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Abstract 

The study of variation found in DNA is fundamental in human genetic studies. Single 

nucleotide polymorphisms (SNPs) are simple to document because they can be captured in 

single DNA sequence reads. Larger structural variation including duplications, insertions, 

deletions, termed as copy number variation (CNV), inversions and translocations are more 

challenging to discover. Recent studies using microarray and sequencing technologies have 

demonstrated the prevalence of structural variation in humans. They can disrupt genic and 

regulatory sequences, be associated with disease, and fuel evolution. Therefore, it is 

important to identify and characterize both SNPs and structural variants to fully understand 

their impact. 
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This thesis presents the analysis of structural variation in the human genome. The primary 

DNA sample used for my experiments is the DNA of J. Craig Venter, also termed HuRef. It 

was the first personal human genome sequenced. I combined computational re-analysis of 

sequence data with microarray-based analysis, and detected 12,178 structural variants 

covering 40.6 Mb that were not reported in the initial sequencing study. The results indicated 

that the genomes of two individuals differed 1.3% by CNV, 0.3% by inversion and 0.1% by 

SNP. Structural variation discovery is dependent on the strategy used. No single approach 

can readily capture all types of variation, and a combination of strategies is required. 

I analyzed the formation mechanisms of all HuRef structural variants. The results showed 

that the relative proportion of mutational processes changed across size range: the majority of 

small variants (<1kb) were associated with nonhomologous processes and microsatellite 

events; median size variants (<10kb) were commonly related to minisatellites and 

retrotransposons; and large variants were associated with nonallelic homologous 

recombination.  

Eight new breakpoint-resolved HuRef inversions were genotyped in populations to elucidate 

these understudied variants. I discovered that the structures of inversion could be complex, 

could create conjoined genes, and their frequencies could exhibit population differentiation.  

The data here contributes to our understanding of structural variation in humans. It shows the 

need to use multiple strategies to identify variants, and it emphasizes the importance to 

examine the full complement of variation in all biomedical studies.  
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I.A Variation in the human genome 

The human genome is comprised of some six billion nucleotides of information packaged in 

23 sets of inherited chromosomes. A striking observation from studying the human genome 

is the extent of similarity among individuals across populations. Therefore, we can gain 

insights of evolution, human diversity, and disease susceptibility by studying a small fraction 

of the genome that is variable between people. 

There are many forms of genome variation. Single nucleotide variants are substitution 

changes in DNA sequence, and are the most common form of variation. Those with allele 

frequency of over 1 % are called single nucleotide polymorphisms or SNPs. Structural 

variation refers to cytogenetically visible rearrangements, and more common submicroscopic 

variants, including deletions, insertions, and duplications – collectively termed copy number 

variation (CNV) – and inversions and translocations. CNVs are defined as gain or loss of 

DNA fragments whose length is 1 kilobases (kb) or above, and those below that size are 

usually classified as small insertions/deletions (indels) (Feuk, et al., 2006a). In general, 

structural variation is less numerous in number than SNPs, but has a wider size distribution.  

Earlier discoveries of human genetic variation are made from clinical studies. In 1949, 

Pauling and colleagues found a difference in electrophoretic mobility of hemoglobin derived 

from erythrocytes of normal individuals and from sickle cell anemic samples. They termed 

sickle cell disease as a molecular disease (Pauling, et al., 1949). The first chromosomal 

disease was reported in 1959, when trisomy of chromosome 21 was found in individuals with 

Down Syndrome (Lejeune, et al., 1959). In the same year, sex chromosome anomalies were 

discovered in people with Klinefelter Syndrome and Turner Syndrome (Ford, et al., 1959). 

Two other cases of aneuploidies, trisomies 13 (Patau, et al., 1960) and trisomies 18 

(Edwards, et al., 1960) were described in 1961. Another form of cytogenetic change is 

heteromorphisms, which are large, microscopic visible chromosomal rearrangements. In 

1961, Novell and Hungerford reported the Philadelphia chromosome abnormality associated 

with chronic myelogenous leukemia (Nowell and Hungerford, 1961). This is the 

translocation between chromosome 9 and 22. Finally, microscopically visible fragile site at 
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Xq27.3 (Lubs, 1969), associated with X-linked mental retardation, is caused by massive 

expansion of triplet repeat in the FMR1 gene (fragile X mental retardation 1). 

On the other end of the size spectrum at the submicroscopic level, single nucleotide variants 

and small structural variants can disrupt genic or regulatory sequences and cause single-gene 

disorders. The discovery of these mutations was made possible by the inventions of cloning 

(Cohen, et al., 1973) and DNA sequencing (Maxam and Gilbert, 1977; Sanger, et al., 1977). 

In 1977, Frederick Sanger developed DNA sequencing based on chain termination method, 

and this technique is now commonly known as Sanger sequencing or the “first generation 

sequencing”. 

Duchenne Muscular Dystrophy is a severe X-linked disorder. The DMD gene is one of the 

largest protein-coding genes in the human genome, and it was cloned in 1987 (Koenig, et al., 

1987). Mutation in this gene include large deletions (60-65%), large duplications (5-10%), 

small indels or substitutions (5-10%), and in rare cases, X-autosome translocations in females 

(Nussbaum, et al., 2007; Ray, et al., 1985). In 1989, the cystic fibrosis gene was mapped 

(Kerem, et al., 1989; Riordan, et al., 1989; Rommens, et al., 1989). We now know that there 

are over 1,930 mutations in the cystic fibrosis transmembrane conductance regulator (CFTR), 

ranging from missense mutations to large indels (http://www.genet.sickkids.on.ca/app). The 

Huntington Disease gene was subsequently cloned in 1993. The unstable expansion of 

trinucleotide repeats is associated with this autosomal dominant disorder (MacDonald, et al., 

1993). 

