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Abstract

The exponential growth of digital data has led to the proliferation of cloud storage

systems as well as high-capacity, low-latency storage devices such as flash memory

based solid-state drives (SSDs). These advances, along with the technology shrink,

have increased the error rate both at system and device level. Storage device man-

ufacturers and service providers often promise data reliability through error control

coding. This dissertation is centered around the implementation of error correct-

ing code (ECC) in data storage. In particular, we target low-density parity-check

(LDPC) codes used for device-level and erasure codes used for system-level data reli-

ability. Due to the ever-changing ECC requirements in the storage industry, we focus

on field programmable gate arrays (FPGAs), given their short design cycles. Many

studies on FPGA implementation of ECC focus on improving the hardware efficiency

for a certain code of interest. This thesis extends this theme by considering hardware

and code performance simultaneously. With the focus on ECCs used in data stor-

age, we demonstrate a study of hardware-code co-design through an efficient FPGA

micro-architecture that strikes a trade off between hardware efficiency and code per-

formance. To this end, we leverage the FPGA’s inherent physical architecture to

propose an efficient reconfigurable micro-architecture for LDPC decoders. Then, we

address the limitations of ECC in flash memories and define a finite decoder design

space. Finally, we propose an end-to-end solution in which we leverage machine learn-

ing techniques to design a finite alphabet iterative decoder which strikes a trade off

between hardware efficiency and code performance. In a separate effort, we perform

a quantitative study of erasure coding design on FPGAs. We demonstrate, through

probabilistic analysis, that an efficient implementation ought to allocate more re-

sources to the common-case, while reducing the performance target for less probable

cases.
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Chapter 1

Introduction

1.1 Motivation

The demand for data storage has been rapidly growing over the past decade. This

growth has accelerated further over the past few years as a result of emerging tech-

nologies such as Internet of things (IoT), autonomous vehicles, and 5G networks.

According to Science Daily report [1], in 2013, 90% of all existing data in the world

had been generated over the previous two years. Meanwhile, the aggregated amount

of the digital data present on our planet was about 30 Zettabytes (30× 1012 GB) in

2017 and it is expected to reach 160 Zettabytes in 2025 with an exponential rate [2].

This has led to the proliferation of cloud storage services such as Amazon’s S3 [3]

and Microsoft’s oneDrive [4] as well as high-capacity, low-latency storage devices

such as flash memory based solid-state drives (SSDs). These advances, together with

technology shrink have made data reliability a major concern both at the system and

device levels.

The major vehicle to address data reliability is error control coding, exemplified

by erasure coding in storage systems, and low-density parity-check (LDPC) [5] codes

in storage devices. This dissertation concerns the implementation of ECC in storage.

In particular, we focus on LDPC and erasure codes as the common codes used for

device and system level data reliability.

The rapid changes in ECC specifications and requirements in storage applications

demand a short time-to-market for any practical implementation. Therefore, field

programmable gate array (FPGA) is a suitable reconfigurable hardware platform in

this context. Moreover, computational storage is believed to be the next big thing

and SNIA organization which leads the research in the storage industry has assigned

a group to establish a taxonomy for it. It includes a large class of applications where

some key algorithms are implemented within the storage controller. However, not all

1



CHAPTER 1. INTRODUCTION 2

algorithms justify having an ASIC implementation and even if they do, it may not

be economically justifiable to go directly through that path which makes FPGA a

suitable platform in this context.

1.2 Challenge

While many studies have been reported on the implementation of LDPC and erasure

codes on FPGAs, with application areas well beyond storage, a common theme of the

efforts is to implement a code of interest efficiently, where efficiency is quantified by

the hardware resources employed.

This dissertation extends the theme in two deeper questions:

• Is there an FPGA-optimized micro-architecture for LDPC? (The FPGA micro-

architecture problem)

• Is there an interesting trade off between LDPC micro-architecture and code

performance? (The micro-architecture-code co-design problem)

1.3 Contributions

Towards addressing the raised questions, we make the following contributions:

• We leverage the FPGA’s inherent physical architecture to design and implement

an efficient configurable micro-architecture for LDPC decoders. The results show

that our architecture is 11% more efficient compared to a barrel-shifter imple-

mentation of the medium-sized, Wimax802.16e LDPC code.

• Considering the inherent constraints of flash memories for LDPC decoding, we

learn some aspects of the code to improve the code performance while simulta-

neously respecting the hardware efficiency. We show that our approach improves

the code correction capability by 10%-18% at the cost of 4%-18% less efficient

hardware.

• In a separate effort, we propose a configurable architecture for Reed-Solomon

(RS) erasure coding which allocates more FPGA resources to common-case fail-

ures while reducing the performance target for rare failure cases.

1.4 Dissertation Organization

This thesis is organized as follows: Chapter 2 provides the basic concepts and defi-

nitions in reliable data storage, error correcting codes, and the performance metrics.
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Chapter 3 describes the basic concepts for LDPC encoding and decoding as well as

establishing a taxonomy for the hardware implementations and prior works in this

field. Chapter 4 discusses our proposed reconfigurable FPGA micro-architecture for

LDPC decoders to address the FPGA micro-architecture problem. In Chapter 5, we

explain our learning based approach which aims to address the micro-architecture-

code co-design problem. Our configurable architecture for the erasure code design is

presented in Chapter 6 while Chapter 7 concludes the thesis.



Chapter 2

Background

This chapter provides some background knowledge on the coding process, and reliable

data storage as well as defining the performance metrics used in our evaluations.

2.1 Coding Process

A message being transmitted over a noisy communication channel, must undergo the

following steps for reliable data transmission (See Figure 2.1):

1. The k-bit information u =
[
u1 u2 · · · uk

]
is generated by the data source.

2. Using a channel coding mechanism, u is encoded to an n-bit codeword c =[
c1 c2 · · · cn

]
.

3. The transmitter converts c to a vector of symbols, ĉ =
[
ĉ1 ĉ2 · · · ĉn

]
.

4. ĉ is transmitted over the noisy channel. The received message at destination, ŷ,

is affected by channel noise: ŷ = ĉ+ n =
[
ŷ1 ŷ2 · · · ŷn

]
.

5. The receiver performs quantization and converts ŷ to y.

6. y is decoded to retrieve the codeword d. The decoding is successful when d = c.

Figure 2.1: Coding process.

4
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2.1.1 Encoding & Decoding

The presence of noise in a communication channel may change the value of symbols

during transmission which necessitates an error correcting mechanism. Therefore, an

error correcting code (ECC) is used to encode each message to a codeword with some

added redundancy. This redundancy is then used at the destination for decoding to

identify errors in the received message caused by the channel noise.

An (n, k) linear block code encodes a message with k bits into a codeword with

n bits adding m = n − k parity bits. A linear code is defined by its encoding and

decoding matrices. The former is known as the generator matrix , Gk×n, and the

latter is known as the parity check matrix, Hm×n. During the encoding process the

message is divided into k-bit blocks each being multiplied by G to generate an encoded

codeword:

u1×k ·Gk×n = c1×n (2.1)

During the decoding process, a hard-decision vector, ȳ, is made from the values of

the quantized vector, y. Then H is multiplied to ȳT to generate the syndrome, sT :

Hm×n · ȳTn×1 = sTm×1 (2.2)

If s = 01×m, then the received block is a codeword. Otherwise, further action is

initiated to correct the errors.

Example 2.1 Consider a (9,4) linear block code with the following generator and the

parity check matrices:

G4×9 =


1 0 0 0 1 0 1 0 1

0 1 0 0 1 0 0 1 1

0 0 1 0 0 1 1 0 1

0 0 0 1 0 1 0 1 1

 , H5×9 =


1 1 0 0 1 0 0 0 0

0 0 1 1 0 1 0 0 0

1 0 1 0 0 0 1 0 0

0 1 0 1 0 0 0 1 0

1 1 1 1 0 0 0 0 1

 (2.3)

and u =
[
1 0 1 1

]
. The codeword is generated by:

c =
[
1 0 1 1

]
·


1 0 0 0 1 0 1 0 1

0 1 0 0 1 0 0 1 1

0 0 1 0 0 1 1 0 1

0 0 0 1 0 1 0 1 1

 =
[
1 0 1 1 1 0 0 1 1

]
(2.4)

The first 4 bits are the original message bits while the last 5 bits are the parity bits.
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During the decoding process, assuming the decision vector, ȳ, is same as the trans-

mitted codeword, the syndrome matrix is computed as follows:

sT =


1 1 0 0 1 0 0 0 0

0 0 1 1 0 1 0 0 0

1 0 1 0 0 0 1 0 0

0 1 0 1 0 0 0 1 0

1 1 1 1 0 0 0 0 1

 ·



1

0

1

1

1

0

0

1

1


=


0

0

0

0

0

 (2.5)

According to the above computations, we have:

H · cT = H · (u ·G)T = H ·GT · uT = 0 (2.6)

Since Equation 2.6 should be valid for any information vector, u, we have:

H ·GT = 0 (2.7)

Consequently, the parity check and generator matrices can be computed from each

other.

A fundamental parameter to evaluate a (n, k) code is its rate defined as R = k
n
. The

extra m = n− k transmitted bits are the parity bits added to enable error correction

on the receiver side. In fact, code rate represents the fraction of a codeword that

contains message bits. In general, higher-rate codes have less parity bit overhead and

lower error correction capability.

2.1.2 Modulation

A signal has to be modulated in order to be transmitted over a channel. Common

methods include frequency modulation, amplitude modulation, and phase modula-

tion. This thesis assumes binary phase shift keying (BPSK) modulation in which

each codeword bit is modulated according to the following equation:

ĉi = 1− 2ci (2.8)

where ci is the ith bit of the codeword and ĉi is the ith modulated bit to be transmitted.

Consequently, for a binary message, 0 and 1 codeword bits are modulated to +1 and

−1 respectively.
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2.1.3 Channel Model

A transmission channel is often defined by its noise characteristics. Three of the most

well-known channel models are:

Binary Symmetric Channel (BSC)

A binary symmetric channel (BSC) describes a discrete memory channel (DMC) in

which bits have equal probability to flip due to noise. Figure 2.2 illustrates a BSC

channel in which every bit value has a probability, p, to flip while being transmitted

over the channel.

Figure 2.2: A BSC channel with error probability p.

Binary Erasure Channel (BEC)

A binary erasure channel (BEC) is a DMC with input symbols {0, 1} and output sym-

bols {0, 1, er} where er is the erasure symbol and the input symbols have probability

p to change to er at the receiver due to noise.

Figure 2.3: A BEC channel with error probability p.

Figure 2.3 illustrates a BEC channel. Unlike BSC, in a BEC channel when the

receiver gets a 0 or 1, the bit is certainly correct. In other words, in an erasure

channel, the error locations in the received message is known prior to the decoding

process.

Additive White Gaussian Noise Channel

Additive white Gaussian noise (AWGN) is a continuous channel model commonly used

in many applications such as satellite and deep-space communications. The noise in
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this channel has a normal distribution with mean 0 and variance σ2. Therefore, we

have:

ŷi = ĉi + ni, ĉi ∼ N(0, σ2) (2.9)

where ŷi is the value of bit i at the receiver, ĉi is the value of bit i at the transmitter,

and ni is the channel noise for bit i.

2.2 Error Correcting Codes In Data Storage

Although error correcting codes were initially designed for communication channels,

they are also used in data storage systems to prevent data loss and increase data

durability. Occurrence of a failure in a storage device may result in change or loss of

the stored data. As technology scales down, the failure rate increases and data storage

devices rely more on ECC to provide data reliability. The failure cause depends on the

physical properties of the underlying storage device. For instance, in flash memories,

it includes:

• Read disturb: Reading a cell my affect the values stored in its neighbouring cells.

• Program disturb: Programming a cell requires applying a high voltage to the

selected word-line which may affect the value stored in the neighbouring cells.

• Program/erase (P/E) cycles: The erase process in flash memories involves ap-

plying a relatively large electrical charge to flash cells. This causes the cells to

degrade over time which results in a growth in bit-error rate as the memory ages.

• Retention issues: When data is stored in flash memory cells, the leakage may

lead to a change of value in some cells.

The failures in a data storage system can be modelled as the noise in a communi-

cation channel (Figure 2.1) and ECC can be utilized to protect the data. Figure 2.4

illustrates the coding process utilized in a data storage device. The raw data needs to

be encoded when it is written to the disk. A fraction of storage capacity is devoted to

parity bits obtained through the encoding process. When retrieving the data from the

disk, it has to be decoded to correct the errors (if any) through a decoding process.

Figure 2.4: Error correcting codes in data storage
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Utilizing ECC to improve data integrity imposes storage and access latency over-

head. The former is caused by the required space to store the parity bits, while the

latter is due to the encoding and decoding procedures. However, these overheads can

be mitigated by using high-rate ECCs along with efficient encoding and decoding im-

plementations. In this thesis, we focus on improving the efficiency of high-rate ECCs

for data storage. Since decoding is usually the challenging step due to its iterative

process, we aim to propose efficient decoder architectures to improve the read latency

for high-rate codes.

2.3 FPGA Architecture: Soft-Logic Vs. Hard-Logic

Figure 2.5 illustrates the architecture of a typical FPGA. It consists of a set of con-

figurable logic blocks (CLBs), memory blocks, and digital signal processors (DSPs).

The CLBs consist of a set of lookup tables, implemented using memory elements and

multiplexers. The memory blocks are the natural memory resources in FPGA that

can be used to store the intermediate date during computation. The DSPs are essen-

tially efficient multipliers that are beneficial in applications such as image processing

and filters.

Figure 2.5: A typical architecture of an FPGA
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Although CLB’s lookup tables are designed to implement any logical function,

considering the inherent physical architecture of the FPGA can lead to a significantly

more efficient design. For instance, a multiplier that is implemented using the DSP

blocks is remarkably more efficient than implementing the multiplication logic using

the lookup tables. Similarly, a multiplexing logic that is realized through the existing

multiplexers within th CLBs has a notably higher efficiency than a multiplexer that is

implemented using the lookup tables. Utilizing the FPGA’s physically implemented

components is referred to as a hard-logic implementation. On the other hand, us-

ing FPGA’s lookup tables to realize a logical function is referred to as a soft-logic

implementation.

2.4 Definitions

2.4.1 Raw Bit Error Rate (RBER)

Let ȳ be the hard-decision vector of the ŷ received from the channel. We define the

following Bernoulli decision function:

I(ȳi) =

{
1 if ȳi 6= ci,

0 otherwise.
(2.10)

Therefore, raw bit error rate (RBER) can be expressed as:

pe = P (ȳi 6= ci) = P [I(ȳi) = 1] = E[I(ȳi)] (2.11)

where E[.] is the expectation operator [6]. In practice, using multiple realizations of

the transmitter and the channel in the Monte-Carlo simulation, the RBER can be

estimated using the ensemble average:

p̂e =
1

N

N∑
i=1

I(ȳi) =
BitErrors

TotalBits
(2.12)

2.4.2 Frame Error Rate (FER)

The frame error rate (FER) represents the number of codewords that are not decoded

successfully. Considering an ECC with codeword size n which is able to correct up

to t errors, FER can be computed as follows:

FER = 1−
t∑
i=0

(
n

i

)
pie(1− pe)n−i (2.13)
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Where pe is the RBER. It is impossible for some ECCs to theoretically compute the

number of errors they can correct, t. In that case, FER can be estimated using the

Monte-Carlo simulation:

ˆFER =
Unsucessful decodes

Total decodes
(2.14)

2.4.3 Uncorrectable Bit Error Rate (UBER)

The uncorrectable bit error rate (UBER) is defined as the bit error rate after the

error correction process. The details of computing the UBER is discussed in the joint

electron device engineering council (JEDEC) standard, JESD218 [7]. As a common

practice, UBER at any instant is estimated as:

UBER =
FER

A
(2.15)

where A is defined as the codeword size (n) [8], or the data bits per codeword (k) [9].

In this thesis, we compute UBER assuming A is the codeword size.

2.4.4 Signal-to-Noise Ration (SNR)

SNR is a metric that projects the level of a desired signal to the level of background

noise. It is defined as the ratio of the signal power to the noise power, and it is

often expressed as Eb

N0
, i.e., energy per bit over noise. For a code with rate R being

transmitted over an AWGN channel, SNR is computed as follows:

Eb
N0

=
1

2Rσ2
(2.16)

where σ2 is the variance of the noise. This ratio is often represented in decibels as

follows:

Eb
N0

[dB] = 10 log10(
Eb
N0

) (2.17)

In coding theory, SNR and RBER are related parameters. In fact, higher SNR

leads to lower RBER. For an AWGN channel with BPSK modulation, the relationship

between SNR and RBER is as follows:

RBER =
1

2
erfc

(√
Eb
N0

×R

)
(2.18)

where R is the code rate, and erfc() is the complementary error function[10].
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2.4.5 Shannon Limit

During the late 1940’s, Claude Shannon established the noisy channel coding theo-

rem [11]. Given the degree of noise in a channel, the theorem can determine the

maximum rate discrete data can be transferred through that channel. The Shannon

limit represents the maximum theoretical transfer rate over a noisy channel. For

a continuous AWGN channel, i.e., continuous input continuous output channel, the

maximum capacity can be computed as follows:

C = B log2 (1 + SNR) (2.19)

where B is the channel bandwidth and SNR is the signal-to-noise ratio.

The Shannon limit for a DMC can be computed through back calculation from

the mutual information (MI) of input and output random variables. In fact, the MI

is a measure of dependence between the two random variables. Let X ∈ {0, 1} and Y

be the input and output random variables for a DMC with binary input. Assuming

P (X = 0) = P (X = 1), the MI, I(X;Y ), between the input and output random

variables can be calculated [12] as:

I(X;Y ) = H(Y )−H(Y |X) (2.20)

where H is the entropy function [13].

Figure 2.6 illustrates a symmetric DMC with X ∈ {0, 1} and Y ∈ {00, 01, 11, 10}
where p1, p2, p3, p4 are the crossover probabilities. These probabilities can be com-

puted based on the channel noise distribution and the output quantization thresholds.

Figure 2.6: Symmetric DMC with X ∈ {0, 1} and Y ∈ {00, 01, 11, 10}
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In this case, the mutual information can be computed as follows:

I(X;Y ) = H(Y )−H(Y |X) = H(
p1 + p4

2
,
p2 + p3

2
,
p3 + p2

2
,
p4 + p1

2
)−H(p1, p2, p3, p4)

(2.21)

The computation can simply be extended to DMCs with larger quantization in their

output.

Given a channel noise distribution, it is possible to calculate the output quantiza-

tion thresholds that results in p1, p2, p3, p4 values which, in turn, results in maximum

mutual information (MMI) [12]. In fact, MMI represents the maximum code rate

that can be transferred reliably through the given noisy channel. Therefore, given a

code rate it would be possible, through interpolation, to back calculate the minimum

SNR above which the data can be transferred reliably over the DMC, i.e., Shannon

limit [12].

2.5 Performance Metrics

Any system with error-correcting capability always faces two major questions; cor-

rection capability and implementation efficiency. A set of quantitative metrics are

defined to address these questions.

2.5.1 Implementation Performance

The efficiency of any computational unit can be evaluated based on the ratio of its

peak throughput to its utilized resources, where the resource is the efficiency subject.

In this work, we focus on ECC decoding micro-architectures for FPGAs. Since these

algorithms are compute-intensive, the efficiency of their architectures can be evaluated

based on the number of lookup tables (LUTs) used to implement the algorithm.

Therefore, we define Throughput/1 Thousand LUTs as the efficiency metric and it is

measured as MBps/KLUT.

2.5.2 System Performance

Availability

In fault tolerant systems, Availability is defined as the fraction of time during which

the system is up and running:

Availability(A) =
UpTime

UpT ime+DownTime
=

MTTF

MTTF +MTTR
(2.22)

where MTTF is mean time to failure, and MTTR is mean time to repair.



CHAPTER 2. BACKGROUND 14

Reliability

Reliability is defined as the probability of a system being up and running:

Reliability(R) = 1− P (fail) (2.23)

where P (fail) is the probability that the system fails.

2.5.3 Code Performance

Target UBER

Target UBER is the UBER below which a system is considered to be reliable. This

metric is set based on application demands.

Noise Threshold

Noise threshold is defined as the power level of a signal above which the signal is

discernible. It is the metric to evaluate an ECC system and can be defined as the

lowest SNR above which the system can achieve a target UBER. In fact, noise thresh-

old determines the maximum noise level that can be tolerated by an ECC. Therefore,

higher noise threshold translates to higher error correcting capability. Noise threshold

can also be expressed in terms of the bit error rate as well.

Error-Floor

Generally, every ECC can provide lower UBER as RBER declines. However, for some

codes, there is a point beyond which UBER does not decrease with the same pace

as the RBER is decreased. This phenomenon, known as error-floor, is illustrated in

Figure 2.7.

Figure 2.7: Target UBER, Noise Threshold, and Error-floor



Chapter 3

Low-Density Parity-Check Codes

Low-density parity-check codes are a class of linear block error correcting codes that

was invented in the 60’s by Robert G. Gallager [5]. Despite being a capacity ap-

proaching code, LDPC did not receive the deserved attention until its rediscovery by

MacKay in 1996 [14] due to the limited computational resources in integrated circuits.

In 1998, MacKay presented a talk in NASA’s jet propulsion laboratory (JPL) to

discuss the feasibility of LDPC codes replacing turbo codes in NASA’s deep-space

applications. The talk was a renaissance for LDPC codes and led to more coding

research around the world. Compared to turbo codes, LDPC codes had more degrees

of design freedom that enabled designers to effectively strike a trade off between noise

threshold for decoding throughput [15]. Since 2009, LDPC has been used in JPL’s

missions for deep-space networks and satellite communications. There is still ongoing

research on improving LDPC performance as well as applying it to other applications.

LDPC has recently been considered as ECC in flash memories due to their high

error-correcting capability. As the number of program/erase (P/E) cycles of a flash

memory increases, the RBER is increased making the memory less reliable. In fact,

this phenomenon is exacerbated as technology shrink increases the threshold voltage

variation which results in a higher error rate specially when the number of P/E cycles

is quite high [16]. Compared to BCH codes, the higher noise threshold of LDPC codes

makes them a suitable ECC for flash memories to extend their lifetime.

