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Abstract 

Understanding factors influencing species’ distributions and their dynamics over space and time 

is a fundamental question in ecology that is receiving renewed interest given increasing threats of 

global climate change to species persistence. Species are shifting their distributions in response 

to climate change; however in spite of general directional trends northwards and up in elevation 

there is substantial interspecific variation. The complexity of species’ responses is challenging to 

explain and limits our predictive capacity to anticipate future consequences of climate change. In 

addition to climatic factors, species’ range dynamics are influenced by non-climatic factors 

including the biotic interactions, demography, dispersal, and the temporal and spatial scale of 

threatening processes. The objective of this thesis is to test the role of climatic and non-climatic 

factors on seasonal range dynamics of long-distance migratory birds over multiple spatial scales, 

in the recent past, present, and in the future. An understanding of the determinants of Nearctic-

Neotropical migratory bird distributions across their interconnected seasonal ranges remains 

unclear, and few climate change vulnerability assessments consider the complement of habitat 

dependencies required across their annual cycle. 

To address these research gaps, I applied multiple modeling methods with outcomes that are 

increasingly process-oriented. These include correlative species distribution models, dynamic 

occupancy modeling that account for detection probabilities, and coupled species distribution-

metapopulation demographic models. Such modeling approaches allow for deeper inferences 
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regarding the biological processes that actually drive shifts in species distributions over space 

and time. 

The main findings of my thesis include: (1) biotic vegetation factors improve species distribution 

model predictive accuracy measures across both seasonal ranges, and this has non-negligible 

consequences for spatial conservation priorities under climate change, (2) determinants of 

seasonal distributions of migratory birds tend to be dominated by abiotic factors, while seasonal 

differences within species suggest a role for dynamic seasonal niches, (3) short-term habitat 

changes can more strongly influence local extinction probabilities relative to inter-annual 

variation in weather suggesting that the temporal scale of climate change and habitat loss 

requires careful consideration, and (4) accounting for multiple sources of uncertainties is 

essential for improving models and can help inform robust management actions.  
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Chapter 1  
Introduction 

1.1 The rise of global threats to biodiversity 

Understanding the determinants and causal factors responsible for species distributions 

and their limits has a long history in ecology (MacArthur, 1972, Gaston, 2003). Renewed 

interest in this fundamental question is driven in large part by the pervasive reach of the 

human footprint, in particular the accelerating rates of global environmental impacts of 

climate change and habitat loss, two major drivers of biodiversity loss (Sala et al., 2000, 

Brook et al., 2008). Over the past century temperatures have increased by approximately 

1°C and projections suggest large changes in mean temperature and extreme climatic 

events by the end of 2100 (IPCC, 2012). In addition to climate change, habitat loss is 

considered the current largest threat to biodiversity (Pimm & Raven, 2000, Warren et al., 

2001), and there is increasing concern regarding the synergistic effects of these 

threatening processes (Jetz et al., 2007, Brook et al., 2008, Mantyka-Pringle et al., 2012). 

The broad reach of these global threats underscores the need for better understanding of 

species’ responses to these changes and the concurrent development of stronger 

predictive science to anticipate consequences to inform priorities for biodiversity 

conservation. 

1.2 Climate, climate change, and range dynamics 

Understanding factors influencing species’ distributions and their dynamics over space 

and time remains a challenging endeavor due to the multiplicity of interacting factors, 

and the complexity of species’ responses. This information is essential for biodiversity 

conservation measures. Abiotic factors, in particular aspects of temperature, have long 

been regarded as dominant determinants of species’ distributions, in particular at broad 

spatial scales (Andrewarth & Birch, 1954, Pearson & Dawson, 2003). Reinforcing this 

idea, the most commonly documented ecological responses to recent climate change 

include shifting distributions and phenologies (Walther et al., 2002, Parmesan & Yohe, 
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2003). Focusing on species’ distributional responses, globally, species’ ranges are 

shifting towards higher latitudes and elevation in response to elevated temperatures 

(Parmesan, 2006, Chen et al., 2011a). Yet despite this undeniable fingerprint of climate 

change, evidence is accumulating that there is substantial inter- and intra-specific 

variation in species’ distributions (Chen et al., 2011c, Mair et al., 2012). For example, 

many species are not tracking the pace of climate change (Loarie et al., 2009, Devictor et 

al., 2012). In other cases, broad-scale responses to climate change appear idiosyncratic 

across species with range changes of varying magnitude and even directionality 

(VanDerWal et al., 2013, Grenouillet & Comte, 2014). Despite the appeal of focusing on 

species’ responses to temperature change, the variation in observed recent range changes 

suggests a need to move beyond an exclusive focus on the role of climatic factors on 

species’ range dynamics (Gaston, 2003). 

1.3 Non-climatic factors and range dynamics 

Variation in distributional responses to climate change is likely mediated by additional 

factors, in part a function of the degree to which climate limits species’ distributions. 

Biotic interactions and biotic habitat associations are increasingly recognized as 

influencing species distributional responses at broad scales (Araújo & Luoto, 2007, 

Gotelli et al., 2010, Wisz et al., 2013, Kissling & Schleuning, 2014). Species with strong 

biotic habitat associations, such as certain higher trophic level consumers (e.g., birds), 

may be more limited by habitat features, such as structure and composition of vegetation, 

even at range-wide scales (Kissling et al., 2010). Consequently, in cases where species 

are reliant on biotic habitat features and where habitat is limiting, we might expect to see 

incomplete tracking of suitable climate, resulting in disequilibrium in relation to suitable 

climate (Warren et al., 2001, Guisan & Thuiller, 2005). Such a situation may be 

amplified when we consider the spatial heterogeneity in patterns of habitat loss and 

fragmentation, which have the potential to counteract positive population responses at 

favourable leading (i.e. warm) edges resulting in diminished expansion potential (Thomas 

et al., 2001, Hampe & Petit, 2005, Melles et al., 2011). Biotic habitat dependencies may 

further result in amplified mismatches between species distributions and suitable climate 
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given the longer expected lags in plant species’ responses to climate change (Boulangeat 

et al., 2014). Biotic interactions, such as predation and competition, may constrain 

species’ distributions and both within- and between-trophic level interactions are 

expected to be modified in complex ways due to climate change (Gilman et al., 2010). 

When interacting species respond in divergent ways to climate change, the nature of their 

interaction may be modified. For example, spatial mismatches may occur due to different 

distributional responses of obligate species (Schweiger et al., 2012, Wisz et al., 2013). 

Furthermore, the inclusion of biotic habitat elements refines species distribution model 

outcomes to more closely reflect the area of occupancy by capturing proximate resource 

dependencies  (Heikkinen et al., 2007, Luoto et al., 2007, Barbet-Massin et al., 2012b) 

and is considered the dominant driver in population-level abundances and demographic 

changes relative to climate (Eglington & Pearce-Higgins, 2012, Mair et al., 2014). 

Despite the predominant use of abiotic factors to describe species distributions at broad 

scales (e.g., Elith & Leathwick, 2009, Austin & Van Niel, 2011), it is increasingly argued 

that to develop informed capacity to predict species responses to climate change requires 

incorporation of biotic factors (Gilman et al., 2010, Wisz et al., 2013). 

To date, the majority of studies addressing broad-scale species’ responses to 

climate change have focused on long-term average climate conditions, typically focusing 

on a univariate dimension of climate (i.e. mean temperature) (Parmesan et al., 1999, 

Thomas & Lennon, 1999, La Sorte & Thompson, 2007, Chen et al., 2011b). Increasing 

evidence for the high dimensionality of range-shift patterns and variation in directional 

shifts suggests that understanding range dynamics using these variables offers a limited 

perspective and potential for inference (VanDerWal et al., 2013). From an ecological 

perspective, short-term weather and long-term climate have long been recognized as 

important limiting factors to species distributions (Birch, 1957, Stenseth et al., 2002). In 

addition to the significance of long-term trends on species distributions, finer temporal 

scale such as sub-annual and inter-annual variability are likely important for many 

species (Jackson et al., 2009, Dobrowski, 2011). Indeed, population abundances and 

underlying demographic processes are influenced by short-term variation and temporally 
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fluctuating abiotic conditions (Anders & Post, 2006, van de Pol et al., 2013). 

Furthermore, extreme events (Jentsch et al., 2007), such as droughts and heat waves, 

occurring over short time frames can result in negative population-level consequences 

and result in local extinctions (Albright et al., 2010, Doak & Morris, 2010, McKechnie et 

al., 2012, Cunningham et al., 2013). Increased temporal and spatial autocorrelation of 

climate change may also contribute to synchronization of population dynamics, which 

may contribute to increased risk of extinction (Post & Forchhammer, 2004), further 

highlighting the complexity of impacts of changing climate. In addition, temporal 

dimensions of habitat are important for species relying on disturbance dependent or 

successional habitats, while anthropogenic land-use change may contribute to landscape-

level changes largely independent of climate  (e.g., Santika et al., 2014). Consequently, it 

is not surprising that incorporating temporal variability in habitat dynamics influences 

species distributions and models accounting for such dynamics improve outcomes 

(Vallecillo et al., 2009, Price et al., 2013, Porzig et al., 2014). While identifying relevant 

temporal scales for measuring climate or habitat parameters requires insight into species’ 

biology and traits, temporal scale and variability of extrinsic conditions is of emerging 

importance in understanding consequences of global changes on species’ ranges. 

Spatial and temporal heterogeneity of extrinsic conditions (i.e., threats to species 

persistence such as climate change and habitat loss) influence the pattern of species 

distributions and the underlying population-level processes that drive range dynamics in 

complex ways. Range dynamics are a consequence of spatial patterns of birth, death, and 

dispersal (Holt et al., 2005). Range shifts are typically driven by population dynamics 

occurring at the range edges, where dispersal capacity and propensity is integral to 

colonization of new habitats (Kubisch et al., 2014). Range shifts thus occur when there is 

spatial structuring of local rates of extinction or colonization, which may relate to 

patterns of land-use change resulting in loss of habitat, climate change, or gradual 

changes in marginal habitat. However, rates of shift at different boundaries are not 

uniform; multidimensional assessments of ranges along latitudinal, longitudinal, and 

elevational or depth dimensions are lacking presenting a limited view of ecological and 
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evolutionary significance of pattern and process (Hampe & Petit, 2005, Lenoir & 

Svenning, 2014).  For example, compensatory demographic rates may buffer against 

negative consequences of climate warming, consequently slowing rates of range shift at 

the warm edge (Doak & Morris, 2010). Furthermore, climate stress or habitat loss may 

not be relegated to boundary populations but may occur throughout the range (Lenoir et 

al., 2008), resulting in more complex patterns of range change (Maggini et al., 2011, 

Grenouillet & Comte, 2014, Lenoir & Svenning, 2014). Changes in abundances across 

species’ ranges are increasingly observed (Jiguet et al., 2010, Virkkala & Rajasärkkä, 

2011, Mair et al., 2014). These changes may indicate initial stages of range shift 

(Maggini et al., 2011), and underlie the importance of population-level data to refine 

predictions of future changes under climate change (Huntley et al., 2010, Howard et al., 

2014). Adding to the complexity, spatial and temporal variation in extrinsic conditions 

may differentially influence life-history stages or vary by season, such as in the case of 

migratory species (Wilson et al., 2011). A range wide perspective on temporal range 

shifts can inform on spatial variation in processes driving dynamics and is crucial to 

understanding species’ vulnerabilities to threatening processes. Yet, studies documenting 

patterns of species’ distributional change over space and time at the range-wide scale 

remain sparse (Lehikoinen et al., 2013, Grenouillet & Comte, 2014). Consequently, this 

remains an outstanding challenge for ecologists and global change scientists with 

fundamental consequences for biodiversity conservation. 

To gain a more synthetic understanding of observed variations in range shifts and 

development of stronger capacity for prediction requires broad-scale studies capturing the 

complete range. Scientists currently have access to unprecedented types of biodiversity 

data on species distributions, and increasingly, global scale data describing fine-scale 

environmental conditions. Predominant approaches to understand species’ contemporary 

response to global change have typically applied species distribution models (SDMs) that 

correlate environmental conditions with species’ occurrences (Guisan & Thuiller, 2005, 

Elith & Leathwick, 2009). While valuable, these approaches are generally applied in 

static ways without consideration of temporal dynamics of extrinsic factors, population 
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processes, or dispersal (Franklin, 2010). As range shifts result from a complex interplay 

between biological and environmental constraints, the use of data reflecting these 

dynamics is desirable. While there is a clear need for integration of demographic data for 

prediction (Huntley et al., 2010, Pagel & Schurr, 2012, Schurr et al., 2012, Fordham et 

al., 2013), there is a general paucity of such information. 

1.4 Thesis outline 

The objective of this thesis is to gain a better understanding of the role of climatic and 

non-climatic factors on long-distance migratory bird range dynamics, in the recent past, 

present, and in the future. In addition to the ecological advances related to the field of 

species’ range dynamics, an underlying theme of this thesis is the importance of different 

sources of uncertainty on the robustness of our inferences and predictive outcomes. The 

use of increasingly process-oriented, mechanistic modelling approaches will allow an 

exploration of the trade-offs between model complexity, generality, tractability, and 

predictive accuracy. Such modeling approaches allow deeper inferences regarding the 

biological processes that actually drive shifts in species distributions over space and time. 

This research contributes to the body of literature that is advancing our ecological 

understanding of species’ responses to global changes, methodological developments that 

address multiple forms of uncertainty that may impact our predictive capacity, and 

perhaps more importantly, the implications of these outcomes to management decisions 

and actions aimed at minimizing extinction risks. 

In this thesis, I focus on long-distance migratory birds as model organisms, 

specifically species from the Parulidae family, or wood-warblers (see Chapter 2 Table 

2.1). Birds possess a number of advantages that makes them amenable to analyses of 

range dynamics. Although they are a relatively well studied taxonomic group (Faaborg et 

al., 2010b), an understanding of the determinants of Nearctic-Neotropical migratory bird 

distributions across their multiple seasonal ranges remains unclear (Faaborg et al., 

2010a). Furthermore, there are few studies that apply a complete life cycle approach to 

inform on potential sensitivities to multiple stressors of climate change and habitat loss at 



7 

 

       

  

 

range-wide scales, resulting in incomplete risk assessments (Small-Lorenz et al., 2013a). 

Long-distance migratory birds may be especially vulnerable to climate change relative to 

resident or short-distance migrant species (Lemoine & Böhning-Gaese, 2003, Visser et 

al., 2009). It has been suggested that their reliance on spatially disjunct wintering ranges 

located far from breeding sites may increase their vulnerability to future climate changes 

related to an inability to predict changes in timing of food resources in breeding regions 

(Albright et al., 2010, Visser et al., 2010). Recent evidence suggests that the timing of 

spring migration arrival of long-distance migrants has changed less compared to short-

distance migrants (Saino et al., 2011). This inability to adjust migration phenology to 

track advancing spring on the breeding grounds suggests lowered phenological plasticity 

in spring arrival times (Gwinner, 1996), and potential for population declines (Miller-

Rushing et al., 2008, Both et al., 2010, Saino et al., 2011). Additionally, they are exposed 

to multiple effects of climate change across each seasonal range, where carry-over effects 

of threatening processes occurring in one season can have population-level consequences 

in the other season (Wilson et al., 2011). The relatively complete occurrence records 

collected through voluntary monitoring programs across much of their range allows 

testing of hypotheses examining the role of determinants of range limits and processes 

contributing to range shifts over multiple spatial and temporal scales. 

1.5 Synthesis of chapters 

Migratory birds spend different periods within an annual cycle in spatially and 

ecologically distinct areas, often separated by long-distances. Given the 

interconnectedness of population processes and limitations across these seasonal ranges 

(Sherry & Holmes, 1996, Sillett et al., 2000, Norris et al., 2004), such as carry-over 

effects from the wintering grounds on reproductive success (Marra et al., 1998, Norris et 

al., 2004), comprehensive assessments of threats to species persistence are required 

across their complex habitat dependencies within the annual cycle (Small-Lorenz et al., 

2013a). Despite this, the influence of potential future climate changes predictions are 

typically based on a single season thereby providing only a partial view of possible 

vulnerabilities (e.g., Venier et al., 1999, Austin & Rehfisch, 2005, La Sorte & Thompson, 
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2007, Zuckerberg et al., 2011) but see Doswald et al. (2009). The objectives of Chapter 2 

are two-fold: (1) to assess the relative importance of abiotic and biotic vegetation factors 

on contemporary species’ distributions across the breeding and non-breeding ranges of 33 

species of Parulidae and (2) to partition the influence of multiple sources of uncertainty 

on predicted outcomes. Contributions of this chapter include advances in the fields of 

biogeography and global change science and emphasize the importance of including 

direct habitat features for secondary consumers in both understanding determinants of 

broad-scale species’ distributions both contemporarily and under potential future climate 

change. I address multiple sources of uncertainty in this chapter, including modeling 

algorithm, choice of general circulation models, parameterization of a dispersal model, 

and model selection, as well as sensitivity of various metrics used to quantify range 

shifts. 

In Chapter 3, I examine how temporally varying extrinsic factors influence range-

wide extinction and colonization processes. I focus on two sister species, Vermivora 

chyrsoptera and V. pinus, as a model system. Specifically, V. chrysoptera is undergoing 

precipituous declines and large range shifts in contrast to V. pinus that is relatively stable 

with respect to global population size and range dynamics. I developed dynamic state-

space occupancy models to test multiple competing hypotheses regarding the relative 

importance of major drivers of range shifts: extreme temperature, habitat, and occurrence 

of congeneric species for a 30-year period, 1983 to 2012. The novelty of this chapter 

includes addressing the complexity of range dynamics between potentially interacting 

species with a demographic process-oriented approach that integrates detection errors, the 

latter which can bias estimates of covariate influences and under-estimate species 

distributions (Kéry et al., 2013). The outcomes of this work underscore the need to 

consider temporal scale of non-stationary extrinsic conditions demonstrating the strong 

relative importance of biotic factors relative to extreme temperature in driving 

contemporary range dynamics.  

While broad-scale SDMs can provide general patterns and linkages with large-

scale determinants of ranges such as abiotic conditions, integrating climate change 
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predictions with population dynamic models can provide finer-scale predictions of 

species persistence, and potentially more accurate predictions (Morin & Thuiller, 2009, 

Mustin et al., 2009, Gogol-Prokurat, 2011). Such a landscape level analysis allows testing 

of hypotheses related to climate and habitat limitations on species persistence and range 

shifts, and is also reflective of the scale at which conservation and management actions 

are taken. Given the importance of population dynamics at the range margins for 

determining species’ responses to climate change (Holt & Keitt, 2000, Holt et al., 2005), 

in Chapter 4, I investigate the interaction of climate and habitat changes on the 

persistence of Hooded Warbler (Setophaga citrina) populations at its northern and 

expanding breeding range margin (Melles et al., 2011) by developing hybrid SDMs 

integrated with metapopulation demographic models. Metapopulation theory suggests 

that variability of site-level occupancy can occur as a function of unsuitable 

environmental conditions and demographic consequences (Hanski, 1999). Recent work 

has shown that climate limitation is not occurring at the northern edge of the Hooded 

Warbler’s range whereas habitat elements, including amount and configuration, are 

hypothesized constraints to further range expansion. The research questions addressed in 

this chapter include: (1) can occupied populations track predicted climate changes, (2) 

how does the interaction between scenarios of habitat availability and future climate 

change influence predicted range expansion, (3) how congruent are predictions of range 

expansion between SDM and SDM + population dynamics (hybrid) models in terms of 

predictive accuracy and spatial congruency of predictions of range shift, and (4) how 

sensitive are hybrid model outcomes to multiple sources of uncertainty, including 

demographic parameters, amount and configuration of habitat, choice of general 

circulation model. My findings confirm predictions that habitat is a main constraint on 

population-level range expansions relative to climate factors and underscore how 

demographic approaches to model range expansions reduce capacity for over-prediction 

under SDMs that assume equilibrium between species and suitable climate habitats. The 

methods developed to address uncertainty using global sensitivity analysis framework 

highlight the importance of demographic uncertainties on predictions of extinction risk. 
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Migratory bird species present a unique challenge for conservation planning under 

climate change due to their life histories. Many species rely on disjunct breeding and 

nonbreeding habitats where regional variation in future climate across temperate and 

equatorial expanses may result in asymmetric range shift patterns. Despite the ecological 

significance of accounting for seasonal habitat dependencies, few studies characterize 

vulnerability to projected climate exposure across the annual cycle (Small-Lorenz et al., 

2013a). As a result this factor is largely ignored when identifying spatial conservation 

priorities under climate change, limiting their potential utility. Furthermore, the range 

dynamics of vegetation dependent species will be constrained by a combination of 

climate change and habitat availability, yet biotic factors are rarely included in predictive 

models that are subsequently used as inputs to spatial priorities. The objectives of 

Chapter 5 include, (1) quantifying the sensitivity of spatial priorities under projected 

climate change to integration of biotic vegetation factors, (2) identifying regions of 

priority robust to climate change across both the breeding and nonbreeding season, and 

(3) evaluating the performance of the current network of protected areas under climate 

change.  

Finally, I conclude my thesis with Chapter 6 where I synthesize my overall 

findings and discuss avenues for future research. 
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Chapter 2  
 

 Seasonal range shifts of long-distance migratory 2
birds under climate change: Role of uncertainties 

2.1 Abstract 

Migratory species may be particularly vulnerable to the effects of climate change as they 

are exposed to its effects over their seasonal distributions. Evaluating species 

vulnerabilities to the dynamic threat of global climate changes requires threat assessments 

over the full complement of habitats required across the annual cycle of a given species. 

Outcomes of species distribution models can be applied as a component of species 

vulnerability assessments to climate changes; yet the pervasiveness of uncertainties can 

compromise their application in a conservation context. While common sources of 

uncertainties include model selection, model algorithm, and General Circulation Models 

(GCMs) have been previously considered this has not been in the context of seasonal 

ranges. I tested the assumption of climate as a dominant factor and compared the 

consistency of predictions and projections under future climate changes for sets of 

models consisting of climate variables, habitat variables (derived from vegetation data), 

or climate and habitat variables together. Predictive performance was highest for climate-

habitat models across both seasons, however variations in relative importance of different 

predictors suggests that limiting factors are seasonally dependent. Regardless of seasonal 

range relative range size is expected to decline, with climate-only models resulting in 

more extreme estimates of change. While my results are broadly consistent with previous 

work with large amounts of variation resulting from model algorithm and GCM, the 

relative importance of different sources of variation varied as a function of the seasonal 

range considered and was dependent on the metric of range change used as the response. 

These results underscore the potential bias that may be incurred in projected exposure 

estimates associated with multiple sources of uncertainty and the need to consider a 

diversity of metrics that describe multiple dimensions of range dynamics. 
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2.2 Introduction 

Evaluating species vulnerabilities to the dynamic threat of global climate changes 

requires threat assessments over the full complement of habitats required across the 

annual cycle of a given species. Seasonal migratory species (hereafter migrants) move 

cyclically between geographically separated habitats over different portions of their 

lifecycle, which may include the use of breeding and nonbreeding ranges as well as areas 

along their migratory routes. Long-distance migratory birds pose a particular challenge 

for vulnerability assessments in part because their wide-ranging behaviors result in 

seasonal habitat dependencies that often cross geo-political boundaries, which can 

impede the identification of threats to species viability (Calvert et al., 2009). Although 

our understanding of factors limiting bird populations are largely from studies focused on 

the breeding season (Faaborg et al., 2010a), the processes that limit and regulate long-

distance migrant populations derive from events occurring on both the breeding and 

wintering grounds (Holmes, 2007, Robinson et al., 2008). Furthermore, evidence 

increasingly illustrates the fitness consequences of carry-over effects from one season to 

another on migratory species (Norris, 2005, Bogdanova et al., 2011, Legagneux et al., 

2011). The fundamental importance of dynamics occurring within and interacting 

between seasonal phases underscores the relevance of full lifecycle assessments in 

climate change vulnerability assessments. 

Despite increasing evidence of range shifts due to recent climate change few 

studies consider all seasonal habitats. Studies documenting range shifts due to recent 

climate changes abound and include evaluations in the western hemisphere during the 

breeding season (Peterson, 2003, Hickling et al., 2006, Hitch & Leberg, 2007, Jetz et al., 

2007, Devictor et al., 2008) and nonbreeding season (La Sorte & Thompson, 2007, La 

Sorte et al., 2009, Zuckerberg et al., 2009, La Sorte & Jetz, 2012); as well as in Europe 

and Africa during the breeding season (Lemoine & Böhning-Gaese, 2003, Huntley et al., 

2008, Barbet-Massin et al., 2012b) and nonbreeding season (Austin & Rehfisch, 2005). 

Despite the clear indication of the role of climate on species range shifts, few studies 

examine its influence on both the breeding and nonbreeding portions of the annual cycle 
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for the same suite of species using the same methods (but see Doswald et al., 2009). 

Similarly, projections of potential distributions due to future climate changes have tended 

to focus on one season of the annual cycle including migrants in Mexico (Peterson et al., 

2002), North American breeding season (Lawler et al., 2009), and European breeding 

season (Barbet-Massin et al., 2012b), as well as nonbreeding season (Barbet-Massin, 

2009). Given that population-limiting processes occur over the combination of seasonal 

habitats (Holmes, 2007), omission of climate change vulnerability assessments across 

seasonal habitats represents a knowledge gap biasing our understanding of potential risks 

(Small-Lorenz et al., 2013b). 

Spatial variation in environmental conditions, land-use patterns, and projections 

of future climate change underscore the importance of accounting for all seasonal range 

dependencies in vulnerability assessments for wide-ranging migrants. Climate change is 

expected to vary spatially across the globe, which can affect seasonal distributions of 

wide-ranging migrant bird species in different ways.  Climate model outcomes project 

larger temperature increases over much of Canada relative to temperature changes in 

South America by the end of this century (IPCC, 2007b). While Canada is generally 

expected to become wetter, projections for Mexico and Central America, where the 

majority of Nearctic-Neotropical birds overwinter, indicate that that these regions will 

become drier both annually and over the months when species over-winter (IPCC, 

2007b). This asymmetry, in both the direction and magnitude of change in climate factors 

across the seasonal ranges of migrants, can lead to mismatches in peak resource 

availability on breeding grounds and timing of migration from nonbreeding grounds 

(Strode, 2003). Such mismatches may be more pronounced for long-distance migrants 

where endogenous controls, such as photoperiod, as well as climate are important for 

migration initiation (Studds & Marra, 2011), and can negatively influence migrant 

abundance (Both et al., 2006) and population dynamics (Moller, 2008, Jones & 

Cresswell, 2010, Saino et al., 2011). Furthermore, global spatial variation in future land-

use conversion (Jetz et al., 2007) could lead to loss of habitats disproportionately 

affecting habitats required across a given seasonal range. Given the lack of uniformity in 

direction and magnitude of threat dynamics, assessing how vulnerability across all 
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habitats required over the annual cycle of migrant species is crucial for initial risk 

evaluations. 

Outcomes of species distribution models (SDMs) can be applied as a component 

of species vulnerability assessments to climate changes (Thomas et al., 2010, Dawson et 

al., 2011), however, the pervasiveness of uncertainties can compromise their application 

in a conservation context. SDMs, which use correlative relationships between 

environmental factors and species occurrences (Guisan & Thuiller, 2005, Elith et al., 

2006, Austin, 2007) and in combination with climate models, can be used to project 

future distributions under different climate change scenarios. Through the exploration of 

the potential for change in suitable habitats in relation to changing climates, SDM outputs 

contribute to an understanding of climate exposure, an element of species vulnerability 

assessments to climate changes (McCarthy et al., 2001, Williams et al., 2008b). Despite 

the widespread use of SDMs, their utility can be compromised by the propagation of 

uncertainty related to type of occurrence data used (presence-only vs. presence-absence), 

variable selection, sampling bias, SDM methodologies including modeling algorithms, 

and model parameterizations (Guisan et al., 2007, Synes & Osborne, 2011, Braunisch et 

al., 2013). In addition, General Circulation Models (GCMs) further contribute to the 

variability in outcomes (Beaumont et al., 2008). Given the myriad sources of uncertainty, 

it becomes imperative to understand the types of uncertainties that influence predictions. 

Additionally, there are an assortment of metrics to quantify facets of range shifts, such as 

relative range size change, distance and direction of centroid shift, range margin shifts, 

and species turnover (e.g, Diniz-Filho et al., 2009, Potter & Hargrove, 2013, Watts et al., 

2013). These metrics are frequently applied to quantify range changes, and thus provide 

information on individual species vulnerability or composite measures of community 

shifts. As these metrics measure different aspects range changes (e.g. range size vs 

extreme boundary shifts), there is the potential for variation in their sensitivity. A 

systematic assessment of common sources of uncertainty of model inputs and outputs is 

essential for identifying the principal sources of uncertainty and can provide insights into 

vulnerability characterizations. 
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Species distributions are the result of a complex set of factors relating both to the 

biology of the species and its relationship with external environmental conditions. that 

interact over spatial scales (Gaston, 2003). The classic perspective on factors that 

determine species’ distributions conforms to the idea that at broad spatial scales, species 

distributions are predominantly structured by abiotic factors, with biotic vegetation 

factors and biotic interactions increasingly important at smaller scales (Grinnell, 1914, 

Pearson & Dawson, 2003). Despite this assertion, evidence is accumulating that the 

imprint of biotic factors is perceptible even at broad spatial scales and extents (Wisz et 

al., 2013). Although climate factors exert a dominant influence on species distributions at 

broad spatial scales (Araújo et al., 2009, Pigot et al., 2010, Jiménez-Valverde et al., 

2011), model predictive accuracy tends to increase when climate and land-cover variables 

are included, in particular at finer-scale resolutions (Thuiller et al., 2004, Venier et al., 

2004, Heikkinen et al., 2007, Luoto et al., 2007, Preston et al., 2008, de Araújo et al., 

2014). The decision to include certain predictors over others is non-trivial and remains an 

under-appreciated source of uncertainty (but see  Braunisch et al., 2013), in particular 

with respect to the role of biotic factors, which still often remain overlooked or 

marginalized (Brown et al., 2011). Furthermore, variation in predicted future range shifts 

or estimates of suitable habitat when models only include abiotic variables versus those 

that incorporate a combination of abiotic-biotic factors (e.g., Preston et al., 2008, Barbet-

Massin et al., 2012b) underscores the importance of addressing this source of variability 

for species vulnerability assessments. Such variation may be of particular importance for 

species occupying seasonal habitats spanning large distances; integrating habitat variables 

can help to improve our understanding of factors influencing current distributions and 

predictions under global changes.  

Here, I assess the vulnerability of 33 Nearctic-Neotropical long-distance 

migratory bird species (hereafter migrants) to the potential influence of future climate 

changes across the breeding and nonbreeding ranges separately. Nearctic-Neotropical 

migrant birds spend a portion of their time breeding in the northern hemisphere, 

migrating in the fall to the wintering grounds, and then return during spring migration to 

the breeding grounds. I focus on these species due to their documented declines (North 
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American Bird Conservation Initiative, 2009), their sensitivity to landscape features in 

both breeding (Flather & Sauer, 1996) and nonbreeding seasons (Robbins et al., 1989), 

and negative impacts of recent climate changes on populations (Jones & Cresswell, 2010, 

Saino et al., 2011). Birds are a relatively mobile group of species and recent work 

illustrates their ability to track recent historical climate changes (Tingley et al., 2009, 

VanDerWal et al., 2013). The capacity to track environmental conditions makes them an 

ideal study group to address the role of climate change on range dynamics. The overall 

objectives of this chapter were to expand our understanding of abiotic and biotic variables 

migratory species’ seasonal ranges and to examine the relative importance of multiple 

sources of uncertainties on model projections under climate change. Specifically I ask the 

following questions: (1) Are there differences in the relative importance of abiotic and 

biotic (i.e., vegetation) variables between breeding and nonbreeding seasonal 

distributions ?; (2) Is climate change expected to influence seasonal distributions 

differently in terms of direction and magnitude of potential range shifts?; and finally, (3) 

How do multiple metrics of range shifts vary in relation to three main sources of 

uncertainty, (i) model selection contrasting abiotic models and abiotic-biotic vegetation 

models, (ii) choice of modeling technique, and (iii) selection of GCMs. I expected 

different variables to drive species seasonal distributions, resulting in asymmetry in 

projected range shifts under climate change. Furthermore, I expected different range shift 

metrics to be differently sensitive; metrics describing extreme in particular range margin 

boundary changes are expected to be highly variable. 

2.3 Methods 

2.3.1 Focal species data 

I selected 33 long-distance migratory Parulidae species that breed in the northern 

hemisphere and over-winter in Central and South America (Table 2.8.1). Parulidae 

species with permanent resident populations or short-distance migrants where breeding 

and nonbreeding ranges were abutting one of the other were omitted to minimize the 

potential for confounding the seasonal association of occurrences. However, for all 

species I considered their complete seasonal ranges to capture the full extent of their 
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distributional requirements (Sánchez-Fernández et al., 2011). To ensure adequate 

representation across the entire breeding ranges, including the northern range limits, 

occurrence data for the breeding season were retrieved from the North American 

Breeding Bird Survey data (BBS; USGS Patuxent Wildlife Research Center, 2012) and 

the Ontario Breeding Bird Atlas (OBBA; Bird Studies Canada et al., 2008).  BBS data 

were compiled for the years 1981-2005 and for the months of May-July, which represent 

the primary breeding month (Poole, 2005). The BBS is a longitudinal Citizen Science 

monitoring program with coverage including southern Canada and the USA since 1968. 

Every year, volunteers record detection data across more than 5200 predefined routes. 

Censuses are performed during the breeding season and most routes are re-visited 

annually. BBS occurrence data were compiled for the years 1981-2005 and data that 

conformed to the BBS standards for weather, date, time, and observer criteria were 

included. The OBBA is a compilation of breeding bird surveys undertaken by volunteers 

over the province of Ontario, where 10-km square grids are surveyed for breeding birds 

over a five-year period. Each grid is searched for a minimum of 20 hours over the five-

year period. Two atlases have been completed to date, Atlas 1: 1981-1985 and Atlas 2: 

2001-2005. 

As there were no consistent surveys applied over the nonbreeding ranges, I used 

data collected through the eBird Citizen Science initiative (Sullivan et al., 2009), which 

were downloaded via the Global Biodiversity Information Facility portal (GBIF; 

www.gbif.org). Data were screened to include only those collected between 1981 and 

2005, inclusive, to ensure temporal consistency with breeding occurrence records, and 

environmental variables. Data from the primary wintering months, November to 

February, were selected as these represent the time period when most migrant birds are 

on their nonbreeding grounds post fall migration (Poole, 2005). To ensure a minimum 

level of data quality and to minimize the likelihood of capturing migrant occurrences, I 

only included occurrence records if they overlapped with NatureServe extent of 

occurrence range maps (Ridgely et al., 2007). 
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2.3.2 Environmental data 

Environmental variables were selected based on their potential to directly or indirectly 

affect bird distributions across the breeding and nonbreeding seasons (e.g., Root, 1988, 

Venier et al., 2004, Huntley et al., 2008, Jiménez-Valverde et al., 2011, Studds & Marra, 

2011). Abiotic variables included temperature seasonality, precipitation seasonality, mean 

of monthly maximum temperature, and mean of monthly total precipitation. Temperature 

seasonality was calculated as standard deviation of the monthly mean temperatures and 

precipitation seasonality is expressed as a coefficient of variation calculated as the 

standard deviation of the monthly precipitation estimates expressed as a percentage of the 

annual mean. Maximum temperature and total precipitation were averaged over seasonal 

time periods reflecting the months associated with the breeding (May-July) and non-

breeding (November-February) periods of the annual cycle (Heikkinen et al., 2006). 