The availability of the human reference genome assembly since 2001 is another major 

resource for variation studies. Not only is it the map for genes and other functional elements, 

it is also the reference upon which genomic variants are defined: Its sequence is used to 

design microarray probes, and to which sequenced DNA is mapped. During the course of 

determining the human genome sequence (Lander, et al., 2001; Venter, et al., 2001), and 

subsequently through the International HapMap Project (The International HapMap 

Consortium, 2005), millions of single nucleotide variants were identified, and were 

determined to be the most plentiful form of variation in the genome. Overall, single 

nucleotide variation accounts for the polymorphisms that mark the widespread genetic 
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diversity within our species, and also account for the mutations that contribute to disease. It 

was estimated that 0.1 % of the genome is different between any two human beings due to 

SNPs (Lander, et al., 2001; Venter, et al., 2001). 

I.B Prevalence of structural variation 

While cytogenetic rearrangements are rare and tend to be associated with disease phenotypes, 

SNPs are common and are observed in all individuals. Yet, information about variation 

between chromosomal rearrangements and nucleotide substitutions has been less extensive. 

The developments of advance genome-wide scanning technologies (Iafrate, et al., 2004; 

Redon, et al., 2006; Sebat, et al., 2004) and DNA sequence comparative analyses (Feuk, et 

al., 2005; Khaja, et al., 2006; Tuzun, et al., 2005) enable investigation of the extent of 

structural variation in the general population.  

A common theme in structural variation studies is that structural variation is prevalent in the 

genome, and is present in all individuals. Particularly, in an early study, Redon and 

colleagues discovered 1,447 CNVs, covering a remarkable 12 % of the human genome 

(Redon, et al., 2006). Subsequently, with higher resolution and greater precision microarrays, 

that number has been refined to about 3.7 %, which is about 0.7 % when comparing two 

genomes (Conrad, et al., 2010b). Evidently, the greatest source of genetic diversity in 

humans lies not in SNPs (contributing to 0.1 % of diversity) but rather in larger structural 

variants (Conrad, et al., 2010b; McCarroll, et al., 2008; Redon, et al., 2006).  

I.B.1 Methods of discovery  

In recent years, there had been development of many genome-wide experimental and 

computational strategies to detect structural variation, and here I discuss the ones that are of 

the greatest impact to variation discovery. The exploration of submicroscopic genomic 

unbalanced structural variants was made possible with the development of microarray 

technology. High resolution array comparative genome hybridization (CGH) and SNP-

genotyping microarrays are the most widely used approaches to detect CNVs (Conrad, et al., 

2010b; McCarroll, et al., 2008; Redon, et al., 2006). In the case of array CGH, the probe 

fluorescence signal ratio between a test and a reference sample acts as proxy for copy 

number. A rise in ratio represents a gain in copy number in the test sample with respect to the 
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reference, and conversely a drop represents a loss in the test sample. Consecutive probes with 

aberrant signal ratio are required to call a CNV. Thus the resolution of microarrays is 

determined by both the number of probes used to make a call and the spacing between 

adjacent probes.  

The principle of genotyping arrays is similar except the probe signal intensities of each 

sample are compared against a reference consisting of a collection of sample hybridizations 

(Alkan, et al., 2011). So, hybridization intensities are compared with average values derived 

from the reference, and any deviation from the averages indicates copy number change. SNP 

arrays provide both copy number information and genotype information. For instance, they 

can identify loss of heterozygosity, which can support the presence of a deletion or segmental 

uniparental disomy. 

Besides microarrays, sequence-based approaches can also detect genomic variation. 

Typically, DNA sequence reads of a test individual generated by whole-genome shotgun 

sequencing is aligned to the National Center for Biotechnology Information (NCBI) 

reference assembly, and discordant signatures of the alignments would indicate variants. 

Four major computational approaches have been applied to sequence data to detect genomic 

structural variation, and they are the mate-pair, split-read, read depth and assembly 

comparison approaches. These approaches are initially developed based on Sanger sequences 

(Sanger, et al., 1977), but they can also be adopted to work on Next Generation Sequencing 

(NGS) data. 

Paired sequences (a mate-pair) from an insert library of defined sizes created from genomic 

DNA from a test individual are sequenced, and then aligned to the reference assembly. The 

distance between the pair is then compared with the expected size of the insert. Any 

discrepancy in distance between the observed and expected size indicates putative insertion 

or deletion, while any incorrect orientation with respect to the reference assembly highlights 

potential inversion (Hormozdiari, et al., 2009; Kidd, et al., 2008; Korbel, et al., 2007; Tuzun, 

et al., 2005). Secondly, small indels can be captured by identifying intra-alignment gaps or 

“split-reads” within the alignment of sequence traces (Mills, et al., 2006; Ye, et al., 2009). A 

third type of variant-calling approach is the read depth approach, whose idea is that 
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duplicated regions will show significantly elevated number of alignments compared to 

diploid regions, whereas deletions will show reduced levels of alignments (Abyzov, et al., 

2011; Chiang, et al., 2009). Finally, structural variants can also be identified by aligning two 

assemblies of DNA. Here, the mate-pair reads from the test sample can be assembled de novo 

into long range scaffolds, which are then subsequently mapped to the public reference 

assembly. In principle, this assembly comparison method can identify all types of variants: 

SNPs, insertions, deletions, duplications, inversions and translocations (Feuk, et al., 2005; 

Khaja, et al., 2006; Levy, et al., 2007; Li, et al., 2010b; Zerbino and Birney, 2008). 

