all potential failures due to the timing/clock behavior must be controlled.

Many of the failure modes in this category were due to the use of asynchronous (not tied to the clock)

signals, and could be remedied by using synchronous (tied to the clock) signals instead. If the input

signal is asynchronous, synchronizer chains (double or triple registers) or FIFOs (First In First Out) can be

used to synchronize that signal. Timing errors can be identified and eliminated during the design phase

through the inclusion of proper timing constraints, Static Timing Analysis (STA), and by performing

timing (gate-level) simulations. The gate level simulations are used to expand upon STA (limited when

analyzing asynchronous signals and multi-cycle clock paths), verify reset sequence and initialization,

power estimation, detect metastability or glitches, and verify the proper timing execution [38].

Logic Error (HDL Programming) Failure Modes

These failure modes refer to failures due to errors in the actual HDL code used to program the FPGA, not

an error in the design specifications. The FPGA is programmed by the end user, meaning any

programming errors or deficiencies could lead to unforeseen logic errors in the final system(s) [65,131].

Such issues include synthesizer problems, calculation errors, difficulties with simulation, and additional

asynchronous behaviour.

The failure modes in this section were due to programming errors, and can be avoided by following HDL

programming standards and industry best practices [37,132]. Additionally Section 3.1 “Reliability” of

NUREG-7006 provides a summary of the methods to avoid these programming errors [65].

154

State Machine Failure Modes

State Machines, or Finite State Machines (FSM) are a mathematical computational model that is used to

design software programs and sequential logic circuits. FSMs have seen extensive use in FPGA-based I&C

systems, meaning any failures in the state machine could cause the system to hang, suppressing the

outputs and/or cause the erratic activation of other system elements. The FMEA uncovered 8 potential

failure modes for (FPGA) state machines.

IEC 61508-7, Section B.2.3.2 “Finite State Machines/State Transition Diagrams” provides general

guidance for state machines, while IEC 612566, Section 8.4.6 “Finite State Machines” provides

requirements for FPGA-based state machines. State machines should be analyzed and tested to ensure

that they conform to those standards. Reset signals can also be used, to force the state machine into a

state that is already analyzed (such as the starting state), in case errors/hang-ups/deadlock occurs

[37,133].

Sneak Circuit Failure Modes

When considering the FPGA logic, the sneak circuits are a design error that could either cause the

intended output not to be generated, or cause an unintended output to be generated. Due to the

possible system failure, sneak circuits must be analyzed. In this case, it is the only failure mode

considered. It should be noted, however, that sneak circuits could be caused by either hardware design

errors or software design errors. Sneak circuits are a form of latent design error.

Sneak circuits should be eliminated where possible. Even for small, combinational FPGA-based system

designs with a limited number of I/O, and where 100% testability can be obtained, that testing may not

guarantee that the system is sneak circuit free [65,131]. To remedy this, Sneak Circuit Analysis (SCA)

should be performed to locate and eliminate sneak circuits. Guidelines for general sneak circuit analysis

[134–136], and FPGA-specific sneak circuit analysis are applicable [137].

155

Input and Data Type Failure Modes

This section includes information about possible input or data type errors. The inputs can overflow

and/or become stuck, causing inaccurate data to be propagated through the system. The use of

different data types (such as fixed-point or floating-point packages), which currently are not well-

supported by many vendor tools (e.g. VHDL-2008 is not as universally supported as VHDL-1993). At the

time of this thesis, the current standards for HDL code include IEEE-1076 (VHDL), IEEE-1364 (Verilog),

and IEEE-1800 (SystemVerilog).

In order to mitigate these failure modes, the input range should be properly defined before

implementation, to avoid overflow altogether [48]. However, in case overflow does occur, it must be

detected, and there should be alerts that are sent to the operators to warn of errors [65]. Resolution

and Resize errors can occur when using Fixed-Point mathematics (a data type that has a fixed number of

digits before and after the decimal point, as opposed to the Floating-Point math that is commonly used

in modern computers), which is common in FPGAs. The proper resolution for all values in the system

(especially critical parameters such as setpoints) should be carefully calculated beforehand. The

potential failures that could be caused by the newer fixed-point and floating-point data type packages

(such as those in VHDL-2008) can be avoided by using the better supported standards (such as VHDL-

1993) instead of the newer packages [38].

Board Level Failure Modes

These represent general, high-level failure modes (potentially representing fault tree top events), which

require consideration under IEC 61508-2 [130]. Complying with that standard will assist in achieving a

system where the hardware will function reliably. This section includes a subset of the IEC 61508-2,

Table A.1 items that are relevant to FPGA-based systems, which accounts for 9 assumed failure modes.

These failure modes were taken from the standard IEC 61508-2, Table A.1. Additional information on

those failure modes is presented in Tables A.2 to A.14 of that standard. These represent general failure

modes, that any electrical/electronic safety system could encounter, and must be eliminated (or

controlled). The methods for testing, detection, eliminating and controlling these failures can be found

in IEC 61508 [130].

156

Commercial-Off-The-Shelf “Software” (COTS)

Represents dedication of any commercial grade software (HDL code, IP cores) and software tools used in

the configuration of the FPGA-based system [138]. This failure set would also include Pre-Developed

Software (PDS), used by the FPGA.

Issues due to COTS software are eliminated through the (commercial-grade) dedication process. In

terms of the nuclear industry, guidance on this dedication exists specific to FPGAs [138], as well as

general guidance for software-based systems that is applicable [139,140]. Additionally, the

requirements by some regulators states that PDS needs to undergo some form of failure modes analysis,

such as FMEA) according to certain standards [141].

Maintainability

Attributes included during the “Design” phase, which will assist with the maintenance of the “software”

(HDL code) during the “Operation” phase. Attributes that may impede maintainability include the use of

vendor-specific IP Cores, vendor-specific hard macros, synthesis attributes and constraints, as well as

place and route directives [65,131]. An overreliance on vendor-specific features also reduces the

portability of the HDL code.

In general, the “Maintainability” issues are avoided by avoiding (or at least minimizing) the use of

vendor-specific features in the design of the FPGA-based system [65,131]. With regards to certain

regulators, there are requirements put in place regarding “Design for Maintainability”, which must be

met [142].

Design Security

 This failure sets consider malicious logic (such as HDL code or IP cores) functions and/or timing

constraints inserted into the FPGA during the design stage. These malicious functions could lay dormant,

waiting to be activated upon some triggering condition (logic or timing bombs) [143]. This failure set is

different from the “Security Breach” failure set, as it is strictly software considers malicious logic

inserted into FPGA chip during the “Design” stage in the lifecycle, whereas the “Security Breach” failure

set considers hardware and software failure modes, and only considers malicious acts during the

“Operation” part of the lifecycle.

157

Mitigation of this failure set requires the use of a secure lifecycle, for the entire lifecycle of an FPGA-

based system in the NPP. All of the design/qualification of the system must be performed using trusted,

tools, personnel and IP cores (if included) [3,144,145].

Common Cause Failures (CCF)

Common Cause Failures (CCF) are a serious issue in reliability engineering, as seemingly redundant

systems can fail due to a single initiating event, which removes the underlying assumption that all failure

modes are independent. Therefore, one cannot only consider independent and random failures, as CCFs

must be mitigated, in order to have a reliable design. There is only 1 failure mode in this set (CCF itself),

and it is a form of latent design error that is assumed to exist in the design and cannot be found through

testing. CCF was included in the “Design Defect” section, as the system logic has the potential to be to

cause of a CCF, however hardware or environmental factors may also cause CCFs, as stated below.

Conventional CCF causes are [129]:

- Design (Software/Logic)

- Manufacturing (Component Flaws)

- Environmental (Temperature, Electrical Interference)

- Human Factors (Maintenance Actions)

FMEAs have limited use when analyzing CCFs, however it can be used to study all the possible causes

that could trigger a CCF [129]. Traditionally, a combination of different methods is used to mitigate CCFs.

These include using functional diversity and defense-in-depth, system modelling, component analysis,

and the physical separation of components. If the system is a very simple, asynchronous design, it is

possible to obtain 100% test coverage, which would eliminate any latent design (logic) error. However,

that would not remove the vulnerability to CCF due to other causes. Due to the importance of CCF to

the nuclear industry, it has been widely studied, with discussions on coping with CCF published in the

recent literature [146–149]. Additional standards and documents from IEC [37,150,151], IEEE [36,152],

the IAEA [153,154], and regulators such as the CNSC [142] should be considered when designing systems

that are resilient to common cause failures.

158

3.1.3.2. Manufacturer Defects

FPGA Chip and Board Failure Modes

These are failures that can occur in the manufacturing/fabrication process of the physical FPGA chip

(hardware), and could result in damaged pins, or impurities that cause corrosion. The failure modes of

the chips itself must be known, to ensure that the chips used in the FPGA system are reliable.

To mitigate failures due to the FPGA chip and board, the chips should be inspected and tested for any

defects and/or impurities that would cause failures and/or accelerate the aging process. The chips

should be inspected for cleanliness (such as water or foreign particles), that could lead to corrosion or

ion mobility failures. The chips should be tested to check for any damaged pins, and the supply

voltage/current should be tested to eliminate power-up or power pin decoupling errors [65,131,155].

Additionally, Bent Pin Analysis (BPA) (also called Cable Failure Matrix Analysis (CFMA)) should be

performed, to determine the potential hazards of bent/damaged pins, and the mitigation required to

control those hazards [156,157].

3.1.3.3. Stress/Aging Failures

These failures are due to the aging process. As with any technology, aging effects will eventually render

the chip unusable. The failures due to the aging process must be mitigated, as these failures modes

cannot be completely eliminated during the design phase of the FPGA-based system.

Bit Error Failure Modes

These failures are almost exclusively due to the continuous reconfiguration of SRAM FPGAs. Eventually,

the multiple reconfiguration cycles will result in bit failures. Bit errors, coupling faults, stuck bits, and

data degradation were all modeled under the umbrella term of “Bit Error Failures”, as they all affect the

state of the bits (“0” or “1”) [158]. However, configuration errors are still possible in Antifuse and Flash

FPGAs, and non-volatile memory can degrade over time, so 2 of those failure modes could still apply to

non-volatile FPGAs.

159

Bit Error Failure Modes can largely be avoided by using Antifuse (OTP) FPGAs. The Antifuse FPGAs will

eventually lose data, however the Mean Time To Failure (MTTF) can be calculated to predict when that

failure will happen [65,131]. Regardless of the FPGA technology (SRAM, Flash or Antifuse), the

configured system should then be tested thoroughly, to verify that it performs correctly and matches

the simulations, to ensure no bit errors have occurred, or detect the failure(s) if any did occur. If a bit

error occurs with an OTP FPGA, then the FPGA would have to be replaced, however the Flash or SRAM

FPGA could be reconfigured in the event of a configuration or routing error. However, the SRAM chip

must be re-configured every time there is a power cycle, meaning that it must be tested thoroughly

every time, whereas Flash and OTP chips are only configured once and retain their configuration

through power on/off cycles [65,131]. The constant re-configuring that occurs with SRAM FPGAs is what

causes it to be susceptible to configuration failures, while OTP and Flash FPGAs are more resilient.

Aging Process (Clock) and Aging Process (FPGA Chip)

Failure modes due to aging cannot be eliminated during the design and implementation part of the life-

cycle, and as such must be mitigated. Many of these failures have dependencies on temperature,

electric properties (electric field, voltage, or current) or the material properties. The two Failure Sets are

discussed jointly, as they have similar causes, although the effects are different.

Aging process failures, of either case, cannot be eliminated from the FPGA. In both cases, statistical

methods, such as thermal aging calculations/test and MTTF calculations can be used to estimate when

failures will occur, and the MTTF data should be reflected in the maintenance program [155,159]. The

use of (cold) system redundancy could be included, to ensure the system will function properly if one

component/function fails. Built-In Self-Test (BIST) should be implemented, to test for signs of aging

process failures, and to indicate to maintenance personnel that the aging process has become

hazardous, and the FPGA is starting to fail. However, aging failures could also affect the BIST, so periodic

testing should be performed at scheduled maintenance intervals. The BIST features should be isolated

(separate from the safety features), so that the BIST functions do not interfere with the primary safety

functions of the system.

With regards to the Aging Process (Clock) specific failures, the timing constraints/requirements of the

FPGA, and total system should account for the eventual clock slowdown of the FPGA, due to aging

failures that will deteriorate the clock frequency [160].

160

The periodic tests should include tests for clock period (Clock failures), and temperature, power

use/dissipation and short-circuit currents (Chip failures), as those parameters can indicate that the chip

is starting to degrade and may need to be replaced. The aging process failures will eventually require the

FPGA to be replaced [65,131].

3.1.3.4. Environmental Induced Failures

The failures in this sub-section are all due to interactions with the FPGA and the surrounding

environment. In general, this includes failures due to inappropriate environmental qualification, and in

the case of digital electronics, interactions with the FPGA and ionizing radiation.

With regards to radiation-induced errors, they are caused by radiation interactions with the

semiconductor materials of the FPGA. Many of these failures are part of a group known as Single Event

Effects (SEE), however there are multiple events as well. Radiation failures can either cause destructive

(hard) or non-destructive (soft) errors.

Environmental Qualification

This failure category consist of failures that should be accounted for during environmental qualification,

such as failures caused by high temperatures, humidity, electrical noise, electromagnetic interference

(EMI), seismic/vibration, etc., As an example, high temperatures may cause damage to the FPGA-based

system at the device, package and board levels. This includes damage to the soldering, die, connectors,

substrate and bonds. It should be noted that temperature is an important factor in many aging-related

failure modes, however those are considered under the “Stress-Aging” cause in Figure 6 [1,161,162].

In order to mitigate these failures, the appropriate environmental qualification

procedures/guides/standards must be followed, for the duration of the FPGA-based system lifecycle

[1,163,164].

161

Radiation Induced Hard Errors

Hard errors include SEEs such as Single Event Burnout (SEB) and Single Event Dielectric Breakdowns),

which will cause permanent damage to the FPGA chip. Over time, this could cause severe damage or

complete destruction of the chip. These interactions include destruction of logic gate and LUTs, as well

as short-circuit currents that will burnout the FPGA chip [165–167].

Mitigation methods for Hard errors include the use of radiation resistant/tolerant FPGAs (protective

circuits), power de-rating, and sensitivity testing to determine the sensitivity of the FPGA chip to these

destructive errors [167–169].

Radiation Induced Soft Errors

The Soft Errors failure set considers events such as Single Event Upsets (SEU) and Single Event Transients

(SET). This are temporary (transient) events that may affect the memory/logic of an FPGA, however they

will not cause permanent damage to the chip [165–167].

Soft Error failure modes can be eliminated by using Antifuse or Flash-based FPGAs, as these materials

are resistant to radiation interference [65,131]. In the case of SEUs, the use of redundancy, such as

Double Modular Redundancy (DMR) or Triple Modular Redundancy (TMR) is often implemented [170–

172], while in the case of SETs, circuit freezes could be used to stop the transient from affecting the

FPGA logic states [173]. Various error detection and correction codes have also been developed, to

check for and correct errors such as those caused by these Soft Errors [174].

3.1.3.5. Human Factors

Failure Modes due to Human Factors are due to human (personnel) issues, and are the result of either

unintended actions, such as accidents or neglect, or intended actions, such as the purposeful attacks

that cause damage to, or reprogramming of, the FPGA. In this research program, the “Maintenance

Induced” failures refers to the unintentional introduction of failure modes, while the “Security Breach”

denotes the intentional introduction of failure modes.

162

Maintenance Induced Failures

In terms of the FPGA hardware, the “Maintenance-Induced” failure modes revolve around the

accidental, damaging/destructive effects known as Electrostatic Discharge (ESD), and Electrical

Overstress (EOS). These events refer to electrical damage to the FPGA chip and/or board, due to

electrical discharges, excessive current/voltage, improper testing/protection of the system, etc. It is a

concern that these events could damage the FPGA chip during operation, especially during maintenance

and testing activities [175–177].

The issue of ESD and EOS can be mitigated by ensuring that the system can withstand ESD according to

the industry standards (the ESD test requirements can be found in IEC 62003 [178], with guidance for

performing these tests found in IEC 61000-4-1) [179], by having proper protections plans/programs for

EOS/EOD [175,176].

The “Maintenance-Induced” failure could also include software (HDL code) failures, if changes to the

HDL code are made during the maintenance periods. One such issue is known as the “Composition

Problem”, where the interactions of multiple IP cores cause them to interact in a problematic way. As an

example, and IP core could interfere with the workings of a separate IP core, resulting in the system

working improperly [3,145]. This failure mode could be intentional, if one attempts to sabotage the

FPGA-based system via changes to logic in the maintenance period. However, it could be non-deliberate

too, as new/updated IP cores may not function correctly together, once changes have been made to the

workings of those IP Cores.

In general, failures such as those due to the “Composition Problem” are avoided through the use of a

secure FPGA lifecycle, secure system architecture/communications, and trusted/verified FPGA tools,

personnel and IP cores [3,144,145].

Security Breach

Security Breaches include attacks on both the hardware and software (HDL code) of the FPGA-based

system. Physical attacks include Differential Power Analysis (DPA), where attackers are able to ascertain

important system security keys by hooking up to the system [180,181]. HDL code breaches include FPGA

163

virus, at least one of which was created, that caused physical damage to the chip, and eventually

destroyed it [144,182].

The unauthorized access to, and reprogramming of the FPGA is mitigated through the use of a secure

lifecycle for the FPGA-based system [3,144,145].. Additionally, the use of OTP FPGAs (or disable

reprogramming capability on FLASH FPGAs), is recommended, as the program cannot be altered.

Additional methods to control access include countermeasures such as encryption, such as the

Advanced Encryption Standard (AES), restricting/disabling the Joint Test Action Group (JTAG) access

port, and restricting access of personnel to the FPGA itself [181]. The FPGA-based system should also

inform control room personnel if attempts are made to access the FPGA bitstream, attempt to

reprogram the FPGA, or access any data on the FPGA, while the system is in operation. Additionally,

genera cyber security guidelines are applicable to FPGA-based systems [183].

3.1.4. Failure Set Mapping

A generic fault taxonomy from seen in the literature presents, an abstract, high-level taxonomy that

could be applied to a wide variety of systems [143], while the FPGA FMEA categorization focused on the

FPGA-specific faults. There are some similarities though, as both classifications include a

“Design/Development” and “Operation” lifecycle stages. As the FMEA categorization is a lower-level

classification, it can be mapped to the fault taxonomy in Ref [143].

As seen in Table 19, all of the FPGA FMEA categories can be mapped to the elementary fault classes. All

of the software/HDL failures in that fall under the “Design Defect” cause would be considered as

“Software Faults”. “Manufacturer Defects” would map to “Production Faults” and “Hardware Errata”,

with the exception being that “Hardware Errata” only considers human-made causes, while “Production

Faults” also include natural causes. The “Environmental Failures” map to “Physical Interference”

(specifically “Natural, Hardware”, and the “Radiation-Induced” failures could be “Permanent (Perm)” or

“Transient (Trans)”).

164

Table 19: FMEA Fault Category Mapping

FMEA Category Elementary Fault
Example

All Software/HDL
Failures (Except “Design

Security”)

Software Faults

Manufacturer Defects
Board Level (Design)

Production Defects
and/or Hardware Errata

Environmental
(Environmental
Qualification)

Physical Interference
(Natural, Hardware

(HW))

Environmental
(Radiation Induced Hard

Errors)
(Radiation Induced Soft

Errors)

Physical Interference
(Nat., HW., Perm)

((Nat., HW., Trans.)

Stress/Aging Physical Deterioration

Human Factors
(Maintenance Induced)

Physical Interference
(Hardware, Non-Mal)

Input Mistakes
(Software, Non-Mal)

Human Factors
 (Security Breach)

Intrusion Attempts
(Hardware, Mal)

Virus/Worms
(Software, Mal, Int)

Design Security Logic/Timing Bombs
(Software, Mal, Dev)

Similarly, the “Stress/Aging” category would map to the “Physical Deterioration” example. The “Human

Factors” category has broken up into the two failure sets, to cover five possible mappings, based on the

“Dimension” (Hardware or Software), “Objective” (Mal or Non-Mal), and fault grouping (Interaction (Int)

or Development (Dev). The “Maintenance Induced” failure sets would map to “Physical Interference”

(hardware) and “Input Mistakes” (software), as they are both non-malicious. The “Security-Induced”

failure set would map to “Intrusion Attempts” for hardware faults, “Virus/Worms” for Interaction

software faults, and “Logic Bombs” for Development software faults, as all three of those faults are

considered malicious.

165

This mapping allows for the low-level FPGA faults to be related to the high-level elementary fault

classifications, providing more information on the possible cause(s) of each failure modes. These two

categorizations (seen in Figures 64 and 65) would be useful in the design/development stage of an

FPGA-based system, to identify potential failures for FPGA-based systems, allowing for avoidance or

mitigation methods to be utilized.

3.2. OECD-NEA Digital Failure Modes Taxonomy

The Committee for the Safety of Nuclear Installations (CSNI) of the Organization for Economic

Cooperation and Development Nuclear Energy Agency (OECD-NEA) published a document

(NEA/CSNI//R(2014)16) entitled “Failure Modes Taxonomy for Reliability Assessment of Digital

Instrumentation and Control Systems for Probabilistic Risk Assessment” [9]. The purpose of this

taxonomy was to aid in the performance of Probabilistic Risk Assessment (PSA) of digital I&C systems. It

represents the culmination of an international research project, done by the “Working Group on Risk

Assessment”, completed over the course of several years. The FPGA failure mode data can be re-

Development
Faults

Physical
 Faults

Physical and
Interaction

Faults

Figure 51: Elementary Fault Classes

Faults

Development Operational

Internal Internal External

Human-Made Natural

Natural

Human-Made

Software Hardware Hardware Hardware Hardware Software

Non-Mal Non-Mal Non-Mal Non-Mal Non-Mal Mal Mal Non-Mal

Permanent
Permanent

Permanent

Permanent Permanent/
Transient

Permanent/
Transient

Permanent/
Transient

Permanent/
Transient

Natural

Hardware

Non-Mal

Permanent

Software
Faults

Hardware
Errata

Production
Defects

Physical
Deterioration

Transient

Physical
Interference

Physical
Interference

Physical
Interference

Intrusion
Attempts

Virus/
Worm

Input Mistakes

Production
Defects

Mal

Permanent

Logic/Timing
Bomb

Development
and Physical

Faults

Interaction
Faults

166

categorized using the OECD-NEA taxonomy guidance, creating a plug-in that allows the FPGA taxonomy

to interface with the OECD-NEA Taxonomy.

3.2.1. OECD-NEA Taxonomy Introduction

This document sought to provide a failure modes taxonomy for digital I&C systems, at several levels of

abstraction. These levels of abstraction (from the top down) are: System level  Division Level I&C

Unit Level  I&C Module Level  Basic Component level. It breaks down failure modes for these levels

of abstraction, and then provides an example of modelling a generic digital (software-based) Reactor

Protection System (RPS) using FTA, based on this taxonomy. This taxonomy includes both hardware and

software failure modes, and is intended to support PRA analysis and modelling for digital systems.

This taxonomy focused on a generic digital I&C Reactor Protection System (RPS), consisting of a platform

that performed the Reactor Trip System (RTS) and Engineered Safety Feature Actuation System (ESFAS)

functions. This example system was a software-based system, meaning the taxonomy didn’t directly

consider FPGAs. It was stated in the report that future research could include “Complementation of the

failure modes taxonomy with issues that were left out of the scope, e.g., control systems, networks, PLD

technology (FPGA/ASIC)” *63+. As such, with a large amount of data from the FMEA on FPGAs, the OECD-

NEA taxonomy could be applied.

3.2.2. Levels of Abstraction and Failure Effects

The OECD-NEA taxonomy considered five levels of abstraction. From the highest to lowest level, these

were: System level, Division level, I&C Unit Level, I&C Module Level and Basic Component Level. These

levels are defined below [9]:

System Level: The complete I&C system (the complete RPS, as seen in the taxonomy document).

Division Level: The physical separation of the I&C system, where each division is comprised of the I&C

units.

167

I&C Unit Level: The elements that execute the specific functions that are necessary for the I&C system

to carry out its specified purpose. These units are defined by the general system functions they perform,

and consist of I&C modules.

Module Level: Hardware and software elements that support the specific tasks needed for the system

to function. Examples would include I/O cards (hardware) or operating systems (software), and is

comprised of the basic components.

Basic Component Level: The individual hardware components, such as CPUs, memory, etc., as well as

the software used in those hardware components.

A graphical model of those levels of abstraction, when considering the digital (software-based) RPS from

the OECD-NEA taxonomy is seen in Figure 52 [9]:

Figure 52: Simplified RTS/ESFAS Test System

In order to deal with complex systems, the failure modes for the “System”, “Division” and “I&C unit”

levels are only considered from a functional point of view. This entails that there is no real distinction

made between the hardware and software components, for those levels of abstraction.

168

Figure 53: Relationship between Failure Effects and Failure Modes Between Levels of Abstraction

169

When the “Module” and “Basic Component” levels are considered, the failure modes are taken from

both the functional and structural points of view. This means that there can be a distinction between

the software and hardware components, for those levels of abstraction.

It was seen that the failure effects at a lower level of abstraction, will become the failure modes at the

higher level of abstraction, as seen in Figure 53 [9,129].

3.2.3. Failure Propagation

According to the OECD-NEA taxonomy, there were two ways for failures to propagate through the I&C

system, through cascade failures and common cause failures, as described below [9].

Cascade Failure Propagation: A failure (such as a systematic software failure or random hardware

failure) in one component results in an incorrect output, which then becomes the wrong input for

another component of the system. This error can cascade through the system, causing the overall

system to fail.

Common Cause Failure Propagation: Multiple failures happen simultaneously in the I&C system due to

the same event, as the same fault exists in multiple locations. This could include systematic software

failures and hardware failures due to environmental factors.

3.2.4. Failure Effects Categories

The OECD-NEA Taxonomy considers two overall categories of Failure Effects; “Fatal”, and “Non-Fatal”.

These two categories are each further broken down in two more classifications, to give a total of four

categories, as discussed below [9].

Fatal: The unit stops functioning completely, and no longer provides an output.

Ordered Fatal: When the failure occurs, the unit outputs are forced into pre-set values.

170

Haphazard Fatal: When the failure occurs, the unit outputs are not forces into pre-set values, so

the unit is in an unpredictable state.

Non-Fatal: The unit fails, but still performs computations and passes along incorrect output data.

Plausible Behavior: The incorrect outputs cannot be easily identified, given the current

plant condition.

Implausible Behavior: The outputs from the unit are obviously incorrect.

3.2.5. Fault Uncovering

There are certain situations where the fault(s) of the digital I&C system will be uncovered. Two specific

uncovering cases were considered:

1.) Uncovered Without Demand

- Failure detected with detection mechanisms

- Failure causes a Spurious Action

2.) Uncovered due to an Actual Demand

- The system failure occurs when the intended action is demanded

Detection methods can be broken down into “Online” and “Offline” detection. Online detection

methods include self-monitoring (such as Built-In Self-Test (BIST)), and external monitoring. Offline

detection includes periodic testing, during maintenance intervals. Overall, this leads to four possible

uncovering situations, as seen in Figure 54 [9]:

- Spurious Action

- Demand

- Online Detection

- Offline Detection.

171

Figure 54: Fault Uncovering Situations for Digital I&C Systems

3.2.6. OECD-NEA Taxonomy Basis

Overall, the OECD-NEA Taxonomy considers four main elements:

1.) Fault Location

2.) Failure Effect

3.) Uncovering Situation

4.) End Effect (Maximum and most likely)

When considering the “End Effect”, it would be identified during a specific analysis. In order to perform

that analysis, three additional aspects can be included:

5.) Failure Origin

6.) Maximum possible end effect (assuming FTD features are not used or do not work)

7.) The most likely end effect (assuming FTD features are included and are effective).

172

The above 7 elements will be applied to the FPGA FMEA data and future FPGA-based system modelling.

3.2.7. OECD-NEA Categorization and the FPGA FMEA

The categorization used by the OECD-NEA taxonomy, discussed in earlier in this sub-section, provides a

good way to categorize the failure modes based on the end effects of the failure mode, its uncovering

situation and the level of abstraction in which that failure occurs. The basis for the OECD-NEA taxonomy

is applied to create the modelling example shown in that taxonomy based on the failure mode data.

However, one potential shortcoming of that taxonomy is that it does not provide any categorization for

the cause of those failure modes, as was done in Ref [126].

Therefore, the framework from the OECD-NEA taxonomy is applied to the FPGA FMEA results and

Failure Sets. The Failure Effects and uncovering situations are defined for the hardware and software

(HDL) FPGA failure modes, as well as their potential end effects on the “I&C Module” and “System”

levels of abstraction. The development of the FPGA taxonomy is laid out in sub-section 3.3.

3.3. FPGA Failure Mode Taxonomy

The development of the FPGA taxonomy followed the framework laid out in the OECD-NEA taxonomy,

for the hardware and software (HDL) components. The FPGA taxonomy expands on the work done by

the WGRISK by creating a “Sub-Component” level of abstraction, and creating a plug-in to interface the

FPGA Taxonomy with the OECD-NEA taxonomy, allowing the FPGA Taxonomy to be useful to those

involved with international working groups such as WGRISK. The development of the FPGA Taxonomy,

as well as an example of it, is provided through sub-section 3.3.

3.3.1. Purpose of Developing the FPGA Taxonomy

The reasoning for performing hazard analysis is said to be to “explore and identify conditions that are

not identified by the normal design review and testing process” [36]. This includes the identification,

avoidance, evaluation and resolution of hazards in all phases of the system lifecycle. Theses hazards are

173

caused by failure modes, which must be identified and evaluated. Therefore, the FPGA taxonomy

presented in this paper provides a means of identifying, categorizing and modelling the failure modes

for use in hazard analysis, during the design and review of FPGA-based I&C systems. This would provide

a basis for the decisions on engineering and safety based on system review criteria [184].

Regarding the OECD-NEA taxonomy, it was stated that in that document that “An activity focused on the

development of a common taxonomy of failure modes is seen as an important step towards

standardised digital instrumentation and control (I&C) reliability assessment techniques” and “The

taxonomy will be the basis of future modelling and quantification efforts” [9]. These statements from

the OECD-NEA underscore the importance of having failure modes taxonomy for the analysis and

assessment of digital systems. As stated previously, the OECD-NEA taxonomy considered a software-

based system, and stated that the development of an FPGA taxonomy would be a source of future work

on this topic.

Furthermore, the OECD-NEA taxonomy document laid out certain criteria, in which the taxonomy was

intended to meet. The only criteria that was designated as “Not Met”, was entitled “Should capture

defensive measures against fault propagation (detection, isolation and correction) and other essential

design features of digital I&C”, and was again left as a topic of future work [9]. In this FPGA Taxonomy,

potential mitigation methods were also included, for the example failure modes/failure categories.

Therefore, this FPGA taxonomy fulfills two important areas of future work, as described by the OECD-

NEA taxonomy.

In terms of the recent scientific/technical literature It has been seen that there has been a great deal of

work put into the design, verification and validation (V&V) and safety analysis of FPGA-based control

systems in general [185,186], and specifically in the case of the nuclear industry [187–189]. The unique

properties of FPGAs present certain challenges during the safety analysis process, which may be

different challenges than with analog systems or software-based digital systems. Future V&V and safety

analysis could be improved upon, if the FPGA failure mode data was properly compiled, categorized and

analyzed, such as was done in the OECD-NEA taxonomy.

174

3.3.2. Taxonomy Integration

The OECD-NEA taxonomy was developed with software-based systems in mind, but the same

framework can be extended to FPGA-based systems. This section discusses the shortcomings of the

OECD-NEA taxonomies as it pertains to FPGA-based systems, and provides a detailed discussion of the

proposed “Logic Process”.

3.3.2.1. Application to FPGA-Based Systems

Upon inspection of the test system, it is seen that an FPGA-based system and taxonomy would not be

significantly different from the software-based system and taxonomy, using the current levels of

abstraction. In an actual system, the failure modes at the “System”, ‘Division” and “I&C Unit” levels

would not differ from a software-based to an FPGA-based system. For example, for the system level

failure modes for an RTS, the system could either have a ”Missed Trip”, “Spurious Trip”, or a

“Partial/Delayed Trip”, according to the OECD-NEA taxonomy [9], and these would not change with an

FPGA-based system. However, there would be two main changes in an FPGA Taxonomy, at the

“Module” Level and “Basic Component” Level, respectively.

Module Level: At this level, the OECD-NEA Taxonomy considers separate hardware and software failure

modes. However, as the FPGA does not run actual software, and does not have an Operating System

(OS), failure modes like “OS Freeze” or “OS Crash” would not apply.

Basic Component Level: In an FPGA-based system, there would be no “Microprocessor” or

accompanying “Software”, so these two entries would be replaced by “FPGA” and “HDL Code”,

respectively.

However, that requires swapping out parts of the OECD-NEA taxonomy for different systems, as the

original taxonomy does not include devices such as FPGAs. This issue could be rectified, by modifying

the “Basic Component” level of the taxonomy, to work with all forms of digital technology. The use of

the OECD-NEA taxonomy for the creation of an FPGA taxonomy is important, as the OECD-NEA

methodology is internationally recognized, and is used by working groups and researchers in this field.

Following the protocol/methodology of the OECD-NEA taxonomy allows the FPGA taxonomy to retain its

175

importance to those working groups, and ensures that the quality of the FPGA taxonomy is up to that

international standard.

3.3.2.2. Application to FPGA-Based Systems

Modelling FPGA-based systems with the original OECD-NEA taxonomy would not be possible, as FPGAs

would not fit into its framework .The method proposed in this paper to extend the OECD-NEA taxonomy

to incorporate FPGA-based systems is through the use of the “Logic Process”. This block would replace

all digital logic hardware and software/HDL at the “Basic Component” level. For example, both

“microprocessor” and “software”, as well as “FPGA” and “HDL” code could be represented by a single

“Logic Process” block, as shown in Figure 55. Components like the ADC/DAC, MUX/DEMUX, and any

additional components at the “Basic Component” Level identified in the OECD-NEA taxonomy remain

unchanged.

Figure 55: Extended Taxonomy Using “Logic Process”

In Figure 55, the “Logic Process” block represents all potential digital hardware technologies

(microprocessor, FPGA, etc.), as well as all software/HDL components. This extends the OECD-NEA

taxonomy to incorporate FPGA and other forms of control technologies, for all five levels of abstraction.

Using this extended taxonomy creates a plug-in for other forms of digital technology, and allows for the

modelling of the FPGA failure modes to be performed within the context of the OECD-NEA framework.

This plug-in allows for the FPGA failure mode data to be used within the OECD-NEA taxonomy

framework, as presented in this paper, or by itself with the failure mode data given in Reference [126].

176

3.3.3. Sub-Component Level of Abstraction

A “Sub-Component” (SC) level of abstraction was created to account for the failure modes of FPGAs,

including the Failure Set data from Figure 6. The FPGA failure data collected during the FMEA affects the

FPGA chip/board or the actual HDL code. However, these failures would not be included in the OECD-

NEA Taxonomy, as it stopped at the “Basic Component” level, and did not consider failures beyond that

level in detail. To remedy this, a “Sub-Component” (SC) level of abstraction was proposed, in order to

account for the effects of the different FPGA and HDL code failures on the example system. The FPGA

Taxonomy focuses on the “Sub-Component” and “Basic Component” levels, to tie together the FPGA

FMEA data and the OECD-NEA Taxonomy example system, by plugging the “Sub-Component” level into

the “Logic Process”, developed in sub-section 3.3.2.

The “Sub-Component” level of abstraction is shown in Figure 56. The “Sub-Component” Level is a

potential way of demonstrating the effects of the failure modes of the FPGA system. This will

breakdown the “FPGA” and “HDL” entries at the “Basic Component” level, to their most basic hardware

and “software” components, respectively. This allows for the “Failure Categories”, presented in Figure

50, to be used to construct the FPGA failure mode taxonomy, based on the OECD-NEA template. As seen

in Figure 56, the FPGA Chip can be broken down into many categories based on the hardware (blue) and

“software” (red) modules that make up a (configured) FPGA.

Figure 56: Relationship Between “Basic Component”, “Sub-Component”, and “Failure Categories”

This will allow for the application of the failure categories, shown in Figure 50, to the taxonomy, to

provide detailed information about the failure modes and failure effects regarding the hardware and

software components of the FPGAs and FPGA-based systems. It should be noted that the “Soft

177

Processor” is a form of “IP Core”; however it was included here separately, due to the inclusion of the

“Processor” in the OECD-NEA Taxonomy.

This additional level of abstraction will allow us to re-construct the failure mode data in this paper, and

to provide information on classifications, fault locations and uncovering situations that are given in the

taxonomy. Furthermore, the lifecycle information of the failure modes is included in the new FPGA

taxonomy. Lastly, the inclusion of the sub-component level allows for the demonstration of how the

low-level failure modes obtained through the FPGA FMEA could cascade up through all the levels of

abstraction, potentially causing a failure at the division or system level.

3.3.4. Sub-Component Hardware Taxonomy

The “Sub-Component” taxonomy for the hardware sub-components is discussed here. Figure 57 gives a

representation of the FPGA Chip and Board, along with the hardware sub-components, and an example

of failures that affect those components. In Figure 57, the FPGA chip is divided into the three underlying

components; FPGA I/O, Configurable Logic Blocks (CLB), and the Programmable Interconnects. The CLB

is further subdivided by its sub-components; the Look-Up Tables (LUT) Register/Flip Flops, Mux’s

(discussed in the OECD-NEA taxonomy).

The effects of failures of the inputs from the clock, the FPGA board (which the FPGA chip itself would

reside), as well as inputs into the FPGA board itself, are also considered. All of these components (except

for the Mux) were then assigned an example failure mode, taken from the FPGA FMEA research. The

sub-components and failure data shown in Figure 56 are reconstructed in Table 21, which also includes

information tying the failure modes back to the fault classes shown in Figure 51, and the failure mode

categories in Figure 50, along with the potential effects of those failures on the “Basic Component” and

“Sub-Component” levels of abstraction.

Table 21 also considers the elementary fault classes from Ref. [143], listed in parenthesis below the

information taken from Figure 50. The column “Failure Set” includes the elementary fault example

mapping from Table 19. The “Cause” column denotes if the failure from the “Development”, “Physical”

178

or “Interaction” groups. Lastly, the “Lifecycle” column states if the failures is in the “Development” or

“Operational” portion of the lifecycle.

Figure 57: FPGA Chip/Board Hardware Failures

The hardware failures in Table 21 include Hot Carrier Effects (HCE), which will slow down the clock

period, and Single Event Upsets (SEU), which will invert a data bit that is stored in a memory element,

such as a register. A full list of all acronyms and definitions for the failures can be found in Appendix A.

Failures that affect the interconnects, such as Electromigration (EM), could result in either fatal or non-

fatal errors, depending on the location where the failure occurred. If the EM failure occurs in an

interconnect carrying only part of the data (i.e. it is one of several inputs that will be summed and then

output) denoted “EM 1”, the failure will be non-fatal. If the EM failure occurs in an interconnect that is

the only input or output path for the signal, then the failure would be fatal, as seen with “EM 2”.

Similarly, an error in a CLB (such as Time Dependent Dielectric Breakdown (TDDB)) could be non-fatal, if

there are many logic blocks performing computations in parallel, as in the case of “TDDB 1”. However, if

it is the only logic block leading to an output, then it could be considered as a fatal error, denoted by

“TDDB 2”. For Non-Fatal failures in both cases, the effects could be either “Plausible” or “Implausible”,

depending on the failure location, logic process, and combination of inputs. These situations are seen in

Figure 58.

179

Figure 58: Effects of failures of CLBs and Programmable Interconnects

In the case of registers (storage elements), there is the vulnerability to SEU. These failure could invert a

stored memory value (0 1 or 1 0), and that could affect the output of the system or sub-system.

The effect that this inverted bit would have on output of the values would depend on which bit in

memory is inverted. For example, for an 8-bit signal, shown in Table 20, if the Most Significant Bit (MSB),

typically the leftmost bit is flipped, the difference is much greater than if the Least Significant Bit (LSB) is

flipped, typically the rightmost bit. In Table 20, the first example is a binary input of “10101010”,

corresponding to a value of “170” in decimal notation (base 10). If the MSB is flipped (1  0), then the

resulting binary signal is “00101010”, or “42” in decimal notation.

Table 20: Effects of SEU on Register Storage Values

Intended
Numeric Value

Bit
Flipped

(MSB/LSB)

Erroneous
Numeric Value

Base 2 Base
10

Base 2 Base
10

10101010 170 MSB 00101010 42

10101010 170 LSB 10101011 171

00101010 42 MSB 10101010 170

00101010 42 LSB 00101011 43

180

Table 21: Sub-Component Level Failure Modes and Failure Effects (Hardware)

Failure Fault Location SC Level Effect BC Level Effect Failure Type Failure Set Cause Lifecycle Mitigation

TDDB LUT Destruction of FPGA
LUT

No
Output/Incorrect

Output

Fatal or
Non-Fatal

Aging Process (FPGA
Chip)

(Physical Deterioration)

Stress/Aging
(Physical)

Operation
(Operational)

Design techniques to improve oxide
lifetime39

MTBF for TDDB40

SEGR Logic Gate Destruction of FPGA
logic gate

No
Output/Incorrect

Output

Fatal or
Non-Fatal

Radiation-Induced Hard
Errors

(Physical Interference)

Environmental
(Physical/Interaction)

Operation
(Operational)

SEGR Sensitivity Testing41

Protective Circuits43

Power De-Rating42

SEU Register (Storage
Element)

Temporary Bit Upset
in Memory Element

Incorrect Output Non-Fatal Radiation-Induced Soft
Errors

(Physical Interference)

Environmental
(Physical/Interaction)

Operation
(Operational)

TMR33

Error Detection and Correction (EDAC)36

SET Register and/or Logic
Gates

Transient pulse
through

logic/registers/
output

Incorrect Output Non-Fatal Radiation-Induced Soft
Errors

(Physical Interference)

Environmental
(Physical/Interaction)

Operation
(Operational)

Spatial or Temporal Redundancy43,44

Circuit Freezing45

Substrate
Breakdown

(High Temp.)

