
Characterizing the Association between Brain
Morphology and Behavioural Symptomatology in Autism
Spectrum Disorder and Attention Deficit Hyperactivity

Disorder

by

Sina Panahandeh

A thesis submitted in conformity with the requirements
for the degree of Masters of Applied Science

Institute of Biomaterials and Biomedical Engineering
University of Toronto

c© Copyright 2019 by Sina Panahandeh



Abstract

Characterizing the Association between Brain Morphology and Behavioural

Symptomatology in Autism Spectrum Disorder and Attention Deficit Hyperactivity

Disorder

Sina Panahandeh

Masters of Applied Science

Institute of Biomaterials and Biomedical Engineering

University of Toronto

2019

Autism spectrum disorder (ASD) and attention deficit/hyperactivity disorder (ADHD)

are prevalent and highly co-occurring neurodevelopmental disorders. The brain corre-

lates of these disorders remain mostly unknown. This is partly due to the limitations

of existing analytic methods in coping with the large within disorder variability and

overlap between disorders. To address this challenges, we propose a new method

called Bagged-Regression clustering for data-driven discovery of diagnosis-agnostic

subgroups that may share brain-behaviour associations. This approach clusters the

sample data into K groups, each with its own linear regression function. Using both

simulated data and a real-dataset of brain-behaviour associations in ASD and ADHD,

we show that the proposed method is able to recover multiple regression lines in the

data.
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Chapter 1

Introduction

1.1 Chapter Overview

We will define our research question and explain the rationale behind this study

in section 1.2. In section 1.3, we introduce a possible solution to the analytical

gaps in autism spectrum disorder (ASD) and attention deficit/hyperactivity disorder

(ADHD) studies. Section 1.4 covers the contributions of this study and section 1.5

will give a brief overview of the futures chapters.

1.2 Rationale

Autism spectrum disorder (ASD) and attention deficit/hyperactivity disorder (ADHD)

are complex neurodevelopmental disorders. ASD is primarily characterized by atyp-

icalities in social communication function as well as the presence of repetitive be-

haviours and restricted interests [6], and affects 1.5-1.7% of children [12, 91]. ADHD

is defined by the presence of one or more features of hyperactivity, inattention and

impulsiveness that interfere with daily functions [6]. The prevalence of ADHD is esti-

mated to be more than 7% [45, 120]. ASD and ADHD are defined qualitatively based

on constellations of behaviours. Currently, there are no neurobiological markers for

these disorders and their neurobiological underpinnings is poorly understood.

ASD and ADHD are highly co-morbid. For example, ADHD symptoms are present
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Chapter 1. Introduction 2

in 30-80% of ASD population; meanwhile, 20-50% of people diagnosed with ADHD

show strong traits of ASD [102]. Looking at dimensional characterization of core-

domain features of each disorder, there is also considerable overlap between ASD and

ADHD. For example, social skills difficulties (core ASD feature) have been reported in

samples of children with ADHD [115], and impulsivity and inattention (core ADHD

feature) have also been reported in individuals with ASD [103]. Beyond phenotypic

overlap [14, 8, 132, 123, 23, 46, 107], there is emerging evidence to support shared

etiology [104, 114, 102, 74, 77, 76] and biology [5, 29, 88] in ASD and ADHD.

In addition to cross-diagnosis overlap, there is also large variability within ASD and

ADHD. For example, a recent study showed that 26 mouse models of ASD could be

clustered in three subgroups, each with different brain morphology characteristics,

supporting the notion that ASD is not defined by a single neuroanatomical pattern

[40]. Studies have also shown significant ethological heterogeneity in ADHD [48, 86,

73, 52, 109]. Neurobiological findings in ASD and ADHD have been highly variable in

both the reported affected regions and the effect type [7, 40, 128, 72]. This variability

poses a significant challenge to understanding of these disorders, especially when it

comes to characterizing the neurobiology underlying the behavioural symptoms.

The cross-diagnosis overlap and within-diagnosis variability motivates a dimensional

conceptualization of these conditions that goes beyond diagnostic labels to explain

the underlying neurobiology of behaviours that cut across multiple disorders. How-

ever, very little is known about the neurobiological correlates of these difficulties.

For example, it is unclear if social difficulties in ASD and ADHD share the same

underlying neurobiology, or if these difficulties are associated with disorder-specific

neurobiological features.

To answer the above question using traditional statistics, regression analyses can be

used to characterize the association between brain and behavioural measures (e.g.,

cortical thickness and social function [37]). To investigate similarities and differences

between diagnoses, a main effect of diagnosis or interaction effect involving diagno-

sis can be included in the model. For example, several studies have attempted to

characterize neuropathology of social functions in ASD [66, 37] and ADHD [89] us-

ing traditional statistics. These approaches assume that diagnostic labels correspond

to homogeneous groups, an assumption that is challenged by the presence of large

within-diagnosis variability. In particular, linear regression analysis is not suitable

for characterizing samples where multiple types of associations are present. This
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challenge gives rise to a need for analytical methods that allow for different types of

associations to emerge within different subgroups. Figure 1.1 is an example where

traditional regression techniques relying on pre-defined diagnostic labels are not ade-

quate to explain the data. As seen, the data are characterized by two regression lines

with different slopes. In cases where these lines do not align with diagnostic labels,

traditional regression analyses will fail to detect the two distinct associations.

(a) Single Regression (b) Multiple Regressions

Figure 1.1: Examples

There is already evidence to suggest that multiple types of brain-behaviour associ-

ations may exist in ASD [40, 60, 125] and ADHD [109, 9, 115], further highlighting

the needs for new analytical approaches that can discover subgroups that may share

similar patterns of brain-behaviour associations [4, 119, 131, 15].

1.3 Overview of the Proposed Approach

Motivated by the challenge of understanding neurobiological correlates of social dif-

ficulties across disorders, this thesis focuses on developing analytical techniques for

discovering multiple types of linear associations in samples of data. To this end, I

propose the use of machine learning techniques to model linear associations in data.

The proposed approach builds on the concept of regression clustering (RC), an un-

supervised learning method, for discovering clusters of associations. RC is similar to

other centre-based clustering methods (e.g. K-Means), but instead of representing

clusters by features in one domain, each cluster is represented by a regression func-

tion. In essence, the results of RC are not groups of participants that share brain or

behaviour representations, but groups of participant who lie on the same regression

line characterizing brain-behaviour associations. Applied to the problem of finding
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brain correlates of social difficulties in ASD and ADHD, RC will result in subgroups

of individuals who share similar brain-social behaviour associations.

Previously designed RC algorithms are limited when applied to data that has outlier

points (eg. points that do not belong to any cluster) and have difficulties when two

cluster intersect one another [10]. To address this gap, I introduce a novel RC algo-

rithm that is based on multiple bagged robust regression models. Bagging enables

us to find multiple correlates in the data and robust regressor allow the model to

perform well in presence of outlier points. Our algorithm, called bagged RC (B-RC),

is capable of characterizing the potentially complex relations (existence of multiple

subtypes with distinct correlates) of the brain structure and social communication

function. I apply this technique to multiple simulated data sets to examine its sen-

sitivity characteristics; then, I use the same pipeline to analyze the brain-behaviour

correlates in ASD and ADHD.

1.4 Contributions

The main technical contribution of this thesis is an analysis pipeline, B-RC, for dis-

covering multiple regression lines that explain the association of brain-phenotype pat-

terns across ASD and ADHD. Unlike traditional statistical methods, the proposed

method allows for the existence of multiple subtypes with distinct brain-behaviour

correlates. Moreover, the proposed method can detect clusters of simulated data in

presence of outliers and when clusters intersect as we will show in future chapters.

The proposed pipeline was applied to examine associations between social communi-

cation abilities and cortical thickness in a sample of children with ASD and ADHD.

Our results suggest that 1) multiple types of associations do exist in these data, and

2) the association subtypes discovered through our data-driven, diagnosis-agnostic

approach do not align with existing diagnostic categories. To best of our knowledge,

this is the first investigation of regression clustering in neurodevelopmental disorders.

In this thesis, I demonstrate the utility of the proposed pipeline for the specific case of

social communication function/ cortical measure association. However, the pipeline is

not limited to this type of data and can be applied to other data sets where discovery

of multiple types of linear associations are of interest.
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1.5 Thesis Overview

The rest of this document is structured as follows: Chapter 2 provides a review of

relevant literature including existing studies of neuroanatomy in ASD, ADHD, as well

as a review of machine learning concepts relevant to the proposed pipeline. Chapter

3 describes the proposed pipeline. Chapter 4 presents a detailed overview of the data

sets used to examine the utility of the proposed pipeline. Experimental results are

provided in chapter 5. In chapter 6, we will discuss the results and potential gaps of

the proposed method. Chapter 7 summarizes contributions of this thesis and provides

directions for future work.



Chapter 2

Background

2.1 Chapter Overview

This section provides a summary of the literature relevant to this thesis and an

overview of background concepts. We begin by an outlook over social functions and its

relevance in ASD and ADHD (section 2.2). Next, we will highlight previous findings

regarding the neuroanatomy of ASD and ADHD with a focus on social communication

processing (section 2.3). We provide a background on relevant machine learning topics

(section 2.4) and discuss current challenges and gaps in the literature (section 2.5).

Lastly, we explain the objectives of this study (section 2.6).

2.2 Social Difficulties in ASD and ADHD

Social perception and social communication difficulties are among the core symptoms

of ASD [14, 100, 51]. According to the Diagnostic and Statistical Manual of Mental

Disorders (DSM-5), these include deficits in social-emotional reciprocity, nonverbal

communication behaviour (e.g., gesture, eye contact), and difficulties in developing

and maintaining relationships [6].

At the same time, these difficulties have been reported pervasively in other neurode-

velopmental disorders, including ADHD [14, 123, 51, 84]. Children with ADHD are

suggested to have poorer social and communication skills than those without [130].

6
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Interestingly, the degree of social impairment is thought to increase with comorbidi-

ties such as oppositional defiant disorder or conduct disorder [130]. In many cases,

children with ADHD may have difficulties with peer relationships, partly owning to

difficulties with social exchanges such as sharing and turn taking [98, 130]. Difficulties

with social perception have also been reported in ADHD [14].

Although social communication difficulties are associated with both ASD and ADHD,

it remains unclear whether the neurobiology underlying these difficulties is shared

across these disorder or if it is disorder specific.

2.3 Brain Correlates of Social Difficulties

Social function is modulated by a network of cortical and sub-cortical regions in the

brain [119, 15, 65]. The social brain enables social cognition and ultimately social

functions; hence, it is an integral part of neurological and psychiatric disorders [65, 15].

In this section, we review previous studies on brain correlates of the social behaviour

and function.

Several studies have attempted to find the neurology behind social functions. Several

cortical and sub-cortical regions including the amygdala, insula, temporal-parietal

junction (TPJ), dorsal-medial, ventromedial prefrontal cortex (dM-PFC), the ante-

rior and posterior cingulate cortex, the superior temporal sulcus/gyrus (STS/STG),

retrosplenial Cortex, fusiform face area (FFA), and the temporal pole have all been

reported to be involved in social communication function [119, 65, 27].

The anterior insula is thought to be involved with the conscious and unconscious

social processes (social cognition) [18]. The amygdala is also involved in social cog-

nition and responsible for generation emotions in social interactions. The anterior

cingulate cortex (ACC) is involved with social cognition and regulation of emotion in

social settings [18, 99, 41]. Posterior-STS is shown to be involved with face processing

[18]. Ventral striatum are among the regions responsible for generating social related

emotions. Regions of dorsal and ventral lateral PFC, Posterior medial PFC are re-

ported to be involved with regulating emotions that arise from social interactions.

TPJ, dM-PFC and precuneus have been identified to be correlated with deducing

mental states and empathy [99]. For quantitative information (e.g. coordinates) on

regions involved with the ”social brain” you can refer to [2] where Alcal-Lpez et al.
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has compiled a detail atlas of these regions (see page 6).

Previous studies show that the ”social brain” consists of multiple regions as shown

above. Multiple theories have been introduced to explain how a network of these

regions work together to enable social cognition [2, 87, 18]. One such theory is called

the ”Social Information Processing Network” [87] which introduces a three-layered

network of nodes. The ”detection node” which is responsible for understanding the

social aspects of a stimuli such as various motions involved with social interactions.

This node involves regions such as the intraparietal sulcus, STS, FFA. Next, is the

”affective node” which processes emotions involved in a social act and involves regions

such as the amygdala, the ventral straitum, hypothalamus and orbitofrontal cortex.

Lastly, the ”cognitive regulatory node” which is tasked with understanding the psy-

chological state of others in social interactions as well as generating goal oriented

social behaviour.