Baseline climate data for the current time period (1950-2000) were obtained from the 

Worldclim database, which is a set of high resolution interpolated climate data (Hijmans 

et al., 2005), at a spatial resolution of  10 arc-minutes. The data were subsequently 

averaged across all cells following Hijmans et al. (2005).  

Projections of future climates were based on four GCMs using the A2 emission 

scenario for the IPPC 4
th

 Assessment, which depicts an intensive-fossil use future with 

moderate economic growth (Nakicenovic et al., 2000). I selected the CCMA-GCM3, 

CSIRO-3K, Hadley-MK3, and NIES-99 models, as they provide a range of conditions 

and variability with respect to annual temperature and cumulative precipitation 

predictions (IPCC, 2007a). Climate data from each GCM were downscaled using the 

delta statistical method, which is based on thin plate spline spatial interpolation of 

anomalies of original GCM outputs (Ramirez & Jarvis, 2008). Future projections of 

climate suitability were based on averages describing two thirty-year time periods defined 

as the 2050s and 2080s. All spatial data were downloaded at a 10-arc-minute resolution 

and summarized to a common resolution of 20 x 20 km
 
cells. 
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Habitat data were sourced from GlobCover, a high-resolution (300 m) dataset 

with global coverage (European Space Agency, 2008), which provided a consistent land-

cover classification method across the entire western hemisphere (Table 2.8.2). I derived 

biotic (i.e., vegetation) variables representing landscape composition and a measure of 

diversity by calculating the percent cover of forests and shrubs found within each 20 x 20 

km grid cell. These cover types represent preferred broad habitat types for all focal 

species regardless of seasonal range. Landscape compositional heterogeneity was 

calculated as the number of land cover classes summarized over each grid cell. Pearson 

correlations amongst all pairs of predictors variables resulted in r < |0.6|. All spatial data 

were aggregated to a common resolution of 20 x 20 km and transformed to the Behrmann 

Equal Area projection. 

 

2.3.3 Species distribution models 

To capture variation associated with the selection of modeling algorithms, I applied five 

different SDMs algorithms implemented in the ‘biomod2’ R package (Thuiller et al., 

2012): two regression methods (Generalized Linear Models, GLM (McCullagh & Nelder, 

1989); and Generalized Additive Models, GAM (Hastie T, 1990)) and three machine-

learning methods (Random Forests, RF (Breiman, 2001); Generalized Boosted 

Regression Models, GBM (Elith et al., 2008); and MaxEnt (Phillips et al., 2006)). I used 

the default settings for each modelling algorithm, except for the following changes: for 

Random Forests the number of trees was changed to 500, in MaxEnt only hinge and 

product features were specified to reduce over fitting by ensuring a smoother response 

curve function (Elith et al., 2011). GLMs and GAMs were calibrated using a binomial 

distribution and logistic link function, and quadratic relationships and bivariate 

interactions were specified for the continuous variables. For GAM, the maximum 

smoothing function was set to 4 which was then optimized within the model. Finally, tree 

complexity of GBMs was set to two allowing up to second order polynomials and the 

minimum number of trees was set to 2000 following specifications in Elith et al. (2008). 



20 

 

       

  

 

All models were calibrated across the geographic region considered accessible 

and within the dispersal abilities of all focal species (VanDerWal et al., 2009, Barve et 

al., 2011, Elith et al., 2011). Given the relatively high mobility of long-distance migrants, 

the calibration region for each species was constrained to ecoregions (Olson et al., 2001) 

which overlapped with occurrence records (Anderson & Raza, 2010). Absence data 

across the breeding season included BBS routes and Atlas grid cells found within the 

calibration region where no occurrences were recorded for any given species over the 

period of analysis. To minimize sample selection bias due to lack of systematic sampling 

I sampled pseudo-absences across the non-breeding range of each species using the target 

species approach (Phillips et al., 2009). Given the close phylogenetic relationships and 

similar ecological traits across the focal Parulidae species (Lovette et al., 2010), and a 

combination of high rate of overlapping distributions in the relatively smaller ranges over 

the nonbreeding season, I considered all species as belonging to the target group. Maps of 

nonbreeding occurrences were evaluated for potential spatial errors by an expert (Dr. Jim 

Rising, University of Toronto, personal communication). 

To evaluate sensitivity of model predictive outcomes and projections of range 

shift under climate change to variation associated with the inclusion of biotic vegetation 

factors, I compared models calibrated across three sets of predictor variables describing: 

(1) biotic factors (habitat-only), (2) abiotic factors (climate-only), or (3) both, (climate-

habitat) (Table 2.6.1). To evaluate the predictive performance of each model for each 

species and each seasonal range, I used a five-fold cross-validated random subset of 70% 

of the data to calibrate the model and the remaining 30% for model testing. Each of the 

replicated data partitions was used to calculate mean predictive performance of the cross-

validations. Models were assessed based on two discrimination capacity statistics, the 

true skill statistic (TSS) and area under the curve (AUC) of the receiver operating 

characteristic (ROC) plot on the cross-validated data (Fielding & Bell, 1997, Allouche et 

al., 2006). AUC is a threshold independent metric and the ROC plots compare the true 

positive predictions against the false positive predictions across all possible thresholds. 

AUC varies between 0 and 1, where 0.5 represents models with predictions no better than 

random and 1 models that fit data perfectly. TSS corresponds to the sum of sensitivity 
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(proportion of presences correctly predicted, i.e. true positive rate) and specificity 

(proportion of absences correctly predicted, i.e. true negative rate) minus one. TSS varies 

between 0 (random predictions) and 1 (perfect agreement), and is considered insensitive 

to prevalence. Finally, the point-biserial correlation coefficient (COR) was calculated 

based on Pearson correlations between the presence-absence data and predicted values 

(Zeng & Agresti, 2000). Whereas AUC only considers predicted values, this metric 

provides information on both discrimination capacity and calibration as it is a function of 

both actual and predicted values (Elith et al., 2006, Phillips & Elith, 2010). The 

hypothesized improvement in predictive performance with the inclusion of biotic factors 

to abiotic models was tested across the three variable sets using Wilcoxon’s signed rank 

test.  

Model were projected across the entire western hemisphere for the current time 

period, the 2050s, and the 2080s, based on the final model run using 100% of the data 

(Araújo et al., 2005). This resulted in a total of 11880 models based on all possible 

combinations of factors tested, i.e., 2 seasons × 3 variable sets × 5 model algorithms × 4 

GCMs × 3 time periods × 33 species. 

2.3.4 Dispersal modelling 

To account for processes that may limit the potential for range shifts, I modeled dispersal 

for each species and linked these dynamics with SDM predictions of range changes over 

space and time. Effectively, this reduces the predicted current and future distributions to 

areas that are currently occupied or may be colonized as they are within estimated 

dispersal distances, which represents an important step in incorporating more ecological 

realism (Franklin, 2010). Furthermore, this provides a transparent and non-arbitrary 

method for constraining predictions. I used a dispersal model based on a cellular 

automaton implemented in the R package ‘Migclim’ (Engler et al., 2012). I specified a 

maximum dispersal distance of 20 km/year as this generally corresponds to between-year 

observed and expected dispersal distances estimated for one of the focal species, Hooded 

Warbler (Setophaga citrina) (Bowman et al., 2002, Melles et al., 2011), and due to the 

resolution of the data. The dispersal estimates consider both natal and breeding dispersal 
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behaviours. All focal species are closely related and fall within similar weight and size 

classes (Poole, 2005). As dispersal generally scales with body size (Thornton & Fletcher, 

2014), the dispersal model was parameterized similarly across all species. The dispersal 

model was initialized using current observations of each species and was run using three 

time steps, current (2000), 2050s and 2080s, reflecting future climate projections. 

Mapped projections were converted to binary presence/absence data using a threshold 

maximizing the True Skill Statistic (Allouche et al., 2006). I replicated the dispersal 

simulation model a total of 20 times for each unique combination of species × seasonal 

range × SDM technique × GCM. The final dispersal restricted distributions were based 

on a consensus across all replicates where any cell considered colonized in any one 

replicate was retained in the final consensus output representing occupied suitable habitat 

in the 2080s. 

2.3.5 Variable importance 

In addition to comparisons of predictive accuracy across the three variable sets, I 

investigated the relative importance of predictor variables based on the final calibrated 

model for each species, across all each model algorithm, variable set and seasonal 

distribution. I applied a permutation test that is independent of modeling algorithm thus 

allowing direct comparisons between alternative models. For all possible combinations 

across the factorial design, the importance of each variable was assessed within biomod2 

whereby predictions are compared between the original fitted values and against 

predictions where each predictor was randomly permuted in turn (Thuiller et al., 2009). 

Low correlations between predictions indicate which variables are relatively important as 

indicated by a high degree of dissimilarity between predictions when that variable is 

permuted. This procedure was repeated 100 times and an average correlation coefficient 

was calculated. The final metric is expressed on a scale from zero to one where a higher 

value reflects a more influential predictor. 
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2.3.6 Projected shifts in species distributions 

To measure predicted impacts of future climate change on species distributions, I 

calculated multiple metrics between current and future predictions (2080). The metrics 

characterize different properties of range dynamics over space and time and as such 

provide a multi-dimensional perspective on patterns of range shift. As a measure of 

change in distributional area, for each species, season, variable set, modelling algorithm, 

and GCM, I calculated the proportional change in range size between the current 

predicted and 2080 projections. This metric is standardized across species; a value of 1 

represents no change in range area: a value less than 1 corresponds to declines, and a 

value greater than one represents increases. To measure both distance and direction of 

shift, the difference in range centroids, based on mean latitude and longitude across all 

binary cells predicted as present, was calculated between the current period and the 

2080s. Finally, I calculated the relative change in the northern and southern range 

boundary positions where boundaries were delineated based on the mean latitude position 

of 2.5% (northern) and 97.5% (southern) of all grid cells predicted as suitable and 

colonized for each time period of analysis. Quantifying distributional shifts in range 

boundary positions based 2.5% of all predicted cells reduced the influence of outliers 

(Comte & Grenouillet, 2013). All assessments were undertaken on dispersal-mediated 

binary mapped predictions. Distances and directions were calculated using the geosphere 

R package (Hijmans, 2014). All other calculations were undertaken using R. 2.15.3 (R 

Core Team, 2013). 

2.3.7 Statistical analyses 

Model performance based on AUC, TSS, and BCC among the three variable sets was 

assessed using a Wilcoxon rank signed test. ANOVA was used to evaluate the sensitivity 

of two metrics of range shift to multiple sources of uncertainty. The metrics evaluated 

included relative change in range size and relative change in northern and southern range 

margin boundaries. I performed a four-way ANOVA without replication (Sokal & Rohlf, 

1995) using variable set, model algorithm (SDM), GCM, and species identity as the fixed 

factors. As a consequence of no replication, it was not possible to estimate variance 
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associated with the 4-way interaction of the fixed factors (Sokal & Rohlf, 1995), and I did 

not include species in the interaction to focus on the manipulated sources of variation. For 

each ANOVA, I calculated the effect size for variable set, model algorithm, GCM, 

species identify, and their interactions to determine the relative strength of the 

relationship between each factor and the variance of the response variable. For each 

factor, the effect size (eta
2
) was calculated as the ratio of the effect variance (factor sum 

of squares, SS) to the total variance (total SS) (Tabachnick & Fidell, 2007). All range 

shift metrics were assessed for normality using the Anderson-Darling test and square root 

and log transformations were applied when assumptions were violated. The southern 

range boundary shift could not be normalized following transformations, thus I omitted it 

from the statistical test, and instead compared it qualitatively to other range shift metrics. 

All modeling and analyses were performed R version 2.15.3 (R Core Team, 2013). Linear 

mixed models (LMMs) were performed for comparison and included three fixed factors: 

variable set, model algorithm, and GCM, and species identity was modeled as a random 

effect. LMMs were performed using the ‘lme4’ and ‘car’ R packages (Fox & Weisberg, 

2011, Bates et al., 2013). R
2
 calculations of the mixed models followed methods in 

(Nakagawa & Schielzeth, 2013) and were implemented using the R package “MuMIn” 

(Barton, 2013). 

2.4 Results 

2.4.1 Predictive accuracy 

Predictive accuracy metrics were sensitive to the seasonal distribution under 

consideration and to the inclusion of biotic habitat variables (Fig. 2.7.1). Across the three 

variable sets, breeding season models tended to outperform nonbreeding models based on 

all three metrics, AUC, TSS, and COR, when averaged across the species. Mean 

predictive accuracy increased with the inclusion of habitat-based predictor variables 

across both seasonal ranges, except for TSS of the nonbreeding range. Differences in 

AUC and TSS between climate-habitat and climate-only models for each seasonal range 

were not significant, although overall variation between the variable sets was reduced 

when habitat factors were included (Wilcoxon signed test: p > 0.05; Fig. 2.7.1). However, 
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pair-wise COR values were on average higher for climate-habitat models relative to 

climate only models (Wilcoxon signed test: p > 0.05). Based on AUC scores, both 

breeding and nonbreeding season habitat-only models were fair, with mean values falling 

between 0.7 ≤ AUC ≥ 0.8, and climate-only and climate-habitat models were considered 

excellent (0.9 ≤ AUC) (Swets, 1988). Across both seasonal distributions, habitat-only 

models resulted in significantly lower predictive accuracy scores for the three metrics 

based on paired-comparisons between both climate-only and climate-habitat model 

metrics (Wilcoxon signed test: p < 0.001, in all comparisons). As habitat-only model 

predictive performance was particularly low and mapped predictions exhibited large 

discrepancies compared to the climate-only and climate-habitat models, habitat-only 

models were not considered in subsequent analyses. 

2.4.2 Variable importance 

The relative importance of predictors varied across seasonal distributions, suggesting 

differences in environmental variables responsible for structuring species seasonal 

ranges. Based on permutation measures of variable importance across the climate-habitat 

models and summarized across all models and species, climate variables were on average 

more important than variables describing habitat and land use-land cover diversity for 

both seasonal distributions (Fig. 2.7.2). Among the four climate variables, the mean rank 

of each differed as a function of the seasonal distribution under consideration. For 

breeding distributions, maximum temperature and cumulative precipitation were the two 

most important, while for nonbreeding distributions, temperature seasonality followed by 

maximum temperature were the two top-ranked variables, in decreasing order of 

importance. The relative rank of climate predictors was generally consistent when 

compared with climate-only permutation variable importance outcomes (Fig. 2.8.1). 

Across both seasonal distributions, biotic vegetation variables and land-use land-cover 

diversity were on average ranked lowest in importance, across all species. Biotic 

vegetation factors tended to be more influential across nonbreeding seasonal distributions 

compared to the breeding season. Despite the relatively low mean importance of biotic 

variables, for a subset of species biotic factors outranked abiotic predictors in terms of 
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permutation importance, a pattern especially evident across nonbreeding models (Fig. 

2.7.3). Furthermore, composite maps of species richness between the two variable sets 

revealed spatially structured differences in predicted outputs (Fig. 2.7.4). In the 

nonbreeding range, climate-only models tended to predict higher richness in regions of 

high topographic complexity. Spatial patterning of differences was more complex in the 

breeding season, where spatial heterogeneity was most prominent around range margins. 

Climate-habitat predictions resulted in fine-scale differences reflecting the heterogeneity 

introduced by the additional predictors. 

2.4.3 Sources of variation in potential range dynamics under 
climate change 

ANOVA results for 2050 and 2080 were qualitatively similar, so I only report results for 

the 2080 period. Mixed-model outcomes were similar to fixed-effect models; I report the 

results for the fixed-effect outcomes as they include effect size measures. Mixed-effect 

results are found in Appendix Table 2.8.3. Across all models species identity was 

consistently significant and accounted for the majority of the variation across all metrics, 

and I focus the remaining results on effect size comparisons among the three fixed 

factors. Based on fixed-effect ANOVA models, factors contributing the most to variation 

in relative change in range size differed depending on the seasonal range under 

consideration (Table 2.6.2). For both breeding and nonbreeding season change in range 

size (adjusted R
2
 of 0.3997 and 0.2251, respectively), model algorithm had the largest 

effect followed by variable set, or an interaction between model algorithm and GCM, 

depending on the seasonal range. Predictions based on climate-only models resulted in 

more extreme estimates of range change on average, leading to greater projected declines 

in suitable area (Fig. 2.7.5). This was generally consistent regardless of the model 

algorithm applied, except in the case of MaxEnt models. While declines in range size are 

the general anticipated trend, certain combinations of model technique and variable sets 

led to increases in relative size, highlighting the importance of interacting effects. 

Variation in change in range size across the nonbreeding season was evident between 

GCMs, which was amplified depending on the model technique applied. This was most 
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apparent for models developed using GBM techniques and under NIES and CCMA-

GCM3 projections (Figure 2.8.2). Similar to breeding outcomes, projected range sizes are 

generally expected to decline over time under climate change, however, there was 

substantial variation in outcomes. This was in part driven by having proportionally more 

species expected to undergo range expansions, which was compounded by high 

variability related to choice of modeling technique (Table 2.6.2, Fig. 2.7.5).  

Different sets of factors disproportionately affected variation in northern range 

boundary shifts relative to projected change in range size, highlighting metric-specific 

sensitivities. Overall, GCMs accounted for most of the variation in range margin shifts 

(after species identity) followed by an interaction between model technique and variable 

set, regardless of the season under consideration (Table 2.6.2). Substantial variation in 

northern range margin shift appeared to be driven by two GCMs, CSIRO-MK3 and 

NIES-99. The dominant direction of both northern and southern range margin shifts 

across breeding distributions was largely in the direction of more northern latitudes. 

However, species-specific plots revealed variation in both directions and magnitude of 

predictions (Figs. 2.6.6, 2.6.7).  Based on northern median centroid shifts, breeding 

centroids were clearly expected to shift north, albeit with variation attributed to the 

choice of GCMs. By comparison, both variable set and choice of GCMs were important 

factors affecting nonbreeding northern range margin shifts. Variation as a result of these 

two factors was relatively high resulting in variable magnitudes of shift in terms of 

distance although no clear trends in directionality of boundary shift (Figs. 2.6.6, 2.6.7). 

Considering the distance of range centroid shifts, there was a tendency for median range 

centroids to shift in a northerly direction, although the magnitude of shift was much 

smaller relative to breeding range centroid predictions (Fig. 2.6.8). Radial plots revealed 

species-specific variation in both distance and directionality and provide a more complex 

picture of range shifts with climate change than when focusing only on pole ward shifts 

and metrics summarized across all species (Fig. 2.6.9). 
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2.5 Discussion 

Characterising and quantifying species’ vulnerability includes assessment of the degree to 

which available suitable climate-habitat conditions persist under climate change 

scenarios. Despite the importance of considering all seasonal habitats required over the 

annual cycle when evaluating vulnerability or when aiming to understand the factors that 

structure species ranges, relatively few studies address annual life-cycle requirements 

(but see Doswald et al., 2009). Here I have shown that including biotic vegetation factors 

improves predictive performance across both seasonal ranges for 33 Nearctic-Neotropical 

migratory bird species, while variation in relative importance of predictors suggests 

limiting factors are seasonally dependent. The inclusion of biotic factors had cascading 

influence on predicted range shifts, with seasonally dependent patterns of change. The 

sensitivity analyses carried out here on the climate change vulnerability assessments 

revealed that metrics describing range shift dynamics were highly sensitive to multiple 

factors commonly used to parameterize SDMs and predict range-wide consequences of 

climate change, including selection of predictor variables, model technique, and GCM. 

However, the role of different sources of uncertainty was not consistent between the two 

seasonal ranges considered and varied as a function of the metric of change. This research 

adds to the body of evidence emphasizing the need to systematically address the role of 

uncertainties in SDM outcomes in particular when considered in a decision-making 

context and calls for expansion of commonly used metrics of range change to consider 

those describing the multi-dimensionality of species’ ranges over both space and time. 

The selection of biologically relevant predictor variables is a critical element in the 

model development process, influencing model inference and predictive performance. 

Based on multiple metrics of predictive accuracy, the inclusion of biotic vegetation 

predictors and a measure of land-use land-cover diversity improved model performance 

across both seasonal distributions. Models calibrated using only biotic vegetation 

variables performed poorly underscoring the relevance of climatic factors as important 

determinants of species’ distributions at broad spatial extents and resolution, a result that 

is echoed in other studies (Luoto et al., 2007, Barbet-Massin et al., 2012b, Xu et al., 



29 

 

       

  

 

2014). The generally poorer performance of nonbreeding models likely results from data 

quality issues due to lack of systematic sampling in these regions, yet, overall 

performance closely approximated breeding season estimates. The improvement in 

predictive performance with the inclusion of habitat variables suggests that these 

proximal variables describe important resource dependencies, here acting as surrogates 

for breeding requirements and food availability, and affect predicted distributions even at 

broad spatial scales (Austin, 2002, Wisz et al., 2013). Furthermore, comparison of 

mapped predictive outcomes based on climate-habitat models depicted more fine-grained 

patterns relative to coarse appearance of climate-only models as these models are capable 

of capturing detailed patterns of habitat variables considered.  

Importance values based on randomization of each predictor further emphasize the 

relative importance of abiotic factors. The clear distinction in relative importance of 

abiotic factors suggests seasonal limitations reflective of the seasonal climatic profiles of 

the temperate (breeding) versus tropical (nonbreeding) geographic regions. For example, 

maximum temperature is a limiting factor in the northern temperate breeding ranges, 

while precipitations ranked highest in the nonbreeding season, reflective of low 

temperature variability and higher precipitation variability that characterize the 

nonbreeding regions. Due to the correlative nature of the modelling framework applied, 

relationships are not causative, and thus it is not possible to distinguish or infer the 

underlying mechanism related to the focal species’ distributions. Despite these known 

caveats of phenomenological methods, the results obtained in this study suggest an 

important role for biotic vegetation factors as constraints to species’ distributions. That 

different environmental factors may be contributing to species distributions within a 

species across seasonal ranges presents interesting hypotheses to test related to the 

propensity for seasonally tracking of climate and non-climatic factors for migratory 

species (e.g., Marini et al., 2010). 

Both breeding and nonbreeding ranges were expected to decline in relative range size 

on average under climate change, a result that was generally consistent across the 

multiple sources of variation considered in the sensitivity analysis. This suggests that 
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these migrants may be negatively influenced by climate change across both seasonal 

distributions. Climate-only models resulted in more extreme and pessimistic predictions 

of range change relative to models incorporating biotic vegetation factors. However, the 

relative difference in range size and the proportion of species expected to undergo 

declines in range size between the two variable sets was greater for breeding season 

predicted changes. There are a number of possible reasons for these predicted differences. 

First, on average, climate-habitat models resulted in improved predictive performance 

and discrimination capacity regardless of the season. The inclusion of biotic vegetation 

variables tended to minimize the strength of abiotic climate predictors; this down 

weighting of abiotic effects is in part responsible for more conservative future 

predictions. Secondly, biotic vegetation factors were greater on average across 

nonbreeding models suggesting differences in limiting factors between the seasonal 

distributions. And finally, some of the largest temperature increases are expected in 

temperate regions following clear latitudinal gradients where many of the focal species 

breed while nonbreeding regions are likely to experience more heterogeneous changes in 

precipitation and some of the most novel climates (Garcia et al., 2014). The northward 

shift of breeding range centroids mirrors the large velocity and directional climate 

changes expected in high latitude regions (Loarie et al., 2009), however, the distance 

shifts were not of similar magnitude between seasons, potentially resulting in increased 

migration distances. Increased migration distance may equate to increased energetic 

requirements necessitating increased time spent feeding either before or during migration; 

this has the potential to elevate the vulnerability of long-distance migrants to potential 

climate change (Doswald et al., 2009).  

In this study, the relative importance of different sources of variation was dependent 

on the metric used to measure range shifts. Model algorithm and GCMs had the highest 

effect sizes (after species identity) on relative change in range size and shift in northern 

range boundaries, respectively. Previous studies have generally found that model 

algorithm followed by GCMs contribute the most to uncertainties in future range shifts 

(Diniz-Filho et al., 2009, Buisson et al., 2010, Lemes & Loyola, 2013), although the 
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proportion of variance explained between the two factors tends to balance each other 

based on later versus mid-century projections  (i.e., 2080 vs 2050) (Buisson et al., 2010). 

However, the previous studies generally focused on a singular metric of range change, in 

particular species richness, or change in range size. The research presented here suggests 

that general conclusions on the major sources of variation are likely context-specific, and 

dependent on the measure of range change. While I have only focused on two measures, 

they were selected as they measure distinct properties of range shift: size and extreme 

range margins. Considering multiple metrics provides a more complete picture of the 

heterogeneity and complexity of species’ distributional responses due to climate change 

(Grenouillet & Comte, 2014). While a diversity of metrics can capture geographical 

complexity of range shifts, assessing their sensitivity to multiple sources of uncertainty 

particularly when used to assess predictions under climate change is required for robust 

interpretations. 

Knowledge of the relative importance of various sources of uncertainty can provide 

guidance on how to address uncertainties and reduce variability in projected outcomes. At 

its root, variation between GCMs results from multiple sources of uncertainty associated 

with modeling the complex climate systems, including parameterization, downscaling 

method, as well as temporal and spatial variations in climate model performance and 

ability to simulate current conditions (Beaumont et al., 2008). SDM algorithms, while 

united by their correlative approach, can differ substantively in terms of parameterization, 

type (e.g., regression or machine-learning), and underlying assumptions (Elith & Graham, 

2009, Dormann et al., 2012). While attention and appropriate selection of model 

techniques should reflect criteria such as model objective, or type of data as best as 

possible, an increasingly common method to address these sources of variation is to 

develop predictions based on consensus rule (Araújo & New, 2007b). Such an approach 

may yield robust results when multiple SDMs or climate models are equally appropriate.   

Finally, I found that the inclusion of biotic predictors accounted for non-negligible 

sources of uncertainty in both metrics. While SDM algorithm and GCM have garnered 

much attention as sources of uncertainties in vulnerability assessments to climate change 
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(Dormann et al., 2008b, Diniz-Filho et al., 2009, Buisson et al., 2010), the sensitivity to 

model selection has received less focus. Given the increased predictive performance of 

models including both abiotic and biotic factors, the sensitivity of metrics to the inclusion 

of biotic vegetation factors could reflect errors arising from misspecified models. This 

reinforces the need to consider predictor selection to reflect biologically-relevant 

constraints (Iverson & Prasad, 1998, Austin, 2002, Austin & Van Niel, 2011). While 

many additional factors contribute to species’ propensity to track climate change, limits 

will in part be determined by the availability of habitat features, such as biotic vegetation 

components, consequently these features should not be ignored from range-wide scale 

analyses. 

I considered biotic vegetation variables as static in nature, and so interpretation of the 

outcomes needs to be reflected by the limiting assumption that they remain temporally 

invariant. Changes in land-use and land-cover change are expected to have far-reaching 

consequences on biodiversity, in particular within tropical regions (Jetz et al., 2007). 

While the inclusion of biotic factors improved predictive performance and it has been 

suggested that they be considered essential when the goal is to predict range shifts under 

climate change (Stanton et al., 2012), given that habitat loss is likely to remain a 

pervasive threat into the future, predicted changes are likely underestimated. Further 

under- or over-estimation in relative risks are likely given the absence of demographic 

processes that actually drive range changes. These results clearly demonstrate that there is 

substantive variation in predicted range margin shifts among species, and in relation to 

model uncertainties. Range margins are important parts of a species’ distribution as 

individuals from margin populations are likely drivers of actual range shifts through 

colonization and extinction processes. SDM predictions may result in spatially structured 

errors due to different processes dominating at leading vs lagging range margins (Hampe 

& Petit, 2005) that are likely amplified when demographic processes are not accounted 

for (Naujokaitis-Lewis et al., 2013). During the nonbreeding season, the range size of 

Nearctic-Neotropical migratory birds is generally smaller than during breeding season. 

Not only does this result in higher densities of long-distance migrants, but they often co-
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occur in mixed-species flocks with both resident species and other long-distance migrants 

where inter-specific competition may plan an important role in structuring avian 

communities (Jankowski et al., 2010). The consequences of climate change on biotic 

interactions in these tropical communities where Nearctic-Neotropical migrants spend the 

majority of their life-cycle is a particularly important research gap (Şekercioğlu et al., 

2012), especially given the importance of biotic interactions as mediators of climate 

influence relative to direct abiotic mechanisms (Ockendon et al., 2014). 

Long-distance migratory birds spend different portions of their life-cycle in regions 

characterized by largely different environmental conditions; these results demonstrate 

how climate change is likely to act independently on seasonal ranges resulting in 

predicted declines in range size and asymmetric magnitude of directional changes. By 

addressing potential climate change impacts across both seasonal ranges, this work 

extends previous assessments constrained to a singular portion of the annual cycle (Jetz et 

al., 2007, Huntley et al., 2008, Doswald et al., 2009). This reveals a comprehensive 

picture of vulnerabilities based on predicted responses to climate change. These results 

underscore the following points: (1) omission of biotic vegetation variables results in 

reduction of predictive accuracy, (2) relative importance of abiotic and biotic covariates 

varies as a function of the season under consideration, (3) missing covariates had 

cascading influences on projections of range shift under climate change suggesting that 

both climate and habitat vegetation limit species’ distributions, and (4) range shift metrics 

were not equally sensitive to multiple sources of uncertainty. I contend that projected 

impacts of climate change on range shifts requires evaluation of habitats required across 

the annual cycle, and comprehensive quantification of uncertainty on metrics of range 

change. An appreciation of the multi-dimensionality of predicted range shifts alongside 

systematic evaluation of their sensitivity to multiple sources of uncertainty will enable 

more informed vulnerability assessments. 
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2.6 Tables 

Table 2.6.1 Three predictor variable sets used to model Parulidae species breeding and 

nonbreeding distributions. Habitat-only: biotic vegetation factors, climate-only: abiotic 

factors, and climate-habitat: a combination of both abiotic and biotic factors. 

 

Habitat-

only 

Climate-

habitat 

Climate-

only 

Temperature seasonality (100 * SD)  X X 

Precipitation seasonality (CV)  X X 

Nonbreeding /breeding cumulative 

precipitation 

  

X 

Nonbreeding /breeding maximum 

temperature 

  

X 

Proportion forest cover X X X 

Proportion shrub cover X X X 

Number of vegetation land-cover classes X X X 



35 

 

         

 

Table 2.6.2 Summary statistics of fixed-effect ANOVAs of (A) relative change in range size and (B) relative change in northern range 

margin position. Range margins were calculated based on 2.5% quantiles of all cells predicted as suitable. P-values are indicated as 

follows: p <0.001 by ‘‘***’’, p <0.01 by ‘‘**’’,  p <0.05 by ‘‘*’’, ‘‘NS’’are non-significant values. GCM: General Circulation Model, 

SDM: Species Distribution Model. 

Metric Factor Breeding  

   

Nonbreeding 

 

  

F Sig Effect size (Rank)  F Sig Effect size (Rank) 

(A) Range size 
Variable set 59.26 *** 0.034 (3) 

 

0.59 NS 0.001 

 

GCM 12.70 *** 0.022 (4) 

 

0.98 NS 0.003 

 

SDM 23.34 *** 0.040 (2) 

 

20.89 *** 0.041 (2) 

 

Species 17.28 *** 0.315 (1) 

 

6.57 *** 0.206 (1) 

 

Variable set:GCM 0.23 NS 0.000 

 

0.54 NS 0.002 

 

Variable set:SDM 10.10 *** 0.017 

 

3.14 * 0.006 (4) 

 

GCM:SDM 0.58 NS 0.003 

 

2.57 * 0.015 (3) 

 

Adjusted R
2
 0.3997 

   

0.2251 

           

(B) North range margin Variable set 1.56 NS 0.001 

 

8.18 ** 0.007 (4) 

 

GCM 99.51 *** 0.129 (2) 

 

6.93 *** 0.017 (2) 

 

SDM 5.13 ** 0.007 (4) 

 

0.32 NS 0.001 

 

Species 30.30 *** 0.418 (1) 

 

13.60 *** 0.357 (1) 

 

Variable set:GCM 0.55 NS 0.001 

 

0.08 NS 0.000 

 

Variable set:SDM 6.86 *** 0.009 (3) 

 

4.45 * 0.007 (3) 

 

GCM:SDM 1.06 NS 0.004 

 

0.42 NS 0.002 

 Adjusted R
2
 0.5448    0.3509   
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Table 2.6.3 Percentage of species (n=33) projected to increase or decrease in median range size across four GCMs to the 2080s by 

seasonal range for SDMs using climate-only variables and climate-habitat variables. 

    

GCM 

     Season Variable set Direction of change CCMA-GCM3 CSIRO-MK3 Hadley NIES-99 

 

Mean across GCMs 

Breeding Climate Decrease 88 % 80 % 86 % 92 % 

 

86.5 % 

 

 

Climate Increase 12 % 20 % 14 % 8 % 

 

13.5 % 

 

 

Climate-habitat Decrease 77 % 66 % 77 % 80 % 

 

75 % 

 

 

Climate-habitat Increase 23 % 34 % 23 % 20 % 

 

25 % 

           

Nonbreeding Climate Decrease 70 % 72 % 78 % 72 % 

 

73 % 

 

 

Climate Increase 30 % 28 % 22 % 28 % 

 

27 % 

 

 

Climate-habitat Decrease 65 % 69 % 75 % 71 % 

 

70 % 

 

 

Climate-habitat Increase 35 % 31 % 25 % 29 % 

 

30 % 
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2.7 Figures 

 

Figure 2.7.1 Variation in mean predictive accuracy measures averaged across distribution 

models based on three sets of variables describing: (1) habitat, (2) climate, and (3) both 

climate and habitat for 33 species of Parulidae. Results are compared between models 

developed independently for the breeding and nonbreeding seasons. Boxes represent 

median, first and third quartiles; the whiskers depict the interquartile range × 1.5 with 

outliers are included. AUC: area under the receiver operating characteristic curve, TSS: 

true skill statistic, COR: point biserial correlation.  
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Figure 2.7.2 Mean permutation variable importance averaged across five model 

algorithms based on models calibrated with the climate and habitat variables across the 

breeding and nonbreeding seasons for 33 Parulidae species. Predictors include abiotic 

variables of Tmax: seasonal mean of the maximum temperature, Tseas: temperature 

seasonality, Precip: seasonal cumulative precipitation, Pseas: precipitation seasonality, 

followed by biotic vegetation associations. Boxes represent median, first and third 

quartiles; the whiskers depict the interquartile range × 1.5, and outliers are included. 
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Figure 2.7.3 Mean permutation importance of nonbreeding relative to breeding predictions for 33 species of Parulidae. A higher 

importance value denotes a more influential predictor in the model. Colours reflect dominant habitat preferences on the breeding 

grounds (top) and nonbreeding grounds (bottom) following Berlanga et al. (2010). ‘□’ represents the mean importance value across all 

species and model algorithms for each variable. 
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Figure 2.7.4 Difference maps of predicted species richness (out of 33 species) based on 

stacked single-species model outcomes between climate-only and climate-habitat model 

predictions for breeding season (top) and nonbreeding season (bottom) distributions. 

