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Abstract 
Surveyed literature shows many segmentation algorithms using different types of 

optimization methods. These methods were used to minimize or maximize objective 

functions of entropy, similarity, clustering, contour, or thresholding. These specially 

developed functions target specific feature or step in the presented segmentation 

algorithms. To the best of our knowledge, this thesis is the first research work that uses an 

optimizer to build and optimize parameters of a full sequence of image processing chain.  

This thesis presents a universal algorithm that uses three images and their corresponding 

gold images to train the framework. The optimization algorithm explores the search space 

for the best sequence of the image processing chain to segment the targeted feature. 

Experiments indicate that using differential evolution to build Image processing chain (IPC) 

out of forty-five algorithms increases the segmentation performance of basic thresholding 

algorithms ranging from 2% to 78%. 

Solving the mentioned problem requires a bi-level optimization algorithm with the outer 

optimizer to build an optimal sequence of algorithms forming the Image Processing Chain 

(IPC). The inner optimization algorithm uses a chain built by the outer optimizer to optimize 

corresponding parameters utilized in the IPC. Using optimizer algorithms in such a 

configuration requires running DE optimization for every population member of the outer 

optimizer to fine tune the parameters needed by the population member. 

The proposed framework is tested on a comprehensive set of X-ray Lung and Ultrasound 

Breast images; results are promising in terms of precision, sensitivity, and overlapping 

metrics. This framework can be utilized not only for tissue segmentation in medical images, 

but also for accomplishment of any complex image processing task in other areas of 

science and technologies. 
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Chapter 1 

1 Introduction 
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1.1 Motivation 
Medical imaging technology has revolutionized health care over the last thirty years, 

allowing doctors to diagnose diseases earlier and target illnesses before they become 

untreatable. 

Accurate applied segmentation on these medical images to isolate specific tissues or 

organs is considered as a critical task to make the correct diagnoses of diseases. These 

segmentation techniques are the main tools in the medical sector, providing early and 

effective diagnoses. 

Current segmentation techniques of medical images are used for some applications such 

as imaging modality and the especial study of body part. Many factors should be 

considered such as sensors noise, tissue motion artifacts, ring artifacts, etc. 

Each imaging system has its own specific limitations and produces images with different 

challenges for the segmentation system; therefore, it is of interest of this thesis to develop 

a universal algorithm for segmentation of every medical image which according to the best 

of knowledge, it has not done so far. 

Expert systems use multiple techniques such as statistical models or artificial intelligence 

which require the huge databases of training samples; so they are expensive approaches, 

and in some cases impractical. 

In this thesis, we consider the above mentioned problems of imaging systems and the 

impracticality of building expert systems.  A universal system is developed which is trained 

to segment tissues using three training images from specific imaging modality. The system 

generates a trained image processing chain which is loaded to segment images produced 

by the same imaging modality. 

1.2 Objective and Scope 
This thesis proposes a universal trainable framework that can target any image processing 

task for any image modality. This universal framework can target industrial, medical, 

satellite, etc. or any problem that require image processing. The proposed framework can 

build proper image processing chain that target specific problem based on provided gold 

samples. 
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In this thesis we use it in medical image segmentation to extract specific tissues. This 

framework as illustrated in figure (1-1/2) uses three training images to be trained on 

specific tissue in images generated by specific imaging modality.  

The scope of this thesis can be summarized in two areas listed below which determine how 

we can achieve the mentioned goals: 

1- Develop an optimizable image processing chain that is trained by three images to 

segment targeted tissue. 

2- Use the differential evolution algorithm to find the optimal series of filters to get 

the segmentation as close as possible to physician segmentation. 

1.3 Outline of the Thesis 
This thesis is organized into seven chapters. Chapter 2 presents a background review on 

image processing techniques, namely, image enhancement, thresholding, mathematical 

morphology, and object segmentation. It also discusses differential evolution algorithm 

that is utilized in this thesis. 

In Chapter 3, we provide a literature review of optimization based segmentation 

algorithms. 

Chapter 4 explains the image processing algorithms (filter, enhancers, thresholding, and 

post processing filters) that is used to build the proposed image processing chain; then, we 

move to Chapter 5, where we explain in detail the chromosome design and the fitness 

function which is used to optimize the chain by the DE algorithm. 

In Chapter 6, we discuss two cases, namely, Lung X-Ray and Breast Cancer segmentation. 

Chapter 7, provides a summary, conclusion and future work. 
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2 Background 
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2.1 Differential Evolution 
Differential Evolution (DE) is, a vector population based stochastic optimization method 

which was introduced by Price and Storn in 1995 [1]–[6].  

In the following sections, the major definitions and mathematical formulas of the DE 

algorithm is described. 

2.1.1 Differential Evolution (DE) 
DE is a population-based stochastic method for global optimization. Population is 

expressed with its conditions and dimension as follows: 

 𝑃𝑥,𝑔 = (𝑥𝑖,𝑔),     𝑖 = 0,1 … … , 𝑁𝑝 − 1           𝑔𝑚𝑎𝑥 = 0,1, … . . , 𝑔𝑚𝑎𝑥 

 

eq(2-1) 

 

 𝑥𝑖,𝑔 = (𝑥𝑗,𝑖,𝑔),    𝑗 = 0,1, … 𝐷 − 1  

Where Np is the number of population vectors and D is the dimension of the problem 

(number of parameters). 

2.1.2 Population initialization 

DE algorithm generates randomly an initialization population. A solution vector in the 

initialization population is generated as follows:  

 𝑥𝑗,𝑖,0 = 𝑟𝑎𝑛𝑑𝑗[0 1]. (𝑏𝑗,𝑈 − 𝑏𝑗,𝐿) +  𝑏𝑗,𝐿 

 

(2-2) 

Where 𝑏𝐿𝑎𝑛𝑑 𝑏𝑈 are a D-dimension lower and upper limit vector and, 

𝑟𝑎𝑛𝑑𝑗[0 1] is a uniform random number in the interval [0 ,1]. 

The index 0 indicates that this is generation zero (initialization phase) 

2.1.3 Mutation 

The DE optimizer randomly chooses three vectors for each target vector in the population. 

These three vectors are being used to generate a mutated vector as follows: 

 𝑣𝑖,𝑔 =  𝑦𝑖,𝑔 + 𝐹. (𝑥𝑟1,𝑔 − 𝑥𝑟2,𝑔) (2-3) 

Where𝑣𝑖,𝑔 is the mutated vector 𝑣𝑖  for generation g and𝐹 weight that is applied to the 

vector difference (𝑥𝑟1,𝑔 − 𝑥𝑟2,𝑔), and 𝑦𝑖,𝑔 is the base vector.  

. Other mutation strategies are as follows: 
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Classical DE/rand/1/bin 

 𝑣𝑖,𝑔 =  𝑥𝑟0,𝑔 + 𝐹. (𝑥𝑟1,𝑔 − 𝑥𝑟2,𝑔) 

 

(2-4) 

DE/best/1/bin 

 𝑣𝑖,𝑔 =  𝑥𝑏𝑒𝑠𝑡,𝑔 + 𝐹. (𝑥𝑟1,𝑔 − 𝑥𝑟2,𝑔) (2-5) 

DE/Current-to-best/1/bin 

 𝑣𝑖,𝑔 =  𝑥𝑖,𝑔 + 𝐹. (𝑥𝑏𝑒𝑠𝑡,𝑔 − 𝑥𝑖,𝑔) + 𝐹. (𝑥𝑟1,𝑔 − 𝑥𝑟2,𝑔) (2-6) 

DE/best/2/bin 

 𝑣𝑖,𝑔 =  𝑥𝑏𝑒𝑠𝑡,𝑔 + 𝐹. (𝑥𝑟1,𝑔 − 𝑥𝑟2,𝑔 + 𝑥𝑟3,𝑔 − 𝑥𝑟4,𝑔) (2-7) 

 

The notation for DE is defined by DE/x/y/z, where x denotes the base vector, y denotes the 

number of difference vectors used, and z represents the crossover method.  

For example, DE/best/1/bin represents using the best vector with the lowest objective 

function so far to generate the mutated vector. 

2.1.3.1 Crossover 

DE algorithm uses the crossover operation to diversify the solutions. Based on the 

crossover value, the DE combines the mutated vector 𝑣𝑖,𝑔 with the target vector in order 

to generate a trial vector. 

2.1.4 Selection 

Trail vector and target vector are compared and the vector with the lowest objective 

function value takes the place of the target vector.  

Therefore, DE either keep the target vector or replace it with the trial vector in the next 

generation. 

Figure [2-1] shows the DE flowchart in detail, along with its internal working and all 

components. The pseudo code of the DE algorithm is described as below: 
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Figure 2-1: DE algorithm Flow Chart 

 

1: Generate uniformly distributed random population P0 
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𝑉𝑁𝑝−2,𝑔 𝑉𝑁𝑝−1,𝑔 𝑉𝑁𝑝−2,𝑔 𝑉2,𝑔 𝑉1,𝑔 𝑉0,𝑔 

Crossover

Select target or 

trial
𝟓) 𝑿𝟎,𝒈+𝟏 =  𝒖𝟎,𝒈 𝒊𝒇 𝒇(𝒖𝟎,𝒈) ≤ 𝒇(𝑿𝟎,𝒈), 𝒆𝒍𝒔𝒆 𝑿𝟎,𝒈+𝟏 = 𝑿𝟎,𝒈+𝟏 

𝑢0,𝑔 trial vector 

+ 

+ 

+ - 

F 

Population 

Mutant 

Population 

New Population 

1) Choose target vector and base vector 

2) Random choice of two population members 

3) Compute weighted difference 

4) Add to base vector 

Base vector 
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6: // Mutation Section 

7:            Vi←Xa + F * (Xc-Xb)                                 

8:            for j= 0 to D do 

9: //Crossover Section 

10:                if rand(0,1)<Cr then 

11:                            Ui,j ← Vi,j 

12:              else 

13:                          Ui,j ← Xi,j 

14:              end if 

15:          end for          

16: //Selection Section 

17:          Evaluate Ui   

18:    if (f(Ui)≤f(Xi)) then 

19:        X’i← Ui 

20:    else 

21:       X’i←Xi 

22:    end if 

23:  end for 

24:  X←X’ 

25: end while 

 

Algorithm 1: Pseudo code of DE Algorithm. P0: Initial population, Np: Population size, V: 

Noise vector, U: Trial vector, D: Problem dimension, BFV: Best fitness value so far, VTR: 

Value-to-reach, NFC: Number of function calls, MAXNFC: Maximum number of function 

calls, F: Mutation constant, rand (0,1): Uniformly generated random number, Cr: 

Crossover rate, f(.): Objective function, P’: Population of the next generation 
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2.2 Summary  

Here, we have seen the foundation principles of the DE algorithms that will be used to 

build and fine tune the IPC. Population initialization, mutation, crossover, and selection 

best population members are the basic principles that make DE works for this type of 

optimization 
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Chapter 3 

3 Literature Review 
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Segmentation divides the image into regions or segments. This segmented representation 

of the image simplifies the process of further analysis, such as finding features, objects’ 

boundaries, or structures. In terms of image processing, segmentation is the process of 

assigning a label to every pixel in the image such that pixels with the same label share the 

same set of attributes or characteristics. 

 Existing segmentation algorithms use two approaches [7]. The first approach assumes 

global similarity among pixels of the targeted feature that distinguish it from the pixels of 

the background pixels. These features could be difference in brightness value, color, or 

texture, which leads to methods that are concerned with finding the optimum thresholds 

that distinguish target features pixels. The second approach uses local features. 

Other classification of segmentation algorithms is based on the similarity and discontinuity 

properties of intensity values in an image [8]. This thesis uses algorithms in both categories. 

These algorithms are pooled in a chain to be optimized by DE optimizers to find the best 

approach specific to imaging modality and the features which are used in the 

segmentation. In this chapter, we survey the state of the art of optimization-based 

segmentation algorithms.  

The following sections classify these algorithms based on optimization techniques used in 

the segmentation algorithms. 

3.1 Ant Colony Optimization (ACO): 
Pereira et al. [9] used ACO algorithm preceded by anisotropic diffusion for optic disc 

detection in color fundus images. They utilized a number of moving ants on the image 

driven by the local variation of the image’s intensity values to establish a pheromone 

matrix with the same size of the image which represents the edge information at each pixel 

location of the image. This edge enhancer was used in [10] to enhance edges as a 

preprocessing stage to segment exudates using 8-neighbor connected component 

analysis. 

Wang et al. [11] used ACO to minimize the energy function of Active Contour Model to 

segment the left ventricle of the heart. Han et al. [12] combined Fuzzy clustering with ACO 

to segment images based on three extracted features, namely, intensity, gradient, and 
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neighborhood of the pixels information abstracted in a number. Yuanjing et al. [13] 

proposed finite ACO combining ACO with multistage decision process of image processing 

based on ACM. Yu et al [14] used ACO combined with PCM to create a hybrid segmentation 

algorithm ACOPCM for noise images. ACO was used in the proposed algorithm to provide 

near optimal initialization of the number of clusters and their centroids to the clustering 

algorithm PCM. Biniaz et al [15] used Fuzzy c-mean (FCM) to define food to supervise ACO 

ants. Ants have the sense of responsibility to seek pixels with analogous properties and are 

able to compare the pixels and the specific reference food to select it. Liang et al [16] used 

ACO to search for the optimal number of thresholds to perform multilevel segmentation 

using Otsu thresholding of colored images. 

3.2 Artificial Bee Colony (ABC) 

Artificial Bee Colony optimization was also used in the image segmentation. In [17], ABC  

was used to find the optimal thresholding vector that maximizes a defined entropy 

function. These optimal thresholds were then used to segment the image into multiple 

sections. Taherdangkoo [18] used four groups of scout bees in ABO algorithm to identify 

the skull pixel to segment. ABO bees searched the whole image for skull pixels. MABC was 

introduced by Li et al. [19] and applied on multi-thresholding problem; this algorithm was 

applied to maximize an entropy criterion-based fitness measure function proposed by Otsu 

[20], [21]to find the best multi-thresholds to segment the provided images. 

3.3 Root Foraging Behavior (AFRO): 

Ma et al. [22] introduced a new optimization algorithm for multi-threshold segmentation 

of images inspired from plant root foraging behavior [23]. AFRO was used to maximize a 

function with N dimension representing N thresholds to use for the image segmentation. 

3.4 Micro Bats Algorithm (BA) 

Ye et al. [24] used a new metaheuristic algorithm called BA, which was inspired from micro 

bats that uses sonar to detect prey and avoid obstacles. They used BA to reach a 

thresholding value that maximizes the total fuzzy entropy functions of all classes of an 

image. In [25], BA is  used to optimize a novel proposed objective function. BA fails to 

segment images when the number of thresholds is large, in [26] Improved Bat Algorithm 
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IBA was proposed, where they integrated DE with the crossover and mutation to efficiently 

explore and exploit the new search space and avoid being trapped into local optima. They 

also used ACO random walk to jump out of local optimum and search a new space to 

escape trapping in local optimum.  

3.5 Cuckoo Search algorithm 

Preetha et al. [27] used the Cuckoo algorithm to optimize similarity function; special 

similarity function was developed between the segmented image using region growing and 

the gold ground truth image. Suresh et al. [28] introduced an improved version of the 

Cuckoo search algorithm called 𝐶𝑆McCulloch by incorporating McCulloch's method for levy 

flight generation in CS algorithm. They then used 𝐶𝑆McCulloch to maximize Otsu’s between-

class variance, Kapur’s entropy, and Tsallis Entropy. Bhandari et al [29] used CS to maximize 

Kapur’s entropy to find optimum thresholds to segment satellite images. Bhandari et al 

[30] and Agrawal et al [31] used Tsallis entropy as a fitness function to maximize for the 

optimum multi threshold variables. These thresholds were used to segment colored 

satellite images and colored images obtained from online datasets. 

3.6 Differential Evolution (DE) Algorithms 

Khan et al. [32] presented new algorithms to segment colored images. They s combined 

the adaptive DE, where each individual in the population is assigned different CR and 

mutation probability, with opposite-based learning to form a new algorithm called MoADE. 

Sarkar et al. [33] used DE to minimize cross entropy objective function for multiple 

thresholds. These threshold values were used to segment the colored image. Ayala et al. 

[34] used beta DE algorithm (BDE) to find the optimal thresholding levels needed to 

segment images. BDE was used to maximize Otsu objective function. Sarkar et al. [35] used 

DE to maximize Rényi entropy [36] objective function for multiple thresholds. Threshold 

values were used to segment satellite images. 

3.7 Dynamic Programming (DP) Algorithms 

Liu et al [37] segmented Left Ventricles using DP. DP was used to find the global minimum 

of developed fitness function based on the edge map of the left ventricle LV, which is 

developed by using the non-maxima gradient suppression technique [38].Qi et al. [39] 
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suggested a new and improved DP algorithm to segmented breast masses. They developed 

a new cost function using edge strength, gray level and mass size features. These features 

were combined to compute the cumulative cost function to be minimized. The global 

minimum optimal is obtained to be the contour of these masses. 

Maduskar et al. [40] studied the cavity contour in chest radiographs. They used pixel 

classifier to assign a likelihood value of belonging to the cavity border to each pixel. This 

likelihood map is used as an input cost image in the polar transformed image space for 

dynamic programming to trace the optimal maximum cost path.  

Hogeweg et al. [41] presented an algorithm to segment clavicles from chest radiographs. 

DP was used to maximize cost function concluded from multiple classifiers targeting 

clavicle’s body, border, and shape pixels. Optimal path is found by maximizing this cost 

function. Segmenting prostate cancer is considered in [42] where discrete deformable 

model algorithm is used with DP to minimize an energy function. This energy function 

integrates three energy components related to internal contour continuity and curvature, 

external image feature, and partial active shape model shape guidance. 

Zhou et al. [43] proposed DP to solve segmentation of carotid artery intima-media in 

longitudinal ultrasound images for measuring its thickness. The problem is identified as 

detection of parallel boundaries that complied with two features specifically, smoothness 

and parallelism of both boundaries. Therefore, they develop a special combined cost 

function to be minimized by DP. 