2.3.1 ASD

In this section, we will begin by highlighting the previously found significant regions

in ASD. Then, we will review previously suggested regions specifically related to social

mechanisms in ASD.

Studies of brain morphology in ASD have revealed mixed and sometimes discrepant

results. Volumetric structural MRI studies between typically developing children

(TD) and children with ASD have reported brain differences in total brain volume,

gray matter (GM) volume, and white matter (WM) volume [30, 32, 53, 108]. Several

studies reported brain enlargements during infancy followed by a quiescent period

during puberty in ASD groups compared to TD [39, 32, 58].

A few studies have suggested brain enlargements in adulthood [58, 44, 54]; in contrast,

there have been a few papers to show reduced gray matter volume in regions such

as medial temporal gyrus, fusiform gyrus, amygdala, medial frontal gyrus in adults

with ASD [108]. Enlargements in pallidum and lateral ventricle volumes have been

reported [122]. There is contradicting studies for atypical brain size in other brain

regions such as the frontal cortex [63, 82], superior temporal sulcus [19], inferior

parietal lobule [50] and cingulate [58, 22].

Cortical thickness and cortical surface area analysis of individuals with ASD has
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shown an increase of gray matter compared to TD in frontal and temporal lobes;

while a decrease in the gray matter has been reported in temporoparietal junction

and cerebellum [38, 43]. Left lateralized cortical thickening in childhood (¿6 years)

has also been reported with diminishing abnormalities in adulthood [66].

Impairments in the reported brain regions are often correlated with social mechanisms

[108, 58, 66, 37]. While the neural correlates of social function in ASD are not fully

understood, a network of regions including the amygdala, insula and cingulate are

suggested to be involved [65]. Another study has reported atypical surface area in

the right cingulate in ASD population and concluded enlargement in the insula and

isthmus surface areas to be associated with poor social functions [37].

2.3.2 ADHD

In ADHD, reduced grey matter volume has been reported in ACC, basal ganglia,

the dorsolateral prefrontal cortex, orbitofrontal cortex, inferior frontal cortex, medial

prefrontal cortex [20, 33, 105, 59, 112, 111, 33], cortical thinning of the cortex in

medial and superior prefrontal and precentral regions has also been reported in ADHD

population when compared to TD [110].

2.3.3 Cross-Diagnosis Studies

Few studies have analyzed these neurodevelopmental disorders in pairs. ASD-ADHD

studies show reduced grey matter volume in temporal lobe and increased grey matter

volume in inferior parietal cortex [26]. Studies have also shown smaller grey matter

cerebellum in ADHD and ASD populations [36, 75]. Neuroimaging investigations of

ASD and ADHD groups have shown common abnormalities in left inferior frontal

gyrus, frontal cortex, caudate nucleus and amygdala [58, 47, 90, 89].

2.4 Machine Learning Preliminaries

In this section, we review a few mathematical and machine learning concepts that we

use in our analysis pipeline.
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2.4.1 Symptom Severity Prediction from Brain Morphology

in ASD and ADHD

Few recent studies have attempted to predict ASD severity scores based on structural

magnetic resonance imaging (MRI) measurements by performing regression analysis

[66, 109, 85, 60]. The regressor predicts a behavioural score for every participant;

the score is bounded in a range of possible values dependent on the behavioural

questionnaire used in the study. In the following, we will review these papers in

greater depth.

In [66], the authors first performed statistical analysis to identify regions with sig-

nificant differences in cortical thickness in ASD and then applied regression analysis

to show the relationship between cortical thickness abnormalities and ADOS sever-

ity scores in ASD population. Likewise, in [109], authors performed regression and

statistical analysis to better understand the volumetric brain measurements and be-

havioural ratings in ADHD population. In [85], the authors performed support vec-

tor regression (SVR) and cross-validation to obtain a symptom severity predictor.

The authors were able to achieve a mean absolute error (MAE) of 1.34 in predicting

Autism Diagnostic Observation Schedule (ADOS) severity scores. Hong et al. [60] in-

troduce a different approach to prediction of ASD symptom severity; the authors used

structural MRI and resting state MRI (rsMRI) to extract cortical thickness, intensity

contrast on white and gray matter boundary, cortical surface area and geodesic dis-

tance from each participant. Next, they normalized the ASD population data against

the distribution of TD participants and performed a hierarchical clustering to divide

the participants into three distinct clusters: ASD-I: cortical thickening, increased

surface area, tissue blurring; ASD-II: cortical thinning, decreased distance; ASD-III:

increased distance. After dividing the participants into three subtypes, they applied

regression by gradient boosting to predict ADOS based severity scores and reported

MAEs of 2.080.14, 3.260.31 and 2.710.17 for each cluster respectively.

2.4.2 Regression Clustering

Clustering is an unsupervised learning method that can be generally defined as a way

to find groups of samples in the data that share a common pattern. There are multiple

ways of achieving this task (e.g. hierarchical clustering, K-Means) [70]. A branch of
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clustering approaches are known as the centre-based clustering algorithms where each

cluster is represented by a single point (e.g. K-means). As described by [133], any

centre-based clustering algorithm that represents each cluster by a regression function

is part of the ”Regression Clustering” (RC) family of learning algorithms. These set

of algorithms have also been referred to by other names such as ”Clusterwise Linear

Regression” [118, 34, 117, 116, 56, 55, 57, 133, 10, 11, 35].

RC is used when the nature of data is continuous and multiple coexisting regression

patterns are present in the data. RC generally involves the following steps (a detailed

version can be found in [133]):

Step1: Pick K regression functions on subsets of data from the entire set (in case

where the subsets are overlapping, we can have a soft clustering mechanism where

each point can be assigned to multiple clusters).

Step2: Iterate over all points and obtain a prediction error from every cluster-centre

(regressor). Then move each point to that cluster that produced the lowest residual

for that point.

Step3: Update the regression function of each cluster since the cluster memberships

have been altered in the previous step.

Step4: Repeat steps 2 and 3 until no change in cluster membership is detected.

Most centre-based clustering algorithms are known to be sensitive to their initial-

ization steps (e.g. K-means) [133]. A popular way to combat this gap is to perform

multiple random initializations and report the ”best” results or compare the outcomes

to observe if any common pattern arises [133, 127, 10, 78].

2.4.3 Bagging

Bootstrap aggregating or ”bagging” is concept frequently used in ensemble learning

algorithms. The idea is to use ”bags” of sub-sampled data from the original data

set in order to train multiple predictors [24]. In ensemble methods such as random

forest, the outcome of multiple predictors are averaged for the final prediction [25].

We will describe in chapter 3 how we employ this idea for our analysis.
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2.4.4 RANSAC Regression

The random sample consensus (RANSAC) is a popular regression method that has

the ability to interpret the data that contains gross errors (outlier points) [42]. The

RANSAC algorithm is an iterative model where a random minimal sample set (MSS)

(eg. MSS=2 when finding the line of best fit) of data is chosen at every turn in search

of the best consensus set. To find the best consensus set, the algorithm fits a model

to the MSS and examines the distance (using a user defined loss function) of all point

in the data set to the fitted line; using a user defined distance threshold the model

then counts the number of ”inliers” (number of points within the defined thresholds)

and selects the model with the highest number of inliers to interpret the data and the

inliers are also referred to the best consensus set [42].

In the context of this paper, we chose to use RANSAC regression because of its

robustness towards outlier points. Regression method is suited because the nature of

our real world data is a continuous spectrum rather than discrete measures (we will

discuss the data properties in chapter 4). Robustness is a desired property since the

brain-behaviour is known to be a complex problem as explained in previous sections

of this chapter.

2.4.5 Spectral Clustering

Spectral clustering techniques use a similarity matrix is to partition the data into

distinct groups where the data points inside a cluster are highly similar to each

other. Similarity matrix describes the ”similarity” of any pair of data points. The

”similarity” measure can be defined differently depending on the application. We

will describe our definition of a ”similarity” score and how we calculate the similarity

matrix in chapter 3. One of the ways to perform spectral clustering is defined in [113];

where the authors use the eigenvectors of the similarity matrix to define the data set

in a new space and use k-means to cluster the points in the newly defined space.

Please see [113, 126] for a more detailed explanation. We chose spectral clustering

because it has been shown to perform better than other clustering methods such as

k-means [126].
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R-Squared

The coefficient of determination or R-Squared (R2) is a well-known goodness of fit

measure in regression problems. Past studies have introduced multiple definitions for

this measure [69]. Assuming that there is a set of predictor variables X = {xi|i =

1, ...,m} which contains information about a dependent variable Y = {yi|i = 1, ..., n};
or in other words, a set of data points with m features with information about a

response Y on n number of samples. Let Ŷ be the prediction of Y obtained from

a regressing function. Additionally, let us define
¯̂
Y and Ȳ as the mean of Ŷ and Y

distributions respectively. In the context of this thesis, we use the following definition

of R2 [69, 71]:

R2 = 1− Σ(Y − Ŷ )2/Σ(Y − Ȳ )2 (2.1)

This definition of R2 provides insight into the amount of variation in the data [(Y )

around its mean (Ȳ )] that the regressor model can explain. As it can be seen from

2.1, the R2 is a dimensionless measure and its value approaches the higher bound

R2 ≤ 1 for better predictions. On the other hand, the value of R2 decreases to near

zero (linear cases) or negative (in nonlinear cases or with presence of outliers) [69, 71].

2.5 Challenges and Gaps

Structural and functional neuroimaging techniques have enabled researchers to cap-

ture and hypothesize brain networks related to social functions. Despite the advances

in imaging and our understanding of the ”social brain”, it remains unclear whether or

not there is a shared social brain network in neurodevelopmental conditions such as

ASD and ADHD that can explain the social communication deficits observed in these

diagnostic categories [4]. There is increasing evidence to suggest a common pattern

in symptoms and biology of these disorders. As a result, there has been a call for

research in neuropathology of these conditions that span across multiple diagnostic

categories [131].

Furthermore, most relational studies on brain scans and social symptom severity

scores target a single diagnostic category (ASD or ADHD) and use traditional sta-



Chapter 2. Background 14

tistical methods which are limited in the type of associations they can find. These

methods do not allow for presence of multiple types of brain-behaviour associations

(subtypes).

As we discussed, there has been an effort by Hong et al. [60] to allow for multiple

subtypes of ASD while exploring the brain regions that are correlated with symptom

severity score; however, the clustering (subtyping) and symptom score prediction

(regression) are performed separately of one another. Therefore, there is no feed back

from the regression function to affect the subtypes. Subtypes obtained in this manner

may not be a direct outcome of the brain-behaviour associations.

We believe regression clustering has the potential to address this analytical gap. By

applying regression clustering to data from all diagnostic categories we hope to address

these gaps. However, RC algorithms proposed in [133, 10] have been shown to be

limited on contaminated data (presence of ”outliers”). Furthermore, the traditional

RC algorithms are sensitive to the initialization stage and the number of clusters

need to be defined before analysis. To address these gaps, we will introduce a new

novel regression clustering that is capable of robust clusterwise regression. We will

introduce a new algorithm for estimating the number of clusters.

2.6 Objectives

In this study, we propose to use machine learning tools to characterize the links be-

tween structural brain morphology and social communication function in ASD and

ADHD. We expect to find 1) a significant correlation between brain morphology and

social communication deficit severity scores and 2) a subset of brain regions con-

tributing to this relation. We also expect that there will be collections of individuals

who do not follow the model, reflecting different etiologies or interactions of comorbid

symptomatology with social function. Our objectives are four-folds:

1. Allowing for multiple subtypes in our analysis;

2. Coupling of clustering and regression;

3. Determining brain features that best predict social function severity scores in

ASD and ADHD;
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4. Determine if the potential subtypes are separable by traditional diagnostic cat-

egories.



Chapter 3

Research Methods

3.1 Chapter Overview

Figure 3.1 illustrates an overview of our analysis pipeline. We will explain each

step in this chapter. We will propose a regression clustering algorithm based on

random sample consensus (RANSAC) and spectral clustering to characterize linear

brain-behaviour correlations (section 3.2). The proposed pipeline is implemented in

Python (version 3.6) and takes advantage of open-source software packages provided

by the SciPy community (Scientific Computing in Python) [96, 67, 62, 92, 83, 64, 95]

and others [129, 31]. Lastly, we describe our validation measures to examine cluster

stability and analyze significant features (section 3.3).

