Development of Small Molecule Activators of Caseinolytic Protease P

by

Alan Jay Nhieu

A thesis submitted in conformity with the requirements for the degree of Master of Science Graduate Department of Chemistry University of Toronto

Development of Small Molecule Activators of Caseinolytic Protease P

Alan Jay Nhieu
Master of Science
Graduate Department of Chemistry
University of Toronto

2012

Abstract

Caseinolytic protease (ClpP) is a cylindrical protease that degrades proteins in the presence of ATPase chaperones. On its own, bacterial ClpP can only degrade small peptides; however, the addition of a novel class of antibiotics, ADEPs, can cause unregulated proteolysis leading to bacterial cell death.

Bacterial ClpP is an attractive target for antibiotic development. A high-throughput screen of small molecules identified a group of compounds which are termed Activators of SelfCompartmentalizing Proteases (ACP). A collection of ACP3 and ACP4/5 analogs was synthesized and investigated for biological activity. The project resulted in compounds with greater activity than the lead structures against isolated E. coli ClpP. Also, several analogs possessed bacteriostatic activity against N. meningitidis and S. aureus cell lines.

Acknowledgments

I wish to express my deepest regards and sincere gratitude to my supervisor Professor Robert Batey. I would like to thank him for all the encouragement, patience, guidance and constant support. His teachings of both knowledge in organic chemistry and problem-solving skills have made my thesis project a great learning experience.

I would like to thank Elisa Leung for her patience and time in attaining the necessary biological data. I would like to also express my gratitude to the Batey group for their time, invaluable discussion and help. I would especially like to thank Jordan Goodreid for his insight and contributions to the research project. I would like to also thank Simon Kim for his help with editing.

Lastly, I give special thanks to my parents and my sister for all their love and support.

Table of Contents

Abstract ii
Acknowledgments iii
Table of Contents iv
List of Tables vi
List of Figures vii
List of Abbreviations viii
Chapter 1 1
Introduction 1
1.1 Emergence of Antibiotic Resistant Bacteria 1
1.2 The Acyldepsipeptide Antibiotics 2
1.3 Novel Antibacterial Target 3
1.4 Caseinolytic Protease P, ClpP 4
1.5 Activation and Deregulation of ClpP by ADEPs 6
1.6 Small Molecule Activators of Bacterial ClpP 8
Chapter 2 13
Results and Discussion 13
2.1 Synthesis of ACP3 and Its Analogs 13
2.2 Structure Activity Relationship Studies for ACP3 18
2.3 Unforeseen Activation of Human ClpP 22
2.4 Synthesis of ACP4/5 and Its Analogs 23
2.5 Alternate Routes to Dichlorovinyl Chalcones 31
2.6 Revision of the ACP4 Structure 34
2.7 Structure Activity Relationship Studies for ACP4/5 35
2.8 Disk Assays 41
2.9 Conclusion 43
Experimental 44
3.1 General Experimental 44
3.2 Synthesis of ACP3 Analogs 45
3.3 Synthesis of ACP4/5 Analogs 62
3.4 Synthesis of Various Chalcone Precursors 83
References 96
Appendix: Spectra of Selected Compounds 101

List of Tables

Table 1: Comparison of the RD_{25} Values for ACP1-5. 10
Table 2: Amide Coupling Conditions for ACP3 Synthesis 15
Table 3: Structures of ACP3 and Acyl Modified Analogs 17
Table 4: Structures of ACP3 Analogs with Acyl Modifications 17
Table 5: RD_{25} Values of the Natural ADEPs, ACP3 and Analogs 19
Table 6: RD_{25} Values of ACP3 Analogs 21
Table 7: Structures of ACP4/5 and Aryl Modified Analogs. 26
Table 8: Structures of ACP4/5 analogs with various functional groups at the C-6 position 28
Table 9: RD_{25} Values of ACP4/5 Analogs with Northwestern Modifications 37
Table 10: RD_{25} Values of ACP4/5 Analogs with Northeastern Modifications 38
Table 11: RD_{25} Values of ACP4/5 Analogs with Various Alkyl Esters 38
Table 12: RD_{25} Values of a conformationally modified analog 78 and analogs 79-81 syntheticallyderived from analog 3940
Table 13: Disk Assays 41

List of Figures

Figure 1: Structure of Natural and Unnatural Acyldepsipeptide (ADEP) Antibiotics 2
Figure 2: Side and top views of the X-ray structures of tetradecameric ClpPs from E. coli, S. pneumoniae, M. tuberculosis, P. falciparum, and human. 4
Figure 3: Model of ClpP mechanism of function. Shown is a cartoon model of the ClpP tetradecamer. The chaperones bound to ClpP are drawn as simple ellipses. 5
Figure 4: Conformation of the ADEP-ClpP complex. The activator ADEP is depicted as a transparent gray oval. Activator binding triggers outwards movement of individual subunits of the ClpP body as indicated by arrows. 7
Figure 5: Chemical Structures of ACP1-5 9Figure 6: (A) Shown is the inhibition of ClpXP-mediated GFP-ssrA degradation by ACPs andADEPs on SDS-PAGE gels. (B) Surface model of ClpP is shown on the top. The bottom panelshows a close up view of the predicted binding conformations of the five ACPs in the two ClpPbinding pockets.11
Figure 7: Structure of ACP3 13
Figure 8: Human ClpP RD 25 Values of ADEP1-2, ACP1-5, and 18 22
Figure 9: Predominant Conformation of ACP4/5 26
Figure 10: Revision of the Structure of ACP4. 34
Figure 11: Representative Disk Assays 42

List of Abbreviations

${ }^{1} \mathrm{H}$ NMR	proton nuclear magnetic resonance spectroscopy
${ }^{13} \mathrm{C}$ NMR	carbon-13 nuclear magnetic resonance spectroscopy
ADEP	acyldepsipeptide
ClpAP	caseinolytic protease AP
ClpC	caseinolytic protease C
ClpE	caseinolytic protease E
ClpP	caseinolytic protease P
ClpXP	caseinolytic protease XP
DCC	N, N^{\prime}-dicyclohexylcarbodiimide
DIEA	diisopropylethylamine
DMAP	4-dimethylaminopyridine
DMF	dimethylformamide
DMSO	dimethylsulfoxide
DNA	deoxyribonucleic acid
$\mathrm{EDC} \cdot \mathrm{HCl}$	1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride
ESI MS	electrospray ionization mass spectroscopy
EtOAc	ethyl acetate
EtoH	ethanol

FT-IR	fourier transformed infrared spectroscopy
FITC	fluorescein isothiocyanate
HATU	2-(7-aza-1H-benzotriazole-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate
HBTU	2-(1H-benzotriazole-1-yl)-1,1,3,3-tetramethylaminium hexafluorophosphate
HOAc	acetic acid
HPLC	high pressure liquid chromatography
HRMS	high resolution mass spectroscopy
MBC	minimum bactericidal concentrations
mp	melting point
MS	mass spectroscopy
NMM	N-Methylmorpholine
NMP	N -methylpyrrolidone
PyBOP	benzotriazol-1-yl-oxytripyrrolidinophosphonium hexafluorophosphate
R_{f}	retention factor
RD_{25}	relative degradation at $25 \mu \mathrm{M}$
rt	room temperature
RNA	ribonucleic acid
SAR	structure activity relationship
SD	standard deviation

TLC thin layer chromatography

Chapter 1

Introduction

1.1 Emergence of Antibiotic Resistant Bacteria

Antibiotics, the miracle drugs of the $20^{\text {th }}$ century, have revolutionized treatment of routine or life-threatening bacterial infections. ${ }^{1,2}$ However, in recent years, more and more bacterial infections have evaded standard treatment and are difficult, if not impossible, to treat. There has been an increased frequency of drug resistant gram-positive pathogens: methicillinresistant Staphylococcus aureus, vancomycin-resistant enterococci, and penicillin-resistant Streptococcus pneumonia. Similarly, a rise in resistant gram-negative bacteria: P. aeruginosa and A. baumanii, have extended the resistance problem beyond the confines of the hospital to community settings. ${ }^{3}$ The previous last line of defense drugs - vancomycin, quinupristin/dalfopristin, and linezolid, have increasingly become first-line therapies.

Antibiotic resistance is the result of both antibiotic misuse and bacterial adaptive evolution. Development of resistance is a natural consequence of evolution conferred by a variety of mechanisms (e. g., modification of target molecules, repression of uptake systems, activation of efflux pumps, inactivation of the antibiotic, and chromosomal mutations). ${ }^{4}$ These mechanisms limit the efficacy and life span of every antibiotic.

Recent practices incorporating appropriate antibiotic use, quarantining infected individuals and rapid diagnostics have all merely slowed the rise of antibiotic resistance. ${ }^{2,4}$ It is only through persistent discovery and development of new antibiotic agents, with novel mechanisms of action, that this problem will be curtailed.

1.2 The Acyldepsipeptide Antibiotics

In 1985, researchers from Eli Lilly isolated a complex A54556 which consisted of eight related depsipeptidic factors A-H. These acyldepsipeptides (ADEPs), of the enopeptin family, were produced by aerobic fermentation of Streptomyces hawaiiensis NRRL 15010., ${ }^{5,6,7}$ These compounds were found to have significant antibiotic properties. As the original patent had been abandoned, it was later discovered that the main components of the eight factors were factor A and B, labeled ADEP1 and 2 respectively. ${ }^{8}$ The enopeptin structure consists of a 16-membered lactone ring made up of five (S)-amino acids and a lipophilic acylated phenylalanine side chain attached via the serine nitrogen. ${ }^{9,10}$

$$
\begin{aligned}
& \text { ADEP1 } \mathrm{R}=\mathrm{CH}_{3} \mathrm{~A} \\
& \text { ADEP2 R }=\mathrm{H} \quad B
\end{aligned}
$$

ADEP $3 \mathrm{R}=\left(\mathrm{CH}_{2}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{11}$
ADEP $4 \mathrm{R}=\mathrm{CHCH}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{3}$

Figure 1: Structure of Natural and Unnatural Acyldepsipeptide (ADEP) Antibiotics

The initial complex A54556 and its separated factors demonstrated in vitro activity against gram-positive penicillin-resistant staphylococci and streptococci. ${ }^{5}$ Preliminary mode of action studies with B. subtilis revealed impaired cell division, and the induction of filamentation, as the underlying causes of antibacterial activity. ${ }^{2}$ Further studies conducted on congeners (ADEP3 and 4) of the naturally occurring ADEPs, produced by de novo synthesis, showed potent activity against gram-positive bacteria and multidrug-resistant clinical isolates. Against gramnegative bacteria, efflux pump deletions and the addition of permeabilizing agents were required for activity. In vivo investigations demonstrated that synthetic ADEP3 and 4 were a viable treatment for bacterial infections in rodents, even surpassing the activity of the marketed competitor linezolid. Treatment of mice separately infected with E. faecalis and S. aureus with
synthetic ADEPs resulted in high survival rates. Moreover, these particular ADEPs were superior to linezolid in treating rats with S. pneumoniae bacteria.

1.3 Novel Antibacterial Target

Applying reversed genomics techniques, Brötz-Oesterhelt and co-workers discovered that ADEPs bound to and activated a new antibacterial target, caseinolytic protease $\mathrm{P}(\mathrm{ClpP}) .{ }^{8}$ Initially, a genomic library from an ADEP-resistant mutant was constructed. Plasmids in bacteria colonies with high-levels of resistance to ADEPs were sequenced and identified to be inactive ClpP. An induced point mutation in the ClpP active center resulted in reduced ADEPmediated cell death. ClpP deletion mutants of several bacterial strains caused complete resistance to ADEPs, confirming that ClpP is indeed the target of ADEPs for antibacterial activity. Routine incorporation assays that track molecules of interest showed that in B. subtilis, ADEP1 did not hinder the biosynthesis of either DNA, RNA, proteins, cell wall or fatty acids. These results signify a mechanism of action that did not fall into one of the classical target areas and showed promise for further development of ClpP as an antibacterial target.

1.4 Caseinolytic Protease P, ClpP

Proteases play a critical role in protein quality control by removing short-lived regulatory proteins, as well as misfolded or damaged proteins, thus maintaining cellular homeostasis. ${ }^{11,12}$ Several proteases involved in protein degradation such as ClpXP, ClpAP and HsIV are oligomeric, cylindrical and self-compartmentalized. ClpP is a representative member of these cylindrical proteases, sharing a similar mechanistic process, but differing in substrate recognition, activation, subunit architecture and active-site environment.

Figure 2: Side and top views of the X-ray structures of tetradecameric ClpPs from E. coli, S. pneumoniae, M. tuberculosis, P. falciparum, and human.

[^0]ClpP is a conserved serine protease present throughout bacteria and eukaryotes. Differences include additional residues at the N and C -termini of human ClpP and an improper orientation of the catalytic triad compared to its bacterial counterparts. These differences are sufficient to selectively target bacterial ClpP over human ClpP, an obvious concern for the development of antibiotics.

ClpP is found in all bacteria sequenced to date except for Mollicutes and is mostly studied in Escherichia coli. It is comprised of 14 subunits arranged into two heptameric rings, forming a cylindrical structure. The cylinder encloses a large chamber containing the protease active sites with axial pores that allow entrance into the chamber. It has been observed in E. coli that ClpP forms complexes with AAA+ (ATPases associated with various cellular activities) chaperones, ClpX and ClpA. These hexameric chaperones weighing 46 kDa and 83 kDa respectively, can stack onto one or both ends of ClpP to form ClpAP or ClpXP complexes.

Figure 3: Model of ClpP mechanism of function. Shown is a cartoon model of the ClpP tetradecamer. The chaperones bound to ClpP are drawn as simple ellipses. ${ }^{\dagger}$

[^1]The process of protein degradation by ClpP is outlined in Figure 3. Substrates are recognized, unfolded by the chaperone proteins, and then fed through the axial pores into the proteolytic chamber for degradation. Polypeptides and proteins are normally degraded into peptides of 7-8 amino acids which are eventually released. Only the unfolding and threading by the chaperones require ATP, while proteolysis by ClpP does not. Without the ATPase components, ClpP has only limited degradative activity against small peptides.

1.5 Activation and Deregulation of ClpP by ADEPs

ADEPs act via an unprecedented mechanism, by binding and deregulating ClpP , causing the degradation or cleavage of folded proteins in the absence of the necessary Clp ATPases. ${ }^{11,13}$ As a consequence, this unregulated proteolysis by ClpP triggers cell death in gram-positive bacteria. ${ }^{12}$ Cell death is initiated by binding of ADEPs to the interphase of two adjacent ClpP monomers. A crystal structure of an ADEP1-B. subtilis ClpP complex illustrated the tetradecameric protease binding to 14 ADEP molecules in a 1:1 ratio at the hydrophobic pockets on the apical surfaces. ${ }^{11}$ This binding event triggers the oligomerization process that is a prerequisite of forming a functional proteolytic core. Consequently, an important contact site by ATPases is blocked, thereby preventing the interaction between the two partners and the normal functions of ClpP . More importantly, binding induces a conformational change in ClpP that widens the pore and allows larger proteins to be degraded.

Figure 4: Conformation of the ADEP-ClpP complex. The activator ADEP is depicted as a transparent gray oval. Activator binding triggers outwards movement of individual subunits of the ClpP body as indicated by arrows. ${ }^{\text {. }}$

Recently, Brötz-Oesterhelt and co-workers have identified the exclusive cause of bacterial death to be the degradation of the essential cell division protein FtsZ. ${ }^{13}$ This tubulin-like protein forms the cytoskeletal framework for cell division in all bacteria. ${ }^{14}$ During cell division, FtsZ localizes to the cell midpoint very early in cytokinesis and then polymerizes to form a circumferential ring associated with the cytoplasmic membrane. ${ }^{15}$ Several other division proteins involved in producing a new cell between the dividing cells, are recruited to the FtsZ ring. The degradation of this protein by ClpP, inhibits septum formation, a crucial process in cell division, and causes the delocalization of central cell division proteins from the mid cell positions. By preventing cell division, this class of antibiotics inhibits a vital cellular process of bacteria that is not targeted by any therapeutic antibiotic so far.

[^2]
1.6 Small Molecule Activators of Bacterial ClpP

The unprecedented mode of action, which is unaffected by resistance mechanisms compromising current antibiotic therapeutics, make ClpP an attractive target for antibiotic development. However, the synthetic complexities of ADEPs, and concerns about intellectual property rights, have driven our focus towards the discovery of small molecule activators. ${ }^{16}$

By switching to the development of small molecules, a high-throughput screening approach incorporating libraries of drug-like compounds can be utilized to identify leads. In collaboration with a team led by Professor Walid Houry, a high-throughput screening assay with a fluorescence-based readout was developed. The assay employed fluorescein isothiocyanate (FITC)-labeled casein (casein-FITC) which served as the proteolytic target of E. coli ClpP . When casein-FITC was intact, FITC fluorescence was quenched. Protease-catalyzed hydrolysis of casein-FITC relieves this quenching, yielding highly fluorescent dye-labeled peptides. The principle of the screen was to select for compounds that resulted in increased fluorescence upon incubation of casein-FITC with ClpP. Using this approach, a chemical screen of the Maybridge (50,000 compounds) and Chembridge $(10,000)$ libraries resulted in the identification of several structurally diverse non-ADEP compounds that activated E. coli ClpP. ${ }^{17}$ The five confirmed hits were designated Activators of Self-Compartmentalizing Proteases (ACPs) 1-5, and are illustrated in Figure 5. The revisions of the chemical structure of ACP4 will be discussed later.

Figure 5: Chemical Structures of ACP1-5
To assess and compare the potency of hits, an in vitro assay using isolated E. coli ClpP was employed. After treatment of ClpP with varying concentrations of the ACPs, the degradations of casein-FITC were observed through fluorometric measurements after 6 hours. The results were evaluated using a quantitative measure, the relative degradation index (RD), which is defined as follows:

$$
R D=\frac{\left(\Delta \varphi_{\mathrm{ClpP}+\text { compound }}\right)_{\mathrm{after} 6 \mathrm{hrs}}-\left(\Delta \varphi_{\mathrm{ClpP}}\right)_{\mathrm{after}} 6 \mathrm{hrs}}{\left(\Delta \varphi_{E . \text { coli ClpAP }}\right)_{\mathrm{after}} 6 \mathrm{hrs}}-\left(\Delta \varphi_{E . \text { coli } \mathrm{ClpP}}\right)_{\mathrm{after}} 6 \mathrm{hrs} \text {. }
$$

$\Delta \varphi$ was the change in fluorescence after 6 hours of starting the reaction. ClpAP, an ATPase, was a benchmark for maximum ClpP proteolytic activity. RD_{25} values, which refer to measurements in the presence of $25 \mu \mathrm{M}$ of compound, were used to compare the potencies of the ACPs to one another; values closer to 1 imply a more active compound (Table 1).

Compound	RD_{25}	SD
ACP 1	0.53	0.04
ACP 2	0.20	0.01
ACP 3	0.10	0.04
ACP 4	0.37	0.05
ACP 5	0.39	0.04

Table 1: Comparison of the RD_{25} Values for ACP1-5.
Data Shown Represent the Average of Three Repeats. SD is Standard Deviation ${ }^{17}$

Previous reports by Lee and coworkers had shown ADEPs bind to the hydrophobic pocket (H pocket) on the ClpP apical surface. This binding event interferes with chaperone binding to ClpP, resulting in reduced ATPases-mediated degradation of GFP-ssRA peptide. ${ }^{11}$ A similar effect, shown in Figure 6, was also seen for ACPs, suggesting that these compounds bind to, or allosterically alter, the H pocket of ClpP. ${ }^{17}$ Computational studies using DOCK6.3 software predicted with equal probability that ACPs bind either to the H pocket or a separate pocket that featured a large number of charged residues, aptly named the C pocket. The H and C pockets are separated by residues near the C terminus of ClpP , corresponding to amino acids 203-207. While ADEPs co-crystallized with ClpP were found to be bound to the H pocket exclusively, ACP 1-5 docked well to both pockets, and their docking scores were similar for the two pockets.

Figure 6: (A) Shown is the inhibition of ClpXP-mediated GFP-ssrA degradation by ACPs and ADEPs on SDS-PAGE gels. (B) Surface model of ClpP is shown on the top. The bottom panel shows a close up view of the predicted binding conformations of the five ACPs in the two ClpP binding pockets. ${ }^{\S}$

When tested against ten different bacteria, several of the ACPs showed low minimum bactericidal concentrations (MBC in $\mu \mathrm{g} / \mathrm{mL}$). It was observed by Houry and co-workers that gram-negative bacteria were generally more sensitive to these compounds than gram-positive bacteria.

Efforts towards the development of antibiotics based on ACP1 due its drug-like properties, and its high biological activity, have been an ongoing project in our lab since 2008. ACP2 is a relatively straightforward core to evaluate in SAR studies, however, it was not considered optimal due to its protected tripeptide framework which we believed would not survive enzymatic degradation in vivo. Based on the drug-like and relatively straightforward

[^3]cores, we launched synthetic studies to further explore the biological activity around the ACP3 and ACP4/5 scaffolds.

Chapter 2

Results and Discussion

2.1 Synthesis of ACP3 and Its Analogs

Figure 7: Structure of ACP3

The structure of ACP3 consists of a central piperazine core substituted with cyclohexylamide and 7-chloroquinoline groups. Quinoline derivatives of this type are an important class of heterocyclic compounds found in many synthetic and natural products of biomedical interest. ${ }^{18,19,20}$ Specifically, anti-viral, anti-cancer, anti-bacterial, anti-fungal, antiobesity, and anti-inflammatory activities. As a drug lead, ACP3 satisfies Lipinski's rule of five: it has less than five hydrogen donors, less than ten hydrogen bond acceptors, and a molecular mass less than 500 Daltons. ${ }^{21}$

Our planned synthetic route to the desired target and its analogs is outlined in Scheme 1. We reasoned that the most direct strategy to generate a library of analogs was to attach a large number of different groups at the "northern" amine of intermediate 2. We believed secondary amine $\mathbf{2}$ would in turn be generated from the union of 4,7-dichloroquinoline with piperazine.

Scheme 1: General Synthetic Route to ACP3 Analogs

While high yielding ($>90 \%$) reactions to furnish 2 are known, literature procedures require a large excess of piperazine ($>4 \mathrm{eq}$). ${ }^{22}$ Therefore we first attempted to develop a microwave procedure to reduce the requisite amounts of piperazine used, as displayed in Scheme 2. We found a decrease in reaction times and amount of piperazine required for conversion. However, the yields of $\mathbf{2}$ were lower, and perhaps most limiting, we found that the restricted microwave vessel size ($<20 \mathrm{~mL}$) allowed only small scale reactions. In this regard, we abandoned microwave conditions in favour of conventional heating as per literature procedures. Thus, 2 was prepared in gram quantities by the nucleophilic aromatic substitution of 4,7dichloroquinoline 1 with piperazine (5 eq) under basic conditions, in 90% yield.

Scheme 2: Initial Attempts to Form Intermediate 2 via Microwave or Conventional Heating

With the piperazinyl core 2 in hand, we next set forth to find appropriate conditions to couple carboxylic acids to the free secondary amine. Our attempts are illustrated in Table 2. Of various amide coupling reagents tested, uronium (TBTU) and phosphonium (PyBOP) based coupling reagents provided the greatest yields. However, due to the absence of DMF and faster reaction times, benzotriazole/ SOCl_{2} was chosen as our standard procedure for carboxylic acids. ${ }^{23}$

2
3

Entry	Coupling conditions	Yield (\%)
1	PyBOP, DIEA, DMF, $2 \mathrm{~h}, \mathrm{rt}$	95
2	DCC, DMAP, DMF, $6 \mathrm{~h}, 0^{\circ} \mathrm{C}$ to rt	42
3	EDC $\cdot \mathrm{HCl}$, DMAP, DMF, $6 \mathrm{~h}, 0^{\circ} \mathrm{C}$ to rt	65
4	Benzotriazole, $\mathrm{SOCl}_{2}, \mathrm{Et}_{3} \mathrm{~N}, 1 \mathrm{~h}, \mathrm{rt}$	78
5	TBTU, DIEA, DMF, $2 \mathrm{~h}, \mathrm{rt}$	>99

Table 2: Amide Coupling Conditions for ACP3 Synthesis

When the acid chlorides were commercially available, simple treatment under basic conditions afforded ACP3 analogs. We then coupled various carboxylic acids and acid chlorides with differing aromatic rings, such as substituted phenyl groups and naphthyl groups. Moreover, when aryl piperazines were available, microwave heating with dichloroquinoline afforded analogs with deletion of the carbonyl group. The results of these efforts are summarized in Table 3.

Method $A=$ carboxylic acid, benzotriazole, $\mathrm{SOCl}_{2}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{DCM}, 1 \mathrm{~h}, \mathrm{rt}$ Method $\mathrm{B}=$ acyl chloride, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DCM} 1 \mathrm{~h}$, rt Method $\mathrm{C}=\mathrm{NMM}, \mathrm{DMSO}, 18 \mathrm{~min}, 180^{\circ} \mathrm{C} \mu \mathrm{W}$
Compound

8		$63^{\text {a }}$	15		$82^{\text {a }}$
9		$99^{\text {b }}$			

[^4]Table 3: Structures of ACP3 and Acyl Modified Analogs
Moreover, we were interested in testing alkyl substituted groups between the carbonyl and aromatic rings. These products are displayed in Table 4.

Compound

[^5]Table 4: Structures of ACP3 Analogs with Acyl Modifications

2.2 Structure Activity Relationship Studies for ACP3

The biological activity of ACP3 analogs were evaluated by Elisa Leung at the University of Toronto, Biochemistry Department using the in vitro assay developed for the initial leads. The RD_{25} measurements from the assay refer to the measurement of E. coli ClpP activity in the presence of $25 \mu \mathrm{M}$ of the analog to be tested. The bacterial E. coli ClpAP was once again used as a standard for maximum ClpP proteolytic activity with an RD_{25} equal to 1 . ADEP1 and 2, used as references, and ACP3 analogs with modifications to the acyl end, were initially studied. The biological testing values of our synthetic ACP3 analogs are shown in Table 5 below.
Structure

(0.00)
6

7

8

9
0.18

15

Table 5: RD_{25} Values of the Natural ADEPs, ACP3 and Analogs

The immediate objective was to identify synthetic variants with an in vitro activity comparable to ADEP1. Initial ClpP activation experiments with the natural products and ACP3 had the following order: ADEP1 > ADEP2 > ACP3. Our synthetic analog of ACP3, 4, failed to demonstrate any biological activity, having a RD_{25} value of zero. This raised concerns over the correct identity of ACP3 from the Maybridge library or if ACP3 was a false-positive in the assay. Pressing forward, the deletion of the carbonyl functionality in analogs 5 and $\mathbf{6}$ resulted in loss of activity; thus, indicating the necessity of a carbonyl functionality in the ACP3 core.

Substitutions to the cyclohexyl fragment of the core were made in favour of more electronically stable phenyl groups. From the onset, analogs 7 - 9, which possessed an ortho-
chlorophenyl, unsubstituted phenyl and a meta-bromophenyl group, respectively, displayed slightly higher activities compared to ACP3. Although analog 7 gave the highest activity in this set, it was still considerably less than ADEP level. It did dismiss the false-positive concern, supporting that ACP3 is of the piperazinyl quinolone nature, however, most likely not substituted with a cyclohexyl group. Aromatic modifications involving different halogens (analogs 10, 11, and 14), an electron deficient penta-flouro moiety (analog 13), and an acetamide functionality (analog 12), resulted in reduced to no activity.

Next, a pentyl hydrocarbon chain in $\mathbf{1 6}$ was substituted for the cyclohexyl group of ACP3, giving a slight increase in activity. As this demonstrated that an extended alkyl functionality was tolerated, several analogs 17, 18, 19, 20, and 22 incorporated varying methylene lengths in between the phenyl moiety and the carbonyl. These analogs, unfortunately, resulted in decreased activity towards ClpP. Analog 20, which possessed a smaller trichloroacetyl appendage compared to ACP3 also displayed no activity. Lacking promising biological activity around the ACP3 core, we then refocused our efforts towards new ACP4/5 analogs due to their more promising RD_{25} values.
Structure

Table 6: RD_{25} Values of ACP3 Analogs

2.3 Unforeseen Activation of Human ClpP

Human ClpP , located in the mitochondrial matrix, shares a (71\%) similarity with E. Coli ClpP, although its role is still not known. ${ }^{12}$ The human ClpP has a very low peptidase activity compared to E. coli ClpP. Unlike ADEPs, ACP1-5 studies show minimal activity in activating human ClpP , a requirement for our antibiotic program for obvious biomedical reasons.