Furthermore, it can resolve the structures of regions where multiple events having occurred 

in close proximity, and in addition to identify a duplication event, it can pinpoint the location 

of the duplicated copy.  

I.B.2 Structural variation: type, number, size and detection platform 

Table I. 1 shows substantial differences in type, number and size of structural variants among 

studies. Difference in platform, probe density, and computational algorithm can yield 

different number of CNVs that are of different size (Alkan, et al., 2011; Scherer, et al., 2007). 

There are a few general characteristics common in array-based studies. More deletions are 

detected than duplications. Copy number changes of repetitive elements are usually not 

reported because either these loci cannot be uniquely targeted by short oligonucleotide 

probes, or over-saturation of probe fluorescence would prevent an accurate high copy 

number count. Also, arrays cannot detect dosage-invariant changes such as inversions and 

translocations. 
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Table I. 1. Structural variation and detection methods.  
Method Samples Deletions Insertions Inversions Duplications Reference 

  # Median 
(bp) # Median 

(bp) # Median 
(bp) # Median 

(bp)  

SNP 
array1 270 1,122 6,216 - - - - 442 14,122 

(McCarroll, 
et al., 
2008) 

Array 
CGH2 40 7,909 2,284 - - - - 4,740 5,265 (Conrad, et 

al., 2010b) 
Array 
CGH3 30 14,597 2,439 - - - - 5,502 3,835 (Park, et 

al., 2010) 
Mate-
pair 8 1,843 8,657 560 7,594 1,146 77,119 1,768 8,429 (Kidd, et 

al., 2008) 
Split-
read4 36 216,212 2 199,222 2 - - - - (Mills, et 

al., 2006) 
1 Affymetrix 6.0 SNP. 2 NimbleGen 42M oligonucleotide array set. 3 Agilent 24M oligonucleotide array set. 4 

Unique indels only. 
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Alignment of mate-pair sequence can detect more deletions than insertions (Kidd, et al., 

2008). Whereas there is no theoretical upper size limitation in detecting deletions, insertion 

identification is restricted by the length of insert fragment, thus limiting the number of 

insertions detectible. In addition, the DNA composition of the insertion is typically unknown 

as only the ends of insert fragments are sequenced. An advantage of mate-pair mapping 

approach over microarrays is that it can detect inversions (Table I. 1). 

Mills and colleagues used the split-read approach to call structural variation (Mills, et al., 

2006). While they called the most number of variants, but their size is much smaller than the 

other studies (Table I. 1). Similar to mate-pair mapping, the split-read approach calls fewer 

insertions than deletions, because of insertions are bounded by the size of sequenced reads. 

This method also cannot detect any copy balanced variation. 

In summary, different platforms can identify different type, number and size of structural 

variants. This is a challenge for structural variation. If a study uses only one detection 

approach, it will miss certain types of variation. As describe in Chapter II, in order to 

compensate for the shortcomings of each method, I used multiple detection methodologies to 

identify structural variation in a human individual. By examining the same sample using 

multiple methodologies, I quantified the type and size range of variants that can be detected 

by each methodology, and most importantly, showed that presently there is no single method 

that can readily capture all variation (Pang, et al., 2010) 

I.B.3 Genomic impact 

Structural variation is ubiquitous in the genome. The Database of Genomic Variants (DGV) 

is a repository for structural variation found in general population surveys (Iafrate, et al., 

2004; Zhang, et al., 2006). As of September 2012, DGV has 833,981 gains and losses and 

906 inversion entries, covering over 30 % of the euchromatic region of the genome. Figure I. 

1 shows the size distribution of the gains, losses and inversions contained in DGV. 
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Figure I. 1. Size distribution of gains and losses, and inversions in DGV.  
(Top) The size distribution of insertions and duplications and (Middle) deletions reported in 
DGV. The 0 kb - 1 kb size range is likely an underrepresentation. That size range is below 
the detection limit of most microarrays, which are currently the most used CNV-detection 
method. There are more deletion records than insertions and duplications. Although small 
variants are under-represented in both (A) and (B), the trend of deletion is probably more 
representative of variability in the genome than insertion or duplication. (Bottom) The size 
distribution of inversions, and it is discussed in more details in text.  
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When deletions or duplications encompass genic or regulatory regions, they may create an 

imbalance in the appropriate level of RNA or protein produced. Furthermore, when CNVs 

overlap genes encoding transcription factors, they can affect the expression of both the 

transcription factors and their targeted genes. For genes or pathways that are dosage 

sensitive, CNVs may lead to change in gene-dosage, thus susceptibility to disease. 

Duplication events can mediate additional structural variants by catalyzing non-allelic 

homologous recombination (NAHR) between the duplicated copies. In addition, gene 

duplications can create redundancy such that the new copies can accumulate mutations, thus 

allowing them to gain new molecular functions. Alternatively, if the breakpoints of 

duplications, deletions, inversions, and translocations partially overlaps genes, then the 

variants can alter the genes’ structure by disruption or by creation of novel transcripts (Feuk, 

et al., 2006a).  