In this chapter, we explain the basic concepts of LDPC codes as well as the ar-

chitectural choices for an LDPC decoder and the state-of-the-art LDPC decoders.

In particular, we focus on quasi-cyclic LDPC (QC-LDPC) codes, a class of LDPC

codes that are not only suitable for hardware implementation, but also of good code

performance.

15
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3.1 Characteristics

As its name suggests, LDPC is a class of linear block codes that has a sparse parity

check matrix, H. Let wri be the number of 1s in the ith row of H, i.e., row weight,

and wcj be the number of 1s in the jth column of H, i.e., column weight. Then, the

parity check matrix of a (n, k) LDPC code has the following properties:

∀ 1 ≤ i ≤ m, wri � n

∀ 1 ≤ j ≤ n, wcj � m
(3.1)

where m = n− k. Moreover, an LDPC code is regular if all rows and columns of its

parity check matrix have the same weight:

∀ 0 ≤ i < m, wri = wr

∀ 0 ≤ j < n, wcj = wc
(3.2)

Upon arrival at the receiver, the decoder checks if the syndrome vector is zero

(s
?
= 0). If so, The received block is a codeword. Otherwise, an iterative process is

initiated to decode the received block and get the codeword.

3.2 Iterative Decoding Process

The most intuitive representation of the iterative decoding of an LDPC code is

through considering H as the bi-adjacency matrix of a bipartite graph known as

the Tanner Graph. The graph consists of two sets of nodes: variable nodes and check

nodes. Each variable node represents a bit in the codeword and a column in H.

Conversely, each check node represents a parity constraint and a row in H. An edge

exists between the check node i and the variable node j if and only if the entry (i, j)

of H is 1, i.e., the jth bit of the codeword participates in the ith parity constraint.

The number of edges connected to a variable/check node is referred to as the

variable/check node degree. In the Tanner graph representation of a regular LDPC

code, all variable nodes have the same degree, dv, and all check nodes have the same

degree, dc. Such a code is denoted as a (dv, dc)-regular LDPC code and according to

Equation 3.2, dv = wc and dc = wr.

Example 3.1 Let H in Equation 3.3 be the parity check matrix for a (9,3) LDPC

code:
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H6×9 =



V0 V1 V2 V3 V4 V5 V6 V7 V8

C0 0 1 0 0 0 1 1 0 0

C1 0 0 1 1 0 0 0 1 0

C2 1 0 0 0 1 0 0 0 1

C3 1 0 0 1 0 0 0 0 1

C4 0 1 0 0 1 0 1 0 0

C5 0 0 1 0 0 1 0 1 0


(3.3) Figure 3.1: Tanner graph

Then, the corresponding Tanner graph of H is illustrated in Figure 3.1. It consists

of 9 variable nodes, i.e., columns in H, and 6 check nodes, i.e., rows in H. We have

dv = wc = 2 and dc = wr = 3.

The iterative decoding process is performed by message passing between connected

variable and check nodes as depicted in Figure 3.2. Let Ci be a check node connected

to Vj, the variable node corresponding to the jth received codeword bit. Initially,

each variable node sends a message regarding the value of its corresponding received

codeword bit to the connected check nodes. Then, the following iterative message

passing is performed:

1. Check node process: Ci checks if its corresponding parity constraint is satisfied

based on the received bits. Then, it computes a message, ri,j, and sends it to Vj.

The message contains Ci’s belief about the correct value of the jth received bit.

2. Variable node process: Vj computes a message, li,j, and sends it to Ci. The

message contains Vj’s belief about the correct value of the jth received bit.

The computations in the variable and check nodes depend on the decoding algorithm.

The check and variable node processes are equivalent to processing rows and columns

of H respectively.

(a) (b)

Figure 3.2: Iterative decoding process: (a) Check node process (b) Variable node process
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Example 3.2 Let H in Equation 3.3 be the parity check matrix for a (9, 3) LDPC

code. According to the first row of H, C0 receives messages from V1, V5, and V6 for

computation. On the other hand, V0 receives messages from C2 and C3 to perform its

computations.

In each decoding iteration, the decoder first processes the rows of H. Once all check

nodes are processed, the columns of H are processed for the variable node processing.

This iterative process, continues until either all the check node constraints are satisfied

or a predefined number of iterations is reached.

Algorithm 1 describes a generic iterative message passing decoder for a (n, k)

LDPC code with n variable and m = n − k check nodes. Consider the following

definitions:

• Vi: The set of variable node indices connected to check node i.

• Cj: The set of check nodes indices connected to variable node j.

• r(t)i,j : The message sent from the check node Ci to the variable node Vj at the tth

iteration.

• l(t)i,j : The message sent from the variable node Vj to the check node Ci at the tth

iteration.

Algorithm 1 Generic Message Passing Algorithm

1: for 0 ≤ j < n do . n: Number of variable nodes
2: for i ∈ Cj do . m: Number of check nodes

3: l
(0)
i,j = I(yj); . maxIter: Maximum number of decoding iterations

4: end for
5: end for
6: for 1 ≤ t ≤ maxIter do
7: // Check Node Process
8: for 0 ≤ i < m do
9: for j ∈ Vi do

10: r
(t)
i,j = Ψ(Vi, j, t− 1);

11: end for
12: end for
13: // Variable Node Process
14: for 0 ≤ j < n do
15: for i ∈ Cj do

16: l
(t)
i,j = Φ(yj , Cj , i, t);

17: end for
18: // Hard Decision for each bit
19: ȳj = Ω(yj , Cj , t);
20: end for
21: // Early Exit Condition
22: if H · ȳT = 0 then
23: break;
24: end if
25: end for
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Lines 1 − 5 of the Algorithm 1 are for the initial messages sent from the variable

nodes to the check nodes. The check node processing is performed at lines 8−12 and

the variable node processing is at lines 14 − 20. During each iteration the variable

nodes also make a hard decision for their corresponding codeword bit value based on

the received messages and the check nodes compute the syndrome matrix to check if

the received codeword has been successfully decoded.

The main difference between LDPC decoding algorithms comes from their imple-

mentations of the I(.), Ψ(.), Φ(.), and Ω(.) functions in Algorithm 1. These algo-

rithms are mainly divided into two major categories, hard-decision and soft-decision.

The former receives a single-bit (hard) information from the channel, while the latter

receives multi-bit (soft) information from the channel. A single-bit information can

only determine whether a received bit is 1 or 0. On the other hand, a multi-bit infor-

mation, known as soft information, is more accurate since it contains a probability

for a bit being 0 or 1. In general, soft-decision decoders achieve higher noise threshold

at the cost of increased implementation complexity.

Example 3.3 Figure 3.3 compares the performance for soft-decision and hard-decision

decoding algorithms for a (9706,1266) LDPC code. With respect to the UBER 10−6,

the soft-decision algorithm’s noise threshold is 1.8 dB higher than the hard-decision

algorithm.

3.2.1 Hard-Decision Decoding

In hard-decision decoding, no soft information is received from the channel. The

parity equations are computed in the check nodes based on the hard information

received from the variable nodes. Then, the check nodes send a single bit to their

connected variable nodes. If a check node Ci sends 1 to a variable node Vj, then it

means Ci is not satisfied and it is suggesting that Vj should be flipped. The node

Figure 3.3: Soft-decision vs. hard-decision decoding for a (9706,1266) LDPC code
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Vj will then make a hard-decision on whet to flip its corresponding bit based on the

received messages from all the check nodes. Different hard-decision algorithms differ

on their variable node hard-decision policy.

Gallager-A

In the hard-decision Gallager-A decoding algorithm, the variable node Vi with degree

di flips its corresponding bit if di − 1 received messages from the check node are 1.

3.2.2 Soft-Decision Decoding

In soft-decision algorithms, multi-bit information is received from the channel. In

this section, we discuss the most well-known soft-decision algorithm, min-sum (MS),

as well as the a posteriori probability (APP) based algorithm which simplifies the

variable node process to enable a hardware-friendly implementation. Moreover, we

discuss the noisy gradient decent bit flipping (NGDBF) algorithm which simplifies the

messages to single bit for further simplification complexity. We explain the algorithms

based on the terminology defined for Algorithm 1.

Min-Sum (MS) Decoding

The most well-known soft-decision LDPC decoding algorithm is the MS algorithm.

Initially, the log-likelihood ratio (LLR) for each received bit is computed by:

l
(0)
i,j = I(j) , LLR(yj) = ln

[
P (cj = 0 | yj)
P (cj = 1 | yj)

]
(3.4)

where yj is the soft information for the jth codeword bit received from the noisy

channel, and ej is its correct value. In fact, P (cj = 0|yj) is the conditional probability

that the correct value for the jth bit is 0, given the received soft information yj. The

message sent from Ci to vj , r
(t)
ij , is:

r
(t)
i,j = Ψ(Vi, j, t− 1) =

∏
k∈Vi/j

sign(l
(t−1)
i,k )× min

k∈Vi/j
|l(t−1)i,k | (3.5)

The message sent from Vj to Ci, l
(t)
i,j , is:

l
(t)
i,j = Φ(yj, Cj, i, t) = LLR(yj) +

∑
k∈Cj/i

r
(t)
k,j (3.6)
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During each decoding iteration, the variable node also has to compute a hard decision

for the bit value:

ȳj = Ω(yj, Cj, t) =

 0, LLR(yj) +
∑
k∈Cj

r
(t)
k,j ≥ 0,

1, otherwise.
(3.7)

A Posteriori Probability (APP) Based Decoding

According to Equation 3.6, each variable node in the MS decoder sends different

messages to each one of their connected check nodes due to the exclusion of i in

the summation. In fact, a hardware implementation of the MS decoder for a variable

node with degree dv requires dv adders. The APP based decoding algorithm simplifies

the variable node computation by sending identical messages to all connected check

nodes [17].

l
(t)
i,j = Φ(yj, Cj, i, t) = LLR(yj) +

∑
k∈Cj

r
(t)
k,j (3.8)

Therefore, the variable node computation in the APP decoding can be accomplished

using a single adder. This results in a significant computation reduction for LDPC

codes with a large number of variable nodes. However, it imposes a correlation be-

tween the outgoing messages of a variable node which degrades code performance. In

order to diminish the impact of this correlation, a normalization process is performed

for the check node operation:

r
(t)
i,j = Ψ(Vi, j, t− 1) =

∏
k∈Vi/j

sign(l
(t−1)
i,k )× min

k∈Vi/j
|l(t−1)i,k | × α (3.9)

where 0 < α < 1 is the normalization factor.

Simulation results confirm that the APP decoding has a slight performance degra-

dation compared to the MS algorithm [18]. However, the hardware implementation

of the variable node can be significantly simplified.

Noisy Gradient Decent Bit Flipping (NGDBF)

NGDBF [19] is a soft-decision decoding algorithm that uses single-bit messages during

the decoding procedure. In NGDBF, the check nodes perform a simple XoR operation

to check if their corresponding parity constraint is satisfied. The variable nodes use

the channel’s soft information in order to decide whether to flip the hard decision

for their corresponding bit. Despite using soft information, NGDBF does not update

the soft information in every decoding iteration which, in turn, results in a simpler
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Table 3.1: Summary of LDPC decoding algorithms

Function()
Soft Decision Hard Decision

Min-Sum APP NGDBF Gallager-A

Ψ()

∏
k∈Vi/j

sign(l
(t−1)
i,k )×

min
k∈Vi/j

|l(t−1)ki |

∏
k∈Vi/j

sign(l
(t−1)
i,k )×

min
k∈Vi/j

|l(t−1)ki | × α
1−2× ⊕

k∈Vi
l
(t−1)
i,k ⊕

k∈Vi
l
(t−1)
i,k

Φ() LLR(yj) +
∑

k∈Cj/i
r
(t)
k,j LLR(yj) +

∑
k∈Cj

r
(t)
k,j

∑
k∈Cj

r
(t)
k,j

∑
k∈Cj

r
(t)
k,j

Ω()

 0, LLR(yj) +
∑

k∈Cj
r
(t)
k,j >= 0

1, otherwise

yj +
∑

k∈Cj
r
(t)
k,j < θ

∑
k∈Cj

r
(t)
k,j > |Cj | − 1

hardware implementation compared to other soft-decision decoders. In fact, NGDBF

strikes a trade-off between hard-decision and other soft-decision decoding algorithms

in terms of error correction capability and hardware efficiency. The details of this

algorithm are discussed in Chapter 4.

3.2.3 Summary

Table 3.1 summarizes the main operations in soft-decision and hard-decision LDPC

decoding algorithms. The Ω() functions for the NGDBF and Gallager-A determine

whether the jth bit has to be flipped.

3.2.4 Finite Alphabet Iterative Decoding (FAID)

Finite alphabet iterative decoders are a class of non-conventional decoders which have

received more attention in the recent years due to their higher code performance in

certain applications. Unlike conventional decoding algorithms, the messages in FAID

are not the likelihood values for each received bit. Instead, they are chosen from a

finite set of alphabet that are generated through a table lookup operation. We believe

the properties of these decoders make them suitable for flash memory error correction

and will discuss them in details in Chapter 5.

3.2.5 Layered Decoding

Layered decoding is a technique used in LDPC decoders to increase the decoding

convergence rate so that fewer decoding iterations are required. Figure 3.4 compares

the message passing order in the layered and non-layered decoders. The numbers on

the arrows show the communication order. In a non-layered decoder (Figure 3.4a), a

variable node sends its messages to all check nodes and then waits for their responses.

On the other hand, in a layered decoder (Figure 3.4b), the variable node utilizes each

check node’s response to prepare its message for the next check node.
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(a) (b)

Figure 3.4: Message passing order: (a) Non-layered decoding Vs. (b) Layered decoding

From a parity check matrix perspective, the non-layered decoder waits for all rows

of H before updating the variable node values. In contrast, the layered decoder does

not wait for all rows of H to be processed before updating the variable nodes. In

general, these partial variable node updates within a decoding iteration are expected

to results in faster convergence.

3.3 Implementation Challenge

Although LDPC codes with large codewords (1 KB - 4 KB) have higher noise thresh-

old, implementing a decoder for them is challenging. In an ideal fully parallel im-

plementation, each variable and check node has a separate processing unit so that

all rows and columns of H are processed simultaneously. However, such a realization

is not feasible due to its significant amount of required computational and routing

resources. Consequently, a partially parallel implementation is desired to process a

subset of the rows/columns of H simultaneously. Partial parallelism not only enables

implementing decoders for LDPC codes with large codeword, but it can also benefit

from layered decoding due to its sequential processing of the rows of H.

On the other hand, communicating messages between the nodes in a LDPC decoder

with large codeword through physical links results in a highly congested network

which makes the routing challenging. One solution is to utilize a shared-memory

message passing mechanism in which the nodes can communicate through memory

Read/Write operations. This research is aimed at overcoming these challenges and

proposing efficient LDPC decoder architectures.
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3.4 Quasi-Cyclic (QC) LDPC

Designing a partially parallel LDPC decoder requires identifying a pattern in the

parity check matrix that enables folding the processing order for rows/columns. QC-

LDPC codes are a special class of LDPC codes which their parity check matrices

have a quasi-cyclic structure. In fact, an LDPC code is quasi-cyclic if its parity check

matrix has the following structure:

H =


C1,1 C1,2 . . . C1,c

C2,1 C2,2 . . . C2,c

...
...

. . .
...

Cr,1 Cr,2 . . . Cr,c

 (3.10)

where Ci,j is a cyclic matrix known as circulant, i.e., each row of Ci,j can be obtained

by rotating its previous row. Assuming each circulant is a z × z matrix, H is a

(r · z × c · z) matrix. If the row and column weight for Ci,j is 1, then the circulant

is called a circulant permutation matrix (CPM) and can be achieved by rotating the

rows of the Identity matrix by a certain amount. In that case, since the row and

column weights for each CPM is 1, we have dc = r and dv = c.

Example 3.4 Equation 3.11 shows the parity check matrix of a QC-LDPC code with

r = 2, c = 3, and z = 5.

H10×15 =



0 1 0 0 0 0 0 1 0 0 0 0 0 1 0

0 0 1 0 0 0 0 0 1 0 0 0 0 0 1

0 0 0 1 0 0 0 0 0 1 1 0 0 0 0

0 0 0 0 1 1 0 0 0 0 0 1 0 0 0

1 0 0 0 0 0 1 0 0 0 0 0 1 0 0

0 0 0 1 0 0 0 0 0 1 0 0 1 0 0

0 0 0 0 1 1 0 0 0 0 0 0 0 1 0

1 0 0 0 0 0 1 0 0 0 0 0 0 0 1

0 1 0 0 0 0 0 1 0 0 1 0 0 0 0

0 0 1 0 0 0 0 0 1 0 0 1 0 0 0



(3.11)

In addition to high error correction capability, QC-LDPC codes are suitable for

hardware implementation since the presence of the sub-matrices in H enables folding

the variable/check node processing in order to design a partial parallel decoder. For

instance, each circulant can be assigned to a separate computational unit to process

its rows and columns. In that case, although all circulants are being processed in

parallel, the rows and columns of each circulant are processed sequentially.
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Figure 3.5: Generic architecture for QC-LDPC decoders

Due to the cyclic nature of the sub-matrices, if the row i of a circulant has a 1 in

the column j, the row i+1 has a 1 in the column j+1. This means if Vj is connected

to Ci, then Ci+1 connected to Vj+1. This property facilitates transferring messages

between check and variable nodes. This research focus on QC-LDPC codes due to

their high noise threshold and potential for efficient hardware implementation.

3.5 QC-LDPC Decoder Architectural Features

Figure 3.5 illustrates a generic architecture for a QC-LDPC decoder. The ith row of

circulants (ROC) of H in Equation 3.10 is defined as {Ci,j | 0 < j ≤ c}.
Each circulant processor (CP) consists of A check node units (CNUs) and B vari-

able node units (VNUs) and processes a row of circulants in H, where A and B

are the parallelization factors for the rows and columns within a row of circulants

respectively.

The π1 and π2 are the shuffle networks in charge of data movement to communicate

messages between the nodes. The π1 is for intra-circulant message passing, while π2

is for inter-circulant message passing.

A majority of QC-LDPC decoders can be mapped to the architecture in Figure

3.5. However, they differ on their parallelism level, implementation of the π networks,

and their adaptability to new codes. In this section, we define a set of architectural

features that facilitate evaluating QC-LDPC decoders.

Parallelism

Three parallelism levels can be defined for a QC-LDPC decoder:

• Inter-Codeword (Inter-CW): Processing multiple codewords in parallel.
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• Inter-ROC: Processing multiple rows of circulants simultaneously.

• Intra-ROC: Processing multiple rows within a row of circulant in parallel.

While fully parallel and fully sequential decoders are the two extremes of paral-

lelism, a foldable parallel decoder is a more versatile architecture that enables adjust-

ing the parallelism level according to performance requirements. In fact, by allowing

to strike a trade-off between computational resources and throughput, foldable archi-

tectures facilitate the design space exploration.

The inter-CW parallelism may result in under utilizing computational resources

since multiple codewords may require different numbers of decoding iterations. This

research is focused on foldable parallel architectures at either inter-ROC or intra-

ROC levels. Nevertheless, the inter-CW parallelism can always be realized through

multiple instances of the decoder.

Shuffle Network

The most important feature of the QC-LDPC codes is the cyclic nature of their sub-

matrices which facilitates the efficient implementation of their shuffle networks. The

fact that subsequent check nodes communicate with subsequent variable nodes leaves

the following options to implement the π networks:

• Hardwired: The communicating units are hardwired according to the con-

nection pattern in H. This approach is not scalable for large codewords and

circulants.

• Shift-Register: The messages are loaded in a shift register so that a shift

operation is required to process subsequent rows of a circulant. Although this

approach is area-efficient, it may stall the processors for multiple cycles in order

to align the data based on the circulants offset.

• Barrel-Shifter: The barrel-shifter has the same logic as the shift-register except

that it can perform the required shifts in a single cycle. However, it imposes

significant area and power consumption overhead.

• In-Place Shifter: In this method, the messages are stored in a memory and

the memory addressing controls the message passing sequence. However, imple-

menting a parallel in-place shifter that can process multiple rows of circulant per

cycle is challenging.
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Adaptability

Any coding system, may need to change the code depending on the operating con-

dition. In the data storage context, a storage device’s RBER may vary depending

on its operating age, temperature, etc. An adaptive decoder is able to adapt to new

codes on-the-fly. Adaptability can be implemented in two levels:

• Code-Adaptive: A code-adaptive decoder can adapt to new codes with same

rates.

• Rate-Adaptive: A rate-adaptive decoder can adapt to any code rate.

In general, lower rate codes have higher-noise threshold. Consequently, rate-

adaptive decoders are useful specially for ECC in data storage applications where

noise (RBER) increases during disk’s lifetime and lower-rate codes can be beneficial

to increase their lifespan.

3.6 Prior Works

In 2009, the introduction of the first use of LDPC in a hard disk drive (HDD) by

LSI corporation shed light on the possibility of utilizing LDPC in solid-state drive

(SSD) [20]. Since 2009, the research community has been investigating efficient archi-

tectures for LDPC codes to replace conventional BCH codes as ECC for data storage

systems.

Authors in [21] present a QC-LDPC decoder by leveraging the configurable data-

width of block RAM (BRAM) in FPGA. Multiple messages are stored in a single

memory word to enable intra-ROC parallelism. The parallelism is foldable since the

number of messages stored in a memory word can be adjusted. Moreover, since the

code is stored in a memory, it is possible to change the code at runtime. However, since

the decoder is fully parallel at inter-ROC level, it does not support rate-adaptability.

In addition, using FPGA’s BRAMs as the memory for shuffle network may impose

some routing constraints for more parallel decoders.

Zaidi et al. proposed a layered decoder with foldable intra-ROC parallelism [22].

However, using shift registers and barrel shifters for the π networks degrades the

architecture’s area efficiency. Moreover, the decoder’s fully parallel structure at inter-

ROC level does not allow for rate-adaptability.