Figure 8: Human ClpP RD_{25} Values of ADEP1-2, ACP1-5, and 18

In this connection, all compounds were cross tested for human ClpP activity, the values of which are displayed in Figure 8. Analog 18, which displayed minimal activity in E. coli (c.f. Table 6), possessed potent activity in activating human ClpP with a $\mathrm{RD}_{25} \approx 1$. Even at lower concentrations of $5 \mu \mathrm{M}, \mathbf{1 8}$ displayed a high RD_{5} value of 0.63 (0.04). However, we were immediately excited by the potential for anti-cancer activity. As previously mentioned above, the exact role of human ClpP in healthy cells is not known, however it is known that cancerous human cells up regulate glucose metabolism for energy. ${ }^{24}$ We speculate that other molecules than glucose present near the cancer cell can also be absorbed at a faster rate. The activator, in turn, would activate a cancer cell's ClpP towards uncontrollable proteolysis, leading to cell death. To our delight, preliminary studies upon analog 18 demonstrated cytotoxic activity to leukemia cell lines. In this connection, we are currently considering serious research efforts to develop 18 as an anti-cancer lead.

2.4 Synthesis of ACP4/5 and Its Analogs

Scheme 3: Retrosynthetic analysis of ACP4/5

As displayed in Scheme 3, the core of the ACP4 and 5 lead structures resembles cyclic chalcones, a class whose members occasionally display anticancer activity. ${ }^{25}$ Structurally, this core consists of a cyclohexanone ring substituted with an ethyl ester at the C-1 position, a hydroxyl group and an aromatic ring at the C-4 position, as well as an unusual dichlorovinyl moiety at the C-6 position. As drug targets, ACP4/5 satisfies Lipinski's rule of five. ${ }^{21}$ There are, however, some undesirable characteristics of this structure including the labile hydroxyl group that is prone to dehydration. Moreover, the dichlorovinyl residue presents synthetic challenges for diversification and, we speculate, may be unstable for in vivo therapeutic applications. In spite of these aspects, their modest biological activity, second only to ACP1 in RD_{25} measurements, and its specificity in activating bacterial ClpP prompted further investigation.

We decided to follow literature precedent and synthesize analogs of ACP4/5 core 23 via a domino Michael addition/ addition reaction of dichlorovinyl chalcones and ethyl acetoacetate. The Michael adduct presumably cannot be isolated, due to the rate of addition. ${ }^{26,27}$

In connection with the aforementioned, we initially pursued the preparation of various β aryl cyclohexanones $\mathbf{3 0}$, which are analogs of ACP4/5 wherein the dichlorovinyl group is replaced with aromatic substituents. The known synthetic sequence began with the basecatalyzed aldol condensation of appropriately substituted acetophenone 27 with substituted benzaldehydes 28 in ethanol (Scheme 4). ${ }^{28,29}$ After crystallization, chalcones 29 were obtained in yields of $60-75 \%$. The reaction of the chalcones with ethyl acetoacetate in the presence of sodium ethoxide yielded cycloketols $\mathbf{3 0}$ in moderate yields. ${ }^{27}$

Scheme 4: Synthesis of ACP4/5 Analogs
With the aforementioned analogs 30 completed, we next turned our attention to analogs of ACP4/5 wherein the "left" aromatic ring is substituted. The preparation of the dichlorovinyl chalcones, which is precedented in literature, is shown in Scheme 5. ${ }^{30}$ The first step was to prepare the key chloroether $\mathbf{3 5}$ intermediate by addition of carbon tetrachloride across vinyl ethyl ether 34 through an atom transfer radical addition mechanism. ${ }^{31,32}$ Literature precedents prescribe the isolation of $\mathbf{3 5}$ prior to acid-catalyzed fragmentation. However, several attempts that followed this procedure via distillation at reduced pressure led to unusable polymerized product. To remedy this issue, our revised synthesis of the dichlorovinyl chalcones was adapted from a patent, ${ }^{33}$ wherein the tetrachloropropyl ether $\mathbf{3 5}$ was taken forward without purification. Thus, crude intermediates 35 were treated with the various acetophenones in acetic acid for four days, affording aryldichloropentadienones $\mathbf{2 5}$ in varying yields.

Scheme 5: Synthesis of ACP4/5

As shown in Table 7, dichlorovinyl chalcones $\mathbf{2 5}$ were coupled with ethyl acetoacetate through the use of NaOEt as a base. By this method, racemic ACP4 and 5 were synthesized in 59% and 53% yields, respectively. Despite the fact that these analogs contain three chirality centres, they are formed as single diastereomers, with equatorial aromatic ring, dichlorovinyl and ester groups (Figure 9). This characterization has been proven by X-ray crystal analyses performed by Woznesensky and co-workers. ${ }^{34}$

Analo g	R	Yield (\%)	Analog	R	Yield (\%)
$\begin{gathered} 37 \\ \text { ACP4 } \end{gathered}$	$p-\mathrm{NO}_{2}$	59	45	$p-\mathrm{OCH}_{2} \mathrm{CH}_{3}$	62
$\begin{gathered} \hline 38 \\ \text { ACP5 } \\ \hline \end{gathered}$	$p-\mathrm{Br}$	53	46	p-phenyl	30
39	p-I	62	47	$m-\mathrm{NO}_{2}$	75
40	$p-\mathrm{CF}_{3}$	52	48	$m-\mathrm{Br}$	60
41	p-Cl	51	49	m-Cl	71
42	$p-\mathrm{CH}_{3}$	42	50	$o-\mathrm{Br}$	41
43	p-CN	57	51	H	49
44	$p-\mathrm{OCH}_{3}$	45	52	$m-\mathrm{OCH}_{3}$	66

Table 7: Structures of ACP4/5 and Aryl Modified Analogs

Figure 9: Predominant Conformation of ACP4/5
Disappointingly, dichlorovinyl chalcones with electron-deficient aryl rings such monofluorinated aryl rings, pentafluorobenzene and pyridine were either isolated in low yield, or did not undergo an efficient reaction with ethyl acetoacetate.

Our next course of action was to prepare analogs of ACP4/5 for which the dichlorovinyl group was substituted by a more sterically hindered dimethylvinyl group, a more electropositive dibromovinyl group, and methylene spacer groups. Dibromovinyl chalcone $\mathbf{5 4}$ was prepared in a similar manner to the standard procedure shown previously (c.f. Scheme 5), using carbon
tetrabromide rather than carbon tetrachloride. Then we prepared chalcone 57 by the Wittig reaction of phosphonium 55 and 3-methylbut-2-enal 56. ${ }^{35}$

Scheme 6: Synthesis of 54 and 57

The next synthetic goal was to synthesize the corresponding homologated chalcones $\mathbf{6 1}$ and 65. Relative to analogs $\mathbf{3 1} \mathbf{- 3 3}$ possessing an aryl ring in place of the dichlorovinyl group found in ACP4/5, we envisaged that the addition of a spacer would provide more flexibility. In this connection, 2-chlorobenzaldehyde was subjected to Wittig reaction using phosphonium 58. Subsequent acid hydrolysis of compound $\mathbf{5 9}$ and a second Wittig reaction afforded the product 61. ${ }^{36,37}$ Installation of a two carbon saturated linker was achieved by a Heck reaction developed by Jeffery, which involved coupling of 2-chloroiodobenzene and allyl alcohol. ${ }^{38}$ Subsequent Wittig reaction gave chalcone 65 .

Scheme 7: Synthesis of Extended Chalcones

As illustrated below, the final cyclization of ethyl acetoacetate and the aforementioned chalcones proceeded in modest yields relative to that obtained for the previous analogs (c.f. Table 7).

Table 8: Structures of ACP4/5 analogs with various functional groups at the C-6 position

In order to test whether the dichlorovinyl groups in ACP4/5 are important for its activity, we also prepared an analog without this group. Preparing Mannich adduct 71, followed by standard cyclization conditions with ethyl acetoacetate, afforded analog 72. ${ }^{39,40}$

Scheme 8: Synthesis of Analog 72

With analog 72 in hand, we felt that major structural modifications had been sufficiently explored. Thus, we set forth to prepare analogs with less dramatic structural modifications. As shown in Scheme 9, modifications of the ethyl ester group were achieved by reacting 73 with varying alkyl acetoacetates. The base and solvent were chosen to prevent mixtures of ester products in each case.

Scheme 9: Synthesis of ACP4/5 analogs with various alkyl esters at the C-1 position

Other modifications we explored are shown in Scheme 10. The hydroxyl group of ACP4/5 was eliminated by heating 77 with triethylamine, resulting in compound 78. Direct modifications to ACP4/5 were restricted due to the labile OH group. Nonetheless, a limited number of straightforward modifications led to chlorinated 79, a methyl ether 80, and a reduced sec-alcohol
81.

77

39

79

80

(d.r. $=1.2: 1$)

81

Scheme 10: Synthesis of a conformationally modified analog 78 and analogs 79-81 synthetically diversified from analog 39

Briefly, we have synthesized over 30 analogs of ACP4/5 with modifications to the aromatic ring, the dichlorovinyl group, the ester, hydroxyl, and ketone groups. The biological activities are discussed in section 2.7 along with future plans.

2.5 Alternate Routes to Dichlorovinyl Chalcones

As mentioned earlier, several attempts to isolate tetrachlorinated ether 35 failed, preventing access to the required 3,3-dichloroacrolein 36 ($c . f$. Scheme 5). Prior to the successful preparation of the dichlorovinyl chalcones, several other avenues illustrated in Scheme 11 were investigated to prepare 36. We envisioned that one possible synthetic route was to perform a Wittig reaction on ethyl glyoxylate 82, followed by DIBAL reduction of the ethyl ester to the corresponding aldehyde. Unfortunately, the treatment of 82, which was distilled prior to use, using various conditions resulted in unreacted starting material. Next, we decided to modify a procedure that was previously used to synthesize an analogous 3,3-dibromoacrolein. ${ }^{41}$ Wittig reaction of crotonaldehyde 84 afforded dichlorodiene 85 . Subsequent dihydroxylation of the more electron-rich double bond led to vincinal diol 86. The key cleavage step of the diol was low yielding and did not afford an aldehyde that resembled 36. We speculate that the 3,3dichloroacrolein was not amenable to the work up conditions in the final step due to its volatility. With no further developments on this front, routes towards the preparation and isolation of 3,3dichoroacrolein were abandoned.

Scheme 11: Attempts to Prepare 3,3-Dichloroacrolein

In an alternate strategy, we planned to install the dichlorovinyl group late stage as opposed to introducing it earlier in the synthesis. In an attempt to synthesize cis-precursor 88, an Achmatowicz reaction was employed. ${ }^{42}$ Ring opening of aryl furan 87 with dimethyldioxirane as the oxidant led to a complex mixture of inseparable products. An analogous trans-precursor 90 was prepared by the Wittig reaction of glyoxal. Several attempts to introduce the dichlorovinyl group were unsuccessful, resulting in decomposition products. Efforts toward late stage dichlorovinyl group installation were eventually abandoned.

Scheme 12: Attempts to Install a Dichlorovinyl Group

In order to limit the excess use of carbon tetrachloride ($>12 \mathrm{eq}$) in the synthesis of dichlorovinyl chalcones, a triethylborane-initiated radical reaction with the more reactive bromotrichloromethane was used to prepare halogenated ether 91. ${ }^{43}$ Treatment of 91 with p bromoacetophenone in acetic acid for four days afforded aryldichloropentadienone 93 . We found that 93 was an inseparable mixture of gem-bromochloro and gem-dichlorovinyl compounds. We speculate that the bromide evolved from acid-catalyzed fragmentation of compound 91 undergoes halogen-exchange with either compound 92 or 93 , resulting in a mixture of products.

Scheme 13: Attempted Synthesis of Compound 93

To remedy this problem, we attempted to convert the brominated impurities to $\mathbf{9 3}$ using excess lithium chloride. However, under these conditions, compound 93 underwent an electrocyclization to aryl coumarin 94 . We speculate that refluxing conditions allowed alkene isomerization and subsequent electrocyclization to the coumarin. This protocol involving the use of bromotrichloromethane was therefore abandoned due to the mixture of halogenated chalcones that was produced.

Scheme 14: Electrocyclization of Compound 93

2.6 Revision of the ACP4 Structure

Initial RD_{25} measurements indicated an order of activity of DEP1 $>\mathrm{ADEP} 2>\mathrm{ACP} 4 / 5$. ACP4 and 5 were the only initial hits with obvious structural similarities, differing in the substituents of an aromatic group. There was initial confusion over the chemical structure of ACP4. Based on labels from the Chembridge library, ACP4 was believed to be compound 48. However, biological studies on authentic 48 synthesized in our lab showed it to possess no activity. Further analysis of the spectral data provided by Chembridge suggested ACP4 to be compound 37, which possessed a para-nitrophenyl group instead of a meta-substituted aryl group as proposed. Our synthetic variant 37 of the revised ACP4 structure displayed similar biological activity, albeit with a lower RD_{25} value compared to the initial hit. Compound 38, synthetic material corresponding to the structure of ACP5, displayed similar activity to the ACP5 that was initially screened.

37 - Revised ACP4

Figure 10: Revision of the Structure of ACP4

2.7 Structure Activity Relationship Studies for ACP4/5

The northwestern aromatic fragment was the starting point for chemical optimization because of the relatively easy access to the aryldichloropentadiones $\mathbf{2 5}$. Deletion of the bromo group (analog 51) resulted in loss of activity. Activity trends were evident from analogs bearing electron-rich and electron-deficient substituents at different positions on the aromatic group. It was found that para substitution was optimal, highlighted by analogs $38-41$. Analogs 47 - 50, that relocated substituents to the ortho and meta positions led to diminished activity. Replacing the bromo group with a larger iodo group showed an increase in activity. The general trend related to atomic radii of the halogen was $\mathrm{I}>\mathrm{Br}>\mathrm{Cl}$. However, when an even larger trifluoromethyl group in 40 was used, the activity diminished slightly. Analogs 44 and $\mathbf{4 5}$ with more electron rich methoxy and ethoxy aryl groups displayed reduced activity. The naphthyl substituted analog 46 showed no detectable activity, suggesting that larger aromatic rings are not tolerated. Through these findings, the northwestern fragment was optimized to a paraiodosubstituted phenyl group.
coles)

Table 9: RD_{25} Values of ACP4/5 Analogs with Northwestern Modifications
The effects of modification of the dichlorovinyl group on activity are outlined in Table 10. Introduction of aryl groups in compounds $\mathbf{3 1} \mathbf{- 3 3}$ resulted in a loss in activity. Analogs bearing methylene spacers (67 and 68) show dramatically reduced activity. Substitution of the gem-dichloro groups with bromo and methyl groups (analogs 66 and 69 , respectively) led to more than a twofold decrease in activity. Removal of the dichloro group completely, compound 72 led to no activity towards ClpP. Modifications to the northeastern dichlorovinyl group of ACP4/5 were poorly tolerated, reinforcing the importance of this group for biological activity.
Structure

0.15
(0.01)

Table 10: RD_{25} Values of ACP4/5 Analogs with Northeastern Modifications
Modifications to the ethyl ester fragment of ACP4/5 resulted in analogs 74-76. The t butyl and isopropyl esters were tolerated, however, with reduced activity. The methyl ester variant showed almost no activity. It is not known how longer linear alkyl esters would affect activity.
(SD)

Table 11: RD_{25} Values of ACP4/5 Analogs with Various Alkyl Esters

Conformational change of ACP4/5 to a flatter half-chair structure, 78, showed no activity, indicating that the chair conformation of ACP4/5 is ideal for ClpP binding. Synthetic diversification of compound 39 led to analogs that displayed interesting aspects. Chlorination of the α-hydrogen of the ketoester led to compound 79, which showed similar activity to the most potent ACP4/5 analog 39. This suggests that the α-hydrogen is not involved in any major interactions and also rules out the possibility of the enol form of ACP4/5 analogs being involved in interactions with ClpP. Analog 80, with a methyl cap of the hydroxyl group, displayed slightly reduced activity. This result opens new avenues for future analogs as the methyl cap provides some stability over the labile OH . Reduction of the ketone carbonyl afforded alcohol analog 81, which had almost no activity. We speculate that conversion of the carbonyl group to an alcohol changes a hydrogen bond acceptor group to a hydrogen bond donor, hindering binding to ClpP .

Table 12: RD_{25} Values of a conformationally modified analog 78 and analogs 79-81 synthetically derived from analog 39

2.8 Disk Assays

The majority of the ACP3 and ACP4/5 analogs synthesized were evaluated against N. meningitidis, S. aureus and E. coli in disk assays performed by Shannon E. McCaw at the University of Toronto Molecular Genetics department. These Kirby-Bauer disk diffusion susceptibility tests determine the sensitivity of pathogenic bacteria to various anti-microbial compounds. ${ }^{44,45}$ The presence or absence of growth around the disks allows a visual measure of the ability of our analogs to inhibit intact bacteria. The general protocol involved fresh bacteria being spread onto the surface of standard growth media. A filter disc impregnated with $\sim 2.6 \mu \mathrm{~g}$ of an analog to be tested was then laid on its surface. The diameters of the zones of clearing on the plates were measured with an analytical ruler and reflect inhibition of bacterial growth. The tests were performed in triplicate for each analog.

	E. coli (cm)	N. meningitidis (cm)						S. aureus (cm)		
	Test 1-3	Test 1		Test 2		Test 3		Test 1	Test 2	Test 3
	Wt	Wt	ko	Wt	ko	Wt	ko	Wt	Wt	Wt
37	-	1.0*	-	1.0*	-	1.0*	-	-	-	-
38	-	1.2*	0.65*	1.2*	0.9*	1.2*	0.9*	0.8*	0.65*	-
39	-	1.0*	-	0.9*	-	1.0*	-	-	-	-
41	-	1.2*	1.1*	1.3*	0.8*	1.2*	1.0*	-	0.7*	-
33	-	1.2*	0.7*	1.2*	0.8*	1.4*	1.0*	-	-	-

Table 13: Disk Assays

Analogs that displayed activity are outlined in Table 13 and representative illustrations are shown in Figure 11. Interestingly, analogs that displayed proteolytic activity with isolated E. coli ClpP did not show any activity against E. coli in the disk assays. This is likely attributable to the multidrug efflux pumps that E. coli is known to possess. ${ }^{8}$ Bactericidal activity is determined by defined solid zones of clearing as seen in the plate for ADEP1 (Figure 11). Our lead ACP4 and 5 analogs, compounds $\mathbf{3 7}$ and $\mathbf{3 8}$ respectively, demonstrated bacteriostatic activity against N. meningitidis, conveyed by the hazy zone of clearings (c.f. Figure 11). Compound 38 (ACP4) also inhibited S. aureus. Lead analog 39 showed bacteriostatic activity against N. meningitidis. Surprisingly, analog 33, which showed no activity as judged by its RD_{25} measurement, was able to inhibit N. meningitidis. ClpP knockout studies used bacteria with inactive ClpP. Disk assays
using this type of bacteria can determine whether analogs are selectively targeting ClpP (by the absence of a positive test) or if antibiotic mechanisms other than ClpP activation are at play (by the appearance of zones of clearing). ACP4 and analog 39 showed positive results for only wildtype N. meningitidis bacteria, signifying that they are selective for ClpP . In contrast, the other analogs inhibited bacteria in both wildtype and ClpP knockout bacteria, indicating that other mechanisms are present. The reason for this difference in behaviour of such apparently similar structures is not fully understood.

Figure 11: Representative Disk Assays

2.9 Conclusion

The ability of ADEPs to activate ClpP towards deregulated proteolysis provided us with an attractive target for developing new antibiotics with a novel mode of action. In collaboration with the Houry group, five ACP compounds were identified as antibiotic leads. A series of ACP3 and ACP4/5 analogs was synthesized. The compounds based on the ACP3 core displayed minimal in vitro activity against bacterial ClpP. However, ACP3 analog, $\mathbf{1 8}$ from this family displayed potent activity against human ClpP, which may lead to the development of anticancer agents. Of the ACP4/5 analogs, compound 39 was the most promising, showing increased activity towards ClpP relative to initial hits. Moreover, disk assay studies on $\mathbf{3 9}$ demonstrated its bacteriostatic activity against N.meningitidis. At this point, an X-ray co-crystal structure of ClpP with either compound 39 or another synthetic analog is required for a more rational approach. The lack of a structural model has hampered our effects to design more active analogs, or understand the molecular bases for ClpP activation of either the ACP 3 or ACP4/5 families.

Experimental

3.1 General Experimental

$\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was distilled from CaH_{2} under argon. All other solvents and commercial reagents were used as received (Aldrich and Alfa Aesar). All glassware was oven dried and cooled under a stream of nitrogen, or flame dried under a stream of dry nitrogen. Melting points were obtained with Fisher-Johns melting point apparatus and are uncorrected. Infrared (IR) spectra were obtained on a Perkin-Elmer Spectrum 100 instrument equipped with a single-reflection diamond / ZnSe ATR accessory, either in the solid state or as neat liquids, as indicated and are reported in cm^{-1}. LRMS and HRMS were obtained on a Waters GCT Premier Time of Flight (ToF) mass spectrometer (EI) or an AB/Sciex QStar mass spectrometer (ESI). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra were recorded on Varian Unity 400 MHz spectrometer. Data for ${ }^{1} \mathrm{H}-\mathrm{NMR}$ are referenced relative to residual CDCl_{3} proton signals at $\delta 7.26 \mathrm{ppm}$ and to $\mathrm{DMSO}_{6} \mathrm{~d}_{6} \delta$ at 2.50 ppm . Data for ${ }^{13} \mathrm{C}-\mathrm{NMR}$ are referenced relative to CDCl_{3} at $\delta 77.16 \mathrm{ppm}$ and to $\mathrm{DMSO}-\mathrm{d}_{6} \delta$ at 39.51 ppm . Data for ${ }^{1} \mathrm{H}$ are reported as follows: chemical shift (ppm), integration, multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{h}=$ heptet, $\mathrm{m}=$ multiplet, $\mathrm{dd}=$ doublet of doublets, $\mathrm{ddd}=$ doublet of doublet of doublets, $\mathrm{td}=$ triplet of doublets), and coupling constants. Flash chromatography on silica gel ($60 \AA, 230-400$ mesh, obtained from Silicycle ${ }^{\circledR}$ Inc.). Analytical thin-layer chromatography (TLC) was performed on precoated silica gel plates (SiliaPlate ${ }^{\text {TM }}$ Aluminium with F245 indicator purchased from Silicycle ${ }^{\circledR}$ Inc.).

3.2 Synthesis of ACP3 Analogs

7-Chloro-4-(piperazin-1-yl)quinoline (1):

The title compound was prepared according to a modified literature procedure. ${ }^{22}$ A mixture of piperazine ($10.9 \mathrm{~g}, 127 \mathrm{mmol}$), potassium carbonate ($1.05 \mathrm{~g}, 7.58 \mathrm{mmol}$), triethylamine (5.28 $\mathrm{mL}, 37.9 \mathrm{mmol}$) and 4,7-dichloroquinoline ($5.00 \mathrm{~g}, 25.3 \mathrm{mmol}$) in N-methyl-2-pyrrolidinone $(20.0 \mathrm{~mL})$ under nitrogen was stirred at $135^{\circ} \mathrm{C}$ for 2 h . After cooling to room temperature, the mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{~mL})$. The organic layer was then washed with brine ($2 \times$ $50 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. The resulting oil was purified by column chromatography on silica gel using $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}(4: 1 \mathrm{v} / \mathrm{v})$ as the eluent to afford the desired product as a yellow solid $(5.60 \mathrm{~g}, 90 \%) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.72(1 \mathrm{H}, \mathrm{d}, J=5.0 \mathrm{~Hz})$, $8.04(1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}), 7.96(1 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}), 7.42(1 \mathrm{H}, \mathrm{dd}, J=9.0,2.0 \mathrm{~Hz}), 6.83(1 \mathrm{H}, \mathrm{d}, J$ $=5.0 \mathrm{~Hz}), 3.21-2.85(8 \mathrm{H}, \mathrm{m}), 1.83(1 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 157.5,152.1,150.3$, 135.0, 129.0, 126.2, 125.4, 122.1, 109.1, 53.7, 46.3.

General Procedure A

A stock solution (1.5 M) was prepared by making up a volume of thionyl chloride ($5.5 \mathrm{~mL}, 0.075$ mol) and benzotriazole ($8.9 \mathrm{~g}, 0.075 \mathrm{~mol}$) with dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ up to 50 mL and transferred to a sealed 100 mL round-bottom flask stored under argon. The reaction was carried out by adding the stock solution (0.39 mmol) intermittently via syringe to a stirred solution of the corresponding carboxylic acid (0.36 mmol) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7 \mathrm{~mL})$. Before the addition was complete, benzotriazole hydrochloride started precipitating. The reaction mixture was stirred further for $5-10 \mathrm{~min}$. The resulting liquid was cannulated to a second reaction vessel with a solution of 7-chloro-4-(piperazin-1-yl)quinoline (0.30 mmol) and triethylamine (0.38 mmol) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and stirred at ambient temperature for 1 h . The mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$. The organic layer washed with $1 \mathrm{~N} \mathrm{NaOH}(5 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. The crude product was purified by column chromatography on silica gel using 2-10\% MeOH in EtOAc as the eluent to afford the coupled product.

General Procedure B

To a stirred solution of 7-chloro-4-(piperazin-1-yl)quinoline (0.3 mmol) and triethylamine (0.45 mmol) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added the corresponding acyl chloride (0.33 mmol) intermittently. The reaction mixture was stirred further at ambient temperature for 2 h . The mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$. The organic layer was then washed with 1 N NaOH $(2 \times 5 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. The crude product was purified by column chromatography on silica gel using 2-10\% MeOH in EtOAc as the eluent to afford the coupled product.

(4-(7-Chloroquinolin-4-yl)piperazin-1-yl)(cyclohexyl)methanone (4): ${ }^{46}$

The title compound was prepared according to General Procedure A in 77% yield. White solid, $\mathrm{mp}=161-163{ }^{\circ} \mathrm{C}(\mathrm{MeOH} / \mathrm{EtOAc}) ; \mathrm{R} f=0.32(2 \% \mathrm{MeOH} / \mathrm{EtOAc}) ;$ IR (solid): v 2922, 2858, 2840, 1637, 1579, 1441, 1420, 1245, 1212, 1127, 1008, 881, 863, $823 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.76(1 \mathrm{H}, \mathrm{d}, J=5.0 \mathrm{~Hz}), 8.07(1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}), 7.97(1 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}), 7.47(1 \mathrm{H}$, dd, $J=9.0,2.0 \mathrm{~Hz}), 6.85(1 \mathrm{H}, \mathrm{d}, J=5.0 \mathrm{~Hz}), 3.95-3.76(4 \mathrm{H}, \mathrm{m}), 3.20(4 \mathrm{H}, \mathrm{s}), 2.54(1 \mathrm{H}, \mathrm{tt}, J=$ $11.5,3.5 \mathrm{~Hz}), 1.95-1.50(7 \mathrm{H}, \mathrm{m}), 1.38-1.24(3 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.0$, $156.6,152.1,150.4,135.3,129.3,126.7,125.0,122.0,109.4,45.6,41.7,40.7,29.6,26.1,26.0$;
m / e (rel intensity) 358 (100), 248 (2); HRMS (ESI) $m / e[M+H]^{+}$for $\left(\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{ClN}_{3} \mathrm{O}\right)$ calcd 358.1686, found 358.1692.