Climate-habitat species richness predictions were substrated from climate-only maps; 

negative values indicate higher predicted overall richness of climate-habitat models.
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Figure 2.7.5 Variation in potential relative change in range size between current predictions and 2080s projections in relation to three factors: variable set, 

modeling technique, and general circulation model. Values are based on median change and bars represent standard errors across all species for the 

breeding (top) and nonbreeding (bottom) seasons. 
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Figure 2.7.6 Variation in predicted median northern and southern range margin shifts 

under climate change to the 2080s under four general circulation models and two variable 

sets, climate-only and climate-habitat. Results are contrasted between breeding and 

nonbreeding ranges for each species where points are scaled to represent relative change 

in range size. <1 indicates a decline in range size and >1 an increase over time. 
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Figure 2.7.7 Variation in relative change in northern range boundary position between current and 2080s predictions in relation to 

three factors: variable set, modeling technique, and general circulation model. Values are based on median change and bars represent 

standard errors across all species for the breeding (top) and nonbreeding (bottom) seasons
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Figure 2.7.8 Median projected shift north of range centroids (km) between current and 

2080s projections for 33 species of Parulidae and summarized across five modelling 

techniques. Variations are contrasted between seasonal distributions; two variable sets, 

climate-only and climate-habitat; for four GCMs. Bars represent standard deviations 

estimated across the 33 species modeled. 



45 

 

         

 

 

Figure 2.7.9 Difference in median directional changes in range centroids under climate 

change to the 2080s for each species by seasonal range across four general circulation 

models. Distance and direction are summarized based on the median across five 

modeling techniques and contrasted between variable sets (climate and climate-habitat) 

for the breeding (1st two left-hand columns) and nonbreeding (last two right-hand 

columns) seasons. 
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2.8 Appendix  

2.8.1 Tables 

Table 2.8.1 Description of focal species from the family Parulidae assessed in Chapter 1, including habitat preferences and life-

history traits compiled from (Poole, 2005, Berlanga et al., 2010). Species alpha codes (abbreviations) follow the four-letter naming 

convention following (Pyle & DeSante, 2014). 

Common Name Latin name Breeding habitat 

Nonbreeding 

habitat Feeding guild 

Nest 

position  

Median 

clutch 

size 

Abbrevi

ation 

American Redstart 

Setophaga 

ruticilla 

Temperate 

Eastern Forests 

Tropical 

Evergreen 

Forests 

foliage 

gleaner Supported 3 AMRE 

Black-and-white 

Warbler 

Mniotilta 

varia Boreal Forests 

Tropical 

Evergreen 

Forests bark forager Ground 5 BAWA 

Bay-breasted 

Warbler 

Setophaga 

castanea Boreal Forests 

Tropical 

Evergreen 

Forests 

foliage 

gleaner Supported 5 BBWA 

Blackburnian 

Warbler 

Setophaga 

fusca Boreal Forests 

Tropical 

Highland 

Forests 

foliage 

gleaner Supported 4.5 BLBW 

Blackpoll Warbler Setophaga Boreal Forests Tropical foliage Supported 4 BLPW 
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Common Name Latin name Breeding habitat 

Nonbreeding 

habitat Feeding guild 

Nest 

position  

Median 

clutch 

size 

Abbrevi

ation 

striata Deciduous 

Forests 

gleaner 

Black-throated 

Blue Warbler 

Setophaga 

caerulescens 

Temperate 

Eastern Forests 

Tropical 

Deciduous 

Forests 

foliage 

gleaner Supported 4 BTBW 

Black-throated 

Green Warbler 

Setophaga 

virens 

Temperate 

Eastern Forests 

Tropical 

Evergreen 

Forests 

foliage 

gleaner Supported 4.5 BTNW 

Black-throated 

Gray Warbler 

Setophaga 

nigrescens 

Temperate 

Western Forests 

Tropical 

Deciduous 

Forests 

foliage 

gleaner Supported 4.48 BTYW 

Blue-winged 

Warbler 

Vermivora 

pinus 

Temperate 

Eastern Forests 

Tropical 

Evergreen 

Forests 

foliage 

gleaner Ground 5.5 BWWA 

Canada Warbler 

Cardellina 

canadensis Boreal Forests 

Tropical 

Highland 

Forests 

foliage 

gleaner Ground 4 CAWA 

Cerulean Warbler 

Setophaga 

cerulea 

Temperate 

Eastern Forests 

Tropical 

Highland 

foliage 

gleaner Supported 4 CEWA 
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Common Name Latin name Breeding habitat 

Nonbreeding 

habitat Feeding guild 

Nest 

position  

Median 

clutch 

size 

Abbrevi

ation 

Forests 

Cape May 

Warbler 

Setophaga 

tigrina Boreal Forests 

Tropical 

Deciduous 

Forests 

foliage 

gleaner Supported 6.5 CMWA 

Chestnut-sided 

Warbler 

Setophaga 

pensylvanica 

Temperate 

Eastern Forests 

Tropical 

Evergreen 

Forests 

foliage 

gleaner Supported 4 CSWA 

Golden-winged 

Warbler 

Vermivora 

chrysoptera 

Temperate 

Eastern Forests 

Tropical 

Highland 

Forests 

foliage 

gleaner Ground 5 GWWA 

Hermit Warbler 

Setophaga 

occidentalis 

Temperate 

Western Forests 

Mexican Pine-

Oak Forests 

foliage 

gleaner Supported 4 HEWA 

Hooded Warbler 

Setophaga 

citrina 

Temperate 

Eastern Forests 

Tropical 

Evergreen 

Forests 

foliage 

gleaner Supported 3.5 HOWA 

Kentucky Warbler 

Geothlypis 

formosus 

Temperate 

Eastern Forests 

Tropical 

Evergreen 

Forests 

ground 

forager Ground 4.5 KEWA 

Louisiana Parkesia Temperate Tropical ground Ground 5 LOWA 
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Common Name Latin name Breeding habitat 

Nonbreeding 

habitat Feeding guild 

Nest 

position  

Median 

clutch 

size 

Abbrevi

ation 

Waterthrush motacilla Eastern Forests Evergreen 

Forests 

forager 

Magnolia Warbler 

Setophaga 

magnolia Boreal Forests 

Tropical 

Evergreen 

Forests 

foliage 

gleaner Supported 4 MAWA 

MacGillivray's 

Warbler 

Geothlypis 

tolmiei 

Temperate 

Western Forests 

Tropical 

Deciduous 

Forests 

foliage 

gleaner Supported 4.5 MGWA 

Mourning Warbler 

Geothlypis 

philadelphia Boreal Forests 

Tropical 

Highland 

Forests 

foliage 

gleaner Ground 4 MOWA 

Nashville Warbler 

Oreothlypis 

ruficapilla Boreal Forests 

Tropical 

Deciduous 

Forests 

foliage 

gleaner Ground 4.5 NAWA 

Northern Parula 

Setophaga 

americana 

Temperate 

Eastern Forests 

Tropical 

Deciduous 

Forests 

foliage 

gleaner Supported 4.5 NOPA 

Northern 

Waterthrush 

Parkesia 

noveboracen Boreal Forests 

Tropical 

Evergreen 

ground 

forager Ground 4.5 NOWA 
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Common Name Latin name Breeding habitat 

Nonbreeding 

habitat Feeding guild 

Nest 

position  

Median 

clutch 

size 

Abbrevi

ation 

sis Forests 

Ovenbird 

Seiurus 

aurocapilla 

Temperate 

Eastern Forests 

Tropical 

Evergreen 

Forests 

ground 

forager Ground 4.5 OVEN 

Palm Warbler 

Setophaga 

palmarum Boreal Forests Generalist 

ground 

forager Ground 4.5 PAWA 

Prairie Warbler 

subsp discolor 

Setophaga 

discolor 

subspecies 

discolor 

Temperate 

Eastern Forests Generalist 

foliage 

gleaner Supported 3.5 PRAW 

Prothonotary 

Warbler 

Protonotaria 

citrea 

Temperate 

Eastern Forests 

Tropical 

Evergreen 

Forests bark forager Cavity 5.5 PROW 

Tennessee 

Warbler 

Oreothlypis 

peregrina Boreal Forests 

Tropical 

Evergreen 

Forests 

foliage 

gleaner Ground 5.5 TEWA 

Townsend's 

Warbler 

Setophaga 

townsendi 

Temperate 

Western Forests 

Mexican Pine-

Oak Forests 

foliage 

gleaner Supported 4 TOWA 

Virginia's Warbler Oreothlypis Temperate Tropical ground Ground 4 VIWA 
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Common Name Latin name Breeding habitat 

Nonbreeding 

habitat Feeding guild 

Nest 

position  

Median 

clutch 

size 

Abbrevi

ation 

virginiae Western Forests Deciduous 

Forests 

forager 

Worm-eating 

Warbler 

Helmitheros 

vermivorus 

Temperate 

Eastern Forests 

Tropical 

Evergreen 

Forests 

foliage 

gleaner Ground 5.5 WEWA 

Wilson's Warbler 

Cardellina 

pusilla Boreal Forests Generalist 

foliage 

gleaner Ground 4.5 WIWA 
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Globcover re-classification for land-use land-cover covariates 

I reclassified the Globcover data set to a binary layer comprised of forest and non-forest by grouping 7 broad forest cover categories, 

including woody tree categories (40, 50, 60, 70, 90, 100, 110) and two forested wetland categories (160, 170). The percent cover of 

trees was then calculated for each 10 km 2 pixel. An anthropogenic category included 11, 14, 20, 30, 190. grass-shrub 120, 130, 140, 

180. 

Table 2.8.2 Reclassification categories of the original GlobCover (300 m resolution) dataset to derive percent forest cover, percent 

shrub-grassland cover, and diversity of landuse-landcover types. 

GlobCover Value  GlobCover global legend  Reclassified category 

11  Post-flooding or irrigated croplands  Anthropogenic 

14  Rainfed croplands  Anthropogenic 

20  Mosaic Cropland (50-70%) / Vegetation (grassland, shrubland, forest) (20-

50%)  

Anthropogenic 

30  Mosaic Vegetation (grassland, shrubland, forest) (50-70%) / Cropland (20-

50%)  

Anthropogenic 

40  Closed to open (>15%) broadleaved evergreen and/or semi-deciduous 

forest (>5m)  

Forest 

50  Closed (>40%) broadleaved deciduous forest (>5m)  Forest 

60  Open (15-40%) broadleaved deciduous forest (>5m)  Forest 
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GlobCover Value  GlobCover global legend  Reclassified category 

70  Closed (>40%) needleleaved evergreen forest (>5m)  Forest 

90  Open (15-40%) needleleaved deciduous or evergreen forest (>5m)  Forest 

100  Closed to open (>15%) mixed broadleaved and needleleaved forest (>5m)  Forest 

110  Mosaic Forest/Shrubland (50-70%) / Grassland (20-50%)  Forest 

120  Mosaic Grassland (50-70%) / Forest/Shrubland (20-50%)  Shrub 

130  Closed to open (>15%) shrubland (<5m)  Shrub 

140  Closed to open (>15%) grassland  Other 

150  Sparse (>15%) vegetation (woody vegetation, shrubs, grassland)  Shrub 

160  Closed (>40%) broadleaved forest regularly flooded - Fresh water  Forest 

170  Closed (>40%) broadleaved semi-deciduous and/or evergreen forest 

regularly flooded - Saline water  

Forest 

180  Closed to open (>15%) vegetation (grassland, shrubland, woody 

vegetation) on regularly flooded or waterlogged soil - Fresh, brackish or 

saline water  

Shrub 

190  Artificial surfaces and associated areas (urban areas >50%)  Anthropogenic 

200  Bare areas  Other 

210  Water bodies  Other 

220  Permanent snow and ice  Other 
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Table 2.8.3 Summary statistics of mixed-effect ANOVAs of (A) relative change in range size and (B) relative change in north range 

margin boundary position. Range margins were calculated based on 2.5% quantiles of all cells predicted as suitable. P-values are 

indicated as follows: : p <0.001 by ‘‘***’’, p <0.01 by ‘‘**’’,  p <0.05 by ‘‘*’’, ‘‘NS’’are non-significant values. GCM: General 

Circulation Model, SDM: Species Distribution Model. 

(A) Fixed effects 

   

 Random effects 

  

 

Factor Chisq Df Pr(>Chisq) Sig  Groups Names Variance Std.Dev. 

Breeding Variable set 59.257 1 1.38E-14 ***  Species (Intercept) 0.02435 0.156 

 

GCM 38.1016 3 2.69E-08 ***  Residual 

 

0.04786 0.2188 

 

SDM 70.0137 3 4.24E-15 ***  

    

 

Variable set:GCM 0.6899 3 0.8756 NS  

    

 

Variable set:SDM 30.2989 3 1.19E-06 ***  

    

 

GCM:SDM 5.2441 9 0.8125 NS  

    

      

 

    Nonbreedin

g Variable set 0.5935 1 0.44105 NS 

 

Species (Intercept) 0.04524 0.2127 

 

GCM 2.9519 3 0.3991 NS  Residual 

 

0.19506 0.4417 

 

SDM 41.7761 2 8.48E-10 ***  

    

 

Variable set:GCM 1.607 3 0.6578 NS  

    

 

Variable set:SDM 6.275 2 0.04339 *  

    

 

GCM:SDM 15.4218 6 0.01722 *  

               

(B) Fixed effects 

    

Random effects 

  

 

Factor Chisq Df Pr(>Chisq) Sig 

 

Groups Names Variance Std.Dev. 

Breeding Variable set 1.5553 1 0.212353 NS 

 

Species (Intercept) 0.000254 0.01594 

 

GCM 

298.525

6 3 < 2.2e-16 *** 

 

Residual 

 

0.000278 0.01666 

 

SDM 15.3936 3 0.001509 ** 

     

 

Variable set:GCM 1.6374 3 0.65095 NS 
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Variable set:SDM 20.5799 3 0.000129 *** 

     

 

GCM:SDM 9.533 9 0.389595 NS 

     

           Nonbreeding Variable set 8.1827 1 0.004229 ** 

 

Species (Intercept) 0.01019 0.101 

 

GCM 20.7996 3 0.000116 *** 

 

Residual 

 

0.01941 0.1393 

 

SDM 0.6372 2 0.727171 NS 

     

 

Variable set:GCM 0.2407 3 0.970764 NS 

     

 

Variable set:SDM 8.9057 2 0.011646 * 

     

 

GCM:SDM 2.5127 6 0.867047 NS 

     

 

 

Table 2.8.4 Variance explained (R
2
) of mixed-effect LMMs of relative change in range size and relative change in north range margin 

boundary position. R
2
m: marginal variance explained by fixed effects (variable set, model algorithm, and general circulation models), 

R
2
c: conditional variance explained by both fixed and random effects (species identity). 

  Metric   

 

Range size 

 

 Northern range boundary 

 

R
2
m R

2
c  R

2
m R

2
c 

Breeding 0.113 0.412  0.147 0.554 

Nonbreeding 0.066 0.242  0.033 0.366 
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2.8.2 Figures 

 

Figure 2.8.1 Mean permutation variable importance averaged across five model algorithms based on models calibrated with habitat-

only variables (left) and climate-only variables (right) across the breeding and nonbreeding seasons for 33 Parulidae species. 

Predictors include abiotic variables of Tmax: seasonal mean of the maximum temperature, Tseas: temperature seasonality, Precip: 

seasonal cumulative precipitation, Pseas: precipitation seasonality, followed by biotic vegetation associations. Boxes represent 

median, first and third quartiles; the whiskers depict the interquartile range × 1.5, and outliers are included.  
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Deviations among GCMs: Signed standardized anomaly  

To better understand which climate variables were driving the differences in future 

projections of suitable habitat, following (Garcia et al., 2011), I assessed the deviations 

among GCMs during late century projections (2080s) as this is when inter-model 

variations within emission scenarios become most pronounced (Beaumont et al., 2008). 

For each climate variable used in the SDM, we applied model performance metrics to 

distinguish between the variable for each individual GCM and the multi-model median 

ensemble for the same variable (Duan & Phillips, 2010). The signed standardized 

anomaly, D, is the spatially aggregated root mean square (RMS) difference between each 

individual GCM variable and the multi-model median ensemble for the same variable. D 

is standardized using the standard deviation of all GCMs. D reflects how much a GCM 

(for each variable) tends to over- or under-estimate the variable in relation to the median. 

D values close to zero indicate similarity with respect to the median.  

 

Figure 2.8.2 D-metric quantified across four climate variables for 2080 projections based 

on four GCMs reveal contrasting deviations from median projections (gray line) by 

variable and seasonal range.  
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Chapter 3  

 Temporal variation of biotic factors underpins 3
contemporary range dynamics of congeneric 
species 

3.1 Abstract 

Patterns of recent historical range-wide changes in species’ distributions are complex 

often exhibiting multi-directional shifts over space and time. Long-term averages of 

temperature are most often used to understand such dynamic range shifts. However such 

a perspective may limit inferences as occupancy patterns result from a complex set of 

interactions between abiotic dynamics, changes in direct habitat elements, species-

specific traits (thermal tolerances), and the presence of other species. Furthermore, 

conventional approaches to modelling species’ distributions are typically snap-shots that 

summarize climate covariates over long-time intervals and do not account for potentially 

important fine-scale temporal variation in suitable habitats. I developed dynamic state-

space occupancy models to test multiple competing hypotheses regarding the relative 

importance of major drivers of range shifts: extreme temperature, habitat, and occurrence 

of congeneric species, for the Golden-winged (Vermivora chrysoptera) and Blue-winged 

Warblers (V. cyanoptera) between 1983 and 2012. When accounting for detection errors, 

inter-annual variation in habitat had the strongest influence on extinction probabilities for 

both species with maximum temperatures ranking second or third in importance, 

suggesting an important role for fine-scale temporal habitat dynamics. The occurrence of 

the Blue-winged Warbler, a hypothesized competitor, had the largest magnitude of effect 

on Golden-winged Warbler extinction probability confirming anecdotal evidence of site-

level species replacement. These results suggest an important role for fine-scale temporal 

habitat changes and the presence of congenerics on species range dynamics, challenging 

conventional perspectives on the lack of scaling up of biotic factors. The strength of the 

hierarchical modeling approach includes integration of time-dependent covariates thought 

to contribute to changes in population-level processes while simultaneously accounting 

for spatial variation in detection probabilities. As a species undergoing rapid declines and 
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range shifts, identifying landscapes characterised by high local extinction rates in relation 

to changing climates and habitat provides enhanced understanding of changes in 

occupancy and a platform for prioritizing conservation actions. 

 

3.2 Introduction 

Species and the systems they are found in are dynamic and understanding the factors that 

influence species distributions continues to be a fundamental question of ecology and 

evolutionary biology (Andrewarth & Birch, 1954, Gaston, 2009). While evidence of the 

influence of contemporary climate change on species distributions is increasing (Walther 

et al., 2002, Parmesan & Yohe, 2003, Parmesan, 2006, Chen et al., 2011b), predicting 

future impacts remains a complex and challenging endeavor. Species distribution models 

(SDMs) are a commonly employed technique to understand recent historical influences of 

climate change and to project future consequences on species distributions (Thomas et 

al., 2004, Araújo & Pearson, 2005, Elith & Graham, 2009). While species-environment 

relationships are dynamic over space and time, traditional SDMs rely on snapshots of 

species occurrence data in relation to environmental factors, which limit their usefulness 

(Guisan & Thuiller, 2005, Franklin, 2010). Despite increasing application of temporal 

transferability tests to evaluate their performance in predicting observed range shifts 

(Rapacciuolo et al., 2014), variability in SDM performance outcomes  (e.g., Kharouba et 

al., 2009, Dobrowski et al., 2010, Rapacciuolo et al., 2012, Schibalski et al., 2014)  

suggests that important drivers of species range dynamics are inadequately modeled. 

Thus evidence increasingly fails to support the space-for-time assumption of the classic 

SDM framework, leading to cautionary messages both of their application to quantify 

extinction risk and calls for approaches that integrate population level processes that 

drive range dynamics (Franklin, 2010, Fordham et al., 2012a, Schurr et al., 2012). Given 

the anticipated magnitude and variability expected of global climate and land-use 

landcover changes (Sala et al., 2000, Jetz et al., 2007, Loarie et al., 2009), developing a 

more rigorous understanding of the demographic underpinnings of range-wide dynamics 

over broad spatial scales and time is an imperative.  



60 

 

 

 

Both the space-for-time and species equilibrium assumptions of SDMs impact our 

understanding of range dynamics and affect their utility in applied contexts. First, the 

capacity for species to respond to temporally varying global changes is mediated by a 

combination of (1) intrinsic factors including species traits, such as dispersal, which 

influence vulnerability to threats  (e.g., Broennimann et al., 2006, Murray et al., 2010, 

González-Suárez et al., 2013), and (2) the magnitude and rate of change of extrinsic 

conditions environmental conditions (Huntley et al., 2010). These complex dynamics and 

feedbacks can compromise predictive model outputs based on SDM outcomes. This can 

occur because species’ traits can constrain demographic responses to global change 

leading to density dependent habitat use (i.e. use of low quality habitats as population 

size increases; Zurell et al., 2009, Fordham et al., 2013). This situation may be amplified 

at range edges, where species are at limits of physiological tolerances (Anderson et al., 

2009). Similarly, predictions based on SDMs may result in overestimation of suitable 

habitat under climate changes at leading edges especially where biotic factors constrain 

species propensity to move into climatically suitable areas (Holt, 2009, Naujokaitis-

Lewis et al., 2013). Secondly, predictions for species that are rapidly declining or 

increasing with a consequent non-stasis in range extent, or that exhibit temporal non-

stationarity, may be particularly sensitive to static model assumptions (Vallecillo et al., 

2009, Rodhouse et al., 2012). Furthermore, rates of climate and land-use-land-cover 

change exhibit spatial and temporal heterogeneity (Burrows et al., 2014), and species 

responses may thus exhibit time dependent behaviors in relation to these extrinsic factors. 

Indeed, evidence for asymmetric range boundaries shifts and different rates of shifting 

range margins provides support for considering temporal dynamics of the underlying 

colonization and extinction events (Hampe & Petit, 2005, Hitch & Leberg, 2007, Chen et 

al., 2011c). Thus the characterization of colonization and extinction processes across 

species ranges and their relationship with variables representing temporal dimensions of 

climate and habitat change has important implications for clarifying drivers of range 

dynamics. 

Modeling species range dynamics requires analyses that incorporate data over 

multiple scales. In theory, variable selection should be informed by their biological 
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relevance, constituting proximate factors that directly influence species distributions at 

appropriate spatial and temporal scales (Elith & Graham, 2009, Austin & Van Niel, 

2011). While the consequences of varying spatial resolution on models of species 

distributions has garnered much attention (Seo et al., 2009, Franklin, 2010), the scale of 

temporal data has often been overlooked in the literature (but see Jackson et al., 2009, 

Reside et al., 2010, Bateman et al., 2012). Short-term weather and long-term climate 

have long been recognized as important limiting factors to species distributions (Birch, 

1957, Stenseth et al., 2002). Despite this recognition, models to evaluate climate-related 

range shifts largely use long-term climate averages (>20 years) or large-scale oceanic 

indices, which dampens potentially important daily and inter-annual variability (Jackson 

et al., 2009, van de Pol et al., 2013). Indeed, species are both exposed and respond to 

short-term weather fluctuations and punctuated extreme weather events, which can 

influence demographics and dynamics at species range margins (Inouye, 2000, Parmesan 

et al., 2000, Parmesan et al., 2005, Anders & Post, 2006, Bennie et al., 2013). In 

addition, highly mobile species are capable of responding to short-term changes in 

resource availability (Beerens et al., 2011), with some species able to track short-term 

temporal changes in weather patterns to capitalize on breeding and feeding opportunities, 

or timing of migration (Ahola et al., 2004, Bennie et al., 2013, Wiebe & Gow, 2013). 

Thus short term weather is likely to influence distributions over broad scales and informs 

us of conditions faced by individuals, which can have important population-level 

consequences (Inouye, 2000, Dybala et al., 2013, van de Pol et al., 2013).  

Many species rely on habitats that exhibit temporal dynamics due to either natural 

or anthropogenic processes, which in some cases may be largely independent of climate. 

Despite the predominant use of abiotic factors to describe species distributions at broad 

scales, the inclusion of biotic habitat elements refines model outcomes to more closely 

reflect the area of occupancy by capturing proximate resource dependencies  (Barbet-

Massin et al., 2012b, Naujokaitis-Lewis Chapter 2). Temporal dimensions of habitat are 

important for species relying on disturbance dependent or successional habitats, while 

anthropogenic land-use change may contribute to landscape-level changes largely 

independent of climate  (e.g., Santika et al., 2014). Consequently, it is not surprising that 
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incorporating temporal variability in habitat dynamics influences species distributions 

and models that account for such dynamics improve outcomes (Vallecillo et al., 2009, 

Price et al., 2013, Porzig et al., 2014). Furthermore, models calibrated using only climate 

variables may bias range-change estimates in terms of magnitude, or worse, direction 

(Warren et al., 2001, Barbet-Massin et al., 2012b), underscoring the importance of their 

inclusion. Despite the strong ecological underpinnings that reinforce the importance of 

temporal dynamics of extrinsic factors, few studies consider temporal heterogeneity in 

both climate and habitat condition in relation to the processes of extinction and 

colonization that govern dynamics of entire species’ ranges (but see Bled et al., 2013). 

Hierarchical dynamic occupancy models (MacKenzie et al., 2003) offer advances 

over SDMs as it is possible to estimate underlying demographic parameters of extinction 

and colonization that drive species range dynamics (Franklin, 2010, Pagel & Schurr, 

2012, Kéry et al., 2013). This increases ecological realism, focuses on process rates that 

drive range dynamics, and the data currency is less costly because it can use time-series 

of detection and non-detection data (Kéry et al., 2010). The autoregressive framework of 

dynamic occupancy models allows for the incorporation of dependence between 

demographic parameters and ability to incorporate temporal dependence between 

covariates (Royle & Dorazio, 2008). Moreover, incorporating detection probability 

accounts for errors associated with false absences, which can have severe consequences 

on estimates of species distributions (Kéry et al., 2010, Sadoti et al., 2013, Lahoz-

Monfort et al., 2014). The ability to test relative contributions of habitat and climate 

changes on colonization and extinction parameters separately has the potential to provide 

key information relevant in a management context (McMahon et al., 2011). While this 

flexible modeling framework can accommodate time-varying covariates, most temporally 

dynamic occupancy models assume that external conditions are time-invariant (but see 

Santika et al., 2014). A rigorous assessment of temporally varying species-environment 

relationship can inform our understanding of the association of changing aspects of 

threats on range dynamics, and on the constancy of these estimates over space and time.  
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The goal of this chapter is to advance our understanding of the relationship 

between spatio-temporally dynamic threats of climate change and habitat loss on species 

ranges dynamics. By incorporating time-varying covariates, I provide an approach for 

associating climate and habitat changes to demographics of extinction and colonization 

probabilities that ultimately drive species’ range dynamics. To do so, I use a retrospective 

analysis using hierarchical models, while accounting for errors associated with the 

observation process (Kéry et al., 2013). I illustrate the importance of fine-scale temporal 

dynamics of extrinsic conditions representing potential stressors for understanding 

contemporary species range shifts of two congeneric species, the Golden-winged Warbler 

(Vermivora chrysoptera) and Blue-winged Warbler (Vermivora cynoptera). The Golden-

winged Warbler is a species of global conservation concern (Near Threatened, IUCN) 

and is undergoing precipitous declines (Sauer et al., 2014). Capitalizing on the 

combination of a relatively comprehensive time-series data of species occurrences 

through use of North American Breeding Bird Survey data (USGS Patuxent Wildlife 

Research Center, 2012) and historical sequences of remotely sensed data (Pettorelli et al., 

2005) enabled estimation of the relationship between spatially-explicit annual habitat and 

climate changes in relation to occupancy, extinction, and colonization probabilities over a 

30-year period (1983-2012) at the range-wide scale. Specifically, I investigated the 

degree of support for the relative importance of three main drivers of species’ range 

dynamics: temperature changes, habitat dynamics, and occupancy patterns in relation to 

congeneric species. I complement these analyses with tests of niche similarity to quantify 

the degree of niche overlap between species and to assess whether niche differentiation 

has occurred over time for each species. This study represents a powerful assessment of 

the consequences of fine-scale temporal variability of extrinsic stressors on population-

level demographic processes that result in temporally variable range-wide dynamics. 

3.3 Methods 

3.3.1 Study system and breeding bird survey data 

The Golden-winged Warbler is one of the fastest declining Nearctic-Neotropical warblers 

with an estimated -2.6% yearly rate of decline across its range (number of BBS routes, 
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n=439, (-3.57, -1.69, 2.5% and 97.5% credible intervals, CR)) between 1966 and 2012 

(Sauer et al., 2014). Regional differentiation in rates of change are evident with the USA 

populations declining at rate of -2.89% /year (n =376, (-3.85, -1.93, CR)) while Canadian 

populations are increasing by 0.55%/year (n =66, (-3.03, 4.08, CR)). The Blue-winged 

Warbler is the only other extant species within the Vermivora genera, and range-wide 

trends for this species indicate declines albeit at a much slower annual rate relative to the 

Golden-winged (n=761, -0.64 (-1.24, 0.09, CR) (Sauer et al., 2014). The Golden-winged 

occupies a more north-western distribution often occurring at higher elevations, although 

the spatial pattern of occupancy appears to be dynamic and complex with blue-wings 

often replacing golden-wing populations after first contact (Shapiro et al., 2004). Both 

species rely on shrublands and early successional forests characterized by heterogeneous 

conditions (Confer & Knapp, 1981). These disturbance dependent habitats have been 

declining over the range of both species due to reforestation and advancement of 

succession, suggesting a role for habitat limitation in range-wide population declines 

(Hunter et al., 2001, Confer & Pascoe, 2003, Dettmers, 2003). Region-specific smaller 

scale assessments suggest that the Golden-winged Warbler is a habitat specialist relative 

to the broader vegetation conditions used by the Blue-winged Warbler (Confer & Knapp, 

1981), however, niche breadth has not been examined for both species across their ranges 

nor with a focus on their temporal dynamics.  

Additional factors thought to contribute to Golden-winged Warbler declines 

include contact with its sister species, especially hybridization, and climate change. 

Although the specific mechanisms regarding the role of contact and replacement by Blue-

winged Warbler remain elusive, this may potentially arise due to negative consequences 

of interference interactions (Confer et al., 2003), hybridization (Gill, 1997), conspecific 

attraction combined with priority effects following spring migration (Gotelli et al., 2010), 

or a combination of demographic swamping by the generally more abundant Blue-winged 

Warbler and Allee effects (Etienne et al., 2002, Vallender et al., 2007). While recent 

historical climate change is associated with changing distributions, studies have been 

limited by a focus on northern range boundary shifts thus providing a spatially restricted 

glimpse into distributional changes (Hitch & Leberg, 2007). Despite the complexity of 
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factors potentially influencing both species, they represent three important axes of drivers 

of range dynamics: (1) habitat, (2) climate, and (3) presence of congeneric species. 

Previous work is limited by a focus on small-scale studies without an examination of the 

relative role of all three main factors driving both species’ occupancy patterns and the 

underlying processes of extinction and colonization at the range-wide scale. 

I used data collected by The North American Breeding Bird Survey (BBS) 

between 1982 and 2012. The BBS is a longitudinal Citizen Science monitoring program 

with coverage including southern Canada and the USA since 1968. Every year, 

volunteers record detection data across more than 5200 predefined routes. Point counts 

are performed every 0.8 km across the entire length of the route (39.4 km) with visual or 

auditory observations considered within a 0.4 km radius, resulting in a total of 50 equally 

spaced point counts. Censuses are performed during the breeding season and most routes 

are re-visited annually. For each species, I selected routes that covered its entire range 

over the 30-year period. Only records conforming to BBS weather standards were 

included in the occupancy models. There were a total of 331 routes for the Golden-

winged Warbler and 632 routes for the Blue-winged Warbler, where each species had 

been detected at least once over the 30-year period. I used detection/non-detection data 

summarized over a composite of 10 stops, resulting in 5 spatial replicates for each route. 

Detection refers to a positive observation of a species, while non-detection refers to 

absence of the species. However, for the latter, non-detection may occur because the 

species is truly absent from the site, or the species may be present but not observed. Our 

measures of occupancy are thus interpreted at the scale of the route across the study 

region (Royle & Kery, 2007). Not all routes were surveyed over the 30-years, observers 

changed within and between routes, and routes were not run more than once a year. 

3.3.2 Environmental covariates 

I selected maximum temperature and the Normalized Difference Vegetation Index 

(NDVI) to describe variation in range-wide occupancy and related demographic 

parameters of extinction and colonization for both species. Maximum temperature is 

hypothesized to limit species distributions at broad spatial scales with extreme values 
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expected to directly influence thermoregulation or indirectly through trophic interactions 

(Cahill et al., 2013) and has been applied in other studies (Root, 1988, Venier et al., 

1999). Extreme short-term maximum temperature is expected to represent conditions that 

individuals experience directly in each location compared to long-term averages that 

likely underestimate the importance of short-term variability. Furthermore, short-term 

climate (i.e. weather) and the use of maximum temperature as a proxy for an extreme 

climatic event can influence, localized species distributions, relative to mean conditions 

(Bateman et al., 2012, Greenville et al., 2012). Monthly average daily maximum 

temperatures (degrees Celsius) were derived from the gridded CRU 3.2.1 dataset 

(resolution of 50 km) and were averaged across the three primary breeding months of 

May, June and July for each year from 1982 to 2012 (Harris et al., 2013). 

NDVI is an index of productivity, and vegetation cover and greenness 

(Hernández-Clemente et al., 2009). It is sensitive to changes in the amount of 

photosynthetic vegetation (Soudani et al., 2012) and is thus able to detect inter-annual 

variation in horizontal vegetation structure especially notable in the earlier stages of 

succession (Martinuzzi et al., 2012). I used NDVI as a measure of vegetation change to 

address the hypothesis that declines in productivity will positively influence extinction 

rates and negatively influence colonization. NDVI has been used previously in the 

context of understanding patterns in species’ distributions (e.g., Andrew et al., 2012) and 

may be linked to resource availability (Hurlbert, 2004). I derived seasonal measures of 

NDVI for each year between 1982 and 2012. NDVI is measured as the difference in 

reflectance between the near infrared and red bands divided by the sum of the two bands 

[(NIR – RED)/ (NIR + RED)]. The NDVI varies from -1 to 1, where negative values 

indicate an absence of vegetation (Myneni et al., 1995, Tucker et al., 2005). Data were 

obtained from the Global Inventory Modeling and Mapping Studies Satellite (GIMMS) 

data set that used the Advanced Very High Resolution Radiometer (AVHRR) instrument 

on the National Oceanic and Atmospheric Administration satellites (Tucker et al., 2005) 

at a resolution of 8 km. I developed time series of NDVI values averaged across each 

bimonthly period covering the months of May through July for each year between 1982 

and 2012, inclusive.  
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I spatially averaged covariate values across grid cells where a given BBS route 

was located. BBS routes across Canada (Environment Canada, 2012) and the USA 

(USGS Patuxent Wildlife Research Center, 2012) were combined into one spatial layer 

representing routes and any changes in location between the years 1982 and 2012, 

inclusive. Each covariate was standardized to a mean of 0 and a standard deviation of 1 

across all years to facilitate interpretation and convergence. None of the continuous 

covariates were correlated |r| > 0.45 (Pearson correlation coefficient). All spatial data 

were projected using the equal area Behrmann projection. 