FPGA Chip/Board Destruction of FPGA
Device, Package or

Board

Board/Chip
destroyed, no

output

Fatal Environmental
Qualification

(Physical Interference)

Environmental
(Physical/Interaction)

Operation
(Operational)

Environmental Qualification
Procedures1,46

Stuck-Pin FPGA I/O FPGA Pin Stuck (“1”
or “0”)

Incorrect Output Non-Fatal

Chip and Board
Production Defects/

Hardware Errata)

Manufacturer Defects
(Development/Physical)

Design
(Development)

Detect/control damaged/disconnected
pins22,23

HCE Clock Reduction in Clock
Frequency

Delayed Output Non-Fatal Aging Process (Clock)
(Physical Deterioration)

Stress/Aging
(Physical)

Operation
(Operational)

Monitor Clock Skew22,23

MTBF for HCE40

ESD FPGA Chip/ Board ES damage to the
FPGA Chip/Board

Board/Chip
destroyed

Fatal Maintenance Induced
(Physical Interference)

Human Factors
(Physical/Interaction)

Operation
(Operational)

Electrostatic Protection Program26,27

Differential
Power

Analysis
(DPA)

FPGA Chip/Board (FPGA
Logic)

Secret Cryptographic
keys are recovered

(unauthorized)

System security
and/or IP is

compromised

Non-Fatal Security Breach
(Intrusion Attempts)

Human Factors
(Physical/Interaction)

Operation
(Operational)

Secure Lifecycle29

Side Channel Attack31,32,47
Countermeasures

Cyber Security Guide48

Hardware
Sneak Circuit

FPGA Chip/Board Spurious or Missed
Actuation

Incorrect Output
or No Output

Fatal or Non-
Fatal

Sneak Circuit
(Production Defect)

Design Defect
(Physical)

Design
(Development)

General and FPGA-Specific Sneak Circuit
Analysis49-52

Data
Retention

Failure (DRF)

Programmable
Interconnect

Interconnect Self-
Healing

Incorrect Output Non-Fatal Bit Error
(Physical Deterioration)

Stress/Aging
(Physical)

Operation
(Operational)

Copies of Programming Data22,23

MTBF for Interconnects22,23

Discrete
(Digital)

Input

Board I/O Failure of Input on
the FPGA Board

No output
(resulting from no

input)

Fatal Board Level
(Production Defects/

Hardware Errata)

Design Defects
(Development/Physical)

Design
(Development)

Standards for fault models, diagnostic
coverage and mitigation53,54

Hardware
CCF

FPGA Chip/Board Common Cause
Failure (Hardware)

No output Fatal Common Cause Failure
(Production Defects)

Design Defects
(Development/Physical)

Design
(Development)

Diversity and Defence in Depth8

Requirements from technical
standards11,55,60

CCF Analysis56,57

181

Table 22: Uncovering Situation Examples for Sub-Component Level (Hardware)

Uncovering Situation Fault Tolerance Feature

Online detection
mechanisms

HCE[159,160]: Revealed by
monitoring clock skew

Offline detection
mechanisms

EM[159,160]: Revealed by
periodic testing of the
FPGA

Latent revealed by
demand

TDDB[159,160]: Damage to
the LUT causes incorrect
calculations, not detected
until actuation required

Triggered by demand ESD[175,176]: FPGA fails
due to Electro-Static
Discharge from another
component (due to
Maintenance errors)
Failure is not detected

Spurious actuation SEU[166,167]: Memory
Upset causes values to
read above a setpoint,
causing a spurious trip
Failure is detected (EDAC
Methods)

Undetectable Hardware CCF [9]:
Undetectable

Following in the same vein as the OECD-NEA taxonomy, Table 22 gives examples of the uncovering

situations for the failure modes seen in Figure 50 and Table 21. It should be noted that (hardware) CCF

was not explicitly shown in the example figure; however it is included in the corresponding tables (Table

21 and Table 22, respectively). Additionally, CCF was stated to be “undetectable” in the OECD-NEA

taxonomy [9].

3.3.5. Sub-Component HDL Code Taxonomy

The same principle in sub-section 3.3.4 is applied to the HDL Code failure modes (the “software”

component of the FPGA). The example in this case is loosely developed with a reference to the

Overtemperature and Overpressure trip parameters in the Westinghouse AP1000 documentation, and is

presented in Figure 59 [190]. Several software/logic errors are seen, including the use of a latch instead

of a register in the synchronization chain, mathematical error due to “Arithmetic Overflow”, and a

“Stuck Output” (output will not update, even with changing inputs) from the soft processor core that

182

calculates the TSP. The Software Sneak circuit reveals that a sneak circuit is created that could bypass

certain important functions, resulting in a “Missed Trip” or “Spurious Trip”. A second IP core, this time a

COTS IP Core (considered to perform some generic signal processing function) may contain failure, or

the specifications of that IP core may not be appropriate. Composition Errors (either malicious or non-

malicious) could cause the IP cores the IP cores to alter one another, or interfere with each other’s

functions. Design Tool Subversion could input code that effects the clock signal (such as if a dynamic

clock frequency is used), distorting proper chip timing. Finally, an FPGA virus could cause damage to the

FPGA chip (such as a short circuit), resulting in no output being sent. All of these failures could affect

the output of the FPGA logic.

Figure 59: FPGA “Software” Failures (Parameter Trip)

Figure 60: FPGA “Software” Failures (State Machine)

A smaller example shown in Figure 60 shows certain potential errors in the FPGA state machine. As can

be seen, the state machine could get caught in an Endless Loop (Infinite Loop), as the state S2 is encoded

183

in such a way that a value of “1” has two possible paths. In this case, the state machine could

continuously loop back into itself, causing it to hang. A second fault in the state machine is seen with S4,

where the state is unreachable. State Machines often see use in FPGA-based systems, and as such was

given consideration in the FPGA taxonomy. The information regarding the software sub-components,

failure modes, and failure categories was compiled and displayed in Table 23.

It should be noted that the failure mode(s) and uncovering situations of individual IP cores are

dependent on the functionality of each individual IP Core, as stated in the OECD-NEA taxonomy. In

Figure 59, it was assumed that the filter (such as a lead-lag filter) was implemented (digitally) on the

FPGA, using an IP Core. A failure in that core could affect the filtered output, with failures such as “Stuck

Output”, “No Output”, “Delayed Output”, etc.

The IP Core in this case was used as an example. As there are potentially numerous IP Cores available by

different vendors, it is not practical to discuss failure modes for all the individual IP Cores (with the

aforementioned exception of the Soft Processor). As in the case of the hardware sub-components, the

information regarding uncovering situations is given in Table 24, with software CCF being

“undetectable”.

Table 23: Sub-Component Level Failure Modes and Failure Effects (Software)

Failure Fault
Location

SC Level
Effect

BC Level Effect Failure
Type

Failure Set Cause Lifecycle Mitigation

Endless Loop State
Machine

State
Machine

caught in an
endless loop

No Output/Stuck
Output

Fatal State Machine
(Software Fault)

Design Defects
(Development)

Design
(Development)

WDT54, 60

Return to pre-
defined
state22,23

Unreachable
States

State
Machine

State(s)
cannot be
reached as
intended

No Output or
Incorrect Output

Fatal or
Non-
Fatal

State Machine
(Software Fault)

Design Defects
(Development)

Design
(Development)

State Machine
Hazard

Analysis54

Return to pre-
defined
state22,23

COTS HDL
Code Failure

FPGA Logic Function
Dependent
HDL Error

No Output or
Incorrect Output

Fatal or
Non-
Fatal

COTS
(Software Fault)

Design Defects
(Development)

Design
(Development)

FPGA
Dedication21

Software
Dedication63,64

Stuck Output Soft
Processor

SP core stops
updating

No Output/Stuck
Output

Fatal Soft Processor
(Software Fault)

Design Defects
(Development)

Design
(Development)

FPGA V&V1,60

Software
V&V11,65,66

Math Error EF (Math) Arithmetic Incorrect (Math) Non- Logic Errors (HDL) Design Defects Design HDL Code

184

(Arithmetic
Overflow)

overflow
leads to

calculation
error

Output Fatal (Software Fault) (Development) (Development) V&V1,22,23

International
Standard60

Logic Error
(Comparator

Error)

EF (Logic) Error in
comparator

leads to logic
error

Incorrect (Logic)
Output

Non-
Fatal

Logic Errors (HDL)
(Software Fault)

Design Defects
(Development)

Design
(Development)

HDL Code
V&V1,22,23

International
Standard60

Fixed Point
Resolution

Error

Data Type Low
resolution of

FXP value

Incorrect setpoint Non-
Fatal

Input and Data
Type

(Software Fault)

Design Defects
(Development)

Design
(Development)

Ensure proper
calculation/

verification of
all FXP values63

Software
Sneak Circuit

FPGA
Chip/Board

Spurious or
Missed

Actuation

Incorrect Output
or No Output

Fatal or
Non-
Fatal

Sneak Circuit
(Production

Defect)

Design Defect
(Development)

Design
(Development)

General and
FPGA-Specific
Sneak Circuit
Analysis49-52

Latch Registers Unintended
asynchronou

s signals

Unknown/Rando
m Output

Non-
Fatal

Clock/Timing
(Software Fault)

Design Defects
(Development)

Design
(Development)

Implement
Registers22,23,60
Complete logic
statements and
sensitivity lists

(accidental
latch)22,23

Static Timing
Analysis22,23

Timing
Simulations1,60

Design Tool
Subversion

FPGA
Logic/Timing

(FPGA
Synthesis

Tool)

Unauthorized
HDL code

synthesized

Unauthorized
access, incorrect
outputs or device

damage

Fatal or
Non-
Fatal

Design Security
(Logic/Timing

Bomb)

Design Defects
 (Development)

Design
(Development)

Secure
Lifecycle29

Trusted Tools
and IP Cores6,29

FPGA Virus FPGA Logic/
Circuitry

Internal
signal conflict

in FPGA

Device damage/
destruction

Fatal or
Non-
Fatal

Human Factors
(Virus/Worm)

Security Breach
(Interaction)

Operation
(Operational)

Secure
Lifecycle29

Bit stream
Protection6,29

Secure
Architecture

and comms6,29

Trusted Tools
and IP Cores6,29

Composition
Problem

IP Core Updated IP
Cores alter or

interfere
with each

other

Incorrect outputs
or device damage

Fatal or
Non-
Fatal

Human Factors
(Input Mistakes)

Maintenance-
Induced

(Interaction)

Operation
(Operational)

Secure
Architecture

and comms6,29

Trusted Tools
and IP Cores6,29

IP Core
Failure

IP Core Function
Dependent

Function
Dependent

Fatal or
Non-
Fatal

Maintainability
(Software Fault)

Design Defects
(Development)

Design
(Development)

FPGA V&V1,60

Software
V&V11,65,66

Software CCF FPGA
Chip/Board

CCF due to
Software

No Output Fatal Common Cause
Failure

(Software Fault)

Design Defects
(Development)

Design
(Development)

Diversity and
Defence in

Depth8

Requirements
from technical
standards11,55,60

CCF Analysis/
specification56,57

,67

185

Table 24: Uncovering Situation Examples for Sub-Component Level (Software)

Uncovering
Situation

Fault Tolerance Feature

Online detection
mechanisms

Endless Loop [37,133]: State
Machine Endless Loop caught
by WDT. State Machine
returned to pre-defined state

Offline detection
mechanisms

Unreachable States [133]:
Unreachable states found and
corrected by using State
Machine Hazard Analysis

Latent revealed by
demand

FXP Resolution Error [38,48]:
Low Resolution for the FXP
data type leads to an
inaccurate TSP, causing the
demand to fail when it should
actuate

Triggered by
demand

Metastability [65,131]: Lack
of synchronizing registers
causes metastable signals to
propagate through the
system.
Failure is not detected

Spurious actuation Logic Error (Comparator)
[65,146]: Incorrect
comparator logic (i.e. “>”
instead of “<”) causes a
spurious trip.
Failure is detected

Undetectable Software CCF [9]:
Undetectable

3.3.6. FPGA Taxonomy Demonstration

The OECD-NEA taxonomy was demonstrated using the aforementioned RTS/ESFAS test system. For the

FPGA taxonomy demonstration, the FMEAs were used to create the FPGA taxonomy, for hardware and

“software”, at the “Basic Component” and “Sub-Component” levels of abstraction. Filling out these

levels of abstraction links the FMEA and the PRA modelling information given in the example in the

OECD-NEA document, to demonstrate how the failures of the configured FPGA and HDL code would

affect the overall system. Sub-section 3.3.6.2 will cover the “Basic Component” level, while Sub-section

3.3.6.3 presents the demonstration for the “Sub-Component” level hardware and software FMEA. Lastly,

a modelling example using fault trees is provided in Section 3.3.6.4

186

3.3.6.1. Example System and Failure Events

An example of the assumed modules of a generic digital RTS/ESFAS, that was used as the example

system in the OECD-NEA taxonomy, and in this research work, is seen in Figure 61 [9].

Figure 61: Modules Included in the Example RTS/ESFAS System

This example system includes Analog/Digital Inputs (AI/DI), Power Supply (PS), Analog and Digital Input

Modules (AIM/DIM), Analog and Digital Output Modules (AOM/DOM), Signal Conditioning Modules

(SCM), and Communication and Bus links (Comm/Bus). The central module, would represent the

processing module, and could utilize software-based and/or FPGA-based solutions. Other modules, such

as the AIM, DIM, AOM and DOM could also include FPGAs or software-based control technologies. In

the OECD-NEA taxonomy, the AIM was expanded during the “Basic Component” Level demonstration,

so the same module was used in this FPGA Taxonomy demonstration.

3.3.6.2. Basic Component Level Demonstration

It was determined to start with the “Basic Component Level” for the FPGA taxonomy, and work from

there. At this level, the example failure modes for the components other than the FPGA/microprocessor

and HDL/software would again be the same, so they were not considered here. Examples relevant to the

FPGA and/or HDL code based on the OECD-NEA examples are shown in Table 7. The “Sub-Component”

187

taxonomy demonstrations, will build up to the “Basic Component” levels, and then up to the total

“System” level, to demonstrate the effect of the FPGA and HDL failures on the overall system. The

Analog Input Module (AIM) was used in Table 7, as it was the module used in the “Basic Component”

example in the OECD-NEA Taxonomy. The effects of FPGA failures on the AIM can then be related to the

digital RTS/ESFAS.

Table 25: Basic Component Level FPGA FMEA for the OECD-NEA AIM

Failure Mode Failure Mode Detection Failure Effects on AIM Comments

Application HDL WDT

Hardware/Software
CCF

(Undetectable)

(Undetectable)

Incorrect AIM Output
(All Channels Fail)

CCF would cause all the
AIM channels to fail

Hardware/Software
Sneak Circuit

No

No

Incorrect AIM Output

Spurious or Missed
Output (SCA)

Random or Incorrect
FPGA Outputs

No No Incorrect AIM Output

May not be detected (if
plausible failure)

FPGA logic stuck
internally, no
outputs sent
(No Output)

No Yes No AIM Output
FPGA Reset or
Predefined state
(Detection)

Logic issues may be
detected with WDT,
resetting the FPGA, or
sending it to a
predefined state

FPGA stops updating
outputs
(Stuck Output)

No Yes Incorrect AIM Output
FPGA Reset or
Predefined state
(Detection)

Logic issues may be
detected with WDT,
resetting the FPGA, or
sending it to a
predefined state

Delayed Outputs No Yes Delayed AIM Outputs
FPGA Reset
(Detection)

Timing errors cause
FPGA to output data
too slowly, delaying
AIM outputs

Timing Error (Fast or
Slow)

No Yes Missed AIM Outputs
FPGA Reset
(Detection)

Timing errors cause
FPGA to output data
too quickly, AIM
outputs are missed

188

3.3.6.3. Hardware FMEA and Sub-Component Demonstration

The OECD-NEA Taxonomy gives a four-step process to compress the hardware failure modes into their

functional effects on the system. The steps are as follows [9]:

1.) The failure effects are assigned to different failure modes of the RPS test system, based on the

failure modes taxonomy at the module level. This allows for the uncovering situations and the

functional impacts to be described for the test system.

2.) Failure mode categories are defined based on the failure effect(s) and uncovering situation(s) for the

different failure modes, at the I&C unit level. Categories for the detection of failures are created

based on the information on the location of, and the detection of these faults.

3.) The end effect of the fault is described based on fault tolerance coverage, location of the detection,

and the functional impact on the I&C unit level.

4.) Group all of the basic failure modes for each I&C module that have the same generic attributes,

detection method, and end effects.

The full explanation, along with the example system is given in the literature [9]. The example was

discussed from the “Module” level up to the end effect on the RTS/ESFAS. However, since the overall

system consists of separate divisions that contain basically the same I&C units, the end effect of each

I&C is the effect that is generally considered. The same basic process will be applied to the “Sub-

Component” level, with the end effects being given for the “Basic Component” level, and then up to the

full system level (RTS/ESFAS) at the end. The (hardware sub-components) process is seen in Tables 41-

43. In the case of this taxonomy, those end effects are assumed to occur if the mitigation methods are

not implemented, fail, or are implemented incorrectly.

189

Table 26: Sub-Component Level FPGA Taxonomy PSA Demonstration (Step 1) - Hardware

Failure Set Hardware
Module

Failure Mode Failure
Effect

Uncovering
Situation

Functional
Impact on

“BC”

Functional
Impact on

AIM

Mitigation
Methods

Aging Process

(Clock)

Clock

HCE Non-Fatal
(Plausible)

Online

Detection

Revealed by
Demand
(Latent)

Delayed
Output

Delayed AIM
Outputs

FPGA Reset
(Detection)

Monitor Clock
Skew

MTBF for HC

Periodic Testing
NBTI Non-Fatal

(Plausible)

Aging Process
(FPGA Chip)

Programmable
Interconnect

Electromigration Fatal
(Ordered)

Revealed by
Demand
(Latent)

No Output
(Fatal)

Incorrect

Output (Non-
Fatal)

Incorrect AIM
Output

MTBF for Aging

Failures

Periodic Testing
Non-Fatal

(Implausible)

Stress Migration Fatal
(Ordered)

Non-Fatal
(Implausible)

Radiation
Induced Hard

Errors

CLB Logic SEDB Fatal
(Ordered)

Revealed by
Demand
(Latent)

No Output
(Fatal)

Incorrect

Output (Non-
Fatal)

Incorrect AIM
Output

Sensitivity
Testing

Protective
Circuits

Power De-Rating

Periodic Testing

Non-Fatal
(Implausible)

SEGR Fatal
(Ordered)

Non-Fatal
(Implausible)

Radiation
Induced Soft

Errors

Registers SEU Non-Fatal
(Plausible)

Online
Detection

Spurious
Actuation

Incorrect
Output

Incorrect AIM
Output

TMR

(EDAC)

Non-Fatal
(Implausible)

SET
Non-Fatal

(Implausible)

Spatial or
Temporal

Redundancy

Circuit Freezing

Chip and

Board

FPGA Chip I/O Stuck Pin Non-Fatal
(Plausible)

Revealed by
Demand
(Latent)

Spurious
Actuation

Incorrect
Output

Incorrect AIM
Output

Detect/control
damaged/

disconnected
pins

Periodic Testing

Board Level FPGA Board
I/O

Discrete (Digital)
Input

Fatal
(Ordered)

Online
Detection

No output
(resulting from

no input)

No AIM
Output

Standards for
fault models,

diagnostic
coverage and

mitigation

Maintenance
Induced

FPGA
Chip/Board

ESD
Fatal

(Haphazard)

Revealed by
Demand

(Triggered)

No Output No AIM
Output

Electrostatic
Protection
Program

EOS

Bit Error Programmable
Interconnect

DRF Non-Fatal
(Plausible or
Implausible)

Revealed by
Demand
(Latent)

Incorrect
Output

Incorrect AIM
Output

Copies of
Programming

Data2

Data for
Configuration

memory and P/E
cycles

MTBF for
Interconnects

Environmental
Qualification

FPGA
Chip/Board

Substrate
Breakdown

(High Temp.)

Fatal
(Haphazard)

Revealed by
Demand

(Triggered)

No Output No AIM
Output

Environmental
Qualification
Procedures

190

Security
Breach

FPGA
Chip/Board
(FPGA Logic)

DPA Non-Fatal
(Plausible)

Online
Detection

No Functional
Impact
(System
Security

Compromised)

No Functional
Impact
(System
Security

Compromised)

Secure Lifecycle

Attack
Countermeasures

Cyber Security
Guides

Sneak Circuit FPGA
Chip/Board

Hardware Sneak
Circuit

Non-Fatal
(Plausible or
Implausible)

Revealed by
Demand
(Latent)

No Output Incorrect AIM
Output

General and
FPGA-Specific
Sneak Circuit

Analysis Spurious
Actuation

Incorrect
Output

CCF FPGA
Chip/Board

Hardware CCF Fatal
(Haphazard)

Undetectable Board level
Failure

No AIM
Output

Diversity and
Defence in Depth

Requirements
from technical

standards

CCF Analysis

Table 27: Sub-Component Level FPGA Taxonomy PSA Demonstration (Step 2-3) - Hardware

Failure Set Hardware
Module

Uncoverin
g Situation

Functional
Impact on

“BC”

Compresse
d Failure

Mode

Failure
Detection

Failure End
Effect (AIM)

Mitigation
Methods

Aging Process
(Clock)

Clock Online
Detection

Delayed Output

Latent Loss of
Function

Online
Monitoring

Delayed AIM
Outputs

Monitor Clock
Skew

Periodic Testing

MTBF for Clock-
related aging

Revealed by
Demand
(Latent)

Offline
Detection

Aging Process
(FPGA Chip)

Interconnects Revealed by
Demand
(Latent)

No Output
(Fatal)/Incorrect

Output (Non-
Fatal)

Latent Loss of
Function/Loss

of Function

Offline
Detection

Incorrect AIM
Output

MTBF for Chip
Aging Failures

Periodic Testing

Offline
Detection

Offline
Detection

Radiation
Induced Hard

Errors

CLB Logic Revealed by
Demand
(Latent)

No Output
(Fatal)/Incorrect

Output (Non-
Fatal)

Latent Loss of
Function/Loss

of Function

Offline
Detection

Incorrect AIM
Output

Sensitivity
Testing

Protective
Circuits

Power De-Rating

Periodic Testing

Offline
Detection

Offline
Detection

Radiation
Induced Soft

Errors

Registers Online
Detection

Incorrect
Output

Loss of
Function

Online
Monitoring

Incorrect AIM
Output

TMR

EDAC

Spatial or
Temporal

Redundancy

Circuit Freezing

Spurious
Actuation

Spurious
Function

Self-
Revealing

Chip and

Board

FPGA Chip I/O Revealed by
Demand
(Latent)

Incorrect
Output

Loss of
Function

Offline
Detection

Incorrect AIM
Output

Detect/control
damaged/

disconnected
pins

Periodic Testing

Spurious
Actuation

Spurious
Function

Self-
Revealing

Offline
Detection

Loss of
Function

Offline

Detection

Board Level FPGA Board
I/O

Online

Detection

No

Output/Incorrec

Loss of

Function

Online

Detection
No

Output/Incorrec
t AIM Output

Standards for
fault models,

diagnostic

191

t Output Offline

Detection
 coverage and

mitigation

Maintenance
Induced

FPGA
Chip/Board

Revealed by
Demand

(Triggered)

No Output Loss of
Function

Undetectabl
e

No AIM Output Electrostatic
Protection
Program

Bit Error Programmabl
e

Interconnect

Revealed by
Demand
(Latent)

Incorrect
Output

Latent Loss of
Function

Online
Detection

Incorrect AIM
Output

Copies of
Programming

Data

Data for
Configuration

memory and P/E
cycles

MTBF for
Interconnects

Environmenta
l Qualification

FPGA
Chip/Board

Revealed by
Demand

(Triggered)

No Output Loss of
Function

Undetectabl
e

No AIM Output Environmental
Qualification
Procedures

Security
Breach

FPGA
Chip/Board

(FPGA Logic)

Revealed by
Demand

(Triggered)

No Functional
Impact
(System
Security

Compromised)

No Functional
Impact
(System
Security

Compromised)

Online
Monitoring

Normal AIM
Output (System

Security
Compromised)

Secure Lifecycle

Attack
Countermeasure

s
Cyber Security

Guides

Sneak Circuit FPGA
Chip/Board

Revealed by
Demand
(Latent)

No Output Latent Loss of
Function

Offline
Detection

Incorrect AIM
Output

General and
FPGA-Specific
Sneak Circuit

Analysis Spurious
Actuation

Incorrect
Output

Spurious
Function

Self-
Revealing

CCF FPGA
Chip/Board

Undetectable Board level
Failure

Loss of
Function

Undetectabl
e

No AIM Output Diversity and
Defence in

Depth

Requirements
from technical

standards

CCF Analysis

Table 28: Sub-Component Level FPGA Taxonomy PSA Demonstration (Step 4) - Hardware

Failure Set Hardware
Module

Compressed Failure
Mode

Failure
Detection

Failure End
Effect (AIM)

Failure End Effect
(RTS/ESFAS)

Mitigation Method

Aging Process

(Clock)

Clock
Latent Loss of

Function

Monitoring Delayed AIM
Outputs

(Latent loss of
Function)

Loss of 1oo4
conditions of

specific APU/VU
outputs

Monitor Clock Skew
Periodic Testing

MTBF for Clock-
related aging

Periodic Test

Aging Process
(FPGA Chip)

Interconnects
Latent Loss of

Function/Loss of
Function

Periodic Test Incorrect AIM
Output
(Loss of

Function)

Loss of 1oo4
conditions of

specific APU/VU
outputs

MTBF for Chip Aging
Failures

Periodic Testing

Radiation
Induced Hard

Errors

CLB Logic
Latent Loss of

Function/Loss of
Function

Periodic Test Incorrect AIM
Output
(Loss of

Function)

Loss of 1oo4
conditions of

specific APU/VU
outputs

Sensitivity Testing

Protective Circuits

Power De-Rating

Periodic Testing

192

Radiation
Induced Soft

Errors

Registers Loss of Function
Monitoring

Incorrect AIM
Output

(Loss of Function
Or Spurious
Function)

1oo4 conditions of
specific APU/VU

outputs according
to FTD

TMR

EDAC

Spatial or Temporal
Redundancy

Circuit Freezing

Spurious Function Self-
Revealing

Chip and

Board

FPGA Chip I/O Loss of Function
Periodic Test

Incorrect AIM
Output

(Loss of Function
or Spurious
Function)

1oo4 conditions of
specific APU/VU

outputs according
to FTD

Detect/control
damaged/

disconnected pins

Periodic Testing
Spurious Function Self-

Revealing

Board Level FPGA Board
I/O

Loss of Function Periodic Test No
Output/Incorrect

AIM Output
(Loss of

Function)

1oo4 conditions of
specific APU/VU

outputs according
to FTD

Standards for fault
models, diagnostic

coverage and
mitigation

Maintenance
Induced

FPGA
Chip/Board

Loss of Function Undetectable No AIM Output
(Loss of

Function)

1oo4 conditions of
specific APU/VU

outputs according
to FTD

Electrostatic
Protection Program

Bit Error Programmable
Interconnect

Latent Loss of
Function

Monitoring Incorrect AIM
Output

Loss of 1oo4
conditions of

specific APU/VU
outputs

Copies of
Programming Data

Data for
Configuration

memory and P/E
cycles

MTBF for
Interconnects

Environmental
Qualification

FPGA
Chip/Board

Loss of Function Undetectable No AIM Output
(Loss of

Function)

1oo4 conditions of
specific APU/VU

outputs according
to FTD

Environmental
Qualification
Procedures

Security
Breach

FPGA
Chip/Board

(FPGA Logic)

Revealed by Demand
(Triggered)

Monitoring Normal AIM
Output (System

Security
Compromised)

Normal RTS/ESFAS
Operation (System

Security
Compromised)

Secure Lifecycle

Attack
Countermeasures

Cyber Security
Guides

Sneak Circuit FPGA
Chip/Board

Latent Loss of
Function

Periodic Test Incorrect AIM
Output

Loss of 1oo4
conditions of

specific APU/VU
outputs

General and FPGA-
Specific Sneak
Circuit Analysis Spurious Function Self-

Revealing

CCF FPGA
Chip/Board

Loss of All Functions

Undetectable
Loss of multiple
Channels (AIM)

Loss of Multiple

Channel functions

Diversity and
Defence in Depth

Requirements from
technical standards

CCF Analysis

Table 26 covers Step 1 of the process. Examples of potential failures modes for the different (sub-

component) hardware modules are presented, along with the Failure Effect and Uncovering Situations

193

(as defined by the OECD-NEA taxonomy). Finally, the functional impact of the failure modes on the Basic

Component level (overall FPGA chip) is listed. Table 27 shows Step 2 and Step 3 of the process, including

the “Compressed Failure Mode” (high level failure mode at the I&C unit level, based on similar

uncovering situations and failure effects), examples of failure detection methods, and the potential

effect(s) on the AIM. The AIM was chosen, as it was used in the “Basic Component” level exampled in

the OECD-NEA taxonomy, and was used in Table 25 to create the “Basic Component” level FPGA FMEA

example. This allows Tables 40-43 to be tied together, and for the RTS/ESFAS example system used in

the OECD-NEA taxonomy to be applied to the FPGA taxonomy. Finally, Table 28 gives the final step, and

shows the impact of failures of the hardware components at the “Sub-Component” level through to the

total system level.

An example of a Hardware failure is a Single Event Upset (SEU) that occurred in one of the Registers.

This would temporarily invert a memory bit, which would lead to either a “Plausible” or “Implausible”

Non-Fatal failure. The incorrect data would be passed through the chip, causing an “Incorrect Output” at

the “Basic Component” Level (Table 27). It is possible to detect these types of errors using Error

Detection Codes/Error Detection and Correction Codes (EDC/EDAC), so if those methods are included, it

may reveal that an SEU has occurred. If these methods fail or were not included, then the error may not

be seen until there is a “Spurious Actuation”, or it is “Revealed by Demand (Latent)”. This will lead to an

“Incorrect Output” from the AIM (Table 27). Finally, this AIM failure will cause a failure at the “System”

level that is dependent on the exact RTS/ESFAS function where the failure occurred.

3.3.6.4. Software FMEA and Sub-Component Demonstration

In the OECD-NEA Taxonomy, separate treatments for the Hardware and Software FMEA/demonstrations

were given. In the case of software, the OECD-NEA Taxonomy is based on the FMEA of the following list

[9]:

1.) Software CCF for all subsystems

2.) CCF for one subsystems

3.) Software fault causing a failure at the level of redundant systems

4.) Software causing a fault in application functions.

194

While this is sufficient for the levels of abstraction discussed in the OECD-Taxonomy, it would not be

applicable to the “Sub-Component” level that has been developed in this paper. The HDL Code FMEA

and Demonstration followed the same process as the Hardware case, outlined in sub-section 3.3.6.3.

This is reasonable in an FPGA, as any software faults will manifest themselves as hardware logic errors,

once the HDL code is synthesized and the FPGA is configured. The results are shown in Table 29 and

Table 30. In order to reduce the space taken up by the data tables, the intermediate step for the HDL

Code FMEA is not shown.

Table 29 and Table 30 demonstrated the “Sub-Component” level of abstraction, as it pertains to the

RTS/ESFAS test system. This was all based on the structure and template of the OECD-NEA Taxonomy. It

was seen that both hardware failures (Tables 41-43) and HDL Code failures (Tables 44-45) could cause a

failure or failures in the AIM, and those AIM failure modes would then have an effect on the total

system. The “Sub-Component” level failures would cause a failure at the “Basic Component” level (the

FPGA or HDL Code), which would in turn cause a failure in the “Module” Level, then the “Unit” Level,

and finally the “System Level”. This is the “Cascading Failure Propagation” discussed in the OECD-NEA

Taxonomy. It should be noted that the end effects the AIM failure modes had on the RTS/ESFAS system

were taken from the OECD-NEA Taxonomy [9]. As in the case of the hardware failure modes, those end

effects are assumed to occur if the mitigation methods are not implemented, fail, or are implemented

incorrectly.

Table 29: Sub-Component Level FPGA Taxonomy PSA Demonstration (Step 1) – Software

Failure Set Software
Module

Failure Mode Failure Effect Uncovering
Situation

Functional Impact
on “BC”

Mitigation

Soft Processor Soft Processor Hang/Deadlock Fatal (Ordered) Online
Detection

No Output (Loss of
FPGA Function)

FPGA V&V1,60

Software V&V11,65,66

Signal Delay Non-Fatal
(Plausible)

Revealed by
Demand
(Latent)

Delayed FPGA
Signal Output

Random/Unknown
Signal

Non-Fatal
(Plausible)

Revealed by
Demand
(Latent)

Incorrect Output

Non-Fatal
(Implausible)

Online
Detection

Incorrect Output

Spurious
Actuation

Incorrect Output

State Machine State Machine Hang/Deadlock Fatal (Ordered) Online
Detection

No Output or

WDT

State Machine
Hazard Analysis

Return to pre-

Endless Loop Fatal (Ordered) Online
Detection

195

No Exit Fatal (Ordered) Online
Detection

Stuck Output
(Fatal, loss of

FPGA function)

Incorrect Output
(Non-Fatal)

defined state

Revealed by
Demand
(Latent)

Unreachable Non-Fatal
(Plausible)

Revealed by
Demand
(Latent)

Offline
Detection

Logic Errors
(HDL)

HDL EFs Math Errors Non-Fatal
(Implausible)

Online
Detection

Incorrect Output

HDL Code V&V

International
Standard

Non-Fatal
(Plausible)

Revealed by
Demand
(Latent)

Spurious
Actuation

Logic Errors Non-Fatal
(Implausible)

Online
Detection

Non-Fatal
(Plausible)

Revealed by
Demand
(Latent)

Spurious
Actuation

Clock/Timing Registers Latch

Non-Fatal
(Plausible)

Revealed by
Demand
(Latent)

Incorrect Output
(Timing Error)

Implement
Registers

Complete logic
statements and
sensitivity lists

(accidental latch)

Static Timing
Analysis

Timing
Simulations1,60

Spurious
Actuation

Set-up/Hold
Violation

Non-Fatal
(Implausible)

Revealed by
Demand
(Latent)

Spurious
Actuation

Input and Data
Type

Data Type FXP Resolution Non-Fatal
(Plausible)

Online
Detection

Incorrect Output

Ensure proper
calculation/

verification of all
FXP values Non-Fatal

(Implausible)
Revealed by

Demand
(Latent)

Input Overflow Non-Fatal
(Plausible)

Online
Detection

Non-Fatal
(Implausible)

Revealed by
Demand
(Latent)

Maintainability IP Core IP Core Failure Fatal or Non-
Fatal (Function
Dependent)

Function
Dependent

Function
Dependent

FPGA V&V

Software V&V

Design Security FPGA
Logic/Timing

(FPGA Synthesis
Tool)

Design Tool
Subversion

Fatal or Non-
Fatal

Triggered by
Demand

Unauthorized
access, incorrect
outputs or device
damage

Secure Lifecycle

Trusted Tools and
IP Cores

COTS FPGA Logic COTS HDL Code
Failure

Fatal or Non-
Fatal (Function
Dependent)

Function
Dependent

Function
Dependent

FPGA Dedication
Software
Dedication

Maintenance
Induced

IP Core Composition
Problem

Fatal or Non-
Fatal (Function
Dependent)

Function
Dependent

Function
Dependent

Secure Architecture
and comms

Trusted Tools and
IP Cores

196

Security Breach FPGA
Logic/Circuitry

FPGA Virus Fatal
(Haphazard)

Triggered by
Demand

No Output
(Chip Damaged/
Destroyed)

Secure Lifecycle

Bit stream
Protection

Secure Architecture
and comms.

Trusted Tools and
IP Cores

Sneak Circuit FPGA Chip Logic Software Sneak
Circuit

Non-Fatal
(Plausible or
Implausible)

Periodic Test Incorrect Output General and FPGA-
Specific Sneak
Circuit Analysis

Spurious
Actuation

CCF FPGA Logic
(Multiple Chips)

Software CCF Fatal Undetectable Board level Failure Diversity and
Defence in Depth

Requirements from
technical standards

CCF Analysis/
specification

Table 30: Sub-Component Level FPGA Taxonomy PSA Demonstration (Steps 2-4) - Software

Failure Set Software Module Compressed
Failure Mode

Failure Detection Failure End
Effect
(AIM)

Failure End Effect
(RTS/ESFAS)

Mitigation
Method

Soft Processor Soft Processor Loss of Function Monitoring (WDT) Delayed Output
or No Output
(Latent loss of

Function)

Loss of 1oo4
conditions of

specific APU/VU
outputs

FPGA V&V1,60

Software
V&V11

Latent Loss of
Function

Periodic Test

Spurious Function Self-Revealing

State Machine State Machine Loss of Function Monitoring (WDT) No Output or
Incorrect Output
(Loss of Function)

Loss of 1oo4
conditions of

specific APU/VU
outputs

WDT

State Machine
Hazard
Analysis

Return to pre-
defined state

Latent Loss of
Function

Periodic Test

Spurious Function Self-Revealing

Logic Errors
(HDL)

HDL EFs Latent Loss of
Function

Periodic Test Incorrect Output
(Loss of Function)

Loss of 1oo4
conditions of

specific APU/VU
outputs

HDL Code V&V

International
Standard

Spurious Function Self-Revealing

Clock/Timing Registers Latent Loss of
Function

Periodic Test Delayed or
Missed Output
(Timing Error)

Loss of 1oo4
conditions of

specific APU/VU
outputs

Implement
Registers

Complete logic
statements/

sensitivity list

Static Timing
Analysis

Timing
Simulations

Spurious Function Self-Revealing

Input and Data
Type

Data Type Loss of Function Monitoring
(Sanity Check)

Incorrect Output
(Loss of Function)

Loss of 1oo4
conditions of

specific APU/VU
outputs

Ensure proper
calculation/

verification of
all FXP values

Latent Loss of
Function

Periodic Test

Maintainability IP Core Function
Dependent

Function
Dependent

Function
Dependent

1oo4 conditions of
specific APU/VU

outputs according
to FTD

FPGA V&V

Software V&V

197

Design
Security

FPGA
Logic/Timing

(FPGA Synthesis
Tool)

Latent Loss of

Function

Undetectable Incorrect Output
or No Output
(Once triggered)

Loss of 1oo4
conditions of

specific APU/VU
outputs

Secure
Lifecycle

Trusted Tools
and IP Cores

COTS FPGA Logic Function
Dependent

Function
Dependent

Function
Dependent

1oo4 conditions of
specific APU/VU

outputs according
to FTD

FPGA
Dedication

Software
Dedication

Maintenance
Induced

IP Core Function
Dependent

Function
Dependent

Function
Dependent

1oo4 conditions of
specific APU/VU

outputs according
to FTD

Secure
Architecture
and comms

Trusted Tools
and IP Cores

Security
Breach

FPGA
Logic/Circuitry

Loss of Function Undetectable Damage/
Destruction of
AIM

Loss of 1oo4
conditions of

specific APU/VU
outputs

Secure
Lifecycle

Bit stream
Protection

Secure
Architecture
and comms.

Trusted Tools
and IP Cores

Latent Loss of
Function

Sneak Circuit

Software Sneak

Circuit

Latent Loss of
Function

Periodic Test Incorrect Output Loss of 1oo4
conditions of

specific APU/VU
outputs

General and
FPGA-Specific
Sneak Circuit

Analysis
Spurious Function Self-Revealing

CCF

Software CCF

Latent Loss of
Function

Undetectable Complete AIM
failure

Loss of Multiple
Division Functions

Diversity and
Defence in

Depth

Requirements
from technical

standards

CCF Analysis/
specification

An example of an HDL Code failure is an error in a state machine, causing a “No Exit” failure. This would

disallow the state machine to transition out of that state, and could cause the state machine to become

“stuck”. This could be a fatal error, causing “No Output” or “Loss of FPGA Function” at the “Basic

Component” level (Table 29). This error might be detected by diagnostics measures like Watchdog

Timers (WDT), or through offline measures such as Periodic Testing. This would likely cause a “Loss of

Function” in the AIM, which would then cause a failure of the RTS/ESFAS system (Table 30).

3.3.7. FPGA Taxonomy PSA Demonstration

The new FPGA taxonomy based on the original OECD-NEA taxonomy will now be demonstrated on an

FPGA-based test system. The OECD-NEA taxonomy provided some examples of fault trees, one of which

198

was recreated and shown in Figure 62. It considers a “Spurious Actuation” of one division (Division “X”)

in the Emergency Feed Water system (EFV), due to a failure in the Voting Unit (VU) in that division. At

that level of abstraction, there is little difference between the fault tree for the FPGA and software-

based system taxonomies, so the fault tree must be expanded to include the lower levels of abstraction.

Of specific interest is the basic event entitled “HW Module Failure #6”, highlighted in Grey. According to

the OECD-NEA taxonomy, one of the potential causes of “HW Module Failure #6” is a failure in the AIM.

That basic event is then expanded on (with a specific focus on the AIM), in sub-trees that are shown in

Figure 63 and Figure 64.