7-Chloro-4-(4-phenylpiperazin-1-yl)quinoline (5):

To a stirred solution of 1-phenylpiperazine ($0.90 \mathrm{~g}, 5.5 \mathrm{mmol}$) and DMSO (2 mL) in a 5 mL microwave reaction vessel equipped with a magnetic stirrer was added 4,7-dichloroquinoline $(0.50 \mathrm{~g}, 2.5 \mathrm{mmol})$ and N-methylmorpholine ($0.28 \mathrm{~mL}, 2.5 \mathrm{mmol}$). The microwave vessel was sealed, placed in a microwave reactor, and stirred at $180^{\circ} \mathrm{C}$ for 18 min under an atmosphere of argon. The reaction was cooled to $0^{\circ} \mathrm{C}$ and diluted with diethyl ether (5 mL). The resulting sediment was filtered and purified by column chromatography on silica gel using $8 \% \mathrm{MeOH} /$ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as the eluent to afford a yellow solid ($0.82 \mathrm{~g}, 72 \%$), $\mathrm{mp}=170-172{ }^{\circ} \mathrm{C}(\mathrm{MeOH} / \mathrm{EtOAc})$; $\mathrm{R} f=0.74$ ($8 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$); IR (solid): v 3050, 2842, 1599, 1574, 1562, 1494, 1450, 1424, $1379,1228,1016,939,867,823,765 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.77(1 \mathrm{H}, \mathrm{d}, J=5.0$ $\mathrm{Hz}), 8.08(1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}), 8.02(1 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}), 7.46(1 \mathrm{H}, \mathrm{dd}, J=9.0,2.0 \mathrm{~Hz}), 7.34(2 \mathrm{H}$, dd, $J=9.0,7.0 \mathrm{~Hz}), 7.03(2 \mathrm{H}, \mathrm{dd}, J=9.0,1.0 \mathrm{~Hz}), 6.94(1 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}), 6.91(1 \mathrm{H}, \mathrm{d}, J=5.0$ $\mathrm{Hz}), 3.51-3.44(4 \mathrm{H}, \mathrm{m}), 3.42-3.31(4 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.0,152.2,151.2$, $150.4,135.2,129.4,129.2,126.5,125.2,122.1,120.5,116.5,109.3,52.4,49.5$; m/e (rel intensity) 340 (2), 324 (100); HRMS (ESI) $m / e[M+H]^{+}$for $\left(\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{ClN}_{3}\right)$ calcd 324.1267, found 324.1264.

7-Chloro-4-(4-tosylpiperazin-1-yl)quinoline (6):

A stirred solution of 1-tosylpiperazine ($0.20 \mathrm{~g}, 0.83 \mathrm{mmol}$) and DMSO (0.5 mL) in a 2 mL microwave reaction vessel equipped with a magnetic stirrer was added 4,7-dichloroquinoline (75 $\mathrm{mg}, 0.38 \mathrm{mmol}$) and N-methylmorpholine ($42 \mu \mathrm{~L}, 0.38 \mathrm{mmol}$). The microwave vessel was sealed, placed in a microwave reactor, and stirred at $180^{\circ} \mathrm{C}$ for 18 min under an atmosphere of argon. The reaction was cooled to $0{ }^{\circ} \mathrm{C}$ and diluted with diethyl ether (2 mL). The resulting sediment was filtered and purified by column chromatography on silica gel using 100% EtOAc as the eluent to afford a yellow solid ($0.14 \mathrm{~g}, 90 \%$), $\mathrm{mp}=158-160{ }^{\circ} \mathrm{C}(\mathrm{MeOH} / \mathrm{EtOAc})$ (MeOH/EtOAc); $\mathrm{R} f=0.45$ ($100 \% \mathrm{EtOAc}$); IR (solid): v 2906, 2826, 1598, 1573, 1576, 1563, 1423, 1381, 1346, 1328, 1265, 1164, 1016, 939, 868, 821, $733 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.75(1 \mathrm{H}, \mathrm{d}, J=5.0 \mathrm{~Hz}), 8.05(1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}), 7.76(3 \mathrm{H}, \mathrm{dd}, J=13.5,8.5 \mathrm{~Hz})$, $7.42-7.34(3 \mathrm{H}, \mathrm{m}), 6.85(1 \mathrm{H}, \mathrm{d}, J=5.0 \mathrm{~Hz}), 3.30(8 \mathrm{H}, \mathrm{s}), 2.49(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}) $\delta 156.3,152.1,150.3,144.3,135.3,132.7,130.1,129.2,128.0,126.7,124.7,121.8$, 109.6, 51.7, 46.2, 21.8; m/e (rel intensity) 418 (4), 402 (100), 246 (4), 210 (2), 157 (3); HRMS (ESI) $m / e[M+H]^{+}$for $\left(\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{ClN}_{3} \mathrm{O}_{2} \mathrm{~S}\right)$ calcd 402.1043, found 402.1050.

(2-Chlorophenyl)(4-(7-chloroquinolin-4-yl)piperazin-1-yl)methanone (7):

The title compound was prepared according to General Procedure B in 78% yield. Brown solid, $\mathrm{mp}=174-176{ }^{\circ} \mathrm{C}(\mathrm{MeOH} / \mathrm{EtOAc}) ; \mathrm{R} f=0.29(2 \% \mathrm{MeOH} / \mathrm{EtOAc}) ; \mathrm{IR}$ (solid): v 2982, 2911, 2829, 1635, 1574, 1421, 1284, 1246, 1006, 864, 822, 767, $742 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.77(1 \mathrm{H}, \mathrm{d}, J=5.0 \mathrm{~Hz}), 8.08(1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}), 7.95(1 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}), 7.48-7.42$ $(2 \mathrm{H}, \mathrm{m}), 7.41-7.35(3 \mathrm{H}, \mathrm{m}), 6.87(1 \mathrm{H}, \mathrm{d}, J=5.0 \mathrm{~Hz}), 4.29-3.84(2 \mathrm{H}, \mathrm{m}), 3.68-3.41(2 \mathrm{H}, \mathrm{m})$, $3.32(2 \mathrm{H}, \mathrm{t}, J=5.0 \mathrm{~Hz}), 3.19(2 \mathrm{H} \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.3,156.5,152.1,150.2$, $135.6,135.4,130.7,130.5,129.9,129.2,128.0,127.5,126.8,124.8,122.0,109.6,52.6,52.2$, 46.9, 41.8; m/e (rel intensity) 404 (1), 402 (4), 386 (100), 225 (5), 179 (2), 157 (9); HRMS (ESI) $m / e[\mathrm{M}+\mathrm{H}]^{+}$for $\left(\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}\right)$ calcd 386.0827, found 386.0827.

(4-(7-Chloroquinolin-4-yl)piperazin-1-yl)(phenyl)methanone (8): ${ }^{47}$

The title compound was prepared according to General Procedure A in 63% yield. Orange solid, $\mathrm{mp}=134-136{ }^{\circ} \mathrm{C}(\mathrm{MeOH} / \mathrm{EtOAc}) ; \mathrm{R} f=0.28\left(8 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; IR (solid): v 2990, 2858, 2837, 1633, 1573, 1422, 1379, 1367, 1278, 1249, 1009, 864, 814, $703 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.76(1 \mathrm{H}, \mathrm{d}, J=5.0 \mathrm{~Hz}), 8.07(1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}), 7.96(1 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}), 7.62-7.42$ $(6 \mathrm{H}, \mathrm{m}), 6.86(1 \mathrm{H}, \mathrm{d}, J=5.0 \mathrm{~Hz}), 4.23-3.64(4 \mathrm{H}, \mathrm{m}), 3.24(4 \mathrm{H}, \mathrm{s}),{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
$\delta 170.8,156.6,152.1,150.3,135.5,135.4,130.2,129.2,128.8,127.3,126.8,124.2,122.3,109.8$, 52.4; m/e (rel intensity) 419 (2), 352 (100), 283 (4), 233 (5), 203 (3), 191 (4); HRMS (ESI) m / e $[\mathrm{M}+\mathrm{H}]^{+}$for $\left(\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{ClN}_{3} \mathrm{O}\right)$ calcd 352.1216, found 352.1215.

(3-Bromophenyl)(4-(7-chloroquinolin-4-yl)piperazin-1-yl)methanone (9):

The title compound was prepared according to General Procedure B in 99% yield. Yellow solid, $\mathrm{mp}=85-87^{\circ} \mathrm{C}(\mathrm{MeOH} / \mathrm{EtOAc}) ; \mathrm{R} f=0.34(2 \% \mathrm{MeOH} / \mathrm{EtOAc}) ;$ IR (solid): v 3063, 2989, 2829, 1631, 1563, 1421, 1280, 1246, 1006, 865, 822, 797, $735 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.77(1 \mathrm{H}, \mathrm{d}, J=5.0 \mathrm{~Hz}), 8.09(1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}), 7.95(1 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}), 7.67-7.54(2 \mathrm{H}, \mathrm{m})$, $7.47(1 \mathrm{H}, \mathrm{dd}, J=9.0,2.0 \mathrm{~Hz}), 7.40(1 \mathrm{H}, \mathrm{ddd}, J=7.5,1.5,1.5 \mathrm{~Hz}), 7.33(1 \mathrm{H}, \mathrm{dd}, J=7.5,7.5$ $\mathrm{Hz}), 6.87(1 \mathrm{H}, \mathrm{d}, J=5.0 \mathrm{~Hz}), 3.91(4 \mathrm{H}, \mathrm{m}), 3.24(4 \mathrm{H}, \mathrm{br} \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $169.0,156.5,152.1,150.3,137.4,135.4,133.3,130.4,130.3,129.2,126.9,125.8,124.8,123.0$, 122.0, 109.6, 52.6; m/e (rel intensity) 448 (1), 432 (100), 430 (78); HRMS (ESI) $m / e[M+H]^{+}$ for $\left(\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{BrClN}_{3} \mathrm{O}\right)$ calcd 430.0322, found 430.0324 .

(2-Bromophenyl)(4-(7-chloroquinolin-4-yl)piperazin-1-yl)methanone (10):

The title compound was prepared according to General Procedure B in 99%, yield. Yellow oil; $\mathrm{R} f=0.34$ ($2 \% \mathrm{MeOH} / \mathrm{EtOAc}$); IR (oil): v 3048, 2919, 2849, 1634, 1574, 1421, 1379, 1284, 1246, 1006, 865, 823, 797, $732 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.75(1 \mathrm{H}, \mathrm{d}, J=5.0 \mathrm{~Hz}$), $8.06(1 \mathrm{H}, \mathrm{t}, J=2.0 \mathrm{~Hz}), 7.94(1 \mathrm{H}, \mathrm{dd}, J=9.0,2.0 \mathrm{~Hz}), 7.61(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 7.49-7.36(2 \mathrm{H}$, $\mathrm{m}), 7.34-7.28(2 \mathrm{H}, \mathrm{m}), 6.86(1 \mathrm{H}, \mathrm{dd}, J=5.0,2.0 \mathrm{~Hz}), 4.24-3.93(2 \mathrm{H}, \mathrm{m}), 3.65-3.41(2 \mathrm{H}, \mathrm{m})$, 3.40-3.17 (3H, m), 3.18-3.04 (1H, m); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.0,156.4,152.1$, $150.3,137.8,135.3,133.1,130.7,129.3,128.0,127.9,126.8,124.8,121.9,119.3,109.5,52.5$, 52.1, 46.9, 41.7; m / e (rel intensity) 448 (1), 432 (100), 430 (78); HRMS (ESI) $m / e[M+H]^{+}$for $\left(\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{BrClN}_{3} \mathrm{O}\right)$ calcd 430.0322, found 430.0325.

(4-Bromophenyl)(4-(7-chloroquinolin-4-yl)piperazin-1-yl)methanone (11):

The title compound was prepared according to General Procedure B in 86% yield. White solid, $\mathrm{mp}=80-82{ }^{\circ} \mathrm{C}(\mathrm{MeOH} / \mathrm{EtOAc}) ; \mathrm{R} f=0.34(2 \% \mathrm{MeOH} / \mathrm{EtOAc}) ;$ IR (solid): v 2967, 2865, 2829, 1635, 1564, 1421, 1248, 1006, 864, 819, $751 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.76(1 \mathrm{H}, \mathrm{d}, J$ $=5.0 \mathrm{~Hz}), 8.08(1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}), 7.95(1 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}), 7.62-7.57(2 \mathrm{H}, \mathrm{m}), 7.47(1 \mathrm{H}, \mathrm{dd}, J$ $=9.0,2.0 \mathrm{~Hz}), 7.38-7.33(2 \mathrm{H}, \mathrm{m}), 6.86(1 \mathrm{H}, \mathrm{d}, J=5.0 \mathrm{~Hz}), 4.16-3.60(4 \mathrm{H}, \mathrm{m}), 3.23(4 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 169.7,156.4,152.1,150.4,135.4,134.3,132.1,129.3,129.0,126.9$, 124.8, 124.6, 122.0, 109.6, 52.4, 52.3; m/e (rel intensity) 432 (100), 430 (78); HRMS (ESI) m / e $[\mathrm{M}+\mathrm{H}]^{+}$for $\left(\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{BrClN}_{3} \mathrm{O}\right)$ calcd 430.0322, found 430.0331.

N-(4-(4-(7-Chloroquinolin-4-yl)piperazine-1-carbonyl)phenyl)acetamide (12):

The title compound was prepared according to General Procedure A in 81% yield. Pink solid, mp $=118-120^{\circ} \mathrm{C}(\mathrm{MeOH} / \mathrm{EtOAc}) ; \mathrm{Rf}=0.41\left(1 \mathrm{MeOH}: 9 \mathrm{CH}_{2} \mathrm{Cl}_{2}: 0.1 \mathrm{Et}_{3} \mathrm{~N}\right)$; IR (solid): v 3570, $3228,1698,1626,1526,1313,1249,1010,849,747 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.76$ $(1 \mathrm{H}, \mathrm{d}, J=5.0 \mathrm{~Hz}), 8.08(1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}), 7.96(1 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}), 7.62(1 \mathrm{H}, \mathrm{s}), 7.57(2 \mathrm{H}, \mathrm{d}$, $J=8.5 \mathrm{~Hz}), 7.47(1 \mathrm{H}, \mathrm{dd}, J=9.0,2.0 \mathrm{~Hz}), 7.45-7.41(2 \mathrm{H}, \mathrm{m}), 6.87(1 \mathrm{H}, \mathrm{d}, J=5.0 \mathrm{~Hz}), 3.92$
$(4 \mathrm{H}, \mathrm{s}), 3.23(4 \mathrm{H}, \mathrm{s}), 2.21(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.4,168.8,156.4,151.9$, $150.0,139.9,135.2,130.4,128.9,128.2,126.7,124.7,121.7,119.7,109.6,52.3,24.8 ; m / e$ (rel intensity) 423 (4), 409 (100), 248 (9), 246 (2), 196 (2), 180 (10); HRMS (ESI) $m / e[M+H]^{+}$for $\left(\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{ClN}_{4} \mathrm{O}_{2}\right)$ calcd 409.1431, found 409.1426 .

(4-(7-Chloroquinolin-4-yl)piperazin-1-yl)(perfluorophenyl)methanone (13):

The title compound was prepared according to General Procedure A in 67%, yield. White solid, $\mathrm{mp}=164-166{ }^{\circ} \mathrm{C}(\mathrm{MeOH} / \mathrm{EtOAc}) ; \mathrm{R} f=0.48$ ($100 \% \mathrm{EtOAc}$); IR (solid): v 3063, 2918, 1646, $1580,1498,1460,1422,1236,1090,989,942,916,906,813,799 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.78(1 \mathrm{H}, \mathrm{d}, J=5.0 \mathrm{~Hz}), 8.09(1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}), 7.95(1 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}), 7.48(1 \mathrm{H}$, $\mathrm{dd}, J=9.0,2.0 \mathrm{~Hz}), 6.88(1 \mathrm{H}, \mathrm{d}, J=5.0 \mathrm{~Hz}), 4.13(2 \mathrm{H}, \mathrm{dd}, J=4.5,4.5 \mathrm{~Hz}), 3.65(2 \mathrm{H}, \mathrm{dd}, J=$ $4.5,4.5 \mathrm{~Hz}), 3.32(2 \mathrm{H}, \mathrm{dd}, J=5.0,5.0 \mathrm{~Hz}), 3.22(2 \mathrm{H}, \mathrm{dd}, J=5.0,5.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 157.2,156.0,152.0,150.3,144.3$ (m, Pf), 143.5 (m, Pf), 141.7 (m, Pf), 140.9 (m, Pf), 139.1 (m, Pf), 136.6 (m, Pf), 135.4, 131.9 (m, Pf), 129.3, 127.0, 125.3 (m, Pf), 124.6, 121.9, 109.7, 104.9, 52.5, 52.1, 47.1, 42.5; m/e (rel intensity) 442 (100), 284 (7); HRMS (ESI) m / e [M + $\mathrm{H}]^{+}$for $\left(\mathrm{C}_{20} \mathrm{H}_{13} \mathrm{ClF}_{5} \mathrm{~N}_{3} \mathrm{O}\right)$ calcd 442.0745, found 442.0752.

(4-Chlorophenyl)(4-(7-chloroquinolin-4-yl)piperazin-1-yl)methanone (14): ${ }^{47}$

The title compound was prepared according to a General Procedure B in 95\% yield. Yellow solid, $\mathrm{mp}=167-169{ }^{\circ} \mathrm{C}(\mathrm{MeOH} / \mathrm{EtOAc}) ; \mathrm{Rf}=0.22$ ($2 \% \mathrm{MeOH} / \mathrm{EtOAc}$); IR (solid): v 2920, 2866, 2830, 1645, 1573, 1418, 1247, 1008, 865, 829, $755 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $8.79(1 \mathrm{H}, \mathrm{d}, J=5.0 \mathrm{~Hz}), 8.10(1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}), 7.96(1 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}), 7.48(1 \mathrm{H}, \mathrm{dd}, J=$ $9.0,2.0 \mathrm{~Hz}), 7.45-7.39(4 \mathrm{H}, \mathrm{m}), 6.87(1 \mathrm{H}, \mathrm{d}, J=5.0 \mathrm{~Hz}), 4.15-3.59(4 \mathrm{H}, \mathrm{br} \mathrm{m}), 3.24(4 \mathrm{H}, \mathrm{br} \mathrm{s})$; ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.7,156.6,152.0,150.1,136.4,135.5,133.8,131.5,129.1$, 128.9, 126.9, 124.8, 121.9, 109.5, 52.4; m/e (rel intensity) 391 (2), 386 (100), 371 (10), 225 (2), 179 (1); HRMS (ESI) $m / e[M+H]^{+}$for $\left(\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}\right)$ calcd 386.0827, found 386.0827.

[1,1'-Biphenyl]-4-yl(4-(7-chloroquinolin-4-yl)piperazin-1-yl)methanone (15):

The title compound was prepared according to General Procedure A in 82%, yield. White solid, $\mathrm{mp}=168-170{ }^{\circ} \mathrm{C}(\mathrm{MeOH} / \mathrm{EtOAc}) ; \mathrm{R} f=0.33(2 \% \mathrm{MeOH} / \mathrm{EtOAc}) ;$ IR (solid): v 3054, 3827, $1636,1565,1435,1423,1277,1008,862,842,814,744 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.77(1 \mathrm{H}, \mathrm{d}, J=5.0 \mathrm{~Hz}), 8.08(1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}), 7.98(1 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}), 7.72-7.64(2 \mathrm{H}, \mathrm{m})$, $7.65-7.57(2 \mathrm{H}, \mathrm{m}), 7.60-7.52(2 \mathrm{H}, \mathrm{m}), 7.52-7.43(3 \mathrm{H}, \mathrm{m}), 7.45-7.35(1 \mathrm{H}, \mathrm{m}), 6.88(1 \mathrm{H}, \mathrm{d}, J=$ $5.0 \mathrm{~Hz}), 4.23-3.69(4 \mathrm{H}, \mathrm{m}), 3.26(4 \mathrm{H}, \mathrm{br} \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.9,156.8,152.5$, $150.7,143.5,140.6,135.7,134.5,129.6,129.4,128.4,128.2,127.8,127.6,127.1,125.2,122.3$, 109.9, 52.9, 52.8.; m/e (rel intensity) 444 (2), 428 (100), 352 (1), 267 (1); HRMS (ESI) $m / e[M+$ $\mathrm{H}]^{+}$for $\left(\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{ClN}_{3} \mathrm{O}\right)$ calcd 428.1529 , found 428.1523 .

1-(4-(7-Chloroquinolin-4-yl)piperazin-1-yl)hexan-1-one (16):

The title compound was prepared according to General Procedure A in 64% yield. White solid, $\mathrm{mp}=94-96^{\circ} \mathrm{C}(\mathrm{MeOH} / \mathrm{EtOAc}) ; \mathrm{R} f=0.27(3 \% \mathrm{MeOH} / \mathrm{EtOAc}) ;$ IR (solid): v 2930, 2870, 1645, 1572, 1422, 1245, 1196, 1014, 863, 830, $719 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.76(1 \mathrm{H}, \mathrm{d}, J$ $=5.0 \mathrm{~Hz}), 8.08(1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}), 7.97(1 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}), 7.47(1 \mathrm{H}, \mathrm{dd}, J=9.0,2.0 \mathrm{~Hz}), 6.85$ $(1 \mathrm{H}, \mathrm{d}, J=5.0 \mathrm{~Hz}), 3.97-3.87(2 \mathrm{H}, \mathrm{m}), 3.81-3.71(2 \mathrm{H}, \mathrm{m}), 3.26-3.11(4 \mathrm{H}, \mathrm{m}), 2.40(2 \mathrm{H}, \mathrm{t}, J=$ $7.5 \mathrm{~Hz}), 1.77-1.59(2 \mathrm{H}, \mathrm{m}), 1.36(4 \mathrm{H}, \mathrm{ddd}, J=7.0,4.5,3.0 \mathrm{~Hz}), 0.96-0.87(3 \mathrm{H}, \mathrm{t}, 7.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 171.9,156.4,151.9,150.1,135.1,129.0,126.6,124.7,121.9,109.3$, $52.4,52.1,45.6,41.4,33.3,31.6,25.0,22.5,14.0 ; m / e$ (rel intensity) 362 (1), 346 (100); HRMS (ESI) $m / e[\mathrm{M}+\mathrm{H}]^{+}$for $\left(\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{ClN}_{3} \mathrm{O}\right)$ calcd 346.1686, found 346.1686.

1-(4-(7-Chloroquinolin-4-yl)piperazin-1-yl)-2-phenylethanone (17):

The title compound was prepared according to General Procedure A in 50\% yield. Orange solid, $\mathrm{mp}=144-146{ }^{\circ} \mathrm{C}(\mathrm{MeOH} / \mathrm{EtOAc}) ; \mathrm{R} f=0.20(2 \% \mathrm{MeOH} / \mathrm{EtOAc}) ;$ IR (solid): v 2916, 2981, $2815,1632,1576,1422,1379,1280,1245,1012,868,822,727,712 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.73(1 \mathrm{H}, \mathrm{d}, J=5.0 \mathrm{~Hz}), 8.06(1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}), 7.91(1 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}), 7.44(1 \mathrm{H}$, $\mathrm{dd}, J=9.0,2.0 \mathrm{~Hz}), 7.39-7.33(2 \mathrm{H}, \mathrm{m}), 7.32-7.27(3 \mathrm{H}, \mathrm{m}), 6.78(1 \mathrm{H}, \mathrm{d}, J=5.0 \mathrm{~Hz}), 3.95(2 \mathrm{H}$,
dd, $J=5.0,5.0 \mathrm{~Hz}), 3.83(2 \mathrm{H}, \mathrm{s}), 3.73(2 \mathrm{H}, \mathrm{dd}, J=5.0,5.0 \mathrm{~Hz}), 3.17(2 \mathrm{H}, \mathrm{dd}, J=5.0,5.0 \mathrm{~Hz})$, $3.00(2 \mathrm{H}, \mathrm{dd}, J=5.0,5.0 \mathrm{~Hz}){ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.2,156.8,152.4,150.6,135.6$, $135.2,129.4,129.0,127.5,127.1,125.2,122.3,109.8,105.3,52.7,52.4,46.6,42.2,41.7$; m/e (rel intensity) 382 (1), 366 (100), 248 (2); HRMS (ESI) $m / e[M+H]^{+}$for $\left(\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{ClN}_{3} \mathrm{O}\right)$ calcd 366.1373, found 366.1381.

1-(4-(7-Chloroquinolin-4-yl)piperazin-1-yl)-4-phenylbutan-1-one (18):

The title compound was prepared according to General Procedure A in 65% yield. Orange oil; Rf $=0.24$ ($2 \% \mathrm{MeOH} / \mathrm{EtOAc}$); IR (oil): v 3024, 2920, 2854, 1635, 1574, 1421, 1379, 1245, 1230, 1012, 867, 822, 746, $698 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.75(1 \mathrm{H}, \mathrm{d}, J=5.0 \mathrm{~Hz}), 8.08(1 \mathrm{H}$, $\mathrm{d}, J=2.0 \mathrm{~Hz}), 7.95(1 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}), 7.47(1 \mathrm{H}, \mathrm{dd}, J=9.0,2.0 \mathrm{~Hz}), 7.34-7.28(2 \mathrm{H}, \mathrm{m}), 7.25-$ $7.18(3 \mathrm{H}, \mathrm{m}), 6.84(1 \mathrm{H}, \mathrm{d}, J=5.0 \mathrm{~Hz}), 3.91(2 \mathrm{H}, \mathrm{dd}, J=5.0,5.0 \mathrm{~Hz}), 3.68(2 \mathrm{H}, \mathrm{dd}, J=5.0,5.0$ $\mathrm{Hz}), 3.24-3.08(4 \mathrm{H}, \mathrm{m}), 2.73(2 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}), 2.40(2 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}), 2.04(2 \mathrm{H}, \mathrm{tt}, J=7.5$, $7.5 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.6,156.6,152.0,150.2,141.7,135.3,129.1,128.7$, $128.6,126.7,126.2,124.9,122.0,109.4,52.5,52.3,45.6,41.6,35.46,32.5,26.7$; m/e (rel intensity) 394 (100), 276 (2), 248 (2), 233 (2), 180 (1); HRMS (ESI) $m / e[M+H]^{+}$for $\left(\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{ClN}_{3} \mathrm{O}\right)$ calcd 394.1686, found 394.1686.

1-(4-(7-Chloroquinolin-4-yl)piperazin-1-yl)-5-phenylpentan-1-one (19):

The title compound was prepared according to General Procedure A in 69% yield. Yellow oil; Rf $=0.23(2 \% \mathrm{MeOH} / \mathrm{EtOAc})$; IR (oil): v 3026, 2919, 2854, 1641, 1574, 1420, 1379, 1228, 1012, $867,823,745,699 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.75(1 \mathrm{H}, \mathrm{d}, J=5.0 \mathrm{~Hz}), 8.07(1 \mathrm{H}, \mathrm{d}, J$ $=2.0 \mathrm{~Hz}), 7.94(1 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}), 7.46(1 \mathrm{H}, \mathrm{dd}, J=9.0,2.0 \mathrm{~Hz}), 7.35-7.24(2 \mathrm{H}, \mathrm{m}), 7.22-7.12$ $(3 \mathrm{H}, \mathrm{m}), 6.82(1 \mathrm{H}, \mathrm{d}, J=5.0 \mathrm{~Hz}), 3.89(2 \mathrm{H}, \mathrm{dd}, J=5.0,5.0 \mathrm{~Hz}), 3.71(2 \mathrm{H}, \mathrm{dd}, J=5.0,5.0 \mathrm{~Hz})$, $3.15(4 \mathrm{H}, \mathrm{s}), 2.67(2 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}), 2.41(2 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}), 1.82-1.60(4 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.5,156.3,151.1,149.8,142.0,135.0,128.7,128.3,128.2,126.4,125.6$, $124.7,121.6,109.1,52.1,51.9,45.4,41.3,35.5,33.0,30.9,24.7$; m / e (rel intensity) 424 (2), 408 (100); HRMS (ESI) $m / e[\mathrm{M}+\mathrm{H}]^{+}$for $\left(\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{ClN}_{3} \mathrm{O}\right)$ calcd 408.1843, found 408.1846 .

1-(4-(7-Chloroquinolin-4-yl)piperazin-1-yl)-6-phenylhexan-1-one (20):

The title compound was prepared according to General Procedure A in 70\% yield. Yellow oil; $\mathrm{R} f$ $=0.30(2 \% \mathrm{MeOH} / \mathrm{EtOAc})$; IR (oil): v 3022, 2924, 2854, 1643, 1575, 1421, 1379, 1228, 1013, $868,824,734,700 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.75(1 \mathrm{H}, \mathrm{d}, J=5.0 \mathrm{~Hz}), 8.07(1 \mathrm{H}, \mathrm{d}, J$ $=2.0 \mathrm{~Hz}), 7.95(1 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}), 7.46(1 \mathrm{H}, \mathrm{dd}, J=9.0,2.0 \mathrm{~Hz}), 7.32-7.23(2 \mathrm{H}, \mathrm{m}), 7.23-7.10$ $(3 \mathrm{H}, \mathrm{m}), 6.84(1 \mathrm{H}, \mathrm{d}, J=5.0 \mathrm{~Hz}), 3.91(2 \mathrm{H}, \mathrm{dd}, J=5.0,5.0 \mathrm{~Hz}), 3.74(2 \mathrm{H}, \mathrm{dd}, J=5.0,5.0 \mathrm{~Hz})$, $3.45-3.10(4 \mathrm{H}, \mathrm{m}), 2.64(2 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}), 2.39(2 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}), 1.77-1.63(4 \mathrm{H}, \mathrm{m}), 1.56-$
$1.34(2 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.9,156.5,152.1,150.3,142.6,135.3,129.2$, $128.5,128.4,126.7,125.8,124.9,122.0,109.4,52.5,52.3,45.7,41.6,35.9,33.4,31.4,29.2$, 25.3; m / e (rel intensity) 422 (100); HRMS (ESI) $m / e[\mathrm{M}+\mathrm{H}]^{+}$for $\left(\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{ClN}_{3} \mathrm{O}\right)$ calcd 422.2000 , found 422.2009 .