Amaricai and Boncalo [23] proposed a hard-decision decoder that performs the

gradient decent bit flipping (GDBF) algorithm, i.e., a simplified version of NGDBF

that operates with single bit LLRs. Although the decoder’s folded structure enables

rate-adaptability, it lacks area efficiency since it uses barrel shifters for its π2 network.
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An inter-codeword parallel QC-LDPC decoder is presented in [24]. Similar to the

technique presented in [21], each BRAM contains multiple messages. However, the

drawback with inter-CW parallelism is that the decoder is underutilized if multiple

codewords require different numbers of decoding iterations. In addition, since all

rows of circulants are processed in parallel, the design is less flexible in adjusting the

parallelism according to the performance requirements.

Yanhuan et al. [25], present a FPGA-based rate-adaptive QC-LDPC decoder for

SSDs. The decoder uses an in-place shuffle network for its π1. However, the use of

shift-registers for the π2 network makes the decoder less efficient due to the inevitable

stalls.

Authors in [26], presented an unrolled LDPC decoder. In this pipelined design,

each row of circulants, is processed in one macro-pipeline stage resulting in a high

throughput. The data movement between pipeline stages i.e., the π2 shuffle network,

is hardwired which makes the approach impractical for codes with large codewords

due to their congested network.

Milicevic and Gulak[27], proposed an application-specific integrated circuit (ASIC)

implementation of a rate-adaptive, frame-interleaved LDPC decoder which offered

Table 3.2: Specifications, features, and efficiency of prior QC-LDPC Decoders

Ref. [21] [22] [23] [24] [25] This work

Year 2011 2013 2016 2016 2017 2021

Codeword Size 8176 8176 2304 1536 35840 9457 - 9766

Alg. NMS* NMS GDBF Min-Sum NMS NGDBF APP FAID

Adaptability Code Code Rate Code Rate Rate

P
a
ra

lle
lism

Inter-ROC Full Full Sequential Full Foldable Sequential

Intra-ROC Foldable Foldable Full Sequential Sequential Foldable
S

h
u

ffl
e

N
e
t.

π1 In-Place
Shift
Register

In-Place In-Place In-Place In-Place

π2 —
Barrel
Shifter

Barrel
Shifter

—
Barrel
Shifter

In-Place

Device Virtex-4 Virtex-7 Virtex-7 Virtex-7 Virtex-7 Virtex-7

Efficiency

(MB/s/KLUT
Iteration )

38.7 3.97 107.8 74.02 12.79
79.34 -
130.62

20.04 -
27.77

16.26 -
20.96

Throughput

( GB/s
Iteration)

0.64 0.4 0.42 1.52 1.32
2.91 -
3.08

1.8 - 2.42 1.7 - 2.34

*NMS: Normalized Min-Sum algorithm, Improved version of the Min-Sum algorithm.
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inter-CW parallelism. By combining the variable and check node operations, and

defining a novel processing order, their decoder simplifies the shuffle network which

facilitate its hardwired implementation for their target codes. However, the par-

allelism offered by Milicevic’s decoder is determined by the number of columns of

circulants in the code thus not foldable based on application requirements.

Table 3.2 summarizes major relevant prior QC-LDPC decoders, implemented in

FPGAs, along with their architectural features and efficiency. For a fair comparison,

each 4-LUT in Xilinx Virtex-4 is counted as 0.625 6-LUT in Xilinx Virtex-7 FPGAs

in computing the efficiency [28]. In general, LDPC decoders for codes with smaller

block sizes tend to have higher efficiency due to their less congested Tanner graph.

Although the decoders reported in Table 3.2 belong to a wide range of block sizes,

we believe a fair evaluation should compare decoders with similar block sizes.

3.7 LDPC Requirements for Flash Memories

LDPC codes are becoming the mainstream ECC in flash memory-based SSDs due to

their high error correction capability. The requirements when applying LDPC as an

ECC for SSD storage devices is as follows:

• Throughput: The SSD bandwidth can be scaled by increasing the number of

flash channels and chips [29][30]. However, the ultimate read speed is mainly

determined by the interface. While SSDs with serial advanced technology at-

tachment (SATA) interface can achieve up to 530 MB/s [31], modern PCI-e SSDs

have read speeds of 1-6 GB/s depending on the application. Therefore, it is de-

sirable to have LDPC decoders with similar throughput to prevent ECC from

becoming the performance bottleneck.

• Latency The read latency in SSD memories has three major contributors [29]:

– Memory Sensing: Refers to the phase where the cell values are read

through sensing. NAND flash memory sensing latency is linearly propor-

tional to the number of sensing quantization levels.

– Data Transfer: Refers to the phase where the sensing data is transferred

to the flash controller.

– Decoding: Once the data is transferred to controller, it has to be decoded

to correct any possible errors.

The read latency is a critical metric for flash memories. For modern flash devices,

the aggregated memory sensing and data transfer latency for a 16 KB page is

about 100− 120µs. It is desirable to keep the decoder latency below 10µs.
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• Reliability: The SSD reliability is measured by its uncorrectable bit error rate

(UBER). As outlined in the JESD218 standard [7], consumer-level SSDs should

reach the UBER below 10−15 and enterprise-level SSDs should reach the UBER

below 10−16. A typical UBER for enterprise-level SSD is 10−17.

• Code Rate: Manufacturers of flash memory devices often devote about 10−12%

of the storage capacity for error correction which means the codes with rate 0.88-

0.90 should be used for these devices.

• Block Size: The code rate requirement in the SSD devices (0.88 − 0.90), ne-

cessitates utilizing LDPC codes with 1-4 KB block size to meet the reliability

requirements (UBER ≤ 10−15).

3.8 Our Work

According to table 3.2, prior QC-LDPC decoder architectures suffer from either lack

of adaptability or foldable parallelism. Moreover, they are generally centered around

improving the hardware efficiency for a certain code of interest and often with ap-

plication areas well beyond storage. This thesis extends the theme by addressing

the hardware and code performance while respecting limitations in storage applica-

tion. Throughout this research, we pursue interesting trade offs between parallelism,

hardware efficiency, and code performance. To this end, we make the following con-

tributions:

• An FPGA-efficient micro-architecture for QC-LDPC decoders:

– We leverage an FPGA’s inherent physical architecture to implement rotary

register file (RRF), an efficient shuffle network for QC-LDPC decoders, that

enables foldable parallelism.

– Using RRF as the basic block, we propose a pipelined, rate-adaptive decoder

micro-architecture.

– We use the proposed micro-architecture to implement the noisy gradient

descent bit-flipping (NGDBF), a simple soft-decision decoding algorithm

that strikes a trade off between hardware efficiency and code performance.

– Our micro-architecture offers a simple form of foldable parallelism which

enables a spectrum of design instances from the most parallel to the most

serial decoders, a feature that facilitates the design space exploration.

• A micro-architecture-code co-design for QC-LDPC decoding in flash memories:
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– We address the inherent limitations in ECC for flash memories and define a

finite decoder design space.

– While respecting the hardware efficiency, we use machine learning techniques

to design a Finite alphabet iterative decoding (FAID) that outperforms con-

ventional decoders, given the flash memory constraints.

– We use our FPGA-efficient micro-architecture to implement the proposed

FAID.

We will discuss the results and achievements of each contributions in the upcoming

chapters. Meanwhile, the last columns in Table 3.2 reports a brief summary of our

achievements in designing LDPC decoders. We report a range for the performance

metrics as we evaluated our decoder on a set of codes during our hardware-code

co-design.



Chapter 4

Configurable Micro-Architecture

For QC-LDPC Decoder

This chapter presents our configurable micro-architecture for the QC-LDPC decoder.

We first review the operations and computations involved in QC-LDPC decoding and

decompose the computations to enable efficient hardware implementation. Then, we

define the strided circular access problem to propose the rotary register file (RRF),

an FPGA-efficient foldable parallel structure for strided circular access, seen in QC-

LDPC decoding. Next, the RRF is used as the basic-block to implement our QC-

LDPC decoder architecture. Finally, we use the proposed decoder architecture to

implement the NGDBF soft-decision algorithm. Nevertheless, our micro-architecture

can easily be used to implement other decoding algorithms as well. In fact, Chap-

ter 5 discusses implementing our soft-decision decoder using the proposed micro-

architecture.

4.1 Computations in QC-LDPC Decoders

A CPM is a square matrix that is achieved by rotating the rows of the Identity matrix

by a certain amount. Any CPM can be defined by two parameters:

• f : The rotation offset for each row.

• z: The CPM’s number of rows.

Therefore, a CPM can be denoted as Cf
(z). The parity check matrix, H, for a QC-

LDPC code consists of a set of same size CPMs as its sub-matrices. We explain the

decoding computation flow using an example.

32



CHAPTER 4. CONFIGURABLE MICRO-ARCHITECTURE FOR QC-LDPC DECODER 33

Example 4.1 Consider H in Equation 4.1 as the parity check matrix of a QC-LDPC

code formed by a 2× 3 formation of CPM sub-matrices.

H10×15 =



V0 V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14

C0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0

C1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1

C2 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0

C3 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0

C4 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0

C5 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0

C6 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0

C7 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1

C8 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0

C9 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0


=

[
C1

(5) C2
(5) C3

(5)

C3
(5) C4

(5) C2
(5)

]

(4.1)

4.1.1 Check Node Processing

Each check node computes and sends a set of messages to its connected variable

nodes. Let Ψ(Vi, j, t−1) be the processing function in a check node i, which computes

response to the variable node j, at iteration t, based on the incoming messages from

the set of variable nodes with indices in the set Vi.

Example 4.2 According to Equation 4.1:

• Process in C0: r
(t)
0,j = Ψ({1, 7, 13}, j, t− 1), j ∈ {1, 7, 13}

• Process in C1: r
(t)
1,j = Ψ({2, 8, 14}, j, t− 1), j ∈ {2, 8, 14}

• Process in C2: r
(t)
2,j = Ψ({3, 9, 10}, j, t− 1), j ∈ {3, 9, 10}

• · · ·

where r
(t)
i,j is the messages from the check node i to the variable node j at iteration t.

Due to the cyclic nature of the sub-matrices in H, the access pattern to the variable

node messages corresponding to each sub-matrix has a rotary form. Therefore, if the

messages corresponding to each sub-matrix are rotated based the offset of the CPMs,

the output data would be in order for check node processing.

Example 4.3 For the H in Equation 4.1, it is possible to compute the check node

messages for the first row of circulants, (C0, C1, C2, C3, C4), by applying the appropri-
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ate left rotation and performing the Ψ function to the columns as follows:

↓ ↓ ↓ ↓ ↓

l4,0 l0,1 l1,2 l2,3 l3,4
Rotate Left (1)−−−−−−−−→ l0,1 l1,2 l2,3 l3,4 l4,0

l3,5 l4,6 l0,7 l1,8 l2,9
Rotate Left (2)−−−−−−−−→ l0,7 l1,8 l2,9 l3,5 l4,6

l2,10 l3,11 l4,12 l0,13 l1,14
Rotate Left (3)−−−−−−−−→ l0,13 l1,14 l2,10 l3,11 l4,12

r0,j r1,j r2,j r3,j r4,j

Ψ() (4.2)

where li,j is the variable node j message to the check node i, and ri,j is the check

node i message to the variable node j. The second set of check node messages.

({r5,j, r6,j, r7,j, r8,j, r9,j}) can be computed by rotating the variable node messages based

on the offsets of the second row of circulants in H (C3
(5),C

4
(5),C

2
(5)).

4.1.2 Variable Node Processing

Let Φ(yj, Cj, i, t) be the processing function in the variable node j, to compute the

response for the check node i, at iteration t, based on the incoming messages from

the set of check nodes with indices in the set Cj and the channel information yj.

Example 4.4 For the H in Equation 4.1, we have:

• Process in V0: l
(t)
i,0 = Φ(y0, {4, 7}, i, t), i ∈ {4, 7}

• Process in V1: l
(t)
i,1 = Φ(y1, {0, 8}, i, t), i ∈ {0, 8}

• Process in V2: l
(t)
i,2 = Φ(y2, {1, 9}, i, t), i ∈ {1, 9}

• · · ·

where l
(t)
i,j is the messages from the variable node j to the check node i at iteration t,

and yj is the channel information for the jth bit of the received codeword.

The cyclic nature of the sub-matrices can be utilized in the variable node processing

as well. The only difference is that the check node messages need to be rotated in

the right direction. However, the ith right rotation of a sequence of s elements, is

equivalent to its (z − i)th left rotation. We refer to z − i as the complement of offset

i. Since the check node processing involves left rotations, we define variable node

processing using left rotations as well.

Example 4.5 For the H in Equation 4.1, the variable node processing can be done by

applying the appropriate left rotation and performing the Φ function to the columns
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as follows:

↓ ↓ ↓ ↓ ↓

r0,1 r1,2 r2,3 r3,4 r4,0
Rotate Left (5-1=4)−−−−−−−−−−−→ r4,0 r0,1 r1,2 r2,3 r3,4

r5,3 r6,4 r7,0 r8,1 r9,2
Rotate Left (5-3=2)−−−−−−−−−−−→ r7,0 r8,1 r9,2 r5,3 r6,4

li,0 li,1 li,2 li,3 li,4

Φ()

(4.3)

where ri,j is the check node i message to the variable node j, and li,j is the variable

node j message to the check node i. The second set of check node messages. Similarly,

other variable node messages ({li,5, li,6, li,7, li,8, li,9}, and {li,10, li,11, li,12, li,13, li,14}) are

computed based on the offsets of the second and third columns of circulants.

4.2 Rotation in Hardware

The computations in QC-LDPC decoding show that the messages can be transferred

between the nodes through rotation operations. Therefore, efficient implementation

of the rotation logic as the shuffle network is essential to designing an efficient QC-

LDPC decoder architecture. Moreover, the type of parallelism offered by the rotation

logic determines the parallelism in the final decoder architecture.

4.2.1 Näıve Implementation

A rotation logic can näıvely be implemented with extremely parallel or serial struc-

tures as depicted in Figure 4.1.

Barrel Shifter A logic circuit that utilizes several layers of multiplexers to

shift/rotate a set of inputs in parallel. Although a barrel shifter can be pipelined

to increase throughput, it imposes a significant amount of hardware resources.

This issue is specifically worsened for FPGAs in which multiplexers are expen-

sive. Moreover, since the resource usage scale factor is n log n, where n is the

number of inputs, this approach is not scalable.

Shift Register A logic circuit that uses a set of cascaded registers to shift/rotate

the data sequentially. Despite using relatively less hardware resources, a shift

register imposes high latency as it takes multiple cycles to store and then rotate

the data. In addition, the latency is not constant and it depends on the offset

of the circular access.
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The main drawback to both approaches is their lack of flexibility. A barrel shifter is

a fully parallel, high-throughput, but high-cost implementation while a shift-register

is a fully sequential, low-cost, but low-throughput implementation.

4.2.2 Foldable Parallel Rotation in Memory

The extreme characteristics of the näıve implementations allow no trade-off between

the resource usage and throughput. Moreover, their implementation costs abundant

routing resources which may lead to inefficient implementation on FPGA.

To overcome the inefficiencies and rigidness of the näıve implementations, mem-

ory modules can be used to turn the rotation in the spacial domain into the time

domain. In this approach, the set of messages to be rotated are stored in a memory

and the rotation is done through appropriate memory addressing order. Moreover,

the foldable parallelism could be provided by generating multiple messages of the

rotation simultaneously. This can be done through accessing multiple memory banks

in parallel or packing multiple messages in a single memory word.

4.2.3 Leveraging FPGA’s Hard Logic: Distributed RAM

The natural memory resources on FPGAs are the block RAMs (BRAMs). However,

these memories are very coarse-grained modules and using them to implement the

rotation could reduce and confine the parallelism which may not lead to an efficient

design.

(a) (b)

Figure 4.1: Näıve implementations for circular memory access of size 8, (a) Barrel shifter (b) Shift
register
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Aside from being used as a soft logic to implement the truth table of a given logic

function, FPGA’s lookup tables (LUTs) can also be configured as a memory bank,

referred to as the distributed RAM. In that case, the LUT’s physically implemented

multiplexers are used for memory addressing. These multiplexers are referred to as

hard multiplexers (hard logic) and utilizing them is significantly more efficient than

implementing the multiplexing function as a soft logic i.e., as a truth table in LUTs.

In this work, we propose leveraging FPGA’s distributed RAMs to implement the

rotation logic required in QC-LDPC decoding. In addition to leveraging FPGA’s

hard logic by using the LUTs as distributed RAMs, FPGA’s abundance of its LUTs

allows more freedom in adjusting the parallelism.

4.3 Rotary Register File: A Hybrid Shuffle Network

We propose the rotary register file (RRF), an FPGA-optimized micro-architectural

primitive that not only provides rotation in the time domain, but also offers foldable

parallelism which enables a spectrum of design instances between the most serial and

parallel designs. We refer to the memory accesses during a rotation operation as the

strided circular access and propose a memory structure that does not require redun-

dant memory modules to provide parallel memory access. Instead, we orchestrate the

accesses in such a way that guarantees conflict-free access.

4.3.1 Problem Statement

In this section, we formally establish the concept of the circular access pattern, and the

condition of conflict-free access that is critical for a foldable parallel implementation.

Definition 4.1 (Circular Access): Consider a set A = [0, z) = {0, 1, · · · , z − 1}
of z consecutive addresses, and a set I = {0, 1, · · · , z − 1} of z consecutive indices.

A circular access of offset f ∈ [0, z) is a function CAf : I → A where

CAf (i) = (f + i) mod z (4.4)

Definition 4.2 (Strided Partition): A strided partition, {SPj ⊂ I}, of stride s,

is a partition of index set I, where

0 ≤ j < s, 0 ≤ j < s, SPj = {k × z + j | k ∈ [0, b = bz
s
c)}. (4.5)

Apparently, we have:

∀0 ≤ i < s, 0 ≤ j < s, i 6= j, SP i ∩ SPj = ∅. (4.6)
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Moreover, assuming z = b× s+ q, we have:

⋃
0≤j<s

SPj =

I q = 0,

I − {z − q, · · · , z − 1} 0 < q < s.
(4.7)

Definition 4.3 (Surplus Set): For 0 < q < s in a strided partition, the surplus

set, {SU ⊂ I} is defined as follows:

SU = {z − i | i ∈ (0, q]}

Definitions 4.2 and 4.3 imply that for 0 < q < s :

(
⋃

0≤j<s

SPj) ∪ SU = I (4.8)

Example 4.6 Case 1: For z = 12 and stride s = 4, we have

I = {0, 1, 2, · · · , 11}, 12 = 3× 4 + 0⇒ b = 3, q = 0

and

SP0 = {0, 4, 8} SP1 = {1, 5, 9}

SP2 = {2, 6, 10} SP3 = {3, 7, 11}

Therefore, ⋃
0≤j<4

SPj = {0, 1, 2, · · · , 11} = I.

Case 2: For z = 14 and stride s = 4, we have

I = {0, 1, 2, · · · , 13}, 14 = 3× 4 + 2⇒ b = 3, q = 2

and

SP0 = {0, 4, 8} SP1 = {1, 5, 9}

SP2 = {2, 6, 10} SP3 = {3, 7, 11}

SU = {12, 13}

Therefore,

(
⋃

0≤j<4

SPj) ∪ SU = {0, 1, 2, · · · , 11} ∪ {12, 13} = I.

Definition 4.4 (Strided Circular Access): A strided circular access of size z,
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stride s, and offset f , is a partition of address set A, {SCAfj ⊂ A}, where

SCAfj = {CAf (i) | i ∈ SPj}

= {(f + j + k × s) mod z | k ∈ [0, b)}

For the surplus access, we define the following special access:

SCAfSU = {CAf (i) | i ∈ SU}

Example 4.7 In the Example 4.6, Case 2, the strided circular accesses with offset 6

are as follows:

SCA6
0 = {CA6(0), CA6(4), CA6(8)} = {6, 10, 0}

SCA6
1 = {CA6(1), CA6(5), CA6(9)} = {7, 11, 1}

SCA6
2 = {CA6(2), CA6(6), CA6(10)} = {8, 12, 2}

SCA6
3 = {CA6(3), CA6(7), CA6(11)} = {9, 13, 3}

SCA6
SU = {CA6(12), CA6(13)} = {4, 5}

Definition 4.5 (Column-Major Layout): Given the sets B = [0,b] = {0, 1, ..., b}
of b+1 memory banks of size s and a S = [0, s) = {0, 1, ..., s}, of s intra-bank memory

addresses, a column-major layout, (L, T ), is defined by two functions L : A → B and

T : A → S where:

L(a) = ba
s
c

T (a) = a mod s

In fact, the function L computes the bank index for each address in the set A, while

the function T computes the address within that bank.

Definition 4.6 (Conflict-Free Access Group): An access group G ⊂ A of the

address set A under the memory layout (L, T ) is defined as conflict-free iff

∀i, j ∈ G, L(i) 6= L(j) (4.9)

According to Definition 4.6, any two conflict-free addresses of set A can be accessed

simultaneously. Therefore, the goal is to orchestrate the circular access pattern so

that simultaneous accesses are conflict-free.

Proposition 1 An access group G in a strided circular access {SCAfj } with offset f ,
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stride s, and the column-major layout (L, T ) is conflict-free if:

∀j, 0 ≤ |SCAfj | ≤ b

Proposition 1 implies that in a strided circular access with any offset f in a column-

major layout, it is always possible to access at most b elements in parallel.

Example 4.8 In Example 4.7, the column-major layout memory bank for the stride

circular access are as follows:

L(SCA6
0) = {L(6),L(10),L(0)} = {1, 2, 0}

L(SCA6
1) = {L(7),L(11),L(1)} = {1, 2, 0}

L(SCA6
2) = {L(8),L(12),L(2)} = {2, 3, 0}

L(SCA6
3) = {L(9),L(13),L(3)} = {2, 3, 0}

Since all L(SCAfi )s satisfy Equation 4.9, they are conflict-free access groups. For the

surplus access, we have:

L(SCA6
SU) = {L(4),L(5)} = {1, 1}

which is not a conflict-free access group and thus not accessible in parallel.

4.3.2 Micro-Architecture

We use the formulation in Section 4.3.1 to design a micro-architectural structure that

allows, and desirably exploits, circular accesses. Presumably, such structure needs to

maximize the amount of conflict-free accesses established above.