3.2 Bagged Regression Clustering

We propose a regression clustering algorithm based on bagged regression and spectral

clustering, which we call bagged regression clustering (B-RC) to follow the naming

convection used in previous literature [133]. The input to the algorithm two vectors

of response (eg. social communication score) and feature (eg. measurements of a

brain region). The first step is to build a similarity matrix that characterizes the

similarity between two data points (eg. participants) with respect to a regression line

(3.2.1). The next steps are to estimate the number of clusters in the data and group

(or cluster) the data points based on their spectrum of similarity scores (3.2.2). The

16
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Input Data

Start

Estimate the Number of 
Clusters

Compare to Random 
and Permutation 

Importance

End

Cluster Analysis

Preprocessing

Validation Analysis

Spectral Clustering

Build Affinity Matrix of 
Samples

Figure 3.1: Analysis Pipeline Overview

output of the algorithm is cluster assignments for each data point (or participant in

the case of our real world data set). A general overview of the processing procedure

is visualized in Figure 3.1. We introduce a novel way of building a similarity matrix

based on regression outcomes from random subset of samples (bags) that allows us

to map the similarities of participants to each other which enables finding multiple

regression lines in the data. Additionally, we will discuss a scatter measure to estimate

the number of clusters based on within and between cluster similarity scores.

3.2.1 Building the Affinity Matrix

The goal is to build a similarity matrix S := (si,j), where si,j denotes the similarity be-

tween two data points i and j (i, j ∈ {1, 2, .., N}; N : number of points in the data set).

In case of regression clustering, the similarity between two points is expected to be

high when both samples belong to the same hyper-plane in any given space. In this

report, we will limit our analysis to the two-dimensional space defined by a feature

(e.g., cortical thickness) and the response (e.g., measure of social function). There-

fore, if there exists a linear correlation between the feature and the response, samples
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that are in close proximity of the line are thought as ”similar” to each other. To

compute the affinity matrix, several steps are taken as described in Figure 3.2. These

steps include bagging, fitting a regression line to samples in each bag, finding the dis-

tance of each point to the line, transforming distances to similarity values, computing

affinity values, and updating the affinity matrix. These steps are described in detail

in what follows.

Create a bag of samples

Update Affinity Matrix

Build Affinity Matrix

Find the line of best fit

Find the distance to the predicted 
line for all the samples

Transform the distance measures 
to similarity scores

Calculate the affinity of samples to 
each other using their similarity 

scores to the line

Repeat

Figure 3.2: Overview of building the affinity matrix

Bagged Regression

Bagging for multiple iterations allows us to look at small portions (individual bags) of

the data set and examine if the relation between those samples (if any) can generalize

to the entire data set. If we perform regression on the entire data set we could be

missing correlations if the data set is made up of multiple correlations as we explained
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in previous chapters. In our analysis pipeline, bagging prior to regression allows us

to examine the existence of multiple correlations in the data set. We see if there is

any linear correlation in each bag and if there is, we then look at the entire data set

to examine if the linear relation also generalized to other samples in the data set.

Bagging has been applied to ensemble regression models such as random forest [25]

however, this is the first time that bagging is applied to regression clustering to the

best of our knowledge.

Bagging will create random bags of samples without replacement (K iterations in

total). The bag size is set by the user as a percentage of the entire sample size (x%

of the entire set).

Finding Line of Best Fit

At each iteration we perform a RANSAC regression on the given bag of samples. It

is not guaranteed that the RANSAC algorithm will find a consensus set in every bag;

therefore, we do not expect the regressor to converge at every iteration. In other

words for K iterations the total number of regression lines will be m ≤ K. We expect

to have participants in our real world data that do not belong to any cluster; such

data points are often referred to as ”outlier” points in context of regression. We chose

the RANSAC regressor of its robustness to outliers [42].

Distances to the Line

At each iteration, once a regression line is found, we calculate the prediction residuals

(distance measures) from the regressor for all samples - these distances are used to

build a similarity measure. The distance, for the ith sample at iteration k, is defined

as:

ri,k = yi − ŷi,k, (3.1)

where yi is the actual value of response and ŷi,k is the predicted response value for

the ith sample in the kth iteration.
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Similarity Scores

For each bag, the residual (ri,k) between the predicted value using the regression line

is computed using Equation 3.1. The distance measure gives information about the

the generalizability of the line in the data set since points that are far from the would

have large residuals. The the generalizability of the line in the data set increases as

the number of points with negligible residuals increases. We transform the distance

into a similarity measure using a Gaussian kernel as defined in Equation 3.2.

ai,k = αe
β(
ri,k−r̄k
σrk

)2

, (3.2)

where, ri,k is the residual for the ith sample at iteration k, and r̄k and σrk are the the

mean and standard deviation of the ”inliers” within the bag as determined by the

RANSAC regressor. This normalization allows us to determine how the residual ri

compares to the residuals from the data points that define the regressor (inliers).

There are many ways to convert a distance measure to a similarity score; we use

a Gaussian kernel to be able to control the smoothness of the transformation (at

which point we want to reach a low similarity score). The two variables of α and

β in Equation 3.2 are design parameters used to control the height and width of

the Gaussian kernel and can be selected based on the application based on a desired

similarity score for when a residual reaches a threshold. In our case, these parameters

were chosen so that the function yields a similarity score of 1 for residuals that are 2

standard deviation away from the mean (r̄k) and points that are farther would have

a similarity score of < 1. This design constraint resulted in values of α = 10 and

β = 0.6.

Given ai,k, aj,k, we use Equation 3.3 to describe the similarity of the points to each

other (si,j,k) as follows:

si,j,k = ai,k.aj,k (3.3)

Using Equation 3.3, similarity of two points would be highest only when both points

have a high similarity score to the line (small distance, small prediction residual). In

turn, the similarity score of two points would be lower if only one point has a high
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similarity score to the line and it would be lowest when both point are far from the

line.

Calculating the Affinity Matrix

From Equation 3.3, we can build the an affinity matrix Sk := (si,j,k). Next, we

average all affinity matrices over K iterations to build the final affinity matrix as

described in Equation 3.4. The obtained affinity matrix is then used for clustering as

detailed in the next section.

S =

∑K
k=1 Sk

K
(3.4)

3.2.2 Clustering

Several methods exist for clustering an affinity matrix and among these we picked

spectral clustering. After obtaining the affinity matrix which describes the similarity

of samples to each other, we use spectral clustering to obtain clusters of samples.

Clustering allows us to create groups of samples that are similar to each other as

defined by Equation 3.3. If these are any linear relationships between the input and

the response for a group of samples, we expect that it would be shown in the obtained

clusters.

Spectral clustering algorithm requires the number of clusters to be defined before

performing clustering. To estimate the number of clusters, we first assume that there

are n clusters in a data set. For each cluster we define a within-to-between scatter

ratio:

µCθ =
Median(WithinCθ)

Median(BetweenCθ)
. (3.5)

Equation (3.5) is the ration of the similarity of data points within a given cluster

(within cluster similarity) to similarity of the data points within that cluster to all

data points outside the given cluster (between cluster similarity). In Equation 3.5, we

use the median similarity scores between the data points assigned to the same cluster
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to estimate the ”within cluster similarity” (Median(WithinCθ)); similarly, we use

the median similarity score among the points within the cluster and points outside

of that cluster to estimate the ”between cluster similarity” (Median(BetweenCθ)).

We chose to represent the within and between cluster similarities with the median

measurement since we did not want to make assumptions about the distribution of

the score and the median is considered a robust measurement to represent the data

even under skewed conditions. The ratio in Equation 3.5 increases as the data points

in a cluster become more similar to each other and/or dissimilar (low similarity score)

to data points outside their cluster.

Since it is desired to obtain differentiated clusters, we seek to find the best number

of clusters (n) to maximize Equation 3.5 for all clusters. To account for clusters with

different number of points, we use the following:

φn =
n∑
θ=1

µCθ .
NCθ

Nθ

, (3.6)

where NCθ is the number of samples in cluster θ and Nθ is the total number of samples

in the data set.

Equation 3.6 uses the weighted average of all individual cluster scores obtained from

Equation 3.5 to build a score for when the clustering is performed at a defined number

of clusters. The weight of each score (µCθ) in Equation 3.6 is based on the number of

samples within a cluster since we value larger clusters more than clusters with fewer

samples. Large sample size in a cluster is an indication of its generalizability in the

entire data set.

In summary, the number of clusters is obtained as follows: cluster the samples multiple

times where each time the clustering is performed at a different number of clusters

(e.g., 2 to 10 clusters); use the labels from each clustering and the affinity matrix to

calculate a ratio of within to between cluster affinity for each cluster as defined by

Equation 3.5; then, calculate the weighted average scores of these ratios as defined

in Equation 3.6 for each time the pipeline is initialized with a different number of

clusters; Last, compare the scatter ratios for different number of clusters (φ2 to φ10)

and use the first local maximum score as an estimation for the total number of

clusters in a given data set. We choose the first local maximum as opposed to the

maximum score since the ratio in Equation 3.6 can artificially increase for high number
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of clusters. By increasing the number of clusters we expect to see smaller clusters

with higher within to between similarity scores(best case is when every point is its

own cluster since the similarity of a point to itself is the highest). The process is

summarized in Figure 3.3.

Take the affinity matrix as input 

Estimating the number of 
clusters

Cluster samples by spectral clustering into ”K” 
clusters

Calculated the scatter ratio for each cluster

Calculate the weighted average of all scatter 
ratios based on cluster size

Stop if the optimal condition is met

Repeat

Figure 3.3: Overview of the process for estimating the number of clusters.

3.3 Performance Evaluation

3.3.1 Known Labels

We use the adjusted rand index (ARI) [61] to measure the performance of a clustering

algorithm if the data has known labels (clusters are known prior to clustering). An

ARI score of +1 means the expected labels match the predicted labels from the
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pipeline perfectly and a score of 0 suggests that the agreement between points as

defined by predicted labels are not different from the agreement between points as

defined by randomly picked labels [61].

3.3.2 Unknown Labels

The previous sections described the B-RC pipeline for discovering multiple types of

association in samples of data. In the remaining of this section, we discuss method

that can be used to determine the significance of the obtained clusters when the true

labels are unknown.

Assume that the data points for a given Y = f(X) relationship are clustered into

n clusters; where Y is a response and X is an input (feature). The first goal is to

understand how different this clustering is compared to random grouping of the data

points. To evaluate if the discovered clustering is significantly different than chance,

we propose a permutation test to compare the scatter ratio obtained from the data

to that obtained by chance. To this end, we proposed two methods based on how

”chance” is defined (Sections 3.3.2 and 3.3.3). Second, if the clustering is significantly

different (p < 0.05) from chance, we would like to know if clusters are characterized

by a significant linear correlation between X and Y (Section 3.3.4).

Permutation Test

To this end, we build a distribution of random φn scores at different levels of n and

compare the φ score from the pipeline to the distribution to calculate a p-value for a

give clustering on X.

To create the random distribution, we randomize the relation between the feature

vector (X) and the response vector (y) by permuting the feature vector to create

another feature vector X ′. Next, we perform clustering on (X ′, Y ) via the proposed

pipeline: use the permuted feature to compute S′
i (Equation 3.4). We repeat this

procedure t times with different permutations of the original feature (1 < i ≤ t)

to obtain the set S′ = {S′
1, ...,S

′
t}. Finally, for a given number of clusters (n) we

will perform spectral clustering on all S′
i ∈ S′ and use the φ′

n,i values to build a

distribution of random scatter scores (φ′
n). This method has the advantage that it
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does not make any assumptions about the distribution of the response and feature

vectors. We use the following equation to obtain a significance p-value for φn:

p =
t∑
i=1

[φ′
n,i > φn] (3.7)

All generated p-values from this step are corrected for false discovery (FDR) using

the Benjamini-Hochberg method [16].

3.3.3 Random Inputs

In this section, we describe how a randomly generated data set can be used in the same

manner as section 3.3.2 to compare the performance of a clustering against clustering

to random data with a pre-defined distribution. Given a random data set (X ′, Y ′)

we perform the same steps as in section 3.3.2 to obtain a set of affinity matrices (S′)

based on random data and build a random scatter score distribution (φ′
n). Then,

we can use Equation 3.7 to calculate a p-value that describes how significant is the

difference between a given clustering score (φn) compared to a clustering with the

same number of clusters (n) on randomly generated data. In this study we used

uniform distributions to build our random data set. We only report the results from

this test to compliment to results from section 3.3.2 since we do not know the true

distribution of our real world data. As before, the generated p-values from this step

are FDR-corrected using the Benjamini-Hochberg method in [16].