Song et al [44] provided a segmentation algorithm that target breast lesions using DP. A 

template-matching technique is used to locate and obtain the rough region of masses. DP 

optimizer used this rough region combined with a local cost function to find the mass 

contour. In [45] Zahnd et al used DP optimizer to segment and quantify coronary fibrous 

cap thickness in optical coherence. DP minimizes a cumulative cost function specially 

developed for this segmentation problem. 

Qian et al. [46] used DP to myocardium segmentation. DP scheme searches a globally 

optimal path in the polar-transformed image by minimizing the path cost consisting of both 

image information (i.e., external energy) and smoothness constraints (i.e., internal energy). 
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Rocha et al. [47] studied the segment the intima-media region. DP was used to estimate 

the lumen boundary as a step towards full segmentation of the intima-media region. Avila-

Montes et al. [48] applied DP in the hough space for localizing key center points in the 

aorta slices as a step towards 3D segmentation of thoracic aorta . DP uses polar-

transformed image and a cost of a path function as the sum of local energies along the 

path. 

3.8 Electro Magnetism Optimization (EMO) Algorithm 

Oliva et al [49] proposed EMO to solve multilevel segmentation of images. EMO optimizer 

was used to maximize Otsu between class variance or Kapur’s Entropy function. In [50], 

they targeted multi-level segmentation velocity of images and proposed using EMO 

algorithm combined with Tsallis entropy function.  

3.9 Evolutionary Programming (EP)algorithm 

Fang [51] proposed a new EP with two step mutation rules. New EP was used to minimize 

FCM function to reach optimal thresholding values for each class in the image. 

3.10 Firefly algorithm (FA) 

Alsmadi [52] used the firefly algorithm to search the search space to find near optimal 

cluster number and associated centers. This near optimal solution is then fed to FCM for 

the final solution. Hassanzadeh et al [53] proposed a new fuzzy-based firefly algorithm to 

improve explore ability. They applied it to multi-level segmentation using Otsu between 

variance cost function. Chen et al [54] introduced two modification on firefly algorithm 

specifically, diversity enhancing strategy with Cauchy mutation and neighborhood 

strategy. They then used the improved FA (IFA) to maximize between-class variance (Otsu 

function), and find the optimal multi-level thresholds for colored images. 

Horng et al [55] proposed using FA to maximize the objective function of MET (maximum 

entropy thresholding). Multi-level thresholds are generated to segment colored images. 

Then, Horng et al [56] maximized the inverse of minimum cross entropy thresholding 

(MCET) function to obtain the optimal multi-thresholds. 
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3.11 Shuffled Frog Leaping algorithm (SFLA) 

Ladgham et al [57] used the modified MSFLA to optimize a fitness function Both the 

modification of SFLA and the new fitness function aim at eliminating local optimum and 

increase computation time. The proposed algorithm was then applied on MR brain images 

for segmentation. Wang et al [58] used SFLA algorithm to maximize the trace of a 

derivation matrix of 3-D Otsu thresholding algorithm. 

Horng [59] used SFLA to maximize a special entropy function. The optimal solution provides 

optimal thresholds which is used to segment the image. In [60] Horngused SFLA to 

minimize the cross entropy thresholder and obtain optimal threshold values for the 

multilevel image segmentation. 

3.12 Genetic Algorithm (GA) 

Khayat et al. [61] proposed a new algorithm to segment nano-scale light microscopic 

images. They combined two algorithms namely, gray level spatial correlation histogram 

and entropic criterion function [62] to calculate the best threshold of provided images. 

They use GA for the optimization of parameters in the combined algorithm. Xie et al. [63] 

proposed a new algorithm for segmenting dermoscopy images. GA algorithm is combined 

with between-class variance to segment the image into multiple classes; pixels from every 

class were seeded to a self-generating neural network.  

Usamentiaga et al. [65] used GA to tune the parameters of an infrared image segmentation 

algorithm. In [66] Khan et al. developed a new algorithm to segment colored images. They 

combined spatial FCM with GA as SFGA algorithm. SFGA then is used to maximize a 

collective objective function. Mousavi et al. [64] proposed segmenting color images using 

GA. They improved segmentation accuracy by using GA to optimize color space HSI (Hue, 

Saturation, and Intensity). 

3.13 Summary 

In this chapter, we surveyed several optimization-based segmentation algorithms. The 

segmentation algorithms show very specific use of optimizers targeting specific task in the 

segmentation instead of the whole process of images segmentation (filtering, enhancing, 
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thresholding, and post processing). These tasks can be categorized into several areas as 

below: 

 Find edges or shortest path in polar transformed images 

 Minimize or maximize energy, entropy, and similarity functions 

 Extract features such as intensity, and gradient 

 Initialize segmentation algorithms with clusters and their centers and optimize 

clustering results 

 Optimize thresholding algorithms 

 Maximize or minimize special functions developed specifically for the segmentation 

problem being investigated 
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Chapter 4 

4 Proposed Image Processing Algorithms 
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4.1 Image Processing 

Images can be represented as a two-dimensional function 𝑓(𝑥, 𝑦)where the amplitude of 

𝑓at any pair of coordinates x and y is the intensity or gray level of the image at that point. 

4.2 Image Segmentation 

Segmentation is partitioning the digital image into multiple segments or classes to simplify 

further analysis. These sets of segments/classes cover the entire image. The outputs of 

image segmentation are attributes extracted from those images which could be a set of 

extracted contours, edges, or a set of classes.  

Segmentation classifies each of the pixels based on some characteristic or computed 

property, such as color, intensity, or texture which results in regions of similar pixels. 

Mathematically, it is splitting the image region R to “n” non-overlapped sub regions 

𝑅1, … , 𝑅𝑛 such that: 

 
𝑅 = ⋃ 𝑅𝑖

𝑛

𝑖=1
 (4-1) 

In this case, we are looking to segment medical images to two regions: background and 

foreground, representing the targeted tissue of the segmentation process. Figure 4-1 

shows a sample lung X-Ray ihmage segmented into two regions. 

 

Figure 4-1: Segmented lung 

The following sections show different principles of segmenting images. 

4.2.1 Edge Detection Techniques 

Regions forming the segments in images are surrounded by borders with abrupt changes 

in intensity levels. These changes can be modeled in one of the three models (see Figure 

https://en.wikipedia.org/wiki/Contour_line
https://en.wikipedia.org/wiki/Color
https://en.wikipedia.org/wiki/Luminous_intensity
https://en.wikipedia.org/wiki/Image_texture
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4-2). Many segmentation techniques use these edge models to detect and contour 

segments of interests. 

In Figure 4-2, we can see that the first model shows a step edge, which can be found in 

animations with one clean pixel abrupt changes in the intensity level. On the other hand, 

digital images have normally blurred edges which makes the detection of the ramp edge 

model more appropriate. 

   
Step edge model Ramp edge model Roof edge model 

Figure 4-2: Edge models used in edge detection 

In ramp edge model, the changes in intensity happen over multiple pixels. The third edge 

model “roof edge” happens in regions of digital images where you have thin lines such as 

pipes or roads in satellite images. 

Detecting these types of edges can be done using first order derivatives such as Roberts. 

Prewitt, and Sobel edge. Figure 4-3 shows the masks of these operators which can be 

convolved with the image to get the filtered image. 

-1 0 

0 1 
 

-1 -1 -1 
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1 1 1 
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0 1 2 

-1 0 1 

-2 -1 0 
 

     

0 1 

-1 0 
 

-1 0 1 

-1 0 1 

-1 0 1 
 

-1 0 1 

-2 0 2 

-1 0 1 
 

-1 -1 0 

-1 0 1 

0 1 1 
 

-2 -1 0 

-1 0 1 

0 1 2 
 

Roberts Prewitt Sobel Diagonal Prewitt Diagonal Sobel  

Figure 4-3: Different edge detector operator 

Some segmentation methods use the second derivative Laplacian operator to detect 

abrupt changes of the intensity. The Figure 4-4shows the Laplacian mask. 

1 1 1 

1 -8 1 

1 1 1 

Figure 4-4: Laplacian mask 

Laplacian mask in Figure 4-4 is isotropic that detect lines in all directions. 
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Filtering images in the spatial domain by using the above masks can be represented 

mathematically as follow (4-2): 

 
𝑔(𝑥, 𝑦) =  ∑ ∑ 𝑤(𝑠, 𝑡). 𝑓(𝑥 + 𝑠, 𝑦 + 𝑡)

𝑏

𝑡=−𝑏

𝑎

𝑠=−𝑎

 (4-2) 

The above mentioned techniques normally yield discontinued pixels located on the 

borders, which is normally caused by a noise. Different edge linking and boundary 

detection are used to link these pixels to form a complete segment linked with boundary. 

4.2.2 Thresholding 

This technique partitions the image directly using intensity values or properties of these 

values or both. The basic approach is choosing a threshold value 𝑇 such that all pixels 

𝑓(𝑥, 𝑦) > 𝑇 forms the object to be segmented, while the pixels with 𝑓(𝑥, 𝑦) < 𝑇 are the 

background pixels. This global thresholding technique can be mathematically expressed as: 

 
𝑔(𝑥, 𝑦) =  {

1 𝑖𝑓 𝑓(𝑥, 𝑦) > 𝑇

0 𝑖𝑓 𝑓(𝑥, 𝑦)  ≤ 𝑇
 (4-3) 

In some cases, we might be interested in multi level segmentation. In this case, we choose 

multiple thresholds that segment the image into some classes. The thresholded image is 

represented by:  

  

𝑔(𝑥, 𝑦) =  {

𝑎          𝑖𝑓 𝑓(𝑥, 𝑦) ≤ 𝐾1           

𝑏         𝑖𝑓 𝐾1 < 𝑓(𝑥, 𝑦)  ≤ 𝐾2

𝑐         𝑖𝑓 𝑓(𝑥, 𝑦) >  𝐾2               

 (4-4) 

4.2.3 Region-Based Segmentation 

This technique groups pixels into larger regions based on the predefined criteria for 

growth. Seeding points of every region can be selected either manually or based on the 

nature of the problem. The seeds selection is followed by computing the same set of 

attributes for all pixels in the image. Adding pixels to a region based on predefined 

predicate 𝑄 is represented as follows: 

 𝑄 =  {
𝑇𝑅𝑈𝐸     𝑖𝑓 𝑡ℎ𝑒 𝑝𝑖𝑥𝑒𝑙 𝑎𝑡 (𝑥, 𝑦) 𝑚𝑒𝑒𝑡𝑠 𝑠𝑒𝑡 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎
𝐹𝑎𝑙𝑠𝑒      𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                        

 (4-5) 

Another technique is using region splitting which starts by using the full image as a region 

and splitting the region into four disjointed regions if 𝑄(𝑅𝑖) = 𝐹𝑎𝑙𝑠𝑒. Splitting continues 
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until no splitting is possible. This is followed by merging adjacent regions till no merging is 

possible. Merging regions is based on the predicate condition: 

𝑄(𝑅𝑗 ∪ 𝑅𝑘) = 𝑇𝑅𝑈𝐸 

4.2.4 Watershed Segmentation 

This approach uses many concepts of the previously mentioned algorithms. It is based on 

dealing with the image in 3D where intensity values are considered as the Z coordinate. 

Using this interpretation of the image produces 3D topography with basins (forming 

regional minimums). We flood this topography with water from below, causing the water 

to rise in distinct catchment basins till it is about to merge. At this stage, we build a dam 

and continue the flooding process till only top of the dam is above water. 

4.1 Filtering Algorithms: 

Filtering is the first step in the image processing chain. The optimizer algorithm can 

choose up to three filters from a pool of twenty filters to build the image processing 

chain. Chosen filters are then applied in sequence on the image to filter noise and 

unwanted features and emphasize the extracted features. 

4.1.1 Median Filter: 

Median [67] is calculated for every pixel in an image based on the window size chosen for 

the filter as it is shown in the Figure 4-5.  The algorithm arranges the values of pixels’ 

intensity levels in the window surrounding the targeted pixel and identifies the middle 

value to replace the targeted pixel. The filter has excellent ability to reduce noise as well 

as preserve edge characteristics, which makes it fit for our pool of pre-processing filters 

in the optimization chain. 

Median filter requires an especial window size which in turn requires two parameters; 

each of them varies between 2 to the maximum size of the image. Using high limits for 

these parameters causes the deterioration of the image and loss of critical data that can 

used to identify an accurate border of the targeted tissue. 

Figure 4-6 shows how border information of lungs deteriorates as we increase windows 

size from [10,10] to [150,150]. In order to maintain the border information, we have set 

the limit on median filter window size to [150,150]. 
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 𝑓(𝑥, 𝑦) = 𝑚𝑒𝑑𝑖𝑎𝑛{𝑔(𝑠, 𝑡)}(𝑠,𝑡)∈𝑆𝑥𝑦
 (4-6) 

 

 

      

      

      

      

      

      
 

 

100 150 50 

44 37 90 

77 60 10 

10 37 44 50 60 77 90 100 150 
 

Figure 4-5: Median filter replaces the processed pixel with the median of neighboring 
pixels’ (3x3) window size 

 

Original image Median [10 10] Median [50 50] Median [100 100] Median [150 150] 

     

Figure 4-6: Median filter results with different window sizes 

4.1.2 Stick Filter: 

Stick filter [68] detects speckles by maximizing the likelihood ratio of a set of image pixels 

in a neighborhood and a straight line passing through the centre of the neighbourhood. 

Increasing “stick” length produces a smooth filtered image at the expense of weakly 

highlighting tightly bound curves, while thicker “sticks” suppress more noise at the expense 

of making thin boundaries less visible. 

Parameterized stick filter function used in our optimization chain gives the chain a good 

tool to reduce speckles while emphasizing edges which is beneficial for the overall 

performance of the optimized chain. 

Middle pixel 
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The filter generates eight matrices representing sticks in eight different angles. Each stick 

has specific thickness as it can be seen from Figure 4-7 .The algorithm for the detection is 

based on decision-directed Sticks algorithm, which can be summarized in three steps: the 

determination of the most probable line direction at each point, the computation of a prior 

probability for each angle at each point, and the computation of the final test statistic. 

 

 

 

Figure 4-7: Different angles used in stick filter 

The equations of this approach are described as below: 

 ∝ (𝑥, 𝑦) = arg 𝑚𝑎𝑥
𝜃

 ∑ 𝑠𝜃(𝑖, 𝑗) 𝑓(𝑥 − 𝑖, 𝑦 − 𝑗)
𝑖,𝑗

 (4-7) 

   

 𝜋𝜃(𝑥, 𝑦) =  ∑ 𝑤(𝑥 + 𝑖, 𝑦 + 𝑗) 𝐼(

𝑖,𝑗

∝ (𝑥, 𝑦) = 𝜃) (4-8) 

   

 𝑓́(𝑥, 𝑦) =  𝑚𝑎𝑥
𝜃𝑖

 (log 𝜋𝜃(𝑥, 𝑦) +  𝑖 𝜎2⁄ ∑ 𝑠𝜃(𝑖, 𝑗) 𝑓(𝑥 − 𝑖, 𝑦 − 𝑗)
𝑖,𝑗

 (4-9) 

 

Where: 

𝑓(𝑥, 𝑦) 𝑎𝑛𝑑 𝑓́(𝑥, 𝑦) are the original image and the output test statistic. ∝ (𝑥, 𝑦) is the 

most probable line orientation at point (x,y). The stick with angular value of 

𝜃 𝑖𝑠 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑒𝑑 𝑎𝑠 𝑠𝜃(𝑖, 𝑗) 𝑎𝑛𝑑 𝑊(𝑥, 𝑦) is a mask function which has unit value on the 

union of the support of the sticks and zero-valued elsewhere. 
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𝜋𝜃(𝑥, 𝑦) is the computed probability of a line at orientation 𝜃 at point (𝑥, 𝑦)𝑎𝑛𝑑 𝐼(𝑒𝑥𝑝𝑟) 

is the indicator function equal to one if “expr” is true and zero if it is false. 

Stick filter has two parameters that affect the sticks matrix size and the stick thickness. 

Figure 4-8 shows the effect of increasing the sticks matrix size on the filtered image. A 

thresholded image is added for each filtered image to help better show the border 

smoothing effect of this filter. 

To obtain good results, the sticks should be made longer than the correlation length of the 

noise, yet shorter than the distance over which the boundaries appear to be straight lines. 

In our application, we have limited the stick matrix to 101 and stick thickness to 3. 

Original 15x1 51x1 

   

   

Figure 4-8: Effect of increasing stick filter matrix size 

 

4.1.3 Unsharp Masking Filter: 

The unsharp masking filter [67,68] has the effect of making edges and fine detail in the 

image crisper. This technique comes from a publishing industry process, in which an image 

is sharpened by subtracting a blurred (unsharp) version of the image from itself to create 

the mask that is added to the original image. This process can be summarized as follows: 

 Blur the original image 

 Subtract the blurred image from the original which produces the mask 

 Add the mask (produced in previous steps) to the original image. 

This can be expressed as follows: 
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 𝑔(𝑥, 𝑦) = 𝑓(𝑥, 𝑦) + 𝑘 ∗  𝑔𝑚𝑎𝑠𝑘(𝑥, 𝑦) (4-10) 

Where 𝑓(𝑥, 𝑦) is the original image and 𝑔𝑚𝑎𝑠𝑘(𝑥, 𝑦) is the mask resulting from subtracting 

blurred version of the image from itself. 

  

Original Image Sharpened Image 

Figure -4-9: Effect of Unsharp Masking 

In Figure -4-9, we can see a crisper image, and sharper border between black and the moon 

surface. Also, if we look at the moon surface, we can see crisper and sharper circles on the 

surface. Unsharp masking has no parameters to tweak. 

4.1.4 Wiener: 

Wiener filtering [69,70] or minimum mean square error minimizes the overall mean square 

of the uncorrupted image and its estimate. Wiener filter computes an estimate of an 

unknown signal by filtering an input signal that consists of the desired signal to estimate 

what has been corrupted by additive noise. The Wiener filter can be used to filter out the 

noise from the corrupted signal to provide an estimate of the underlying signal of interest. 