Figure 62: OECD-NEA Taxonomy Fault Tree for a spurious division-X “EFW-OFF” Event

Figure 63 sets the “HW Module Failure #6” as the Top Event, and then proceeds down the levels of

abstraction, through the AIM (Unit Level), FPGA Chip and HDL Code (Component Level), ending at the

Spurious

EFW-OFF

from

VU-x

SPURIOUS-VU_X

Spurious EFW-OFF

from

APU-x to VU-x

SPURIOUS_EFW_OFF

Spurious

EFW-OFF

condit ion

EFW-LEAK

EFW_LEAK

Spurious

EFW-LEAK

from

div. x

DIV_X_EFW_LEAK

M easurement

failure

(1-o-o-2)

1OO2_M EASUREM ENT_FAILURE

APU-x internal

failure

(EFWLEAK)

APU_EFWLEAK

HW_M odule_No_6

HW_M ODULE_NO_6

SW_M odule_No_6

SW_M ODULE_NO_6

APU-4 internal

failure

(EFWOFF)

APU_4_INTERNAL_FAILURE

HW_M odule_No_5

HW_M ODULE_NO_5

SW_M odule_No_5

SW_M ODULE_NO_5

VU-x internal

failure

(EFWOFF)

VU_X_INTERNAL_FAILURE

HW_M odule_No_4

HW_M ODULE_NO_4

SW_M odule_No_4

SW_M ODULE_NO_4

199

individual hardware and software modules (Sub-Component Level). This allows for the individual failures

for the hardware and software sub-components, as well as their effects on the total system (in this case

the Spurious Trip of the EFW), to be modelled. The fault tree shown in Figure 64 is similar to the fault

tree in Figure 63, except that the basic events are set as the Failure Categories from Figure 50. This

allows for the effects of the different failure categories to be modelled, as opposed to the failures of the

sub-components. The mitigation methods for those failure modes are also listed in the fault trees in

Figure 63 and Figure 64, to show the effect of the failure of mitigation methods, or if the mitigation

methods are not employed.

Figure 63: Fault Tree For “HW Module #6” (Sub-Component Level)

The fault trees in Figure 63 and Figure 64 are similar. The main difference is that some of the basic

events from the fault tree in Figure 63 were from the same Failure Set, which allowed them to be

combined into one event in the Fault Tree in Figure 64. The mitigation methods (or lack thereof) are

retained in Figure 64. Including the overall failure sets and general mitigation methods in those fault

trees gives a wide overview of the potential failure modes that could be included in the reliability

analysis.

HW_M odule_No_6

HW_M ODULE_NO_6

M easurement Signal Loss of

Function (1oo2)

LOSS_OF_SIGNAL

Analog Inpt M odule (AIM)

Loss of funct ion

LOSS_OF_AIM

Failure in the AIM FPGA

HArdware

AIM _FPGA_HARDWARE

Incorrect FPGA Hardware

Output

INCORRECT_FPGA_OUTPUT

EDAC Fail to Detect and/or

Correct Radiat ion Induced

Soft Errors

EDAC_FAILURE G024

SET Pulse Travels through

signal lines and effects

Register

SET_REGISTER

SEU BIt Inversion in a

Register (Storage Element)

SEU_REGISTER

No FPGA Hardware Output

NO_FPGA_OUTPUT

ESD Protect ion Program

Not Implemented, FPGA

Chip Vulnerable to

ESD/EOS

NO_ESD_PROTECTION G022

EOS damage/destruct ion of

the FPGA Board/Chip

FPGA_BOARD_EOS

ESD damage/destruct ion of

the FPGA Board/Chip

FPGA_BOARD_ESD

Failure in the AIM FPGA

Software HDL

AIM _FPGA_SOFTWARE

Incorrect FPGA Software

(HDL) Output

INCORRECT_HDL_OUTPUT

Proper V&V was not

performed on the HDL code

 funct ional errors

synthesized

CODE_V&V_NOT_PERFORM ED G020

Error in HDL Logic Function

LOGIC_EF_ERROR

Error in HDL M ath

Function(s)

M ATH_EF_ERROR

No FPGA Software (HDL)

Output

NO_HDL_OUTPUT

SM HA Fails to f ind failures

in the state machine(s)

SM HA_FAILURE G017

State M achine Stuck in

Endless Loop

STATE_M ACHINE_FAILURE

State M achine Contains

states that cannot be

reached

STATE_M ACHINE_UNREACHABLE_STATE

200

The fault trees shown in Figure 62, Figure 63, and Figure 64 could be too simplistic for an actual

RTS/ESFAS. However, they serve the purpose for showing how the FPGA taxonomy down to the sub-

component level will affect the overall system. Additionally, for a PSA to be performed, quantitative

reliability data would need to be included in the fault tree (or other methodology). However, that is

beyond the scope of this paper. Furthermore, the FPGA Taxonomy is not limited being used only with

fault trees, and could be applied to both static and dynamic reliability assessment methodologies.

Figure 64: Fault Tree For “HW Module #6” (Sub-Component Level) Using Failure Categories

3.3.8. Conclusions from the FPGA Taxonomy

This FPGA taxonomy discussed several methods that were used to categorize/model failure modes for

digital systems. The FPGA taxonomy is intended for use in the design and analysis of FPGA-based I&C

systems for NPPs. It would serve as a benchmark for evaluating the failure mode analysis/hazard

analysis of FPGA-based systems. This new taxonomy provides information regarding the stage in the

lifecycle the failure occurs, if the failure effects are fatal or non-fatal, the uncovering/detection methods

of the failure, as well as how failures at the FPGA/HDL level will affect the overall I&C system. This

allows for the identification of the failure modes to be avoided in the “Design/Development” stage, and

for residual failure modes to be mitigated in the “Operation” stage of the system lifecycle. The use of

HW_M odule_No_6

HW_M ODULE_NO_6

M easurement Signal Loss of

Function (1oo2)

LOSS_OF_SIGNAL

Analog Inpt M odule (AIM)

Loss of funct ion

LOSS_OF_AIM

Failure in the AIM FPGA

HArdware

AIM _FPGA_HARDWARE

Incorrect FPGA Hardware

Output

INCORRECT_FPGA_OUTPUT

Radiat ion Interact ing with

the Register Causes the

Inversion of a M emory Bit

RADIATION-INDUCED_SOFT_ERRORS

EDAC Fail to Detect and/or

Correct Radiat ion Induced

Soft Errors

EDAC_FAILURE

No FPGA Hardware Output

NO_FPGA_OUTPUT

M aintenance Error Leads to

Electrical Damage to the

FPGA Chip/Board

M AINTENANCE_INDUCED

ESD Protect ion Program

Not Implemented, FPGA

Chip Vulnerable to

ESD/EOS

NO_ESD_PROTECTION

Failure in the AIM FPGA

Software HDL

AIM _FPGA_SOFTWARE

Incorrect FPGA Software

(HDL) Output

INCORRECT_HDL_OUTPUT

Error in HDL Code

Performing Logic Functions

LOGIC_ERROR_(HDL)

Proper V&V was not

performed on the HDL code

 funct ional errors

synthesized

CODE_V&V_NOT_PERFORM ED

No FPGA Software (HDL)

Output

NO_HDL_OUTPUT

State M achine Error such as

Endless Loop or No Output

State Prevents Output

STATE_M ACHINE

SM HA Fails to f ind failures

in the state machine(s)

SM HA_FAILURE

201

the FPGA taxonomy in the hazard analysis of FPGA-based systems presents a basis for the safety and

engineering decisions during the design and review of those systems.

The FPGA FMEA and corresponding FPGA Taxonomy provided a great deal of information on the failure

modes for FPGAs, and the effects of those failure modes. This failure mode data then became part of

the more advanced DFM modelling of FPGA-based systems, as well as the comparisons between DFM

and FTA, as seen in sub-sections 4.3 and 4.4.

3.4. Chapter Summary

This chapter presented the results of the FPGA FMEA, as well as the corresponding FPGA Failure Modes

Taxonomy. A detailed FMEA was performed to identify the potential failure modes, faults, etc. that

could affect FPGAs and FPGA-based systems. This FMEA data was categorized first by the “Lifecycle”,

then “Cause”, and finally into “Failure Sets”, based on the effects of the failures, and the mitigation

methods for those failures. Afterwards, the FPGA FMEA data was restructured based on the OECD-NEA

digital failure mode taxonomy. The OECD-NEA taxonomy provided information on categorization failure

modes in digital system due to their effects, fault location and uncovering situations. However, that

document left FPGAs, as well as mitigation methods, as a topic of future work. The FPGA taxonomy

created a plug-in to interface with the OECD-NEA taxonomy, completing an important topic of future

work that was identified in the OECD-NEA taxonomy, as well as making the FPGA taxonomy useful for

international working groups. In the context of this thesis, the FMEA/FPGA Taxonomy results were used

a form of “fault injection” during the DFM/FTA comparisons shown in subsections 4.3 and 4.4.

202

4. Application of DFM to FPGA-Based System Analysis

Chapter four details the results of the DFM modelling and analysis research program for FPGA-Based

systems. Previously, DFM had been applied to model and analyze digital I&C systems in NPPs, however

these were always software-based systems. The first part of this research program consisted of

preliminary research into the use of DFM for modelling and analyzing FPGA systems. Therefore, this

preliminary research (sub-sections 4.1 and 4.2) focused on demonstrating the effectiveness and

suitability of DFM for the modelling and analysis of FPGA-based systems. The second part focused on

the comparison of DFM and FTA (sub-sections 4.3 and 4.4), for the purpose of modelling FPGA-based

systems, which included the failure mode data ascertained in Chapter 3. As FTA is a commonly-used

methodology in the nuclear field, comparisons of DFM and FTA will help showcase potential advantages

and disadvantages of applying DFM to analyze FPGA-based systems. Sub-section 4.1 will discuss the first

DFM modelling work, encompassing qualitative and quantitative, inductive and deductive analyses,

using an FPGA-based Post-Accident Monitoring System (PAMS) as a test system. Sub-section 4.2

presents the results for the comparison of DFM with the FPGA/HDL simulation program “Modelsim”, for

the purpose of simulating FPGA logic, and to prove the effectiveness of DFM for analyzing FPGA-based

systems. Sub-section 4.3 discusses the preliminary DFM/FTA comparisons and results. Sub-section 4.4

describes the advanced DFM/FTA comparisons, delving deeper into the theoretical reasons for

differences, and exploring DFM analyses with multiple time steps. Sub-section 4.5 presents a summary

of the information discussed in this Chapter.

4.1. FPGA PAMS

The first DFM modelling considered a simplified PAMS system. The actual DFM models were static at

this point (they did not contain any control loops or feedback), and as such did not utilize any time-

dependency. The use of MVL values was also limited in this preliminary work. The results from the

system design, testing and modelling were published in the “Proceedings of the 22nd International

Conference on Nuclear Engineering” [191] Afterwards, some small modifications to the conference

paper were made, and the sections focusing on DFM modelling were published as a “Technical

Note/Technical Brief”, in the “Journal of Nuclear Engineering and Radiation Science” [192].

203

4.1.1. System Description

The PAMS is an electronic system that monitors systems and variables over the anticipated ranges for

accident conditions in order to improve safety in the AP 1000. The system is intended to meet the

requirements of US NRC (Nuclear Regulatory Commission) Regulatory Guide (RG) 1.97 [193]. Also

referenced are documents from IEEE [194], and from the Canadian Standards Association (CSA)

(endorsed by the CNSC) regarding accident monitoring [195]. In the AP-1000, the PAMS is a safety

system that has been included as part of a larger, FPGA-based system known as the Advanced Logic

System (ALS) [79]. It includes both Analog and Digital I/O, with displays and alarms to inform operators

of changes in the variables being monitored, and if those variables exceed setpoints. According to the

documentation [193–195], the ALS PAMS is required to, and capable of, monitoring multiple variables,

such as neutron power, temperature, flow rates, fluid pressure, fluid level, radiation levels and valve

positions.

4.1.2. System Design

A National Instruments (NI) cRIO-9076 (Compact Reconfigurable Input/Output) chassis was used for the

lab-scale demonstration. It contains a Xilinx Spartan-6 LX45 FPGA chip, and slots for four I/O modules.

The LabVIEW FPGA module was then used to program the FPGA [196]. This set-up includes the chassis,

and 4 of the c-series modules: 9207, 9219, 9375 and 9365, as seen from left to right in Figure 65 [191].

The remaining module (9363) performs a similar function to the 9365, and can be swapped in/out when

needed. The functionality of each I/O module is given in Table 31.

The functionality of the system follows the following basic pattern; using I/O modules the input signal

from the sensors is sent to the FPGA to be processed, which returns a value of the variable being

monitored. This value is then compared to user defined setpoints, and if the values are too high, then an

alarm is triggered. A picture of the test system is shown in Figure 65.

204

Figure 65: Lab-Scale PAMS Set-Up with NI Equipment

In order to test the system using real input, a number of sensors were procured. Table 32 displays the

sensors used for each measurement. All of the measurements were taken using real industry sensors,

with the exception of neutron flux, radiation level and valve position, which were simulated. As the

focus of this research program was the DFM analysis of FPGA-based systems, a more detailed discussion

of the system design and testing is left to the literature [191].

Table 31: FPGA PAMS C-Series Module Description

Module Description

9207 AI Voltage and Current

9219 Universal AI

9375 Digital I/O

9363 Analog Voltage Output

9365 Analog Current Output

Table 32: FPGA PAMS Sensor Description

Variable Sensor

Temp NI Type-K Thermocouple

Temp NI 3-Wire RTD

Level Sharp Optical Sensor

Level Kobold Differential Pressure Sensor

Flow Kobold Paddlewheel Flow Sensor

Pressure Kobold Pressure Transducer

Valve (Simulation)

Neutron Flux (Simulation)

Radiation (Simulation)

205

In terms of the simulated values, the Labview software was set-up to output values used in the

simulations. In the case of the “Valve” position, it was simulated to be in either an “Open” or “Closed”

state. With regards to the “Neutron Flux” and “Radiation” values, Labview was set-up to output these

respective values based on random values inside of reasonable ranges, based on the author’s technical

opinion and literature information.

4.1.3. FPGA PAMS DFM Models

The DFM models were constructed to model the reliability of the system. The DFM model for a general

subsystem in the PAMS is showed in Figure 66. The model was analyzed both deductively and

inductively, to obtain a complete picture of the system. At this point, the DFM analysis is intended to

show the usefulness and effectiveness of using DFM to model an FPGA-based safety system. In order to

properly quantify the failure probabilities and obtain exact reliability measures, other factors such as

software faults and CCF modes would need to be included.

Figure 66: General PAMS Subsystem DFM Model

4.1.3.1. Deductive Analysis

206

False Alarm:

A false alarm (the alarm tripping when it should not) is less of a safety risk than a missed trip, but it is

still a case of a system malfunction and is to be avoided. Knowing that the false alarm can happen, the

“Alarm Logic” node is used in this deductive analysis, with a “False Alarm” state set as the top event. A

sample of the results of this analysis is shown in Table 33. Fourteen total implicants were produced.

There are both hardware and logic failures that can cause the error. Implicant 2 involves only hardware

issues (sensor); however Implicant 1 involves a failure with the logic, and the incorrect trip logic leads to

a false alarm. Knowing this, the operator can examine the sensors and input modules, as well as the

logic to correct any faults. Although there is no software on the FPGA chip itself, the FPGA is

programmed using Hardware Description Language (HDL), so logic errors would carry over to the FPGA.

In this example, the logic improperly determines the trip condition. In this example, the logic improperly

determines the trip condition. This analysis would allow the developers to focus attention on those

sections of the FPGA logic, in order to avoid any logic errors.

Table 33: Implicants for “False Alarm” Top Event (FPGA PAMS)

Implicant 1
AI Module State

Alarm Logic State
Calibration Logic

Sensor Power Input
Sensor State

AI Module Works
Logic Fails (High)

Logic Works
Correct Input
Sensor Works

Implicant 2
AI Module State

Alarm Logic State
Calibration Logic

Sensor Power Input
Sensor State

AI Module Works

Logic Works
Logic Works
High Input

Sensor Works

207

4.1.3.2. Inductive Analysis

Calibration Logic High:

It was seen when performing the deductive analyses that errors in the logic, such as the calibration logic,

can have adverse effects on certain functions of the system, such as a false alarm. Often, an inductive

analysis is performed after the deductive analyses, using the discovered fault(s) as starting event(s).

Performing this analysis can help confirm the effect of the starting event (the inductive analysis should

return to the original top event), as well as detect other possible issues that that fault could cause. A

sample of the results is shown in Table 34. In the inductive analysis, the implicants are referred to as

“sequences”, and the analysis returned 84 total sequences, with Sequence 12 being shown in the table,

and the initiating event is shown in italics. The underlined event shows that the “High Alarm” is in the

“ON” state, as predicted in the deductive analysis, which confirms that this particular logic error could

cause a False Alarm. Furthermore, it uncovers other issues, such as the “Increasing Alarm” being tripped

and output signals being sent, when those events should not occur. Performing these analyses as well

can show if a certain fault has been fixed entirely. Here, the “+” refers to the “Increasing Alarm” and the

“++” represents the “Fast Increasing Alarm”.

Table 34: Sequences for “Calibration Logic Fails (High)” Initiating Event (FPGA PAMS)

Sequence 12
Calibration Logic
AI Module Input

Alarm Logic
Alarm Logic State

Alarm State
+Alarm State

++Alarm State
Analog Output

+ Alarm Logic State
++ Alarm Logic State

Digital Output
Fast Increasing Alarm

Increasing Alarm
High Alarm

Analog Output State
Digital Output State

Sensor Logic

Logic Fails (High)

Correct Input
False Alarm
Logic Works
Alarm Works
Alarm Works
Alarm Works

Output
Logic Works
Logic Works

Output
ON
ON
ON

Works
Works
High

208

4.1.3.3. Probability Calculations

Probabilities were added to the model using Mean Time Between Failure (MTBF) data from NI

documentation, based on the Bellcore model, as well as datasheets from similar sensors [197]. The

failures were converted from failures/106 hours to failures/year for easier calculations. Logic failure

calculations were not completely performed at this stage, so values were assumed (taken as 10% of the

failure rate of an input module) [17,198]. The deductive analysis was run for both “False Alarm” and

“Missed Trip” top events.

Table 35 shows a section of the analyses, specifically the most likely PI for each Top Event. It was seen

that a sensor failure is most likely to cause a missed trip, and a logic failure is most likely to cause a False

Alarm. Also seen, is that the top Missed Trip implicants have a higher likelihood of occurring, which is

expected as it is more likely that the hardware fails low or fails completely, than failing high. The

probability analyses will illustrate what are the most likely failures and their causes.

Table 35: DFM Probability Calculations (FPGA PAMS)

Missed Trip Implicant 1 (1.9260E-03)
Sensor Fails (Low)

False Alarm Implicant 1 (1.1022E-03)
Calibration Logic Fails (High)

4.1.3.4. Logic Analysis

DFM was used to examine the logic sections of the system to uncover logic errors. Figure 67 shows a

basic model for the logic flow involving one of the pressure sensors. The sensor output is scaled to a

linear range, making it simple to determine the calibration equation, which was synthesized on the

FPGA. Each logic operation performed by the FPGA for this section is checked using DFM. A deductive

analysis is again run, with “Missed Trip” as the Top Event. In total, nine implicants were found, with

Implicant 1 shown in Table 36. It is seen that there is an issue with the trip logic, causing it not to

generate a trip result, leading to the alarm not being tripped. This analysis could uncover issues, such as

209

improper comparison logic in the trip section. This analysis would ensure that any and all logic issues

could be identified and repaired.

Figure 67: General Logic DFM Model (FPGA PAMS)

Table 36: Implicants for Code Section “False Alarm” Top Event (FPGA PAMS)

Implicant 1
Multiplication Code
Sensor Power Input

Subtraction Code
Trip Code

Code Works

Correct Input
Code Works

No Value

Implicant 2
Multiplication Code
Sensor Power Input

Subtraction Code
Trip Code

Code Fails (Low)

Correct Input
Code Works
Low Value

4.1.4. Conclusions from FPGA PAMS DFM Modelling

A lab-scale demonstration of an FPGA-based Post Accident Monitoring System was designed and

analyzed. DFM has been shown to work effectively when analyzing FPGA-based systems, by uncovering

possible faults in the system, and the potential effects of those faults. Moreover, it was able to calculate

the probabilities of certain system failures, and illustrated that improvements in the hardware and logic

could be made. DFM can then be incorporated into analyzing more complex systems, with more

components and more advanced control logic. However, this work was somewhat limited, by a small

test system, lack of dynamic behaviour, and limited application of MVL states. The next phase of the

DFM/FPGA research program included dynamic behaviour as well as MVL states, and was used to verify

the effectiveness of DFM modelling for FPGA-based systems.

210

4.2. Comparisons Between DFM and FPGA/HDL Simulations

In order to prove that DFM is accurately modelling the FPGA logic and system properties, the DFM

results must be compared to results from an established source. To accomplish this, VHDL code was

used to create test systems, as well as testbenches. The testbenches would provide input stimuli in

order to test the VHDL test programs. The test programs used synthesizable VHDL code where possible,

which were also used to create the VHDL netlists. The VHDL code was written and synthesized (where

possible) using the Quartus II Web Edition software package [44]. The Modelsim simulator program was

used to simulate the VHDL code, using the test benches [199]. The results of the Modelsim simulations

(“waveforms”) were then compared to the results of the DFM analyses, to determine the accuracy of

the DFM models. Modelsim is a widely used industry software package, making it a suitable choice for

verifying the ability of DFM to model FPGA-based systems. This work was published in the journal

“Nuclear Engineering and Technology” [200].

4.2.1. FPGA Aspects

The three principle aspects of FPGAs were considered for this comparison and verification portion of the

research work, and are presented in this sub-section. These include IEEE Standard 1164 (applies to

VHDL), a Register/Flip-Flop for storing information, the CLBs that perform that logical computations in

the FPGA, and finally a case study using an FPGA-based signal compensator test system. These

important FPGA aspects were modelled using DFM, and simulated using Modelsim, to compare how

well the DFM results would predict the behaviour of the FPGA logic.. Additionally, a simplified FMEA that

was used to obtain the failure data (Top Events) for the DFM analysis of the aforementioned FPGA

aspects is provided in this subsection.

4.2.1.1. IEEE Standard 1164

IEEE 1164 is an important standard when using VHDL code to program the FPGA. It is a package that is

compiled into a library, and is often imported into VHDL files. This standard defines important features,

211

including nine-state logic, resolution function, and Boolean functions, such as AND, OR, XOR, and NOT.

The Boolean functions AND, OR, XOR, and NOT are defined in tables, and the remaining functions (NOR,

XNOR, NAND), are made using NOT function [201]. The states for the nine-state logic can be found in the

literature [201]. DFM is used to model the logic and mathematical functions based on this standard. A

DFM model consisting of the logic and mathematical functions is shown in Figure 68.

In Figure 68 the logic functions includes AND, OR, XOR, NOT, NOR, NAND and XNOR functions. The

inputs are set to be the logic states given in [201] producing various combinations of outputs. A similar

method is taken with the math functions, where two inputs are added (In_Add_1 and In_Add_2), and

the sum is compared to the product of the other inputs (In_Prod_1 and In_Prod_2). The output “G_Out”

is then the output from the “greater or equal to function” (shown as a “less than” function in the

netlist). The Modelsim and DFM results are given in Sub-section 4.2.2.

Figure 68: DFM Model for Logic and Mathematical Functions

212

4.2.1.2. Register

The register is an important component of digital logic and FPGA operation. It is commonly used in

electronic systems to store a data value and output it at a certain clock edge. In FPGAs these registers

are used in many kinds of sequential and recursive logic, when the algorithms require results or data

from previous time steps [202]. The DFM model for the register is shown in Figure 69. Here, the “Reset”

, “Preset”, “Input”, “Data” nodes all represent input signals into the Register, where the transition box

(entitiled “Register”) performs as a register in an FPGA would. A time delay on “1” is included, in order

to hold the data for a time step, similar to an FPGA register. The “Reset” signal will reset the register to

“0”, while the “Clock Enable” signal will allow the register to store the new “Input” value, and then

output the new value after a time delay (based on the “Clock” signal). If the “Clock” signal does not

allow the register to update the value, then the previous input value (“Prev_Input”) is used instead.This

model also includes the “Clock_Period” (if it is longer/shorter than specified), “Clock_Cycle” (if the clock

has a duty cycle that is different than 50%), as well as a node for the previous input (“Prev_Input”), as

that can have an effect on the output.

Figure 69: DFM Model of an FPGA Register

213

The value from the “Output” is fed back into the “Prev_Input”, after a delay. The “Clock” node was

broken down into 4 states; 1, 0, +, -, to represent the clock transitions. To allow the “Clock” state to

cycle, the “Prev_Clock” node was included, which will store the previous “Clock” signal (after a time

delay), and then output the next state to the “Clock”. State “+” represents the rising edge, while state “-

“ represents the falling edge. The clock will cycle through the clock states as the time step changes. The

“Output” node includes states for “1” and “0”, as well as extra states for the outputs for Reset, Preset

and Data. The results are then funnelled to the standard “1” and “0” for the “Reg_Out” node. Results for

the register model and Modelsim simulations are given in sub-section 4.2.2 An example of a decision

table, similar to the one used in the “Register” transition box is given in Table 37. To save space, it was

assumed that the “Previous Input” had a value of “1”. It should be noted that the “-” represents a “Don’t

Care” value.

Table 37: Sample Decision Table for Simplified Register (DFM/ModelSim Comparisons)

Inputs Outputs

Reset Enable Clock Input

1 - - - 0

0 0 - - 1

0 1 0 - 1

0 1 1 + 0

4.2.1.3. FPGA Logic Blocks (CLB)

All FPGAs share certain basic components, namely Input/Output (I/O) ports, Programmable

Interconnects, and Configurable Logic Blocks (CLBs). I/O ports are used to carry data signals to and from

the FPGA, while programmable interconnects are used to connect the CLBs together. CLBs are of

particular interest, as those logic blocks contain the logic elements needed to perform the desired logic

functions. In the most basic form, each CLB will contain a Look-Up Table (LUT), Register, and possibly a

Multiplexer (MUX) that can be used to bypass the Register if desired [1]. DFM was used to create two

separate Logic Blocks, one with an “AND” gate LUT, and the other with an “OR” gate LUT. This will show

how DFM can model the basic logic elements of an FPGA, encompassing the components discussed in

sub-sections 4.2.1.1 and 4.2.1.2. A block diagram is presented in Figure 70.

214

Figure 70: CLB Flowgraph with Either “AND” Gate or “OR” Gate LUT

4.2.1.4. Platinum Dynamic Compensator

Neutron detectors are used in nuclear power plants to monitor neutron power (flux) inside the reactor

core. Several different materials are used, such as platinum, rhodium, vanadium and cobalt. In a CANDU

(Canada Deuterium Uranium) reactor, platinum detectors are used in safety systems due to their fast

(prompt) response. Platinum detectors are composed of multiple isotopes, and therefore have multiple

decay chains [203,204]. Dynamic signal compensation is used to compensate for the delayed response

of the detector, in order to obtain an accurate reading of the current neutron flux. The details of the

platinum detectors and signal compensation can be found in [205,206].

 (45)

215

 where refers to the calculated neutron flux, and is the actual neutron flux. Equation 46 is a

simplified transfer function for the dynamic signal compensator [207]:

 0

1 (46)

where is the current from the detector, , , are coefficients, are corresponding time

constants, and is the Laplace transform variable [203,204]. Appending the values for , , ,

 , Equation 46 becomes:

 0

1 ()

Converting Eqn. 47 to a state space representation yields the following equations:

 ̇() 0

1 () 0

 1 () (48)

 () , - () , - () (49)

The state space representation also included the scaling factor, so that an input range of 0-10 V would

produce an output range of 0-150% FP. The state space model was then discretized, using the Zero-

Order Hold method, and a sampling time of 0.5 seconds, resulting in the following representation:

 ̇() 0

1 () 0

 1 () (50)

 , - () , - () (51)

The block diagram for the platinum compensator is given in Figure 71.

216

Figure 71: Block Diagram for the FPGA-based Platinum Signal Compensator

In Figure 71, the nodes “G_1”, “G_2”, G_3”, are the logic tests for the input being greater or equal to the

TSP and “IV_2” and “IV_3” represent the additional inputs. The “Phi(k)” node refers to the total flux

calculation, and the nodes named “A”, “B”, “C” or “D” which also contain numbers (eg. “A11”, “B1”,

“C1”, D”) represent constants in the state space equations in Equations 50 and 51. The registers

(“Register_1” and “Register_2”) store the outputs from Eqn. 5 that are needed for the calculation at the

next time step. The output of the state space equations is a neutron power, based on the detector

current, which is based on the neutron flux. As the neutron flux is very high (generally on the order of

1014 n/cm2s), it is often expressed as a percentage of Full Power (FP). To simplify the calculations, the

voltage input was taken with the range of 0-10 V, and the neutron power was scaled for 0-15%, with a

TSP set at 12.0%. In reality, the neutron power would have a range of 0-150% FP, and the TSP being set

at around 125% FP.

It can be seen that the previous values for () are required to calculate the correct flux. The are used

to store this information, so the FPGA code (and netlist) contains two registers. Additional code was

added, for trip logic. The flux value was compared to a Trip Setpoint (TSP), along with two other inputs,

to create the 2 out of 3 logic. The analysis results for the Platinum Comparator and trip logic is given in

sub-section 4.2.2.

217

4.2.1.5. Simplified FMEA Example

This sub-section will provide an example of an FMEA for the different FPGA aspects discussed in sub-

sections 4.2.1.1-4.2.1.4. These FMEAs produce the Top Events (TE) that are used in some of the DFM

analysis results, seen in sub-section 4.2.2. It should be noted that not every DFM analysis considered

actual failures, as the aim of the paper was to show the applicability of DFM to modelling of FPGA-based

system logic, and as such the models included both correct and erroneous behaviours.

Table 38: Sample FMEA for FPGA Aspects

Table 38 presents a simplified FMEA for failures that were considered for the different aspects of FPGA

logic. The first is the IEEE Logic standard, where it is seen that there could be math or logic errors

(respectively), due to the presence of certain logic states. The “U” (Uninitialized), “H” (High), or “X”

(Unknown) logic states are generally used to represent errors in simulation. These logic states can

produce errors in mathematical/logical functions, resulting to the incorrect (in this case) value of “0”,

due to how the functions are defined in the IEEE 1164 standard [201]. A similar issue is seen with the

register. If an “X” logic value is input into the register, it would be stored, and the “X” would be output

on the next clock cycle, which could cause a failure at future time steps.

The effects of the failure modes of the IEEE 1164 standard and register are manifested when the larger

FPGA aspects are considered. Logic failures on math/logic functions or registers (such as “U” or “X”

logic) can affect the entire CLB. In this thesis, an erroneous Output of “1” (in this example) could be

Aspect Failure
Mode

Cause Effect

IEEE 1164 Or = 0 “X” Logic
“H” Logic

Math
Error

G_Out = 0 “U” Logic Logic Error

Register Output
“X”

“X” Logic Memory
Error

CLB Output
“1”

Logical
Errors

Incorrect
CLB Value

DSC Spurious
Trip

Constant
Error

System
Failure

Missed
Trip

Input
Error (“X”)

System
Failure

218

produced, due to the “U” or “X” logic states. This may not occur with the “OR” logic, depending on the

other inputs, but for other logic, such as “AND” logic, the output of the CLB could be affected. This all

builds up to the whole test system level, where it is seen that a “Missed Trip” occurs due to an “Input

Error”. This could be due to an error with the input signal itself, or it could be due to errors passed along

from the other components (i.e. failure modes at the logic, register or CLB level cause failures at the

whole system level). Lastly, it was seen that “Spurious Trip” could occur not only through errors in the

sub-components, but through an incorrectly specified constant, used in multiplication.

4.2.2. Results of DFM/ModelSim Comparisons

This sub-section shows the results for the DFM models and ModelSim simulations created in sub-section

5.2.1. In each case, the entries in the PI tables that are of the most notable are bolded and underlined. It

should be noted that in certain Modelsim waveforms, the signals “Reset”, “Clock Enable”, “Clock”, and

“Preset” (if needed) were shortened to “CLR” (Clear), “CE” or “Enable”, “CLK”, and “PRE”, respectively,

to save space in the specific waveform graph.

4.2.2.1. IEEE 1164 Standard Results

The results for the DFM analysis and the Modelsim Simulations for the IEEE 1164 standard are presented

in this sub-section. Table 39 shows sample implicants for the IEEE 1164 DFM model, with the Modelsim

results given in Figure 72. The Top Event for both the logic and math functions were set to be “0”, and

the DFM model was run deductively, to find the prime implicants. In total, there are 192 prime

implicants for the “OR_OUT” = 0 node and, 104 prime implicants for the “G_OUT” = 0 node. It was seen

that the inputs and outputs of the logic model matched up with the inputs and outputs in the Modelsim

simulation. The “H” Logic in the “In_NA_1” input produced an “X” value at the output of the “XNOR”

logic gate. This in turn caused the overall output of the “OR” logic to read “0”. It was also seen with the

math model, that an unknown state (“XX”) in the “In_Add_2” input would cause the “Add_Out” output

to also read “XX”, forcing the “G_OUT” node to read “0” (False), indicating that an error with one of the

inputs could cause the trip signal not to actuate. This is the same as discussed in the FMEA is sub-section

4.2.1.5.

219

Table 39: Sample Implicants for “OR_OUT = 0” and “G_OUT = 0” Top Events

Implicant 1
(Node)

Implicant 1
(State)

Implicant
117

(Node)

Implicant
117

(State)

AND_OUT
IN_NA_1
IN_NA_2
In_A_1
In_A_2

In_N
NAND_OUT
NOR_OUT
NOT_OUT
XOR_OUT

1
H

1
1
1
1
0
0
0
0

ADD_In_2

ADD_OUT

XX

XX

Figure 72: ModelSim Results for “OR_OUT” and “G_OUT” Top Event

220

4.2.2.2. Register Results

The results for the DFM analysis and Modelsim Simulations for the register are given here. In the

Modelsim waveforms, the “Input” node (signal) is denoted as “D”, while the “Output” is denoted as “Q”.

Table 40 and Figure 73 show the results for a register where the Output = “1”. The simulation in Figure

73 had the top event “Reg_Out = 1”, for one time step. The state “R_E” refers to a rising edge clock

trigger, “Normal” clock period means that there is no clock delay, and the “Synch/Asynch” refers to

synchronous and asynchronous processes, respectively. The time steps in this DFM model were taken as

one time step being equal to one half of the clock cycle. In Fig. 7 (Implicant 26), it is seen that having an

Input of “1”, with the Clock_Enable signal of “1” and a rising edge clock and trigger will produce the

“Output” of “1”, when it is not pre-empted by other inputs such as the Reset, Preset or Load signals. The

Modelsim results will not explicitly show values for the “Clock_Edge_Trigger”, and will not explicitly

state if the “Clock_Period” is correct, it will just show what the value is.

Table 40: Prime Implicant for DFM FPGA Register Analysis (Top Event “Output = 1”)

Implicant 26
(Node)

Implicant 26
(State)

Implicant
26

(Time Step)

Clock

Clock_Period
Clock_Edge_Trigger

Clock_Enable

DATA_Input
Input

Preset_Signal
Prev_Clock
Prev_Input

Preset_Signal
Reset_Signal

+

Normal
R_E

1

No_DATA
1

0
0
0
0
0

-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1

221

Figure 73: ModelSim Results for FPGA Register Analysis (Top Event “Output =1”.

DFM can also be used to identify possible failure and/or undesired outputs. This could include unknown

values (“X”), incorrect outputs, or incorrect clock transitions, as seen in Table 41 and Figure 74. In Table

41, the top event was set to “Output = X”, to simulate an error/failure state with the register. In this

case, an “Input” of “X”, along with the “+” “Clock” transition on a rising edge clock, caused the “X” state

to be passed to the output. The “Input” is not overruled by a “DATA”, “Preset” or “Reset” signal (both

“Reset” and “Preset” signals are in the error state of “X”, so that do not pre-emp the “Input”). The

Modelsim results in Figure 8 confirm this, where the inputs of “Reset” = “X”, “Preset” = “X”, “CE” =”1”,

and “Input” = “X”, produce an “Output” of “X” (as discussed in sub-section 4.1.2.5) when the clock

transitions on a rising edge.

Table 41: Prime Implicants for “Top Event = X”

Implicant 16
(Node)

Implicant 16
(State)

Implicant 16
(Time Step)

Clock
Clock_Period
Clock_Edge

Clock_Enable
DATA

DATA_Input
Input
Preset

Prev_Clock
Reset_Signal

+
Normal

R_E
1
0

No_DATA
X
X
0
X

-1
-1
-1
-1
-1
-1
-1
-1
-1
-1

222

Figure 74: ModelSim results for FPGA register analysis (Top Event "Output = X")

4.2.2.3. Logic Block Results

The individual logic block models (“AND” and “OR”) were analyzed, with the results shown in this sub-

section. The analysis for the “AND” gate CLB was run for two time steps, with the Top Event set to

“Logic_Block_Out (“LB_OUT”) = 1” at time steps “0” and “-1”. This produced 23 PIs, with two of them

shown here. In Table 42, it is seen that the 4 inputs to the LUT (“In_1” … “In_4), are all in state “1”,

which could produce a value of “1” from an “AND” gate. When the clock transitions (“+”), and the

Enable signal is “1”, the “AND” value of “1” is loaded into the register. The register value is then selected

by the Mux Select signal (“Mux_S”), which is then output from the logic block at TS = -1 and TS = 0,

respectively. The corresponding Modelsim results are seen in Figure 75. It is seen that all four input

signals are at a value of “1”, the “Enable” is at “1”, the “Reset” is at “0”, so when the “Clock” transitions

to “1”, the “LB_Out” transitions to “1” (due to “AND” logic), and stays there for the next clock cycle. As

the “Mux_S” signal is “0”, the register is not bypassed.

Table 42: Prime Implicant for DFM FPGA Logic Block Analysis (Top Event “Logic Block Out = 1”)

Implicant 9
(Node)

Implicant 9
(State)

Implicant 9
(Time Step)

In_1
In_2
In_3
In_4

AND_Out
Clock

Prev_Clock
Clock_Enable
Reset_Signal

Clock
Mux_S

Prev_Clock

1
1
1
1
1
+
0
1
0
1
0
+

-2
-2
-2
-2
-2
-2
-2
-2
-2
-1
-1
-1

223

Reset_Signal
In_1
In_2
In_3
In_4

0
1
1
1
1

0
0
0
0
0

Figure 75: ModelSim results for “AND” logic block “Top Event = 1 at TS = 0 and TS =-1”

When discussing the “OR” gate CLB, an inductive analysis of one time step was chosen, with the results

seen in Table 43. It was seen that each input was assigned a different logic state. Due to the “OR” gate

and the 1164 definition, the output of the “OR” gate is a “1”. The value is then stored in the register, as

the “Enable” signal is “1”, “Reset” signal is “0” and the clock transitions on the rising edge (“+”). This

value is stored in the register for one time step (stored at TS = 0), due to the “MUX_S” value being “0”.

The signal stored in the register is then output at the next time step (TS = 1), making the CLB output

value equal to “1”. The Modelsim results for this simulation are shown in Figure 76. The “Reset” signal is

“0”, “Enable” signal is “1”, and the “Mux_S” signal is “0”, the register is used again. The inputs this time

include several potential error states (“U” and “X”), which eventually resolve to “1” due to “OR” logic

when the clock transitions (as discussed in sub-section 4.1.2.5).

Table 43: Sequence for “OR = 1” Inductive Analysis

Sequence 3
(Node)

Sequence 3
(State)

Sequence 3
(Time Step)

In_1
In_2
In_3
In_4

Mux_S

1
0
U
X
0

0
0
0
0
0

224

Clock_Enable
Clock

Reset_Signal
Logic_Block_Out

In_1
In_2
In_3
In_4

Mux_S
Clock_Enable

Clock
Reset_Signal

Logic_Block_Out

1
+
0
0
1
0
U
X
0
1
1
0
1

0
0
0
0
1
1
1
1
1
1
1
1
1

Figure 76: ModelSim Results for “OR” Logic Block Inductive Analysis

4.2.2.4. Platinum Signal Compensator Results

The results for the DFM analysis and Modelsim Simulations for the platinum signal compensator are

presented here. The models were run for the Top Events of “Trip” and “Total Flux High”, and “No Trip”.

In Table 44, it is seen that all of the system components are functioning correctly, except in one

instance. The clock transitions “+”, the “Reset” signal is “0”, and the “Clock Enable” signal is “1”,

allowing the new (correct) values to be output from the registers. However, it was seen that the value of

“D” in the state space model was higher than it should be, causing the value of “Phi” to be above the

setpoint. A second input also read high (IV_3), causing the system to trip.

A similar implicant is shown in Table 45, however in this case the “D” value does not affect the top

event. In this case, the “Trip” signal reads “0”, in part due to an error with the “Input_Voltage”, which

225

has a value of “X”. The other nodes/states were the same in the run shown in Table 45 as the run shown

in Table 44, so only the differing states were included in Table 45.

Table 44: Implicant for “Trip” and “Total Flux High”

Implicant 11
(Node)

Implicant 11
(State)

Implicant
11

(Time
Step)

Clock
Clock_En_State
Clock_En_Sig
Clock_Period
D
I(k)_2
I(k)_3
Input_Voltage
Prev_Clock
Prev_Input_1
Prev_Input_2
Register_1_Out
Register_2_Out
Clock_Period
D
Phi
I(k)_2
I(k)_3
IV_3
Input_Voltage
Register_1_Out
Register_2_Out

+
1
En_1
Normal
D_High
I(k)_2_Correct
I(k)_3_Correct
Correct Voltage
0
Correct_Input
Correct_Input
Reg_Input_Correct
Reg_Input_Correct
Normal
D_High
Total Flux High
I(k)_2_Correct
I(k)_3_High
High_Voltage_3
Correct_Voltage
Reg_Input_Correct
Reg_Input_Correct

-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
0
0
0
0
0
0
0
0

Figure 77: ModelSim results for “Trip” and “Total Flux High"

226

Figure 77 shows the Modelsim results for Table 44. The high value for “D” causes the flux to read “High”,

and assist in causing a trip (false alarm), when one of the other channels also denotes a trip. In this case,

the Modelsim results do not specifically show the value for “D” (internal signals are not always

monitored). However, it is seen in the Modelsim results that the Flux value (“Out1”) is higher than it

should be, for the given inputs. Figure 78 gives the simulation results for Table 45, where it shows “No

Trip”, due to some failure with the input. The “Input_Voltage” node (“In1” in Figure 71) has an input of

“X”, which points to some form of input failure, including those from other parts of the system (as

discussed in sub-section 4.2.1.5). This leads to the value of “Phi” to also be “X”, as seen in “Out1”. This

causes the 2oo3 logic to return a value of “0”, and the “Trip” value is seen as “0” in the figure. This

would have the potential to miss a trip, if the value for that input was supposed to be high enough.