3.3.4 Testing Significance of Associations

This section explains the procedure of understanding which clusters contain significant

linear correlations after detection of a significant clustering (p < 0.05 form Section

3.3.2). To do this, we perform a two-step process to determine 1) if the variance in

identified cluster can be explained by a linear model as measured by R2, and 2) the

type and strength of the linear correlation between the feature and the response.
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Adjusted R2

We use data within each cluster to perform an ordinary least squares (OLS) regression

and obtain the ”cluster’s adjusted R2”. This R2 measure is calculated using the

predicted response values (Y ′
Cθ

) and the true response values (YCθ) for samples in

cluster θ. This allows us to understand how much of the variance in the cluster can

be explained by a linear regressor. [71].

Type of correlation

If the obtained Adj.R2 is above the threshold of 0.3, we will use the coefficient value

in the OLS model as an estimate of the correlation strength between the input the

response as explained by the samples of that specific cluster. We consider a linear

correlation to be strong when the correlation coefficient is R > 0.5 (since 0 ≤ R ≤ 1

where the value of 1 represents a prefect correlation and the value of 0 represents no

correlation [71]). For linear models, coefficient of determination (R2) is equivalent to

square of the coefficient of correlation; hence the R2 threshold of d(0.5)2e = 0.3.
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Data Sets

4.1 Chapter Overview

This chapter describes the data sets used to demonstrate the function of the B-RC

algorithm. First, we use a simulated data set to validate the algorithm and examine

the effect of algorithm parameters (section 4.2). Second, we use a data set from the

Province of Ontario Neurodevelopmental Disorders (POND) Network to illustrate

how the algorithm can help in discovering brain-behaviour associations (section 4.3).

4.2 Simulated Data

We created a set of simulated data to validate the proposed algorithm. The purpose of

this set is to quantify the behaviour of the B-RC algorithm on a set with known cluster

labels, and to explore the effect of algorithm parameters on clustering performance.

Our simulated data set contained 6 clustering scenarios shown in Figure 4.1. These

cases were designed to contain similar types as associations reported in previous neu-

rodevelopmental studies; we designed the clusters to have positive and negative linear

relationships to the response which are inspired by reports of increase or decrease in

certain regions of the brain as we described in chapter 2. We considered cases with

2 or 3 clusters based on previous literature reports that have examined clustering in

ASD disorders [60, 40].

27
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(a) Case 1 (b) Case 2 (c) Case 3

(d) Case 4 (e) Case 5 (f) Case 6

Figure 4.1: Six distinct patterns were used to generate the simulated data sets.

To examine the effect of cluster size, we examined two variations of each of the

six cases above where the portion of samples contained in each cluster were varied

(number of samples in two-cluster cases: (50, 50), (50, 25); number of samples in

three-cluster cases: (50, 50, 50), (50, 35, 20)). Examples of these sets are shown in

Figure 4.2. We chose these sampling sizes so that the total number of samples be

close to the actual size of our real world data set (171 samples); we picked the smallest

cluster sizes be close to 20 samples since of the smallest found in a previous cluster

analysis in ASD was 19 samples [60]. We did not consider other constraints and the

rest were picked arbitrary.

We also varied the distribution of points within each cluster. We randomly sam-

pled one cluster from the Gaussian distribution and one cluster from the uniform

distribution for cases with 2 clusters; cases with 3 clusters have one cluster that is

sampled from the Gaussian distribution and two clusters that are sampled from a uni-

form distribution. For example, if a cluster is randomly sampled from the Gaussian

distribution, it means that the response for the points in that cluster are randomly

picked from a Gaussian distribution. Since we do not know the actual population

distribution of our real world data, we used the two commonly known distributions
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(a) Case 3 with cluster sizes of (50,
50)

(b) Case 3 with cluster sizes of (50,
25)

(c) Case 4 with cluster sizes of (50,
50, 50)

(d) Case 4 with cluster sizes of (50,
35, 20)

Figure 4.2: Proportion of number of samples in each cluster was varied to generated
additional simulated sets.

of Gaussian and uniform. The simulated features were normalized to have zero mean

and unit variance since the real world data are also preprocessed in the same manner.

We will describe the real world preprocessing in a future section.

Finally, to examine the effect of noise on algorithm performance, we considered the

above cases under three noise ratios: namely, 0%, 25% and 50%. This was simulated

by adding uniformly distributed random noise with the specified power to the base

cases. Examples of sets with different noise ratios are shown in Figure 4.3. For

example, 25% noise in a data set means that 25% of the entire samples size is consisted

of random points. In this report, we sometimes refer to noise as ”outlier rate”.
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(a) Case 6 at 0% noise (b) Case 6 at 25% noise (c) Case 6 at 50% noise

Figure 4.3: Test cases with three different outlier rates were considered.

We also defined a vector of true labels for each set such that points belonging to the

same cluster share the same label. Additionally, noise is defined as a separate cluster

and all added random points shared a similar label in data sets with noise rate of

greater than 0%. The above variations produced a total of 36 simulated test sets.

Table 4.1 provides details of each case.

2 Clusters 3 Clusters

Number of samples per clus-
ter

(50, 50), (50, 25) (50, 50, 50), (50, 35, 20)

Cluster distribution (Uniform, Gaussian) (Uniform, Gaussian, Uni-
form)

Noise 0%, 25%, 50% 0%, 25%, 50%

Table 4.1: Simulated Data Characteristics

4.3 POND Data

The second data used to illustrate the performance of the B-RC algorithm included

brain-behaviour data from a subset of participants who took part in POND Net-

work studies. POND is a research collaboration among multiple centres in Ontario,

Canada, aimed at characterizing a sample of children with neurodevelopmental disor-

ders on several measures ranging from genetics to neuroimaging to various phenotypic

measures.
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4.3.1 Participants

Data from a sample of 171 participants from POND were used for this study. The

included participants were 5-20 years old, had sufficient English comprehension to

complete the testing protocols, and did not have contraindications for MRI. Partic-

ipants were recruited through and tested at Holland Bloorview Kids Rehabilitation

Hospital and the Hospital for Sick Children. A primary diagnosis of ASD or ADHD

was required for inclusion in our data set. Diagnoses for the ASD groups was sup-

ported by the Autism Diagnostic Observation Schedule-2 (ADOS) and the Autism

Diagnostic InterviewRevised (ADI-R). ADHD diagnosis was supported by the Kiddie-

Schedule for Affective Disorders and Schizophrenia (K-SADS) and the Parent Inter-

view for Child Symptoms (PICS). Participants with missing imaging or behavioural

data were excluded from the analyses. Participants needed to have answered all items

in the Social Communication Questionnaire (SCQ) to be included in the study.

The research ethics boards at Holland Bloorview Kids Rehabilitation Hospital and

the Hospital for Sick Children approved the study. Participants who had capacity to

consent provided informed consent. For others, consent was obtained from guardians

and assent was obtained from the participants. Participants characteristics is reported

in Table 4.2.

ASD(n=121) ADHD(n=50)Total(n=171)

Age 11.90± 3.58 10.83± 2.34 11.59± 3.30
Sex (M:F) 98 : 23 42 : 8 140 : 31
Full-scale IQ 91.16 ±

24.52
(n=115)

98.78 ±
16.65
(n=37)

93.01 ±
23.04
(n=152)

SCQ Total 19.86± 7.71 8.20± 5.58 16.45± 8.90
SCQ
Soc/Com

13.21± 6.07 5.80± 4.60 11.05± 6.60

SCQ RRB 5.13± 2.13 1.74± 1.86 4.14± 2.57

Table 4.2: Characteristics of Participants

4.3.2 Measures

The utility of the proposed algorithm was demonstrated by examining brain-behaviour

associations across the two diagnostic groups of ASD and ADHD. In particular, we
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considered the association between symptom severity in the social communication

domain and cortical measures of volume, surface area, and thickness.

Social Communication Measure

We used the Social Communication Questionnaire (SCQ) - Life Time, to quantify

symptom severity in the social communication domain. The SCQ is a dimensional

measure of ASD symptomatology for individuals over 4 years of age. The SCQ is a

parent/caregiver questionnaire and consists of 40 yes/no questions probing ASD-like

symptomatology. This questions can be grouped into three categories of reciprocal

social Interaction, communication, and restricted, repetitive, and stereotyped be-

haviours [106]. For this study, We used the sum of the scores across the social (15

items) and communication (13 items) domains (Figure 4.4). The SCQ has been shown

to have good psychometric properties (internal consistency: .84-0.93, strong correla-

tion with the autism diagnostic interview total score, high discriminative validity

[106]).

SCQ

Social 
Communication

Social 
Interactions

15 Questions

Communication

13 Questions

Restricted 
Repetitive 
Behaviour

Figure 4.4: The SCQ score break down for the proposed analyses.
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Imaging Data

Structural MRI data was acquired for all participants at the Hospital for Sick Children

(Toronto, Canada). The majority of scans (n=134) were captured using a 3-Tesla

Siemens Trio TIM scanner and the remaining scans (n=37) were obtained from a

Siemens Prisma scanner after a scanner upgrade in June of 2016.

All images were processed with the fully automated CIVET pipeline (version 2.1.0)

[134, 1]. The Montreal Neurologic Institute (MNI ICBM152 - version 2009) template

was used as target surface registration. Brain tissues were classified to white matter

(WM), gray matter (GM) and cerebrospinal fluid (CSF) based on T1-weighted images.

A surface diffusion kernel was applied and the images were mapped to the automated

anatomical labelling atlas (AAL). Cortical thickness was measured as the distance

between WM and GM surfaces; the area and volume are vertex-based measurements

from the local variations in area/volume contraction and expansion [17]. Scans were

quality controlled (QC) for motion artifacts and vetted by the CIVET’s QC pipeline.

Flagged scans were manually reviewed by an expert and excluded if needed.

This procedure results in 76 cortical regions. Corticometric, morphometric and vol-

umetric features were calculated for every region (total=228) and used as inputs to

the analysis pipeline.

We statistically corrected features for age, sex, scanner effects, and total gray matter

volume prior to analysis [60]. We further mean centered and standardized each brain

region. The overall process used to obtain the brain data is outlined in Figure 4.5.
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MRI Data

CIVET

76 Cortical Regions

Cortical Thickness, Surface 
Area & Volume 

(Controlling for age, sex , 
scanner and GM volume)

Figure 4.5: Brain measures for the proposed analyses.
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Results

5.1 Chapter Overview

This chapter details the results of the experiments performed to evaluate the proposed

B-RC algorithm. Section 5.2 provides results of experiments on simulated data, and

section 5.4 illustrates how the proposed method can be applied to discover brain-

behaviour associations using data from POND.

5.2 Simulated Data

This section details the results of the proposed regression clustering pipeline on simu-

lated data outlined in the previous chapter. To this end, we evaluated the performance

of the algorithm on the six cases discussed previously, and examined the algorithm’s

sensitivity to choices of parameters and noise conditions. Lastly, examples illustrat-

ing cases where the algorithm performed well and cases that it failed to identify the

correct clusters are presented. We study each case (base cases illustrated in Figure

4.1) separately where the predictor is uni-dimensional and it is possible to visualize

the results in a 2-dimensional space.

Given that the number of iterations the algorithm can be run is limited by compu-

tation time, we set the number of iterations (K) to 100,000 and we repeated each

experiment 10 times to characterize performance variability. Each run provided us

35
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with an affinity matrix and scatter score (φn) estimation for different number of ini-

tialized clusters. The number of clusters are estimated using the average of these

scatter scores. The obtained affinity matrices from theses runs were averaged to per-

form spectral clustering using the estimated number of clusters. The predicted labels

obtained from spectral clustering were compared with true labels to calculate an ARI

score for each experiment.

5.2.1 Sensitivity to Bag Size

In this section, we characterize the effect of bag size on performance of the B-RC

algorithm. The bag size refers to the number of samples chosen in each bag at

each iteration of the algorithm. Bag sizes of 5%, 33% and 63.2% were chosen for

these experiments. We picked this range of bag size to examine the algorithm on

relatively small, medium, and large bagging rates. We based the smallest bag size on

the smallest simulated data set with 75 samples and the constraint of the minimum

sample set (MSS) from the RANSAC algorithm. The latter (63.2%) is commonly used

in bagging as this bag size increases the odds of selecting at least one sample from

each of the clusters [24]. This guarantee, however, is not significant for the proposed

algorithm since having multiple points from the same cluster does not ensure that

the RANSAC regressor would find that cluster.

Figure 5.1 shows the effect of bag size on the ARI scores at different noise levels. As

seen, the algorithm can be sensitive to the choice of bag size and the bagging rate of

5% out performed higher rates in majority of the comparisons.

We observe that at 0% noise level and 5% bag size (Figure 5.1a), almost all cases

(except for case 5) show a high ARI score (> 0.9) and the number of cases with lower

ARI scores increases as the bag size increases. These cases include cases 1 and 5 for

33% bag size and cases 1, 3, 4 and 5 for 63.2%.