The Wiener filter is based on a statistical approach, and a more statistical account of the 

theory is given in the minimum mean square error (MMSE): 

 
𝐹^(𝑢, 𝑣) = [

𝐻∗(𝑢, 𝑣) 𝑆𝑓(𝑢, 𝑣)

𝑆𝑓(𝑢, 𝑣)|𝐻(𝑢, 𝑣)|2 + 𝑆𝜂(𝑢, 𝑣)
]  𝐺(𝑢, 𝑣) 

(4-11) 

Where H(u,v) and H*(u,v) are the degradation function and its complex conjugate 

respectively. Power spectrum of the undegraded image is represented by 𝑆𝑓(𝑢, 𝑣) while 

𝑆𝜂(𝑢, 𝑣) is the noise power spectrum 

https://en.wikipedia.org/wiki/Estimation_theory
https://en.wikipedia.org/wiki/Noise
https://en.wikipedia.org/wiki/Statistical
https://en.wikipedia.org/wiki/Minimum_mean_square_error
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Original image Wiener [20 20] Wiener [30 30] 

Figure 4-10: Applying Wiener filter with different window sizes 

Wiener filter uses window that passes through the original image to apply the filter 

properly. Increasing this window beyond [30,30] leads to a huge loss of lungs’ border 

information. This window size is used as the maximum for wiener filter. 

4.1.5 Average Filter: 

This filter replaces processed pixel’s grey level in image with the average of neighborhood 

pixels’ grey level values. Average filter [73] gives a simple noise reduction method by 

reducing the intensity variation between pixels and neighboring pixels. This filter has two 

parameters that determine the window size to mask all pixels surrounding the processed 

pixel. The value of the restored pixel 𝑓^(𝑥, 𝑦) is the average value in the area defined by 

the neighborhood 𝑆𝑥𝑦 centered at the point (𝑥, 𝑦). This can be expressed by the following 

formula: 

 
𝑓^(𝑥, 𝑦) =  

1

𝑚 ∗ 𝑛
 ∑ 𝑔(𝑠, 𝑡)
(𝑠,𝑡)∈𝑆𝑥𝑦

 (4-12) 

Figure 4-11 shows different sizes of averaging mask: 

1/9 1/9 1/9 

1/9 1/9 1/9 

1/9 1/9 1/9 
 

1/25 1/25 1/25 1/25 1/25 

1/25 1/25 1/25 1/25 1/25 

1/25 1/25 1/25 1/25 1/25 

1/25 1/25 1/25 1/25 1/25 

1/25 1/25 1/25 1/25 1/25 
 

Averaging [3 3] Averaging [5 5] 

Figure 4-11: Averaging Masks with different sizes 



29 
 

 
 

    

Original image Average [10 10] Average [30 30] Average [50 50] 

Figure 4-12: Effect of averaging mask windows size when applied on Lung X-Ray image 

Figure 4-12 shows the effect of increasing the average window size. The last picture shows 

some loss of border information which might affect segmentation. Average filter in our 

optimizer is limited to 50x50 window size. 

4.1.6 Disk Filter  

Disk filter [73] performs similar calculations to the average filter, except that the average 

neighborhood has a disk shape instead of square in addition to weighted pixels such that 

it emphasizes the central pixel. The following equation (4-13) shows a general 

implementation of average filtering that is used in disk averaging as well as in different 

shapes 

 
𝑔(𝑥, 𝑦) =  

∑ ∑ 𝑤(𝑠, 𝑡)𝑓(𝑥 + 𝑠, 𝑦 + 𝑡)𝑏
𝑡=−𝑏

𝑎
𝑠=−𝑎

∑ ∑ 𝑤(𝑠, 𝑡)𝑏
𝑡=−𝑏

𝑎
𝑠=−𝑎

 (4-14) 

Figure 4-13 show two samples of disk shapes with different sizes used by our optimizer: 

0.0251   0.1453   0.0251 

0.1453   0.3183   0.1453 

0.0251   0.1453   0.0251 

         0       0.0170  0.0381  0.0170       0 

    0.0170  0.0784  0.0796  0.0784  0.0170 

    0.0381  0.0796  0.0796  0.0796  0.0381 

    0.0170  0.0784  0.0796  0.0784  0.0170 

         0       0.0170  0.0381  0.0170       0 

Disk shape with 1-pixel radius Disk shape with 2 pixels’ radius 

Figure 4-13: Disk shape filter mask with different sizes 

This filter offers noise reduction and smoothing ability tool for our optimizer. It has only 

one parameter, which is the disk radius. 
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Figure 4-14 shows that increasing disk radius to 30 would blur the image border and might 

affect later segmentation accuracy. The DE optimizer limit the maximum radius to 30 for 

our application 

    
Original Image Disk 10 Disk 20 Disk 30 

Figure 4-14: Effect of disk averaging filter with increasing radius size 

4.1.7 Gaussian Filter:  

This filter replaces processed pixel with Gaussian weighted average of the target pixel and 

surrounding neighborhood pixels [72,73]. Weights are designed to give higher importance 

to the central pixel. Other pixels are weighted inversely as a function of their distance from 

central pixel. Gaussian filter mask is generated using equation (4-14): 

 

𝑔(𝑥, 𝑦) =  
1

2𝜋𝜎2
∗  𝑒

− 
𝑥2+ 𝑦2

2 𝜎2  (4-15) 

Figure 4-15 shows two Gaussian filter mask samples generated by Matlab. 

0.0439    0.1217    0.0439 

0.1217    0.3377    0.1217 

0.0439    0.1217    0.0439 

0.0001    0.0020    0.0055    0.0020    0.0001 

0.0020    0.0422    0.1171    0.0422    0.0020 

0.0055    0.1171    0.3248    0.1171    0.0055 

0.0020    0.0422    0.1171    0.0422    0.0020 

0.0001    0.0020    0.0055    0.0020    0.0001 

Figure 4-15: Two sizes of Gaussian filter masks (3x3) and (5x5), sigma 0.7 

Gaussian filters provide a good smoothing with less blurring compared to other averaging 

filters mentioned earlier, which allows better preservation of the main target of this image 

processing chain. 
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Original Image Gaussian [50 50] Gaussian [100 100] Gaussian [200 200] 
Figure 4-16: Effect of Gaussian filter with increasing windows size 

Increasing Gaussian filter windows size while maintaining sigma = 3 in Figure 4-16 produces 

almost identical results which could be explained by looking at the filter surface produced 

by Matlab (Figure 4-17): 

 

Figure 4-17: Gaussian filter graph with 100x100 window size, sigma = 3 

Figure 4-17 shows Gaussian filter for window size [100,100]. It can be easily noticed that 

the filter takes in consideration only the central pixels around the target pixel window to 

be weight averaged.  It means that increasing window size while maintaining sigma has no 

effect after a certain window size. 

On the other hand, increasing sigma using the same window size increases the number of 

pixels that are weight averaged in the Gaussian window. Gaussian filter window size should 

be chosen such that most of the Gaussian bell is included in the window. Choosing window 

size, which is five times the sigma, value produces Gaussian filter such as the filter value at 

the corner is zero and other edge values are negligible. 
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To reduce the dimensionality of the problem, we suggest removing dimension variables 

that are related to Gaussian window size from the chromosome and restrict the variables 

needed for this filter to only sigma value and calculate the Gaussian filter mask based on 

size = 5xSigma. 

 

Figure 44-18: Gaussian bell windows’ size = 100, sigma = 20 

Figure 4-19 shows the effect of increasing sigma. When sigma is 50, the border data tend 

to be lost. Based on this experiment, sigma will be limited to 50. 

    

Original Image Sigma 15 Sigma 30 Sigma 50 

Figure 4-19: Effect of Gaussian filter with increasing sigma 

4.1.8 Laplacian of Gaussian (LoG) Filter: 

This filter [74,75,76] is designed based on two principles set by Marr and Hildreth. First, 

image intensity changes are not independent of image scale, which requires using 

operators of different sizes (i.e., tuned operators); and second, that pixel at edges have 

peak change in intensity for first derivatives and zero crossing for a second derivative.  
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Marr and Hildreth used the laplacian operator ∇2 to develop LoG filter as this filter fulfills 

the above mentioned conditions. This ∇2operator for 2-D Gaussian function is given as 

below: 

 
𝐺(𝑥, 𝑦) =  𝑒

−
𝑥2+𝑦2

2 𝜎2  (4-16) 

Using the Laplacian operator on the above Gaussian equation yields to the Laplacian of 

Gaussian formula used in these types of filters: 

 
∇2𝐺(𝑥, 𝑦) =  [

𝑥2 + 𝑦2 − 2𝜎2

𝜎4
] 𝑒

−
𝑥2+𝑦2

2 𝜎2  (4-17) 

The ability to tune the operator to target any desired scale and the fact that it is a derivative 

operator capable of detected changes in intensity and identifying edges makes this 

operator a very good tool for our chain optimizer. 

LoG filter has three parameters; two parameters are related to the determination of the 

mask size and the third parameter determine the Gaussian sigma. Figure 4-20 shows the 

effect of different parameters of this filter on a Lung X-Ray image: 

    

Original image sigma=0.1 sigma=0.4 sigma=1 

Figure 4-20: Effect of LoG filter with fixed window size [20 400] and increasing sigma 
value 

Even though the last image shows black, it actually contains data that can be seen if we 

apply Otsu thresholding. Figure 4-21 shows the thresholding result. 

 

Figure 4-21 Showing pixel information contained in black lung X-Ray image filtered with 
LoG with sigma = 1 



34 
 

 
 

Based on experiments, we can determine the maximums for this filter as follows: 

- Window size maximum [50% 50%] of the image size 

- Sigma maximum 3 

4.1.9 Laplacian Filter: 

Laplacian operator [79] [80] is the second derivative defined as follows for two dimensions: 

 
∇2=  

𝜕2𝑓

𝜕𝑥2 
+  

𝜕2𝑓

𝜕𝑦2 
 (4-18) 

Second derivatives produce spike values when applied to rapidly changing function 

sections. This make this operator very important to highlight intensity discontinuities in an 

image and deemphasizes regions with slowly varying intensity levels. Applying this filter to 

an image highlight edge lines on a dark background, which can then be added to the 

original image. This method produces a sharpened image. Applying this filter on digital 

images requires using a discrete version of Laplacian, which is expressed as follows: 

 ∇2𝑓(𝑥, 𝑦) = 𝑓(𝑥 + 1, 𝑦) + 𝑓(𝑥 − 1, 𝑦) + 𝑓(𝑥, 𝑦 + 1) + 𝑓(𝑥, 𝑦 − 1)

− 4𝑓(𝑥, 𝑦) 
(4-19) 

This can be expressed in matrix masks as one of the following 

[
0 1 0
1 −4 1
0 1 0

] [
1 1 1
1 −8 1
1 1 1

] [
0 −1 0

−1 4 −1
0 −1 0

] [
−1 −1 −1
−1 8 −1
−1 −1 −1

] 

 

   

Original Image Filtered with 

Laplacian 

Original minus 

Laplacian 

Figure 4-22: Effect of Laplacian filter applied on moon image 
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This filter has one parameter that controls generating the above matrices. The range is 

fixed between 0 and 1 by Matlab Laplacian implementation. Figure 4-22 shows the effect 

of implementing this filter. 

Applying Laplacian produces a dark image with greyish borders (middle image). To 

emphasize the border and enhance it, we can subtract/add this Laplacian filtered image 

from/to the original image (right side image). This produces a sharpened and crisper image, 

as you can see in Figure 4-22. 

4.1.10 Prewitt Filter: 

Prewitt filter [81] [82] calculates the gradient of the image intensity at each point. This 

identifies the direction of the largest possible increase in the pixel intensity from light to 

dark. Having this filter in pre-processing filters gives the chain optimizer an essential tool 

to enhance edges for later processing stages in the change. 

It is considered a first derivative operator that calculates the gradient in both directions 𝑥 

and 𝑦. The gradient of image 𝑓(𝑥, 𝑦) at location (𝑥, 𝑦) is defined as the vector: 

 

∇𝑓 = [
𝐺𝑥

𝐺𝑦
] = [

𝜕𝑓
𝜕𝑥
𝜕𝑓
𝜕𝑦

] (4-20) 

Prewitt operator uses 3x3 mask size to calculate the gradient in both direction 𝑥 and 𝑦. An 

approach using it is developed based on the equations [4-17] [4-18] 

 𝐺𝑥 = (𝑧7 + 𝑧8 + 𝑧9) − (𝑧1 + 𝑧2 + 𝑧3) (4-21) 

 𝐺𝑦 = (𝑧3 + 𝑧6 + 𝑧9) − (𝑧1 + 𝑧4 + 𝑧7) (4-22) 

Which calculates the difference between first and third column in the 3x3 image mask. 

Both equations can be expressed in masks which are shown in Figure 4-23. There are no 

parameters for Prewitt filter. We can apply it in the vertical or horizontal direction. 

[
−1 −1 −1
0 0 0
1 1 1

]  [
−1 0 1
−1 0 1
−1 0 1

] 

𝐺𝑥 𝐺𝑦 

Figure 4-23: Gx,y Masks representing [4-9,10] equation as matrices 
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Figure 4-24 shows the effect of applying Prewitt on lung image. The first row shows almost 

black images as a result of applying Prewitt. We can barely see the edges. Second line 

shows the histogram equalization to manifest the effect of Prewitt operator and how it 

emphasizes the horizontal or vertical edges. The results of Prewitt filter are normally added 

to the image to enhance the edge on the original image (second row in the Figure 4-24). 

This prepares it for further processing.  

   

Original Image Horz. Prewitt Vert. Prewitt 

   

Original Image Horz. Prewitt  Vert. Prewitt 

Figure 4-24: First row show Prewitt output when applied on Lung X-Ray image (black 
images), second row of images is the result of adding Prewitt output to original image to 

emphasis edges 

  

(a) Horz. Prewitt (b)Vert. Prewitt 

Figure 4-25: Applying histogram equalization on Prewitt filter 

Figure 4-25 shows the result of applying histogram equalization on Prewitt filter black 

image output to better illustrate its effect in emphasizing horizontal edges in Figure 4-25 

(a) and vertical edges in Figure 4-25 (b). 
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4.1.11 Sobel  

Sobel [79,81,82] is a gradient operator similar to Prewitt except that it emphasizes its mask 

on the center of rows and columns. Sobel provides the optimizer with another technique 

to enhance image edges. Sobel operator uses 3x3 mask size to calculate the gradient in 

both direction 𝑥 and 𝑦. An approach using it was developed based on the equations (4-19) 

(4-20) 

 𝐺𝑥 = (𝑧7 + 2𝑧8 + 𝑧9) − (𝑧1 + 2𝑧2 + 𝑧3) (4-23) 

Which 𝐺𝑥 calculates the difference between the first and third row in the 3x3 image mask 

 𝐺𝑦 = (𝑧3 + 2𝑧6 + 𝑧9) − (𝑧1 + 2𝑧4 + 𝑧7) (4-24) 

Which 𝐺𝑦 calculates the difference between the first and third column in the 3x3 image 

mask. In both equations (4-19) (4-20), Sobel operator multiplies the central cell by two in 

both rows and columns to emphasize the central pixel in filtered images. Based on the 

above mentioned equations, we can create the following Sobel masks: 

[
−1 −2 −1
0 0 0
1 2 1

]  [
−1 0 1
−2 0 2
−1 0 1

] 

𝐺𝑥 𝐺𝑦 

There are no parameters for Sobel filter. We can apply it in the vertical or horizontal 

direction. Figure 4-26 shows the effect of applying Sobel on the lung image. 

   

Original Image Horizontal Sobel Vertical Sobel 

   

Figure 4-26: Effect of applying Sobel filter on Lung X-Ray image 
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The first row in Figure 4-26 shows almost black images as a result of applying Sobel. These 

black images actually have the data of edges that could be used to enhance edges if it was 

added to the original image as seen in the second row in Figure 4-26. This prepares it for 

further processing. Second line shows histogram equalization to manifest the effect of 

Sobel operator and how it emphasizes the horizontal or vertical edges. To verify the true 

effect, we apply histogram equalization as shown in Figure 4-25. 

  

(a) Horz.Sobel (b) Vert. Sobel 

Figure 4-27: Histogram Equalization applied on sobel filtered images 

Figure 4-25 (a) clearly shows horizontal white lines clearly visible compared to vertical lines 

which is an indication of horizontal edge emphasis by Sobel, while (b) shows vertical white 

lines are clearly visible compared to horizontal lines which indicates a vertical edge 

emphasis by Sobel. 

4.1.12 Morphological filters: 

Morphological filters [85] focus on extracting features, attributes, and meaning from 

images. They are used as probes to examine an image for specific attributes. The core 

function of these filters depends on using structural elements that passes through every 

pixel of the image similar to masks in spatial filters and convolution operation. Figure 4-28 

shows different shapes and sizes that are used as structural elements. More structure 

elements are shown in Figure 4-29: Different shapes of structural elements. In sequence: 

first SE has an arbitrary shape determined by the location of ones, second SE shows a line 

of seven pixels with zero degree which can be changed to any angle and finally, right most 

SE is the pair SE which contains two elements: One element is located at the origin, and 

the other at an offset specified by 2D parameter. 
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0 0 0 1 0 0 0 
0 0 1 1 1 0 0 
0 1 1 1 1 1 0 
1 1 1 1 1 1 1 
0 1 1 1 1 1 0 
0 0 1 1 1 0 0 
0 0 0 1 0 0 0 

 

0 0 0 1 0 0 0 
0 1 1 1 1 1 0 
0 1 1 1 1 1 0 
1 1 1 1 1 1 1 
0 1 1 1 1 1 0 
0 1 1 1 1 1 0 
0 0 0 1 0 0 0 

 

0 0 1 1 1 0 0 
0 1 1 1 1 1 0 
1 1 1 1 1 1 1 
1 1 1 1 1 1 1 
1 1 1 1 1 1 1 
0 1 1 1 1 1 0 
0 0 1 1 1 0 0 

 

Diamond Structural 
Element 

Disk Structural Element Octagon Structural 
Element 

Figure 4-28: (a) Diamond (b) Disk (C) Octagon Structural Elements 

Different flat shapes are shown in Figure 4-28 with radius R=3. These structure elements 

have one parameter: 

1 0 0 
1 0 0 
1 0 1 

 

1 1 1 1 1 1 1 
 

0 0 0 0 0 
0 0 0 0 0 
0 0 1 0 0 
0 0 0 0 0 
0 0 0 0 1 

 

Arbitrary structural 
Element 

Line Structural Element=7, 
Deg=0 

Pair Structural Element 
(offset (2,2)) 

Figure 4-29: Different shapes of structural elements 

Figure 4-30 shows the periodic line SE that accepts two parameters P to determine the 

number of members in this SE using the formula 2𝑝 + 1. The other parameters for the 

periodic line SE is a vector which determines the offset “V” of other members in the SE. 