For any strided circular access with size z, and stride s, Proposition 1 can be used

to orchestrate a conflict-free strided circular access. According to Definition 4.2, there

are two cases for any strided partition: q = 0 and 0 < q < s. Although designing

the RRF for q = 0 is relatively straightforward, it is not necessarily the case in many

cases. Many QC-LDPC codes need z to be a prime number which makes it indivisible

to any s. Consequently, it is crucial for RRF to support 0 < q < s. Assuming:

z = b× s+ q (4.10)

the RRF stores the data in b+ 1 memory banks in a column-major layout. Then, for

any offset f , the first b× s circular accesses can be performed in s cycles without any

conflict i.e., b conflict-free accesses per cycle. However, the last q circular accesses,

i.e., access with respect to the surplus set, have no guarantee of being conflict-free.
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Table 4.1: Strided circular access with z = 11, s = 4, f = 6, with column-major layout (L, T ).

A 0 1 2 3 4 5 6 7 8 9 10 11 12 13

L 0 1 2 3

T 0 1 2 3 0 1 2 3 0 1 2 3 0 1

CA6 8 9 10 11 12 13 0 1 2 3 4 5 6 7

SCA6
0 ↑ ↑ ↑

SCA6
1 ↑ ↑ ↑

SCA6
2 ↑ ↑ ↑

SCA6
3 ↑ ↑ ↑

SCA6
SU ↑ ↑

Consequently, they have to be performed sequentially. As a result, the entire circular

access is performed in s + q cycles. Apparently, for q = 0, the entire circular access

requires only s cycles.

Example 4.9 Table 4.1 illustrates the address set, A, the column-major layout,

(L, T ), the strided circular accesses, SCA , and the surplus circular access, SCASU
for Example 4.8. The marked cells in each row represent the members of the cor-

responding strided circular access. Based on Definition 4.6, and Proposition 1 each

SCA is a conflict-free access group thus accessible simultaneously. However, SCASU
is not a conflict-free access group and it has to be accessed sequentially.

Figure 4.2 illustrates the structure of the RRF for a strided circular access with

size z, and stride size s, where z = b× s+ q. In order to reduce the complexity of the

design, RRF utilizes a two-level rotation approach. The first level consists of b + 1

memory banks of size s storing the data in a column-major layout, each generating an

output through a multiplexer. The numbers within each cell represents the Address

set A, while the number on top of the cell shows its intra-bank memory address, T .

The select signal for each multiplexer is indeed the intra-bank memory address. It

Figure 4.2: Rotary register file structure
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can be proved that each Strided Circular Access, SCAfj can occur in at most two

intra-bank memory addresses, denoted by a0 and a1, in all memory banks. These

addresses are computed by address generator using the offset, f , the index j, and the

stride size s.

Once the appropriate intra-bank addresses with respect to a strided circular access

are read, a second-level rotation is required to sort the output order based on the

offset, f . For that, RRF uses a simple barrel rotator to perform a single-cycle rotation.

Unlike the extreme barrel rotator structure, the complexity of RRF’s barrel rotator

depends on the number of memory banks, b, rather than the circular access size, z.

Given a constant circular access size, z, the stride size, s, determines the number

of memory banks, b which, in turn, determines the number of simultaneous memory

accesses. Thus it can be used as a knob to adjust the parallelism. In fact, s = 1 and

s = z are the fully parallel and serial RRFs that correspond to the barrel shifter and

shift register respectively.

4.3.3 FPGA-Optimized Implementation

As illustrated in Figure 4.2, RRF’s first-level rotation logic involves a set of stor-

age components and multiplexers. The multiplexers can be realized using FPGA’s

soft-logic, i.e., implementing the multiplexing logic through LUTs. However, this ap-

proach lacks scalability since large multiplexers require several layers of lookup tables

(LUTs) to be cascaded which, in turn, degrades the performance significantly.

A more efficient approach is to leverage the FPGA’s physically implemented mul-

tiplexers, referred to as hard MUXes. For that, we use the FPGA’s LUTs as dis-

tributed RAMs to implement RRF’s first-level rotation logic. In fact, each RRF’s

memory bank and its output multiplexer is mapped to a distributed RAM and the

RAM’s address signal serves as the select signal for RRF’s multiplexers.

Utilizing the FPGA’s hard multiplexers through distributed RAMs results in faster

and smaller RRFs as it leverages the FPGA’s physical architecture. Moreover, spatial

distribution and high availability of the distributed RAMs increase the placement and

routing flexibility which, in turn, results in a more efficient design.

Aside from the memory banks, a significant part of the RRF’s area is consumed

by the 2 : 1 multiplexers that select between the a0 and a1 addresses for each memory

bank. In order to further improve the RRF’s performance on FPGA, we manually

imposed logic sharing to utilize both outputs of the 6-input LUTs in order to imple-

ment 2-bit 2 : 1 multiplexers. This technique is applicable to both Intel’s and Xilinx’s

modern FPGA devices [32][33]. Figure 4.3 illustrates both logical representation and

efficient realization of this circuit.
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(a) (b)

Figure 4.3: Logic sharing (a) 2-bit 2:1 multiplexer (b) Single-LUT6 realization

4.4 Decoder Architecture

The proposed FPGA-optimized RRF enables a regularity for communicating messages

between the nodes which, in turn, results in a regular structure for the QC-LDPC

decoder. Therefore, rather than having yet-another-design, we use our RRF to pro-

pose a decoder architecture based on a regular structure that can be configured for

many variants. Moreover, we orchestrate the check and variable node processes to

enable pipelining for maximized throughput. Figure 4.4 illustrates the architecture

for our QC-LDPC decoder for a Hr·s×c·s parity check matrix where c is the number

of columns of circulant, r is the number of rows of circulants, and s is the CPM size.

The architecture involves an initial LLR memory to store the received codeword

from the channel, two sets of c RRFs, a set of check node unit (CNU), and a set

of variable node unit (VNU). Each RRF in the level 1, RRF (1)s, stores the variable

node messages ljs corresponding to one column of CPMs in H. The outputs are sent

to the CNUs to perform the check node processing. The result is written into c RRFs

in the level 2, RRF (2)s. Once the check node processing for one row of circulant is

finished, the level 2 RRFs rotate the data for variable node processing. The outputs

are then sent to the VNUs for variable node processing. Once all rows of circulants

are processed, the VNUs update the values in RRF (1)s to perform the next decoding

iteration.

The decoding iterations are processed sequentially in our architecture. While in-

creasing the maximum number of decoding iterations could lead to a higher noise

threshold, a majority of codewords may need a few iterations to be decoded. The

early termination logic is a simple hardware comprising of a set of XOR gates and a

1-bit accumulator that checks if all parity constraints are satisfied at the end of each

iteration. In that case, the decoding process is terminated and the decoded codeword

is written in the output memory. In fact, the early termination logic is a low-cost
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Figure 4.4: QC-LDPC decoder architecture based on RRF shuffle network

component to increase the throughput while increasing maximum number of decoding

iterations to achieve a higher noise threshold.

The code memory contains the information regarding the code. It essentially

contains the required rotation amount for the RRFs. Since the rows of circulants

are processed sequentially in our architecture, the number of rows of circulants can

change at run time. Therefore, by storing the codes with different rates (number of

rows of circulants) in the code memory, it would be possible for our decoder to adapt

to codes with different rates at run time.

4.4.1 Pipeline Timing

As depicted in Figure 4.4, our decoder allocates a unit containing a pair of RRFs

and a VNU unit to each column of circulants. These units process the CPMs in

their corresponding column sequentially. Figure 4.5 depicts the timing for pipeline

operations for one decoding iteration for a QC-LDPC code with the parity check
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T0 T1 T2 T3 T4

RRF
(1)
j (in) Write Write

RRF
(1)
j (out) Rotate (C1,j) Rotate(C2,j) Rotate(C3,j) Read

CheckNodeProcess
CNU CNU CNU

RRF
(2)
j (in) Write (C1,j) Write(C2,j) Write(C3,j)

RRF
(2)
j (out) Rotate(C′1,j) Rotate(C′2,j) Rotate(C′3,j)

V ariableNodeProcess
VNU VNU VNU/UPDATE

Figure 4.5: Pipelined QC-LDPC decoder timing diagram

matrix:

H =

C1,1 · · · C1,c

C2,1 · · · C2,c

C3,1 · · · C3,c

 (4.11)

The diagram shows the operation for the jth column in Figure 4.4. Each RRF may

perform two operations simultaneously; input and output operations. The operation

for each stage is as follows:

• T0: The input data (LLRs) are written into the RRF
(1)
j .

• T1:

– RRF
(1)
j generates a rotation of its data based on the offset of the C1,j cir-

culant.

– The CNUs perform the check node process.

– The CNU outputs are written into RRF
(2)
j .

• T2:

– RRF
(1)
j provides the rotation based on the offset of the C1,j circulant.

– The outputs of the CNUs are stored in RRF
(2)
j .

– RRF
(2)
j rotates its stored data from previous cycle (T1) based on the com-

plement offset of the C1,j circulant (C′1,j).

– The VNU performs variable node process on the outputs of RRF
(2)
j .

• T3: The operations in T3 is similar to T2 except that all units process their next

row of circulants.

• T4:
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– RRF
(2)
j generates the rotation of its data based on the complement offset of

the C2,j circulant.

– The VNUs perform variable node process and update the RRF
(1)
j s.

– RRF
(1)
j writes the results of the VNU for each bit in its memories.

This sequence is performed until the code is successfully decoded or a predefined

maximum number of iterations is reached. The level 1 RRFs need to support two

operations on their memory during T4 (Read and Write). Consequently, they have

to be implemented using dual-port distributed RAMs. On the other hand, the level

2 RRFs should store the data for next stage while rotating the currently stored data

during T2 and T3. We used the double-buffering technique for level 2 RRFs to support

this operation. Since our decoder processes the rows of circulants sequentially, it can

easily adapt to any code-rate by simply repeating the T2 stage in the pipeline.

4.4.2 Summary of Architectural Features

Our QC-LDPC decoder has the following architectural properties:

• Parallelism: The decoder provides foldable intra-RoC parallelism. The paral-

lelism is adjustable through determining the number of rows processed in parallel.

• Shuffle Network: The decoder’s shuffle network implements a hybrid rotation

logic that combines in-place shifting with low-cost barrel-shifters.

• Adaptability: Since the decoder processes the rows of circulants sequentially,

the architecture does not depend on the code’s number of rows of circulants.

Therefore, it can adapt to a new code with a different number of rows by changing

the code registers in the controller.

4.5 Noisy Gradient Decent Bit-Flipping Algorithm

We used our QC-LDPC decoder architecture to implement the simple soft-decision

NGDBF algorithm [19]. Algorithm 2 shows the pseudo-code for the NGDBF algo-

rithm. Since all nodes send identical messages to their neighbours, each node needs to

compute only one message during each decoding iteration. Therefore, in Algorithm

2, all rijs and ljis are replaced with ris and ljs respectively. The algorithm performs

the following computations:

• Check node processing: Each check node computes the parity for its con-

nected variable nodes (line 8). A parity result of +1 (−1) means the check node

is (not) satisfied.
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Algorithm 2 Noisy Gradient Descent Bit-Flipping

1: for 0 ≤ j < n do . n: Number of variable nodes
2: θj = θ0 . m: Number of check nodes

3: l
(0)
j = (yj ≥ 0) ? 0 : 1; . maxIter: Maximum number of iterations

4: end for . yj : Soft information received for bit j
5: for 0 < t < maxIter do . θj < 0: Bit flip threshold for bit j
6: // Check Node Process . θ0 < 0: Initial flip threshold
7: for 0 ≤ i < m do . λ < 1: Threshold update step
8: r

(t)
i = ( ⊕

k∈Vi
l
(t−1)
k ) ? − 1 : + 1;

9: end for
10: // Variable Node Process
11: for 0 ≤ j < n do
12: a

(t)
j =

∑
k∈Cj

r
(t)
k

13: flip =
(
[l
(t−1)
j × yj ] + a

(t)
j < θj

)
? 1 : 0;

14: l
(t)
j = l

(t−1)
j ⊕ flip;

15: u = (flip) ? − 1 : + 1;
16: θj = λu · θj ;// Update θ based on the flip decision

17: ȳj = l
(t)
j ;// Hard Decision for each bit

18: end for
19: // Early Exit Condition
20: if H · ȳT = 0; then
21: break;
22: end if
23: end for

• Variable node processing: Each variable node computes a value based on:

– The number of unsatisfied check nodes connected to the variable node.

– The soft information for the bit received from the channel.

– The corresponding bit’s hard-decision value at the current iteration.

Then, it flips its corresponding bit if the value is lower than a threshold, θj.

Each bit has its own threshold and it is updated at each iteration based on the

bit’s flip decision. If the bit is flipped in the current iteration, its threshold is

multiplied by a λ < 1 to make the bit less likely to flip at future iterations.

Otherwise, it is multiplied by λ−1 to make the bit more likely to flip in future

iterations (line 16− 17).

The computations in NGDBF can be simply mapped to our decoder architecture.

At first, the check nodes for the first row of circulants are computed. Then, all the

rotations of the result required for the variable node processing are calculated. These

rotations are partial results of the ajs (line 12 in Algorithm 2). We denote these

partial results as ρjs. Similar operation can be performed based on the offsets of

the second row of circulants and the results should be accumulated to the partial

results obtained from the previous row. We explain the process through an example.
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Consider the following parity check matrix:

H10×15 =

[
C1

(5) C2
(5) C3

(5)

C3
(5) C4

(5) C2
(5)

]
(4.12)

We have:

l0 · · · l4
Rotate Left (1)−−−−−−−−→ l1 · · · l0 ⊕

l5 · · · l9
Rotate Left (2)−−−−−−−−→ l7 · · · l1 ⊕

l10 · · · l14
Rotate Left (3)−−−−−−−−→ l13 · · · l12

r0 · · · r4
Rotate Left (5-1=4)−−−−−−−−−−−→ r4 · · · r3 (ρ0 ... ρ4)

Rotate Left (5-2=3)−−−−−−−−−−−→ r3 · · · r2 (ρ5 ... ρ9)

Rotate Left (5-3=2)−−−−−−−−−−−→ r2 · · · r1 (ρ10 ... ρ14)

Figure 4.6 illustrates the data flow for processing the first row of circulants with

check and variable node process interleaving. It consists of 4 stages:

1. Rotating the variable to check node messages based on a row of circulants.

2. Compute the check to variable node messages for that row of circulants through

a set of XOR operations (Check node process).

3. Rotating the check to message node messages based on the complement offsets

of the row of circulants.

l0 · · · l4 l5 · · · l9 l10 · · · l14

l1 · · · l0 l7 · · · l6 l13 · · · l12

Rotate(1) Rotate(2) Rotate(3)

XOR

r0 · · · r4 r0 · · · r4 r0 · · · r4

Copy#1

Copy#2

Copy#3

r4 · · · r3 r3 · · · r2 r2 · · · r1

Rotate(5-1) Rotate(5-2) Rotate(5-3)

ρ0 · · · ρ4 ρ5 · · · ρ9 ρ10 · · · ρ14

Stage 1

Stage 2

Stage 3

Stage 4

Figure 4.6: Data flow graph for H in Equation 4.12 processing the first row of circulants
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4. Aggregating the results with previous rows of circulants (Variable node process).

This sequence is repeated for each row of circulants and the partial results, ρjs,

are accumulated. Once all rows of circulants are processed, ajs are computed for all

bits and the variable nodes can decide whether to flip each bit.

4.5.1 CNU

The CNUs in NGDBF are just a set of XOR gates that perform reduction XOR

operations to compute the parity constraints for the check nodes.

4.5.2 VNU

The VNU in NGDBF accumulates the partial results (ρjs) for each bit and decides

whether to flip each bit. Figure 4.7 depicts the data path for this unit. The 3 dashed

lines show the activated paths during different operations.

• Path 1: This path is active during the accumulation phase where the ρjs are

accumulated in the Accumulator Memory.

• Path 2: This path is active during the decision-making phase, where the unit

decides whether to flip each bit. Instead of explicitly multiplying the threshold

by λ or λ−1 in each iteration, a counter is used for each bit which is incremented

whenever the bit is flipped and decremented otherwise. The values for {θ0 ·
λ−maxIter, θ0 · λ−maxIter+1, · · · , θ0 · λmaxIter} are pre-computed and stored in the

Theta Memory. Therefore, the appropriate threshold is read from this memory

based on the value of the counter in the Counter Memory for each bit.

Figure 4.7: Data path for the VNU



CHAPTER 4. CONFIGURABLE MICRO-ARCHITECTURE FOR QC-LDPC DECODER 50

• Path 3: This path is activated to update the counter for each bit depending on

the flip decision.

4.6 Evaluation

In order to perform an efficient evaluation process, we used Verilator [34], a free open-

source tool which converts Verilog to a cycle-accurate C++ model. Compared to the

Verilog simulation, the generated C++ model can be simulated at a much higher

speed. The model is encapsulated as a library where Verilog wires, registers, and

functions are accessible.

Figure 4.8 illustrates our framework to perform the evaluation process. It consists

of three parts:

• Simulation: Verilator 4.014 is used in this part to convert the Verilog design into

a C++ library.

• Validation: A testbench is written in C++ which invokes the design’s golden

model to validate the design functionality. Our golden model is a bit-true model

of the hardware implementation that takes quantization into account for its

computations.

• Implementation: The design is connected to a light-weight Command Processor

and implemented on an FPGA board using VIVADO 2017.4.

We developed a hardware library, HW Lib, in C++ which acts as an interface

between the three segments of our framework. Through the HW Lib, the testbench

can transfer the data with both the C++ model and the implemented hardware.

For simulation, the HW Lib makes function calls to the library generated by Verila-

tor. For emulation, it communicates with the Command Processor through universal

asynchronous receiver-transmitter (UART) port. The HW Lib and the Command

Figure 4.8: Our evaluation framework
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Processor modules are generic components and can be utilized for any design with

two FIFOs and two BRAMs interfaces for command and data transfer respectively.

This makes the framework reusable for evaluating any design.We used the NetFPGA-

SUME development board that features a Virtex-7 FPGA (XC7V690T FFG1761-3).

4.6.1 RRF Performance

For an RRF with size, z, and stride size s, where z = b× s+ q, and data is stored in

b+ 1 memory banks and it takes s+ q clock cycles to generate a complete rotation in

the output (s cycles for strided circular access and q cycles for the sequential surplus

accesses). Therefore, throughput is computed as follows:

Throughput =
fmax × z
s+ q

(4.13)

where fmax is the maximum clock frequency. The efficiency of an RRF, is computed

by normalizing its peak throughput based on its resource usage. Consequently, we

define the following efficiency metric:

Efficiency =
Throughput× 1000

LUT count
(4.14)

In fact, Efficiency represents the achievable throughput per one thousand LUTs.

We studied the RRF performance for stride sizes of 4, 8, 16, 32, and 64 and the

word sizes, w, of 1, 4, and 8 bits. We also investigated the performance under a

wide range of circular access sizes. Figure 4.9a illustrates the peak throughput for

circular access size z=251. As mentioned before, smaller stride sizes result in higher

parallelism which leads to higher throughput. However, despite the general increasing
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Figure 4.9: (a) Peak throughput and (b) Efficiency, for RRF with z=251
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trend, there are cases that the throughput does not increase with the same rate as

the parallelism e.g., from s=8 to s=4. This phenomenon is observed when a large

fraction of the RRF’s latency is due to the sequential surplus accesses i.e., 0� q
q+s

.

The graph in Figure 4.9b shows that the RRF’s efficiency for z=251. In general,

RRFs with larger word sizes are more efficient since the address generation logic

is shared among the word bits. However, this property is not observed in designs

where 0 � q
q+s

e.g., s=4 in Figure 4.9b. In such cases, the address logic sharing

among multiple word bits does not compensate the imposed sequential surplus ac-

cesses. Figure 4.9b shows that depending on the circular access and the word size,

our RRF provides an opportunity to find the most efficient design through design

space exploration.

Since RRF’s structure necessitates serial processing of the surplus accesses, the

surplus set size determined by q in Equation 4.10 affects the overall efficiency of the

RRF. Figure 4.10 plots the efficiency with respect to the surplus set size for s = 16

and the number of banks, b ∈ {12, 24, 38, 48}. Intuitively, increasing the surplus set

size decrease the efficiency as it imposes more sequentiality to the RRF. However, the

results show a non-linear impact of the surplus set size on the efficiency.

Circular Access Size

Figure 4.11 illustrates the RRF’s efficiency for circular access size, z ∈ {75, 251, 451}
the stride size, s ∈ {4, 8, 16, 32, 64}. The results show that for small circular access

sizes (z = 75) the efficiency increases with higher parallelism. In fact, the more

sequential RRFs have larger memory banks with wider address signals which result

in more complex address generation logic. However, this effect is diminished for the
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Figure 4.10: The surplus set size impact
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RRFs with larger circular access sizes (z = 251 and z = 451) due to their relatively

higher throughput. Consequently, a design space exploration is required to find the

most efficient design for these cases.

Logic Sharing Impact

Figure 4.12 depicts the impact of logic sharing discussed in Section 4.3.3 for stride

sizes s ∈ {4, 8, 16, 32, 64}. The results confirm that logic sharing can improve the

resource usage by 5%−10% depending on the parallelism level. Moreover, a majority

of logic sharing occurs in the address generation logic. Therefore, more sequential

designs in which wider addresses need to be generated, have relatively higher gain

from the logic sharing.

Soft-MUX Vs. Hard-MUX RRF

In order to evaluate the impact of leveraging FPGA’s inherent micro-architecture,we

compared the performance for soft-MUX and hard-MUX RRFs. The former utilized

FPGA’s soft logic while the latter uses physically implemented multiplexers in the

FPGA. Table 4.2 reports the LUT count and the efficiency for both RRFs. The

results show that the hard-MUX RRF consumes 36% − 64% less lookup tables. In

addition, hard-MUX RRFs are more flexible for routing and placement. As a result,

they are 1.5x to 4x more efficient than the soft-MUX RRFs.