Hundreds of structural variants, mostly CNVs, can be detected in any individual using 

microarrays or sequencing. A study by our group reported 3,340 CNVs overlap 2,698 RefSeq 

genes, altering the structure of 3,863 transcripts and 1,519 coding sequence. In general, 

though, there is a paucity of CNVs overlapping genes, and the impoverishment of deletion is 

stronger than duplication, perhaps due to more severe consequence associated with loss-of-

function (Conrad, et al., 2010b). Copy number variable regions show increased SNP 

variation and a higher density of short genes, while regions that are stable against CNVs are 

enhanced for longer genes and ultra-conserved elements (Johansson and Feuk, 2011). Of the 

genes impacted by CNVs, those that are involved in interactions with the environment such 

as immunity or sensory perception are enriched. On the other hand, genes that are involved in 

basic development such as the development of nervous system are typically dosage sensitive, 

and are enriched in “CNV deserts”, thus suggesting that variation may lead to reduced 

organismal fitness. 

To estimate the relative genomic impact of substitution variation and structural variation, one 

can examine data from disease and known mutations. Table I.2 shows the relative impact of 

different types of mutations underlying characterized disease phenotypes as reported in the 

Human Gene Mutation Database (Table I. 2). According to this, missense and nonsense 
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substitutions account for the majority of reported mutations. However, there are a few 

caveats. First, reported mutations involved in genetic disease tend to reside in the coding 

regions. Although well characterized, coding regions constitute only a small portion of the 

genome. Hence, the proportions listed here may not be representative of the whole genome. 

Furthermore, it should be noted that substitutions are easier to detect than structural variants, 

so the effects of the latter would also be less well annotated. Finally, in terms of number, 

there are more substitutions reported to be associated with disease phenotypes. But in terms 

of size, one large rearrangement can in principle overlap multiple neighbouring genes, affect 

multiple physiological pathways, and potentially have more serious effects than single base 

change. Therefore due to these confounding factors, it is perhaps premature to draw 

conclusions on the relative genomic impact of substitutions and structural variants. 
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Table I. 2. Relative frequency of different types of mutations underlying disease 
phenotypes.  
(data from the Human Gene Mutation Database, March 2013) 

Mutation type Number % of Total 
Missense/nonsense substitutions 74,328 55.5 

Splicing substitutions 12,414 9.3 
Regulatory substitutions 2,628 2.0 

Small deletions 20,705 15.4 
Small insertions 8,558 6.4 

Small indels* 1,987 1.5 
Gross deletions 9,479 7.1 
Gross insertions 2,172 1.6 

Complex rearrangements 1,341 1.0 
Repeat variations 407 0.3 

Total (in 5,283 genes) 134,019 100 
* Co-localised insertions and deletions 
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I.B.4 Structural variation and selection 

From population studies, CNVs tend to bias away from functional sequences (Conrad, et al., 

2010b; Redon, et al., 2006). As evident by the depletion of structural variation, purifying 

selection acts most strongly on exonic, then intronic, and then intergenic sequences (Conrad, 

et al., 2010b; Mills, et al., 2011a; Redon, et al., 2006). Also, the genome is more tolerable of 

submicroscopic duplications than deletions; there is a greater proportion of full-gene or 

exonic duplication than deletion (Conrad, et al., 2010b). Furthermore, ultra-conserved 

elements, which are perfectly conserved between orthologous regions of human, mouse and 

rat (Bejerano, et al., 2004), are known to be under intense purifying selection. These 

sequences are significantly depleted within CNVs. Amplification or deletion of these critical 

regions may result in deleterious consequences. All these observations substantiate the 

presence of negative selection can act on structural variation. 

There is also evidence of positive selection on structural variants. Extended long range 

haplotype around a variant is indicative of positive selection (Sabeti, et al., 2002). A deletion 

between pathogen immunity genes APOL2 and APOL4 reside in a long extended haplotype 

(Genovese, et al., 2010). These genes have been shown to be under positive selection in 

primates. Population differentiation can also identify variants which are differentially 

selected for in different environments, so it is also indicative of positive selection acting in 

one or more populations. The copy number of the amylase AMY1 gene exhibits high 

population differentiation. The gene is responsible for the hydrolysis of starch. Populations, 

such as Japanese, that have high consumption of starch tend to have higher copy number of 

AMY1 than populations that consume starch in low quantity, such as Biaka pygmy. This 

situation is believed to be positive selection in response to diet (Perry, et al., 2007).  

I.B.5 Mechanisms of structural variation formation 

The formation mechanisms of structural variation can be inferred by examining the 

underlying DNA sequence. Highly homologous duplicated sequences, such as segmental 

duplications (operationally defined as duplicated sequences > 1 kb sharing over 90 % 
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sequence identity) or retrotransposable elements, can mediate NAHR. Tandem homologous 

sequences can lead to the formation of gains and losses (Conrad, et al., 2010b; Kidd, et al., 

2008), oppositely oriented ones can mediate inversions (Feuk, et al., 2005), and homologs 

situated on different chromosomes can cause translocation (Ou, et al., 2011). On the other 

hand, rearrangements that lack significant flanking sequence homology or that show short 

stretches of flanking microhomology are believed to be formed by ligation processes such as 

nonhomologous end-joining (NHEJ) or microhomology-mediated end-joining (MMEJ). 

Complex genomic rearrangements consist of more than one simple rearrangement, and have 

two or more breakpoint junctions. These variants are then proposed to have been formed by 

either strand slippage or template switching at a replication fork that is stalled (fork stalling 

and template switching, FoSTeS) (Lee, et al., 2007) or broken (microhomology-mediated 

break-induced repair, MMBIR) (Hastings, et al., 2009). 