3.3.3 Dynamic occupancy models 

I modeled inter-annual variation in occupancy for each species separately at the range-

wide scale between the years 1983 to 2012 applying the maximum likelihood based 

model of MacKenzie et al. (2003). This hierarchical model explicitly accounts for 

imperfect detection of a species, thus accounting for errors resulting from the observation 

process. Not accounting for detection probability may result in biased parameter 

estimates potentially influencing inference regarding the role of alternative covariates on 

species occupancy. Furthermore, occupancy may be under-estimated leading to incorrect 

statements regarding species extinction risks (Royle & Dorazio, 2008, Lahoz-Monfort et 

al., 2014). Two assumptions of this hierarchical model include (1) the absence of false 

detections and (2) the assumption of closure within the sampling period (i.e. occupancy 

does not change). For the latter assumption, I consider the breeding season as the 

sampling period, which conforms both to the time when the data are collected by BBS 

surveyors and when the Golden-winged and Blue-winged Warbler are found in this 

region as they are Nearctic-Neotropical migratory species. 

The dynamic (i.e. multi-year) occupancy model is a two-state first-order Markov 

chain. The model consists of two sub-models: (1) the ecological (i.e. state) process model 

and (2) the observation or detection model, which is dependent on the results of the 

ecological model, and describes the probability of detecting a species given that the site is 

occupied and thereby accounts for false negative errors (Type II error, or, error of 

omission). The ecological model is a function of the probabilities of colonization (γ) and 
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extinction (ε) and is conditional on the occupancy status in the previous time step (t). 

Specifically, the probability that a site is occupied in t+1 is a function of two 

probabilities: (1) the probability that the site was unoccupied at time t and was colonized 

between time t and t+1, plus (2) the probability that the site was occupied in t and did not 

go extinct in t+1 such as,  

          (     )   (    )      . 

This is also the equation for recursively calculating the derived probability of occupancy 

at time t+1. The linking of inter-annual dynamics accounts for temporal autocorrelation 

present in time-series data, whereby demographic estimates are not assumed to be 

independent (Royle & Dorazio, 2008). 

Hierarchical dynamic site-occupancy models consist of two nested binomial 

generalized linear models. The first model describes the true state of occurrence (present 

vs absent) of a species. The true state of occurrence of the study species at each site, zi, is 

binary and is modelled as a Bernoulli distributed random variable and represents the 

latent occurrence at a site,  

             (  ), 

where    is occupancy probability of the species at site i. To account for the observation 

process, the second logistic regression describes detection and non-detection conditional 

on the presence of the species. This model reflects the observed data, yi,j , for species at 

site i during the jth survey and is also distributed as a Bernoulli random variable with 

success rate the product of zi (true distribution) and detection probability pi,j such as, 

                  (       ). 

I incorporated site-specific covariates to model the first year probability of 

occupancy (ѱ1), extinction (ε), colonization (γ), and detection probabilities (p). First-year 

occupancy was modeled as function of the site-level covariates of maximum temperature 

and NDVI. Variation in detection probability was modelled as a function of a site-level 
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covariate, the date of the survey, due to the design of BBS surveys where routes are 

typically surveyed only once in a season, necessitating the use of spatial replicates. I 

ascribed the Julian date (hereafter DATE) representing the date each survey was run 

within a year, where numbering started on January 1st. I expected route surveys run later 

in the breeding season would result in lower detections.  

To assess the role of changes in climate relative to habitat dynamics, annual 

colonization and extinction probabilities were modelled as a function of maximum 

temperature (TMAX) and NDVI, for each site i and for each year t preceding the 

detection data. Because time lags may occur between species’ responsiveness to changing 

extrinsic conditions (Devictor et al., 2012, van de Pol et al., 2013), to capture the 

importance of annual temporal dynamics in climate and habitat, these covariates were 

specified for each site for each year, using a 1-year lag period (e.g., Gardner et al., 2014). 

Additionally, the naïve detection (i.e. not accounting for detection errors) for each species 

was included as a covariate for each of the opposing species (SP). I hypothesized that the 

presence of the alternate species as a covariate would negatively influence probability of 

extinction and positively influence colonization probability. 

3.3.4 Model selection, goodness of fit, and derived parameters 

To test for time-dependence effects in extinction, colonization, and detection parameters, 

I formulated the model using a means parameterization, such that an intercept   

represents the mean estimate in each year k across i sites. I compared time-dependent 

global models to models assuming constants rates over time. The most complex logistic 

model with covariate effects described first-year probability of occupancy across i sites 

as, 

  

     (    )                             
                          

  

                     , 

 



70 

 

 

 

while colonization (γ), extinction (ε), and detection (p) were modeled using a means 

parameterization of year k across i sites,  

     (    )                                      
                  

        
                                  , 

 

     (    )                                      
                  

        
                                 , 

 

     (    )                         . 

Based on initial comparisons, time-constant models in colonization, extinction, 

and detection parameters were not highly supportive, and thus I continued to evaluate all 

time-dependent model sets using a hierarchical approach (Kéry et al., 2010, Sadoti et al., 

2013). I developed a global model and evaluated model subsets using backward variable 

selection in three stages corresponding to the three parameters with >1 covariate: first-

year occupancy, colonization, and extinction. Keeping all variables constant for 

colonization and extinction probability, I sequentially removed variables from first-year 

occupancy. I adhered to certain constraints, such as the retention of linear effects when 

higher order quadratic or interactions were included in the model. I selected the model 

with the lowest AIC (or within 2 AIC values) and performed the second stage of model 

selection on colonization based on the previously described procedure. Stage three 

focused on model selection for extinction probability.  

Models were evaluated using information-theoretic model selection methods 

using AIC, which is defined as -2logL(θ||y) + 2K, where logL(θ||y) is the maximized log-

likelihood of the model parameters given the data and K is the number of estimable 

parameters (Burnham, 2002). I discarded models that did not converge (only two, Blue-

winged Warbler: time constant, and model with time on detection). All competitive 
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models were inspected to ensure that none contained non-informative parameters if 

falling within 2 AIC of the top supported model (Arnold, 2010). Model sets for each 

species resulted in models with relatively equal support based on the <2 AIC criteria, for 

which I subsequently applied model-averaging techniques.  

To describe uncertainty in the derived parameter, annual probability of occupancy 

in all but the first year, I applied a nonparameteric bootstrapping using 1000 replicates. 

Goodness of fit of the top model was assessed using a parameteric bootstrapping 

procedure, with 1000 replications, and is based on the chi-square test statistic (Kéry et al., 

2010). I measured turnover (tau) to provide an estimate of annual variation in the rate of 

reestablishment of a previously occupied site, (i.e. Pr(z[i, t-1] = 0 | z[i, t] = 1), where 

tau =  γt-1 × (1- Ψt-1 ) / (γt-1 × (1- Ψt-1 ) + Φ t-1 × Ψt-1), 

(Royle & Dorazio, 2008). Turnover estimates were based on 1000 parameteric 

bootstrapped simulations. 

All analyses were performed with R, version 2.15.3 (R Core Team, 2013). Species co-

occurrence metrics and null model runs were performed using the package ‘bipartite’ 

(Dormann et al., 2008a) and ‘vegan’ (Oksanen et al., 2013), and the hierarchical dynamic 

occupancy models were run using the package ‘unmarked’ (Fiske & Chandler, 2011). 

3.3.5 Quantifying patterns of species co-occurrence 

To measure temporal patterns in spatial segregation I used the C-score, which quantifies 

the degree of occurrence between species, leading to checkerboard patterns of species 

occurrences (Stone & Roberts, 1992). The C-score is calculated as (Ri – S) × (Rj – S) 

where S is the number of shared occurrences between species i and j. Ri and Rj represent 

the total number of occurrences of species i and j.  Higher index values indicate less 

overlap and more segregation between pairs of species, while lower values indicate more 

aggregation in species co-occurrences. The togetherness metric was calculated to quantify 

the degree that the two species have identical patterns of occurrences, while jointly 

avoiding a site (Stone & Roberts, 1992). I calculated both metrics for the two focal 
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species, for each year between 1983 and 2012, inclusive, to evaluate the temporal 

variability in co-occurrence patterns. Metrics were normalized to scale between 0 and 1 

to enable comparisons between years. I expected to find increasing levels of segregation 

over time based on previous work suggesting a role for competition between the two 

focal species (Confer et al., 2003).  

Given that the C-score is sensitive to the total number of occupied sites and 

number of shared occurrences, yearly C-scores were tested against a fixed-fixed null 

model. This form of null model preserves both row (sites, i.e. breeding bird survey 

routes) and column (species) totals with each simulation, such that the frequencies of 

occurrences are the same as the original data (Gotelli & Ellison, 2002). Random matrices 

were simulated by swapping random sub-matrices of the original site by species matrix. 

This method of null model construction, in combination with C-score quantification, has 

good statistical properties that reduces the chance of Type I and Type II errors and has 

sufficient power to detect deviation from non-random patterns (Gotelli, 2000, Gotelli & 

Ulrich, 2011). Null model runs were performed using 1000 burn-in iterations to remove 

the influence of transient effects, a thinning rate of 10, and a final construction of 100,000 

random matrices. If the observed distribution is significantly larger than a null 

distribution, there is increased spatial segregation (less overlap in species occurrences) 

than expected by chance. Conversely, if the observed distribution is significantly smaller 

than the null distribution, there is higher spatial aggregation than expected by chance. 

Similar methods and null model specifications are commonly employed (Ulrich et al., 

2012, Heino, 2013, Larsen & Ormerod, 2014). 

3.3.6 Measures of niche overlap 

I measured niche overlap and divergence to address whether there is evidence for 

temporal changes in niche properties for each species over the 30-year period, and 

whether niches differ between species. For each species I measured niche overlap 

between the first (1983-1987, hereafter time 1) and last five-years (1998-2012, hereafter 

time 2) of the 30-year period. I spatially averaged environmental covariates for each of 

time 1 and 2, and summarized species occurrences by considering any BBS route where 
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the species was recorded at least once as a ‘presence’. Interspecific niche overlap 

consisted of comparisons between species within the same time period. Niche overlap 

was measured in multivariate environmental space using Principal Components Analysis 

(PCA) after Broennimann et al. (2012) using Schoener’s D-statistic that varies between 0 

and 1, representing no and complete overlap, respectively. A kernel density function was 

applied to each species and time period to smooth density of occurrences in 

environmental space, a procedure addresses the problem of biases introduced due to 

variation in sampling effort and available habitat (Broennimann et al., 2012). I applied 

two permutation tests to evaluate statistically the condition of niche equivalency and 

niche similarity (Warren et al., 2008). Niche equivalency tests the null hypothesis that 

niches are identical whereby the empirical overlap between two time periods (or two 

species within a time period, see below) is compared to a distribution of simulated 

measures of overlap. The latter is calculated based on a random sample of pooled 

occurrences between the two periods, whereby the number of occurrences for each period 

is preserved. Secondly, I applied tests of niche similarity to test the hypothesis that 

observed niche overlap is not different from overlap measured based on observed niche in 

one time and random assignment of niche space in the second time period. If measures of 

overlap are greater than 95% of simulated values, niches are more similar than expected 

by chance, based on environmental conditions available in both periods.  

Tests of niche similarity require delimiting an environmental background for 

sampling, and results may be sensitive to this parameterization (Warren et al., 2008, 

Broennimann et al., 2012). I evaluated the sensitivity of this result by applying two 

backgrounds: (1) using a biogeographic method to characterize habitat availability and 

selecting ecoregions where the species was detected, and (2) by selecting regions within a 

50 km radius of each location. I selected 50 km as representing a plausible rate of 

movement and expansion over the 5-year time periods of comparisons based on empirical 

estimates of range expansion across a diversity of avian species (Chen et al., 2011b). The 

results were not sensitive to this variation and results are based on the 50 km radius 

outcomes. Permutation tests were run with 1000 replicates using R v. 15.3 based on code 

in (Broennimann et al., 2012). 
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3.4 Results  

3.4.1 Temporal variation in occupancy dynamics 

Based on model selection results for both species, there was strong evidence for time-

dependent models of extinction, colonization, and detection probabilities (Table 3.9.1, 

3.9.2), illustrating the non-stationarity in yearly parameter estimates. However, the 

parameterization of the most supported models differed between species. Given the data, 

six models for the Golden-winged Warbler had high levels of support with ΔAIC values 

<2. Based on the hierarchical model selection methods employed, the highest ranked 

models differed based on the covariates included on the extinction term. All six models 

included linear effects for temperature and NDVI, and the occurrence of the Blue-winged 

Warbler on the extinction term. They differed in their combinations of quadratic and 

interaction effects of the two environmental covariates. I was unable to derive model 

averaged parameter estimates across the six models due to the use of the difference 

model. Thus I subsequently focus on the highest ranked model in terms of AIC. 

Goodness-of-fit tests based on parametric bootstrap simulations (n= 1000) revealed no 

evidence for lack of fit for the Golden-winged Warbler (p = 0.33). 

General trends in expected occupancy when adjusted to account for inter-annual 

variability in detection probabilities indicated a declining trend in occupancy from 1983 

to 2012 (Fig. 3.8.1). Expected occupancy was approximately 1.5 times lower in the latter 

15 years of the study period relative to the first (mean1983-1997 ± SD = 0.463 ± 0.063, 

mean1998-2012  = 0.304 ± 0.0454; Fig. 3.8.2). The importance of accounting for detection 

estimates (mean1983-1997 = 0.199 ± 0.0385, mean1998-2012 = 0.218 ± 0.050) was evident 

based on uncorrected naïve occupancy estimates (mean1983-1997 ± SD = 0.296 ± 0.0417, 

mean1998-2012 = 0.199 ± 0.0385). Despite variability in annual colonization estimates, 

probabilities were very low, and declined between the first 15 years and last 14 years 

(extinctions and colonizations are estimated for the following year, resulting in n-1 years) 

(mean1983-1997 ± SD = 0.157 ± 0.097, mean1998-2011 = 0.073 ± 0.045). Extinction rates in 

the absence of the Blue-winged exhibited large inter-annual variation and were on 

average higher relative to colonization estimates (mean1983-1997 ± SD = 0.152 ± 0.120, 
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mean1998-2012 = 0.171 ± 0.109). Detection probability varied inter-annually and as 

expected, inversely as a function of Julian date within a year. 

Factors influencing distribution of the Golden-winged Warbler differed depending 

on the parameter under consideration, where the size of the coefficients adjusted by their 

standard errors of the different covariates reflects the relative magnitude of effects (Cross 

& Beissinger, 2001). First-year occupancy of the Golden-winged Warbler model was 

influenced by maximum temperature and NDVI, and their interaction; however none of 

these estimates were significant (Table 3.7.1; Fig. 3.8.3). Similarly, despite significant 

effects of time across most years, parameter estimates for temperature and NDVI had 

negligible effects on colonization probabilities. These estimates were uninformative; 

based on non-significance and large 95% confidence intervals overlapping 0, however, 

they were included in the final model as they contributed to large net reductions in AIC. 

Based on the best supported model, extinction probabilities were influenced by maximum 

temperature and NDVI, but in opposite directions. Both linear covariate terms were 

significant with extinction positively related with maximum temperature and negatively 

associated with NDVI. The inclusion of naïve detections of the Blue-winged Warbler on 

the extinction probability term resulted in significantly larger extinction estimates when it 

was detected at a site (Fig. 3.8.4).  

Based on information theoretic methods, only one model had a high level of 

support for the Blue-winged Warbler (Table 3.7.2). There was no evidence of lack of fit 

based on 1000 parametric bootstrap runs (p = 0.67). My retrospective analysis of Blue-

winged Warbler occupancy patterns revealed inter-annual variability in predicted 

occupancy adjusted to account for detection probability, however, in contrast to the 

Golden-winged, changes in occupancy between the first and last 15 years were minimal 

(mean1983-1997 = 0.461 ± 0.0343, mean1998-2012 = 0.465 ± 0.0353; Fig. 3.8.2). Accounting 

for detection estimates (mean1983-1997 = 0.294 ± 0.0345 mean1998-2012 = 0.208 ± 0.0273) 

resulted in substantive differences from naïve occupancy estimates (mean1983-1997 = 0.361 

± 0.0434 SD, mean1998-2012 = 0.318 ± 0.0349) (Figs. 3.8.2, 3.8.5). There was an effect of 

time on detection probability which was influenced within a year by date of survey with 
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the average probability declining later in the breeding season.  Colonization probabilities 

were relatively constant over time and small (mean1983-1997 = 0.134 ± 0.034, mean1998-2011 

= 0.128 ± 0.032), and extinction probabilities increased slightly between the first 15 years 

and latter 14 years (mean1983-1997 = 0.122 ± 0.039, mean1998-2012 = 0.151 ± 0.070). 

In contrast to the Golden-winged Warbler, the Blue-winged Warbler model 

depicted more complex relationships between each response and the covariates. 

Covariates describing occupancy probability were significant and estimates were highest 

at intermediate levels of NDVI and maximum temperature (Table 3.7.2, Fig. 3.8.3). 

Colonization varied annually and was highest at low maximum temperatures and low 

NDVI, however the significant interaction effect between the two covariates suggested 

higher probabilities were also associated with high temperatures and high NDVI, 

although the relationship was weaker. Extinction probabilities were lowest at high NDVI 

(>8000) within an intermediate temperature range, and also lowest at low levels of NDVI 

and a broader range of temperatures. There was a significant positive association with 

Golden-winged Warbler detections and extinction probability, although based on 

standardized regression coefficients this covariate was ranked 4
th

 out of 6 (where 1 is 

highest magnitude) due to large standard errors (Figs. 3.8.3, 3.8.6). 

Turnover rates for both species exhibited inter-annual variability (Fig. 3.8.7).  

Annual rates ranged between average estimates of 0.00000349 and 0.6695 (mean ± SD, 

0.1877 ± 0.1575, n=1000 bootstrapped samples) and 0.0869 and 0.308 (mean ± SD, 

0.166 ± 0.0555) for the Golden-winged and Blue-winged Warblers, respectively. 

3.4.2 Patterns of species occurrences 

A comparison of naïve occupancy estimates (i.e. not accounting for detection probability) 

illustrates two striking patterns, (1) range-wide estimates of naïve occupancy between the 

two species begins to diverge in the mid-1990s, with the Golden-winged exhibiting larger 

apparent decline, and (2) proportional representation of the Blue-winged within the 

Golden-winged Warbler range has increased slightly over time and since 2005 has 

achieved occupancy levels similar to the Golden-winged (Fig. 3.8.8).  
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Despite similar naïve occupancy estimates across the two species within the 

Golden-winged Warbler range, C-score estimates suggest a high degree of spatial 

segregation in the actualized pattern of occupancy (Fig. 3.8.9). Over time, the C-score 

generally increased from 0.7930 ± 0.0455 (mean ± SD over first five years) to 0.8913 ± 

0.0422 (mean ± SD over last five years), indicating increased spatial segregation over 

time. C-score metrics were significant for most years based on null model randomization 

tests (p < 0.05). The togetherness score were overall low and decreased on average from 

the first five to last five years (0.106 ± 0.0254 to 0.0625 ± 0.0239), suggesting a decline 

in the number of joint occurrences on surveyed BBS routes, with two-third of all years 

resulting in significance based on null on model tests (p < 0.05). 

3.4.3 Tests of niche equivalency and similarity 

Across both intraspecific temporal niche comparisons and interspecific niche 

comparisons, the observed measures of niche overlap based on Schoener’s D-statistic fell 

below the 95% confidence intervals based on tests of niche equivalency, suggesting that 

niches between all species and time period combinations were not identical (Table 3.7.3). 

Niche overlap index values were highest for temporal niche comparisons of Golden-

winged Warblers and lowest for temporal niche comparisons of the Blue-winged. 

Interspecific niche overlap indices (i.e. between congenerics) was higher in both periods 

(1983-1987 and 1998-2012) than temporal niche overlap of the Blue-winged Warblers. 

Tests of niche similarity revealed that in all but one case, niche overlap was more similar 

than expected by chance from the environmental conditions available, based on higher 

overlap values than the null distributions. Randomization tests were not significant for 

Blue-winged Warblers when comparing time 1 to random selection of time 2 

distributions, but were significantly similar in the other direction. Golden-winged 

Warbler niche breadth was narrower across both maximum temperature and NDVI axes, 

was detected at sites that were on average 2°C cooler and regardless of 5-year period 

occurred within a subset of NDVI conditions relative to its congeneric (Table 3.7.4; Figs. 

3.8.10 - 3.8.12). The Blue-winged Warbler was detected across a much wider spread of 

habitat conditions based on NDVI values, which were on average slightly higher than the 

Golden-winged Warbler.  
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3.5 Discussion 

In an era characterized by increasing rates and extents of environmental change, an 

understanding of factors influencing species range dynamics has never been more salient. 

The predominance of correlative approaches for approximating expected future species’ 

distributions relies heavily on the assumption of species equilibrium, with environmental 

covariates typically summarizing long-term averages. Notwithstanding the biological 

significance of long-term averages, few studies explore fine-scale temporal variability in 

environmental conditions on species range dynamics at large spatial extents. I have 

shown that inter-annual variation in weather and habitat successional dynamics are 

associated with species range dynamics of two congeneric species. By relating short-term 

extrinsic environmental conditions to changes in local extinction rates, my results enable 

us to understand their relevance as drivers of the demographic processes that underlie 

range dynamics. The strength of our hierarchical modeling approach includes integration 

of time-dependent covariates thought to contribute to changes in population-level 

processes while simultaneously accounting for spatial and temporal variation in detection 

probabilities. 

 Methods that enable inference between demographic processes that drive species 

distributions and multiple competing hypotheses regarding species declines are important 

for understanding the consequences of environmental change on broad-scale range 

dynamics. Notably, I have demonstrated the importance of considering fine temporal 

scale variation of extrinsic environmental changes on occupancy dynamics. While much 

research has focused on understanding the consequences of long-term average climate 

change on species range-wide distributions, my results emphasize the important 

contributions of short-term changes in extreme temperature on time-dependent occupancy 

probabilities. Temporal variations in weather have shown to be important for explaining 

broad-scale distributions over shorter time scales (Reside et al., 2010, Bateman et al., 

2012, Greenville et al., 2012), which highlights the relevance of variables that describe 

localized conditions in time. Variables that capture weather and extreme events that 

characterize the conditions individuals are exposed to in the short-term are of particular 

importance when these coincide with critical sensitive life history stages, for example by 
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lowering reproductive success (Langin et al., 2009, Albright et al., 2011, Levine et al., 

2011). My work in particular, provides evidence for an association between short-term 

climate extremes and the probability that sites become locally extinct. With the 

magnitude and frequency of extreme weather events expected to increase (IPCC, 2012), 

my findings underscore the importance of addressing the effects of finer temporal-scale 

variation in extreme climate events on species persistence alongside the role of long-term 

climate means on species’ distributional shifts. 

The variability and apparent idiosyncrasy in observed changes in species 

distributions over time and space has focused attention towards consideration of biotic 

interactions and direct measures of habitat change in addition to abiotic factors (Van der 

Putten et al., 2010, Mair et al., 2012, González-Salazar et al., 2013, Wisz et al., 2013). In 

the context of both improving understanding of species responses to multiple stressors 

and development of sound management practices, a focus on the relative importance of 

multiple factors is required.  Based on the temporal scale of analysis, factors associated 

with increased extinction risk were species-specific but biotic factors consistently 

contributed to larger magnitude of effects relative to abiotic (maximum temperature) 

elements. The highest ranking covariate associated with Golden-winged Warbler 

extinction probabilities was the occurrence of its congeneric species at a site, providing 

additional support for the long-held view that Blue-winged Warblers replace Golden-

winged Warblers (Gill, 1997, Gill, 2004). Regardless of the significance of this 

association, it remains challenging to elucidate specific mechanisms by which this occurs. 

Despite local-scale evidence for interference competition of the dominant Blue-winged 

Warbler (Confer et al., 2003), patterns of sympatry suggest that the strength of such 

interactions is insufficient on its own to contribute to replacement patterns between the 

species (Confer, 2006). Other postulated non-mutually exclusive mechanisms that require 

further testing include the potential for priority effects following spring migration, 

resource exploitation of available habitats by the typically more relatively abundant Blue-

winged Warbler, and Allee effects associated with small populations. Finally, temporal 

variation in occupancy may result from limiting factors occurring during the migration 

period and throughout the nonbreeding season (Wilson et al., 2011). Nonetheless, I have 
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addressed both known (habitat loss, presence of congeneric for the Golden-winged 

Warbler) and hypothesized (climate change) threatening processes associated with the 

breeding season (Buehler et al., 2007). This advances our understanding of drivers of 

temporal variation of range dynamics for these two species, and provides support for the 

integration of finer-scale temporal dynamics of threatening processes. 

Despite the reliance of higher trophic level consumer species on habitat features 

(i.e. vegetation structure and composition), there still remains a relatively poor 

understanding of their potentially interacting effects on range-wide species’ distributions 

(Warren et al., 2001, Sarmento Cabral et al., 2013). My results show that changes in 

habitat, using NDVI as a proxy, were strongly associated with extinction risk at broad 

scales. Further, when accounting for standard errors of covariate parameter estimates, 

NDVI was consistently ranked higher with respect to magnitude of effect on expected 

extinction probabilities for both species relative to extreme temperature. This strong 

signal of inter-annual habitat dynamics on estimated extinction probabilities suggests that 

species are responding to proximate changes in habitat at fine temporal scales. Indeed, 

broad-scale land-use changes leading to loss of early successional habitats due to 

afforestation have been implicated in regional declines in Golden-winged Warbler 

populations (Litvaitis, 1993). In addition to the narrow habitat breadth of Golden-winged 

Warblers, these early successional habitats are likely to occur in this stage for relatively 

short periods of time, which combined with regional patterns of afforestation amplify 

these habitats as limiting factors. Despite the relatively few studies that consider both 

habitat and climate changes on species’ distributions (Clavero et al., 2011), these findings 

emphasize the need to consider short-term dynamics of habitat changes, which may arise 

due to natural processes such as succession or anthropogenic causes resulting in land-use 

land-cover change.  

The relative importance of extrinsic factors on species’ range dynamics are likely 

to vary as a function of the temporal and spatial scale under consideration. In this work, I 

focused on the importance of habitat and climate variation at a single temporal scale 

(annual), and thus the results do not preclude the relevance of longer-term climate change 
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averages on species’ distributions. My selection of covariates and time-frames was driven 

by the expectation that birds possess life-history strategies that increase individual 

responsiveness to short-term changes in extreme climate events or habitat conditions 

(Parmesan, 2001).While most distribution models address the role of abiotic factors fixed 

on coarse temporal scales (i.e. >5 years), fine temporal scales are more likely to match 

the scale at which populations respond, and informs us of conditions faced by individuals 

(Guisan & Thuiller, 2005, van de Pol et al., 2013). While time-lags in species’ 

responsiveness to climate changes have been suggested (Menéndez et al., 2006, Devictor 

et al., 2012, La Sorte & Jetz, 2012), these studies have applied different approaches that 

included assessments using only portions of species’ ranges, emphasized changes in 

range boundaries, and generally applied long-term climate means. Further work 

examining the role of the scale of time-lagged responses could provide information 

relevant for population dynamics and development of ecologically fine-tuned predictive 

models under climate change. Despite, this previous studies have applied similar scales of 

temporally lagged data for similar species (e.g., Wilson et al., 2011, Price et al., 2013, 

Gardner et al., 2014).  Consideration of finer spatial scale information such as percent 

forest cover or microclimate (Streby et al., 2012, Potter et al., 2013) or other indices of 

extreme climate such as magnitudes of drought or heat waves (e.g., Albright et al., 2010), 

provide directions for further inquiry. By conducting this analysis at the range-wide scale 

and focusing on estimation of the underlying processes of extinction and colonization that 

drive range dynamics, I overcome some of the limitations of other approaches and 

provide more complete picture of broad-scale pattern and processes. 

By applying multiple approaches to understand species range dynamics, I provide 

a more comprehensive picture of the temporal and spatial range dynamics as they relate 

to multiple niche axes. The range-wide characterization of niche breadth is consistent 

with more localised accounts that the Golden-winged Warbler is considered a habitat 

specialist relative to its congeneric (Confer & Knapp, 1981), tending to occur in a narrow 

range of habitat conditions (NDVI) which are generally a subset of the Blue-winged 

Warbler’s broader habitat preferences. Tests of niche similarity between both species 

imply that observed niche differentiation is a function of habitat preferences and not due 



82 

 

 

 

to temperature and NDVI differences between the available habitats. Niche 

differentiation between the two congeneric species occurs primarily along the maximum 

temperature gradient with the Golden-winged occupying cooler regions on average and 

the Blue-winged occurring across a broader range of thermal conditions. Species with 

narrow niche breadths are often more vulnerable to extinction (Gaston & Fuller, 2009, 

Devictor et al., 2010), which is reflected in the temporal trend in declining range-wide 

expected occupancy for the Golden-winged Warbler. In combination with the dynamic 

occupancy models, management for population recovery or retention in regions devoid of 

Blue-winged Warblers with a focus on maintaining or creation of habitat reflecting 

optimal conditions is a likely relevant approach. 

Evidence for temporal niche conservatism suggests species’ are responding to 

changing climates by moving into favourable conditions, and can be an important gauge 

of species’ ability to buffer changing climatic conditions (Devictor et al., 2012). These 

results suggest that both species are niche tracking based on contemporary temporal 

comparisons of niche breadth and tests of niche similarity for each species between 1983-

1987 and 1998-2012. However, evidence of niche conservatism on its own does not 

provide information about range shifts per se nor population status. While both species 

have significantly similar contemporary niches than expected by chance, temporal trends 

in expected range-wide occupancy over the 30-year period were clearly divergent 

between the two species. Furthermore, the Golden-winged Warbler appears to be 

occupying cooler regions than it has in the past (Fig, 3.8.11). These cooler areas tend to 

occur along its expansion front, in areas that are largely devoid of the Blue-winged 

Warbler. Local extinction from warm-edge areas were in many cases within thermal 

niche breadth of the Golden-winged Warbler, but have been colonized by its congeneric. 

Whether these cooler regions truly represent marginal conditions often associated with 

range edges and potential sinks (Caughley et al., 1988, Sexton et al., 2009) and whether 

causal reasons for occupancy are related to expansion pressure from the Blue-winged 

Warbler requires further research. Local-scale studies targeting demographic variation 

across environmental gradients and varying levels of co-occurrence of its congeneric 
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would provide valuable insights into population responses and limitation associated with 

more marginal environmental conditions.  

Dynamic occupancy models are a powerful modeling approach in part as it is 

possible to capture time-dependent variation in parameters as a function of dynamic 

variables hypothesized to influence range dynamics, thus providing the potential to 

inform management actions addressing declines. For both species, species-specific 

relationships between temperature, habitat, and congeneric occurrence were strongly 

related to extinction probabilities. However, covariate relationships were generally not 

detected in relation to colonization probabilities, except in the case of the Blue-winged 

Warbler where there was a statistically significant interaction effect between NDVI and 

temperature. There are a number of plausible reasons for this outcome. For both species, 

time-dependency in colonization estimates were important, however, for the Golden-

winged in particular, colonization events were generally low in any given year precluding 

identification of significant covariates. Despite this, the directionality of covariate effects 

was in the expected direction (e.g., increasing temperature and NDVI associated with 

opposite trends). As colonization probability may be related to the presence of 

conspecifics, including a measure of spatial autocorrelation of occupancy may have 

revealed important associations (Melles et al., 2011, Altwegg et al., 2013, Bled et al., 

2013). It is possible explanatory variables were summarized at a scale too coarse to 

adequately capture the colonization process, while the use of population-level abundance 

data may have revealed important associations not possible by using binary presence-

absence. Interestingly, in other dynamic models specified at large scales, relationships 

between colonization and explanatory variables generally remained marginal in their 

significance (e.g., Sadoti et al., 2013).  

I assumed associations between temperature extremes influenced range dynamics 

of focal avian species and but habitat temporal dynamics were independent of climate 

change influences. While vegetation may act as a proxy for climate, and cross-scale 

feedbacks between climate, vegetation, and wildlife are expected (Soranno et al., 2014), I 

have presented a simplified analysis to illustrate the fundamental importance of time-
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varying dynamics of climate and habitat on range dynamics, which are generally not 

considered. Given my focus on inter-annual variability in temperature and habitat, I 

believe this assumption is warranted due in part to the short temporal scale of analysis. In 

addition, previous work demonstrating a link between climate change, in particular 

precipitation, on inter-annual variability of NDVI suggests our use of NDVI captured 

vegetation response to climate change, despite not directly accounting for its effect 

(Krishnaswamy et al., 2013, Zeng et al., 2013). Although the influence of climatic 

extremes on plants remains largely understudied (Reyer et al., 2013), the lag in response 

time of plant species to changing climate conditions is likely more pronounced given the 

intrinsic ability of birds to more quickly respond to changing extrinsic conditions 

(Kissling et al., 2010).  

 Finally, I did not explicitly include hybrids of both focal species in the analysis. 

Both the Golden-winged and Blue-winged Warbler can produce viable hybrid offspring, 

which tend to exhibit distinct phenotypes. Hybridization with Blue-winged Warblers is 

considered a threat to declining pure Golden-winged Warbler types, in addition to loss of 

habitat due to forest maturation (Litvaitis, 1993, Gill, 1997, Vallender et al., 2009a). 

However, recent studies demonstrate that genetic introgression is likely more 

symmetrical between the two species than previously thought, implying that 

hybridization may not favour one species over the other (Shapiro et al., 2004, Dabrowski 

et al., 2005, Vallender et al., 2009b). If the pattern of hybridization is spatially 

homogenous then potential errors and biases associated with species misidentification 

(Miller et al., 2011) due to cryptic hybridization (Vallender et al., 2009a) may be 

minimized, or at least be equivalent across species.  

Methods to understand the relative importance of multiple environmental factors 

on broad-scale species ranges generally use distribution modeling based on discrete time 

periods summarizing long-term climate averages, and few include habitat dynamics. Such 

static approaches have so far been challenged methodologically with limits in particular 

related to assumptions of species equilibrium. These results add to the body of knowledge 

on the importance of short-term dynamics in both climate and habitat factors as limiting 

agents on species range dynamics. Long-term longitudinal monitoring data contributes 

vastly to our understanding of population dynamics at broad scales, providing process-
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based insights into the consequences of global changes. This retrospective analysis 

emphasizes the important associations between time-varying environmental conditions 

and wildlife responses, however, such understandings rely critically on data collected 

over the long-term, at both broad spatial extents and over fine-scale time periods 

(Magurran et al., 2010). The use of remotely sensed NDVI as a habitat proxy suggests 

that fine-scale inter-annual variation in horizontal vegetation structure especially notable 

in the earlier stages of succession (Martinuzzi et al., 2012) captured important variations 

in occupancy dynamics, and importantly differences between occupied habitats of the 

two species. I have shown here how both dynamic occupancy modelling and quantitative 

comparisons of measures of niche overlap provide complementary insights into temporal 

range dynamics. The application of modeling approach that accounts for imperfect 

detection revealed demographic non-stationarity in relation to time-varying covariates 

representing multiple factors hypothesized to influence species’ distributional changes. 