The first member is located at the origin (center of the SE) and other members are located 

at 1*V, -1*V, 2*V, -2*V…., P*V, -P*V. 

0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 1 0 0 
0 0 0 0 1 0 0 0 0 
0 0 1 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 

 

1 1 1 1 1 
1 1 1 1 1 
1 1 1 1 1 

 

1 1 1 
1 1 1 
1 1 1 

 

Periodic line SE v=[1  -2] Rectangle SE Square SE 

Figure 4-30: Different shapes of structural elements 

The structural elements explained above are used by the four morphological filters 

explained in the following four sections which used our image processing chain. The 

following sections demonstrate the effect of these filters on sample images and also 

R=3 
R=3 R=3 
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develop the maximum and minimum vectors of their parameters based on testing different 

values of parameters. 

4.1.12.1 Erosion  

The erosion [86] [87] of a grayscale image 𝑓(𝑥, 𝑦) by a flat structuring element “b” at any 

location (𝑥, 𝑦) is the minimum value of the intensity level in the region specified by the 

structuring element “b”, when the origin of “b” is located at the point (𝑥, 𝑦) of the image. 

This is represented by the following mathematic equation: 

 
[𝑓 ⊖ 𝑏](𝑥, 𝑦) = 𝑚𝑖𝑛(𝑠,𝑡)∈𝑏{𝑓(𝑥 + 𝑠, 𝑦 + 𝑡)} (4-25) 

Where s and t are local variables used to scan pixels within the boundaries of the 

structuring element “b”. 𝑥 and 𝑦 are incremented such that it visits all pixels in the image. 

Erosion accepts one parameter, the structure element, which in turn accepts between two 

to three parameters. For demonstration purposes, we use a disk shaped SE with diameter 

of three and eleven pixels. Effect of erosion is better demonstrated by thresholding both 

original and eroded images in the Figure 4-31. The regions 1 and 2 (magnified in Figure 

4-32) show clearly that the original image has roughly enveloped contour for the lungs 

while in eroded image, it can be seen as a smooth envelope. On the other hand, region 3 

in the original image is almost disconnected, while the eroded image has more connected 

points to the frame of the image. This is due to the way of erosion works in grayscale image; 

it chooses the lower intensity in the SE windows, which yields in increasing dark areas. 

Increasing SE diameter makes the envelope smoother, but it fills the gaps and causes 

segmentation problems as the frame is considered part of the lung (see Figure 4-31) in the 

eroded image using disk radius of six pixels. Based on this, we limit SE diameter size to a 

maximum of 2% of image size, which gives enough range for the DE optimizer to maneuver 

and find best SE size for erosion filter. 

Figure 4-32 shows zone one in Figure 4-31, magnified to better illustrate the smoothing 

effect of erosion. 
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Original image Eroded disk 

shape SE, 

Radius=3 

Eroded disk 

shape SE, 

Radius=6 

Figure 4-31: Effect of Erosion applied on Lung X-Ray image 

  

Original Image Eroded Image 

Figure 4-32: Magnification of zone 1 in fig. 4-31 showing the effect of erosion 

4.1.12.2 Dilation  

Similar to erosion filter the dilation [85,86] by a flat SE “b” at any location (𝑥, 𝑦) is defined 

as the maximum value of the image in the window specified by 𝑏∧ when the origin of 𝑏∧ is 

at the location (𝑥, 𝑦). The mathematical formula of the above mentioned definition is as 

follows: 

 [𝑓 ⊕ 𝑏](𝑥, 𝑦) = 𝑚𝑎𝑥(𝑠,𝑡)∈𝑏{𝑓(𝑥 − 𝑠, 𝑦 − 𝑡)} (4-26) 

Where s and t are local variables used to scan pixels within the boundaries of the 

structuring element “b”. x and y are incremented such that it visits all pixels in the image. 

Dilation parameters are the same as in erosion. Figure 4-33 demonstrates the effect of 

dilation using a disk shaped SE with diameter of three and eleven pixels; respectively. 
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Original Image 5 pixels SE disk 11 pixels SE disk 

Figure 4-33: Effect of Dilation with three-pixel diameter disk shape SE 

Similar to Erosion effect, lung envelops are smoother, but they have different sizes and 

shapes of the eroded image. Increasing structure of element size causes the similar effect 

like erosion. Lung envelope is smoother, but it has connections to the image frame which 

affects segmentation results. 

Based on the results shown in this section, we can restrict the maximum values of the SE 

diameter to 2% of the image size, which give the DE optimizer sufficient range to get the 

best segmentation results. 

4.1.12.3 Morphological Opening: 

Morphological opening grayscale  image [89] “f” by structure element “b” is achieved by 

eroding the image with SE “b”, then dilating the result with the same SE “b”. 

Mathematically it is expressed as follows: 

 𝑓 ∘ 𝑏 = (𝑓 ⊖ 𝑏) ⊕ 𝑏 (4-27) 

Similar to other morphological filters, this filter accepts a structuring element which is 

determined by shape and diameter. Figure 4-34 shows the effect of this filter on a sample 

grayscale image using diameters of three and eleven pixels. 

Increasing SE diameter causes the dark area to increase and the targeted feature to 

connect with the frame causing segmentation errors later. Restricting the SE diameter to 

2% give enough diameter value range to DE to find the optimal value. 
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Original Image 3pixels SE disk 11 pixels SE disk 

Figure 4-34: Effect of opening with disk shape SE 

4.1.12.4 Morphological Closing: 

Morphological closing grayscale image [89] [90] “f” by structure element “b” is achieved 

by dilating the image with SE “b”, then eroding the result with the same SE “b”. 

Mathematically, it is expressed as follows: 

 𝑓 ∙ 𝑏 = (𝑓 ⊕ 𝑏) ⊝ 𝑏 (4-28) 

Similar to other morphological filters, this filter accepts a structuring element which is 

determined by shape and diameter. Figure 4-35 shows the effect of this filter on a sample 

grayscale image using three and eleven-pixel diameter, respectively. Similar to other 

morphological filters, increasing SE diameter causes the dark area to increase and the 

targeted feature to connect with the frame causing segmentation errors later. Restricting 

the SE diameter to 2% gives enough diameter value range to DE to find the optimal value. 

   

   
Original Image 3 pixels SE disk 11 pixels SE disk 

Figure 4-35: Effect of closing with disk shape SE  
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4.2 Thresholding algorithms 

Built around splitting image into classes based on intensity levels. Thresholding algorithms 

form a very essential step in the image segmentation; they are simple and effective with 

low computation requirements. In the following chapters, we review mathematical 

principles of thresholding algorithms used in our image processing chain. 

4.2.1 Otsu 

The algorithm [20] [21] assumes that the image contains two classes of pixels following bi-

modal histogram (foreground pixels and background pixels), then calculates the optimum 

threshold separating the two classes so that their combined spread (intra-class variance) 

is minimal, or equivalently (because the sum of pairwise squared distances is constant), so 

that their inter-class variance is maximal. This algorithm has one parameter, the threshold 

level, which is used to split the image into two classes. This parameter has intensity level 

range which is 0 to 255. Otsu algorithm target is maximizing the between-class variance 

which is defined as follows: 

 𝜎𝐵
2 = 𝑃1𝑃2(𝑚1 − 𝑚2)2 (4-29) 

Where m1 and m2 are the means of the two separated classes as a result of thresholding 

image using k value. P1 and P2 are probabilities for each class resulting from the 

thresholding with k. It is calculated as follows: 

 
𝑃1(𝑘) =  ∑ 𝑃𝑖

𝑘

𝑖=0

 (4-30) 

The between-class variance calculated by the equation shows that the larger difference 

between m1 and m2, the larger between-class variance, which indicates that "𝜎𝐵
2” is a 

measure of separability. The target for Otsu algorithm is maximizing 𝜎𝐵
2.  

Otsu calculates 𝜎𝐵
2(𝑘) for every possible thresholding value for the image and chooses 

the k value that maximize 𝜎𝐵
2. This algorithm doesn’t have any parameter. Figure 4-36 

shows results of using it on a sample image. 

https://en.wikipedia.org/wiki/Variance
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Original Image Thresholded Image 

Figure 4-36: Effect of Otsu Thresholding 

4.2.2 Kittler (Minimum Error Method)  

This algorithm [91,92,93] uses arbitrary grey level to threshold the image, and models each 

of the two resulting pixel populations by probability density function using the histogram 

of each class as an estimate PDF p(g). This algorithm assumes that each of these two 

components or class “i” p(g/i) are normally distributed with mean 𝜇𝑖 standard deviation 𝜎𝑖, 

and probability 𝑃𝑖: 

 
𝑃(𝑔) = ∑ 𝑃𝑖𝑝(𝑔/𝑖)

2

𝑖=1

 (4-31) 

𝑝(𝑔/𝑖) is given by: 

 
𝑝(𝑔/𝑖) =  

1

𝜎𝑖 √2𝜋
2  𝑒𝑥𝑝 (−

(𝑔 − 𝜇𝑖)

2𝜎𝑖
2 ) (4-32) 

Using both equations (4-26) and (4-27) then applying the logarithm on both sides of the 

resulting equation and rearranging, we get the following quadratic equation (4-28): 

 (𝑔 − 𝜇1)2

𝜎1
2 + 𝑙𝑜𝑔 𝜎1 − 2 𝑙𝑜𝑔 𝑃1 =  

(𝑔 − 𝜇2)2

𝜎2
2 + 𝑙𝑜𝑔 𝜎2 − 2 𝑙𝑜𝑔 𝑃2 (4-33) 

 

This equation can be solved with difficulties due to the fact that 𝜎, 𝜇, 𝑎𝑛𝑑 𝑃 are not known, 

even though they can be estimated. Kittler and Illingworth [91] have suggested following 

function to be minimized for the thresholding variable “t”: 

 

 𝐽(𝑡) = 1 + 2(𝑃1(𝑡). 𝑙𝑜𝑔 𝜎1(𝑡) + 𝑃2(𝑡). 𝑙𝑜𝑔 𝜎2(𝑡))

− 2(𝑃1(𝑡). 𝑙𝑜𝑔 𝑃1(𝑡) + 𝑃2(𝑡). 𝑙𝑜𝑔 𝑃2(𝑡)) 
(4-34) 

Where  
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𝑃1(𝑡) =  ∑ ℎ(𝑔)

𝑡

𝑔=0

      𝑃2(𝑡) =  ∑ ℎ(𝑔)

255

𝑔=𝑡+1

 

𝜇1(𝑡) =
∑ 𝑔. ℎ(𝑔)𝑡

𝑔=0

𝑃1(𝑡)
     𝜇2(𝑡) =

∑ 𝑔. ℎ(𝑔)255
𝑔=𝑡+1

𝑃2(𝑡)
 

𝜎1
2(𝑡) =

∑ ℎ(𝑔). (𝑔 − 𝜇1(𝑡))2𝑡
𝑔=0

𝑃1(𝑡)
 

𝜎2
2(𝑡) =

∑ ℎ(𝑔). (𝑔 − 𝜇2(𝑡))2𝑡
𝑔=0

𝑃2(𝑡)
 

Thresholding value “t” that minimizes the function j(t) in the equation (4-29) is the 

optimum thresholding value. 

  

Original Image Thresholded Image 

Figure 4-37: Kittler Thresholding 

Figure 4-37 shows that optimal thresholding using Kittler algorithms gives white space. 

Proper pre-thresholding processing is required to get the best out of this filter, which can 

be achieved by the optimized image processing chain. 

4.2.3 Minimum cross-entropy threshold selection  

MCE [94] is a non-metric measure between a posteriori probability distribution q(x) and a 

priori distribution p(x). This measure can be used to determine the optimum threshold.  

 
𝐻𝐶𝐸(𝑞, 𝑝) =  ∑ 𝑞𝑥

𝑁

𝑥=1

. log
𝑞𝑥

𝑝𝑥
 (4-35) 

Where: 

 
∑ 𝑝𝑥

𝑁

𝑥=1

= ∑ 𝑞𝑥

𝑁

𝑥=1

     (= 1) (4-36) 

For the purposes of threshold selection, the original grey-scale image is considered as the 

prior distribution. Assuming the image is thresholded at the level “T”, we can develop the 
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above and below threshold level “T” mean functions 𝜇0(𝑇) and  𝜇1(𝑇), which can be used 

to represent the binary image. Compensating the means in equation [4-30] and splitting 

the sum to above and below threshold “T” produce the following equation: 

 
𝐻𝐶𝐸(𝑇) =  ∑ 𝑓𝑔. 𝜇0(𝑇)

𝑇

𝑔=𝑎

. log
𝜇0(𝑇)

𝑔
+  ∑ 𝑓𝑔. 𝜇1(𝑇)

𝑏

𝑔=𝑇+1

. log
𝜇1(𝑇)

𝑔
 (4-37) 

Where, 𝑓𝑔is the number of pixels having grey-level g while a and b represent the minimum 

and maximum grey level in the image.  

  

Original Image Thresholded Image 

Figure 4-38: Minimum Cross-Entropy thresholding 

Figure 4-38 above shows MCE thresholding result when applied to sample Lung X-ray 

image. 

4.2.4 Triangle method: 

Zack et al. [95] in 1977 introduced the algorithm as demonstrated in Figure 4-39 is based 

on constructing a line between the maximum value of a normalized histogram and the 

lowest value, which allows locating a point like “A”. The optimal threshold is then chosen 

at a fixed offset of this point. 

The distance L between the line and the histogram using normal line is computed for all 

values from a to b. The level, where the distance between the histogram and the line is 

maximal, is the threshold value (level). This technique is particularly effective when the 

object pixels produce a weak peak in the histogram. 
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Figure 4-39: Triangle thresholding technique 

Figure (4-39) shows thresholding results on a sample image by using this algorithm.  

  

Original image Thresholded image 

Figure 4-40: Triangle thresholding 

This thresholding technique has no parameters to be optimized. The results on a non-

processed image as shown in Figure 4-40 is very poor. These results can be improved if we 

apply pre-processing filters and contrast enhancers, which is what the optimized IPC will 

do if this thresholding technique was chosen as part of the IPC. 

4.3 Post Processing Filters 

The optimizer uses these filters after binarizing the image using one of the thresholding 

techniques. These filters deal with binary images and the target is to fix any possible 

missing classified pixels using different types of techniques that are discussed in the 

following sections. 

4.3.1 Hole Filling 

Soille [96] [97] is  defined a hole in a binary image as a set of pixels that corresponds to the 

regional minima, which are not connected to the image border. In filling hole algorithms, 
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these pixels are filled with maximum value which is one in binary images. Figure 4-41 shows 

the effect of hole filling on a sample binary image. 

  

Original Image Hole filled image 

Figure 4-41: Hole Filling effect 

Hole filling used in our IPC has no parameter to be tuned by DE optimizer.  

4.3.2 Erosion 

Similar to morphological erosion for greyscale image, binary erosion [86] [98] uses the 

same structuring elements as explained earlier in Figure 4-28, Figure 4-29, and Figure 4-30. 

Erosion in post processing deals with binary images, and so the calculation formula of the 

erosion is different from the greyscale formula. 

 𝐴 ⊝ 𝐵 = {𝑧|(𝐵)𝑧 ⊑ 𝐴} (4-38) 

Which basically means that the structural element 𝐵 origin visits every point z in the image 

𝐴. The erosion of 𝐴by 𝐵 is the set of points z, where the SE 𝐵 is totally contained in 𝐴 

        

        

        

        

        

        

        

        
 

        

        

        

        

        

        

        

        
 

Original Image Eroded Image 

Figure 4-42: Effect of eroding with 3x3 structure 
element 

Figure 4-42 shows how borders are eroded using Erosion algorithm. Erosion in our IPC has 

one parameter to be tuned, which is the SE diameter.  
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4.3.3 Dilation  

Similar to morphological dilation for greyscale image, binary dilation [88] [98] uses the 

same structuring elements as explained earlier in Figure 4-28, Figure 4-29, and Figure 4-30. 

Dilation in post processing deals with binary images so the following formula is used to 

calculate dilation which is different from greyscale formula.  

 𝐴 ⊕ 𝐵 = {𝑧|(𝐵)̂𝑧 ∩ 𝐴 ≠ 𝜙} (4-39) 

 

        

        

        

        

        

        

        

        
 

        

        

        

        

        

        

        

        
 

Original Image Dilated by 3x3 element 

Figure 4-43: Effect of dilation by 3x3 structure 
element 

Equation (4-38) shows that dilating 𝐴 by 𝐵 results in the set of points 𝑧 where 𝐴 and 

reflection of B overlaps with at least one element. The effect of dilation in this case is the 

opposite of erosion, as we can see in Figure 4-43. Dilation algorithm used in our IPC has 

only one parameter, which is the diameter of the structuring element. 

4.3.4 Opening  

Opening [89] [99] binary image 𝑓 by structure element 𝑏 t is achieved by eroding the image 

with SE 𝑏 then dilating the result with the same SE 𝑏 

Mathematically, it is expressed as follows: 

 𝑓 ∘ 𝑏 = (𝑓 ⊖ 𝑏) ⊕ 𝑏 (4-40) 

We can convert the above equation using set theory terminology as follows: 

 𝐴 ∘ 𝐵 = ⋃{(𝐵)𝑧|(𝐵)𝑧 ⊑  𝐴} (4-41) 

Which means that the opening image 𝐴 by structuring element 𝐵 is the union of all 

translates of 𝐵 that fit into 𝐴. Similar to other morphological filters. This filter accepts a 
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structuring elements explained earlier in Figure 4-28, Figure 4-29, and Figure 4-30 in 

section 4.1.12, which are determined by shape and diameter. Figure 4-44 shows the effect 

of this filter on a sample binary image. 