Table 45: Implicant for “No Trip”

Implicant 3
(Node)

Implicant 3
(State)

Implicant 3
(Time Step)

Input Voltage
D
I(k)_1
Phi
D

Input Voltage_X
D_Correct
X
Total_Flux_X
D_Correct

-1
-1
0
0
0

Figure 78: ModelSim results for “No Trip”

It should be note that the “X” value is considered to be a “metalogical” value, and is not a

true logical value like “0” and “1” [41]. It is intended for use in simulation only, and would

227

not occur during actual hardware synthesis. In the case of an actual NPP safety system, if

the value of the neutron power/flux was actually unknown, safe design principles would

state that the system would actuate a trip, even if it later turned out to be a spurious

actuation.

4.2.3. Conclusions of the DFM and Modelsim Comparisons

In sub-section 4.2.3, DFM was applied to model and analyze important aspects of FPGA-based

systems that could find use in nuclear plant safety and control systems. These aspects included the

underlying IEEE 1164 standard for VHDL, the use of Registers (D Flip-Flops), Logic Blocks and an

implementation of a FPGA-based dynamic signal compensator and trip logic system. The analysis

results were compared to the Modelsim simulations of the synthesized (where possible) VHDL code,

which confirmed that DFM was able to correctly model the FPGA logic and properties, making DFM

a potential option for the modelling and simulation of FPGAs and FPGA-based systems. With the

effectiveness and suitability of DFM confirmed for modelling basic FPGA logic, components and test

systems for generic failure modes, the next phase of the research work involved applying DFM to a

more complex test system, using specific failure modes for FPGA-based systems. However, first

detailed failure mode information for FPGA-based systems must be realized.

228

4.3. Preliminary DFM and FTA Comparisons

With effectiveness and suitability of DFM for FPGA-based systems determined, and the requisite FMEA

data composed and categorised in a useful fashion, the next phase of the research work was to compare

DFM and FTA, for a more complex and realistic FPGA-based test system. The information detailing the

construction of the models, and the results from the analyses will be detailed in this section. This work

was accepted for publication by the journal “Reliability Engineering and System Safety” [208].

4.3.1. Reliability Analysis Methods and DFM/FTA Comparisons

The reliability analysis methods chosen for this research were Fault Tree Analysis (FTA), and the Dynamic

Flowgraph Methodology (DFM). In order to perform the comparisons, the appropriate software had to

be used. There are a number of software packages that can perform FTA. The FTA software selected for

this paper is known as the CAFTA (Computer Aided Fault Tree Analysis) software package that is

available from the Electric Power Research Institute (EPRI). The CAFTA software tool has seen extensive

use in the nuclear industry [209]. Additionally, CAFTA has been used by the aerospace and chemical

process industries, including being used by NASA [209]. With regards to DFM modelling, there are few

choices when it comes to analysis software, so the Dymonda software from ASCA Inc. was selected.

4.3.2. Software Calculation Methods

In terms of FTA, the analysis done by CAFTA is relies on the “MCSUB” approximation method to

determine Top Event probabilities [98]. A second calculation method, known as the Direct Probability

Calculator (DPC), is available with CAFTA. DPC is used to calculate exact Top Event probabilities [98].

While the CAFTA manual does not explicitly detail the quantification used by DPC, it does state that it

calculates the upper and lower bounds during the TE calculation, making it appear to function similarly

to the Inclusion-Exclusion principle. Tests by the authors of this paper on simple fault trees also support

that conclusion.

229

Regarding DFM, the Dymonda software tool uses the “SUM” approximation [14], while the YADRAT tool

utilizes the “MCSUB” approximation [123]. However, once the individual PIs have been determined, it is

relatively straightforward to apply the “SUM” and “MCSUB” methods to either DFM implementation.

Dymonda also supports an exact quantification procedure, by converting all of the PIs to Mutually

Exclusive Implicants (MEIs), and taking a sum of those MEIs [14].

4.3.3. DFM vs FTA Literature Comparisons

FTA is a well-established reliability method. On the other hand, DFM is a comparatively new and has not

been used as extensively as FTA. Although more research into the use of DFM has occurred in recent

years, there has been little direct comparison between DFM and FTA methods for digital I&C systems

analysis. However, there has been some information published in reports from the US NRC. One

comparison was performed using a digital Feedwater Controller, similar to the actual control used in

certain US NPPs. The results for the traditional methods were published in NUREG/CR-6997 [27], while

the DFM results were published in NUREG/CR-6985 [12]. It was seen in NUREG/CR-6997 and NUREG/CR-

6985 that DFM and FT were both able to determine the MCS/PI that had the highest probability, and

both reports state that there were additional PIs found using DFM[12,210]. NUREG/CR-6985 refers to

these PIs as “Risk Relevant” (as opposed to “Risk Significant)”, however it does not define what

constitutes “Risk Relevant”, or how it differentiates from “Risk Significant” [12]. Additional statements

given in NUREG/CR-6901 suggest that using Fault Trees and Event Trees overestimate the predicted Top

Event frequencies, however there are not specific examples given in that report [8].

4.3.4. FPGA-Based Test System for DFM/FTA Comparisons

The test system for this paper was a generic one-trip parameter, one channel FPGA-based logic loop for

reactor trips, developed using a single FPGA chip. It was developed with a reference to the EPRI TR-

109390 document, and Westinghouse AP1000 Chapter 7 documentation, both of which are publically

available [190,211]. A description of the test system is given in this sub-section.

230

4.3.5. Fault Tolerant Design

Figure 79: High level block diagram for the one-channel FPGA-based test system

The block diagram for the total system model was created using Microsoft Visio, and is shown in Figure

79. As seen in Figure 79, the test system consists of one channel, using a single trip parameter, utilizing

Triple Modular Redundancy (TMR). The use of this configuration was done for the purpose of reliability,

as it has often seen use in the fault tolerant design of FPGA-based systems in aerospace applications to

protect against radiation-induced soft errors [171]. This fault tolerance method is also suggested in

Section A.1.4 of IEC 61508-7 [133]. The three circuits are referred to as TMR Circuit “A”, TMR Circuit “B”

and TMR Circuit “C”, respectively. It should be noted that additional fault tolerant methods for FPGAs

were discussed in sub-section 4.3.7, and generic fault tolerant methods are widely discussed in the

literature [212,213].

231

4.3.6. Subsystem Descriptions

In the test system, each of the TMR circuits contains three subsystems; Sanity Check (SC), Parameter

Calculation (T Setpoint), and the Comparator (COMP). A fourth subsystem, the Analog-to-Digital

Converter (ADC), is considered outside of the TMR configuration, as seen in Figure 1. This gives a total of

four unique subsystems in the test system. Figures 80-83 present a close-up view of the ADC and each of

the sub-systems inside one of the parallel circuits of the TMR configuration.

The Parameter Calculation could represent several different trip parameters, such as temperature,

pressure, neutron power, etc. For this paper, the Parameter Calculation was taken as an

Overtemperature (OT) trip parameter, denoted as “T Setpoint Calculation” in Figure 79. The calculation

for the Overtemperature T Trip Setpoint (TSP) requires information about the average temperature

(Tavg), and also requires information about pressure and neutron power, so those measurements were

included for the purpose of the TSP calculation. This would amount to 3 unique input measurements.

However, as only the T measurement is used to determine if a trip occurs (it is the only measurement

used in the “Comparator” sub-system), there is said to be 1-trip parameter (T measurement). The

single parameter was used for demonstration purposes, due to the computational intensity of DFM, to

ensure the system simulation would resolve in a reasonable time frame. In Figure 79, the pressure (P)

and neutron power (), were represented by a single input, to simplify the figure. A discussion of each

sub-system is given in this section.

This test system differs significantly from the digital Feedwater System discussed in sub-section 2.3.2.9.

That system took a more macroscopic approach, and analyzed the complete system (computers, pumps,

valves, power supplies, etc.), but did not go into the details at the component level. The research in this

paper focuses on the design of FPGA-based systems, so it considers the individual registers, muxs,

decoders, comparators, interconnects, logic gates, and the failure modes that would affect those

components. The DFM and Fault Tree models were built to include every component and every state of

those required to produce the desired Top Events.

232

4.3.6.1. Analog-To-Digital Conversion (ADC) and Sanity Check

These two sub-systems were the smallest of the four, so they were included in one flowgraph model

and accompanying block diagram. ADC is important to the FPGA system, as the signals that are input

from the NPP sensors (in this case temperature readings) would be analog signals, and require

conversion to digital signals for FPGA processing. After the signal conversion, the digital signal would be

sent to the Sanity Check (SC). The Sanity Check includes a check against minimum and maximum values

(as was done in this paper), and can include additional checks, such as rate checks. This check is done to

ensure that only realistic values are passed on to the Comparator sub-system. Sanity checks would be

applied to all input parameters in a real system. However in the FTA and DFM analyses in this paper, the

modelling of the SC was restricted to the Temperature parameter, as it was the actual parameter used

to trip the system. It was assumed for this test system the Sanity Check for the other input parameters

would be applied by their own, separate Sanity Check circuits, so the inputs to the T Setpoint

Calculation is the output from the Sanity Check from those parameters. This was done to reduce the

computational intensity, by removing duplicate SC sub-components, as the SC model would be identical

for each parameter it was applied to.

233

Figure 80: ADC and Sanity Check Block Diagram

There are high and low limits, and if either check is failed, then the “Range Check” is failed, and a value

of “1” is passed to the Multiplexer (Mux). The Mux then decides on which output value(s) will be sent to

the Comparator and the T Setpoint Calculation. If the “Range Check” is passed (output from the OR

gate is “0”), then the current signal is sent to the “P Register” input of the Comparator and T Setpoint

Calculation. If the “Range Check” fails, then a previous, correct value stored in the register will be passed

to the Comparator and T Setpoint Calculation instead. A block diagram for the ADC and sanity check

models is seen In Figure 80. In the model the ADC and Sanity are not part of the same block, however

they were included in the same block diagram in Figure 80 to simplify the test system diagram.

234

4.3.6.2. Trip Parameter (Over Temperature) Calculation

The OT trip parameter (T) exists to protect the reactor core from the departure from nucleate boiling,

based on coolant temperature, power, pressure and axial power distribution. This trip will occur if the

transient is slow in comparison with the transient piping delays between the temperature detectors and

the core, and if the pressure value is between the high and low pressure trip setpoints. The T setpoint

is calculated as follows [190]:

 0 .

/ (

) () ()1 (52)

The reactor is tripped if:

 ()

()
 (53)

Here, K1, K2 K3 are pre-set constants, , , are time constants to compensate for instrument,

piping delays and lead-lag filters (lead-lag compensators). The terms and represent the Pressurizer

pressure and normal operating pressure, respectively. With regards to the temperature parameters,

is the indicated at rated thermal power, is the average temperature of the reactor coolant, and

 represents the nominal at the rated thermal power. The final term (()), is a function

based on the difference in the neutron flux between the flux signals of the upper and lower ionization

chambers. The full definition of each parameter and constant can be found in Reference [190]. The

output of the setpoint calculation is then sent to the “Q Register” input of the Comparator.

It should be noted that the average value of the T measurement (TAvg) is needed to calculate the T

setpoint. This TAvg value would be calculated using four separate loops (with each loop containing 2 hot

leg measurements and 1 cold leg measurement) [29]. As the test system in this paper was designed to

be a simplified version of a realistic test system, the average value was not presented, and the system

was assumed to use one loop (one T measurement). Therefore, the T measurement is passed from

the Sanity Check to the Comparator and the T Setpoint Calculation. This simplification was employed

for testing purposes, to ease the computational burden when using DFM.

The lead-lag filter is shown in a separate block diagram model for clarity. In order for the filter to be

used on an FPGA, the analog transfer function must be digitized (transformed to a discrete-time transfer

function). The terms C1, C2 and C3 are the coefficients of the z transform variable in the discrete time

transfer function. This compensator is included to compensate for piping and instrument delays in the

235

system. The block diagram model for the filter is the representation of a digital lead-lag filter Register

Transfer Level (RTL) netlist. The block diagrams for the OT parameter calculation and lead-lag filter are

shown in Figures 81 and 82, respectively.

Figure 81: Overtemperature Calculation Block Diagram

236

Figure 82: Lead-lag filter block diagram (part of OT calculation)

4.3.6.3. Comparator

The final component in the test system is the Comparator. The Comparator consists of two input

registers: “P” and “Q”. The “P” register receives the input signal from the ADC and Sanity Check block,

which represents the measured signal from a temperature sensor. The “Q” register stores the

 , which was calculated in the OT parameter block. The value of the “P” register is compared

against the setpoint stored in the “Q” register. If the “P” value is greater than or equal to the “Q” value,

a trip signal will be sent to the “Trip Register” to be stored, and then output to the voting logic. The

block diagram for the Comparator model is shown in Figure 83.

The Decode block in the Comparator diagram allows for the generic Comparator to be used for multiple

trip conditions. The setpoint in this paper used a “greater than or equal to condition”, however other

trip conditions could require a “less than or equal to” condition. The decoder block allows for different

trip conditions to be used with the same generic Comparator component. For the purpose of this

research, only the trip condition in Equation 52 is considered.

237

Figure 83: Comparator Block Diagram

4.3.7. Failure Modes

There are a number of potential failure modes that could affect the FPGA-based safety system, although

not all of them are unique to FPGAs [126]. It should be noted that only failures that occur during the

“Operation” stage of the lifecycle were considered here, as it was assumed that all failure modes that

could be introduced in the design stage were identified and eliminated. The failure modes that were

considered largely came from two categories. The first were radiation-induced failure modes, commonly

referred to as Single Event Effects (SEEs). The interaction of ionizing radiation with the semiconductor

material of FPGAs can produce both soft (temporary) or hard (permanent) errors. The other main failure

category was failures due to the aging process.

Aging (wear) effects will eventually damage the hardware in the FPGA, such as destroying the logic gates

or programmable interconnects that the FPGA logic requires. Values for the probabilities of the selected

failure modes were included based on data in the literature for metastability [214], aging failures [160],

SEEs [215,216], ADC failure/stuck input [217] and Electrostatic Discharge (ESD) [176]. Electric Overstress

(EOS) was assigned the same probability as ESD. These references were then used to calculate the

238

Mean Time To Event (MTTE). To incorporate these values into the DFM and FTA models, the MTTE was

transferred into a failure rate (1/MTTE), and the resulting values were used as probabilities in the model

[218]. These numbers are taken as an average from a range of values to be realistic for the purpose of

the failure analysis in this paper. However, as the research is focused on the comparison of DFM and

FTA, the individual probabilities of the failure modes were not the primary concern, as long as those

values were in a realistic range.

The failure modes in this research were restricted to the Comparator and OT subsystems. This was done

to ensure there were a large variety of potential failure modes, however without going to the extent of

making the individual failure modes negligible. Certain failure modes were not considered in this paper.

These include design errors such as logic (programming) errors, as it was assumed that those errors

would be eliminated in the design phase. Errors that affect the clock, such as Hot Carrier Effects (HCE) or

Bias Thermal Instability (BTI) were not discussed at this stage of the research. Common Cause Failures

(CCF) also was not considered, as discussed in sub-section 4.3.8.

A list of all SEE failure modes is given in Table 46, while Table 2 lists the remaining failure modes [141].

The first four rows in Table 47 correspond to aging process failures; while the fifth and sixth rows

represent maintenance (human factor) related failures. Row seven would correspond to a clock/timing

issue, and row eight represents an input failure, due to a malfunctioning ADC. More information on

these failure modes is found in the literature [126].

Table 46: Selected SEE FPGA failure modes

Single Event Upset

(SEU)

Temporary information

corruption in a memory

element (Logic bit flip)

Single Event Disturb

(SED)

Temporary information

corruption in a memory

element (Bit in unknown

logic state)

Single Event

Functional Interrupt

(SEFI)

Corruption of entire data

path and loss of system

operation

Single Hard Error

(SHE)

Permanent state change in

memory element

Configuration Error

(CE)

Permanent logic inversion

Routing Error (RE) SEE-induced interconnect

damage

Single Event Burnout

(SEB)

High-current induced

destructive burnout

Single Event Gate Rupture of the dielectric

239

Rupture (SEGR) material in gates

Single Event

Dielectric Breakdown

(SEDB)

Rupture of the dielectric

material in gates

Table 47: Additional FPGA failure modes

Time Dependent

Dielectric

Breakdown

(TDDB)

Destruction of logic gates and

look-up tables due to dielectric

breakdown

Thermal Cycling

(TC)

Destruction of logic gates and

look-up tables due temperature

cycling

Electromigration

(EM)

Electron flow resulting in the

destruction of interconnects

Stress Migration

(SM)

Thermal-mechanical stress

resulting in the destruction of

interconnects

Electrostatic

Discharge (ESD)

Damage to the FPGA chip or

board due to discharge of static

electricity

Electrical

Overstress

(EOS)

Damage to the FPGA chip or

board due to inadequate

electrical protection

Stuck Input

(Stuck)

Values from ADC input stuck

at “0” or “1”

Metastability

(Meta)

Oscillations between “0” and

“1”, cause “Unknown” value

4.3.8. Common Cause Failure (CCF)

For the purpose of this paper, Common Cause Failures (or Common Mode Failures) were not

considered. As indicated by Figure 79, this is a one-channel, one-trip parameter, TMR configuration. In

the case of CCF, it is used when analyzing failure at the system level, such as the simultaneous failure of

multiple channels. An example would be the failure of multiple channels in a 2oo4 system, where a

single CCF would cause two, three or four channels to fail at once. Therefore, CCF was not considered

at this time to allow for the focus of the research to be on the DFM/FTA comparisons of modelling

failure modes. CCF in digital I&C systems has been identified in the literature as an important area of

future research, and will be specifically considered in future work [127].

240

4.3.9. DFM and FTA Model Construction

While DFM and FTA can be used for similar purposes, the construction of the models used during the

analysis is different for both methods. Additionally, the implementation of the failure modes will be

different for both methodologies, as discussed in this sub-section.

General Model Construction

In the case of DFM, only one model is constructed to represent the entire system. The Top Event(s) for

the analysis are then selected using a state, or combination of states, for the discretized nodes. On the

other hand, with FTA every Top Event will require a separate fault tree to be constructed. As an

example, the two Top Events considered in sub-section 4.3.10 required one DFM model, and two fault

trees (one for each Top Event).

In the actual DFM model, there were 132 total nodes in each circuit, so 396 nodes in the total system (3

circuits). This includes 59 nodes (per circuit) that were source nodes. Each node was discretized into 2-3

states (for the failure modes), and 4 states for the constants, and 5 states for the inputs (as well as the

outputs of the registers). In the case of FTA, each individual node/state combination requires its own

Basic Event. This led to a total of 172 Basic Events in each circuit, or 516 Basic Events for all three

circuits.

The different methodologies also handle the failure modes differently. With DFM, additional nodes were

added, and then discretized to include the relevant failure states, similar to what is shown in Figures 82-

84. These nodes were connected to transfer boxes, to include the effects of the failure modes on the

FPGA components. On the other hand, to include the failure modes in the two fault trees, additional

basic events had to be added.

241

DFM SHE Failure Mode Implementation

To properly model the FPGA system/failure modes, the DFM model included registers, which would

store and output data on clock cycles. A section of the DFM model that focused on the “P” register is

seen in Figure 84.

Figure 84: DFM Model Section for “P” Register

The inputs include the reset (“P_Reset”), load/enable (“PLD”), clock, input signal (“Data_In_P”), and the

signal from the previous time step (“Data_In_P_Prev”). The previous signal is needed, as the register will

only output the new value at the correct clock cycle (it was assumed in this paper that all registers used

a “rising edge” trigger). After the register value is derived, the SHE node (failure mode) was applied. An

example section of the decision table for the register (“P_Input_Register”) is given in Table 48, while an

example section of the decision table for the “SHE” failure (“P_Reg_Out”) is seen in Table 49.

Table 48 provides an example of each of the five outputs (“Out” column) for the “P” Register: “0”,

“High”, “Low”, “OK”, and “X” (Unknown). The “Data” column refers to the register input, with the

“Data_P” column referring to the previous register data. The column “PLD” represents the “Load”

(“Enable”) signal. Lastly, the “-” denotes the “Don’t Care” value.

Table 48: Sample of “P Register” Decision Table

Reset Data PLD Clock Data_P Out

1 - - - - 0

0 High - - High High

0 Low 1 1 - Low

0 OK - - OK OK

0 - - 0 X X

242

Table 49: Sample of “SHE” Failure Decision Table

P_In SHE_P P_Reg_Out

Ok SHE_P_OK P_OK

* SHE_P_1 P_High

* SHE_P_0 P_0

X SHE_P_OK P_X

0 SHE_P_OK P_Low

In Table 49, the “SHE” failure was applied to the output from the “P” Register, which also produces the

five possible output states. It is seen that regardless of what the input value is (“P_In”), the SHE failure

will force the output into either a “High” or “0” state, depending on which bit the failure occurs. It

should be noted that Tables 48 and 49 could have been combined into one larger table, however due to

the number of nodes/state combinations using one table was impractical. Therefore, two separate

transfer/transition boxes were included, one for the register, and one for the SHE failure mode.

FTA SHE Failure Mode Implementation

To represent the same SHE failure as seen in this sub-section with a fault tree requires a much different

procedure. An example of a section of the overall fault tree is given in Figure 85.

Figure 85: Fault Tree for the “High” Output of the “P” Register

Figure 85 shows the different basic events required to cause a “High” output value from the “P” register.

As with DFM, the “SHE_1” state (SHE forcing a significant bit to a value of “1”) will always cause a high

PLD_INPUT_REG_High

PLD_INPUT_REG_HIGH

9.994E-01

PH1

9.994E-01

PH3

1.000E+00

CLock Signal is "0"

CLK_0

PLD In is "High"

P_IN_HIGH

P Load Signal is "0"

PLD_0

PLD Clear is "0"

PLD_CLR_0

Previous PLD in is "High"

P_IN_PREV_HIGH

SHE Does not Occur

SHE_P_OK

PH2

4.994E-01

Clock Signal is "1"

CLK_1

PLD Clear is "0"

PLD_CLR_0

PLD In is "High"

P_IN_HIGH

P Load Signal is "1"

PLD_1

SHE Does not Occur

SHE_P_OK

SHE "1" Occurs

SHE_P_1

243

value. In the case of the fault tree, the derivation of the register value and the application of the SHE

failure mode were done in one tree. This is because the FTA model used several smaller fault trees, as

opposed to one/two larger decision tables, making it a more reasonable alternative. The values for the

previous inputs were kept in the fault tree, and may work for one time step, however this model runs

into difficulties when multiple time steps are concerned, as discussed in sub-sections 4.3.11.3

DFM and FTA Model Differences

There were two significant differences between the fault tree and DFM implementations. The first

difference is that the each of the possible five output states requires its own fault tree, so five fault trees

were created to represent the “P” register output (as well as outputs from other registers), while this

could be done in DFM in using one transition box. Overall, the two main fault trees that represented the

two Top Events were constructed from sets of smaller fault trees, such as the one seen in Figure 85.

Secondly, each of the fault trees may not contain the same failure mode information (states). This may

cause incorrect MCSs, as the different states would be mutually exclusive.

For example, in Figures 84 and 85, the “SHE” failure mode was pictured. The node representing the

“SHE” was discretized into 3 states, “SHE_1”, “SHE_0”, and “SHE_OK”, with the last one indicating that

no “SHE” failure occurred. In DFM, the analysis will not allow the node to be in two different states

during the same time step, for the same PI. This would violate one of the “physical consistency rules”,

which underpins the DFM calculation. In the case of FTA, there is no such “physical consistency rule”,

which could lead to mutually exclusive Basic Events existing in the same MCS. Taking the “SHE” example,

it could be possible to have more than one of the three states (Basic Events) in the same MCS,

depending on how the fault tree was constructed, and the failure modes that were included. This

potential issue is not limited only to the failure modes, and could affect other nodes as well, such as the

clock, reset or load/enable signals. This potential issue is further discussed in sub-sections 4.3.11.3

244

4.3.10. Test System Results for DFM/FTA Comparisons

There were two separate test runs carried out for both the DFM and FTA methods. The first run was for

a Top Event of Comparator Output “1”, to simulate a “Spurious Trip”. The second run for a Top Event of

Comparator Output “0”, to simulate a “Missed Trip” or “Fail to Trip”. Both of these Top Events would be

considered as system failures, so both were analyzed during this research. Initial conditions for the DFM

and FT models were used, to ensure that only the system failures were being modelled. For example, a

high input from the “P” register should cause a system trip, so a Comparator Output of “1” would not be

a failure in that instance. For this research, the initial conditions were used to see when a high “P” value

did not result in a system trip, which would count as a “Missed Trip”.

Sub-section 4.3.10.1 presents the results for a simple test case using a dynamic component known as a

Register (sometimes referred to as a D Flip-Flop). In this case, the register output was looped back into

the register input. The results from the CAFTA analysis are given in Sub-section 4.3.10.2, including a

discussion of a possible shortcoming with FTA. Sub-section then presents the results from the Dymonda

models. The Top Event probabilities are on a per demand basis, as reactor trip systems are actuated on

demand. The probabilities shown for the literals in sub-section 4.3.10.3 represent the failure probability

at that time step. However, as the analysis was assumed to run over a short time span (i.e. on the order

of FPGA clock cycles, such as the time taken for the system to react to an input signal), any time-

dependant changes in the failure probabilities would be negligible. Therefore, the probabilities were set

as a constant value. Additionally, as one time step was used in the analysis, the probability for each state

did not have the ability to change. It should be noted that for all test runs, the truncation limit was 1.0E-

12.

4.3.10.1. Register Results

As previously discussed, the register is the basic storage element of an FPGA, and is required for logic

that contains control loops and feedback [202]. This component is largely responsible for causing the

time dependant behaviour in the test system examined here. Before comparing the results from the

larger test system, it is prudent to compare the results from a simple register, with an injected failure

mode. An SEU was used, to compare how DFM and FTA would handle the combination of data inputs,

“Clock”, “Reset”, and “Enable” signals, and the SEU. The Top Event that was considered was the Register

in a “High” state, and was run for one time step and two time steps (in the DFM model). This Top Event

245

could be due to inputs to the register also being in the “High” state, or it could also be due to the SEU.

The results are shown in Table 50 and Table 51, respectively. With regards to Table 51, the row labelled

“Time Steps” denotes that the model was run twice. The first run was performed for one time step, and

the second run was performed for two time steps.

Table 50: DFM Results for Register with SEU

Time Steps 1

Method SUM MCSUB EQ

Probability 2.610E-01 2.377E-01 1.890E-01

PI # 13 N/A N/A

Time Steps 2

Method SUM MCSUB EQ

Probability 1.00 7.631E-01 7.201E-01

PI # 25 N/A N/A

Table 51: FTA Results for Register with SEU

Method CSG DPC

Probability 2.38E-01 1.799E-01

MCS # 13 N/A

In the case of the run with two time steps, it is seen that the “SUM” calculations returns a value of

“1.00”, which would suggest a 100% chance of failure. However, this is a known issue with the “SUM”

approximation, as it can result in a Top Event probability that is greater than or equal to 1 (the Dymonda

tool will automatically truncate the result to “1.00”). It is seen that the “MCSUB” and “EQ” methods

return values that are significantly less than a probability of 1. For this reason, the “MCSUB” method is

often preferred to the direct summation. The full DFM and FTA results for this Register model are listed

in Appendix I. The FTA and DFM results for the larger models, such as those in sub-sections 4.3 and 4.4

were too large to be shown in this document.

4.3.10.2. CAFTA Results

The results from the CAFTA analysis for the “Missed Trip” and “Spurious Trip” Top Event are presented

here. The data collected including the number of MCS, the Top Event Probabilities from the “CSG” and

246

“DPC” calculations, and the analysis time for the DPC method. Table 52 shows the results for the

“Missed Trip” Top Event, and Table 53 presents the results for the “Spurious Trip” Top Event.

Table 52: FTA Results for “Missed Trip” Top Event

CSG DPC MCS # Analysis
Time (DPC)

4.20E-04 1.09E-05 2535 7.5s

Table 53: FTA Results for “Spurious Trip” Top Event

CSG DPC MCS Analysis
Time (DPC)

3.33E-04 1.60E-06 2457 13.0s

An issue with FTA was seen when inspecting the CAFTA results. The registers, such as those in the

Comparator subsystem rely on clock signals to capture and store the new input data. The clock signal

has an obvious time dependency, and will cycle between the “0” and “1” states. Depending on the other

conditions (such as “Reset”, “Enable” or input signals), the output value comes when the clock is at “0”

(old value), or a new value when the clock is transitioning from “0” to “1” (known as a “rising edge

trigger”) [202]. This entails that the register output could occur with the clock in either a “0” or “1”

state, but not with the clock in both states at once. CAFTA is not fully capable of discriminating between

clock cycles, and is such, certain MCS include the clock in state “0” and “1”, which is not possible. The

information pertaining to this issue is seen in Table 9. The “% Change” column refers to the percentage

of the total number of MCS that is represented by those impossible MCS.

Table 54: Impossible CAFTA Minimal Cut Sets

Model Probability MCS # % Change
Missed

Trip
1.67-04 1260 39.86

Spurious
Trip

1.31E-04 1138 39.27

As seen in Table 54, the overlap of clock states represents a significant percentage of the total Top Event

probability and a large number of MCS. This makes using FTA for FPGA-based systems (at this level of

extrapolation) problematic, as it will overestimate the Cut Sets and the Top Event probability. A

247

potential way to alleviate this issue is to use two runs, one for each clock state. The results from those

analyses are seen in Table 55

When comparing the results from Tables 54 and 55, it is seen that considering only one clock state has a

sizeable effect on both the number of MCS, and the “CSG” Top Event probability, however the “DPC”

probability is very similar to the clock state “1” run, when compared with Tables 52 and 53. As expected,

the runs with clock state “1” have a much larger representation, as the clock transition from “0” to “1” is

when the new data will be stored in the register. This overlap of clock states is not a concern when using

DFM, as the clock can be forced to cycle (“0” -> “1” -> “0” -> “1”), and will not result in multiple clock

states in the same time step.

Table 55: FTA Results for Individual Clock States

Model Clock
State

CSG DPC MCS

Missed
Trip

1 6.67E-05 1.09E-05 1079

Missed
Trip

0 1.27E-08 4.25E-09

9

Spurious
Trip

1 1.59E-06 1.35E-06

663

Spurious
Trip

0 2.03E-06

7.10E-07

69

4.3.10.3. DFM Results

The test system was then run using the Dymonda software, to obtain the DFM results. The “Missed Trip”

and “Spurious Trip” Top Events were considered again, with the results given in Table 56 and Table 57,

respectively. Each table contains the total number of PIs, the Top Event probabilities calculated from the

“SUM” “MCSUB”, and “EQ” methods, and the analysis time. In both cases, the models were run for one

time step. In Tables 56 and 57, it was seen that the “Sum” and “MCSUB” methods produced almost

identical results, so they were grouped together in the same column.

248

Table 56: DFM Results for “Missed Trip” Top Event with one Time Step

SUM/MCSUB EQ PI # Analysis
Time

1.556E-05 1.554E-05 53 1.6s

Table 57: DFM Results for “Spurious Trip” Top Event with one Time Step

SUM/MCSUB EQ PI # Analysis
Time

3.117E-05 3.116-05 63 1.7s

It was seen that in both cases, the “SUM” and “MCSUB” values were almost identical, and were the

same past 3 decimal places, and as such were grouped together. As expected, the “EQ” result is slightly

lower, as it only considers MEI.

4.3.11. Discussion of Test System Results for DFM/FTA Comparisons

This section presents a detailed discussion of the differences between the DFM and FTA analysis results.

Sub-section 4.3.11.1 compares and contrasts individual MCSs and PIs; sub-section 4.3.11.2 presents a

comparison of the Birnbaum Structural Importance (BSI) method; sub-section 4.3.11.3 discusses

potential reasons for these differences.

4.3.11.1. Test System Results for DFM/FTA Comparison

The comparison between the actual MCS and PIs is an important consideration when comparing DFM

and FTA methods. It was seen that there were some similarities and some differences in the PIs and MCS

that were considered. A selection of those is presented in this section. Here, TMR Circuit “B” and TMR

Circuit “C” refer to the redundant circuits in the TMR configuration. The circuits were simplified for “B”

and “C” in the data tables for brevity.

Dymonda and CAFTA return an identical PI/MCS to the PI shown in Table 58. In this case, a SEGR event

happens, causing damage to an important logic gate in the FPGA, resulting in the system failing to trip.

249

The CAFTA result contains a higher probability, 5.93E-06, due to the way the system probability is

calculated. A differing PI/MCS is seen in Table 59.

Table 58: Similar DFM PI and CAFTA MCS for “Missed Trip”

Node State Time Step Prob
Clock 1 -1 N/A

SEGR SEGR_Fail -1 5.95E-04

SEU (T) No SEU 0 9.993E-01

TMR
Circuit “B”

0 0 2.285E-03

PI Probability: 1.359E-06

In Table 59, one of the PI that occurs when the clock is in state “0” is seen. The DFM analysis returns the

simple PI, with only 4 entries, with the Missed Trip due to an SEU in the “Trip Register”, which is the final

register in the system that stores the trip signal. The node “Trip_Reg (Prev)” holds the previous value of

the “Trip Register”, delayed by one time step. The CAFTA analysis however, retains many more entries in

the MCS that contain both “Clock 0” and “SEU T” states, which drastically increases the size of the MCS,

and as well as the probability. In that case, the MCS probability is 2.18E-09, close to two orders of

magnitude smaller than the DFM value.

Table 59: Different DFM PI and CAFTA MCS for “Missed Trip”

Node State Time Step Prob
Clock 0 -1 N/A

Trip_Reg
(Prev)

1 -1 N/A

SEU (T) SEU 0 6.53E-05

TMR
Circuit “C”

0 0 2.285E-03

PI Probability: 1.492E-07

Considering the results from the “Spurious Trip” Top Event, it was seen that there were similarities in

the prevalence of the CE failure mode in the Decoder, designated as “CE (D)”. Both methods produced

multiple PI/MCS similar to the one shown in Table 60, containing this failure mode, and it was

consistently ranked near the top of the results. Similarly, both methods ranked the PI/MCS with SHE (P)

250

value of “1”, as the next failure mode most likely to cause the Top Event. This failure mode pertains to a

SHE in the “P” register in the Comparator, causing a bit to be permanently stuck in the “1” state. A

difference in the MCS/PI for this Top Event is shown in Table 61. The DFM results ranked the PI with the

SED failure mode in the “Q” register comparatively high to the CAFTA results. In CAFTA, the SED MCS are

ranked below MCS with other failure modes, such as EOD and EOS, which is not the case in DFM.

Table 60: Similar DFM PI and CAFTA MCS for “Spurious Trip”

Node State Time Step Prob
Clock 1 -1 N/A

Trip Type 00 -1 0.5

CE (D) CE Error -1 5.95E-04

SEDB No SEGR -1 9.94E-01

SEGR No SEDB -1 9.94E-01

SED No SED -1 9.999E-01

SEU (T) No SEU 0 9.993E-01

Circuit “C” 0 0 2.285E-03

PI Probability: 1.514E-07

Table 61: Different DFM PI and CAFTA MCS for “Spurious Trip”

Node State Time Step Prob
Clock 1 -1 N/A

Trip Type 01 -1 0.5

CE (D) No CE -1 9.94E-01

SEDB No SEGR -1 9.94E-01

SEGR No SEDB -1 9.94E-01

SED SED (Q) -1 6.61E-06

SEU (T) No SEU 0 9.993E-01

Circuit “C” 0 0 2.285E-03

PI Probability: 3.36E-09

4.3.11.2. Birnbaum Structural Importance Comparison

The BSI measure, is a structural importance measure (meaning that it does not require probabilistic

information), used to compare the relative importance of components. It was selected for use in this

paper as it is the fundamental importance measure based on which important system information can

251

be revealed. It is the oldest and one of the most well-known importance measures [219]. Additionally, it

is relatively simple to derive a DFM BSI that is analogous to the BSI used in FTA, which has also seen use

with the YADRAT tool at VTT [219]. The BSI measure was used to probe further differences in the results

of the DFM and FTA results, due to the differences in model construction and analysis methods. The

differences in the BSI results are also discussed in this sub-section.

In DFM, the BSI value is calculated as [42]:

⋃

 (54)

Equation 54 entails that the BSI for DFM is the number of PI containing component i divided by the total

number of PI. This works the same way with FTA, except with MCS replacing PI. BSI can be applied to

both the nodes and states, where the BSI for the node is the sum of the BSI for all states in that node. A

comparison of the top 5 nodes and states by BSI for the DFM and FTA are shown in Tables 62-64

(“Missed Trip”) and Tables 65-67 (“Spurious Trip”).

Table 62: BSI Comparison for “Missed Trip” Top Event

Node DFM FTA
(Clock 0)

FTA
(Clock 1)

SEU (T) 0.981 0.889 0.999

CE (D) 0.868 0.889 0.995

SHE (P) 0.830 0.889 0.997

SEGR 0.491 0.889 0.997

SEDB 0.491 0.889 0.997

 Table 63: DFM State BSI Comparison for “Missed Trip” Top Event

State BI

SEU (T) 0.491

SHE_1 (P) 0.339

CE (D) 0.301

SHE_0 (P) 0.113

SEGR/SEDB 0.0377

252

Table 64: FTA State BSI Comparison for “Missed Trip” Top Event

State Clock 0 State Clock 1

SEU (T) 0.889 CE (D) 0.437

N/A N/A SEU (T) 0.311

N/A N/A SHE_0 (P) 0.168

N/A N/A SM 0.152

N/A N/A RE 0.111

Inspecting Table 62 shows a large degree of similarity for the Node BSI. The DFM and CAFTA results had

the same 5 nodes with the highest BSI. It was seen in the CAFTA results that the BSI were consistently

very high, while with DFM, the values dropped off significantly after the first 2 nodes. When considering

the BSI of the states shown in Table 63 and Table 64, there are some larger differences that are seen.

The DFM results rank the SEU (T) state the highest, and the SHE_1 (P) state the second highest, while

the order was reversed with the FTA results.

Both methods include the SHE (P) node, however DFM includes both failure states (“1” and “0”), while

the FTA results contain only the “0” state. It may seem unexpected that the SHE “1” state is so heavily

represented, however BSI does not take into account probability, and in actuality that state does not

contribute as much to the Top Event probability. The SEGR and SEDB failure states are shown in fifth

place, with equal BSI for DFM, however CAFTA ranks the SM and RE failure modes as fourth and fifth,

respectively. The “N/A” values in the table are there as there was only one failure state present in the

“Clock 0” run, due to the small number of MCS.

Considering the “Spurious Trip” Top Event, more differences are seen with the Node BSI, than in the

previous case. Both methods have the failure modes “SEU T”, “CE (D)” and “SHE (P)”, ranked as the top

three, respectively. The difference is seen looking at the next node, where “SED” is ranked next by DFM,

however with FTA the nodes “SEGR” and “SEDB” are ranked next. As in the case of the “Missed Trip”,

the BSI values drop off more quickly with DFM.

Examining the state BSI values, it is again seen that DFM ranks “SEU (T)” above “CE (D)”, while it is the

opposite in FTA. Both methods have states from the “SHE (P)” node, however DFM shows more of the

“0” state (by BSI only), while FTA shows more of the “1” state. The last two states by DFM are “SED”,

and a second “SHE” (P) state (whereas only one states was ranked in CAFTA), while FTA ranked SEB and

RE as fourth and fifth. As evidenced by the information in this section, there are several similarities and

in the BSI measures between the two methods.

253

Table 65: Node BSI Comparison for “Spurious Trip” Top Event

Node DFM FTA
(Clock 0)

FTA
(Clock 1)

SEU (T) 0.981 0.996 0.999

CE (D) 0.825 0.996 0.999

SHE (P) 0.698 0.996 0.998

SED (Q)
(DFM)

0.667 0.98 0.997

SEGR
(FTA)

0.475 0.996 0.998

SEDB
(FTA)

0.475 0.996 0.998

Table 66: DFM State BSI Comparison for “Spurious Trip” Top Event

State BI

SEU (T) 0.603

SHE_0 (P) 0.286

CE (D) 0.222

SED 0.095

SHE_1 (P) 0.095

Table 67: DFM State BSI Comparison for “Spurious Trip” Top Event

State Clock 0 State Clock 1

SHE_1 (P) 0.579 CE (D) 0.479

CE (D) 0.318 SEU (T) 0.378

RE 0.115 SHE_1 (P) 0.135

SHE_0 (P) 0.115 SEB 0.116

SED 0.115 RE 0.114

4.3.11.3. Discussion on Possible Reasons for DFM/FTA Differences

From the results in sub-sections 4.3.10 and 4.3.11, it is evident that there are some differences between

the DFM and FTA methods. This sub-section will discuss some potential reasons for those differences,

which could include the choice of initial conditions, number of set time steps, and the truncation cut-off

value.

254

Initial Conditions

DFM models are often run using initial conditions, for reasons such as reducing computational time,

avoiding impossible PI, or to place the system in a normal operating state before the analysis. The latter

was done in this analysis, as it was assumed that the system was operating normally, when it is

interrupted by the effects of the failure mode(s). The initial conditions (or initial probabilities) would

force the analysis to accept/reject certain nodes and states, reducing the total number of PIs, and

eliminating certain states from the analysis.

Additionally, any nodes that are the outputs of transition boxes need to have nodes defined at the initial

time step (either through initial conditions or set probabilities), or else the Dymonda analysis will

consider all possible states in that node. This is because of the time delay in the transition box, so it is

not able to pass on the value (state) to the node at the initial time, unlike with normal transfer boxes. In

order to ensure that the system was operating normally, the output nodes of the transition boxes

(registers) were set using initial conditions. As only one time step was considered, the calculated values

(states) may not have been passed through the transition box, leaving only the states set by the initial

conditions to be considered in the final analysis. Additional time steps may allow for the calculated

states to be passed through the system, however attempts to do that faced other issues, as discussed

below. Therefore, the use of different initial conditions could affect the number of PIs, as well as which

nodes and states are included or excluded.