This research adds to the body of evidence underscoring the importance of biotic factors 

as an integral component of models of species’ distributions and their range dynamics, 

and the need to consider finer-temporal scale variation in dynamic threats. 
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3.7 Tables 

Table 3.7.1 Parameter estimates for the top ranked dynamic occupancy model of the 

Golden-winged Warbler. Psi: first year occupancy, gamma: colonization, eps: extinction, 

and p: detection probabilities. 

Model 

psi~1 gamma~ (year - 1) + tmxs + ndvis + tmxs * ndvis  eps~ (year - 1) + tmxs + ndvis + bwcov  

p~ (year - 1) + jul 

Initial: Estimate SE z P(>|z|) 

 

-0.103 0.216 -0.477 0.633 

Colonization Estimate SE z P(>|z|) 

year1983 -0.5924 0.4107 -1.442 1.49E-01 

year1984 -1.698 0.6 -2.83 4.66E-03 

year1985 -0.9908 0.5005 -1.98 4.77E-02 

year1986 -1.6375 0.7067 -2.317 2.05E-02 

year1987 -1.0728 1.2969 -0.827 4.08E-01 

year1988 -4.6637 36.411 -0.128 8.98E-01 

year1989 -2.2799 0.797 -2.861 4.23E-03 

year1990 -2.7776 0.8019 -3.464 5.33E-04 

year1991 -2.3796 0.6332 -3.758 1.71E-04 

year1992 -1.1102 0.4051 -2.741 6.13E-03 

year1993 -2.6235 0.8031 -3.267 1.09E-03 

year1994 -1.7262 0.3866 -4.465 8.01E-06 

year1995 -1.9728 0.3977 -4.961 7.02E-07 

year1996 -1.5678 0.3283 -4.775 1.80E-06 

year1997 -2.0574 0.4206 -4.892 1.00E-06 

year1998 -2.602 0.4745 -5.484 4.16E-08 

year1999 -1.7156 0.4027 -4.261 2.04E-05 

year2000 -2.2348 0.7291 -3.065 2.18E-03 

year2001 -3.6071 1.4374 -2.509 1.21E-02 

year2002 -1.851 0.3616 -5.119 3.07E-07 

year2003 -3.2838 0.8669 -3.788 1.52E-04 

year2004 -2.3332 0.3872 -6.026 1.68E-09 
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year2005 -2.9769 0.6327 -4.705 2.54E-06 

year2006 -2.1314 0.3861 -5.521 3.38E-08 

year2007 -3.5125 0.9269 -3.79 1.51E-04 

year2008 -2.1492 0.3819 -5.628 1.82E-08 

year2009 -3.3968 0.9003 -3.773 1.61E-04 

year2010 -9.6056 13.1603 -0.73 4.65E-01 

year2011 -2.5628 0.6048 -4.238 2.26E-05 

Tmxs -0.1452 0.0935 -1.553 1.20E-01 

Ndvis -0.0157 0.0782 -0.201 8.41E-01 

tmxs:ndvis -0.1334 0.0767 -1.738 8.22E-02 

Extinction: Estimate SE z P(>|z|) 

year1983 -2.1939 0.822 -2.67 7.63E-03 

year1984 -0.0546 0.454 -0.12 9.04E-01 

year1985 -1.8489 0.768 -2.41 1.60E-02 

year1986 -1.4982 0.676 -2.22 2.66E-02 

year1987 -1.862 0.562 -3.31 9.24E-04 

year1988 -2.8232 0.814 -3.47 5.21E-04 

year1989 -1.9919 0.487 -4.09 4.38E-05 

year1990 -3.5754 1.313 -2.72 6.46E-03 

year1991 -2.1369 0.563 -3.8 1.46E-04 

year1992 -3.172 1.168 -2.72 6.61E-03 

year1993 -0.7363 0.326 -2.26 2.39E-02 

year1994 -1.7799 0.536 -3.32 9.05E-04 

year1995 -1.4143 0.348 -4.06 4.83E-05 

year1996 -2.0143 0.501 -4.02 5.75E-05 

year1997 -0.8254 0.353 -2.34 1.93E-02 

year1998 -0.6259 0.367 -1.71 8.82E-02 

year1999 -2.4202 0.787 -3.07 2.11E-03 

year2000 -2.6519 0.788 -3.36 7.69E-04 

year2001 -0.7462 0.344 -2.17 3.02E-02 

year2002 -2.1763 0.771 -2.82 4.75E-03 

year2003 -0.6215 0.331 -1.88 6.08E-02 

year2004 -2.8361 1.318 -2.15 3.14E-02 
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year2005 -1.3176 0.452 -2.92 3.55E-03 

year2006 -2.0996 0.581 -3.62 2.99E-04 

year2007 -2.4364 0.9 -2.71 6.81E-03 

year2008 -1.8703 0.605 -3.09 1.98E-03 

year2009 -3.0425 1.887 -1.61 1.07E-01 

year2010 -1.2057 0.567 -2.13 3.34E-02 

year2011 -1.5424 1.4 -1.1 2.71E-01 

Tmxs 0.2868 0.113 2.55 1.08E-02 

Ndvis -0.4055 0.101 -4 6.31E-05 

bwcov1 1.3324 0.209 6.37 1.92E-10 

Detection: Estimate SE z P(>|z|) 

year1983 -1.095 0.1565 -7 2.61E-12 

year1984 -1.413 0.1491 -9.47 2.74E-21 

year1985 -1.365 0.2375 -5.75 9.06E-09 

year1986 -1.683 0.1813 -9.28 1.64E-20 

year1987 -1.612 0.1684 -9.57 1.05E-21 

year1988 -1.755 0.3031 -5.79 7.08E-09 

year1989 -1.383 0.1351 -10.23 1.43E-24 

year1990 -1.534 0.1373 -11.17 5.78E-29 

year1991 -1.675 0.1351 -12.4 2.59E-35 

year1992 -1.34 0.1273 -10.53 6.30E-26 

year1993 -1.629 0.1291 -12.62 1.72E-36 

year1994 -1.203 0.1264 -9.51 1.85E-21 

year1995 -1.332 0.129 -10.32 5.68E-25 

year1996 -1 0.1223 -8.17 2.99E-16 

year1997 -1.081 0.1257 -8.6 8.14E-18 

year1998 -1.185 0.1382 -8.57 1.03E-17 

year1999 -1.194 0.1652 -7.23 4.92E-13 

year2000 -1.656 0.1692 -9.79 1.22E-22 

year2001 -1.838 0.1788 -10.28 8.90E-25 

year2002 -0.841 0.1514 -5.56 2.77E-08 

year2003 -1.277 0.1468 -8.7 3.36E-18 

year2004 -0.732 0.1617 -4.53 6.03E-06 
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year2005 -1.355 0.1766 -7.67 1.74E-14 

year2006 -1.196 0.1589 -7.52 5.34E-14 

year2007 -1.375 0.1469 -9.36 7.74E-21 

year2008 -1.132 0.1525 -7.42 1.14E-13 

year2009 -1.499 0.1651 -9.08 1.12E-19 

year2010 -1.633 0.162 -10.08 7.08E-24 

year2011 -1.164 0.1711 -6.8 1.01E-11 

year2012 -1.416 0.2625 -5.39 6.92E-08 

Jul -0.331 0.0284 -11.66 2.08E-31 



90 

 

 

 

Table 3.7.2 Parameter estimates for the top ranked dynamic occupancy model for the 

Blue-winged Warbler. Psi: first year occupancy, gamma: colonization, eps: extinction, 

and p: detection probabilities. 

Model 

psi~t1+n1+I(n1
2
)+I(t1

2
)  

gamma~(year-1)+tmxs+ndvis+tmxs*ndvis  

eps~(year-1)+tmxs+ndvis+I(ndvis
2
)+I(tmxs

2
)+tmxs*ndvis+gwcov  

p~(year-1)+jul 

     Initial: Estimate SE z P(>|z|) 

(Intercept) 0.0575 0.1715 0.335 0.737341 

t1 0.3069 0.1396 2.199 0.027895 

n1 0.8446 0.2111 4.001 0.000063 

I(n1^2) 0.2606 0.0802 3.252 0.001147 

I(t1^2) -0.4998 0.1331 -3.756 0.000173 

    Colonization: Estimate SE z P(>|z|) 

year1983 -2.0626 0.3168 -6.51 7.45E-11 

year1984 -2.1216 0.3098 -6.85 7.51E-12 

year1985 -2.0199 0.2894 -6.98 2.96E-12 

year1986 -1.7326 0.2867 -6.04 1.52E-09 

year1987 -2.0877 0.3312 -6.3 2.91E-10 

year1988 -1.3488 0.2293 -5.88 4.04E-09 

year1989 -2.3441 0.4434 -5.29 1.25E-07 

year1990 -2.2597 0.3435 -6.58 4.77E-11 

year1991 -1.6478 0.2499 -6.59 4.28E-11 

year1992 -2.0274 0.3097 -6.55 5.92E-11 

year1993 -1.7742 0.2463 -7.2 5.93E-13 

year1994 -1.8536 0.2567 -7.22 5.18E-13 

year1995 -1.6314 0.2396 -6.81 9.77E-12 
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year1996 -1.5369 0.228 -6.74 1.57E-11 

year1997 -1.899 0.2767 -6.86 6.75E-12 

year1998 -1.7438 0.2727 -6.4 1.60E-10 

year1999 -1.7018 0.3001 -5.67 1.43E-08 

year2000 -2.3652 0.4707 -5.02 5.04E-07 

year2001 -1.8361 0.288 -6.38 1.81E-10 

year2002 -1.7293 0.274 -6.31 2.76E-10 

year2003 -2.2021 0.3958 -5.56 2.64E-08 

year2004 -1.366 0.2618 -5.22 1.81E-07 

year2005 -2.2441 0.5188 -4.33 1.52E-05 

year2006 -1.952 0.3719 -5.25 1.53E-07 

year2007 -1.9771 0.3691 -5.36 8.46E-08 

year2008 -1.8141 0.294 -6.17 6.80E-10 

year2009 -2.4101 0.429 -5.62 1.93E-08 

year2010 -1.7174 0.2898 -5.93 3.08E-09 

year2011 -2.2309 0.4026 -5.54 2.99E-08 

Tmxs -0.0916 0.0439 -2.09 3.69E-02 

Ndvis 0.0773 0.0563 1.37 1.70E-01 

tmxs:ndvis 0.2007 0.0561 3.58 3.46E-04 

    Extinction: Estimate SE z P(>|z|) 

year1983 -1.97405 0.3325 -5.936 2.92E-09 

year1984 -1.42761 0.2983 -4.786 1.70E-06 

year1985 -2.13288 0.4054 -5.261 1.44E-07 

year1986 -2.59989 0.533 -4.878 1.07E-06 

year1987 -1.55857 0.3145 -4.955 7.23E-07 

year1988 -2.16057 0.3817 -5.66 1.51E-08 

year1989 -2.24973 0.3391 -6.635 3.25E-11 

year1990 -2.19315 0.3603 -6.086 1.15E-09 

year1991 -2.33466 0.3828 -6.099 1.07E-09 
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year1992 -1.82226 0.322 -5.66 1.52E-08 

year1993 -2.67039 0.4176 -6.394 1.62E-10 

year1994 -1.71145 0.2884 -5.935 2.94E-09 

year1995 -1.83367 0.2484 -7.382 1.56E-13 

year1996 -1.60088 0.2427 -6.595 4.25E-11 

year1997 -1.78194 0.2937 -6.068 1.29E-09 

year1998 -2.19204 0.3966 -5.527 3.26E-08 

year1999 -1.61546 0.4027 -4.012 6.03E-05 

year2000 -2.28239 0.3617 -6.31 2.79E-10 

year2001 -1.61084 0.3542 -4.548 5.42E-06 

year2002 -1.20819 0.311 -3.885 1.02E-04 

year2003 -2.13739 0.5301 -4.032 5.53E-05 

year2004 -2.46198 0.4038 -6.097 1.08E-09 

year2005 -2.02277 0.3341 -6.054 1.41E-09 

year2006 -2.25289 0.4909 -4.589 4.45E-06 

year2007 -1.17162 0.2536 -4.619 3.85E-06 

year2008 -2.04125 0.4741 -4.306 1.66E-05 

year2009 -1.33495 0.3112 -4.29 1.79E-05 

year2010 -2.32583 0.705 -3.299 9.71E-04 

year2011 -0.73267 0.4643 -1.578 1.15E-01 

Tmxs 0.00868 0.0678 0.128 8.98E-01 

Ndvis -0.98073 0.0967 -10.145 3.48E-24 

I(ndvis^2) -0.23942 0.0314 -7.616 2.62E-14 

I(tmxs^2) 0.37973 0.0466 8.148 3.69E-16 

gwcov1 0.91967 0.216 4.257 2.07E-05 

tmxs:ndvis -0.16059 0.0667 -2.408 1.60E-02 

     Detection: Estimate SE z P(>|z|) 

year1983 -0.666 0.0901 -7.39 1.48E-13 

year1984 -0.635 0.0892 -7.12 1.09E-12 

year1985 -0.973 0.1072 -9.08 1.13E-19 
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year1986 -0.879 0.0982 -8.96 3.37E-19 

year1987 -1.121 0.0895 -12.52 5.69E-36 

year1988 -0.878 0.0896 -9.8 1.15E-22 

year1989 -0.949 0.0867 -10.94 7.42E-28 

year1990 -0.933 0.0879 -10.61 2.63E-26 

year1991 -1.069 0.0901 -11.86 1.99E-32 

year1992 -0.909 0.0788 -11.53 9.74E-31 

year1993 -1.038 0.0849 -12.22 2.53E-34 

year1994 -0.881 0.0747 -11.8 3.95E-32 

year1995 -0.78 0.0744 -10.48 1.08E-25 

year1996 -0.613 0.0714 -8.58 9.17E-18 

year1997 -0.635 0.0723 -8.78 1.60E-18 

year1998 -0.997 0.0811 -12.3 8.78E-35 

year1999 -1.322 0.0867 -15.24 1.80E-52 

year2000 -1.276 0.0889 -14.36 9.88E-47 

year2001 -1.358 0.0937 -14.49 1.41E-47 

year2002 -1.184 0.0951 -12.45 1.42E-35 

year2003 -1.167 0.0939 -12.43 1.79E-35 

year2004 -1.434 0.104 -13.79 2.75E-43 

year2005 -1.326 0.0849 -15.62 5.73E-55 

year2006 -1.423 0.0923 -15.42 1.24E-53 

year2007 -1.477 0.0945 -15.62 5.33E-55 

year2008 -1.189 0.0905 -13.14 1.87E-39 

year2009 -1.384 0.0934 -14.82 1.05E-49 

year2010 -1.356 0.0961 -14.12 2.89E-45 

year2011 -1.695 0.1068 -15.87 1.01E-56 

year2012 -1.493 0.1219 -12.24 1.83E-34 

Jul -0.288 0.0142 -20.3 1.36E-91 
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Table 3.7.3 Temporal and interspecific measures of niche overlap (D-statistic) and tests 

of niche equivalency and similarity based on mean maximum temperature and NDVI. 

Time 1 refers to temporal niches summarized over BBS routes where each species was 

detected at least once between 1983 and 1987, and time 2 between 1998 and 2012, 

inclusive for the Golden-winged Warbler (GWWA) and Blue-winged Warbler (BWWA). 

Statistical test outcomes were not-significant (n.s., P > 0.05), or significantly similar (sig. 

sim., P < 0.01 (*)). Niche similarity tests were performed first by comparing the first 

element of the pairwise comparison (i.e. GWWA time 1) against a randomization the 

niche of the second element (i.e. GWWA time 2), and then vice versa. 

Comparison Niche overlap Niche equivalency Niche similarity 

GWWA time 1 - GWWA time 2 0.497 sig. (*) sig. sim. (*); sig. sim. (*) 

BWWA time 1 - BWWA time 2 0.348 sig. (*) n.s., sig. sim (*) 

GWWA time 1 - BWWA time 1 0.374 sig. (*) sig. sim. (*); sig. sim. (*) 

GWWA time 2 - BWWA time 2 0.364 sig. (*) sig. sim. (*); sig. sim. (*) 

 

 

Table 3.7.4 Climate and habitat niche dimensions for golden- and Blue-winged Warblers. 

Maximum temperature and NDVI values were averaged over the breeding months of 

May, June, and July across North American Breeding Bird Survey routes where the 

species were detected between 1983-2012. Measures are means ± 1 SD. 

 

Golden-winged Warbler Blue-winged Warbler 

Mean seasonal maximum temperature 23.922 +/- 2.013 25.803 +/- 2.398 

Mean seasonal NDVI 8299 +/- 625 8195 +/- 821 

Mean latitudinal position 5019713 +/- 315055 4768016 +/- 270338 

Mean longitudinal position -8037606 +/- 659839 -7868999 +/- 605286 
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3.8 Figures 

 

Figure 3.8.1 Annual occupancy, extinction, colonization and detection probability 

estimates for the Golden-winged Warbler using model-averaged estimates across the top 

6 models (see Appendix Table X). Extinction parameter is predicted using Blue-winged 

Warbler covariate set to not-detected, and in all cases temperature and NDVI are held at 

their mean value. Error bars represent 95% confidence intervals based on asymptotic 

standard errors. Occupancy probability standard error estimates are based on 

nonparametric bootstrapping (500 replicates). 
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Figure 3.8.2 Dynamic occupancy parameters averaged over two time periods, 1983-1997 

(left) and 1998-2012 (right, to 2011 for extinction and colonization parameters) for 

Golden-winged and Blue-winged Warblers based on estimates of top ranked models. 

Both colonization and extinction were predicted and averaged separately when the 

occurrence of the other species was not-detected or detected (gray boxes).   
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Figure 3.8.3 Standardised regression coefficients for colonization and extinction 

estimates of the top-ranked dynamic occupancy models for the Golden-winged (GWWA) 

and Blue-winged Warblers (BWWA). 
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Figure 3.8.4 Comparison of annual estimates of colonization (top) and extinction 

(bottom) probabilities for the Golden-winged Warbler when Blue-winged Warbler was 

detected (●) and not-detected (▲). 
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Figure 3.8.5 Annual occupancy, extinction, colonization and detection probability 

estimates for the Blue-winged Warbler. Extinction parameter is predicted using Blue-

winged Warbler covariate set to not detected (0). 
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Figure 3.8.6 Comparison of annual estimates of colonization (top) and extinction 

(bottom) probabilities for the Blue-winged Warbler when Golden-winged Warbler was 

detected (●) and not-detected (▲). 
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Figure 3.8.7 Range-wide annual mean turnover estimates with 95% confidence intervals 

based on 1000 bootstrapped samples for the Golden-winged and Blue-winged Warblers.  
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Figure 3.8.8 Naïve occupancy estimates for the Golden-winged Warbler (GWWA) and 

Blue-winged Warbler (BWWA) in their respective ranges between 1983 and 2012, and 

proportion of occupied sites of each species intersecting the range boundaries of the 

opposing species.   
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Figure 3.8.9 Inter-annual variation in the normalised C-score and togetherness metric 

between the Golden-winged Warbler and Blue-winged Warbler. 
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Figure 3.8.10 Niche overlap between the Golden-winged and Blue-winged Warblers with 

a 95% confidence interval identifying niche boundaries. Values were averaged over the 

1983 to 2012 sampling period across the complete range of each species, separately. 
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Figure 3.8.11 Mean of 

breeding maximum 

temperatures (°C) across 

BBS routes where the 

Blue-winged Warbler 

(BWWA, left) and 

Golden-winged Warbler 

(GWWA, right) were 

detected at least once 

during each 5-year 

period. Years on each 

plot reference the first 

year of the 5-year period. 
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Figure 3.8.12 Annual (top) and 5-year (bottom) means of breeding season maximum 

temperatures from 1983 and 2012 for the Golden-winged (●) and the Blue-winged (▲) 

Warbler. Errors bars represent 95% confidence intervals. 
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Figure 3.8.13 Annual (top) and 5-year (bottom) means of breeding season NDVI from 

1983 and 2012 for the Golden-winged (●) and the Blue-winged (▲) Warbler. Errors bars 

represent 95% confidence intervals.  
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3.9 Appendix  

3.9.1 Tables 

Table 3.9.1 Model fit statistics for Golden-winged Warbler maximum likelihood dynamic occupancy models. 

Model No. of 

parameter

s 

AIC Delta 

AIC 

AIC 

weigh

t 

Cumulativ

e weight 

Negative 

log-

likelihoo

d 

Model 

code 

~1 ~ (year - 1) + tmxs + ndvis + tmxs * ndvis ~ (year 

- 1) + tmxs + ndvis + bwcov ~ (year - 1) + jul 

96 16893.7

2 

0 1.90E-

01 

0.19 8350.86 m75bw 

~1 ~ (year - 1) + tmxs + ndvis + tmxs * ndvis ~ (year 

- 1) + tmxs + ndvis + tmxs * ndvis + bwcov ~ (year - 

1) + jul 

97 16894.5

8 

0.86 1.20E-

01 

0.31 8350.289 m89bw 

~1 ~ (year - 1) + tmxs + ndvis + tmxs * ndvis ~ (year 

- 1) + tmxs + ndvis + I(tmxs^2) + bwcov ~ (year - 1) 

+ jul 

97 16894.9

7 

1.25 9.90E-

02 

0.41 8350.486 m91bw 

~1 ~ (year - 1) + tmxs + ndvis + tmxs * ndvis ~ (year 

- 1) + tmxs + ndvis + I(ndvis^2) + bwcov ~ (year - 

1) + jul 

97 16895.5

8 

1.86 7.40E-

02 

0.48 8350.788 m90bw 

~1 ~ (year - 1) + tmxs + ndvis + tmxs * ndvis ~ (year 

- 1) + tmxs + ndvis + bwcov + ndvis * bwcov ~ 

(year - 1) + jul 

97 16895.6

4 

1.92 7.10E-

02 

0.55 8350.821 m96bw 

~1 ~ (year - 1) + tmxs + ndvis + tmxs * ndvis ~ (year 

- 1) + tmxs + ndvis + bwcov + tmxs * bwcov ~ (year 

- 1) + jul 

97 16895.7 1.98 6.90E-

02 

0.62 8350.852 m95bw 

~1 ~ bwcov ~ bwcov ~ jul 7 16975.7 82.04 2.80E- 1 8480.88 m27bw 
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Model No. of 

parameter

s 

AIC Delta 

AIC 

AIC 

weigh

t 

Cumulativ

e weight 

Negative 

log-

likelihoo

d 

Model 

code 

6 19 

~1 ~ 1 ~ year - 1 ~ year - 1 61 17104.4 210.6

8 

3.30E-

47 

1 8491.201 m3 

~1 ~ 1 ~ 1 ~ year 33 17114.3

8 

220.6

6 

2.30E-

49 

1 8524.188 m1 

~1 ~ year - 1 ~ year - 1 ~ year - 1 89 17129.8 236.0

8 

1.00E-

52 

1 8475.902 m4 

~1 ~ 1 ~ 1 ~ 1 4 17136.6

6 

242.9

4 

3.30E-

54 

1 8564.331 m0 

~1 ~ year - 1 ~ 1 ~ year – 1 61 17181.8

3 

288.1

1 

5.10E-

64 

1 8529.913 m2 
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Table 3.9.2 Model fit statistics for maximum likelihood based dynamic occupancy models for the Blue-winged Warbler Models in 

bold were within 2 AIC from the top ranked model 

Model No. of 

paramet

ers 

AIC Delta 

AIC 

AIC 

weight 

Cumula

tive 

weight 

Negative log-

likelihood 

~t1 + n1 + I(n1^2) + I(t1^2) gamma~ (year - 1) + tmxs 

+ ndvis + tmxs * ndvis ~ (year - 1) + tmxs + ndvis + 

I(ndvis^2) + I(tmxs^2) + tmxs * ndvis + gwcov + ~ 

(year - 1) + jul 

104 41376.09 0 9.90E-

01 

0.99 20584 

~1 gamma~ gwcov ~ gwcov ~ jul 7 41868.78 492.7 1.00E-

107 

1 20927.4 

~1 gamma~ 1 ~ 1 ~ year 33 41996.4 620.3

2 

2.00E-

135 

1 20965.2 

~1 gamma~ year - 1 ~ 1 ~ year - 1 61 42025.56 649.4

7 

9.20E-

142 

1 20951.8 

~1 gamma~ year - 1 ~ year - 1 ~ year - 1 89 42042.42 666.3 2.00E- 1 20932.2 
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Model No. of 

paramet

ers 

AIC Delta 

AIC 

AIC 

weight 

Cumula

tive 

weight 

Negative log-

likelihood 

4 145 

~1 gamma~ 1 ~ year - 1 ~ year - 1 61 42051.36 675.2

7 

2.30E-

147 

1 20964.7 

~1 gamma~ 1 ~ 1 ~ 1 4 42199.46 823.3

7 

1.60E-

179 

1 21095.7 
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3.9.2 Figures 

 

Figure 3.9.1 Naïve (▲) and expected (□) occupancy estimates and detection probability 

between 1983 and 2012 for the Golden-winged Warbler across its complete range. 

 

Figure 3.9.2 First-year occupancy probability, Golden-winged Warbler  
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Figure 3.9.3 Colonization probability 1983 (left) and 2011 (right). 
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Figure 3.9.4 Extinction probability1983.  BBWA not detected (left) and BWWA detected 

(right) 

 

Figure 3.9.5 Extinction probability 2011. BBWA not detected (left) and BWWA detected 

(right) 
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Figure 3.9.6 Naïve (▲) and expected (□) occupancy estimates and detection probability 

between 1983 and 2012 for the Blue-winged Warbler across its complete range. 

 

 

 

Figure 3.9.7 First year occupancy probability, Blue-winged Warbler 
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Figure 3.9.8 Colonization probability 1983 (left) and 2011 (right), Blue-winged Warbler. 

 

Figure 3.9.9 Extinction probability predictions for the Blue-winged Warbler for 1983 

(left) and 2011 (right), when Golden-winged Warbler was detected. 



117 

 

 

 

 

Figure 3.9.10 Contrasting spatio-temporal range dynamics, based on North American 

Breeding Bird Survey detection and non-detection data, of the Golden-winged (upper 

plot) and the Blue-winged Warbler (lower plot), with the former exhibiting strong 

northern latitudinal shifts of detections. Differences were calculated from the mean 

latitudinal centroid of the range (hashed gray line). 
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Figure 3.9.11 Golden-winged Warbler predicted probability of extinction as a function of 

mean seasonal NDVI, model-averaged predictions for 1983 (left) and 2011 (right), Blue-

winged Warbler covariate set to not-detected. 

 

Figure 3.9.12 Golden-winged Warbler predicted probability of extinction as a function of 

mean seasonal NDVI, model-averaged predictions for 1983 (left) and 2011 (right), Blue-

winged Warbler covariate set to detected. 
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Figure 3.9.13 Golden-winged Warbler predicted probability of extinction as a function of 

maximum seasonal temperature, model-averaged predictions for 1983 (left) and 2011 

(right), Blue-winged Warbler covariate set to not-detected. 

 

Figure 3.9.14 Golden-winged Warbler probability of extinction as a function of 

maximum seasonal temperature, model-averaged predictions for 1983 (left) and 2011 

(right), Blue-winged Warbler covariate set to detected. Gray regions represent 95% 

confidence intervals. 
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Figure 3.9.15 Blue-winged Warbler predicted probability of colonization as a function of 

mean seasonal NDVI 1983 (left) and 2011 (right). Gray regions represent 95% 

confidence intervals. 

 

Figure 3.9.16 Blue-winged Warbler predicted probability of colonization as a function of 

maximum seasonal temperature for 1988 (left) and 2011 (right). Gray regions represent 

95% confidence intervals. 
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Figure 3.9.17 Blue-winged Warbler predicted extinction probability as a function of mean 

seasonal NDVI for 1983 (left) and 2011 (right). Golden-winged Warbler detections were 

set to non-detected. Gray regions represent 95% confidence intervals. 

 

Figure 3.9.18 Blue-winged Warbler predicted extinction probability as a function of 

maximum seasonal temperature for 1983 (left) and 2011 (right). Golden-winged Warbler 

covariate were set to non-detected. Gray regions represent 95% confidence intervals. 
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Chapter 4  

 Relevance of uncertainties in coupled species 4
distribution-metapopulation dynamics models for risk 
assessments under climate change 

 

This is the pre-peer reviewed version of the following article: Naujokaitis-Lewis IR, Curtis JMR, 

Tischendorf L, Badzinski D, Lindsay K, Fortin M-J (2013) Uncertainties in coupled species 

distribution–metapopulation dynamics models for risk assessments under climate change. 

Diversity and Distributions, 19, 541-554., which has been published in final form at DOI: 

10.1111/DDI.12063. 

4.1 Abstract 

4.1.1 Aim 

Species distribution models (SDMs) coupled with metapopulation dynamics models can 

integrate multiple threats and population-level processes that influence species distributions. 

However, multiple sources of uncertainties could lead to substantial differences in model outputs 

and jeopardize risk assessments. We evaluate uncertainties in coupled SDM-metapopulation 

models and focus on two often under-appreciated sources of uncertainty: the choice of general 

circulation model (GCM) and parameter uncertainty of the metapopulation model. We rank the 

risks associated with potential climate changes and habitat loss on projected range margin 

dynamics of the Hooded Warbler (Setophaga citrina). 

4.1.2 Location 

Breeding range of the Hooded Warbler, North America 
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4.1.3 Methods  

Using SDMs we quantified variability in projected future distributions using four GCMs and a 

consensus model at the biogeographic scale and assessed the propagation of uncertainty through 

to metapopulation viability projections. We applied a global sensitivity analysis to the coupled 

SDM-metapopulation model to rank the influence of choice of GCM, parameter uncertainty, and 

simulated effects of habitat loss on metapopulation viability, thereby addressing error 

propagation through the whole modeling process. 

4.1.4 Results 

The Hooded Warbler range was consistently projected to shift north: choice of GCMs influenced 

the magnitude of change and variability was spatially structured. Variability in the choice of 

GCMs propagated through to metapopulation viability projections, highlighting potential biases 

when using a single GCM. Although viability measures were sensitive to the GCM used, 

measures of direct habitat loss were more influential. 

4.1.5 Main conclusions 

This work underscores the importance of a global sensitivity analysis framework applied to 

coupled models to disentangle the relative influence of uncertainties on projections. The use of 

multiple GCMs enabled the exploration of a range of possible outcomes relative to the consensus 

GCM, helping to inform risk estimates. Ranking uncertainties informs the prioritization of 

management actions for species affected by dynamic anthropogenic threats over multiple spatial 

scales.  

4.1.6 Key words 

Population viability analysis, multiple threats, range margins, species distribution model, 

sensitivity analysis, uncertainty 
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4.2 Introduction 

Correlative species distribution models (SDMs; e.g. habitat suitability models, bioclimatic 

envelope models) provide a first pass assessment of the potential for future climate changes to 

influence range dynamics (Huntley et al., 2008, Doswald et al., 2009, Lawler et al., 2009). While 

SDMs are likely to remain a useful tool for assessing the potential risks of climate change 

(Garcia et al., 2011), however, their limitations (Guisan & Thuiller, 2005, Araújo & Peterson, 

2012) and potential to bias risk estimates (Fordham et al., 2012a) have heralded the need for 

increased use of multi-modelling frameworks that incorporate dynamic processes that directly 

influence species distributions and abundances (Brook et al., 2009, Franklin, 2010, Huntley et 

al., 2010). One increasingly used approach includes SDMs coupled with spatially structured 

metapopulation dynamics models (Lawson et al., 2010, Aiello-Lammens et al., 2011, Conlisk et 

al., 2012). These coupled models are a powerful simulation and decision support tool that can be 

used to assess the effect of global changes such as climate changes and land use conversions on 

species persistence. Applying this modeling approach within a population viability analysis 

(PVA) framework allows the assessment of threats to species persistence, estimation of 

extinction risk, and ranking of management scenarios (Akçakaya & Burgman, 1995). One of the 

key limitations of coupled SDM-metapopulation dynamics models, however, are the numerous 

sources of uncertainty that are rarely considered (Ruete et al., 2012) but can be propagated 

through the coupled models and projections.  

Uncertainty associated with coupled SDM-metapopulation dynamics models may impact 

model projections and potentially compromise management decisions and climate change 

adaptation strategies. When used to assess global climate changes on extinction risk, different 

types of uncertainties are associated with each constituent model including the SDM, choice of 

general circulation models (GCMs) used to simulate future climates, and the metapopulation 

dynamics model (Fig. 4.8.1). Common sources of uncertainty in ecology include the choice of 

modeling approach and structure, inability to adequately capture natural variation (parameter 

uncertainty), and systematic biases (Regan et al., 2002). Coupled SDM- metapopulation 

dynamics models are typically used in a hierarchical framework; the SDM and the subsequent 

projections under future climate change scenarios (or land cover change) form the spatially and 

temporally dynamic patch structure on which the metapopulation dynamics model is based 
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(Akçakaya et al., 2004). Thus uncertainties associated with each component of the model chain 

(Fig. 4.8.1) have the potential to proliferate through to forecasted species viability outcomes. 

While such models are useful to derive better hypotheses regarding processes relevant to species 

range shifts, quantifying uncertainties from each constituent model is essential to provide a 

comprehensive risk assessment and to support robust management decisions. 

Differences in projections of suitable habitats resulting from variability across GCMs are 

important to consider when predicting the response of populations occurring along range margins 

to potential climate changes. These range edge populations are of interest because novel climatic 

conditions can either favor a species’ range expansion or diminish it. Variability of different 

climate models can influence the magnitude, direction, and rates of change in projections of 

suitable climate space (Buisson et al., 2010, Grenouillet et al., 2011), and has the potential to 

influence the outcome of targeted management in these regions. There is a high degree of 

variability among GCMs within an emission scenario that may differ depending on the climate 

variable under consideration, which can result in different directions of change for simulated 

future variables (Tebaldi & Knutti, 2007, Fordham et al., 2011). The uncertainty associated with 

choice of GCMs has been more thoroughly explored using SDMs (Diniz-Filho et al., 2009, 

Buisson et al., 2010, Garcia et al., 2011, Albouy et al., 2012). Though, the effect of GCM 

variability on population projections has not been the explicit focus of studies using coupled 

SDM-PVA models (e.g, Ruete et al., 2012) where typically, coupled SDM- metapopulation 

dynamics models apply one or two GCMs (Anderson et al., 2009, Lawson et al., 2010).  