Small indels can be simple additions or deletions of bases due to errors in replication or 

repair. To the contrary, indels associated with tandem repeat are believed to be due to errors 

in replication and recombination. While small mutations involving gain or loss of < 10 

repeats are believed to be caused by replication slippage, large mutations are compatible with 

recombination (Richard and Paques, 2000). Finally, three classes of retrotransposable 

elements – L1 (long interspersed element 1), SVA (short interspersed element (SINE-R), 

variable number of tandem repeats (VNTR), and Alu), and Alu (a SINE) elements – are still 

active in the human genome. These DNA retrotransposons are transcribed into RNA 

intermediates, reverse transcribed, and finally randomly re-inserted themselves in distal 

locations (Konkel and Batzer, 2010). 

One can infer the origin of structural variation by investigating the DNA sequence of the 

variant or its surrounding region. For example, the presence of long homologous segmental 

duplication flanking a deletion would suggest the deletion is formed by NAHR, whereas an 

insertion of DNA resembling an Alu would indicate a retrotransposition event. A prerequisite 

to this sequence-based inference of mutational mechanism is to have precise breakpoint; 

however, this information is not easy to obtain. Spacing between microarray probes prevents 

accurate delineation of precise variant breakpoint; the true breakpoint can reside in DNA 

sequence between neighbouring probes. Short-read sequencing platforms similarly generate 
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imprecise variant boundaries, as evident in the recent 1000 Genomes Project structural 

variation study, where only half (53%) of the calls have been mapped at nucleotide level 

(Mills, et al., 2011b). Furthermore, existing mechanism studies show various results in the 

proportion of mechanistic process (Table III. 1), and this discrepancy is due to the bias in 

examining only subsets of variations in the human genome (for example, only the indels or 

only variants of specific sizes). In Chapter III of this thesis, I provide a more accurate 

estimate of the proportion of various mutational processes by annotating the sequence 

content of a near-complete set of breakpoint-refined structural variation discovered in a fully-

sequenced human genome. 

I.B.6 Inversions 

Because inversions are generally copy number invariant, they often have no functional 

significance unless their breakpoints disrupt genes or fall between genes and their 

transcription regulatory elements. Examples where recurrent inversions have been shown to 

lead to disruption of genes thus leading to clinical phenotypes are the disruption of factor 

VIII gene in hemophilia A (Green, et al., 2008), iduronate 2-sulphatase gene in Hunter 

syndrome (Bondeson, et al., 1995), emerin gene in Emery-Dreifuss muscular dystrophy 

(Small, et al., 1997). Other inversions associated with phenotype but not directly causative 

are the ones that increase the risk of further rearrangements. In some microdeletion 

syndromes such as the Williams-Beuren Syndrome (Osborne, et al., 2001), phenotypically 

normal parents of patients  have been shown to carry an inversion in the deletion interval, 

and that the inversion is observed in the parent who transmits the disease-related 

chromosome. Generally, the mechanism of how an inversion mediates subsequent 

rearrangements is still not well understood. 

Contrasting with gains or losses of DNA, which can be detected by commonly-used 

microarrays, whole-genome sequencing is required to directly detect novel genomic 

inversions. Mate-pair mapping is the only practical approach currently applied to detect 

submicroscopic inversions genome-wide. Therefore, due to the difficulty in their detection, 

the map of inversion in the human genome is far lagging behind gains and losses.  
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There are 833,981 CNV, but only 906 inversion entries in the DGV as of September 2012 

(Iafrate, et al., 2004; Zhang, et al., 2006). Nonetheless, by examining the size distribution of 

variants reported in DGV, one would notice that most inversions are generally in the 10 to 

100 kb size range, contrasting to deletions in the 1 to 10 kb size range (Figure I. 1). There are 

different possible explanations to the difference in size distribution. First, large inversions 

may be less detrimental than large CNVs. Functional sequences within the inverted region 

are essentially unchanged, but those inside CNVs are always changed in copy number. 

Hence, large inversions are less likely to cause phenotypic change than large CNVs. For 

instance, even cytogenetically visible inversions can have no visible phenotypical effect 

(Nussbaum, et al., 2007). On the other hand, the difference in size distribution may also be 

due to methodological limitations. Since the majority of the inversion records in DGV are 

discovered by mate-pair mapping, the size distribution may simply correspond to the 

resolution of the approach. There may be additional inversions, particularly at the small size 

range, remaining to be detected. 

I.C Personal genome sequencing 

New sequencing technologies significantly improve the capability to perform whole genome 

sequencing. There are three main differences between NGS and Sanger sequencing: 

parallelization, high throughput and reduced cost. Consequently, whole genome sequencing 

is now more affordable and can be completed in a shorter time span. For example, the first 

personal genome sequenced (the genome of J. Craig Venter, also called the HuRef genome) 

(Levy, et al., 2007), which used Sanger-based capillary sequencing technology, cost 

approximately 2 million US dollars (Stepanov, 2010). Subsequently, the genome sequences 

of Yoruba and Chinese individuals cost about $250,000 and $500,000, respectively (Bentley, 

et al., 2008; Wang, et al., 2008). The trend is dramatically decreasing with cost drops to 

about $4,400 (Drmanac, et al., 2010). In return for efficiency, the data generated by NGS 

tend to have higher error rates than Sanger approach (Liu, et al., 2012), although that is 

rapidly improving. The fragments or inserts used for end-sequencing (~150 bp to ~2 kb) are 

usually much shorter than the recombinant DNA clones used in sequencing the HuRef 

genome (2 kb to 37 kb). Finally, NGS sequenced DNA traces (25 bp to ~ 200 bp) are 

typically much shorter than Sanger reads (average of ~700 bp). There are several NGS 
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platforms that have been used for human genome sequencing, and they are Roche 454, 

Illumina, Life Technologies SOLiD, Helicos, and Complete Genomics and Life 

Technologies Ion Torrent. 