2,2,2-Trichloro-1-(4-(7-chloroquinolin-4-yl)piperazin-1-yl)ethanone (21):

The title compound was prepared according to General Procedure B in 89% yield. Orange solid, $\mathrm{mp}=159-161{ }^{\circ} \mathrm{C}(\mathrm{MeOH} / \mathrm{EtOAc}) ; \mathrm{R} f=0.47(2 \% \mathrm{MeOH} / \mathrm{EtOAc}) ;$ IR (solid): v 2815, 1669, 1577, 1421, 1381, 1232, 1013, 941, 868, 821, 808, 773, $666 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.77(1 \mathrm{H}, \mathrm{d}, J=5.0 \mathrm{~Hz}), 8.09(1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}), 7.96(1 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}), 7.48(1 \mathrm{H}, \mathrm{dd}, J=$ $9.0,2.0 \mathrm{~Hz}), 6.88(1 \mathrm{H}, \mathrm{d}, J=5.0 \mathrm{~Hz}), 4.14(4 \mathrm{H}, \mathrm{s}), 3.85-2.98(4 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 159.7,156.2,151.9,150.1,135.6,129.2,127.0,124.8,121.8,109.5,92.9,51.9 ; \mathrm{m} / \mathrm{e}$ (rel intensity) 410 (2), 394 (100), 392 (77), 179 (3); HRMS (ESI) $m / e[M+\mathrm{H}]^{+}$for $\left(\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{Cl}_{4} \mathrm{~N}_{3} \mathrm{O}\right)$ calcd 391.9891, found 391.9895.

1-(4-(7-Chloroquinolin-4-yl)piperazin-1-yl)-3-phenylprop-2-yn-1-one (22):

The title compound was prepared according to General Procedure A in 45% yield. Orange solid, $\mathrm{mp}=76-78{ }^{\circ} \mathrm{C}(\mathrm{MeOH} / \mathrm{EtOAc}) ; \mathrm{R} f=0.41(2 \% \mathrm{MeOH} / \mathrm{EtOAc}) ;$ IR (solid): v 3068, 2916, 2831, $2208,1623,1574,1489,1420,1378,1282,1202,1011,867,822,755,725,688 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.78(1 \mathrm{H}, \mathrm{d}, J=5.0 \mathrm{~Hz}), 8.09(1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}), 7.98(1 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz})$, $7.58(2 \mathrm{H}, \mathrm{dd}, J=8.0,1.5 \mathrm{~Hz}), 7.49(1 \mathrm{H}, \mathrm{dd}, J=9.0,2.0 \mathrm{~Hz}), 7.46-7.41(1 \mathrm{H}, \mathrm{m}), 7.41-7.35(2 \mathrm{H}$, $\mathrm{m}), 6.88(1 \mathrm{H}, \mathrm{d}, J=5.0 \mathrm{~Hz}), 4.15(2 \mathrm{H}, \mathrm{dd}, J=5.0,5.0 \mathrm{~Hz}), 4.00(2 \mathrm{H}, \mathrm{dd}, J=5.0,5.0 \mathrm{~Hz}), 3.31-$ $3.24(4 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.3,153.3,151.4,150.1,135.2,132.4,130.3$, $129.1,128.6,126.7,124.6,121.8,120.2,109.4,91.4,80.76,52.4,51.8,47.0,41.5$; m/e (rel intensity) 392 (2), 376 (100), 276 (1), 248 (2), 215 (2), 196 (1), 180 (1); HRMS (ESI) $m / e[M+$ $\mathrm{H}]^{+}$for $\left(\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{ClN}_{3} \mathrm{O}\right)$ calcd 376.1217, found 376.1231.

3.3 Synthesis of ACP4/5 Analogs

General Procedure C

To a stirred solution of ethyl acetoacetate $(1.2 \mathrm{mmol})$ and 21% sodium ethoxide/ethanol (0.14 $\mathrm{mmol})$ in ethanol (1 mL) was added either dichlorovinyl chalcone $25(0.40 \mathrm{mmol})$ or chalcones 54, 57, 61, $65(0.40 \mathrm{mmol})$ portionwise. The mixture was stirred overnight and then concentrated in vacuo. The crude product was purified by column chromatography on silica gel using 15-30\% EtOAc in hexane as the eluent to afford the coupled product.

General Procedure D

To a stirred solution of ethyl acetoacetate $(1.2 \mathrm{mmol})$ in propanol $(1 \mathrm{~mL})$ was added a solution of sodium propylate (0.1 mmol in 1 mL of propanol). After stirring for 10 min , chalcone 29 (0.40 mmol) was added portionwise. The mixture was stirred overnight. The thickened reaction mass was diluted with hexane and neutralized with acetic acid. The resulting sediment was filtered off to afford the cyclohexanone product.
(1S*,2R*,4R*)-Ethyl 2-(4-chlorophenyl)-4-hydroxy-4-(3-nitrophenyl)-6oxocyclohexanecarboxylate (31):

The title compound was prepared according to General Procedure D in 62% yield. Yellow solid, $\mathrm{mp}=68-70^{\circ} \mathrm{C}$ (hexanes); $\mathrm{R} f=0.25$ (50\% EtOAc/hexanes); IR (solid): v 3475, 2972, 1711, 1678,

1525, 1422, 1347, 1276, 1232, 1013, 809, $739 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d ${ }_{6}$) $\delta 8.40(1 \mathrm{H}$, dd, $J=2.0,2.0 \mathrm{~Hz}), 8.13(1 \mathrm{H}, \mathrm{ddd}, J=8.0,2.5,1.0 \mathrm{~Hz}), 8.00(1 \mathrm{H}, \mathrm{ddd}, J=8.0,2.0,1.0 \mathrm{~Hz})$, $7.72-7.60(1 \mathrm{H}, \mathrm{m}), 7.43-7.33(2 \mathrm{H}, \mathrm{m}), 7.33-7.12(2 \mathrm{H}, \mathrm{m}), 6.04(1 \mathrm{H}, \mathrm{s}), 4.20(1 \mathrm{H}, \mathrm{d}, J=12.5$ $\mathrm{Hz}), 4.03-3.87(2 \mathrm{H}, \mathrm{m}), 3.84-3.74(1 \mathrm{H}, \mathrm{m}), 3.35(1 \mathrm{H}, \mathrm{d}, J=13.5 \mathrm{~Hz}), 2.65(1 \mathrm{H}, \mathrm{dd}, J=13.0$, $13.0 \mathrm{~Hz}), 2.44(1 \mathrm{H}, \mathrm{dd}, J=13.5,2.5 \mathrm{~Hz}), 1.88(1 \mathrm{H}, \mathrm{ddd}, J=13.5,3.5,3.5 \mathrm{~Hz}), 1.01(3 \mathrm{H}, \mathrm{t}, J=$ 7.0 Hz); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta 204.4,169.2,150.6,148.4,141.9,132.1,132.0$, $130.5,130.0,129.2,122.6,120.2,75.9,62.2,60.7,53.0,44.7,42.2,14.6, m / e$ (rel intensity) 435 (41), 418 (76), 400 (100), 328 (13), 288 (2), 131 (4); HRMS (ESI) $m / e[M+H]^{+}$for $\left(\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{ClNO}_{6}\right)$ calcd 418.1057, found 418.1061.
(1S*,2R*,4R*)-Ethyl 4-(4-bromophenyl)-2-(3,4-dichlorophenyl)-4-hydroxy-6oxocyclohexanecarboxylate (32):

The title compound was prepared according to General Procedure D in 73% yield. White solid, $\mathrm{mp}=68-70^{\circ} \mathrm{C}$ (hexanes); $\mathrm{R} f=0.39$ (50% EtOAc/hexanes); IR (solid): v 3430, 2980, 1710, 1646, 1470, 1371, 1244, 1152, 1131, 1028, 1007, 819, $799 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d d_{6}) δ 7.69-7.16 (7H, m), $5.76(1 \mathrm{H}, \mathrm{s}), 4.18(1 \mathrm{H}, \mathrm{d}, J=12.5 \mathrm{~Hz}), 4.03-3.90(2 \mathrm{H}, \mathrm{m}), 3.84-3.67(1 \mathrm{H}$, $\mathrm{m}), 3.20(1 \mathrm{H}, \mathrm{d}, J=13.5 \mathrm{~Hz}), 2.71-2.49(1 \mathrm{H}, \mathrm{m}), 2.40(1 \mathrm{H}, \mathrm{dd}, J=13.5,2.0 \mathrm{~Hz}), 1.87(1 \mathrm{H}, \mathrm{dd}$, $J=13.5,13.5 \mathrm{~Hz}), 1.00(1 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right) \delta 204.3,169.2$, 147.6, 144.3, 131.7, 131.6, 131.3, 130.1, 130.0, 128.7, 127.6, 120.7, 75.8, 61.9, 60.8, 53.3, 44.5, 42.0, 14.6; m/e (rel intensity) 489 (11), 487 (30), 469 (100), 397 (12), 356 (2); HRMS (ESI) m / e $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$for $\left(\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{BrCl}_{2} \mathrm{NO}_{4}\right)$ calcd 484.9922, found 484.9936.
(1S*,4R*,6R*)-Ethyl 4-(4-bromophenyl)-4-hydroxy-2-oxo-6-phenylcyclohexanecarboxylate (33):

The title compound was prepared according to General Procedure D in 54% yield. White solid, $\mathrm{mp}=68-70^{\circ} \mathrm{C}$ (hexanes); $\mathrm{R} f=0.33$ (50\% EtOAc/hexanes); IR (solid): v 3380, 2943, 1744, 1730, 1706, 1488, 1373, 1261, 1234, 1154, 1029, 1005, 828, 753, $696 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d $\left._{6}\right) \delta\left(400 \mathrm{MHz}\right.$, DMSO-d $\left._{6}\right) \delta 7.62-7.45(4 \mathrm{H}, \mathrm{m}), 7.38-7.09(5 \mathrm{H}, \mathrm{m}), 5.74(1 \mathrm{H}, \mathrm{s}), 4.15$ $(1 \mathrm{H}, \mathrm{d}, J=12.5 \mathrm{~Hz}), 4.03-3.86(2 \mathrm{H}, \mathrm{m}), 3.83-3.68(1 \mathrm{H}, \mathrm{m}), 3.25(1 \mathrm{H}, \mathrm{d}, J=13.5), 2.54(1 \mathrm{H}$, dd, $J=13.5,13.5 \mathrm{~Hz}), 2.40(1 \mathrm{H}, \mathrm{dd}, J=13.5,2.5 \mathrm{~Hz}), 1.87(1 \mathrm{H}, \mathrm{ddd}, J=13.5,4.0,2.5 \mathrm{~Hz})$, $0.97(1 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}}^{6}$) $\delta 204.3,168.7,147.2,142.4,130.8$, $128.4,127.3,126.9,126.7,119.9,75.1,61.6,59.8,52.6,44.6,42.0,13.8 ; m / e$ (rel intensity) 434 (11), 417 (30), 399 (100), 289 (1); HRMS (ESI) $m / e[M+H]^{+}$for $\left(\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{BrO}_{4}\right)$ calcd 417.0701, found 417.0713.

1S*,2R*,4R*)-Ethyl 2-(2,2-dichlorovinyl)-4-hydroxy-4-(4-nitrophenyl)-6oxocyclohexanecarboxylate (37):

The title compound was prepared according to General Procedure C in 59% yield. Yellow solid, $\mathrm{mp}=68-70{ }^{\circ} \mathrm{C}$ (EtOAc/hexanes); $\mathrm{R} f=0.20$ ($25 \% \mathrm{EtOAc} /$ hexanes); IR (solid): 3462, 2982, $1734,1712,1607,1516,1344,1263,1097,890,852,699 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d ${ }_{6}$) $\delta 8.24(2 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}), 7.76(2 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}), 6.11(1 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}), 6.05(1 \mathrm{H}, \mathrm{s}), 4.21-$ $4.07(2 \mathrm{H}, \mathrm{m}), 3.81(1 \mathrm{H}, \mathrm{d}, J=12.0 \mathrm{~Hz}), 3.70-3.59(1 \mathrm{H}, \mathrm{m}), 3.21(1 \mathrm{H}, \mathrm{d}, J=13.0 \mathrm{~Hz}), 2.40(1 \mathrm{H}$, dd, $J=13.0,2.0 \mathrm{~Hz}), 2.31(1 \mathrm{H}, \mathrm{dd}, J=13.0,13.0 \mathrm{~Hz}), 1.81-1.75(1 \mathrm{H}, \mathrm{m}), 1.22(3 \mathrm{H}, \mathrm{t}, J=7.0$ $\mathrm{Hz}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}_{-\mathrm{d}_{6}}$) $\delta 202.5,168.4,154.5,146.4,131.1,126.1,123.3,120.1$, $75.1,60.3,59.7,52.0,40.8,37.8,14.0 ; m / e$ (rel intensity) 419 (41), 402 (100), 384 (45), 312 (4),

306 (7), 131 (4); HRMS (ESI) $m / e[M+H]^{+}$for $\left(\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{Cl}_{2} \mathrm{NO}_{6}\right)$ calcd 402.0511, found 402.0510 .
(1S*,2R*,4R*)-Ethyl 4-(4-bromophenyl)-2-(2,2-dichlorovinyl)-4-hydroxy-6oxocyclohexanecarboxylate (38):

The title compound was prepared according to General Procedure C in 53\% yield. Yellow solid, $\mathrm{mp}=139-141^{\circ} \mathrm{C}$ (EtOAc/hexanes); $\mathrm{R} f=0.22$ (15\% EtOAc/hexanes); IR (solid): v 3382, 1739, 1708, 1627, 1488, 1371, 1241, 1171, 1025, 1008, 891, 843, $817 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d $\left.{ }_{6}\right) \delta 7.55(2 \mathrm{H}, \mathrm{d}, J=9.5 \mathrm{~Hz}), 7.76(2 \mathrm{H}, \mathrm{d}, J=9.5 \mathrm{~Hz}), 6.09(1 \mathrm{H}, \mathrm{d}, J=10.0 \mathrm{~Hz}), 5.79$ $(1 \mathrm{H}, \mathrm{s}), 4.21-4.07(2 \mathrm{H}, \mathrm{m}), 3.76(1 \mathrm{H}, \mathrm{d}, J=12.5 \mathrm{~Hz}), 3.67-3.55(1 \mathrm{H}, \mathrm{m}), 3.12(1 \mathrm{H}, \mathrm{d}, J=13.5$ $\mathrm{Hz}), 2.36(1 \mathrm{H}, \mathrm{dd}, J=13.5,2.0 \mathrm{~Hz}), 2.31(1 \mathrm{H}, \mathrm{dd}, J=13.5,13.5 \mathrm{~Hz}), 1.78-1.70(1 \mathrm{H}, \mathrm{m}), 1.20$ (3H, t, $J=7.0 \mathrm{~Hz}$); ${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d $)_{6}$) 202.9, 168.4, 146.7, 131.3, 130.9, 126.9, 120.1, 119.9, 74.8, 60.3, 59.7, 52.4, 40.4, 37.8, 14.0; m/e (rel intensity) 454 (29), 437 (49), 419 (100); HRMS (ESI) $m / e[M+H]^{+}$for $\left(\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{BrCl}_{2} \mathrm{O}_{4}\right)$ calcd 434.9765, found 434.9759.
(1S*, 2R*,4R*)-Ethyl 2-(2,2-dichlorovinyl)-4-hydroxy-4-(4-iodophenyl)-6oxocyclohexanecarboxylate (39):

The title compound was prepared according to General Procedure C in 62% yield. Yellow solid, $\mathrm{mp}=135-137{ }^{\circ} \mathrm{C}$ (EtOAc/hexanes); $\mathrm{R} f=0.18$ ($15 \% \mathrm{EtOAc} /$ hexanes); IR (solid): v 3462, 2979, 2930, 1724, 1708, 1615, 1468, 1369, 1262, 1186, 1095, 1025, 1004, 889, $821 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right) \delta 7.72(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 7.28(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 6.08(1 \mathrm{H}, \mathrm{d}, J=10.0$ $\mathrm{Hz}), 5.76(1 \mathrm{H}, \mathrm{s}), 4.20-4.04(2 \mathrm{H}, \mathrm{m}), 3.76(1 \mathrm{H}, \mathrm{d}, J=12.0 \mathrm{~Hz}), 3.66-3.52(1 \mathrm{H}, \mathrm{m}), 3.10(1 \mathrm{H}, \mathrm{d}$, $J=13.5 \mathrm{~Hz}), 2.35(1 \mathrm{H}, \mathrm{dd}, J=13.5,2.5 \mathrm{~Hz}), 2.21(1 \mathrm{H}, \mathrm{dd}, J=13.0,13.0 \mathrm{~Hz}), 1.80-1.65(1 \mathrm{H}$,
$\mathrm{m}), 1.20(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}_{6}$) δ 203.0, 168.5, 147.2, 136.8, $131.4,127.1,119.9,93.0,74.9,60.3,59.7,52.4,40.4,37.8,14.0 ; \mathrm{m} / \mathrm{e}$ (rel intensity) 500 (37), 483 (34), 465 (100), 388 (5), 371 (7), 221 (1); HRMS (ESI) $m / e[M+H]^{+}$for $\left(\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{Cl}_{2} \mathrm{IO}_{4}\right)$ calcd 482.9627, found 482.9631 .
(1S*,2R*,4R*)-Ethyl 2-(2,2-dichlorovinyl)-4-hydroxy-6-oxo-4-(4(trifluoromethyl)phenyl)cyclohexanecarboxylate (40):

The title compound was prepared according to General Procedure C in 52% yield.
Yellow solid, $\mathrm{mp}=120-122^{\circ} \mathrm{C}$ (EtOAc/hexanes); $\mathrm{R} f=0.31$ ($15 \% \mathrm{EtOAc} /$ hexanes); IR (solid): v $3469,1725,1708,1616,1369,1325,1298,1264,1143,1108,1068,1016,890,837 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d $)_{6}$ ($7.79-7.65(4 H, m), 6.10(1 H, d, J=10.0 \mathrm{~Hz}), 5.93(1 \mathrm{H}, \mathrm{s}), 4.24$ $4.04(2 \mathrm{H}, \mathrm{m}), 3.80(1 \mathrm{H}, \mathrm{d}, J=12.0 \mathrm{~Hz}), 3.70-3.56(1 \mathrm{H}, \mathrm{m}), 3.18(1 \mathrm{H}, \mathrm{d}, J=13.5 \mathrm{~Hz}), 2.39(1 \mathrm{H}$, dd, $J=13.5,2.0 \mathrm{~Hz}), 2.29(1 \mathrm{H}, \mathrm{dd}, J=12.5,12.5 \mathrm{~Hz}), 1.82-1.73(1 \mathrm{H}, \mathrm{m}), 1.20(3 \mathrm{H}, \mathrm{t}, J=7.0$ $\mathrm{Hz}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}}$) $\delta 202.8,168.4,151.7,131.2,127.6(\mathrm{q}, J=31.5 \mathrm{~Hz}$), $125.5,125.0(\mathrm{q}, J=3.5 \mathrm{~Hz}), 124.3(\mathrm{q}, J=254.0 \mathrm{~Hz}), 120.0,75.0,60.3,59.7,52.3,40.3,37.9$, 14.0; ${ }^{19}$ F NMR ($375 \mathrm{MHz}, \mathrm{DMSO}_{6}$) δ-61.2; m/e (rel intensity) 442 (42), 425 (100), 407 (38), 329 (5); HRMS (ESI) $m / e[\mathrm{M}+\mathrm{H}]^{+}$for $\left(\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{Cl}_{2} \mathrm{~F}_{3} \mathrm{O}_{4}\right)$ calcd 425.0534, found 25.05465.
(1S*, 2R*,4R*)-Ethyl 4-(4-chlorophenyl)-2-(2,2-dichlorovinyl)-4-hydroxy-6oxocyclohexanecarboxylate (41): ${ }^{26}$

The title compound was prepared according to General Procedure C in 51% yield. White solid, $\mathrm{mp}=140-142{ }^{\circ} \mathrm{C}$ (EtOAc/hexanes); $\mathrm{R} f=0.18$ ($15 \% \mathrm{EtOAc} /$ hexanes); IR (solid): v 3364, 1741, 1711, 1628, 1491, 1370, 1244, 1171, 1091, 1025, 1011, 892, $822 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{DMSO}_{\mathrm{d}}\right) \delta 7.49(2 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 7.42(2 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 6.09(1 \mathrm{H}, \mathrm{d}, J=10.0 \mathrm{~Hz}), 5.79$ $(1 \mathrm{H}, \mathrm{s}), 4.19-4.08(2 \mathrm{H}, \mathrm{m}), 3.76(1 \mathrm{H}, \mathrm{d}, J=12.0 \mathrm{~Hz}), 3.68-3.56(1 \mathrm{H}, \mathrm{m}), 3.12(1 \mathrm{H}, \mathrm{d}, J=13.5$ $\mathrm{Hz}), 2.36(1 \mathrm{H}, \mathrm{dd}, J=13.5,2.0 \mathrm{~Hz}), 2.22(1 \mathrm{H}, \mathrm{dd}, J=12.5,12.5 \mathrm{~Hz}), 1.79-1.71(1 \mathrm{H}, \mathrm{m}), 1.20$ $(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d ${ }_{6}$) $\delta 202.9,168.4,146.3,131.5,131.3,128.0$, $126.5,119.9,74.8,60.3,59.7,52.5,40.5,37.8,14.0 ; \mathrm{m} / \mathrm{e}$ (rel intensity) 426 (7), 408 (52), 391 (60), 373 (100), 240 (4), 195 (4), 151 (4); HRMS (ESI) $m / e[M+\mathrm{H}]^{+}$for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{Cl}_{3} \mathrm{O}_{4}$) calcd 391.0271, found 391.0290.

(1S*,2R*,4R*)-Ethyl 2-(2,2-dichlorovinyl)-4-hydroxy-6-oxo-4-(p-

 tolyl)cyclohexanecarboxylate (42): ${ }^{26}$

The title compound was prepared according to General Procedure C in 42% yield. White solid, $\mathrm{mp}=150-152{ }^{\circ} \mathrm{C}$ (EtOAc/hexanes); $\mathrm{R} f=0.20$ ($25 \% \mathrm{EtOAc} /$ hexanes); IR (solid): v 3539, 3041, 2979, 1737, 1708, 1620, 1375, 1228, 1175, 1160, 1028, 889, $820 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{DMSO}_{6}\right) \delta 7.35(2 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 7.15(2 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 6.09(1 \mathrm{H}, \mathrm{d}, J=9.5 \mathrm{~Hz}), 5.61$ $(1 \mathrm{H}, \mathrm{s}), 4.25-4.03(2 \mathrm{H}, \mathrm{m}), 3.75(1 \mathrm{H}, \mathrm{d}, J=12.0 \mathrm{~Hz}), 3.72-3.53(1 \mathrm{H}, \mathrm{m}), 3.09(1 \mathrm{H}, \mathrm{d}, J=13.5$ $\mathrm{Hz}), 2.35(1 \mathrm{H}, \mathrm{dd}, J=13.5,1.5 \mathrm{~Hz}), 2.28(3 \mathrm{H}, \mathrm{s}), 2.20(1 \mathrm{H}, \mathrm{ddd}, J=13.5,12.0,1.5 \mathrm{~Hz}), 1.75$ $(1 \mathrm{H}$, ddd, $J=13.5,4.0,2.5 \mathrm{~Hz}), 1.20(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right) \delta$ $203.2,168.5,144.4,135.8,131.5,128.5,124.4,119.7,74.9,60.2,59.8,52.8,40.8,37.9,20.5$, 14.0; m/e (rel intensity) 388 (32), 371 (32), 353 (100), 281 (2), 251 (1); HRMS (ESI) $m / e[M+$ $\mathrm{H}]^{+}$for $\left(\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{Cl}_{2} \mathrm{O}_{4}\right)$ calcd 371.0817, found 371.0828.
(1S*,2R*,4R*)-Ethyl 4-(4-cyanophenyl)-2-(2,2-dichlorovinyl)-4-hydroxy-6oxocyclohexanecarboxylate (43):

The title compound was prepared according to General Procedure C in 57% yield. White solid, $\mathrm{mp}=143-145^{\circ} \mathrm{C}$ (EtOAc/hexanes); $\mathrm{R} f=0.42$ ($30 \% \mathrm{EtOAc} /$ hexanes); IR (solid): v 3445, 3042, 3061, 2986, 2931, 1726, 1708, 1606, 1369, 1262, 1190, 1021, 881, $837 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{DMSO}_{6}\right) \delta 7.85(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 7.68(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 6.10(1 \mathrm{H}, \mathrm{s}), 5.96(1 \mathrm{H}, \mathrm{s})$, $4.22-3.98(2 \mathrm{H}, \mathrm{m}), 3.78(1 \mathrm{H}, \mathrm{d}, J=12.0 \mathrm{~Hz}), 3.69-3.56(1 \mathrm{H}, \mathrm{m}), 3.18(1 \mathrm{H}, \mathrm{d}, J=14.0 \mathrm{~Hz}), 2.37$ $(1 \mathrm{H}, \mathrm{dd}, J=14.0,2.5 \mathrm{~Hz}), 2.26(1 \mathrm{H}, \mathrm{dd}, J=13.0,13.0 \mathrm{~Hz}), 1.83-1.66(1 \mathrm{H}, \mathrm{m}), 1.20(3 \mathrm{H}, \mathrm{t}, J=$ $7.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}}^{6}$) δ 202.7, 168.4, 152.5, 132.1, 131.2, 125.7, 120.0, 118.7, 109.8, 75.1, 60.3, 59.7, 52.0, 40.9, 37.8, 14.0; m/e (rel intensity) 399 (73), 382 (92), 364 (100), 292 (3), 221 (2), 131 (7); HRMS (ESI) m/e $[\mathrm{M}+\mathrm{H}]^{+}$for $\left(\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{BrCl}_{2} \mathrm{NO}_{4}\right)$ calcd 382.0613, found 382.0623.
(1S*,2R*,4R*)-Ethyl 2-(2,2-dichlorovinyl)-4-hydroxy-4-(4-methoxyphenyl)-6oxocyclohexanecarboxylate (44):

The title compound was prepared according to General Procedure C in 45% yield. Yellow solid, $\mathrm{mp}=125-127^{\circ} \mathrm{C}$ (EtOAc/hexanes); $\mathrm{R} f=0.12$ ($15 \% \mathrm{EtOAc} /$ hexanes); IR (solid): v 3462, 2979, 2935, 1725, 1708, 1615, 1486, 1368, 1262, 1186, 1095, 1025, 1004, 889, $821 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{DMSO}_{6}\right) \delta 7.38(2 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}), 6.90(2 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}), 6.09(1 \mathrm{H}, \mathrm{d}, J=10.0$ $\mathrm{Hz}), 5.58(1 \mathrm{H}, \mathrm{s}), 4.26-4.02(2 \mathrm{H}, \mathrm{m}), 3.88-3.71(4 \mathrm{H}, \mathrm{m}), 3.69-3.51(1 \mathrm{H}, \mathrm{m}), 3.08(1 \mathrm{H}, \mathrm{d}, J=$ $13.5 \mathrm{~Hz}), 2.36(1 \mathrm{H}, \mathrm{dd}, J=13.5,2.5 \mathrm{~Hz}), 2.25-2.05(1 \mathrm{H}, \mathrm{m}), 1.76(1 \mathrm{H}, \mathrm{ddd}, J=13.5,4.0,2.5$ $\mathrm{Hz}), 1.20(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}}^{6}$) $\delta 203.3,168.6,158.1,139.5$, $131.5,125.7,119.7,113.3,74.7,60.2,59.8,55.0,52.9,40.9,37.9,14.0 ; m / e$ (rel intensity) 404
(8), 387 (30), 369 (100), 291 (1); HRMS (ESI) $m / e[\mathrm{M}+\mathrm{H}]^{+}$for $\left(\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{Cl}_{2} \mathrm{O}_{5}\right)$ calcd 387.0766, found 387.0765 .
(1S*,2R*,4R*)-Ethyl 2-(2,2-dichlorovinyl)-4-(4-ethoxyphenyl)-4-hydroxy-6oxocyclohexanecarboxylate (45): ${ }^{26}$