There is a non-linear relationship between the parallelism and the resource usage.

The more parallel the RRF, the more logic resources are required to implement its first

and second level rotation logic. On the other hand, the more serial RRFs have more

complicated address calculation logic since more address bits need to be generated and

LUT Count
Efficiency
(GB/s/KLUT)

Stride
Soft
MUX

Hard
MUX

Soft
MUX

Hard
MUX

4 784 505 2.81 4.33

8 548 260 2.45 5.21

16 466 166 1.22 4.78

32 302 116 0.97 3.01

64 255 106 0.58 1.73

Table 4.2: Soft-MUX Vs. Hard-MUX RRFs for
n = 251 64 32 16 8 4

0

200

400

600

Stride Size (s)

E
ffi

ci
en

cy
(
M
B
p
s
/
K
L
U
T

I
te
r
a
ti
o
n

)

Without Logic Sharing
With Logic Sharing

Figure 4.12: The impact of logic sharing, z=251
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routed to the distributed RAMs. This results in a non-linear relationship between the

stride size and the fraction of the resources consumed by an RRF’s first-level rotation

logic. Since the hard-MUXes are only leveraged in the first-level rotation logic, the

results in Table 4.2 demonstrate a non-linear improvement achieved by leveraging the

hard-MUXes with respect to the stride size.

4.6.2 NGDBF Decoder Performance

According to the decoder’s pipeline timing in Figure 4.5, the throughput of our

NGDBF decoder can be computed as follows:

Throughput/Iteration =
n× fmax

(s+ q)× (r + 2) + 5
(4.15)

where n is the codeword length, fmax is the maximum frequency, s is the RRF memory

size, x is the circulant size, and r is the number of rows of circulants in the H. The

added 5 cycles is the pipeline latency.

Parallelism Vs. Efficiency

We generated four variants of our NGDBF decoder architecture for a (9650, 1351)

QC-LDPC code with circulant size 193. The variants differ in terms of their paral-

lelization. Figure 4.13 illustrates the efficiency and throughput for all variants. The

parallelization values on the x axis represent the number of rows of H processed in

parallel. The results show the increasing trend of the throughput as the paralleliza-

tion is increased. However, the efficiency, shows a different trend. This is due to the

fact that although the RRF’s memory banks scale with the parallelism, its second-

level rotation (the barrel-shifter) scales at a relatively faster rate. Moreover, the
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Figure 4.14: Foldable parallelism and performance

address generation logic’s LUT utilization increases as we decrease the parallelism.

These properties results in a sweet spot for the most efficient design in terms of par-

allelism. The foldable parallelism provided by our decoder architecture provides an

opportunity to find the most efficient design by sweeping the parallelism.

WiMax 802.16e LDPC Code

For comparison, we compiled our NGDBF decoder architecture for the medium-size

(2304, 1152) QC-LDPC code with circulant size, z=96, used in WiMax 802.16e stan-

dard. Figure 4.14 compares our decoder’s performance with the barrel-shifter imple-

mentation proposed by Amaricai and Boncalo [23]. The results show that our decoder

is about 11% more efficient while achieving 400% higher throughput.

4.7 Summary

In this chapter, we proposed a configurable micro-architecture for QC-LDPC de-

coders. We leveraged the FPGA’s inherent physical architecture to design RRF, a

foldable parallel structure for strided circular access. Then, we used the RRF as the

basic block to propose an elegant structure for QC-LDPC decoders. Rather than being

yet-another-design, our decoder architecture is based on a regular structure that can

be configured for many variants. The architecture’s support for foldable parallelism

enables striking a trade-off between performance and resource usage. Moreover, the

decoder can adapt to any code and code rate based on the application requirements.

The architecture’s support for foldable parallelism and rate-adaptability enables de-

sign space exploration for pursuing interesting trade offs between hardware efficiency

and code performance.



Chapter 5

Learning FAID: A Hardware-Code

Co-design

The micro-architecture proposed in Chapters 4 is mainly focused on hardware ef-

ficiency and foldable parallelism that facilitate the design space exploration. This

chapter aims to explore interesting trade offs between hardware efficiency and code

performance in soft-decision QC-LDPC decoders for flash memories. To that end, we

explore the limitations of error correction in flash memories and propose an end-to-

end solution for improving the correction capability of the conventional soft-decision

decoders for these devices. Then, starting from the micro-architecture discussed in

Chapter 4, we propose an efficient foldable parallel micro-architecture for our soft-

decision decoder. Considering hardware and code efficiency simultaneously has made

this effort a hardware-code co-design.

5.1 Overcoming Flash Memory Error Correction Constraints

A practical error correction mechanism for a flash memory should carefully consider

its inherent constraints. For instance, the limited bit budget for ECC necessitates

the use of high-rate codes in these devices. Aside from resource scarcity, there are

some other constraints that directly impact the correction capability of ECC in flash

memories. However, these constraints shrink the decoder design space which can be

leveraged to design decoders with improved code performance.

5.1.1 Constraint 1: Limited Quantization

Soft-decision LDPC decoders rely on accurate soft information for their computations.

In a discrete domain, more quantization levels result in better correction capability.

56
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Figure 5.1: SLC voltage threshold distribution

However, a fine-grained quantization is not feasible for flash memories. A flash mem-

ory cell value is read through sensing which is done by sweeping a threshold voltage on

a word-line. Figure 5.1 illustrates a simplistic model of the threshold voltage distribu-

tion for a single-level cell (SLC) memory in which each cell stores one information bit.

The distribution is a combination of two Gaussian random variables. In particular,

cells with information bit 0, are modelled as a Gaussian random variable with mean

+1 and variance
√
N0/2. Similarly, the cells with information bit 1, are modelled as

a Gaussian random variable with mean -1 and variance
√
N0/2. The vertical lines

represent the word line voltages for memory sensing. they divide the distribution into

four regions which can be represented by two bits.

Flash memory read latency is linearly proportional to the number of sensing quan-

tization levels. Each extra soft information quantization bit not only doubles the

required number of sensing levels, but it also increases the flash-to-controller latency.

This is due to the fact that the read result must be transferred to the memory con-

troller through standard chip-to-chip links. Since flash memories are classified as fast

storage devices, increasing their read latency for error correction contradicts their ex-

istential philosophy. Consequently, the quantized soft information has to be limited

to at most 2-3 bits i.e., 4-8 quantization levels and 3-7 sensing levels.

5.1.2 Constraint 2: Limited Decoding Iterations

As discussed in previous chapters, LDPC decoding is an iterative process in which the

computations iterate until either the codeword is successfully decoded or a predefined

number of iterations has reached, in which case the decoder has been unsuccessful at

decoding the codeword. A hardware implementation of the decoder should perform

the decoding iterations either sequentially or in a pipeline unrolled fashion. Although

more decoding iterations could typically improve the code correction capability, it in-
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creases the decoding latency which, in turn, diminishes hardware efficiency regardless

of the implementation approach. Consequently, a practical ECC decoder for a flash

memory has to limit the decoding iterations. Our code studies showed that setting

the maximum decoding iteration of 4-5 would be reasonable. In addition, improving

the computations to perform decoding in as few iterations as possible could directly

improve the hardware efficiency without affecting the code correction capability.

5.1.3 Leveraging A Finite Design Space

The inherent constraints in flash memory error correction have paralyzed the conven-

tional decoders to meet the device’s error correction requirements. These decoders

typically perform algorithm design and quantization as separate steps. However, since

decoding is performed using a finite set of values and it is repeated for a limited num-

ber of iterations, the entire decoder design space is finite for flash memories. In this

thesis, we introduce a learned finite alphabet decoder, a decoder for a finite design

space. In particular, we offer an end-to-end solution that utilizes a brute-force ma-

chine learning approach along with finite alphabet iterative decoding (FAID) to learn

the best decoder for a given code and quantization.

5.2 Finite Alphabet Iterative Decoding (FAID)

Conventional LDPC decoders are mainly based on message-passing belief propagation

(BP) in which the decoder operates on a graphical model of a code, the Tanner graph,

to compute the most-likely value for each bit during each iteration. However, these

algorithms may not be as effective when decoders are realized in hardware and the

effect of finite precision is in place.

There has been several efforts to compensate the negative impact of limited quan-

tization on LDPC decoders. The majority of these efforts suggest modifying the

variable node function based on some knowledge of the code or the transferred mes-

sages. In this section, we first use the existing literature to define the framework for

quantized decoders. Then, we focus on a special class of these decoders, FAID, which

appear to be promising for limited-quantization decoding.

5.2.1 Framework

For a (n, k) binary LDPC code with n variable nodes and m = n − k check nodes

in its Tanner graph. A quantized decoder, Q, can be defined as Q = {Φ,Ψ,M,Y}
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where:

M = {0,±Li|Li ∈ R+,∀1 ≤ i < j ≤ S, Li < Lj} (5.1)

is the finite set of transferred messages with 2S + 1 alphabet, Y is the set of possible

channel values, and Φ and Ψ are variable to check node, and check to variable node

functions respectively. For the check node, Ci, with the set of indices of connected

variable nodes Vi, the degree dc, and the received messages {l(t−1)i,j |j ∈ Vi, l
(t−1)
i,j ∈M},

at decoding iteration t, the response to the variable node Vj can be computed as

follows:

r
(t)
i,j = Ψ(Vi, j, t− 1), Ψ :Mdc × dc × T −→M

where T is the maximum number of decoding iterations. Likewise, for the variable

node, Vj, with the set of indices of connected check nodes Cj, the degree dv, the

received messages {r(t)i,j |i ∈ Cj, r
(t)
i,j ∈ M}, and the channel value yj ∈ Y , at decoding

iteration t, the output message to check node Ci, can be computed as follows:

l
(t)
i,j = Φ(yj,Vj, i, t− 1), Φ : Y ×Mdv × dv × T −→M

where T is the maximum number of decoding iterations. A FAID, F = {ΦF ,ΨF ,M,Y}
is distinguished from conventional quantized decoders by its update functions, ΦF

and ΨF . Rather than the messages being the approximation of the log-likelihoods

or probabilities, the functions are based on simple well-defined maps. To the best of

our knowledge, the majority of the prior FAIDs are focused on modifying the variable

node function, ΦF , while keeping the check node function, ΨF same as conventional

decoders. In particular, a FAID’s variable node function is defined as a quantization

function over the conventional update functions:

ΦF(yj,Vj, i, t− 1) = Q
(
Φ(α× yi,Vj, i, t− 1)

)
where α is a weight parameter that can be computed based on a linear or non-linear

function. Considering a threshold set:

T = {θi| ∀1 ≤ i < j ≤ S + 1, θi < θj, θS+1 =∞}, (5.2)

the Q is a quantization function defined as:

Q(x) =

sgn(x)Li, θi ≤ |x| < θi+1

0, |x| ≤ θ1
(5.3)
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5.2.2 FAID History

The first major work in the area of quantized decoders was introduced by Richard-

son and Urbanke [35], in which they used density evolution (DE), to approach the

performance of the floating-point BP decoder. DE is a technique that recursively

computes the probability mass function (PMF) of the transferred messages assuming

infinite code length with a cycle-free Tanner graph. Since then, normalized min-sum

and offset min-sum decoders by Chen et al. [36] are among the main decoders that

used DE to reach floating-point BP correction capability. However, the DE technique

does not guarantee a good performance on a finite length code. In addition, it may

increase the implementation complexity.

The term, FAID, was first introduced by Planjery et al. [37] in which they pro-

posed a variable node function based on simple well-defined maps. The maps were

designed based on the knowledge of the code’s trapping sets with the goal of increas-

ing the correction capability in the error-floor region. Being a simple map function,

allows the variable node update rule, Φ(.), to be implemented using a lookup table.

This approach is only feasible for limited-quantization and small dv values. Their

experimental results showed that for a dv = 3 code, their FAID can surpass the

floating-point BP in the error-floor region.

In order to achieve a simpler implementation, Truong et al. [38] suggested a non-

surjective FAID in which the messages are stored with a lower precision than the pre-

cision they are being transmitted. Using density evolution, the non-surjective FAID

can be optimized for any given code. Their experimental results showed a 25%/35%

reduction in memory/interconnect compared to the MS decoder while improving the

decoding gain up to 0.36 dB for a dv = 3 code.

In order to improve the correction capability, probabilistic FAID (P-FAID) was

introduced by Le et al. [39]. Rather than using a single lookup table, as its name

suggests, P-FAID uses multiple lookup tables probabilistically. The probabilities for

using different lookup tables are computed based on the density evolution of the trans-

ferred messages. Using a smart computation flow, P-FAID realizes the probabilistic

behavior without a real random generator. The experimental results showed 0.2 dB

decoding gain at no hardware overhead compared to the MS decoder for a dv = 3

code.

Vasic et al. [40] took a different approach for designing the FAID’s variable node

function. Rather than leveraging the knowledge of the code or analyzing the trans-

ferred messages, they took a machine learning approach to learn the best variable

node update function. Then, they used the learning process outcome to design a

LUT-based FAID. Their experimental results showed that a 3-bit FAID improves the
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Table 5.1: Major prior efforts on FAID

Work Year Idea Achievement dv of interest

FAID [37] 2012
Using the knowledge of
the trapping sets

Improved noise threshold in
the error-floor region over
floating-point BP

3

NS-FAID [38] 2016
DE for lower precision
messages

25% Memory Reduction,
35% Interconnect reduction
over MS

3

P-FAID [39] 2018
DE for using multiple
Φs probabilistically

0.2 dB noise threshold im-
provement over MS

3

Learning FAID [40] 2018
Learning the update
rules

0.4 dB noise threshold im-
provement over MS

3

MS’s noise threshold by 0.4 dB for a dv = 3 code.

Table 5.1 summarizes the major prior efforts on finite alphabet decoders mentioned

above. To the best of our knowledge, the majority of academic works on FAID are

mostly suggesting some knowledge of the code or messages to improve the correction

capability of conventional BP and MS decoders in a limited-quantization setting.

Moreover, they focus on codes with dv = 3 in which case the variable update function

can efficiently be implemented with using a lookup table. However, the LUT size

grows exponentially with larger dv values. The idea of learning the best FAID was

first explored by Vasic and the results showed a promising threshold improvement [40].

5.3 Learning Decoder

Any LDPC decoder has three computation steps in each iteration; Variable to check

node function (Φ), check to variable node function (Ψ) , and variable node update

rule (Ω), in which a decision value is computed for each bit. In a conventional MS

decoder, these computations are based on log-likelihood of the transmitted message

bits. A learning decoder, is a decoder that learns some aspects of these computations

through assigning a set of weight parameters and takes a machine learning approach

to find the best values for these parameters.

5.3.1 Framework

We define the learning framework based on the conventional MS and APP decoding

algorithms. Given the Equations 3.5 and 3.6 for an MS decoder, the Φ and Ψ



CHAPTER 5. LEARNING FAID: A HARDWARE-CODE CO-DESIGN 62

functions can be defined as:

r
(t)
i,j = Ψ(Vi, j, t− 1) =

∏
k∈Vi/j

λ
(t)
i,j,k × sign(l

(t−1)
i,k )× min

k∈Vi/j
|l(t−1)i,k | ∀i, j : r

(0)
i,j = 0 (5.4)

l
(t)
i,j = Φ(yj, Cj, i, t) = α

(t)
i,j × LLR(yj) +

∑
k∈Cj

(β
(t)
i,j,k × r

(t)
k,j) (5.5)

where the superscript t denotes the decoding iteration and α, β, and λ are the

learning parameters. As a general learning framework that supports the entire design

space, the subscripts, i, j, and k, and the superscript, t, on the learning parameters

are to allow a separate set of parameter to be used for each individual message per

iteration. Similarly, the variable node update rule can be defined as:

ȳ
(t)
j = Ω(yj, Cj, t) =

 0, (γ
(t)
j × LLR(yj)) +

∑
k∈Cj

(θ
(t)
k,j × r

(t)
k,j) ≥ 0,

1, otherwise.
(5.6)

5.3.2 History

The general learning framework defined in Section 5.3.1 defines a vast design space

for learning parameters. However, exploring this entire design space is impractical for

large block codes. Moreover, a practical implementation of such hypothetical learned

decoder is not feasible for large block codes. Therefore, the existing learning decoders

have made efforts to explore a segment of this design space.

Nachmani et al. [41] proposed a learning method to improve the Φ and Ω functions

on the BP algorithm. They used deep learning techniques to train α
(t)
i , β

(t)
i,j,k, γ

(t)
j ,

and θ
(t)
k,j parameters for a BCH(63, 45) code. Compared to Equations 5.5 and 5.6,

the dropped subscripts are due to design space reduction. Their experimental results

showed up to 0.9 dB threshold improvement for a learned BP decoder. Moreover,

given a noise threshold, their learned BP converges 10× faster than the conventional

decoder.

A learning MS decoder was proposed by Lugosch and Warren [42] in which they

focused on learning the check to variable node function, Ψ. In fact, they used a

neural network to train λ
(t)
i,j and their experimental results showed up to 1 dB noise

threshold improvement compared to a BP decoder for a BCH(63, 45) code.

Wu et al. [43] proposed a learning LDPC decoder that took a machine learning

approach to optimize the Ψ and Ω for the MS decoder. They trained the network to

find the best values for λ
(t)
i,j and γ

(t)
j parameters. Their experimental results showed
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that their learned decoder improves MS decoder’s noise threshold by 0.2 dB.

Vasic et al. [40] were the first that took a learning approach to design a FAID

for limited quantization. After training the α
(t)
i,j , and β(t) parameters on variable

to check node function, Φ, they designed a finite alphabet based on these learned

parameters. Their experimental results show that the a 3-bit learned FAID has 0.4

dB noise threshold gain over the MS decoder. Moreover, given a noise threshold, the

3-bit learned FAID converges 2× faster than the MS decoder which, in turn, results

in increased hardware efficiency.

5.4 Learning FAID: A Decoder for A Finite Design Space

The flash memory error correction constraints, limited quantization and number of

decoding iterations, results in a finite design space for a decoder for these devices.

Meanwhile, prior FAID and learning decoders have shown to be promising in improv-

ing the threshold and the number of decoding iterations in a limited quantization

setting. To the best of our knowledge, Vasic et al. [40] were the first that proposed

a machine learning approach to designing a FAID. However, their suggested design

space for learning necessitates using a specific FAID table for each variable node. De-

spite being reasonable in their case study with small block codes, this approach is not

practical for a large codeword decoder with a partially parallel architecture in which

each computational unit is shared among multiple variable nodes. In this thesis, we

propose an end-to-end solution that takes a brute-force machine learning approach to

find the best FAID for a given code. Considering this research’s mandate to respect

hardware and code performance simultaneously, our approach is distinguished from

Vasic’s work in the following aspects:

• Rather than using the min-sum as the baseline decoder, we start from the more

hardware-friendly APP-based decoder discussed in Chapter 2.

• Compared to Vasic’s FAID [40], we reduce the FAID design space to make it

practical for large block codes.

• We propose a scalable 2-stage lookup-table approach that enables efficient FAID

implementation for larger dv values.

5.4.1 Conventional APP-based Decoder

As discussed in Section 3.2.2, compared to the MS decoder, the variable nodes in

the APP-based decoder send identical messages to all their connected check nodes.
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(a) (b)

Figure 5.2: Variable node computation (a) MS Vs. (b) APP-based

Figure 5.2 compares the variable node computations in MS and APP-based decoders

for a variable node with dv = 3. The identical messages in the APP-based decoder

not only results in a simpler hardware implementation for variable node computation,

but it also reduces the required memory to communication the messages to the check

nodes. This results in a significantly lower-complexity decoders especially in case of

large block codes with a large number of variable nodes. However, compared to the

MS decoder, the APP-based decoder suffers from a code performance degradation

due to its correlation of the variable node messages. Given the limited decoder design

space for flash memories, we aim to learn some aspects of decoding and design a FAID

to improve APP-based decoder’s performance in flash memories while preserving its

hardware-friendliness.

5.4.2 Design Space

According to Vasic’s learning design space [40]:

l
(t)
i,j = α

(t)
i,j × LLR(yi) + β(t)

∑
k∈Cj/i

r
(t)
k,j (5.7)

a separate weight α is trained for each message sent from variable node i to check

node j. This results in a specific update function per variable node per its outgoing

message. A FAID designed based on such a learned decoder has to have separate

lookup tables per variable node per outgoing message. However, this is not practi-

cal for large block codes where only a partially parallel implementation is feasible

and multiple variable nodes have to share a single processing unit. Moreover, as-

signing different weights to each variable node message is essentially equivalent to

discriminating the channel values which disrupts the channel information symmetry.
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Consequently, the design space can be reduced to:

l
(t)
i,j = α(t)LLR(yi) + β(t)

∑
k∈Cj/i

r
(t)
k,j (5.8)

where the subscripts i, j are dropped from the α parameter so that all outgoing

variable node messages have the same weight. This reduction results in learning 2

parameters per iteration. The design space can further be reduced through normal-

ization:

l
(t)
i,j = LLR(yi) + β(t)

∑
k∈Cj/i

r
(t)
k,j (5.9)

Finally, since we are focused the more hardware-friendly APP based decoding al-

gorithm, the variables node send same message to all their connected check nodes.

Therefore, we drop the exclusion of the check node Ci message (r
(t)
i,j ), from the sum-

mation in Equation 5.9:

l
(t)
i,j = LLR(yi) + β(t)

∑
k∈Cj

r
(t)
k,j (5.10)

In fact, our learning design space suggests learning only one parameter per decoding

iteration to perform the weighted sum of the channel value and the incoming messages.

In other words, the incoming messages to variable nodes have a different weight in

computing the node message in each iteration.

5.4.3 Learning Framework

Given a Tanner graph of a (n, k) LDPC code with n variable nodes and m = n − k
check nodes and the maximum number of decoding iterations, L, we construct our

2L+ 1 layer neural network for training.

Neural Network

We explain the network structure through an example. Figure 5.3 illustrates the

neural network for a (6, 3) LDPC code with 4 decoding iterations and check node

degree dc = 4. The even layers (a0, a2, . . . , a2L) perform the variable node function, Φ,

while the check node function, Ψ, is performed by the odd layers (a1, a3, . . . , a2L−1).