Time Steps

Dymonda allows the user to specify the number of time steps in the system. A greater number of time

steps allow one to analyze how the system evolves through time, however the more time steps used can

drastically increase the computational time (known as “state explosion”). State explosion (also referred

to as the “combinatorial explosion of states”) occurs when the state space of a system grows

exponentially with the number of variables (number of nodes and states per node in the case of DFM),

and the interactions of the system components (amount and complexity of transition/transfer boxes in

the DFM model). The use of multiple time steps can grow the state space even more, further

exacerbating the “state explosion” issue, as the critical transition table will expand based on dynamic

node/state/time step combinations.

255

 To avoid that issue, the test system models were run with one time step. More time steps would

generally produce more PIs, potentially matching the number of MCS returned by CAFTA. It is also

possible that using one time step does not allow for a complete description of the test system, based on

the way the current model is built. The system contains multiple registers and feedback loops, so it may

take multiple time steps to completely describe the system, which may produce additional PI.

Attempts were made to run the test system with two time steps, however those runs were unsuccessful.

The analysis would not finish (on the computer that Dymonda was installed on), even over a period of

48-72 hours, including cases when the program crashed. From these attempts, it appears that the test

system may have been too large for Dymonda to analyze for more than one time step.

Retention

The CAFTA Cut Set Generator generally retains many more states than the Dymonda analysis. States

such as the constants in the OT/Filter block were set to have a probability of 1, in order to ensure that

only the failure modes contributed to the Top Event. CAFTA includes many more states in the MCS

results than Dymonda does in the PI results, which leads to a larger number of MCS, with lower

probabilities. This was seen in Table 59 of Sub-section 4.3.11.1, where the Dymonda results only consist

of 4 entries, whereas the CAFTA result contains many more entries, and breaks down that PI into several

MCS, each with much lower probabilities. This could partly explain why CAFTA returns many more MCS

than Dymonda does PI, and yet the “DPC” probabilities are lower than the DFM probabilities.

Circular Logic

Static FTA does not explicitly allow for circular logic to be created in the fault tree (CAFTA includes a

“Circular Logic Check”, which will return an error and disallow the analysis from being performed),

however DFM does allow for it (with time lags). Therefore, the logic loops had to be manually broken, in

order for those events to be included in the fault tree. Besides the registers, which also create time

dependency in the system, there are two large circular logic loops in the test system. The first is in the

SC block, where a (correct) ADC/SC output is fed back into a register for possible use in future time steps

256

in case the Sanity check is failed. The second is in the filter part of the OT block, where the filter output

is fed back into a register, and is then added to the new input value to produce the filter output in the

next time step. Since static FTA cannot specifically model the logic loops, it is another possible reason for

the differences

Truncation Value

The truncation value eliminates the MCS/PI with a probability below that value. This would have

eliminated all the MCS/PI below the 1.0E-12 value. It was seen that the most represented nodes/states

were those in the Comparator subsystem (the last block in the block diagram), so it is possible that

failure modes in the Overtemperature and/or Filter sections were truncated out more that the failure

modes in the Comparator block. It is also possible that, due to the different methods used to find and

calculate the PI/MCS probabilities, the truncation limit eliminated more of the PI from the DFM results,

than MCS were eliminated from the CAFTA results.

Computational Methods

A key issue may the algorithms used by the software tools. Dymonda uses the “method of generalized

consensus” on a “critical transition” table, in order to determine the Prime Implicants [93]. On the other

hand, there are several different algorithms that can be used to find the MCS from Fault Trees, including

MOCUS, PREP, ELREFT, etc. [85]. In complex, dynamic systems, the algorithms used by the tools could

return different results.

4.3.11.4. Overall Difference

Sub-sections 4.3.11.3 discussed some of the potential reasons for the differences in the results. At this

stage of the research work, it is difficult to pinpoint the exact reasons for these differences. The test

system was large (numerous nodes/states), which necessitated the use of initial conditions and

257

prevented the system from running for multiple time steps. From the preliminary analysis the, major

contributors appear to be:

1.) Initial conditions: These will enforce restrictions on the system analysis.

2.) Time steps: FTA cannot include time steps, while DFM will propagate the analysis for time steps

“-1” to “0”.

3.) Circular Logic: FTA cannot include the control loops that DFM does.

4.) Algorithms: Overall algorithms and computational implementations are different.

Future work involving additional time steps and different initial conditions needs to be performed, in

order to confirm the main contribution(s) to these differences.

4.3.12. Conclusions from the Preliminary DFM/FTA Comparisons

This part of the research program provided a preliminary comparison between DFM and FTA for the

purpose of reliability modelling of FPGA-based I&C systems. It considered the Top Event probabilities,

MCS/PI and Birnbaum Structural Importance measures. Examining the test system, it was found that

there were some similarities in the probabilities, PI/MCS, and BSI measures, however several differences

were seen as well. Several potential reasons for the differences are also discussed, such as the use of

initial conditions, time steps, and truncation values. Certain issues with the different methodologies

were demonstrated during this research. A potential issue with FTA is that static Fault Trees cannot

handle the oscillating clock signals leading to impossible MCS being generated, however DFM is able to

model the oscillating clock. With regards to DFM, it was seen that it may not be able to solve the large

model in a reasonable time without the use of initial conditions, which could affect the accuracy of the

results. FTA could compute the Top Event quickly, even for the full system model.

Overall, this leads to two important topics for advanced comparisons. The first, is a more in-depth look

at the underlying algorithms behind DFM and FTA. The second, being DFM/FTA comparisons for a test

system that is run more than one time step. These two aspects are discussed in sub-section 4.4.

258

4.4. Advanced DFM and FTA Comparisons

The comparisons between DFM and FTA made in sub-section 4.3 discussed some of the potential

reasons for the differences in the analysis results returned by those two methodologies. This section

delves deeper into one of those reasons, namely the way the DFM and FTA algorithms handle the MVL

when computing the MCS/PIs. When considering a small system with only one time step, it was seen

that their results were very similar, however there was a noticeable change when multiple time steps

were used. Additional comparisons will include modelling a smaller FPGA-test system for multiple steps

with DFM, to provide more insight into the effect of the dynamic behaviour on the differences between

DFM and FTA results.

4.4.1. Theoretical DFM and FTA Comparisons

In order to properly assess the reasons for the differences in the DFM and FTA results obtained in in

previous research, a detailed comparison of the underlying theory is discussed in this section. This

involved applying DFM and FTA to simplified test systems, and comparing the analysis process and

results.

4.4.1.1. Static Comparisons

In regards to the “static” system comparisons, these involve DFM analyses for one time step (TS = -1).

Although they are not technically static, as some amount of time lag is included in the system, when a

single time step is used in a simple system it was seen that DFM and FTA will produce very similar results

[208]. Therefore, the test runs considered in this section can be approximated as static systems by FTA.

4.4.1.2. Simplified Feed Water System Model

Figure 86 represents a DFM model of a simplified section of the Feed Water system discussed in the

literature [123,124]. In this example, the value of “Water Level Measurement” (WLM) at the current

time step is a function of its value at the previous time step, as well as the value of the “Water Level”

(WL) and “Measurement Failure” (MF) inputs. In this example, all of the time delays were set equal to 1

259

time step. The system seen in Figure 86 includes time delays, making it a dynamic system, and not a

static one. However, an analysis of one time step for this simple system is straightforward to implement

in FTA. The three nodes are discretized as seen in Table 68, with the corresponding decision table for the

“WLM = 1” TE given in Table 69 [123].

Figure 86: Simplified Water Level Measurement System

Table 68: Simplified Feed Water System Node Discretization

Node State(s)

WLM -1 (Low) 0 (Normal) 1 (High)

WL -1 (Low) 0 (Normal) 1 (High)

MF N/A 0 (Works) 1 (Fails)

Table 69: Decision Table for “WLM = 1” TE

Row Inputs Outputs

 MF WLM WL WLM

1 0 -1 1 1

2 0 0 1 1

3 0 1 1 1

4 1 1 -1 1

5 1 1 0 1

6 1 1 1 1

260

The six rows in this decision table would entail the Implicants, that cause the TE (“WLM” = “1”).

However, those are not necessarily the Prime Implicants. The same six Implicants are implemented

exactly in a fault tree using the CAFTA package, as seen in Figure 87.

Figure 87: Fault Tree for Simplified Feed Water System

4.4.1.3. Simplified Feed Water System DFM PIs

In DFM, the PIs are obtained through the decision table in Table 68 using the logical

reduction/absorption operations discussed in Refs [21,117]. As this is a simple system, the “critical

transition table” is the same as the decision table seen in Table 69. The probabilities in Table 70 were

applied to the test system, to allow for quantitative analysis using both DFM and FTA [123]. These

probabilities are per time unit (time step), as per the reference.

Table 70: Feed Water Test System Probabilities

Node State/Probability

WLM -1 (0.33) 0 (0.34) 1 (0.33)

WL -1 (0.33) 0 (0.34) 1 (0.33)

MF N/A 0 (0.95) 1 (0.05)

261

The process for the logical reduction needed to produce the PIs from the decision table is seen as

follows.

1. Perform a “Merge” operation on Rows 4-6

2. Perform a “Merge” operation on Rows 1-3

These two operations will produce two PIs, as shown in Table 71, however there is a third PI, generated

as the “consensus” term from the first two PIs. It can be seen that is term could be generated from the

first two PIs. It should be noted that the “-“ represents the “Don’t Care” value.

Table 71: DFM PIs for the Simple Feed Water System

Row Inputs Outputs

 MF WLM WL WLM

1 0 - 1 1

2 1 1 - 1

3 - 1 1 1

As this is a simple system, the IB and CB are the same, however that is generally not the case. While the

complete base will be unique, it is possible that different logic reduction operations can be applied, and

different consensus terms can be generated. A second, more complex approach, still starting from Table

68, would be:

5. Merge rows 3 and 6

Table 72: Critical Transition Table after Merging Rows 3 and 6

Row Inputs Outputs

 MF WLM WL WLM

1 0 -1 1 1

2 0 0 1 1

3 - 1 1 1

4 1 1 -1 1

5 1 1 0 1

262

6. Reduction-Merge (new) Rows 1-3

Table 73: Critical Transition Table after Reduction-Merging (new) Rows 1-3

Row Inputs Outputs

 MF WLM WL WLM

1 0 - 1 1

2 - 1 1 1

3 1 1 -1 1

4 1 1 0 1

7. Reduction-Merge (new) Rows 2-4

Table 74: Critical Transition Table after Reduction-Merging (new) Rows 2-4

Row Inputs Outputs

 MF WLM WL WLM

1 0 - 1 1

2 - 1 1 1

3 1 1 - 1

In this case, the same three PIs are found. However, using this method it was not necessary to generate

a separate consensus term, as all three PIs are identified using the logical reduction operations. This

would not generally be the case though, as this was a simple test system.

Table 75: Simple Feed Water Tank DFM PI Probabilities

PI # PI PI Prob.

1 MF_0 WL_1 0.3135

2 WL_1 WLM_1 0.1089

3 MF_1 WLM_1 0.0165

Considering the quantitative values from Table 69, the PI and Top Event probabilities (per unit time)

determined using DFM are given in Table 75 and Table 76, respectively. In terms of the “Exact”

probability, it is the sum of PI “1” and PI “3”, as those are the two MEIs in the results.

263

Table 76: Simple Feed Water Tank DFM Top Event Probabilities

Method Sum MCSUB Exact

Probability 4.39E-01 3.98E-01 3.33E-01

4.4.1.4. Simplified Feed Water System FTA MCS/PI

In the case of FTA, the Fault Tree shown in Figure 87 consists only of “AND” and “OR” gates, allowing

traditional methods to solve for the MCS (PIs) to be a used. Applying the “MOCUS” algorithm outlined in

Sub-section 2.3.1.5 yields the calculation shown in Table 77:

Table 77: Simple Feedwater Tank MCS Determination via MOCUS Algorithm

Steps

1 2 3 4
Top G1 MF_0, WL_1, G3

MF_0, WL_1, WLM_-1

MF_0, WL_1, WLM_0

MF_0, WL_1, WLM_1

 G2 MF_1, WLM_1, G4

MF_1, WLM_1, WL_-1

MF_1, WLM_1, WL_0

MF_1, WLM_1, WL_1

In Table 77, “Step 4” showcases the MCS (PIs). When the probabilities in Table 76 are applied, the MCS

(PIs) are seen in Table 78, with the corresponding Top Event probabilities seen in Table 79.

Table 78: Simple Feed Water Tank FTA PI Probabilities

PI # PI/MCS PI Prob.

1 MF_0 WL_1 WLM_-1 1.03E-01

2 MF_0 WL_1 WLM_0 1.07E-01

3 MF_0 WL_1 WLM_1 1.03E-01

4 MF_1 WLM_1 WL_-1 5.45E-03

5 MF_1 WLM_1 WL_0 5.61E-03

6 MF_1 WLM_1 WL_1 5.45E-03

264

Table 79: Simple Feed Water Tank FTA Top Event Probabilities

Method Sum MCSUB Exact

Probability 3.30E-01 2.94E-01 2.271E-01

Figure 88: Fault Tree for Simplified Feed Water System (PIs Only)

For a simple system, such as the test system seen in Figure 86, one could easily identify two PIs through

inspection, as the “WLM” state is not needed for PI 1, (Table 75) and the “WL” state is not needed for PI

2 (Table 75). However, that would still leave PI 3 (Table 75), which needs to be identified using the

“Consensus Law”. In the case of the simplified Feed Water system, it is relatively easy to determine the

PIs by inspection/consensus law from the decision table seen in Table 69 and to create the appropriate

fault tree. A fault tree showing only the 3 PIs is seen in Figure 88. Analyzing that fault tree results in the

same PIs, PI Probabilities and Top Event Probabilities as the DFM analysis discussed in sub-section

4.4.1.3.

4.4.1.5. Simplified Feed Water System BDD MCS/PI

The fault tree from Figure 89 can be converted into a BDD, using the process outlined in Sub-section 4.2.

The variable ordering was taken as WL_1 < MF_0 < WLM_1 < MF_1 < WLM_0 < WL_0 < WLM_-1 < WL <

-1. This resulted in the same six MCS/PIs being returned as seen with the MOCUS/CAFTA method, as

well as the same Top Event probability.

265

Figure 89: SFBDD for TS 1 Fault Tree

4.4.1.6. Non-Coherent Fault Tree Attempts

The fault trees seen in sub-sections 4.4.1.1-4.4.1.4 attempted to use MVL logic, as DFM would. However,

those fault trees only used “AND” and “OR” gates, so the fault trees were constructed and analyzed

using coherent methods. As these fault trees are intended to represent MVL (non-coherent) logic, they

are re-constructed in this sub-section, using non-coherent logic (“NOT” gates).

“MF_1” Complement (MF_1 C)

Consider the fault tree shown in Figure 3. The Basic Event “MF_1” would be represented as ̅̅ ̅̅ ̅̅ ̅, in

binary logic. Therefore, the fault tree was amended to replace the “MF_1” with a “NOT” gate, and the

“MF_0” Basic Event. It should be noted that the choice of making “MF_1” or “MF_0” the complement is

arbitrary in this case, as in MVL neither term would represent the “normal” or “complement” variable.

266

To accomplish this using BDDs, a change is made to the BDD in Figure 90. Following the procedure

discussed in sub-section 2.3.1.6, ̅̅ ̅̅ ̅̅ ̅ (). This leads to the following substitution for

the “MF_1” node in Figure 90.

Figure 90: Switching "MF_1" with "Complement MF_1” in the Figure 89 BDD

Now, “0” branch from the “MF_0” node terminates at a “1” vertex. This represents the fact that the

 ̅̅ ̅̅ ̅̅ ̅ term is included in the Prime Implicants. Additionally, when searching the BDD for PIS, the “0”

branch for all nodes must be considered. For this example, the tree is searched using the “Bottom-Up”

method for determining the PIs from non-coherent fault trees.

All Complement (All C)

The “WL” and “WLM” nodes are represented by all three of their respective states, in the fault tree in

Figure 3. In this fault tree, all of the MVL states have been replaced by binary logic states, which would

make it easier to apply standard non-coherent FTA methods. The new fault tree is found in Figure 91.

However, this raises other issues. First, in the case of MVL, the complement of “WLM_0” is actually

“WLM_-1” + “WLM_1”, as there are three states to that node. Therefore, ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ actually represents

two states, which is not fully captured in binary logic. The second issue is that elements of

 ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ appear elsewhere in the fault tree, in the form of “WLM_1” and “WL_1”,

respectively. This is not immediately apparent when using binary logic, and as such could present a

problem when using standard non-coherent FTA methods. One point it its favour though, as seen in

Figure 91, is the that it is clear that logic gates “G3” and “G4’ are not involved in the PIs. For example, it

is obvious from inspection that ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . This was not as obvious when MVL was

considered, and may become less obvious in more complex fault trees.

267

Figure 91: Feed Water Fault Tree with “MF”, “WL” and “WLM” Complements

The corresponding BDD, using the variable ordering MF_0 < WL_1 < WLM_1 < WL_0 < WLM_0 is seen in

Figure 92. In the BDD shown in Figure 92, it may seem strange to have nodes such as “WLM_0”

connected to itself. This is due to the attempt to represent the MVL using non-coherent, binary logic. In

this case, it represents that both “WLM_0” and its complement are in fault tree, and could be present in

the PIs.

Figure 92: BDD for Fault Tree with “MF”, “WL” and “WLM” Complements

268

Coherent Approximation (CA)

As discussed in sub-section 2.3.2.6, the coherent approximation can be applied to non-coherent fault

trees. Considering an MVL system, this raises the question on which of the non-coherent Basic Events to

delete from the fault tree. One could simply remove the “MF_1” Basic Event, as it can be considered the

complement of the “MF_0” Basic Event. However, all of the “WL” and “WLM” states also represent

MVL, so one must determine which Basic Event, if any, should be deleted. Considering, Figure 91, the

 ̅̅ ̅̅ ̅̅ ̅ and ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ terms could be removed as well, but that would significantly alter the Fault Tree.

Therefore, only the coherent approximation with the “MF_1” Basic Event deleted was considered.

4.4.1.7. Non-Coherent Fault Tree Results

The results for the non-coherent FTA methods are presented here.

“MF_1” Complement

Applying the MOCUS method (and confirming the results with CAFTA), produced the same MCS/PIs seen

in Table 78, except with being replaced by “ ̅̅ ̅̅ ̅̅ ̅”. In this case, the non-coherent logic did not

have to be “Pushed Down” the fault tree, as the negated logic was already at the bottom of the tree.

Without further simplification, these overall results would be unchanged. However, consider the

selected Implicants seen in Table 80:

Table 80: Select “MF_1 C” Implicants

Row PI/MCS PI Prob.

1 MF_0 WL_1 WLM_1 1.03E-01

2 ̅̅ ̅̅ ̅̅ ̅ WL_1 WLM_1 1.07E-01

As seen in Table 80, the same implicant will occur, regardless of the state of the “MF” node. This is more

readily seen, when binary logic is used. Manually, this Implicant can be simplified, to produce the PI seen

as “PI 3” in Table 75.This produces one of the PIs, and the remaining four Implicants are unchanged. The

same effect was seen when analyzing the non-coherent fault tree using BDDs.

269

All Complement

Applying the same process to the fault tree from Figure 91 results in the MCS/PIs seen in Table 81

Table 81: “ALL C” Implicants

Row PI/MCS PI Prob.

1 MF_0 ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ WL_1 2.07E-01

2 ̅̅ ̅̅ ̅̅ ̅ ̅̅ ̅̅ ̅̅ ̅ WLM_1 1.09E-01

3 ̅̅ ̅̅ ̅̅ ̅ WL_0 WLM_1 5.63E-03

4 MF_0 WL_1 WLM_0 1.07E-01

It is seen that the FTA methods return fewer Implicants when MVL logic is replaced with binary logic.

Here, it is seen that further simplifications can still be made. The Implicants in Rows 1 and 4 contain the

states “WL_1” and “MF_0”, along with “WLM” node in both of its binary states. Simplifying this results

gives “PI 1” from Table 75. Similarly, Rows 2 and 3 in Table 81 contain the state “WLM_1”, “ ̅̅ ̅̅ ̅̅ ̅”, both

states of the binary “WL” node. This simplifies to “PI 2” of Table 75, as “ ̅̅ ̅̅ ̅̅ ̅” = “MF_1”. That

simplification results in 2 PIs, and the “Consensus Law” is then applied, to locate the third PI (“PI 3” in

Table 75). These PIs are also determined by searching the BDD in Figure 92 using the method discussed

in sub-section 2.3.1, and discarding any Implicants that are not Prime Implicants.

Therefore, applying non-coherent logic to the fault tree can uncover some of the PIs when analyzing the

system manually, or if the specific software tool is able to account for these binary logic reduction

operations.

Coherent Approximation

Considering the coherent approximation, it is seen that it produces five total Implicants, the first one of

which is a PI. However, Implicants “2” and “3” are not actually Implicants or PIs (the approximation

results in incorrect MCS/PIs being returned), and the remaining two are just Implicants. In this case, the

results from the “Coherent Approximation” appear to be significantly different from the actual results.

Table 82: Coherent Approximation Implicants

PI # PI/MCS PI Prob.

1 WLM_1 WL_1 N/A 1.039E-01

2 WLM_1 WL_0 N/A 1.12E-01

3 WLM_1 WL_-1 N/A 1.09E-01

270

4 MF_0 WLM_0 WL_1 1.07E-01

5 MF_0 WLM_-1 WL_1 1.03E-01

The overall Top Event probabilities (with and without additional simplification) for the non-coherent FTA

methods, as well as the DFM results (for easier comparison) are seen in Table 83.

Table 83: Non-Coherent FTA Top Event Comparison

Non-
Coherent
Method

Quantitative Calculation Method
(Top Event Probabilities)

Sum MCSUB Exact

MF_1 C 3.30E-01 2.94E-01 2.322E-01

MF_1 C
(Simplified)

3.30E-01 2.94E-01 2.322E-01

All_C 3.31E-01 3.03E--01 3.300E-01

All_C
(Simplified)

4.39E-01 3.98E-01 3.33E-01

CA 5.40E-01 4.35E-01 3.494E-01

DFM 4.39E-01 3.98E-01 3.33E-01

It was seen in all (un-simplified) cases, that more Implicants were produced than with DFM, however as

in the case of the coherent fault trees, many of them were not Prime Implicants. Using the “All C” and

“CA” methods produced fewer Implicants than coherent methods, and simplifying (reducing) the “MF_1

C” and “All C” results returned actual Prime Implicants.

Quantitatively, it is seen that the “CA” method overestimated the Top Event probabilities, while the

other methods tend to underestimate the Top Event probabilities, as they are still identifying Implicants,

and not just PIs. However, simplifying the “All C” method results in the exact PIs, and as such returns the

same probabilities as DFM.

4.4.1.8. Static Results Comparisons

Qualitative Comparisons

There are several noticeable differences seen when comparing the DFM and FTA (MOCUS and BDD)

results. The first is the lack of logical reduction performed by the fault tree software. This results in the

six PI/MCS seen in Table 78. In reality, these are not all Prime Implicants, as it is clear by inspection that

271

PIs 1-3 and PIs 4-6 could be further simplified, to create 2 actual Prime Implicants. In fact, the six entries

in Table 78 are actually Implicants, and not Prime Implicants. However, the fault tree analysis by itself

cannot determine that three “WLM” or “WL” states make up the entirety of their prospective nodes, so

conventional fault tree analysis methods cannot logically reduce those Implicants into Prime Implicants.

Therefore, it was seen that FTA produces extra Implicants than DFM, but they are not Prime Implicants.

In the case of the non-coherent FTA methods, a similar issue is seen, although not to the same degree.

Generally, applying non-coherent binary methods to the MVL logic produced fewer Implicants than the

coherent fault trees, and in some cases were able to produce the actual PIs. Additionally, it was seen

that the non-coherent FTA results could be more easily reduced to locate the PIs.

A second difference is the “missed” PI, seen in Row 3 of Table 74. The DFM analysis produces that

“Consensus Term”, as it employs the “Method of Generalized Consensus”. However, it is seen than

traditional FTA methods, such as MOCUS will not apply the “Consensus Law” to generate the additional

PI.

This becomes especially tricky, as in MVL variables with two states are not always defined by their

“normal” and “complement” form, as they are in binary logic. As example, the “MF” node was

discretized into two states, “0” (No Failure” and “1” (Failure). In binary logic used by fault trees, this

would be represented as “MF” and “ ̅̅ ̅̅ ”. Strictly speaking, if the “MF” node was defined as “0” and “1”

as done with MVL/DFM, it would not register as “NOT” logic, so the “Consensus Law” may not be

applied. Another issue is the software tool itself. Not every package supports negated logic, and even if

the tool does, it may not identify all Prime Implicants. As an example, the CAFTA tool used in this paper

supports the use of “NOT” logic, however it does not apply the “Consensus Law” to the MCS (PIs)

returned in the analysis.

In the case where the “Consensus Law” is applied to the FTA results, there is the issue of the MVL nodes,

in this case “WL” and “WLM”. When there are three states in each node, the “NOT” logic becomes more

complicated (i.e . ̅̅ ̅̅ ̅̅ ̅). This makes applying the “Consensus Law” more difficult

with binary fault tree logic, and could lead to additional “missed” PIs in larger, more complex systems.

A potential issue also arises from the use of the “All C” attempt, is that the same Basic Event is actually

represented multiple times, in different ways. For example, in Figure 91, the states “WL_1” and “ ̅̅ ̅̅ ̅̅ ̅”

are both represented, however “WL_1” is realty a subset of ““ ̅̅ ̅̅ ̅̅ ̅”, (as is “WL_-1”). In this simple test

case, it did not cause any issue, however thus may not be the case in a larger, more complex system.

272

Quantitative Comparisons

In terms of the quantitative comparisons, the differences are actually caused by the differences in the

PIs found between the methods (qualitative differences), not the quantitative calculations themselves.

The same general methods are applied to calculate the probability of the MCS/PIs, as well as the Top

Event probabilities, in FTA and DFM, as discussed in sub-section 2.3.1. It was seen in sub-section 4.4.1.1

that when the fault tree was amended to include only the PIs, the MCS/PI and Top Event probabilities

were the same.

Regarding the differences in the MCS/PI probabilities, it is seen that there is a large range in probabilities

with the FTA results, as it only returns the Implicants, and not Prime Implicants. As these Implicants

contain additional literals (three literals in each FTA PI as opposed to two literals in each DFM PI), the

probability of each of the Implicants returned by FTA is lower than that of each PI returned by DFM. The

differences in Top Event probabilities were in part caused by the differences in the PI probabilities, as

well as the additional PI returned by DFM. This led to the FTA Top Event probability being noticeably

lower than that of the DFM Top Event probability. Similar Issues were seen regarding the non-coherent

FTA methods, as they generally underestimated the Top Event probability, (except in the case of the

Coherent Approximation). The only other difference being that the “All C” non-coherent approach

results could be reduced to determine the exact PIs, and therefore had the same Top Event

probabilities.

4.4.1.9. Dynamic MVL Comparisons

In this sub-section, multiple time steps will be considered. This also allowed for the inclusion of the

effects of dynamic consistency rules, as their effects may not be noticeable in static systems or systems

with one time step. The same test system seen in Sub-section 4.4.1.1 was used, however this time it was

run for two time steps. Additional runs were performed, to demonstrate the effects of dynamic

consistency rules on the PIs and Top Events. In should be noted that the probabilities for these tests

were the same as those given in Table 68.

273

4.4.1.10. Dynamic Test System DFM PIs

In DFM, once the model is built, the analysis can be run for an arbitrary number of time steps.

Considering the test system from Figure 86, after the first time step, the “critical transition table” will be

the same as the one shown in Table 70. After the second time step, the new “critical transition table”

(after logical reductions) is given in Table 84. The corresponding PIs and PI probabilities are seen in Table

85. As seen in Table 84, the same node may appear several times in the results for different time steps,

where the time step is shown in parentheses below the node name.

To produce Table 84, the “WLM” node at “TS = -1” is expanded in the analysis during the second time

step, which is the reason that the node “WLM” does not appear in Table 10 at “TS = -1”. This expansion

involves substituting the 3 PIs from Table 71, into the WLM (-1) = “1” term which produces the three

terms that appear at “TS = -2”. The expansion and corresponding logic reduction produces the set of PIs

and PI probabilities given in Table 85. The “critical transition table” quickly becomes too large to show

all logical reduction steps, as fully expanded, Table 84 contains 108 rows. With larger, more complicated

systems, this “state explosion” issue may limit the size of system that can be analyzed in a reasonable

amount of time.

Table 84: DFM PIs for the Simple Feed Water System (TS = 2)

Row Inputs Outputs

 MF
(-1)

MF
(-2)

WL
(-1)

WLM
(-2)

WL
(-2)

WLM

1 - - 1 1 1 1

2 1 - - 1 1 1

3 0 - 1 1 - 1

4 - 1 1 1 - 1

5 - 0 1 - 1 1

6 1 1 - 1 - 1

7 1 0 - - 1 1

Table 85: Simple Feed Water Tank DFM PI Probabilities (TS = 2)

PI PI PI Prob.

1 MF_0 (-1) WL_1 (-1) 3.14E-01

2 MF_0 (-2) WL_1 (-2) WL_1 (-1) 1.03E-01

3 WL_1 (-2) WLM_1 (-2) WL_1 (-1) 3.59E-02

4 MF_0 (-2) WL_1 (-2) MF_1 (-1) 1.57E-02

5 WL_1 (-2) WLM_1 (-2) MF_1 (-1) 5.45E-03

6 MF_1 (-2) WLM_1 (-2) WL_1 (-1) 5.45E-03

7 MF_1 (-2) WLM_1 (-2) MF_1(-1) 8.25E-04

274

The Top Event probabilities, based on the DFM analysis are present in Table 16. The “Exact” value is the

sum of the two MEIs, namely “PI 1” and “PI 4”.

Table 86: Simple Feed Water Tank DFM Top Event Probabilities (TS = 2)

Method Sum MCSUB Exact

Model Probability

TS = 2 4.80E-01 4.23E-01 3.30E-01

Sink 4.59E-01 4.16E-01 3.27E-01

DCR 1.50E-02 1.49E-02 9.56E-03

Sink States

Different dynamic consistency rules are applicable to DFM analyses. In the model shown in Figure 86,

the “MF = 1” failure state was considered to be a sink state in the original literature sources [123,124].

This was not enforced previously, however now that sink state is enforced, to determine what the effect

on the analysis results will be. This sink state means that the “MF” node will not be able to transition

from state “1” to state “0” (i.e. if the node transitions into state “1”, it must remain there for the rest of

the analysis). This will alter the PIs seen in Tables 84 and 85. The use of the sink state and other dynamic

consistency rules would not have an effect on the system run for one time step, as that duration did not

allow for the individual nodes to transition between different states. When the sink state is applied to

the “MF = 1” node/state, and the model is run for two time steps, the new PIs are given in Table 87, with

the Top Event probabilities seen in the row labelled “Sink” in Table 86.

Table 87: Simple Feed Water Tank DFM PI Probabilities (TS=2, Sink State MF = 1)

PI PI PI Prob.

1 MF_0 (-2) MF_0 (-1) WL_1 (-1) 2.98E-01

2 MF_0 (-2) WL_1 (-2) WL_1 (-1) 1.03E-01

3 WL_1 (-2) WLM_1 (-2) WL_1 (-1) 3.59E-02

4 MF_1 (-2) WLM_1 (-2) 1.65E-02

5 MF_0 (-2) WL_1 (-2) MF_1 (-1) 1.57E-02

6 WL_1 (-2) WLM_1 (-2) MF_1 (-1) 5.45E-03

In this instance, there are 6 total PIs, as opposed to 7 that were produced without the sink state. The

reason for this seen when comparing PI 4 from Table 87 with PI 6 and PI 7 of Table 85.When considering

275

PI 7 of Table 85, the “MF = 1” state appears in both time steps, indicating that that failure state must

occur twice. However, once “MF = 1” is designated as a sink state, a failure at “TS = -2” would become

permanent, so that node could not fail again. As the literal “MF = 1 at TS = -1” is not needed, PI 7 from

Table 85 becomes PI 4 from Table 17. This has a secondary effect, when PI 6 (Table 15) is considered. It

is seen that Pi 6 (Table 85) and PI 4 (Table 87) contain the same two literals, with PI 6 containing an

additional literal. The inclusion of the sink state makes that third literal unnecessary, and in turn has

turned PI 6 (Table 85) into an Implicant that is not a PI. Therefore, it is removed during the analysis.

A third difference is seen when inspecting PI 1 from Tables 85 and 87. In the analysis seen in Table 85, it

did not matter what state the “MF” node was in at “TS = -2” (as denoted by the “-“) entry in Table 14.

However, once “MF = 1” Is designated a sink state, then the “MF” node must be in state “0” at “TS = -2”

for that PI to occur, as a “0”  “1” transition is not allowed.

Dynamic Consistency Rules (DCR)

For this test, the “WL” node was assigned a DCR for “strictly decreasing”, and the model was again run

for two time steps. This entails that the state of the Water Level (“WL”) node could only decrease as the

analysis progressed through time. Any PI that included either an increase or no change in the “WL” value

would be excluded. It should be noted that “MF = 1” state was not designated as a sink state, for this

analysis. The PIs and PI probabilities are given in Table 88, while the Top Event probabilities are given in

the row labelled “DCR” in Table 86.

Table 88: Simple Feed Water Tank DFM PI Probabilities (TS=2, WL = “Strictly Decreasing”)

PI PI PI Prob.

1 MF_0 (-2)
MF_1 (-1)

WL_1 (-2)

WL_0 (-1)

5.33E-03

2 MF_0 (-2)
MF_1 (-1)

WL_1 (-2)

WL_-1 (-1)

5.17E-03

3 WL_1 (-2)
WL_0 (-1)

WLM_1 (-2) MF_1 (-1) 1.85E-03

4 WL_1 (-2)
WL_-1 (-1)

WLM_1 (-2) MF_1 (-1) 1.80E-03

5 MF_1 (-2) WLM_1 (-2) MF_1 (-1) 8.25E-04

In Table 98, it is seen that there are major differences between the results with and without the

application of DCR. In the case of Table 85, PI 2 and PI 3 contain “WL = 1” at two separate time steps,

276

which is disallowed under the applied DCR. Any transitions that apply to an increase in “WL” (such as “-

1”  “0” or “0”  “1”) are similarly disallowed. This leads to extra literals in the PIs in Table 88, as the

“WL” state must be in two different, decreasing states if that node appears in the PI. The only PI that is

the same between the test runs is PI 7 (Table 85) and PI 5 (Table 88), since this PI does not include the

“WL” node in any state, the application of DCR has no effect on it.

Overall, the effects of sink states and other DCRs on the PIs also explain the differences in certain PI

probabilities, and Top Event probabilities, as seen in Tables 81-84.

4.4.1.11. Dynamic Test System FTA MCS/PI

In the case of FTA, it is clear that the static nature of the fault tree seen in Figure 87 will not allow for

dynamic modelling (i.e. a change in time steps has no meaning to that specific fault tree). In order to

model the Feed Water test system for more time steps, and additional fault tree would have to be

created, for each additional time step. The fault tree corresponding to the system analysis for two time

steps is seen in Figure 93.

In Figure 93, the two “WLM = 1” entries in the fault tree are expanded, as in the DFM model, to

incorporate the additional time step. Only one expansion is shown to save space, however the other

node expansion is denoted by the transfer gate. Applying the “MOCUS” algorithm to this fault returns

the results seen in Table 89. It should be noted that the “transfer gate” is not directly considered by

“MOCUS”, as it only handles “AND” and “OR” gates. Therefore, one must include the full expansion of

“WLM = 1” in both instances when finding the MCS using “MOCUS”. The Top Event probabilities are

seen in the “TS = 2” row of Table 89.

The full set of MCS, calculated using the CAFTA software tool, are found in Table 90. As in the case of

one time step, when the PIs are known, the fault tree can be constructed in such a way that it will return

only the PIs, with the same PI and Top Event probabilities as DFM. The fault tree for only the PIs for “TS

= -2” is shown in Figure 94.

277

Table 89: Simple Feed Water Tank FTA Top Event Results (TS = 2)

Run No. PI Probability

 SUM MCSUB Exact

TS = 2 26 3.30E-01 2.91E-01 2.11E-01

Sink 23 3.25E-01 2.87E-01 2.08E-01

DCR 11 2.21E-01 2.08E-01 1.80E-01

Figure 93: Simple Feed Water Tank Fault Tree (TS = 2)

278

Figure 94: Fault Tree for Simplified Feed Water System (PIs Only, TS = -2)

Fault Tree Sink State

When considering the effect of a “sink state” on the FTA model, there are two issues that are readily

apparent. The first issue, as seen in Table 90, 3 of the MCS/PIs, 7, 12, and 13, would violate that sink

state condition, as they show a state transition from “MF = 1”  “MF = 0”. The Basic Events that

comprise these three MCS/PIs are shaded grey, and shown in Figure 95. FTA will not be able to directly

apply a sink state during the analysis, as can be done with DFM, this leads to impossible MCS/PIS being

produced during the analysis. Additionally, as those impossible MCS/PIs have a probability associated

with them, it would affect the Top Event probability of the system. The Top Event probabilities with the

disallowed MCS/PIs removed are seen in the “Sink” Row of Table 89.

279

Table 90: Simple Feed Water System Fault Tree MCS/PI for Two Time Steps

MCS/PI
No.

MCS/PI
Probability

Literals

1 1.07E-01 MF_0_(-1) WLM_0_(-1) WL_1_(-1)

2 1.03E-01 MF_0_(-1) WLM_-1_(-1) WL_1_(-1)

3 3.34E-02 MF_0_(-1) MF_0_(-2) WLM_0_(-2) WL_1_(-1) WL_1_(-2)

4 3.24E-02 MF_0_(-1) MF_0_(-2) WLM_-1_(-2) WL_1_(-1) WL_1_(-2)

5 3.24E-02 MF_0_(-1) MF_0_(-2) WLM_1_(-2)) WL_1_(-1) WL_1_(-2)

6 1.81E-03 MF_0_(-2) MF_1_(-1) WLM_0_(-2) WL_0_(-1) WL_1_(-2)

7 1.76E-03 MF_0_(-1) MF_1_(-2) WLM_1_(-2)) WL_0_(-2) WL_1_(-1)

8 1.76E-03 MF_0_(-2) MF_1_(-1) WLM_-1_(-2) WL_0_(-1) WL_1_(-2)

9 1.76E-03 MF_0_(-2) MF_1_(-1) WLM_0_(-2) WL_-1_(-1) WL_1_(-2)

10 1.76E-03 MF_0_(-2) MF_1_(-1) WLM_0_(-2) WL_1_(-1) WL_1_(-2)

11 1.76E-03 MF_0_(-2) MF_1_(-1) WLM_1_(-2)) WL_0_(-1) WL_1_(-2)

12 1.71E-03 MF_0_(-1) MF_1_(-2) WLM_1_(-2)) WL_-1_(-2) WL_1_(-1)

13 1.71E-03 MF_0_(-1) MF_1_(-2) WLM_1_(-2)) WL_1_(-1) WL_1_(-2)

14 1.71E-03 MF_0_(-2) MF_1_(-1) WLM_-1_(-2) WL_-1_(-1) WL_1_(-2)

15 1.71E-03 MF_0_(-2) MF_1_(-1) WLM_-1_(-2) WL_1_(-1) WL_1_(-2)

16 1.71E-03 MF_0_(-2) MF_1_(-1) WLM_1_(-2)) WL_-1_(-1) WL_1_(-2)

17 1.71E-03 MF_0_(-2) MF_1_(-1) WLM_1_(-2)) WL_1_(-1) WL_1_(-2)

18 9.54E-05 MF_1_(-1) MF_1_(-2) WLM_1_(-2)) WL_0_(-1) WL_0_(-2)

19 9.26E-05 MF_1_(-1) MF_1_(-2) WLM_1_(-2)) WL_-1_(-1) WL_0_(-2)

20 9.26E-05 MF_1_(-1) MF_1_(-2) WLM_1_(-2)) WL_-1_(-2) WL_0_(-1)

21 9.26E-05 MF_1_(-1) MF_1_(-2) WLM_1_(-2)) WL_0_(-1) WL_1_(-2)

22 9.26E-05 MF_1_(-1) MF_1_(-2) WLM_1_(-2)) WL_0_(-2) WL_1_(-1)

23 8.98E-05 MF_1_(-1) MF_1_(-2) WLM_1_(-2)) WL_-1_(-1) WL_-1_(-2)

24 8.98E-05 MF_1_(-1) MF_1_(-2) WLM_1_(-2)) WL_-1_(-1) WL_1_(-2)

25 8.98E-05 MF_1_(-1) MF_1_(-2) WLM_1_(-2)) WL_-1_(-2) WL_1_(-1)

26 8.98E-05 MF_1_(-1) MF_1_(-2) WLM_1_(-2)) WL_1_(-1) WL_1_(-2)

The second issue is that the “MF = 1” state appears in both time steps (“TS = -1” and “TS = -2”), in nine

of the MCS/PIs in Appendix B, MCS/PI 18-26. As the probability of “MF = 1” is low, the MCS/PIs that

contain that literal twice end up being the MCS/PIs with the lowest probability of occurring. In sub-

section 4.4.1.10, it was seen DFM would account for this sink state, so the same literal would not have

to occur in each time step, as depicted in Table 87. In that case, the occurrence of “MF = 1” at “TS = -2”

meant that “MF = 1” at “TS = -1” was not required for the PI (PI 4), as it is assumed that the “MF” node

will be stuck in that state. The inability of FTA to account for this causes two issues. The first, is that the

analysis will return PIs that are actually just Implicants, and the second being that the probability of

those Implicants will be underestimated, as the inclusion of the second “MF = 1” literal will reduce the

probability of that Implicant occurring. Both of these issues would affect the accuracy of the reliability

analysis.

280

Figure 95: Disallowed Basic Event Combinations (Sink State)

The inclusion of sink states will make the model/analysis more realistic, however in the case of FTA,

separate fault trees would have to be constructed, for all potential case(s) of sink states that would be

considered. Simply deleting those Basic Events may not correct the problem, as they may be part of

other MCS/PIs that are valid. This may be impractical, especially for complex systems.