 

Original Image Opened Image 

Figure 4-44: Effect of applying opening 

Figure 4-45 shows another sample of opening using circle structuring element and square 

image, applying the morphological opening equation [4-42], we can see that rolling the 

circle on the inside border of the square image and unionizing all the scanned points, we 

get a rounded square, which is the result of the morphological opening. 

 

Figure 4-45: Morphological opening illustrated as rolling ball on the inside border of 
image 

4.3.5 Closing  

Closing [89] [99] binary image “f” by structure element “b” is achieved by dilating the image 

with SE “b”, then eroding the result with the same SE “b”. 

Mathematically, it is expressed as follows: 

 𝑓 ∙ 𝑏 = (𝑓 ⊕ 𝑏) ⊝ 𝑏 (4-43) 

We can convert the above equation using set theory terminology as follows: 

 𝐴 ∙ 𝐵 = ⋃{(𝐵)𝑧|(𝐵)𝑧 ∩  𝐴 ≠ 𝜙} (4-44) 

Interpretation of this equation (4-39) is similar to opening, except that the ball is rolling on 

the outside surface, as it can be seen in Figure 4-46. 



52 
 

 
 

 

Figure 4-46: Morphological closing illustrated as rolling ball on the outside surface of 
image 

The effect as illustrated in Figure 4-46, is rounding sharp corners on the outside face of the 

shape. Similar to other morphological filters, this filter accepts a structuring element which 

is determined by shape and diameter as illustrated in Figure 4-28, Figure 4-29, and Figure 

4-30 in the section 4.1.12. 

4.4  Contrast Enhancers 

In most cases, pixels related to targeted features or borders reside in low contrast regions. 

Increasing image contrast causes a better segmentation of these features. Enhancer works 

in the spatial domain, where every pixel intensity level is replaced by new value based on 

a function, such that: 

 𝑠 = 𝑇(𝑟) (4-45) 

Where 𝑠 indicates the new values at point (𝑥, 𝑦) and 𝑟 is the old value, while 𝑇 represents 

the transformation function. DE algorithm can choose up to three enhancers from a pool 

of eight enhancers to be integrated in the Image Processing Chain. 

4.4.1 Contrast stretching (Global): 

The contrast adjuster [100] is used in our IPC to map the intensity values in grayscale image 

“A” to new values in image “B”, such that data is saturated below set low value and above 

set high value of intensity values of the original image.  

The algorithm uses either linear transformation function or gamma transformation 

function to map original image intensities to enhanced image contrast. Figure 4-47 shows 

possible transformation functions based on gamma values.  
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Figure 4-47: Gamma transformation function with different gamma values 

Figure 4-48 shows the effect of applying this contrast enhancer on the sample image. 

  

Original image Stretched Contrast 

Figure 4-48: Effect of contrast stretching 

This stretcher accepts five parameters which determines current image intensity range to 

stretched to new range of gray levels. It also uses a fifth parameter to determine whether 

it uses gamma transformation function or keeps the transformation function linear. These 

parameters have a min-max range of [0-1]. Fifth parameter has one of two values of 0 or 

1. 

4.4.2 Histogram Equalization  

Histogram equalizer [101] [102] transforms the intensity of input image “f”, so that the 

histogram of the output intensity image “J” histogram bins approximately matches the flat 

histogram with evenly gray level distribution among all possible gray levels that exist in the 

image. The transformation function of this contrast enhancer can be expressed by using 

information extracted from original image intensity level distribution as follows: 



54 
 

 
 

 𝑠𝑘 =  
(𝐿 − 1)

𝑀𝑁
 ∑ 𝑛𝑗

𝑘

𝑗=0

 (4-46) 

Where, MN is the image pixel count. 𝑠𝑘 and 𝑛𝑗are the new calculated intensity level and 

number of pixels that have intensity level equal to k respectively. L: is the intensity levels 

existing in original image before transformation. 

Figure 4-49 below shows the effect of histogram equalization. 

  

  

Original Image Histogram Equalized Image 

Figure 4-49: Illustration of histogram equalization effect on image histogram 

Histogram equalization algorithm used in IPC accepts only one parameter that determines 

the number of desired gray levels in the output image. The maximum number is 255 gray 

levels. 

4.4.3 Adaptive Histogram Equalization (local): 

The algorithms [103],[104] are used in IPC to enhance the contrast of the grayscale image 

by transforming the values using contrast-limited adaptive histogram equalization 

(CLAHE). CLAHE uses the same histogram equalization equations used in section 4.4.2, 

except in that it splits the image into smaller regions called tiles rather than operating on 

the whole image as in normal histogram equalization. CLAHE algorithm is an enhancement 

over AHE algorithms, which has proven to be vulnerable to noise (noise is increased in the 

resulted image). Pizer et al. , [104] explained that this problem is related to homogenous 

regions, where noise and pixel intensity levels are close in value. They have shown that 

limiting the slope in the mapping function can avoid this problem; they also proved that 
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clipping the height of the histogram is equivalent to limiting the slope of the histogram. 

Based on this, they concluded that CLAHE using contrast limitation can reduce AHE noise 

enhancement problem.  

Figure 4-50 shows the effect on histogram of the image as well as the effect on the image 

itself. Looking at the image and its histogram, we can see that pixels belonging to gray 

levels above intensity level 100 have been increased and the histogram of the new image 

have been smoothed, which indicate local histogram equalization. The adaptive histogram 

equalization used in IPC accepts four parameters, two of parameters determine the 

number of tiles to be used for local equalization. This number is advised by Pizer et al. [104] 

to be between 1/16 to 1/64 of the image size. 

The third parameter determines the clip limit which determines the contrast enhancer 

limits and this should be in the range [0-1]. The fourth parameter determines the desired 

number of bins in the output image and this is limited to 256. 

  

  

Original image Enhanced image 

Figure 4-50: Effect of local histogram equalization 

4.4.4 Fuzzy Enhancement 

Tizhosh [105] split fuzzy image processing into three stages: fuzzification, operation on 

pixels’ membership values, and finally defuzzification if it is needed. The actual image 

processing happens in membership domain instead of the spatial domain.  
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4.4.4.1 𝝀 − 𝐞𝐧𝐡𝐚𝐧𝐜𝐞𝐦𝐞𝐧𝐭 

Lambda enhancement was introduced by Tishoosh et al. [106]. This enhancement 

algorithm combined Zadeh’s definition of membership complement (4-47) with Sugeno’s 

involutive fuzzy complement 𝜆 − 𝑐𝑜𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡 (4-48) to introduce a new involutive 

membership function represented in (4-49) 

 𝜇̅(𝑔) = 1 −  𝜇(𝑔) (4-47) 

 
𝜇̅𝜆(𝑔) =

1 −  𝜇(𝑔)

1 +  𝜆 𝜇(𝑔)
 (4-48) 

 
𝜇𝜆

∗(𝑔) =  
𝜇(𝑔)(1 + 𝜆)

1 +  𝜆𝜇(𝑔)
 (4-49) 

Where, gray level g=0,…,L-1 and 𝜆 is in the range [-1 ∞]. 𝜇(𝑔) represents the original 

membership function. 

This new involutive membership function is used to develop a new measure of fuzziness: 

 
𝛾(𝜆) =  

4

𝑀𝑁
∑ ℎ(𝑔). 𝜇𝜆

∗
𝐿−1

𝑔=0
(𝑔). [1 − 𝜇𝜆

∗(𝑔)] (4-50) 

𝜆 value that maximizes fuzziness index 𝛾 is the optimal value and this can be used to define 

the new membership function as follows: 

 
𝜇𝑛𝑒𝑤

∗ (𝑔) =  
𝜇(𝑔)(1 + 𝜆𝑜𝑝𝑡𝑖𝑚𝑎𝑙)

1 +  𝜆𝑜𝑝𝑡𝑖𝑚𝑎𝑙𝜇(𝑔)
 (4-51) 

This algorithm can be summarised as follows: 

- Calculate image histogram 

- Initialize the membership function 𝜇(𝑔) 

- Calculate the index of fuzziness 𝛾(𝜆) 

- Solve the equation 
𝜕

𝜕𝜆
(𝜆𝑜𝑝𝑡𝑖𝑚𝑎𝑙) = 0  

- Calculate new membership values using equation (4-51) 

- Generate new gray levels 𝑔̀ = (𝐿 − 1). 𝜇𝑛𝑒𝑤
∗ (𝑔) 

Figure 4-51shows the results of applying this contrast enhancer on a sample lung X-Rays 

image. 
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Figure 4-51: Original image (left), lambda enhancement result (right) 

4.4.4.2 Fuzzy intensification 

This method is also known as minimization of fuzziness Tizhoosh [105]. The goal is reducing 

the amount of image fuzziness. Based on a chosen membership function, the method first 

finds the membership value of every pixel in an image. Second step uses an intensifier to 

transform membership values above a chosen value (default 0.5) to much higher value and 

the lower member ship values to much lower values. The algorithm can be represented by 

the following steps: 

The first step: Gray-level fuzzification: 

 
𝜇(𝑔) = [1 +  

𝑔𝑚𝑎𝑥 − 𝑔

𝐹𝑑
]

−𝐹𝑒

 (4-52) 

Where 𝜇(𝑔) represents the degree of brightness. 

Second step is choosing Zaheh’s intensification operator to calculate the new 

membership values. The intensification operator is represented as follows: 

 
𝜇́(𝑔) = {

2[𝜇(𝑔)]2                       𝑖𝑓  0 ≤ 𝜇(𝑔) ≤ 0.5

1 − 2[1 − 𝜇(𝑔)]2      𝑖𝑓 0.5 ≤  𝜇(𝑔) ≤ 1
 (4-53) 

Finally, the new gray level can be calculated by defuzzification 

𝑔́ =  𝑔𝑚𝑎𝑥 −  𝐹𝑑 ((𝜇́(𝑔))
−1
𝐹𝑒 − 1) 

(1 +
𝑔𝑚𝑎𝑥

𝐹𝑑
)−𝐹𝑒 ≤ 𝜇́(𝑔) ≤ 1 

Where 𝐹𝑒 and 𝐹𝑑 are the exponential and denominational fuzzifiers that control the 

amount of grayness ambiguity in the membership plane. 𝐹𝑒 accepts 1 or 2 as values and 

𝐹𝑑 can be calculated using the crossover value of the membership 𝜇(𝑔𝑐). 

Figure 4-52 shows samples of applying this contrast enhancer on lung X-Ray image. 
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Figure 4-52: Original (left) and enhanced image (right) using fuzzy intensification 
enhancer 

 

4.5 Algorithms parameters limits 

Previous section in chapter 4 explained the algorithms used in our IPC. The DE algorithm 

will generate parameter values in predefined range specific to every image processing 

algorithm. These minimum and maximum limits were explained in previous sections for 

every image processing algorithm. Following tables summarises all limits for every 

algorithm. 

Table 4-1 shows the minimums and maximums for filtering algorithms. 

Filter Name Min Value Max Value 

Median filter 10,10 150,150 

Stick 1/2 2,1/2,1 101,3/101,3 

Unsharp Masking 0 1 

Wiener 2,2 30,30 

Average 2,2 50,50 

Disk 2 30 

Gaussian 0.1,3 50,250 

LoG 0.1,3 1,50% img size 

Laplacian 0 1 

Prewitt   

Sobel   

Morphological 1/2/3/4/5/6 3 2% img size 

Table 4-1: Minimum and Maximum for Filters’ parameters allowed values 
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Table 4-2shows minimums and maximums for Contrast Enhancers. 

Contrast Enhancer Min Value Max Value 

Stretching adjuster (*) 0,0,0,0 0.9,1,0.9,1 

Global Histogram equalizer 3 5 

Local Histogram equalizer   

Local Adaptive Histogram equalizer (**) 2,2,0,100 50,50,1,500 

Local Adaptive Histogram equalizer (***) 2,2,0,100 50,50,1,500 

Morphological Enhancement 2 50 

Fuzzy Complement   

Fuzzy INT 0.1 1 
(*) has fifth binary parameter 0 or 1 
(**) Rayleigh distribution 
(***) Exponential distribution 

  

Table 4-2: Minimum and Maximum Values for Contrast Enhancer algorithms’ parameters 

Table 4-3 shows minimums and maximums for Thresholding algorithms. 

Thresholding Algorithm Min Value Max Value 

Level thresholding 0 1 

Otsu NA NA 

Kittler NA NA 

Minimum cross-entropy threshold selection NA NA 

Triangle threshold   

Table 4-3: Minimum and Maximum values for Thresholding algorithms parameters 

Table 4-4 shows minimums and maximums for post processing algorithms’ parameters 

Post Processing Filter Min Value Max Value 

Filling holes   

Erosion 1/2/3 3,3,3 50,50,50 

Dilation 1/2/3 3,3,3 50,50,50 

Closing 1/2/3 3,3,3 50,50,50 

Opening 1/2/3 3,3,3 50,50,50 
* disk shape of four periodic lines 

** disk shape of six periodic lines 

*** disk shape of eight periodic lines 

  

Table 4-4: Minimum and Maximum for Post Processing Algorithms parameters 

Above mentioned maximums and minimums are very critical to the correct functioning of 

the DE optimizer. Every new generation, and due to the DE chosen strategy, the population 

members’ variables could go above or below allowed limits. This requires adding a 
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correction logic to DE optimization loop, where parameters are compared with maximum 

and minimum, and reset any variable that goes beyond the limit of the border that was 

exceeded 

4.6 Summary 

In this chapter, we surveyed all the algorithms that have been used in our image 

processing chain. For every algorithm, we have explained its theory and illustrated the 

effect of applying it on sample images. We have also identified algorithms’ parameters 

and developed their maximums and minimums either by experiment and visual 

observation, or by knowing the parameters’ physical limitations. 
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Chapter 5 
5 Image Processing Chain Framework 
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5.1 Proposed Image Processing Chain (IPC) 
The image processing chain IPC framework defines the sequence of filters, contrast 

enhancers, thresholding, and post processing algorithms. The number of algorithms in this 

IPC is restricted to ten algorithms by design. The algorithms are chosen from the pool of 

algorithms explained in the previous chapter. Chapter 4 listed only algorithms that are 

coded and pooled for DE optimizer usage, but scientific literature has a large number of 

algorithms that could be used in preparation for binarization of image and post processing 

after binarizing the image. DE optimizer attempts to find the best sequence of algorithms 

and their optimal parameters that should be applied for specific task and image modality 

to get optimal results. This universal algorithm has sixty-four dimensions. 

The goal of the framework as it is designed is to target images that could be split into two 

classes background and foreground (which is in our case the tissue to be segmented). This 

requires gold images of tissues that are the target of segmentation to be able to calculate 

the best chain. The framework design does not target images with one class of pixels (i.e. 

images with no features such as lung, cancer, tumor, heart, would defect, metal cracks, 

etc.) 

Scientific literature suggested many segmentation algorithms as discussed in the previous 

chapter. These algorithms didn’t invest much in preparing the image and enhance it as 

such the targeted tissue pixels becomes easier to extract from the background. The results 

in this thesis shows how it is critical to prepare the image before segmenting any of the 

thresholding techniques. The problem here lies in finding the best sequence of filters and 

best parameters’ values for these algorithms to optimally prepare the image for the 

optimal thresholding technique. 

The dimensionality of the problem and the huge number of algorithms we can put in the 

pool makes it impossible to create IPC even by experts and suggest optimization methods 

to solve this problem. 

Enhancing the image requires passing it through an optimized IPC, which is a series of filters 

and contrast enhancers, before applying thresholding.  Then, the thresholding result is 

passed to post processing filters to fill holes and make sure that the segmented contour is 
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smooth. Our suggestion, the image processing chain, is impossible to be solved by 

engineers and experts. It involves electing the right series of filters, enhancers, 

thresholding, and finally post processing algorithms out of hundreds of algorithms, and 

fine-tune related parameters. 

This thesis proposes The DE optimization algorithm to create the image processing chain; 

at the same time, the optimizer fine-tune the chosen chain algorithms’ parameters to 

target a specific tissue in images produced by specific imaging modality. Thus, the 

produced image processing chain with its fine-tuned parameters can be trained to 

segment the same tissue in new images from the same modality.  

Figure 5-1 shows the suggested chain with algorithm pools used in each stage. The lower 

part shows the training phase. DE optimizers accept three training images with their Golds 

and a pool of all algorithms in all phases. 

DE optimizer creates the appropriate and tuned image processing chain for the provided 

specific tissue and specific imaging modality. DE will generate randomized population 

members (black box optimization) with values ranging between minimum and maximum 

values (box constraints optimization problem). We have a chromosome with sixty-four 

mixed type parameters (mid-scale optimization problem) which increases when we add 

new algorithms to the pools of IPC, making the training phase extremely time consuming. 

On the other hand, using the created and tuned IPC to segment new images is very fast. 

This approach permits creating a new chain for every tissue and modality we need and 

loading the appropriate IPC to segment needed tissue, which will be illustrated in the 

following section. 
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Figure 5-1: Illustration of Image Optimization Chain and algorithms used by the DE optimizer 

5.2 Building Image Processing Chain Chromosome 

The main target of the image processing chain is preparing the image to be segmented 

optimally, then passing the output image to post processing to enhance the segmentation 

results. There are limitless chain designs and limitless number of algorithms that can be 

added to the pool of algorithms used by DE. The only restriction that limits IPC design 
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complexity is the CPU power available to solve the increasing number of dimensions which 

is caused complex IPC designs and higher number of algorithms added to the pool. 

Due to the limited CPU processing power available to us we decided to design an Image 

Processing Chain composed of only ten stages, which are explained below. The DE 

optimizer chooses ten algorithms out of the pool to form the IPC and fine tune their 

parameters. These ten algorithms are sequenced as illustrated in Figure 5-2. 

The algorithms, their sequence and parameters values are chosen by DE which makes it 

essential to design DE chromosome to enable the DE for creating this IPC. DE population 

chromosome is designed as follows: 

- First ten variables are integer variables and they decide the chosen algorithms, 

their sequence and number of filters, contrast enhancers, thresholding algorithm, 

and post processing algorithms.  