The title compound was prepared according to General Procedure C in 62% yield. Yellow solid, $\mathrm{mp}=113-115^{\circ} \mathrm{C}$ (EtOAc/hexanes); $\mathrm{R} f=0.10$ ($15 \% \mathrm{EtOAc} /$ hexanes); IR (solid): v 3542, 1736, $1708,1608,1512,1309,1243,1225,1175,1160,1112,1025,890 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{DMSO}_{6}\right) \delta 7.36(2 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}), 6.89(2 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}), 6.09(1 \mathrm{H}, \mathrm{d}, J=9.5 \mathrm{~Hz}), 5.57$ $(1 \mathrm{H}, \mathrm{s}), 4.23-4.05(2 \mathrm{H}, \mathrm{m}), 4.01(2 \mathrm{H}, \mathrm{q}, J=7.0 \mathrm{~Hz}), 3.74(1 \mathrm{H}, \mathrm{d}, J=12.0 \mathrm{~Hz}), 3.67-3.55(1 \mathrm{H}$, $\mathrm{m}), 3.08(1 \mathrm{H}, \mathrm{d}, J=14.0 \mathrm{~Hz}), 2.36(1 \mathrm{H}, \mathrm{dd}, J=14.0,2.0 \mathrm{~Hz}), 2.20(1 \mathrm{H}, \mathrm{dd}, J=13.0,13.0 \mathrm{~Hz})$, $1.80-1.70(1 \mathrm{H}, \mathrm{m}), 1.32(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}), 1.20(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO-d $\left._{6}\right) \delta 203.3,168.6,157.3,139.3,131.5,125.6,119.7,113.8,74.7,62.9,60.2,59.7,52.9$, $40.9,37.9,14.6,14.0 ; m / e$ (rel intensity) 401 (93), 383 (100); HRMS (ESI) $m / e[M+H]^{+}$for $\left(\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{Cl}_{2} \mathrm{O}_{5}\right)$ calcd 401.0922, found 401.0931.
(1S*,2R*,4R*)-Ethyl 4-([1,1'-biphenyl]-4-yl)-2-(2,2-dichlorovinyl)-4-hydroxy-6oxocyclohexanecarboxylate (46):

The title compound was prepared according to General Procedure C in 30\% yield. Yellow solid, $\mathrm{mp}=160-162{ }^{\circ} \mathrm{C}$ (EtOAc/hexanes); $\mathrm{R} f=0.42$ ($30 \% \mathrm{EtOAc} /$ hexanes); IR (solid): v 3543, 3041, $2985,1743,1712,1625,1375,1230,1173,1162,1114,1030,887,768,733,696 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta 7.71-7.62(4 \mathrm{H}, \mathrm{m}), 7.60-7.52(2 \mathrm{H}, \mathrm{m}), 7.50-7.42(2 \mathrm{H}, \mathrm{m}), 7.39-7.32$
$(1 \mathrm{H}, \mathrm{m}), 6.11(1 \mathrm{H}, \mathrm{d}, J=9.5 \mathrm{~Hz}), 5.75(1 \mathrm{H}, \mathrm{s}), 4.22-4.04(2 \mathrm{H}, \mathrm{m}), 3.79(1 \mathrm{H}, \mathrm{d}, J=12.0 \mathrm{~Hz})$, $3.67(1 \mathrm{H}, \mathrm{ddd}, J=12.0,10.0,4.0 \mathrm{~Hz}), 3.17(1 \mathrm{H}, \mathrm{d}, J=13.5 \mathrm{~Hz}), 2.42(1 \mathrm{H}, \mathrm{dd}, J=13.5,2.5 \mathrm{~Hz})$, $2.34-2.23(1 \mathrm{H}, \mathrm{dd}, J=13.5,13.5 \mathrm{~Hz}), 1.81(1 \mathrm{H}, \mathrm{ddd}, J=13.5,4.0,2.5 \mathrm{~Hz}), 1.21(3 \mathrm{H}, \mathrm{t}, J=7.0$ $\mathrm{Hz}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}}^{6}$ $) ~ \delta 203.2,168.5,146.5,139.7,138.7,131.4,128.8,127.3$, $126.6,126.3,125.1,119.8,75.0,60.3,59.8,52.6,40.7,37.9,14.0 ; m / e$ (rel intensity) 450 (16), 433 (28), 415 (100), 343 (1); HRMS (ESI) $m / e[M+H]^{+}$for $\left(\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{Cl}_{2} \mathrm{O}_{4}\right)$ calcd 433.0973, found 433.0961.
(1S*,2R*,4R*)-Ethyl 2-(2,2-dichlorovinyl)-4-hydroxy-4-(3-nitrophenyl)-6oxocyclohexanecarboxylate (47):

The title compound was prepared according to General Procedure C in 75\% yield. Yellow solid, $\mathrm{mp}=183-185^{\circ} \mathrm{C}$ (EtOAc/hexanes); $\mathrm{R} f=0.20$ ($25 \% \mathrm{EtOAc} /$ hexanes); IR (solid): v 3372, 1739, $1710,1628,1522,1348,1246,1173,1025,891,868,858,811,739 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d ${ }_{6}$) $\delta 8.34(1 \mathrm{H}, \mathrm{dd}, J=2.0,2.0 \mathrm{~Hz}), 8.15(1 \mathrm{H}, \mathrm{ddd}, J=8.0,2.0,1.0 \mathrm{~Hz}), 7.95(1 \mathrm{H}$, ddd, J $=8.0,2.0,1.0 \mathrm{~Hz}), 7.69(1 \mathrm{H}, \mathrm{dd}, J=8.0,8.0 \mathrm{~Hz}), 6.10(1 \mathrm{H}, \mathrm{d}, J=10.0 \mathrm{~Hz}), 6.07(1 \mathrm{H}, \mathrm{s}), 4.21-$ $4.07(2 \mathrm{H}, \mathrm{m}), 3.81(1 \mathrm{H}, \mathrm{d}, J=12.0 \mathrm{~Hz}), 3.69-3.58(1 \mathrm{H}, \mathrm{m}), 3.25(1 \mathrm{H}, \mathrm{d}, J=14.0 \mathrm{~Hz}), 2.40(1 \mathrm{H}$, dd, $J=14.0,2.5 \mathrm{~Hz}), 2.34(1 \mathrm{H}, \mathrm{dd}, J=13.0,13.0 \mathrm{~Hz}), 1.82-1.75(1 \mathrm{H}, \mathrm{m}), 1.20(3 \mathrm{H}, \mathrm{t}, J=7.5$ $\mathrm{Hz}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}_{-\mathrm{d}_{6}}$) $\delta 202.6,149.5,132.7,131.4,131.1,129.8,125.9,122.0$, $120.1,119.5,74.9,60.3,59.7,52.2,38.8,37.8,14.0 ; \mathrm{m} / \mathrm{e}$ (rel intensity) 419 (45), 402 (100), 384 (70), 312 (45), 306 (9); HRMS (ESI) $m / e[M+H]^{+}$for $\left(\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{Cl}_{2} \mathrm{NO}_{6}\right)$ calcd 402.0511, found 402.0514.
(1S*,2R*,4R*)-Ethyl 4-(3-bromophenyl)-2-(2,2-dichlorovinyl)-4-hydroxy-6oxocyclohexanecarboxylate (48): ${ }^{26}$

The title compound was prepared according to General Procedure C in 60% yield. White solid, $\mathrm{mp}=139-141^{\circ} \mathrm{C}$ (EtOAc/hexanes); $\mathrm{R} f=0.35$ ($30 \% \mathrm{EtOAc} /$ hexanes); IR (solid): v 3390, 2973, 2933, 1736, 1707, 1626, 1370, 1244, 1169, 1138, 1024, 890, 876, 846, 786, 711, $692 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d ${ }_{6}$) $7.67(1 \mathrm{H}, \mathrm{dd}, J=2.0,2.0 \mathrm{~Hz}), 7.51-7.40(2 \mathrm{H}, \mathrm{m}), 7.33(1 \mathrm{H}, \mathrm{dd}, J$ $=8.0,8.0 \mathrm{~Hz}), 6.08(1 \mathrm{H}, \mathrm{d}, J=10.0 \mathrm{~Hz}), 5.84(1 \mathrm{H}, \mathrm{s}), 4.28-3.98(2 \mathrm{H}, \mathrm{m}), 3.76(1 \mathrm{H}, \mathrm{d}, J=12.0$ $\mathrm{Hz}), 3.67-3.55(1 \mathrm{H}, \mathrm{m}), 3.16(1 \mathrm{H}, \mathrm{d}, J=14.0 \mathrm{~Hz}), 2.36(1 \mathrm{H}, \mathrm{dd}, J=14.0,2.5 \mathrm{~Hz}), 2.25(1 \mathrm{H}, \mathrm{dd}$, $J=13.0,13.0 \mathrm{~Hz}), 1.74(1 \mathrm{H}, \mathrm{ddd}, J=13.0,4.0,2.5 \mathrm{~Hz}), 1.20(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta 202.8,168.4,150.0,131.3,130.3,129.7,127.5,123.7,121.6,119.9,74.8$, 60.3, 59.7, 52.4, 41.3. 37.9, 14.0; m/e (rel intensity) 454 (35), 421 (42), 419 (100), 339 (1), 306 (1), 221 (1), 131 (6); HRMS (ESI) $m / e[M+H]^{+}$for $\left(\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{BrCl}_{2} \mathrm{O}_{4}\right)$ calcd 434.9766, found 434.9772.
(1S*,2R*,4R*)-Ethyl 4-(3-chlorophenyl)-2-(2,2-dichlorovinyl)-4-hydroxy-6oxocyclohexanecarboxylate (49):

The title compound was prepared according to General Procedure C in 71% yield.
White solid, $\mathrm{mp}=140-142{ }^{\circ} \mathrm{C}$ (EtOAc/hexanes); $\mathrm{R} f=0.17$ ($15 \% \mathrm{EtOAc} /$ hexanes); IR (solid): v $3392,1738,1710,1624,1371,1243,1167,1137,1025,891,846,788 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- $\left._{6}\right) \delta 7.53(1 \mathrm{H}, \mathrm{dd}, J=1.5,1.5 \mathrm{~Hz}), 7.46-7.42(1 \mathrm{H}, \mathrm{m}), 7.40(1 \mathrm{H}, \mathrm{dd}, J=8.0,8.0 \mathrm{~Hz})$, $7.35-7.30(1 \mathrm{H}, \mathrm{m}), 6.08(1 \mathrm{H}, \mathrm{d}, J=10.0 \mathrm{~Hz}), 5.85(1 \mathrm{H}, \mathrm{s}), 4.22-4.04(2 \mathrm{H}, \mathrm{m}), 3.76(1 \mathrm{H}, \mathrm{d}, J=$ $11.5 \mathrm{~Hz})$,) $3.67-3.54(1 \mathrm{H}, \mathrm{m}), 3.16(1 \mathrm{H}, \mathrm{d}, J=14.0 \mathrm{~Hz}), 2.36(1 \mathrm{H}, \mathrm{dd}, J=14.0,2.0 \mathrm{~Hz}), 2.25$ $(1 \mathrm{H}, \mathrm{dd}, J=13.0,13.0 \mathrm{~Hz}), 1.75(1 \mathrm{H}, \mathrm{ddd}, J=13.0,4.0,2.0 \mathrm{~Hz}), 1.20(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$

NMR (100 MHz, DMSO- d_{6}) $\delta 202.8,168.4,149.8,132.9,131.2,130.0,126.8,124.6,123.3$, $119.9,74.9,60.3,59.7,52.4,40.5,37.9,14.0 ; \mathrm{m} / e$ (rel intensity) 426 (5), 408 (80), 391 (67), 373 (100), 240 (4), 196 (7), 179 (5); HRMS (ESI) $m / e\left[M+\mathrm{NH}_{4}\right]^{+}$for $\left(\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{Cl}_{3} \mathrm{O}_{4}\right)$ calcd 408.0536, found 408.0545 .
(1S*,2R*,4R*)-Ethyl 4-(2-bromophenyl)-2-(2,2-dichlorovinyl)-4-hydroxy-6oxocyclohexanecarboxylate (50):

The title compound was prepared according to General Procedure C in 41% yield. White solid, $\mathrm{mp}=135-137{ }^{\circ} \mathrm{C}$ (EtOAc/hexanes); $\mathrm{R} f=0.25$ ($30 \% \mathrm{EtOAc} /$ hexanes); IR (solid): v 3470, 2981, 2931, 1711, 1651, 1371, 1273, 1237, 1017, 890, $756 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d ${ }_{6}$) δ $7.70(1 \mathrm{H}, \mathrm{dd}, J=8.0,1.5 \mathrm{~Hz}), 7.63(1 \mathrm{H}, \mathrm{dd}, J=8.0,1.5 \mathrm{~Hz}), 7.41(1 \mathrm{H}, \mathrm{ddd}, J=8.0,7.5,1.5$ $\mathrm{Hz}), 7.22(1 \mathrm{H}, \mathrm{ddd}, J=8.0,7.5,1.5 \mathrm{~Hz}), 6.20(1 \mathrm{H}, \mathrm{d}, J=9.5 \mathrm{~Hz}), 5.94(1 \mathrm{H}, \mathrm{s}), 4.28-3.98(2 \mathrm{H}$, $\mathrm{m}), 3.76(1 \mathrm{H}, \mathrm{d}, J=12.0 \mathrm{~Hz}), 3.69-3.57(2 \mathrm{H}, \mathrm{m}), 2.72(1 \mathrm{H}, \mathrm{ddd}, J=13.5,12.0,1.0 \mathrm{~Hz}), 2.45$ $(1 \mathrm{H}, \mathrm{d}, J=2.5 \mathrm{~Hz}), 1.91-1.71(1 \mathrm{H}, \mathrm{m}), 1.20(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO$\left.d_{6}\right) \delta 202.6,168.4,143.8,135.0,131.4,129.4,127.9,127.7,119.8,119.7,75.5,60.3,59.8,49.8$, 37.5, 37.0, 14.0; m/e (rel intensity) 457 (1), 454 (49), 437 (100), 419 (85), 364 (4), 346 (16), 306 (14), 223 (10), 177 (2), 148 (6), 131 (30); HRMS (ESI) $m / e[M+H]^{+}$for $\left(\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{BrCl}_{2} \mathrm{O}_{4}\right)$ calcd 434.9765 , found 434.9773 .
(1S*,2R*,4R*)-Ethyl 2-(2,2-dichlorovinyl)-4-hydroxy-6-oxo-4phenylcyclohexanecarboxylate (51): ${ }^{26}$

The title compound was prepared according to General Procedure C in 49% yield. White solid, $\mathrm{mp}=151-153{ }^{\circ} \mathrm{C}$ (EtOAc/hexanes); $\mathrm{R} f=0.16$ ($15 \% \mathrm{EtOAc} /$ hexanes); IR (solid): v 3395, 2967, $1740,1709,1625,1242,1163,1136,1024,890,844,748,691,666 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz ,

DMSO-d ${ }_{6}$) $\delta 7.53-7.43(2 \mathrm{H}, \mathrm{m}), 7.36(2 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}), 7.26(1 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}), 6.10(1 \mathrm{H}, \mathrm{d}, J$ $=10.0 \mathrm{~Hz}), 5.69(1 \mathrm{H}, \mathrm{s}), 4.23-4.01(2 \mathrm{H}, \mathrm{m}), 3.77(1 \mathrm{H}, \mathrm{d}, J=12.0 \mathrm{~Hz}), 3.71-3.54(1 \mathrm{H}, \mathrm{m}), 3.13$ $(1 \mathrm{H}, \mathrm{d}, J=14.0 \mathrm{~Hz}), 2.38(1 \mathrm{H}, \mathrm{dd}, J=14.0,2.5 \mathrm{~Hz}), 2.23(1 \mathrm{H}, \mathrm{dd}, J=13.0,13.0 \mathrm{~Hz}), 1.77$ $(1 \mathrm{H}$, ddd, $J=13.0,4.0,2.5 \mathrm{~Hz}), 1.20(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}\right.$, DMSO-d $\left.{ }_{6}\right) \delta$ $203.2,168.5,147.3,131.4,128.0,126.8,124.4,119.8,75.0,60.3,59.8,52.7,40.7,37.9,14.0$; m/e (rel intensity) 390 (2), 374 (51), 357 (38), 339 (100), 267 (7), 261 (1), 221 (2); HRMS (ESI) $m / e[\mathrm{M}+\mathrm{H}]^{+}$for $\left(\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{Cl}_{2} \mathrm{O}_{4}\right)$ calcd 357.0660, found 357.0660 .
(1S*,2R*,4R*)-Ethyl 2-(2,2-dichlorovinyl)-4-hydroxy-4-(3-methoxyphenyl)-6oxocyclohexanecarboxylate (52):

The title compound was prepared according to General Procedure C in 66% yield. Yellow solid, $\mathrm{mp}=116-118{ }^{\circ} \mathrm{C}$ (EtOAc/hexanes); $\mathrm{R} f=0.17$ ($15 \% \mathrm{EtOAc} /$ hexanes); IR (solid): v 3534, 2982, $2840,1742,1713,1608,1583,1430,1328,1251,1155,1048,1029,892,858,786,700 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d $)_{6}$) $7.27(1 \mathrm{H}, \mathrm{dd}, J=8.0,8.0 \mathrm{~Hz}), 7.09-6.96(2 \mathrm{H}, \mathrm{m}), 6.94-6.67(1 \mathrm{H}$, $\mathrm{m}), 6.09(1 \mathrm{H}, \mathrm{d}, J=10.0 \mathrm{~Hz}), 5.69(1 \mathrm{H}, \mathrm{s}), 4.26-4.02(2 \mathrm{H}, \mathrm{m}), 3.96-3.65(4 \mathrm{H}, \mathrm{m}), 3.68-3.56$ $(1 \mathrm{H}, \mathrm{m}), 3.12(1 \mathrm{H}, \mathrm{d}, J=14.0 \mathrm{~Hz}), 2.36(1 \mathrm{H}, \mathrm{dd}, J=14.0,2.5 \mathrm{~Hz}), 2.23(1 \mathrm{H}, \mathrm{dd}, J=13.0,13.0$ $\mathrm{Hz}), 1.84-1.66(1 \mathrm{H}, \mathrm{m}), 1.20(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz DMSO- d_{6}) $\delta 203.1,168.5$, $159.1,149.0,131.4,129.1,119.8,116.7,112.0,110.5,75.1,60.3,59.8,55.0,52.7,40.7,37.9$, 14.0; m / e (rel intensity) 420 (4), 404 (44), 387 (42), 369 (100), 351 (6), 240 (1), 195 (2); HRMS (ESI) $m / e[\mathrm{M}+\mathrm{H}]^{+}$for $\left(\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{Cl}_{2} \mathrm{O}_{5}\right)$ calcd 387.0766, found 387.0774.
(1S*,2R*,4R*)-Ethyl 4-(4-bromophenyl)-2-(2,2-dibromovinyl)-4-hydroxy-6oxocyclohexanecarboxylate (66):

The title compound was prepared according to General Procedure C in 33% yield. Orange solid, $\mathrm{mp}=134-136^{\circ} \mathrm{C}$ (EtOAc/hexanes); $\mathrm{R} f=0.24$ ($30 \% \mathrm{EtOAc} /$ hexanes); IR (solid): v 3478, 2980, 2931, 1713, 1645, 1371, 1223, 1093, 1073, 1026, 1008, $812 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO$\left.\mathrm{d}_{6}\right) \delta 7.55(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 7.43(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 6.54(1 \mathrm{H}, \mathrm{d}, J=9.5 \mathrm{~Hz}), 5.79(1 \mathrm{H}, \mathrm{s})$, $4.22-4.00(2 \mathrm{H}, \mathrm{m}), 3.77(1 \mathrm{H}, \mathrm{d}, J=11.5 \mathrm{~Hz}), 3.62-3.44(1 \mathrm{H}, \mathrm{m}), 3.11(1 \mathrm{H}, \mathrm{d}, J=13.5 \mathrm{~Hz}), 2.36$ $(1 \mathrm{H}, \mathrm{dd}, J=13.5,2.5 \mathrm{~Hz}), 2.20(1 \mathrm{H}, \mathrm{dd}, J=13.0,13.0 \mathrm{~Hz}), 1.74(1 \mathrm{H}, \mathrm{ddd}, J=13.5,4.0,2.5$ $\mathrm{Hz}), 1.21(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}}^{6}$) $\delta 202.9,168.5,147.1,136.8$, 131.3, 127.1, 119.9, $92.9,74.9,60.3,59.7,52.4,40.0,37.9,14.0 ; \mathrm{m} / \mathrm{e}$ (rel intensity) 524 (14), 506 (100), 426 (5), 394 (4), 366 (2), 327 (30), 279 (2), 188 (4), 131 (5); HRMS (ESI) $m / e[M+$ $\mathrm{H}]^{+}$for $\left(\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{Br}_{3} \mathrm{O}_{4}\right)$ calcd 522.8755, found 522.8768 .
(1S*,2R*,4R*)-Ethyl 4-(4-bromophenyl)-2-(2-chlorophenethyl)-4-hydroxy-6oxocyclohexanecarboxylate (67):

The title compound was prepared according to General Procedure C in 25% yield. Colourless oil; $\mathrm{R} f=0.45$ (30\% EtOAc/hexanes); IR (oil): v 3466, 2931, 1710, 1658, 1371, 1256, 1149, 1030, 1008, 825, 752, $680 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta 7.57(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}$), 7.48 (2 H , $\mathrm{d}, J=8.5 \mathrm{~Hz}), 7.40-7.35(1 \mathrm{H}, \mathrm{m}), 7.34-7.16(3 \mathrm{H}, \mathrm{m}), 5.57(1 \mathrm{H}, \mathrm{s}), 4.13(2 \mathrm{H}, \mathrm{ddd}, J=7.0,4.5$, $4.5 \mathrm{~Hz}), 3.57(1 \mathrm{H}, \mathrm{d}, J=12.0 \mathrm{~Hz}), 3.13(1 \mathrm{H}, \mathrm{d}, J=13.5 \mathrm{~Hz}), 2.84-2.56(4 \mathrm{H}, \mathrm{m}), 2.31(1 \mathrm{H}, \mathrm{dd}, J$ $=13.5,2.0 \mathrm{~Hz}), 2.08(1 \mathrm{H}, \mathrm{d}, J=11.0 \mathrm{~Hz}), 2.01-1.86(1 \mathrm{H}, \mathrm{m}), 1.60-1.50(2 \mathrm{H}, \mathrm{m}), 1.18(3 \mathrm{H}, \mathrm{t}, J$ $=7.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta 204.7,169.5,147.5,139.2,132.6,130.8,130.6$, $129.2,127.8,127.3,127.0,119.8,74.9,61.5,52.5,51.6,41.2,36.8,35.4,34.4,29.8 ; \mathrm{m} / \mathrm{e}$ (rel intensity) 498 (13), 481 (16), 463 (100), 391 (2), 323 (26); HRMS (ESI) $m / e\left[M+\mathrm{NH}_{4}\right]^{+}$for $\left(\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{BrClO}_{4}\right)$ calcd 496.0890, found 496.0898.
(1S*,2R*,4R*)-Ethyl 4-(4-bromophenyl)-2-(2-chlorobenzyl)-4-hydroxy-6oxocyclohexanecarboxylate (68):

The title compound was prepared according to General Procedure C in 21% yield. White solid, $\mathrm{mp}=133-135^{\circ} \mathrm{C}$ (EtOAc/hexanes); $\mathrm{R} f=0.21$ ($30 \% \mathrm{EtOAc} /$ hexanes); IR (solid): v 3397, 2923, 2853, 1737, 1706, 1372, 1241, 1155, 1031, 1008, 821, 752, $680 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- $\left._{6}\right) \delta 7.52(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 7.43-7.33(3 \mathrm{H}, \mathrm{m}), 7.30-7.00(3 \mathrm{H}, \mathrm{m}), 5.52(1 \mathrm{H}, \mathrm{s}), 4.09$ $(1 \mathrm{H}, \mathrm{q}, J=7.0 \mathrm{~Hz}), 3.61(1 \mathrm{H}, \mathrm{d}, J=12.0 \mathrm{~Hz}), 3.13(1 \mathrm{H}, \mathrm{d}, J=13.5 \mathrm{~Hz}), 2.95(1 \mathrm{H}, \mathrm{d}, J=11.5$ $\mathrm{Hz}), 2.86-2.63(2 \mathrm{H}, \mathrm{m}), 2.29(1 \mathrm{H}, \mathrm{dd}, J=13.5,2.5 \mathrm{~Hz}), 2.24-1.83(1 \mathrm{H}, \mathrm{m}), 1.63-1.51(1 \mathrm{H}, \mathrm{m})$, $1.22(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}}^{6}$) $\delta 204.4,169.3,147.3,136.4,133.3$, $131.8,130.8,129.3,128.1,127.0,126.9,119.8,74.6,61.9,60.2,52.5,41.2,38.1,36.1,14.0 ; \mathrm{m} / \mathrm{e}$ (rel intensity) 485 (14), 465 (35), 449 (100), 419 (2), 377 (2), 339 (2), 319 (2); HRMS (ESI) m / e $[\mathrm{M}+\mathrm{H}]^{+}$for $\left(\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{BrClO}_{4}\right)$ calcd 487.0282, found 487.0261.
(1S*,2S*,4R*)-Ethyl 4-(4-bromophenyl)-4-hydroxy-2-(2-methylprop-1-en-1-yl)-6oxocyclohexanecarboxylate (69):

The title compound was prepared according to General Procedure C in 35% yield. White solid, $\mathrm{mp}=89-91{ }^{\circ} \mathrm{C}$ (EtOAc/hexanes); $\mathrm{R} f=0.47$ (30\% EtOAc/hexanes); IR (solid): v 3378, 2974, 2915, 1743, 1705, 1662, 1370, 1239, 1149, 1027, 1008, 836, $816 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{DMSO}_{6}\right) \delta 7.53(1 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}), 7.44(1 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}), 5.62(1 \mathrm{H}, \mathrm{s}), 5.02-4.89(1 \mathrm{H}, \mathrm{m})$, $4.07(2 \mathrm{H}, \mathrm{q}, J=7.0 \mathrm{~Hz}), 3.61-3.41(2 \mathrm{H}, \mathrm{m}), 3.07(1 \mathrm{H}, \mathrm{d}, J=13.5 \mathrm{~Hz}), 2.27(1 \mathrm{H}, \mathrm{dd}, J=13.5$, $2.5 \mathrm{~Hz}), 2.08(1 \mathrm{H}, \mathrm{dd}, J=13.5,11.0 \mathrm{~Hz}), 1.75-1.64(1 \mathrm{H}, \mathrm{m}), 1.61(6 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}), 1.15(3 \mathrm{H}$, $\mathrm{t}, J=7.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 204.2,169.1,133.3,132.5,130.8,126.9,126.0$, $119.8,75.1,61.6,59.8,52.4,42.6,35.7,25.5,17.9,14.0 ; \mathrm{m} / \mathrm{e}$ (rel intensity) 414 (14), 395 (38),

377 (100), 349 (1), 321 (3), 305 (2); HRMS (ESI) $m / e[M+H]^{+}$for $\left(\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{BrO}_{4}\right)$ calcd 395.0858, found 395.0875.
(1S*,4R*)-Ethyl 4-(4-bromophenyl)-4-hydroxy-2-oxocyclohexanecarboxylate (72):