Fault Tree DCR

Considering the application of the “WL = Strictly Decreasing” DCR to the model, issues similar to those of

the sink state arise. In total, only 11 of the 26 MCS/PI from that table would be allowed, with the

application of DCR. Those include MCS/PI 1 and 2 (“WL” appears only once), MCS/PI 6, 8, 11, 21, (“WL 1”

 “WL 0”), MCS/PI 9, 14, 16, 24 (“WL 1”  “WL -1”) and MCS/PI 19 (“WL 0”  “WL -1”). The remaining

15 MCS/PIs all include non-decreasing values for “WL”. The Top Event probabilities are amended as

such, and are shown in the “DCR” row of Table 89. In the case of DCR however, there is a much greater

difference in the number of disallowed MCS/PIs (15), when compared to the sink state test run (3).

As in the case of sink states, DCRs may create a more realistic model, however separate fault trees

would have to be created to model the system based on any/all combinations of dynamic consistency

rules, which may be impractical for large/complex systems. Failing to do so would again lead to

281

impossible MCS/PI combinations, and therefore affecting the Top Event probabilities. In should be noted

that in this test run, “MF = 1” was not designated as a sink state, so any “MF = 1”  “MF = 0” or “MF =

1”  “MF = 1” state transitions are allowed.

4.4.1.12. Dynamic Test Results Comparison

Qualitative Comparisons

Considering the dynamic results for the DFM and FTA methods, similar issues are seen as with the static

comparisons. The FTA results again do not show the same level of logic reduction as the DFM results,

leading to a large number of Implicants, which are not Prime Implicants. As an example, Rows 1 and 2 of

the FTA results in Table 90, include an extra “WLM” literal, when compared to PI 1 of the DFM results.

(Table 15). A second example considers Rows 3-5 in Table 90, where all three states of the “WLM” node

are seen, creating three Implicants, where there should only be a single Prime Implicant. As the FTA

results are not logically reduced to become PIs, it leads to a much larger number of MCS/PIs returned by

FTA (26), when compared to the number of PIs from the DFM results (7).

When the “sink states” and DCR is considered, it is seen that FTA will not directly include these

restrictions in the fault tree. A separate fault tree would have to be created for each sink state and/or

DCR combination, and for every number of desired time steps, which is likely impractical for larger

systems. It is also seen that the application of sink states and DCR will lead to impossible MCS/PIs being

generated by the FTA, unless the fault trees are specifically constructed to consider these restrictions. In

the case of sink states, it was seen that 3 of the MCS/PIs returned by the FTA would be violate the sink

state constraints, and a further 9 MCS/PIs contain the “MF=1” literal in both time steps, which is again

incorrect, as once that transition occurs at “TS = -2”, it does not transition again. In the case of DCR, the

majority of MCS/PIs returned by the FTA would violate the DCR (15 out of 26 MCS/PIs violate the

“strictly decreasing” DCR imposed on the “WL” node). These differences in the PIs returned by the two

methodologies also create differences in the quantitative results.

282

Quantitative Comparisons

As in the case of one Time Step , the quantitative differences are strictly due to the different PIs

returned by two methods, for the three different analyses (“TS = 2”, “Sink”, and “DCR”). When the fault

tree was amended to only include the PIs, as seen in Figure 94, the PI and Top Event probabilities were

same for both methods. It is seen that, in general, the PIs from DFM have a higher probability of

occurring than the Implants returned by FTA, due to the higher number of literals in the FTA MCS/PIs.

This, in turn is part of the reason why the Top Event probabilities for the DFM results (Table 86) are

generally higher than the Top Event probabilities for the FTA results (Table 85). The notable exception

being the “DCR” test run, where the large number of disallowed MCS/PIs in the FTA run, coupled with

the additional literals in the DFM PIs, led to the FTA Top Event probability being higher.

4.4.2. Theoretical Reasons for Differences in Reactor Trip Logic Loop

Results

The previous stage in the DFM/FTA comparison research considered a one-channel, one-parameter

FPGA-based reactor trip logic loop, using a Triple Modular Redundancy (TMR) configuration. A

comparison of the results from the FTA and DFM analyses revealed some differences in terms of

PIs/MCS, Top Event Probabilities, and the Birnbaum Structural Importance (BSI) measures. Several

reasons for those differences were postulated in that paper, with one of those differences being the

“Computational Methods” employed by the two software packages. In this case, those methods are the

“Method of Generalized Consensus” using DFM, and the “MOCUS” algorithm for FTA. It should be noted

that the CAFTA user manual does not directly state which algorithm is used, the CAFTA results did return

the same results as expected from applying the “MOCUS” algorithm by hand. Performing the

comparisons on the simplified test system in sub-section 4.4.1 allowed for an in-depth theoretical

comparison of those two methods, to better determine their effect on the results from the reactor trip

logic loop test system. Those differences will be discussed in this section.

283

4.4.2.1. Prime Implicants vs Implicants

It was seen in the previous research paper that the FTA results produced noticeably more MCS/PIs than

DFM, and that each FTA MCS (generally) contained more literals than similar DFM PIs. As discussed in

sub-section 4.4.1, this is due to the inability of conventional fault tree methods/software to fully

logically-reduce the MVL used in a DFM analysis. Therefore, it was seen that many of the MCS returned

by FTA would not actually have been minimal, and instead were Cut Sets (Implicants). An example of

was seen in Table 18 of the previous paper, shown again here in Table 91.

Table 91: PIs vs Implicants for “FPGA-Based Reactor Trip Logic Loop”

Node State Time Step Prob

Clock 0 -1 N/A

Trip_Reg
(Prev)

1 -1 N/A

SEU (T) SEU 0 6.53E-05

TMR
Circuit “C”

0 0 2.285E-03

PI Probability: 1.492E-07

As discussed in the previous paper, the FTA results contained many more literals than the DFM results,

resulting in a series of similar MCS. However, as discussed in sub-section 4.4.1, many of those MCS in

the original research paper would actually have been Cut Sets (Implicants), and not a Prime Implicant, as

was returned by DFM. This partially explains the large discrepancy in the number of MCS/PIs returned

by the two methods, as there would generally be many more Implicants than Prime Implicants. Unlike in

the examples shown in the previous sub-section however, in the FPGA-based test system, the FTA did

return some PIs, and not just Implicants, shown here in Table 92. It was seen in the original analysis, that

both FTA and DFM returned the same PI and PI probability, meaning that FTA was able to identify at

least some PIs, and not just the Implicants.

Table 92: Identical PIs with DFM and FTA for the “FPGA-Based Reactor Trip Logic Loop”

Node State Time Step Prob

Clock 1 -1 N/A

SEGR SEGR_Fail -1 5.95E-04

SEU (T) No SEU 0 9.993E-01

TMR
Circuit “B”

0 0 2.285E-03

PI Probability: 1.359E-06

284

4.4.2.2. Missed PIs/Consensus Law

In terms of “Missed” PIs from FTA, an example of this is seen in Table 93. While this PI was produced in

the original DFM analysis, it was not discussed in the original paper. This PI is produced when a “SHE”

error forces the “P” register to produce a ‘Low” value. At the same time, the value of the “Q” register

(the Trip Setpoint (TSP)) is also low. If the “Trip Type” was set to “01” (a strictly “P>Q” condition), then

the system will not trip. FTA did not return that combination of issues, potentially due to the MVL states

of both the “SHE” and “Q” input nodes. This lead to a comparatively high probability PI/MCS being

overlooked in the original analysis.

Table 93: “Missed” PI from “FPGA-Based Reactor Trip Logic Loop”

Node State Time Step Prob

Clock 1 -1 N/A

SED_Q No_SED -1 9.999E-01

SHE_P SHE_P_0 -1 2.975E-04

CE (D) NO_CE (D) -1 9.999E-01

Q_Register Q_Low -1 5.00E-01

Trip Type 01 -1 5.00E-01

SEU (T) No SEU -1 9.993E-01

TMR
Circuit “C”

0 0 2.285E-03

PI Probability: 1.693E-07

4.4.2.3. Probabilistic Differences

While the computational methods may not solely be the reason for the differences in Top Event

probabilities (other factors should as “Initial Conditions” and “Time Steps” were discussed in the original

paper), the differences in MCS/PIs returned by the two methods, discussed in sub-section 4.4.1, did

have some effect on the Top Event probability of the original test system. Also as seen in sub-section

4.4.1 of this thesis, it was seen that the FTA Top Event probabilities were generally lower than the DFM

Top Event probabilities, for the simplified Feed Water System. However, it was seen in the original paper

that the DFM Top Event probabilities were lower than that of the FTA Top Event probabilities, when

comparing the “SUM” or “MCSUB” values. One reason for that was the much larger number of

Implicants returned by FTA eventually catches up with the DFM analysis PIs, resulting in a higher Top

Event probability. A second reason, is that in the FPGA-based reactor trip logic loop test system, some of

285

the high-probability PIs were found (unlike in the Feed Water system), further increasing the Top Event

probability

4.4.3. Dynamic Comparisons with Applications to FPGAs

Sub-section 4.4.1 discussed theoretical differences between DFM and FTA methods, and sub-section

4.4.2 applied that information to better explain some of the differences between the DFM and FTA

results ascertained in the previous research paper. In this section, a modified portion of the original test

system is analyzed for multiple time steps, to determine the differences in the time-dependant results

of the DFM and FTA methods.

4.4.3.1. Modified Test System

The test used for this paper was modified from the one in the original work. It was still developed with a

reference to the publically available Westinghouse and EPRI documentation [190,211]. Sub-section

4.4.3.2 discusses the modified test system, and sub-section 4.4.3.3 presents additional HDL code

(“software”) failure modes that were added. It should be noted that the failure modes and

corresponding probabilities are the same as those found in Ref. [208]. The exceptions being the

inclusion on the HDL failure modes, as discussed in sub-section 4.4.3.2, and the ESD/EOS failure

probabilities, which are now based on information from a different literature source [177]. The

reliability analysis methods used in this paper are the same as those used in the previous research.

Namely, FTA performed using the CAFTA software, and DFM, performed using the Dymonda software

tool.

4.4.3.2. Updated FPGA Test System Architecture

One of the potential limitations of DFM is that it is limited to small or medium sized systems, due to the

issue of “state explosion” [121,208].The size of the previous test system did not make running the

286

analysis for multiple time steps feasible. In this paper, the analysis focused on one part of the test

system, namely the “Comparator” subsystem. The same TMR configuration described in the original test

system is present here. The modified test system is shown in Figure 96.

The modified “Comparator” subsystem now more closely resembles that of the original reference [211].

It includes the “H” register, as well as additional MYXs for feedback and logic selection. The “H” register

was intended in the literature to represent a “hysteresis” value, use to confirm or cancel a trip signal. In

this case, the output of the “Trip Register” gets passed to the “Trip Check MUX”. In the literature

reference, there were multiple “Trip Registers” in which the “Decode” value could be output too. All of

these registers would output their values to the “Trip Check MUX”, to be output to the “MUX”. In the

test system in this paper, only one “Trip Register” is used, so the “CS” input will always select the value

from that register, unless a failure occurs.

Figure 96: Modified Comparator (COMP) FPGA-Based Test System

Based on the “CS” input, the “Trip Check MUX” value will be passed on as the enable signal to the

“MUX”. This “MUX” determines which input value, (“Q” or “H”), is used in the comparator. Under

normal circumstances, the “Q” value would be selected and compared with “P”. However, if a “Trip” is

found to occur, then the “MUX” will send the data from the “H” register to either confirm or cancel the

trip. If the comparison of the “P” value with both the “Q” and “H” values returns a trip, then the trip is

287

confirmed, and the trip signal will be sent from that TMR circuit. Otherwise, the trip would be cancelled,

and no trip signal would be sent.

4.4.3.3. HDL Code Failure Modes

The previous test system only considered failures that could affect the FPGA hardware, such as aging

failures or Single Event Effects (SEEs) (the exception being the inclusion of the “Metastability” error). To

expand on the failure modes included in the test system, the effects of several HDL code errors were

included, using information in the literature [65,131]. These HDL code failures are presented in Table 94.

Probabilities for the HDL code failure modes were based on software failure probabilities, found in the

literature [220].

It should be noted that the reset signals are not always failures (e.g. a reset/clear can bring the system

from an error state into a safe, analyzed state). However, for the purpose of the analysis in this paper,

they were assumed to be erroneous reset signals.

Table 94: HDL Code FPGA Failure Modes

Arithmetic

Overflow (AO)

Incorrect data type specification

leads to lost input/calculation

data (e.g. truncated data)

Latch Accidental latch created instead

of a register, produces

asynchronous behavior

Comparator

Error

 (Comp Error)

Error in comparator logic due to

coding error (e.g. use of “>”

instead of “<”)

Global Reset “P”, “H” and “Q” registers

incorrectly reset

(e.g. asynchronous reset error)

Trip Register

Reset

(Trip Reg Reset)

“Trip” register incorrectly reset

(e.g. asynchronous reset error)

288

4.4.3.4. FPGA Test System Dynamic Results

The fault trees and DFM models were constructed in a manner consistent with the methods described in

the original paper [208]. One difference is that in the modified test system, hard errors were designated

as “sink states”. Sink states do not affect the analysis when it is run for one time step, but can be a

factor once it is run for multiple time steps. There are no “NOT” gates or similar negated logic.

Therefore, the fault tree represents a coherent fault tree. The Top Event for these analyses was a

“Missed Trip”, the same as in the original research. As this is a per-demand system, the Top Event

probabilities on a per-demand basis, and represent the Probability of Failure on Demand (PFD). The DFM

models were run for Time Steps of 1, 2, 3 and 4, respectively, with the Top Event Probabilities plotted in

Figure 97. The reason for stopping at four time steps was due to the computational intensity of DFM.

Using the CNSC laptop on which the Dymonda software tool was installed, four time steps was seen to

be the highest number of time steps where the model could be analyzed in a reasonable amount of time

(i.e. less than 24 hours). Attempting to run the model for five time steps did not produce any results,

even over a 48-hour period. Additional information regarding the computational intensity/state

explosion issue can be found in sub-section 5.2.

Figure 97: Dynamic Top Event Probabilities (PFD) for DFM and FTA Methods

0.00E+00

1.00E-05

2.00E-05

3.00E-05

4.00E-05

5.00E-05

6.00E-05

1 2 3 4To
p

 E
ve

n
t

P
ro

b
ab

ili
ty

 (
P

FD
)

Time Step

Dynamic Top Event
Probabilities

FTA (MCSUB) FTA (DPC)

DFM (1 TE) DFM (MTE)

289

The number of MCS/PIs for each test run is shown in Table 95. As with the original paper, the oscillating

clock presents a problem for FTA, which returns MCS with the clock in both states (“1” and “0”). In the

modified test system, the same issue was seen with the “Global Clear” signal. Originally, each register

was assigned its own reset signal, however in the modified test system, a global reset was used for

registers “P”, “Q” and “H”, to ensure they would be reset at the same time, as advised in the literature

[65,131]. Using the global clear resulted in the “Global Reset” signal existing in states “1” and “0” for

different registers in the same MCS. As in the case of the “Clock” state, these MCS were pruned after the

analysis. The data in Figure 97 and Table 95 represents the data resulting from this pruning.

 There were two distinct DFM analyses considered. The first, called “1 Top Event (1TE)”, was set for a

“Missed Trip” (Trip Output = “0”), at Time Step “TS = 0”, for all four test runs. This meant that the value

of the Trip Output could change through time, and that fluctuation helped produce the dynamic

probability behaviour seen in Figure 97. While that is not a strictly realistic example (a positive trip signal

could be “Sealed-In”, and not be allowed to switch back to the un-tripped state), it was done to show

the effects of different Time Steps on different Top Events. Generally though, the probabilities trend

upwards, as over time, there become more possible event combinations that could cause the Top Event.

The second case was for “Multiple Top Events (MTE)”, which considered a “Missed Trip” at every time

step, except for the initial time step. For example, the test run for three time steps would have the “Trip

Output = 0” at “TS = 0”, “TS = -1”, and “TS = -2”, with the “TS=-3” entry left blank. This would represent a

more realistic scenario, as the “Missed trip” must occur at multiple time steps, and not bounce between

trip/no trip. The probability for this analysis steadily drops with each time step. This is due the “Missed

Trip” condition existing in multiple time steps (e.g. Trip Output = 0 at ”TS = 0” and “TS = -1” …).

Table 95: Number of Returned PI/MCS

Test
Run

Time Step

 1 2 3 4

FTA 485 485 485 485

DFM
(1TE)

69 95 297 335

DFM
(MTE)

69 432 357 410

290

As the fault tree is static, there is no change in the Top Event probabilities or number of MCS with time.

On the other hand, as DFM includes time dependant behaviour, the Top Event probabilities and number

of PIs does change through time. As expected, the number of PIs increases over time, as failures at

different time steps can combine to cause the Top Event (“Missed Trip”).

It should be noted that the dynamic DFM Top Event probabilities may or may not converge as the

analysis progresses through time. The system may reach a steady-state based on if the same input

combinations are enforced and the permanent errors (sink states) accumulate. In the case of the “MTE”

run, it does appear that the analysis results progresses towards a convergence (at a value similar to the

DPC FTA results), however it is difficult to determine if a convergence will occur with the “1 TE” analysis

results. It is also possible that convergence may occur at a time step that is not practical to calculate

using DFM (or at least using the Dymonda tool and consumer grade laptops), and therefore it is hard to

determine if/when convergence will occur in all cases.

4.4.3.5. Differences Between Dynamic MCS/PIs

The research paper in Ref. [208] compared and contrasted the resulting MCS/PIs, for a DFM model that

went for one time step. Additional reasons for those differences are also discussed in sub-section 4.4.2

of this thesis. Here, several differences in MCS/PIs will be compared for the “MTE” run, over multiple

time steps. Here, the PIs in the tables will be abbreviated to save space. These PIs are considered to

cause the “Missed Trip” Top Event in TMR Circuit “A” only.

In Table 96, it is seen that an “SEU” error in the “H” register at Time Step “TS= -2” was enough to cause

in failure in TMR Circuit “A”. In the FTA results, the “SEU_H” state was not enough by itself to cause this

failure, and was only seen in MCS that included additional failures. This greatly lowered the probability

of MCS with that state occurring. Table 97 considers PIs for 3 time steps. It was seen that the “SHE “0””

error in the “P” register could occur at multiple time steps. As it is a “sink state” (hard error), the node

cannot transition out of that state, so failures in earlier time steps are able to cause the Top Event. Static

FTA analysis would not be able to differentiate between “SHE” failures at different time steps. Lastly,

Table 98 considers four time steps. In DFM, it is seen that two separate erroneous reset/clear signals

(“CLR_1”) could supress the trip. The two reset signals combine to reset all the registers to “0” at their

respective time steps, causing the overall trip signal to erroneously read “0”. In FTA, these two failures

291

are independent of each other, and do not appear together in any of the resulting MCS. However,

overall that PI is seen to be a very low probability event.

Table 96: “TS = 2” Prime Implicant

Node State Time

Step

Prob

Clock 1 -2 N/A

Comp_Error Ok -2 9.9997E-

01

SEU_T No_SEU_T -2 9.993E-01

SEU_H SEU_H_0 -2 3.275E-05

SEU_T No_SEU_T -1 9.993E-01

PI Probability: 8.167E-06

Table 97: “TS = 3” Prime Implicant

Node State Time
Step

Prob

SHE_P SHE_P_0 -3 2.9750E-04

PI Probability: 3.7119E-05

OR

SHE_P SHE_P_0 -2 2.9750E-04

PI Probability: 3.7113E-05

Table 98: “TS = 4” Prime Implicant

Node State Time Step Prob

Global_Reset CLR_1 -4 2.95E-05

Trip_Reg_Rest CLR_1 -2 2.95E-05

PI Probability: 5.41E-11

As seen in Figure 97, the Top Event probabilities for the DFM (SUM) results are lower than the FTA

(MCSUB) results, and are generally closer to the DPC (exact) results. This was also observed in the

preliminary research, due to reasons discussed in sub-section 4.4.2 of this thesis. Although the number

of PIs increases through time, often these PIs are of very low probability (as seen in Table 98), due to the

inclusion of multiple failures.

292

An additional point of note, when considering Table 97 and Table 98 is that DFM is able to differentiate,

at least to some level, the differences between transient errors and permanent functional failures.

Considering the “acceptance criteria” from NUREG/CR-6901 given in Table 1 from sub-section, 1.2.3.1,

this provides some evidence that DFM can satisfy “Criteria 8” (“The model needs to differentiate

between faults that cause intermittent failures and faults that cause function failures”) [8]. As DFM

models can include “sink states”, that should allow for the differentiation of transient and permanent

errors. In the case of Table 97, it is seen that the same (permanent) failure can occur in multiple time

steps, and will have the same effect on the system (as it is a permanent error, so the system is unable to

transfer out of that failed state). In Table 98, transient errors are considered, and exact combinations of

error states/time steps are required, in order to produce the erroneous Top Event. More work should be

performed into this area to prove that DFM is able to meet “Criteria 8” (as well as the other criteria set

out in that report), as discussed in sub-section 6.3.

4.4.4. Risk Importance Measures

Risk Importance Measures (RIMs) are defined in CNSC RD-98 Reliability Programs for Nuclear Power

Plants as “A quantitative analysis to determine the importance of variations in equipment reliability to

system risk and/or reliability” [221]. RIMs have seen extensive use in the probabilistic analysis of NPP

systems, and selected were considered during this research program. Sub-section 4.4.1 will consider the

traditional RIMs and discuss dynamic extensions to those measures. The safety significance of these

measures will be discussed in sub-section 4.4.2, with the results and comparisons seen in sub-section

4.4.3.

4.4.4.1. Traditional and Dynamic Risk Importance Measures

There are several RIMs of note that could be considered, that can be found in the literature, a summary

of which is given in Table 99 [222,223]. Traditionally, these measures were applied to hardware

components, however in digital systems, they are applicable to both hardware and software

components [224].

293

Table 99: Risk Importance Measures for Nuclear Power Plants

Risk Measure Acronym Equation Equation No.

Fussell-Vesely FV () ()

 ()

6.1

Risk Reduction RR () () 6.2

Risk Achievement RA () () 6.3

Risk Reduction
Worth

RRW ()

 ()

6.4

Risk Achievement
Worth

RAW ()

 ()

6.5

Criticality
Importance

CR
(
 () ()

 ()
) (())

6.6

Partial Derivative PD (()

6.7

Birnbaum
Importance

BI () () 6.8

Where

R(xi=1) is the increase in risk level where the basic event (xi) is assumed to be failed

R(xi=0) is the decrease in risk level when the basic event is assumed to have perfect reliability

R(base) represents the present risk level

xi(base) represents the present unviability of the xi component.

The RIM specifically considered in this research work is the Fussell-Vesely (FV) method, defined in RD-98

as [221]:

Fussell-Vesely: “For a specific basic event, the fractional contribution to PSA results for all accident

sequences containing that basic event.”

In some cases, the FV value is calculated using the following equation [209]:

 ∑
 ()

 () (55)

Essentially, this formula sums all of the MCS that contain the component in a certain state, and then

divide that value by the total top event probability, to produce the FV value, and is the method used to

calculate FV in the CAFTA software [209]. Research has been performed at VTT, to allow their YADRAT

294

tool to calculate Dynamic Fussell-Vesely (DFV) values for DFM models. In the literature, the DFV for a

random node is given by [122,123]:

 ()

 (56)

Where
 ()

 is the probability that at least one PI, including a random node (r) that is in state (s)

that is either at or before time step (–t).

4.4.4.2. Safety Significance of RIMs

The values for FV and RAW can be used to help categorize Structures, Systems and Components (SSC)

based on the four Risk-Informed Safety Class (RISC) categories, as defined in Regulatory Guide 1.201

[225]. A further document reference in RG 1.201, designated as NEI-004, lays out guidelines for

classifying SSCs into those RISC categories [49]. One possible method is to use the FV importance

measures. For example, with an FV value that is greater than 0.005 then that component is a candidate

for a “Safety Significant” categorization [226]. This would correspond to a RISC-1 or RISC-2 category for

the affected component. Additionally, standards from the US Department of Energy (DOE) and the

American Society of Mechanical Engineers (ASME) define a “Significant Basis Event” as “A basic event

that contributes significantly to the computed risks for the total risk for risk for a specific hazard group.

For internal events, this includes any basic event that has a Fussell-Vesely importance greater than 0.005

[227,228].

4.4.4.3. Risk Importance Measure Results

Table 100 lists the failure modes that have a FV value greater than the “0.005” cut-off, discussed in sub-

section 4.4.4. Grouping SEGR and SEDB together (as those values are identical), FTA identified seven

such failure modes, with DFM returning eight failure modes. The difference being the “SEU” failure

mode in the “H” register. As seen in sub-section 4.4.3, that specific failure mode is only seen by itself in

the DFM results, not the FTA results, causing it to have a much higher FV value in the DFM results.

Regarding the DFM results, it is seen that there can be a large change in DFM values, as the system

295

progresses through time. For example, the “SHE_P (0)” failure has its FV values drop significantly over

time, while the CE (D) FV values increase over time. Conversely, the SEGR/SEDB FV results were

generally constant.

Table 100: DFM/FTA FV Comparison

Failure
Mode

FV
(FTA)

DFV (DFM)

Time Steps

1 2 3 4

SEDB/
SEGR

0.136 0.215 0.260 0.267 0.274

CE (D) 0.491 0.323 0.297 0.433 0.495

SHE_P
(0)

0.122 0.161 0.187 0.067 1.1E-05

Trip
Clear

0.0068 0.011 0.009 0.003 0.0001

Latch
Error

0.012 0.016 0.013 0.015 0.019

Comp
Error

0.024 0.016 0.015 0.005 1.4E-05

SEU H_1 N/A 0.012 0.007 7.9E-06 5.9E-06

SEU_T 0.069 0.029 0.016 0.0055 2.7E-05

In terms of the changing DFM FV values, it was seen that the failure modes that had FV values that

dropped over time tended to do so because they were less likely to be the only failure mode in the PI, at

higher time steps. As an example, when the model was run for one time step, the “SHE_P (0)” failure

was the only required failure in more PIs, than when the system was run for four time steps (in many

cases it was in a PI with an additional failure mode), which reduced its FV value. Alternatively, failures

such as SEDB/SEGR and CE (D) that had steady or increasing FV values did so as they had a steady, or

increasing number of PIs where they were the only failure mode present. As seen in Table 100, this has

the added effect of dropping certain FV values below the cut-off value at higher (or potentially lower)

time steps. More work could be performed in this area, to determine what should happen in this case.

4.4.5. Conclusions from Advanced DFM/FTA Comparisons

Overall, conventional FTA methods do not accurately model MVL like DFM does. FTA does not perform

all necessary logic reduction operations, and as such will return mostly implicants, not the Prime

296

Implicants, and often misses certain Prime Implicants. This causes FTA results to have a higher Top Event

probability, for larger, more complex systems. Considering dynamic behaviour, it was determined earlier

that FTA cannot directly model control loops, however it is also seen that FTA cannot include sink states

or dynamic consistency rules, which enforce realistic system behaviour, and have uses in modelling

certain failure modes (hard errors). FPGA-based systems exhibit dynamic behaviour in their control

logic, and MVL behaviour in certain failure modes and in the logic defined in common language

standards. While DFM still suffers from the Issue of “state explosion”, it does possess significant

advantages over FTA when modelling small to medium FPGA-based systems.

4.5. Chapter Summary

Chapter 4 presented the research results for the DFM modelling of FPGA-based systems, which in turn,

represents the majority of the work performed during this research program. Preliminary research using

a simple Post Accident Monitoring system demonstrated that DFM could model a simple, static FPGA-

based system using only binary logic. A second stage of preliminary research showed that DFM was able

to model four important aspects of FPGA-based systems: the IEEE 1164 standard, registers/flip-flops,

combinational logic blocks, and a dynamic signal compensator test system, while implementing dynamic

behaviour and MVL. These DFM results were corroborated using Modelsim simulations, proving the

effectiveness of DFM when modelling and analyzing FPGA-based systems. The next two sub-sections of

the chapter focused on the comparison of DFM and FTA when modelling FPGA-based test systems, using

the FPGA FMEA/Failure Modes Taxonomy data as a form of fault injection. Comparisons included the

Top Event probabilities, MCS/PIs, and the Birnbaum Structural Importance measure, for “Missed Trip”

and “Spurious Trip” Top Events. It was seen that there were some similarities, as well as some significant

differences between the DFM and FTA results, such as the inability of FTA to model the oscillating clock

signal. Potential reasons for the differences were discussed, with the differences in the FTA and DFM

algorithms/computational methods analyzed in further detail. This advanced comparative work found

that classical FTA algorithms will not properly account for the MVL used in DFM models, often do not

intrinsically handle negated logic, and will not properly handle transient errors. Finally, a modified test

system was constructed, to allow for multiple time steps to be run in the DFM model, with comparisons

of dynamic probabilities, PIs and Risk Importance Measures being presented.

297

5. Discussion on the Use of DFM for FPGA-Based System Modelling and

Analysis

The results of the research program that applied DFM to the analysis of FPGA-based systems has been

presented in Sections 3-4. In this section, the discussion will focus on the potential advantages and

disadvantages of applying DFM to FPGA-based systems, as well as additional comparisons of DFM to

other methods. Sub-section 5.1 will present the potential advantages of DFM. Sub-section 5.2 will look

at disadvantages of DFM. Sub-section 5.3 gives a comparison between DFM and Formal Methods. Sub-

Section 5.4 provides a summary of the information presented in this chapter.

5.1. Advantages of DFM

This research program has identified several potential advantages of DFM over other commonly-used

modelling and reliability methods. Therefore, the potential advantages of DFM are discussed in more

detail in this sub-section.

5.1.1. Advantages of DFM Over Static Methods (General)

As seen from the analyses in Section 4, the “Clock” signal is a very important input for FPGA-based

systems. The clock states and edge trigger will determine if the data is output through the register(s).

However, the clock period and duty cycle could also affect the system. In general, static systems would

not include methods to handle the dynamic clock.

An example of this (using the platinum Comparator from sub-section 4.2), was performed. A separate

testbench was created, to introduce a sine wave into the system. It was seen that the 10 ns clock period

will output the calculated neutron power much faster than a 25 ns clock period. The “Odd Cycle”

response changes the standard 50% Duty cycle to a 75% “1”, 25% “0” clock, with a period of 25ns. It was

seen that there is no effect on the output signal. This is because the register transitions are on clock

edges only, so the duty clock cycle does not affect the output value. In the DFM model, the

298

“Clock_Period” node could introduce a clock delay. The DFM model analysis then returned a clock delay

for the “Clock_Period” node that was longer than the standard. This means that the DFM model can

predict what could cause the clock delay, and the effect they could have on the system. While the clock

periods are usually very fast (on the order of nanoseconds), long delays would slow down the

calculations, and could lengthen the trip time.

An example of this is seen in Table 101. A clock delay causes the “Clock_Period” to be “Long”, i.e. longer

than it should be, meaning it will not transition when it is supposed to. Even though the “Input_voltage”

changes to “High”, the clock delay disallows the register to output the new value, causing the value for

“Phi” to read as “Normal”, and not as “High”. In the end, this causes the voting logic to indicate a “No

Trip”. In real operation, this would lead to a delay in the trip signal, as the trip would occur once the next

clock transition occurs. The modelling of the clock signals represents a potential advantage of DFM, over

traditional (static) reliability analysis methods. The clock is dynamic, as it will change its state (“0” 

“1”) based on the clock period. In order to properly model the effects of the clock, including clock

delays, the analysis must be able to capture these clock effects.

Table 101: PI for Missed Trip Due to Clock Delays

Implicant 1
(Node)

Implicant 1
(State)

Implicant 1
(Time Step)

Clock_En_State
Clock_En_Sig
Clock_Period
D
I(k)_2
I(k)_3
Input Voltage
Prev_Input_1
Prev_Input_2
Register_1_Out
Register_2_Out
Reset_State
Reset_Signal
Clock_Period
I(k)_2
I(k)_3
Phi
Input_Voltage
Register_1_Out
Register_2_Out

1
En_1
Long
Normal
Correct Voltage
High Voltage
Correct Voltage
Correct_Input
Correct_Input
Reg_Input_Correct
Reg_Input_Correct
X
R_0
Long
Correct
High
Total_Flux_Normal
High Voltage
Reg_Input_Correct
Reg_Input_Correct

-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
0
0
0
0
0
0
0
0
0

299

5.1.2. Advantages of DFM Over FTA

Due to the prevalence of the use of FTA for reliability analysis in the nuclear field, a large amount of this

research work was focused on comparisons of DFM and FTA. Some final points on the limitations of FTA

and potential advantages of DFM over FTA are discussed in this sub-section.

5.1.2.1. Potential Limitations of FTA

It was seen in this paper that there were several potential limitations with using FTA to model the FPGA-

based system. The first, being the issue of circular logic. FTA cannot explicitly incorporate circular logic,

as logic loops must be broken before the fault tree model can be analyzed, in order to avoid incorrect

cut sets and/or to allow the FTA software tool to perform the analysis [229,230]. This makes modelling

digital control properties such as control loops/feedback difficult. This creates further issues as digital

systems (FPGA, software, etc) generally include control loops. The outputs of the loop may change over

time, based on a change in inputs, the output from the previous time step, or from errors in the system.

Using FTA, it would be possible to construct fault tree models that would be analogous to the DFM

model, if only fixed time step was considered. This would mean constructing separate fault trees for

every desired time step and Top Event combination. The use of Basic Events to represent the previous

values for certain states, as seen in Figure 85, could be used to mimic dynamic behaviour. However,

each fault tree would only represent one Top Event/time step combination, and could not model any

different Top Event/time step combinations. This was seen in sub-section 4.4, where the DFM/FTA

results were the same for one time step, but changed significantly when two time steps were

considered.

A secondary issue is the use of negated logic. Common fault trees utilize coherent logic, however the

inclusion of negated logic (such as “NOT”) gates demands the use of non-coherent logic. While methods

exist for analyzing non-coherent fault trees, not all fault tree software packages have that ability. The

use of non-coherent logic may complicate FTA, however DFM was developed based on non-coherent

logic, so the use of negation poses no problems to DFM [93]. Therefore, it is impractical to use FTA to

model these dynamic systems, when compared to the capabilities of DFM. In contrast, it is

comparatively much simpler to create and model control loops/feedback loops using DFM than with

fault trees.

300

The second major issue was the way that FTA handles mutually exclusive states, as seen with the

oscillating clock. In DFM, this was treated similar to a control loop, where the clock would oscillate from

“0”  “1”  “0”  “1”, as it would in real life. FTA cannot enforce this clock oscillation (cannot enforce

the two mutually exclusive clock states), which lead to a large number of MCS (close to 40% of the total

MCS found), that were impossible, due to the clock being in states “0” and “1”, simultaneously. This can

be partially remedied, by forcing the clock to be either in the “0” state or “1” state at the start of the

analysis, or by using software tools to eliminate the impossible MCS after the analysis is performed. It is

possible that other dynamic signals, such as the “Reset” and “Enable” signals, or in the individual failure

modes, would have the same issue, which can be explored in the future. These issues could potentially

limit the effectives of FTA, when modelling and analyzing FPGA-based systems, and other digital systems

in general. By comparison, DFM will automatically account for the mutual exclusivity between states

(such as the oscillating clock states).

5.1.2.2. Dynamic Behaviour of FPGA-Based Systems

As FPGAs are a form of digital logic, they implement signal processing and/or control algorithms using

control loops, which rely on information calculated in a previous loop. In FPGAs, this information is

stored in Registers, and then output on the next rising clock edge. DFM is able to model these logic

loops, and how the logic states will change through time. It was seen that this is much more difficult to

model using a fault tree, as a separate fault tree would have to be created for every time step, as

opposed to one DFM model in total. Since static fault trees cannot directly include these control

loops/feedback loops, it is not able to model the dynamic register behaviour as accurately as DFM.

Additionally, DFM allows for the inclusion of sink states and dynamic consistency rules in the

model/analysis. These additional rules help ensure that the models exhibit realistic behaviour, by

filtering out unrealistic PIs. It was seen that the use of these rules caused large differences between the

DFM and FTA results. As fault trees are static, sink states and dynamic consistency rules are not

considered, and the only way to include them would be to build the fault tree for every case of sink

state, dynamic consistency rule, and time step combination, which is likely impractical. Sink states were

especially useful for the model in Figure 96. The failures representing “hard errors” were designated sink

states, as these errors could not be fixed during analysis. Other failures, such as “soft errors” or the reset

301

signals would be temporary (transient), and could occur multiple times. The difference between the

hard errors/soft errors would not be fully realized with static fault trees.

5.1.2.3. Multiple Valued Logic in FPGA-Based Systems

The use of MVL to discretize parameters into an arbitrary number of states has occurred in the

literature, in the case of a (complex) digital Feed Water controller [12,15] and Emergency Core Cooling

system (ECC) [122,123]. Using only binary logic may not represent the system as accurately as using

MVL, especially with digital systems, where there could be multiple different states for each system

parameter. It was seen that even in the case of a very simple test system, as discussed in sub-section

8.1, FTA could not perform the necessary logic reduction operations on the MVL system. This lead to FTA

results that were actually Implicants, and not Prime Implicants, which in turn lead to certain PIs not

being revealed. With larger, more complex systems, this causes the Top Event probability to be higher

than in actuality, while still not identifying all of the actual PIs.

In the case of FPGAs, MVL finds use in the definition of the FPGA logic states. While FPGAs operate on

binary signals (“0” and “1”), standards for Verilog and VHDL include additional logic states (mainly useful

during simulation). IEEE 1364 standard for Verilog defines four logic states (four-valued logic), including

“0”, “1”, “Z” (High-Impedance), and “X” (Unknown) [40]. The IEEE 1164 standard for VHDL expands on

this to include nine logic states [201]. As DFM is an MVL methodology, it would be better able to handle

the behavioural modelling of FPGA logic, than the binary logic of fault trees. MVL was also extended to

certain FPGA failures, such as the “SHE” and “SEU” failures, to represent “No Failure”, “0  1 Bit

Failure”, and a “1 0 Bit Failure”. FTA would have similar issues, when trying to properly model the

failure modes that have more than one potential failure state.

5.1.2.4. Discussion on Relative Accuracy of DFM and FTA

During the comparisons of the DFM and FTA results, the question arises on which of the two methods is

the more accurate methods, with regards to modelling and analyzing FPGA-based systems (and digital

systems in general). It had been stated in the literature that DFM was able to identify “risk relevant”

302

sequences not found with traditional methods [12], and that traditional methods tended to

overestimate the Top Event probabilities [8]. In terms of the results from this research project, it was

determined that there were significant differences with regards to the individual MCSs and PIs returned

by the respective methods, due to the different ways that DFM and FTA handle multi-valued logic and

time dependant behaviour. Considering the Top Event probabilities in this research work, as seen in sub-

section 4.3.10 and sub-section 4.4.3, the FTA results (MCSUB approximation) were larger, more

conservative values than the DFM results. It was also seen that the DFM results were generally close to

the values of the results returned by the DPC method using the CAFTA software tool, which does not use

approximations as done in the MCSUB calculation, and is intended to return a more accurate Top Event

probability [209]. By this logic, it appears that DFM produces more accurate probabilistic results from

MVL FPGA-based systems that traditional FTA approximations, however more research should be

performed on this topic, to directly prove that proposition. Additional comparisons using actual

operation experience and/or accident data would also be beneficial, to see if one of the methodologies

could better match up with the real-life data.

5.1.3. Advantages of DFM Over Simulation

It was seen in sub-section 4.2 that DFM is able to model the important logic and components of FPGAs,

as well as the FPGA-based test system. The Modelsim simulations were intended to prove that DFM

could be used accurately for that purpose. However DFM also possesses certain advantages over

simulators. Modelsim would work inductively, giving outputs based on the inputs combinations.

However, Modelsim will not identify exactly what combinations of events resulted in those outputs. It

will just produce the outputs. DFM, on the other hand, will provide a list of PIs that will breakdown the

potential cause of the certain events. Another advantage of DFM is modelling error states. With

Modelsim, it is difficult to include the effect of hardware failures, whereas it is more easily accomplished

in DFM using additional error nodes/states. Modelsim would provide evidence of logic errors. However

DFM can be used for that purpose as well. Lastly, DFM can include probabilities in the model, for use in

probabilistic analyses, while simulators such as Modelsim cannot.

303

5.2. Disadvantages of DFM

This research program also identified/confirmed several potential disadvantages of the application of

DFM for modelling and analyzing FPGA-based systems. Therefore, the potential disadvantages of DFM

are discussed in more detail in this sub-section.

5.2.1. Computational Intensity/State Explosion

At the time of this research work, the chief drawback of DFM is that it is limited to small-medium sized

systems. This is due to what is known as the “combinatorial explosion of states” or “state explosion”,

which occurs with large DFM models and/or large decision tables [121]. This limits the model size, and

number of time steps that can be run during the analysis. It is difficult to determine the exact limit on

the size of the model for which DFM (in this case the Dymonda tool) can be applied, as this will depend

greatly on the number of node/state combinations, number/complexity of the transfer and transition

boxes, number of time steps that are required, and the number of specified Top Events. However, this

issue was explored during this research, in order to determine a rough approximation on the maximum

model size. Consider the DFM model for a simple register, as discussed in sub-section 4.3.10.1. That

simple model was run for fifteen time steps, with the computational time plotted against the number of

time steps and the number of PIs in Figure 98 and Figure 99, respectively.