- The following fifty-four variables in the chromosome are the real type and they 

represent algorithms’ parameters arranged in a respected order throughout the 

program, which makes it easy to extract in sub-functions. 

The full chromosome structure is designed as follows: 

Population member = [Chain sequence (ten variables), Filters algorithms’ parameters, 

Contrast algorithm Parameters, Post Processing algorithms’ parameters, Thresholding 

algorithm parameters] 

This chromosome combines every filter, contrast enhancer, thresholding, and post 

processing algorithm in the pool, which adds complexity to our solution. The 

chromosome contains discrete and real variables in addition to variables contained in a 

limited set which they should be defined and constrained. 
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Figure 5-2: DE built IPC segmentation sequence 

 

5.3 Building Algorithm Pools  
In order to minimize memory needs and decrease parameters passing mechanism 

between functions, the pool is structured to have a chain function for each stage in the 

proposed image processing chain as follows: 

 chain_filters 

 chain_contrats 

 chain_thresholding 

 chain_postprocssing 

Each chain function is composed of switch statement that list all algorithms of the pool. 

These chain functions need two vectors to work properly: 

Filter 1 

Filter 2 

Filter 3 

Contrast Enhancer 1 

Contrast Enhancer 2 

Contrast Enhancer 3 

Thresholding 

Post Processing 1 

Post Processing 2 

Post Processing 3 
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 Ten chain sequence parameters which identify the algorithms that should be 

called from the pool. The chain function selects its own three sequence 

parameters out of ten and calls the proper functions. The Image processing 

chain accepts only one thresholding algorithm which explains why we have ten 

sequence parameters (three for each chain pool and one for thresholding). 

 Parameters values vector belonging to the pool of algorithms that it calls. Each 

algorithm in the chain function knows its own parameters in the parameter 

vector and can access it directly from the pool. 

Below is a sample pseudo-code of chain_filter function responsible for filters pool, which 

is the first stage of the image processing chain. 

Pseudo Code for Chain_Filter function 

 Get filter to be applied 

 Get filter parameters from parameter vector 

 Apply filter with related parameters   

 Return filtered image to DE for further processing 

End       

5.4 DE parameter Settings 
DE parameters were adjusted to target this problem. Table 5-1 shows DE parameter 

settings. Stopping criteria was based on the number of generation as shown in Table 5-1.  

Every generation DE evaluates every population member and minimize the output of a 

fitness function built specifically to target this problem. This fitness function compares 

segmented image using population member with gold image that was segmented by  

PARAMETER VALUE 

Number of Generations 5000 

Population size 500 

Crossover probability 0.9 

DE step size 0.5 

DE strategy DE/rand/1/bin 
Table 5-1: Differential Evolution optimizer parameter settings 
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physician according to the following formula: 

 

𝑓(𝑥) = ∑ ∑ ∑(𝐼𝑚𝑎𝑔𝑒  𝑥𝑜𝑟 𝐺𝑜𝑙𝑑)

𝑠𝑛

𝑛=1

𝑠𝑚

𝑚=1

𝑘

𝑖𝑚𝑔=1

 (5-54) 

Where k is the number of training images while 𝑠𝑚 and 𝑠𝑛 are the image size in both 

dimensions of the image. This fitness function counts the number of incorrectly classified 

pixels in every segmented training image and deliver this number to DE to be used for 

minimization. 

The fitness function (5-54) designed for this problem allow the addition of more training 

images. Every new training image added will force DE to evaluate all population members 

which will increase the elapsed time needed by each generation (i.e. doubling the training 

image will double the evaluation time for every generation). 

The fitness function is designed to loop through all training image without the need for any 

modification on the program. 

Even though the chain is composed in our solution of defined stages namely, filtering, 

contrast enhancing, thresholding, post processing; we still can’t split the fitness function. 

There are intermediate gold images in between stages, also every stage is dependent on 

the output of the stage before.  

5.5 Image Processing Chain parameters’ indexes 

Every algorithm in the pool has multiple parameters that have a certain location in the 

chromosome vector. These locations are strictly adhered to throughout the program 

design. The below tables list the parameters of every algorithm and the related indexes as 

they appear in the chromosome. 

Filters’ vector details as shown in Table 5-2 lists filters’ parameters, which consists of 

twenty-five variables indexed one to twenty-five. 
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Filter Name Param. index in chromosome 

Median filter 1,2 

Stick 1/2 3,4/ 5,6 

Unsharp Masking 7 

Wiener 8,9 

Average 10,11 

Disk 12 

Gaussian 13,14,15 

Log 16 

Laplacian 17,18,19 

Prewitt No parameter 

Sobel No parameter 

Morphological 1/2/3/4/5/6 19,20,21,22,23,24,25 

Table 5-2: Filters parameters location in the chromosome (Index) 

Table 5-3: Contrast enhancers parameters location in the chromosome (Index) shows 

Similar to filters,contrast enhancer algorithms with their parameters’ indexes. 

Contrast enhancer Param. Index in chromosome 

Stretching adjuster 1,2,3,4 

Global Histogram equalizer 5 

Local Histogram equalizer No Parameters 

Local Adaptive Histogram equalizer (*) 6,7,8,9  

Local Adaptive Histogram equalizer (**) 10,11,12,13 

Morphological Enhancement 14 

Fuzzy Complement No parameters 

Fuzzy INT 15 
(*) Reyleigh distribution 

(**) Exponential distribution 
 

Table 5-3: Contrast enhancers parameters location in the chromosome (Index) 

Contrast enhancer parameters are gathered in contrast vector. The Table 5-3 shows fifteen 

enhancer used in our IPC with its related parameters’ indexes in the contrast vector. 

We have four post processing filters. These processing filters are essential to improve the 

final binary image by filling holes, closing, opening, and dilation which has proved to be 

very effective in such binary image to improve the final segmentation results. Each filter of 

these can be applied using different disk shape, with four, six, or eight periodic lines, as 

shown in the Table 5-4. 

 



70 
 

 
 

Post Processing Filter Param. Index in chromosome 

Filling holes No parameters 

Erosion 1/2/3 1*,2**,3*** 

Dilation 1/2/3 4*,5**,6*** 

Closing 1/2/3 7*,8**,9*** 

Opening 1/2/3 10*,11*,12*** 
* disk shape of four periodic lines 

** disk shape of six periodic lines 

*** disk shape of eight periodic lines 

 

Table 5-4: Post Processing algorithms’ parameters’ location (index) 

5.6 Summary 

In the first part of this chapter, we introduced an image processing chain designed to 

combine four pools of algorithms; each pool provides the DE optimizer with algorithms 

necessary to pass the image through different stages of the IPC. In the second part, we 

introduced the solution to structure the DE chromosome for sixty-four algorithms existing 

in different pools. We also explained the necessity of maximum and minimum vectors for 

correcting the generated population members in DE. Finally, we introduced DE optimizer 

settings and provided a detailed listing of every algorithm used in every pool and its index 

in the chromosome vector, in addition to every parameter’s maximum and minimum 

values. 
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Chapter 6 

6 Case Studies and Discussions 
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6.1 Case Study: Segmenting Lungs X-Ray images 
Lungs’ X-Ray images are one example of medical images that are poorly illuminated and 

they contain many overlapping structures (i.e., chest cavity bones, hear, etc.). These 

overlapped structures have very close intensity levels as the lungs, which makes finding 

the correct enhancers and thresholding parameters very difficult. In the following section, 

we will discuss a full cycle of training the framework, testing, verification of training, and 

finally, we will discuss the results. 

6.1.1 Training Phase 

The framework training requires three images with their gold images, which are 

segmented lungs by experts (Figure [6-1]). Selecting these training images proves to be 

critical for the learning process. They should represent extreme situations as well as normal 

for the imaging modality used to capture these images. In the X-Ray lung images case we 

chose high, low, medium contrast and edge visibility as visual criteria. 

Original Image 

   

Gold Image 

   

Figure 6-1: Three training images with their respective gold images 

The framework can accept gold images with two lungs. There is no modification needed 

on the code or the logic of the framework. We used classical parameter settings as 

shown in table 6-1 with 5000 maximum generation as a stopping criteria.  

Figure 6-2 shows a screen shot of the program during training phase. The first and 

second row of images are the loaded training samples with their gold images, while the 

third row shows the segmentation results of best population member found till the 

current generation. 
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Figure 6-2: Program GUI interface during training phase 

The program provides multiple indicators of the quality of segmented image.  

The following definitions and metrics (i.e., precision, sensitivity, and overlapping ratios) are 

utilized to report the numerical results of our experiments. 

 True positive (TP): Tissue pixel (foreground) is correctly diagnosed as tissue pixel. 

 False positive (FP): Non-tissue pixel (background) incorrectly identified as tissue 

pixel. 

 True negative (TN): Non-tissue pixel correctly identified as Non-tissue pixel. 

 False negative (FN): Tissue pixel incorrectly identified as Non-tissue pixel. 

 Image Pixels (ImP): Represents the total pixels existing in the processed image. 

 Precision = 𝑇𝑁/(𝑇𝑁 + 𝐹𝑃) (6-55) 

 Sensitivity = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁) (6-56) 

Number of Generations 5000 

Population size 500 (ten times problem dimension) 

Crossover probability (CR) 0.9 

DE step size 0.5 

DE strategy DE/rand/1/bin 

Table 6-1: DE parameter settings for lung segmentation 
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 Overlap = (𝑇𝑃 + 𝑇𝑁)/𝐼𝑚𝑃 (6-57) 

All three segmented results are combined in the fitness function, which mandates 

choosing the three training images to represent the whole range of possibilities for the X-

Ray modality. Different brightness, contrast level, and shape provide the optimizer with 

better representation of lung tissues. These variances yield a better trained IPC and 

higher accuracy in later segmentation of new Lung X-Ray images when use the trained 

IPC. 

In the following Error! Reference source not found., we can find how the optimizer d

evelops the image processing chain for better segmentation. Initialization starts with a 

calculation of the centroid of the provided gold image to get the seed point that 

determines whether the tissue needs to be segmented, which explains why the second 

generation has a white dot showing the segmentation results. 

On the sixty-third generation, where each generation represents five hundred population 

members, we can see the first real approximation of lung tissues. 

Original 

Images 

Gold Images 2nd Iteration 63rd Iteration 162nd 

Iteration 

     

     

     

Figure 6-3: Segmentation results by IPC during generations 2,63, and 162 
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365 423 620 1349 2220 

     

     

     

Figure 6-4: Segmentation results by IPC during generations 365,423,620,1349, and 
2220 

Previous visual illustration of convergence can also be expressed in terms of fitness 

function value and iteration number (Figure 6-6). 

This convergence diagram shows that by iteration six-hundred, there are five 

improvements on the fitness value, then the optimizer hits a plateau that lasts for almost 

two-thousand iterations before we get a new improvement. 

 

Figure 6-5: Fitness value vs Generation 
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The complication of the chromosome design has mandated that each population contains 

all the parameters for all algorithms in all pools. 

Every population member elects ten algorithms out of forty-four, which means we are 

using the parameters for only ten algorithms. As a consequence, the optimizer takes longer 

to exhaust a solution space. The output of this phase is a vector of sixty-four elements that 

specifies the sequence of elected algorithms of the Image Processing Chain, followed by 

the parameters of these elements. 

6.1.2 Optimal Image Processing Chain 

Each algorithm in the pool delivered to DE optimizer is tagged with an identity number.  

Chromosome Index 1 2 3 4 5 

Algorithm Type Filter Contrast Post Threshold filter 

Algorithm Identity  8 3 1 0 4 

Algorithm Name Gaussian HistEq Fill Holes Otsu Weiner 
 

 

Parameter Index 6 7 8 9 10 

Algorithm Type Contrast Post filter contrast Post 

Algorithm Number 7 2 8 2 0 

Algorithm Name Fuzzy 

complement 

Fill 

hole 

Gaussian Hyperbolization No 

 

Table 6-2: Image Processing Chain as created by DE 

During optimization, DE generates a number between the minimum and maximum value 

(based on the number of algorithms in the pool) that selects one of these algorithms based 

on their identity number. The first ten elements in the chromosome vector specify these 

elected algorithms by DE optimizer, and the values of each cell specify an algorithm identity 

number. Table 6-2 shows the algorithms’ names that match the algorithms’ identity values 

in the chromosome. The parameters needed by these algorithms have higher indexes in 

the optimal chromosome (64 cells) and is showed in the next section “Tuned Parameters”. 

6.1.3 Optimal Parameters 

Table 6-3 to Table 6-9 list the final optimal values of the chromosome vector. These values 

are linked to every algorithm in the pool as specified in: 

- Filter algorithms Table 5-2 (Chromosome indexes 11-35) 
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- Contrast algorithms Table 5-3 (Chromosome indexes 36-40) 

- Post processing algorithms Table 5-4 (Chromosome indexes 41-54). 

Chromosome vector index 11 12 13 14 15 16 17 18 

Parameter Value 12.5 6.18 27.13 1.11 8.16 2.6 0.61 17.22 

Table 6-3: Algorithms’ parameters stored in optimized chromosome indexes 11-18 

Chromosome vector index 19 20 21 22 23 24 25 26 

Parameter Value 3.96 4.72 24.21 10.25 7.45 7.18 5.6 0.78 

Table 6-4: Algorithms’ parameters stored in optimized chromosome indexes 19-26 

Chromosome vector index 27 28 29 30 31 32 33 

Parameter Value 16.64 23.52 423.66 321.76 374.74 195.7 146.43 

Table 6-5: Algorithms’ parameters stored in optimized chromosome indexes 27-33 

Chromosome vector index 34 35 36 37 38 39 40 

Parameter Value 168.54 156.41 0.6 0.97 0.68 0.7 48.97 

Table 6-6: Algorithms’ parameters stored in optimized chromosome indexes 34-40 

Chromosome vector index 41 42 43 44 45 46 47 48 

Parameter Value 
28.6

2 
38.2

7 
0.2

7 
440.1

5 
31.27 25.91 

0.4
4 

175.4
6 

Table 6-7: Algorithms’ parameters stored in optimized chromosome indexes 41-48 

Chromosome vector index 49 50 51 52 53 54 55 56 

Parameter Value 43.89 0.18 38.77 3.22 6.63 9.05 47.09 39.16 

Table 6-8: Algorithms’ parameters stored in optimized chromosome indexes 49-56 

Chromosome vector index 57 58 59 60 61 62 63 64 

Parameter Value 28.7 40.53 29.53 45.4 42.65 42.18 12.34 33.4 

Table 6-9: Algorithms’ parameters stored in optimized chromosome indexes 57-64 

6.1.4 Testing Phase 
Once the image processing chain is created and optimized; it can be used to segment 

tissues in new images. Two below restrictions should be taken into account. 

- The new image should be produced by the same modality. 

- The tissue should be same with the tissue that the IPC was trained on it. 

In order to verify the performance of the training stage, we used an image of database that 

contains 247 lung X-Ray images with their gold images. This database is available online 
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[107].Detailed results with all three parameters’ calculation for all 247 lung X-Ray images 

is listed in Appendix A. 

 

Figure 6-6: Segmentation using trained IPC 

6.1.5 Results analysis 
The optimized image processing chain contains eight thresholding algorithms. Using each 

of these algorithms as a standalone thresholding and segmentation methods yields to a 

very poor performance as shown in Table 6-10. 

The optimized chain has almost seven times higher accuracy that just normal thresholding 

technique. This accuracy increases by adding more filters and enhancers to the IPC pools. 

The last row in Table 6-10 verifies the optimality of the developed IPC by changing one 

algorithm in the optimal chromosome. The obtained average shows the severe effect on 

Filters Sequence up to three 

Contrast Enhancers Sequence 

up to three 

Thresholding 

Post Processing Sequence up 

to three 

Segmented Image 

Input Image 

Optimized Image 

Processing Chain (IPC)  
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the trained system if it is manually manipulated. Detailed result for every image in the 

database can be found in Appendix C. 

Thresholding Algorithm Overlap with Gold percentage Image Database 

Otsu 13% 247 Lung X-Ray 

Kittler 12.48% 247 Lung X-Ray 

Histogram 7.79 % 247 Lung X-Ray 

Triangle 10.28% 247 Lung X-Ray 

Image Processing Chain 72% 247 Lung X-Ray 

Image Processing Chain 

after manual change of 

one algorithm  

47.06% 247 Lung X-Ray 

Table 6-10: Segmenting images using individual thresholding algorithms used in IPC 

6.2 Case Study: Segmenting of Breast Cancer Ultrasound images 

Breast cancer segmentation is a very challenging task due to inherent speckle noise and 

low contrast of breast ultrasound imaging.  

6.2.1 Training Phase 

Below, we can see the three images used for training the image processing chain. They are 

chosen to represent the most possible images for the trained IPC in the production.  

The first image (top left) shows a sample of images with very low contrast where targeted 

lesion and background have very close intensity levels.  The second image shows a high 

contrast image with clear cancer lesion borders and a small amount of speckle noise. The 

third image on the top right shows high contrast with speckle covering cancer lesion 

border. 

Original Image 

   

Gold Image 

   
Figure 6-7: Three training images for breast cancer 
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The second row shows gold images segmented by an expert (physician). Similar to Lung X-

Ray images, the framework can be trained on multi tumor extraction; We still have to 

provide gold images with segmentation of all needed tissues to be extracted. 

Number of Generations 5000 

Population size 500 (ten times problem dimension) 

Crossover probability (CR) 0.9 

DE step size 0.5 

DE strategy DE/rand/1/bin 

Table 6-11: DE parameter settings for Lung segmentation 

The DE optimizer is set using classical parameter settings same as in the lung X-Ray. 

Original Images Gold Images 2nd Iteration 12th Iteration 

    

    

    

Figure 6-8: Segmentation results for 2nd and 12th generation 
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28th Iteration 29th Iteration 76th Iteration 101 Iteration 

    

    

    

Figure 6-9: Segmentation results for 28th,29th,76th, and 101 generations 

In the 410 generation, each generation represents five hundred population member, we 

can see the first real approximation of breast cancer tissue. 