In fact, every 2 consecutive layers represent one decoding iteration while the last

layer computes the final value for each variable node at the end of last iteration. The

variable node (even) layers have n neurons each, one per variable node. For odd layers,

since each check node sends a separate message to each of its connected variable node,
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Figure 5.3: Neural network for training the decoder with 5 decoding iterations

we replace each check node of the Tanner graph with multiple neurons in the odd

layers, each representing an outgoing message of the check node. Therefore, a neural

network for a regular LDPC code with check node degree dc, has m × dc in its odd

layers. The bias to intermediate variable node layers represent the channel value used

in each decoding iteration.

The connection between the layers is defined as follows:

• Even to odd layers: The connection matrix is a m.dc × n matrix. Let the

index set Ii = {i0, i1, · · · , iwr−1} be the indices of 1s of the ith row of the parity

check matrix, H, with row weight wr. Then, for each row in the parity check

matrix, H, we have a submatrix with wr rows in the connection matrix where:

∀0 ≤ j < wr, Ij = Ii − {ij} (5.11)

where Ij is the index set of 1s in the jth column of the submatrix.

• Odd to even layers: The connection matrix is a n×m.dc matrix. Let the index

set Ii = {i0, i1, · · · , iwr−1} be the indices of 1s of the ith row of the parity check

matrix, H, with row weight wr. Then, for each row in H, we have a submatrix

with wr columns in the connection matrix where:

∀0 ≤ j < wr, Ij = {ij} (5.12)

where Ij is the index set of 1s in the jth column of the submatrix.
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Data Set

Given a codeword c =
[
c1 c2 · · · cn

]
and its transmitted symbols ĉ =

[
ĉ1 ĉ2 · · · ĉn

]
,

the receiver receives ŷ = ĉ+ n where n is the noise vector, and ŷ is quantized to y.

The LLRs of the received message is Λ = [λ1, λ2, . . . , λn], where:

∀1 ≤ i ≤ n, λi = log
Pr(ci = 0|yi)
Pr(ci = 1|yi)

(5.13)

One advantage of training a neural network for a decoder is that given the channel

model, it would be possible to generate infinite size data set due to the random nature

of the noise vector. Moreover, since the expected output of the network is known in

advance, the training process can proceed without any supervision.

Functions

Let Ii be the input vector to layer i of the neural network. Then, for the input layer,

we have:

I0 = Λ (5.14)

where Λ is the LLR computed by Equation 5.13. According to Equation 5.10 the

learning parameter, β is a weight multiplied by all the incoming messages to the

variable nodes. Therefore, we apply the weight to the odd-to-even layer edges and

force same weight among all edges for each stage representing a decoding iteration.

Therefore, for hidden layers, we have:

∀0 ≤ i ≤ 2L, Ii+1 =

LLR(yi) + β( i
2
+1)Ii, if i is even,

sgn(Ii)min(|Ii|), if i is odd.
(5.15)

where L is the number of decoding iterations, β(t) is the parameter for the tth decoding

iteration subject to optimization, and I2L+1 = x is the decoder’s output.

Loss Function

In order to compute the loss to perform the back propagation, we first apply the non-

linear Sigmoid function to the network’s output to convert the likelihood messages

into probability:

σ(xi) = (1 + e−xi)−1 = Pr(ci = 0|yi) (5.16)

A decoder can be mapped to a binary classification problem in machine learning

in which the outputs have to be classified in two categories; 0 and 1. Since LDPC

decoding algorithm operates based on the probability of the bits being 0 or 1, a binary
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cross-entropy loss can be used:

BCELoss(x, c) = − 1

n

n∑
i=1

(1− ci)log(σ(xi)) + cilog(1− σ(xi)) (5.17)

However, the LDPC decoding is an iterative process, and although the ultimate goal

is to eventually decode the codeword at the end of the last iteration, it would be

preferable for the codeword to be decoded in fewer iterations. Therefore, the inter-

mediate decoding iterations should impact the calculation of the loss. Unlike Vasic’s

learning framework [40], we use a multi-loss function as follows:

Γ(I3, I5, . . . , I2L+1, c) =
1

L

L∑
i=1

BCELoss(I2i+1, c) (5.18)

Training

We use the Adam [44] optimizer with mini-batches for training. The training process

is performed in the floating-point domain. Then, the optimized parameters, β =

(β(1), β(2), . . . , β(L)), are applied to Equation 5.10 to determine the decoder’s variable

node function.

5.4.4 Learning FAID Design

Once the variable node function is determined through training, a FAID has to be

designed based the outcome. Depending on the quantization, we define our finite

alphabet in Equation 5.1 as follows:

M = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . . } (5.19)

According to Equations 5.2 and 5.3, a threshold set, T , has to be defined for any

FAID. Similar to Vasic’s approach [40], we define a set of scalars, A = {α1, α2, . . . , αs},
so that:

θ1 = α1L1, ∀2 ≤ i ≤ S, θi = αiLi−1 + (1− αi)Li (5.20)

where Li is from the alphabet set defined in Equation 5.19. In fact, the set A
controls the relative distance between two consecutive levels.

Given the quantization levels and the trained parameters, β(t)s, we sweep the values

for LLR(yi) and
∑
k∈Cj

r
(t)
k,j in Equation 5.10. Then, it would be possible to generate



CHAPTER 5. LEARNING FAID: A HARDWARE-CODE CO-DESIGN 69

a lookup table to compute l
(t)
i,j based on the values of LLR(yi), and

∑
k∈Cj

r
(t)
k,j for each

decoding iteration.

5.5 FPGA Micro-Architecture

We utilize our QC-LDPC decoder architecture described in Chapter 4 to design an

efficient hardware for our finite alphabet decoder. Figure 5.4 illustrates the FAID ar-

chitecture for a QC-LDPC code with c columns of circulants and any number of rows

of circulants. The CNUs and VNUs perform the check and variable node computa-

tions respectively. Similar to the NGDBF decoder, our soft-decision FAID processes

all columns of circulants in parallel while processing the rows of circulants sequen-

tially. The RRFs are the rotation units that enable processing of p variable/check

nodes at the same time. Moreover, RRF(1)s store variable to check node while RRF(2)s

store check to variable node messages. However, unlike the NGDBF decoder, RRFs

in which each output is a single-bit value, each soft-decision FAID’s RRF output is

of q bits, where q is the precision of internal computations. However, the internal

Figure 5.4: FAID architecture based on the decoder described in Chapter 4
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computation precision can be higher than channel value precision (Read from flash

memory through sensing). In fact, a higher than channel value precision on inter-

nal computations allows a wider range of values during the decoding process which

results in a better code performance. The early termination block keeps monitoring

the parity of the entire block so that the process can be terminated as soon as the

codewords is decoded.

5.5.1 Check Node Unit (CNU)

A check node unit receives c variable node messages and has to generate c responses

each of which calculated based on Equation 5.4.

Output i is comprised of a sign, si, and a magnitude, magi. magi can be computed

through finding the first and second minimum magnitude of the entire inputs, min1

and min2 and using Equation 5.21 to compute the output.

magi =

min1, |ini| 6= min1,

min2, otherwise.
(5.21)

Similarly, si, can be computed as:

si = (sgn(in1)⊕ sgn(in2)⊕ · · · ⊕ sgn(inc))⊕ sgn(ini) (5.22)

Figure 5.5: FAID check node unit architecture
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where sgn is the standard signum function.

Figure 5.5 depicts the CNU architecture. a The first and second minimums are first

found through a sort reduction tree. Then, the outputs are multiplexed depending

on input values based on Equation 5.21. The 4-2 Sorter components find the first

and second minimum among 4 inputs and they are used as the basic block to build

the sort tree for larger number of inputs. The XOR logic performs Equation 5.22 to

calculate output signs.

5.5.2 VNU: A Two-Stage Lookup Table

The variable node units have to aggregate all the incoming check node messages i.e.,

mi,js from CNU, and after processing the last row of circulants, they should perform

the finite alphabet table lookup operation to generate to output message. In order to

implement a FAID’s variable node unit, most prior works including Vasic’s FAID [40]

suggest using a single lookup table. This approach is depicted in Figure 5.6a where

the variable node uses channel value, yi, the incoming messages ri,1, ri,2, . . . , ri,dv , and

current iteration, l, as the address to lookup the output value in a table. However,

this approach is not scalable for higher dv values. Moreover, the table size increases

drastically as the decoder’s internal computation precision, q, increases.

Depending on the function used to fill the lookup table, its size can be reduced by

performing some parts of the function through logic rather than memory elements.

For instance, as depicted in Figure 5.6b, the output is usually a function of the

addition of all incoming messages rather than a function of the individual messages.

Pre-computing the sum of incoming messages results in a smaller address space for

the lookup table which, in turn, results in a smaller lookup table.

Based on the computation in Equation 5.3 and 5.10, our FAID lookup table func-

tion would be:

l
(t)
i,j = Q

(
LLR(yi) + β(t)

∑
k∈Cj

r
(t)
k,j

)
(5.23)

where Q is the quantization function based on the thresholds computed in Equa-

(a) (b) (c)

Figure 5.6: FAID VNU lookup table implementation (a) Base-line (b) Reduced size (c) Two-stage
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Figure 5.7: FAID check node unit architecture

tion 5.20. The computations can be decomposed into a two-stage quantization process

as follows:

l
(t)
i,j = Q

(
LLR(yi) + P

(
β(t)

∑
k∈Cj

r
(t)
k,j

))
(5.24)

where P is the standard linear quantization function. The hardware implementation

of the two stage FAID lookup table is illustrated in Figure 5.6c in which the P function

is used to fill the stage-1 table while the stage-2 table is filled using the Q function.

The full architecture of the VNU is depicted in Figure 5.7. The Acc. Memory is the

storage used to compute the β(t)
∑
k∈Cj

r
(t)
k,j term.

5.6 Code Performance Evaluation Framework

Figure 5.8 illustrates the major steps in evaluating the correction capability of a de-

coder. At first, information bits are randomly generated. Then, the encoder is used

to encode the information bits and generate a codeword. Depending on the channel

model, a noise has to be added to the codeword then. Finally, the noisy codeword

is sent to the decoder and its output is examined to compute the FER. The FER is

then used to calculate the UBER. These steps are repeated until a pre-defined num-

ber of frame errors are found or a pre-defined upper-bound for UBER has reached.

We set the pre-defined number of frame errors to 10 in our experiments. In other

words, the evaluation is repeated until 10 frame errors are found. The main challenge

towards evaluating an LDPC decoder is the runtime for experiments that achieve ex-

tremely low UBERs since it requires experimenting with a large number of codewords.

Figure 5.8: The major steps towards evaluating the correction capability of a decoder
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However, these codewords are independent and the experiments can run in parallel.

Therefore, a massively parallel platform can be leveraged to enable extremely-low-

UBER experiments to finish in a reasonable time. In this thesis, we developed a

software simulation as well as a hardware emulation framework to evaluate the code

performance of our FAID.

5.6.1 Software Simulation

We performed all our software simulations on Scinet’s Niagara supercomputer [45][46]

which allocates up to 800 Intel Skylake processors at 2.4 GHz. We leveraged this

computing power to perform extremely-low-UBER experiments in a reasonable time

by designing a massively parallel simulation framework. In particular, we used Intel’s

AVX-512 SIMD vector instruction set to implement all steps, from random data

generation to UBER calculation. Moreover, we used MPI to utilize all available

processors for computing. In order to increase the likelihood of getting the required

resources, we break long experiments into a set of short jobs each performing the

experiment on a subset of codewords.

Figure 5.9 depicts our software simulation framework. Each job contains a set

of processes each performing the evaluation iteratively. We used the Linux lrand48

library [47] as a baseline for our random generation steps, i.e., data and noise gen-

eration. It is necessary for each process of each job to use an appropriate seed to

ensure the independence of randomness in all processes. Given the number of jobs,

Figure 5.9: Software simulation framework for code performance evaluation
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processes, and the total number of required random numbers of an experiment, we

compute the total number of random generations required by each process. Then,

starting from the initial seed, we skip a certain number of random numbers for each

process to ensure that it is working on a unique sequence of random numbers. For

that, we use Ramses’s implementation of the lrand48 which enables skip ahead for

the original lrand48 library in O(log n) [48]. All processes of a job participate in

computing synchronizing the overall UBER among themselves periodically. Once all

jobs are finished their results are used to compute the overall UBER for the entire

experiment.

5.6.2 Hardware Emulation

Figure 5.10 illustrates our hardware emulation framework for code performance eval-

uation. The host communicates to the driver on the board through the UART port.

The driver has to initialize the random generators in the Random Data Generator and

the Noise Addition units. Then, the experiment can be started by sending the ran-

dom information bits to the encoder. Once a codeword is generated by the encoder, a

random noise is added to the data. Finally, the decoder processes the codeword and

the frame errors are computed in the Experiment Status module.

In order to keep track of the experiment, the random generators use the State

Queues to send a snapshot of their random generation state to the Experiment Status

module. Then, this module creates a checkpoint of the experiment and the Host saves

the checkpoint periodically. In the event of a failure during an emulation experiment,

the host can use the Driver to load the latest saved checkpoint to the random gener-

Figure 5.10: Hardware simulation framework for code performance evaluation



CHAPTER 5. LEARNING FAID: A HARDWARE-CODE CO-DESIGN 75

ators so that the failed experiment can be resumed without losing any experimental

data.

Uniform Random Generation

As depicted in Figure 5.10, the hardware emulation framework involves random gen-

eration both for information bits, and noise addition. Therefore, it is necessary to

design a high-quality uniform random generator. L’Ecuyer proposed a maximally-

equidistributed combined linear feedback shift register (LFSR) for random number

generation [49]. In this thesis, we implemented the hardware for L’Ecuyer’s 32-bit ran-

dom generation algorithm detailed in Algorithm 5.1. The period length for such ran-

dom generator would be 2113 ≈ 1034 which is well beyond the ultimate required ran-

dom numbers in our experiments i.e., 1018 random numbers to reach UBER=10−17.

The random generation algorithm can simply be implemented in hardware by a set

of four 32-bit LFSRs with output produced by XORing the four LFSR values.

Listing 5.1: L’Ecuyer’s 32-bit random generation algorithm [49]

1 unsigned i n t z1 , z2 , z3 , z4 ;

2 unsigned i n t rnd 32 ( ){
3 unsigned i n t b ;

4 b = ( ( ( z1 << 6) ˆ z1 ) >> 1 3 ) ;

5 z1 = ( ( ( z1 & 0xFFFFFFFE) << 18) ˆ b ) ;

6 b = ( ( ( z2 << 2) ˆ z2 ) >> 2 7 ) ;

7 z2 = ( ( ( z2 & 0xFFFFFFF8) << 2) ˆ b ) ;

8 b = ( ( ( z3 << 13) ˆ z3 ) >> 2 1 ) ;

9 z3 = ( ( ( z3 & 0xFFFFFFF0) << 7) ˆ b ) ;

10 b = ( ( ( z4 << 3) ˆ z4 ) >> 1 2 ) ;

11 z4 = ( ( ( z4 & 0xFFFFFF80) << 13) ˆ b ) ;

12 re turn z1 ˆ z2 ˆ z3 ˆ z4 ;

13 }

Parallel Random Generation

The main challenge with any LFSR-based random generator is the sequential nature

of the algorithm which may become the main bottleneck in an emulation environment.

Several parallel random generators have been proposed in the literature [50, 51, 52].

In this work, we propose a parallel implementation of Tausworthe random generation

algorithm. In order for our parallel random generator to have the same distribution

as the serial version, it is necessary for its outputs to be the same as the serial version.

An LFSR-based random number generator uses currently generated output as the

seed to generate the next output. Let S = (s0, s1, s2, . . . ) be the output sequence
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of a random generator with s0 as the initial seed and F as the random generation

function. Then,

∀0 ≤ i, si ∈ S, si+1 = F(si). (5.25)

Consider a random generation function as FP :

∀0 ≤ i, si ∈ S, si+P = FP (si). (5.26)

Then, we have:

FP (s0) = sP , FP (sP ) = s2P , FP (s2P ) = s3P , . . .

and

FP (s1) = sP+1, FP (sP+1) = s2P+1, . . . .

Therefore, a parallel implementation of the random generator function, F , should

have P instances of the FP function. The initial seed for the ith instance of FP should

be si. Figure 5.11 illustrates this implementation where the top values are the initial

seeds while the bottom values show the sequence of output values for each random

generator.

L’Ecuyer’s random generator uses four state variables z1, z2, z3, and z4 to generate

the next random value. Given the computations in Algorithm 5.1 as F and the

parallelization factor, P , we compute the FP function for each state variable by

unrolling the P iterations of the F function and simplifying the equations. Then we

use the approach depicted in Figure 5.11 to implement our parallel uniform random

generator.

Figure 5.11: Parallel random generation logic
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Figure 5.12: Probability distribution of the bits with value 0 in a SLC flash memory

Noise Soft Information

The Noise Addition module has to add a noise to the encoded codeword based on

the assumed channel model. As depicted in Figure 5.1, we assume AWGN channel

throughout our experiments. In this section, we explain our method for noisy soft

information generation for codeword bits with value 0. However, the approach can

also be used to generate noisy soft information for codeword bits with value 1. Fig-

ure 5.12 depicts the probability distribution of the bits with value 0 in a SLC flash

memory with a 3-level sensing with threshold voltages, −t1, t0, and t1. Let Q be the

function that generates the input soft information for decoder based on the cell value,

V . Then:

Q(V ) =



L0, V < −t1,

L1, −t1 ≤ V < t0,

L2, t0 ≤ V < t1,

L3, t1 ≤ V.

(5.27)

Consequently, Q’s output has 4 different values that can be represented by 2 bits.

Given the variance of the voltage distribution, the probability of visiting each value

as the soft information can be computed. Let F (Li) be the probability of visiting

value Li and P (x) be the probability distribution function (PDF) of voltage. Then,

F (L0) =

∫ −t1
−∞

P (x)dx, F (L1) =

∫ t0

−t1
P (x)dx,

F (L2) =

∫ t1

t0

P (x)dx, F (L3) =

∫ ∞
t1

P (x)dx.

(5.28)
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Figure 5.13: Quantized AWGN random generation from a uniform random variable

The value of F (Li)s can be visualized as the area below the PDF curve as it is

illustrated in Figure 5.12. In fact, they represent the probability of visiting each

value as soft information for decoder input. Thus,

F (L0) + F (L1) + F (L2) + F (L3) = 1. (5.29)

In order to generate a random value, n, from the Gaussian distribution with a

given variance, we compute the F (Li) values. Then, as depicted in Figure 5.13, we

divide the range (0, 1) into 4 regions according to the computed F (Li)s. Therefore,

R0 = F (L0), R1 = R0 + F (L1),

R2 = R1 + F (L2), R3 = R2 + F (L3).
(5.30)

Finally, we generate a uniform random number, r, in the range (0, 1) and depending

on the region it falls into, we generate the corresponding Li value:

n =



L0, 0 < r < R0,

L1, R0 ≤ r < R1,

L2, R1 ≤ r < R2,

L3, R2 ≤ r < 1.

(5.31)

These computations can be implemented in hardware using the uniform random

Figure 5.14: Noisy soft information generation logic
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Table 5.2: The candidate QC-PaG codes for our experiments

Code Rate
Circulant

Size
# Rows of
Circulants

# Columns of
Circulants

C1 0.88 179 6 53

C2 0.89 193 5 49

C3 0.87 211 6 46

C4 0.86 257 5 38

generator discussed in Section 5.6.2, a set of comparators, and a selection logic as

illustrated in Figure 5.14. The values of R0, R1, R2 should be computed based on the

voltage distribution. The design can simply be expanded for a 7-threshold voltage

sensing as well. Moreover, our parallelization method discussed in Section 5.6.2 can

be utilized to parallelize the noisy soft information generator as well.

5.7 Experimental Results

In order to study our proposed FAID, we used the quasi-cyclic partial geometry (QC-

PaG) method based on prime fields introduced by Diao et al. [53] to construct a set

of QC-LDPC codes with appropriate rate for flash memories. Then, we used our

software simulation framework to study the relative performance of these codes and

selected a subset of 4 codes for our hardware emulation experiments. Table 5.2 shows

the specifications of the candidate QC-LDPC codes.

5.7.1 Experimental Setup

We implemented our learning framework in PyTorch [54] for the training phase and

used both hardware emulation and software simulation frameworks to evaluate the

code performance. For the software simulation experiments, we used Scinet’s Niagara

cluster that provides 20 nodes each with 40 Intel Skylake cores. For hardware emula-

tion experiments, we used Verilator 4.014 to verify the functionality of our framework.

Then, Vivado Design Suit 2020.2 is used to implement it on Xilinx Virtex-7 FPGA

(xc7vx690tffg1761-3).

As discussed in Section 5.6, we estimate the UBER by repeatedly performing the

decoding process until either 10 frame errors are observed, or a target upper-bound

for the estimated UBER has reached. Therefore, assuming the target UBER 10−15

for consumer-level flash memories, we need to perform decoding on at least 1016 bits

to ensure that our estimated UBER is below 10−15. Using the 20 nodes provided by

the Niagara cluster, our simulation framework is able to simulate up to the decoding

experiment for up to 1013 bits in 1-2 hours and 1016 in about 1 − 2 months. The
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exact duration depends on the cluster’s workload as the nodes are not dedicated

to our experiments. On the other hand, our emulation framework can perform the

experiment for up to 1013 bits in 20 minutes, 1015 bits in 30 hours, and 1016 bits in

about 15 days.

5.7.2 Training Process

We constructed and trained our neural network decoder with 4 decoding iterations

in Pytorch. In order to generate input data for our model, the message bits were

produced using a uniform random bit generator and encoded to codewords. Using

our simulation framework, we found the SNR range [4.5 dB - 5 dB] as the waterfall

region of floating-point APP decoding for the codes of interest. Since our training

is performed in the floating-point domain, our data set includes a set of 500 noisy

codewords with SNR range [4.5 dB - 5 dB].