Using a procedure adapted from literature, ${ }^{40}$ a stirred solution of ethyl acetoacetate ($0.15 \mathrm{~mL}, 1.2$ $\mathrm{mmol})$ and 21% sodium ethoxide/ethanol ($73 \mu \mathrm{~L}, 0.20 \mathrm{mmol}$) in ethanol (1 mL) was added 1-(4-bromophenyl)-3-(dimethylamino)propan-1-one $71(0.10 \mathrm{~g}, 0.40 \mathrm{mmol})$ portionwise. The mixture was stirred overnight and then concentrated in vacuo. The crude product was purified by column chromatography on silica gel using $15-30 \%$ EtOAc in hexane as the eluent to afford a white solid (70 mg, 50\%), mp = 108-110 ${ }^{\circ} \mathrm{C}$ (EtOAc/hexanes); $\mathrm{R} f=0.42$ (30\% EtOAc/hexanes); IR (solid): v 3394, 2976, 2927, 2853, 1709, 1658, 1585, 1488, 1375, 1258, 1228, 1200, 1161, 1036, 1007, 957, 821, $668 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d $_{6}$) (enol form) $\delta 12.17(1 \mathrm{H}, \mathrm{s}), 7.63-7.68(2 \mathrm{H}$, $\mathrm{m}), 7.50-7.41(2 \mathrm{H}, \mathrm{m}), 5.43(1 \mathrm{H}, \mathrm{s}), 4.21-4.15(2 \mathrm{H}, \mathrm{m}), 3.65(1 \mathrm{H}, \mathrm{dd}, J=13.0,6.0 \mathrm{~Hz}) 2.99-$ $2.93(1 \mathrm{H}, \mathrm{m}) 2.77-2.63(1 \mathrm{H}, \mathrm{m}), 2.45-2.39(1 \mathrm{H}, \mathrm{m}), 2.11-2.04(1 \mathrm{H}, \mathrm{m}), 1.83-1.66(1 \mathrm{H}, \mathrm{m}), 1.25$ ($3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}$); m/e (rel intensity) 361 (4), 358 (36), 341 (76), 323 (100), 295 (1), 251 (7), 240 (1); HRMS (ESI) $m / e\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$for $\left(\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{BrO}_{4}\right)$ calcd 358.0654, found 358.0659.
(1S*,2R*,4R*)-tert-Butyl 4-(4-bromophenyl)-2-(2,2-dichlorovinyl)-4-hydroxy-6oxocyclohexanecarboxylate (74):

To a stirred solution of tert-butyl acetoacetate $(0.13 \mathrm{~mL}, 0.8 \mathrm{mmol})$ and sodium butoxide $(13 \mathrm{mg}$, 0.13 mmol) in THF (1 mL) was added (E)-1-(4-bromophenyl)-5,5-dichloropenta-2,4-dien-1-one $(80 \mathrm{mg}, 0.26 \mathrm{mmol})$ portionwise. The mixture was stirred overnight and concentrated in vacuo. The crude product was purified by column chromatography on silica gel using $10-40 \% \mathrm{EtOAc}$ in hexane gradient as the eluent to afford a white solid ($72 \mathrm{mg}, 59 \%$), $\mathrm{mp}=159-161{ }^{\circ} \mathrm{C}$ (EtOAc/hexanes); $\mathrm{R} f=0.45$ (30\% EtOAc/hexanes); IR (solid): v 3500, 2982, 2935, 1717, 1701, 1306, 1148, 1007, 891, 839, 829, $737 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta 7.55(2 \mathrm{H}, \mathrm{d}, J=$ $8.5 \mathrm{~Hz}), 7.42(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 6.08(1 \mathrm{H}, \mathrm{d}, J=9.5 \mathrm{~Hz}), 5.75(1 \mathrm{H}, \mathrm{s}), 3.62-3.53(2 \mathrm{H}, \mathrm{m}), 3.08$ $(1 \mathrm{H}, \mathrm{d}, J=14.0 \mathrm{~Hz}), 2.33(1 \mathrm{H}, \mathrm{dd}, J=14.0,2.5 \mathrm{~Hz}), 2.27-2.09(1 \mathrm{H}, \mathrm{m}), 1.78-1.65(1 \mathrm{H}, \mathrm{dd}, J=$ $13.5,13.5 \mathrm{~Hz}), 1.18(9 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta 203.1,167.6,146.8,131.4$, $130.9,126.9,120.0,119.7,80.5,74.8,60.7,52.4,40.4,38.1,27.6 ; m / e$ (rel intensity) 482 (12), 465 (4), 408 (14), 390 (100), 311 (2), 293 (1), 243 (1), 192 (2), 169 (2); HRMS (ESI) $m / e[M+$ $\left.\mathrm{NH}_{4}\right]^{+}$for $\left(\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{BrCl}_{2} \mathrm{O}_{4}\right)$ calcd 480.0344, found 480.0365.
(1S*,2R*,4R*)-Isopropyl 4-(4-bromophenyl)-2-(2,2-dichlorovinyl)-4-hydroxy-6oxocyclohexanecarboxylate (75):

To a stirred solution of isopropyl acetoacetate $(0.17 \mathrm{~g}, 1.2 \mathrm{mmol})$ in isopropanol $(0.70 \mathrm{~mL})$ was added a solution of sodium metal $(5.0 \mathrm{mg}, 0.20 \mathrm{mmol})$ in isopropanol $(0.7 \mathrm{~mL})$. After stirring for $10 \mathrm{~min},(\mathrm{E})$-1-(4-bromophenyl)-5,5-dichloropenta-2,4-dien-1-one ($0.12 \mathrm{~g}, 0.34 \mathrm{mmol}$) was added portionwise. The mixture was stirred overnight and concentrated in vacuo. The crude product was purified by column chromatography on silica gel using 10-30\% EtOAc in hexane gradient as the eluent to afford a white solid ($90 \mathrm{mg}, 58 \%$), $\mathrm{mp}=155-157^{\circ} \mathrm{C}$ (EtOAc/hexanes); $\mathrm{R} f=0.29$ (30\% EtOAc/hexanes); IR (solid): v 3549, 3042, 2982, 1735, 1709, 1375, 1230, 1171, 1105, $1008,889,864,823 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta 7.55(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}$), $7.43(2 \mathrm{H}$, d, $J=8.5 \mathrm{~Hz}), 6.08(1 \mathrm{H}, \mathrm{d}, J=9.5 \mathrm{~Hz}), 5.78(1 \mathrm{H}, \mathrm{s}), 5.04-4.80(1 \mathrm{H}, \mathrm{m}), 3.71(1 \mathrm{H}, \mathrm{d}, J=12.0$ $\mathrm{Hz}), 3.68-3.55(1 \mathrm{H}, \mathrm{m}), 3.10(1 \mathrm{H}, \mathrm{d}, J=14.0 \mathrm{~Hz}), 2.35(1 \mathrm{H}, \mathrm{dd}, J=14.0,2.5 \mathrm{~Hz}), 2.21(1 \mathrm{H}, \mathrm{dd}$, $J=12.5,12.5 \mathrm{~Hz}), 1.81-1.63(1 \mathrm{H}, \mathrm{m}), 1.29-1.14(6 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d ${ }_{6}$) δ $202.9,167.9,146.7,131.3,130.9,126.9,120.4,120.1,74.8,67.8,59.8,52.4,40.5,37.9,21.5 ;$ m / e (rel intensity) 468 (31), 451 (78), 433 (100), 390 (1), 346 (4); HRMS (ESI) $m / e[\mathrm{M}+\mathrm{H}]^{+}$for $\left(\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{BrCl}_{2} \mathrm{O}_{4}\right)$ calcd 448.9922, found 448.9911 .
(1S*,2R*,4R*)-Methyl 4-(4-bromophenyl)-2-(2,2-dichlorovinyl)-4-hydroxy-6oxocyclohexanecarboxylate (76):

To a stirred solution of methyl acetoacetate $(0.041 \mathrm{~mL}, 0.5 \mathrm{mmol})$ and sodium methoxide (3.1 $\mathrm{mg}, 0.06 \mathrm{mmol}$) in methanol (1 mL) was added (E)-1-(4-bromophenyl)-5,5-dichloropenta-2,4-dien-1-one ($50 \mathrm{mg}, 0.16 \mathrm{mmol}$) portionwise. The mixture was stirred overnight and concentrated in vacuo. The crude product was purified by column chromatography on silica gel using 10-30\% EtOAc in hexane gradient as the eluent to afford a yellow solid ($50 \mathrm{mg}, 72 \%$), $\mathrm{mp}=144-146^{\circ} \mathrm{C}$ (EtOAc/hexanes); $\mathrm{R} f=0.22$ ($25 \% \mathrm{EtOAc} /$ hexanes); IR (solid): v 3392, 2951, 2919, 1746, 1707, 1627, 1362, 1240, 1164, 1141, 1007, $882 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta 7.55(2 \mathrm{H}, \mathrm{d}, J$ $=8.5 \mathrm{~Hz}), 7.43(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 6.08(1 \mathrm{H}, \mathrm{d}, J=9.5 \mathrm{~Hz}), 5.80(1 \mathrm{H}, \mathrm{s}), 3.80(1 \mathrm{H}, \mathrm{d}, J=12.0$ $\mathrm{Hz}), 3.66(3 \mathrm{H}, \mathrm{s}), 3.64-3.57(1 \mathrm{H}, \mathrm{m}), 3.13(1 \mathrm{H}, \mathrm{d}, J=13.5 \mathrm{~Hz}), 2.36(1 \mathrm{H}, \mathrm{dd}, J=13.5,2.5 \mathrm{~Hz})$, $2.23(1 \mathrm{H}$, ddd, $J=13.0,12.0,1.5 \mathrm{~Hz}), 1.76(1 \mathrm{H}$, ddd, $\mathrm{J}=13.5,4.0,2.5 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta 202.9,169.0,146.7,131.3,130.9,126.9,120.1,119.9,74.8,59.6,52.4,51.6$, 40.4, 37.8; m/e (rel intensity) 440 (73), 423 (40), 404 (100), 325 (3), 307 (1), 240 (2), 195 (2), 151 (2); HRMS (ESI) $m / e[\mathrm{M}+\mathrm{H}]^{+}$for $\left(\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{BrCl}_{2} \mathrm{O}_{4}\right)$ calcd 420.9609, found 420.9626.
(3R*,4S*)-Ethyl 3'-bromo-3-(2,2-dichlorovinyl)-5-oxo-2,3,4,5-tetrahydro-[1,1'-biphenyl]-4carboxylate (78):

To a stirred solution of ethyl acetoacetate $(0.083 \mathrm{~mL}, 0.65 \mathrm{mmol})$ and triethylamine $(0.26 \mathrm{~mL}$, 1.8 mmol) in n-butanol (1 mL) was added (E)-1-(3-bromophenyl)-5,5-dichloropenta-2,4-dien-1one ($80 \mathrm{mg}, 0.26 \mathrm{mmol}$). The mixture was stirred at $70{ }^{\circ} \mathrm{C}$ (EtOAc/hexanes) for 3 h and concentrated in vacuo. The crude product was purified by column chromatography on silica gel using $10-30 \%$ EtOAc in hexane gradient as the eluent to afford the white solid ($58 \mathrm{mg}, 53 \%$), mp
$=99-101^{\circ} \mathrm{C}$ (EtOAc/hexanes); $\mathrm{R} f=0.55$ (30\% EtOAc/hexanes); IR (solid): v 3023, 2986, 2902, 1736, 1647, 1603, 1410, 1262, 1237, 1037, 880, 788, $693 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d ${ }_{6}$) $\delta 7.92(1 \mathrm{H}, \mathrm{dd}, J=2.0,2.0 \mathrm{~Hz}), 7.76-7.63(2 \mathrm{H}, \mathrm{m}), 7.41(1 \mathrm{H}, \mathrm{dd}, J=8.0,8.0 \mathrm{~Hz}), 6.54(1 \mathrm{H}, \mathrm{d}, J$ $=1.5 \mathrm{~Hz}), 6.24(1 \mathrm{H}, \mathrm{d}, J=10.0 \mathrm{~Hz}), 4.14(2 \mathrm{H}, \mathrm{q}, J=7.0 \mathrm{~Hz}), 3.71(1 \mathrm{H}, \mathrm{d}, J=12.5 \mathrm{~Hz}), 3.70-$ $3.52(1 \mathrm{H}, \mathrm{m}), 3.00-2.79(2 \mathrm{H}, \mathrm{m}), 1.20(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right) \delta$ $192.7,168.80,156.9,139.5,133.1,130.8,130.3,129.1,125.5,123.9,122.3,121.0,60.5,56.8$, 49.8, 30.7, 14.0; m / e (rel intensity) 422 (7), 419 (100), 279 (1), 159 (2); HRMS (ESI) m/e [M + $\mathrm{H}]^{+}$for $\left(\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{BrCl}_{2} \mathrm{O}_{3}\right)$ calcd 416.9660, found 416.9655 .
(1R*,2S*,4R*)-Ethyl 1-chloro-2-(2,2-dichlorovinyl)-4-hydroxy-4-(4-iodophenyl)-6oxocyclohexanecarboxylate (79):

To a stirred solution of (1S,2R,4R)-ethyl 2-(2,2-dichlorovinyl)-4-hydroxy-4-(4-iodophenyl)-6oxocyclohexanecarboxylate $39(25 \mathrm{mg}, 0.050 \mathrm{mmol})$ in DMSO $(0.5 \mathrm{~mL})$ was added sodium hydride ($2.0 \mathrm{mg}, 0.050 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$ for 1 h . Subsequently, $\mathrm{CuCl}_{2}(0.15 \mathrm{mmol})$ was added to the reaction mixture and the mixture was further stirred at ambient temperature for 12 h . The mixture was washed with $5 \% \mathrm{HCl}(10 \mathrm{~mL})$ and extracted with diethyl ether $(15 \mathrm{~mL})$. The organic layer was washed with $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. The crude product was purified by column chromatography on silica gel using 30% EtOAc in hexane as the eluent to afford a white solid ($10 \mathrm{mg}, 39 \%$), $\mathrm{mp}=156-158^{\circ} \mathrm{C}$ (EtOAc/hexanes); $\mathrm{R} f=0.43(30 \%$ EtOAc/hexanes); IR (solid): v 3457, 2985, 2931, 1757, 1716, 1388, 1248, 1216, 1161, 1093, 1025, 1003, 890, 838, $814 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta 7.73(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}$), 7.32 $(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 6.14(1 \mathrm{H}, \mathrm{d}, J=9.5 \mathrm{~Hz}), 6.04(1 \mathrm{H}, \mathrm{s}), 4.33-4.15(2 \mathrm{H}, \mathrm{m}), 3.53(1 \mathrm{H}, \mathrm{d}, J=$ $14.0 \mathrm{~Hz}), 2.46(1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}), 2.36-2.20(1 \mathrm{H}, \mathrm{m}), 1.87-1.69(1 \mathrm{H}, \mathrm{ddd}, J=14.0,4.0,2.0 \mathrm{~Hz})$, $1.24(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{DMSO}_{-d_{6}}\right) \delta$ 197.7, 165.3, 146.1, 136.9, 127.1, $126.5,122.2,93.42,75.4,73.7,62.8,47.5,41.5,38.0,13.8 ; m / e$ (rel intensity) 533 (73), 517 (24), 498 (100), 464 (5), 428 (4), 392 (2), 371 (2), 352 (1) 279 (1), 223 (2), 172 (3); HRMS (ESI) m / e $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$for $\left(\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{Cl}_{3} \mathrm{IO}_{4}\right)$ calcd 533.9502, found 533.9511.
(1S*,2R*,4R*)-Methyl 2-(2,2-dichlorovinyl)-4-(4-iodophenyl)-4-methoxy-6oxocyclohexanecarboxylate (80):

To a stirred solution of (1S,2R,4R)-ethyl 2-(2,2-dichlorovinyl)-4-hydroxy-4-(4-iodophenyl)-6oxocyclohexanecarboxylate $39(25 \mathrm{mg}, 0.05 \mathrm{mmol})$, silver triflate ($14 \mathrm{mg}, 0.6 \mathrm{mmol}$), 2,6-di-tbutylpyridine $(17 \mu \mathrm{~L}, 0.08 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ was added methyl iodide ($4 \mu \mathrm{~L}, 0.06$ mmol) at $0{ }^{\circ} \mathrm{C}$ and stirred for 1 h . The reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and filtered through a small plug of celite. The resulting filtrate was washed with $1 \mathrm{~N} \mathrm{NaOH}(2.5 \mathrm{~mL})$ and brine. The crude mixture was concentration in vacuo and purified by column chromatography on silica gel using 30% EtOAc in hexane as the eluent to afford a white solid ($15 \mathrm{mg}, 62 \%$), $\mathrm{mp}=$ $137-139{ }^{\circ} \mathrm{C}$ (EtOAc/hexanes); $\mathrm{R} f=0.80$ (30\% EtOAc/hexanes); IR (solid): v 2980, 2927, 1725, $1708,1617,1300,1262,1004,889,821 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta 7.72(2 \mathrm{H}, \mathrm{d}, J=$ $8.5 \mathrm{~Hz}), 7.28(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 6.08(1 \mathrm{H}, \mathrm{d}, J=10.0 \mathrm{~Hz}), 5.75(3 \mathrm{H}, \mathrm{s}), 4.24-3.91(2 \mathrm{H}, \mathrm{m})$, $3.76(1 \mathrm{H}, \mathrm{d}, J=12.0 \mathrm{~Hz}), 3.71-3.51(1 \mathrm{H}, \mathrm{m}), 3.10(1 \mathrm{H}, \mathrm{d}, J=13.5 \mathrm{~Hz}), 2.35(1 \mathrm{H}, \mathrm{dd}, J=13.5$, $2.5 \mathrm{~Hz}), 2.21(1 \mathrm{H}, \mathrm{dd}, J=13.5,12.0 \mathrm{~Hz}), 1.74(1 \mathrm{H}, \mathrm{ddd}, J=13.5,2.5,2.5 \mathrm{~Hz}), 1.19(3 \mathrm{H}, \mathrm{dt}, J=$ $9.5,7.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta 202.9,168.5,147.1,136.8,131.3,127.1,119.95$, $92.9,74.9,60.3,59.7,52.4,40.4,37.9,34.6,13.8 ; \mathrm{m} / \mathrm{e}$ (rel intensity) 500 (7), 483 (16), 465 (100), 387 (1), 352 (1), 279 (5), 221 (2); HRMS (ESI) $m / e[M+H]^{+}$for $\left(\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{Cl}_{2} \mathrm{IO}_{4}\right)$ calcd 482.9627, found 482.9620.
(1S*,2R*,4R*)-Ethyl 2-(2,2-dichlorovinyl)-4,6-dihydroxy-4-(4-
iodophenyl)cyclohexanecarboxylate (81):

To a stirred solution of (1S,2R,4R)-ethyl 2-(2,2-dichlorovinyl)-4-hydroxy-4-(4-iodophenyl)-6oxocyclohexanecarboxylate $39(50 \mathrm{mg}, 0.10 \mathrm{mmol})$ in $\mathrm{EtOH}(0.5 \mathrm{~mL})$ was added sodium borohydride ($2.0 \mathrm{mg}, 0.050 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$ and stirred for 18 h . The resulting reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ The organic layer was then washed with $5 \% \mathrm{HCl}(2 \mathrm{~mL})$, brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. The crude product was purified by column chromatography on silica gel using 30\% EtOAc in hexane as the eluent to afford a white solid ($20 \mathrm{mg}, 40 \%$), mp $=125-127{ }^{\circ} \mathrm{C}$ (EtOAc/hexanes); $\mathrm{R} f=0.28$ ($30 \% \mathrm{EtOAc} /$ hexanes); IR (solid): v 3425, 2987, 2930, 1704, 1373, 1183, 1095, 1030, 1003, 890, $876,817 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) $\delta 7.68(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 7.26(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 5.99(1 \mathrm{H}, \mathrm{d}, J=9.5 \mathrm{~Hz}), 5.82(1 \mathrm{H}, \mathrm{s}), 5.50$ $(1 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}), 4.34(1 \mathrm{H}, \mathrm{dd}, J=7.0,3.0 \mathrm{~Hz}), 4.19-3.91(2 \mathrm{H}, \mathrm{m}), 3.43-3.33(1 \mathrm{H}, \mathrm{m}), 2.71$ $(1 \mathrm{H}, \mathrm{dd}, J=11.5,3.0 \mathrm{~Hz}), 2.03-1.93(1 \mathrm{H}, \mathrm{m}), 1.89-1.73(2 \mathrm{H}, \mathrm{m}), 1.64(1 \mathrm{H}, \operatorname{ddd}, J=13.0,4.0$, $2.5 \mathrm{~Hz}), 1.19(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta 172.2,148.6,137.3,134.5$, 127.7, 118.83, 93.2, 73.6, 68.9, 60.4, 51.2, 42.5, 42.0, 32.1, 14.7; m/e (rel intensity) 505 (1), 469 (1), 453 (9), 449 (100), 371 (2); HRMS (ESI) $m / e[\mathrm{M}+\mathrm{Na}]^{+}$for $\left(\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{Cl}_{2} \mathrm{IO}_{4}\right)$ calcd 506.9597, found 506.9575 .

3.4 Synthesis of Various Chalcone Precursors

1,1,1,3-Tetrachloro-3-ethoxypropane (35):

The title compound was prepared according to a modified procedure. ${ }^{31}$ A solution of ethyl vinylether ($3.0 \mathrm{~g}, 42.0 \mathrm{mmol}$) in carbon tetrachloride (4 mL) was added dropwise via syringe pump to a solution of dibenzoyl peroxide ($83 \mathrm{mg}, 0.34 \mathrm{mmol}$) in carbon tetrachloride (50 mL , 0.52 mol) at $80^{\circ} \mathrm{C}$ over 30 min . After the addition, the reaction mixture was stirred at $80^{\circ} \mathrm{C}$ for 2 h. The cooled reaction mixture was concentrated in vacuo and sealed under argon. The colourless crude oil was used without further purification. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.96(1 \mathrm{H}, \mathrm{dd}, J=$ $7.0,2.5 \mathrm{~Hz}), 4.00(1 \mathrm{H}, \mathrm{dq}, J=9.5,7.0 \mathrm{~Hz}), 3.73-3.35(3 \mathrm{H}, \mathrm{m}), 1.29(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz})$.

General Procedure E

To a stirred solution of the corresponding acetophenone $27(1.4 \mathrm{mmol})$ in acetic acid (2 mL) under argon, was added crude 1,1,1,3-tetrachloro-3-ethoxypropane (17 mmol) via syringe. The reaction mixture was stirred at ambient temperature for 4 days. The resulting mixture was concentrated in vacuo and the residue was purified column chromatography on silica gel using $10-25 \% \mathrm{EtOAc} /$ hexane as the eluent to afford the dichlorovinyl chalcone product.

General Procedure F

A mixture of substituted acetophenone (3.0 mmol) and substituted benzaldehyde (3.0 mmol), and sodium hydroxide ($30 \mathrm{~mL}, 2 \mathrm{~N}$ aqueous) in absolute ethanol (50 mL) was stirred at room temperature for 24 h . The resulting solid was filtered, washed with water, dried, and recrystallized from ethanol.

(E)-5,5-Dichloro-1-(4-nitrophenyl)penta-2,4-dien-1-one (25a):

The title compound was prepared according to General Procedure E in 26% yield. Yellow solid, $\mathrm{mp}=58-60{ }^{\circ} \mathrm{C}$ (EtOAc/hexanes); $\mathrm{R} f=0.25$ ($15 \% \mathrm{EtOAc} /$ hexanes); IR (solid): v 3110, 2925, 2857, 1688, 1603, 1520, 1343, 1319, 1254, 1217, 1011, 904, 851, 853, $703 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.40-8.26(2 \mathrm{H}, \mathrm{m}), 8.26-7.92(2 \mathrm{H}, \mathrm{m}), 7.62(1 \mathrm{H}, \mathrm{dd}, J=15.0,11.0 \mathrm{~Hz}), 7.03$ $(1 \mathrm{H}, \mathrm{dd}, J=15.0,1.0 \mathrm{~Hz}), 6.74(1 \mathrm{H}, \mathrm{dd}, J=11.0,1.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 195.3, 150.4, 139.6, 129.4, 129.0, 126.5, 125.1, 124.1, 123.9; m/e (rel intensity) 340 (1), 272 (100), 236 (1); HRMS (ESI) $m / e[\mathrm{M}+\mathrm{H}]^{+}$for $\left(\mathrm{C}_{11} \mathrm{H}_{7} \mathrm{Cl}_{2} \mathrm{NO}_{3}\right)$ calcd 271.9881, found 271.9884.

(E)-5,5-Dichloro-1-(4-iodophenyl)penta-2,4-dien-1-one (25b):

The title compound was prepared according to General Procedure E in 36% yield. Yellow solid, $\mathrm{mp}=123-125^{\circ} \mathrm{C}$ (EtOAc/hexanes); $\mathrm{R} f=0.32$ ($10 \% \mathrm{EtOAc} /$ hexanes); IR (solid): v 3093, 3065, $2920,1647,1587,1558,1392,1331,1292,1253,1209,1024,1003,970,900,877,810,720 \mathrm{~cm}^{-}$ ${ }^{1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.85(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 7.66(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 7.57(1 \mathrm{H}, \mathrm{dd}$, $J=15.0,11.0 \mathrm{~Hz}), 7.00(1 \mathrm{H}, \mathrm{dd}, J=15.0,1.0 \mathrm{~Hz}), 6.70(1 \mathrm{H}, \mathrm{d}, J=11.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 189.1,138.2,137.8,137.0,131.3,130.0,127.7,126.9,101.32 ; m / e$ (rel intensity) 353 (100); HRMS (ESI) $m / e[\mathrm{M}+\mathrm{H}]^{+}$for $\left(\mathrm{C}_{11} \mathrm{H}_{7} \mathrm{Cl}_{2} \mathrm{IO}\right)$ calcd 352.8996, found 352.8999.

(E)-5,5-Dichloro-1-(4-(trifluoromethyl)phenyl)penta-2,4-dien-1-one (25c):

The title compound was prepared according to General Procedure E in 33\% yield. Yellow solid, $\mathrm{mp}=68-71{ }^{\circ} \mathrm{C}$ (EtOAc/hexanes); $\mathrm{R} f=0.50$ (10\% EtOAc/hexanes); IR (solid): v 2253, 1665, $1594,1578,1320,1175,1138,1067,1014,905,732,651 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $8.04(2 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 7.77(2 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 7.60(1 \mathrm{H}, \mathrm{dd}, J=15.0,11.0 \mathrm{~Hz}), 7.04(1 \mathrm{H}$, dd, $J=15.0,1.0 \mathrm{~Hz}), 6.73(1 \mathrm{H}, \mathrm{dd}, J=11.0,1.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 188.9$, $140.3,138.2,134.3(\mathrm{~d}, J=32.8 \mathrm{~Hz}), 131.7,128.7,127.3,126.7,125.7(\mathrm{q}, J=3.5 \mathrm{~Hz}), 123.5(\mathrm{~d}$, $J=273.0 \mathrm{~Hz}$); ${ }^{19} \mathrm{~F}$ NMR ($375 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-63.5$; m/e (rel intensity) 321 (3), 312 (8), 295 (100), 279 (1), 359 (1), 241 (1), 172 (2); HRMS (ESI) $m / e[M+H]^{+}$for $\left(\mathrm{C}_{12} \mathrm{H}_{7} \mathrm{Cl}_{2} \mathrm{~F}_{3} \mathrm{O}\right)$ calcd 294.9904, found 294.9914.

(E)-5,5-Dichloro-1-(4-chlorophenyl)penta-2,4-dien-1-one (25d):

The title compound was prepared according to General Procedure E in 58% yield. Yellow solid, $\mathrm{mp}=110-113{ }^{\circ} \mathrm{C}$ (EtOAc/hexanes); $\mathrm{R} f=0.42$ ($10 \% \mathrm{EtOAc} /$ hexanes); IR (solid): v 3054, 2986, $1662,1598,1412,1270,1011,742,705 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.00-7.81(2 \mathrm{H}, \mathrm{m})$, $7.57(1 \mathrm{H}, \mathrm{dd}, J=15.0,11.0 \mathrm{~Hz}), 7.51-7.42(2 \mathrm{H}, \mathrm{m}), 7.02(1 \mathrm{H}, \mathrm{dd}, J=15.0,0.5 \mathrm{~Hz}), 6.71(1 \mathrm{H}$, dd, $J=11.0,0.5 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 188.7$, 139.8, 137.8, 136.1, 131.3, 130.0, 129.2, 127.6, 127.0; m / e (rel intensity) 261 (100), 171 (1); HRMS (ESI) $m / e[\mathrm{M}+\mathrm{H}]^{+}$for $\left(\mathrm{C}_{11} \mathrm{H}_{7} \mathrm{Cl}_{3} \mathrm{O}\right)$ calcd 260.9640, found 260.9644 .