125th Iteration 410th Iteration 705th Iteration 1297 Iteration 

    

    

    

Figure 6-10: Segmentation results for 125th,410th,705th, and 1297 generation 
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 1677 Iteration  

 

 

 

 

 

 

 

 

 

Figure 6-11: Segmentation results for 1677th generation 

Finally, in generation 1677th (Figure 6-11), we can see the final best Image Processing 

Chain.  

 
Figure 6-12: Fitness vs Generation 

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

0

1
4

0

2
8

0

4
2

0

5
6

0

7
0

0

8
4

0

9
8

0

1
1

2
0

1
2

6
0

1
4

0
0

1
5

4
0

1
6

8
0

1
8

2
0

1
9

6
0

2
1

0
0

2
2

4
0

2
3

8
0

2
5

2
0

2
6

6
0

2
8

0
0

2
9

4
0

Fitness Value

Fitness Value



83 
 

 
 

DE optimizer uses the overlap between the gold image (physician segmentation) and IPC 

resulted segmentation as a fitness function. Figure 6-12 shows the relationship generation 

vs fitness value. The graph shows that this is a minimization problem (we are trying to 

minimize number of lung pixels mistakenly classified as non). 

6.2.2 Optimal Image Processing Chain 

Each algorithm in the pool delivered to DE optimizer is tagged with an identity number. 

During optimization, DE is generated a number between minimum and maximum value 

(based on the number of algorithms in the pool) that selects one of these algorithms based 

on their identity number. The first ten elements in the chromosome vector specifies these 

elected algorithms by DE optimizer, and the values of each cell specify an algorithm identity 

number.  

Table 6-12 shows the algorithms’ names that matches the algorithms’ identity values in 

the chromosome. The parameters needed by these algorithms have higher indexes in the 

optimal chromosome (64 cells), and is showed in the next section, “Optimal Parameters”. 

Chromosome Index 1 2 3 4 5 

Algorithm Type Filter Contrast Post Threshold Filter 

Algorithm Identity  3 8 1 0 1 

Algorithm Name Stick FuzzyINT Fill Holes Otsu Stretching 
 

 

Parameter Index 6 7 8 9 10 

Algorithm Type Contrast Post Filter Contrast Post 

Algorithm Number 6 14 0 7 0 

Algorithm Name Morphological Opening No Fuzzy compl. No 
 

Table 6-12: Image Processing Chain as created by DE 

6.2.3 Optimal Parameters 

Table 6-13 to Table 6-18 list the final optimal values of the chromosome vector. These 

values are linked to every algorithm in the pool as specified in: 

- Filter algorithms Table 5-2 (chromosome indexes 11-35) 

- Contrast algorithms Table 5-3 (Chromosome indexes 36-50) 

- Post processing algorithms Table 5-4 (Chromosome indexes 51-54). 
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Chromosome vector index 11 12 13 14 15 16 17 18 

Parameter Value 15.3 19.5 35.3 1.8 2 2.9 1 21.9 

Table 6-13: Algorithms’ parameters stored in optimized chromosome indexes 11-18 

Chromosome vector index 19 20 21 22 23 24 25 26 

Parameter Value 25.9 11.5 13.1 8 2 5.3 14.1 0.6 

Table 6-14:  Algorithms’ parameters stored in optimized chromosome indexes 19-26 

Chromosome vector index 27 28 29 30 31 32 33 

Parameter Value 30 25.8 1000 83 1 299.3 193.7 

Table 6-15: Algorithms’ parameters stored in optimized chromosome indexes 27-33 

Chromosome vector index 34 35 36 37 38 39 40 

Parameter Value 4.8 390.4 0.1 0.7 0.6 0.7 3 

Table 6-16: Algorithms’ parameters stored in optimized chromosome indexes 34-40 

Chromosome vector index 41 42 43 44 45 46 47 48 

Parameter Value 50 2 0.2 500 50 22.7 0.6 122.9 

Table 6-17: Algorithms’ parameters stored in optimized chromosome indexes 41-48 

Chromosome vector index 49 50 51 52 53 54 55 56 

Parameter Value 49.2 0.4 9.1 50 50 50 7.5 46.2 

Table 6-18: Algorithms’ parameters stored in optimized chromosome indexes 49-56 

Chromosome vector index 57 58 59 60 61 62 63 64 

Parameter Value 24.1 37.2 10.4 11.4 5.9 10.6 3 43.2 

Table 6-19: Algorithms’ parameters stored in optimized chromosome indexes 57-64 

6.2.4 Testing Phase 

Similar to testing phase in section 6.1.2, once the Image Processing chain is created and 

optimized for breast cancer images, we can use it to segment new images. Figure 6-6 

shows the stages that any new image passes through to get segmented.  

The segmentation program uses the trained IPC to conduct new breast cancer 

segmentation. First step, as shown in Figure 6-6, is loading the optimized IPC. In order to 

verify the performance of the training stage, we used an image of database that contains 

30 breast cancer images with their gold images. Detailed results with all three parameters’ 

calculation for all 30 breast cancer images are listed in Appendix B. 
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6.2.5 Result Analysis 

The optimized image processing chain contains eight thresholding algorithms. Using each 

of these algorithms as a standalone thresholding and segmentation methods yields to a 

very poor performance, as shown in Table 6-20. The optimized chain has almost seven 

times higher accuracy that the normal thresholding technique. 

This accuracy increases by adding more filters, enhancers, thresholding, and post 

processing algorithms to the IPC pools to be used by DE. Last row in Table 6-20 verifies the 

optimality of the developed IPC by changing one algorithm in the optimal chromosome. 

The obtained average shows the severe effect on the trained system if it was manually 

manipulated (detailed result for the whole images database can be found in Appendix D. 

  

Thresholding Algorithm Overlap with Gold  Image Database 

Otsu 13.7% 30 Breast images 

Kittler 17.24% 30 Breast images 

Histogram 13.85 % 30 Breast images 

Triangle 20.79% 30 Breast images 

Image Processing Chain 52.37% 30 Breast images 

Image Processing Chain after manual 

change of one algorithm  

7.2 30 Breast images 

Table 6-20: Segmenting images using individual thresholding algorithms used in IPC 
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Chapter 7 

7 Conclusion and Future work 
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7.1 Conclusion 

The surveyed scientific literature for optimization-based segmentation algorithms 

suggested many segmentation algorithms that target specific type of images and modality; 

the optimizers in these algorithms target one specific task without taking into 

consideration the whole image segmentation process. The proposed approach in this 

thesis attempts to consider the gap in scientific literature by proposing a universal 

segmentation framework that is trained to segment any feature from images produced by 

any modality. Unlike expert systems, where you need a huge amount of data to get the 

system trained properly, our framework uses only three images with their related gold 

images to train the system. Once the training is finished, the trained IPC is loaded and re-

used for the segmentation of the same type of features. 

The novelty of our approach is that the DE optimizer creates a full image processing system 

composed of filters, contrast enhancers, thresholding, and post processing. It also tunes 

all parameters of these algorithms in such a way that the IPC is able to segment the 

targeted features. To the best of our knowledge, this is the first attempt to target 

segmentation as a fully integrated process where image passes through a sequence of 

processing steps to reach the final segmented status. 

 

7.2 Future work 

The population size for this type of problems is five-hundred members with a 

dimensionality of sixty-four. Evaluation of one generation takes about a day or two for 

certain value of algorithm values. Also some of the algorithms in the pool are costly in 

terms of time. Achieving acceptable results need five-thousand iterations and finish for 

three months as in both cases discussed in Chapter 6. Calculation time increases as we add 

more CPU greedy algorithms to the IPC pool. This leads us to the first target of the next 

generation of the framework which is parallelizing the calculation of the DE algorithm 

where we can setup one master processor that distribute 500 population members to 500 

slave processors which in turn they could split the image into multiple segment and 

distribute it to second level slaves. Then the results are gathered back to the master 
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processor for decision processing. We can also use GPU processing with thousands of 

processors that could be assigned individually to every pixel such that the calculation on 

every pixel is done on one GPU processors.  

.   
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8.1 Appendix A 
Image Name Sensitivity Precession Overlap 

JPCLN001.tif 87.84% 95.76% 84.55% 
JPCLN002.tif 90.44% 42.67% 40.83% 
JPCLN003.tif 84.55% 87.13% 75.17% 
JPCLN004.tif 89.48% 86.43% 78.46% 

JPCLN005.tif 83.52% 79.86% 68.99% 

JPCLN006.tif 82.71% 84.47% 71.79% 

JPCLN007.tif 86.29% 91.37% 79.79% 

JPCLN008.tif 78.79% 91.34% 73.31% 

JPCLN009.tif 80.71% 39.47% 36.07% 

JPCLN010.tif 65.31% 87.02% 59.51% 

JPCLN011.tif 89.07% 71.99% 66.15% 

JPCLN012.tif 84.98% 80.16% 70.21% 
JPCLN013.tif 89.22% 89.35% 80.64% 
JPCLN014.tif 85.69% 93.63% 80.97% 
JPCLN015.tif 84.15% 81.81% 70.89% 
JPCLN016.tif 88.47% 47.58% 44.80% 

JPCLN017.tif 81.93% 87.36% 73.25% 

JPCLN018.tif 88.43% 75.55% 68.75% 

JPCLN019.tif 84.41% 91.50% 78.27% 

JPCLN020.tif 74.73% 86.23% 66.76% 

JPCLN021.tif 89.27% 87.85% 79.46% 

JPCLN022.tif 84.37% 90.00% 77.14% 

JPCLN023.tif 86.11% 87.07% 76.35% 

JPCLN024.tif 72.52% 91.03% 67.68% 
JPCLN025.tif 77.09% 82.88% 66.50% 
JPCLN026.tif 88.50% 92.64% 82.68% 
JPCLN027.tif 80.44% 88.77% 73.01% 
JPCLN028.tif 85.88% 89.37% 77.92% 

JPCLN029.tif 81.21% 86.65% 72.17% 

JPCLN030.tif 77.46% 84.01% 67.51% 

JPCLN031.tif 78.99% 91.11% 73.34% 

JPCLN032.tif 88.46% 91.95% 82.10% 

JPCLN033.tif 86.52% 51.22% 47.44% 

JPCLN034.tif 90.02% 63.81% 59.59% 

JPCLN035.tif 87.25% 88.71% 78.53% 

JPCLN036.tif 91.98% 67.69% 63.91% 
JPCLN037.tif 69.73% 86.03% 62.64% 
JPCLN038.tif 89.25% 86.29% 78.17% 
JPCLN039.tif 63.33% 48.38% 37.79% 
JPCLN040.tif 87.28% 69.29% 62.94% 
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JPCLN041.tif 86.80% 71.61% 64.57% 
JPCLN042.tif 80.27% 78.61% 65.88% 
JPCLN043.tif 76.53% 86.31% 68.24% 
JPCLN044.tif 78.70% 92.15% 73.75% 
JPCLN045.tif 84.73% 94.37% 80.65% 

JPCLN046.tif 91.00% 76.11% 70.78% 

JPCLN047.tif 85.68% 65.67% 59.18% 

JPCLN048.tif 85.33% 59.92% 54.32% 

JPCLN049.tif 84.19% 89.85% 76.88% 

JPCLN050.tif 77.87% 91.80% 72.80% 

JPCLN051.tif 82.42% 93.64% 78.05% 

JPCLN052.tif 83.69% 89.50% 76.20% 

JPCLN053.tif 85.82% 93.07% 80.67% 
JPCLN054.tif 85.75% 91.99% 79.79% 
JPCLN055.tif 88.04% 86.50% 77.40% 
JPCLN056.tif 88.02% 92.66% 82.28% 
JPCLN057.tif 83.86% 89.98% 76.70% 

JPCLN058.tif 91.60% 79.65% 74.23% 

JPCLN059.tif 87.49% 83.52% 74.61% 

JPCLN060.tif 81.62% 89.64% 74.58% 

JPCLN061.tif 81.63% 86.99% 72.75% 

JPCLN062.tif 80.01% 90.49% 73.80% 

JPCLN063.tif 86.57% 90.06% 79.02% 

JPCLN064.tif 89.23% 51.48% 48.47% 

JPCLN065.tif 87.54% 88.27% 78.42% 
JPCLN066.tif 85.79% 80.25% 70.83% 
JPCLN067.tif 87.92% 82.59% 74.18% 
JPCLN068.tif 86.59% 91.82% 80.39% 
JPCLN069.tif 82.42% 88.79% 74.66% 

JPCLN070.tif 84.19% 67.26% 59.72% 

JPCLN071.tif 79.42% 87.58% 71.38% 

JPCLN072.tif 83.73% 80.87% 69.89% 

JPCLN073.tif 86.46% 90.71% 79.42% 

JPCLN074.tif 86.66% 69.88% 63.09% 

JPCLN075.tif 67.98% 94.33% 65.31% 

JPCLN076.tif 86.90% 89.78% 79.08% 

JPCLN077.tif 84.68% 52.59% 48.02% 
JPCLN078.tif 83.91% 90.54% 77.15% 
JPCLN079.tif 84.89% 90.84% 78.19% 
JPCLN080.tif 84.30% 88.08% 75.66% 
JPCLN081.tif 79.59% 47.91% 42.67% 

JPCLN082.tif 86.60% 53.73% 49.60% 



100 
 

 
 

JPCLN083.tif 80.93% 92.01% 75.61% 
JPCLN084.tif 82.05% 93.58% 77.68% 
JPCLN085.tif 86.68% 81.09% 72.10% 
JPCLN086.tif 81.98% 76.97% 65.83% 
JPCLN087.tif 85.49% 89.60% 77.77% 

JPCLN088.tif 80.81% 85.63% 71.16% 

JPCLN089.tif 86.29% 87.75% 77.01% 

JPCLN090.tif 83.29% 70.99% 62.14% 

JPCLN091.tif 85.43% 90.11% 78.11% 

JPCLN092.tif 89.91% 78.23% 71.91% 

JPCLN093.tif 79.47% 95.71% 76.74% 

JPCLN094.tif 86.20% 94.45% 82.04% 

JPCLN095.tif 74.25% 90.23% 68.72% 
JPCLN096.tif 82.23% 90.30% 75.55% 
JPCLN097.tif 88.59% 81.19% 73.50% 
JPCLN098.tif 85.21% 88.78% 76.93% 
JPCLN099.tif 83.11% 87.89% 74.57% 

JPCLN100.tif 83.45% 90.54% 76.76% 

JPCLN101.tif 79.97% 79.66% 66.41% 

JPCLN102.tif 84.93% 92.28% 79.29% 

JPCLN103.tif 86.27% 68.88% 62.08% 

JPCLN104.tif 86.76% 92.26% 80.87% 

JPCLN105.tif 82.08% 90.55% 75.60% 

JPCLN106.tif 86.02% 85.87% 75.35% 

JPCLN107.tif 88.45% 83.29% 75.12% 
JPCLN108.tif 72.71% 93.24% 69.07% 
JPCLN109.tif 87.01% 90.18% 79.48% 
JPCLN110.tif 82.92% 92.65% 77.80% 
JPCLN111.tif 86.06% 92.40% 80.36% 

JPCLN112.tif 89.82% 58.65% 54.99% 

JPCLN113.tif 81.99% 89.57% 74.85% 

JPCLN114.tif 83.67% 93.39% 78.99% 

JPCLN115.tif 82.87% 87.24% 73.91% 

JPCLN116.tif 82.46% 91.37% 76.51% 

JPCLN117.tif 87.50% 78.82% 70.84% 

JPCLN118.tif 86.21% 81.04% 71.74% 

JPCLN119.tif 81.77% 86.95% 72.83% 
JPCLN120.tif 86.73% 95.62% 83.42% 
JPCLN121.tif 85.27% 83.02% 72.61% 
JPCLN122.tif 80.91% 50.70% 45.28% 
JPCLN123.tif 83.79% 90.63% 77.11% 

JPCLN124.tif 84.39% 91.41% 78.20% 
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JPCLN125.tif 82.56% 94.00% 78.42% 
JPCLN126.tif 89.75% 84.12% 76.75% 
JPCLN127.tif 71.19% 88.99% 65.43% 
JPCLN128.tif 87.66% 95.40% 84.10% 
JPCLN129.tif 82.11% 90.68% 75.72% 

JPCLN130.tif 83.19% 82.12% 70.43% 

JPCLN131.tif 81.89% 88.81% 74.24% 

JPCLN132.tif 84.53% 88.57% 76.21% 

JPCLN133.tif 83.20% 89.06% 75.49% 

JPCLN134.tif 83.96% 85.23% 73.30% 

JPCLN135.tif 90.04% 63.26% 59.13% 

JPCLN136.tif 82.81% 49.28% 44.70% 

JPCLN137.tif 80.72% 89.55% 73.77% 
JPCLN138.tif 85.41% 88.97% 77.23% 
JPCLN139.tif 87.25% 88.61% 78.45% 
JPCLN140.tif 85.32% 89.94% 77.89% 
JPCLN141.tif 81.56% 75.33% 64.37% 

JPCLN142.tif 85.98% 87.62% 76.67% 

JPCLN143.tif 89.21% 77.28% 70.67% 

JPCLN144.tif 83.38% 91.68% 77.51% 

JPCLN145.tif 85.23% 92.41% 79.65% 

JPCLN146.tif 82.03% 92.15% 76.67% 

JPCLN147.tif 84.18% 87.39% 75.07% 

JPCLN148.tif 79.23% 88.05% 71.54% 

JPCLN149.tif 85.69% 92.10% 79.82% 
JPCLN150.tif 86.37% 91.40% 79.87% 
JPCLN151.tif 83.78% 90.59% 77.08% 
JPCLN152.tif 84.99% 92.16% 79.25% 
JPCLN153.tif 79.58% 85.45% 70.08% 

JPCLN154.tif 85.05% 81.82% 71.53% 

JPCNN001.tif 85.36% 86.22% 75.11% 

JPCNN002.tif 81.42% 87.96% 73.25% 

JPCNN003.tif 72.15% 91.56% 67.65% 

JPCNN004.tif 83.45% 91.30% 77.30% 

JPCNN005.tif 86.86% 88.34% 77.93% 

JPCNN006.tif 90.07% 92.84% 84.22% 

JPCNN007.tif 88.90% 62.53% 58.00% 
JPCNN008.tif 81.24% 73.30% 62.69% 
JPCNN009.tif 84.23% 91.47% 78.10% 
JPCNN010.tif 88.55% 79.25% 71.88% 
JPCNN011.tif 87.43% 88.42% 78.44% 