Hundreds of human genomes – controls or disease cohorts – have been sequenced to date. 

The ultimate goal of these sequencing projects is to capture the full spectrum of genetic 

variation that will facilitate medical interpretation. Different sequencing platforms with 

vastly different chemistries have been used, and all except the HuRef genome, have been 

generated by NGS (Table I. 2). It is important to note here that the NCBI and Celera 

assemblies generated since 2001 consist of a mosaic of haploid DNA derived from multiple 

individuals, and hence are not considered as personal genomes. 
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Table I. 3. Summary of personal sequencing studies. 

Date Sample Pop. Platform Cov SNP Gain/loss* Inversion* Reference 

      # 
Min 
size 
(bp) 

Max size 
(kb) # Min size 

(bp) 
Max size 

(kb)  

**2007, 
Oct. 

Venter 
(HuRef) Caucasian ABI3730xl 7.5 3,213,401 796,079 1 82.7 90 120 686.3 (Levy, et al., 

2007) 

2008, 
Apr. Watson Caucasian 454 7.4 3,322,093 222,718 2 38.9 0 0 0 (Wheeler, et 

al., 2008) 

2008, 
Nov. NA18507 Yoruba Illumina 41 4,139,196 410,120 1 50.0 0 0 0 (Bentley, et 

al., 2008) 

2008, 
Nov. 

Yanhuang 
(YH) Chinese Illumina 36 3,074,097 137,927 1 180.0 17 282 158.3 (Wang, et 

al., 2008) 

2009, 
May 

Seong-Jin 
Kim 

(SJK) 
Korean Illumina 29 3,439,107 345,885 1 99.5 415 100 98.0 (Ahn, et al., 

2009) 

2009, 
Jun. NA18507 Yoruba SOLiD 17.9 3,866,085 232,124 1 97.0 91 112 90.5 (McKernan, 

et al., 2009) 

2009, 
Aug. AK1 Korean Illumina 27.8 3,453,653 171,439 1 3,675.8 0 0 0 (Kim, et al., 

2009) 

2009, 
Aug. 

Quake 
(P0) Caucasian Helicos 28 2,805,471 752 N/A N/A 0 0 0 (Pushkarev, 

et al., 2009) 

2010, 
Jan. NA07022 Caucasian Complete 

Genomics 87 3,076,869 337,635 1 50bp 0 0 0 (Drmanac, et 
al., 2010) 

2010, 
Jan. NA19240 Yoruba Complete 

Genomics 63 4,042,801 496,194 1 50bp 0 0 0 (Drmanac, et 
al., 2010) 

2010, 
Jan. NA20431 Caucasian Complete 

Genomics 45 2,905,517 269,794 1 50bp 0 0 0 (Drmanac, et 
al., 2010) 

2010, 
Feb. Saqqaq Paleo-

Eskimo Illumina 20 2,193,396 0 0 0 0 0 0 (Rasmussen, 
et al., 2010) 
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2010, 
Feb. KB1 Khoisan 454/Illumina 33.4 4,053,781 463,788 1 93.3 0 0 0 (Schuster, et 

al., 2010) 

2010, 
Feb. 

Tutu 
(ABT) Bantu SOLiD/Illumina 37.2 3,624,334 3,395 1 11bp 0 0 0 (Schuster, et 

al., 2010) 

2010, 
Mar. 

Pedigree 
#1 mother Caucasian Complete 

Genomics 51 ~2,900,00
0 N/A N/A N/A 0 0 0 (Roach, et 

al., 2010) 

2010, 
Mar. 

Pedigree 
#1 father Caucasian Complete 

Genomics 88 ~3,200,00
0 N/A N/A N/A 0 0 0 (Roach, et 

al., 2010) 

2010, 
Apr. Lupski Caucasian SOLiD 29.9 3,420,306 234 1,690 1,627.8 0 0 0 (Lupski, et 

al., 2010) 

2010, 
Sep. Irish Irish Illumina 11 3,125,825 195,798 1 29 0 0 0 (Tong, et al., 

2010) 

2010, 
Nov. NA18943 Japanese Illumina 40 3,132,608 5,319 1 221.8 57 N/A N/A (Fujimoto, 

et al., 2010) 

2011, 
Jul. Moore Caucasian Ion Torrent 10.6 2,598,983 3,391 50 982.8 22 250 1,941.9 (Rothberg, 

et al., 2011) 

2011, 
Oct. 

Aboriginal 
Australian 

Aboriginal 
Australian Illumina 6.4 449,115 22,576 N/A N/A 0 0 0 (Rasmussen, 

et al., 2011) 

2012, 
Feb. 

Tyrolean 
Iceman 

Southern 
European SOLiD 7.6 2,218,163 N/A N/A N/A 0 0 0 (Keller, et 

al., 2012) 

2012, 
Mar. 

