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ABSTRACT 

The radiation environment aboard spacecraft is a complex mixture of neutrons, photons, 

protons, heavy ions and other particles. A special type of superheated droplet detectors referred 

to as space bubble detectors (SBD) have been used to evaluate the equivalent dose due to 

neutrons in various space missions aboard the International Space Station. Protons and other 

heavy charged particles are a significant component of the high LET radiation field and also 

contribute to the SBD measurements. The calibration of the bubble detectors is established using 

a known Americium Beryllium(AmBe) neutron field. However, the space neutron field is 

considerably different from the AmBe field. Current models assume that bubbles are formed as a 

result of radiation interactions above a certain minimum LET threshold and experiments have 

shown that the LET threshold may be different for different ions.In order to interpret the bubble 

detector measurements in space radiation fields, a systematic investigation of the response of 

bubble detectors to high LET radiation encountered inspace has been performed. A series of 

experiments have been conducted with different high LET radiation including protons and 

energetic heavy ions using different facilities at the National Institute of Radiological Science in 

Chiba, Japan, and the ProCure Proton Therapy Center in Oklahoma, USA. High energy neutron 

experiments were conducted at the Los Alamos Neutron Science Center. A correction factor of 

1.8 ± 0.2 has been determined to correlate the AmBe calibrated sensitivity to neutron equivalent 

dose measurements aboard the ISS. The LET threshold required to form a bubble in SBD was 

found to depend on the charge Z of the ion. An analytical model to evaluate the SBD response to 

high LET radiation aboard the ISS has been developed and compared to measurements. 

 

Keywords: Space Bubble Detectors, Space Radiation, High LET Radiation, International Space 

Station  
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INTRODUCTION 

 

The radiation environment aboard spacecraft is a complex mixture of neutrons, photons, 

protons, heavy ions and other charged particles [1]. The radiation exposure to astronauts during 

manned space missions could pose adverse health effects [2][3]. Thus, it is necessary to monitor 

radiation exposure carefully and to be able to predict radiation exposure during mission planning 

[4]. The complexity of the radiation environment within spacecraft makes both accurate 

measurements and reliable prediction of radiation dose on specific missions very difficult to 

achieve [5]. Heavy ions, neutrons, and protons are present in large energy ranges [6]. 

Furthermore, the response of most radiation detectors and dosimeters is limited and not able to 

accurately measure the dose from all particles and all energies simultaneously [7]. The radiation 

field experienced by an astronaut aboard a spacecraft may vary significantly over time based on 

orbit parameters, altitude, solar conditions or even specific location in the spacecraft due to 

different shielding[8]. A significant portion of the radiation dose received by astronauts comes 

from protons and neutrons because the flux of these particles is comparatively large and both 

include particles from low energy to high energy particles [9]. The highly localized linear energy 

transfer (LET) of these particles makes them of particular concern for the equivalent dose 

received by astronauts during manned space flight missions [10]. Furthermore, neutrons are 

particularly hard to measure accurately because they are uncharged particles that interact with 

matter in many complicated ways and the probability of their interaction varies significantly with 

the incident energy and target nuclei structure [11].  

A substantial amount of work has been done to calculate and measure the radiation dose 

that astronauts receive during specific manned space missions and to determine any health 
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effects that may be induced by these radiation exposures [12][13]. The Matroshka-R and the 

Radi-N programs are two examples that have been implemented to determine the radiation dose 

to astronauts aboard the International Space Station (ISS) [9][14]. Neutron radiation exposure is 

believed to be responsible for ~30 % to 50 % of the total equivalent dose astronauts receive [15]. 

These programs have put significant effort into measuring neutron dose accurately. Both of these 

programs have employed bubble detectors as neutron detectors and there have been a large 

number of measurements on the ISS as well as on satellite missions and on other spacecraft. 

Bubble detectors are a class of radiation detectors that generate visible bubbles within a medium 

when exposed to radiation. Bubble Technology Industries (BTI) is a company based in Chalk 

River, Canada, which manufactures unique bubble detectors that are designed to perform 

measurements aboard spacecraft. Both the Matroshka-R and the Radi-N experiments have used 

BTI bubble detectors in various experiments. The two kinds of space bubble detectors 

manufactured by BTI are the space bubble detector (SBD) and the space bubble detector 

spectrometer (SBDS). See Appendix A for a list of SPND and SBDS experiments performed 

aboard the ISS. 

The SBD is a bubble detector that produces observable bubbles when a high LET particle 

interacts with the detector sensitive media [16]. A digital reader is used to image the detector and 

counts the number of expanded bubbles after a radiation exposure. The number of visible 

bubbles after a given exposure is directly proportional to the fluence of high LET particles [17]. 

The calibration of these devices is performed by counting the bubbles after an exposure to a 

known AmBe neutron field. However, when the detector is used in the space environment, 

protons and other heavy charged particles also have high LET and contribute to the number of 

visible bubbles in the detector [18]. Hence, the number of bubbles observed after a radiation 
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exposure is a result of interactions with neutrons, protons, and heavy charged particles[19]. In 

order to determine the neutron dose using bubble detectors, it is necessary to evaluate the 

contribution of each radiation type. The mechanisms of bubble formation are not known on the 

microscopic scale and no model has ever been developed to accurately describe whether a 

particular radiation type of a given energy and LET will form a bubble or not. It is simply known 

that high LET radiation can form bubbles and low LET radiation cannot. Another significant 

challenge in determining the neutron dose using bubble detectors on spacecraft is the substantial 

difference of the neutron energy spectrum on spacecraft compared to the AmBe spectra 

traditionally used for the bubble detector calibration. AmBe neutrons have energies from thermal 

to ~11 MeV with most neutrons in the fast range of the spectrum. Spacecraft have a large energy 

span extending from thermal energies to neutrons above 1,000 MeV. The vast difference of the 

dose to fluence conversion factor over the spacecraft spectrum means that bubbles formed by 

these neutrons could have a significantly different equivalent dose than the AmBe neutrons used 

to calibrate the detector [18].  

The space bubble detector spectrometer (SBDS) is another device used in different space 

missions to evaluate the neutron spectra. The system is a set of six bubble detectors and it is used 

to measure a course neutron spectrum based on the response of each individual detector in the 

set. Each of the six detectors has a different energy threshold for neutron induced bubble 

formation. After exposure, a response matrix is used to determine the neutron spectrum [20]. 

However, these bubble detectors are also sensitive to protons and heavy ions. 
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Motivation of Thesis 

 

Currently, bubble detector measurements aboard the ISS and in other space missions are 

carried out simply by counting the number of bubbles, assuming that the observed bubbles are a 

result of neutron interaction only. The response of the bubble detector to the heavy charged 

particles is unknown and consequently, their contribution to the reading in the detectors remains 

unknown. The AmBe calibration is multiplied by a scaling factor of 1.62 to compensate for the 

difference in neutron spectrum [21]. The proton and heavy ion contributions have been 

considered negligible. There is no physical model that explains the mechanism of bubble 

formation that can be used to interpret the measurements and the readings of the bubble detector 

in terms of the contribution of neutrons, protons, and heavy ions. Calculations based on 

empirical data from a limited number of experiments have been used to estimate bubble detector 

measurements on different ISS missions [18]. These estimates have consistently under-predicted 

the number of bubbles by a factor of two, indicating that the formation of bubbles is not well 

represented in this method. In addition, the LET threshold model of bubble formation does not 

explain the differences in bubble formation observed when the bubble detector is exposed to 

known proton, and heavy ion beams [22]. 

 

Objective of Thesis 

 

The objectives of this thesis are to investigate the response of bubble detectors to high 

LET radiation encountered in the space environment. In particular, to develop an effective 

physical model of the mechanism of bubble formation in these detectors based on their physical 

properties and ion track structures. More specifically to systematically investigate: 
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1. The response of bubble detectors to high LET radiation encountered in the space environment.  

2. Determine the minimum LET required for bubble formation in a space bubble detector and 

investigate its dependence on the charge Z of the incident charged particle. 

3. Establish an effective model of the mechanism of bubble formation in these detectors based on 

their physical properties and the ion track structure. 

4. Evaluate the readings of the space bubble detector in a complex space radiation field. 

 

Novelty and Contribution 

 

 Bubble detectors are widely used in the field of neutron dosimetry and have been 

successful in terrestrial applications. However, the response of these detectors onboard 

spacecraft to neutrons, protons and high energy heavy charged particles is not well understood. 

The work presented in this thesis has the following features: 

 Experimental study of the bubble detectors response to a neutron spectrum similar to the 

neutron spectrum expected aboard spacecraft. 

 For the first time, experimental investigation of the bubble detector response to high 

energy protons (above 60 MeV). 

 Systematical investigation of the bubble detector response to a large number of heavy 

charged particles including He, C, O, Ne, Si and Fe and determination of the LET 

threshold required for bubble formation for each ion. 

 For the first time, the Z-dependence of the LET threshold required for bubble formation 

has been studied within the framework of ion track structure models. 
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 For the first time, a predictive model for bubble formation in space missions has been 

developed and compared to measurements. 

The work performed in this thesis is directly applicable to the analysis and interpretation 

of SBD and SBDS measurements aboard the ISS and other spacecraft. The response of SBD 

and SBDS to neutrons, protons and heavy ions analyzed in this thesis will improve our 

understanding of bubble detector measurements in space and will aid in radiation protection 

dosimetry, and radiation measurements in complex space environments. Some results have 

already been published [23]. The analysis of LET, range, ion track structure and bubble 

formation in bubble detectors for energetic protons and heavy ions in this thesis will also 

have impact on the bubble detector use in high energy particle facilities. Bubble detectors are 

currently used for neutron dosimetry in radiation therapy facilities (for example, secondary 

neutron dose in photon therapy beams [24][25][26]). Results presented in this thesis may be 

useful for bubble detector measurements in proton or carbon therapy facilities and help in 

beam characterization or treatment analysis.    

 

Approach 

 

This thesis includes an extensive and systematical campaign of ground-based 

experimental investigations of the bubble detector response to neutrons, high energy protons and 

heavy charged particles using different neutron and heavy charged particle facilities. In addition, 

simulations using the stopping and range of ions in matter (SRIM) code, particle and heavy ion 

transport code system (PHITS) and the Online-Tool for the Assessment of Radiation in Space 

(OLTARIS) have been used along with the experimental investigations to evaluate the response 
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of space bubble detectors in complex radiation fields. A series of experimental investigations of 

the space bubble detector response to high energy protons and heavy charged particles including 

He, C, O, Ne, Si and Fe with known LET have been performed as well as experiments with 

spallation neutrons. 

 

Outline of the Thesis 

This thesis consists of an introduction that gives a description of the scope of the work, a 

brief description of the bubble detectors and their current use in space environment. Chapter 1 

provides an overview of dosimetric quantities, radiation interaction, radiation detection 

principles and a brief description of the bubble detectors along with an introduction to space 

radiation. Chapter 2 provides a detailed literature survey on experiments and modeling of 

superheated droplet detectors as well as bubble detector measurements in spacecraft. Chapter 

3focuses on the methodology used in both experimental investigation and modeling. Chapter 4 

presents the results of the investigation carried out with different heavy charged particles, high-

energy neutrons as well as a discussion of the experimental results and modeling. Chapter 4 ends 

with an evaluation of the bubble detector readings in complex space radiation fields and a 

comparison of analytical models and experimental measurements aboard the ISS. The thesis ends 

with a conclusion, future work and a list of references and appendices.   
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CHAPTER 1: BACKGROUND AND THEORY 

 

1.1 Radiation Dosimetry 

One property of all ionizing radiation is that damage can occur in DNA or cell structures 

in living organisms and can result in undesirable effects such as cell death, mutations, and cancer 

[27]. Human exposure to ionizing radiation is known to cause these effects. Avoiding, preventing 

and limiting human exposure to radiation is a standard practice. However, background radiation 

is always present and eliminating exposure to radiation is impossible. It is also evident that the 

level of risk from radiation exposure is proportional to the amount of the exposure such that low 

exposures may be acceptable and high exposures may pose a risk [28]. Unfortunately, the 

specific mechanisms that lead to the harmful effects of radiation exposure in humans are 

extremely complicated. Quantifying radiation levels and directly correlating those levels to 

specific harmful effects such as different types of cancer is difficult and in many cases 

impossible [27]. In practice, only some specific quantities can be measured with practical 

radiation detectors and estimates of risk are correlated to those quantities based on biological 

studies [29].  

 

1.1.1 Absorbed Dose 

 

In principle, the simplest radiation quantity that can describe the amount of radiation 

experienced by a body in a radiation field is the absorbed dose. This is the total amount of energy 

absorbed by the body divided by the mass usually given in units of J/kg or Gy. This is a 

conceptually simple macroscopic quantity for large bodies absorbing energy from ionizing 

radiation. The concept of absorbed dose at a point or within microscopic volumes comparable to 
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cells or microscopic bubbles in a bubble detector is less clear since the spatial distribution of 

energy deposition by ionizing radiation may be comparatively large and nonhomogenous [30]. 

Absorbed dose, D, is defined as the stochastic quantity of mean energy imparted by ionizing 

energy 𝑑𝜀  in an infinitesimal volume with mass 𝑑𝑚 [29].  

𝐷 =  
𝑑𝜀 

𝑑𝑚
      (1.1) 

 

1.1.2 Equivalent Dose 

 

The microscopic structure of ionizing radiation damage in living cells is not fully 

described by the stochastic quantity absorbed dose [30]. The drastic difference of energy 

deposition between x-ray, gamma, electron, neutron and heavy ion radiation in living organisms 

means that DNA damage and visible biological effects may be noticeably different from one 

radiation type to another, even for the same absorbed dose quantity [31]. Another quantity has 

been developed called the equivalent dose and it attempts to relate the level of biological damage 

to the absorbed dose by comparing the sensitivity of cells to different types of radiation 

exposures. The absorbed dose is multiplied by a quality factor, Q which is meant to express the 

effectiveness of the specific radiation type at adverse biological effects. This is based on 

extensive biological studies of radiation exposure and included in the Relative Biological 

Effectiveness (RBE) [27]. The simplest form is the whole body equivalent dose for an external 

radiation field where the equivalent dose, H is given as the product of the absorbed dose and the 

radiation quality factor [32]. 

𝐻 = 𝐷 ∙ 𝑄      (1.2) 
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The unit of the equivalent dose is Sievert (Sv). By convention, the quality factor is given 

relative to photon radiation such that the equivalent dose of 1 Gy of photons is 1 Sv. For 

neutrons and heavy ions, the level of biological damage is related to the energy of the particle so 

that the quality factor is actually a function of the particle energy 𝑄 = 𝑄 𝐸  [27]. Further studies 

have been used to define the effective dose which describes the entire whole body effect of 

radiation exposure to humans with consideration for individual organs and tissues with different 

sensitivity to radiation [33].     

 Effective dose is not a practical quantity to directly measure in external radiation fields 

since radiation exposure to specific organs may not be well known. For radiation protection 

purposes another dosimetric quantity called the ambient dose equivalent, H*(10) is used to 

estimate the whole body effective dose for an external radiation field. This is defined as the total 

equivalent dose as calculated with radiation quality factors 𝑄(𝐸) for the radiation field 

(including secondary radiation) after penetrating 10 mm into a 30 cm diameter sphere made of 

tissue equivalent plastic [34]. This quantity is meant to give an estimate of radiation damage to 

sensitive internal organs without requiring a sophisticated model of a whole human body and 

detailed knowledge radiation penetration into each tissue and organ.     

 

1.1.3 Fluence-to-Dose Conversion Factors 

 The complex radiation fields encountered in spacecraft have many different particles with 

a large distribution of energies. For an individual particle type, the quality factor may be very 

different for particles with different energies. Fluence-to-equivalent dose conversion factors have 

been developed by radiation protection institutions such as International Commission on 

Radiological Protection (ICRP) and National Council on Radiation Protection (NCRP) to 
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calculate the total equivalent dose from the whole range of particles in a known field. The 

conversions are given as the equivalent dose per unit fluence of external radiation exposure. The 

fluence and the quality factors are typically both functions of the particle energy so the 

equivalent dose is integrated over all energies. 

𝐻 =   𝛷 𝐸 ∙ 𝐶𝐹 𝐸  𝑑𝐸
∞

0
     (1.3) 

Where H is the equivalent dose, 𝐶𝐹 𝐸 is the fluence to equivalent dose conversion factor at 

energy E and 𝛷 is the particle fluence at energy E [35]. Dose conversion factors are also often 

given for ambient dose equivalent. Figure 1 shows the dose conversion factors for neutrons with 

energies from 10
-8

 to 10
2
 MeV from NCRP report no.38 for equivalent dose and ICRP 74 for 

ambient dose equivalent.   
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Figure 1: ICRP-74 and NCRP-38 dose conversion factors for neutrons [18] 
 

 

 

1.2 Radiation Interaction with Matter 

The detection and measurement of radiation fields are fundamentally determined by how 

particles interact with the atoms and molecules that make up the detector. Consideration of the 

interactions of radiation with matter is important in understanding the capability of detectors to 

measure and quantify a complex radiation field such as those experienced in space.  
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1.2.1 Photon Interactions with Matter 

 

High energy photons such as x-rays and gamma rays are abundant in the space 

environment [36]. Photons primarily interact with electrons in the detector material through the 

photoelectric effect, Compton scattering or via pair production if the photon energy is above the 

minimum threshold energy. Radiation detectors use the resulting high energy free electrons to 

measure the photon as an interaction event and may count the number of events (as a Geiger 

counter) or measure the photon energy based on the kinetic energy of the electron in the detector 

(as with proportional counters or scintillation spectrometers) [37].  

 

1.2.2 Electron Interactions with Matter 

 

High energy free electrons slow down and stop in matter since they interact very strongly 

with the large number of bound electrons via Coulomb forces. As free electrons traverse through 

matter the energy is transferred to the material. This energy results in various effects which may 

be exploited by radiation detectors as measurement mechanisms. For example, recoil high energy 

electrons are multiplied to a measurable current in gaseous detectors and resulting electron-hole 

pairs are used in scintillation detectors, thermo-luminescent detectors, and semiconductor 

detectors [37]. 
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1.2.3 Heavy Charged Particle Interactions with Matter 

 

Protons, alpha particles and high energy atomic nuclei (heavy ions) are considered to be 

heavy charged particles and they interact strongly with the electrons when traveling through 

materials. The mass of protons and all other heavier charged particles is much greater than the 

mass of a single electron, so energetic heavy charged particles tend to interact with a large 

number of electrons and transfer energy to the electrons as they pass by. The heavy charged 

particle will slow down and stop in the material as a result and the electrons may be left in an 

excited state or be ionized and travel through the material as free electrons. The energy imparted 

to each electron depends on the proximity to the heavy charged particle and the charge and mass 

of the heavy charged particle. The net result is a large number of ionized free electrons and 

excitations along the heavy charged particle path while the charged particle will slow down 

continuously and stop in the material [37]. The incremental energy transferred from the heavy 

charged particle, dE to the stopping medium as it traverses an incremental distance, dx through 

the material defines the linear energy transfer (LET) and is described by the Bethe formula; 

𝑑𝐸

𝑑𝑥
=  

4𝜋𝑒4𝑧2

𝑚0𝑣2  𝑁𝑍  𝑙𝑛  
2𝑚0𝑣2

𝐼
 − 𝑙𝑛  1 −

𝑣2

𝑐2 −
𝑣2

𝑐2    (1.4) 

Where e is the electron charge, m0 is the electron rest mass, z is the charge of the heavy 

charged particle, v is the velocity of the heavy charged particle, N and Z are the number density 

and atomic number of the absorber atoms, and c is the speed of light in a vacuum[7]. LET is 

often given as keV deposited per µm traveled by the heavy charged particle. As energetic heavy 

charged particles slow down, the LET increases. As seen in the Bethe formula, while the particle 

slows down and the velocity approaches zero, the LET may become large. At the very end of the 
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heavy charged particle track, electrons from the stopping material are captured by the heavy 

charged particle and subsequently the charge, velocity and stopping power will become zero. At 

this point, the heavy charged particle stops and this is called the end of the range of the ion. The 

short region of significantly increased LET near the end of the heavy charged particle range is 

called the Bragg peak[7]. Figure 2 shows the Bragg peak of an alpha particle penetrating into a 

material. The LET of a single alpha particle is compared to the mean LET for a parallel beam of 

many alpha particles entering the material with the same initial energy. There are a large number 

of charged particle-electron interactions along the alpha particle paths so the net result is a 

stochastic effect where the alpha particles slow down continuously with a range that varies from 

particle to particle. This phenomenon acts to spread out the Bragg peak and is called particle 

straggling [38]. 

 

Figure 2: Bragg peak of alpha particle [7] 

(Figure reproduced with permission from John Wiley and Sons) 
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1.2.4 Neutron Interactions 

 

Neutrons are uncharged heavy particles and thus do not interact with material via 

Coulomb forces unlike electrons and heavy charged particles. In fact, neutrons may pass directly 

through several centimeters of a detector material without interacting at all making them difficult 

to detect and measure [37]. Neutrons have essentially no interaction with electrons in materials 

and only interact in the event of a direct collision with a nucleus. The neutron is either absorbed 

by the nucleus or else it scatters and imparts some of its energy to the nucleus and continues in 

an altered trajectory with decreased kinetic energy. There are a large number of possible neutron 

interactions with a nucleus and many interactions are unique to the specific isotope of the 

nucleus. Furthermore, the probability of each possible interaction varies significantly with 

neutron energy where some interactions are much more likely with lower energy neutrons, some 

interactions require minimum threshold energy to occur, and some interactions become more 

likely at higher neutron energies or in specific resonant energies [39]. Due to all possibilities of 

neutron interaction in a detector material, it is very difficult to construct an accurate and efficient 

neutron detector that can measure and quantify all neutrons in a widely varying field such as the 

neutron field present aboard spacecraft. A brief description of the small number of possible 

neutron interactions that are particularly relevant to bubble detectors follows. The single most 

important neutron interaction in the context of bubble detector measurements is elastic and 

inelastic scattering events. This is where a neutron scatters off a nucleus which recoils with 

kinetic energy imparted from the neutron where the neutron is deflected by some angle and 

continues to travel through the material. The kinetic energy of the recoil nucleus depends on the 

mass of the nucleus, the initial energy of the neutron and the angle of the deflected neutron. 
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Similarly, inelastic scattering results in a scattered neutron and recoil nucleus; however, some of 

the energy is absorbed by the nucleus leaving it in an excited state a gamma ray is emitted as the 

nucleus de-excites down to its ground state. Transmutation interactions occur when the neutron 

upsets the nucleus upon collision and changes the number and configuration of bound nucleons. 

Two important examples are the neutron-proton and the neutron-alpha interactions where the 

neutron is absorbed by the nucleus and a proton or alpha particle is ejected. This reaction 

mechanism is important in bubble detectors since it produces high LET protons, alphas, and 

recoil nuclei directly from single events with fast neutrons [39]. For example, the reaction 

1
n + 

35
Cl → 

1
H + 

35
S has a large cross-section for neutrons in the range 1 to 10 MeV and 

contributes to the bubble detector sensitivity to neutrons in this energy range [40].      

 

1.2.5 Heavy Ion Track Structure 

 

The large number of secondary energetic electrons produced along the path of a heavy 

charged particle assume a specific structure. The heavy charged particle path is typically a 

straight vector with electrons ejected outward from the center point of the path and stopping in a 

short distance as energy is dissipated into the medium [41]. Occasionally some electrons may be 

imparted with a large amount of energy and be ejected very far away from the heavy charged 

particle path. In general the distance of the secondary electrons depend on kinetic energy, charge 

and mass of the heavy charged particle where a high energy heavy charged particle will eject 

many electrons very far away from the ion path while a lower energy heavy charged particle will 

have much shorter ranged secondary electrons and excitations very close to the centre of the ion 

path. In all cases, the energy density at the center of the path is large and decreases significantly 
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radially outwards as the secondary electrons diverge [42]. Figure 3 illustrates the ion track 

structure of an iron ion stopping in a nuclear emulsion measured during the Apollo XVII lunar 

mission [43]. The scale of the photomicrograph in Figure 3 is 10 microns per division. The figure 

is divided into three sections for clarity with labels at points C, B and A indicating where the 

picture should be joined as a single straight image if the whole track was to be shown 

continuously.    

 

Figure 3: Nuclear emulsion of iron ion track [43] 

(Figure reproduced with permission from Springer Nature) 
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The iron ion in Figure 3 enters from the top right of the figure (point C) and travels thru 

point B then point A where it finally comes to rest near the bottom left of the figure. There is an 

apparent effective radius of the track where most of the electrons appear to stop around the same 

distance from the track center. This appears to narrow and become very small near the end of the 

track where most of the energy is concentrated in the middle of the ion track. The end of the ion 

range is also very apparent where the track suddenly stops. Some of the electrons along the high 

energy portion of the track (between point C and A) travel much further away from the ion path 

and these are often called delta rays (high energy secondary electrons that travel far away from 

heavy ion tracks). Considering the Bragg peak it is evident that the LET is increasing as the ion 

stops and the density of the secondary electrons along the track is becoming large at the end of 

the track.  

LET is the parameter most commonly associated with heavy ion energy deposition since 

it describes the amount of energy deposited per unit distance traveled by the ion. However, the 

parameter does fully describe the secondary electron distribution and the location of energy 

deposition from the secondary electrons is unspecified. In principle, a very highly energetic 

heavy ion with a large charge and large mass could produce extremely energetic secondary 

electrons which could deposit the energy very far away from the ion track. When considering 

radiobiological effects, DNA damage and microscopic geometries, the energy deposited by 

secondary electrons at distances greater than tens, hundreds or thousands of microns away from 

the ion path may not be relevant[31]. Thus, the parameter LET has been further defined to 

include a parameter that indicates the range of the secondary electrons. When the total energy 

deposited per unit distance traveled is considered for all secondary electrons regardless of their 

range, the parameter is called LET∞ and is simply the familiar parameter described in Equation 
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(1.4). This is the usual form of LET and if no subscript is specified LET∞ is assumed. However, 

if one is considering only the energy deposition locally to the ion track then a distance can be 

specified in the subscript such that only energy deposited by secondary electrons with a range 

less than that distance is considered. For example, LET5µm is the total energy deposited within a 5 

µm radius per unit distance traveled by the heavy ion. This is called the restricted LET since it 

restricts the effects to a region around the ion track [44]. Restricted LET is also equivalently 

specified by the maximum secondary electron energy which is also directly related to the 

secondary electron range. For example, LET50eV is the total energy deposited by secondary 

electrons with initial energy less than 50 eV per unit distance traveled by the heavy ion.                    

Different ions of different energies may have the same LET, but differences in the charge 

Z means that the ions will undergo a different frequency of collisions with electrons. In addition, 

differences in mass mean that the velocity, momentum and kinetic energy are different, the 

energy imparted to electrons is different and the range of the secondary electrons is different. 

Thus, different ions have a different distribution of energy around the ion track based on the ions 

kinetic energy, LET, properties of the material and the charge and mass of the ion [45]. Three 

prominent analytical models have been developed to calculate the dose distribution around ions 

(track structure models). Namely, the Katz model, the Chatterjee model, and the Kiefer model 

[43][46][47]. All three of these models can be used to calculate the radial dose distribution of an 

ion stopping in a material based on the ions kinetic energy and the properties of the material 

(often just the density). All three models include an effective radius called rmax or the edge of the 

‗penumbra‘ which is effectively the maximum distance of secondary electrons. In each model 

there is a high concentration of dose near the center of the ion track and a significantly reduced 

dose further away that vanishes towards rmax [48]. The Chatterjee model includes two separate 
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regions. The ‗core‘ where half of the LET energy is deposited uniformly in a very small region 

near the ion track and the penumbra where the dose falls off and vanishes at rmax. All three 

models have been shown to fit well with data measured from ion track structures over a wide 

range of ions, energies, and materials [49]. However, none of the three models perfectly 

describes all experimentally measured values [50][51]. For example, Figure 4 depicts the radial 

dose distribution around a 73.2 MeV He ion in water [48]. The Chatterjee, Katz and Keifer 

models have been plotted together with experimental data [50]. All three models fit the data well 

in the 20 nm to 2µm range. However, rmax appears to be overestimated by all three models with 

the Chatterjee model having the best-estimated end of the range of the secondary electrons and 

the Katz model having the largest overestimation. The radial dose is slightly underestimated 

below 20 nm by all three models.  

 

Figure 4: Ion track structure for 18.3 MeV/n He in water [48] 

(Figure reproduced with permission from author) 
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The Chatterjee track structure model defines the ion ―core radius‖ rc and the penumbra 

rmax where half of the energy deposited along the track remains in the ion core and the other half 

diverges outward. The ion core is considered to be a small region near the ion track with a 

constant high energy density where approximately half of the energy is deposited from 

excitations. The size of the core radius is effectively defined by the region of electron excitation 

around the ion track and calculated using the plasma oscillation frequency. The critical radius 

can be calculated with the following equation from [48]: 

𝑟𝑐 =
5.314×1012

 𝑁
× 𝛽  (nm)     (1.5) 

Where rc is the ion track core radius and β is v/c and N is the electron density of the material 

(3.34×10
23

electrons/cm
3
 for STP liquid water).  

The ion track ―penumbra‖ radius (rmax) is defined by the maximum range of the 

secondary electrons and has been determined empirically from electron range data. The maxim 

radius can be calculated with the following equation from [48]: 

𝑟𝑚𝑎𝑥 =
3.85×105

𝜌𝑀
𝛽2.7 (nm)     (1.6) 

Where ρM is the material density (the density is 1.29 g/cm
3
 for bubble detectors) 

The Katz track structure model does not include a ―core‖ region and defines the ion 

penumbra rmax using empirical data with range-energy relations of electrons. rmax for the Katz 

model is given by the following equation from [48]: 

𝑟𝑚𝑎𝑥 =
6.24×106

𝜌𝑀

𝛽2

(1−𝛽2)
(nm)     (1.7) 
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The Keifer model is based on classical collision dynamics and also defines the ion penumbra, 

rmaxby the following equation from [48]: 

 𝑟𝑚𝑎𝑥 =
61.6 𝐸1.7

𝜌𝑀
(nm)      (1.8) 

Where E is the ion energy in MeV/amu.   

The restricted stopping power can be calculated using rmaxand the ion core radius rc as 

defined by the Chatterjee model. The stopping power restricted to a distance r is given by the 

following equation from [43]: 

𝐿𝐸𝑇𝑟 =
𝐿𝐸𝑇∞

2
 1 +

1+2 ln (𝑟/𝑟𝑐)

1+2 ln (𝑟𝑚𝑎 𝑥/𝑟𝑐)
      (1.9) 

Where r is the limit of the secondary radiation range, LET∞ is the unrestricted stopping 

power, rmax is the penumbra radius and rc is the ―core‖ radius. The Chatterjee restricted stopping 

power equation assumes that half of the energy deposited per unit distance remains within the 

core due to excitations. The rest of the energy is deposited between rc and rmax by secondary 

electrons that diverge from the ion track with a density relation of 1/r
2 

[52].   