JPCNN012.tif 91.47% 85.48% 79.17% 
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JPCNN013.tif 83.83% 89.00% 75.95% 
JPCNN014.tif 84.54% 87.88% 75.71% 
JPCNN015.tif 79.21% 83.18% 68.27% 
JPCNN016.tif 86.76% 80.77% 71.91% 
JPCNN017.tif 87.63% 90.89% 80.55% 

JPCNN018.tif 82.76% 89.71% 75.58% 

JPCNN019.tif 83.60% 92.03% 77.96% 

JPCNN020.tif 85.05% 91.42% 78.76% 

JPCNN021.tif 85.02% 88.18% 76.32% 

JPCNN022.tif 88.52% 82.03% 74.14% 

JPCNN023.tif 76.66% 84.13% 66.98% 

JPCNN024.tif 70.20% 84.92% 62.42% 

JPCNN025.tif 84.79% 87.26% 75.45% 
JPCNN026.tif 87.29% 91.40% 80.66% 
JPCNN027.tif 83.68% 81.57% 70.38% 
JPCNN028.tif 85.00% 89.16% 77.04% 
JPCNN029.tif 84.85% 88.00% 76.05% 

JPCNN030.tif 86.92% 82.57% 73.45% 

JPCNN031.tif 87.28% 79.23% 71.02% 

JPCNN032.tif 81.47% 77.84% 66.13% 

JPCNN033.tif 87.29% 87.47% 77.59% 

JPCNN034.tif 82.47% 79.49% 68.00% 

JPCNN035.tif 84.75% 88.74% 76.52% 

JPCNN036.tif 88.11% 90.36% 80.54% 

JPCNN037.tif 86.49% 95.25% 82.91% 
JPCNN038.tif 75.26% 93.02% 71.24% 
JPCNN039.tif 77.74% 91.16% 72.29% 
JPCNN040.tif 81.29% 81.72% 68.79% 
JPCNN041.tif 88.67% 86.76% 78.10% 

JPCNN042.tif 68.37% 93.30% 65.16% 

JPCNN043.tif 78.13% 88.07% 70.65% 

JPCNN044.tif 85.14% 68.24% 60.98% 

JPCNN045.tif 86.36% 82.60% 73.07% 

JPCNN046.tif 81.76% 77.08% 65.77% 

JPCNN047.tif 84.08% 75.85% 66.32% 

JPCNN048.tif 84.98% 84.73% 73.69% 

JPCNN049.tif 83.60% 71.23% 62.49% 
JPCNN050.tif 84.95% 77.63% 68.24% 
JPCNN051.tif 75.41% 86.96% 67.75% 
JPCNN052.tif 79.90% 85.62% 70.45% 
JPCNN053.tif 82.45% 88.95% 74.79% 

JPCNN054.tif 84.26% 86.87% 74.74% 
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JPCNN055.tif 88.23% 74.47% 67.74% 
JPCNN056.tif 84.55% 81.16% 70.68% 
JPCNN057.tif 85.60% 92.34% 79.92% 
JPCNN058.tif 82.41% 89.45% 75.11% 
JPCNN059.tif 85.52% 88.20% 76.74% 

JPCNN060.tif 81.79% 86.91% 72.82% 

JPCNN061.tif 87.74% 89.69% 79.69% 

JPCNN062.tif 83.72% 85.82% 73.55% 

JPCNN063.tif 82.30% 91.23% 76.27% 

JPCNN064.tif 87.08% 57.01% 52.56% 

JPCNN065.tif 84.50% 83.18% 72.18% 

JPCNN066.tif 90.24% 77.90% 71.84% 

JPCNN067.tif 81.95% 87.28% 73.21% 
JPCNN068.tif 85.91% 87.52% 76.53% 
JPCNN069.tif 84.15% 87.79% 75.33% 
JPCNN070.tif 80.91% 86.76% 72.01% 
JPCNN071.tif 79.47% 86.94% 70.99% 

JPCNN072.tif 83.02% 81.33% 69.73% 

JPCNN073.tif 85.71% 87.09% 76.05% 

JPCNN074.tif 82.94% 82.69% 70.67% 

JPCNN075.tif 87.03% 85.38% 75.75% 

JPCNN076.tif 85.94% 80.09% 70.81% 

JPCNN077.tif 82.91% 77.60% 66.90% 

JPCNN078.tif 80.55% 88.97% 73.24% 

JPCNN079.tif 81.29% 87.04% 72.51% 
JPCNN080.tif 83.36% 85.48% 73.02% 
JPCNN081.tif 85.80% 92.87% 80.50% 
JPCNN082.tif 83.09% 91.92% 77.43% 
JPCNN083.tif 84.01% 89.17% 76.23% 

JPCNN084.tif 84.18% 92.18% 78.57% 

JPCNN085.tif 82.00% 88.07% 73.80% 

JPCNN086.tif 84.13% 86.25% 74.18% 

JPCNN087.tif 86.36% 84.81% 74.79% 

JPCNN088.tif 85.63% 86.49% 75.53% 

JPCNN089.tif 80.91% 92.65% 76.03% 

JPCNN090.tif 87.34% 88.12% 78.14% 

JPCNN091.tif 87.74% 69.30% 63.18% 
JPCNN092.tif 82.91% 80.16% 68.80% 
JPCNN093.tif 83.54% 86.59% 73.97% 

Average 83.9% 84% 72% 

Standard Deviation 0.04 0.11 0.084 
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8.2 Appendix B 
Image Name Sensitivity Precession Overlap 

1.tif 4559 66 100 

10.tif 1686 40 100 

11.tif 177 90 98 

12.tif 6726 73 48 

13.tif 16099 3 100 

14.tif 18038 31 100 

15.tif 16597 52 100 

16.tif 11564 38 99 

17.tif 22710 14 100 

18.tif 3695 82 62 

19.tif 5805 32 99 

2.tif 1537 99 86 

20.tif 11619 4 100 

21.tif 3160 65 94 

22.tif 13151 90 75 

23.tif 24845 66 98 

24.tif 653 83 100 

25.tif 2076 58 90 

26.tif 1070 97 84 

27.tif 1168 92 91 

28.tif 5285 72 100 

29.tif 23552 98 42 

3.tif 2233 98 88 

30.tif 74394 96 20 

4.tif 533 86 73 

5.tif 1033 55 100 

6.tif 7321 48 100 

7.tif 4226 70 100 

8.tif 10588 69 62 

9.tif 19617 93 15 

Average 65.33% 84.13% 52.37% 

Standard Dev. 28.08 23.95 24.63 
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8.3 Appendix C 
Image Name Sensitivity Precession Overlap 

JPCLN001.tif 70 97 68 

JPCLN002.tif 71 96 69 

JPCLN003.tif 100 10 10 

JPCLN004.tif 77 97 75 

JPCLN005.tif 100 9 9 

JPCLN006.tif 75 98 74 

JPCLN007.tif 100 14 14 

JPCLN008.tif 68 99 68 

JPCLN009.tif 100 13 13 

JPCLN010.tif 100 10 10 

JPCLN011.tif 100 14 14 

JPCLN012.tif 100 13 13 

JPCLN013.tif 100 12 12 

JPCLN014.tif 70 99 70 

JPCLN015.tif 100 13 13 

JPCLN016.tif 80 69 59 

JPCLN017.tif 100 12 12 

JPCLN018.tif 70 98 69 

JPCLN019.tif 75 97 74 

JPCLN020.tif 71 92 67 

JPCLN021.tif 78 97 76 

JPCLN022.tif 71 97 70 

JPCLN023.tif 64 92 60 

JPCLN024.tif 77 96 74 

JPCLN025.tif 100 9 9 

JPCLN026.tif 78 96 76 

JPCLN027.tif 71 97 70 

JPCLN028.tif 77 97 75 

JPCLN029.tif 100 9 9 

JPCLN030.tif 66 94 64 

JPCLN031.tif 100 13 13 

JPCLN032.tif 83 96 80 

JPCLN033.tif 69 99 68 

JPCLN034.tif 90 66 62 

JPCLN035.tif 76 98 74 

JPCLN036.tif 100 15 15 

JPCLN037.tif 100 11 11 

JPCLN038.tif 91 95 87 

JPCLN039.tif 55 99 55 

JPCLN040.tif 100 16 16 
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JPCLN041.tif 100 14 14 

JPCLN042.tif 100 9 9 

JPCLN043.tif 100 12 12 

JPCLN044.tif 100 12 12 

JPCLN045.tif 79 98 77 

JPCLN046.tif 100 14 14 

JPCLN047.tif 73 97 71 

JPCLN048.tif 100 7 7 

JPCLN049.tif 100 14 14 

JPCLN050.tif 72 95 69 

JPCLN051.tif 100 13 13 

JPCLN052.tif 68 96 66 

JPCLN053.tif 73 98 72 

JPCLN054.tif 100 12 12 

JPCLN055.tif 100 12 12 

JPCLN056.tif 81 98 80 

JPCLN057.tif 72 97 70 

JPCLN058.tif 77 99 77 

JPCLN059.tif 100 11 11 

JPCLN060.tif 100 12 12 

JPCLN061.tif 100 13 13 

JPCLN062.tif 69 96 67 

JPCLN063.tif 100 17 17 

JPCLN064.tif 73 96 71 

JPCLN065.tif 100 13 13 

JPCLN066.tif 65 99 64 

JPCLN067.tif 100 11 11 

JPCLN068.tif 78 97 76 

JPCLN069.tif 77 94 74 

JPCLN070.tif 78 93 74 

JPCLN071.tif 66 97 65 

JPCLN072.tif 100 11 11 

JPCLN073.tif 83 95 80 

JPCLN074.tif 100 16 16 

JPCLN075.tif 67 98 67 

JPCLN076.tif 78 96 76 

JPCLN077.tif 78 57 49 

JPCLN078.tif 83 94 79 

JPCLN079.tif 71 99 71 

JPCLN080.tif 82 95 78 

JPCLN081.tif 58 97 57 

JPCLN082.tif 66 100 66 
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JPCLN083.tif 65 97 64 

JPCLN084.tif 75 99 74 

JPCLN085.tif 100 10 10 

JPCLN086.tif 81 97 79 

JPCLN087.tif 83 97 81 

JPCLN088.tif 65 99 65 

JPCLN089.tif 100 21 21 

JPCLN090.tif 76 99 75 

JPCLN091.tif 79 97 77 

JPCLN092.tif 85 95 82 

JPCLN093.tif 66 99 66 

JPCLN094.tif 87 98 85 

JPCLN095.tif 100 8 8 

JPCLN096.tif 100 13 13 

JPCLN097.tif 100 16 16 

JPCLN098.tif 82 96 79 

JPCLN099.tif 100 10 10 

JPCLN100.tif 100 11 11 

JPCLN101.tif 83 89 76 

JPCLN102.tif 75 98 74 

JPCLN103.tif 63 100 62 

JPCLN104.tif 86 96 83 

JPCLN105.tif 75 95 72 

JPCLN106.tif 100 14 14 

JPCLN107.tif 83 98 82 

JPCLN108.tif 65 95 63 

JPCLN109.tif 75 98 74 

JPCLN110.tif 75 97 74 

JPCLN111.tif 82 95 79 

JPCLN112.tif 72 98 71 

JPCLN113.tif 79 95 76 

JPCLN114.tif 64 100 64 

JPCLN115.tif 77 94 73 

JPCLN116.tif 100 11 11 

JPCLN117.tif 100 10 10 

JPCLN118.tif 81 95 78 

JPCLN119.tif 100 10 10 

JPCLN120.tif 74 100 74 

JPCLN121.tif 82 95 79 

JPCLN122.tif 54 100 54 

JPCLN123.tif 100 13 13 

JPCLN124.tif 100 14 14 
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JPCLN125.tif 55 98 55 

JPCLN126.tif 70 99 69 

JPCLN127.tif 100 12 12 

JPCLN128.tif 61 100 61 

JPCLN129.tif 64 99 64 

JPCLN130.tif 80 91 74 

JPCLN131.tif 79 95 76 

JPCLN132.tif 100 11 11 

JPCLN133.tif 100 15 15 

JPCLN134.tif 84 90 76 

JPCLN135.tif 100 13 13 

JPCLN136.tif 100 11 11 

JPCLN137.tif 100 8 8 

JPCLN138.tif 79 97 77 

JPCLN139.tif 83 95 79 

JPCLN140.tif 80 100 80 

JPCLN141.tif 100 15 15 

JPCLN142.tif 70 97 68 

JPCLN143.tif 78 94 75 

JPCLN144.tif 80 97 78 

JPCLN145.tif 75 97 73 

JPCLN146.tif 76 95 73 

JPCLN147.tif 85 91 78 

JPCLN148.tif 71 94 68 

JPCLN149.tif 100 12 12 

JPCLN150.tif 79 98 78 

JPCLN151.tif 100 11 11 

JPCLN152.tif 71 98 70 

JPCLN153.tif 73 96 71 

JPCLN154.tif 100 11 11 

JPCNN001.tif 79 98 78 

JPCNN002.tif 76 87 68 

JPCNN003.tif 100 10 10 

JPCNN004.tif 83 94 79 

JPCNN005.tif 82 97 80 

JPCNN006.tif 100 14 14 

JPCNN007.tif 100 12 12 

JPCNN008.tif 100 14 14 

JPCNN009.tif 78 97 76 

JPCNN010.tif 83 98 81 

JPCNN011.tif 100 11 11 

JPCNN012.tif 86 96 83 
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JPCNN013.tif 100 13 13 

JPCNN014.tif 100 13 13 

JPCNN015.tif 100 11 11 

JPCNN016.tif 85 96 82 

JPCNN017.tif 64 99 64 

JPCNN018.tif 100 15 15 

JPCNN019.tif 74 98 74 

JPCNN020.tif 73 95 70 

JPCNN021.tif 72 98 71 

JPCNN022.tif 87 91 80 

JPCNN023.tif 83 95 80 

JPCNN024.tif 100 9 9 

JPCNN025.tif 75 93 71 

JPCNN026.tif 100 13 13 

JPCNN027.tif 100 10 10 

JPCNN028.tif 73 96 71 

JPCNN029.tif 100 8 8 

JPCNN030.tif 100 12 12 

JPCNN031.tif 100 17 17 

JPCNN032.tif 100 16 16 

JPCNN033.tif 79 93 75 

JPCNN034.tif 100 16 16 

JPCNN035.tif 100 15 15 

JPCNN036.tif 79 94 76 

JPCNN037.tif 86 95 83 

JPCNN038.tif 75 97 73 

JPCNN039.tif 100 14 14 

JPCNN040.tif 85 87 76 

JPCNN041.tif 82 91 75 

JPCNN042.tif 100 15 15 

JPCNN043.tif 100 10 10 

JPCNN044.tif 100 15 15 

JPCNN045.tif 100 19 19 

JPCNN046.tif 100 16 16 

JPCNN047.tif 100 13 13 

JPCNN048.tif 80 84 69 

JPCNN049.tif 100 15 15 

JPCNN050.tif 79 95 76 

JPCNN051.tif 100 13 13 

JPCNN052.tif 72 95 69 

JPCNN053.tif 91 88 81 

JPCNN054.tif 83 97 80 
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JPCNN055.tif 89 91 81 

JPCNN056.tif 74 90 68 

JPCNN057.tif 72 98 71 

JPCNN058.tif 71 99 70 

JPCNN059.tif 100 16 16 

JPCNN060.tif 100 14 14 

JPCNN061.tif 100 18 18 

JPCNN062.tif 100 9 9 

JPCNN063.tif 84 95 81 

JPCNN064.tif 71 99 70 

JPCNN065.tif 100 12 12 

JPCNN066.tif 100 10 10 

JPCNN067.tif 100 11 11 

JPCNN068.tif 82 95 79 

JPCNN069.tif 77 97 75 

JPCNN070.tif 100 12 12 

JPCNN071.tif 68 97 66 

JPCNN072.tif 100 11 11 

JPCNN073.tif 77 94 74 

JPCNN074.tif 100 14 14 

JPCNN075.tif 74 94 71 

JPCNN076.tif 78 97 76 

JPCNN077.tif 100 11 11 

JPCNN078.tif 100 12 12 

JPCNN079.tif 90 88 80 

JPCNN080.tif 100 8 8 

JPCNN081.tif 100 18 18 

JPCNN082.tif 100 13 13 

JPCNN083.tif 100 11 11 

JPCNN084.tif 67 96 65 

JPCNN085.tif 67 98 66 

JPCNN086.tif 88 93 82 

JPCNN087.tif 100 9 9 

JPCNN088.tif 100 11 11 

JPCNN089.tif 73 96 71 

JPCNN090.tif 100 12 12 

JPCNN091.tif 74 99 73 

JPCNN092.tif 100 8 8 

JPCNN093.tif 100 12 12 

Average 86.00 % 60.09 % 47.06 % 
Standard Dev. 13.30 41.21 30.25 
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8.4 Appendix D 
Image Name Sensitivity Precession Overlap 

1.tif 3 100 3 

10.tif 16 100 16 

11.tif 30 100 30 

12.tif 7 100 7 

13.tif 3 100 3 

14.tif 2 100 2 

15.tif 1 100 1 

16.tif 2 100 2 

17.tif 2 100 2 

18.tif 8 100 8 

19.tif 5 100 5 

2.tif 5 100 5 

20.tif 4 100 4 

21.tif 5 100 5 

22.tif 1 100 1 

23.tif 1 100 1 

24.tif 12 100 12 

25.tif 10 100 10 

26.tif 9 100 9 

27.tif 6 100 6 

28.tif 2 100 2 

29.tif 3 100 3 

3.tif 3 100 3 

30.tif 2 100 2 

4.tif 36 97 36 

5.tif 19 100 19 

6.tif 3 100 3 

7.tif 3 100 3 

8.tif 3 100 3 

9.tif 12 100 12 

Average 7.27% 99.90% 7.27% 

Standard Dev. 8.21 0.54 8.21 
 