Developing consensus among climate models has been used by climatologists as a way to 

account for uncertainties associated with different GCMs (Murphy et al., 2004, Knutti et al., 

2010), and recently has been adopted by ecologists in risk assessments for biodiversity under 

potential climate changes (Araújo & New, 2007a, Fordham et al., 2011). As consensus 

forecasting may reduce variability across all models by deriving the central tendency of forecasts 

(Araújo & New, 2007a, Pierce et al., 2009, Garcia et al., 2011, Fordham et al., 2012b), there is 

the potential for the effects of extreme scenarios to be masked (Beaumont et al., 2008). This 

raises the question of the relevance of consensus techniques for climate change risk assessment. 
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Metapopulation dynamics models, while biologically more realistic than SDMs, typically 

necessitate development with simplifying assumptions in large part owing to our lack of 

knowledge and understanding of ecological systems (Ludwig, 1999, Burgman et al., 2005, 

Beissinger et al., 2006). Although they integrate demographic and dispersal processes relevant to 

species dynamics in suitable habitat, the assumptions used in model formulation or parameter 

uncertainty may further compound the potential cascade of uncertainty through the chain of 

SDM-PVA models. The importance of uncertainty is often articulated in population dynamics 

models (Naujokaitis-Lewis et al., 2009), yet it is rare for the full complement of uncertain factors 

to be varied concurrently (Chu-Agor et al., 2012), and analyzed using a global sensitivity 

analysis (Saltelli et al., 2006). The advantage of a global sensitivity analysis is that the complete 

range of plausible parameter values and its impacts on model outcomes may be explored, while 

varying uncertain parameters simultaneously allows for the identification of potentially 

important interactions. 

The distribution and availability of suitable habitat is likely to be influenced by changes 

in global climatic conditions and direct loss of habitats associated with anthropogenic 

disturbances, two processes that may threaten species independently or in combination (Thomas 

et al., 2004). As climate change is expected to lead to range margin shifts for many species, 

habitat losses may function as barriers to movement leading to both lowered colonization success 

and species persistence at the range margins (Travis, 2003, Opdam & Wascher, 2004). Whereas 

dominant climate changes are the result of fluctuations operating at global scales thus 

influencing species throughout their range (Thomas, 2010), heterogeneous patterns of habitat 

loss may be the result of threats operating at regional or landscape levels (Opdam & Wascher, 

2004). The impacts of both types of threats and their associated uncertainties can be quantified in 

process-based metapopulation dynamics models, which enable the integration of dynamic 

anthropogenic threats that occur over multiple spatial scales. 

The aim of this paper is to focus on uncertainties resulting from the choice of GCM and 

parameter uncertainty of spatial PVAs, two often underappreciated sources of uncertainty 

(Naujokaitis-Lewis et al., 2009, Fordham et al., 2011) in the context of climate change risk 

assessment for conservation. We emphasize the importance of these sources of uncertainties for 

understanding species range dynamics at the expanding range edge margins of the Hooded 
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Warbler (Setophaga citrina) (Melles et al., 2011). To address the variability of GCM projections, 

we develop SDMs at the scale of the entire breeding range of the Hooded Warbler and project 

climate changes to the 2080s, using four GCMs. We compare outcomes from individual 

distribution projections with a consensus forecast and discuss the implications for biodiversity 

conservation risk assessment under climate change. Through simulation, we model the influence 

of climate changes and direct loss of habitat on metapopulation dynamics at the range margin. 

Finally, we apply a global sensitivity analysis (Saltelli et al., 2006) to quantify the influence of  

parameter uncertainty of a stochastic metapopulation demographic model relative to the risks of 

climate change and habitat loss. By targeting uncertainty associated with the GCMs and 

metapopulation dynamics model, our approach enables insights into the relative influence of 

uncertainties stemming from different steps of the modelling process. We end by discussing the 

relevance of these uncertainties for management actions in dynamic landscapes. 

4.3 Methods 

4.3.1 Study system and species 

We quantify the relative influence associated with choice of GCMs and parameter uncertainty of 

the metapopulation dynamics model on the Hooded Warbler, a Nearctic-Neotropical long-

distance migratory bird species, whose current breeding distribution occurs throughout the 

eastern United States and the southern portions of Ontario, Canada (Fig. 4.8.2). This species was 

selected as it has undergone recent shifts in its northern range margin in part due to recent 

climate warming (Hitch & Leberg, 2007, Melles et al., 2011). Despite this recent shift, Hooded 

Warblers are reliant on remnant forested patches that occur throughout the eastern Great Lakes 

lowland forest and southern Great Lakes forest ecoregions (Olson et al., 2001). However, both of 

these ecoregions are critically endangered due to the high population densities and dominant 

agricultural, urban, and industrial land-uses (Ricketts et al., 1999). No significantly sized tracts 

of forest habitats remain, and the intact forests are highly threatened by land conversion 

pressures from agriculture and urban sprawl (Ricketts et al., 1999).  

4.3.2 Species and climate data 

To evaluate the potential consequences of future climate changes on the distribution of the 

Hooded Warbler, we developed SDMs under current conditions using occurrences across its 
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complete breeding range (Fig. 4.8.2), capturing the full range of climatic conditions of its niche. 

Occurrence data were retrieved from the North American Breeding Bird Survey data (BBS; 

(USGS Patuxent Wildlife Research Center, 2012) and the Ontario Breeding Bird Atlas (OBBA; 

(Bird Studies Canada et al., 2008) to ensure adequate representation across its entire range, 

including its northern range limits. BBS occurrence data were compiled for the years 1981-2005 

and data that conformed to the BBS standards for weather, date, time, and observer criteria were 

included. OBBA is a compilation of breeding bird surveys undertaken by volunteers over a five 

year period every 20 years. We included data from the first and second Atlases, 1981-1985 and 

2001-2005, respectively. Because the BBS and OBBA data are collected over different spatial 

scales, we summarized all data to a common resolution of 10 km
2
 cells as per the OBBA data. 

A suite of climate variables (Table 4.7) were selected a priori based on knowledge of 

biologically relevant factors important for determining distributions of Nearctic-Neotropical 

migratory birds over their breeding range and at the range margins (Venier et al., 1999, Jiménez-

Valverde et al., 2011, Melles et al., 2011). The climate variables were summarized over both 

annual and seasonal time periods reflecting the months associated with the breeding portion 

(May through August) of the annual cycle (Heikkinen et al., 2006). Baseline climate data for the 

current time period (1950-2000) were retrieved from the Worldclim database, which is a set of 

high resolution interpolated climate data (Hijmans et al., 2005), at a resolution of 10 km
2
. 

Projections of potential future climate suitability were based on four GCMs using the A2 

emission scenario for the IPPC 4
th

 Assessment, which depicts an intensive-fossil use future with 

moderate economic growth (Nakicenovic et al., 2000). We selected the UKMO-HadCM3 

(Hadley), CGCM2.0 (CCMA), CSIRO-MK3 (CSIRO), and NIES-99 (NIES) models, as they 

provide a range of variability with respect to annual temperature and cumulative precipitation 

predictions (IPCC, 2007a). Climate data from each GCM were downscaled using thin plate 

spline spatial interpolation of anomalies of original GCM outputs (Ramirez & Jarvis, 2008). 

Future projections of climate suitability were based on averages describing three thirty-year time 

periods defined as the 2020s, 2050s, and 2080s. 

To better understand which climate variables were driving the differences in future 

projections of suitable habitat, following Garcia et al. (2011), we assessed the deviations among 
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GCMs during late century projections (2080s) as this is when inter-model variations within 

emission scenarios become most pronounced (Beaumont et al., 2008). For each climate variable 

used in the SDM, we applied model performance metrics to distinguish between the variable for 

each individual GCM and the multi-model median ensemble for the same variable (Duan & 

Phillips, 2010). The signed standardized anomaly, D, is the spatially aggregated root mean 

square (RMS) difference between each individual GCM variable and the multi-model median 

ensemble for the same variable. D is standardized using the standard deviation of all GCMs. D 

reflects how much a GCM (for each variable) tends to over- or under-estimate the variable in 

relation to the median. D values close to zero indicate similarity with respect to the median. The 

spatial Pearson correlation (R) quantifies the similarities in spatial patterns between individual 

GCMs for a given variable and the median of that variable. Values range between -1 and 1, with 

values close to 1 indicating agreement among variables between GCMs. 

4.3.3 Species distribution models 

SDMs were developed using the maximum entropy model, MAXENT v. 3.3.3e (Phillips et al., 

2006, Phillips & Dudik, 2008). A geographic layer describing absence locations of BBS routes 

surveyed without evidence of the species and OBBA squares were used as background points. 

These were constrained to within a 300 km region outside of the minimum convex polygon 

surrounding all presence locations, reflecting regions that were accessible and of similar 

ecosystems to their current locations (Lobo et al., 2010, Barbet-Massin et al., 2012a). SDMs 

were developed using different combinations of variables evaluated and compared using the area 

under the curve (AUC) of the receiver operating characteristic (Fielding & Bell, 1997) based on 

10-fold cross validation. All spatial data were projected using the Behrmann equal-area 

projection. 

To address the influence of GCM selection on range distributions under future climate 

changes, the SDMs were projected forward using spatial data corresponding to the future 

conditions of the four GCMs across the 2020s, 2050s, and 2080s. We generated a climate-model 

consensus forecast based on the median of each variable for the three future time periods, which 

were then used to forecast the potential range shift of the Hooded Warbler into the 2020s, 2050s, 

and 2080s (Fordham et al., 2011). This resulted in five SDM future projections that were used as 

suitability layer inputs to the metapopulation dynamics model. 
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4.3.4 Metapopulation demographic model 

The Hooded Warbler metapopulation model comprised a two-stage stochastic matrix model for 

each population, which was linked to other populations through a dispersal distance function 

(Tischendorf, 2003). The metapopulation model was developed using demographic parameter 

estimates based on a combination of empirical knowledge derived from populations occurring 

within southern Ontario and expert knowledge through a series of workshops (Table S1 Supp 

Info) (Tischendorf, 2003). The model included juvenile and adult stage classes, where 

individuals were considered adults after 1 year based on a post-breeding census. Only adults 

have a non-zero fecundity rate and survival estimates were stage-specific. Demographic 

stochasticity was included via a Poisson distribution while environmental stochasticity was 

modeled by drawing each vital rate from a random variate drawn from a lognormal distribution 

using the mean and standard deviations of each vital rate. 

Dispersal among populations was modeled as a negative exponential decay function in 

RAMAS GIS v. 5.0 (Akçakaya & Root, 2005) as 

          (    
  ⁄  ) 

where     is the dispersal rate between the ith and jth populations, a (scaling parameter), 

b, and c are function parameters, and     is the distance between the edge of two populations 

(Akçakaya & Root, 2005). Initial abundances for each patch occupied in 2000 were based on 

focal surveys undertaken for this species across the southern Ontario landscape during 1997, 

1998, and 2000 and expert knowledge (Tischendorf, 2003). 

4.3.5 Landscape scale dynamic suitability maps 

We applied a two-stage hierarchical procedure to derive relative habitat suitability for the 

Hooded Warbler to reflect suitability occurring at the biogeographical and landscape scales 

(Pearson et al., 2004). First, the current and future projections of relative climate suitability from 

the SDMs were used to identify suitable regions at the biogeographical scale. Secondly, we 

derived a binary suitability layer of forest cover at the landscape scale over southern Ontario 

(Fig. 4.8.2), which was used to define discrete patches of suitable habitat and the spatial structure 

of the metapopulation (Akçakaya & Root, 2005). Within southern Ontario, the Hooded Warbler 
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relies on mature mixed hardwood forest stands with gaps where early successional vegetation 

provides suitable nesting habitat during the breeding season. To capture these habitat 

dependencies, we reclassified a high resolution (15 m) land cover classification for southern 

Ontario (Ontario Ministry of Natural Resources, 2007) to a binary forest map. This spatial 

dataset was selected because its high resolution and land cover classes enabled the delineation of 

habitat patches that most closely reflects the known distribution of habitat patches on the ground. 

Furthermore, while other data sets have broader spatial coverage (e.g., GlobCover, GLC2000), 

disagreements in individual forest cover classes and their spatial distribution were cause for 

concern (Fritz et al., 2011). Deciduous and mixed forest cover classes were reclassified to a 

binary suitability map where habitat suitability values ranged from 0 (low) to 1 (high). As an 

area sensitive species, it is rarely found breeding in habitat patches smaller than 1 km
2
 (Flaxman, 

2004), thus we excluded regions of forested cells less than 1 km
2
. 

The relative habitat suitability values based on the SDM outcomes were modified by 

multiplying it with the binary forest habitat map. This resulted in non-forested regions masked 

from the suitability layer. To determine the spatial structure of the metapopulation over time, the 

current and future relative habitat suitability maps were linearly interpolated to produce annual 

maps of suitability (Keith et al., 2008, Anderson et al., 2009). To delineate suitable and 

unsuitable regions across the range, we applied the 5
th

 quantile of habitat suitability values as the 

threshold. The values were extracted across all known occurrence locations from the current 

SDM prediction layer. This threshold value minimized omission error and resulted in a higher 

commission error, which was expected given that the species is not in equilibrium with the 

environment at its expanding northern latitudinal range margin (Araújo & Pearson, 2005, Melles 

et al., 2011).  

RAMAS GIS was used to identify patches consisting of cells above the habitat suitability 

threshold for each annual map using a patch-identification algorithm described in Akçakaya & 

Root (2005). Adjacent cells of suitable habitat were considered part of the same habitat patch if 

they were within a 2 km distance of suitable habitat cells. RAMAS GIS simulates the dynamics 

of a metapopulation using a stochastic stage-structured model for each population. Habitat, and 

thus the number of populations, at any given time step is based on dynamic climate changes with 

forested habitats remaining constant over time. 



132 

 

 

The relative habitat suitability models and the demographic model are linked through the 

carrying capacity parameter for each habitat patch. Carrying capacity was considered a function 

of the total habitat suitability (ths) of each patch, a composite measure that considers both the 

size of the patch and the habitat suitability across all grid cells (Akçakaya & Root, 2005). 

Specifically, Carrying capacity = ths * 5.5, where 5.5 represents the average density per km
2 

of 

breeding male Hooded Warblers. The average density was based on records of population census 

of one patch undertaken over a period of ten consecutive years between 1992 and 2002 

(Badzinski, 2003). A ceiling model of density dependence was applied, such that when 

population sizes exceeded a ceiling threshold, the population size was reduced below the 

threshold. The ceiling thresholds were based on both the amount and suitability of habitat. We 

address the uncertainty associated with these estimates and other demographic parameters 

through a global sensitivity analyses. 

4.3.6 Global sensitivity analyses and Simulations 

Metapopulation dynamics were simulated assuming a static future climate, and potential future 

climate changes according to each of the four GCMs and one GCM consensus approach. The 

static scenario assumed that climate suitability remained unchanged from current conditions, 

such that species abundances and the range margin position were driven by the currently suitable 

habitats and demographic processes. In the climate change scenarios, occupancy patterns over 

space and time and predictions of species viability were driven by climate changes and 

demographic processes. For each scenario, metapopulation dynamics were simulated with 1000 

replicates for 100 years (i.e. years 2000 – 2099). Patterns of projected future patch occupancy, 

change in total habitat suitability, and expected minimum abundances (EMA) across the 1000 

replicates were compared among the different climate model treatments (McCarthy & 

Thompson, 2001). 

To model the direct loss of habitat and its influence on predicted extinction risk, we 

simulated the removal of habitat patches. Habitat patches were randomly removed from the 

landscape and the number of patches (i.e. populations) removed for each replicate was randomly 

sampled from a uniform distribution with a minimum of 5 and the maximum number of patches 

equivalent to the number found within the static climate scenario. Our intent here was to develop 
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a null model of habitat loss as the assumption of static future habitat is unlikely, and not to 

develop realistic habitat loss dynamics.  

We applied global sensitivity analyses (Saltelli et al., 2006) to evaluate the influence of 

uncertainty in demographic parameters on measures of extinction risk. Mean parameter estimates 

were sampled from probability density functions allowing us to capture the full range of 

variability associated with the different estimates (Table 4.2). The probability density functions 

were selected based on knowledge of the species and were confirmed by experts (Badzinski, 

2003, Tischendorf, 2003). The sensitivity analysis was implemented using a modified version of 

the program GRIP (Curtis & Naujokaitis-Lewis, 2008). A separate global sensitivity analysis 

was performed on the static climate scenario, and on each of the five climate scenarios both with 

and without habitat loss resulting in a total of 65,000 replicates (5,000 replicates per scenario). 

To compare and rank the relative influence of the varied parameters, including the choice 

of GCM and direct habitat loss, on EMA, we used random forests (RF) prediction model 

(Breiman, 2001). The random forest method provides measures of variable importance for each 

predictor (Breiman, 2001, Liaw & Wiener, 2002) by calculating the percent increase in the mean 

square error (Liaw & Wiener, 2002).  

4.4 Results 

4.4.1 Distributions under current and future climate conditions 

The model including all climate variables produced the highest AUC score (0.802), where an 

AUC value between 0.7-0.9 is considered a good model (Swets, 1988). At the biogeographical 

scale, the current breeding distribution of the Hooded Warbler is highly correlated with climate 

variables. Based on their contribution to increasing the regularized gain in the MaxEnt model, 

mean annual temperature seasonality, mean annual precipitation seasonality, and maximum 

breeding season temperature were the three most important variables (Table 4.7.1). Predicted 

relative habitat suitability appears spatially structured with relatively high values predicted 

across the latitudinal gradient of the range (Fig. 4.8.2). Some of the most suitable regions were 

predicted in southern Ontario, at its expanding range front. 
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Projections of potential future breeding distributions across the four GCMs and the 

consensus model suggest that future climate changes may result in range-wide shifts of relative 

suitable habitat (Fig. 4.8.2). By the 2080s, the breeding range is projected to shift northward and 

is characterized by loss of suitable habitats in the southern portion of the range and gains in 

regions north of its current range margin. However, the four GCMs used resulted in divergence 

among projections in terms of the magnitude of potential losses and gains of suitable habitat at 

the southern and northern range portions (Fig. 4.9.1). For example, predictions from the NIES 

GCM resulted in the largest loss of relatively suitable habitat by the 2080s over the entire range 

due to disproportionate losses in the southern portion of its current range and limited gains in 

suitability north of the current range margin. In contrast, predictions from the CSIRO GCM led 

to projections with the most gains north of the current range margin, and the fewest losses in the 

southern part of the current distribution. Projections derived from multi-model consensus of 

GCMs captured the central tendency of the GCMs. 

Based on the D-statistic, the NIES and Hadley GCMs tended to diverge more from the 

median relative to the CCMA and CSIRO GCMs, and often in different directions (Table 4.7.3; 

Table 4.9.2, 4.9.3). In particular, there were relatively large differences in magnitude and 

direction of the temperature and precipitation seasonality variables, which were the most 

important variables in the MaxEnt model predictions (Table 4.7.2). Based on the R-statistic, 

there was generally a high degree of similarity among the four GCMs and the multi-model 

median consensus GCM for the majority of the climate variables (Table 4.7.3). Of all GCMs, the 

NIES GCM consistently had the lowest R-values across all variables, indicating the most 

divergence from the consensus. The largest deviations were evident for cumulative precipitation 

over the breeding season, especially for the NIES and Hadley GCMs.  

4.4.2 Effect of future climate changes on species persistence 

Under the static climate scenario, the metapopulation dynamics model predicted an increase in 

the average number of occupied populations over the 100 year time period (Fig 4.8.3). The 

predicted number of occupied populations increased from 39 to 60 populations. There was a 

large degree of variability in the projected occupancy trends depending on the GCM used (Fig 

4.8.3). Both CCMA and CSIRO GCMs led to projected increases in the number of occupied 

populations over time and relative to the static climate scenario. The Hadley GCM led to 



135 

 

 

projected decreases in the number of occupied populations, with occupancy consistently lower 

than the static climate scenario. The NIES GCM produced non-monotonic behaviours in 

occupancy projections, with increases up until the 2050s and declines during the 2080s. The 

consensus GCM led to projected increases in occupied populations over time that were 

consistently higher than the static climate scenario. 

Projections of occupied populations and metapopulation abundances did not consistently 

track changes in total habitat suitability (ths) at the landscape scale (Fig. 4.8.3). For example, the 

CCMA GCM resulted in projected declines in ths starting around 2080, while trends in occupied 

populations and abundances were clearly increasing. In other cases, such as the consensus GCM, 

the direction of trends was similar while the magnitude of changes in projected occupancy or 

abundance trends did not follow suit. Hadley and NIES GCMs were the only models where 

projected changes in total habitat suitability and occupied populations and metapopulation 

abundances were roughly concordant. Furthermore, the decoupling of trends between ths and 

projected occupancies and abundances was more apparent in time periods further into the future.  

Based on EMA, the Hadley GCM led to greatest risks of decline relative to any other 

GCM (Table 4.7.4). Each individual GCM resulted in EMAs less than the static future climate 

scenario, whereas the consensus GCM had the largest EMA. Using change in ths as an index of 

risk, the largest risks were associated with NIES, Hadley, static, consensus GCM, CCMA, and 

CSIRO, in declining order. 

4.4.3 Global sensitivity analyses 

Under scenarios of dynamic future climatic conditions and no direct habitat loss, the most 

influential parameters on EMA based on their propensity to lead to increases in the overall mean 

square error included juvenile survival, adult survival, adult fecundity, mean dispersal rate, and 

the number of connections (Fig. 4.8.4). Variability associated with the choice of GCMs was 

ranked sixth out of 14 variables, followed by the total number of populations in the entire 

metapopulation. In contrast, simulations where climate change and direct habitat loss were 

explicitly varied revealed the importance of habitat loss as a contributor to EMA as it was ranked 

fourth most important, behind adult survival, juvenile survival, and adult fecundity (Fig 4.8.4). 
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Variability with the choice of GCMs moderately influenced EMA based on its contributions to 

the percent increase in mean square error (ranked 8
th

 out of 14 variables).    

4.5 Discussion 

By using coupled SDM metapopulation dynamics models, we illustrate how a combination of 

changes in suitable habitats, demographic processes, and stochastic processes influenced 

predictions of species persistence at the northern range boundary. The ranking of uncertainties 

through the PVA framework and global sensitivity analyses showed how variability in the choice 

of GCMs propagated through the coupled models and projections over multiple spatial scales. 

Our results clearly show how variability in choice of GCMs affects the SDM projections and 

propagates through to metapopulation viability projections at the northern range boundary. In 

some cases, opposite trends in viability metrics were evident, especially for the more extreme 

climate projections such as the Hadley and NIES GCMs. Comparing viability estimates and 

metapopulation dynamics across different GCMs demonstrates the potential bias should 

metapopulation projections be based on any single GCM. While both distribution and 

metapopulation viability projections highlighted the different trends as a function of the GCM 

applied, further interrogation of the climate variables used in the SDM revealed the variables 

driving the differences among projections. In particular, we recommend the D-statistic (Duan & 

Phillips, 2010, Garcia et al., 2011) as a diagnostic alongside the ranking of important predictors 

in the MaxEnt model to better understand variables driving differences among projections. 

The degree of concordance among landscape level measures of habitat suitability (ths) 

and metapopulation viability metrics was sensitive to the choice of the GCM. While the more 

extreme GCMs resulted in more consistency between the habitat-based and viability metrics, the 

differences were more amplified during late-century projections. The lack of tracking in ths by 

metapopulation dynamics (Fig. 4.8.3) points to limitations of using changes in habitat suitability 

measures on their own as proxies for extinction risk when assessing potential future climate 

change impacts (Fordham et al., 2012a). Our measures of extinction risk were a function of 

metapopulation dynamics models that incorporate demographic and dispersal processes, which 

are likely key to understanding species vulnerability to climate changes, especially in patchy and 

dynamic landscapes. 
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For species inhabiting heterogeneous and patchy landscapes at range boundaries, the use 

of process-based demographic models provide additional insights into dynamics and factors 

limiting range shifts not captured by SDMs that are undertaken at the biogeographic scale. The 

integration of simulated direct losses of habitat in conjunction with potential future climate 

changes strongly influenced EMA. These findings suggest that although future climate changes 

are likely to contribute to range margin expansions at the northern latitudinal boundary for the 

Hooded Warbler, the ability to track such changes is dependent in part on the availability of 

suitable biotic habitat elements. This corroborates findings across both empirical and theoretical 

studies (Warren et al., 2001, Travis, 2003, Wilson et al., 2010). Although simulated direct 

habitat losses were randomly removed from the landscape without consideration of their size or 

relative position, we applied this as a null model, and future work is focused on the development 

of more realistic loss scenarios. However, we expect that the null model applied here will result 

in more conservative risk estimates. Despite the assumption of random habitat loss and 

uncertainty of various demographic parameters, our results emphasize the importance of 

managing to retain currently suitable patches at the range margins (Hodgson et al., 2011). 

Consensus approaches are used as a method to deal with uncertainty in climate models 

with the goal to reduce the overall variability among predictions (Knutti et al., 2010). Projections 

based on individual GCMs enabled exploration of the range of potential outcomes, and 

importantly highlighted extremes. This was especially evident at the scale of the metapopulation 

dynamics model where predicted occupancies and abundances were sensitive to the choice of 

GCM resulting in trends occurring in opposite directions (i.e. increases versus decreases in 

predicted metapopulation occupancy). In particular the Hadley and NIES GCMs projected more 

extreme range contractions by the 2080s, and subsequently influenced risk estimates of the 

metapopulation dynamics model. Despite the central tendency consensus GCM, it had the 

highest EMA leading to interpretations of lowest risk relative to other future climate scenarios 

explored. Overall, the use of consensus climate models will depend on the research question, 

management problem, and behaviours regarding risk aversion. Here, we were interested in 

understanding the implication of variability of GCMs on risk estimates derived from 

metapopulation dynamics models, thus justifying an exploration of the range of possible 

conditions. This method also allowed for the ranking of uncertainty associated with GCMs, 

direct habitat loss, and demographic parameters, which is useful for prioritizing future research 
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and management actions. In cases where more GCMs are included, adopting clustering 

techniques to group similar GCMs may prove helpful and tractable (Garcia et al., 2011). 

Range margins are dynamic and reflect a complex set of interacting factors including 

suitability of climate conditions, presence of suitable habitats, and biotic interactions, all of 

which interact with demographic processes (Caughley et al., 1988, Lawton, 1993). Based on the 

global sensitivity analyses, uncertainty in vital rates strongly influenced EMA risk estimates, 

likely a reflection of environmental fluctuations faced by range edge populations and uncertainty 

in their estimates. Although this suggests a need to prioritize data collection to refine these 

estimates in the short-term, direct habitat losses were also ranked highly suggesting the need to 

prioritize habitat protection within this landscape. While we did not explicitly examine the 

timing of habitat prioritization, this region was consistently projected to remain suitable habitat 

across all time periods and GCMs. 

Threats are dynamic and may operate over multiple scales, reinforcing the need for risk 

assessments and the implementation of management actions across different planning levels. 

This is especially true for wide-ranging species where quantifying potential risks from climate 

changes and habitat loss may require a two-stage SDM that captures broad-scale climate 

influences with fine-scale habitat preferences (Pearson et al., 2004). Furthermore,  species found 

in patchy landscapes may necessitate the use of finer-scale habitat data derived from regional 

efforts, which may increase the relevancy of outcomes to management jurisdictions (Bradbury et 

al., 2011).While SDM future projections identified a region of high suitability within southern 

Ontario robust to the choice GCMs (Fig. 4.9.2), the design of conservation strategies would 

ideally integrate outcomes of the metapopulation dynamics model. In particular, the dynamics 

models and simulated direct habitat losses highlight how finer-scale habitat features may become 

limiting in the future. Further evaluation of the effect of alternative management actions, and 

their costs effectiveness on species viability (Wintle et al., 2011, van Teeffelen et al., 2012) 

under potential future climate changes would complement our analyses. A decision-theoretic 

approach would be particularly useful to assist with decisions regarding the timing of alternative 

management actions when climate changes result in temporally and spatially variable landscapes 

(Wilson et al., 2007). 
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4.7 Tables 

Table 4.7.1 Species distribution model predictor data descriptions, abbreviations, and percent 

contribution of predictors to MaxEnt species distribution model gain for the Hooded Warbler 

breeding distribution. Model gain is the average log probability of the presence samples minus a 

constant. 

Variable Description Abbreviation Percent 

contribution 

Annual temperature 

seasonality 

Standard deviation *100 of 

annual temperature 

Tseas 
52.5 

Annual precipitation 

seasonality 

Coefficient of variation of 

annual precipitation 

Pseas 
29.3 

Maximum spring and 

summer temperature 

Mean of the monthly 

maximum temperature 

calculated between April-

August 

Tmaxbr 

6.5 

Mean annual temperature  Tann 6 

Cumulative spring and 

summer precipitation 

Cumulative precipitation 

over April-August 

Pbr 
3.4 

Mean temperature coldest 

quarter 

 Tcoldq 
2.3 
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Table 4.7.2 Demographic parameters varied in the global sensitivity analyses: estimates used in 

the PVA model, probability density functions (PDFs) applied and range of parameter 

uncertainty. 

Parameter Mean estimate PDF and range of values 

Juvenile survival rate 0.32 Lognormal distribution, mean = 0.32, SD = 

0.064
1 

Adult survival rate 0.64 Lognormal distribution, mean = 0.64, SD = 

0.128
1
 

Juvenile fecundity 0 Not varied 

Adult fecundity 1.404 Lognormal distribution, mean = 1.404, SD = 

0.064
1
 

Initial abundances 200 Normal distribution, mean =  200, SD = 40   

Carrying capacity Function of total habitat 

suitability per habitat patch 

and average territory size  

Varied based on relative habitat suitability 

derived from SDMs based on four General 

Circulation Models, and two ensemble 

methods (SDM and GCM) 

Model of density-

dependence 

Ceiling to carrying 

capacity 

Not varied 

Rmax 1.02 Normal distribution, mean = 1.02, SD= 

0.102 

Correlations among 

vital rates 

No correlation Uniform distribution (minimum = 0, 

maximum = 1) 

Dispersal rate Negative exponential 

function of the form:  

mij = a x exp(-D
c
ij/b) 

 

Normal distribution, mean = 0 and SD =0.1. 

This modifies the dispersal rate between 

populations i and j, where the new dispersal 

rate m’ij = mij + mijn 

Maximum dispersal 

distance 

120 km Normal distribution, mean = 120, coefficient 

of variation = 20% 
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Parameter Mean estimate PDF and range of values 

Number of habitat 

patches (i.e. 

populations) at time = 

0 

88 Uniform distribution, minimum = 5, 

maximum = 174 

1
Tischendorf (2003)  

 

Table 4.7.3 Performance metrics D and R. D is the spatially aggregated root mean square (RMS) 

difference between each individual GCM variable and the multi-model median ensemble for the 

same variable for the 2080s forecasts. D is standardized using the standard deviation of all 

GCMs. D reflects how much a GCM (for each variable) tends to over- or under-estimate the 

variable in relation to the median. D values close to zero indicate similarity with respect to the 

median. The Pearson correlation (R) quantifies the similarities in spatial patterns between 

individual GCMs for a given variable and the median of that variable. 

   Climate variables   

  Tann Tcoldq Pseas Tseas Pbr Tmaxbr 

D-statistic CCMA -0.093 -0.059 0.043 -0.068 -0.135 -0.120 

CSIRO 0.058 0.054 -0.130 -0.191 -0.056 -0.046 

Hadley -0.126 -0.244 -0.111 0.471 0.093 -0.046 

NIES 0.412 0.354 0.298 -0.282 0.364 0.328 

R-statistic CCMA 0.997 0.998 0.944 0.981 0.950 0.995 

CSIRO 0.998 0.997 0.934 0.986 0.920 0.995 

Hadley 0.998 0.996 0.948 0.977 0.887 0.998 

NIES 0.992 0.981 0.827 0.845 0.651 0.986 
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Table 4.7.4 Expected minimum abundance predictions for the static future climate, four GCMs, 

and consensus GCM scenarios 

Experiment EMA 

Static 203 

CCMA 197 

CSIRO 199 

Hadley 10 

NIES 156 

Ensemble 251 
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4.8 Figures 

 

Figure 4.8.1 Hierarchical modelling framework of the coupled SDM-PVA analysis. Hatched 

boxes reflect the sources of uncertainties targeted in this study, which include the choice of 

GCMs, demographic parameter uncertainty, and direct habitat loss. Black boxes reflect models 

applied at the scale of the entire breeding range and grey boxes reflect models applied at the 

landscape scale. 
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Figure 4.8.2 Predicted current habitat suitability across the entire breeding range (Current) and 

projections of potential future habitat suitability for the Hooded Warbler for 2080s for four 

GCMs and the consensus GCM. Inset (a) of the current predictions delimits the spatial extent of 

the landscape scale metapopulation dynamics model.  
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Figure 3. Predicted change in (a) average metapopulation occupancy, (b) total habitat suitability, and average metapopulation 

abundance over time for the static future climate scenario, four GCMs, and the consensus GCM. 
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Figure 4.8.3 The relative influence of (a) choice of GCMs and demographic parameter 

uncertainty and (b) choice of GCMs, demographic parameter uncertainty, and direct habitat loss 

on expected minimum abundance based on the Random Forest variable importance metric of 

reduction in mean square error (MSE) 
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4.9 Appendix 

4.9.1 Tables 

Table 4.9.1 Life history characteristics used to inform parameterization of the metapopulation 

demographic dynamics model. ON: Ontario, PA: Pennsylvania. Table sourced with permission 

from (Tischendorf, 2003). 

Characteristic  Observation  References  

Breeding period (ON)  
mid-May to late July  

(Bisson & Stutchbury, 

2000) 

Clutch size  
3.5  

(Bisson & Stutchbury, 

2000) 

Broods/year (PA)  
1.2 (possibly lower in ON)  

(Evans Ogden & 

Stutchbury, 1996) 

Incubation period  
12 days  

(Ogden & Stutchbury, 

1994) 

Fledging period  
28 days  

(Ogden & Stutchbury, 

1994) 

Maturity breed at 1 year  

Life Span  8 years maximum, 2.5 

years estimated average  

(Ogden & Stutchbury, 

1994) 

Nesting Success  82% of nests fledged (ON: 

1998)  

(Bisson & Stutchbury, 

2000) 

Fledging Success  2.6 + 0.29 fldg (n = 22) 

(ON: 1998)  

(Bisson & Stutchbury, 

2000) 

Ontario Population Size  251 males / 225 females  Badzinski, pers. comm.  

Annual Survival  juvenile 0.32 ± 0.064; 

adult 0.64 ± 0.128  

Badzinski, Friesen, pers. 

comm. 

Return Rate to Study Site 

(PA)  

52% for males (n = 174)  

43% for females (n = 195)  

(Howlett & Stutchbury, 

2003) 

Dispersal/Movement  Average 10-20 km; max. 

120 km  

Badzinski, Friesen, pers. 

comm.  

Average Territory Size  
Average 7.2; minimum 

1.6; maximum 8.5  

Badzinski, pers. comm.  

Howlett and Stutchbury 

1997  

Habitat Requirements  Small clearings in the 

interior of large mature 

hardwood forests, well 

closed canopy  

(Sedgwick & Knopf, 1987, Donovan & 

Flather, 2002, Shifley et al., 2006)  

Sex Ratio (ON: 1998)  
83% of males paired  

40 – 45 % females in 

population  

(Bisson & Stutchbury, 

2000) 

Badzinski, Friesen, pers. 

comm.  

Trend in Population Size  steady increase since from Badzinski, unpubl. data  
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Characteristic  Observation  References  

(80-176) in 1988 to 251 in 

2002  
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Table 4.9.2 Current and projected future climate variables over three future time periods, 2020s, 2050s, 2080s, derived from four 

general circulation models (GCMs) over Eastern North America. Future climate variables are based on annual averages or seasonal 

averages calculated over the breeding season of the Hooded Warbler (April through August). 