(E)-5,5-Dichloro-1-(p-tolyl)penta-2,4-dien-1-one (25e):

The title compound was prepared according to General Procedure E in 55\% yield. Yellow solid, $\mathrm{mp}=89-91{ }^{\circ} \mathrm{C}$ (EtOAc/hexanes); $\mathrm{R} f=0.35$ (10\% EtOAc/hexanes); IR (solid): v 3036, 2918, 1653, 1606, 1588, 1572, 1305, 1258, 1180, 1013, 976, 894, 884, 810, $721 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.86(2 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 7.56(1 \mathrm{H}, \mathrm{dd}, J=15.0,11.0 \mathrm{~Hz}), 7.29(2 \mathrm{H}, \mathrm{d}, J=8.0$ $\mathrm{Hz}), 7.07(1 \mathrm{H}, \mathrm{dd}, J=15.0,1.0 \mathrm{~Hz}), 6.70(1 \mathrm{H}, \mathrm{dd}, J=11.0,1.0 \mathrm{~Hz}), 2.43(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 189.4,144.2,136.9,135.2,130.5,129.6,128.8,127.8,127.7,21.9 ; \mathrm{m} / \mathrm{e}$ (rel intensity) 251 (4), 241 (100); HRMS (ESI) $m / e[M+H]^{+}$for $\left(\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{C}_{12} \mathrm{O}\right)$ calcd 241.0187, found 241.0179 .

(E)-4-(5,5-Dichloropenta-2,4-dienoyl)benzonitrile (25f):

The title compound was prepared according to General Procedure E in 12% yield. Orange solid, $\mathrm{mp}=155-157^{\circ} \mathrm{C}$ (EtOAc/hexanes); $\mathrm{R} f=0.25$ ($15 \% \mathrm{EtOAc} /$ hexanes); IR (solid): v 3079, 3040, $2230,1692,1663,1593,1309,1256,1178,1026,972,909,893,803,790,710,673 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.08-7.93(2 \mathrm{H}, \mathrm{m}), 7.84-7.69(2 \mathrm{H}, \mathrm{m}), 7.61(1 \mathrm{H}, \mathrm{dd}, J=15.0,11.0$ $\mathrm{Hz}), 7.01(1 \mathrm{H}, \mathrm{dd}, J=15.0,0.5 \mathrm{~Hz}), 6.72(1 \mathrm{H}, \mathrm{dd}, J=11.0,0.5 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 188.6,140.9,138.9,132.7,132.4,129.0,127.5,126.4,118.1,116.5 ; m / e$ (rel intensity) 269 (29), 252 (100), 163 (1), 146 (1); HRMS (ESI) $m / e[M+H]^{+}$for $\left(\mathrm{C}_{12} \mathrm{H}_{7} \mathrm{Cl}_{2} \mathrm{NO}\right)$ calcd 251.9982, found 251.9980 .

(E)-5,5-Dichloro-1-(4-methoxyphenyl)penta-2,4-dien-1-one (25g):

The title compound was prepared according to General Procedure E in 40% yield. Yellow solid, $\mathrm{mp}=105-107{ }^{\circ} \mathrm{C}$ (EtOAc/hexanes); $\mathrm{R} f=0.35$ ($10 \% \mathrm{EtOAc} /$ hexanes); IR (solid): v 2937, 2843, 1650, 1590, 1513, 1454, 1308, 1215, 1024, 978, 895, 887, 823, 737, $676 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.96(2 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 7.55(1 \mathrm{H}, \mathrm{dd}, J=15.0,11.0 \mathrm{~Hz}), 7.08(1 \mathrm{H}, \mathrm{d}, J=15.0$ $\mathrm{Hz}), 6.97(2 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 6.70(1 \mathrm{H}, \mathrm{dd}, J=11.0,1.0 \mathrm{~Hz}), 3.89(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 188.2,163.9,136.6,131.0,130.8,130.3,128.0,127.6,114.2,55.8 ; m / e$ (rel intensity) 257 (100); HRMS (ESI) $m / e[\mathrm{M}+\mathrm{H}]^{+}$for $\left(\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{O}_{2}\right)$ calcd 257.0136, found 257.0137.

(E)-5,5-Dichloro-1-(4-ethoxyphenyl)penta-2,4-dien-1-one (25h):

The title compound was prepared according to General Procedure E in 86% yield. Yellow solid, $\mathrm{mp}=70-75{ }^{\circ} \mathrm{C}$ (EtOAc/hexanes); $\mathrm{R} f=0.45$ (10\% EtOAc/hexanes); IR (solid): v 2985, 2872, 1649, 1605, 1591, 1513, 1309, 1252, 1176, 980, 870, 821, $676 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.95(2 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}), 7.54(1 \mathrm{H}, \mathrm{dd}, J=15.0,11.0 \mathrm{~Hz}), 7.08(1 \mathrm{H}, \mathrm{d}, J=15.0 \mathrm{~Hz})$, $6.95(2 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}), 6.69(1 \mathrm{H}, \mathrm{d}, J=11.0 \mathrm{~Hz}), 4.12(2 \mathrm{H}, \mathrm{q}, J=7.0 \mathrm{~Hz}), 1.45(3 \mathrm{H}, \mathrm{t}, J=7.0$ $\mathrm{Hz}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 188.2,163.3,136.5,131.0,130.6,130.2,128.0,127.6$, 114.6, 64.0, 14.9; m/e (rel intensity) 297 (8), 271 (100); HRMS (ESI) $m / e[\mathrm{M}+\mathrm{H}]^{+}$for $\left(\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{C}_{12} \mathrm{O}_{2}\right)$ calcd 271.0293, found 271.0299.

(E)-1-([1,1'-Biphenyl]-4-yl)-5,5-dichloropenta-2,4-dien-1-one (25i)

The title compound was prepared according to General Procedure E in 36% yield. Yellow solid, $\mathrm{mp}=144-146^{\circ} \mathrm{C}$ (EtOAc/hexanes); $\mathrm{R} f=0.45$ ($15 \% \mathrm{EtOAc} /$ hexanes); IR (solid): v 3038, 1658, 1597, 1583, 1553, 1344, 1314, 1257, 1207, 1032, 976, 920, 886, 849, 817, $681 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.08-8.00(2 \mathrm{H}, \mathrm{m}), 7.78-7.69(2 \mathrm{H}, \mathrm{m}), 7.69-7.55(3 \mathrm{H}, \mathrm{m}), 7.54-7.45(2 \mathrm{H}$, $\mathrm{m}), 7.47-7.37(1 \mathrm{H}, \mathrm{m}), 7.13(1 \mathrm{H}, \mathrm{dd}, J=15.0,0.5 \mathrm{~Hz}), 6.73(1 \mathrm{H}, \mathrm{dd}, J=11.0,0.5 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 189.4,146.1,140.0,137.3,136.5,130.8,129.3,129.2,128.5,127.9$, 127.59, 127.58, 127.5; m/e (rel intensity) 303 (100), 259 (1), 197 (2), 181 (2), 131 (1); HRMS (ESI) $m / e[\mathrm{M}+\mathrm{H}]^{+}$for $\left(\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{O}\right)$ calcd 303.0343, found 303.0356.

(E)-5,5-Dichloro-1-(3-nitrophenyl)penta-2,4-dien-1-one (25j):

The title compound was prepared according to General Procedure E in 29\% yield. Yellow solid, $\mathrm{mp}=141-144{ }^{\circ} \mathrm{C}$ (EtOAc/hexanes); $\mathrm{R} f=0.33$ ($10 \% \mathrm{EtOAc} /$ hexanes); IR (solid): v 2361, 2253, $1665,1352,1320,910,775,651 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.77(1 \mathrm{H}, \operatorname{ddd}, J=2.5,1.5$, $0.5 \mathrm{~Hz}), 8.45(1 \mathrm{H}, \mathrm{ddd}, J=8.0,2.5,1.0 \mathrm{~Hz}), 8.29(1 \mathrm{H}, \mathrm{ddd}, J=7.5,1.5,1.0 \mathrm{~Hz}), 7.72(1 \mathrm{H}$, ddd, $J=8.0,7.5,0.5 \mathrm{~Hz}), 7.66(1 \mathrm{H}, \mathrm{dd}, J=15.0,11.0 \mathrm{~Hz}), 7.09(1 \mathrm{H}, \mathrm{dd}, J=15.0,1.0 \mathrm{~Hz}), 6.76(1 \mathrm{H}$, dd, $J=11.0,1.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 187.6,148.7$, 139.1, 139.1, 134.2, 132.5, 130.3, 127.6, 127.5, 126.1, 123.5; m / e (rel intensity) 289 (5), 272 (100); HRMS (ESI) $m / e[M+$ $\mathrm{H}]^{+}$for $\left(\mathrm{C}_{11} \mathrm{H}_{7} \mathrm{Cl}_{2} \mathrm{NO}_{3}\right)$ calcd 271.9881, found 271.9889.

(E)-1-(3-Bromophenyl)-5,5-dichloropenta-2,4-dien-1-one (25k):

The title compound was prepared according to General Procedure E in 67% yield. Orange solid, $\mathrm{mp}=72-74{ }^{\circ} \mathrm{C}$ (EtOAc/hexanes); $\mathrm{R} f=0.47$ ($30 \% \mathrm{EtOAc} /$ hexanes); IR (solid): v 3074, 1653, $1589,1561,1418,1320,1244,1203,986,894,877,791,711,702,689,656 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.11-8.03(1 \mathrm{H}, \mathrm{m}), 7.91-7.81(1 \mathrm{H}, \mathrm{m}), 7.78-7.69(1 \mathrm{H}, \mathrm{m}), 7.59(1 \mathrm{H}, \mathrm{dd}, J=$ $15.0,11.0 \mathrm{~Hz}), 7.45-7.31(1 \mathrm{H}, \mathrm{m}), 7.01(1 \mathrm{H}, \mathrm{d}, J=15.0 \mathrm{~Hz}), 6.72(1 \mathrm{H}, \mathrm{d}, J=11.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) δ 188.6, 140.0, 138.2, 136.2, 131.7, 131.6, 130.5, 127.7, 127.1, 126.9. 123.3; m/e (rel intensity) 380 (4), 332 (9), 323 (10), 307 (100); HRMS (ESI) $m / e[\mathrm{M}+\mathrm{H}]^{+}$for $\left(\mathrm{C}_{11} \mathrm{H}_{7} \mathrm{BrCl}_{2} \mathrm{O}\right)$ calcd 304.9135, found 304.9133 .

(E)-5,5-Dichloro-1-(3-chlorophenyl)penta-2,4-dien-1-one (25I):

The title compound was prepared according to General Procedure E in 40% yield. Yellow solid, $\mathrm{mp}=68-71{ }^{\circ} \mathrm{C}$ (EtOAc/hexanes); $\mathrm{R} f=0.45$ (10\% EtOAc/hexanes); IR (solid): v 3054, 2986, 1663, 1597, 1419, 1238, 908, 859, 728, $705 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.92(1 \mathrm{H}, \mathrm{d}, J=$ $1.5 \mathrm{~Hz}), 7.82(1 \mathrm{H}, \mathrm{dd}, J=7.5,1.5 \mathrm{~Hz}), 7.64-7.51(2 \mathrm{H}, \mathrm{m}), 7.49-7.37(1 \mathrm{H}, \mathrm{m}), 7.02(1 \mathrm{H}, \mathrm{d}, J=$ $15.0 \mathrm{~Hz}), 6.72(1 \mathrm{H}, \mathrm{d}, J=11.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 188.6,139.4,138.1,135.3$, 133.3, 131.6, 130.3, 128.8, 127.7, 126.9, 126.7; m/e (rel intensity) 291 (8), 278 (8), 261 (100), 227 (4), 155(9); HRMS (ESI) $m / e[M+H]^{+}$for $\left(\mathrm{C}_{11} \mathrm{H}_{7} \mathrm{C}_{13} \mathrm{O}\right)$ calcd 260.9640, found 260.9642.

(E)-5,5-Dichloro-1-phenylpenta-2,4-dien-1-one (25m):

The title compound was prepared according to General Procedure E in 58% yield. Yellow solid, $\mathrm{mp}=73-75{ }^{\circ} \mathrm{C}$ (EtOAc$/$ hexanes); $\mathrm{R} f=0.46$ (10\% EtOAc/hexanes); IR (solid): v 3053, 2984, $1658,1600,1591,1448,1275,1016,919,741,705,650 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 8.08-7.88 (2H, m), 7.68-7.41 (4H, m), $7.08(1 \mathrm{H}, \mathrm{d}, J=15.0 \mathrm{~Hz}), 6.71(1 \mathrm{H}, \mathrm{d}, J=11.0 \mathrm{~Hz}),{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 190.0,137.8,137.4,133.3,130.9,128.9,128.7,127.8,127.6 ; \mathrm{m} / \mathrm{e}$ (rel intensity) 227 (100), 223 (4); HRMS (ESI) $m / e[M+H]^{+}$for $\left(\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{O}\right)$ calcd 227.0030, found 227.0030.

(E)-5,5-Dichloro-1-(3-methoxyphenyl)penta-2,4-dien-1-one (25n):

The title compound was prepared according to General Procedure E in 43% yield. Yellow oil; $\mathrm{R} f$ $=0.30$ (10\% EtOAc/hexanes); IR (oil): v 3039, 3027, 2970, 1656, 1590, 1575, 1430, 1338, 1231, 1198, 1016, 982, 885, 868, 782, 711, $668 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.56(1 \mathrm{H}, \mathrm{dd}, J=$ $15.0,11.0 \mathrm{~Hz}), 7.53-7.46(2 \mathrm{H}, \mathrm{m}), 7.45-7.34(1 \mathrm{H}, \mathrm{m}), 7.14(1 \mathrm{H}, \mathrm{dd}, J=8.0,2.5 \mathrm{~Hz}), 7.05(1 \mathrm{H}$, dd, $J=15.0,1.0 \mathrm{~Hz}), 6.70(1 \mathrm{H}, \mathrm{dd}, J=11.0,1.0 \mathrm{~Hz}), 3.88(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 189.7,160.2,139.2,137.4,130.9,129.9,127.8,127.7,121.2,119.9,113.0,55.7 ; \mathrm{m} / \mathrm{e}$ (rel intensity) 274 (2), 257 (100), 135 (1); HRMS (ESI) m/e $[\mathrm{M}+\mathrm{H}]^{+}$for $\left(\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{O}_{2}\right)$ calcd 257.0136, found 257.0139.

(E)-3-(4-Chlorophenyl)-1-(3-nitrophenyl)prop-2-en-1-one (29a): ${ }^{48}$

The title compound was prepared according to General Procedure F in 40% yield. Brown solid, $\mathrm{mp}=201-203{ }^{\circ} \mathrm{C}(\mathrm{EtOH}) ; \mathrm{R} f=0.26\left(25 \%\right.$ EtOAc/hexanes); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.84$ $(1 \mathrm{H}, \mathrm{s}), 8.47(1 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}), 8.36(1 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}), 7.86(1 \mathrm{H}, \mathrm{d}, J=16.0 \mathrm{~Hz}), 7.74(1 \mathrm{H}$, dd, $J=7.5,7.5 \mathrm{~Hz}), 7.63(2 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 7.52(1 \mathrm{H}, \mathrm{d}, J=16.0 \mathrm{~Hz}), 7.44(2 \mathrm{H}, \mathrm{d}, J=8.0$ $\mathrm{Hz}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 187.7,145.2,139.3,137.2,134.4,134.1,130.0,129.9$, 129.4, 127.2, 124.0, 123.2, 121.0.

(E)-1-(4-Bromophenyl)-3-(3,4-dichlorophenyl)prop-2-en-1-one (29b): ${ }^{49}$

The title compound was prepared according to General Procedure F in 45% yield. White solid, $\mathrm{mp}=157-159{ }^{\circ} \mathrm{C}(\mathrm{EtOH}) ; \mathrm{R} f=0.35$ ($25 \% \mathrm{EtOAc} /$ hexanes); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.91-$ $7.86(2 \mathrm{H}, \mathrm{m}), 7.74-7.70(2 \mathrm{H}, \mathrm{m}), 7.69-7.63(2 \mathrm{H}, \mathrm{m}), 7.52-7.42(3 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 188.6,142.4,136.4,134.7,134.6,133.3,132.0,131.0,130.0,129.7,128.3,127.5$, 122.8.

(E)-1-(4-Bromophenyl)-3-phenylprop-2-en-1-one (29c): ${ }^{50}$

The title compound was prepared according to General Procedure F in 70\% yield. White solid. $\mathrm{mp}=198-200{ }^{\circ} \mathrm{C}(\mathrm{EtOH}) ; \mathrm{R} f=0.38(25 \% \mathrm{EtOAc} /$ hexanes $) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.94-$ $7.86(2 \mathrm{H}, \mathrm{m}), 7.74-7.69(1 \mathrm{H}, \mathrm{m}), 7.70-7.62(4 \mathrm{H}, \mathrm{m}), 7.53-7.48(1 \mathrm{H}, \mathrm{d}),, 7.46-7.41(3 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 188.8,142.6,136.7,134.9,133.6,132.3,131.2,130.2,130.0,127.8$, 123.

(E)-5,5-Dibromo-1-(4-bromophenyl)penta-2,4-dien-1-one (54):

To a stirred solution of the p-bromoacetophenone $(0.42 \mathrm{~g}, 2.1 \mathrm{mmol})$ in acetic acid (5 mL) under argon, was added crude 1,1,1,3-tetrabromo-3-ethoxypropane ($0.86 \mathrm{~g}, 2.1 \mathrm{mmol}$) via syringe. The reaction mixture was stirred at ambient temperature for 4 days. The resulting mixture was concentrated in vacuo and the residue was purified by column chromatography on silica gel using $10-25 \% \mathrm{EtOAc} /$ hexane as the eluent to afford a yellow solid ($0.27 \mathrm{~g}, 32 \%$), $\mathrm{mp}=144-146$ ${ }^{\circ} \mathrm{C}$ (EtOAc/hexanes); $\mathrm{R} f=0.39$ (15\% EtOAc/hexanes); IR (solid): v 3098, 3036, 1650, 1582, 1563, 1397, 1253, 1208, 969, 844, 811, 722, $665 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.87-7.77$ $(2 \mathrm{H}, \mathrm{m}), 7.70-7.58(2 \mathrm{H}, \mathrm{m}), 7.45(1 \mathrm{H}, \mathrm{dd}, J=15.0,11.0 \mathrm{~Hz}), 7.24(1 \mathrm{H}, \mathrm{d}, J=11.0 \mathrm{~Hz}), 7.07$ $(1 \mathrm{H}, \mathrm{d}, J=15.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 189.1,140.2,136.5,135.7,132.3,130.2$, 128.6, 127.3, 102.2; m / e (rel intensity) 413 (3), 395 (100), 380 (6), 279 (1); HRMS (ESI) m / e [M $+\mathrm{H}]^{+}$for $\left(\mathrm{C}_{11} \mathrm{H}_{7} \mathrm{Br}_{3} \mathrm{O}\right)$ calcd 392.8125, found 392.8110

(E)-1-(4-Bromophenyl)-5-methylhexa-2,4-dien-1-one (57):

Using a procedure adapted from the literature, ${ }^{51}$ a solution of 3-methylbut-2-enal $(0.4 \mathrm{~mL}, 4.2$ $\mathrm{mmol})$ and [(4-bromobenzoyl)methylene]triphenylphosphorane $(0.96 \mathrm{~g}, 2.1 \mathrm{mmol})$ in dry toluene $(15 \mathrm{~mL})$ was heated at reflux for 24 h . The cooled reaction mixture was concentrated in vacuo. The resulting crude product was washed with diethyl ether ($2 \times 15 \mathrm{~mL}$). The remaining solid triphenylphosphine oxide was filtered off. Evaporation of the washings left a residue which was filtered through a 10 g alumina plug with 30 mL ether:hexane ($1: 1$). Removal of the solvent afforded a yellow solid ($0.42 \mathrm{~g}, 38 \%$), $\mathrm{mp}=72-74^{\circ} \mathrm{C}$ (EtOAc/hexanes); IR (solid): v 2965, 2906, 1655, 1581, 1566, 1352, 1278, 1067, 1005, 989, 811, 722, $666 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.90-7.73(3 \mathrm{H}, \mathrm{m}), 7.67-7.52(2 \mathrm{H}, \mathrm{m}), 6.83(1 \mathrm{H}, \mathrm{d}, J=14.5 \mathrm{~Hz}), 6.16(1 \mathrm{H}, \mathrm{dd}, J=$ $11.5,2.0 \mathrm{~Hz}), 1.96(6 \mathrm{H}, \mathrm{d}, J=4.5 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 189.9,149.5,142.0$, $137.5,132.0,130.1,127.7,124.8,122.5,27.1,19.5 ; m / e$ (rel intensity) 265 (100); HRMS (ESI) $m / e[\mathrm{M}+\mathrm{H}]^{+}$for $\left(\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{BrO}\right)$ calcd 265.0228, found 265.00224.
(E)-1-(4-Bromophenyl)-5-(2-chlorophenyl)pent-2-en-1-one (65):

To a solution of [(4-bromobenzoyl)methylene]triphenylphosphorane ($0.33 \mathrm{~g}, 0.72 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added 3-(2-chlorophenyl)propionaldehyde ($0.10 \mathrm{~g}, 0.60 \mathrm{mmol}$) portionwise. The reaction mixture was then stirred for 24 h . The resulting mixture was concentrated in vacuo and the residue was purified by column chromatography on silica gel using 10-25\% EtOAc/hexanes as the eluent to afford an orange oil $(0.20 \mathrm{~g}, 95 \%) . \mathrm{R} f=0.47(30 \%$ EtOAc/hexanes); IR (oil): v 3054, 3010, 2943, 2892, 1667, 1616, 1582, 1473, 1441, 1397, 1214, $1068,1050,1040,1031,992,960,826,808,745,726,659 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.84-7.72 ($2 \mathrm{H}, \mathrm{m}$), 7.64-7.57 (2H, m), 7.40-7.35 ($1 \mathrm{H}, \mathrm{m}$), 7.24-7.15 (3H, m), 7.14-7.05 (1H, $\mathrm{m}), 6.82(1 \mathrm{H}, \mathrm{dt}, J=15.5,1.5 \mathrm{~Hz}), 3.04-2.90(2 \mathrm{H}, \mathrm{m}), 2.80-2.54(2 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz ,
$\left.\mathrm{CDCl}_{3}\right) \delta 189.7,148.8,138.4,136.6,134.0,131.9,130.6,130.2,129.8,127.9,127.8,127.0$, 126.3, 32.9, 32.4; m/e (rel intensity) 368 (10), 351 (100); HRMS (ESI) $m / e[\mathrm{M}+\mathrm{H}]^{+}$for $\left(\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{BrClO}\right)$ calcd 348.9995 , found 348.9998 .

1-(4-Bromophenyl)-3-(dimethylamino)propan-1-one (71): ${ }^{39}$

Using a procedure adapted from the literature, ${ }^{39}$ a solution of p-bromoacetophenone ($1.0 \mathrm{~g}, 5.0$ $\mathrm{mmol})$, dimethylamine hydrochloride $(0.54 \mathrm{~g}, 6.5 \mathrm{mmol})$ and paraformaldehyde ($0.20 \mathrm{~g}, 2.2$ $\mathrm{mmol})$ in dioxane (15 mL) was added concentrated $\mathrm{HCl}(10 \mu \mathrm{~L})$. The reaction mixture was then heated at reflux for 2 h . The resulting mixture was concentrated in vacuo and the residue was purified by column chromatography on silica gel using $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{3} \mathrm{~N}$ (5:94.9:0.1) as the eluent to afford a yellow solid ($0.30 \mathrm{~g}, 17 \%$), $\mathrm{mp}=110-112{ }^{\circ} \mathrm{C}\left(\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; \mathrm{R} f=0.10(5 \%$ $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.90-7.76(2 \mathrm{H}, \mathrm{m}), 7.68-7.50(2 \mathrm{H}, \mathrm{m}), 3.15-$ $2.99(2 \mathrm{H}, \mathrm{m}), 2.79-2.61(2 \mathrm{H}, \mathrm{m}), 2.44-2.04(6 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 198.2, $135.8,132.1,129.8,128.4,54.4,45.7,37.1$;
(E)-1-(4-Bromophenyl)-5,5-dichloropenta-2,4-dien-1-one (73): ${ }^{52}$

The title compound was prepared according to General Procedure E in 36% yield. Yellow solid, $\mathrm{mp}=114-117{ }^{\circ} \mathrm{C}$ (EtOAc/hexanes); $\mathrm{R} f=0.47$ ($10 \% \mathrm{EtOAc} /$ hexanes); IR (solid): v 3054, 2986, $1660,1595,1586,1398,1276,1008,908,768,705 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.90-$ $7.74(2 \mathrm{H}, \mathrm{m}), 7.70-7.51(2 \mathrm{H}, \mathrm{m}), 7.57(1 \mathrm{H}, \mathrm{dd}, J=15.0,11.0 \mathrm{~Hz}), 7.01(1 \mathrm{H}, \mathrm{d}, J=15.0 \mathrm{~Hz})$, $6.70(1 \mathrm{H}, \mathrm{d}, J=11.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 188.9,137.9,136.5,132.3,131.4$, 130.2, 128.6, 127.7, 127.0; m / e (rel intensity) 380 (15), 332 (1), 306 (100); HRMS (ESI) m / e [M $+\mathrm{H}]^{+}$for $\left(\mathrm{C}_{11} \mathrm{H}_{7} \mathrm{BrCl}_{2} \mathrm{O}\right)$ calcd 304.9135, found 304.9145.

6-(4-Bromophenyl)-2H-pyran-2-one (94): ${ }^{52}$

A solution of lithium chloride ($67 \mathrm{mg}, 1.6 \mathrm{mmol}$) and compound 93 in DMF (5.0 mL) was refluxed for 3 h . The cooled reaction mixture was diluted with ethyl acetate (10 mL). The organic layer was then washed with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL} x 5)$, brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. The crude product was purified by column chromatography on silica gel using 30-50\% EtOAc in hexane as the eluent to afford a yellow solid ($40 \mathrm{mg}, 81 \%$), $\mathrm{mp}=77-79{ }^{\circ} \mathrm{C}$ (EtOAc/hexanes); $\mathrm{R} f=0.28$ (50% EtOAc/hexanes); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.65-7.73$ $(2 \mathrm{H}, \mathrm{m}) 7.57-7.62(2 \mathrm{H}, \mathrm{m}) 7.42(1 \mathrm{H}, \mathrm{dd}, J=9.5,7.0 \mathrm{~Hz}) 6.65(1 \mathrm{H}, \mathrm{dd}, J=7.0,1.0 \mathrm{~Hz}) 6.31(1 \mathrm{H}$, dd, $J=9.5,1.0 \mathrm{~Hz}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.8,160.2,143.8,132.5,130.5,127.2$, 125.7, 114.7, 101.4.

References

1 Silver, L.; Bostian, K. Eur. J. Clin. Microbiol. Infect. Dis. 1990, 9, 455 - 461.
2 Nussbaum, F. V.; Brands, M.; Hinzen, B.; Weigand, S.; Häbich, D. Angew. Chem. Int. Ed. 2006, 45, 5072-5129.

3 Levy, S. B.; Marshall, B. Nat. Med. 2004, 10, S122-129.

4 Andersson, D. I. Curr. Opin. Microbiol. 2003, 6, 452-456.
5 Michel, K. H.; Hastner, R. E. U.S. Patent. 4,492,650. Jan 8, 1985.

6 Hinzen, B.; Raddatz, S.; Paulsen, H.; Lampe, T.; Schumacher, A.; Häbich, D.; Hellwig, V.;
Benet-Buchholz, J.; Endermann, R.; Labischinski, H.; Brötz-Oesterhelt, H. ChemMedChem 2006, $1,689-693$.

7 Cossette, M. MSc. Dissertation, University of Toronto. 2012.

8 Brötz-Oesterhelt, H.; Beyer, D.; Kroll, H.; Endermann, R.; Ladel, C.; Schroeder, W.; Hinzen, B.; Raddatz, S.; Paulsen, H.; Henninger, K.; Bandow, J. E.; Sahl, H.; Labischinski, H. Nat. Med. 2005, 11, 1082-1087.

9 Koshino, H.; Osada, H.; Yano, T.; Uzawa, J.; Isono, K. Tetrahedron Lett. 1991, 32, 7707 7710.

10 Osada, H.; Yano, T.; Koshino, K.; Isono, J. J. Antibiotics 1991, 44, 1463-1466.

11 Lee, B.; Park, E. Y.; Lee, K.; Jeon, H.; Sung, K. H.; Paulsen, H.; Rubsamen-Schaeff, H.; Brotz-Oesterhelt, H.; Song, H. K. Nat Struct Mol Biol 2010, 17, 471-478.