 

1.3 Properties of Bubble Detectors 

 

1.3.1 Physical Properties of Bubble Detector 

 

There are many different superheated drop detectors and bubble detectors that can be 

made of different materials using different manufacturing processes [53]. However, the research 

in this thesis will focus on the bubble detector
®
 produced by BTI since these are the specific type 
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of bubble detectors used in spacecraft radiation monitoring programs. Bubble detectors are 

passive radiation dosimeters that produce visible bubbles when exposed to specific forms of 

radiation. This is achieved by storing mechanical energy in metastable superheated droplets that 

are held in a liquid state while suspended in a firm transparent polyacrylamide emulsion gel. 

When radiation deposits energy into the superheated liquid drop, the drop may expand into a 

visible bubble, provided the energy deposited locally is sufficient [54]. Bubble detectors have a 

10 ml active volume of gel with ~10
4
 evenly dispersed superheated droplets. The gel is held in a 

1.6 cm (diameter) by 7 cm (length) plastic tube with a rounded end and a metal piston affixed to 

the other end. The plastic walls of the bubble detector are 1 mm thick and the rounded end has a 

radius of 8 mm. The piston holds the bubble detector gel under pressure in order to compress the 

dispersed droplets into a superheated state [55]. In this configuration, no bubbles will form even 

if high LET radiation is present. When a measurement is desired, the piston can be released so 

that the bubble detector gel is held at a lower pressure, but still enough to hold the droplets in a 

superheated liquid state. The superheated liquid droplets are invisible to the naked eye with a 

diameter of approximately 20µm (called microdroplets). When high LET radiation deposits 

energy into the superheated microdroplets, they may expand into a visible bubble with a 

diameter of 0.1 – 0.6 mm [56]. After a radiation exposure, these bubbles may be counted visually 

by eye or the detector may be entered into the BDR-III
TM 

bubble reader device [57]. This device 

takes two separate intersecting images of the bubble detector and uses imaging processing 

software to identify bubbles and count them automatically. Bubbles may also be counted using a 

pressure sensor or acoustic pulses produced during bubble formation [54][58]. A diagram of the 

bubble detector and the bubble detector reader is shown in Figure 5. When the measurement is 

complete, the bubble detector piston may be compressed into the original state and all visible 
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bubbles will be re-compressed into invisible superheated microdroplets. Thus, the bubble 

detector may be used repeatedly in a large number of experiments without being damaged or 

losing sensitivity. Unfortunately, the bubble detector gel does harden over time and will become 

too firm for bubble formation after an extended period whether it is used or not. Also, micro 

droplets may migrate and coalesce over time giving large permanent volumes of superheated 

liquid.  Thus, calibrated bubble detectors are given an expiration date after which measurements 

are no longer expected to be accurate (approximately 8 months after manufacture) [59]. The 

bubble detector spectrometer (BDS) is a set of six bubble detectors called BDS10, BDS100, 

BDS600, BDS1000, BDS2500, and BDS10000. Each of the BDS detectors has a different 

minimum energy threshold for bubble formation from neutron radiation [20]. In a neutron 

spectrum measurement, all six bubble detectors are exposed to the same radiation field 

simultaneously. After irradiation, the number of bubbles in each of the six detectors is counted in 

the bubble reader. The number of bubbles is related to the fluence of neutrons above the 

minimum energy threshold for each detector [60]. A response matrix is used to unfold the matrix 

and give a course 6 bin neutron spectrum [61].  
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Figure 5: (a) Space bubble detector and (b) BDR-III bubble reader [57] 

 

Another parameter that is used to characterize superheated drop detectors and bubble 

detectors is the ―reduced superheat‖, S and is defined as in [62], 

𝑆 =  
𝑇−𝑇𝑏

𝑇𝑐−𝑇𝑏
     (1.10)  

Where T is the detector temperature, Tb is the liquid boiling point (a function of gel pressure) and 

Tc is the critical temperature of the detector medium.  S is a dimensionless quantity that typically 

assumes values from 0.1 – 0.5 for most kinds of bubble detectors. The minimum neutron energy 

required for bubble formation is directly proportional to S for various types of bubble detectors at 

different temperature and pressures [62]. For BTI space bubble detectors, the reduced super heat 

is given as S≈0.3 and the minimum effective neutron energy required for bubble formation is 

given as 100 keV [55]. The formation of bubbles is affected by the ambient temperature. This is 

an undesirable property because variations in temperature are expected in typical bubble detector 

measurements where the detector may be worn on a person or be placed around different 
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locations. Temperature compensated bubble detectors and SBD have been developed so that the 

response does not change in the range 14º to 47ºC [63]. 

 For the space bubble detector spectrometer (SBDS), the pressure is varied for each of the six 

detectors in the set giving a different S for each detector and thus a different minimum neutron 

energy for bubble formation of 10 keV, 100 keV, 600 keV, 1000 keV, 2500 keV and 10000 keV 

respectively [61].  

 

1.3.2 Terrestrial Measurements with Bubble Detectors 

 

Bubble detectors are generally used as personal neutron dosimeters (PND). They are 

effective as neutron dosimeters for terrestrial applications because they only produce bubbles in 

response to high LET radiation [56]. The radiation fields common in terrestrial applications such 

as in nuclear power plants, radiotherapy, and medical imaging usually only include low LET 

photons or beta radiation. Deeply penetrating high LET radiation is only present from a limited 

number of well-known neutron sources. In addition, background radiation on earth is also 

lacking in neutrons and deeply penetrating high LET radiation [64]. High LET alpha particles 

and heavy ions are only present from radioactive alpha decay or nuclear fission and in these 

cases the energy of the particles is insufficient to penetrate the bubble detectors 1 mm plastic 

wall. Therefore, the only bubbles formed inside bubble detectors for typical terrestrial 

applications are from nuclear fission such as in nuclear power reactors or from laboratory 

neutron sources such as AmBe, 
252

Cf spontaneous fission sources or secondary radiation 

produced in particle accelerators. The neutron fission spectrum includes neutrons with energies 

from 0 to ~10 MeV with most neutrons between 0 and 2 MeV. As the neutrons enter the bubble 
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detector, they may scatter or interact in a transmutation interaction and produce secondary 

protons, alphas or heavy ions with high LET that will stop in the detector and form visible 

bubbles. The number of bubbles present in the detector after an irradiation is linearly 

proportional to the total fluence of neutrons [56].  

 

1.3.3 Bubble Detector Equivalent dose Calibration 

 

Bubble detectors are calibrated using an AmBe field where a number of measurements 

are made with different fluences. Since the AmBe spectrum is well known, the equivalent dose 

can be calculated using fluence to dose conversion factors. The number of bubbles present after 

an irradiation is linearly proportional to the fluence and the equivalent dose is extracted directly 

from the fluence so that the number of bubbles is linearly proportional to the equivalent dose. 

BTI bubble detectors are calibrated using the NCRP report 38 and given as bubbles produced per 

unit equivalent dose in bubbles/mRem or bubbles/µSv [72]. The AmBe neutron spectrum is 

shown in Figure 6 a) along with the fission neutron spectrum in Figure 6 b).   
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Figure 6:(a) ISO AmBe spectrum and (b) fission neutron spectrum[65] 
(Figure reproduced with permission from Oxford University Press) 

 

The equivalent dose calibration with AmBe neutrons is applicable to measurements of 

fission neutrons because the spectra are sufficiently similar and the bubble detector sensitivity to 

neutrons from 100 keV to 10 MeV is relatively constant [19].         

 

1.4 Radiation Environment in Space 

 

The ionizing radiation environment encountered in spacecraft includes photons, neutrons, 

protons, alpha particles and heavy charged particles. Photons, electrons and heavy charged 

particles come from solar particle events (SPE), galactic cosmic rays (GCR) and trapped 

radiation in the earth‘s magnetic field. Secondary neutrons are created when radiation interacts 

with the spacecraft material or the earth‘s upper atmosphere in nuclear spallation or 

transmutation reactions. All of these radiation fields vary over time and are affected by the 
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regular periodic cycles of the sun known as the solar cycle. The sunspot number (also known as 

the WOLF number) is a quantity defined by the number of sunspots on the surface of the sun at a 

given time and it is a commonly used to identify the phases of the solar cycle. Sunspots are 

darkened regions of reduced surface temperature that are visible on the surface of the sun. 

Individual sunspots last from a few days to a few months and they occur more frequently in 

periods of increased solar activity as well as increased magnetic activity, coronal mass ejections 

and solar flares [66]. 

 

1.4.1 Galactic Cosmic Rays 

 

The radiation environment aboard spacecraft varies greatly based on many variable 

conditions and can fluctuate rapidly or change considerably over long periods of time [9]. This 

work shall focus on spacecraft in low earth orbit (LEO) and particularly the ISS since most 

bubble detector measurements have been made on the ISS and it accounts for a large portion of 

the total manned space missions. The radiation environment aboard the ISS includes many 

different particle types and each particle type has a wide-ranging energy spectrum. One of the 

main sources of radiation in space is galactic cosmic rays (GCR). These are energetic protons, 

alpha particles and heavy ions that originate outside of our solar system. The relative abundance 

of each ion in is shown in Figure 7 a) along with particle energy spectra for a few of the most 

common ions (Figure 7 b).  
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Figure 7:(a) Relative abundance of GCR ions and (b) GCR energy spectra[13] 
(Figure reproduced with permission from American Institute of Aeronautics and Astronautics, Inc.) 

 

 

Although the GCR spectra for all ions remains relatively constant in time, the amount of 

GCR present in LEO actually varies based on solar activity. Solar cycles cause changes in the 

interplanetary magnetic field which attenuates and deflect GCR away from earth. Lower energy 

particles are more significantly affected by solar activity than higher energy particles. Increased 

solar activity causes decreased GCR fluxes and particle fluxes with energies less than 

100 MeV/nucleon may vary by as much as a factor of 10 where particles with energies greater 

than 10 GeV/nucleon may only vary by less than 20% from solar activity [13]. 
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1.4.2 Trapped Radiation 

 

The earth‘s magnetic field deflects a large amount of solar and galactic radiation away 

from the earth. However, some particles can be trapped in radiation belts (called the Van Allen 

Belts) where they gyrate along magnetic field lines and revolve around the earth confined by the 

Lorentz Force. Figure 8 shows the trajectory of a particle trapped in a radiation belt around the 

earth.  

 

Figure 8: Trajectory of trapped radiation particle [13] 

(Figure reproduced with permission from American Institute of Aeronautics and Astronautics, Inc.) 

 

 

Trapped radiation belts include electrons, protons, alphas and heavy charged particles 

each of which moves along particular lines based on the particle energy, charge, mass, and 

location. The net effect is two distinct quasi-torrid shaped radiation belts enveloping the earth 

called the inner radiation belt and the outer radiation belt. The density of ionizing radiation in the 
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radiation belts is very large at the point of closest approach to the earth. The earth‘s magnetic 

dipole is also not aligned with the earth‘s axis of rotation so the trapped radiation belts are also 

tilted and skewed relative to the earth‘s rotational axis. As a result, the belts are closest to the 

earth over the South Atlantic Ocean near Brazil in a location called the South Atlantic Anomaly 

(SAA). For astronauts in LEO, the SAA is actually the largest source of ionizing radiation 

exposure [13][67]. The trapped radiation belts are also dynamic and particle fluxes change with 

solar conditions as the earth‘s magnetic field is altered by the solar cycle and solar particle events 

[68]. In addition, the earth‘s upper atmosphere heats up and expands near the solar maximum 

and the attenuation of trapped particles increases [66].      

 

1.4.3 Ionizing Radiation aboard the ISS 

 

Ionizing radiation aboard the ISS includes photons, electrons, neutrons and heavy 

charged particles from GCR, trapped radiation, and secondary radiation. Of particular interest in 

ISS are the neutron and proton particle fluxes and their energy spectra. This is because neutrons 

and protons have a large flux that is a few orders of magnitude larger than other particles [9]. In 

addition neutrons and protons are high LET particles and contribute a much larger equivalent 

dose to astronauts than all of the photons and electrons. The energy spectra of neutrons and 

protons vary significantly depending on conditions such as the solar cycle, solar emissions, 

current location of the ISS, geomagnetic cutoff rigidity, passage through the South Atlantic 

Anomaly, shielding and position within the ISS [69]. The geomagnetic cutoff rigidity is a 

parameter that describes the flux of radiation particles in earth orbit based on orbit parameters 

[2]. However, for SPND and SBDS experiments on board the ISS, a single time averaged 
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neutron and proton spectrum are considered to be representative of the average net particle fluxes 

overextended measurement periods of (5-7 days) behind typical shielding within the ISS [70].  

The neutron energy spectrum on the ISS has been measured using a Bonner Ball Neutron 

Detector (BBND) by Koshiishiet al. from March 23 to November 14, 2001, and the data seems 

to fit well with predictive models as shown in Figure 9 [71]. The neutron spectra in Figure 9 

were measured successively in 2 different locations of the US Laboratory module with different 

shielding. These locations are labeled as ―before relocation‖ (LAB 1D3 deck) and ―after 

relocation‖ (LAB 1P1 Port) and illustrate how the neutron flux may vary depending on the 

position within in the ISS due to different amounts of shielding. Please see Appendix B for a 

diagram of the ISS including locations and modules. Spallation neutrons are mostly highly 

energetic with energies from a few keV to hundreds of MeV. The large contribution of neutrons 

with energies below 1 eV comes from albedo from the earth‘s upper atmosphere.     
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Figure 9:BBND measured neutron spectrum on the ISS with model prediction [71] 

(Figure reproduced with permission from Elsevier) 

 

The ISS has a typical average altitude of approximately 400 km but has varied from 

~320 km to ~450 km and it fluctuates frequently from apogee to perigee in a single orbit. In 

addition to shielding effects, the neutron spectrum varies with altitude as well as with latitude, 

position, and solar activity. A map of the neutron equivalent dose rate measured in the ISS shows 

this regional variation where the dose rates are shown to increase almost two orders of 

magnitude in the region of the SAA (see Figure 10). However, bubble detector measurements 

typically occur over a large number of orbits (~50 to over 100) so an effective time-averaged 

spectrum over a long measurement period (as shown in Figure 9) is applicable.  
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Figure 10: Neutron equivalent dose rate measured in ISS and geomagnetic cut-off rigidity at 

average ISS altitude [71] 

(Figure reproduced with permission from Elsevier) 

 

The average proton flux in the ISS has been modeled and shows a peak around 100 MeV. 

Protons are more abundant than neutrons in the region 100 to 1,000 MeV [69]. High-energy 

heavy ions with charge Z ≥ 2 are also present on the ISS, but the relative abundance of these ions 

is orders of magnitude below neutrons and protons. Figure 11 shows the flux of neutrons and 

protons aboard the ISS from GCR and trapped radiation.    
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Figure 11: Calculated neutron and proton spectrum on the ISS [69] 

(Figure reproduced with permission from Elsevier) 
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CHAPTER 2: LITERATURE REVIEW 

 

An extensive literature survey has been performed and a collection of relevant papers has 

been reviewed. The literature used to develop this thesis has been divided into six main 

categories and the significance of the findings in each category is presented in this chapter. The 

main categories are as follows: 

1) Bubble detector theory and physics of bubble formation 

2) Experiments with neutron irradiation of bubble detectors 

3) Experiments with proton irradiation of bubble detectors 

4) Experiments with heavy ion irradiation of bubble detectors 

5) Radiation Environment in spacecraft (ISS) 

6) Bubble detector measurements in spacecraft (ISS) 

7) Heavy ion track structure 

 

2.1 Bubble Detector Theory and Physics of Bubble Formation 

 

Bubble detectors are considered to be effective neutron dosimeters. However, the visible 

bubbles counted in bubble detector measurements are not formed directly by neutrons. Visible 

bubbles are formed by high LET charged particles when they deposit energy into the liquid 

microdroplets. Neutrons produce these high LET charged particles by elastic scattering, inelastic 

scattering and nuclear interactions within the bubble detector. The microscopic (~20 µm) 

superheated liquid droplets (liquid microdroplets) are held in a steady-state superheated 

condition above the boiling point via pressure exerted on the liquid by the bubble detector gel 
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[72]. As a charged ion passes through a liquid microdroplet, energy is deposited via ionization 

along the ion track. Electrons of the constituent atoms of the bubble detector material are ionized 

and travel outward stopping in the detector. This energy disperses into the liquid as kinetic 

energy, which serves to raise the temperature in a localized region called a ‗thermal spike‘ along 

the heavy ion track. Microscopic vapour cavities (<100 nm) are generated along the heavy ion 

track with volumes that are proportional to the amount of locally deposited energy. If the vapour 

cavities reach a critical size, the expansion of the vapour becomes irreversible and the whole 

liquid microdroplet evaporates and expands into a large visible bubble (0.1-0.6 mm) [73]. The 

amount of energy required and the critical size of the vapour cavity depend on the composition 

of the liquid micro droplet, the composition of the gel, the pressure and temperature of the 

system [74][75][76]. From thermodynamics, the size of the critical radius of a vapour embryo 

required for evaporation into a visible bubble can be calculated. The expansion of a visible 

bubble is a result of a phase change and stable growth of a vapor embryo called nucleation. 

Nucleation is defined by the surface energy and Gibbs free energy of the system [77]. For bubble 

detectors the critical radius is given by the following equation from [78]: 

𝑅𝑐 =  
2𝛾

 𝑃𝑠−𝑃′  (1−
𝑣′

𝑣′′
)
      (2.1) 

Where Rc is the critical radius of the vapour embryo, γ is the surface tension of the superheated 

liquid, Ps is the saturated vapour pressure of the liquid, Pˊ is the external pressure on the liquid, 

vˊ is the specific volume of the liquid and v˝ is the specific volume of the vapour [78].   

The minimum energy, Emin required for visible energy formation can also be calculated as [79], 

𝐸𝑚𝑖𝑛 =
16𝜋

3

𝛾3

 𝑃𝑠−𝑃′  2
 1 +

𝜌𝑉  𝑕𝑓𝑔

 𝑃𝑠−𝑃′  
          (2.2) 
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Where 𝜌𝑉  is the vapour density and 𝑕𝑓𝑔 is the latent heat of vaporization. 

The value of RC for bubble detectors has been calculated as 13.3 nm and 32.1 nm for 

different bubble detectors and was calculated to be between 28-56 nm for BTI bubble detectors 

[79][80]. The minimum energy for visible bubble formation in bubble detectors has been 

calculated as 8.99 keV at 25
o 
C and as between 7.80 keV - 82.94 keV for BTI bubble detectors 

[79][80]. 

A significant amount of work has been done in order to determine exactly how visible 

bubbles are formed in bubble detectors. The main principles of radiation-induced thermal spikes 

and evaporation of liquid droplets into visible bubbles are understood [74]. However, the details 

of this phenomenon on the nm and µm scale are not well known and thus the response of bubble 

detectors to some forms of radiation may not be well modeled or predicted based on current 

theories.  

Bubble detectors are considered to be high LET threshold detectors where bubbles are 

formed from high LET radiation when the energy deposition into a region within the liquid 

microdroplet is sufficient to cause vaporization [81]. The minimum energy required for bubble 

formation (Emin) has been determined based on thermodynamics and the critical radius (Rc) of the 

microscopic vapour cavity has also been calculated [79]. However, the structure of energy 

deposition of high LET radiation on the nm scale is not well known. Moreover, the transfer of 

energy from high LET ionization to thermal energy in the microdroplets is complicated and the 

dynamic distribution of thermal energy on the nm scale during the time of bubble formation is 

not known. Therefore a simplistic approach has generally been adopted to explain bubble 

formation. LET has been designated as the parameter of radiation that explains visible bubble 

formation since it describes the energy deposited in the local region during a short time period 
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(enough time for a bubble to form without the energy dispersing). So a minimum threshold of 

LET is considered to be sufficient to determine whether bubbles will form or not [79][81]. The 

LET threshold for bubble formation has been calculated as the minimum energy required for 

bubble formation divided by the length of the ion track over which that energy must be deposited 

as the ion passes through a microdroplet. A simplistic estimate of the length required is the 

diameter of the critical bubble (2 Rc ). However, the energy deposited from an ion does transfer 

away from the point of deposition (i.e. delta rays move and deposit energy as they collide). 

Energy deposited via ionization outside the critical radius of the vapour embryo may migrate into 

the critical radius and conversely, energy deposited as ionization inside the critical radius may 

migrate out far away. In an attempt to solve this problem, a correction factor has been applied in 

order to make an effective length over which energy must be deposited. Thus, the LET threshold 

for bubble formation has been calculated in [79] 

𝑑𝐸

𝑑𝑥𝑚𝑖𝑛
=  

𝐸𝑚𝑖𝑛

𝑘∙𝑅𝑐
      (2.3) 

Where 
𝑑𝐸

𝑑𝑥 𝑚𝑖𝑛
is the minimum LET threshold required for visible bubble formation. Emin is the 

energy required for bubble formation and Rc is the critical radius of a vapour embryo. The length 

along the ion track over which Emin must be deposited for bubble formation is called the 

―effective length‖ 𝑘 ∙ 𝑅𝑐 .  k is the correction factor for effective length and it has been estimated 

as between 2 and 13 [79]. There has never been any specific calculation to determine a true value 

for k based on ion track structure or thermodynamics in bubble detectors. The LET threshold for 

bubble formation in bubble detectors has been calculated as a value between 23.21 and  

493.7 keV/µm by [79]. 
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The LET threshold of bubble formation calculated above does not account for differences 

in different types of radiation or different ion charges. All radiation with LET∞ above the 

minimum LET threshold is assumed to produce visible bubbles and all radiation below the 

minimum LET threshold is assumed to produce no bubbles [81]. However, experiments have 

experimentally determined that nitrogen ions require less LET for bubble formation than argon 

ions in superheated drop detectors. Green et al. also found the same result in BTI bubble 

detectors, with a minimum LET threshold of 116 ± 40 keV/µm for N ions and 230 ± 20 keV/µm 

for Ar ions [55]. Andrews et al. have suggested that ion track structure may explain why the 

minimum LET threshold for bubble formation is different for different ions, but no calculations 

or specific models have been developed [62].  

 

2.2 Experiments with Bubble Detectors 

 

Many experiments have been carried out with irradiation of various superheated droplet 

detectors and bubble detectors in different radiation fields. Some of the areas of interest included 

testing the sensitivity of the bubble detector in terms of the number of bubbles produced per unit 

fluence of irradiation or determining the energy or LET thresholds for bubble formation. A 

review of experiments relevant to radiation fields expected aboard spacecraft is presented in this 

section.    

2.2.1 Neutron Experiments 

A very large number of experiments measuring the response to neutrons were completed 

during the development of bubble detectors. Many of the experiments involved measuring the 
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number of bubbles produced after exposure to a known fluence of mono-energetic neutrons. BTI 

bubble detectors have been determined to have a relatively flat response to neutron radiation for 

energies between 300 keV to 2 MeV [72]. The response to neutrons decreases below 300 keV 

where the sensitivity almost vanishes below 100 keV and the sensitivity above 20 MeV also 

decreases [55]. However, few early experiments were performed for neutrons above 20 MeV 

since the focus of bubble detectors was for conventional terrestrial neutron dosimetry where 

most neutrons are less than 10 MeV.  

Further experiments were performed to test the bubble detector response to neutrons in 

the range of 10-100 MeV since there was a desire to use them for aircraft and spacecraft neutron 

dosimetry [73][82]. Measurements with mono-energetic neutrons showed a low sensitivity to 

neutrons below 100 keV, a flat response to neutrons from 300 keV to 20 MeV and a slightly 

reduced response to neutrons around 100 MeV as shown from various experiments in Figure 

12[55]. Experiments with neutrons from 0-1,000 MeV at CERN (European Commission high 

energy Reference field Facility) were performed to calibrate bubble detectors for aircraft 

dosimetry. It was concluded that multiplying the AmBe calibration sensitivity by a factor of 1.62 

would give an equivalent calibration for aircraft neutron dosimetry and this has been applied to 

space bubble detectors as well [7]. The scaling factor is necessary because the equivalent dose 

for the high energy neutrons increases significantly with energy (see Figure 1) but the SBD 

sensitivity decreases for neutrons above 10 MeV. Therefore, the number of bubbles produced in 

an SBD after irradiation with high energy neutrons underestimates the equivalent dose using the 

AmBe calibration (bubbles/µSv). Multiplying the result by the scaling factor (1.62) compensates 

for the lower sensitivity and larger dose equivalent of the high energy neutrons [7]. 
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Figure 12: Bubble detector response to neutrons (for a detector with unit sensitivity 

0.1 bubbles/µSv) [55] 

 

A model has been developed using the Geant4 Monte-Carlo software toolkit to evaluate 

the bubble detector response to neutrons of various energies. The model has been analyzed using 

a single LET∞ minimum threshold for bubble formation due to secondary heavy ions of 

130 keV/µm and is plotted in Figure 13 along with experimental data of monoenergetic neutron 

measurements [55]. This agrees well with the measured data and proposed function from Figure 

12. Unfortunately, few experiments have been done for neutrons above 15 MeV, while half of 

the total neutron equivalent dose on spacecraft is believed to come from neutrons above 15 MeV 

[55]. The response of the bubble detector spectrometer set (BDS) to neutrons has also been 
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measured and is shown in Figure 14 [61]. The response to neutrons increases after a minimum 

threshold neutron energy for each of the six detectors and remains relatively flat until 10 MeV, 

above which there is a decrease in sensitivity.  

 

Figure 13: Geant4 Monte-Carlo model of bubble detector response to neutrons of various 

energies and experimental data [83] 

(Figure reproduced with permission from Oxford University Press) 
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Figure 14: Bubble detector spectrometer response to neutrons [61] 

(Figure reproduced with permission from Oxford University Press) 

 

2.2.2 Proton Experiments 

 

Protons are abundant in the radiation field of aircraft and in spacecraft. Thus, many 

experiments have been done to measure the sensitivity of bubble detectors to proton radiation 

[18][79]. In these experiments, bubble detectors have been exposed to a given fluence of 

monoenergetic protons. The number of bubbles produced is counted and the sensitivity of the 
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bubble detector is given as a number of bubbles per unit fluence of protons. This is further 

normalized by dividing the result by the detectors AmBe sensitivity (bubbles per µSv) relative to 

a standard 0.1 bubbles per µSv since the number of bubbles produced per unit dose is different 

for each individual detector as determined by the total number of microdroplets present in the 

detector. This is measured for various proton energies to produce a complete response function 

for protons with units of bubbles per unit fluence divided by the relative AmBe sensitivity as 

shown in Figure 15. Unfortunately, no experiments have been reported for the sensitivity of 

protons from 70 – 200 MeV which is the range of highest fluence on the ISS.  

 

Figure 15: Bubble detector proton sensitivity[79] 

(Figure reproduced with permission from Oxford University Press) 
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Experiments have been done where the proton beam has been incident along the bubble 

detectors central axis. In this case, bubbles appear uniformly along the proton track through the 

detector until the end of the range. Models using the Stopping and Range of Ions in Matter 

(SRIM) computer code have been used to compare the theoretical range of ions in bubble 

detectors with the distribution of bubbles after proton irradiation [18].The LET of protons in 

these experiments may be as low as 1 keV/µm at the beginning of the track, which is below the 

LET threshold calculated by Takada et al. It is believed that bubbles in this region may be 

produced by recoil heavy nuclei with a much higher LET. There does not appear to be an 

increase in the number of bubbles formed near the Bragg peak as shown in Figure 17.     

 

Figure 16 Proton irradiation experiments [79] 

(Figure reproduced with permission from Oxford University Press) 
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Figure 17: Bubble detector irradiated with 9 × 105protons/cm
2
 at 70 MeV [79] 

(Figure reproduced with permission from Oxford University Press) 

 

2.2.3 Heavy Charged Particle Experiments 

 

Bubble detectors have also been tested with He, C, Si, Ar, Fe, Kr and Xe ions in various 

bubble detectors [18][78][81][84][85]. Also, experiments have been carried out with N, Ar and 

Kr ions in various bubble detectors and BTI space bubble detectors [55][62].Unlike the 

experiments with protons, all heavy ion experiments showed an increase in the number of 

bubbles near the Bragg peak at the end of the ion range. Figure 18 shows an experiment with Ar 

ions incident along the detector axis for three different bubble detectors with different 

temperatures [55]. In each detector, there are few bubbles as the Ar ions enter the detector (from 

the right in the image). As the Ar ions slow down toward the end of the range, the LET of the Ar 

ions increases. At some point in each of the detectors, there is a sudden increase in the number of 

bubbles. This is called the ‗bubble front‘ by the authors and it is different for each of the 

detectors based on the temperature and pressure of the gel (i.e. reduced superheat, S) [55]. The 

LET of the ions at the beginning of the bubble front as calculated by SRIM has been called the 

minimum LET threshold of bubble formation. These experiments found that the minimum LET 

threshold for bubble formation of N ions was less than the LET threshold for Ar ions. Similar 
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experiments performed by Guo et al. with He and Fe ions found a minimum LET threshold for 

bubble formation in various kinds of bubble detectors[18][84][78]. However, Guo et al.have 

assumed the minimum LET threshold is a constant value for all ions regardless of mass or charge 

in all calculations and has not reported any difference in LET threshold based on ion charge [81]. 

In other similar experiments, Andrews et al.have reported a larger minimum LET threshold 

required for bubble formation for Ar ions than for N ions [62]. No experiments have been done 

to determine if there is a trend of minimum LET threshold for bubble formation for different 

ions. 