This observation also holds true when looking at 25% noise level (Figure 5.1b); the

number of cases with ARI scores of higher than 0.5 drops as the bag size increases.

These include cases 3 and 5 at 5%, cases 1, 3, 4, 5 at 33% and almost all cases (except

for case 2) at 63.2%. The proposed pipeline obtains low ARI scores on all data sets

at the noise level of 50% as shown in Figure 5.1c.

Of the several cases tested, in one case (Case 2 in Figure 5.1c) the bag sizes of 33%
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and 63.2% resulted in higher ARI scores compared to a 5% rate. We further examined

the clustering visualizations of these cases (Figures 5.8c and 5.8d) for 33% and 63.2%

bagging rate with Figure 5.2). The comparison shows that in this instance bag sizes

of 33% and 63.2% outperform the 5%.

(a) Cases with 0% noise (b) Cases with 25% noise

(c) Cases with 50% noise

Figure 5.1: Effect of bag size on algorithm performance.

Figure 5.2: Case 2, 50% noise, 5% bag size, balanced

5.2.2 Algorithm Sensitivity To Different Noise Levels

This section characterizes the effect of noise on the proposed algorithm’s performance.

As we discussed before, the noise level determines the amount of random data in a

simulated set compared to the true data. Figure 5.3 shows the results of the algorithm

at noise levels of 0%, 25% and 50%.
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As expected, the performance of the algorithm degrades with increasing noise, with

the lowest ARIs at noise level of 50% in most of the tested cases. Figure 5.3a shows

that the ARI score drops for all cases as the noise (random points) in the data set

become more prominent. The same observation can be made about Figures 5.3b and

5.3c at 33% and 63.2% bag sizes.

(a) Using 5% bag size (b) Using 33% bag size

(c) Using 63.2% bag size

Figure 5.3: Effect of noise on algorithm performance.

5.2.3 Detecting Variable Size Clusters

In this section, we examine the performance of the algorithm when the number of

points in different clusters is different. To this end, the ARI values for the unbalanced

data set described in chapter 4 are reported. The bag size is set to 5% for the

experiments in this section.

Figure 5.4 shows the ARI results for balanced and unbalanced clusters for noise levels

of 0%, 25% and 50%. As seen, the effect of cluster balance seems to vary across cases.

For example, for the no noise condition (Figure 5.4a), unbalanced clusters resulted in

decreased ARI for two cases (4,6), increased ARI for one case (5), and no change for

three cases (1,2,3). The effect also seem to vary depending on the noise level.
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(a) Cases with 0% noise (b) Cases with 25% noise

(c) Cases with 50% noise

Figure 5.4: Effect of cluster balance on performance. Results provided for bag size
set to 5% of points.

We can observe that in Figure 5.4a cases 4 and 6 obtained a lower ARI scores on

the unbalanced cluster condition while the clustering performance in case 5 improves

under uneven cluster conditions. The results were mixed for higher noise levels as

illustrated in Figures 5.4b and 5.4c.

Although the algorithm performance was generally better for cases with balanced

clusters, there were instances (eg. case 5 in Figures 5.4a ,5.4b and 5.4c) that the

proposed algorithm obtained a higher ARI score for cases with unbalanced clusters.

We further investigated these results by looking at the actual clusters; the most

prominent differentiating factor was the estimated number of clusters. Figure 5.5

shows the differentiation in the number of clusters and the obtained clusters for

case 5. The experiment in Figure 5.4 suggest that sensitivity in number of clusters

estimation could be an important factor in the performance of the overall system. In

the next section, we investigate the number of clusters estimation.
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(a) 0% noise, balanced (b) 0% noise, unbalanced

(c) 25% noise, balanced (d) 25% noise, unbalanced

(e) 50% noise, balanced (f) 50% noise, unbalanced

Figure 5.5: Illustration of Case 5 with 5% bag size

5.2.4 Scatter Scores

As discussed in chapter 3, we use Equation 3.6 to estimate the number of clusters in

a data set. In this section, we examine the accuracy of this method for determining

the number of clusters using our simulated data set.

Figures 5.6 and 5.7 show the proposed scatter ratio for each of the simulated cases

at different noise levels and cluster balance conditions. For each case, the bag size

was set to 5% of the data. In particular, Figure 5.6 demonstrates the result for cases

with 2 clusters and Figure 5.6 includes the results for cases with 3 clusters. Note that

the results are based on 10 runs of the pipeline, allowing the estimation of confidence

intervals around each scatter line. As seen in Figures 5.6 and 5.7, out of the 36 scatter

score lines, we can observe that the first local maximum occurs at the correct number

of clusters 19 times. Additionally, in 10 instances the estimated number of clusters
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falls within ±1 of the actual number of clusters. The algorithm fails to detect the

correct number of clusters 7 times (nestimated > nactual + 2 or nestimated < nactual − 2).

In some instances such as case 3 in Figures 5.6e and 5.6f (first local maximum at

2 clusters) our expectations were met for different noise levels and balanced and

unbalanced clusters. Although there were cases that showed mixed results such as

case 1 in Figures 5.6a and 5.6b (expected first local maximum at 2 clusters) and case 4

in Figures 5.7a and 5.7b (expected first local maximum at 3 clusters), we can observe

that the scatter scores (φn) become frailer as noise increases. Additionally, case 6 in

Figures 5.7e and 5.7f we can observe that the same scatter scores also become weaker

when we compare balanced cluster to unbalanced sets.

(a) Case 1 - balanced set (b) Case 1 - unbalanced set

(c) Case 2 - balanced set (d) Case 2 - unbalanced set

(e) Case 3 - balanced set (f) Case 3 - unbalanced set

Figure 5.6: The scatter ratios under different conditions in sets with 2 clusters
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(a) Case 4 - balanced set (b) Case 4 - unbalanced set

(c) Case 5 - balanced set (d) Case 5 - unbalanced set

(e) Case 6 - balanced set (f) Case 6 - unbalanced set

Figure 5.7: The scatter ratios under different conditions in sets with 3 clusters

5.2.5 Clustering Result Illustrations

In this section, we include example visualizations of clustering results to better ex-

plain demonstrate how the proposed pipeline works. Examples from both successful

and unsuccessful cases are chosen to highlight the strengths and weaknesses of the

algorithm.

Examples of successful clustering

Figure 5.8 illustrates example of cases where the algorithm successfully recovered data

clusters. Figures 5.8a and 5.8b demonstrate retrieval of 2 and 3 clusters under similar
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conditions of 0% noise and 5% bag size for balanced and unbalanced clusters. On

the other hand, Figures 5.8c and 5.8d show retrieval of two clusters using bag sizes of

33% and 63.2% when the clusters are balanced and 50% of the data set is consisted

of random points.

(a) Case 3, 0% noise, 5% bag size, unbal-
anced

(b) Case 6, 0% noise, 5% bag size, balanced

(c) Case 2, 50% noise, 33% bag size, bal-
anced

(d) Case 2, 50% noise, 63.2% bag size, bal-
anced

Figure 5.8: Successful Clustering Illustrations

Examples of unsuccessful clustering

Figure 5.9 visualizes examples where the proposed pipeline fails to recover the data

clusters. Figures 5.9a and 5.9b are example cases with 50% noise and bag size of 5%

when the clusters are unbalanced. Figures 5.9c and 5.9d illustrate failed cases at 0%

noise level, 5% bagging rate for 3 unbalanced and balanced clusters respectively.

5.3 Method Comparison

We compared the performance of B-RC to RansaCov [80, 79] on simulated data

with balanced clusters. B-RC bag size was set to 5% and ran for 100,000 iterations.

RansaCov’s threshold (threshold for detecting inliers) was empirically optimized on

case 1 at 0% noise and kept the same in all experiments (similar approach to [80]).
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(a) Case 1, 50% noise, 5% bag size, unbal-
anced

(b) Case 2, 50% noise, 5% bag size, unbal-
anced

(c) Case 4, 0% noise, 5% bag size, unbal-
anced

(d) Case 5, 0% noise, 5% bag size, balanced

Figure 5.9: Failed Clustering Illustrations

Both methods automatically estimated the number of clusters (B-RC: explained in

section 3.2.2 and RansaCov: ”Set Cover” approach explained in [79]). Our method

performed better (as measured by adjusted rand index (ARI)) under the tested sce-

narios as shown in Tables 5.1 and 5.2.

0% noise Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

B-RC 1 1 1 1 0.52 0.96
RansaCov 1 0.88 0.73 0.74 0.78 0.65

Table 5.1: Performance Comparison at 0% noise on balanced clusters

25% noise Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

B-RC 0.56 0.73 0.41 0.58 0.30 0.57
RansaCov 0.14 0.27 0.15 0.35 0.22 0.18

Table 5.2: Performance Comparison at 25% noise on balanced clusters



Chapter 5. Results 45

5.4 POND Data

In this section, we report on the results of applying the proposed pipeline to the

POND data set described in Chapter 4. Each of the 228 brain features were run

individually through the pipeline.

As with the simulated set, we ran each feature 10 times (each for 100,000 iterations

- K) through the pipeline. Each run provided us with an affinity matrix and scatter

score (φn) estimation for different number of initialized clusters. The number of

clusters are estimated using the average of these scatter scores. We averaged the

obtained affinity matrices from theses runs to perform spectral clustering using the

estimated number of clusters. The results reported in the remainder of this section

are generated using 5% for the bag size. We picked the 5% bag size because of the

obtained results on simulated data.

5.4.1 Significant Brain Regions

We used the concept of permutation importance to determine which of the brain

features results in significant clusters [3]. To this end, we compared the optimum

φn score (φn score for the estimated number of clusters) of each feature to a distri-

bution of 2280 φ′
n scores obtained from randomly permuted features. We permuted

each brain feature 10 times (for 100,000 iterations each) then calculated an affin-

ity matrix for each which resulted in 2280 random affinity matrices. We performed

spectral clustering using 2 to 10 initialized clusters which resulted in 9 random φ′

score distributions. We examined the optimum φn score of each feature against the

corresponding (obtained from the same number of clusters as the feature) random φ′
n

score distribution.

Additionally, we ran 100 randomly generated features through the pipeline which

provided us with random φ′ score distribution. The affinity matrices were averaged

over 10 runs (100,000 iterations at each run) for each feature; each affinity matrix

generated 9 different φ′ scores at different number of clusters. We examined the brain

φn scores to these random φ′
n score distribution. The comparison of the φn scores

provided us with an additional significance measure. This measure is reported as

complimentary consideration to previous permutation test results. For more details

on these significant tests please visit chapter 3.3.2.
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Of the 228 brain features, 12 had scatter ratios that were significantly different than

chance after FDR correction as determined by the permutation test and contained

clusters with Adj.R2 > 0.3. Table 5.3 shows a list of these features. Of the 12

significant features, 4 were surface area features, 6 were cortical volume features, and

2 were cortical thickness features.

Feature Regions φn Adj. p

1 Lobe Area Left Middle Frontal Gyrus 5.6243 0.0429
2 Lobe Area Left Precuneus* 6.1461 0.0000
3 Lobe Area Right Inferior Frontal Gyrus Triangular

part
5.3737 0.0000

4 Lobe Area Right Insula 5.8284 0.0200
5 Lobe Volume Left Inferior Occipital Gyrus* 6.1566 0.0200
6 Lobe Volume Right Gyrus Rectus* 5.7259 0.0000
7 Lobe Volume Right Inferior Frontal Gyrus Orbital part* 6.2704 0.0000
8 Lobe Volume Right Lingual Gyrus* 5.5909 0.0200
9 Lobe Volume Right Heschl Gyrus* 6.3542 0.0000
10 Lobe Volume Right Anterior Cingulate and Paracingu-

late Gyri*
6.1364 0.0200

11 Lobe Thick-
ness

Left Calcarine Fissure and surrounding
Cortex

5.5804 0.0429

12 Lobe Thick-
ness

Right Anterior Cingulate and Paracingu-
late Gyri

5.9995 0.0333

Table 5.3: Brain regions with significant brain-behaviour correlates (*also had adj.
p < 0.01 when compared to randomly generated data)

5.4.2 Cluster characteristics

For each significant features, cluster characteristics were examine by fitting a tradi-

tional linear model to the points in that cluster. We also characterized the clusters

based on SCQ scores, IQ scores, and proportion of diagnostic labels within each

cluster.