Michael 
Snyder Caucasian 

Complete 
Genomics/ 
Illumina 

150/ 
120 3,301,521 219,342 1 >50bp N/A N/A N/A (Chen, et al., 

2012) 

2012, 
Jul. IGIB1 Indian Illumina 28 3,409,125 491,119 N/A N/A 49 N/A N/A (Patowary, 

et al., 2012) 

2012, 
Aug. SAIF Indian Illumina 34.9 3,459,784 384,926 1 335bp 0 0 0 (Gupta, et 

al., 2012) 

2012, 
Oct NA18507 Yoruba Illumina 41 0 785,077 1 9,214.9 172 235 8,749.4 (Jiang, et al., 

2012) 
* N/A denotes that data has been detected and published, but the details on the number or size are not available in the study. 0 means no data of this type was 
detected in the study. 
** From the HuRef study, I include all homozygous indels, heterozygous indels, indels embedded within simple, bi-allelic, and non-ambiguously mapped 
heterozygous mixed sequence variants, and only those inversions whose size is at most 3Mb. 
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J. Craig Venter is a pioneer in genome research, and is best known for his work in using 

whole-genome shotgun sequencing approach to generate a draft of the human genome in 

2001(Venter, et al., 2001). Besides the sequencing of his own personal genome in 2007 

(Levy, et al., 2007), he led a team to construct the first synthetic bacterial cell in 2010 

(Gibson, et al., 2010). He is the founder of Celera Genomics, The Institute for Genomic 

Research, the J. Craig Venter Institute and Synthetic Genomics (Venter, 2007). In the 

beginning of my PhD study in 2007, I participated in the sequencing and characterization of 

the Venter genome, herein called the HuRef genome. The HuRef assembly was produced 

from ~ 32 million random paired clone-end DNA fragments. Long and high quality reads 

(average of ~ 700 bp) sequenced from the ends of long clone fragments of multiple insert 

lengths (2 kb, 10 kb and 40 kb) enabled the generation of de novo long-range assembly. This 

HuRef diploid assembly was then compared to the NCBI public reference assembly and 

revealed 3,213,401 SNPs, 292,102 heterozygous indels, 559,473 homozygous indels, and 90 

inversions. Structural variation accounts for 74 % of variable bases. The study reveals that 

there are ~ 12,500 non-silent coding variants in the HuRef genome. Particularly, he is 

heterozygous for alleles that are linked to susceptibility to coronary artery disease, 

hypertension and myocardial infarction. However, the majority of coding variants in his 

genome are neutral or nearly neutral, and that there is no evidence of severe disease (Ng, et 

al., 2008).   

Besides the HuRef individual, other genomes of controls from different populations have 

been sequenced (Table I. 2). These studies use different NGS technologies, achieve different 

levels of coverage with different amounts of variation in different parts of the genome. The 

consensus of the results is that a genome has about 3.2 million SNPs; however, there is no 

agreement on the number of structural variants. The number of gains and losses reported is 

variable, and inversions are rarely reported at all. This again exemplifies the difficulty in 

detecting structural variation, which unlike SNPs, many of them cannot be captured within 

short sequence reads. 

Overall, these personal genome studies show that there is a tremendous amount of variation 

in the human genome, but also a limited understanding of the effect of most of these calls. 
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Although numerous variants are discovered in each genome, only a minority of which can 

correlate with the physical trait of the individual. Additional studies, such as the 1000 

Genomes Project, are needed to sequence a large number of individuals to catalog genomic 

variation in humans (Durbin, et al., 2010).  

I.D Application of whole genome sequencing 

Some benefits of genomic sequencing are already apparent, particularly in diagnosis in 

identifying variants associated with monogenic disease. For example, Choi and colleagues 

reported sequencing of the exome – the coding regions – of a patient to diagnose for possible 

Bartter syndrome, a disease of problem in salt re-absorption (Choi, et al., 2009). Since the 

healthy parents were first cousins, the authors searched for loss of heterozygosity, and 

identified a novel homozygous missense mutation in the SLC26A3 gene in 7q31.1. This gene 

is known to cause congenital chloride-losing diarrhea (OMIM 214700). Then clinical follow-

up found that the patient indeed had chloride-losing diarrhea, which was not initially 

considered, and not Bartter syndrome. Also, Lupski and colleagues sequenced the genome of 

James Lupski, who has Charcot-Marie-Tooth neuropathy (Lupski, et al., 2010), using NGS 

achieving an average depth of ~ 30 X. After focusing on 40 candidate neuropathy genes, the 

authors identified two mutations that are compound heterozygous at the SH2 domain and 

tetratricopeptide repeats 2 gene (SH3TC2). Interestingly, subsequent examinations of other 

family members – all being compound heterozygotes for these variants – showed that each 

heterozygous variant co-segregated with an electrophysiological phenotype such as axonal 

neuropathy or carpal tunnel syndrome. Finally, a recent study demonstrates that diagnosis in 

neonatal intensive care units by whole genome sequencing can be achieved in 50 hours. 

Because of the rapid course of monogenic diseases, genetic heterogeneity, and that current 

tests only identify a few disorders at a time, existing newborn screens of acutely ill neonates 

may not be made in time. Short turn-around time of sequencing result, coupling with 

symptom-assisted analysis, can potentially shorten diagnosis and quicken clinical decision 

making (Saunders, et al., 2012).  

Another application of genome sequencing is on the studying of population genetics. In 

principle, whole-genome sequencing offers unprecedented resolution to detect of all genomic 

variants along the chromosomes, so sequencing of parents and children can directly 
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determine the rate of mutation. Conrad and colleagues have used sequencing to examine the 

de novo rate of single nucleotide variants, and show a mutation rate about 1.1x10-8 per 

nucleotide per generation, equivalent to ~ 70 new mutations in the genome per generation 

(Conrad, et al., 2011). Moreover, studying recombination rate in people once seemed 

impossible, unless one can find individuals with hundreds of children and then sequence their 

genomes. Advancement in single-cell sequencing enables examination of recombination rate 

in spermatogenesis. Wang and colleagues have isolated, and sequenced 100 single sperm 

genomes (Wang, et al., 2012). They observed recombination rate at an average of 22.8 events 

per cell, identified recombination hotspots, and estimated gene conversion rate at 5 – 15 per 

cell. The location of recombination hotspots can potentially help future studies to identify 

hotspots of structural variants. 