 

Figure 18: Image showing heavy ion irradiation of bubble detectors at HIMAC [55] 
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2.3 Bubble Detector Measurements aboard the International Space Station 

 

Measurements on many manned and unmanned spacecraft missions have been performed 

with BTI bubble detectors including the Personal Neutron Dosimeter (PND), Bubble Detector 

Spectrometer (BDS), Space Bubble Detector (SBD) and the Space Bubble Detector Spectrometer 

(SBDS). The space type bubble detectors have a firmer polymer to slow the rate of bubble 

growth after formation, which allows for longer measurement periods desired in space missions 

(days to weeks) [14]. Although most early testing of bubble detectors has been done using PND 

and BDS, it is believed that space bubble detectors and SBDS should respond similarly to all 

kinds of radiation. Experiments were performed on the BION #9, BION #10, BION #11 and 

BION-m No.1 satellite missions[86]. Additional experiments were performed on MIR (1993) 

and on space shuttle missions STS-81, STS-84, STS-86 and STS-89 [18][86]. Despite the 

differences in orbital altitude and orbital parameters, all bubble detectors measured anequivalent 

dose rate of approximately 100 µSv/day on all of these missions. A large number of 

measurements with SBD and SBDS bubble detectors have been performed on the ISS and the 

results have been published for missions ISS-13 to ISS-40 with measured neutron ambient 

equivalent dose rates typically between 100 to 200 µSv/day [18][14][87][88]. Measurements 

have also been carried out within the same ISS missions with bubble detectors located inside the 

Matroshka-R tissue equivalent spherical phantoms. The bubble detectors inside the phantoms 

typically measured an equivalent dose rate about 25% less than the detectors located outside of 

the phantoms [14][87]. Variation of the neutron dose rates measured on the ISS with space 

bubble detectors and SBDS over time has shown no clear correlation to changes in ISS altitude, 

solar activity or trends displayed in other concurrent dosimeter measurements (TEPC and DB-8 

silicon detectors) [87]. An attempt was made to predict the number of bubbles based on expected 
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neutron and heavy ion spectra and bubble detector response models on mission ISS-16. The 

model consistently under-predicted the number of bubbles by a factor of 2. The proton 

contribution to bubbles was calculated to be less than 2% and the contribution of all other heavy 

ions was found to be much less than 1% so protons and heavy ions have been considered 

negligible in all reported bubble detector measurements on the ISS [14].   

Figure 19 a) shows the results of bubble detector measurements aboard the ISS between 

November 2009 and July 2012. The ISS altitude (apogee and perigee) is plotted in the same 

figure for comparison. In June 2011 there is a significant shift of the ISS altitude from ~350 km 

to ~400 km. It is expected that the dose rate on the ISS should increase with altitude, however, 

the number of bubbles in the bubble detector measurements decreased. Figure 19 b) shows 

measurements with TEPC and two different DB-8 detectors during the same time period. The 

TEPC absorbed dose rate lies between the two DB-8 detectors and all three detectors show a 

significant increase corresponding to the altitude increase. The DB-8 detectors increase and 

continue to give higher readings after the altitude shift. Interestingly, the TEPC measurements 

increase significantly during the altitude shift but decrease after September 2011. The DB-8 

detectors are most sensitive to heavy charged particles while the TEPC detectors measure the 

absorbed dose from all radiation including neutrons. It may be possible that this indicates a 

decrease in the neutron component of the radiation field after the altitude increase. This would 

also be consistent with the decreased bubble detector measurements.  
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Figure 19: Comparison of space bubble detector measurements with TEPC and DB-8 detectors 

on ISS [87] 

(Figure reproduced with permission from Oxford University Press) 
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CHAPTER 3: METHODOLOGY DESCRIPTION 

 

The experimental investigations in this work were performed using BTI space type 

bubble detectors identical to those in use aboard the International Space Station (SBD and 

SBDS).In addition to experimental measurements, simulations of the experiments have been 

performed using the particle and heavy ion transport system (PHITS) code. Calculations of the 

LET, range, and energy of heavy charged particles have been done using the stopping and range 

of ions in matter code (SRIM) [89]. All bubble detector measurements were recorded, the 

number of bubbles was counted with the BDRIII bubble detector reader and images were 

analyzed with MATLAB image processing tools. 

3.1 Experimental Investigation 

The space bubble detectors have a 10 ml active volume with approximately 10
4
 

microscopic droplets, and a sensitivity ranging from 0.10–0.22 bubbles/µSv in an AmBe neutron 

field. Table 1shows all experiments performed and lists the facility, date, radiation used and the 

purpose of the experiment. 
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Table 1: Bubble Detector Irradiation Experiments 

Facility Date Radiation Detector Purpose 

ProCure Proton 

Therapy Centre 

Oklahoma, USA 

Aug. 

2013 

Proton 

60, 78.2, 162 and 

226 MeV 

SBD - Determine the sensitivity of SBD to 

protons (60 to 226 MeV) 

- Determine SPND directional 

sensitivity to protons 

LANSCE Ice House 

neutron spallation 

source 

Los Alamos, USA 

Nov. 

2014 

Neutron 

0 – 800  MeV 

(space equivalent 

spectrum) 

SBD - Determine sensitivity of SBDto 

space equivalent neutron spectrum 

- Test calibration factor (1.62) 

NIRS cyclotron 

Chiba, Japan 

Jun. 

2015 

Proton 33-70 MeV SBD - Determine sensitivity of SBDto 

protons (33 – 70 MeV) 

HIMAC heavy ion 

facility 

Chiba, Japan 

May-

Jun. 

2015 

He 150 MeV/n 

Si 490 MeV/n 

Fe 500 MeV/n 

SBD - Determine the sensitivity of SBDto 

He, Si and Fe  

- Determine the SBDLET threshold of 

bubble formation for He, Si and Fe 

HIMAC heavy ion 

facility 

Chiba, Japan 

Mar. 

2016 

C 400 MeV/n 

O 400 MeV/n 

SBD - Determine the sensitivity of SBDto C 

and O ions 

- Determine the SBDLET threshold of 

bubble formation for C and O 

HIMAC heavy ion 

facility 

Chiba, Japan 

May 

2016 

He 150 MeV/n 

Si 490 MeV/n 

SBDSBDS - Determine the sensitivity of SBDto 

He and Si ions 

- Determine the sensitivity of SBDS to 

He and Si ions 

- Determine SBD and SBDS LET 

threshold of bubble formation for He 

and Si  

HIMAC heavy ion 

facility 

Chiba, Japan 

Feb. 

2017 

C 400 MeV/n 

Ne 400 MeV/n 

Fe 400 MeV/n 

SBDSBDS - Determine the sensitivity of SBDto 

C, Ne,and Fe ions 

- Determine the sensitivity of SBDS to 

C, Ne,and Fe ions 

- Determine SBDand SBDS LET 

threshold of bubble formation for C, 

Ne,and Fe 

NIRS cyclotron 

Chiba, Japan 

Feb. 

2017 

Proton ≤70 MeV SBD - Determine the sensitivity of SBDto 

protons (0 – 70 MeV) 

- Determine range and bubble 

distribution of proton irradiation in 

SBD 

HIMAC heavy ion 

facility 

Chiba, Japan 

Jun. 

2017 

He 150 MeV/n 

Si 490 MeV/n 

SBD -Additional experiments with SBDfor 

determination of LET threshold and 

sensitivity.  

NIRS cyclotron 

HIMAC heavy ion 

facility 

Chiba, Japan 

Jan. 

2018 

Proton≤70 MeV 

He 150 MeV/n 

C 400 MeV/n 

Fe 400 MeV/n 

SBD -Additional experiments with SBDfor 

determination of LET threshold and 

sensitivity 
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3.1.1 Neutron Experiments 

 

Exposures of bubble detectors to high-energy neutrons in the energy range expected for 

neutrons encountered during space flight were carried out at the LANSCE Irradiation of Chips 

and Electronics (ICE House) facility. ICE House is one of the neutron beamlines from the 

spallation neutron source with a pulsed 800 MeV proton linear accelerator directed at a tungsten 

target to produce short bursts of high-energy neutrons (from 0.6 to 800 MeV). The neutrons are 

guided through different beamlines to the end user exposure rooms. The beamlines range in 

distance from 10 to 90 m from the tungsten target at angles of 15º to 90ºrelative to the proton 

beam direction. There are no quasi-mono-energetic neutron beams, but the neutron beam is hard 

at 15ºand gets softer as it approaches 90º. Each neutron beam path has been well characterized, 

and the neutron energy spectrum of each path has been precisely measured using a sophisticated 

time-of-flight spectrometer. A schematic of the facility is shown in Figure 20. The Flightpath 

30L was used since the shape of the neutron spectrum is similar to that encountered during 

space flight. Space bubble detectors were completely insertedinside the beam and irradiated 

either individually or as a set of 3 detectors. The neutron spectrum of the ICE House facility is 

shown in Figure 21 along with the cosmic ray neutron flux for comparison. The cosmic ray 

spectrum is created when heavy ions interact with the earth‘s upper atmosphere. Although not 

identical to spacecraft neutron fluxes, the general trend of the flux is sufficiently similar to test 

the bubble detector response to neutrons in the range 1 MeV to 800 MeV. After each irradiation, 

the number of bubbles was counted in the automatic bubble reader and the equivalent dose 

measured with the uncorrected AmBe sensitivity was recorded. The equivalent dose was 

calculated with the ICRP74 fluence to equivalent dose conversion factors and the Ice House 

spectrum [90]. This experimental work has been published in [23]. 
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Figure 20:Beamlines at LANSCE. Neutron exposures of bubbledetectors were made along the 

30 Left beam line in ―ICE House‖ facility [91] 
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Figure 21: LANSCE ICE House facility neutron spectrum [91] 
 

 

 

3.1.2 Proton Experiments 

 

Proton irradiation experiments have been conducted at, the ProCure Proton therapy 

facility in Oklahoma USA, which consists of a cyclotron and range shifter. The detectors have 

been exposed to protons at different fluences such that the number of resultant bubbles ranged 

between 150 and 300.Some detectors were exposed outside of the proton beam to evaluate any 

secondary neutron contamination present. A snapshot of one of the proton beam portals used to 

irradiate the bubble detectors is shown in Figure 22, where one detector is inside the proton 

beam, and two others are at 40 cm lateral to the beam axis and at 300 cm from the beam.  
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(a) 

 

 

View of one of the Procure Proton Therapy facility 

beams and the position of two bubble detectors. 

(b) 

 
 

Bubble detector at 300 cm away from the 

beam axis. 

 

 

Figure 22: Experimental setup at the Procure Proton Therapy facility 

 

Detectors were irradiated at fluences ranging from ~2 to15×10
7
 protons/cm

2
. Due to the 

firmness of the gel used in the space-type bubble detectors, the bubbles were counted at least 30 

minutes after irradiation. To ensure the full decompression of the bubble detectors after the 

counting process, detectors were left for about 30 minutes following decompression before any 

re-use. The measurements were conducted with four different proton energies, Ep= 60, 78.2, 162 

and 226 MeV. The detectors were irradiated in three orientations. Along the beam axis with the 

bubble detector axis parallel to beam axis), perpendicular to the beam axis, and finally with the 

bubble detector axis oriented 45º from the beam axis as shown in Figure 23. 
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Figure 23: Bubble detector proton irradiation experiments 

After each irradiation, the number of bubbles was counted and the fluence was recorded. 

The response of the detector in each experiment was calculated as the number of bubbles 

produced divided by the fluence. This was normalized to the given detector AmBe sensitivity 

relative to the standard AmBe sensitivity of 0.1 bubbles/µSv as shown in the following equation. 

𝑅𝑝𝑟𝑜𝑡𝑜𝑛  𝐸 =
𝑁𝑏

𝛷 ∙ 
𝑆𝐴𝑚𝐵𝑒

0.1 𝑏𝑢𝑏𝑏𝑙𝑒𝑠 /𝜇𝑆𝑣

     (3.1) 

Where: 

E is the proton incident energy (MeV), 𝑁𝑏  is the number of bubbles produced 

𝛷 is the total fluence of the irradiation (protons/cm
2
) 

𝑆𝐴𝑚𝐵𝑒  is the detectors given sensitivity in an AmBe field (bubbles/µSv) 

𝑅𝑝𝑟𝑜𝑡𝑜𝑛  𝐸  is the response of the bubble detector (bubbles/(proton/cm
2
))  



61 

 

 

Normalization to the detector AmBe sensitivity is necessary because not all SBD are 

identical when manufactured. The calibrated sensitivity SAmBe is related to the total number of 

microdroplet sin the detector. For example,an SBD with a calibrated sensitivity of 

0.2 bubbles/µSv would be expected to produce twice as many bubbles as a detector with a 

calibrated sensitivity of 0.1 bubbles/µSv if exposed to the same radiation field. All SBD are 

calibrated with AmBe exposures and labeled with the measured sensitivity (bubbles/µSv). The 

normalization in equation 3.1 (i.e. division by the ratio of the calibrated SAmBe to 

0.1 bubbles/µSv) means that the measured response function Rproton(E) is equivalent for all SBD. 

In the second series of proton irradiation experiments (~30 to 70 MeV), bubble detectors 

were irradiated at the NIRS cyclotron facility in Chiba, Japan.  The detectors were exposed to 

proton fluences from 0.5×10
6
 to 8 ×10

6
 protons/cm

2 
along the beam axis and perpendicular to the 

beam axis. Different proton energies were obtained by inserting polymethyl-methacrylate 

(PMMA) ‗Binary Filters‘ of different thicknesses between the beam nozzle and the bubble 

detectors. The Binary Filters are a collection of PMMA blocks with thicknesses from 5 mm to 

1 m that can be moved into or out of the beam line. The permutation of all PMMA blocks allows 

for a large number of different thicknesses and can slow down the incident beam to a desired 

energy.  A 1cm
2
 plastic scintillation flux counter was used to record the particle fluence of each 

experiment. Similar to previous measurements, some detectors were irradiated inside as well as 

outside the beam. The experimental setup is shown in Figure 24. Additional similar 

measurements were made at the NIRS cyclotron in February 2017 that included space bubble 

detectors and space bubble detector spectrometers.This experimental work has been published in 

[23]. 
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Figure 24: Experimental setup with space bubble detectors at NIRS Cyclotron 

 

3.1.3 Heavy Ion Experiments 

 

The Heavy Ion Medical Accelerator in Chiba, Japan (HIMAC) was used for heavy ion 

irradiation experiments. The facility provides different heavy ion beams at energies ranging from 

100 MeV/nucleon to 800 MeV/nucleon depending on the ion. The HIMAC BIO room delivers a 

10 cm diameter mono-energetic heavy ion beam. To reduce the ion energy in different 

experiments, polymethylmethacrylate (PMMA) ‗Binary Filters‘ of varying thickness were placed 

between the beam collimator and the bubble detectors[92]. Bubble detectors were exposed to 

different incident heavy ion beams including 150 MeV/nucleon 
4
He, 400 MeV/nucleon 

12
C, 

400 MeV/nucleon 
16

O, 400 MeV/nucleon 
20

Ne, 490 MeV/nucleon 
28

Si, and 500 MeV/nucleon 

56
Fe. To avoid saturating the bubble detectors with excessive particle fluences, the intensity of 

the beam was reduced from the normal operational intensity. A1 cm
2
 plastic scintillator was 
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placed in the beam line, and the output of the scintillator was set to interrupt the beam when a 

pre-set fluence had been achieved. The experimental setup is shown in Figure 25 and Figure 

26and the characteristics of the heavy ion beams are summarized in Table 2. 

 

 

Figure 25:Experimental setup with space bubble detector at HIMAC 

 

 

Figure 26: Heavy ion irradiation at HIMAC 
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Table 2: Characteristics of heavy ion beams used in characterizing bubble detector 

Heavy 

Ion 

Energy 

(MeV/nucleon) 

LETH2O 

(keV/m) 

Fluence 

(Particles/cm
2
) 

4
He

 
150 2.2 4.0 – 8.0 × 10

6 

12
C

 
400 10.7 0.8 – 9.2× 10

5
 

16
O

 
400 9.4 0.7– 1.2 × 10

6
 

20
Ne

 
400 30.1 1.1– 1.2 × 10

5
 

28
Si

 
490 54.5 0.5– 1.0 × 10

4
 

56
Fe

 
500 182.5 0.5– 3.0 × 10

4
 

 

The nominal energy listed for each particle in Table 2 is higher than the energy of the 

particles when they enter the HIMAC BIO room because they travel several meters through the 

air[92]. At the beginning of each experimental session with a specific beam, a characteristic 

Bragg curve is recorded with a PTW 23343 Markus Ion Chamber. This is done by measuring the 

absorbed dose of the beam with no Binary Filter present. A small amount of Binary Filter is 

inserted into the beam and the absorbed dose is recorded again. This process is repeated while 

gradually inserting more and more Binary Filter until the beam is fully blocked and the absorbed 

dose drops significantly. The result is output as a graph of absorbed dose versus depth (which is 

translated from PMMA to water equivalent for convenience in biological experiments). The 

actual incident energy of the beam entering the HIMAC BIO room can be identified by 

observing the range of the particles in the Bragg curve. The Bragg curve is useful for identifying 

the energy, range and the LET of the ions in specific experiments with different Binary 
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Filters[93]. See AppendixC for Bragg curve measurements, PHITS simulation results and SRIM 

calculations at HIMAC. 

Approximately 20 bubble detector irradiations were performed for space bubble detectors 

with each ion beam in each session (See Table 1). For experiments with the beam oriented along 

the detector axis, the Binary Filter was adjusted so that the range of the ions would be less than 

the bubble detector length and the ions would stop inside the bubble detector. For each 

experiment the response of the bubble detector, Ri(E) to the heavy ion, at the incident energy 

(after passing through any present Binary Filter) was recorded as the number of bubbles 

produced divided by the fluence (normalized to a standard 0.1 bubbles/µSv detector) as defined 

in Equation (3.1) for protons. Response functions were measured for all heavy ions with a large 

range of energies produced by using different Binary Filters.  

 

3.1.4 Determination of LET Threshold for Bubble Formation 

 

The results of each experiment have been analyzed by imaging the irradiated bubble 

detectors with the bubble detector reader and by observing the number and distribution of 

bubbles in the detectors. The position of individual bubbles inside the bubble detector images 

was determined in MATLAB using the Circular Hough Transform algorithm[94]. A custom 

MATLAB program has been constructed to determine the location of the bubbles in the bubble 

detector based on image processing. The BDRIII reader captures low resolution (512x480) 

grayscale Tagged Image File Format (TIFF) images of the bubble detector, where the 45 mm 

length of the bubble detector is 500 pixels long. Each pixel represents a length of approximately 

90 µm. The expanded bubbles in the images are typically 5-6 pixels (450 to 540 µm) in diameter. 
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The largest bubbles observed in this work were 12 pixels (1080 µm) in diameter and most 

expanded bubbles were larger than 4 pixels (360 µm) in diameter. The Circular Hough 

Transform algorithm has been configured to identify bubbles with diameters from 4 to 12 pixels. 

This range avoids misidentifying bubbles where there are image grains and noise (typically 1 to 

3-pixel diameter dark spots in the image) or refractive features of the bubble detector wall 

(typically larger than 20 pixels). This adequately accounts for the total number of bubbles with 

consideration for the size distribution [95]. An investigation of the accuracy of this MATLAB 

program in determining bubble positions and range of particles in SBD is presented in 

Appendix D.  

If the Bragg peak from an individual experiment appears in the bubble detector image, 

there is an obvious increase in the density of bubbles at the bubble front as shown in the 

literature review (see Figure 18). In order to assess the bubble front in the images more directly, 

the location of the bubbles was translated along an elliptical curve that matches the rounded front 

of the bubble detector. Bubbles near the outside edge of the detector were translated the most, 

while bubbles directly in the middle of the detector axis were not translated at all. This 

translation equalizes the ion range so that ions near the outside wall of the detector would stop at 

the same lateral distance as ions in the centre. This compensates for the geometric effect of the 

rounded end of the bubble detector. Additionally, the program creates a histogram of bubble 

densities along the bubble detector axis. At the bubble front, the density of bubbles increases 

significantly. The program can detect a statistically significant increase in bubble density and 

designate that position as a bubble front. Conversely, the end of ion range displays a significant 

drop in bubble density. The program can also identify the end of range based on a statistically 

significant decrease in bubble density. The bubble front and the end of the range are both 
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affected by ion straggling so both are expected to be spread out over a finite distance. Also, 

secondary recoil heavy ions and neutrons produced along the beam line may act to create 

spurious bubbles at random locations in the bubble detectors. Nevertheless, the program is 

capable of determining the bubble front and end of the range, as long as the number of bubbles is 

statistically sufficient and the noise from spurious bubbles is not too large.  

A model of the detector gel material has been input into the stopping power and ranges 

for ions in matter (SRIM) code in order to analyze ion energy, range and LET. The range of the 

bubbles in the proton experiments in the literature has been verified to match the proton range 

calculated by this SRIM model [79]. The SRIM data for all other heavy ions were included in the 

MATLAB program so that the range, energy and LET of the particles could be calculated. The 

program records and outputs the ion energy and LET∞ at the position of the bubble front. Finally, 

an image is generated with elliptical curves plotted over the original bubble detector image 

indicating the bubble front and end of the range.  

 

3.1.5 Measurements aboard Spacecraft 

 

 All bubble detector measurements aboard spacecraft used in this work have been 

extracted from the published literature. A detailed account of all relevant bubble detector 

experiments can be found in Appendix A including dates, mission details, bubble detector 

locations and measurement results.    
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3.2 Simulations and Modeling of the Space Bubble Detector Response to Radiation on ISS 

 

3.2.1 Monte Carlo Simulations 

 

A Particle and Heavy Ion Transport Simulation (PHITS  version 2.760) model was used 

to investigate the proton and heavy ion experiments. PHITS applies a Quantum Molecular 

Dynamics model for the transport of heavy ions through materials. PHITS is extremely versatile 

and a very large number of input parameters and outputs can be specified [96]. In the simulations 

performed for this thesis, the inputs included simplified geometry for the HIMAC BIO room and 

NIRS cyclotron experiments and material definitions. The heavy ion beams were input as 

monoenergetic 10 cm diameter cylindrical beams and divergence of the beams was modeled with 

the PHITS ―nspread=2‖ command for Lych formula Coulomb diffusion (angle scattering). 

Energy loss straggling was modeled with the PHITS ―nedisp=1‖ command (Landau Vavilov 

energy straggling). The PHITS simulations include a model of the bubble detector, a cylindrical 

column of air equivalent to the distance traveled by the particles in the HIMAC BIO room and 

NIRS cyclotron as well as an adjustable cylindrical Binary Filter made of PMMA or H2O that 

could be matched to each individual experiment. For each of the beams, an absorbed dose depth 

curve was simulated in PHITS for comparison with the Markus Ion chamber measurements and 

verification of the energy of the ions in different experiments.  

A PHITS simulation has also been developed to estimate the absorbed dose in a cylinder 

made of bubble detector polyacrylamide emulsion gel on a microscopic scale. The simulation 

consists of a point source of 81.5 keV/µm carbon ions incident along the central axis of a 

cylinder with a radius from 1 nm to 1 mm and a height of 1 µm. The output of the simulation 

was recorded as the absorbed dose (Gy) deposited in the cylinder per carbon ion.    
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3.2.2 Heavy Ion Track Structure in Bubble Detectors 

 

Analysis of the bubble detector experiments with heavy charged particles has been performed 

considering heavy ion track structure models. The bubble detector model employs equations for 

the penumbra radius (rmax), and restricted LET that have been presented in Section 1.2.5 and the 

radial dose distribution equations from [48]. Using the Chatterjee, Katz and Keifer ion track 

structure models, another quantity has been defined as an average track energy density which is 

the total energy deposited into a cylindrical region of stopping material around an ion track 

divided by the volume of that cylinder with units of keV/µm
3
. The cylindrical volume for an ion 

track has been defined to have a radius equal to the ion track penumbra (rmax) and a length dx 

where the ion traverses along the central axis of the cylinder. The volume of the cylinder is 

𝜋𝑟𝑚𝑎𝑥
2 ∙ 𝑑𝑥and the average track energy density is given as follows: 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑡𝑟𝑎𝑐𝑘 𝑒𝑛𝑒𝑔𝑦 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 =  
𝑇𝑜𝑡𝑎𝑙  𝐸𝑛𝑒𝑟𝑔𝑦  𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝑒𝑑  𝑖𝑛  𝑑𝑥

𝜋𝑟𝑚𝑎𝑥
2×𝑑𝑥

  (3.2) 

The total energy deposited into the track as the ion travels a small distance dx is the 

unrestricted LET multiplied by dx: 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑡𝑟𝑎𝑐𝑘 𝑒𝑛𝑒𝑟𝑔𝑦 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 =  
𝐿𝐸𝑇∞  ×𝑑𝑥

𝜋𝑟𝑚𝑎𝑥
2×𝑑𝑥

=
𝐿𝐸𝑇∞

𝜋𝑟𝑚𝑎𝑥
2
  (3.3) 

More generally the average energy density may be defined for any cylinder that has a 

radius of size r. If the cylinder has a radius r ≥ rmax, then the average energy density is:  

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑒𝑛𝑒𝑟𝑔𝑦 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑖𝑛 𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟 =  
𝐿𝐸𝑇∞  ×𝑑𝑥

𝜋𝑟2×𝑑𝑥
=

𝐿𝐸𝑇∞

𝜋𝑟2    (3.4) 
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However, if the cylinder has a radius r < rmax then the energy deposited into the cylinder 

is defined by the restricted LETr where r is the radius of the cylinder. Using equation 1.9 for 

the restricted stopping power gives:  

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐸𝑛𝑒𝑟𝑔𝑦 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑖𝑛 𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟 =  
𝐿𝐸𝑇𝑟×𝑑𝑥

𝜋(𝑟)2×𝑑𝑥
=   

𝐿𝐸𝑇 ∞
2

 1+
1+2 ln (𝑟/𝑟𝑐)

1+2 ln (𝑟𝑚𝑎𝑥 /𝑟𝑐)
 

𝜋(𝑟)2  

 (3.5) 

 

 Equations 3.3, 3.4 and 3.5 can be interpreted as the total absorbed dose in the respective 

cylinder which can be converted to units of Gy using the material density. This is different from 

the radial dose which is the dose at a point adjacent to an ion track at a distance r. The radial 

dose can be interpreted as the dose in a cylindrical shell with a thickness dr, inner radius r, and 

outer radius r + dr where the ion track passes through the central axis and secondary electrons 

deposit their energy in the cylindrical shell. On the other hand, the average energy density 

includes the energy deposited by all secondary electrons as they pass through the entire cylinder 

with radius r. In fact, the stochastic nature of ion tracks is significant on the micrometer scale. 

The average track density quantity may not be well defined for a single event in a bubble 

detector. Nevertheless, it is still useful in analyzing bubble detector experiments with heavy 

charged particle irradiation.    

 

3.2.3Absorbed Dose in Space Bubble detector Micro Droplets from Heavy Ions 

 

 The average energy density of the ion track discussed in the previous section leads to the 

question: what is the absorbed dose in a microdroplet? The minimum LET threshold presented in 

the literature was calculated using the minimum deposited energy required for visible bubble 
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expansion and the size of the critical vapour embryos. The same values was used to determine a 

minimum energy density defined as the minimum energy divided by the volume of the critical 

vapour embryo: 

𝐷𝑚𝑖𝑛 =  
𝐸𝑚𝑖𝑛

𝑣𝑜𝑙𝑢𝑚𝑒  𝑜𝑓 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙  𝑣𝑎𝑝𝑜𝑟  𝑒𝑚𝑏𝑟𝑦𝑜  
=  

𝐸𝑚𝑖𝑛
4

3
𝜋 𝑅𝑐

3   (3.6) 

Where Dmin is the minimum energy density imparted into a vapour embryo in order to cause 

visible bubble expansion (in units of keV/µm
3
). Rc and Emin are the vapour embryo critical radius 

and minimum energy as defined in Equations 2.1 and 2.2. Using equation 3.6 and the range of 

values for Emin and Rc quoted in the literature from [79]gives an estimated value of Dmin between 

1.06x10
4
 and 9.02x10

5
 keV/µm

3
. Space bubble detectors have a density of 1.298 g/cm

3
 so the 

estimated range of Dmin is from 1.31x10
3 
Gy to 1.11x10

5 
Gy.  

 

3.3 Modeling the Radiation Environment inside the ISS 

 

The radiation environment inside the ISS contains many particle types with a wide 

energy range. The energy spectra of neutrons and protons vary significantly depending on 

conditions such as the solar cycle, solar emissions, current position of the ISS, altitude, 

geomagnetic cutoff rigidity, passage through the South Atlantic Anomaly, shielding and location 

within the ISS. To analyze the space bubble detector experiments aboard the ISS, a single time 

averaged neutron, proton and heavy ion spectrum was used. This was considered to be a good 

representation of the average net particle fluence over an extended measurement period (5-7 

days) behind typical shielding consistent with the actual bubble detector measurements.  

Several models of the radiation environment in LEO including GCR and trapped 

radiation have been developed. Software tools are available for modeling the radiation 
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environment inside spacecraft in LEO. Two of these tools have been used in this work; the On-

Line Tool for the Assessment of Radiation in Space (OLTARIS) and the Cosmic Ray Effects on 

Micro-Electronics (CREME96) codes [97][98]. Both codes generate particle spectra in LEO 

space environments based on input parameters such as altitude, date and shielding. OLTARIS 

has been used to generate expected neutron, proton and heavy ion spectra inside the ISS for all 

bubble detector measurements between January 2008 and October 2013. CREME96 has been 

used for comparison with the OLTARIS results along with various measurements. CREME96 

and OLTARIS have both been selected for this work because they are standard tools for 

assessing the radiation environment in spacecraft. Both codes produce proton and heavy ion 

particle spectra based on extensive radiation physics models and have been tested and validated 

in previous studies [99]. OLTARIS has been selected as the basis of the bubble detector 

measurement model because it also generates secondary neutron spectra and includes albedo 

neutron spectra. A full discussion of space radiation codes including CREME96 and OLTARIS 

can be found in [100]. 

 

3.3.1 Modeling of the GCR and trapped radiation environment in the ISS 

 

OLTARIS uses the GCR model developed by O‘Neill et al. which is based on balloon 

and satellite measured energy spectra from 1954 to 1992 and the Advanced Composite Explorer 

satellite from 1997 to 2002 [97]. OLTARIS is able to produce a GCR differential flux for ions 

from protons to nickel after passage through the solar system and into LEO. Input parameters 

include the start date and end date, altitude and inclination of earth orbit. Variations of the GCR 

spectra based on the solar cycle and solar conditions measured during the specified period are 

accounted for. The GCR spectrum can be transported through specified shielding using the 
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HZETRN2005 transport algorithms developed by Wilson et al. Cucinotta and Slaba et al.[97]. 

Simple shielding geometries can be specified such as aluminum or polycarbonate spheres. 

However, some more complicated geometries are available including various modules inside the 

ISS. Neutrons are not present in the GCR spectrum shielding; however, secondary neutrons 

produced in the transport of the GCR spectrum are included in the output. OLTARIS separately 

outputs the daily averaged particle differential flux energy spectra for neutrons, protons, alphas 

and heavy ions up to nickel.  

Trapped Radiation is calculated using the AP8MIN and AP8MAX models based on Vette 

reduction of satellite data. Effects from the solar cycle and passage through the SAA are included 

in the model. The trapped radiation spectra are similarly transported through the specified 

shielding and the daily averaged flux is given. Albedo neutrons from the earth‘s atmosphere in 

LEO are also transported through the shielding and included in the OLTARIS output for the 

trapped radiation-induced neutron flux. The total daily particle flux for neutrons, protons, alphas 

and heavy ions is obtained by summing the GCR and trapped radiation fluxes.  