12 Yu, A. Y. H.; Houry, W. A. FEBS Letters 2007, 581, 3749-3757.

13 Brötz-Oesterhelt, H.; Hamoen, L.; Sahl, H-G.; Schiffer, G.; Famulla, K.; Josten, M.; Sass, P. PNAS 2011, 108, 17474-17479.

14 Erickson, H. P.; Taylor, D. W.; Taylor, K. A.; Bramhill, D. PNAS 1996, 93, 519-523.

15 Ma, X.; Ehrhardt, D. W.; Margolin, W. PNAS 1996, 93, 12998-13003.

16 Harvey, A. L. Drug Discov. Today 2008, 13, 895-901.

17 Leung, E.; Datti, A.; Cossette, M.; Goodreid, J.; McCaw, S. E.; Mah, M.; Nakhamchik, A.;
Ogata, K.; Bakkouri, M. E.; Cheng, Y. Q.; Wodak, S.J.; Eger, B. T.; Pai, E. F.; Liu, J.; GrayOwen, S.; Batey, R. A.; Houry, W. A. Chem Biol. 2011, 18, 1167-1178.

18 Lourenco, M. C. S.; Ferreira, M. L.; Peralta, M. A.; Kaiser, C. R.; Pais, K. C.; Souza, M. V. N. Bioorg. Med. Chem. 2009, 17, 1474-1480.

19 Kaminsky, D.; Meltzer, R. I. J. Med. Chem. 1968, 11, 160-163.

20 Font, M.; Monge, A.; Ruiz, I.; Heras, B. Drug Des. Discovery 1997, 14, 259-264.

21 Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Feeney, P. J. Adv. Drug Deliv. Rev. 2001, 46, 3-26.

22 Saaden, H. A.; Mosleh, I, M.; Mubarak, M. S. Molecules 2009, 14, 1483-1494.

23 Chaudhari, S. S.; Akamanchi, K. G. Synlett. 1999, 11, 1763-1765.

24 Kroemer, G.; Oncogene 2006, 25, 4630-4632.

25 Perjesi, P.; Berki, T.; Rozmer, Z. Toxicol. in Vitro 2006, 20, 1354-1362.

26 Woznesensky, S. A.; Dudinov, A. A.; Belenkii, L. L.; Struchkova, M. L.; Nesterov, K N.; Krayushkin, M. M.; Struchkov, Y. T. Russ. Chem. Bull. 1997, 46, 501-505.

27 Usova, E. B.; Lysenko, L. I.; Krapivin, G. D.; Kul'nevich, V. G. Chem. Heterocycl. Compd. 1996, 32, 548-554.

28 Ceylan, M.; Dingil, A.; Gudere, M. B.; Gezegen, H.; Karaman, Isa. Chem. Biodivers. 2010, 7, 400-403.

29 Wattanasin, S.; Murphy, W. S.; Synthesis 1980, 8, 647-651.

30 Chukovskaya, E. T.; Kamyshova, A. A.; Freidlina, R . K. Russ. Chem. Bull. 1965, 3, 445-449.

31 Schroth, W.; Schmiedl, D.; Jahn, U.; Spitzner, R. Z. Chem. 1989, 29, 419-420.

32 Muñoz-Molina, M.; Belderrain, T. R.; Pérez, P. J. Eur. Org. Chem. 2011, 21, 3155-3164.

33 Muehlebach, M.; Fisera, R.; Karvas, M.; Rempfler, H.; Brunner, H. Intl. Patent. WO/2003/07640. Sept 18, 1985.

34 Reichardt, C. Solvents and Sotvenr Effects in Organic Chemistry.; Verlag-Chemie, Weinheim, 1988.

35 Kluge, A. F.; Lillya, C. P. J. Org. Chem. 1971, 36, 1988-1995.

36 Lee, C.; Hisa, A.; Nagaraj, H. K. M.; William, A. D.; Williams, M.; Xiong, Z. Intl. Patent. WO/2009/093981. Jul 30, 2009.

37 Schuler, M.; Duvvuru, D.; Retailleau, P.; Betzer, J.; Marinetti, A. Org. Lett. 2009, 11, 44064409.

38 Heim-Reither, A. Synthesis 2008, 883-886.

39 Max, C. E.; Org. Syn. Coll. Vol. 3, 1955, 23, 305-306.

40 Brahmbhatt, D. I.; Pandya, Urvish R. Indian J. Chem., Sect B 2001, 40, 419-421.

41 Paterson, I.; Kan, J.; Gibson, L. J. Org. Lett. 2010, 12, 3724-3727.

42 Adger, B. J.; Barrett, C.; Brennan, J.; McGuigan, P.; McKervey, M. A.; Tarbit, B.; J. Chem. Soc., Chem. Commun. 1993, 13, 1220-1222.

43 Yorimitsu, H.; Shinokubo, H.; Matsubara, S.; Oshima, K. J. Org. Chem., 2001, 66, 77767785.

44 Bauer, A. W.; Perry, D. M.; Kirby, V. M. Arch. Intern. Med. 1959, 104, 208-216.

45 Murray, P. R.; Baron, E. J.; Jorgensen, J. H.; Landry, M. L.; Pfaller, M. A. Susceptibility Test Methods: Dilution and Disk Diffusion Methods. In Manual of Clinical Microbiology;
Jorgensen, J. H.; Turnidge, J. D., Ed.; ASM Press: Washington, D.C., 2007; p 1152-1172.
46 Agrawal, V. K.; Sharma, S. Indian J. Chem., Sect B 1987, 26, 550-555.

47 Youngsaye, W.; Hartland, C. L.; Morgan, B. J.; Buhrlage, S. J.; Johnston, S.; Bittker, J. A.;
MacPherson, L.; Dandapani, S.; Palmer, M.; Schreiber, S. L.; Munoz, B.; Vincent, B.;
Whitesell, L.; Lindquist, S. Bioorg. Med. Chem. Lett. 2011, 21, 5502-5505.

48 Dzurilla, M.; Kristian, P. Coll. Czech CC. 1970, 35, 417-429.

49 Al-Arab, M. M.; Ghanem, B. S.; Fitton, A. O. Tetrahedron 1989, 45, 6545-6552.

50 Hayat, F.; Salahuddin, A.; Azam, A.; Umar, S. Eur. J. Inorg. Chem. 2010, 45, 4669 - 4675.

51 Lillya, C. P.; Kluge, A. F. J. Org. Chem. 1971, 36, 1989-1995.

52 Bullot, J. Bull. Soc. Chim. Fr. 1960, 23-26.

Appendix: Spectra of Selected Compounds

sample Hat 1 nas
teple is c.iबwise 100

2shes thyueve: Alpot
DNDent: Nict

Tants inl. opesaver detas

vient-401 "pwhile ner"

Aim saing 4200 ent
Bols in it oppes
Lny sine i mot me
anst dalse. 4 A
eti sapotiviona

Nower at an
comuinubully mD :
earn-15 milciana
gume nocturne
Lise bursdenicy 4.1 il
It ctad sasefa

220	200	180	160	140	120	100	80	60	40	20	0

cratio. iv.lei

halse fepenon: slena
nebem nery
thy. is it e. / Ine.1.
tangte tiv, querawed anead.

Nian, bady 2 ant anc
asian 118 - 4-prase
20. 40 Es L. 200 ane

noustis 61. 30 +4asmat ne.
Fows te is
timuminaly
Entrye mosian
satik skocteriwa.
Late Breviening is 5 it
et aiad lazta

Itangie: Ejay 1.5

Inlean: natels
suy. as.act f 2n+a

Nata, mand b.ate max

isk copstaniong

tesosela
2user 40 -

alft-16 nodela
tasis ancuasta!
Leve bususanian tit K .

Ample sjacia

mequer $\mathbf{2 p g 4 . 1 . \operatorname { s a n g y }}$
Sonyle tiv s.ansamic. os

veasishis "powis rate"

Fuan in in lognen

Arene 4s 3
bxat a) 9
antinnitiy $=$)
ban mocturac

pT *ise Living
Fral sime 4il man, if mar

Hayle: 2. 146.1
Fugbe mis empanen it

Nolatern etcl

inylr 97, 4ecruter wour-

Niac, Deler of sas net

Aate. vise 1.200 mes
Withe buthe. 4 In

Bvese st a
mpinatasly m
ant mociatias
Lute Jraathete, 21 sc
TT **e 11 กा!
frosi nime in hr, it mer

220	200	180	160	140	120	100	80	60	40	20	0	pres

thaple: hise I P

Roses mquase:

fingle ive. iperamen untus.

Axaple mineiv
tayla is cematakn an

Halse Shyenoe: mipel
beleans. micla
tany. Is tict ane is

Whelb-460 "pokins.mer
bide anay tian anc
sotur is is mproas

Evinh 24a35.4 5
IIL espetve.ane

Finte an $=$
tewamensl $=$
aLfl-14 modilana
sesta nowczastac

pr sint zassty
frekl kian 14 min, 18 wee

Anayial ejat. i mena
Fighe sibicipititilic ill

askeper asell

reap-ise "pasqu-1ap"

Nelan, dalay dute noes
Dolen is - + ayposes
Aeq. sime 1. 3t ane
Nath autwi it he

bowe ts a
menimunuriy in
mith-4a minetina
125 Fiocnisis
Lens hroationim 08 Br
fr nias 133 M1
treal kuen ex min, ut wes

tagyte seret

Dolee whenas. ajpat
antakb atala

Heple: sect inncic
timple ber a anatiat is

(Aleqen: mes)

taigre the iperroto antua.

live delay 8.aN\% mas
Rolas as. 7 dagever
Am, nime 1. 3tt mr
mon zenction
315 experiansint

Jones at $1 \mathbf{1}$

Finnes lisipl
fonal tume xt mas, 14 ave

traple: Agany x

Aungie: ajet 1 uns
faple is. + athesase at

Babeet mant
Duv. is ise f Im 1 E

Nota taky d.ane wer
2ster is an diphase
sey bubs 1.300 wat
What sasec. 4 Ho

beesc at a

nits-14 malianat

Lene Evcasiniagy is is He
re dual 318Tt

220	200	180	160	140	120	100	80	60	40	20

Haykia- sjat 1 amas

than (40ques. stpol

thayis ent, opecanee nation

Brevi of 5
teersentialy $=$

Lath ikocianlik
Hest kendenis
towat wian al tan, if aet
trayas: epape.

Nolse mquanis. kipat

Salat malag L. Dot ase

an cu- + ose
14 mpenitimes
onami mi. 3N0.601ens te.
case noctarsis

Bulas Byans: mput

hayy. 25.8 et 250.1 E

Vaeskser "pokio en"
cian aniar iliab nac
2uis 18.8 mprose
25 van 1.300 me
aisut icim. 4 so
ate agmasaans

Jone ts 10
townimplivity
axti-56 meloianat
exta zactaris

fl mise Lillatl

koy, sion a jow

is maptiviest

man myckatig
Hing levatening 4.1 m
Tr *ime anny

Boles lequeno: mbpal
Aulatse the
Nay ab A E! $280+\mathrm{x}$

veev-4it "pukla. mer"

2stan at a aypes

LN95 aspenisiant

jowes as aic
sobailato 11_{y} as
sachatall

If tios 13LMTI

tefle arate.

Salas tryane: sspul
satesati ascit

weer-4)t "mblle mu"
Biai aniag 1. nob an
2kien ik a majeat
1as: tan $工$. 132 mac
15 -aterivione

Lise betadinuay it.a Ec

Saplay ancol 1

Bules fifpensi nlpol
Arlane the
bowe is atef ise is
fangia 424, dpecasaen untive

Nam, mang tove mec
butes al.s dippossa

Suen io a
Eavirlulis mitilent
aintic macie.

FF sise buirtl

taryle sueces
nayse mi e antianti. I

Doles lmyense: sipa
जvicen mpe
Sony. is isef in in it
takyat ric, bperande ainia.

masd-150 "pwale use"

Haw ML.t togosan
AEn s.in 1. 309 mor

Bres 4 -

รam ymockarza

Neat vime at min, as mor

tingle: ogluts. 3

Nolat seymen. *mea

lows is if $61 / \mathrm{Ne}$ is
File RLLIER

IT Even siase
This4t wuen a wish ia see

Ample: ajper. .

Prien manawar a3pht.
Betokes ay

Iugyis ass, opacasec inthas.
Filei athinion-ajaet is Gacherem

an sine 1 bly ase
bidut lisme i is
atit apetin號

Pover 45 a
empabetad y se

Lise buasionily i. 1 Ha
It Elai siapta

Emala. Mrate 1


```
DoLas mapenos: <בpol
    BaL-atse mat
```



```
TMes-425 'Tuk3at ame
    Nalm, talky + $00 me
    Natw 35.S magosas
    h-n nien &,N4=
```



```
    Num as an
    memakntu*ly = 
    amf2-15 modilan
    mata zocracis:
Lusa Evaakinimy &. & %o
```


Ampier Mans 1

```
HEyylo IB. & mbluases, et
```



```
Rakue Bquen: sapul
```



```
Nmpla sic, opeasnen whie*
```



```
Fine,-4is "patslo tact
```



```
    Noz=0 is.0 4epeses
    May, sums ב. end ava
    Tvane suan,T m
    |5 I*pesatuont
```



```
    lask vocinims
    Lena Bvcaviving of a me
```


tanyber antit 1

Doles mepasas. :apel

Thesa-tiel "penkis ins"
Bian melay 1.400 see
Dalen 41-D fejnser

34 sementhates

tam phocrazrac
If ane hroplent

miaple, smat 1

Holvene mpy

saple 3se qparaviel anoub.

vant-418 'Tutbist anc

polde 3e.s aquese

Biat raver a B

Rover 41 al

tha macturns
Uuse kroviliniky 8.5 Br
Ft sise chert
fan tial lit mat il me

tamplet aqzas I

Folas myense: nipel
inleasi mas
somp in mat an 14
sayy ins, operkever villus

Thaso-kan "peavie ane"

sars :Mocturzs
IT sese asas
Fivsl sial 1 nin 13 mer

Iteyler apase 3

man mymin nyw

Teng. as it f am.as
sumpe tin, opercond athue
Fias: ithinath-agan I dabocs-6ti
vasere90 "pktioner"

Boles in.o tapequ
Nog. wine i 3 3t mat
15

Dswat is in
-
bats mocanatia
Gits bengoticuly
Life berioneiay tis Ae
ET anell 1 sirra

Aupla. Mran 1

Bulee Byensi mpol

Hagla tae opvakise iubes.

FT niou asesc

Delas myane: a3pal

Dumple kSx, ©persune: seltas

Min anisy in wow

Sint ines. 710
it at apoticiona

ann zockinjuc

If simel stigi

Angis: ejget.
sacta 48 - atanamer ais

Jelesel tev
hay. 21.te, am. 1 a
theple gas, opscatif antue.

Gelac anivy tian sen

sionb buspe 4 B4
3010 appeisiane

sowed at a

147 Hoctalis
Hise brpelimisy 4.5 B
IT rase latery

supas- atmes x

2alas Aryane: EyN
Roluessi inne

ruyple in, opecatiel antues

vaek-485 "Rukls nes"

mata mockinns
Hipe Beviknikey 8.7 Bc
TT Aise vezen

anyle ib. s. maselc. is.

alanean man

"Tesb-400 "pacio mer"
Mien. teluy L. 600 ent
balas it it depesat
去等
*athe 2anse. a he
3326 *"peninisea
anemt tal ist eivinat an

Proen 4% - 9
Neseitantasly
1ase Fitoctivid.
Lane banativiny i. I live
It sien Liaty


```
Blme myenos: slipul
    lodren: mecl)
danys lvm sparbmen olia
```



```
vmas-asp "p-kLe.ase"
    Nian lelay, biven we
    NoLme til:e tmyone
    any sime a.,N% m
    Niod 6uds.7 Sa
    4% mp-i**Mg
```



```
zisa Breviletimy a a Er
8T mone sata,
Tmal uim I wal, [2 ser
    mayim: Navil
```



```
K_len lemers: alpl
    matwon- maty
    Now av.1 5% aw = %
Benglo dus, Operaven vesie
```



```
    Du2me m,| teprese
```



```
    ankmit ta2 100.azzinil me
```



```
    Breer 40 6
    metrj-14 amdulanac
```



```
FT *ive mast?
Tyusl vimithic. $ mon, 14 avt
```


Aluglis: ATHis. 1

Bolas sequens. Eaph

tigit ist Dperseve intion

vael-s)t "pahle.men"
liolus telat 5. ane wes
Pula 35 : tagoan
hoy. time 1 has met
Mibut astre. it in
atev बppetiosens
yivint ent 2at, ctaicaz nek

Bever 45 0
E"ankubuly on
bin mocimis

If ties 1IIMI
Fowit tese 1 ke a man, of nac

limpae ciran
truple Bi e ascrisit. is

solae spyene: seper
se7.ese: ase

Alipgan the byecsion: antive

suytio

narown ation ase an

wime dian s.ans mes
folem at is anjowes
ant sees + vp se
nothy 1010 4 n
Sole capteviinat celtasy

Mowe 42 a
awtinaty mis
aitril mitilas

TT niet sมall
pooll nims ine. 43 ater

tamper ajawt_1_ana
Fapple IB C. atiasean m

Bolen smpance: alyol
Intrens. mov
hatrens. is mop anc. i a

"riolv-404 "pabje ner"

Biaple of ir it tes
Ample Bi a invisees as

Holan lequan: eipol
golvaliti chave

sanpas sil. dqucatos almu.

vear-se "pable ner"
Craw amay n. ano nam
Rale as. \bar{y} anyeber
4.7. tam i. int me
mond zetinc. 4 Be
200\% mprainisne

ix 8.
Dower 41 in

atic $-1 /$ mothlec
anio thichinim

Tohat tase it min, is mes

Bayse chase 8

hale byence: slipol

dayse in. spectanos, anhias

Nmes-atie "plotio =ive"
helas- anday i, mee sed
Rame 43 B Thepuene
An, uisu 3, P8 Nov
Satat 6103.7 he

tata andicaiseni
Eces arocilasiay s. 3 Hz
FT aned asa3k
Theas wiek 4 sea, 34 see

Folse fiegeres. stget

samio tie opscavis dmus.

realis 400 " "pasion ner"

B-1.
Say sam L jotem

2122 äpowituak

Hower it in an mernor
menimesty
awn-14 aty se
bes incolatim

rr sian tavila
Trall tans is aik, 2t ave

220	200	139	160	140	120	100	12	60	40	20	0

fluple: anos 3
tuypan 四, 1. astwaje In

2eane Appene: *2p3
deanem and
Nov. is. है, tm / s

mads-kis "perale ins"

Bilas en.9 tejose

What 4NOTVA.
is appriasers?

Heple arityme
tagle th. E Enatati as

Dolee taquas. anpo

langle is. opercoter anhile
Fule Buallt6-afias BLX Gutoe-vel

Delan Nasey 3 ane wet
Polen 15 Itiopive

Gvith 14 r34. 4 国

Frome at en

cath axoctabise
Itse broabentivg at. 1 dt
ftion becosonnisy

Itaple: axny

hayle m, a kstave in

Neise teprever: siph
hay in.ect im. 1 :
tanyan Ben, mescats. amus.

Haes-kint "packio rese"

halme til it tiegovar
Ien sime I int mo
Kuset tinc.7 is

17 тhoctirns:

f7 gine chice
foral wide if min. 24 wes


```
tuple. vare=
Aaple Ib, s. R"03eamy at
```



```
    ENTANMC mat
```



```
mangla tal. ogeranten mavia
fuls, twammitarala it Gubos-bit
Gmel-450 -goukic lac
    Melme. lalmy 0.104 mac
    Fubm us & avponse
ky, sime 1. 500 mos
Schak calse.a is
covery 5% 190 sivccia nev
cecvorlat m. Jep.ilkiqim si.
saver at a
    msation*alty 组
mumu"% moman
Lese busatiminy i. I lle
ft tus ialat1
Thow sum ti sin si ul
```



```
tuqua, agany, 1 Movencina
```



```
Bolse mepaese: ampl
    Mapeny, mbe, aw in m
Banyle in. (furavive, monkies
```



```
veay-4.4 "makle =m"
loims malky is sat met
Nalme 捡-s argoses
Amy vian l. Spe met
```



```
    Wver 40 9
```



```
    mat5s-14 midhan
    tan
    hans mocavonumy, niv mo
OT Asme caysta
```


Bayte: 2xam mosecest
Angle in c. stalliac is

Aol-ank: the

somple sas oppanse: wases.

Nín deluy 3.850 en
hulw 15.4 maress
A上, vene I 700 am
Sumh zansc 4 Ho
e3vo asperiviona
ancen cL .154 6itumal whe

Fower is al
omainatosiy in
tam znoctarnicy

TV siad zasaty
Trest sike I Mr, at mes, TH me

Dolee theperane: siped
Juknan ane

prod-406 -peiale mac
bun mic ander
Bular in.s tivprase
any sime 1 pop as
Whan dasse 4 Sa
tast apowesiona
surme tick

Hower it at
Antinionly
alph-35 adilanat

TT *ise biars
Treal sime $1 \mathrm{Mm}, \mathrm{I}$ min, 7 ter

Ample shat an 1

Ine jervoluing 5.1 Ba
Tr nist atmy
Foal cons inco. il we

Aapyle srasc in.

क+teren ar
Blavin ape, in in in
Daty is it eflimis in

Nim. A-aw to ane
DuLes as at aypeas
hay satai \pm, 305 and
ander 2415e + 4 Ha
1990 sepmisiam

soens as an

Tr aine zasanizy is in
rt aisa 3azarz
Trest ever I St, 8 sin. 47 m

sangea: s.2a3, 2
tatyle IV g.animet_15

Thise menerest nipul
Evjeent meay

tamed 838, opesetiry daseas

samas $20 a a_{y} 8$ and ase
Buase if is segrese
aep tos 3 385 en
vache asise of ki
2let mopetacins

Power is is
ceen Sholvilip 44
watt-14 maditates
vaminiolitackia
Lin susamenisy \&. 5 Es
Lim scssmatiay

Segyle. Evasell

holes Hepenot sipul

tayy. is.ot 6 an a
Hakyse 5B4, apseiniel welok-

ft rise fins

Angle Arase 14
trapies in: canamate as

Folas mysous. stpel
seanewi mbiss
Tom 15.9 \& / am@I

File; BHLL0SL5-4.301 I Kopen-lisi
Hedo-kit "pelala ne"

14 mperinases.

nian llepees: stpa

vebll-vis 'rwaly =y"

nalse it It thymer
Noy was 1.350 nos

Nown
Nis

someisuafly
meari-is mioletanas
math-is montan

ry niel amisy

Anayle arame 1
Aaple IB: a chlesess as

Dolee thereese: sapna
*sFnem. anca)
Buy is 0 © i im 18

von sime l, jos
EsDeh Lathe. a Ho
ssis sepanitites

nower as an
anshisubaly in
actr-13 =1012nat
ars monamion
Like brtatening +5 se
FT ALes lairly

tanywin tivas

Bulee Bypenie: *ipl
iniany apery

voasa-6ne "pekial mev"

Nolan at. 0 appoen
Asy. tame 2. 300 mp

fower at a
cresumonaly
ath rimocrasis
ITh mockasis
IT tike [17
Treal tive I the I min, II mer

220	209	180	160	146	120	100	80	60	48	20	0

Eunyan anex. 1
creyan mi castianas at

Buase myener inpal
Andener mbll
Song Ni.t it In an
taydr Bic. spschation amuk-

foryle: Anes 1

selateri dact3
Thy ax is \& tan as
dualis ki4, opsochase whive

noou-tid "pekala ser"

Sifat ianc. 4

Sower to a
26*se to a

Tweat wan at win, at act

tuyple: AMBL
tupla at. a silianeris as

Mike mpaton: sipel
lounswi asclit
tay zi a of $230+1=$
File: 3 N1:

mun nang man max

Am. Anes I 39t ant
6, ont aszic. 4 ha
2050 - eporisease

dowes ar an

amm incturtat
Lina besamuring 8.5 Ac
Tt sied trapts
Titat tuas so ave. is ose

imple: Niver

Dolas lequaose: sipol
**Taser mect

thoy. is. ct ive.is
FLla, LaLLiNot-bhan 1 Invesn-6ti

2eta at - impane
気
if Appeneniona

Itm betehatin a:a m
库 siat 65D4
foull kilie 1 mity to tac:

Nose myence: sipa
maver noll

finple NEC Dyecsung methias

wade-650 "pokle ner"

bine Brivankety 3.2 So
rf asel ettis

Havyle: Arasy 1
tiaglo fibi e atuesil it

hales ingenge: sipul
Snl-ami atel)
towy is itet ine.a 1

romb-eid "powele rine"
hala, Molap a.alt wis
sm vian 1. 3m me
Gation 24 ths. 1 Be

Boesc to a
senwinionaty in
Eatri-4t molulinal
sam smoctarsic
Lise monaming 8.1 ila

200	180	160	140	120	100	00	60	40	20

Aviple: TMEE. 3
Ampla in aciliansot is

ad-sae. ooct

Mine tally i. 800 met
Than in is ayean
ton. tien 1.39 m

zith anocentinc

TT *ise expm
Tonsil uan 1 mis. 11 neo

Haple Ambia I
Aeple Br a.insinve. is

moi-her. ates a

tapla itk opecanac sinaube
Fils alliphis-azer 1 Goboor-lea
veas-asit pabiba-ner

Anlas solisy 1.250 anc

Am. timil lite mot

1000 aponin土as.

Nowe 62

asm-ve Eivata
ain blickuatis
Lina nevasinusy 8.18 It
IT dyel sมypt
Tenst tive po anc, 44 ave

220	200	180	165	140	120	100	80	60	40	20	0

supple aman.
maqua ai camivan si

Aencie manc. 1 merevene tidels
fagio is. a ataasicic as


```
    |abank mbl\
sapis gis. opacases, wawe
fole askas+i++hate i mowhown abcit nomiv-ves
```



```
    Niak. dutay It ant an
    2vilut IE 1 Syenat
    LGy kane 1 300 mov
    cosuk aums a se
```



```
    Numer az am
```



```
    ##%F-at mblela
Ives Esvavinum, I & Ec
rt *is4 s3am% 
Drusk vies !ा sin.4 mer
```


sanylan same 2

Halse minence: Alpoll

Filyai kiv, operantici kis,as

Whas sisu 7 , M.

tats afockarns
Lise hrmatesiop 0 al Ht
Tr sine ate as
Theat velat I san. 83 sat

Anles Anquases: silpol
Asamen mety

Thaks-kse 'pokis-anc'

Wian sotay 5.230 wat

an. vian 1.908 m
mamb sutwe 4 By
3255 daptestever

Dever is
anselanedip an

in save Lims
fosal cime is mint, o woce

fuaple: ogine I mpanas

hater mquon: Relpel.
Antams.ascla

tanyta iac. specanot abitu

veneb-4ill "pehble rex
main gatioy nipon man
halm in. 8 anotes
An, sam 1. net mor
Cosot 2athe. 4 ko
ast aspatiousy

sower an an

fancols mincian

The4t taki 24 kes, T tee

[^0]: *Reprinted from FEEBS Letters, 581, Angela Yeou Hsiung Yu and Walid A. Houry, ClpP: A distinctive family of cylindrical energy-dependent serine proteases, 3751, (2007), with permission from Elsevier

[^1]: ${ }^{\dagger}$ Reprinted from FEBS Letters, 581, Angela Yeou Hsiung and Yu, Walid A. Houry, ClpP: A distinctive family of cylindrical energy-dependent serine proteases, 3754, (2007), with permission from Elsevier.

[^2]: ${ }^{\ddagger}$ Reprinted by permission from Macmillan Publishers Ltd: Nature Structural and Molecular Biology 17-4, 473, 2010.

[^3]: § Reprinted from Chemistry \& Biology, 18, Walid A. Houry et al., Activators of Cylindrical Proteases as Antimicrobials: Identification and Development of Small Molecule Activators of ClpP Protease, 1176, 2011, with permission from Elsevier.

[^4]: ${ }^{\text {a }}$ Prepared via Method A. ${ }^{\text {b }}$ Prepared via Method B. ${ }^{\text {c }}$ Prepared via Method C.

[^5]: ${ }^{\text {a }}$ Prepared via Method A. ${ }^{\text {b }}$ Prepared via Method B.