We performed OLS (ordinary least square) regression analysis on each of the identified

clusters to identify the robustness and significance of each cluster compared to other

clusters found in a single brain region. We report on 4 different statistics of each

cluster. First, the population of each cluster which is the number of samples assigned

to a specific cluster. Second, the cluster adj. R2 which is obtained from an OLS

analysis and describes the variance explained in the response by the input. Third,
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the coefficient of the input from the OLS analysis which is an indicator of the type

of response-input relations as well as its strength. Please visit chapter 3 for greater

details on these measurements. The measurements are reported in Figures 5.10h,

5.11h, 5.12h, 5.13h, 5.14h, 5.15h, 5.16h, 5.17h, 5.18h, 5.19h, 5.20h, 5.21h. The number

of discovered clusters ranged from 4 to 9 (2 to 7 clusters with adj. R2 of higher than

0.3) and the majority of the discovered clusters did not align with diagnostic labels.

There was no effect of FSIQ between any of the cluster, but in some regions there was

an effect of between the SCQ scores which is included in the description of results

for each region. We used the Kruskal-Wallis [68] to determine group effects and the

MannWhitney [81] to test pairwise analysis and corrected for multiple comparisons

by the Bonferroni criteria [21].
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Figure 5.10 shows a summary of the identified clusters in the area of the left middle

frontal gyrus. There are 2 clusters (# 2&4) with Adj. R2 of greater than 0.3. There

are no significant effects between the SCQ scores of clusters 2 and 4.

(a) Clusters and Sample Density

(b) Scatter Score Lines
(c) Clinical Diagnosis (d) FSIQ Distributions

(e) SCQ Totoal Score
(f) SCQ Social Communi-
cation Sub-score

(g) SCQ RRB. Sub-score

Cluster ID Population Cluster Adj.
R2

Coefficient

1 41 -0.026 0.0226
2 47 0.878 3.9508
3 16 -0.26 -1.9387
4 28 0.765 -2.6334
5 39 0.228 1.067

(h) Cluster Statistics in Lobe Area Left Middle Frontal Gyrus

Figure 5.10: Cluster Characteristics in Lobe Area Left Middle Frontal Gyrus
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Figure 5.11 shows a summary of the identified clusters in the area of the left precuneus.

There are 4 clusters (# 1,3,5&6) with Adj. R2 of greater than 0.3. Clusters 3 and 6

have significantly (p < 0.001) different total SCQ scores.

(a) Clusters and Sample Density

(b) Scatter Score Lines
(c) Clinical Diagnosis (d) FSIQ Distributions

(e) SCQ Totoal Score
(f) SCQ Social Communi-
cation Sub-score

(g) SCQ RRB. Sub-score

Cluster ID Population Cluster Adj.
R2

Coefficient

1 34 0.923 5.4704
2 12 -0.017 0.7001
3 54 0.828 4.8451
4 20 0.041 -1.1032
5 26 0.884 -3.3701
6 25 0.769 4.7328

(h) Cluster Statistics in Lobe Area Left Precuneus

Figure 5.11: Cluster Characteristics in Lobe Area Left Precuneus
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Figure 5.12 shows a summary of the identified clusters in the area of the right inferior

frontal gyrus. There are 2 clusters (# 3&4) with Adj. R2 of greater than 0.3. There

are no significant effects between the SCQ scores of clusters 3 and 4.

(a) Clusters and Sample Density

(b) Scatter Score Lines
(c) Clinical Diagnosis (d) FSIQ Distributions

(e) SCQ Totoal Score
(f) SCQ Social Communi-
cation Sub-score

(g) SCQ RRB. Sub-score

Cluster ID Population Cluster Adj.
R2

Coefficient

1 33 0.12 -2.2909
2 50 0.15 0.9258
3 48 0.91 -3.2315
4 40 0.52 3.521

(h) Cluster Statistics in Lobe Area Right Inferior Frontal Gyrus Triangular part

Figure 5.12: Cluster Characteristics in Lobe Area Right Inferior Frontal Gyrus Tri-
angular part
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Figure 5.13 shows a summary of the identified clusters in the area of the right insula.

There are 3 clusters (# 1&2&5) with Adj. R2 of greater than 0.3. All three clusters

were significantly different from each other (p < 0.01) in the three report categories

of the SCQ score (except for the clusters 1&5 in restricted repetitive behaviour sub

score of the SCQ).

(a) Clusters and Sample Density

(b) Scatter Score Lines
(c) Clinical Diagnosis (d) FSIQ Distributions

(e) SCQ Totoal Score
(f) SCQ Social Communi-
cation Sub-score

(g) SCQ RRB. Sub-score

Cluster ID Population Cluster Adj.
R2

Coefficient

1 43 0.55 3.0441
2 45 0.71 4.6445
3 11 -0.08 -0.9684
4 11 0.273 -3.2974
5 61 0.703 -3.2108

(h) Cluster Statistics in Lobe Area Right Insula

Figure 5.13: Cluster Characteristics in Lobe Area Right Insula
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Figure 5.14 shows a summary of the identified clusters in the volume of the left inferior

occipital gyrus. There are 5 clusters (# 2,5,7,8&9) with Adj. R2 of greater than 0.3.

Clusters 2 and 5 were significantly different (p < 0.001) from clusters 5,7,8&9 and

2,7,8&9 in total SCQ scores and the social communication sub scores. Clusters 2

and 9 had also significantly (p < 0.001) different restricted repetitive behaviour sub

scores.
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(a) Clusters and Sample Density

(b) Scatter Score Lines
(c) Clinical Diagnosis (d) FSIQ Distributions

(e) SCQ Totoal Score
(f) SCQ Social Communi-
cation Sub-score

(g) SCQ RRB. Sub-score

Cluster ID Population Cluster Adj.
R2

Coefficient

1 14 -0.05 -0.3611
2 38 0.95 -5.6137
3 10 0.185 2.1211
4 21 0.19 2.1211
5 14 0.31 1.7141
6 24 0.23 1.4555
7 10 0.56 -1.8912
8 16 0.79 -5.6144
9 24 0.77 4.5247

(h) Cluster Statistics in Lobe Volume Left Inferior Occipital Gyrus

Figure 5.14: Cluster Characteristics in Lobe Volume Left Inferior Occipital Gyrus

Figure 5.15 shows a summary of the identified clusters in the volume of the right

gyrus rectus. There are 5 clusters (# 1,2,3,4&6) with Adj. R2 of greater than 0.3.

Total SCQ scores were significantly (p < 0.001) between cluster 6 and clustes 1,2,3&4;

additionally clusters 2 and 4 were different from clusters 3 and 1. There were also
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significant effects between the groups in social communication sub scores; cluster 6

was significantly different from clusters 4,2&1; clusters 4 and 2 were significantly

different from clusters 3 and 1; clusters 1 and 3 were also significantly different from

each other. There were no significant effects in the restricted repetitive behaviour sub

scores.

(a) Clusters and Sample Density

(b) Scatter Score Lines
(c) Clinical Diagnosis (d) FSIQ Distributions

(e) SCQ Totoal Score
(f) SCQ Social Communi-
cation Sub-score

(g) SCQ RRB. Sub-score

Cluster ID Population Cluster Adj.
R2

Coefficient

1 27 0.902 -3.6107
2 45 0.902 4.412
3 23 0.76 5.1261
4 39 0.545 -2.02
5 27 -0.04 -0.0258
6 10 0.44 -3.5482

(h) Cluster Statistics in Lobe Volume Right Gyrus Rectus

Figure 5.15: Cluster Characteristics in Lobe Volume Right Gyrus Rectus
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Figure 5.16 shows a summary of the identified clusters in the volume of the right

inferior frontal gyrus orbital part. There are 5 clusters (# 1,2,3,6&7) with Adj. R2

of greater than 0.3. Cluster 3 was significantly (p < 0.001) different from clusters 1

and 2 in the total SCQ score and the social communication sub score. Furthermore,

cluster 7 was significantly different from cluster 1 in social communication sub score.

(a) Clusters and Sample Density

(b) Scatter Score Lines
(c) Clinical Diagnosis (d) FSIQ Distributions

(e) SCQ Totoal Score
(f) SCQ Social Communi-
cation Sub-score

(g) SCQ RRB. Sub-score

Cluster ID Population Cluster Adj.
R2

Coefficient

1 37 0.784 -2.4372
2 11 0.945 9.4992
3 38 0.844 -4.9769
4 18 0.107 -1.7503
5 11 0.007 2.2312
6 21 0.955 -5.9071
7 35 0.89 4.2547

(h) Cluster Statistics in Lobe Volume Right Inferior Frontal Gyrus Orbital part

Figure 5.16: Cluster Characteristics in Lobe Volume Right Inferior Frontal Gyrus
Orbital part
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Figure 5.17 shows a summary of the identified clusters in the volume of the right right

lingual gyrus. There are 5 clusters (# 1,2,4,5&6) with Adj. R2 of greater than 0.3.

Cluster 4 had significantly (p < 0.001) different total SCO and social communication

sub scores from clusters 1,2,5&6. Additionally, cluster 6 was significantly different

from clusters 2&5 in total SCQ and social communication sub scores. Clusters 4 and

2 were different in restricted repetitive behaviour sub score.

(a) Clusters and Sample Density

(b) Scatter Score Lines
(c) Clinical Diagnosis (d) FSIQ Distributions

(e) SCQ Totoal Score
(f) SCQ Social Communi-
cation Sub-score

(g) SCQ RRB. Sub-score

Cluster ID Population Cluster Adj.
R2

Coefficient

1 37 0.867 -4.6723
2 41 0.927 4.251
3 24 0.019 -0.557
4 15 0.34 -4.3664
5 21 0.831 3.2765
6 33 0.825 3.7344

(h) Cluster Statistics in Lobe Volume Right Lingual Gyrus

Figure 5.17: Cluster Characteristics in Lobe Volume Right Lingual Gyrus
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Figure 5.18 shows a summary of the identified clusters in the volume of the right

heschl gyrus. There are 5 clusters (# 1,2,4,5&6) with Adj. R2 of greater than 0.3.

In total SCQ and social communication sub scores, cluster 1 and 2 were significantly

different (p < 0.001) from each other; clusters 5 and 6 were different from clusters

1,2&4. Cluster 1 and 5 were significantly different in restrictive repetitive behaviour

sub scores.
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(a) Clusters and Sample Density

(b) Scatter Score Lines
(c) Clinical Diagnosis (d) FSIQ Distributions

(e) SCQ Totoal Score
(f) SCQ Social Communi-
cation Sub-score

(g) SCQ RRB. Sub-score

Cluster ID Population Cluster Adj.
R2

Coefficient

1 28 0.849 -2.6972
2 16 0.936 -3.9302
3 42 -0.007 0.401
4 34 0.952 4.34
5 19 0.616 3.8742
6 8 0.559 -3.3761
7 24 -0.036 -0.402

(h) Cluster Statistics in Lobe Volume Right Heschl Gyrus

Figure 5.18: Cluster Characteristics in Lobe Volume Right Heschl Gyrus

Figure 5.19 shows a summary of the identified clusters in the volume of the right

anterior cingulate and paracingulate gyri. There are 5 clusters (# 1,3,5,7&9) with

Adj. R2 of greater than 0.3. In total SCQ and social communication sub scores,

cluster 7 and 9 were significantly different (p < 0.001) from each other; cluster 3 was

different from clusters 1,5,7&9.
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(a) Clusters and Sample Density

(b) Scatter Score Lines
(c) Clinical Diagnosis (d) FSIQ Distributions

(e) SCQ Totoal Score
(f) SCQ Social Communi-
cation Sub-score

(g) SCQ RRB. Sub-score

Cluster ID Population Cluster Adj.
R2

Coefficient

1 23 0.91 -5.4067
2 16 -0.045 -0.6205
3 19 0.736 3.296
4 20 -0.03 -0.7155
5 37 0.39 2.4437
6 8 -0.093 -1.0344
7 16 0.306 2.665
8 11 -0.094 -0.367
9 21 0.833 4.6371

(h) Cluster Statistics in Lobe Volume Right Anterior Cingulate and Paracingulate Gyri

Figure 5.19: Cluster Characteristics in Lobe Volume Right Anterior Cingulate and
Paracingulate Gyri

Figure 5.20 shows a summary of the identified clusters from the cortical thickness

of the left calcarine fissure and surrounding cortex. There are 3 clusters (# 1,2&5)

with Adj. R2 of greater than 0.3. In total SCQ and social communication sub scores,
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cluster 1 was significantly different (p < 0.01) from clusters 2 and 5. Additionally,

cluster 2 was different from cluster 5 in social communication sub score.