Proton and Heavy ion fluxes have been generated for all ISS space bubble detector 

experiments using OLTARIS. Whenever possible, the OLTARIS proton and heavy ion fluxes 

were calculated in the same ISS location where the bubble detector measurements were made. 

This was possible for all measurements in the US Lab and the Russian Service Module. 

Unfortunately, OLTARIS does not include some of the ISS locations including the Japanese 

Experimental Module(JEM) and Node 2 where some bubble detector measurements were 

conducted. Similarly, CREME96 generates proton, alpha and heavy ion differential fluxes in 

LEO based on input parameters such as start date, end date, apogee, perigee and orbit inclination. 

It uses a semi-empirical GCR model based on Nymmik et al. and the AP8 models for trapped 
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radiation [98]. It also transports the flux through specified shielding and generates transported 

fluxes. However, neutrons are not transported and therefore the output does not include any 

neutron component. Shielding in CREME96 can be specified as simple aluminum spheres or as a 

shielding distribution file in which there is a distribution of aluminum thicknesses. The model is 

isotropic so specific geometry is not required in the input file. 

For ISS Expedition 20, a comparison of the particle spectra reported in the literature with 

OLTARIS and CREME96 has been done. In this mission, the bubble detectors were co-located 

in the service module along with a tissue equivalent proportional counter (TEPC) and a set of 

four DB-8 silicon dosimeters. The ISS shielding has been entered in CREME96 as a shielding 

distribution file (.shd) based on the shield distribution reported by Benghin et al. for the DB-8 

detectors [101] (See Appendix B, Figure B2). The shielding distribution used was for the DB-8 

detector No.3 since it has an intermediate shielding which is assumed to best represent the 

average shielding over all experiment locations within the Service Module. The shielding 

distribution has a range from 2 to 450 g/cm
2
 equivalent aluminum with most of the shielding 

between 3 and 30 g/cm
2
. The shielding in the OLTARIS model was input as the ISS Service 

Module geometry which is included in the software. The CREME96 flux for protons and all 

heavy ions after transmission through the ISS shielding is shown in Figure 27(a). This produces a 

total proton fluence of 2.38x10
5
 protons/cm

2
/day and a total absorbed dose rate of 299 µGy/day 

in silicon according to the CREME96 DOSE calculation. This dose rate matches the average 

dose rate measured by the unshielded DB-8 no.3 detector in the Matroshka-R and Radi-N 

experiments (302 µGy/day) and is also consistent with the TEPC measurement of 277 µGy/day 

[101]. The proton, alpha and heavy ion spectra from OLTARIS are also shown in Figure 27(b). 

The trend of both are similar, but OLTARIS appears to under-represent the total proton and 



75 

 

heavy ion flux. The alpha flux below 100 MeV also shows an increasing trend toward lower 

energies in OLTARIS whereas it decreases in the CREME96 model. This is due to the fact that 

OLTARIS includes alphas in the trapped radiation component while CREME96 only includes 

protons in the trapped radiation model. The absorbed dose in silicon given by OLTARIS 

(117 µGy/day) is also significantly less than all of the DB-8 measurements (225 to 378 µGy/day) 

and the TEPC measurement (277 µGy/day). Thus, the OLTARIS proton spectrum has been 

scaled to match the CREME96 data and is plotted in Figure 28. With this scaling factor, the 

OLTARIS proton flux matches CREME96 in the region 10 to 100 MeV and is consistent with 

the experimental data. The proton spectrum given in the literature has also been plotted for 

comparison and agrees with the CREME96 and scaled OLTARIS models. This was constructed 

by summing the GCR and the trapped proton spectra presented in Figure 11. 
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Figure 27: Proton, alpha and heavy ion flux in ISS calculated by a) CREME96 and b) OLTARIS 
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Figure 28: OLTARIS and CREME96 proton spectra on ISS Expedition 20 

 

The neutron differential flux used in this work was constructed with OLTARIS and is 

based on the neutron differential flux spectrum model of Armstrong et al.[69]and on the 

measured neutron spectrum of Koshiishiet al.[71] (see Figure 9). The differential flux from 

Figure 9 has been integrated numerically from 1eV to 100 MeV in MATLAB for the BBND 

measurements and the Armstronget al. model. The total neutron fluence was calculated to be 

2.7 × 10
5 

n/cm
2
/day for the BBND measurements and 3.1 × 10

5 
n/cm

2
/day for the model 

spectrum. The BBND measurements were recorded in the US Lab during the period from 23
rd

 

March to 14
th

 November 2001. The neutron and proton spectra were obtained from OLTARIS 
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using the input orbital inclination of 51.6
o
 and an altitude of 396 km based on the average orbit 

during that period. The OLTARIS neutron spectrum has a similar shape to the BBND 

measurements and the Armstrong et al. model but is slightly underpredicted with a total fluence 

of only 1.6 × 10
5 

n/cm
2
/day. Thus, the spectrum has been scaled to better match the measured 

data where the scaled neutron spectrum has a total fluence of 2.9 × 10
5 

n/cm
2
/day between 1 eV 

to 100 MeV. The BBND measurements, the Armstrong et al. model, and the scaled OLTARIS 

neutron spectrum are all plotted together in Figure 29 and appear to be in good agreement. The 

OLTARIS proton spectrum has also been plotted along with the Armstong et al. proton data for 

comparison. 

 

Figure 29: OLTARIS neutron and proton spectra in ISS US Lab 
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3.3.2 Modeling of Bubble Detector Response to Radiation inside the ISS 

 

The number of bubbles produced in a bubble detector measurement depends on the 

response of the bubble detector to the particles in the radiation field, the radiation field spectra, 

and the total fluence during the measurement period. In principle, the number of bubbles 

produced in a given radiation field is given by the following equation. 

𝑏𝑢𝑏𝑏𝑙𝑒𝑠 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑 𝑖𝑛 𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛 𝑓𝑖𝑒𝑙𝑑 =    𝑅𝑖 𝐸 ∙ 𝛷(𝐸) 𝑑𝐸
∞

0𝑖   (3.7) 

Where, 𝐸 is radiation particle energy 

𝑅𝑖 𝐸  is the response function for particle type i in bubbles/(particle/cm
2
) 

𝛷(𝐸) is the total particle fluence in (particles/cm
2
)  

The radiation field may contain a number of different particles with different response 

functions so the total number of bubbles produced in a measurement would be the sum of all 

particle types (i) and their respective differential flux integrated over all energies for the total 

time of measurement. The response function 𝑅 𝐸  is a difficult parameter to calculate or model 

because it depends on a multitude of possible interaction effects of the radiation inside the 

bubble detector. The production of bubbles is also a stochastic effect due to the non-homogenous 

bubble detector medium with very small micro-droplets. A given particle interaction could 

produce a bubble inside a micro-droplet or produce no bubble if the same event occurred outside 

the micro-droplet. For measurements in spacecraft, the response of all present particle types is of 

interest. It is well known that photons and beta particles do not produce bubbles in bubble 

detectors. Thus, 𝑅𝑝𝑕𝑜𝑡𝑜𝑛  𝐸  = 0 and 𝑅𝑏𝑒𝑡𝑎  𝐸  = 0 for all energies and no bubbles are produced 

for any given fluence of these particles. The response function for neutrons 𝑅𝑛𝑒𝑢𝑡𝑜𝑟𝑛  𝐸  has 
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been studied extensively and some experimental results have been presented (see Figure 

12Figure 13 and Figure 14). In the literature, there have been relatively few experiments with 

protons and the response function has been reported over a limited energy range from 30 to 65 

MeV (see Figure 15). The response function for alphas and heavy ions has never been reported 

in the literature. The neutron response for bubble detectors is believed to be essentially isotropic 

such that the direction of the incident particles does not affect the response function. This is 

because the secondary high LET radiation produced inside bubble detectors is mostly emitted 

isotropically and typically has a range much less than the bubble detector dimensions. For 

measurements in space, the neutron spectrum may have some directional variation based on 

location and shielding, but this is believed to have a negligible effect for bubble detector 

measurements on the ISS. The response to protons, alphas and heavy ions may vary significantly 

depending on incident energy and direction because the particle range may be greater than the 

bubble detector dimensions. The particle may be able to pass through the bubble detector 

diameter (1.6 cm), but be completely stopped if incident along the length (4.5 cm). Also, the 

LET and energy changes significantly after entering the detector and the population of bubbles 

depends on the position of the Bragg peak. Thus, the response function 𝑅 𝐸  for these particles 

depends on the incident particle direction. For measurements in the ISS, the proton, alpha and 

heavy ion spectra have directional variation based on location and shielding. The neutron, 

proton, and heavy ion spectra produced by OLTARIS are given as isotropic (averaged over all 

directions).  

The response function of space bubble detectors to neutrons from energies below 1 eV to 

energies above 100 MeV has been measured in various ground-based experiments and modeled 

using Monte Carlo simulations. In order to model the number of bubbles produced by neutrons in 
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bubble detector measurements aboard spacecraft, a continuous response function from 10
-6

 to 10
4
 

MeV has been constructed. An aggregate best-fit response curve has been constructed from 

experimental data using best-fit cubic splines in MATLAB referred to as Rn(E). The response to 

neutrons above 200 MeV has not been experimentally measured so the results of PHITS 

simulations and the GEANT simulation from[83]have been used to extrapolate the response 

function from 200 to 1,000 MeV. The resulting function is shown in Figure 30 plotted along with 

the measured data[21]. The number of bubbles expected due neutrons for any given ISS mission 

can be calculated with this response function and the differential flux spectra from OLTARIS 

using Equation 3.7. 

 

Figure 30:Space bubble detector response function to neutrons for a bubble detector normalized 

to an AmBe sensitivity of 0.1 bubbles/µSv 

 

For bubble detector measurements aboard the ISS, it is impossible to differentiate 

between the number of bubble generated by neutrons and charged particles. Nevertheless, 
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bubbles have been clearly shown to occur under charged particle irradiation. In the literature, the 

contribution of charged particles to the reading of the bubble detector is about 2%. However, the 

very large flux of protons in the energy range from 50 to 500 MeV in the ISS would be 

responsible for generating a large number of the bubbles. In this work, estimates for the number 

of bubbles produced by protons in ISS measurements are based on the energy-dependent 

response function measured in ground-based experiments and the proton spectra generated by 

OLTARIS using Equation 3.7.          

The radiation environment aboard the ISS also includes alpha particles and other heavy 

charged particles which are also capable of generating bubbles within SBD and SBDS. In fact, 

heavy charged particles may directly produce bubbles along the particle track. The flux of alphas 

aboard the ISS is a few orders of magnitudes below the flux of neutrons and protons (see Figure 

29). In addition, alpha particles below 30 MeV have a range less than 1 mm in the bubble 

detector walls and cannot enter the sensitive volume of the detector to create bubbles. Only the 

high energy portion of the alpha flux (>30 MeV) would contribute to the bubbles formed. 

Charged particles, with Z≥2, have fluxes many orders of magnitude below neutron and 

protonfluxes. Therefore, they would generate a noticeable amount of bubbles only if their 

response functions are very large. The collective contribution of alphas and all other heavy 

charged particles to space bubble detector measurements during all ISS experiments has been 

estimated to be less than 1% [14]. The direction of the incident radiation may have the greatest 

effect on the response function for heavy ions where the range and LET changes significantly as 

the ions slow down or stop in the detector. In this work, the number of bubbles produced by 

heavy charged particles is estimated based on the response function when the detector is oriented 

along the beam axis.  
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CHAPTER 4: RESULTS AND ANALYSIS 

 

 The results of this work are divided into sections that summarize the main findings of 

each of the experimental investigations and analysis of the experimental results in the context of 

measuring radiation in space. The first and second sections contain results for experiments 

performed with space bubble detectors and SBDS. The third section focuses on the ion track 

structure model developed to examine the mechanism of bubble formation, while the fourth 

section is dedicated to the evaluation of the bubble detector measurements aboard the ISS. The 

neutron measurements at the LANSCE neutron facility are analyzed and a calibration factor for 

using AmBe calibrated detectors as neutron dosimeters in spacecraft is considered. 

Measurements of protons and heavy ions at ProCure Therapy Canter, the NIRS cyclotron, and 

HIMAC facility are presented together. The response function of space bubble detectors for each 

particle type is presented and compared to the neutron response function. The distribution of 

bubbles for each particle type is presented and the LET threshold for bubble formation is 

determined for space bubble detectors and SBDS. A detailed model of the LET threshold results 

based on ion track structure models is provided. Finally, space bubble detector measurements 

aboard the ISS between January 2008 and November 2013 are modeled using OLTARIS and 

compared to the published experimental data.  
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4.1Experimental Study of the Space Bubble Detector Response 

 

4.1.1 Response to High Energy Neutrons 

 

 The bubble detectors used in all experiments were calibrated with an AmBe source at the 

Bubble Technology Industries facility. The sensitivity of the bubble detectors used in these 

experiments with high energy neutrons ranged from 0.10 to 0.22 bubbles/µSv. To investigate the 

response of the space bubble detectors to high energy neutrons, we used the Los Alamos Neutron 

Science Centre (LANSCE) spallation neutron source at the Los Alamos National Laboratory, 

New Mexico USA, exposing a set of bubble detectors to neutron spectra from 0.6 to 800 MeV. 

The LANSCE 30L beamline, used for single event effect studies of semiconductor devices, 

produces a neutron spectrum of similar shape to the one produced in space (10
7
 times higher 

intensity than in space). Dosimetry control was provided by online fission foil ionization 

chambers. Space bubble detectors were irradiated to a number of neutron pulses from the 

spallation source. Following exposure and counting of bubbles in each detector, the bubble 

detector data (number of bubbles) was converted to equivalent dose values. Since the spectrum 

of the facility is well known, the equivalent dose was also calculated by the following formula: 

𝐻 =  𝐶𝐹𝑖 ∗ 𝛷𝑖𝑁
𝑖=1  ,      (4.1) 

Where: H is the equivalent dose, 𝐶𝐹𝑖  is the equivalent dose to fluence conversion coefficient 

from ICRP74, and 𝛷𝑖 is the neutron fluence in each energy bin. This is a discrete form of 

equation 1.3 and was calculated numerically in MATLAB.  

The neutron spectrum for a single pulse of the 30L beam lineis shown in Figure 31. 

Detectors were exposed to a number of pulses that provided a total fluence of ~10
6 

n.cm
-2

.  
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Figure 31: Beamline neutron spectrum for one pulse at ICE House facility 

 

The spectrum along with the equivalent dose to fluence conversion factor, from ICRP 74, 

were used to determine the equivalent dose for each exposed bubble detector. The calculated 

values of the equivalent dose were compared to the measured equivalent dose values 

obtained from the bubble detectors, and a scaling factor was extracted for six different 

experiments. The data are shown in Figure 32 where both extracted equivalent dose from the 

neutron spectrum and the equivalent dose measured by the bubble detectors are presented for 

different bubble detector sensitivities (SAmBe). The high energy neutron component and low 

response to neutrons above 20 MeV mean that the number of bubbles present will under-
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represent the neutron dose (as calculated by the spectra from Figure 31convoluted with the 

ICRP 74 fluence to dose conversion factors) when using the AmBe calibrated sensitivity. A 

scaling factor of between 1.5 and 2.4 was used to correct for the difference in bubble detector 

readings in AmBe and the 30L high energy neutron environments. The weighted average 

scaling factor was found to be 1.8 ± 0.2 to compensate for the sensitivity of the bubble 

detector when used in space. This value is consistent with the value of 1.62 as suggested in 

the literature [55]. 
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Figure 32: SPND measurements at ICE House facility 
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4.1.2 Response to Heavy Charged Particles 

 

The dominance of the proton radiation in space environments implies that protons have a 

major contribution to the reading of the space bubble detectors compared to other charged 

particles. However, due to the difference in charge and mass and LET, other heavy ions could 

also contribute significantly depending on the sensitivity to these particles. This section discusses 

the results of the investigation for protons as well as for the experimentally investigated heavy 

charged particles He, C, O, Ne, Si, and Fe.All of the heavy charged particles studied in this work 

produced bubbles in space bubble detectors and SBDS. The number of bubbles produced clearly 

increased proportionally to the total fluence of radiation in all cases as expected. However, 

bubble detectors have a maximum saturation of about 300 expanded bubbles. Above this 

number, there is insufficient volume for further bubble expansion.  In all experiments, bubble 

detectors were irradiated with a large enough fluence to produce a statistically significant 

number of bubbles (approximately 20 to 250 bubbles) without approaching the saturation limit. 

The response function for each particle type is expected to depend on the particle energy. Thus, a 

set of different binary filters was chosen from 0 mm to the thickest filter that would still allow 

the ions to pass through into the bubble detectors.  The energy of the ions after passing through 

each binary filter was calculated in SRIM and recorded along with the particle fluence as read by 

the scintillation counter. The number of bubbles was read using the BDRIII reader and the 

bubble detector image was saved. The response for each energy was calculated as the number of 

bubbles produced divided by the fluence. This has been normalized by dividing the calibrated 

sensitivity in an AmBe field relative to the standard 0.1 bubbles/µSv (Equation 3.1). 
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Proton Response Function:  

The results for all proton experiments at the ProCure facility and the NIRS cyclotron are 

plotted in Figure 33 along with the average results from the literature (see Figure 15). Error bars 

for individual measurements have been omitted for clarity. A best-fit proton response function 

for the data, Rproton(E), has been estimated using the average measured value at each energy. 

Maximum and minimum estimates of the proton response function have also been plotted using 

the maximum and minimum experimental values with the addition of a 10% deviation based on 

the error given for the AmBe calibration factor indicated by the manufacturer. A discussion of 

measurement uncertainties is provided in Appendix E. 
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Figure 33: Space bubble detector proton response function 

 

 

The results in the literature appear to be consistent with the measurements at the NIRS 

cyclotron for energies from 30 to 80 MeV. The ProCure measurements from 80 to 250 MeV 

display a sudden drop in sensitivity and a decreasing trend for higher energies. The number of 

bubbles produced per unit fluence is expected to drop above ~80 MeV where the range of 

protons becomes comparable to the length of the bubble detector (45 mm). High energy protons 

above 80 MeV pass through the bubble detector and produce fewer high LET events. The 

bubbles produced are believed to be primarily due to high LET secondary radiation from 
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scattering and fragmentation reactions inside the bubble detector. The total cross section for 

these reactions displays a gradually decreasing trend towards higher energies for the most 

prominent heavy nuclei in the bubble detector material which is consistent with the measured 

data. In all cases, the orientation appears to have no significant effect on the results except for a 

single data point at about 70 MeV where the detector perpendicular (90 deg) to the proton beam 

produced noticeably fewer bubbles than the detector parallel to the beam (0 deg). This may be 

explained by the fact that at this energy the range of the protons is about 33 mm which is less 

than the bubble detector length (45 mm) but greater than the bubble detector diameter (16 mm). 

So the protons easily pass through the diameter of the perpendicular detector with high energy 

(~70 MeV slowing down to ~30 MeV) where the total scattering and fragmentation cross 

sections remain low. Fewer high LET events are produced and fewer bubbles are measured. In 

the case of the parallel detector, the protons slow down and stop inside the detector and produce 

more high LET events. For energies above the maximum value of 226 MeV, the response 

function is extrapolated assuming the scattering and fragmentation cross sections remain 

relatively constant. Unfortunately, cross sections for protons above 200 MeV are not well 

represented in the literature. However, it is believed that there is no significant change in the 

region 200 MeV to 1 GeV. For this work, a constant response function for energies above 200 

MeV is assumed. The maximum and minimum estimates assume a slight increase or gradual 

decrease based on the trend of the measured data or possible increase in total cross sections 

respectively. The number of bubbles produced for proton energies below ~35 MeV vanishes 

towards lower energies as the proton range in the bubble detector decreases. Below 10 MeV the 

range of the protons is less than 1 mm and they cannot pass through the plastic wall of the bubble 

detector into the sensitive volume. The response function has been set as 0 below this point.   
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Heavy Charged Particle Response Functions: 

 

The results for all heavy charged particles are presented together inFigure 34along with 

the neutron response function for comparison. Figure 35 shows the same plot without the neutron 

or proton response functions and rescaled to increase the separation between the heavy ion data. 

All heavy ion data in Figure 345has been measured at HIMAC in approximately 20 individual 

measurements for each particle type. The data points indicate the measured values and error bars 

indicate the standard deviation of measurements (typically between 2 to 4 measurements at each 

binary filter).  With the exception of the proton measurements, all data in Figure 34 has been 

recorded with the detector oriented along the beam axis to give a maximum expected response 

(see Figure 26). 
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Figure 34: Neutron and charged particle response functions  
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 Figure 35: Charged particle response functions  

 

A lower energy threshold for each ion-type has been estimated as the minimum energy 

required for the ion to pass through the 1 mm thick plastic wall into the sensitive volume of the 

bubble detector. This has been calculated using SRIM for each ion and the response function has 

been estimated as zero below this energy. For all ions, the number of bubbles produced per unit 

fluence increases above the threshold and displays a maximum at some energy. In general, as the 

energy is increased further the number of bubbles produced decreases as the range of the ion 

becomes larger. There is a drastic decrease when the ion range becomes larger than the bubble 

detector length (45 mm). In this case, the high energy ions have a much lower LET and pass 
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through the bubble detector producing far fewer high LET events that could produce bubbles. 

This is clear for carbon ions at about 1.8 GeV (range 44 mm) oxygen ions at about 3 GeV (range 

47 mm), Ne ions at about 4 GeV (range 43 mm) and Si ions at about 7 GeV (range 44 mm). The 

He data shows a less dramatic drop from 300 to 600 MeV (range 38 mm to 1.3 m) and Fe ions 

are still near the maximum at the highest recorded energy around 20 GeV (range ~ 48 mm).  

In Figure 34and Figure 35, the response of function increases with the charged of the 

incident particle. In comparison, all ions heavier than proton have response functions that lie 

clearly above the neutron response function. For measurements in space, this may indicate that a 

significant number of bubbles could be produced by heavy charged particles despite the total 

fluence of those particles being much less than protons and neutrons. Conversely, the high Z ions 

need a much high energy to penetrate through the 1 mm thick wall of the bubble detector. 

The proton response function appears to be comparable with the neutron response 

function in the region of 30 to 100 MeV. This suggests that a substantial number of bubbles 

could be produced by protons in spacecraft measurements relative to the number of bubbles 

produced by neutrons considering the expected proton flux on the ISS asshown in Figure 27 and 

Figure 29. The lower proton response relative to the neutron response above 80 MeV is due to 

the lower total interaction cross section of protons relative to neutrons. 

 

4.1.3 LET threshold for Bubble Formation in Space Bubble Detectors 

 

 The space bubble detector response functions discussed in the previous section show 

effects that are consistent with the bubble detector theory i.e. bubbles are only formed from high 

LET events. The neutron response function indicates that such high LET events occur mostly 

from neutrons above 300 keV and decrease slightly for neutrons with energies above 20 MeV. 
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As expected, the large number of high LET events from energetic heavy ions produces a large 

number of bubbles per unit fluence. However, the results in Figure 34 do not indicate exactly 

what high LET events are occurring inside the bubble detector and which of those events are 

responsible for forming bubbles. Although the HIMAC experiments were performed with 

monoenergetic heavy ion beams, the LET of the ions as they pass through individual 

microdroplets cover a broad range as the ions slow down and stop in the detector. Additionally, 

secondary fragments and recoil ions also deposit energy into the microdroplets with very high 

LET. Secondary neutrons produced along the beam line may also be responsible for creating 

bubbles. Therefore, the bubble detector images have been analyzed and the distribution of 

bubbles formed has been examined in order to determine which events may be responsible for 

creating bubbles. The results in this section are presented in subsections for each ion studied.  

 

Proton Results: 

A selected set of raw bubble detector images from individual experiments are shown in 

Figure 36. Note that each image contains two views of the bubble detector. This is done via a 

mirror inside the reader and the software uses the two separate views to account for occlusion 

effects in the bubble counting process. Ep indicates the incident proton energy in each 

experiment and in all cases, the protons are incident on the left side of the image and traverse 

towards the right side (except the vertical bubble image where the right-hand image is inverted). 

The range of the protons calculated using SRIM has been included.    
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Figure 36: Bubble detector images from selected proton experiments 

 

 There appears to be a relatively constant density of bubbles in the region of the bubble 

detector traversed by protons. In every case, there is a lack of bubbles beyond the end of the 

proton range indicating that secondary neutrons produced along the beam line are not responsible 

for the majority of bubbles observed. Measurements with additional bubble detectors located at 

40 cm and 300 cm outside the proton beam had less than 1% of the number of bubbles relative to 

the detectors in the beam. This is relevant because it has been suggested that secondary neutrons 

produced in proton beamlines may be responsible for the majority of bubbles observed in proton 

measurements. The density of bubbles appears to remain relatively constant and there is no 

apparent increase in the region of the Bragg peak. This is consistent with observations made in 

the literature (see Figure 17). This effect can be explained in three different possible cases as 

follows; 

Case 1: High energy protons have sufficient LET to cause bubbles along their entire track 

through the bubble detector and the bubbles observed occur when the individual proton tracks 

traverse a microdroplet. The significant increase of LET near the Bragg peak would not affect 
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the number of microdroplets traversed by protons and the bubble density would remain constant 

until the end of the proton range.  

Case 2: Protons do not have sufficient LET to directly produce bubbles, but the secondary recoil 

ions produced in scattering and nuclear fragmentation reactions along the proton tracks do have 

sufficient LET to produce bubbles. The number of secondary recoil ions along the proton tracks 

would probably remain relatively constant and thus the density of bubbles along the proton 

tracks would remain constant.   

Case 3: High energy protons entering the bubble detector have a low LET that is below some 

minimum threshold. At some point (likely near the Bragg peak) the LET of the protons reaches 

this threshold and more bubbles are produced when these high LET protons traverse the 

microdroplets. Concurrently, secondary ions produced in scattering and nuclear fragmentation 

reactions have sufficient LET to produce bubbles everywhere and the net result is a constant 

density of bubbles along the entire proton tracks. 

 There is no clear way to distinguish the above three cases with the observed bubble 

formation data. However, it seems unlikely that protons with a very low LET are capable of 

producing bubbles directly (electromagnetic interaction). For example, in Figure 36 the 162 MeV 

protons enter the left side of the detector with an LET∞ of about 0.6 keV/µm and exit through the 

right side of the detector with an LET∞ of about 0.7 keV/µm. This is far less than the minimum 

LET threshold proposed in the literature review (23.2 to 493.7 keV/µm) and the distance 

traversed by protons in this experiment would need to be roughly 11 to 133 µm in order to 

deposit the supposed energy required for bubble formation (between 7.8 and 82.94 keV). For 

20 µm diameter microdroplets, it seems unlikely that sufficient energy for bubble formation 

would be deposited in the entire microdroplet and certainly insufficient energy in the nm scale of 
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the vapour embryos produced along the proton tracks. Thus, the proposed Case 1 above seems 

unlikely. Case 2 and Case 3 cannot be easily distinguished since they both suggest many or all of 

the bubbles formed are a result of high LET secondary particles. In order to obtain a better 

understanding of the number of bubbles produced along the proton tracks and especially in the 

region of the Bragg peak, the MATLAB program described in section 3.1.4 has been used to 

analyze the bubble density along the proton tracks and determine if there is a notable difference 

near the Bragg peak. The output of the MATLAB program is shown in Figure 37 and Figure 38. 

 

Figure 37: Output of MATLAB LET analysis program for proton experiment at NIRS cyclotron 
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Figure 38: Bubble count using MATLAB program for proton measurement at NIRS cyclotron 

 

The indicated bubble positions detected by the MATLAB program using the Circular 

Hough Transform algorithm appear to match actual bubble locations precisely with a few notable 

exceptions. All bubbles to the left side of the image (less than 75 pixels from the left edge of the 

image) are not counted. This is necessary because the visual interference of the rounded end of 

the bubble detector creates a large number of false bubble identifications and must be omitted. 

This feature is also included in the BDR III bubble image reader and counting software where 

regions are set by the user to omit unwanted parts of the image. Additionally, there are some 

false bubble identifications on the right side of the image. This is simply an aberration caused by 

the optical fluid depth being too low to cover the whole bubble detector in this particular image 

(note: this is not the typical case in bubble detector images). The software identified the 

beginning of the image as the bubble front (i.e. a high density of bubbles occurs from the 

beginning of the observed region of the image). The end of the range is identified by the software 

where a statistically significant drop in bubble density occurs at 17.8 ± 0.9 mm. The error of 



100 

 

0.9 mm has been estimated using the mean diameter of a single bubble in the images (10 pixels). 

This range is consistent with the SRIM calculated range of 18 ± 1 mm in bubble detector 

material for 70 MeV protons passing through a 16 mm thick PMMA binary filter (BF=18.64 mm 

H20 equivalent). Figure 38 is the sum of the number of bubbles counted from both viewing 

perspectives where the horizontal axis is the depth in the bubble detector. The data is noisy due 

to the sporadic distribution of the bubbles. However, it appears to confirm that there is no 

discernable statistically significant increase in bubble density at the region of the Bragg peak. 

The MATLAB program also includes data imported from SRIM for protons traversing through 

bubble detector medium. The program matches the end of the range determined from the image 

processing to the end of the range in the SRIM data and produces a LET versus depth curve. The 

result is shown in Figure 39. 

 

Figure 39: SRIM calculated Bragg curve for proton experiment at NIRS cyclotron 

 

The LET of the protons increases above the minimum estimated threshold proposed in 

the literature (23.2 keV/µm) at about 16 mm and actually never reaches the maximum proposed 
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threshold (493.7 keV/µm). Since the density of bubbles appears constant from 0 to 18 mm in the 

bubble detector, it appears unlikely that the increased LET of the protons as they slow down and 

stop is directly related to the number of bubbles produced. This result is onlyfrom one individual 

experiment and the sporadic distribution of the bubbles makes it difficult to conclude if there is a 

clear increase of bubbles near the Bragg peak. All of the experiments performed with protons 

stopping in bubble detectors, where the bubble detectors were oriented parallel to the proton 

beam (0
º
) and the range was less than the bubble detector length (45 mm) have been analyzed 

with the MATLAB program. In every case, the program was able to reliably identify the end of 

the proton range based on bubble distributions. Eight individual experiments at the NIRS 

cyclotron and four experiments at the ProCure facility consistently showed a constant bubble 

density along the proton track and no significant increase in bubble density at the Bragg peak 

was observed. The output image for each experiment is shown in Figure 40.  