 

 

CCMA2 Hadley NIES-99 CSIRO-MK3 

 Current 2020 2050 2080 2020 2050 2080 2020 2050 2080 2020 2050 2080 

Tann 66.2 84.5 98.8 120.1 78.9 94.2 117.7 85.0 117.2 157.1 85.9 103.0 131.1 

Tmincold

q -72.7 -50.8 -32.8 -9.7 -67.0 -48.9 -26.8 -55.6 -21.4 28.7 -51.4 -30.8 0.9 

Pann 887.3 861.2 866.0 846.3 914.7 924.0 939.8 921.2 915.9 929.8 881.6 892.6 883.6 

Pseas 31.9 33.7 33.3 33.6 32.4 32.1 31.5 32.0 32.8 37.1 32.1 31.1 31.2 

Tseas 

10282.

3 

10195.

4 

10050.

2 

9962.

4 

10750.

0 

10842.

4 

10934.

2 

10336.

8 

9959.

6 

9576.

5 

10117.

6 

10036.

6 

9741.

1 

Pbr 516.5 494.9 498.8 485.2 535.0 521.8 513.6 540.7 544.0 547.4 510.2 509.7 495.0 

Tmaxbr 212.7 233.1 246.0 268.9 230.3 247.4 274.1 232.8 263.4 300.9 233.2 248.8 274.2 

Tmeanbr 152.1 171.0 184.5 205.3 168.9 184.5 209.2 172.1 201.2 237.6 172.0 188.8 215.5 

Tminbr 92.2 109.4 123.4 142.3 107.9 122.1 144.7 110.9 138.6 173.8 111.2 129.3 157.2 
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Table 4.9.3 Current and projected future climate variables over three future time periods, 2020s, 2050s, 2080s, derived from four 

general circulation models (GCMs)  for the province of Ontario. Future climate variables are based on annual averages or seasonal 

averages calculated over the breeding season of the Hooded Warbler (April through August). 

  CCMA2 Hadley NIES-99 CSIRO-MK3 

 Current 2020 2050 2080 2020 2050 2080 2020 2050 2080 2020 2050 2080 

Tann 2.9 20.8 36.8 56.3 15.2 29.2 52.9 24.5 63.6 107.9 25.3 45.0 78.1 

Tmincol

dq -165.2 -140.6 -118.4 -93.3 -158.4 -139.2 -114.4 -143.4 -93.1 -26.5 -141.8 -118.7 -81.1 

Pann 725.8 736.5 721.9 755.8 774.7 792.4 813.1 762.7 808.5 858.4 732.7 755.7 758.3 

Pseas 34.0 34.4 32.7 32.7 33.6 33.0 29.0 31.5 28.7 30.3 29.5 29.0 24.8 

Tseas 12342.6 

12184.

9 

11969.

1 

11822.

9 

12738.

5 

12678.

3 

12723.

2 

12206.

2 

11049.

5 

9933.

1 

12151.

7 

12050.

8 

11645.

1 

Pbr 438.4 446.9 430.3 449.5 478.0 467.8 457.9 459.6 491.6 513.8 431.4 438.8 415.9 

Tmaxbr 164.0 181.7 196.7 216.8 179.2 192.9 219.7 186.4 218.7 256.1 189.2 209.5 242.5 

Tmeanbr 105.0 123.4 138.2 157.6 120.6 133.6 158.6 127.5 158.5 194.8 127.8 147.4 178.8 

Tminbr 46.6 65.7 80.1 99.0 62.4 74.8 98.0 68.2 97.8 133.1 66.8 85.9 115.6 
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4.9.2 Figures 

 

Figure 4.9.1 Uncertainty of Hooded Warbler relative suitability projections to the 2080s expressed as the coefficient of variation 

among four general circulation models: CCMA2, CSIRO, HADLEY, and NIES. 
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Figure 4.9.2 Overlap among Hooded Warbler binary presence/absence projections across 

the four GCMs for the 2020s, 2050s, and 2080s. Binary presence/absence maps were 

derived using the threshold for the current prediction model that corresponded to 

minimizing the absolute difference between the sensitivity and specificity (Liu et al., 

2005, Nenzén & Araújo, 2011). A value of four indicates complete agreement among all 

four GCMs, and 0, none 
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Chapter 5  

 Planning for Neo-tropical migratory bird 5
conservation under climate change 
 

5.1 Abstract 

Migratory bird species present a unique challenge for conservation planning under 

climate change due to their complex life histories. Many species rely on disjunct breeding 

and nonbreeding habitats where regional variation in future climate across temperate and 

equatorial expanses may result in asymmetric range shift patterns. Despite the ecological 

significance of accounting for seasonal habitat dependencies, few studies characterize 

vulnerability to projected climate exposure across the annual cycle. As a result this factor 

is largely ignored when identifying spatial conservation priorities under climate change, 

limiting their potential utility. Furthermore, the range dynamics of vegetation dependent 

species will be constrained by a combination of climate change and habitat availability, 

yet biotic factors are rarely included in predictive models that are subsequently used as 

inputs to spatial priorities. While accounting for a range of model uncertainties, I 

quantified the sensitivity of spatial priorities under projected climate change to the 

inclusion of a habitat predictor variable within SDMs across breeding and nonbreeding 

ranges of 28 Nearctic-Neotropical migratory bird species. These results show that the 

addition of a single biotic predictor, forested habitats, had cascading influences on the 

selection of spatial priority areas for conservation. Identification of climatically suitable 

priority areas achieved lower representation of forested habitats required for vegetation 

dependent species relative to biotic derived priorities, in as a result of elevated 

commission error rates. Spatial incongruence between abiotic (climate) and biotic (forest) 

SDM derived priorities were amplified when projected climate change was considered 

while the pattern of spatial priorities varied in asymmetric ways depending on the 

seasonal range under consideration. High latitude breeding priorities resulted in large 

northward shifts, while differences in nonbreeding priorities were characterized by more 
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complex heterogeneous patterns. These results emphasize the importance of including 

ecologically relevant biotic predictors into SDMs especially when used as inputs to 

quantitative conservation planning assessments. Spatial conservation priorities have the 

potential to shift across national boundaries as species track suitable climates, further 

emphasizing the need for globally coherent collaborative actions to conserve wide-

ranging migratory species. 

5.2 Introduction 

Recent climatic changes have resulted in large perturbations to biological systems 

including shifts in species distributions, population dynamics, ecological interactions, and 

species’ phenology (Walther et al., 2002, Parmesan & Yohe, 2003, Root et al., 2003, 

Chen et al., 2011a). Global climate change is therefore now considered a demonstrable 

threat to species and ecosystems requiring both mitigation and adaptation measures 

(Brook et al., 2008). Protected areas are a cornerstone mitigation strategy of biodiversity 

conservation and are a key tool for climate change adaptation, yet their static nature 

brings into question their ability to address species range shifts in response to rapid 

climate change (Hannah et al., 2002, Hannah et al., 2007). Current protected areas have 

already undergone shifts in species representation due to recent changes in climate 

(Johnston et al., 2013) and future projections of species range shifts suggest their capacity 

to buffer against future changes is unlikely (Araújo et al., 2004, Hole et al., 2009, Araújo 

et al., 2011). Furthermore, suitable habitats for many species are likely to shift across 

political boundaries (Saura et al., 2014). Thus global climatic changes have the potential 

to undermine protected area networks designed with national oriented conservation 

priorities (Moilanen et al., 2013) and underscores the increasing importance of a globally 

coherent protected area network and transboundary collaboration (Hannah, 2010, Mazor 

et al., 2013). 

Migratory bird species present additional challenges for global priority setting and 

conservation planning under climate change as they require seasonal habitats separated 

by large distances and inhabit multiple political jurisdictions. By definition, migratory 

species, cyclically or periodically cross national borders, and thus require coordinated 
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protection during all phases of their annual lifecycle (2003). Given that these species 

inhabit disparate regions it is likely that over the course of their annual cycle they will be 

affected by changes in climate (Robinson et al., 2008). Yet migratory birds may not be 

universally vulnerable to climate changes across their seasonal ranges due to asymmetry 

in spatial and temporal patterns of threat dynamics. For example, species found at higher 

latitudes are expected to undergo poleward range shifts due to relatively large expected 

changes in temperatures, while species inhabiting tropical regions may exhibit elevational 

shifts due to narrow anticipated changes in temperature and changes in precipitation 

regimes (La Sorte & Thompson, 2007, Sekercioglu et al., 2008, Zuckerberg et al., 2009, 

La Sorte & Jetz, 2010, Chen et al., 2011c). Subsequently, design of protected areas will 

need to account for these different patterns of range shifts in migratory species whose 

seasonal ranges span both high latitude and equatorial regions to ensure robustness to 

climate changes. In addition to global variation in threats, the current configuration and 

coverage of protected areas is spatially biased across regions (Joppa & Pfaff, 2009, 

Schmitt et al., 2009, Coad et al., 2010), which may necessitate spatially varied and 

regionally derived expansion of current protected areas to achieve effectiveness both 

currently and when future climate changes are considered. Despite the strong biological 

underpinnings of a complete lifecycle approach, few macroecological studies (Somveille 

et al., 2013) and climate-change vulnerability assessment frameworks address seasonal 

habitats required by migrants (Small-Lorenz et al., 2013a). Failure to address the 

potential influence of climate change across all portions of the range may distort 

vulnerability assessments and evaluation of risks, resulting in ineffective conservation 

actions. 

An increasingly common approach to assess potential exposure to future climate 

change, an element contributing to species’ vulnerability (Williams et al., 2008a), is 

through the use of species distribution models (SDMs) (Guisan & Thuiller, 2005). SDMs 

are correlative models that relate species occurrences to environmental variables.  The 

spatial predictive outcomes can be used to inform systematic conservation planning 

processes (Margules & Pressey, 2000) that consider potential future climate change 

(Carvalho et al., 2011, Kujala et al., 2013, Lemes & Loyola, 2013). Their use in 
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conservation priority settings tacitly assumes that predictions adequately capture elements 

of species’ distributions requiring conservation. When applied in the context of reserve 

design, SDMs are often formulated using abiotic variables (i.e. climate) to the exclusion 

of biotic factors and resource variables, including suitable vegetation habitats required by 

higher trophic level species (e.g., Hole et al., 2009, Araújo et al., 2011, Carvalho et al., 

2011, Johnston et al., 2013, Kujala et al., 2013, Lemes & Loyola, 2013); but see (Carroll 

et al., 2010, Virkkala et al., 2013, Cumming et al., 2014, Scott et al., 2014). Generally, 

abiotic factors, such as dimensions of climate, have been assumed to play a large role in 

species distributions at broad spatial scales (i.e. regional, continental, global) while biotic 

factors have commonly been regarded as important at smaller scales (Pearson & Dawson, 

2003). Yet increasingly, evidence supports the role of biotic factors on species 

distributions at regional, continental, and global scales, emphasizing the need to consider 

these factors alongside climate (Wisz et al., 2013). Given that many animal species are 

constrained by the spatial distribution of their biotic habitat resources in addition to the 

abiotic climate conditions that describe their physiological tolerances (Pelini et al., 2009, 

Kissling et al., 2010, Wisz et al., 2013), both types of factors mediate species range 

dynamics, and may vary globally in spatially structured ways.  

Inclusion of biotic factors for animal species tends to improve model predictions 

suggesting that these factors contain important non-redundant information, perhaps as 

they approximate resource requirements  (e.g., Venier et al., 2004, Araújo & Luoto, 2007, 

Heikkinen et al., 2007, Meier et al., 2010, Forcey et al., 2011, Barbet-Massin et al., 

2012b, González-Salazar et al., 2013) but see Triviño et al. (2011). Integrating biotic 

predictors into SDMs that represent resource dependencies, and the subsequent priorities 

they inform, is likely to increase the ecological realism of outputs as they link more 

directly to factors influencing population dynamics (Araújo & Luoto, 2007). Evidence for 

the role of biotic factors at broad-scale species distributions combined with generally 

increased predictive performance suggests that selection of appropriate predictors for 

SDMs is of ecological significance with practical relevance to spatial conservation 

prioritization. In the context of conservation planning, SDMs have received a relatively 

comprehensive treatment of uncertainty, including assessment of the influence of spatial 
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resolution, thresholds to convert to probabilistic predictions to binary (presence-absence) 

outcomes, model algorithm, spatial bias of presence/absence data, and climate change 

models (Wilson et al., 2005, Carvalho et al., 2010, Nenzén & Araújo, 2011, Arponen et 

al., 2012, Kujala et al., 2013). However, there has been little work that explicitly 

examines spatial variability in priorities resulting from the choice of alternative predictor 

variable sets, in particular those that include biotic elements. 

Given that population-limiting processes occur over the combination of seasonal 

habitats for long-distance migratory birds (Holmes, 2007), I contrast spatial conservation 

priorities across both breeding and nonbreeding seasonal ranges under the consideration 

of climate change targeting three themes. First, I address the sensitivity of conservation 

priorities to the use of alternative predictive inputs based on SDMs developed using only 

abiotic predictors or a combination of abiotic and biotic (habitat-based) predictor 

variables. I consider the selection of predictor variables as an opportunity to integrate 

ecological theory into SDM development moving it beyond an issue solely of practical 

relevance (Austin, 2007). Second, I examine the spatial dynamics of conservation 

priorities under potential future climate change while accounting for uncertainties in 

predictive model algorithms, climate models, and dispersal estimates. I illustrate how 

spatial divergence among solutions is amplified between abiotic and biotic models under 

climate change. Finally, I evaluate the performance of current protected areas to protect 

biodiversity under projected climate change. Overall these results emphasize the 

importance of including biotic factors in SDMs across seasonal ranges as they capture 

resources directly related to species persistence, thus leading to more robust conservation 

priorities. This work contributes both methodological and conceptual advances to the 

fields of conservation planning and modeling of range dynamics under climate change. 

5.3 Methods 

5.3.1 Species distribution models 

I modeled the distributions for 28 Parulidae species considered Nearctic-Neotropical 

migratory species with broad forest habitat associations for each species across both their 

breeding and nonbreeding ranges (Berlanga et al., 2010)(Table 2.8.1). Both present and 
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future predictions were based on ensemble methods that derived a mean prediction based 

on outcomes from Chapter 2, where each species’ seasonal range was modeled separately 

(see Appendices). I developed two sets of models for each species, (1) climate-only 

predictors (abiotic model class), and (2) climate-habitat predictors (biotic model class). 

The climate variables represent a combination of extreme and seasonal values of 

temperature and precipitation that are known to influence bird species distributions 

(Huntley et al., 2008). They included temperature seasonality, precipitation seasonality, 

mean of monthly maximum temperature, and mean of monthly total precipitation. 

Maximum temperature and total precipitation were averaged over seasonal time periods 

reflecting the months associated with the breeding (April-July) and non-breeding 

(November-February) periods of the annual cycle (Heikkinen et al., 2006). Baseline 

climate data for the current time period (1950-2000) were sourced from the Worldclim 

database, which is a set of high resolution interpolated climate data (Hijmans et al., 

2005), standardized to a 20 x 20 km resolution.  

Biotic SDMs were developed using all abiotic predictors as well as percent forest 

cover and percent shrub-grass cover as biotic predictors. Percent forest cover for each 

200 km
2
 was derived by reclassifying forest categories from the GlobCover dataset 

version 2.3, a global land cover model that has an original resolution of 300 m, which 

provided a consistent land-cover classification method across the entire western 

hemisphere (European Space Agency, 2008). GlobCover consists of 22 global land cover 

types and I derived a composite forest class consisting of 9 of the original classes that 

contained a minimum of 15% forest cover representing coniferous, deciduous and mixed 

forest types. Percent shrub-grass cover was calculated for each 20 km grid cell by 

reclassifying four of the original classes consisting of a minimum 15% shrub cover. To 

capture variability associated with different atmosphere ocean global circulation models 

(AOGCMs) (Fordham et al., 2011), projections of potential future climate suitability 

were based on four GCMs using the A2 emission scenario from the IPPC 4
th

 Assessment. 

I selected the HadCM3, CCMA-CGM3, CSIRO-3K, and NIES-99 models, as they 

provide a range of variability with respect to annual temperature and cumulative 

precipitation predictions (IPCC, 2007a). Future climate surfaces were based on averages 
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describing thirty-year time periods defined as the 2080s (2060-2099), accessed from the 

International Centre for Tropical Agriculture (http://www.ccafs-climate.org/). 

SDMs were developed using an ensemble-modeling approach to capture 

variability associated with different modeling algorithms (Araújo & New, 2007a). I used 

five different modeling algorithms implemented in biomod2 R package (Thuiller et al., 

2012) using R version 2.15.2 (R Core Team, 2013). This included two regression 

methods (generalized linear models and generalized additive models), and three machine-

learning methods (Random Forests, generalized boosted regressions and MaxEnt). To 

evaluate the predictive performance of each model for each species across each seasonal 

range, I used a five-fold cross-validated random subset of 70% of the data to calibrate the 

model and the remaining 30% for model testing. Models were evaluated based on two 

discrimination capacity statistics, the true skill statistic (TSS) and the area under the 

receiver operating characteristic curve (AUC), on the cross-validated data, and calibration 

plots were constructed and evaluated (Jiménez-Valverde et al., 2013). TSS was only used 

on the breeding models, which consisted of presence-absence models. Model projections 

were based on the final model run using 100% of the data (Araújo et al., 2005) and were 

undertaken over the entire western hemisphere for the current period and the 2080s. For 

each species, I obtained 20 current modeled distributions (5 SDMs × 2 seasons × 2 model 

classes, abiotic and biotic), and 80 future projections of suitability (5 SDMs × 2 seasons × 

2 model classes × 4 GCMs). I assumed percent forest cover would remain constant over 

time, while climate was dynamic. 

5.3.2 Conservation prioritization 

I estimated the differences in spatial dynamics of the priority areas between the seasonal 

ranges across potential future climate changes, and assessed the influence of integrating 

biotic features within SDMs, whose predictions formed the input to the identification of 

priorities. Below I describe (1) an overview of the Zonation software, (2) Zonation 

specifications for the baseline scenario that considers both current and future priorities 

under potential climate changes, (3) the methods applied to account for uncertainty across 

http://www.ccafs-climate.org/
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SDM algorithms and AOGCMs, (4) the experiments devised to test the sensitivity of 

inclusion of habitat features, and (5) the comparative and statistical analyses. 

I used Zonation v. 3.1 conservation prioritization framework and software to 

identify global-scale conservation priorities across seasonal ranges under potential future 

climate change (Moilanen et al., 2005, Moilanen et al., 2012). Zonation uses a reverse 

stepwise heuristic and iteratively removes cells from a landscape in an order that 

minimizes the marginal loss value. From a mathematical perspective, marginal loss (δi) is 

calculated as:  

       
     

  ( )  
 , 

where wj is the weight of species j, qij is the fraction of the original full 

distribution of species j in cell i (i.e. level of representation), Qj (S) is the fraction of the 

original distribution of species j in the remaining set of cells, S, ci is the cost of adding 

site i. The outcomes are deterministic and expressed as a nested hierarchy of solutions 

across a landscape where, for example, the top 1% of areas selected as priorities is nested 

within the top 10% priority areas, and thus differs substantially from other prioritization 

approaches where species targets are set a priori. Additionally, it is possible to derive the 

proportion of a species’ original distribution captured in the priority solutions over 

different levels of landscape retention. I applied the core-area Zonation analysis variant as 

it retains areas of high habitat quality (i.e. high probability of occurrence) for a species at 

a given location, even if it is depauperate of other species (Moilanen et al., 2011). 

To evaluate the shifting dynamics of priorities over time as a function of potential 

climate changes for each seasonal range, spatial priorities were assessed across a suite of 

analysis periods. Using the predicted outcomes of the SDMs for each species for the 

current and future periods as primary inputs to Zonation, I prioritized landscapes 

separately for the following periods: (1) current (2000), (2) future (2080), and (3) current 

and future combined (herein 2000 - 2080). The latter prioritization effectively includes 

four distributions prioritized simultaneously: (1) current, (2) future, (3) dispersal 

pathways i.e. connectivity from the current to the future, and (4) stepping stones i.e. 
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connectivity from the future to the current. Within Zonation, spatial connectivity between 

two time periods was implemented as a species interaction (Type 1) where the spatial 

distribution of a conservation feature is modified as a function of distance to a second 

distribution (Rayfield et al., 2009, Carroll et al., 2010). This transformation is based on a 

species-specific dispersal kernel such that overlapping high quality cells from both 

distributions are selected preferentially. Based on a literature review and lack of species-

specific annual dispersal estimates, the scale of connectivity for all species was set to a 

distance of 20 km/per year to represent both natal and breeding dispersal behaviours, 

which is likely a conservative estimate for such highly mobile species (Tittler et al., 2009, 

Chen et al., 2011a). 

Given the known variability associated with SDM algorithms and climate change 

models (Elith & Graham, 2009), I explicitly accounted for these sources of uncertainty by 

applying the info-gap theory technique of distribution discounting (Moilanen et al., 

2006). For each species and for each seasonal range, I derived an ensemble model of 

current predictions of relative habitat suitability based on the mean across each of the five 

SDM algorithms. A discounted distribution grid was created by subtracting 1 standard 

deviation (SD) from the mean of the predictions across the 5 SDM algorithms. The same 

procedure was applied across the mean of the future projections across each SDM 

algorithm, for each GCM separately. To account for the variability across GCMs, I 

applied a secondary discounting procedure. For each species, for each seasonal range), I 

derived a mean ensemble grid across the four GCM projections (already discounted to 

consider type of SDM variability), which was subsequently discounted by 1 standard 

deviation. This method uses SDM predictive suitability outcomes without applying a 

threshold to transform to presence-absences, thus incorporating uncertainty directly 

(Moilanen et al., 2005). Each of these discounted distributions for 28 species, 2 seasonal 

ranges, and 2 time periods formed the inputs for the baseline and experiment 

prioritizations. All biodiversity features were weighted equally, but results were 

summarized based on representation across species grouped by degree of vulnerability 

(see below). 



163 

 

 

5.3.3 Replacement cost analyses 

Design of protected area networks is generally constrained by existing land-uses and 

location of current reserves, such that an optimal design is not possible. Given these 

practical limitations inherent to the conservation planning process, I applied a 

replacement cost analysis to quantify the change in the average level of representation 

given that the optimal solution is not possible (Cabeza & Moilanen, 2006). Specifically, I 

performed a biological cost inclusion analysis where current protected areas were forcibly 

included into the solution to evaluate the change (decrease) in level of representation 

compared to the optimal solution. Current protected areas included those classified as 

IUCN category I through VI (IUCN & UNEP, 2013) and only protected areas within the 

boundary of current and future dispersal modified SDM projections were retained. I 

expected that inclusion of existing protected areas would result in higher inclusion costs 

and lowered representation of forested habitats for breeding relative to nonbreeding 

priority solutions, in part a function of the larger non-forested areas captured by protected 

areas across the northern hemisphere. I compared inclusion costs by reporting the mean 

proportion (across all bird species) of the distribution of each species retained as a 

function of the percentage of land retained for protection (i.e. priorities). 

5.3.4 Simulation experiments and analyses 

To address the sensitivity of temporally dynamic spatial priorities under climate change 

to the inclusion of biotic features (i.e. habitat dependencies) I integrated biotic features 

applying two approaches. First, due to the prevalent use of climatic suitability as mapped 

distributions for priority assessments, I compared global priorities developed using 

predictive outcomes from abiotic versus biotic distribution models. Abiotic models 

consisted of climate variables (see SDM section) whereas biotic models included percent 

forest cover in addition to the climate predictor representative of the dominant habitat 

association among all modeled species. These separate classes of predictive models 

formed the inputs and unit of analysis within the Zonation framework. 

I performed a total of 12 prioritization experiments that included: two seasonal 

ranges, two SDM predictions (abiotic and biotic), three time periods of analysis (2000, 
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2080, and 2000-2080), and with and without current protected areas. Results were 

summarized across all biodiversity features based on the average representation across 

the top 10% priority areas for breeding and nonbreeding ranges, independently. I 

performed multiple comparisons to quantify the influence of inclusion of the biotic 

feature via the SDM predictive outcomes and to illustrate differences in spatial dynamics 

over time due to potential climate changes between the seasonal ranges. To track changes 

in representation of direct habitat features across seasonal ranges, I quantified the 

percentage of forest cover captured by each solution of the 12 prioritizations. As a 

measure of spatial overlap between priority landscapes, I applied the Jaccard index (J), 

which is defined as the intersection between two grid layers divided by their union (   

       )⁄ . The index varies between 0 and 1 with higher values indicative of higher 

spatial overlap. 

The spatially disjunct distributions of long-distance migratory bird seasonal 

ranges present a natural experiment to examine the spatial dynamics of priorities under 

potential future climate changes across large latitudinal gradients. Topographical 

constraints, land-use legacies, and spatial distribution of current land-uses likely 

influence both the percentage of forest habitat contained within priority solutions, and 

potentially interact with the projected range shifts as a result of climate changes. I 

calculated the proportion of cells identified as priorities within 200 km wide latitudinal 

bands over three mutually exclusive periods (in the current period but not in the future, in 

the future to the exclusion of current priorities, and their intersection). Similarly, I 

calculated the proportion of cells identified as priorities against totals for each country to 

estimate the potential shifting of representation across political boundaries, underscoring 

the necessity of collaborative transboundary planning. 

5.4 Results 

5.4.1 Inclusion of biotic factors 

The degree of spatial overlap as measured by the Jaccard index of similarity between 

abiotic and biotic classes of SDM priority landscapes illustrates two clear trends. The 

results in the following two sections reflect analyses performed without integrating the 
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current protected area reserve network. First, overall similarity between the two model 

classes was qualitatively modest to low (ranging from 0.58 to 0.29), depending on the 

period of analysis, regardless of the seasonal range under consideration (Table 5.6.1). 

This underscores the sensitivity of priority areas resulting from the inclusion of a biotic 

predictor variable within the SDM. Second, similarity between abiotic and biotic classes 

of priorities was lower in the future (2080) relative to the current (2000) landscapes for 

both seasonal ranges, illustrating divergence between spatial priorities due to the 

inclusion of a biotic predictor compounded by projected climate change (Table 5.6.1). 

Spatial congruence between abiotic and biotic priority landscapes for the 2000 and 2000-

2080 time periods (where both periods and spatial connectivity between periods were 

considered simultaneously) were highly aggregated within core areas regardless of 

seasonal range, although this pattern was more pronounced for breeding season priorities. 

This pattern is in part reflected by the higher proportion of like adjacencies for breeding 

priorities and abiotic relative to biotic priorities regardless of seasonal range, where a 

higher value is indicative of more spatial aggregation (Table 5.4.1). By contrast, the low 

Jaccard index between abiotic and biotic 2080 priority landscapes was reflected in more 

fragmented areas of overlap, a pattern captured by the increasing number of spatially 

distinct areas (i.e. patches) and less core area with the 2080 priorities (Table 5.4.2). 

Divergence between abiotic and biotic priority landscapes for the 2080 period was 

spatially structured and especially pronounced in the south-eastern US and north-western 

portions of the breeding range, which coincide with range boundaries for a large number 

of species. 

The degree to which the top 10% priority areas captured forest cover varied as a 

function of both SDM class used as input to the prioritization and with potential future 

climate changes (Fig. 5.7.1). Based on prioritizations that do not consider pre-existing 

protected areas, the mean percent forest cover summarised across each top 10% priority 

solution was consistently higher for all solutions based on the biotic SDMs, except for the 

2000 breeding solution. Nonbreeding range priorities resulted in lower mean percent 

forest cover relative to the breeding range with coverage declining for both ranges over 

time with projected climate change. Furthermore, priority landscapes based on biotic 
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SDM outcomes for each seasonal range consistently selected fewer cells that contained 

no forest cover for each year of analysis. Despite the apparently small differences in 

number of cells with 0% forest cover, this translates into modest areal differences for 

both seasonal priorities due to the global scale of the study area. For example, the spatial 

priorities based on the biotic breeding models resulted in 0.38% (7,200 km
2
) of the 

priority landscapes containing no forest, compared to 1.45% (27,400 km
2
) of priority 

landscapes based on abiotic models. 

5.4.2 Spatial dynamics of priority landscapes over time 

Comparing the similarity of solutions between all pairwise combinations of the 

three periods of analysis, current (2000), future (2080), and both periods considered 

simultaneously (2000-2080), resulted in generally low Jaccard values (< 0.5) highlighting 

that spatial priorities identified in the current period will not be robust to future climate 

change across each seasonal range (Table 5.4.1). There was greater spatial divergence 

among breeding priorities based on temporal comparisons when compared with 

nonbreeding Jaccard values, reflective of the large projected latitudinal shifts in species 

distributions under future climate change for the breeding ranges (Table 5.4.1). By 

contrast, the low spatial overlap of nonbreeding priorities between current and future 

periods produced more heterogeneous patterns in spatial discrepancies along latitudinal, 

longitudinal, and elevational gradients. However, higher Jacccard values between 2000 

and 2000-2080 priorities relative to 2000 and 2080 priorities suggest that by planning for 

both current with future climatic conditions by integrating uncertainty controlled climate 

projections can assist in identifying spatially concordant regions (consensus areas with 

climate change). 

The representation of priority areas varied by latitude but the strength of this 

relationship was influenced by the seasonal range under consideration. Across the 

breeding ranges, there was a clear latitudinal gradient in the locations of priority areas 

whereby the proportion of 2000-only priority areas declined with increasing latitude. 

However, this pattern was reversed for future priorities (2080-only): the proportion of 

2080-only priority areas varied positively with increasing latitude (Fig. 5.7.2 a – b). This 
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switch in temporal representation of priorities by latitude was less evident and spatially 

more complex when considering the nonbreeding season (Fig. 5.7.2 c – d). While the 

nonbreeding range priorities varied less clearly with latitude under future climate change, 

spatial conservation priorities have the potential to shift across national boundaries as 

species track suitable climates (Fig. 5.7.3). Across the nonbreeding ranges, conservation 

priorities for the current period were spread over a relatively small land area with large 

variation in proportional representation of the top 10% priority areas across 20 countries 

(Fig. 5.7.3). When considering future climate change, regions of high priority have the 

potential to shift across national boundaries as species track suitable climates. This 

pattern is clearest across the breeding ranges as there is a complete switch in national 

responsibility between Canada and the USA. Within nonbreeding ranges, a shift in 

priority areas with climate changes translates into transference of national responsibility 

for certain countries more than others.  

5.4.3 Replacement cost analysis 

Spatial congruence between abiotic and biotic SDM priority landscapes increased with 

the inclusion of protected areas. Nonbreeding range priority landscapes had a consistently 

higher Jaccard index relative to breeding priorities, illustrating the influence of the higher 

proportion of protected areas within the nonbreeding relative to breeding region. 

Temporal changes in priority landscapes due to climate-induced range shifts led to lower 

2080 indices of spatial similarity relative to 2000 for both seasonal priorities. The 

inclusion of protected areas into the priority solution influenced mean percent forest 

cover of all solutions, however, directionality of change varied by seasonal range. For all 

breeding solutions spanning the three periods of analysis, mean percent forest cover 

decreased when protected areas were forcibly included, while the nonbreeding solutions 

exhibited the opposite trend (Fig. 5.7.1). Despite the increase in mean cover for the 

nonbreeding regions, the percentage of grid cells containing no forest cover increased in 

all periods except for the 2080. Overall, integrating protected areas into priority solutions 

under projected climate change resulted in marginal changes to the mean percent forest 

cover and the percentage of grid cells with 0% forest cover contained within each 

solution compared to the current (2000) period. 
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Regardless of seasonal range, there was a consistent biological cost (i.e. lower 

mean proportion of all species distributions retained, or, lower average level of 

representation) of including protected areas within the solution for the current period, 

which was highest at low levels of landscape retention (Fig. 5.7.4). Generally, for any 

given level of landscape removed, the average level of representation was higher for 

nonbreeding versus breeding priorities. Furthermore, the biological cost of including 

protected areas was consistently higher for nonbreeding relative to breeding priorities 

across all periods of analysis, in particular at the 90% level of landscape removal. This 

occurred despite a higher average mean percent forest cover retained within the 

nonbreeding solutions (both model classes) with the protected areas forcibly included. 

Interestingly, the average representation across all bird species was higher for the 

nonbreeding abiotic relative to the biotic model, however, the abiotic solution captured 

less average percent cover of forest. Average representation of biodiversity features for 

the breeding season was not sensitive to the selection of SDM classes; however, at the top 

10% of priority areas breeding solutions generally had a low average level of 

representation. This was further reduced when protected areas were included. 

5.5 Discussion 

Vulnerability assessments and the identification of spatial conservation priorities for 

migratory species requires inclusion of all seasonal habitats to ensure protection is 

conferred across all biologically relevant portions of the annual cycle. Despite this, few 

valuations adopt such a comprehensive assessment, which brings into question the 

capacity of these prioritizations to achieve conservation goals (Small-Lorenz et al., 

2013a). Many migratory species reside seasonally in regions characterized by large 

variation in land-use and land-cover patterns, biogeography, density of national political 

boundaries, and socio-economic-cultural facets that further challenge the planning and 

implementation of conservation priority areas. These disparate regions are further 

characterized by spatially distinct future climatic changes both in terms of departures 

from current climates and the advent of novel climates (Williams et al., 2007, Mora et al., 

2013), which can influence different portions of the annual cycle. I showed that for 

Nearctic-Neotropical migratory birds future climate changes influenced the pattern of 
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spatial priorities in asymmetric ways depending on the seasonal range under 

consideration; high latitude breeding priorities resulting in large northward shifts, while 

differences in nonbreeding priorities were characterized by more complex heterogeneous 

patterns. Regardless of the seasonal range under consideration, representation of priority 

areas shifted spatially as a result of future climate change leading to variation in 

responsibility across international boundaries. By accounting for SDM algorithm 

uncertainty, the type of GCM through a combination of consensus and distribution 

discounting methods, these results underscore the sensitivity of spatial conservation 

priorities to the inclusion of a habitat-based biotic predictor within the SDMs. Below I 

discuss the implications of this cascading influence of a single biologically relevant 

predictor variable for conservation planning based on SDMs and how this might impact 

decisions related to conservation actions and inform transboundary management issues. 

5.5.1 Influence of biotic factors 

Including biotic predictors in SDMs developed for animal species reliant on vegetation 

resulted in substantive spatial differences in conservation priorities relative to inputs 

based on abiotic-based SDM predictions, with differences amplified when climate 

changes were considered. By accounting for uncertainties in SDM algorithms and choice 

of GCMs, I were able to isolate the influence of the inclusion of a habitat factor of 

importance for the focal species under consideration on spatial conservation priorities. 

Incorporating resource-based predictors (i.e. biotic vegetation factors here) into SDMs 

minimizes the potential for over-estimating species distributions and potential range 

shifts under future climate changes (Heikkinen et al., 2007, Schweiger et al., 2008, 

Kissling et al., 2010). When such limiting variables are not included as predictors, this 

introduces false presences (i.e. higher commission error rate). Focusing on breeding 

range SDMs, which used presence-absence occurrence data (nonbreeding used presence-

background); the average omission error rate was relatively similar between abiotic and 

biotic SDMs, while the commission error rate was higher for abiotic SDMs relative to 

biotic SDMs (Naujokaitis-Lewis et al Chapter 2). This suggests that the addition of the 

vegetation feature included important information influencing species occurrences, 

specifically the false positive rate, which minimized overprediction in geographic space 
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relative to the abiotic models (Fielding & Bell, 1997) (the rate at which the model 

incorrectly predicts presences). This resulted in quantifiable differences in the spatial 

pattern of priority areas both under current climates and when considering future 

projections. In the context of conservation planning, commission errors may be more 

costly than omission errors (Lobo et al., 2008), whereby model outputs with higher 

commission errors will result in selection of areas not suitable or relevant for 

conservation, which could result in high costs from both biological and economic 

perspectives (Rondinini et al., 2006). In combination with the posterior analyses 

indicating that biotic priorities captured higher average percent cover of forested habitats, 

these results highlight the importance of including biotic predictors in SDMs for 

vegetation dependent species. 