304

Figure 98: Computational Time vs The Number of Time Steps for the “SEU High Register” Model

Figure 99: Computational Time vs Number of PIs for "SEU High Register" Model

The issue of “state explosion” becomes evident when inspecting Figure 98 and Figure 99. It was seen

that an analysis of eight times steps or less would finish in under one second, and then starting from

nine time steps the analysis time started to grow. The computational time increase began to become

noticeable at twelve time steps, and then grew rapidly through time steps 13-15, due to the massive

0

2000

4000

6000

8000

10000

12000

14000

0 5 10 15 20

C
o

m
p

u
ta

ti
o

n
 T

im
e

 (
s)

Time Steps

Computation Time vs Time Steps
for Dynamic "SEU High Register"

DFM Model

0

2000

4000

6000

8000

10000

12000

14000

0 50000 100000 150000 200000 250000 300000

C
o

m
p

u
ta

ti
o

n
 T

im
e

 (
s)

Number of Prime Implicants

Computation Time vs PIs for
Dynamic "SEU H Register" DFM

Model

305

increase in the number of PIs. As seen in Figure 98 and Figure 99, the computational time and number of

PIs increases massively when going from fourteen to fifteen time steps, showcasing the issue of “state

explosion”.

In terms of how this relates to the maximum size of the system model, it was seen during the various

DFM analyses performed through the course of this research, that the maximum size of the critical

transition table that could be solved in a reasonable amount of time had approximately 100,000 rows,

which in turn means approximately 100,000 PIs being identified. The results from Figure 98 and Figure

99 lend evidence to this postulation, as the explosion is seen between time steps 14 and 15, where the

number of PIs (number of rows in the critical transition table) crossed the 100,000 “threshold” value. In

this example, due to the simplicity of the model (small number of columns in the critical transition table)

Dymonda was able to solve for greater than 100,000 PIs, however it was not able to do the same for the

larger DFM models that were considered in sub-sections 4.3 and 4.4. It should be noted that the number

of PIs returned was far less than 100,000 in those cases, due to the inclusion of truncation values and

initial conditions. The use of these features will eliminate many of the PIs (rows from the critical

transition table), however that critical transition table may still grow to be quite large before truncation

occurs.

As a general rule, it is proposed that for a consumer grade computer (in the case of this research

program a dual core 3.2 GHz processor with 8 GB of RAM), the model size should be limited so that the

maximum size of the critical transition table should not surpass 100,000 rows, and therefore the

maximum number of PIs should be 100,000. However, the use of initial conditions and truncation cut-off

probabilities may greatly affect the number of PIs that are actually obtained. It should be noted that the

issue of “State Explosion” is not limited to DFM, as it is an issue for other dynamic methods, such as

Markov Models [10].

5.2.2. Dynamic Probabilities and Importance Measures

Another issue to consider is how to account for probabilities in models with multiple time steps. The

probabilities may be kept static, if the analysis is run over a very short time span, such as the range of a

few clock cycles in this paper, then the failure probability will not change over the selected time frame.

However, the probabilities may change for each time step if the analysis is assumed to take place over a

306

large time span. Determining if the probabilities should change, and if so, what the rate of change

should be is an important factor in obtaining an accurate quantitative analysis. These leads into a third

issue, namely the calculation of dynamic risk importance measures, such as the dynamic FV measure

discussed in sub-section 4.4.4. Traditional methods such as the RAW and RRW have use specified

“Success” and “Failure” states, however when using MVL, many of the states may not be intrinsic failure

states. Additionally, as the system progresses through time, it has to be determined when to calculate

the importance measure value for reach node (i.e. is a value calculated at each time step, or at the end

of the total analysis). In general, the traditional (static) importance measures must be modified before

being applied to DFM models, and dynamic variants for the most common importance measures have

been developed and published in the literature [122,123,219].

5.3. Comparison of DFM and Formal Methods

The research discussed in sub-section 4.2 focused on the use of DFM to model the logic of generic FPGA-

based systems. In common practice, other methods are used for logic verification, such as Formal

Methods. Formal Methods can be defined as “mathematically rigorous techniques and tools for the

specification, design and verification of software and hardware systems” [231]. Formal methods utilize

mathematical representations of the systems (software and/or hardware), to mathematically verify that

the system functions as intended for all input combinations, and as such can uncover errors in the

software/hardware. DFM and formal methods have some similarities, as they both can be used to

analyze the software and hardware components of digital systems, and uncover errors in the system.

Additionally, both methods run into issues for very complex, realistic systems, as it may not be feasible

to fully analyze a complex system with either method. Formal methods have also seen use in the

verification process of FPGA-based systems [232]. However, it should be noted that at the time of this

paper, formal methods have been much more widely used than DFM.

There are some large differences with DFM and formal methods. DFM does not rely on the

mathematically rigorous formulations that formal methods do, and instead employs user-input decision

tables and PI/MVL functions to analyze the system. While DFM has seen some use in the direct

validation of software logic (PIs that do not contain any hardware error states imply a software error)

[93], DFM is generally used to analyze the causes of a Top Event, or the effects of an initiating event. For

307

example, in DFM if a Top Event is set to a “Trip”, then all possible scenarios, either correct or erroneous,

would be solved for and stated in the PIs. With DFM, the probabilities of each PI is given, along with the

probabilities of the Top Event, allowing for quantitative analyses, such as the calculation of risk

importance measures, or the inclusion of DFM results in Probabilistic Safety Assessment (PSA). In

contrast, formal methods will mathematically verify that the system works for given inputs, but it does

not allow for specific top events to be set, in order to determine the MCS/PIs, and it will not perform

probabilistic calculations.

Although DFM and formal methods share some connection for digital systems analysis, they generally

serve different purposes. Formal methods are used to mathematically verify the system, while DFM

performs a reliability analysis more similar to that of FTA or Markov methods, however direct

comparisons on the use of DFM and formal methods were not seen in the literature, at the time of this

thesis report.

5.4. Chapter Summary

This chapter provided a discussion on the advantages and the disadvantages of using DFM for the

modelling and analysis of FPGA-based systems, resulting from the research presented in Chapter 4. It

was seen that advantages of DFM over static methods included modelling of clock delays, proper

handling of the oscillating clock signals and the ability to incorporate differences between transient and

permanent errors. Furthermore, traditional methods such as FTA do not correctly perform logical

reduction operations on MVL that can be incorporated into FPGA systems, and may not apply the

“consensus principle” to negated logic, leading to inaccurate MCS/PI results. In comparison with

simulations, DFM has the advantages in that it will provide the PIs, listing the possible events that could

lead to the final event (Top Event), and do not just show the resulting event. Additionally, DFM can

include quantitative analysis, while simulations do not. A discussion of DFM and formal methods was

presented, detailing some similarities/differences between the two methodologies, however no direct

comparisons were mad e during this research program. Lastly, it was seen that the main disadvantage of

DFM was the issue of “state explosion”, limiting the size of model that can be realistically analyzed with

DFM. A secondary issue was the proper interpretation of probabilities across multiple time steps.

308

6. Conclusions and Future Work

The overall conclusions from this research work, as well as potential topics of future work are presented

in this section. These conclusions are derived from the results of each section of the research work, and

represent the overall conclusions from that research. Individual conclusions, specific to each section of

the research work were discussed at the end of the individual sections (Sections 3-4). As a part of these

overall conclusions, the limitations of the research work and the possible topics of future work, are

discussed. Sub Section 6.1 presents the conclusions from this research work. Sub-section 6.2 provides

the recommendations gleamed from the results of the DFM/FPGA research. Sub-section 6.3 discusses

potential avenues of future work. Sub-section 6.4 provides a summary of the information discussed in

this chapter.

6.1. Conclusions

The objective of this research work was to investigate the use of the Dynamic Flowgraph Methodology

(DFM) for the purpose of modelling and analyzing FPGA-based systems. DFM is a modern, dynamic

analysis methodology implementing MVL in order to model and analyze digital systems. In the literature,

DFM has been applied to software-based digital systems, but not specifically FPGAs. Additionally, as

FPGAs are a relatively new technology in the nuclear domain, new reliability and safety analysis data for

FPGA-based systems will assist with designers and reviewers of those systems. Therefore, the

application of DFM to FPGA-based systems, as well as the FPGA failure mode data, would provide a

useful and logical extension to the research and knowledge in the field of digital control systems

reliability, especially within the nuclear field.

Over the course of this research program, it was seen that DFM was able to correctly model the logic of

several important FPGA components (IEEE 1164 standard, registers and CLBs), as well as the logic for the

Dynamic Signal Compensator test system. The results of the Modelsim simulation confirmed the

accuracy of the DFM analysis. Two separate comparisons of DFM with FTA showcased the ability of DFM

to model complex FPGA-based systems based off of real case studies and industry documentation.

Additionally, FPGA failure mode information was reviewed, compiled and categorized, and then

309

interfaced with an internationally-recognized methodology, to provide important failure mode data that

were used in the models in this research.

It was seen that DFM has several advantages over traditional analysis methods. In comparison with

simulations, it was seen that DFM will more easily determine the actual cause(s) of the Top Event

behaviour, allows easier modelling of hardware and software components, and allows for probabilistic

calculations. Considering FTA, DFM is able to incorporate time-dependant behaviour into the system

models, which is an important property for digital control systems that rely on feedback/control loops.

This effect was particularly evident when considering the oscillating clock behaviour, as FTA would

return many impossible cut sets that included the clock in both states. A second dynamic issue was seen

when considering transient errors, such as SEUs. These may appear and disappear over time, as was

captured in the DFM analysis, but would not be correctly described by FTA It was also seen that FTA

does not fully perform MVL logic reductions, and therefore returned many Implicants that were not

Prime Implicants, when attempting to model FPGA logic states and failure modes that incorporated MVL

states. This lead to an inflated number of MCS/PIs being returned, and affected the Top Event

probabilities.

 When considering the downsides of DFM, the main issue is still the computational intensity of the

modelling process. Solving complex systems, or even simple systems for multiple time steps, requires

significant time and computing resources. This limits the size of models that can be realistically analyzed

by DFM, which will be smaller, less complex models than software packages such as CAFTA will allow.

Overall, it was seen that DFM is an effective tool for modelling and analyzing FPGA-based systems, and

possess certain advantages over traditional reliability analysis techniques.

However, there were still some limitations to this research work. In terms of the DFM/FTA comparison,

the FPGA-based test system consisted of a one-parameter, one channel system. In reality, the system

would need to include multiple trip parameters, and would include several channels (3 or 4 redundant

channels). The use of multiple channels would introduce the issue of CCF, and as FPGAs are a digital

technology, that would include both hardware and software CCF. Generally, other forms of mitigation

methods, on top of TMR are also applied to FPGA-based systems, but were not considered with the test

system modelling. In order to realize the true potential and ability of DFM to model FPGA-based

systems, additional DFM models including multiple parameters, channels, mitigation methods and CCF

would need to be analyzed.

310

A second point, is that the DFM modelling was largely focused on hardware failures (such as SEEs, aging

process failures, etc.). In the preliminary DFM/FTA comparison work, it was assumed that software

failures (HDL code failures) would be eliminated in the “Design” stage of the lifecycle, so they were not

directly considered in that comparison. The advanced DFM/FTA comparisons included certain HDL code

failures, although they were treated in a very similar way to the hardware failures. The DFM/Modelsim

comparisons considered FPGA logic to a very general, abstract extent, but did not focus on specific HDL

code failures. Overall, the effects of software (HDL code failures) should be modelled more extensively

with DFM, in order to determine the overall effectiveness of DFM when modelling and analyzing FPGA-

based systems.

6.2. Recommendations

From the results obtained through the work performed during this thesis, it is recommended that DFM

be applied to model and analyze FPGA-based I&C systems/safety systems, up to a certain size. As it was

shown that DFM has certain advantages over traditional methods (e.g. FTA, simulation), the application

of DFM would lead to the improved reliability and safety analysis of safety critical FPGA-based systems.

Therefore, it is recommended that DFM be used alongside simulation and in place of FTA when directly

modelling small to medium sized FPGA-based systems, and to augment the results of Fault/Event Tree

analysis when considering the total system (i.e. analog, digital, mechanical) and overall NPP PSA.

In terms of the exact size of the model that DFM can successfully model, it will strongly depend on the

model’s level of detail (node/state combinations) and the actual computer system that is running the

DFM tool. However, as a general rule it was seen that the largest critical transition table (largest number

of PIs for the selected top event) that could be handled by a consumer-grade laptop was roughly

100,000 rows (100,000 PIs).

In addition, it is recommended that the research into the application of DFM for the modelling and

analysis of FPGA-based systems be continued, with potential topics of future research discussed in sub-

section 6.3.

311

6.3. Potential Topics for Future Work

Through the work performed during this research program, several potential avenues of future research

were identified. Therefore, eight potential future research topics are briefly discussed in this section, all

of which could expand upon the DFM/FPGA research from this thesis.

1.) Failure Mode Mitigation

DFM could be used to model diagnostics and/or correction methods for mitigating failures such as SEEs.

Several methods exist to correct and/or detect errors, including Parity Bits, Error Detection and

Correction codes (EDC), Double or Triple Modular Redundancy (DMR/TMR) Cyclic Redundancy Checks

(CRC), Reed-Solomon Codes (RS), etc, as discussed in the literature [174]. DFM could be used model the

different methods, to show how they would be performed inside of an FPGA. DFM could be used

determine the effectiveness of the different mitigating techniques, as well as how their effectiveness

could change through time. Probabilistic effects could be included, as there are failure rates for many of

these detection methods that are available in the literature [130,133]. This would allow for a

comparison of how the different mitigation methods would affect the probability of success/failure

through the different time steps, as well as allow us to see how the mitigation methods would affect the

values of risk importance measures.

2.) Architecture Comparisons (Qualitative CCF):

The work involved in the DFM/FTA comparison paper consisted of one form of system architecture,

essentially a one channel system with TMR. There are other architectures that could be considered for

safety system design (such as those discussed in IEC 61131-6) [233], which include the different uses of

redundancy and diagnostics. DFM could be used to evaluate and compare the different system

architectures, to determine the strengths, weaknesses and possible improvements for each

architecture. This architecture comparison could include a qualitative approach to CCF modelling, as one

could probe the effects of CCF on different architectures, as well as evaluate mitigations for those CCF

errors. This could allow for a more in-depth analysis of CCF, which was not considered in the previous

DFM/FTA comparison.

312

3.) Application to Software-/Based Systems with Comparisons to FPGAs:

The study discussed in the this thesis report focused solely on FPGAs, however other forms of digital

systems, such as software-based systems see use in NPPs. DFM could be used to analyze a software-

based system such as a PLC-based system, in a similar way to the work performed in the studies done so

far. This could include the hardware failure modes of the PLC, as well as software errors, which may be

more prevalent in the PLC than in an FPGA. Alternatively, PLC-based safety system architecture (such as

those shown in IEC 61131-6) [233] could be modelled, and comparisons could be made with an

equivalent FPGA-based system to determine the potential advantages and disadvantages of both

technologies.

4.) HDL Coding Analysis:

The DFM/FTA research work focused mainly on the hardware faults (such as aging failures or SEEs), with

a cursory take on software failures, which were treated in a more similar way to the hardware failure

modes. Therefore, research into software/coding faults could be an extension of that work. DFM could

be used to investigate software/coding failures in the FPGA (or other digital systems), such as failures in

state machines, causes and effects of software common cause failure, calculating software failure

probabilities, or used in conjunction with formal verification methods to analyze errors in the HDL (or

software) code. This would be a separate analysis into the actual programming of the system, allowing

for both the hardware and software aspects of these systems to be analyzed. HDL (VHDL) code for the

Comparator component has already been written, making it a potential test case (or part of a potential

test case) for software analysis. As in previous cases, this could include FPGAs, but would be applicable

to software-based systems as well.

5.) Additional Methodology Comparisons:

The comparisons in the DFM/FTA report were limited to DFM and FTA, however those are not the only

methods of performing hazard analysis. Other methods, such as Markov analysis [234], Markov CCMT

(Cell-to-Cell-Mapping Technique, a dynamic Markov variant) [15], and Dynamic Fault Trees [235] could

be considered for comparison with DFM. These other methodologies have their own way of

implementing time dependant behaviour, as well as their own benefits and drawbacks. Comparisons

313

with the VTT YADRAT DFM tool could be made, to determine the comparative accuracy of the two DFM

tools when modelling FPGA (or other digital) systems. The comparison with the YADRAT tool could

include comparisons of Top Event probabilities, Prime Implicants, importance measures and

computation time.

A second potential topic would be the comparison of inductive analysis methods. The Dymonda tool is

capable of performing an inductive analysis (the YADRAT was unable too, at the time of writing the

report). White FTA is not capable of carrying out an inductive analysis, Event Trees are used for that

purpose. Similar dynamic/static comparisons between DFM and Event Trees could be performed, so

determine the similarities and differences, as well as the advantages and disadvantages of both

methods.

6.) Dynamic CCF:

In the DFM/FTA comparisons, CCF was not specifically considered, as the test system consisted of one

channel. A CCF analysis could be performed, as well as include Dynamic CCF, as it is done with the

YADRAT tool [123]. The dynamic method can include components in a common cause group at multiple

time steps (i.e. the components do not have to fail all at the same time). This would not be possible with

standard FTA, since it lacks time-dependant properties. Dynamic CCF results could show how CCF events

occur through time, and could also be compared to FTA CCF calculations, to give an in-depth comparison

of CCF between the two methodologies.

7.) Additional Quantitative Measures:

In this research work, certain quantitative parameters were considered, such as Top Event probabilities,

BSI and the Dynamic FV risk importance measures. There exist additional RIMs that are applicable to

DFM [122,123], as discussed in sub-section 4.4.4. Comparisons of these additional importance measures

could be made to the analogous FTA (traditional importance measures), as was done with the Dynamic

and traditional FV RIM. Similarly, other quantitative analyses, such as uncertainty analysis or sensitivity

analysis could be applied to DFM models, and could also be used to compare DFM results to FTA results.

314

8.) Additional Quantitative Measures:

As identified in this research work, and elsewhere in the literature, the main limitation of DFM is the

computational intensity, which limits its applicability to small-medium sized systems. Therefore it has

been suggested in the literature that DFM results be integrated with the results of traditional analysis

methods, such as FTA and Event Trees [27,28]. In those documents it was advised that DFM should be

applied to the software-based components of a system, to provide more detailed information in order

to construct more accurate fault trees and/or event trees. The same concept could be applied to FPGA-

based systems, where DFM is used to analyze in detail the FPGA hardware and/or software, and include

those results as part of a larger, traditional system analysis.

9.) Completion of the NUREG/CR-6901 Criteria:

Considering the “acceptance criteria” from NUREG/CR-6901 given in Table 1 from sub-section, 1.2.3.1, it

was seen that for four of those criteria (criteria 4, 6-8), it had not yet been shown that DFM would meet

the requirements set out by the authors of that report [8]. Regarding criteria 8 (“The model needs to

differentiate between faults that cause intermittent failures and faults that cause function failures”),

there was some evidence from the DFM analyses in this report from sub-section 4.4.3 that DFM models

can be constructed that will differentiate between transient errors and permanent errors. Therefore,

another potential topic of future research would be to prove if DFM is or is not able to meet those

additional criteria, and if it cannot, to determine ways in which the methodology could be improved.

6.4. Chapter Summary

General conclusions from the research program are discussed in this chapter. These include the

potential advantages and disadvantages of DFM, as well as certain limitations of this research program.

Several recommendations and potential future topics of research, which also consider FPGAs and/or

DFM are outlined.

315

References

[1] IAEA. Application of Field Programmable Gate Arrays in Instrumentation and Control Systems of
Nuclear Power Plants. Vienna: International Atomic Energy Agency; 2016.

[2] IAEA. Technical Challenges in the Application and Licensing of Digital Instrumentation and Control
Systems in Nuclear Power Plants. Vienna: International Atomic Energy Agency; 2015.

[3] Ranta J. The Current State of FPGA Technology in the Nuclear Domain. Vuorimiehentie, Finland,:
VTT Technical Research; 2012.

[4] Naser J. Guidelines on the Use of Field Programmable Gate Arrays (FPGAs) in Nuclear Power Plant
I&C Systems. Palo Alto: EPRI; 2009.

[5] Naser J. “Recommended Approaches and Design Criteria for Application of Field Programmeable
Gate Arrays in Nuclear Plant Instrumentation and Control. Palo Alto: EPRI; 2011.

[6] McNelles P, Lu L. A Review of the Current State of FPGA Systems in Nuclear Instrumentation and
Control. Proceedings of the 2013 21st International Conference on Nuclear Engineering,
Chengdu, China: ASME; 2013. doi:10.1115/ICONE21-16819.

[7] Menon C, Guerra, S. Field Programmable Gate Arrays in Safety Related Instrumentation and
Control Applications. Sweden: Energiforsk; 2015.

[8] Aldemir T, Miller DW, Stovsky MP, et al. Current State of Reliability Modeling Methodologies for
Digital Systems and Their Acceptance Criteria for Nuclear Power Plant Assessments. Washington
DC: U.S. Nuclear Regulatory Commission; 2006.

[9] Committee on the Safety of Nuclear Installations. Failure Modes Taxonomy for Reliability
Assessment of Digital Instrumentation and Control Systems for Probabilistic Risk Analysis. Paris:
OECD-NEA; 2015.

[10] Committee on the Safety of Nuclear Installations. RECOMMENDATIONS ON ASSESSING DIGITAL
SYSTEM RELIABILITY IN PROBABILISTIC RISK ASSESSMENTS OF NUCLEAR POWER PLANTS. Paris:
OECD-NEA; 2009.

[11] Aldemir T, Stovsky MP, Miller DW, et al. Dynamic Reliability Modeling of Digital Instrumentation
and Control Systems for Nuclear Reactor Probabilistic Risk Assessments. Washington DC: U.S.
Nuclear Regulatory Commission; 2007.

[12] Aldemir T, Guarro S, Kirshenbaum J, et, al. A Benchmark Implementation of Two Dynamic
Methodologies for the Reliability Modeling of Digital Instrumentation and Control Systems.
Washington DC: U.S. Nuclear Regulatory Commission; 2009.

[13] Aldemir T. A survey of dynamic methodologies for probabilistic safety assessment of nuclear
power plants. Annals of Nuclear Energy 2013;52:113–24. doi:10.1016/j.anucene.2012.08.001.

[14] ASCA Inc. Dymonda 7.0 Software Guide. Redondo Beach, California: ASCA Inc.; 2013.
[15] Aldemir T, Guarro S, Mandelli D, et al. Probabilistic Risk Assessment modeling of digitla

instrumentation and control using two dynamic methodologies. Reliability Engineering and
System Safety 2010:1011–39.

[16] Aldemir T, Miller DW, Stovsk M, et al. Methodologies For The Probabilistic Risk Assessment of
Digital Reactor Protection and Control Systems. Nuclear Technology 2007;159:167–91.

[17] Authen S, Holmberg J-E. Reliability Analysis of Digital Systems in a Probabilistic Risk Analysis for
Nuclear Power Plants. Nuclear Engineering and Technology 2012;44:471–82.

[18] Zio E. Integrated deterministic and probabilisitic safety assessment: Concepts, challenges,
research directions. Nuclear Engineering and Design 2014;280:413–9.
doi:10.1016/j.nucengdes.2014.09.004.

316

[19] Milici A, et al. Plant Management Advisor System (PMAS): An architecture for performing
diagnostic reasoning and decision support in plant process management. Proceedings of the
Probabilistic Safety Assessment and Management (PSAM) Conference, Crete: 1996.

[20] Milici A. Assisting emergency operating procedures execution with AMAS, an Accident
Management Advisor System, Taipei: 1994.

[21] Milici A, et al. "Extending the Dynamic Flowgraph Methodology (DFM) to model human
performance and team effects. Washington DC: U.S. Nuclear Regulatory Commission; 2001.

[22] Motamed M, et al. Development of tools for safety analysis of control software in advanced
reactors," U.S. Nuclear Regulatory Commission Report. Washington DC: U.S. Nuclear Regulatory
Commission; 1996.

[23] Garett C, Apostolakis G. Automated hazard analysis of digital control systems. Reliability
Engineering and System Safety 2001:1–17.

[24] Garett C, Guarro S, Apostolakis G. The Dynamic Flowgraph Methodology for Assessing the
Dependability of Embedded Software Systems. IEEE Transactions on Systems, Man and
Cybernetics 1995;25:824–40.

[25] Al-Dabbagh A, Lu L. Dynamic flowgraph modeling of process and control systems of a nuclear-
based hydrogen production plant. International Journal of Hydrogen Energy 2010:9569–80.

[26] Al-Dabbagh A, Lu L. Reliability modeling of networked control systems using dynamic flowgraph
methodology. Reliability Engineering and System Safety 2010:1202–9.

[27] ASCA Inc. Risk-Informed Safety Assurance and Probilistic Risk Assemment of Mission Critical
Software-Intensive Systems. Redondo Beach, California: ASCA Inc.; 2007.

[28] ASCA Inc. Context-Based Software Risk Model (CSRM) Application Guide. Redondo Beach,
California: ASCA Inc.; 2013.

[29] Xilinx. Xilinx: All Programmable n.d.
[30] Altera 2016.
[31] Lattice Semiconductor. Lattice Semiconductor 2016.
[32] Microsemi Corporation. Microsemi 2016.
[33] Opal Kelly. Opal Kelly 2014.
[34] Digilent. Digilent: A National Instruments Company 2016.
[35] Terasic Inc. Terasic 2013.
[36] IEEE Power and Energy Society. IEEE Standard Criteria for Programmable Digital Devices in Safety

Systems of Nuclear Power Generating Stations. New York, NY: IEEE; 2016.
[37] International Electrotechnical Commission. Development of HDL-programmed integrated circuits

for systems performing category A functions. Geneva, Switzerland: IEC; 2012.
[38] Digital I&C Working Group. Common Position on the Treatment of Hardware Description

Language (HDL) Programmed Devices for Use in Nuclear Safety Systems. OECD-NEA; 2013.
[39] National Instruments. FPGA Fundamentals 2012.
[40] IEEE. IEEE Standard for Verilog Hardware Description Language. New York, NY: IEEE; 2005.
[41] IEEE. IEEE Standard VHDL Language Reference Manual. New York, NY: IEEE; 2009.
[42] IEEE. IEEE Standard for SystemVerilog--Unified Hardware Design, Specification, and Verification

Language. New York, NY: 2012.
[43] Xilinx All Programmable. Vivado Design Suite 2016.
[44] Altera Corporation. Quartus Prime Software 2016.
[45] Mathworks. HDL Coder 2016.
[46] MyHDL Community. MyHDL 2015.
[47] National Instruments. IP Corner: The LabVIEW Fixed-Point Data Type Part 1 – Fixed-Point 101

2011.
[48] Taylor A. The Basics of FPGA Mathematics. Xcell Journal 2012:44–9.

317

[49] Bishop D. Fixed Point Package User’s Guide 2010.
[50] Bishop D. Floating Point Package User’s Guide 2010.
[51] Fink R, Killian C, Nguyen T, Druilhe A, Daumas F, Naser J. Guidelines and a primer on application

of field-programmable gate arrays in nuclear plant I&C systems. NPIC&HMIT 2010, Las Vegas,
Nevada: ANS; 2010, p. 1305–55.

[52] Bach J, Tavolara, I. Use of FPGA Technology in Implementation of the Logic of the Modernized
Rod Control System (RCS) of the 900 MW EDF Fleet. NPIC&HMIT 2010, Las Vegas, Nevada: ANS;
2010, p. 1326–36.

[53] Preckshot GG. Method for Performing Diversity and Defense-in-Depth Analyses of Reactor
Protection Systems. Livermore, California: Lawrence Livermore National Laboratory; 1994.

[54] Wood RT, et al. Diversity Strategies for Nuclear Power Plant Instrumentation and Control
Systems. Washington DC: U.S. Nuclear Regulatory Commission; 2008.

[55] Torok R. Guidelines for Performing Defense-In-Depth and Diversity Assessments for Digital
Upgrades: Applying Risk Informed and Deterministic Method. Palo Alto: EPRI; 2004.

[56] IEC. Nuclear power plants - Instrumentation and control systems important to safety - Software
aspects for computer-based systems performing category A functions. Geneva, Switzerland: IEC;
2006.

[57] Koga R, et al. Comparison of Xilinx Virtex-II FPGA SEE Sensitivities to Protons and Heavy Ions. IEEE
Transactions on Nuclear Science 2004;51:2825–33. doi:10.1109/TNS.2004.835057.

[58] Hall TS. Field-programmable analog arrays: A floating-gate approach. PhD Dissertation. Georgia
Institute of Technology, 2004.

[59] She J, Jiang J. On the Speed of Response of an FPGA-based Shutdown System in CANDU Nuclear
Power Plants. Nuclear Engineering and Design n.d.;241:2280–7.
doi:10.1016/j.nucengdes.2011.03.050.

[60] She J, Rankin DJ, Jiang J. Evaluation of Safety PLCs and FPGAs for Shutdown Systems in CANDU
Nuclear Power Plants. ISSNP/CSEPC/ISOFIC, China: 2008.

[61] She J, Jiang J. Potential improvement of CANDU NPP safety margins by shortening the response
time of shutdown systems using FPGA based implementation 2012;244:43–51.
doi:10.1016/j.nucengdes.2012.01.003.

[62] Xing A, de Grosbois J, Archer, P, Awwal A, Sklyar V. FPGA-Based Controller in CANDU® Nuclear
Safety-Reactor Applications. NPIC&HMIT 2010, Las Vegas, Nevada: ANS; 2010, p. 1337–44.

[63] Clarkson, G. FPGA Based Safety Related I&C Wolf Creek Generating Station, France: IAEA; 2008.
[64] CS Innovations, LLC. Licensing the ALS FPGA Based Safety Related I&C Platform 2009.
[65] Bobrek M, et al. Review Guidelines for Field Programmable Gate Arrays in Nuclear Power Plant

Safety Systems. Washington DC: U.S. Nuclear Regulatory Commission; 2010.
[66] Becker JR. License Amendment Request 2011.
[67] Wang AB. Diablo Canyon Power Plant, Unit Nos. 1 And 2 - Acceptance R eview Of License

Amendement Request For Digital Process Protection System Relacement 2012.
[68] Lu JJ, Chou HP, Wong KW. Conceptual Design of FPGA-based RPS for the Lungmen Nuclear Power

Plant. NPIC&HMIT 2010, Las Vegas, Nevada: ANS; 2010, p. 944–53.
[69] Huang H, Chou H, Lin C. Design Of A FPGA Based ABWR FeedWater Controller. Nuclear

Engineering and Technology 2012:363–8.
[70] Miyazaki T, Oda N, Goto Y, et al. Qualification of FPGA-based safety-related PRM system.

Proceeding of NPIC&HMIT, Knoxville, Tennessee: 2009, p. 70.
[71] Kojima, et al. Qualification of Toshiba’s FPGA-based safety-related systems. Proceeding of

NPIC&HMIT, Las Vegas, Nevada: 2010, p. 935–43.
[72] Bahkmach E, et al. FPGA-based Technology and Systems for I&C of Existing and Advanced

Reactors, Vienna, Austria: IAEA; 2009.

318

[73] Kharchenko V. Diversity-Oriented FPGA-Based NPP I&C Systems: Safety Assessment,
Development, Implementation. Proceedings of the 18th International Conference on Nuclear
Engineering, Xian, China: ICONE; 2010, p. 755–64.

[74] Kharchenko V, Siora O, Sklyar V. Multi-Version FPGA-Based Nuclear Power Plant I&C Systems:
Evolution of Safety Ensuring, Nuclear Power - Control, Reliability and Human Factors 2011.

[75] FPGA-Based NPP Instrumentation and Control Systems: Development and Safety Assessment.
n.d.

[76] Chen CK. A Petri Net Design of FPGA-based Controller for a Class of Nuclear I&C Systems. Nuclear
Engineering and Design 2011;241:2597–2603. doi:10.1016/j.nucengdes.2011.04.004.

[77] Esposito B, Riva M, Marocco, D, Yaschuck, Y. A Digital Acquisition and Elaboration System for
Nuclear Fast Pulse Detection. Nuclear Instruments and Methods in Physics Research A
2006;572:355–7. doi:10.1016/j.nima.2006.10.335.

[78] Schiffler R, Flaska M, Pozzi S, Carney S, Wentzloff D. A scalable FPGA-based digitizing platform for
radiation data acquisition. Nuclear Instruments and Methods in Physics Research A 2011:491–3.
doi:10.1016/j.nima.2010.10.039.

[79] Westinghouse Electric Company. Westinghouse Receives Final NRC Approval for Advanced Logic
System® Safety System Solution. Westinghouse Press Releases 2013.
http://www.westinghousenuclear.com/News_Room/PressReleases/pr20130918.shtm (accessed
February 11, 2014).

[80] Yoo J, Lee HJ, Lee JS. A Research on Seamless Platform Change of Reactor Protection System from
PLC to FPGA. Nuclear Engineering and Technology 2013;45:477–88.

[81] Srivastava GP. Electronics in nuclear power programme of India: An overview. Sadhana Academy
Proceedings in Engineering Sciences 2013;38.

[82] International Atomic Energy Agency (IAEA). IAEA Safety Glossary: Terminology Used in Nuclear
Safety and Radiation Protection. Vienna, Austria: IAEA; 2007.

[83] Stoelinga M, Ruijters, E. Fault tree analysis: A survey of the state-of-the-art in modeling, analysis
and tools. Computer Science Review 2015;15–16:29–62. doi:10.1016/j.cosrev.2015.03.001.

[84] Ericson CA. Fault Tree Analysis - a history. Proceedings of the 17th International System Safety
Conferenc, Orlando, Florida: n.d., p. 1–9.

[85] Vesely WE, Goldberg FF, Roberts NH, Haasl DF. Fault Tree Handbook (NUREG-0492). Washington
DC: U.S. Nuclear Regulatory Commission; 1981.

[86] Lewis HW, Budnitz RJ, Kouts HJC, Loewenstein WB, Rowe WD, von Hippel F, et al. Risk
Assessment Review Group report to the U. S. Nuclear Regulatory Commission. Washington DC:
U.S. Nuclear Regulatory Commission; 1978.

[87] Stamatelatos M, Vesely W, et al. Fault Tree Handbook with Aerospace Applications. Virgina, USA:
NASA; 2002.

[88] International Electrotechnical Commission. Fault tree analysis (FTA). Geneva, Switzerland: IEC;
2006.

[89] Beeson SC. Non coherent fault tree analysis. Loughborough University, 2002.
[90] Bendell A, Ansell J. The incoherency of multistate coherent systems. Reliability Engineering

1984;8:165–78. doi:10.1016/0143-8174(84)90022-2.
[91] Andrews JD. To not or not to not!!, Fort Worth, Texas: 2000.
[92] Andrews JD. The Use of Not Logic in Fault Tree Analysis. Quality and Reliability Engineering

International 2001;17:143–50. doi:10.1002/qre.405.
[93] Yau M, Apostolakis G, Guarro S. The use of prime implicants in dependability of software

controlled systems. Reliability Engineering and System Safety 1998;62:23–32. doi:Get rights and
content.

319

[94] Kumamoto H, Henley EJ. Top-Down Algorithm for Obtaining Prime Implicant Sets of Non-
Coherent Fault Trees. IEEE Transactions on Reliability 1978;R-27:242–9.
doi:10.1109/TR.1978.5220351.

[95] Lu L, Jiang J. Joint Failure Importance for Noncoherent Fault Trees. IEEE Transactions on
Reliability 2007;56:435–43. doi:10.1109/TR.2007.898574.

[96] Remenyte-Prescott R, Andrews JD. An Efficient Real-Time Method of Analysis for Non-coherent
Fault Trees. Quality and Reliability Engineering International 2009;25:129–50.
doi:10.1002/qre.955.

[97] Kececioglu DB. Reliability Engineering Handbook. vol. 2. Lancaster, USA: DEStech Publications;
2002.

[98] Andrews JD. Tutorial: Fault Tree Analysis. Proceedings of the 16th International System Safety
Conference, Seattle, Washington: 1998.

[99] Bartlett LM, Andrews JD. Choosing a Heuristic for the ‘Fault Tree to Binary Decision Diagram”
Conversion, Using Neural Networks”. IEEE Transactions on Reliability n.d.;51:344–9.
doi:10.1109/TR.2002.802892.

[100] Schneewelss WG. Boolean Functions with Engineering Applications and Computer Programs.
Berlin: Springer-Verlag,; 1989.

[101] Rauzy A. New algorithms for fault tree analysis. Reliability Engineering and System Safety
1993;40:203–11. doi:10.1016/0951-8320(93)90060-C.

[102] Deng Y, Wang H, Guo B. BDD algorithms based on modularization for fault tree analysis. Progress
in Nuclear Energy n.d.:192–9. doi:http://dx.doi.org/10.1016/j.pnucene.2015.06.019.

[103] University of Maryland. Hybrid Causal Risk Methodology for Risk Assessment. College Park,
Maryland: ProQuest; 2007.

[104] Andrews JD, Remenyte-Prescott R. Fault Tree Conversion to Binary Decision Diagrams.
Proceedings of the 23rd International System Safety Conference, San Diego, USA: System Safety
Society; 2005. doi:https://dspace.lboro.ac.uk/2134/3645.

[105] Matuzas V, Contini S. Dynamic Labelling of BDD and ZBDD for efficient non-coherent fault tree
analysis. Reliability Engineering and System Safety 2015;144:183–92.
doi:10.1016/j.ress.2015.07.012.

[106] Chu TL, Apostolakis G. Methods for Probabilistic Analysis of Noncoherent Fault Trees. IEEE
Transactions on Reliability 1980;R-29:354–60. doi:10.1109/TR.1980.5220881.

[107] Collet J. Some Remarks on Rare-Event Approximation. IEEE Transactions on Reliability
1996;45:106–8. doi:10.1109/24.488924.

[108] Caldarola L. Fault tree analysis with multistate components. New York. Plenum Press; 1980.
[109] Garribba S, Guagnini E, Mussio P. Multiple-Valued Logic Trees: Meaning and Prime Implicants.

IEEE Transactions on Reliability 1985;R-34:463–72.
[110] Nelson RJ. Simplest Normal Truth Function. Journal of Symbolic Logic 1954;20:105–8.

doi:10.2307/2266893.
[111] Mott TH. Determination of the irredundant normal forms of a truth function by iterated

consensus of the prime implicants. IEEE Transactions on Electronic Computers n.d.;9:245–52.
doi:10.1109/TEC.1960.5219824.

[112] Quine WV. The problem of simplifying truth functions. American Mathematical Monthly
1952;59:521–31. doi:10.2307/2308219.

[113] Quine WV. A way to simplify truth functions. American Mathematical Monthly 1955;62:627–31.
doi:10.2307/2307285.

[114] Hulme BL, Worrell, R. B. A Prime Implicant Algorithm with Factoring. IEEE Transactions on
Computers 1975;C-24:1129–31. doi:10.1109/T-C.1975.224146.

320

[115] Lisnianski A, Levitin, S. Multi-state System Reliability: Assessment, Optimization and Applications.
Singapore: World Scientific Publishing; 2003.

[116] The map method for synthesis of combinational logic circuits. Transactions of the American
Institute of Electrical Engineers, Part I: Communication and Electronics 1953;72:593–9.
doi:10.1109/TCE.1953.6371932.

[117] Ogunbiyi EI, Henley EJ. Irredundant Forms and Prime Implicants of a Function with Multistate
Variables. IEEE Transactions on Reliability 1981;30:39–42. doi:10.1109/TR.1981.5220957.

[118] Enderton H. A Mathematical Introduction to Logic. 2nd ed. New Yotk: Harcourt Academic Press;
2001.

[119] Dixon Pa. Decision Tables and Their Applications. Computers and Automation 1964:14–9.
[120] Ogunbiyi EI. Application of decision tables to risk analysis studies. University of Houston, 1980.
[121] Bjorkman K. Solving Dynamic Flowgraph Methodology Models Using Binary Decision Diagrams.

Reliability Engineering and System Safety 2013:206–16.
[122] Tyrvainen T. Risk importance measures in the dynamic flowgraph methodology. Reliability

Engineering and System Safety 2013:35–50.
[123] Tyrvainen T. Risk Importance Measures and Common Cause Failures in the Dynamic Flowgraph

Methodology. Aalto University, 2011.
[124] Tyrvainen T. Prime Implicants in Dynamic Reliability Analysis. Reliability Engineering and System

Safety 2016;146:39–46. doi:http://dx.doi.org/10.1016/j.ress.2015.10.007.
[125] Karanta I. Implementing dynamic flowgraph methodology models with logic programs.

Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability,
2013, p. 302–14.

[126] McNelles P, Zeng ZC, Renganathan G. Modelling of Field Programmable Gate Array Based Nuclear
Power Plant Safety Systems Part I: Failure Mode and Effects Analysis. Proceedings Of the 7th
International Conference on Modelling and Simulation in Nuclear Science and Engineering,
Ottawa, Ontario, Canada: 2015.

[127] McNelles P, Zeng ZC, Renganathan G, Chirila M, Lu L. Failure Mode Taxonomy for Assessing the
Reliability of Field Programmable Gate Array Based Instrumentation and Control Systems.
Reliability Engineering and System Safety n.d.

[128] US NRC. Advanced Logic System Topical Report. Washington DC: U.S. Nuclear Regulatory
Commission; 2010.

[129] International Electrotechnical Commission. Analysis techniques for system reliability - Procedure
for failure mode and effects analysis (FMEA). Geneva, Switzerland: IEC; 2006.

[130] International Electrotechnical Commission. Functional Safety of
electrical/electronic/programmable electronic safety related systems- Part 2: Requirements for
electrical/electronic/programmable electronic safety-related systems. Geneva, Switzerland: IEC;
2010.

[131] Bobrek M, Bouldin, D. Review Guidelines for FPGAs in NPP Safety Systems. Oak Ridge, Tennessee:
Oak Ridge National Labs (ORNL); 2010.

[132] Radio Technical Commission for Aeronautics (RTCA) Incorporated. Design Assurance Guidance
For Airborne Electronic Hardware. Washington DC: RTCA; 2000.

[133] International Electrotechnical Commission. Functional Safety of
electrical/electronic/programmable electronic safety related systems- Part 7: Overview of
techniques and measures. Geneva, Switzerland: IEC; 2010.

[134] European Space Agency (ESA). Sneak Analysis- Part 1: Method and Procedure. Noordwijk, The
Netherlands: ESA; 1997.

[135] European Space Agency (ESA). Sneak Analysis – Part 2: Clue list. Noordwijk, The Netherlands: ESA;
1997.