 

 

Figure 40: Range estimates for proton experiments at NIRS cyclotron and ProCure facility 

 

The range estimates from the MATLAB program for the NIRS cyclotron experiments are 

listed in Table 3 along withthe SRIM calculated range for 70 MeV protons passing through the 
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binary filter. There is one notable difference in the ProCure experiments compared to the NIRS 

cyclotron experiments in Figure 40. The ProCure experiments appear to have a larger number of 

spurious bubbles beyond the end of the proton range. This is because the ProCure experiment 

had alarger initial proton energy and passing through an aluminum shield has caused more 

secondary neutrons. This observation has no impact on the response function presented in Figure 

33 because no aluminum shielding was present in any of those experiments.    

 

Table 3: Proton experimental range and MATLAB program estimated range 

Experiment 

NIRS cyclotron 

Binary Filter (mm) 

SRIM calculated 

energy  

(MeV) 

SRIM calculated 

range 

(mm) 

MATLAB program calculated range 

Determined by bubble distribution 

(mm) 

32.64  28.4  6.5±1.4  6.8±0.9  

32.64  28.4 6.5±1.4  7.7±0.9  

20.96  46.8 16.1±1.4  15.0±0.9  

18.64  49.8 18.1±0.8  18.2±0.9  

18.64  49.8 18.1±0.8  16.8±0.9  

18.64  49.8 18.1±0.8  17.8±0.9  

0.56  69.5 32.9±0.8  30.9±0.9  

0.56  69.5 32.9±0.8  32.0±0.9  

 

 

Helium Results: 

Thirty individual bubble detector measurements have been recorded at the HIMAC 

facility with 150 MeV/nucleon He ions. Of those experiments, eight were oriented parallel to the 

He ion beam line and had a range less than 45 mm. The MATLAB LET analysis program was 

employed to the bubble detector images. All images are oriented so that the direction of the He 

ion beam enters from the left side of the image and traverses toward the right side. The result of 
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one individual experiment is shown in Figure 41 and Figure 42. Upon initial inspection of the 

raw image on the left side of Figure 41, it appears there are bubbles everywhere in the bubble 

detector and there seems to be a high density of bubbles near the right side of the detector (about 

30 to 40 mm along the detector).  

 

 

Figure 41:Raw image and output of MATLAB LET analysis program for proton experiment at 

NIRScyclotron 
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Figure 42: Bubble count using MATLAB program for He measurement at HIMAC 

 

 The formation of bubbles in the He experiment shows an obvious difference in the region 

of the Bragg peak unlike all of the proton measurements. Although it is somewhat difficult to 

resolve with visual inspection, the bubble counting data in Figure 42 display a clear and obvious 

increase at about 35 mm and decrease at about 38 mm. There is a ‗bubble front‘ as observed in 

the literature for experiments with N and Ar ions (see Figure 18 ). The large number of spurious 

bubbles along the entire He ion tracks and beyond the He ion range suggests that there are many 

bubbles being produced by secondary particles. However, the sudden and drastic increase in the 

region of the Bragg peak suggests that the increasing LET of the He ions as they slow down and 

stop is playing a role in the number of bubbles formed. The LET versus depth profile for the 

program matched to the estimated range of 36.8±0.9 mm is shown in Figure 43. The position of 

the bubble front is indicated with a red dashed line where the LET is 15.7 keV/µm. This is less 

than the LET minimum threshold proposed in the literature (23.2 keV/µm) but of the same order 

of magnitude and it is conceivable that the He ions are directly (electromagnetic interaction) 

causing bubbles in this region. The LET of the He ions at the bubble front position is between 
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12 keV/µm and 33 keV/µm considering the error in both the position of the bubble front and the 

end of the range(See Appendix E for a discussion).  

 

Figure 43: SRIM calculated Bragg curve for He experiment at HIMAC 

 

The visual output of the MATLAB program for eight separate He experiments are shown 

together in Figure 44. Only one viewing perspective is shown for each experiment. In all cases, 

the program was able to identify a bubble front and end of the range which appears to correspond 

well to the bubbles in the images. The results are summarised in Table 4 along with the LET of 

the He ions identified at the bubble front position. The uncertainty in the LET was estimated 

using the LET obtained for the closest distance from the bubble front (maximum estimate) to the 

SRIM range. These uncertainties are very large compared to the calculated value for each 

experiment due to the quickly increasing LET at the Bragg peak which jumps from 20 keV/µm 

to over 250 keV/µm in only 1 mm.     
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Figure 44: Bubble front and end of the range for 150 MeV/nucleon He experiments at HIMAC. 

Bubble front is indicated by red curve and end of the range is indicated by blue curve overlaid on 

each image 

 

Table 4: LET threshold data for 150 MeV/nucleon He ion experiments at HIMAC 

Experiment 

HIMAC Binary 

Filter 

(mm H2O) 

SRIM 

calculated 

incident 

energy  

(MeV/nucleon) 

Bubble front 

position 

(mm) 

End of range 

position 

(mm) 

SRIM 

calculated 

end of 

Range 

LET∞ at 

bubble front 

position 

(keV/µm) 

120.18 54 19.5±0.9 22.3±0.9 20.6±0.8 14±20 

115.43 59 23.6±0.9 25.9±0.9 24.9±1.0 16±20 

110.2  65 27.7±0.9 30.9±0.9 29.2±1.2 14±20 

105.44  69 31.8±0.9 35.0±0.9 32.8±1.4 14±20 

105.44  69 30.8±0.9 34.5±0.9 32.8±1.4 16±20 

105.44  69 30.9±0.9 34.1±0.9 32.8±1.4 14±20 

105.44  69 31.4±0.9 34.1±0.9 32.8±1.4 14±20 

101.99  73 34.5±0.9 36.8±0.9 35.6±1.5 16±20 
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The images in Figure 44 show that the end of range appears to shift towards the back of 

the detector as the binary filter thickness is decreased. This is expected since higher energy ions 

have a longer range. There is consistently an even distribution of bubbles along the He ion range, 

an increase in bubbles at the Bragg peak, then another region of fewer bubbles evenly distributed 

after the end of the He ion range in all experiments. The bubble front appears to shift 

proportionally such that the bubble front consistently begins roughly 2.5 mm before the end of 

the range. The LET∞ of the He ions at the position of the bubble front is estimated as 

15 ± 7 keV/µm averaged over all experiments. This is apparently the threshold LET required for 

bubble formation by He ions which is consistent (within error) to the minimum calculated LET 

threshold for space bubble detectors in the literature. However, it is less than the LET threshold 

reported in the literature for N ions and Ar ions in space bubble detectors (116 ± 40 keV/µm and 

231 ± 15 keV/µm, espectively). This suggests that there is a difference in minimum LET 

threshold for different ions.   

Carbon Results: 

Thirty individual bubble detector measurements have been recorded at the HIMAC 

facility with the 400 MeV/nucleon C ion beam. Ten experiments had the bubble detector 

oriented along the beam with the ions stopping inside the bubble detector. The MATLAB LET 

analysis was employed for all of the experiments and a bubble front and end of the range similar 

to the literature and the He ion experiments were observed. The resulting images are shown in 

Figure 45 with the bubble front and end of the range overlaid on each image. These results 

appear very similar to the He ion results with a few subtle differences. The carbon experiments 

seem to have a relatively even distribution of bubbles before and after the Bragg peak suggesting 

that secondary particles are responsible for many of the bubbles outside of the Bragg peak. 
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Neutrons formed along the beam line and even in the bubble detector itself could penetrate far 

beyond the carbon ion range and be responsible for the relatively even distribution of bubbles in 

the detector. Other high LET secondary radiation may also be creating bubbles. However, it 

seems likely that in the region of the Bragg peak, the carbon ions themselves are responsible for 

the large number of bubbles as the particles slow down and stop with a very high LET.    

 

Figure 45: Bubble front and end of the range for 400 MeV/nucleon C experiments at HIMAC. 

Bubble front is indicated by red curve and end of the range is indicated by blue curve overlaid on 

each image 

 

 The bubble count distribution and LET curve for one individual experiment 

(BF=230.33 mm) are plotted in Figure 46 and Figure 47. The LET of the carbon ion Bragg peak 

is higher than the He ions and the LET at the bubble front position is 85 keV/µm.    
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Figure 46: Bubble count using MATLAB program for C measurement at HIMAC 

 

 

Figure 47: SRIM calculated Bragg curve for C experiment at HIMAC 

 

The bubble counting results from Figure 46 show that the number of bubbles increases 

significantly at the Bragg peak with a clear and obvious bubble front. The relative fraction of 

bubbles inside the Bragg peak compared to bubbles outside the Bragg peak is larger for C ions 
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than it was for He ion experiments (see Figure 42 for comparison). The LET of the C ions at the 

bubble front position has been estimated for all experiments and is listed in Table 5. The error in 

the LET estimate is larger than the He experiments due to the much larger increase of LET at the 

Bragg peak for C ions.  

 

Table 5: LET threshold data for 400 MeV/nucleon C ion experiments at HIMAC 

Experiment 

HIMAC Binary 

Filter 

(mm H2O) 

SRIM 

calculated 

incident 

energy  

(MeV/nucleon) 

Bubble front 

position 

(mm) 

End of range 

position 

(mm) 

SRIM 

calculated 

end of 

Range 

LET∞ at 

bubble front 

position 

(keVµm) 

240.23 79 13.2±0.9 15.5±0.9 15.2±0.6 85±70 

240.23  79 13.2±0.9 15.5±0.9 15.2±0.6 85±70 

240.23  79 13.2±0.9 15.5±0.9 15.2±0.6 85±70 

240.23  79 13.6±0.9 15.9±0.9 15.2±0.6 85±70 

240.00  79 12.7±0.9 15.9±0.9 15.1±0.7 74±70 

230.33  102 20.9±0.9 23.2±0.9 23.6±1.0 85±70 

225.03  113 24.5±0.9 27.3±0.9 28.6±1.1 93±70 

225.03  113 24.5±0.9 27.3±0.9 28.6±1.1 74±70 

215.61  130 32.7±0.9 36.4±0.9 36.1±1.4 69±70 

215.61  130 31.8±0.9 35.5±0.9 36.1±1.4 69±70 

 

The experimental averaged LET∞ of the carbon ions at the bubble front is 

80 ± 20 keV/µm. This value lies between 15 keV/µm measured in the He experiments and 

116 keV/µm quoted in the literature for N ion experiments. There appears to be a trend where the 

LET threshold for bubble formation increases with the charge Z.    
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Oxygen Results: 

A total of eighteen experiments were conducted with 400 MeV/nucleon oxygen ions at 

the HIMAC facility. Only four experiments were performed with the bubble detectors oriented 

along the beam axis with the Bragg peak located inside the bubble detector. The distribution of 

bubbles outside the Bragg peak and the increased high density of bubbles inside the Bragg peak 

are very similar to the C ion results. The output of the MATLAB LET analysis program with the 

bubble front and the end of the range estimates overlaid on the images is shown in Figure 48, 

while the bubble counting output from one individual experiment with a binary filter of 

170.42 mm is shown in Figure 49. The LET curve for the same experiment is shown in Figure 50 

with the bubble front indicated by a dashed line where the LET is 134.5 keV/µm. Table 6 

summarizes the results for all four experiments.     

 

Figure 48: Bubble front and end of the range for 400 MeV/nucleon O experiments at HIMAC. 

Bubble front is indicated by red curve and end of the range is indicated by blue curve overlaid on 

each image 
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Figure 49: Bubble count using MATLAB program for O measurement at HIMAC 

 

 

Figure 50: SRIM calculated Bragg curve for O experiment at HIMAC 
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Table 6: LET threshold data for 400 MeV/nucleon O ion experiments at HIMAC 

Experiment 

HIMAC Binary 

Filter 

(mm H2O) 

SRIM 

calculated 

incident 

energy  

(MeV/nucleon) 

Bubble front 

position 

(mm) 

End of range 

position 

(mm) 

SRIM 

calculated 

end of 

Range 

LET∞ at 

bubble front 

position 

(keVµm) 

179.69 81 9.1±0.9 11.4±0.9 10.2±0.4 140±50 

170.42 106 15.5±0.9 17.7±0.9 17.8±0.8 140±50 

170.42 106 15.9±0.9 17.7±0.9 17.8±0.8 150±50 

150.45 208 31.4±0.9 34.1±0.9 34.6±1.4 120±50 

 

The bubble distribution inFigure 49shows a large jump in bubble density at the position 

of the Bragg peak. Unlike the C ion experiments, there is a more gentle increase in bubble 

density from the beginning of the detector until the bubble front. After the end of the O ion 

range, there is a relatively constant bubble density until the end of the detector. The steady rise in 

bubble density along the bubble detector, before the bubble front, is apparent when observing the 

experiment performed with a binary filter of 150.15 mm in Figure 48. This trend may indicate 

that more high LET secondary radiation is produced along the O ion tracks. The large number of 

bubbles in the region of the Bragg peak is caused by the O ions. The LET of the ions at the 

bubble front is estimated as 140 ± 20 keV/µm. The minimum threshold for bubble formation for 

O ions is comparable to the value quoted in the literature for N ions and appears consistent with 

the trend of increasing LET threshold with the ion charge Z.  

 

Neon Results: 

 Seven experiments were performed with the 400 MeV/nucleon ions at HIMAC with SBD 

and SBDS. Of those experiments, six data sets have been collected with space bubble detectors 

oriented parallel to the Ne ion beam with the Bragg peak inside the bubble detector. The results 
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of the MATLAB LET analysis program are shown in Figure 51 with the bubble count and LET 

curve for an individual experiment shown in Figure 52 and Figure 53. The resulting data for all 

experiments are listed in Table 7.  

 

 

Figure 51: Bubble front and end of the range for 400 MeV/nucleon Ne experiments at HIMAC. 

Bubble front is indicated by red curve and end of the range is indicated by blue curve overlaid on 

each image 
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Figure 52: Bubble count using MATLAB program for Ne measurement at HIMAC 

 

 

Figure 53: SRIM calculated Bragg curve for Ne experiment at HIMAC 
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Table 7: LET threshold data for 400 MeV/nucleonNe  ion experiments at HIMAC 

Experiment 

HIMAC Binary 

Filter 

(mm H2O) 

SRIM 

calculated 

incident 

energy  

(MeV/nucleon) 

Bubble front 

position 

(mm) 

End of range 

position 

(mm) 

SRIM 

calculated 

end of 

Range 

LET∞ at 

bubble front 

position 

(keVµm) 

130.44 95 10.0±0.9 12.7±0.9 11.6±0.4 177±50 

120.18 130 16.8±0.9 19.5±0.9 20.0±0.8 177±50 

120.18 130 17.3±0.9 20.0±0.9 20.0±0.8 177±50 

110.20 155 25.0±0.9 27.7±0.9 28.1±1.1 177±50 

110.20 155 25.5±0.9 28.2±0.9 28.1±1.1 177±50 

100.42 180 33.6±0.9 36.4±0.9 36.2±1.4 177±50 

 

The Ne ions appear to have fewer bubbles before the Bragg peak compared to the oxygen 

experiments and the bubble front is slightly easier to resolve. The average LET of the Ne ions at 

the bubble front position from all experiments is 180 ± 20 keV/µm. 

 

Silicon Results: 

 Twenty-nine experiments were performed with space bubble detectors at HIMAC with 

440 MeV/nucleon Silicon beam. Ten representative experiments where the detectors were 

oriented parallel to the ion beam with the Bragg peak inside the detector are shown in Figure 54 

along with the bubble front and end of the range identified by the MATLAB LET analysis 

program.   
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Figure 54: Bubble front and end of the range for 440 MeV/nucleon Si experiments at HIMAC. 

Bubble front is indicated by red curve and end of the range is indicated by blue curve overlaid on 

each image 

 

The distribution of bubbles in Figure 54 shows few bubbles outside the Bragg peak and a 

significant increase at the bubble front position similar to all other ions studied. However, the 

results with Si display some notable differences. First, there are very few bubbles along the Si 

ion tracks before the bubble front in all cases. In many cases, there is a complete lack of bubbles 

or fewer than 10 bubbles along the Si ion tracks for more than 1 cm despite the fact that the Si 

ions enter the detector with an LET∞ around 100 keV/µm. This suggests that very few bubbles 

are produced by secondary particles. The distance from the bubble front to the end of the particle 

range is also visibly larger than all experiments with other ions. The large number of bubbles in 

the region of the Bragg peak is produced directly by the Si ions (electromagnetic interaction). 
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However, the region of the bubble detector beyond the Si ion range shows a relatively constant 

density of bubbles that is much higher than the region before the bubble front and is from 

secondary particles such as scattered neutrons. The bubble count data for a single experiment 

with a binary filter of 100.42 mm is shown in Figure 55 and the LET curve with the bubble front 

indicated by a dashed line is shown in Figure 56. A summary of all experiments is shown in 

Table 8.         

 

Figure 55: Bubble count using MATLAB program for Si measurement at HIMAC 
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Figure 56: SRIM calculated Bragg curve for Si experiment at HIMAC 

 

 

 

Table 8: LET threshold data for 440 MeV/nucleon Si  ion experiments at HIMAC 

Experiment 

HIMAC Binary 

Filter 

(mm H2O) 

SRIM 

calculated 

incident 

energy  

(MeV/nucleon) 

Bubble front 

position 

(mm) 

End of range 

position 

(mm) 

SRIM 

calculated 

end of 

Range 

LET∞ at 

bubble front 

position 

(keVµm) 

120.18 125 8.6±0.9 12.7±0.9 13.5±0.5 251±80 

110.20 164 17.2±0.9 22.3±0.9 21.7±0.8 230±80 

110.20 164 13.6±0.9 21.8±0.9 21.7±0.8 186±80 

105.44 182 20.0±0.9 25.5±0.9 25.6±1.0 221±80 

105.44 182 17.7±0.9 24.5±0.9 25.6±1.0 201±80 

100.42 196 20.5±0.9 28.6±0.9 29.8±1.2 185±80 

100.42 196 23.2±0.9 29.1±0.9 29.8±1.2 214±80 

100.42 196 24.5±0.9 29.1±0.9 29.8±1.2 240±80 

100.42 196 20.5±0.9 28.6±0.9 29.8±1.2 185±80 

100.42 196 22.7±0.9 29.5±0.9 29.8±1.2 201±80 
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The average LET of the ions at the bubble front position for Si ions is 210 ± 30 keV/µm. 

Experiments with Si ions showed slightly more variation in the appearance and width of the 

bubbles in the Bragg peak region. For example, all five experiments on the right-hand side of 

Figure 54 were conducted with a binary filter of 100.42 mm. The end of the range is found to be 

almost the same for all five experiments, but the bubble front position varies from 20.5 mm to 

24.5 mm. However, the mean of the data shows that the LET threshold for bubble formation is 

fairly consistent and that the Si ion beam only begins to produce a large number of bubbles 

beyond the bubble front position.    

Iron Results: 

Twenty-nine individual measurements with space bubble detectors have been carried out 

at HIMAC with the 490 MeV/nucleon Fe beam. Unlike measurements with all other heavy ions, 

there was no bubble front visible for any of the experiments with the bubble detector oriented 

parallel to the beam, whether or not the Bragg peak resided inside the detector. This can be seen 

in Figure 57 for a selected sample of six measurements with various binary filters. The 

MATLAB LET analysis program was unable to find a bubble front in any experiment but was 

able to identify an end of the range for experiments where the end of the range lies inside the 

bubble detector.  
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Figure 57: Fe experiments at HIMAC. Bubble front not present and end of range is indicated by 

blue curve overlaid on each image 

 

 

The Fe ion experiments all display a relatively constant density of bubbles along the 

entirety of the ion track, followed by a large drop in bubble density at the end of the ion range. 

There are an appreciable number of bubbles beyond the end of range that appear to have a 

relatively constant density suggesting that secondary radiation is responsible for these bubbles. 

The bubble count data and LET curve for one individual experiment with a binary filter of 

50.44 mm is shown in Figure 58 and Figure 59.  
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Figure 58 Bubble count using MATLAB program for Si measurement at HIMAC 

 

 

Figure 59: SRIM calculated Bragg curve for Fe experiment at HIMAC 
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 The constant bubble density along the Fe ion tracks may be explained by the same three 

cases proposed for the proton experiments.   

For Fe ions, case 2  (ions do not have sufficient LET to form bubbles) is not correct since 

they have a much higher LET than the other heavy ions measured at HIMAC which all clearly 

were able to directly produce bubbles. Case 3 is possible (bubble density increases after LET 

threshold) although there is no clear evidence in any of the bubble count data to clearly support 

any increase in bubbles at a bubble front. Case 1 (ion always sufficient LET to cause bubbles) 

appears to be the correct explanation for Fe and it is reinforced by the LET curve shown in 

Figure 59 where the LET of the Fe ions entering the bubble detector is over 300 keV/µm and 

increases to over 5,000 keV/µm. A summary of the experiments from Figure 57 is presented in 

Table 9.  

 

Table 9: LET threshold data for 500 MeV/nucleon Fe ion experiments at HIMAC 

Experiment 

HIMAC Binary Filter 

(mm H2O) 

SRIM calculated 

incident energy  

(MeV/nucleon) 

End of range 

position 

(mm) 

SRIM 

calculated end 

of Range 

LET∞ entering 

bubble detector 

(keVµm) 

50.44  202 20.5±0.9 18.6±0.8 353±10 

45.3 229 22.7±0.9 22.8±0.9 339±10 

35.44 275 30.5±0.9 31.1±1.1 307±10 

35.44 275 30.5±0.9 31.1±1.1 306±10 

35.44 275 30.1±0.9 31.1±1.1 304±10 

30.68  295 34.1±0.9 34.9±1.3 294±10 

30.68  295 33.6±0.9 34.9±1.3 296±10 

0.0  411 NA 59.8±2.3 242±10 

 

 



124 

 

 For all experiments with no binary filter present (BF= 0.0 mm), there were bubbles 

present from the beginning of the Fe ion tracks. The lack of a bubble front makes it impossible to 

calculate an exact minimum LET threshold for bubble formation by Fe ions. The lowest LET 

was 240± 10 keV/µm so it is reasonable to suppose the LET threshold for Fe ions is 

~ 240 keV/µm. According to the trend observed from all other ions, the minimum LET threshold 

increases with increasing charge so it is likely the LET threshold for Fe ions is above 

210 ± 30 keV/µm measured for Si ions and 231 keV/µm reported in the literature for Ar ions. 

Observations with SBDS in the following section indicate that there is a minimum LET threshold 

for bubble formation in space bubble detectors for Fe ions at 240 ± 60 keV/µm. This would 

mean that a bubble front would only be apparent for Fe ions above this LET which was not 

measured in any HIMAC experiments. Also, the range of Fe ions with LET above the minimum 

threshold would be almost 60 mm (much larger than the bubble detector length of 45 mm). This 

would explain the relatively constant density of bubbles seen in all experiments and suggest the 

Fe ions are indeed similar to all other heavy ion experiments except the distance from the bubble 

front to the end of the range is larger than the length of the bubble detector. This explanation 

shall be clarified in the following section with the results of the SBDS experiments.  

 

4.2 Experimental Study of the Space Bubble Detector Spectrometer Response 

 

 Experiments have been carried out with SBDS sets at HIMAC with 150 MeV/nucleon 

He, 400 MeV/nucleon C, 400 MeV/nucleon Ne, 440 MeV/nucleon Si and 500 MeV/nucleon Fe 

heavy ion beams. In all experiments, all six detectors in the set were irradiated simultaneously 

with the detectors oriented parallel to the beam. The detector set was placedat the centre of the 

beam so that all detectors would receive the same fluence. PMMA binary filters were used to 
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slow down the beams as with the SBD measurements. In all cases where the Bragg peak was 

inside the bubble detector, there was an observable bubble front and an increase in bubble 

density at the Bragg peak in some of the detectors of the set. The MATLAB LET analysis 

program was used to identify the LET of the ions at the position of the bubble front and identify 

any differences in the LET required for bubble formation between the six detectors.  

 

4.2.1 He Results with SBDS 

 

 Six experiments were performed with SBDS sets with 150 MeV/nucleon He ion beam at 

HIMAC. Of those experiments, two individual experiments are shown in Figure 60 with the 

identified bubble front and end of range overlaid on the image. The images collected by the 

BDR III reader for each detector in the SBDS set are identical to the space bubble detector 

images so the MATLAB LET analysis program could be employed without modification. 

Additionally, the He ions in each experiment should have the same range in all six detectors 

(they are physically similar in terms of construction material and density). Thus, the range could 

be determined using all six detectors simultaneously giving better statistical accuracy.    
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Figure 60: Bubble front and end of the range for 150 MeV/nucleon He experiments at HIMAC 

with SBDS. Bubble front is indicated by red curve and end of the range is indicated by blue 

curve overlaid on each image 

 

 There is no image available for the SBDS 10000 detector in the experiment with a binary 

filter of 110.2 mm because this detector was malfunctioning (a large number of bubbles was 

present and could not be eliminated via compression). The results appear similar to the space 

bubble detector measurements for SBDS 10, SBDS 100 and SBDS 600 where an obvious bubble 

front is present and an increase in bubble density near the Bragg peak. SBDS 1000, SBDS 2500 
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and SBDS 10000 show no increase in bubble density near the Bragg peak, although all detectors 

exhibit a drastic decrease in bubble density after the end of the He ion range.  

 

Table 10 LET threshold for bubble formation with He ions in SBDS 

Binary 

Filter 

LET at 

bubble front 

SBDS 10 

(keV/µm) 

LET at 

bubble front 

SBDS 

100(keV/µm) 

LET at 

bubble front 

SBDS 

600(keV/µm) 

LET at 

bubble front 

SBDS 1000 

(keV/µm) 

LET at 

bubble front 

SBDS 2500 

(keV/µm) 

LET at 

bubble front 

SBDS 10000 

(keV/µm) 

BF=115.42 14±19 15±19 16±19 NA NA NA 

BF=110.2 14±19 16±19 19±19 NA NA NA 

Mean: 15±13 16.0±13 18±13 NA NA NA 

 

 The data suggest that He ions are incapable of directly causing bubbles in the SBDS 

1000, SBDS 2500 and SBDS 10000 detectors where the bubbles observed are likely from high 

LET secondary radiation. There appears to be a slight increase in the LET at the bubble front 

position from SBDS 10, SBDS 100 to SBDS 600 but it is difficult to conclude such a trend 

within the large errors.   

 

4.2.2 C Results with SBDS 

 

 Four experiments were performed with SBDS sets with 400 MeV/nucleon C ion beam at 

HIMAC. Of those experiments, two individual experiments are shown in Figure 61. Unlike the 

He ion experiments, a clear bubble front and end of the rangewere identified for all six bubble 

detectors in both experiments. The bubble distributions in all six detectors look somewhat similar 

except there are far fewer bubbles outside of the Bragg peak for the SBDS 10000 measurements. 

Also, the distance from the bubble front to the end of range seems to increase as the SBDS 
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neutron threshold (i.e. 10000, 2500, 1000, 600, 100, 10) decreases. The results are summarized 

in Table 11.    

 

Figure 61: Bubble front and end of the range for 400 MeV/nucleon C experiments at HIMAC 

with SBDS. Bubble front is indicated by red curve and end of the range is indicated by blue 

curve overlaid on each image 
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Table 11: Threshold for bubble formation with C ions in SBDS 

Binary 

Filter 

LET at 

bubble front 

SBDS 10 

(keV/µm) 

LET at 

bubble front 

SBDS 100 

(keV/µm) 

LET at 

bubble front 

SBDS 600 

(keV/µm) 

LET at 

bubble front 

SBDS 1000 

(keV/µm) 

LET at 

bubble front 

SBDS 2500 

(keV/µm) 

LET at 

bubble front 

SBDS 10000 

(keV/µm) 

BF=240.23 65±39 69±36 80±100 80±110 73±31 80±100 

BF=215.61 64±28 76±51 82±46 82±46 88±17 100 ±30 

Mean: 65±24 73±31 80±56 77±59 81±18 90±53 

 

The LET threshold for bubble formation by C ions is larger for detectors with a larger 

neutron energy threshold as observed in the He ion data. There is a larger increase from BDS 10 

to BDS 10000, but the large uncertainty makes it difficult to see a steady increase across the 

SBDS set.   

 

4.2.3 Ne Results with SBDS 

 

 Five experiments were performed with SBDS set with 400 MeV/nucleon Ne ion beam at 

HIMAC. Two individual experiments are shown in Figure 62. A clear bubble front and end of 

the rangewas identified for all five bubble detectors in both experiments. SBDS 10 data is 

missing due to a detector malfunction. The results of the MALTAB LET analysis program for all 

detectors are summarized in Table 12. 
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Figure 62: Bubble front and end of the range for 400 MeV/nucleon Ne experiments at HIMAC 

with SBDS. Bubble front is indicated by red curve and end of the range is indicated by blue 

curve overlaid on each image 

 

Table 12: threshold for bubble formation with Ne ions in SBDS 

Binary 

Filter 

LET at 

bubble front 

SBDS 10 

(keV/µm) 

LET at 

bubble front 

SBDS 100 

(keV/µm) 

LET at 

bubble front 

SBDS 600 

(keV/µm) 

LET at 

bubble front 

SBDS 1000 

(keV/µm) 

LET at 

bubble front 

SBDS 2500 

(keV/µm) 

LET at 

bubble front 

SBDS 10000 

(keV/µm) 

BF=130.44 NA 210±70 190±60 210±200 210±190 240±160 

BF=120.18 NA 190±60 210±70 230±200 239±50 240±160 

Mean: NA 200±40 200±40 220±100 220±100 240±110 
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4.2.4 Si Results with SBDS 

 

Nine experiments were performed with SBDS sets with 440 MeV/nucleon Si ion beam at 

HIMAC. ,Three individual experiments are shown in Figure 63. A clear bubble front and end of 

the rangewere identified for all bubble detectors in all experiments except the SBDS 10000 

detectors in several experiments where there was an insufficient number of bubbles to establish a 

statistically significant bubble front and end of the range position. The results of the MALTAB 

LET analysis program for all detectors are summarized in Table 13. 