We used the Adam optimizer with mini-batch size 10, and learning rate 0.09, with

20 learning epochs. In order to speedup the training process, we used the PyTorch

multiprocessing library to run a distributed data-parallel training. Figure 5.15 plots

the loss evolution through out learning epochs for all 10 processes for our four candi-

date codes. Despite some fluctuations in early stages of the the training, our neural

network is able to reduce the loss over the 20 learning epochs for all the codes.

(a) (b)

(c) (d)

Figure 5.15: Evolution of loss over training epochs for (a)C1 (b)C2 (c)C3 (d)C4
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Code β(1) β(2) β(3) β(4)

C1 0.7048 0.6461 0.5633 0.5502
C2 0.7555 0.6940 0.6033 0.5406
C3 0.7465 0.6997 0.5919 0.5615
C4 0.7928 0.7522 0.5969 0.5736

Table 5.3: The learned Weights

The outcome of the training process are the 4 weight parameters, β(1), β(2), β(3),

β(4), for the 4 decoding iterations for each code. Table 5.3 reports the learned weight

parameters for the four candidate codes. The learned β parameter shows a general

declining trend over decoding iterations, i.e., from β(1) to β(4). This essentially means

the early iterations generally update the bit values more aggressively than the later

iterations.

5.7.3 Code Performance

We used the outcome of our learning process i.e., the learned weights, to evalu-

ate correction capability of the learned decoder compared to the conventional APP

algorithm. The full-precision experiments are performed on our software simulation

platform while the quantized experiments were performed on our hardware emulation

platform. We examined our software and hardware platforms to ensure the integrity

of the results.

Floating-Point Performance

Figure 5.16 plots the UBER against SNR for original and learned APP in the floating-

point domain. The dashed lines show the extrapolations of the curves for extremely-

Figure 5.16: Floating-point APP Vs. Learned APP for C1, C2, C3, and C4
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Figure 5.17: Learned 4-bit FAID Vs. APP Vs. MS in 7-level sensing SLC for C1

low RBER experiments. The results for all candidate codes show that with 4 decoding

iterations, the floating-point learned APP improves the noise threshold by 0.1 dB to

0.2 dB at target UBER=10−13.

4-Bit FAID Vs. APP

The learned weights are used to construct a 4-bit FAID based on Equation 5.20.

Figure 5.17 compares the code performance of the 4-bit FAID with a 4-bit APP

and a 4-bit MS algorithm for C1 for 7-level sensing for a SLC flash memory. The

figure also shows the theoretical code performance of a BCH code with 1 KB code

that is able to correct up to 60 errors (BCH-60). Although our learning process

was performed for 4 iterations, we extended the maximum iterations to 6 and 25

iterations by setting a constant non-learned weight (similar to APP) for later decoding

iterations. Figure 5.17 shows that even with learned weights for only 4 iterations, our

FAID preserves the noise threshold advantage over APP for higher maximum decoding

iterations as well. In addition, the results show that our FAID with 6 iterations is as

good as the APP with 25 iterations in the extremely-low UBER region.

Figure 5.18 compares the code performance of our FAID to the conventional APP

for all 4 candidate codes with 25 maximum decoding iterations. The results show

that our FAID improves the noise threshold on all codes by 0.1-0.2 dB.

Impact on Decoding Iteration

Figure 5.19 plots the cumulative distribution function (CDF) for the required the

number of iterations in 4-bit FAID and APP algorithms with 7-level sensing SLC for
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Figure 5.18: 4-bit FAID Vs. APP in 7-level sensing SLC for with 25 maximum iterations

(a) (b)

(c) (d)

Figure 5.19: Decoding iterations for 4-Bit FAID and 4-bit APP for 7-level sensing SLC for (a) C1,
(b) C2, (c) C3, and (d) C4
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Figure 5.20: 3-level Vs. 7-level sensing for C1 Figure 5.21: 2-stage Vs. 1-stage table FAID

4 candidate codes. The charts show that our FAID has 20% − 35% higher chance

of successfully decoding the codeword with one iteration less than APP. Moreover,

FAID has about 4%− 13% lower average number of decoding iterations which results

in 4%− 13% higher throughput than the APP decoder.

3-Level Vs. 7-level Sensing

Figure 5.20 compares the code performance of C1 for 3-level and 7-level sensing SLC

flash memory with 4 decoding iterations. The plot shows that FAID’s noise threshold

advantage increases for higher sensing levels. Moreover, a 3-level sensing FAID almost

halves the noise threshold gap between 3-level and 7-level sensing APP.

1-Stage Vs. 2-Stage Table FAID

As discussed in Section 5.5.2, our 2-stage lookup table approach has significantly lower

hardware overhead compared to a 1-stage lookup table approach. Moreover, it is more

scalable for codes with higher variable node degree, dv. However, since it involves a

2-stage quantization, its output might slightly deviate from the 1-stage lookup table.

Therefore, it is necessary to ensure that the 2-stage FAID does not have significant

code performance degradation. Figure 5.21 compares the code performances of a 1-

stage and a 2-stage lookup table FAID. The plot shows that the 2-stage lookup table

FAID shows no performance degradation compared to the 1-stage lookup table.

5.7.4 Hardware-Code Performance

Table 5.4 compares the hardware-code performance of our proposed 4-bit FAID with

the 4-bit APP decoder for C1. The results show that compared to the APP decoder,

our 2-stage lookup table FAID improves the noise threshold by 0.16 dB with same
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Decoder APP FAID (2-stage) FAID (1-stage)
LUT Count 89612 109189 156176
Register 103464 100443 96539
Throughput
( GBps
Iteration )

1.86 1.73 1.45

Efficiency

(MBps/KLUT
Iteration )

21.25 16.26 9.54

Average Iterations 2.38 2.09
Overall Throughput
(GBps)

0.81 0.82 0.66

Noise Thr. 4.00E-3 4.60E-3
@10−13 (5.46 dB) (5.3 dB)

Table 5.4: Hardware-code performance for C1

overall throughput and at the cost of about 20% more hardware resources. However,

since our FAID improves the average number of iterations by almost 12%, it is fair

to say that the 0.16 dB noise threshold improvement is achieved at the cost of about

12% lower hardware efficiency.

The results also show that our 2-stage table FAID reduces LUT utilization by

30% compared to a 1-stage lookup table approach for C1 with dv = 6. Moreover,

the smaller tables of the 2-stage FAID achieves 20% higher throughput. With these

improvements the 2-stage table FAID is 77% more efficient than the 1-stage table

FAID with no noticeable code performance degradation based on Figure 5.21.

Table 5.5 reports the hardware-code performance improvement of FAID compared

to APP for the 4 candidate codes. At the cost of about 20% area overhead, our FAID

achieves up to 15% higher throughput by reducing the average decoding iterations by

12% − 15% and improves the noise threshold by 10% − 17%. All in all, it could be

concluded that compared to APP, our FAID has 10% − 17% better noise threshold

at the cost of 5%− 17% less efficient hardware.

C1 C2 C3 C4

Area -21.85% -22.43% -21.58% -20.91%

Average Iterations 12.24% 12.18% 14.18% 15.77%

Throughput 6.27% 0.85% 9.52% 15.55%

Efficiency -12.79% -17.63% -9.92% -4.43%

Noise Threshold 15% 17% 17.65% 9.30%

@10−13 (0.16 dB) (0.16 dB) (0.19 dB) (0.1 dB)

Table 5.5: FAID Hardware-code performance improvement over APP
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Figure 5.22: The impact of leveraging FPGAs hard-logic on efficiency

5.7.5 FPGA Hard-Mux Impact

In order to study the impact of leveraging hard-logic in our RRF-based decoder

(discussed in Section 4.3.3) i.e., leveraging FPGA’s hard multiplexers to implement

the RRF, we also implemented an APP-based decoder with similar architectural

features but entirely on FPGA’s soft-logic. The soft-logic decoder is inspired by the

prior decoders discussed in [18] and [21]. Figure 5.22 plots the efficiency for the soft-

logic APP, hard-logic APP, and hard-logic FAID decoders for all 4 candidate codes.

For a fair comparison, we swept the parallelization factor for all decoders and reported

the most efficient instance for them. The results show that the leveraging FPGA’s

hard-logic results in a 35% − 45% more efficient hardware. Moreover, despite being

less efficient than hard-logic APP, our hard-logic FAID implementation is 4%− 11%

more efficient than soft-logic APP decoders.

5.8 Summary

The inherent limitations of error correction in flash memories results in a finite decoder

design space. We proposed an end-to-end solution to improve the correction capability

of conventional decoders while respecting the hardware efficiency. In particular, we

used machine learning techniques to find the best decoding algorithm for a given

code. The learned decoder is then used to design a finite alphabet decoder. In

order to support higher variable node degrees, we suggest a 2-stage lookup table

FAID which significantly reduces the hardware cost without any code performance

degradation. The majority of prior efforts on FPGA implementation of FAID focus

on small block codes (≈ 1000 bits) with variable node degree 3 [55, 56, 57]. In general,

these codes have simpler Tanner graphs which may result in a more efficient decoder.
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However, their code performance makes them impractical to be used in flash memories

where high-rate strong codes are necessary. To the best of our knowledge, this is the

first academic research on exploring machine learning techniques and finite alphabet

decoders on large block codes. Our experimental results show that compared to the

APP decoder, our 4-bit FAID improves the noise threshold by 10%− 17% at the cost

of 5%−17% less efficient hardware. Moreover, our scalable 2-stage table FAID is 77%

more efficient than the 1-stage table FAID with no code performance degradation.



Chapter 6

A Reconfigurable Architecture for

Erasure Coding

Data replication has been one of the most popular approaches to deliver reliability

in data centres due to its simplicity and low reconstruction cost. However, it suffers

from high storage overhead. In contrast, erasure coding has emerged as an important

alternative due to its low storage overhead.

Example 6.1 Assuming the cost of raw enterprise storage is $0.1/GB, a peta-byte

data center storage would cost $100k for the main storage, and another extra $100k

for each replica. Consequently, a triplicated storage would carry $200k extra capital

cost. On the other hand, an erasure coded solution could deliver the same reliability

with only 30% extra storage, leading to only $30k extra capital cost.

The main drawback of erasure coding is the computational overhead of encod-

ing and decoding algorithms. Therefore, there have been significant interests in the

research and commercial communities to accelerate erasure coding [58] [59] [60]. How-

ever, such efforts have primarily been investigated on general-purpose CPUs. On the

other hand, hardware acceleration has only been widely reported on its cousins in the

context of error correcting code ECC [61] [62], whose computation requirements are

not exactly the same.

In this chapter, we propose an FPGA implementation of erasure coding for data

storage applications. In particular, we make several contributions: First, with proba-

bilistic analysis, we show that more than 90% of failure cases are single block failures,

and we could set up separate performance targets, and therefore separate resource

allocations, for common and general cases. Second, we show that the common-case

computation can be significantly reduced by pre-computation, and further reduced

by exploiting the inherent structure of the decoding matrix. As a result, we are able

88
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(a) (b)

Figure 6.1: Example 6.2: (a) Erasure coding Vs. (b) Replication

to report an efficient, quantitative result on the FPGA acceleration of erasure coding.

We show that even for a pessimistic value for the disk failure probability, our design

outperforms other existing designs. As an added bonus, our parametrized design

facilitates the design space exploration for erasure code designers.

We first explain the basic concepts of erasure encoding and decoding algorithms,

as well as the reliability metric. Then, we point out the major related works in this

area. Finally, we describe the details of our proposed architecture for the erasure

encoder and decoder and evaluate them.

6.1 Erasure Code

A Reed-Solomon (RS) erasure code is denoted by RS(n,k). It divides data into k

blocks and utilizes them to generate m = n − k parity blocks using RS coding. In

the case of block failure, any k blocks (either parity or data block) can be used to

reconstruct the failed blocks.

Compared to replication, erasure coding provides higher reliability with signifi-

cantly lower storage overhead:

Example 6.2 Figure 6.1a illustrates a RS(7,5) erasure coded storage while Figure 6.1b

depicts a replicated storage. In the erasure coded storage, p1 and p2 store parities gen-

erated from all data blocks. If any 2 out of the 7 blocks, fail, the surviving data and

parity blocks can reconstruct them. Therefore, the system can tolerate any two block

failure. On the other hand, in replication, each replica of a disk does not contain any

data from other disks. Therefore, it would not be possible to reconstruct a block if

both instances of that block fail. Moreover, the erasure coded storage has 40% while

the replicated storage has 100% storage overhead.

Although erasure coding can be more reliable with lower storage overhead, it has

not yet been widely replaced the replication due to its encoding and decoding latency.
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6.1.1 Encoding

In RS erasure encoding, the data blocks need to be multiplied by a matrix of encoding

coefficients to generate the parity blocks:

Gm×k×Dk×B =

g1

...

gm

×


d1

d2

...

dk

 =

 g1,1 g1,2 . . . g1,k
...

...
. . .

...

gm,1 gm,2 . . . gm,k

×

d1,1 d1,2 · · · d1,B

d2,1 d2,2 · · · d2,B
...

...
. . .

...

dk,1 dk,2 · · · dk,B

 =


p1

p2

...

pk

 = Pm×B

(6.1)

where m is the number of parity blocks, k is the number of data blocks, and B is

the block size. G is the encoding coefficient matrix, D is the data blocks matrix with

k rows where each row is a data block, d, and P is the parity matrix with m rows

where each row is a parity block,p.

Based on Equation 6.1, the erasure encoding is a matrix multiplication, where each

row of the encoding coefficients matrix (G) contributes in generation of the same row

in the parity matrix (P). In order to prevent any overflow, all computations are

performed over the Galois field (GF) (2w) in which w is referred to as the word size.

The encoding coefficients matrix, G, should be full rank, i.e., all the rows have to be

linearly independent. A commonly used matrix is the Vandermonde [63] matrix that

is proved to be full rank under the following conditions [64]:

V =


1 α1 α2

1 · · · αk
1

1 α2 α2
2 · · · αk

2

...
...

...
. . .

...

1 αm α2
m · · · αk

m

 , ∀0 < i ≤ m αi 6= 0, ∀i 6= j, αi 6= αj (6.2)

6.1.2 Decoding

RS decoding involves two steps; syndrome detection to identify the presence and

location of error, and reconstruction to restore the erroneous bits/blocks. In erasure

coding, the erased blocks, are identified through separate mechanisms. For instance,

if erasure coded blocks are stored in separate disks, the unhealthy disk can easily be

identified. Therefore, RS erasure decoding refers only to the reconstruction phase of

the RS decoding.

In decoding an RS(n,k) erasure code, there should be at least k available blocks to

recover the failed blocks. In that case, a reconstruction matrix, R, should be formed

by replacing the failed data blocks by the parity blocks in D. Hence, in case di is
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failed and pj is available for reconstruction, we have:

R =



d1

...

di−1

pj

di+1

...

dk


(6.3)

Then, a matrix F is formed from the Identity matrix of size k. The rows of the

Identity matrix corresponding to the missing data blocks are replaced by the rows of

G that corresponds to the replacing parity blocks. Finally, the reconstruction is done

as follows:

F
−1
k×k ×Rk = Dk (6.4)

We refer to F
−1

and its elements as the decoding matrix and the decoding coeffi-

cients respectively.

Example 6.3 Equation 6.5 shows the encoding for RS(7,5) erasure code.

[
g1,1 g1,2 g1,3 g1,4 g1,5

g2,1 g2,2 g2,3 g2,4 g2,5

]
×


d1

d2

d3

d4

d5

 =

[
p1

p2

]
(6.5)

Equation 6.6 is the decoding operation for the case that d2, and d4 are failed p1

and p2 replace them respectively.


1 0 0 0 0

g1

0 0 1 0 0

g2

0 0 0 0 1



−1

×


d1

p1

d3

p2

d5

 =


d1

d2

d3

d4

d5

 (6.6)

6.2 Reliability Metric

An RS(n, k) erasure code can tolerate up to m = n − k failed blocks. Therefore,

assuming the block failures to be independent, the probability of system failure is

equal to the probability that more than m blocks fail simultaneously:

P (fail) =
n∑

i=m+1

(
n

i

)
qi(1− q)n−i (6.7)
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where q is the block failure probability. Consequently, reliability is calculated as

follows:

R = 1− P (fail) = 1−
n∑

i=m+1

(
n

i

)
qi(1− q)n−i =

m∑
i=0

(
n

i

)
qi(1− q)n−i (6.8)

A block failure probability, q, is equal to the probability that the disk is unavailable:

q = 1− Availability (6.9)

Therefore:

q = 1− MTTF

MTTF +MTTR
=

MTTR

MTTF +MTTR
≈ MTTR

MTTF
(MTTR�MTTF )

(6.10)

where MTTR is the mean time to repair, and MTTF is the mean time to failure.

6.3 Prior Works

The concept of reliable data storage emerged in late 80s when Patterson [65] in-

troduced RAID. He introduced six RAID levels and later extended it to seven in

1993 [66]. Reliability received more attention in the context of data centers such

as those that powered Internet services of Facebook and Google. For example, the

Hadoop distributed file system (HDFS) [67], uses triplication scheme to protect the

data.

Facebook introduced an RS(14, 10) code augmented with extra parities to reduce

network overhead of erasure coding [68]. In the case of a failure, 10 blocks are moved

(over the network) to a single location to reconstruct the failed blocks. To reduce

this overhead, an extra parity is calculated for each 5 data blocks so that the failures

within those blocks can be recovered by only moving 5 blocks to a single location.

Similarly, Microsoft proposed locally-repairable code (LRC) for the Azure storage

system [69] that targets network overhead reduction.

The efficient implementation of the RS erasure coding algorithm is mostly ad-

dressed in the software community. A forward error correction (FEC) library [70] was

introduced by Rizzo in 1998 and achieved the best efficiency of its time: a throughput

of 100Mb/s. As a further enhancement of the FEC library, zFEC is made open source

and found usage in many distributed storage systems such as SheepDog [71]. In par-

ticular, zFEC implements GF multiplications using pre-computed lookup tables, and

therefore is limited to small GF. Jerasure [72], employed by CEPH [60], is the state-

of-the-art erasure coding package that provides a variety of functionality and GF sizes



CHAPTER 6. A RECONFIGURABLE ARCHITECTURE FOR ERASURE CODING 93

Table 6.1: The main ideas and achievements of the related works in erasure coding

Name Year Throughput Comments

FEC [70] 1998 ∼ 100 Mb/s
First implementation. Putting erasure
coding in data storage perspective.

zFEC [76] 2008 ∼ 1 GB/s
Improved from FEC. Using multiplication
table.

Jerasure [72] 2007 ∼ 1.8 GB/s Single-threaded, GF size: 8, 16, 32.

Jerasure-
SIMD [58]

2014 ∼ 10 GB/s
Utilizing SIMD shuffling instructions and
small multiplication tables to perform mul-
tiple multiplication in a single instruction.

up to 32. Its enhanced version, referred to as Jerasure-SIMD [58], accomplishes its

performance by using the GF-complete package [73], which leverages the shuffling

instruction of modern single instruction multiple data (SIMD) instruction set. This

is similar to the ISA-L [59] library provided by Intel.

There are limited hardware implementations of erasure coding. Mellanox intro-

duced a commercial ASIC design of erasure coding on its network adapters to offload

the encoding/decoding tasks to the hardware [74]. However, little detail is known for

such a commercial ASIC design. Ruan has implemented an erasure codec on FPGA

using VIVADO high-level synthesis (HLS) [75]. Independently, Ruan also adopted

one of our reported techniques, namely, pre-computation. However, the results show

that our combined techniques significantly out-perform that design.

Table 6.1 summarizes the major performance milestones accomplished by the above

efforts. This work complements these efforts by providing an alternative implemen-

tation path using FPGAs, which requires different considerations. For example, GF

multiplication can be directly implemented using a combinational circuit rather than

lookup tables using memory. And in general, we could have more freedom in select-

ing micro-architectures than being limited by the SIMD instruction set. Our goal

is therefore to find an efficient FPGA implementation such that the host CPUs are

released for the compute, rather than the storage function.

6.4 Design Decisions

This section drives three major design decisions for the proposed architecture. It

is shown through analysis that single block failures are significantly more probable

than multiple block failures. Then, the concept of pre-computation and its efficiency

is described. Finally, the inherent structure of the decoding matrix is leveraged to

reduce the time complexity of computations.
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6.4.1 A Case For Common-Case

In order to identify the potentials to accelerate erasure decoding, we analyze the

probability of failures with different numbers of failed blocks. We enumerate all

possible failure cases and calculate their probabilities assuming that block failures are

independent. Our calculations do not need to enumerate the cases where only parity

blocks fail. The reason is that if all data blocks are available and some parity blocks

fail, there would be no need to decode and the failed parity blocks can be constructed

by encoding the data blocks (Equation 6.1). Moreover, if some parity blocks and some

data blocks fail simultaneously, the failed data blocks are first reconstructed using the

remaining available parity blocks. Then, data blocks can be used to generate the failed

parity blocks.

The goal is to calculate the probability of recoverable failures. A failure case with

α failed data blocks is recoverable if at least α parity blocks are available. We use the

following notations:

• P (R): The probability of having a failure that is recoverable (recoverable failure).

• Pα(RF ): The probability of having a recoverable failure with exactly α failed

data blocks.

• Pα(FD): The probability of having exactly α failed data blocks.

• Pα(AP ): The probability of having exactly α available parity blocks.

Let q be the probability of a block to fail. We have:

Pα(FD) =

(
k

α

)
· qα · (1− q)k−α (6.11)

and:

Pα(AP ) =

(
m

α

)
· qm−α · (1− q)α (6.12)

Consequently, the probability of a recoverable failure with α failures is the proba-

bility of having α failed data blocks multiplied by the probability of having at least

α available parity blocks. Therefore:

Pα(RF ) = Pα(FD)×
m∑
i=α

Pi(AP ) (6.13)

Example 6.4 For an RS(14, 10) code, the probability of a recoverable failure with 3

failed data blocks is:

P3(RF ) = P3(FD)× [P3(AP ) + P4(AP )]
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Figure 6.2: Probability of a recoverable failure with single failed block for m = 4 codes

It is the probability of having 3 failed data blocks multiplied by the probability of having

3 or 4 available parity blocks.