(a) Clusters and Sample Density

(b) Scatter Score Lines
(c) Clinical Diagnosis (d) FSIQ Distributions

(e) SCQ Totoal Score
(f) SCQ Social Communi-
cation Sub-score

(g) SCQ RRB. Sub-score

Cluster ID Population Cluster Adj.
R2

Coefficient

1 8 0.535 5.4007
2 50 0.833 3.3906
3 39 0.005 -0.3994
4 19 0.274 -2.6793
5 55 0.314 -2.0443

(h) Cluster Statistics in Lobe Thickness Left Calcarine Fissure and surrounding Cortex

Figure 5.20: Cluster Characteristics in Lobe Thickness Left Calcarine Fissure and
surrounding Cortex
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Figure 5.21 shows a summary of the identified clusters from the cortical thickness

of the right anterior cingulate and paracingulate gyri. There are 7 clusters (#

1,4,5,6,7,8&9) with Adj. R2 of greater than 0.3. In total SCQ and social commu-

nication sub scores, clusters 5, 6 and 7 were significantly different (p < 0.001) from

clusters 1,4,8&9; cluster 4 was also different from clusters 1,8&9. Additionally, clus-

ter 1 was different from clusters 4,5&7 in restrictive repetitive behaviour sub score;

cluster 7 was also different from clusters 8 and 9.



Chapter 5. Results 62

(a) Clusters and Sample Density

(b) Scatter Score Lines
(c) Clinical Diagnosis (d) FSIQ Distributions

(e) SCQ Totoal Score
(f) SCQ Social Communi-
cation Sub-score

(g) SCQ RRB. Sub-score

Cluster ID Population Cluster Adj.
R2

Coefficient

1 16 0.682 4.0647
2 10 0.024 1.5583
3 17 0.07 -1.4121
4 58 0.512 2.0962
5 21 0.872 5.7916
6 10 0.743 -4.0517
7 13 0.547 -5.0731
8 7 0.426 -2.8595
9 19 0.925 5.3327

(h) Cluster Statistics in Lobe Thickness Right Anterior Cingulate and Paracingulate Gyri

Figure 5.21: Cluster Characteristics in Lobe Thickness Right Anterior Cingulate and
Paracingulate Gyri
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Discussion

6.1 Chapter Overview

We start by discussing the proposed B-RC algorithm in section 6.2. The findings on

simulated and real word data are discussed in sections 6.3 and 6.4 respectively.

6.2 The B-RC Algorithm

In this thesis, we proposed a new regression clustering algorithm, the B-RC algorithm.

The algorithm is novel in two ways: first, we build on the concept of bagging to explore

the existence of linear correlations using a limited portion of the data set and see if

there are other samples in the data set that can be explained by the same correlation

pattern. Second, we propose a novel approach to characterize similarity between

two points based on their relative distance to a regression line. This enables us to

allow for the possibility of multiple regression lines in the data and allows us to build

affinity matrices that can be used for clustering. This approach is advantageous when

examining brain-behaviour relationships because as we discussed in 2 this relationship

can be consisted of multiple subtypes with distinct brain-behaviour co relates where

a single regression line may not be able to explain the entire data set.

We built on the concept of bagging to see subtypes and multiple relations compared

to traditional regression methods. Further, we used robust regression models (eg.
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RANSAC) which have good performance even in presence of outliers which was not

the case for previous RC algorithms [133, 10]. Additionally, our method provides

insight into the data by introducing a novel way of constructing an affinity matrix

based on regression residuals and we introduced a within-to-between cluster similar-

ity measure to estimate the number of potential clusters. Although in this thesis

we demonstrated the proposed approach using the RANSAC regressor and spectral

clustering models, the algorithm can easily be extended to employ other regression al-

gorithms and affinity based clustering methods. These choices should be made based

on the specific application.

6.3 Algorithm Performance on Simulated Data

We evaluated the proposed algorithm using a simulated data set. Our results showed

high agreement between true cluster labels and those discovered by the proposed

algorithm under low noise levels (ARI: 0.5-1). The algorithm was able to detect the

correct clusters under different cluster balancing conditions (eg. Figures 5.4a and

5.4b). To further understand the behaviour of the proposed method, we examined its

sensitivity to bag size, noise, and cluster balance.

6.3.1 Sensitivity to Bag Size

The bag size enables the discovery of multiple associations. Moreover, it sets the

resolution of the algorithm; meaning, that bag size determines the portion size of the

data set that search for existence of a correlate in a single iteration. In other words,

a small bag size allows for discovering small clusters in the data set.

We examined the performance of the algorithm using bag sizes equal to 5%, 33%

and 63.2% of the sample size. We expected that a small bag size would increase the

chances of identifying the clusters in the data set. This expectation was based on the

following: First, the number of possible combinations (different bags) increase with

bag size until the bag size is approximately half the size of the entire set (using the

binomial coefficients). Second, we can only run the algorithm for a limited number

of iterations that is less that the total possible combinations of data points. Hence,

we believed small bag size would perform better. Additionally, we hypothesized that
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for large bag sizes, the pipeline may fail to identify clusters that are relatively small

compared to the size of other clusters and random noise points. This expectation

was based on the fact that larger bags would be guaranteed to include random noise

points (or points from other clusters) that would make it difficult for the RANSAC

regressor to pick up the smaller clusters in any of the iterations. Based on these

hypotheses we expected the bag size of 5% to perform better than 33% and 63.2%.

Our results were generally consistent with the above hypotheses. However, as noise

increased, we saw a plateau in ARI scores. In this case, since all random points

shared the same label, a small number of agreements between the predicted and true

labels existed, resulting in a constant and low ARI score which is above the absolute

random ARI score of 0.

Our results also suggested that although a small bag size provides the best perfor-

mance in most cases, larger bag sizes can be advantageous in situations with high

noise levels by better preserving the larger clusters.

6.3.2 Sensitivity to Noise

As expected, our results showed that the performance of the proposed algorithm

degrades with increasing noise. As more random points in a set increase, the more

random regressions (regression lines that would suggest actual cluster data points are

similar to other noisy points) would contribute to the similarity matrix, leading to

noisier clusters. Despite the general performance degradation, there were instances

that the algorithm performed well at the highest noise level of 50% (eg. Figure 5.8c

and 5.8d). In these instances, the algorithm was initialized with bag sizes of 33% and

63.2% which could have helped to identify the clusters. Robustness to noise is an

important factor when dealing with unknown data since the noise level in the data

may not always be a known factor.

6.3.3 Detection of Variable Cluster Sizes

We examined the proposed method’s ability to detect clusters of varying sizes. We

expected for the algorithm to perform better in experiments with balanced clusters

compared to unbalanced sets since all clusters should be represented evenly in the
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affinity matrix (cluster are equally likely to be discovered due to having the same

number of samples). This hypothesis was only partially supported by our results.

Decreased performance for the balance cases seemed related to inaccuracies in esti-

mating the number of clusters (eg. Figure 5.5).

6.3.4 Determining the Number of Clusters

We examined the effectiveness of the scatter score (φn) proposed in Equation 3.6

for automatically determining the number of clusters. As discussed in chapter 3, we

expected to see a local maximum on the scatter line for the correct number of clusters.

While this was in fact the case for many cases (eg. Figure 5.3a), the scatter ratio was

not effective in identifying the correct number of cluster in some cases (eg. Figure

5.5).

Previous attempts to estimate the number of clusters, most notably the eigenvalue gap

statistic [121, 126], have shown inconsistent performance under different conditions

[28]. Our results suggests that the proposed method for estimating the number of

clusters can be effective in some instances but it is far from perfect. Unfortunately,

there is no perfect way of estimating the number of clusters and we have had to

settle for less than satisfactory results. We recommend that our method is used

as a guideline to visual inspection and other techniques based on the nature of the

application. For example, we saw in chapter 5.2.4 that in a lot of instances (eg. Figure

5.5d) the detected number of clusters is within ±1 of the actual number of clusters;

this can be advantageous when combined by visual inspection.

6.3.5 Clustering Result Illustrations

As seen in Figure 5.8, the proposed algorithm is able to recover the original clusters

under various conditions including high noise levels in some instances. As seen in

Figures 5.9a and 5.9b, the algorithm fails to detect the clusters properly in cases with

high noise levels. Figures 5.9c and 5.9d demonstrate that sometimes the algorithm

can also fail to detect the correct clusters in cases with 0% noise which can be due to

incorrect initialization of the number of clusters.



Chapter 6. Discussion 67

6.4 Discovering Brain-Behaviour Associations

The analytical approach in ASD and ADHD studies has traditionally focused on find-

ing reduced or increased gray matter in different brain regions that would generalize

to the population of these psychiatric conditions [94]. However, our study suggests the

existence of multiple brain-behaviour correlates that cross the diagnosis boundaries.

In this section, we will go over each of the significant brain regions. Our study sug-

gests that in some groups the social communication deficits could be inversely related

with a specific cortical regions while in some groups this relation can be direct.

6.4.1 Structural Brain Features

The reported regions are broadly involved in social function, social cognition, lan-

guage, perception, speech, attention and emotion processing. Many of these regions

have been previously reported in ASD (eg. middle frontal gyrus [58, 44, 54, 108], in-

ferior frontal gyrus [20, 33, 105, 59, 112, 111, 33, 47, 90, 89], anterior cingulate cortex

[58, 22], insula [65, 37], inferior occipital gyrus [101, 124, 94], heschl gyrus [85, 49, 93],

calcarine fissure and and surrounding cortex [13, 97, 49]), in ADHD (eg. cingulate

[110, 105, 33, 20], inferior frontal cortex [105], anterior cingulate cortex[88], inferior

occipital gyrus [94]) and some have also been frequently reported in social function

studies (eg. precuneus [99], anterior cingulate cortex [119, 65, 27, 18, 99, 41], insula

[119, 65, 27, 18]) In conclusion, our results suggest the existence of multiple brain-

behaviour correlates in these regions and supports the notion that these correlates

may not be diagnostic specific.
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Conclusions

7.1 Chapter Overview

In this chapter we will first review the contributions of this study in section 7.2. Then,

we highlight the limitations of our work and potential future directions in section 7.3.

7.2 Contributions

The contributions of this study can be categorized into technical and exploratory

themes as followed:

• Bagged Regression Clustering (B-RC): We introduced a novel regression

clustering pipeline that is able to perform clusterwise linear regression. We

demonstrated that it can identify clusters when they intersect (intersecting re-

gression lines). Additionally, B-RC was able to identify the clusters when the

data was contaminated with noise (as high as 50% noise in some instances).

We also introduced a novel way of estimating the number of clusters based on

within-to-between similarity scores of an affinity matrix.

• Application of Regression Clustering in Studies of Neurodevelopmen-

tal Disorders: We demonstrated for the first time, the use case of clusterwise

regression analysis in brain-behaviour studies. Our analysis on social functions

68
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in ASD and ADHD suggests the existence of multiple distinct brain-behaviour

correlates where some of the correlates expanded across the traditional diag-

nostic categories and some were diagnostic specific. Our analysis identified 12

potential regions to be related to social difficulties in ASD and ADHD, and

reported the type of relationship (eg. increasing or decreasing) seen in each

cluster. Our results should be interpreted with caution given the limitations of

the proposed algorithm under high-noise cases.

7.3 Directions for Future Work

In this section, we will review the limitations of our work and elaborate on our

thoughts regarding the future direction of this research.

• We only used a single phenotypic measure to quantify behavioural character-

istics. Future work could consider other methods for quantifying symptom

severity scores.

• The sample size used in this study was limited, with a variability across the pop-

ulation of different diagnostic categories. Future replication studies are needed

with larger sample sizes.

• One limitation of the proposed algorithm is considering one response/feature

at a time. There is value in analyzing multiple features at the same time

(consideration of multiple features in regression). For example, in the case of

neurodevelopmental disorders, there could be a network of brain features that

could consist of brain-behaviour correlates. Future studies are needed to explore

brain-behaviour correlates in networks of regions.

• Although the proposed algorithm could find simulated clusters in data set with

outlier points, the performance was inconsistent. Future studies are needed to

improve this aspect.

• One of the requirements of the proposed B-RC algorithm is the user defined bag

size. Our analysis showed that different bag sizes can have their own advantages

and disadvantages. Adopting methods such as the ”simulated annealing” can be

beneficial and future studies are required to improve this aspect of the algorithm.



Bibliography

[1] Y Ad-Dabbagh, O Lyttelton, J S Muehlboeck, C Lepage, D Einarson, K Mok,

O Ivanov, R D Vincent, J Lerch, and E Fombonne. The CIVET image-

processing environment: a fully automated comprehensive pipeline for anatom-

ical neuroimaging research. In Proceedings of the 12th annual meeting of the

organization for human brain mapping, page 2266. Florence, Italy, 2006.
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[3] Andr Altmann, Laura Toloşi, Oliver Sander, and Thomas Lengauer. Permu-

tation importance: A corrected feature importance measure. Bioinformatics,

26(10):1340–1347, 2010.

[4] David G. Amaral. The promise and the pitfalls of autism research: An intro-

ductory note for new autism researchers. Brain Research, 1380:3–9, 2011.