 

Figure 63: Bubble front and end of the range for 440 MeV/nucleon Si experiments at HIMAC 

with SBDS. Bubble front is indicated by red curve and end of the range is indicated by blue 

curve overlaid on each image 
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Table 13: threshold for bubble formation with Si ions in SBDS 

Binary 

Filter 

LET at 

bubble front 

SBDS 10 

(keV/µm) 

LET at 

bubble front 

SBDS 100 

(keV/µm) 

LET at 

bubble front 

SBDS 600 

(keV/µm) 

LET at 

bubble front 

SBDS 1000 

(keV/µm) 

LET at 

bubble front 

SBDS 2500 

(keV/µm) 

LET at 

bubble front 

SBDS 10000 

(keV/µm) 

BF=110.2 160±10 170±30 230±40 290±40 390±60 490±70 

BF=105.44 170±20 190±10 220±50 270±40 345±110 460±100 

BF=100.42 180±30 170±30 210±50 320±80 395±180 NA 

Mean: 170±10 180±20 220±30 290±30 380±70 470±60 

 

The Si experiments show an obvious difference in the bubble distribution between the 

SBDS 10, SBDS 100, SBDS 600, SBDS 1000 and SBDS 10000 as seen in Figure 63 where the 

bubble front is clearly different for each detector in the set. Table 13 indicates that the LET of 

the silicon ions at the bubble front increases with increasing energy threshold for the six bubble 

detectors (10, 100, 600, 1000, 2500, 10000). The trend is evident where the SBDS 10 detectors 

have the lowest LET and the SBDS 10000 detectors have the largest LET. There is clearly a 

connection between the neutron energy threshold and the minimum LET threshold required for 

bubble formation. This indicates the same trend noted in the He, C and Ne ion experiments 

where the larger uncertainty and noisier data made it difficult to conclude such an increasing 

trend.  

  

4.2.5 Fe Results with SBDS 

 

Five experiments were performed with SBDS sets with 500 MeV/nucleon Fe ion beam at 

HIMAC. Three individual experiments are shown in Figure 64. The distribution of bubbles in the 
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Fe SBDS experiments appears similar to the Si experiments with a distinct difference in the six 

detectors in the set. The results of the MALTAB LET analysis program for all detectors are 

summarized in Table 14. 

 

Figure 64: Bubble front and end of the range for 500 MeV/nucleon Fe experiments at HIMAC 

with SBDS. Bubble front is indicated by red curve and end of the range is indicated by blue 

curve overlaid on each image 
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Table 14: Threshold for bubble formation with Fe ions in SBDS 

Binary 

Filter 

(mm) 

LET at 

bubble front 

SBDS 10 

(keV/µm) 

LET at 

bubble front 

SBDS 100 

(keV/µm) 

LET at 

bubble front 

SBDS 600 

(keV/µm) 

LET at 

bubble front 

SBDS 1000 

(keV/µm) 

LET at 

bubble front 

SBDS 2500 

(keV/µm) 

LET at 

bubble front 

SBDS 10000 

(keV/µm) 

BF=40.03 NA NA 370±40 480±40 750±110 1160±260 

BF=35.44 NA NA 340±40 460±40 700±90 930±280 

BF=30.68 NA NA 320±30 460±50 700±90 1050±250 

Mean: NA NA 340±20 470±30 720±60 1020±150 

 

 

There is a clear end of the range and bubble front in all SBDS 10000, SBDS 2500 and 

SBDS 1000 measurements. SBDS 600 measurements show a clear end of the range and a bubble 

front has been identified in each image, although it is not clearly visible because many bubbles 

appear before the bubble front. Experiments with binary filters 40.03 mm and 35.33 mm show 

very subtle bubble fronts for SBDS 600‘s. The measurement with binary filter 30.68 mm 

displays a much more distinct bubble front in the SBDS 600 detector, yet there are still many 

bubbles before the bubble front unlike the SBDS 10000, SBDS 25000 and SBDS 1000 results. 

The bubble distribution for the SBDS 100 and SBDS 10 appear very similar to the space bubble 

detector results with a constant density along the Fe ion tracks and a sudden drop in density 

beyond the Fe ion range. According to the manufacturer, the SBDS 100 is very similar to the 

space bubble detector and this is consistent with previous experiments. Observing Figure 64 and 

inspecting the bubble detectors in the set from top to bottom, the bubble front appears to shift to 

the left with increasing neutron energy threshold. This verifies that the constant density of 

bubbles formed in the space bubble detector measurements are indeed from Fe ion tracks where 

the LET of the ions is sufficient to cause bubbles as the beam enters the detector. Evidently, the 



135 

 

range of Fe ions with LET above the minimum threshold to create bubbles is large compared to 

the entire bubble detector length. Although the bubble front is not present in the SBDS 100 and 

SBDS 10 detector images, one could imagine that the bubble front would be present for a longer 

detector where the energy of the incident Fe ions to the left was much larger (and consequently 

the LET smaller). Analysis using an ion track structure model in the following section suggests 

that the minimum LET threshold for bubble formation in SBDS 10 and SBDS 100 is about 

190 keV/µm and 240 keV/µm respectively for Fe ions. The ranges of these Fe ions at the 

minimum threshold LET are about 60 mm and 140 mm respectively which is consistent with the 

results where the bubble front and end of the range never appear in the 45 mm bubble detector at 

the same time.           

 

4.3 Ion Track Structure Model of Visible Bubble Formation 

 

 The results in the previous sections show that there is some minimum threshold LET for 

bubble detectors and only ions above that minimum threshold can produce bubbles. This 

property is indicated by a bubble front in the heavy ion irradiation experiments where the LET 

increases above the minimum LET threshold as the ions slow down. The data suggest that this is 

true for the space bubble detector and all six detectors in the SBDS set where the minimum LET 

threshold is different for each of the SBDS detectors. 

 

4.3.1 Z-Dependence of LET Threshold 

 

 The average LET of all heavy ions at the position of the bubble front for all HIMAC 

experiments is summarized in Table 15 for space bubble detector and SBDS. The experimental 
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data indicate that the minimum LET threshold for bubble formation is different for different ions, 

which is consistent with the literature.  

Table 15: LET threshold for bubble formation from all HIMAC experiments with SBD and 

SBDS 

Detector 

type 

He LET 

threshold 

(keV/µm) 

C LET 

threshold 

(keV/µm) 

O LET 

threshold 

(keV/µm) 

Ne LET 

threshold 

(keV/µm) 

Si LET 

threshold 

(keV/µm) 

Fe LET 

threshold 

(keV/µm) 

SBD 15± 6  80 ± 30 140 ± 20 180 ± 20 210 ± 30 240 ± 60 

SBDS 10 20±10 70±20  NA 170±10 NA 

SBDS 100 20±10 70±30  200±40 180±20 NA 

SBDS 600 20±10 80±60  200±40 220±30 340±20 

SBDS 1000 NA 80±60  220±100 290±30 470±30 

SBDS 2500 NA 80±20  220±100 380±70 720±60 

SBDS 10000 NA 90±50  240±110 470±60 1000±200 

 

The LET threshold seems to increase proportionally to the ion charge, Z, for space bubble 

detectors and all SBDS detectors. The LET of the ions at the bubble front is expected to 

represent the minimum threshold for bubble formation with each ion. However, the data suggests 

that there is a Z dependence for the minimum LET threshold in the SBDS detectors and the 

space bubble detectors. This may be explained by the differences in ion track structure. The LET 

threshold results for space bubble detectors from Table 15 are plotted inFigure 65. Data for N 

and Ar ion experiments with space bubble detectors have been included from the literature and 

these values are consistent with the trend of the current results[55]. Results published by 

Andrews et al. with different bubble detectors have also been included for comparison[62]. In 

these experiments, the reduced superheat of the bubble detectors was altered and the LET of the 

ions at the bubble front position was calculated using SRIM. The two data points included in 
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Figure 65 have been interpolated from the published results for a reduced superheat of 0.33 

which is the published value calculated for space bubble detectors. The LET thresholds for these 

bubble detectors also appear to increase with Z and are consistent with the trend of the current 

results.  
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Figure 65: Z-dependence of LET threshold for visible bubble expansion in space bubble 

detectors 
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4.3.2 Ion Track Structure Model for Space Bubble Detector 

 

Considering the size of the microdroplets (~20 µm diameter) and the predicted size of the 

critical radius of vapour embryos along the ion tracks (28 – 56 nm), LET∞is not the best 

parameter to fully describe visible bubble formation in bubble detectors. Observing the restricted 

stopping power and determining the energy deposited into the microdroplets could provide a 

better model to explain whether or not a particular event can produce an expanded bubble. The 

thermal spike theory of bubble formation is reasonable since the expansion of the microdroplets 

into visible bubbles is essentially driven by an increase in thermal energy and evaporation. 

Unfortunately, the physical shape and spatial distribution of energy over time in a thermal spike 

event are extremely complicated. It may not be easily modeled in a complex heterogeneous 

structure like a superheatedmicrodroplet inside an elastic polymer. Alternatively, a much simpler 

approach may explain the expansion of microdroplets into visible bubbles and be consistent with 

the LET threshold results observed in the HIMAC experiments. Accordingly, track structure 

effects have been examined to explain the apparent correlation of the LET threshold required for 

bubble formation in bubble detectors and the charge of the incident particles. The condition for 

bubble formation is expected to be related to energy density (keV/µm
3
) and not simply described 

by LET∞ alone. For different ions with the same LET∞, the energy density along the ion track is 

very different. Thus, it reasonable that the LET threshold for bubble formation could varies from 

ion to ion. The Katz, Chatterjee and Keifer track structure models have been investigated 

assuming visible bubble formation in bubble detectors occurs along the ion tracks when the ions 

intercept a microdroplet [17].  
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The heavy ions in all HIMAC experiments have an effective track radius which has been 

defined by the ion track ―penumbra‖ (rmax) in the Chatterjee, Katz and Keifer models (see 

equations 1.7, 1.8 and 1.9 in Section 1.2.5 Heavy Ion Track Structure. The LET of the ions at the 

bubble front position was recorded with the MATLAB LET analysis program along with the 

kinetic energy E. The velocity has been calculated using relativistic kinetic equations and β has 

been used to calculate the effective ion track radii. The radii ranged from 3µm to130µm at the 

bubble front from He to Fe for all HIMAC experiments. Figure 66 shows the track size (rmax) for 

the ions of each experiment at the point of bubble formation due to ionization (using the 

Chatterjee model equation 1.7).Assuming a microdroplet size of approximately 20µm diameter, 

it appears that tracks from He are smaller than the microdroplets while Fe has tracks that are 

much larger than the microdroplets. Other ions are between with some having tracks that are 

comparable to the microdroplet radius. N and Ar ions have also been calculated based on the 

LET threshold reported by Green et al.[55]. 
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Figure 66: Chatterjee model of ion track radius at bubble front for HIMAC heavy ion 

experiments 

 

The microdroplets are approximately 20 µm in diameter. Thus, when a low Z track 

collides directly with a microdroplet, all of the energy in the ion track is deposited directly into 

that droplet since rmax< droplet radius. For the large Z ions, when an ion track hits a microdroplet 

directly, the energy of the whole ion track is deposited in a region that is much greater than the 

size of the entire microdroplet. Only some of the energy contributes to the expansion of the 

bubble and the rest is dissipated into the gel surrounding the microdroplet.  
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The threshold for bubble formation is determined by the energy density (keV/µm
3
) of the ion 

track in the microdroplet. Actually, the distribution of energy in the whole ion track is not 

uniform and is usually described by a radial dose distribution (as seen in Figure 4). The energy 

density is higher at the ion core and falls off significantly toward the edge of the ion track radius 

(vanishing beyond rmax). The average energy density of the ion track is considered for simplicity 

and it is believed that this simplification is sufficiently accurate to explain the HIMAC 

experimental results without contradicting the actual physics. Bubbles expand from thermal 

energy, so it is appropriate to consider that within the time of bubble formation the energy 

deposited along the ion track by ionization (secondary electrons) may dissipate to a more even 

distribution as thermal energy. Certainly, the thermal energy will spread and dissipate completely 

over time as the material returns to thermal equilibrium. Therefore the average track energy 

density could be sufficient to describe bubble formation from heavy ions. The average track 

energy density has been defined in section 3.2.2 (see Equation 3.3).   

If the ion track radius is larger than a microdroplet (rmax ≥ 10 µm) in a bubble detector, 

then some portion of the energy is deposited outside of the microdroplet. In this case, the 

energy density inside the microdroplet is restricted to a cylinder of 10 µm. The total energy 

deposited within the 10 µm radius cylinder is the LET restricted to 10 µm multiplied by the 

distance dx.  

𝐸𝑛𝑒𝑟𝑔𝑦 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑖𝑛 𝑚𝑖𝑐𝑟𝑜 𝑑𝑟𝑜𝑝𝑙𝑒𝑡 =  
𝐿𝐸𝑇10𝜇𝑚  ×𝑑𝑥

𝜋(10𝜇𝑚 )2×𝑑𝑥
=

𝐿𝐸𝑇10𝜇𝑚

𝜋(10𝜇𝑚 )2  (4.2) 

Thus, for instances where the ion track radius is larger than the bubble detector 

microdroplets the energy density is calculated with the restricted LET (Equation 1.9), 
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𝐸𝑛𝑒𝑟𝑔𝑦 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑖𝑛 𝑚𝑖𝑐𝑟𝑜 𝑑𝑟𝑜𝑝𝑙𝑒𝑡 =  
𝐿𝐸𝑇10𝜇𝑚

𝜋(10𝜇𝑚 )2
=   

𝐿𝐸𝑇 ∞
2

 1+
1+2 ln (10𝜇𝑚 /𝑟𝑐)

1+2 ln (𝑟𝑚𝑎𝑥 /𝑟𝑐)
 

𝜋(10𝜇𝑚 )2
 (4.3) 

 

 This method has been used to examine the energy density along the ion tracks and in the 

microdroplets for all ions used in the HIMAC experiments. The energy density of the ions has 

been calculated at the position of the bubble front in the space bubble detectors for He, C, O, Ne, 

Si, and Fe. The energy density for N and Ar ions has also been calculated based on the LET at 

the bubble front given in the literature[55]. For ions with a track larger than 10 µm, the energy 

density in the microdroplet has been calculated and converted to dose (density=1.298 g/cm
3
 for 

bubble detectors). Figure 67 shows the calculated energy density of the ion tracks inside the 

microdroplets at the position of the bubble front for all HIMAC experiments.  
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Figure 67: Ion track dose at bubble front for all HIMAC experiments 

 

 The data in Figure 67 suggest that the average track energy density in the microdroplets 

is the same for all ions at the bubble front despite the fact that the LET is significantly different. 

The mean value of 0.08±0.04 Gy could be considered a minimum threshold for bubble expansion 

and shall be referred to as Dthreshold. Figure 68 shows a full average track energy density curve for 

each of the ions measured at HIMAC. A MATLAB program was made to calculate the average 

track energy density using data imported from SRIM and Equations 3.3 – 3.5. The calculated 

average track energy density (converted to dose in Gy) is plotted as a function of LET for each 

ion starting with the low LET of the ions at maximum energy upon entering the bubble detector. 

As the ions slow down the energy decreases, the LET increases, the penumbra radius (rmax) 
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decreases and the average track energy density increases. The LET reaches a maximum at the 

Bragg peak in all curves near the top of the figure. The ions continue to slow down with a 

decreasing LET as they begin to pick up electrons from the surrounding material. The average 

track energy density continues to increase as the penumbra decreases, vanishing at the end of the 

range (see Figure 3 for a visualization of this process). The average track energy density at the 

bubble front position in the HIMAC experiments is also plotted as a point on each of the curves 

using the LET from Figure 65. For regions that have a track radius larger than 10 µm, the curves 

have also been calculated using Equation 4.2. This MATLAB program has also been adapted to 

include a model for variability in the size of microdroplets. In reality, not every microdroplet is 

expected to have a radius of exactly 10 µm so 10 ± 3 µm has been input assuming a Poisson 

distribution and the mean curve has been compiled from the result with the microdroplet size 

distribution.   

 

Figure 68: Average track energy density for heavy ions in bubble detectors as a function of LET 
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The experimental data points in Figure 68 lie very close to the curves for each ion. The 

dashed lines show the result without considering the microdroplet dimensions and only using 

rmax with LET∞. Data for all ions with a charge from Z=1 to Z=30 in bubble detector material has 

been calculated in SRIM and imported into the same MATLAB program. In each case, the LET 

at the point of average track energy density = 0.0766 Gy has been recorded (or average energy 

density restricted to 10 ± 3µm whenever rmax> 10 ± 3 µm). The result is a set of LET thresholds 

that correspond to each ion charge and this is plotted in Figure 69. This result is interpreted as a 

minimum LET threshold ( 
𝑑𝐸

𝑑𝑥𝑚𝑖𝑛
) as a function of ion charge Z. All values are consistent with 

the range of 
𝑑𝐸

𝑑𝑥𝑚𝑖𝑛
values calculated in the literature for space bubble detectors. However, it 

appears to be a function that depends on the ion charge which was not discussed in the literature.    

 The entire calculation process described above has been repeated using the Keifer and 

Katz ion track structure models (See Appendix F, Figure F1 for Katz and Kiefer results). All 

three models showed a trend similar to the results seen in Figure 65, although the results using 

the Chatterjee model most closely matched the experimental data points. The best fit Chatterjee 

model was plotted along with the experimental data and a maximum and minimum estimate 

based on the largest and smallest LET results using all three ion track structure models with a 

range of Dthreshold determined by the statistical error of the calculated value of Dthreshold. A 

discussion of the model uncertainties is provided in Appendix E.  
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Figure 69: LET threshold for bubble formation in space bubble detectors calculated with ion 

track structure models 

 

 There is an excellent agreement between the experimental data and the ion track structure 

models. However, the values of Dthreshold are a few orders of magnitude smaller than the value 

Dmin calculated for bubble detectors in Section 3.2.3. This is not unexpected since Dmin was 

calculated on the scale of the vapour embryos (Rc = 28 to 56 nm) while Dthreshold has been 

calculated on the scale of the ion track radii or the entire microdroplet (3 to 10 µm). A plot has 

been constructed in order to reconcile the difference in energy density at these very different 
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scales. Figure 69 shows the radial dose distribution calculated using the Chatterjee, Katz and 

Kiefer ion track structure models for carbon ions in a bubble detector with an energy of 

371.5 MeV and LET∞ of 81.51 keV/µm (as calculated at the bubble front position with SRIM). 

The average track energy density (calculated using Equations 3.4 and 3.5) is also plotted as a 

function of radial distance along with a PHITS simulation. Vapour embryos are expected to form 

primarily closest to the ion track core where the energy density is highest. The critical radius of 

the vapour embryos (28 to 56 nm) has been indicated on the figure with dashed lines along with 

the calculated minimum dose in the vapour embryos Dmin (1.3x10
3
 to 1.1x10

5 
Gy). The region of 

the figure where Dmin intersects with Rc is believed to indicate the threshold for vapour embryos 

to cause evaporation of the microdroplets and expansion into visible bubbles. Average track 

energy density curves have also been calculated for 1820 MeV and 35.13 MeV carbon ions 

corresponding to the LET threshold range presented in the literature (23.21 to 493.7 keV/µm).  
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Figure70: Radial dose distribution and average track energy density of C ion at bubble front 

 

 The PHITS simulation matches the calculated average ion track density above ~100 nm. 

Below ~100 nm the PHITS simulation gives a slightly larger dose where the restricted LET 

becomes much less than the unrestricted LET. This is not accounted for in the PHITS continuous 

slowdown approximation model. Nevertheless, Figure 69 shows that the dose in the region of the 

critical radius of the vapour embryos (Rc) is indeed within the expected range of the minimum 

dose threshold in the ion track Dmin. The average ion track energy density for the maximum and 
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minimum LET thresholds from the literature are both consistent with Dmin and Rc. Identical plots 

for He, C, N, O, Ne, Si, Ar and Fe all show similar results and are included in Appendix F, 

Figure F2. All results are consistent with Dmin and Rc where only the He result does not intersect 

the region of expected expansion of visible bubbles but lies only slightly outside this region. 

 

4.3.3 Ion Track Structure Model for Space Bubble Detector Spectrometer 

 

 The success of the ion track structure models for space bubble detectors implies that a 

similar approach may be useful for the SBDS detectors. The Chatterjee ion structure model has 

been selected to calculate rmax and Dthreshold for all experiments because this model was the most 

successful with the space bubble detector results. The best-fit curves for each of the six detectors 

in the SBDS set are plotted in Figure 71 along with the experimentally measured LET thresholds 

for He, C, Si and Fe from Table 15.  Results with other ion track structure models and 

experimental error bars have been omitted for clarity. Please see Appendix C, Figure C 2 for full 

results with error bars.  
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Figure 71: LET threshold for bubble formation in SBDS calculated with ion track structure 

models 

 

The calculated curves in Figure 71 fit the trend of the experimental data very well. The six 

detectors in the set appear to have an increasing Dthreshold with increasing neutron energy 

threshold (10, 100, 600, 1000, 2500 and 10000 keV). This is reasonable because the neutron 

energy thresholds are a result of the external pressure exerted on the micro droplets. As the 

pressure is increased, the amount of energy required to evaporate a microdroplet and expand it 
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into a visible bubble increases and so Dthreshold also likely increases. As the energy density 

required increases, the LET threshold also increases.  

 

4.4 Evaluation of Bubble Detector Measurements aboard the ISS 

 

 The published bubble detector measurement results from the ISS between 2008 and 2014 

raise some questions on what is being measured and how the measurements should be 

interpreted. Currently, the results are interpreted as equivalent dose measurements for neutron 

radiation only, assuming protons and heavy ions produce a negligible number of bubbles during 

the approximately seven day measurement periods. The equivalent dose is taken by dividing the 

number of bubbles produced by the AmBe calibrated sensitivity (bubbles/µSv) and scaling by a 

correction factor of 1.62. However, the results of the experiments performed in this work suggest 

that the response functions for protons and heavy ions are not negligible compared to the neutron 

response function and consideration for the number of bubbles produced directly by heavy 

charged particles should be considered. Furthermore, the bubble detector measurements should 

be consistent with other detectors on the ISS and any changes or trends in the bubble detector 

measurements over time should be explained by changes in the radiation environment.        

 

4.4.1 OLTARIS Model Results and Comparison with Experimental Measurements 

 

 An OLTARIS model of the radiation environment aboard the ISS has been built for every 

bubble detector measurement performed between January 2008 and October 2014 (forty-five 

individual measurement periods, details listed in Appendix A). The ISS altitude has been input 

into the model using published altitude data (see Appendix B, Figure B3). Measurements 
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performed in the Service Module, the Mini-Research Module 1 (MRM-1) and the US Lab were 

modeled as described in Section 3.3. Three measurements were recorded inside the JEM and one 

in the Japanese Pressurized Module (JPM). OLTARIS does not include a shielding model for 

JEM or JPM so the radiation environment for these locations was modeled with the US Lab 

because it is in the same approximate location and may have a similar shielding distribution. The 

differential energy spectra from OLTARIS were convoluted with the corresponding response 

function from Figure 34 for all particles using Equation 3.7. The result is a predicted number of 

bubbles produced per day from each particle type hence called the ―OLTARIS bubble count 

model". See Appendix D for a discussion of the verification and validation of the MATLAB 

bubble count model. 

The differential energy spectra for one individual measurement period during ISS 

Expedition 16 are plotted in Figure 72. During this measurement session, four space bubble 

detectors were placed in the Service Module at various locations. The detectors were exposed for 

4.9 days from February 22
nd

 to 27
th

 2008. The ISS had a perigee of 333 km and an apogee of 

354 km at that time.  
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Figure 72:Differential flux energy spectra for ISS Service Module (Feb. 22-27 2008). 

(Spectra generated with OLTARIS) [97] 

 

Equation 3.7 has been used along with the spectra in Figure 71 and the response functions 

from Figure 34 (using the trapezoid rule and appropriate integration limits) for each particle.  

The results are summarized in Table 16where the number of bubbles recorded per day of 

exposure has been normalized to a standard 0.1 bubble/µSv detector by dividing the total number 

of bubbles by the time of exposure and then dividing by the ratio of the detector AmBe 

calibration compared to 0.1 bubbles/µSv. 
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Table 16: Space bubble detector measurements and OLTARIS bubble count model for measurements in ISS Service 

Module 

Detector name and 

location 

SAmBe 

(bubbles/µSv) 

Number of bubbles  Bubbles per day 

(normalized to 0.1 

bubbles/µSv) 

B04 - Service Module, 

Starboard Cabin 

0.18 100 11.3 

B06 – Service Module 

Astronaut working desk 

0.16 86 10.9 

B07 – Service Module 

Astronaut working desk 

0.15 64 8.7 

B08 – Service Module 

On the ceiling 

0.14 57 8.3 

Experimental average 0.1 48±8 10±2 

OLTARIS bubble count 

model  

0.1 50±20 10±3 

 

The total numbers of bubbles predicted by the OLTARIS bubble count model match the 

experimental average. The OLTARIS bubble count model is summed from the response to all 

particles, so these may be separated out to give some insight into how many bubbles are created 

by neutrons, protons and heavy ions. The results for this model are presented in Table 17.See 

Appendix E, Table E4 and Table E5 for all values and calculated uncertainties.  

 

Table 17: Relative contribution of particles to bubbles counted in OLTARIS model 

Particle: neutron proton He C O Ne Si Fe 

Bubbles per 

day 

8.04 1.38 0.051 0.0017 0.0015 6.5x10
-4 

0.0022 0.035 

Total bubbles 39.5 6.8 0.2 0.008 0.007 0.003 0.01 0.2 

Contribution 

to the total 

number of 

bubbles in the 

OLTARIS 

bubble count 

model (%) 

 

85% 

± 2% 

 

15% 

± 8 % 

 

< 1% 

± 2% 

 

< 1% 

± 0.4% 

 

< 1% 

± 0.4% 

 

< 1 % 

± 0.3% 

 

< 1 % 

± 0.5% 

 

< 1% 

± 2% 
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The results in Table 17 indicate that neutrons contribute to the majority of bubbles in the 

OLTARIS bubble count model. However, protons produce a considerable number of bubbles as 

well. All of the heavy charged particles are calculated to produce less than 1 bubble over the 

entire measurement period (i.e. the probability of a bubble being produced from a heavy ion is 

low). The majority of the heavy ion contribution is from He, which is included in the trapped 

radiation model in OLTARIS. The contribution of all other heavy ions is expected to depend on 

the response function and relative abundance. For example, Ne was calculated to have a very low 

contribution and C a much higher contribution despite the much larger response function for Ne. 

Also, Fe has the lowest flux in Figure 72 but a larger contribution due to the much larger 

response function compared to the other ions. The total contribution from the six listed heavy 

ions in this model is very low (only 0.4 bubbles during the entire measurement period). 

Considering the large relative uncertainty, it is impossible to conclude exact contributions of 

each heavy ion with Z ≥ 2. However, the contributions are expected to be very low and the 

probability of bubbles being produced directly from heavy ions passing through the bubble 

detector is very small(See Appendix E for a discussion on particle contribution uncertainties). A 

rough estimate of the contribution of heavy ions from Z = 3 to Z = 13 not included in the 

experimental part of this work has been made using the average contribution from C, O, Ne and 

Si. For Z = 15 to Z = 25 the contribution has been estimated with the Si result divided by 10 

corresponding to the relative abundance from Figure 7. Ions with Z > 26 have such a low relative 

abundance that the contribution is likely negligible. Altogether the sum of all heavy ions (Z ≥ 2) 

gives a maximum estimate of about 0.5 bubbles during the entire measurement period (~ 1% of 

the total) in this OLTARIS bubble detector model. This is close to the estimate of the heavy ion 
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contribution to bubble detector measurements in the ISS reported in the literature which was 

calculated to be< 0.6% for all heavy ions with Z ≥ 2 [14]. 

Equation 3.7 has also been used with the average ISS neutron and proton spectra given in 

the literature (see Figure 29). The experimental neutron spectrum from the BBND measurements 

in the literature and the CREME96 proton spectra modeled for ISS Expedition 16 have also been 

included for comparison. The results are summarized in Table 18. All heavy ions with Z ≥ 2 are 

not expected to produce a significant number of bubbles and have been omitted.   

 

Table 18: Comparison of space bubble detector measurements with OLTARIS model, 

CREME96, and literature 

Measurement Neutron and Proton 

Spectra 

Location 

 

Bubbles per 

day from 

neutrons 

Bubbles per 

day from 

protons 

Total 

bubbles per 

day 

Space bubble 

detector 

measurement 

 
NA 

Service Module 

Feb.22-27 2008 
 

NA 

 
NA 

 
9.8 ± 1.5 

bubble count 

model using 

OLTARIS 

 

OLTARIS [97] 
 

Service Module 

Feb.22-27, 2008 

 
8.0 ± 2.8 

 
1.4 ± 1.4 

 
9.5 ± 3.1 

bubble count 

model using 

published ISS 

spectra 

Predicted neutron 

and proton spectra 

from literature [69] 

 
ISS (average) 

 
7.8 ± 2.8 

 
1.1 ± 1.0 

 
9.0 ± 3.0 

bubble count 

model using 

BBND neutron 

measurements 

BBND measured 

neutron spectrum 

[71] 

US Lab 

Mar.23-Nov.14, 

2001 

 
8.0 ± 2.8 

 
NA 

 
NA 

bubble count 

model using 

CREME96 

 

 

CREME96 proton 

spectrum [98] 

Service Module 

Feb.22-27 2008 
 

NA 

 
1.3 ± 1.1 

 
NA 
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The results in Table 18 are consistent between the models and the total number of 

bubbles in the measurements. This indicates that the OLTARIS bubble count model has merit 

and that protons are likely contributing an appreciable amount to the total number of bubbles 

measured. 

The results of all bubble count models using OLTARIS between January 2008 and 

October 2014 are plotted in Figure 73 along with the published experimental data (bubbles per 

day normalized to a detector with a 0.1 bubbles/µSv AmBe calibration). The mean value of each 

experimental measurement is plotted as a point with error bars representing the standard 

deviation for measurements. Some measurements were made with only one bubble detector and 

in these cases, error bars were estimated using the square root of the number of bubbles 

(assuming a Poisson distribution). Connecting lines have been added to help distinguish the 

model from the measured data, but do not imply any interpolation between measurement periods. 

A dashed line has also been added to indicate the large altitude increase of the ISS in June 2011. 

Error bars for the OLTARIS bubble count models have been excluded from this figure for 

clarity. However, Figure G1 has been added to Appendix G with all space bubble detector 

measurements plotted individually with the OLTARIS bubble count model results including 

error bars. 
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Figure 73: OLTARIS bubble count model results and experimental data for space bubble detector measurements 

aboard the ISS 

The experimental data in Figure 73 indicate that the bubble detector measurements are 

varying with time, but they are also noisy where the variations are small compared to the size of 

the error bars. This level of noise is expected since space bubble detectors are essentially single 

hit detectors that count individual high LET events where bubble expansion is infrequent 

(approximately 10 bubbles per day). This is many orders of magnitude less than the total number 

of particles passing into the detector per day. Neutrons, protons and heavy charged particles in 

the ISS radiation environment are capable of producing bubbles but rarely do so. It is reasonable 

to assume that there is a random probability that a particular particle entering the bubble detector 
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will enter into a microdroplet and a random probability that enough energy will be imparted in 

that microdroplet to cause the expansion into a visible bubble. These kinds of random chance 

events with a low probability of success are well described by a Poisson distribution. For a mean 

frequency of about 10 bubbles per day as seen in Figure 73one can expect a variation typically 

from 7 to 13 bubbles per day which is consistent with the measured data. A frequency histogram 

of the number of bubbles counted per day in all space bubble detector measurements is included 

in Appendix G, Figure G2 and is indeed similar to the calculated Poisson distribution. However, 

there are some variations in the data over time that are consistent in both the experimental data 

and the OLTARIS bubble count model results and these may help explain how the number of 

bubbles produced in a measurement is affected by changes in the radiation environment aboard 

the ISS. For example, the decrease in the measurements after the ISS altitude shift (originally 

presented in Figure 19) are present in the OLTARIS bubble count model results. The period from 

January 2008 to January 2011 is plotted in Figure 74 with labels A, B and C indicating the trends 

in the data over different measurement periods.          
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Figure 74: OLTARIS bubble count model results and experimental data 2008 to 2011 

 

Region A in Figure 74 represents measurements in ISS Expeditions 16 to 20 in the 

Service Module. The OLTARIS results show a slight increase due to a slight increase in altitude. 