321

[136] Hahn HA, Blackman HS, Gertman, David I. Applying Sneak Circuit Analysis to the Identification of
Human Errors of Commission. Reliability Engineering and System Safety 1991;33:289–300.
doi:10.1016/0951-8320(91)90065-F.

[137] Remnant M. The Application Of Sneak Analysis To Safety Critical FPGAs. University of York, 2009.
[138] Sejin J, Kim E-S, Yoo J, Kim J-Y, Choi JG. An evaluation and acceptance of COTS software for FPGA-

based controllers in NPPs. Annals of Nuclear Energy n.d.;94:338–49.
doi:10.1016/j.anucene.2016.03.026.

[139] Preckshot GG. Proposed Acceptance Process for Commercial Off-The-Shelf (COTS) Software in
Reactor Applications. Washington DC: U.S. Nuclear Regulatory Commission; 1996.

[140] Electric Power Research Institute (EPRI). Plant Engineering: Guideline for the Acceptance of
Commercial Grade Design and Analysis Computer Programs Used in Nuclear Safety-Related
Applications. Palo Alto, California: EPRI; 2013.

[141] CSA Group. Qualification of digital hardware and software for use in instrumentation and control
applications for nuclear power plants. Toronto, Canada: CSA; 2015.

[142] Canadian Nuclear Safety Commission. Design of Reactor Facilities: Nuclear Power Plants. Ottawa,
Ontario, Canada: CNSC; 2014.

[143] Avizienis, A, Laprie JC, Randall B, Landwehr C. Basic concepts and taxonomy of dependable and
secure computing," in IEEE Transactions on Dependable and Secure Computing. IEEE Transactions
on Dependable and Secure Computing 2004;1:11–33. doi:10.1109/TDSC.2004.2.

[144] Huffmire T. Handbook of FPGA Design Security. New York, NY: Springer; 2010.
[145] Huffmire T, et al. Managing Security in FPGA-Based Embedded Systems. IEEE Design and Test of

Computers 2008;25:590–8. doi:10.1109/MDT.2008.166.
[146] Faller R. Specification of a Software Common Cause Analysis Method. Computer Safety, Reliability

and Security, Nuremburg Germany: 2007, p. 162–71.
[147] O’Connor A, Mosleh A. A general cause based methodology for analysis of common cause and

dependant failures in system risk and reliability assessments. Reliability Engineering and System
Safety 2016;145:341–50. doi:10.1016/j.ress.2015.06.007.

[148] Kang HG, Kim HE. Unavailability and spurious operation probability of k-out-of-n reactor
protection systems in consideration of CCF. Annals of Nuclear Energy 2012;49:102–8.
doi:10.1016/j.anucene.2012.06.012.

[149] Hassija V, Kumar CS, Velusamy K. A pragmatic approach to estimate alpha factors for common
cause failure analysis. Annals of Nuclear Energy 2014;63:317–25.

[150] International Electrotechnical Commission. Nuclear power plants – Instrumentation and control
important to safety – General requirements for systems. Geneva, Switzerland: 2011.

[151] International Electrotechnical Commission. Nuclear Power Plants-Instrumentation and control
systems important to safety-Requirements for coping with common cause failure (CCF). Geneva,
Switzerland: IEC; 2007.

[152] IEEE Standard Criteria for Safety Systems for Nuclear Power Generating Stations. New York, NY:
IEEE Power and Energy Society; 2009.

[153] International Atomic Energy Agency (IAEA). Protecting Against Common Cause Failures in Digital
I&C Systems of Nuclear Power Plants. Vienna, Austria: IAEA; 2009.

[154] International Atomic Energy Agency (IAEA). Design of Instrumentation and Control Systems for
Nuclear Power Plants. Vienna, Austria: IAEA; 2016.

[155] JEDEC Solid State Technology Association. Failure Mechanizms and Models for Semiconductor
Devices. Arlington, Virginia: JEDEC; 2011.

[156] Ozarin N. What’s wrong with bent pin analysis, and what to do about it. Proceedings of the
Reliability and Maintainability Symposium (RAMS), Las Vegas, Nevada: IEEE; 2008, p. 386–92.
doi:10.1109/RAMS.2008.4925827.

322

[157] IEEE. IEEE Standard for Boundary-Scan Testing of Advanced Digital Networks. New York, NY: IEEE;
2015.

[158] van der Goor AJ, Gaydadjiev GN, Yarmolik V N, Mikitjuk VG. March LR: A Test for Realistic Linked
Faults. Proceedings of the 14th VLSI Test Symposium, Princeton, N.J.: IEEE; 1996, p. 272–80.
doi:10.1109/VTEST.1996.510868.

[159] National Aeronautics and Space Administration (NASA). Microelectronics Reliability: Physics-of-
Failure Based Modeling and Lifetime Evaluation. Pasadena, California: NASA; 2008.

[160] Srinivasan S, Krishnan R, Mangalagiri P, Xie Y, Narayanan V, Irwin MJ, et al. Toward Increasing
FPGA Lifetime. IEEE Transactions on Dependable and Secure Computing 2008;5:115–27.

[161] Actel. Reliability Considerations for Automotive FPGAs. San Jose, California: Microsemi; 2003.
[162] Benfica J. Analysis of SRAM-Based FPGA SEU Sensitivity to Combined EMI and TID-Imprinted

Effects. IEEE Transactions on Nuclear Science 2016;63:1294–300.
doi:10.1109/TNS.2016.2523458.

[163] Korash K, Hassan M, Tanaka TJ, Wood RT. Technical Basis for Environmental Qualification of
Microprocessor-Based Safety-Related Equipment in Nuclear Power Plants. Washington DC: U.S.
Nuclear Regulatory Commission; n.d.

[164] CSA Group. Environmental Qualification of Equipment for CANDU Nuclear Power Plants. Toronto,
Canada: CSA; 2015.

[165] Sturesson F. Single Event Effects (SEE) Mechanism and Effects 2009.
[166] Mutuel, LH. Appreciating the Effectiveness of Single Event Effect Mitigation Techniques.

Proceedings of the 33rd Digital Avionics Systems Conference, Colorado Springs, USA: IEEE; 2014,
p. 5B1-1-5B1-11. doi:10.1109/DASC.2014.6979481.

[167] Mutuel, LH. Single Event Effect Mitigation Techniques. New Jersey, USA: Federal Aviation
Administration (FAA); 2016.

[168] Titus JL. An Updated Perspective of Single Event Gate Rupture and Single Event Burnout in Power
MOSFETs,. IEEE Transactions on Nuclear Science 2013;60:1912–28.
doi:10.1109/TNS.2013.2252194.

[169] Scheik L. Testing Guidelines for Single Event Gate Rupture (SEGR) of Power MOSFETs. Pasadena,
California: NASA; 2008.

[170] Wang X, Holber KE, Clark, L. T. Single event upset mitigation techniques for FPGAs utilized in
nuclear power plant digital instrumentation and control. Nuclear Engineering and Design
2011;341:3317–24. doi:10.1016/j.nucengdes.2011.06.033.

[171] Kastensmidt F, Rech P. FPGAs and parallel architectures for aerospace applications: soft errors
and fault-tolerant design. Cham, Switzerland: Springer-Verlag; 2015.

[172] Kretzschmar U, Gomex-Cornejo J, Astarioa A, Bidarte U, Del Der J. Synchronization of faulty
processors in coarse-grained TMR protected partially reconfigurable FPGA designs. Reliability
Engineering and System Safety 2016;191:1–9. doi:10.1016/j.ress.2015.12.018.

[173] Smith F. Single event upset mitigation by means of a sequential circuit state freeze.
Microelectronics Reliability 2012;52:1233–40. doi:10.1016/j.microrel.2011.11.019.

[174] Habinc S. Lessons Learned from FPGA Developments. Gloteborg, Sweden: Gaisler Research; 2002.
[175] Xilinx All Programmable. Understanding and Mitigating System-Level ESD and EOS Events in Xilinx

7 Series Device. San Jose, California: Xilinx; 2013.
[176] Actel Corporation. Electro-static discharge. Montain View, California: Microsemi; 2005.
[177] Khalaquzzaman M. A model for estimation of reactor spurious shutdown rate considering

maintenance human errors in reactor protection system of nuclear power plan. Nuclear
Engineering and Design n.d.;240:2693–971. doi:10.1016/j.nucengdes.2010.05.031.

323

[178] International Electrotechnical Commission. Nuclear power plants - Instrumentation and control
important to safety - Requirements for electromagnetic compatibility testing. Geneva,
Switzerland: IEC; 2009.

[179] International Electrotechnical Commission. Electromagnetic compatibility (EMC) - Part 4-1:
Testing and measurement techniques - Overview of IEC 61000-4 series. Geneva, Switzerland: IEC;
2016.

[180] Mulder ED, Ors SB, Preneel B, Verbauwhede I. Differential power and electromagnetic attacks on
an FPGA implementation of elliptic curve cryptosystems. Computers and Electrical Engineering
2007;33:367–82. doi:10.1016/j.compeleceng.2007.05.009.

[181] Trimberger SM, Moore JJ. FPGA Security: Motivations, Features and Applications. Proceedings of
the IEEE 2014;102:1248–65. doi:10.1109/JPROC.2014.2331672.

[182] Hadzic I, Udani S, Smith JM. FPGA Viruses. 1999.
[183] US NRC. Cyber Security Programs for Nuclear Facilities. Washington DC: U.S. Nuclear Regulatory

Commission; 2010.
[184] Mossman T. IDSRS Chapter 7, Appendix A: I&C Perspectives on Hazard Analysis (HA). Washington

DC: U.S. Nuclear Regulatory Commission; 2013.
[185] Brombacher A, van Beurden IWR. RIFIT: analyzing hardware and software in safeguarding system.

Reliability Engineering and System Safety n.d.;66:149–56. doi:10.1016/S0951-8320(99)00032-0.
[186] Monmasson E, Cirstea MN. FPGA Design Methodology for Industrial Control Systems – A Review.

IEEE Transactions on Industrial Electronics 2007;54:1824–42. doi:10.1109/TIE.2007.898281.
[187] Lu J-J, Hsu T-C, Chou HP. System Assessment of an FPGA-Based RPS for ABWR nuclear power

plant. Progress in Nuclear Energy 2015;85:44–55. doi:10.1016/j.pnucene.2015.05.010.
[188] Lu J-J, Huang H-H, Chou HP. Evaluation of an FPGA-based fuzzy logic control of feed-water ABWR

under automatic power regulating. Progress in Nuclear Energy 2015;79:22–31.
doi:10.1016/j.pnucene.2014.10.010.

[189] Yichan W, et al. Development, verification and validation of an FPGA-based core heat removal
protection system for a PWR. Nuclear Engineering and Design 2016;301:311–9.
doi:10.1016/j.nucengdes.2016.03.018.

[190] Westinghouse Electric Company. AP1000 Design Control Document (Revision 15), Chapter 7:
Instrumentation and Controls 2015.

[191] McNelles P, Lu L. Lab-Scale Design, Demonstration and Safety Assessment of an FPGA-Based Post
Accident Monitoring System for Westinghouse AP1000 Nuclear Power Plants. Proceedings of the
2014 22nd International Conference on Nuclear Engineering, Prague: ASME; 2014.
doi:10.1115/ICONE22-30457.

[192] McNelles P, Lu L, Abi-Jaoude Ma-J. Dynamic Flowgraph Methodology Assessment of an FPGA-
Based Postaccident Monitoring System for Westinghouse AP1000 Nuclear Power Plants. Journal
of Nuclear Engineering and Radiation Science 2015;1:4 Pages. doi:10.1115/1.4029591.

[193] Criteria For Accident Monitoring Instrumentation For Nuclear Power Plants. Washington DC: U.S.
Nuclear Regulatory Commission; 2006.

[194] IEEE Power and Energy Society. IEEE Standard Criteria for Accident Monitoring Instrumentation
for Nuclear Generating Stations,. New York, NY: IEEE; 2016.

[195] Canadian Standards Association. Requirements for monitoring and display of nuclear power plant
safety functions in the event of an accident,. Toronto, Canada: CSA; 2014.

[196] National Instruments. cRIO-9076 2016.
[197] Item Software. Bellcore / Telcordia - Reliability Prediction Procedure 2016.
[198] Holmberg J-E. Software Reliability Analysis in Probabilistic Risk Analysis. Nuclear Safety and

Simulation 2012:281–91.
[199] Mentor Graphics. ModelSim 2016.

324

[200] McNelles P, Lu L. Field Programmable Gate Array Reliability Analysis Using the Dynamic
Flowgraph Methodology. Nuclear Engineering and Technology 2016.
doi:http://dx.doi.org/10.1016/j.net.2016.03.004.

[201] IEEE. IEEE Standard Multivalue Logic System for VHDL Interoperability (Std_logic_1164). New
York, NY: IEEE; 1993.

[202] Synario Design Automation. VHDL Reference Manual. Redmond, Washington: Synario Design
Automation; 1997.

[203] Mishra AK, Shimjith SR, Bhatt TU, Tiwari AP. Dynamic Compensation of Vanadium Self Powered
Neutron Detectors for Use in Reactor Control. IEEE Transactions on Nuclear Science 2013;60:310–
8. doi:10.1109/TNS.2012.2229719.

[204] Mishra AK, Shimjith SR, Bhatt TU, Tiwari AP. Kalman Filter-Based Dynamic Compensator for
Vanadium Self Powered Neutron Detectors. IEEE Transactions on Nuclear Science 2014;61:1360–
8. doi:10.1109/TNS.2014.2321340.

[205] Lynch GF, Shields RB, Coulter PG. Characterization of Platinum Self-Powered Detectors. IEEE
Transactions on Nuclear Science 1977;24:692–5. doi:10.1109/TNS.1977.4328769.

[206] Todt WH. Characteristics of Self-Powered Neutron Detectors Used in Power Reactors.
Horseheads, New York: Imaging and Sensing Technology Corporation.; n.d.

[207] Borairi M. Reactor Regulating System (Lecture Notes) 2014.
[208] McNelles P, Zeng ZC, Renganathan G, Lamarre G, Akl Y, Lu L. A Comparison of Fault Trees and the

Dynamic Flowgraph Methodology for the Analysis of FPGA-based Safety Systems Part 1: Reactor
Trip Logic Loop Reliability Analysis. Reliability Engineering and System Safety 2016;153:135–50.
doi:http://dx.doi.org/10.1016/j.ress.2016.04.014.

[209] Electric Power Research Institute (EPRI). CAFTA Fault Tree Analysis. Palo Alto, California: EPRI;
2007.

[210] Chu TL, et al. Modeling a Digital Feedwater Control System Using Traditional Probabilistic Risk
Assessment Methods. Washington DC: U.S. Nuclear Regulatory Commission; 2009.

[211] Electric Power Research Institute (EPRI). Design Description of a Prototype Implementation of
Three Reactor Protection System Channels Using Field-Programmable Gate Arrays. Palo Alto,
California: EPRI; 1997.

[212] Hwang I, Kim S, Kim Y, Seah CE. A Survey of Fault Detection, Isolation and Reconfiguration
Methods. IEEE Transactions on Control Systems Technology 2010;18:636–53.
doi:10.1109/TCST.2009.2026285.

[213] Salewski F, Taylor A. Fault Handling in FPGAs and Microcontrollers in Safety-Critical Embedded
Applications: A Comparative Survey, Lubeck, Germany: IEEE; 2007, p. 124–31.
doi:10.1109/DSD.2007.4341459.

[214] Altera Corporation. Understanding Metastability in FPGAs. San Jose, California: Altera; 2009.
[215] Todd B. Reliability Considerations for CPLD/FPGA Based Designs. Europe: CERN; n.d.
[216] Xilinx All Programmable. Device Reliability Report. San Jose, California: Xilinx; 2014.
[217] Singh, M, Koren I. Incorporating Fault Tolerance in Analog-To-Digital Converters (ADCs).

Proceedings of the International Symposium on Quality Electronic Design, IEEE; 2002, p. 286–91.
doi:10.1109/ISQED.2002.996753.

[218] McNelles P, Zeng ZC, Renganathan G. Modelling Radiation-Induced Failures in FPGAs Using the
Dynamic Flowgraph Methodology. Transactions of the American Nuclear Society, vol. 113,
Washington D.C: 2015, p. 415–8.

[219] Karanta I. Importance Measures for the Dynamic Flowgraph methodology. Finland: VTT Technical
Research; 2011.

325

[220] Khalaquzzaman M, et al. Estimation of reactor protection system software failure probability
considering undetected faults. Nuclear Engineering and Design 2014;280:201–9.
doi:10.1016/j.nucengdes.2014.09.008.

[221] Canadian Nuclear Safety Commission. Reliability Programs for Nuclear Power Plants. Ottawa,
Ontario, Canada: CNSC; 2012.

[222] Borst M van der, Schoonakker H. An Overview of PSA Importance Measures. Reliability
Engineering and System Safety 2001;72:241–5. doi:10.1016/S0951-8320(01)00007-2.

[223] Lu L, Jiang J. Probabilistic Safety Assessment for Instrumentation and Control Systems in Nuclear
Power Plants: An Overview. Nuclear Science and Technology 2004:323–30.

[224] Kamyab S, Nematollahi M, Shafiee G. Sensitivity analysis on the effect of software-induced
common cause failure probability in the computer-based reactor trip system unavailability.
Annals of Nuclear Energy 2013;57:294–303. doi:10.1016/j.anucene.2013.01.049.

[225] US NRC. Guidelines for Categorizing Structures, Systems and Components in Nuclear Power
Plants According to their Safety Significance. Washington DC: U.S. Nuclear Regulatory
Commission; n.d.

[226] Nuclear Energy Institute (NEI)`. SSC Categorization Guideline. Washington D.C: NEI; 2005.
[227] American Society of Mechanical Engineers (ASME). Addenda to ASME RA-S-2008: Standard for

Probabilistic Risk Assessment for Nuclear Power Plant Applications. New York, NY: ASME; 2009.
[228] US Department of Energy (DOE). Development of Probabilistic Risk Assessments for Nuclear

Safety Applications. Washington D.C: DOE; 2013.
[229] American Society of Mechanical Engineers (ASME). Standard for probabilistic risk assessment for

nuclear power plant applications. New York, NY: ASME; 2002.
[230] US NRC. Interim Reliability Evaluation Program Procedures Guide. Washington D.C: U.S. Nuclear

Regulatory Commission; 1983.
[231] Butler RW. What is Formal Methods 2001.
[232] Yalin H. Exploring Formal Verification Methodology for FPGA-based Digital Systems.

Alburquerque, N.M: Sandhia National Laboratories; 2012.
[233] International Electrotechnical Commission. Programmable controllers - Part 6: Functional safety.

Geneva, Switzerland: IEC; 2012.
[234] Kharchenko V, Butenko V, Odarushchecnko O, Sklyar V. Multifragmentation Markov Modeling of

a Reactor Trip System. Journal of Nuclear Engineering and Radiation Science 2015;1.
doi:10.1115/1.4029342.

[235] Cepin M, Mayko B. A dynamic fault-tree. Reliability Engineering and System Safety 2002;75:83–
91. doi:10.1016/S0951-8320(01)00121-1.

[236] International Electrotechnical Commission. Functional safety of
electrical/electronic/programmable electronic safety-related systems - Part 4: Definitions and
abbreviations. Geneva, Switzerland: IEC; 2010.

[237] IEEE Computer Society. Systems and software engineering -- Vocabulary. New York, NY:
IEEE/ISO/IEC; 2010.

[238] JEDEC Solid State Technology Association. Measurement and Reporting of Alpha Particle and
Terrestrial Cosmic Ray Induced Soft Errors in Semiconductor Devices. Virgina, USA: JEDEC; 2006.

[239] Altera Corporation. Introduction to Single Event Upsets. San Jose, California: Altera; 2013.

326

Appendices

Appendix I: DFM and FTA Results for the “SEU High Register” Model

CAFTA MCS Results:

Cutset Report

HLD_INPUT_REG_HIGH = 2.38E-01 (Probability)

Prob. % Class Inputs...

9.00E-02 37.9% CLK_0 HLD_CLR_0 H_IN_PREV_HIGH NO_SEU_H

9.00E-02 72.3% HLD_0 HLD_CLR_0 H_IN_PREV_HIGH NO_SEU_H

4.50E-02 88.0% CLK_1 HLD_1 HLD_CLR_0 H_IN_HIGH NO_SEU_H

3.60E-02 100.0% HLD_CLR_0 H_IN_HIGH H_IN_PREV_HIGH NO_SEU_H

6.53E-06 100.0% CLK_0 H_IN_0 SEU_H

6.53E-06 100.0% CLK_0 H_IN_LOW SEU_H

6.53E-06 100.0% HLD_0 H_IN_0 SEU_H

6.53E-06 100.0% HLD_0 H_IN_LOW SEU_H

6.53E-06 100.0% HLD_CLEAR_1 SEU_H

3.27E-06 100.0% CLK_1 HLD_1 H_IN_0 SEU_H

3.27E-06 100.0% CLK_1 HLD_1 H_IN_LOW SEU_H

2.61E-06 100.0% H_IN_0 H_IN_PREV_0 SEU_H

2.61E-06 100.0% H_IN_LOW H_IN_PREV_LOW SEU_H

Report Summary:
Filename: \\ot1pfp001\user$\data\mcnellesp\My Documents\HLD_INPUT_REG_HIGH.cut
Print date: 2016-07-14 1:11 PM
Not sorted
Printed in full

327

CAFTA DPC Results:

Gate Probability Report

Input Filename: \\ot1pfp001\user$\data\mcnellesp\My

Documents\HLD_INPUT_REG_HIGH.DPC.CAF

Name Min Point Est. Max

---------------- --------- --------- ---------

..G$ 8.000E-01 8.000E-01 8.000E-01 (0.0000E+00)

G001 1.440E-01 1.440E-01 1.440E-01 (0.0000E+00)

..G002 4.500E-02 4.500E-02 4.500E-02 (0.0000E+00)

..G012 4.000E-02 4.000E-02 4.000E-02 (0.0000E+00)

..G015 4.000E-02 4.000E-02 4.000E-02 (0.0000E+00)

..G026 3.600E-01 3.600E-01 3.600E-01 (0.0000E+00)

G018 1.800E-01 1.800E-01 1.800E-01 (0.0000E+00)

..G023 3.600E-01 3.600E-01 3.600E-01 (0.0000E+00)

G021 1.800E-01 1.800E-01 1.800E-01 (0.0000E+00)

..G031 3.600E-01 3.600E-01 3.600E-01 (0.0000E+00)

G028 9.000E-02 9.000E-02 9.000E-02 (0.0000E+00)

G010 3.765E-01 3.765E-01 3.765E-01 (0.0000E+00)

G008 2.458E-05 2.458E-05 2.458E-05 (0.0000E+00)

HLD_INPUT_REG_HIGH 1.800E-01 1.800E-01 1.800E-01 (0.0000E+00)

Execution Time : 0.3 secs

328

Input Filename : \\ot1pfp001\user$\data\mcnellesp\My

Documents\HLD_INPUT_REG_HIGH.DPC.CAF

Database Name : \\ot1pfp001\user$\data\mcnellesp\My Documents\Comparator_Sub.rr

Date & Time : 07/14/16 13:11:57

Truncation Limit : 0.000e+00

Number Signals : 35

Maximum Table Width: 12

DPC Version 4.0

Updating database, source set to:DPC 07/14/16

Database successfully updated.

329

DFM Results:

Implicant 1 (8.9994E-02)
Clock 0 -1 (5.0000E-01)
DATA_IN_H_Prev H_In_High -1 (2.0000E-01)
HYSTD_Reset HYSTD_CLR_0 -1 (9.0000E-01)
SEU_H No_SEU_Reg_H 0 (9.9993E-01)

Implicant 2 (8.9994E-02)
DATA_IN_H_Prev H_In_High -1 (2.0000E-01)
HYSTD HYSTD_0 -1 (5.0000E-01)
HYSTD_Reset HYSTD_CLR_0 -1 (9.0000E-01)
SEU_H No_SEU_Reg_H 0 (9.9993E-01)

Implicant 3 (4.4997E-02)
Clock 1 -1 (5.0000E-01)
DATA_IN_H H_In_High -1 (2.0000E-01)
HYSTD HYSTD_1 -1 (5.0000E-01)
HYSTD_Reset HYSTD_CLR_0 -1 (9.0000E-01)
SEU_H No_SEU_Reg_H 0 (9.9993E-01)

Implicant 4 (3.5998E-02)
DATA_IN_H H_In_High -1 (2.0000E-01)
DATA_IN_H_Prev H_In_High -1 (2.0000E-01)
HYSTD_Reset HYSTD_CLR_0 -1 (9.0000E-01)
SEU_H No_SEU_Reg_H 0 (9.9993E-01)

Implicant 5 (6.5300E-06)
Clock 0 -1 (5.0000E-01)
DATA_IN_H_Prev H_In_0 -1 (2.0000E-01)
SEU_H SEU_Reg_H 0 (6.5300E-05)

Implicant 6 (6.5300E-06)
DATA_IN_H_Prev H_In_Low -1 (2.0000E-01)
HYSTD HYSTD_0 -1 (5.0000E-01)
SEU_H SEU_Reg_H 0 (6.5300E-05)

Implicant 7 (6.5300E-06)
HYSTD_Reset HYSTD_CLR_1 -1 (1.0000E-01)
SEU_H SEU_Reg_H 0 (6.5300E-05)

Implicant 8 (6.5300E-06)
Clock 0 -1 (5.0000E-01)
DATA_IN_H_Prev H_In_Low -1 (2.0000E-01)

330

SEU_H SEU_Reg_H 0 (6.5300E-05)

Implicant 9 (6.5300E-06)
DATA_IN_H_Prev H_In_0 -1 (2.0000E-01)
HYSTD HYSTD_0 -1 (5.0000E-01)
SEU_H SEU_Reg_H 0 (6.5300E-05)

Implicant 10 (3.2650E-06)
Clock 1 -1 (5.0000E-01)
DATA_IN_H H_In_Low -1 (2.0000E-01)
HYSTD HYSTD_1 -1 (5.0000E-01)
SEU_H SEU_Reg_H 0 (6.5300E-05)

Implicant 11 (3.2650E-06)
Clock 1 -1 (5.0000E-01)
DATA_IN_H H_In_0 -1 (2.0000E-01)
HYSTD HYSTD_1 -1 (5.0000E-01)
SEU_H SEU_Reg_H 0 (6.5300E-05)

Implicant 12 (2.6120E-06)
DATA_IN_H H_In_Low -1 (2.0000E-01)
DATA_IN_H_Prev H_In_Low -1 (2.0000E-01)
SEU_H SEU_Reg_H 0 (6.5300E-05)

Implicant 13 (2.6120E-06)
DATA_IN_H H_In_0 -1 (2.0000E-01)
DATA_IN_H_Prev H_In_0 -1 (2.0000E-01)
SEU_H SEU_Reg_H 0 (6.5300E-05)

331

Appendix II: List of Papers and Presentations

Conference Papers:

McNelles, P., and Lu, Comparison of Two Implementations of DFM for Analysing Reactor Control
Systems. Proceedings of the SAI Computing Conference, London, UK, July 18-20, 2017; IEEE.
(Submitted)

McNelles, P., and Lu, L. Design of a Tritium in Air Monitor Using Field Programmable Gate Arrays.

Proceedings of the 2015 23rd International Conference on Nuclear Engineering, Chiba: ASME; 2015.

McNelles P, Zeng ZC, Renganathan G. Modelling of Field Programmable Gate Array Based Nuclear Power

Plant Safety Systems Part I: Failure Mode and Effects Analysis. Proceedings Of the 7th International

Conference on Modelling and Simulation in Nuclear Science and Engineering, Ottawa, Ontario, Canada:

2015.

McNelles P, Zeng ZC, Renganathan G. Modelling Radiation-Induced Failures in FPGAs Using the Dynamic

Flowgraph Methodology. Transactions of the American Nuclear Society Winter Meeting, November 8-

12, 2015. Washington, D.C.

McNelles P., and Lu, L. Dynamic Signal Compensation Using Field Programmable Gate Arrays,

Proceedings of the 16th Pacific Basin Nuclear Conference, Vancouver, Canada, August 24-28, 2014.

McNelles P, Lu L. Lab-Scale Design, Demonstration and Safety Assessment of an FPGA-Based Post

Accident Monitoring System for Westinghouse AP1000 Nuclear Power Plants. Proceedings of the 2014

22nd International Conference on Nuclear Engineering, Prague: ASME; 2014. doi:10.1115/ICONE22-

30457.

McNelles P, Lu L. A Review of the Current State of FPGA Systems in Nuclear Instrumentation and

Control. Proceedings of the 2013 21st International Conference on Nuclear Engineering, Chengdu, China:

ASME; 2013. doi:10.1115/ICONE21-16819.

Journal Papers (Research Papers):

McNelles P, Zeng ZC, Renganathan G, Chirila M, Lu L. Failure Mode Taxonomy for Assessing the

Reliability of Field Programmable Gate Array Based Instrumentation and Control Systems. Reliability

Engineering and System Safety n.d. (Revision under Review)

McNelles P, Zeng ZC, Renganathan G, Lamarre G, Akl Y, Lu L. A Comparison of Fault Trees and the

Dynamic Flowgraph Methodology for the Analysis of FPGA-based Safety Systems Part 1: Reactor Trip

332

Logic Loop Reliability Analysis. Reliability Engineering and System Safety 2016;153:135–50. Doi:

http://dx.doi.org/10.1016/j.ress.2016.04.014

McNelles P, Lu L. Field Programmable Gate Array Reliability Analysis Using the Dynamic Flowgraph

Methodology. Nuclear Engineering and Technology 2016.

 doi: http://dx.doi.org/10.1016/j.net.2016.03.004.

Journal Papers (Technical Briefs):

McNelles P., and Lu, L. Design of a Tritium-In-Air-Monitor Using Field Programmable Gate Arrays. Journal

of Nuclear Engineering and Radiation Science; 2016. doi: 10.1115/1.4033088

McNelles P, Lu L, Abi-Jaoude Ma-J. Dynamic Flowgraph Methodology Assessment of an FPGA-Based

Postaccident Monitoring System for Westinghouse AP1000 Nuclear Power Plants. Journal of Nuclear

Engineering and Radiation Science 2015;1:4 Pages. doi:10.1115/1.4029591.

Presentations:

The list represents additional presentations, not covered by the conference papers.

McNelles P, Zeng ZC, Renganathan G, Chirila M, and Lu L. Failure Mode Taxonomy for Assessing the

Reliability of Field Programmable Gate Array Based Instrumentation and Control Systems. 9th

International Workshop on the Applications of FPGAs in NPPs, Lyon, France, October 3-6, 2016.

McNelles P, Zeng Z C and Renganathan G. Dynamic Reliability Analysis of Radiation Induced Failure

Modes in FPGA-Based Systems. 8th International Workshop on the Applications of FPGAs in NPPs,

Shanghai, China, October 13-16, 2015.

McNelles P, Zeng Z C and Renganathan G. Failure Mode and Effects Analysis of FPGA-Based Nuclear

Power Plant Safety Systems. 8th International Workshop on the Applications of FPGAs in NPPs, Shanghai,

China, October 13-16, 2015.

http://dx.doi.org/10.1016/j.ress.2016.04.014
http://dx.doi.org/10.1016/j.net.2016.03.004

333

Appendix III: Definitions

Many of the important definitions are given in the sections of the thesis report where the

relevant topics are discussed. This appendix provides a compilation of all of those definitions, as

well as several others that may aid the reader in understanding this thesis.

Application Specific Integrated Circuit (ASIC) [1,37]: An Application Specific Integrated Circuit (ASIC) is

defined as an “Integrated Circuit designed for specific applications” [37]. Unlike FPGAs, ASICs are not

configurable/reconfigurable after they are manufactured, as their functionality is custom

designed/fabricated by the manufacturer at the time of construction [1].

Architecture [236]: Specific configuration of hardware and software elements in a system

Bitstream [1]: A contiguous sequence of bits (binary digits), representing a stream of data, serially

transmitted continuously over a communications path. It is frequently used to describe the

configuration data to be loaded into an FPGA

Channel [36]: An arrangement of components and modules as required to generate a single protective

action signal when required by a generating station condition. A channel loses its identity where single

protective action signals are combined

Combinatorial Logic [1]: In digital circuit theory, a concept in which two or more input states define one

or more output states, where the resulting state or states are related by defined rules that are

independent of previous states.

Common Cause Failure (CCF) [82]: Failure of two or more structures, systems and components due to a

single specific event or cause.

Complexity [237]:

1. The degree to which a system's design or code is difficult to understand because of numerous

components or relationships among components

2. The degree to which a system or component has a design or implementation that is difficult to

understand and verify

Complex Programmable Logic Device (CPLD) [1]: A PLD that contains a number of ‘macro cells’ that are

essentially the same as programmable array logic (PAL), and the means to interconnect them. A CPLD is

sometimes referred to as a ‘super-PAL’.

Component [82]: A discrete element of a system.

Note: A component may be hardware or software [36].

334

Crossbar [1]: A mechanism for connecting input wires and output wires in PLDs; for example, an n × m

crossbar connects n different input wires to m output wires.

Cut Sets [98]: A list of failure events such that if they occur so does the Top Event.

Decision Table [119]: A related concept to a truth table. A decision able can be thought of as a more

advanced truth table, and is a tabular representation of certain sets of “Conditions”, “Actions”, “Rules”

and “Entries”

Division [36]: The designation applied to a given system or set of components that enables the

establishment and maintenance of physical, electrical, and functional independence from other

redundant sets of components. A division can have one or more channels

Dynamic Methodology [8]: A methodology that can account for the coupling between systems through

explicit consideration of the time element in system evolution

Element [236]: Part of a subsystem comprising a single component or any group of components that

performs one or more element safety functions

Emulation [237]: The use of a data processing system to imitate another data processing system, so that

the imitating system accepts the same data, executes the same programs, and achieves the same results

as the imitated system

Emulator [237]: A device, computer program, or system that accepts the same inputs and produces the

same outputs as a given system

Failure Effect [129]: Consequence of a failure mode in terms of the operation, function or status of the

item

Failure Mode [129]: Manner in which in item

Fault Tree Analysis [82]: A deductive technique that starts by hypothesizing and defining failure events

and systematically deduces the events or combinations of events that caused the failure events to occur

Field Programmable Gate Array (FPGA) [1,37]: An integrated circuit that can be programmed in the field

by the instrumentation and control (I&C) manufacturer. It includes programmable logic blocks

(combinatorial and sequential), programmable interconnections between them and programmable

blocks for inputs and/or outputs. The function is then defined by the I&C designer, not by the circuit

manufacturer

335

Finite State Machine (FSM) [1]: An abstract model of a machine that has a primitive internal memory

and a behaviour composed of a finite number of states and transitions between those states based on

inputs, and output actions on other parts of the design. The behaviour of a finite state machine can be

represented in a state transition diagram. Within a given state, for each input combination, there is only

one possible transition from the present state to the new state. An application may contain multiple

finite state machines interacting with each other through their inputs and outputs

Flip-Flop [1]: A bistable state circuit providing a single bit of memory. A flip-flop is usually controlled by

one or two control signals and/or a gate or clock signal. The output often includes the complement as

well as the normal output. As flip-flops are implemented electronically, they require power and ground

connections.

FMEA [129]: A systematic procedure for the analysis of a system to identify the potential failure modes,

their causes and effects on system performance. In the IEC 60812 standard, “system” is used as

representation of hardware, software (with their interactions) or a process

Fussel-Vesely Importance Measure [221]: For a specific basic event, the fractional contribution to PSA

results for all accident sequences containing that basic event. There exists both traditional and dynamic

variants.

Hardware Description Language (HDL) [37]: Language Used to formally describe the functions and/or

structure of an electronic component for documentation, simulation or synthesis

Hard Error[238]: An irreversible change in operation that is typically associated with permanent damage

to one or more elements of a device or circuit

HDL Programmed Devices (HPD) [1,37]: An HDL Programmed Device (HPD) is defined as an “Integrated

circuit configured (for NPP I&C systems) with Hardware Description Languages and related software

tools” [37]. They contain arrays of logic elements that are connected by the end user to configure the

device to perform the needed logic function [1]

Implicant/Implicant Set [98]: A combination of basic events (success or failure) which produces the top

event. An Implicant/Implicant set can be considered as the MVL equivalent of a “Cut Set”.

Integrated Circuit (IC) [237]: A small piece of semiconductive material that contains interconnected

electronic elements

Intellectual Property (IP) Core [1]: A reusable unit of logic, cell design or chip layout design belonging to

one party and licensed for use by another party. These are typically offered for ASIC and FPGA design

components as netlists, but may be either soft or hard IP cores

336

Hard IP Core [1]: An IP core that is provided in the form of physical circuit layout; with a hard IP

core, the end designer does not need to perform the synthesis and place and route process as

would be required for a soft core

Soft IP Core [1]: An IP core that is in the form of a netlist or HDL. A soft IP core requires

verification of a function following implementation (synthesis and/or place and route), unlike a

hard IP core

Item [129]: Any part, component, device, sub-system, functional unit, equipment or system that can be

individually considered

Logic Array [1]: An array made up of ‘logic cells’. Interconnecting pathways are used to create the

desired functionality

Logic Synthesis [1]: A process by which an abstract form of desired circuit behaviour, typically a register

transfer level (RTL), is turned into a design implementation in terms of the resources (logic gates and

other native blocks) of an actual hardware circuit. Common examples of this process include synthesis of

HDLs, including very high speed integrated circuit hardware description language (VHDL) and Verilog.

Some tools can generate bitstreams for PLDs such as PALs or FPGAs, while others target the creation of

ASICs. Logic synthesis is one aspect of electronic design automation

Look-up Table (LUT) [1]: An electronic design block that replaces runtime computation with a simpler

array indexing operation

Low Complexity E/E/PE Safety Related System [236]:

 An Electrical/Electronic/Programmable Electronic (E/E/PE) safety-related system for which:

- The failure modes of each individual component are well-defined

- The behaviour of the system under fault conditions can be completely determined

Microprocessor [1]: A multipurpose, programmable device that accepts digital data as input, processes

them according to instructions stored in its memory, and provides results as output. It incorporates the

functions of a central processing unit (CPU) on a single chip. The semiconductor manufacturing process

is now able to put multiple CPU cores onto a single chip

Minimal Cut Sets [98]: A list of minimal, necessary and sufficient conditions for the occurrence for the

Top Event

Netlist (Gate Level) [37]: Description of an electronic component in terms of interconnections between

its terminal elements

337

Place and Route (PAR) [1]: The step in integrated circuit or printed circuit board design that determines

the physical locations of components, circuitry and logic elements, and the wiring paths required to

connect the components

Pre-Developed Software (PDS) [37,56]: Software part that already exists, is available as a commercial or

proprietary product, and is being considered for use

Prime Implicant/Prime Implicant Set [98]: A combination of basic events (success or failure) which is

both necessary and sufficient to cause the Top Event. A Prime Implicant/Prime Implicant set can be

thought of as the MVL equivalent of a “Minimal Cut Set”.

Programmable array logic (PAL) [1,4]: A type of simple programmable logic device that consists of a

programmable AND-plane followed by a fixed OR-plane

Programmable logic array (PLA) [1,4]: A type of simple programmable logic device that consists of two

levels of logic, an AND-plane and an OR-plane, both of which are programmable

Programmable Logic Device (PLD) [1,37]:

A Programmable Logic Device (PLD) is defined as an “Integrated circuit that consists of logic elements

with an interconnection pattern, parts of which are user programmable” [37]. HPDs began as simple

Programmable Logic Devices (PLDs), with includes Programmable Logic Arrays (PLA) and Programmable

Array Logic (PAL). Complex Programmable Logic Devices (CPLDs) are descended from PALs, and are

basically combinations of multiple PALs onto a single chip with configurable interconnections [1]. FPGAs

are not considered to be PLDs, as FPGAs are more complex, more powerful devices, however the exact

determination between PLD and FPGA is not entirely defined [37].

Register Transfer Level (RTL) [37]: Synchronous parallel model of an electronic circuit, describing its

behaviour by means of signals processed according to combinatorial logic and transferred between

registers and clock pulses. The RTL model is typically written in HDL or generated out of HDL source

code.

Risk Importance Measure [221]: A quantitative analysis to determine the importance of variations in

equipment reliability to system risk and/or reliability

Safety Analysis [82]: Evaluation of the potential hazards associated with the conduct of an activity.

Sensitivity Analysis [82]: A quantitative examination of how the behaviour of a system varies with

change, usually in the values of the governing parameters

Sequential Logic [1]: In digital circuit theory, this is a type of logic circuit whose output depends not only

on the present value of its input signals but also on the past history of its inputs

338

Single Event Effect (SEE) [174]: Any measureable effect to a circuit due to an ion strike

Soft Error [239]: Storage element (memory cell, latch, or register) state change. No hardware damage
and is correctable.

Structural Importance Measure [219]: A measure of the importance of a component from the system’s

topology (expressed by reliability block diagram, flow diagram etc.) and other structural information,

without reference to actual probabilities.

System [82]: Comprised of several components, assembled in such a way to perform a specific (active)

function

Synthesis [1] : A process by which an abstract expression of a digital circuit’s behaviour at the RTL — for

example, in an HDL — is translated into an equivalent description that is expressed in terms of the

resources provided by the selected FPGA circuit. The circuit dependent description is called a netlist

Type 1 Interactions [8,11,12]: Dynamic Interactions between physical process variables (e.g.

temperature, pressure, etc.) and the I&C systems that monitor and manage the process

Type 2 Interactions [8,11,12]: Dynamic Interactions within the I&C system itself due to the presence of

software/firmware (i.e. multi-tasking and multiplexing)

Uncertainty Analysis [82]: An analysis to estimate the uncertainties and error bounds of the quantities

involved in, and the results from, the solution of a problem

Verification and Validation (V&V) [237]: The process of determining whether the requirements for a

system or component are complete and correct, the products of each development phase fulfill the

requirements or conditions imposed by the previous phase, and the final system or component complies

with specified requirements

339

Appendix IV: Permission Letters for Use of Copyright

Permission Letter From National Instruments

340

341

Permission Letter From VTT

342

Permission Letter From IEEE

343

Permission Letter From EPRI

344

345