Spatial incongruence between abiotic and biotic SDM derived priorities were 

amplified when projected climate change was considered. I showed that when accounting 

for variability associated with both SDM algorithm and GCM used, the addition of a 

single biotic predictor can have cascading influences on the selection of spatial priority 

areas for conservation under climate change. Identification of climatically suitable 

priority areas achieved lower representation of forested habitats required for vegetation 

dependent species. All biotic-based priorities retained more average percent forest cover 

and selected fewer grid cells devoid of forests, reinforcing the importance of inclusion of 

resource limiting factors even for SDMs developed at broad scales. This was particularly 

evident for nonbreeding range priorities across all periods of analysis, possibly explained 

by forested habitats being more limited in these regions. Importantly, biotic-based 

priorities that considered climate changes always captured higher average percent cover 

of forested habitats, suggesting that abiotic-based priorities may lead to inefficiencies due 

to selection of regions devoid of habitat. Large anomalies in future species distributions 

under climate change projections is a recognized issue resulting from different 

parameterizations of GCMs, type of SDM algorithm, and the choice of variables used in 

the SDMs (Beaumont et al., 2005, Beaumont et al., 2008, Diniz-Filho et al., 2009, Garcia 

et al., 2011). These results further support the role of variable selection on SDM 

predictive outcomes and demonstrate how the addition of an ecologically relevant 
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predictor variable into SDMs translates into differences in spatial conservation priorities 

that are magnified under projected climate changes. Overall, this suggests that 

conservation priorities identified using only predictive models estimating the climate 

envelope of vegetation-dependent species will result in the inefficient allocation of 

conservation resources via the selection of regions with inadequate amounts of habitat. 

This study focused on quantifying the seasonal differences in spatial conservation 

priorities under climate change for a set of long-distance migratory birds and illustrated 

the sensitivity of priorities to the inclusion of habitat-based biotic factors. From a 

methodological perspective, integrating biotic predictors directly into the SDMs may be 

advantageous when data permits in terms of spatial coverage and resolution. When this is 

the case, these models establish links between species occurrence and environmental and 

habitat features and thus contribute to reducing both commission and omission errors 

(Chapter 2). This allows direct modeling and projection of potential consequences of 

dynamic changes in land-use and climate into spatially explicit predictive outcomes  (e.g., 

Barbet-Massin et al., 2012b, Schweiger et al., 2012, Martin et al., 2013), which can 

subsequently be used as inputs into spatial conservation priority assessments. Further, in 

cases where detailed knowledge of specific habitat preferences is unknown, it may be 

advantageous to include hypothesized representative predictors within SDMs to model 

the expected relationship. A complementary method is to include vegetation or other 

habitat elements in the conservation priority process via a habitat filtering approach as a 

posteriori analyses after SDM development  (e.g., Faleiro et al., 2013, Lemes & Loyola, 

2013). This may be beneficial in addition to or in place of inclusion as predictor variables 

under the following situations: (1) where data are not of consistent spatial or temporal 

coverage  (Faleiro et al., 2013), (2) where over-prediction and false positives are of 

concern in SDM predictive outcomes (e.g., when climate variables have a 

disproportionate influence on predictive outcomes resulting in high errors of commission 

even when habitat variables are included, or due to use of coarse-grained data; (Rondinini 

et al., 2006, Hermoso & Kennard, 2012)), and (3) when more refined priorities are 

required in particular for smaller scale assessments reflecting scale of many decisions 

(Wiens & Bachelet, 2010) or where species are patchily distributed (Schwartz et al., 
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2006). Evaluating the relevance of each method requires at a minimum careful 

interrogation of the SDM outcomes with a particular emphasis on commission and 

omission error rates, where applicable. Regardless of the method, I found cross-

examination of priority assessments using a variety of landscape-level metrics, spatial 

indices of similarity, and spatially explicit map-based comparisons enabled a deeper 

understanding of the limitations associated with abiotic-derived SDMs.   

5.5.2 Shifting spatial priorities across political boundaries under 
climate change 

Migratory species present a unique challenge for conservation planning as the often wide 

distances between seasonal ranges result in threat dynamics structured across their 

seasonal ranges. These results point to clear latitudinal shifts in priority areas under future 

climate changes across the breeding range while nonbreeding range priorities exhibited 

large spatial shifts with more complex patterning. These asymmetrical patterns of shift 

under climate change resulted from the potential range shifts in response to changing 

climates, which follow expected patterns across latitudinal gradients. Across breeding 

priorities, there is complete reversal in the level of responsibility of each country into the 

future. With a high density of national borders across the nonbreeding ranges, the 

variability in priorities under climate change led to shifting responsibilities both within 

and across political boundaries. This shifting representation of species’ distributions 

across multiple national boundaries presents additional challenges for coordination and 

implementation of conservation plans. Currently, conservation and management of 

migratory species requires international collaboration as population-level threats and 

processes are linked across seasonal ranges (Holmes, 2007). The anticipated spatial shifts 

in priority areas across political boundaries under climate change further emphasize the 

need for collaborative actions to conserve wide-ranging migratory species. Consideration 

of socioeconomic and political factors that influence collaborative conservation will be 

required to assess both willingness and ability of country involvement (McDonald & 

Boucher, 2011). Such factors, such as likelihood of establishing collaborations among 

various stakeholders can be incorporated into both scoping and quantitative analysis 

phases of the systematic conservation planning process (Pressey & Bottrill, 2009, Micheli 
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et al., 2013). An additional factor likely to provide increased incentive for international 

collaboration is through the identification of spatially concordant priority areas that 

integrate priority species endemic to Central and northern South America alongside 

nonbreeding ranges of Nearctic-Neotropical migrants (Berlanga et al., 2010). 

5.5.3 Current and future effectiveness of protected areas 

The distribution of protected areas is not spatially homogenous across the seasonal ranges 

nor do they currently capture similar proportions of forest cover, resulting in 

asymmetrical benefits from protected areas both currently and under future climate 

changes. Over the breeding season, the inclusion of protected areas resulted in much 

lower mean coverage of forests across priority areas despite the prevalence of 

climatically suitable areas. This emphasizes the tendency for protected areas across the 

breeding range to cover non-forested areas, not unexpected given their spatial bias at high 

latitudes towards steep, rocky, and icy regions (Joppa & Pfaff, 2009). Despite the non-

optimal placement of current protected areas denoted by the large decrease in biological 

value when priorities are constrained to include the protected areas, inclusion of current 

protected areas in the nonbreeding range resulted in increased retention of forest cover. 

This might have occurred as a result of including protected areas that overlapped with 

current and future projections of species distributions, some of which occurred on the 

margins of current species distributions where climate-habitat suitability was lower (e.g. 

portions of Venezuela). This suggests that focusing on vegetation only to guide reserve 

selection could be misleading but requires further exploration. Regardless, inclusion of 

protected areas across the nonbreeding range resulted in much larger differences in 

average biological value (i.e. average level of representation) when 10% of priority 

landscapes were retained. There were many more biologically valuable sites but selection 

was prevented by the inclusion of protected areas, especially across nonbreeding ranges, 

where average representation was higher at the 10% level, possibly related to generally 

smaller size of nonbreeding relative to breeding range. 
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5.5.4 Limitations and future opportunities 

There are a number of limitations with this approach, which serve to highlight 

opportunities for future work. While I considered the future spatial dynamics of global 

climate change, I assumed that percent forest cover remained static over time. Rates and 

magnitude of change in vegetation amount and configuration could occur via a direct 

pathway whereby climate change influences vegetation growth or, loss of forested 

habitats might occur independent or in interaction with climate changes (Mantyka-Pringle 

et al., 2012). Loss of forested habitats through conversion to alternative landcover types 

is a formidable threat expected to persist into the future (Sala et al., 2000), with spatial 

patterns of threats likely to differ regionally with the potential for interactions between 

multiple stressors (Brook et al., 2008, Mantyka-Pringle et al., 2012). Global spatial 

variation in recent and future land-use conversion could lead to loss of habitats 

disproportionately affecting regions across a given seasonal range (Jetz et al., 2007, 

Hansen et al., 2013). For example, (Jetz et al., 2007) modeled the projected effects of the 

interaction between climate and land-use change on global bird distributions and found 

that climate change had a disproportionate influence on future range contractions in 

temperate regions whereas land-use change was the primary driver of change in tropical 

regions. This emphasizes the need for seasonal range assessments for migratory species 

due to regional differentiation in threat dynamics. As changes in forest cover are likely to 

change dramatically over the period of analysis further work extending this line of 

enquiry would benefit from a comparative analysis including this dynamic threat. In 

addition, the integration of migratory connectivity, the spatial linkages between 

populations across different stages of the life-cycle, will be a critical step to identifying 

priority areas that are able to conserve populations representative of these connections 

(Martin et al., 2007), however, limited empirical data and likely species-specific patterns 

currently hinder its inclusion. 

5.5.5 Conclusions 

Given the lack of uniformity in direction and magnitude of threat dynamics, assessing 

spatial patterns of vulnerability across all habitats required over the annual cycle of 
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migrant species is crucial for initial risk evaluations and for conservation priority setting. 

Priority setting for conservation currently and under the threat of climate change requires 

consideration of seasonal habitats that support migratory species across their annual 

cycle. For long-distance migratory birds, both the distribution of habitat features and the 

potential threat dynamics of changing climates vary in heterogeneous patterns across their 

seasonal ranges. Identification of climatically suitable priority areas does not necessarily 

select regions with habitat required for vegetation dependent species. Thus excluding 

biotic factors from SDMs is likely to misinform conservation priorities based on 

predictive outcomes through identification of priorities that actually constitute false 

positives. This study advances our understanding of the sensitivity of conservation 

priorities to the inclusion of biotic factors into the underlying SDMs that inform the 

spatial quantitative portion of the planning process. Understanding the spatial dynamics 

of priorities with climate change across seasonal ranges is imperative for operationalizing 

conservation actions because of concordant changes to the level of responsibility of 

nations. Developing stronger predictive science that overcomes current methodological 

limitations and pursuing research to better inform management decisions arising from the 

application of SDMs (Schwartz, 2012, Guisan et al., 2013) will help advance goals of 

biodiversity conservation. Migratory species represent opportunities to develop our 

collective capacity for collaboration requiring the global community to move towards 

accepting responsibilities for shared resources in a dynamic world. 
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5.6 Tables 

Table 5.6.1 Jaccard index of similarity between maps based on top 10% priority areas for 

abiotic and biotic SDMs, and multiple time comparisons (2000 to 2080, 2000 to 2000-

2080 where both periods are considered simultaneously, and 2080 to 2000-2080). 

Pairwise comparisons are delineated by seasonal range both with and without protected 

areas (IUCN category I-VI). 

Type of comparison 

 

Breeding Nonbreeding 

  

without PAs with PAs without PAs with PAs 

Abiotic with biotic 2000 0.55 0.78 0.58 0.93 

 

2080 0.29 0.63 0.30 0.80 

 

2000-2080 0.44 0.69 0.45 0.83 

2000 with 2080 Abiotic 0.17 0.55 0.23 0.89 

 

Biotic 0.12 0.51 0.23 0.80 

2000 with 2000-2080 Abiotic 0.31 0.57 0.52 0.91 

 

Biotic 0.27 0.59 0.50 0.83 

2080 with 2000-2080 Abiotic 0.33 0.59 0.36 0.91 

 

Biotic 0.33 0.58 0.37 0.97 
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Table 5.6.2 Comparison of landscape level statistics for abiotic- and biotic-based spatial 

conservation priorities for breeding and nonbreeding ranges across multiple periods of 

analysis, 2000, 2080, and 2000-2080 where both periods where considered 

simultaneously.  

 Period of analysis 

Nonbreeding Breeding 

 

Abiotic Biotic Abiotic Biotic 

Number of patches 2000 118 257 55 212 

2080 390 602 173 266 

2000-2080 249 355 152 308 

Landscape shape index 2000 14.88 20.48 9.36 17.33 

2080 23.22 30.30 17.69 19.74 

2000-2080 19.40 22.96 14.66 19.72 

Mean patch core area 2000 39.42 14.32 263.22 55.84 

2080 8.44 4.07 63.03 39.48 

2000-2080 15.49 9.58 80.88 34.75 

Proportion like adjacencies 2000 0.73 0.65 0.87 0.78 

2080 0.61 0.52 0.77 0.75 

2000-2080 0.66 0.61 0.81 0.75 
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5.7 Figures 

 

Figure 5.7.1 Mean % forest cover within the top 10% priority landscapes based on abiotic 

and biotic SDM outcomes for breeding and nonbreeding ranges, with and without 

protected areas. ▲indicates the % of cells within each experiment that contain no forests. 
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Figure 5.7.2 Top 10% priority areas for biotic class of SDMs for a) breeding ranges and 

c) nonbreeding ranges. Proportion of non-overlapping priority areas for the current 

(2000-only) and future (2080-only) periods and their intersection (overlap 2000 & 2080) 

relative to the total area identified as a priority for each 200 km latitudinal band for the b) 

breeding range and d) nonbreeding range, based on biotic SDM predictions.  

 

  



180 

 

 

 

 

Figure 5.7.3 Proportional representation of priority areas for conservation across the 

nonbreeding range by country stratified by priority areas for (a) 2000-only, (b) 2080-

only, and (c) those that spatially overlap with both 2000 and 2080. Countries are listed by 

breeding range (bars marked ‘B’) then nonbreeding (remaining bars), and then in 

decreasing order by average latitude of each country, calculated based on the country 

centroid in km using a Behrman equal area projection. Country abbreviations reflect ISO 

country standards. 
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Figure 5.7.4 Average level of representation across all biodiversity features as a function 

of the proportion of landscape lost based on abiotic and biotic SDMs, both with and 

without protected areas (PAs) for breeding and nonbreeding ranges. 
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5.8 Appendix 

Ensemble-based methods applied to derive consensus predictions among the five model 

algorithms used to predict species distributions under climate change for the 2000, 2050, and 

2080 time period for the 28 species of Parulidae. 

Consensus among the 5 modeling algorithms for each variable set for both the current and future 

predictions were based on a weighted mean of probabilities, where each algorithm was weighted 

proportional to its TSS score. The consensus among the GCMs was calculated based on the mean 

across projected probabilities of occurrence or relative suitability values, in the case of the 

nonbreeding models. Projections over the breeding season were converted to binary 

presence/absence data using a threshold maximizing the True Skill Statistic (Allouche et al., 

2006), which corresponds to the sum of sensitivity (proportion of presences correctly predicted) 

and specificity (proportion of absences correctly predicted) minus one. I applied a threshold of 

occurrence based on the 10% quantile of habitat suitability extracted from present-day 

occurrence records for the nonbreeding range outcomes, resulting in a less conservative 

threshold relative to the breeding season threshold of occurrence due to the lack of systematic 

sampling frame used to acquire the presence-only nonbreeding occurrence data.  
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5.8.1 Figures 

 

Figure 5.8.1 Map of protected areas, IUCN Category I-VI across breeding and nonbreeding 

ranges used in Zonation replacement cost analysis. 
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a) 

 

b) 

 

 

 

 

 

 

 

c) 
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d) 

 

Figure 5.8.2. Projected changes in species richness across breeding ranges from 2000 (current) to 

2080 projections for four different GCMs, a) CCMA, b) CSIRO-MK3, c) Hadley, and d) NIES-

99. Species richness changes are based on SDMs using the climate-habitat variable set. Results 

for each GCM are summarized using ensemble across five model algorithms where each model 

is weighted proportional to the True Skill Statistic (TSS).  
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a) 

 

b) 
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c) 

 

d) 

 

Figure 5.8.3. Projected changes in species richness across nonbreeding ranges from 2000 

(current) to 2080 projections for four different GCMs, a) CCMA, b) CSIRO-MK3, c) Hadley, 

and d) NIES-99. Species richness changes are based on SDMs using the climate-habitat variable 

set. Results for each GCM are summarized using ensemble across five model algorithms. 
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Figure 5.8.4 Comparison of breeding top 10% priority areas between abiotic and biotic SDMs. 1
st
 row: 2000 priorities, 2

nd
 row: 2080s 

priorities, 3
rd

 row: both 2000-2080 priorities. 
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Figure 5.8.5 Comparison of nonbreeding top 10% priority areas between abiotic and biotic SDMs. 1
st
 row: 2000 priorities, 2

nd
 row: 2080s 

priorities, 3
rd

 row: both 2000-2080 priorities. 
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Figure 5.8.6 Top 10% priority areas based on a) abiotic SDMs and b) biotic SDMs across the 

breeding range. 2000-only and 2080-only: priority areas unique to the respective periods of 

analysis. 2000 & 2080 refers to priority areas that overlap between the two time periods. 
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Figure 5.8.7 Top 10% priority areas based on a) abiotic SDMs and b) biotic SDMs across the 

breeding range. 2000-only and 2080-only: priority areas unique to the respective periods of 

analysis. 2000 & 2080 refers to priority areas that overlap between the two time periods. 
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Figure 5.8.8 Comparison of breeding top 10% priority areas with current protected areas between abiotic and biotic SDMs. 1st row: 2000 

priorities, 2nd row: 2080s priorities, 3rd row: both 2000-2080 priorities. 
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Figure 5.8.9 Comparison of nonbreeding top 10% priority areas with current protected areas between abiotic and biotic SDMs. 1
st
 row: 

2000 priorities, 2
nd

 row: 2080s priorities, 3
rd

 row: both 2000-2080 priorities. 
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 Discussion and Conclusions 6

6.1 Synthesis 

In this thesis, I have aimed to address the over-arching question: Why are species where they are, 

and how do we expect them to respond to dynamic threats? Despite the apparent simplicity of 

this question, it remains an outstanding problem guiding much ecological research given the 

direct implications under rapid global changes. I aimed to advance our understanding of the 

relative importance of climatic and non-climatic drivers on avian seasonal range dynamics, both 

in the past and in the future. I applied a diversity of modelling approaches that vary with respect 

to the degree of biological information, temporal scale of climate change and land-use dynamics, 

and spatial scale of analysis. A central theme of my PhD is the role and importance of 

uncertainty; I explicitly evaluated the influence of various types of uncertainty (Chapters 2, 4, 5), 

or accounted for uncertainty directly in the methods (Chapter 3). Multiple and common sources 

of uncertainty can influence predictive outcomes (Chapters 2, 3), robustness of inferences 

(Chapters 2, 3, 4), and has implications for management decisions focused on biodiversity 

conservation (Chapters 4, 5). Each chapter builds on the preceding by using methods that 

increasingly account for ecological processes that determine species’ range dynamics.  

In Chapter 2, I developed species distribution models to test the importance of including 

biotic vegetation factors in addition to abiotic (climatic) factors on predictive accuracy of 

species’ current breeding and nonbreeding distributions, independently, for 33 species of long-

distance migratory birds. I assessed the potential change in distributions under anticipated 

climate change and examined the relative contribution of different sources of uncertainty on 

range change metrics, including both latitudinal boundaries and proportional expected change in 

range size. Overall, the inclusion of biotic vegetation factors improved predictive accuracy on 

average across all species and both seasonal distributions. These results emphasize the 

importance of including covariates that capture biotic vegetation dimensions that relate to 

species’ resource requirements, where vegetation functions as nesting habitat and proxy for food 

availability, even at broad spatial scales. My results suggest that projected climate change has the 

potential to influence directionality of range shifts dependent on the seasonal range and species’ 

identity. Variation in both range change metrics were influenced by the type of model algorithm 

followed by choice of General Circulation Model. Key findings include (1) evidence for signals 



195 

 

 

of biotic vegetation factors at broad scales for this set of Parulidae, and (2) species-specific 

multi-directional projected range shifts regardless of season, and (3) strong seasonal differences 

in projected range shifts that may result in increased migration distance between seasonal ranges. 

In Chapter 3, I tested the relative importance of multiple dynamic threats on annual 

variation in occupancy dynamics of two congeneric species. These dynamic threats are thought 

to represent the main drivers species range dynamics, namely habitat loss, climate change, and 

biotic interactions. I developed multi-year occupancy models over a 30-year period that account 

for detection errors in the sampling process and extended the model to integrate time-varying 

covariates. Inter-annual variation in estimated probability of extinction of both focal species was 

more strongly associated with fine-temporal scale habitat changes relative to climate. However, 

the probability of extinction in Golden-winged Warblers was most strongly related to presence of 

its congeneric species, the Blue-winged Warbler. While presence of a congeneric species was 

applied as a proxy for competition (Gotelli et al., 2010), further work is needed to elucidate 

evidence for this mechanism. The methods applied in this chapter present an improvement on 

static species’ distribution models (Franklin, 2010) by providing insights in the relationship 

between covariates and extinction and colonization dynamics that underlie range dynamics, 

while accounting for detection errors (Royle & Kery, 2007). Key findings of this work include: 

(1) the need to consider temporal scale of extrinsic environmental conditions as this may result in 

different inferences regarding the relative influence of multiple threats on broad-scale 

distributions, and (2) biotic factors influence species’ colonization and extinction and are thus 

important for broad-scale range dynamics. 

The use of species distribution models regardless of fine-spatial resolution can result in 

over-prediction of range shifts due to lack of uniform relationships with abiotic and biotic factors 

across broad scales. Using the Hooded Warbler as a case-study species in Chapter 4, I quantified 

differences in range shifts and estimates of population viability at the northern range edge border 

based on outcomes of a correlative model (SDM) contrasted with a hybrid model that combined 

SDM outcomes with metapopulation dynamics models. A secondary objective was to evaluate 

the sensitivity of model outcomes using a global sensitivity analysis framework. Based on SDMs 

predictions, I found that the Hooded Warbler range was consistently projected to shift north: 

choice of GCMs influenced the magnitude of change, and variability was spatially structured. 

Variability in the choice of GCMs propagated through to metapopulation viability at the northern 
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range boundary. Consistent with a priori predictions, based on a hybrid modelling approach that 

combined SDMs with metapopulation dynamics models, viability measures were most sensitive 

to direct habitat loss. Despite the high ranking of vital rates in the global sensitivity analysis, 

direct habitat loss had a larger negative influence on extinction risk than potential future climate 

changes. This work underscores the importance of a global sensitivity analysis framework 

applied to hybrid models to disentangle the relative influence of uncertainties on projections. Key 

findings of this chapter include the significance of accounting for multiple and potentially 

opposing threats using demographic models to estimate rates of range expansion. 

Migratory bird species present a unique challenge for conservation planning under 

climate change due to their complex life histories. In Chapter 5, while accounting for a range of 

model uncertainties, I quantified the sensitivity of spatial priorities under projected climate 

change to the inclusion of a habitat predictor variable in species distribution models across 

breeding and nonbreeding ranges of 28 Nearctic-Neotropical migratory bird species. The 

addition of a single biotic predictor, forested habitats, had cascading influences on the selection 

of spatial priority areas for conservation. Identification of climatically suitable priority areas 

achieved lower representation of forested habitats required for vegetation dependent species 

relative to biotic derived priorities, largely a result of elevated commission error rates. Spatial 

incongruence between abiotic (climate) and biotic (forest) SDM derived priorities were 

amplified when projected climate change was considered while the pattern of spatial priorities 

varied in asymmetric ways depending on the seasonal range under consideration. High latitude 

breeding priorities resulted in large northward shifts, while differences in nonbreeding priorities 

were characterized by more complex heterogeneous patterns. 

6.2 General conclusions 

In this thesis, I have shown that biotic vegetation factors are important determinants of species’ 

distributions, alongside abiotic (i.e., climate) factors (Chapters 2, 3). The importance of biotic 

vegetation covariates is linked to the specific habitat requirements for the Parulidae warblers 

examined throughout this thesis. While abiotic (i.e. climatic) factors were on average ranked 

higher in permutation importance, the inclusion of biotic vegetation covariates tended to 

decrease errors of commission based on broad-scale correlative models, which had cascading 

consequences on both predicted range shifts under climate change and the development of spatial 
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conservation priorities robust to climate change. This underscores the importance of including 

ecologically relevant variables that represent resource availability and limiting factors of the 

focal species. However, the generality of the relative strength of abiotic relative to biotic factors 

is sensitive to temporal resolution and spatial scale. In particular, case studies using dynamic 

occupancy models and metapopulation dynamics models both suggest that direct habitat loss can 

have a stronger effect, at least at finer temporal scales. I have also shown that landscape level 

habitat management is needed for species that are expanding their ranges northward in particular 

at the northern boundary as the ability to track climate change is dependent in part on the 

availability of suitable biotic habitat elements (Chapter 4). As managers are required to make 

decisions quite often with imperfect knowledge, a particular novelty of Chapter 4 is the 

development of tool to automate sensitivity analyses of coupled SDM-PVA models that can be 

used to evaluate the consequences of different amounts of habitat loss on species’ range 

expansion under different GCMs. There are an increasing number of studies that integrate biotic 

vegetation in addition to abiotic factors either for understanding determinants of current 

distributions or consequences of climate change (e.g., Barbet-Massin et al., 2012b, Scott et al., 

2014). However, few model entire species’ distributions (e.g., Cumming et al., 2014) or they 

consider only a singular season (i.e. breeding and nonbreeding) thus capturing only a portion of 

the annual lifecycle of long-distance migratory species (but see Doswald et al., 2009).  

The finding that species distributions were influenced by short-term dynamic changes in 

habitat and extreme short-term climatic events represents an important advancement in the study 

of range dynamics (Chapter 3). To date, few studies consider the importance of fine temporal 

scale of climate and habitat changes, instead assuming that static spatial data is adequate to 

model species’ distributions. Understanding the relative importance of factors limiting species’ 

distributions, which in Chapter 3 represents threatening processes of habitat loss and climate 

change, can help to inform decision-making aimed at abating threats. My work suggests that 

species’ are responding to short-term changes in both climate and habitat, however, changes in 

vegetation cover were more strongly associated with extinction risk. Despite the broad spatial 

scale of this study, this underscores habitat management in climatically favourable areas as a 

potential management strategy for the Near-Threatened Golden-Winged Warbler (IUCN, 2010). 

Models that do not account for finer-temporal scale dynamics in both habitat and climate are 
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likely to overestimate suitable habitats and species’ responses to climate change, which has 

important implications for conservation priorities and management decisions. 

Finally, I have demonstrated the need to explicitly consider multiple sources of 

uncertainty in the modeling of species range dynamics, in particular under future global change 

scenarios. Uncertainty in model selection, type of modeling algorithm applied, and choice of 

General Circulation Models resulted in large variation in SDM outcomes (Chapter 2). By 

contrast, global sensitivity analyses of coupled SDM-PVA models revealed the importance of 

both uncertainty in demographic rates and in patterns and amount of habitat loss had a 

disproportionate influence on species persistence and its propensity for range expansion under 

favourable climate changes (Chapter 4). Both of these outcomes demonstrate the need to 

systematically account for uncertainties, but the relative influence of multiple sources of 

uncertainty may differ depending on model approach. Adopting approaches such as the use of 

consensus methods where model predictions are combined based on a decision rule (e.g., average 

predictions across levels within a factor) are valuable for reducing variation associated with any 

one modeling method or with wide variability associated with future climate change projections. 

This may be of particular relevance when the objective of the modeling process is to inform 

decision-making (Araújo & New, 2007b). However, knowledge of the source variation in model 

outcomes is important for refining models and improving model accuracy be developing better 

models. For example, SDMs calibrated based on a combination of abiotic and biotic factors, the 

latter of which includes both proxies for habitat describing vegetation features and biotic 

interactions between species, generally result in improved prediction performance (Luoto et al., 

2007, Syphard & Franklin, 2009, Peers et al., 2013). In these cases, improved predictive 

accuracy is a result of incorporating ecologically relevant information. Integration of biotic 

factors and interactions into models is of particular relevance in the context of global change, 

where species distributions and interactions are likely to be modified by relationships with 

climate (Wisz et al., 2013).  

6.3 Future directions 

There are several lines of inquiry that may help to improve our understanding of the factors that 

drive species’ range dynamics and the development of improved predictive models.  

(1) Importance of temporal scale of threatening processes 
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While most studies consider the role of long-term average climate trends, many species’ are 

likely responsive to shorter-term climate changes (i.e. weather). In particular, short-term climate 

variability and the frequency and intensity of extreme climate events may influence species’ 

distributions both in the short and long-term, yet these are often overlooked (Vasseur et al., 

2014). More frequent and intense climate events, such as droughts and heat waves, can have both 

direct effects on species’ demographic rates or local extinction via dispersal ability and indirect 

effects for example mediated by interspecific competition. Outstanding questions include: (1) are 

there time-lagged responses and does this depend on temporal resolution, and (2) do life-history 

traits explain the scale of time-lagged responses. Additional lines of inquiry include whether 

poor SDM transferability over time (Rapacciuolo et al., 2012) results from selection of abiotic 

predictors at an inappropriate temporal resolution. Developing models that consider finer scale 

temporal dynamics and finer spatial resolution of dynamic threatening processes should provide 

more ecologically relevant predictions that are likely to be more appropriate for management 

actions (Potter et al., 2013). 

(2) Consequences of climate change on seasonal biotic interactions of long-distance migratory 

birds 

During the non-breeding season, many Nearctic-Neotropical migratory bird species form mixed 

species flocks both with other migratory species and resident species endemic to the Neotropics, 

where competition is the hypothesized mechanism structuring community patterns of co-

occurrences (Graves & Gotelli, 1993). Recent findings suggest a role for interspecific 

competition between tropical resident species that may limit range shifts under climate change 

(Jankowski et al., 2010). Thermal tolerances may differ between migratory and resident tropical 

species, which may further amplify the consequences of climate change on these different groups 

of species individually and indirectly through biotic interactions. Although far from resolved, 

research suggests that tropical species may be disproportionately vulnerable to climate change in 

part related to relatively narrow thermal tolerance adaptations (Freeman & Class Freeman, 

2014). Migratory birds may be less vulnerable to climate change occurring over the nonbreeding 

season relative to tropical residents. This may in part be related to migrants tending towards 

more flexible basal metabolic rates (BMRs) relative to resident tropical species (McNab, 2009, 

Şekercioğlu et al., 2012). BMR measures the rate of energy expenditure and is considered 

important for temperature regulation, whereby a higher BMR suggests an ability to tolerate 
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physiologically wider thermal conditions. If and how biotic interactions play out in association 

with limiting environmental conditions and potentially differing degrees of thermal tolerances 

between both migratory and resident tropical species remains an important area of research. 

Additional methods that would complement empirical data collection along range limits include 

testing the hypothesis of niche similarity between resident and tropical species (Warren et al., 

2008) and estimation of niche filling as an approach to assess the importance of biotic 

interactions in structuring species’ ranges (Skov & Svenning, 2004). Given the importance of 

seasonal carry-over effects on population dynamics for migratory birds (Norris & Taylor, 2006), 

a coordinated research agenda across seasonal ranges with multi-national support should increase 

both efficiency of data acquisition and effectiveness of conservation actions.  

(3) Longitudinal demographic research 

Integrative studies drawing from a diverse set of approaches, such as experimental manipulation 

and mechanistic models, will be important for elucidating factors and mechanisms that influence 

species responses to global change (Dawson et al., 2011), however, the paucity of longitudinal 

data remains a formidable barrier. Research or monitoring programs designed to collect 

abundance and ideally demographic rates across various spatial positions (e.g., across latitudinal 

gradients) of species’ ranges will provide vital information that will contribute to a more 

mechanistic understanding of the causes of range shifts (Pagel & Schurr, 2012, Schurr et al., 

2012). For example, long-term mark-recapture data sets can help explain causal role of weather 

on survival and fecundity estimates of populations, providing a more mechanistic understanding 

of species’ responses to changing environments (Dybala et al., 2013). The development of 

population models parameterized based on demographic rates in relation to climate can then be 

used to predict the consequences climate change (e.g., Barbraud et al., 2011, Pomara et al., 

2014), thus providing critical information for species conservation and management decisions. 

Given the magnitude of resources to obtain such data, even simply including estimates of 

abundance are important: species might be moving into or out of habitat because of changes in 

population size, and this can further inform of the initial stages of range shift, which may be 

masked by using only presence-absence data (Maggini et al., 2011, Virkkala & Lehikoinen, 

2014). 
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(4) The importance of range-wide analyses 

Multiple factors influence how populations respond to climate change including biotic 

interactions, strength and intensity of climate change, resource availability, and life-history traits. 

These factors may be spatially structured or directional thus resulting in variable patterns in the 

direction and magnitude of range shifts. Recent work suggests that the observed pattern of range 

shifts are more complex than the unidirectional (e.g., northward) shift that is often invoked 

(VanDerWal et al., 2013, Lenoir & Svenning, 2014), thus estimating species’ responses across 

the multiple geographic dimensions of their range (i.e., latitude, longitude, and elevation/depth) 

will provide a more coherent picture of the impact of climate change concomitant with other 

global drivers of change. Longitudinal datasets of species occurrences and abundances across 

species’ ranges could be used to address whether patterns and rates of range shift at different 

range margins (e.g., leading and trailing edges) are consistent over time among species. As 

communities with no current analogs are expected under climate change (Williams & Jackson, 

2007),  tests of the role of climate versus habitat loss on community reshuffling, or even biotic 

homogenization will be increasingly important from both a theoretical community ecology and 

applied ecology perspectives (e.g., Davey et al., 2013). Finally, in the burgeoning field of 

species’ range dynamics there are a diversity of metrics used to quantify range shifts. These 

metrics describe different facets of range shifts, including range size, direction, magnitude, 

bioclimatic velocity, and community turnover (e.g., Diniz-Filho et al., 2009, Potter & Hargrove, 

2013, Watts et al., 2013, Serra-Diaz et al., 2014).  Chapter 2 revealed that the most influential 

sources of uncertainty varied as a function of the metric of range change. The development of a 

framework to better understand the diversity of range shift metrics, their expected behaviours, a 

classification system, and their interpretation in the context of multiple sources uncertainties will 

be an important future contribution to the field of range dynamics.  

6.4 Final remarks 

This thesis provides an important contribution to our understanding of seasonal range 

determinants and potential future range shifts under climate change for a subset of the Parulidae. 

I have highlighted the relevance of moving past SDMs that incorporate only abiotic factors and 

the need to embrace approaches that reflect the dynamic responses of species to both changes in 

climate and habitat elements. Throughout I have emphasized the need to understand the impact 

of uncertainties stemming from multiple sources over the modeling process, which is of 
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particular importance when model outcomes are applied to inform decision-making processes. 

The incremental steps in knowledge advancement are evident here; my work serves as stepping 

stone that opens the door to further lines of inquiry. Understanding range dynamics and in 

particular the demographic consequences of global stressors of climate and habitat loss on 

species, is both a challenge and an opportunity. In an era characterized by rapid global changes 

resulting from human activities (Steffen et al., 2007), such that we are said to be entering Earth’s 

sixth wave of extinction (Chapin et al., 2000), requires that we place an emphasis on science to 

inform conservation and management-based decision-making. 
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