The average data show a slight decrease, but there is essentially no change in the level of the 

error bars. The final data point in region A shows a close agreement between the measured data 

and the OLTARIS bubble count model results. Region B has a large increase in the OLTARIS 

bubble count model results because this region was modeled using the US Lab during ISS 

Expedition 20. The US Lab has more shielding and as a result, more secondary neutrons are 

produced, causing more bubbles to be created. The experimental data were measured in the JEM 
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and it may have less shielding than the US Lab. Consequently, the OLTARIS model may be 

overestimating the number of bubbles produced by secondary neutrons based on the US Lab 

spectra. The region between B and C was measured in the Service Module and shows good 

agreement between the model and measured data. Region C was also recorded in the Service 

Module and there appears to be a sudden increase in the measured data. This is unexpected and 

unexplained because there were no significant changes in altitude or shielding. The OLTARIS 

bubble count model remains relatively constant in this region as expected. The experimental data 

decreases and are consistent with the OLTARIS bubble count model for the final three data 

points. The period from January 2011 to January 2014 is plotted in Figure 74 with labels D, E, 

and F indicating the trend in the data over different measurement periods.        
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Figure 75: OLTARIS bubble count model results and experimental data 2011 to 2014 

 

  The first three data points in Figure 75 between January 2011 and August 2011 show 

good agreement between the OLTARIS bubble count model and the measured data. The data in 

region D was measured in the Service Module and shows a decrease from the previous 

measurements despite the fact that the ISS altitude has increased significantly. Between region D 

and region F, measurements were performed in the Service Module and show no significant 

change in either the OLTARIS model or the experimental data. The two points inside region E 

were recorded inside the US Lab with four different bubble detectors. The measurements show a 

significant increase in the number of bubbles compared to the other experiments made at the 



163 

 

same time in MRM-1. This is also represented in the OLTARIS bubble count model results 

which agree with the measured data within the error bars. This is a result of the larger number of 

secondary neutrons produced because of thicker shielding. Conversely, all measurements 

recorded in MRM-1 have a relatively lower number of bubbles due to less shielding and less 

production of secondary neutrons. 

The total average for all experimental measurements in Figure 73 is 10 ± 2 bubbles per 

day while the total average of the OLTARIS model is 11 ± 1 bubbles per day. There is only a 

6 % difference between the average of the model and the experimental data, suggesting a good 

overall correspondence.  

 

4.4.2 Effects of Shielding on Space Bubble Detector Measurements 

 

 The shielding of galactic cosmic rays, trapped radiation, and albedo neutrons creates a 

secondary particle radiation environment inside the ISS. In general, more shielding blocks and 

slows down protons and heavy charged particles such that as the shield thickness increases, the 

flux of particles decreases. However, generated secondary particle fluxes increase as the 

shielding thickness increases. The shielding material is also important in determining the 

secondary radiation. For example, high Z elements tend to undergo spallation reactions and 

produce a significant number of neutrons, while low Z materials (especially hydrogenous 

materials) tend to thermalize and scatter neutrons. In order to examine this effect with bubble 

detector measurements, the OLTARIS model has been used to generate particle spectra for 

different shielding conditions. The spectra from Figure 72 has been used to represent 

measurements inside the Service Module. Spectra have also been generated during the same 
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period for simple aluminum spheres with density thickness from 0 to 150 g/cm
2
. Additional 

spectra were also created using the US Lab and MRM-1 shielding. The expected number of 

bubbles from protons and neutrons was calculated using equation 3.7 for all different shielding. 

The results are plotted in Figure 76.  
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Figure 76: Model of bubbles produced in space bubble detectors behind different shielding 

  

It is apparent in Figure 76 that with no shielding present, there are very few neutrons and 

all the bubbles measured are from protons. As the shielding is increased, more secondary 

neutrons are produced and protons are blocked. This figure illustrates why measurements in the 
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US Lab consistently produced more bubbles than measurements in the other locations. The 

relative contribution of protons may depend on location and shielding in the ISS. The results in 

Figure 76 indicate that more high Z shielding produces more bubbles in space bubble detector 

measurements.  

 

4.4.3 Effects of ISS Altitude on Space Bubble Detector Measurements 

 

 The overall decrease in space bubble detector measurements after the ISS altitude 

increase in June 2011 are reflected in the OLTARIS bubble count model. It is expected that 

radiation increases with altitude, so a figure has been constructed to explain this result. First, a 

total time-averaged spectra were generated for the ISS inside the Service Module over the entire 

period of January 2008 to January 2014 with a static orbital altitude. This was done for eighteen 

altitudes between 300 and 470 km. The number of bubbles that would be produced per day with 

the particle spectra generated in OLTARIS has been calculated with equation 3.7 and is plotted 

as a function of ISS altitude in Figure 77. The experimental data and the OLTARIS bubble count 

model results for all space bubble detector measurements inside the Service module form Figure 

73 have also been plotted. 
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Figure 77: Space bubble detector measurements on ISS as a function of orbital altitude 

 

 The time-averaged OLTARIS bubble count model results show a clear increase in the 

number of bubbles produced as a function of altitude as expected. Conversely, the OLTARIS 

bubble count model results using the actual space bubble detector measurement dates show some 

increase with altitude from 340 km to 360 km and a decrease after the ISS altitude increase in 

June 2011. The experimental data also shows the same trend. Obviously, there is another factor 

affecting the particle spectra that depends on the date of measurement that appears to be 

accurately represented in the OLTARIS bubble count model. A final figure has been constructed 

to examine the changes in the OLTARIS bubble count model results over time without changes 
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in altitude. Particle spectra were generated inside the Service module for a static ISS altitude of 

420 km for eleven of the space bubble detector measurement dates and four additional 

interpolated dates. The number of bubbles was calculated with equation 3.7 and the result is 

plotted in Figure 78.  
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Figure 78: Space bubble detector measurements modeled at ISS altitude of 420 km 
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Beginning in 2008, the OLTARIS model suggests that the number of bubbles measured 

would be much larger if the ISS was at an altitude of 420 km at that time. After March 2011 the 

OLTARIS bubble count model results at 420 km decrease significantly. In January 2013, the 

OLTARIS bubble count model at 420 km matches the experimental data and the OLTARIS 

model of the space bubble detector measurements from Figure 73 where the actual altitude of the 

ISS was 418 km. The decrease corresponds to the increase in solar activity which acts to 

decrease the particle fluence on the ISS due to changes in the earth‘s magnetic field [9]. This is 

plotted in Figure 78 with the Wolf Spot number which represents the level of solar activity based 

on number and frequency of sunspots[66].The model shows that the aggregate of the increase in 

bubble count from the increase in altitude and the decrease in bubble count due to the increasing 

solar activity resulted in a net decrease in bubble count (as observed in the measurements). This 

result is also in good agreement with the DOSIS radiation monitoring program where the daily 

measured absorbed dose rate from GCR was shown to decrease by roughly 12.5 % from 2008 to 

2014 [102].   

 

4.4.4 Contribution of Protons to Space Bubble Detector Measurements 

 

 One of the primary concerns for using space bubble detectors as neutron dosimeters is the 

effect of protons and heavy charged particles in the measurements. If many bubbles are created 

from protons or heavy charged particles, then determining the neutron equivalent dose becomes 

very difficult. The varying particle spectra depending on shielding and location in the ISS make 

dose measurements even more difficult, especially if the detectors are worn on an astronaut‘s 

body and moved all around the ISS. The results in Table 17 indicates that the total number of 

bubbles created by heavy charged particles with Z ≥ 2 is negligible. However, protons may be 
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contributing more than 15% of the total number of bubbles measured. Many of the protons 

present in the ISS radiation environment come from the trapped radiation environment and 

especially form passage through the SAA. This means that ISS altitude should affect the relative 

contribution of protons because higher altitude orbits experience a greater intensity of trapped 

radiation. The ISS completes approximately 16 orbits per day and may pass through the SAA 

from 50 to over 100 times during a bubble detector measurement period. The contribution of 

protons to the number of bubbles measured lies around 15% according to the OLTARIS model 

and varies with altitude and shielding. However, the deviation of the number of bubbles 

produced per day on the ISS governed by Poisson statistics means that it is impossible to state 

the relative contribution of protons and neutrons with certainty. On average the total number of 

bubbles produced from protons over the entire exposure period is expected to be around 

15 ± 10 % and could vary significantly depending on conditions such as shielding and altitude. 
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CONCLUSION 

 

 As a part of the space bubble detector ground testing program space bubble detectors similar 

to those currently in use aboard the International Space Station have been irradiated in different 

high LET particle fields. Experiments with space bubble detectors in high energy neutron fields 

from 0.6 MeV to 800 MeV were performed. Several experiments were conducted with high-

energy protons from 30 to 230 MeVand high-energy heavy charged particles including He, C, O, 

Ne, Siand Fe. The study has led to the following conclusions: 

1. Bubble Detectors are high-LET threshold detectors and the passage of charged particles with 

LET above the threshold through the sensitive volume of the detector produces visible bubbles 

while charged particles of LET below the threshold do not directly produce bubbles: 

 Heavy charged particles with LET greater than the LET threshold will produce bubbles 

through direct ionization (i.e. electromagnetic rather than nuclear processes). 

 High-energy (relativistic) protons, -particles and light ions of LET below the LET 

threshold can only produce bubbles via nuclear reactions that yield secondary charged 

particles of LET above the threshold within the sensitive volume of the detector. 

2. The minimum threshold LET is not constant, but it depends on the charge of the ion (Z) and 

the reduced superheat of the detector. An ion track structure model has been developed wherein 

the LET threshold for bubble formation is determined by the average energy density along an ion 

track. The model is consistent with experimentally measured LET thresholds for different ions 

with the space bubble detector and SBDS set.    

3. The number of bubbles withina unit volume of the detector will scale with incident particle 

fluence up to a certain saturation threshold. This is dictated by the number of superheated 

droplets suspended in the bubble detector gel (total number is 10
4
 droplets per 10 ml) and the 
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total volume available for visible bubble expansion. For high-LET charged particles delivered in 

accelerator experiments, this threshold may be rather low, i.e. the passage of only a few hundred 

high LET charged particles through the sensitive volume of the detector may be sufficient to 

saturate the detector by activating a significant fraction of the superheated droplets within that 

volume. This is less of an issue for neutrons, energetic protons and light ions due to the fact they 

must first undergo a nuclear interaction, the probability of which is dependent on the nuclear 

cross section. 

4. High LET radiation fields are present in spacecraft and the formation of visible bubbles is 

possible from neutrons, protons and heavy charged particles. A large total fluence of these 

particles is incident on bubble detectors during typical measurements. However, only a few 

bubbles are produced per day on typical ISS measurements. The probability that a bubble is 

created from a heavy ion with Z≥2 is small due to the relatively low particle fluence and high 

LET threshold. The majority of bubbles observed are most likely to be produced from neutron 

interactions, but there are also a sizeable number of bubbles that are created directly from 

protons (~15±10% of all bubbles). The relative contribution of neutrons, protons,and heavy ions 

may change depending on ISS altitude, solar cycle conditions, shielding and location in the ISS.   

5. The determination of absorbed dose or equivalent dose based on thenumber of bubbles for 

bubble detectors exposed in highly complex and mixed radiation fields like those found in space 

is difficult and requires additional information, either from measurements made by other 

instruments or from model calculations.  

6. The bubble detector provides a single, integrated scalar quantity: number of expanded visible 

bubbles. This number is proportional to the fluence of charged particles with LET above the 
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bubble formation threshold. Absorbed dose and equivalent dose are related to both fluence and 

LET.  

FUTURE WORK 

 

Future work will include analysis of additional bubble detector measurements aboard the 

ISS and in other orbital spacecraft such as the Bion satellite and possible future interplanetary 

missions using the models developed in this work. A more robust model may be possible using 

Monte Carlo simulations to better assess the effects of specific shielding geometry, materials, 

and secondary high LET particles. Additional experiments with SBDS may be used to measure 

the response functions of the SBDS set to protons, neutrons and heavy charged particles. A 

bubble count model will be developed for the SBDS set and similarly compared to experimental 

measurements aboard the ISS and other spacecraft. Experiments will be performed to better 

understand the relative contribution of different particles in mixed radiation fields with neutrons, 

protons and heavy ions. This can be achieved by measuring successive experiments in different 

beams or facilities where the total number of bubbles produced will be the result of the sum of 

the contribution from each particle.  

 

  



173 

 

REFERENCES 

 

[1] M. Grande and T. M. Knight, ―The Future of Spacecraft Radiation Design: A Workshop at 

Aberystwyth University, UK, 28-30 November 2012: MEETING REPORT,‖ Space 

Weather, vol. 11, no. 10, pp. 543–544, Oct. 2013. 

[2] F. M. Sulzman and A. E. Nicogossian, Eds., Space biology and medicine:: joint 

U.S./Russian publication in five volumes. Vol. 2: Life support and habitability. Washington, 

DC, 1994. 

[3] C. Arena, V. De Micco, E. Macaeva, and R. Quintens, ―Space radiation effects on plant and 

mammalian cells,‖ Acta Astronaut., vol. 104, no. 1, pp. 419–431, 2014. 

[4] National Research Council (U.S.), Ed., A strategy for research in space biology and 

medicine into the next century. Washington, DC, 1998. 

[5] S. El-Jaby, L. Tomi, L. Sihver, T. Sato, R. B. Richardson, and B. J. Lewis, ―Method for the 

prediction of the effective dose equivalent to the crew of the International Space Station,‖ 

Adv. Space Res., vol. 53, no. 5, pp. 810–817, 2014. 

[6] W. Schimmerling, ―Genesis of the NASA Space Radiation Laboratory,‖ Life Sci. Space 

Res., vol. 9, pp. 2–11, Jun. 2016. 

[7] G. F. Knoll, Radiation detection and measurement, 3rd ed. New York: Wiley, 2000. 

[8] J. N. Pelton and F. A. Allahdadi, Handbook of cosmic hazards and planetary defense. 2016. 

[9] V. M. Petrov, ―Radiation risk during long-term spaceflight,‖ Adv. Space Res., vol. 30, no. 4, 

pp. 989–994, Jan. 2002. 

[10] T. Liu, D. Xu, H. Li, H. Pei, M. Zhu, J. Wang, and G. Zhou, ―Risk assessment of space 

radiation during manned space flights,‖ Rendiconti Lincei, vol. 25, no. S1, pp. 17–21, Mar. 

2014. 

[11] M. Shahmohammadi Beni, T. C. Hau, D. Krstic, D. Nikezic, and K. N. Yu, ―Monte Carlo 

studies on neutron interactions in radiobiological experiments,‖ PLOS ONE, vol. 12, no. 7, 

p. e0181281, Jul. 2017. 

[12] C. Arena, V. De Micco, E. Macaeva, and R. Quintens, ―Space radiation effects on plant and 

mammalian cells,‖ Acta Astronaut., vol. 104, no. 1, pp. 419–431, Nov. 2014. 

[13] C. S. L. Huntoon, V. V. Antipov, and A. I. Grigoriev, Eds., Space Biology and Medicine - 

Volume III Books 1 & 2 - Humans in Spaceflight. Reston, V.A: American Institute of 

Aeronautics and Astronautics, Inc., 1996. 

[14] M. B. Smith, Y. Akatov, H. R. Andrews, V. Arkhangelsky, I. V. Chernykh, H. Ing, N. 

Khoshooniy, B. J. Lewis, R. Machrafi, I. Nikolaev, R. Y. Romanenko, V. Shurshakov, R. 

B. Thirsk, and L. Tomi, ―Measurements of the neutron dose and energy spectrum on the 

International Space Station during expeditions ISS-16 to ISS-21,‖ Radiat. Prot. Dosimetry, 

vol. 153, no. 4, pp. 509–533, Mar. 2013. 

[15] R. Machrafi, K. Garrow, H. Ing, M. B. Smith, H. R. Andrews, Y. Akatov, V. Arkhangelsky, 

I. Chernykh, V. Mitrikas, V. Petrov, V. Shurshakov, L. Tomi, I. Kartsev, and V. Lyagushin, 

―Neutron dose study with bubble detectors aboard the International Space Station as part of 

the Matroshka-R experiment,‖ Radiat. Prot. Dosimetry, vol. 133, no. 4, pp. 200–207, Feb. 

2009. 

[16] F. d‘Errico, W. G. Alberts, and M. Matzke, ―Advances in Superheated Drop (Bubble) 

Detector Techniques,‖ Radiat. Prot. Dosimetry, vol. 70, no. 1, pp. 103–108, Apr. 1997. 



174 

 

[17] S. Agosteo, M. Silari, and L. Ulrici, ―Improved Response of Bubble Detectors to High 

Energy Neutrons,‖ Radiat. Prot. Dosimetry, vol. 88, no. 2, pp. 149–156, Mar. 2000. 

[18] B. J. Lewis, M. B. Smith, H. Ing, H. R. Andrews, R. Machrafi, L. Tomi, T. J. Matthews, L. 

Veloce, V. Shurshakov, I. Tchernykh, and N. Khoshooniy, ―Review of bubble detector 

response characteristics and results from space,‖ Radiat. Prot. Dosimetry, vol. 150, no. 1, 

pp. 1–21, Jun. 2012. 

[19] A. R. Green, L. G. I. Bennett, B. J. Lewis, P. Tume, H. R. Andrews, R. A. Noulty, and H. 

Ing, ―Characterisation of bubble detectors for aircrew and space radiation exposure,‖ 

Radiat. Prot. Dosimetry, vol. 120, no. 1–4, pp. 485–490, Sep. 2006. 

[20] M. A. Buckner, R. A. Noulty, and T. Cousins, ―The Effect of Temperature on the Neutron 

Energy Thresholds of Bubble Technology Industries‘ Bubble Detector Spectrometer,‖ 

Radiat. Prot. Dosimetry, vol. 55, no. 1, pp. 23–30, Aug. 1994. 

[21] A. R. Green, H. R. Andrews, L. G. I. Bennett, E. T. H. Clifford, H. Ing, G. Jonkmans, B. J. 

Lewis, R. A. Noulty, and E. A. Ough, ―Bubble detector characterization for space 

radiation,‖ Acta Astronaut., vol. 56, no. 9–12, pp. 949–960, 2005. 

[22] S.-L. Guo, ―Bubble detector investigations in China,‖ Radiat. Prot. Dosimetry, vol. 120, no. 

1–4, pp. 491–494, Sep. 2006. 

[23] A. Miller, R. Machrafi, E. Benton, H. Kitamura, and S. Kodaira, ―Comparison of the space 

bubble detector response to space-like neutron spectra and high energy protons,‖ Acta 

Astronaut., vol. 151, pp. 1–6, Oct. 2018. 

[24] K. Alikaniotis, M. Severgnini, G. Giannini, and V. Milan, ―Measurements of The Parasitic 

Neutron Dose at Organs From Medical LINACS at Different Energies By Using Bubble 

Detectors,‖ Radiat. Prot. Dosimetry, vol. 180, no. 1–4, pp. 267–272, Aug. 2018. 

[25] B. Mukherjee, R. Hentschel, J. Lambert, and J. Farr, ―32 Measurement of Parasitic Neutron 

Field in The Treatment Environment of a Varian CLINAC 2100 Medical LINAC Using 

Superheated Bubble Detectors,‖ Radiother. Oncol., vol. 102, p. S9, Mar. 2012. 

[26] L. Bourgois, D. Delacroix, and A. Ostrowsky, ―Use of Bubble Detectors to Measure 

Neutron Contamination of a Medical Accelerator Photon Beam,‖ Radiat. Prot. Dosimetry, 

vol. 74, no. 4, pp. 239–246, Dec. 1997. 

[27] C. G. Orton, Radiation dosimetry: physical and biological aspects. 1986. 

[28] J. Y. Choi, C. H. Lyoo, J. S. Kim, K. M. Kim, M. Lee, and Y. H. Ryu, ―Biodistribution and 

Radiation Dosimetry of [18F]Mefway in Humans,‖ Mol. Imaging Biol., vol. 18, no. 6, pp. 

803–806, Dec. 2016. 

[29] A. D. Martin, A. D. Martin, S. A. Harbison, K. Beach, and P. Cole, An introduction to 

radiation protection, Sixth edition. London: Hodder Arnold, 2012. 

[30] L. Lindborg and A. Waker, Microdosimetry: experimental methods and applications. Boca 

Raton: CRC Press, Taylor & Francis Group, 2017. 

[31] H. H. Rossi and M. Zaider, Microdosimetry and its applications. Berlin: Springer-Verlag 

Berlin, 2012. 

[32] F. H. Attix, Introduction to radiological physics and radiation dosimetry. New York: 

Wiley, 1986. 

[33] A. Endo on behalf of ICRU Report Committee 26 on Operational Radiation Protection 

Quantities for External Radiation, ―Operational quantities and new approach by ICRU,‖ 

Ann. ICRP, vol. 45, no. 1_suppl, pp. 178–187, Jun. 2016. 



175 

 

[34] R. M. Ribeiro and D. Souza-Santos, ―Comparison of the neutron ambient dose equivalent 

and ambient absorbed dose calculations with different GEANT4 physics lists,‖ Radiat. 

Phys. Chem., vol. 139, pp. 179–183, Oct. 2017. 

[35] J. Leake, ―The effect of ICRP (74) on the response of neutron monitors,‖ Nucl. Instrum. 

Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip., vol. 421, no. 1–2, pp. 

365–367, Jan. 1999. 

[36] S. E. Andreevsky, V. D. Kuznetsov, and V. M. Sinelnikov, ―Registration of the 

Atmospheric Gamma Radiation on Board the Russian Segment of the International Space 

Station,‖ Pure Appl. Geophys., vol. 174, no. 3, pp. 1091–1099, Mar. 2017. 

[37] C. Leroy and P.-G. Rancoita, Principles of radiation interaction in matter and detection. 

Hackensack, NJ: World Scientific, 2004. 

[38] K. Wang and B. Shi, ―Calculation of mean projected range and range straggling of heavy 

ions in polyatomic targets,‖ J. Phys. Appl. Phys., vol. 23, no. 10, pp. 1282–1289, Oct. 1990. 

[39] E. Fermi, S. Esposito, and O. Pisanti, Neutron physics for nuclear reactors: unpublished 

writings. Singapore ; London: World Scientific, 2010. 

[40] R. Machrafi, A. L. Miller, and N. Khan, ―New approach to neutron spectrometry with 

multi-element scintillator,‖ Radiat. Meas., vol. 80, pp. 10–16, Sep. 2015. 

[41] H. T. Nguyen-Truong, ―Modified Bethe formula for low-energy electron stopping power 

without fitting parameters,‖ Ultramicroscopy, vol. 149, pp. 26–33, Feb. 2015. 

[42] G. Laczko, V. Dangendorf, M. Krämer, D. Schardt, and K. Tittelmeier, ―High-resolution 

heavy ion track structure imaging,‖ Nucl. Instrum. Methods Phys. Res. Sect. Accel. 

Spectrometers Detect. Assoc. Equip., vol. 535, no. 1–2, pp. 216–220, Dec. 2004. 

[43] A. Chatterjee and H. J. Schaefer, ―Microdosimetric structure of heavy ion tracks in tissue,‖ 

Radiat. Environ. Biophys., vol. 13, no. 3, pp. 215–227, Oct. 1976. 

[44] D. Harder, R. Blohm, and M. Kessler, ―Restricted LET Remains a Good Parameter of 

Radiation Quality,‖ Radiat. Prot. Dosimetry, vol. 23, no. 1–4, pp. 79–82, Jun. 1988. 

[45] F. A. Cucinotta, R. Katz, J. W. Wilson, and R. Dubey, ―Heavy Ion Track Structure 

Calculations of Radial Dose in Arbitrary Materials.,‖ 1995. 

[46] R. Katz, F. A. Cucinotta, and C. X. Zhang, ―The calculation of radial dose from heavy ions: 

predictions of biological action cross sections,‖ Nucl. Instrum. Methods Phys. Res. Sect. B 

Beam Interact. Mater. At., vol. 107, no. 1–4, pp. 287–291, 1996. 

[47] J. Kiefer and H. Straaten, ―A model of ion track structure based on classical collision 

dynamics,‖ Phys. Med. Biol., vol. 31, no. 11, pp. 1201–1209, 1986. 

[48] E. Benton, ―Comparison between Experimental Measurements of Radial Dose Distributions 

and Predictions from three Track Structure Models,‖ OSU Phys. Dept, vol. PHYS6010-353, 

no. Course notes, 2009. 

[49] W. Gieszczyk, P. Bilski, P. Olko, and B. Obryk, ―Radial distribution of dose within heavy 

charged particle tracks – Models and experimental verification using LiF:Mg,Cu,P TL 

detectors,‖ Radiat. Meas., vol. 71, pp. 242–246, Dec. 2014. 

[50] M. N. Varma, ―Review of radial dose measurement technique and data,‖ Int. J. Radiat. 

Appl. Instrum. Part Nucl. Tracks Radiat. Meas., vol. 16, no. 2–3, pp. 135–139, Jan. 1989. 

[51] S. Tsuda, T. Sato, and T. Ogawa, ―Measurement of The Stochastic Radial Dose 

Distribution For A 30-MeV Proton Beam Using a Wall-Less Tissue-Equivalent 

Proportional Counter,‖ Radiat. Prot. Dosimetry, p. ncv285, May 2015. 



176 

 

[52] J. Chen, A. Keller, and H. Rossi, ―Radially restricted linear energy transfer for high-energy 

protons: a new analytical approach,‖ Radiat Env. Biophys, vol. 33, no. 3, pp. 181–187, Sep. 

1994. 

[53] S. C. Roy, R. E. Apfel, and Y.-C. Lo, ―Superheated drop detector: A potential tool in 

neutron research,‖ Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. 

Assoc. Equip., vol. 255, no. 1–2, pp. 199–206, Mar. 1987. 

[54] R. Sarkar, P. K. Mondal, M. Datta, and B. K. Chatterjee, ―Note: A new optical method for 

the detection of bubble nucleation in superheated droplet detector,‖ Rev. Sci. Instrum., vol. 

88, no. 6, p. 066106, Jun. 2017. 

[55] A. Green, B. Ough, B. Lewis, L. Bennett, H. Andrews, H. Clifford, H. Ing, R. Noulty, and 

G. Jonkmans, ―Bubble Detector Characterization for Space Radiation – Ground-Based 

Study,‖ Canadian Space Agency (CSA), Ottawa, ON, 00-SCI-1180, Mar. 2003. 

[56] F. d‘Errico, W. G. Alberts, E. Dietz, G. Gualdrini, J. Kurkdjian, P. Noccioni, and B. R. L. 

Siebert, ―Neutron Ambient Dosimetry with Superheated Drop (Bubble) Detectors,‖ Radiat. 

Prot. Dosimetry, vol. 65, no. 1, pp. 397–400, Jun. 1996. 

[57] ―Bubble detector reader BDR-III manual.‖ Bubble Technology Industries, Jan-2010. 

[58] M. Das and N. Biswas, ―Detection of bubble nucleation event in superheated drop detector 

by the pressure sensor,‖ Pramana, vol. 88, no. 1, Jan. 2017. 

[59] F. Vanhavere, M. Loos, and H. Thierens, ―The Life Span of the BD-PND Bubble 

Detector,‖ Radiat. Prot. Dosimetry, vol. 85, no. 1, pp. 27–30, Sep. 1999. 

[60] W. Rosenstock, J. Schulze, T. Köble, G. Kruzinski, P. Thesing, G. Jaunich, and H. L. 

Kronholz, ―Estimation of Neutron Energy Spectra with Bubble Detectors: Potential and 

Limitations,‖ Radiat. Prot. Dosimetry, vol. 61, no. 1–3, pp. 133–136, Aug. 1995. 

[61] V. P. Bramblevski, F. Spurn, and V. E. Dudkin, ―Neutron Spectrometry with Bubble 

Damage Neutron Detectors,‖ Radiat. Prot. Dosimetry, vol. 64, no. 4, pp. 309–311, May 

1996. 

[62] H. R. Andrews, ―LET dependence of bubble detector response to heavy ions,‖ Radiat. Prot. 

Dosimetry, vol. 120, no. 1–4, pp. 480–484, Apr. 2006. 

[63] F. Vanhavere, H. Thierens, and M. Loos, ―Testing the Temperature Compensated BD-PND 

Bubble Detector,‖ Radiat. Prot. Dosimetry, vol. 65, no. 1, pp. 425–428, Jun. 1996. 

[64] D. Shahbazi-Gahrouei, S. Setayandeh, and M. Gholami, ―A review on natural background 

radiation,‖ Adv. Biomed. Res., vol. 2, no. 1, p. 65, 2013. 

[65] D. Thomas, R. Bedogni, R. Méndez, A. Thompson, and A. Zimbal, ―Revision Of ISO 

8529—Reference Neutron Radiations,‖ Radiat. Prot. Dosimetry, pp. 1–4, Sep. 2017. 

[66] D. H. Hathaway, ―The Solar Cycle,‖ Living Rev. Sol. Phys., vol. 12, no. 1, Dec. 2015. 

[67] J. Heirtzler, ―The future of the South Atlantic Anomaly and implications for radiation 

damage in space,‖ J. Atmospheric Sol.-Terr. Phys., vol. 64, no. 16, pp. 1701–1708, Nov. 

2002. 

[68] P. Jiggens, A. Varotsou, P. Truscott, D. Heynderickx, F. Lei, H. Evans, and E. Daly, ―The 

Solar Accumulated and Peak Proton and Heavy Ion Radiation Environment (SAPPHIRE) 

Model,‖ IEEE Trans. Nucl. Sci., vol. 65, no. 2, pp. 698–711, Feb. 2018. 

[69] T. Armstrong and B. Colborn, ―Predictions of secondary neutrons and their importance to 

radiation effects inside the international space station,‖ Radiat. Meas., vol. 33, no. 3, pp. 