Since the system can tolerate up to m failures, the total probability for having a

recoverable failure is:

P (R) =
m∑
i=1

Pi(RF ) (6.14)

Figure 6.2 illustrates the probability of having a recoverable failure with single

failed data block. It illustrates the probability for different values of k and q with

m = 4. This graph confirms that even for a pessimistic value of q = 0.1, at least 45%

of recoverable failures are single block failures.

In 2017, Zhang et al. performed an analysis of reliability in erasure-coded data

centers [77]. The study showed that about 99.5% of the independent failures and even

about 99.3% of the correlated failures are related to single block failures. Based on

our probabilistic analysis and Zhang’s analytical study, we conclude that single block

failures have strongly higher probability compared to other failure cases. Therefore,

we refer to the single block failures as the common-case failures. Since the common-

case failures strongly dominate other failures, it would be reasonable to allocate more

FPGA resources to the common-case erasure coding while reducing the performance

target for other failures (referred to as general-case failures). For instance, if we

have a processing unit that can process the common-case at 5GB/s and a processing

unit that can process the general-case at 1GB/s, assuming 95% of failures would be

common-case failures, the overall throughput would be 4.8GB/s.

Design Decision 6.1 Since a strong majority of the failures are common-case fail-

ures, more FPGA resources should be allocated for the common-case erasure decoding,

while reducing performance target for the general-case.
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6.4.2 A Case for Coefficient Pre-Computation

Although the Vandermonde matrix is always invertible, it suffers an O(n3) time

complexity with the standard Gaussian elimination algorithm. As discussed in Sec-

tion 6.1.2, F is an identity matrix with some rows replaced by the rows of the encoding

coefficients matrix (G) rows. Similar to F, F−1 is a k × k matrix in which k is the

number of data blocks. It is possible to avoid matrix inversion by enumerating all

possible failure cases and pre-computing their corresponding decoding matrices.

The overhead for pre-computing the inverted matrices would be the number of

failure cases multiplied by the size of each inverted matrix. For an RS(n, k) code

operating over GF(2w), the overhead for pre-computing the decoding matrices for

failures with α failed data blocks is:

OVα(k,m) =

(
k

α

)
×
(
m

α

)
× k × k × w

8
(Bytes) (6.15)

The first two terms count the number of possible cases while the last three terms

count the required storage for each inverted matrix. As mentioned before, w is the

word size for the GF. Consequently, the overhead for pre-computing the inverted

matrices for all recoverable failures is:

OV(k,m) =

m∑
α=1

OVα(k,m) (6.16)

Example 6.5 An RS(14,10) code operating over GF(28) can tolerate up to 4 failed

data blocks. Table 6.2 shows the overhead for pre-computing the inverted matrices for

this code.

Example 6.5 shows that pre-computing the decoding matrices of a typical era-

sure code does not impose a significant overhead. Moreover, common-case failures

i.e., single data block failures, contribute to a small fraction of the total overhead.

Consequently, it would be reasonable to pre-compute the decoding matrices for the

common-case.

Table 6.2: Example 6.5:Pre-computation overhead for RS(14,10) code with w = 8

# Data Block
Failures (α)

OVα(k,m)

1 Block (α = 1) 4KB

2 Blocks (α = 2) 27KB

3 Blocks (α = 3) 48KB

4 Blocks (α = 4) 21KB

Total (OV(k,m)) 100KB
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Design Decision 6.2 Since there are a limited number of possible coefficient matri-

ces for the common-case failures, they can be inverted in advance. Therefore, with

limited storage overhead, the matrix inversion computation of common-case erasure

coding can be completely avoided at runtime.

6.4.3 A Case for Reduced Computations

The inherent structure of the decoding allows reducing its storage overhead as well

as avoiding the unnecessary computations.

Definition 6.1 Row i of a square matrix, A, is called identity Row if:

ai,j =

1 i = j

0 otherwise

Theorem 6.1 Let S(.) denote the set of identity rows of an invertible matrix. We

have:

S(A) = S(A−1) (6.17)

In other words: 
1 0 0 0 · · ·
0 1 0 0 · · ·
ai,0 ai,1 ai,2 ai,3 · · ·
0 0 0 1 · · ·
aj,0 aj,1 aj,2 aj,3 · · ·
...

...
...

...
...


−1

=


1 0 0 0 · · ·
0 1 0 0 · · ·
a′i,0 a′i,1 a′i,2 a′i,3 · · ·
0 0 0 1 · · ·
a′j,0 a′j,1 a′j,2 a′j,3 · · ·
...

...
...

...
...


Proof: Let row i of matrix A be an identity row:

A =


i

i 0 . . . 1 0 . . .


Multiplying A by any matrix does not change its ith row. Let di,j be the elements of

matrix D. Then:

A×D = D′ =

 di,0 di,1 di,2 . . .


We have:

A−1 ×D′ = D
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Since the ith row of D and D′ are identical, the ith row of A−1 has to be an identity

row. Consequently:

A−1 =


i

i 0 . . . 1 0 . . .


�

In Equation 6.4, the number of non-identity rows in F i.e., the rows that contain

ci,js, is equal to the number of failed data blocks. Since the rest of the rows of the

matrix F−1 are identity rows, we can avoid storing them. Moreover, since the purpose

of the decoding is just to generate the failed blocks, we can avoid multiplying R by

the identity rows of F−1 since it results in generating non-failed data blocks. In

other words, we can multiply R by only non-identity rows of F−1, which significantly

reduces the storage overhead of the decoding matrices. Consequently, pre-computing

the decoding coefficients for a failure with α failures requires storing α (rather than k)

rows of the decoding matrix. This observation reduces the overhead for pre-computing

the decoding coefficients (OVα(k,m)) by a factor of α
k
. Therefore we have:

OVα(k,m) =

(
k

α

)
×
(
m

α

)
× α× k × w

8
(Bytes) (6.18)

Any α blocks out of k data blocks could fail and any α blocks of the m parity

blocks can replace them (the first two terms in Equation 6.18). On the other hand,

the decoding matrix of each recoverable failure with α failed data blocks has α not-

identity rows. Since F is a square matrix of size k, pre-computation of the decoding

matrix for each α data block failure requires storing α × k words (the second two

terms in Equation 6.18). The size of each coefficient i.e., the word size, is equal

to the code’s GF size. Consequently, the total overhead of pre-computing decoding

coefficients would be:

OV(k,m) =
m∑
i=1

OVi(k,m) (6.19)

Example 6.6 An RS(14, 10) code operating over GF(28) requires 28KB to pre-

compute and store all decoding matrices. This is while pre-computing decoding ma-

trices for single data block failures requires 400 bytes.

The numbers in Example 6.6 show that although single data block failures are

the common-case, they have small overhead for pre-computation. Consequently, in

this work, we only store the decoding coefficients for the single data block failures.
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However, our proposed architecture for the common-case, can easily be accommodate

pre-computations for multiple data block failures as well.

Design Decision 6.3 Since the decoding matrix is dominated by the identity rows,

the complexity of common-case erasure coding can be reduced from matrix-vector mul-

tiplication to vector-vector dot product.

The advantage of pre-computation is its scalability since the number coefficients

does not depend on the block size. Instead, it only depends on the number of data

and parity blocks, and the Galois Field size.

6.5 Architecture

In this section, we describe our FPGA implementation of the erasure encoding and

decoding algorithms (referred to as the erasure code unit). We detail on both, high-

level architecture and the micro-architecture of our design.

As mentioned in Section 6.4.1, it is reasonable to implement a high-throughput

erasure unit for the common-case while setting a lower performance target for the

general-case. Pre-computing the decoding matrices makes the decoding operation

identical to the encoding i.e., multiplying the vector of coefficients by the input data.

Since the common-case unit has higher throughput, it is designed to be able to perform

encoding as well. Therefore, encoding requests are forwarded to the common-case

erasure code unit.

Figure 6.3 depicts the high-level architecture of our design. The design has the

following interface:

• Input data: The data that needs to be processed. It is stored in memory and

the design can access it through a memory interface.

• Dec/Enc: Determines whether the input data should be decoded or encoded.

• Fail Idxs: An array that contains the indices of the failed data blocks (utilized

in decoding operation).

Figure 6.3: High-level diagram for the erasure code unit
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• Repl. Par. Idxs: An array that contains the indices of the parity blocks that

have replaced the data blocks in the input data (utilized in decoding operation).

• #Fails: Determines the number of failed data blocks (utilized in decoding op-

eration).

• Output data: The output data that is written to a memory through a memory

interface.

At the input stage, the values of Dec/Enc and #Fails inputs determine which

unit should be enabled. If the operation is encoding, or decoding with single block

failure, then the common-case unit is activated. Otherwise, the general-case unit is

activated to process the input data. At the output stage, a multiplexer decides the

proper output from the activated unit.

6.5.1 Design for General-Case Decoder

Figure 6.4 illustrates the block diagram of the general-case unit. The matrix multiply

unit is the block that performs the matrix multiplication. The other blocks are to

provide the suitable coefficients for the operation.

The matrix inverse unit determines the failure case through Failed Idxs and

Repl. Par. Idxs inputs. It then calculates the inverse matrix required for the decod-

ing. Finally, the matrix multiply unit uses the computed decoding coefficients and

the input data to reconstruct the failed data blocks.

6.5.2 Design for Common-Case Decoder and Encoder

We implemented a fully parametrized tool using C programming language that gen-

erates the register transfer level (RTL) Verilog for any erasure code unit. Our RTL

generator has the following parameters:

• w: the GF size

Figure 6.4: Block diagram for the general-case decoder
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• Poly: the primitive polynomial for the GF

• k: the number of data blocks

• m: the number of parity blocks

• WPC: the number of words per cycle

This parametrized environment is suitable for erasure code design space explo-

ration. At first, Poly and w are utilized to generate the GF multiplier. Then, this

multiplier and the rest of the parameters are used to produce the erasure code unit.

We changed the order of operations in matrix multiplication to avoid storing the

input data in the memory. In the conventional order of matrix multiplication, A×B,

the rows of A are multiplied by the columns of B. This computation order requires

each element of B at different stages of the multiplication. Instead, each element of

B, bi,j, can be multiplied by column i of matrix A to partially generate column i of

the result. We elaborate on this intuition by an example.

Example 6.7 Consider the following multiplication:

[
a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

]
×


b1,1 b1,2 b1,3

b2,1 b2,2 b2,3

b3,1 b3,2 b3,3

 =

[
c1,1 c1,2 c1,3

c2,1 c2,2 c2,3

]

b1,1 is required to generate two terms: a1,1 × b1,1 and a2,1 × b1,1. The former is used

in computing c1,1 while the latter is used in computing c2,1. It is possible to calculate

these terms upon arrival of b1,1 so that it is not required for the rest of multiplication

process.

In the common-case design, the data is fed to the design in a streaming fashion and

upon arrival of each word, all its contributions to the result are computed. Therefore,

it is not required for further computations.

Figure 6.5 illustrates the block diagram for our common-case design. The input

data is fed to the unit in a streaming fashion. The Dec/Enc input determines the

operation. In the encoding case, all nodes are incorporated to generate all parities.

There are m nodes i.e., P1 to Pm, each computing one of the parity blocks. As

mentioned before, each parity block corresponds to one row in matrix E. Therefore,

each node has a round shift register of size (k) that holds its corresponding coefficients.

In the decoding case, Fail Pattern determines the address of the decoding matrix.

Then, the appropriate decoding coefficients are loaded into P1’s round shift register.

Finally, the input data is streamed in to reconstruct the failed block. We store
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Figure 6.5: Block diagram for the common-case erasure code decoder and encoder

the encoding coefficients for the first parity block as the last entry of the decoding

coefficients memory, so that they could be loaded back to the round shift register in the

case of an encoding operation. Our RTL generator has a parameter WPC to set the

number of words that are being processed in parallel. It has to be mentioned that the

common-case design potentially supports pre-computation for multiple block failures.

In that case, the only modification would be increasing the decoding coefficients

memory and storing the pre-computed decoding matrices. In addition, there should

be a logic to compute the decoding matrix’s address based on the Fail Pattern.

6.6 Evaluation

We used Vivado Design Suite 2016.2 to implement our erasure codec on a Virtex7

(xc7vx485tffg1761-1) FPGA. For our first set of experiments, we use the RS(14, 10)

code which is same as Facebook’s erasure code [68] and the block size is set to 1KB.

We also set the GF size to 8 i.e., 1 byte per word.

While it is common to compare the merits of competing designs by their peak

throughput, both state-of-the-art software and hardware designs can scale their per-

formance with either more cores or more hardware resources. To make apple-to-apple

comparisons, we focus on efficiency metrics: To examine resource efficiency, we com-

pute the achievable throughput per thousand LUTs (MBps/KLUT ) and compare our

design with Ruan’s design.

6.6.1 Erasure Codec Results

Table 6.3 reports the resource and power consumption results for our general-case

and common-case designs. The table shows the results for two parallelism factors

(WPC). WPC=16 is the case that achieves the peak throughput, while WPC=8 is
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Table 6.3: Resource usage and performance results for our erasure code design

Resource
Common-Case

Design WPC=8
Common-Case

Design WPC=16
General-Case

Design

LUT 3315 6575 7562

FF 5579 11107 4479

BRAM 16 32 11

fmax(MHz) 312 303 125

Throughput (GBps) 2.5 4.85 0.63

the case where we achieved the best efficiency. Our general-case design has lower per-

formance. However, since the common-case is strongly dominant, the overall through-

put is mainly dictated by the performance of the common-case design. Since WPC=8

achieves best resource efficiency, it is used for rest of our evaluations.

6.6.2 The Impact of Disk Failure Probability

As mentioned before, we used our computations in Section 6.4.1. in order to calculate

the overall throughput from our general-case and common-case designs. For that, we

assumed the typical disk failure probability, q = 0.01. However, this parameter may

vary based on the disks quality and age. We varied the disk failure probability (q) to

investigate its impact on our performance metrics. Figure 6.6 illustrates the efficiency

and the peak throughput for different values of q. The last bar shows the efficiency

result for the Ruan’s codec. Ruan’s design suggests pre-computing the decoding

coefficients for all failure cases. Therefore, there is no notion of common-case in his

design. The results show that even for a very pessimistic value for the disk failure

probability (q = 0.1), our design is 4.2× more efficient. This is due to fact that our

architecture allocates more resources to the common-case.
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Figure 6.6: The impact of disk failure probability and comparison with the previous work
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Table 6.4: Experimental results for design space exploration

Exp# n k
GF

Size(w)
WPC LUT Register BRAM

Throughput
(GBps)

Efficiency
(MBps/KLUT )

# nines of
reliability

1 14 10 8 8 3315 5579 16 2.5 772 5

2 14 10 16 8 8733 12543 16 4.85 568 5

3 12 8 8 8 3369 5003 16 2.42 736 5

4 16 12 8 8 3539 5883 16 2.5 723 5

5 15 10 8 8 4545 7324 20 2.5 563 6

6 16 10 8 8 5457 9028 24 2.35 441 8

7 14 10 8 16 6575 11107 32 4.85 755 5

6.6.3 Design Space Exploration

The overall performance is highly dictated by the performance of our common-case de-

sign. Our common-case design is parameterized to ease the design space exploration.

As our last set of experiments, we varied the parameters to study their impacts on

overall system performance. In each set of experiments, one parameter is varied

while others are fixed. Table 6.4 reports the results for our design space exploration

experiments. The second column shows the parameter under investigation for each

experiment. The last column shows the reliability level for each experimented code.

Since one parameter is varied during each exploration, experiment 1 is shared across

all our investigations. Our common-case unit has streaming input and the block size

does not affect the overall performance. Therefore, the block size is fixed (1KB) for

all our experiments. Table 6.4 leads to the following conclusions:

• GF Size (w): The results from experiments 1 and 2 show that the achieved

throughput is proportional to the GF size. However, larger GF sizes lead to lower

efficiency. Moreover, since the number of required input pins is WPC×w, larger

GF size leads to higher peak throughput. However, the efficiency is decreased

due to increased computation complexity.

• Number of Data Block (k): The results from experiments 3, 1, and 4 show

that the number of data blocks does not affect the peak throughput. This is due

to the fact that the number of data blocks does not affect resource usage in our

design. Instead, it determines the shift operation.

• Number of Parity Blocks (m): The results from experiments 1, 5, and 6 show

that increasing the number of parity blocks does not affect the peak throughput.

However, it reduces resource efficiency due to higher resource usage.

• Word Per Cycle (WPC): The results from experiments 1 and 7 show that

increasing the WPC parameter would increase the resource usage. However,
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this increase is proportional to the absolute throughput. Therefore, it does not

affect the efficiency.

6.7 Summary

In this chapter, we demonstrated a quantitative study of erasure coding design on

FPGAs. We argue, with probabilistic analysis, that an efficient implementation

should allocate more resources for the common-case failure mode. With the effi-

ciency metric established as throughput per thousand LUT, and with proposed tech-

niques, we conclude that erasure codec can be implemented on modern FPGAs with

772MBps/KLUT for an RS(14, 10) code, with 5 nines of reliability.



Chapter 7

Summary & Conclusion

The ever-increasing demand for data storage has led to the development and prolif-

eration of cloud storage systems as well as flash memory based storage devices. For

that, cloud storage service providers and flash memory manufactures often provide

data reliability through some error correcting code (ECC).

This dissertation centers around the implementation of ECC in data storage. We

target FPGA as a suitable custom computation platform featuring short design cycles

to cope with the ever-changing ECC requirements and specifications in storage indus-

try. Throughout this research, we aimed to design efficient FPGA micro-architectures

for error correcting codes as well as identifying interesting trade offs between hardware

and code performance.

7.1 Summary of Contributions

The majority of this research focus on the device-level ECC, quasi-cyclic LDPC (QC-

LDPC) codes, a class of LDPC codes that are not only hardware-friendly, but also of

good code performance. In a separate effort, we explored FPGA’s potential for erasure

coding as an alternative to replication as a system-level ECC. Our contributions in

this research can be summarized as follows:

• Foldable FPGA micro-architecture for QC-LDPC decoders: We lever-

age FPGA’s inherent architecture to design rotary register file (RRF), a fold-

able parallel architecture for strided circular access, seen in QC-LDPC decod-

ing. RRF is then used to propose an FPGA micro-architecture for QC-LDPC

decoders. Our decoder’s support for foldable parallelism enables a spectrum of

design instances form the most serial to the most parallel decoder. We used

the proposed architecture to implement the noisy gradient decent bit flipping

(NGDBF) decoder.

106



CHAPTER 7. SUMMARY & CONCLUSION 107

• Learning-based finite alphabet QC-LDPC decoder for flash memories:

With practicality as one of the main objectives in this research, we explored the

inherent limitations in flash memories that could impact the ECC performance

in these devices. These limitations were then desirably exploited to define a

finite LDPC decoder design space. Then, machine learning techniques were

incorporated along with the finite alphabet decoding concept to propose an end-

to-end solution for hardware-friendly finite alphabet iterative decoder (FAID) for

flash memories. Finally, we used our proposed micro-architecture to implement

our FAID.

• Erasure coding design on FPGA: By performing a quantitative study of

erasure coding design on FPGA, we demonstrated, through probabilistic anal-

ysis, that an efficient implementation requires allocating more resources to the

common-case, while reducing the performance target for less probable cases.

7.2 Conclusion

This research aims at harnessing FPGA’s potential for error correcting codes in data

storage. Based on the knowledge obtained throughout this pursuit, we address the

initially raised questions as follows:

• Is there an FPGA-optimized micro-architecture for LDPC?

By desirably exploiting FPGA’s inherent physical architecture, it would be pos-

sible to design efficient LDPC micro-architectures. Moreover, the support for

foldable parallelism is vital for design space exploration in this context. In fact,

by deferring the design decision, foldable parallelism enables the end-user to

strike a trade-off between resource utilization and throughput.

• Is there interesting trade off between LDPC micro-architecture and

code performance?

Code has been masterfully designed by scientists with sophisticated mathe-

matical skills, and implementation concerns such as quantization and micro-

architectures usually come as after-facts. This study represents a new trend

where implementation constraints, such as finite precision, can come as first-

class citizen, and important aspects of code, can be learned, after-facts.
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7.3 Future Work

This research’s mandate was mainly to pursue interesting trade offs between hardware

efficiency and code performance in the context of ECC for data storage. We intend

to expand our methodology to other codes and we expect to find more interesting

trade offs.

In this work, we used linear congruential random number generators for our soft-

ware simulation, and LFSR-based random generators for our experiments in Chap-

ter 5. However, statistically better random generators such as the permuted congru-

ential generator (PCG) [78] can be used to improve the confidence and accuracy of

our experiments.

Our proposed learning method involves two stages; full-precision training, and

designing the quantization function based on the training phase outcome. However,

the quantization process could be part of the learning process through quantized

training. A critical issue for training with low-precision activation functions is that

their gradients could disappear which makes the backward propagation challenging.

However, there are some recent works aiming to mitigate this issue [79, 80]. However,

there is no discussion on hardware implementation or study on large-block, high-

rate codes that are suitable for flash memories. We believe quantized training for

FAID could reveal more interesting trade offs between hardware efficiency and code

performance in this context.

Our erasure coding design takes advantage of pre-computing the decoding coeffi-

cients. These pre-computed coefficients are then stored in a lookup table to accelerate

the decoding process. However, using cyclic codes, it would be possible to leverage

the cyclicity of the decoding matrix to reduce the lookup table size [81].



Bibliography

[1] Petter Bae Brandtzg. “Big Data, for better or worse: 90% of worlds data generated over

last two years”. In: SCIENCE DAILY (2013, Accessed on March 2016). url: https://www.

sciencedaily.com/releases/2013/05/130522085217.htm.

[2] David Reinsel, John Gantz, and Johnl Rydning. “Data Age 2025: The Evolution of Data to

Life-Critical Dont Focus on Big Data; Focus on Data Thats Big”. In: IDC, Seagate, April

(2017).

[3] Amazon S3. url: https://aws.amazon.com/s3/.

[4] OneDrive. url: https://onedrive.live.com/about/en-ca/.

[5] Robert Gallager. “Low-density parity-check codes”. In: IRE Transactions on information the-

ory 8.1 (1962), pp. 21–28.

[6] Jia Dong. “Estimation of bit error rate of any digital communication system”. PhD thesis.
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