[5] Stephanie H. Ameis, Jason P. Lerch, Margot J. Taylor, Wayne Lee, Joseph D.

Viviano, Jon Pipitone, Arash Nazeri, Paul E. Croarkin, Aristotle N. Voineskos,

Meng Chuan Lai, Jennifer Crosbie, Jessica Brian, Noam Soreni, Russell

Schachar, Peter Szatmari, Paul D. Arnold, and Evdokia Anagnostou. A dif-

fusion tensor imaging studyin children with ADHD, autism spectrum disorder,

OCD, and matched controls: Distinct and non-distinct white matter disruption

and dimensional brain-behavior relationships. American Journal of Psychiatry,

2016.

[6] American Psychiatric Association. DSM-5. American Psychiatric Association,

2013.

70



Bibliography 71

[7] Evdokia Anagnostou and Margot J. Taylor. Review of neuroimaging in autism

spectrum disorders: What have we learned and where we go from here, 2011.

[8] Gideon E. Anholt, Danielle C. Cath, Patricia Van Oppen, Merijn Eikelenboom,

Johannes H. Smit, Harold Van Megen, and Anton J.L.M. Van Balkom. Autism

and adhd symptoms in patients with ocd: Are they associated with specific oc

symptom dimensions or oc symptom severity. Journal of Autism and Develop-

mental Disorders, 2010.

[9] Yuta Aoki, Yuliya N. Yoncheva, Bosi Chen, Tanmay Nath, Dillon Sharp, Mari-

ana Lazar, Pablo Velasco, Michael P. Milham, and Adriana Di Martino. Associa-

tion of White Matter Structure With Autism Spectrum Disorder and Attention-

Deficit/Hyperactivity Disorder. JAMA Psychiatry, 2017.

[10] Adil M. Bagirov, Julien Ugon, and Hijran Mirzayeva. Nonsmooth noncon-

vex optimization approach to clusterwise linear regression problems. European

Journal of Operational Research, 229(1):132–142, 2013.

[11] Adil M. Bagirov, Julien Ugon, and Hijran G. Mirzayeva. Nonsmooth Optimiza-

tion Algorithm for Solving Clusterwise Linear Regression Problems. Journal of

Optimization Theory and Applications, 164(3):755–780, 2015.

[12] Jon Baio, Lisa Wiggins, Deborah L. Christensen, Matthew J Maenner,

Julie Daniels, Zachary Warren, Margaret Kurzius-Spencer, Walter Zahorodny,

Cordelia Robinson, Rosenberg, Tiffany White, Maureen S. Durkin, Pamela

Imm, Loizos Nikolaou, Marshalyn Yeargin-Allsopp, Li-Ching Lee, Rebecca Har-

rington, Maya Lopez, Robert T. Fitzgerald, Amy Hewitt, Sydney Pettygrove,

John N. Constantino, Alison Vehorn, Josephine Shenouda, Jennifer Hall-Lande,

Kim Van, Naarden, Braun, and Nicole F. Dowling. Prevalence of Autism Spec-

trum Disorder Among Children Aged 8 Years Autism and Developmental Dis-

abilities Monitoring Network, 11 Sites, United States, 2014. MMWR. Surveil-

lance Summaries, 2018.

[13] Elise B Barbeau, John D Lewis, Julien Doyon, Habib Benali, Thomas A Zef-

firo, and Laurent Mottron. A greater involvement of posterior brain areas

in interhemispheric transfer in autism: fMRI, DWI and behavioral evidences.

NeuroImage: Clinical, 8:267–280, 2015.

[14] Danielle A. Baribeau, Krissy A.R. R Doyle-Thomas, Annie Dupuis, Alana

Iaboni, Jennifer Crosbie, Holly McGinn, Paul D. Arnold, Jessica Brian, Azadeh



Bibliography 72

Kushki, Rob Nicolson, Russell J. Schachar, Noam Soreni, Peter Szatmari, and

Evdokia Anagnostou. Examining and Comparing Social Perception Abilities

Across Childhood-Onset Neurodevelopmental Disorders. Journal of the Amer-

ican Academy of Child and Adolescent Psychiatry, 54(6):479–486, 2015.

[15] Danielle S Bassett and Olaf Sporns. Network neuroscience. Nature Neuro-

science, 20(3):353–364, 2017.

[16] Yoav; Benjamini and Yosef; Hochberg. Controlling the False Discovery Rate:

a Practical and Powerful Approach to Multiple Testing. Journal of the Royal

Statistical Society, 1995.

[17] BIC - The McConnell Brain Imaging Centre. CIVET 2-1-0.

[18] Sarah Jayne Blakemore. The social brain in adolescence. Nature Reviews Neu-

roscience, 9(4):267–277, 2008.

[19] N. Boddaert, N. Chabane, H. Gervais, C. D. Good, M. Bourgeois, M. H. Plumet,

C. Barthélémy, M. C. Mouren, E. Artiges, Y. Samson, F. Brunelle, R. S.J. Frack-

owiak, and M. Zilbovicius. Superior temporal sulcus anatomical abnormalities

in childhood autism: A voxel-based morphometry MRI study. NeuroImage,

23(1):364–369, 2004.

[20] Bjrn Bonath, Jana Tegelbeckers, Marko Wilke, Hans Henning Flechtner, and

Kerstin Krauel. Regional Gray Matter Volume Differences Between Adolescents

With ADHD and Typically Developing Controls: Further Evidence for Anterior

Cingulate Involvement. Journal of Attention Disorders, 22(7):627–638, 2018.

[21] C Bonferroni. Teoria statistica delle classi e calcolo delle probabilita. Pub-

blicazioni del R Istituto Superiore di Scienze Economiche e Commericiali di

Firenze, 8:3–62, 1936.

[22] Leonardo Bonilha, Fernando Cendes, Chris Rorden, Mark Eckert, Paulo Dal-

galarrondo, Li Min Li, and Carlos E. Steiner. Gray and white matter imbalance

- Typical structural abnormality underlying classic autism? Brain and Devel-

opment, 30(6):396–401, 2008.

[23] E. Bora and C. Pantelis. Meta-analysis of social cognition in attention-

deficit/hyperactivity disorder (ADHD): Comparison with healthy controls and

autistic spectrum disorder, 2016.



Bibliography 73

[24] Leo Breiman. Bagging predictors. Machine Learning, 24(2):123–140, 1996.

[25] Leo Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

[26] Sarah Brieber, Susanne Neufang, Nicole Bruning, Inge Kamp-Becker, Helmut

Remschmidt, Beate Herpertz-Dahlmann, Gereon R. Fink, and Kerstin Konrad.

Structural brain abnormalities in adolescents with autism spectrum disorder

and patients with attention deficit/hyperactivity disorder. Journal of Child

Psychology and Psychiatry and Allied Disciplines, 48(12):1251–1258, 2007.

[27] Leslie Brothers. The social brain: a project for integrating primate behavior

and neurophysiology in a new domain. Concepts Neurosci, 1990.

[28] Pierrick Bruneau, Olivier Parisot, and Benot Otjacques. A heuristic for the au-

tomatic parametrization of the spectral clustering algorithm. In Pattern Recog-

nition (ICPR), 2014 22nd International Conference on, pages 1313–1318. IEEE,

2014.

[29] Christina O. Carlisi, Luke J. Norman, Steve S. Lukito, Joaquim Radua, David

Mataix-Cols, and Katya Rubia. Comparative Multimodal Meta-analysis of

Structural and Functional Brain Abnormalities in Autism Spectrum Disorder

and Obsessive-Compulsive Disorder. Biological Psychiatry, 82(2):83–102, 2017.

[30] R Carper. Cerebral Lobes in Autism: Early Hyperplasia and Abnormal Age

Effects. NeuroImage, 16(4):1038–1051, 2002.

[31] T A Collaboration, A M Price-Whelan, B M Sipőcz, H M Günther, P L Lim,

S M Crawford, S Conseil, D L Shupe, M W Craig, and N Dencheva. The

Astropy Project: Building an inclusive, open-science project and status of the

v2. 0 core package. arXiv, 2018.

[32] E. Courchesne, C. M. Karns, H. R. Davis, R. Ziccardi, R. A. Carper, Z. D.

Tigue, H. J. Chisum, P. Moses, K. Pierce, C. Lord, A. J. Lincoln, S. Pizzo,

L. Schreibman, R. H. Haas, N. A. Akshoomoff, and R. Y. Courchesne. Unusual

brain growth patterns in early life in patients with autistic disorder: An MRI

study. Neurology, 57(2):245–254, 2001.

[33] Ana Cubillo, Rozmin Halari, Anna Smith, Eric Taylor, and Katya Rubia. A

review of fronto-striatal and fronto-cortical brain abnormalities in children and

adults with Attention Deficit Hyperactivity Disorder (ADHD) and new evidence



Bibliography 74

for dysfunction in adults with ADHD during motivation and attention. Cortex,

48(2):194–215, 2012.

[34] Wayne S. DeSarbo and William L. Cron. A maximum likelihood methodology

for clusterwise linear regression. Journal of Classification, 1988.

[35] Roberto Di Mari, Roberto Rocci, and Stefano Antonio Gattone. Clusterwise

linear regression modeling with soft scale constraints. International Journal of

Approximate Reasoning, 91:160–178, 2017.

[36] Chase C. Dougherty, David W. Evans, Scott M. Myers, Gregory J. Moore,

and Andrew M. Michael. A Comparison of Structural Brain Imaging Findings

in Autism Spectrum Disorder and Attention-Deficit Hyperactivity Disorder.

Neuropsychology Review, 26(1):25–43, 2016.

[37] Krissy A. R. Doyle-Thomas, Azadeh Kushki, Emma G. Duerden, Margot J.

Taylor, Jason P. Lerch, Latha V. Soorya, A. Ting Wang, Jin Fan, and Evdokia

Anagnostou. The Effect of Diagnosis, Age, and Symptom Severity on Cortical

Surface Area in the Cingulate Cortex and Insula in Autism Spectrum Disorders.

Journal of Child Neurology, 28(6):732–739, 2013.

[38] Emma G. Duerden, Kathleen M. Mak-Fan, Margot J. Taylor, and S. Wendy

Roberts. Regional differences in grey and white matter in children and adults

with autism spectrum disorders: An activation likelihood estimate (ALE) meta-

analysis. Autism Research, 5(1):49–66, 2012.

[39] Christine Ecker, Susan Y Bookheimer, and Declan G M Murphy. Neuroimaging

in autism spectrum disorder: brain structure and function across the lifespan.

The Lancet Neurology, 14(11):1121–1134, 2015.

[40] J Ellegood, E Anagnostou, B A Babineau, J N Crawley, L Lin, M Genestine,

E DiCicco-Bloom, J K Y Lai, J A Foster, O Peñagarikano, D H Geschwind, L K
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[96] Fernando Pérez and Brian E Granger. IPython: a system for interactive scien-

tific computing. Computing in Science & Engineering, 9(3), 2007.

[97] Ruth C M Philip, Maria R Dauvermann, Heather C Whalley, Katie Baynham,

Stephen M Lawrie, and Andrew C Stanfield. A systematic review and meta-

analysis of the fMRI investigation of autism spectrum disorders. Neuroscience

& Biobehavioral Reviews, 36(2):901–942, 2012.

[98] Pratibha Reebye. AttentionDeficit Hyperactivity Disorder: A Handbook For

Diagnosis And Treatment, Third Edition. Journal of the Canadian Academy of

Child and Adolescent Psychiatry, 17(1):31–33, 2 2008.

[99] Crystal Reeck, Daniel R. Ames, and Kevin N. Ochsner. The Social Regulation

of Emotion: An Integrative, Cross-Disciplinary Model. Trends in Cognitive

Sciences, 20(1):47–63, 2016.

[100] Rockville. Social Processes: Workshop Proceedings. Technical report, The

National Institute of Mental Health, 2012.

[101] Donald C. Rojas, Eric Peterson, Erin Winterrowd, Martin L. Reite, Sally J.

Rogers, and Jason R. Tregellas. Regional gray matter volumetric changes in



Bibliography 82

autism associated with social and repetitive behavior symptoms. BMC Psychi-

atry, 6:1–13, 2006.

[102] Nanda N.J. Rommelse, Barbara Franke, Hilde M. Geurts, Catharina A.

Hartman, and Jan K. Buitelaar. Shared heritability of attention-

deficit/hyperactivity disorder and autism spectrum disorder. European Child

and Adolescent Psychiatry, 19(3):281–295, 2010.

[103] Angelica Ronald, Henrik Larsson, Henrik Anckarsäter, and Paul Lichtenstein.
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