229–234, 2001. 



177 

 

[70] L. H. Heilbronn, T. B. Borak, L. W. Townsend, P.-E. Tsai, C. A. Burnham, and R. A. 

McBeth, ―Neutron yields and effective doses produced by Galactic Cosmic Ray interactions 

in shielded environments in space,‖ Life Sci. Space Res., vol. 7, pp. 90–99, Nov. 2015. 

[71] H. Koshiishi, H. Matsumoto, A. Chishiki, T. Goka, and T. Omodaka, ―Evaluation of the 

neutron radiation environment inside the International Space Station based on the Bonner 

Ball Neutron Detector experiment,‖ Radiat. Meas., vol. 42, no. 9, pp. 1510–1520, 2007. 

[72] H. Ing, R. Noulty, and T. McLean, ―Bubble detectors—A maturing technology,‖ Radiat. 

Meas., vol. 27, no. 1, pp. 1–11, Feb. 1997. 

[73] H. Ing, T. McLean, R. Noulty, and A. Mortimer, ―Bubble Detectors and the Assessment of 

Biological Risk from Space Radiations,‖ Radiat. Prot. Dosimetry, vol. 65, no. 1, pp. 421–

424, Jun. 1996. 

[74] F. d‘Errico and M. Matzke, ―Neutron spectrometry in mixed fields: superheated drop 

(bubble) detectors,‖ Radiat. Prot. Dosimetry, vol. 107, no. 1–3, pp. 111–124, Nov. 2003. 

[75] T. Němec, ―Homogeneous bubble nucleation in binary systems of liquid solvent and 

dissolved gas,‖ Chem. Phys., vol. 467, pp. 26–37, Mar. 2016. 

[76] H. J. Maris, ―Introduction to the physics of nucleation,‖ Comptes Rendus Phys., vol. 7, no. 

9–10, pp. 946–958, Nov. 2006. 

[77] H. Firouzjahi, S. Jazayeri, A. Karami, and T. Rostami, ―Bubble nucleation and inflationary 

perturbations,‖ J. Cosmol. Astropart. Phys., vol. 2017, no. 12, pp. 029–029, Dec. 2017. 

[78] S.-L. Guo, T. Doke, D.-H. Zhang, B.-L. Chen, L. Li, N. Hasebe, J. Kikuchi, N. Yasuda, and 

T. Murakami, ―Parameters of 500 MeV/u 56Fe tracks in bubble detector (BD) T-15 – A 

new technique to estimate the number and diameter of superheated droplets in bubble 

detectors,‖ Radiat. Meas., vol. 83, pp. 5–11, Dec. 2015. 

[79] M. Takada, ―Measured proton sensitivities of bubble detectors,‖ Radiat. Prot. Dosimetry, 

vol. 111, no. 2, pp. 181–189, Jul. 2004. 

[80] S.-L. Guo, T. Doke, L. Li, B.-L. Chen, D.-H. Zhang, J. Kikuchi, K. Terasawa, M. 

Komiyama, K. Hara, T. Fuse, N. Yasuda, and T. Murakami, ―Comparison between 

theoretical model and experimental calibrations and its inference for track formation in 

bubble detectors,‖ Radiat. Meas., vol. 40, no. 2–6, pp. 229–233, 2005. 

[81] S.-L. Guo, L. Li, T. Doke, J. Kikuchi, A. Kyan, E. Yoshihira, T. Kato, and T. Murakami, 

―Characteristics of heavy ion tracks in bubble detectors,‖ Radiat. Meas., vol. 34, no. 1–6, 

pp. 269–272, 2001. 

[82] P. Tume, B. Lewis, L. G. Bennett, and T. Cousins, ―Characterisation of neutron-sensitive 

bubble detectors for application in the measurement of jet aircrew exposure to natural 

background radiation,‖ Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers 

Detect. Assoc. Equip., vol. 406, no. 1, pp. 153–168, Mar. 1998. 

[83] M. B. Smith, H. R. Andrews, H. Ing, and M. R. Koslowsky, ―Response of the bubble 

detector to neutrons of various energies,‖ Radiat. Prot. Dosimetry, vol. 164, no. 3, pp. 203–

209, Apr. 2015. 

[84] S.-L. Guo, T. Doke, D.-H. Zhang, L. Li, B.-L. Chen, J. Kikuchi, N. Hasebe, K. Terasawa, 

K. Hara, T. Fuse, N. Yasuda, and T. Murakami, ―Experimental investigation of bubble 

occurrence and locality distribution of bubble detectors bombarded with high-energy 

helium ions,‖ Radiat. Meas., vol. 50, pp. 31–37, Mar. 2013. 

[85] S.-L. Guo, L. Li, H.-Y. Guo, C.-Q. Tu, Y.-L. Wang, T. Doke, T. Kato, K. Ozaki, A. Kyan, 

Y. Piao, and T. Murakami, ―High energy heavy ion tracks in bubble detectors,‖ Radiat. 

Meas., vol. 31, no. 1–6, pp. 167–172, Jun. 1999. 



178 

 

[86] H. Ing, ―Neutron measurements using bubble detectors — terrestrial and space,‖ Radiat. 

Meas., vol. 33, no. 3, pp. 275–286, 2001. 

[87] M. B. Smith, S. Khulapko, H. R. Andrews, V. Arkhangelsky, H. Ing, B. J. Lewis, R. 

Machrafi, I. Nikolaev, and V. Shurshakov, ―Bubble-detector measurements in the Russian 

segment of the International Space Station during 2009-12,‖ Radiat. Prot. Dosimetry, vol. 

163, no. 1, pp. 1–13, Jan. 2015. 

[88] M. B. Smith, S. Khulapko, H. R. Andrews, V. Arkhangelsky, H. Ing, M. R. Koslowksy, B. 

J. Lewis, R. Machrafi, I. Nikolaev, and V. Shurshakov, ―Bubble-Detector Measurements of 

Neutron Radiation In The International Space Station: ISS-34 To ISS-37,‖ Radiat. Prot. 

Dosimetry, p. ncv181, Apr. 2015. 

[89] J. F. Ziegler, M. D. Ziegler, and J. P. Biersack, ―SRIM – The stopping and range of ions in 

matter (2010),‖ Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At., vol. 

268, no. 11–12, pp. 1818–1823, Jun. 2010. 

[90] ICRP, ―ICRP Publication 74,‖ Ann. ICRP, vol. 26, no. 3–4, pp. 1–3, 1996. 

[91] B. Takala, ―The ICE House.‖ Los Alamos Science, 30-Nov-2006. 

[92] O. Ploc, T. Dachev, Y. Uchihori, H. Kitamura, and L. Sihver, ―Fragmentation from heavy 

ion beams in HIMAC BIO room calculated with PHITS and measured with Liulin,‖ 2017, 

pp. 1–10. 

[93] A. Miller, R. Machrafi, and A. Fariad, ―Investigation of the LaBr 3 scintillator response to 

heavy ions,‖ Radiat. Meas., vol. 115, pp. 43–48, Aug. 2018. 

[94] R. M. Haralick and L. G. Shapiro, Computer and robot vision. Reading, Mass: Addison-

Wesley Pub. Co, 1992. 

[95] J. Ilonen, R. Juránek, T. Eerola, L. Lensu, M. Dubská, P. Zemčík, and H. Kälviäinen, 

―Comparison of bubble detectors and size distribution estimators,‖ Pattern Recognit. Lett., 

vol. 101, pp. 60–66, Jan. 2018. 

[96] T. Sato, K. Niita, N. Matsuda, S. Hashimoto, Y. Iwamoto, S. Noda, T. Ogawa, H. Iwase, H. 

Nakashima, T. Fukahori, K. Okumura, T. Kai, S. Chiba, T. Furuta, and L. Sihver, ―Particle 

and Heavy Ion Transport code System, PHITS, version 2.52,‖ J. Nucl. Sci. Technol., vol. 

50, no. 9, pp. 913–923, Sep. 2013. 

[97] R. C. Singleterry, S. R. Blattnig, M. S. Clowdsley, G. D. Qualls, C. A. Sandridge, L. C. 

Simonsen, T. C. Slaba, S. A. Walker, F. F. Badavi, J. L. Spangler, A. R. Aumann, E. Neal 

Zapp, R. D. Rutledge, K. T. Lee, R. B. Norman, and J. W. Norbury, ―OLTARIS: an On-line 

tool for the assessment of radiation in space,‖ Acta Astronaut., vol. 68, no. 7–8, pp. 1086–

1097, Apr. 2011. 

[98] A. J. Tylka, J. H. Adams, P. R. Boberg, B. Brownstein, W. F. Dietrich, E. O. Flueckiger, E. 

L. Petersen, M. A. Shea, D. F. Smart, and E. C. Smith, ―CREME96: a revision of the 

C_osmic R_ay E_ffects on M_icro-E_lectronics code,‖ IEEE Trans. Nucl. Sci., vol. 44, no. 

6, pp. 2150–2160, Dec. 1997. 

[99] A. I. Mrigakshi, D. Matthiä, T. Berger, G. Reitz, and R. F. Wimmer-Schweingruber, 

―Assessment of galactic cosmic ray models: Assessment of Galactic Cosmic Ray Models,‖ 

J. Geophys. Res. Space Phys., vol. 117, no. A8, Aug. 2012. 

[100] L. Lund, ―High-Performing Simulations of the Space Radiation Environment for the 

International Space Station and Apollo Missions,‖ University of Utah, Utah, USA, 2016. 

[101] V. Benghin, V. Petrov, M. Panasyuk, and A. Volkov, ―Nine Years of The Radiation 

Monitoring System Operating InService Module of ISS,‖ 2010. 



179 

 

[102] T. Berger, S. Burmeister, D. Matthiä, B. Przybyla, G. Reitz, P. Bilski, M. Hajek, L. 

Sihver, J. Szabo, I. Ambrozova, F. Vanhavere, R. Gaza, E. Semones, E. G. Yukihara, E. R. 

Benton, Y. Uchihori, S. Kodaira, H. Kitamura, and M. Boehme, ―DOSIS & DOSIS 3D: 

radiation measurements with the DOSTEL instruments onboard the Columbus Laboratory 

of the ISS in the years 2009–2016,‖ J. Space Weather Space Clim., vol. 7, p. A8, 2017. 

  



180 

 

 

APPENDICES 

 

Appendix A: Space Bubble Detector Measurements aboard ISS 

 

Table A1:SPND Measurements [14] 

 

 

Table A2: SPND Measurements [14] 
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Table A3: SPND Measurements [87] 

 

 

 

Table A4: Space Bubble Detector Locations ISS-22 to ISS-33 missions [87] 
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Table A5: Space Bubble Detector Locations ISS-34 to ISS-40 missions [88] 
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Appendix B: International Space Station Information 

 

 

Figure B1: Diagram of International Space Station (exploded view, public domain image) 
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Figure B2: Shielding distribution of DB-8 detectors in ISS Service Module [101] 
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Figure B3: ISS Altitude from 2001 to 2015 
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Appendix C:HIMAC Bragg Curve Measurements 

 

 

Table C1: Heavy Charged Particle Experimental Range in PMMA with Calculated Energy and 

Range in H2O  

Ion Range in PMMA Range in H2O: SRIM calculation Calculated Energy 

H 34.0 mm 40.16 mm 70 (MeV/nucleon) 

He 125.5 mm 144.37 mm 143 (MeV/nucleon) 

C 222.0 mm 256.9 mm 385 (MeV/nucleon) 

O 165.0 mm 190.86 mm 385 (MeV/nucleon) 

Ne 124.5 mm 143.84 mm 371 (MeV/nucleon) 

Si 118.0 mm 136.48 mm 441 (MeV/nucleon) 

Fe 63.0 mm 37.04 mm 411 (MeV/nucleon) 
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Appendix D: MATLAB Program Validation 

 

Verification of the MATLAB LET analysis program  

A test case has been constructed to verify the bubble counting and range determination of 

the MATLAB program designed in this thesis. A bubble reader image was recorded for a 

detector with no bubbles present. Twelve bubbles were added to the image, 230 pixels from the 

cap of the detector corresponding to a depth of 20.7 mm in the detector (moving from left to 

right in the image). The input image is shown in Figure D1 along with the identified bubbles 

highlighted with overlaid circles. The MATLAB program correctly counted twelve bubbles. The 

histogram of the number of bubbles located along the horizontal are plotted in Figure D2. The 

end of the range was identified by the program as 20.9 ± 0.9 mm which is in good agreement 

with the bubble positions. The estimated end of range position is also shown in Figure D1 as a 

curve overlaid on the image and it intersects with all twelve bubbles.    

 

 

Figure D1: Bubble detector image and MATLAB program estimation of bubble position and end 

of the range 
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Figure D2: MATLAB program counting of bubbles along the horizontal axis for test case image 

 

The accuracy of the MATLAB program in detecting bubble positions and identifying the 

end of the range positions in all bubble detector experiments has been further verified using two 

methods. The first is a comparison of the total number of bubbles identified in each experiment 

with the value given by the BDRIII reader (instrument). The second method is to compare the 

end of the range position identified by the MATLAB program to the particle range calculated by 

SRIM for each experiment. Figure D3 shows the number of bubbles counted with the MATLAB 

program plotted against the number of bubbles counted with the BDRIII reader for all 

experiments in this work. There is a good overall one-to-one correspondence where almost all of 

the MATLAB readings are within 20 % of the BDRIII readings. The average relative difference 

in the number of bubbles counted is less than 10 %. In approximately 1/2 of the experiments, the 



190 

 

relative difference between the number of bubbles counted in the MATLAB and the number of 

bubbles counted in the BDRIII reader was less than 5 %. This indicates an acceptable level of 

accuracy for identifying bubbles using the MATLAB program. 
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Figure D3: MATLAB program bubble count compared to BDRIII reader 

 

The end of the range estimate using the MATLAB program is plotted in Figure D4 for all 

experiments as a function of the end of the range calculated by SRIM. This plot also shows a 

good one-to-one correspondence. The average relative difference between the SRIM calculated 

range and the MATLAB program identified end of the range is 3.7 %.  All experiments have a 

difference less than 16 % and ¾ of the experiments have a relative difference less than 5 %. The 
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average absolute difference between the SRIM calculated end of the range and the MATLAB 

program estimated end of the range is less than 0.9 mm. 
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Figure D4: MATLAB program compared to SRIM calculated range for all experiments 
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Verification of the MALTAB SBD bubble count model 

The bubble count model described in Section 4.4 has been tested and validated for SBD 

measurements using the known response to AmBe neutrons. The MATLAB SBD bubble count 

model uses the neutron response function Rn(E) from Figure 30 with equation 3.7 and the particle 

fluence 𝛷(𝐸). A test case has been constructed using the ISO 8529.2 recommended AmBe 

neutron spectrum (see Figure 6) with a SBD exposure that would produce a total equivalent dose 

of 1,000 µSv. For a SBD with a standard sensitivity of 0.1 bubbles/µSv, this exposure would 

produce 100 bubbles. The MATLAB SBD bubble count model has been performed for the total 

fluence of AmBe neutrons required for an equivalent dose of 1,000 µSv. This has been 

calculated using the NCRP38 dose conversion factors and the ICRP74 ambient dose equivalent 

conversion factors. The model was also performed using the NCRP 38 weighted average 

conversion factor for the AmBe spectrum weighted average energy (4.15 MeV) with an 

equivalent dose conversion factor of 3.7 × 10−5mRem ∙ cm2. This is the method used for SBD 

calibration. The recommended weighted average equivalent dose conversion factor from 

ICRU66 for AmBe neutrons (4. 11 × 10−4µSv ∙ cm2) was also used for comparison. The results 

are shown in Table D1.   
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Table D1: MATLAB bubble count model for SBD exposed to AmBe source 

Dose Equivalent Conversion 

Factor 

Total AmBe neutron fluence to 

give 1,000 µSv equivalent dose 

(neutrons/cm
2
) 

 

Number of bubbles produced in 

MATLAB bubble count model 

for SBD with 

SAmBe = 0.1 bubbles/µSv 

NCRP38 weighted average 

conversion factor for AmBe 

source (4.15 MeV neutrons) 

2.70 × 106 93.6 ± 9.7 

NCRP38 2.68 × 106 92.9 ± 9.6 

ICRP74, H
*
(10) 2.48 × 106 86.0 ± 9.3 

ICRU66 AmBe conversion factor 2.43 × 106 84.2 ± 9.2 

Expected value from SBD 

calibration 
2.68 × 106 100 ± 10 

 

The results in Table D1 are all within 20 % of the expected 100 bubbles. The MATLAB 

bubble count model prediction was found to be 90 ± 10 bubbles for the NCRP38 weighted 

average conversion factor calculation with a 6.4 % difference (under prediction) from the 

expected number of bubbles. In fact, the SBD bubble BDRIII reader has a stated uncertainty of 

± 10% for bubble counting experiments so the number of bubbles predicted in the MATLAB 

program is consistent with the number of bubbles expected for a SBD measurement within the 

level of uncertainty using all four dose calculation models. The OLTARIS bubble count model 

has been shown to be consistent with SBD measurements aboard the ISS with an overall 

difference of about 6 % (over prediction). Using an estimated Poisson distribution, the 

uncertainty of individual SBD measurements is approximately ± 30 % in most of the OLTARIS 

bubble count models (10 ± 3 bubbles/day) which is slightly larger than, but comparable to the 

differences in Table D1.   
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Appendix E: Discussion of Uncertainties 

 

 

Uncertainty in LET threshold for bubble formation 

The LET threshold for bubble formation has been determined in this work using energy, 

range and LET calculations in SRIM based on the distribution of bubbles in individual 

experiments. The typical error between SRIM calculations and experiments for energy, range 

and LET of heavy ions stopping in matter is less than 5% [89]. However, for the bubble detector 

measurements in this work, the measured LET threshold has a much larger uncertainty. This is 

because the LET of bubble formation is based on determining the location of the bubble front 

which may be spread out due to ion straggling and difficult to discern among spurious bubbles 

formed before and after the Bragg peak due to high LET secondary particles. The bubble 

positions can only be determined to within ± 0.9 mm. Table E1 shows an example of how this 

position uncertainty leads to the total uncertainty of the LET threshold for an individual 

experiment with carbon ions in SBD (see Table 5).  

Table E1: Uncertainty in LET threshold measurement for carbon ion 

Bubble 

front  

(mm from 

edge of 

detector) 

End of 

range 

(mm from 

edge of 

detector) 

Range at 

LET 

threshold 

(mm) 

LET for  mean 

range 

(keV/µm) 

LET for 

maximum 

range 

(keV/µm) 

LET for 

minimum 

range 

(keV/µm) 

σLET 

(keV/µm) 

25.5 ± 0.9 27.3 ± 0.9 1.8±1.6 93  167 75 ± 74 

 

The measured value of the LET threshold in this experiment is therefore 90 ± 70. The 

uncertainty of a single measurement is large. Repeated independent experiments with the same 

uncertainty were carried out. The uncertainty in the average value measured in N experiments 

with error σ is given by the following equation; 
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𝜍𝑥 =  
𝜍

 𝑁
    (Equation E1) 

 

There were ten experiments so the average was found to be 80 keV and 𝜍𝑥  = 20 keV. 

Therefore the LET threshold for carbon ions in SBD was found to be 80 ± 20 keV/µm.  

The uncertainty in the average track energy density model from Secion 4.3 was 

determined by the uncertainty in the LET thresholds. The average track energy density was 

calculated for the mean, minimum and maximum LET threshold using the Chatterjee, Katz and 

Keifer track structure models. The mean value and the standard deviation of the average track 

energy density was calculated for all three models. This is summarized in Table E2. 

Table E2: Uncertainty in Dthreshold 

Track structure model Dthreshold 

(Gy) 

σDthreshold 

(Gy) 

Chatterjee 0.08 ± 0.04 

Katz 0.06 ± 0.02 

Keifer 0.06 ± 0.02 

 

The LET threshold model for SBD was calculated using SRIM with these ion track 

energy densities and equations 3.3 to 3.5. The best fit, maximum and minimum models were 

determined and the results are presented in Figure 68 and in Appendix F, Figure F2.  
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Uncertainty in SBD response functions 

The uncertainty in all measured bubble detector response experiments was determined by 

the statistical variation observed in successive identical measurements. 

Table E3: Uncertainty in response function RHe 

Plastic Scintillator fluence 

(He/cm
2
) 

Detector Sensitivity 

SAmBe (bubbles/µSv) 

Number of bubbles Normalized Sensitivity 

 
𝑏𝑢𝑏𝑏𝑙𝑒𝑠

𝐻𝑒/𝑐𝑚2
  

5.25×10
6
 0.018 497 5.26×10

-5
 

1.11×10
6
 0.018 192 9.60×10

-5
 

5.29×10
6
 0.018 435 4.57×10

-5
 

1.79×10
6
 0.012 195 9.07×10

-5
 

 

The sensitivity of SBD to ions at this energy is calculated as the mean value with an 

uncertainty given by the standard deviation of the measured values. Therefore the sensitivity of 

SBD to He ions at this energy is (7.1± 2.6) ×10
-5  𝑏𝑢𝑏𝑏𝑙𝑒𝑠

𝐻𝑒/𝑐𝑚 2. 

 

Uncertainty in OLTARIS bubble count model 

The error in the OLTARIS bubble count model is determined by the uncertainty in all 

bubble response measurements and the uncertainty in the particle spectra. However, the 

uncertainty in the particle spectra is largely unknown because the difference between the 

OLTARIS spectra and the actual particle spectra present aboard the ISS could be very large for 

individual simulations. Therefore, Poisson statistics have been used to estimate the level of 

uncertainty involved with individual measurements. The Poisson distribution applies counting 

events where the number of events is large and the probability of success is low. For bubble 

detector measurements aboard the ISS, the number of events is the number of particles that pass 

through the bubble detector and the number of ―successful‖ events is the number of bubbles that 
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are expanded into visible bubbles and counted. The Poission distribution has been show to fit the 

experimental measurements fairly well. The model results are calculated as the number of 

bubbles produced in a one day measurement and the total number of bubbles produced. The 

relative uncertainty of individual particle contributions may be large, especially for the heavy 

ions which were all calculated to produce < 1 % of the total number of bubbles. The results from 

Table 17 are shown in Table E4 with the original calculated values and the uncertainty calculated 

for each particle by propagation of errors.  

Table E4: Relative particle contributions to OLTARIS bubble count model 

Particle: neutron proton He C O Ne Si Fe 

Bubbles per 

day 

8.04 1.38 0.051 0.0017 0.0015 6.5x10
-4 

0.0022 0.035 

σbubbles 

(per day) 

± 2.8 ± 1.2 ± 0.2 ± 0.04 ± 0.04 ± 0.03 ± 0.05 ± 0.2 

Contribution 

to the total 

number of 

bubbles in the 

OLTARIS 

bubble count 

model (%) 

 

84.5% 

 

 

14.5% 

 

 

0.5% 

 

 

0.02% 

 

 

0.02% 

 

 

0.007% 

 

 

0.02% 

 

 

0.4% 

 

σ% ± 2.4 % ± 7.7 % ± 2% ± 0.4% ± 0.4% ± 0.3% ± 0.5% ± 2% 

 

The calculation of the proton contribution uncertainty is provided as an example. The 

OLTARIS bubble count model indicates the number of bubbles produced due to protons in one 

day is, Np = 1.38 bubbles with an uncertainty of, σNp = ± 1.2 bubbles as given by the Poisson 

distribution (i.e. 𝜍𝑥 ≈  𝑥 ). The contribution of protons to the total number of bubbles is 

1.38

9.51
= 14.5 %. The uncertainty of dividing the number of bubbles from protons (Np) by the total 

number of bubbles (Ntotal) is given by the following equation: 
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𝜍% =  
𝑁𝑝

𝑁𝑡𝑜𝑡𝑎𝑙
  

𝜍𝑁𝑝

𝑁𝑝
 

2

+  
𝜍𝑁𝑡𝑜𝑡𝑎𝑙

𝑁𝑡𝑜𝑡𝑎𝑙
 

2

− 2  
𝜍𝑁𝑝 ∙𝑁𝑡𝑜𝑡𝑎𝑙

𝑁𝑝 ∙𝑁𝑡𝑜𝑡𝑎𝑙
    (Equation E2) 

All variables from equation E2 are presented in Table E5 with the definition and the 

calculated value.   

 Table E5: Variables for calculation of uncertainty in relative proton contribution 

Symbol definition value 

𝑁𝑝  Number of bubbles produced by 

protons 

1.38 

𝑁𝑡𝑜𝑡𝑎𝑙  Total number of bubbles 

produced by all particles 

9.51 

𝑁𝑝

𝑁𝑡𝑜𝑡𝑎𝑙
 

Relative contribution of protons 

to the total number of bubbles 

0.145 

𝜍𝑁𝑝  Uncertainty of bubbles produced 

by protons 

1.17 

𝜍𝑁𝑡𝑜𝑡𝑎𝑙  Uncertainty of total bubbles 

produced 

3.08 

𝜍𝑁𝑝∙𝑁𝑡𝑜𝑡𝑎𝑙  Covariance of number total 

number of bubbles produced and 

number of bubbles produced by 

protons 

3.62 

𝜌𝑝∙𝑡𝑜𝑡𝑎𝑙  Correlation between total number 

of bubbles and the number of 

bubbles from protons 

1 

𝜍%  Uncertainty in the relative 

contribution of protons 

0.077 

 

The covariance has been calculated as, 𝜍𝑁𝑝∙𝑁𝑡𝑜𝑡𝑎𝑙 =  𝜌𝑝∙𝑡𝑜𝑡𝑎𝑙 × 𝜍𝑁𝑝 × 𝜍𝑁𝑡𝑜𝑡𝑎𝑙   where the 

correlation (𝜌𝑝∙𝑡𝑜𝑡𝑎𝑙 ) is 1 because the total number of bubbles is the sum of the contribution from 

all bubbles including protons. Using the values from Table E5 the relative contribution from 

protons to the total number of bubbles is found to be 15 ± 8 %.   
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Appendix F: Ion Track Structure Model Results 
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Figure F1: LET threshold ion track structure results 
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Figure F2: Average ion track energy density at LET threshold in space bubble detectors 
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Figure F3: LET threshold for SBDS set with best fit ion track structure model  
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Appendix G: OLTARIS Bubble Count Model Results 
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Figure G1: All Space bubble detector measurements between 2008 to 2014 and OLTARIS 

bubble count model 
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Figure G2: Frequency histogram of bubbles measured per day with space bubble detectors in ISS 

measurements ([14], [87], [88]) 
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Table G1: Space Bubble Detector Experimental Results and OLTARIS Model 

Date of 
measurement 

(year) 

Measured 
number of 

bubbles per 
day 

Measurement 
ID 

Location OLTARIS 
model total 

bubbles 

OLTARIS 
model 

bubbles from 
neutrons 

OLTARIS 
model 

bubbles from 
protons 

2008.018 9.0 ISS16s8 S Module 9.3759 7.9963 1.3796 

2008.152 9.8 ISS16s9 S Module 9.4668 8.0849 1.3819 

2009.002 8.9 ISS18s1 S Module 11.0011 9.2307 1.7704 

2009.128 8.9 ISS18s2 S Module 11.3815 9.4596 1.9219 

2009.464 8.6 ISS19s1 S Module 11.119 9.316 1.803 

2009.521 8.0 ISS19s2 S Module 11.0249 9.2516 1.7733 

2009.619 11.3 ISS20mat S Module 10.8886 9.1477 1.7409 

2009.689 11.6 ISS20s1 JEM 13.32 12.1574 1.1626 

2009.759 10.4 ISS20s2 JEM 13.359 12.2162 1.1428 

2009.871 10.4 ISS20s3 JEM 13.1423 12.0173 1.125 

2009.899 11.1 ISS20 Thirsk JPM 13.0763 11.9512 1.1251 

2010.067 10.2 ISS22-33 B S Module 9.9266 8.4274 1.4992 

2010.235 9.4 ISS22-33 C S Module 10.7063 8.9779 1.7284 

2010.319 11.0 ISS22-33 D S Module 10.395 8.6818 1.7132 

2010.389 10.4 ISS22-33 E S Module 10.338 8.73 1.608 

2010.53 9.8 ISS22-33 F S Module 10.9984 9.1588 1.8396 

2010.586 10.1 ISS22-33 G S Module 10.9449 9.1187 1.8262 

2010.628 11.5 ISS22-33 H S Module 10.8803 9.067 1.8133 

2010.712 13.8 ISS22-33 I S Module 10.9308 9.08 1.8508 

2010.796 13.7 ISS22-33 J S Module 10.8536 9.0135 1.8401 

2010.838 12.3 ISS22-33 K S Module 10.7458 8.9421 1.8037 

2010.866 11.6 ISS22-33 L S Module 10.6239 8.8564 1.7675 

2010.978 12.2 ISS22-33 M S Module 10.7045 8.8993 1.8052 

2011.09 10.8 ISS22-33 N S Module 10.2289 8.6202 1.6087 

2011.525 11.0 ISS22-33 O S Module 11.7075 9.3797 2.3278 

2011.609 12.2 ISS22-33 S Module 12.0409 9.5583 2.4826 

2011.679 NA ISS22-33 Q S Module 11.5279 9.292 2.2359 

2012.113 8.6 ISS22-33 R S Module 10.1677 8.3322 1.8355 

2012.169 8.1 ISS22-33 S S Module 10.1929 8.3437 1.8492 

2012.239 8.4 ISS22-33 T S Module 9.7217 7.8531 1.8686 

2012.393 8.6 ISS22-33 U S Module 10.4571 8.4829 1.9742 

2012.996 9.3 ISS34-40 A S Module 11.5583 9.1952 2.3631 

2013.052 9.4 ISS34-40 B S Module 10.9746 8.8522 2.1224 

2013.122 8.6 ISS34-40 C S Module 10.948 8.8343 2.1137 

2013.178 10.9 ISS34-40 D S Module 10.8447 8.8364 2.0083 

2013.262 10.6 ISS34-40 E S Module 10.8761 8.864 2.0121 

2013.332 9.4 ISS34-40 F MRM1 8.394 6.7615 1.6325 

2013.416 12.0 ISS34-40 G US Lab 13.6446 12.1301 1.5145 

2013.486 12.4 ISS34-40 H US Lab 13.9062 12.3317 1.5745 

2013.529 8.5 ISS34-40 I MRM1 9.0027 7.2015 1.8012 

2013.571 7.9 ISS34-40 J MRM1 9.0296 7.2219 1.8077 

2013.655 10.9 ISS34-40 K MRM1 8.9646 7.17 1.7946 

2013.725 7.8 ISS34-40 L MRM1 8.8105 7.057 1.7535 

2013.795 9.0 ISS34-40 M MRM1 8.6375 6.9222 1.7153 
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