Unlike SNP-microarrays that are designed to target common variants, sequencing can capture 

both common and rare variants. Recent studies have examined the frequencies of SNPs 

detected, and identified an excessive number of low frequency rare variants in cohort 

samples. This is due to the explosive accelerated growth of population size in recent 100 

generations (Coventry, et al., 2010; Gravel, et al., 2011; Keinan and Clark, 2012). Rapid 

growth increases the load of rare variants, as there is little time for natural selection to 

operate and remove them, unless they are severely deleterious. The studies suggest that these 

variants may play a role in the genetic burden of complex disease risk, and that future disease 

studies will need a large sample size to capture these individually rare events. 

Finally, one can also make use of the data generated from sequencing to design additional 

assays to genotype structural variants, which are more difficult to detect than SNPs. Based on 

indels discovered in sequencing studies, Mills and colleagues designed a custom microarray 

to genotype over 10,000 of these variants in a panel of individuals (Mills, et al., 2011a). They 

characterized their allele frequencies and inheritance patterns. They also found high linkage 

disequilibrium (LD) of indels with SNPs in the HapMap project, thus enabling potential 

integration of the indels to existing haplotype map of the human genome. Similarly, I 

leveraged the availability of the breakpoints of inversions in HuRef, and developed assays to 

genotype a subset of these variants in multiple subjects. I found that submicroscopic 
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inversions may not truly be copy-balanced, may have net change in DNA content, and can 

have complex structures that may lead to reference genome misassembly.  

I.E Annotation of structural variation in a personal genome sequence 

As mentioned above, there are still many existing challenges to detect and characterize 

structural variation. The rationale of my project is that better analysis tools and a deeper 

understanding of genomic variation are essential to decipher and interpret the human 

genome. I have three main objectives: 1) develop methods to analyze genomic data and 

detect structural variation; 2) annotate the formation mechanisms of structural variation; and 

3) genotype submicroscopic inversions in human populations. The primary DNA sample 

used for my experiments is the HuRef sample, because of availability of DNA, full-access to 

sequence data, and known information on the identity and phenotype of the donor. 

In the original Levy et al. study, the HuRef variation set was generated by comparison of the 

HuRef assembly with the NCBI public reference assembly Build 36 (Levy, et al., 2007). In 

principle, the assembly comparison method can detect all types of variation: substitutions, 

insertions, deletions, duplications and inversions. This approach depends on the length and 

quality of the assembled sequence scaffolds (Levy, et al., 2007). Of the deletions called by 

CGH and SNP microarray experiments run with the HuRef DNA, interestingly, none of them 

had been detected by the sequence-based assembly comparison approach. In addition, there is 

an under-representation of heterozygous indels due to the relatively low coverage achieved; 

about 44 to 52 % of the heterozygotes are estimated to have been labeled as homozygotes. 

Hence, the variation map of the HuRef genome is not complete.  

This thesis describes my effort in building what is currently the most detailed variation map 

of a human genome. It has three chapters, and each addresses an outstanding problem in 

variation studies. 

Chapter II: Towards a comprehensive structural variation map of an individual human 

genome.  I used a combination of computational and experimental approaches to identify 

additional structural variation missing in the initial Levy et al. study. First, I implemented 

mate-pair and split-read algorithms to detect insertions, deletions and inversions by sequence 
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read alignments. Next, I found novel CNVs generated from high-density CGH and SNP 

microarrays. The large structural variation detected by my multi-platform approach 

complements with the smaller size variants found by assembly comparison. My work 

demonstrated that variant discovery is largely dependent on the strategy used, and presently 

there is no single method that can readily capture all types of variation and that a 

combination of strategies is required. The results described therein provide a foundation to 

the analysis in subsequent chapters.  

Chapter III: Mechanisms of formation of structural variation in a human genome. There are a 

few genome-wide studies examining the mutational mechanism underlying the formation of 

structural variations, and their data show varying results in terms of the relative proportion of 

contributing mechanisms. In this chapter, I provide a thorough annotation of formation 

mechanism of structural variation in the HuRef genome. Leveraging the availability of 

precise junction information in the long-read Sanger sequences, I inferred the formation 

mechanism for the entire size spectrum of structural variation. With this unique data, I 

discovered that different mechanisms are more prominent within different size classes of 

variants. Comparing my data to other published results, I showed that a large number of 

variants had previously been overlooked, with noticeable gaps in annotation at specific 

variant size. 

Chapter IV: Complex breakpoint structures associated with microscopic inversions. 

Inversion discovery is rather modest compared to copy number changes, mostly due to the 

limited number of high-throughput genomic tools. Accurate breakpoint information from 

HuRef variants offers an opportunity to genotype inversions in multiple individuals, to better 

understand their structure and frequency. I selected eight HuRef regions from 1.1 to 21.9 kb 

and explore the characteristics of these loci across human and primate populations. 

Interestingly, I found that the structures of submicroscopic inversions could be complex, and 

were often accompanied by gains and losses of DNA. 

Finally in Chapter V, I describe some of the remaining technical challenges in discovery and 

characterization of structural variation in sequencing studies. I also explore some upcoming 
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technologies and their characteristics. I discuss some on-going population-based sequencing 

initiatives and how they can improve our understanding of genomic variants.  
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CHAPTER II: TOWARDS A COMPREHENSIVE STRUCTURAL 
VARIATION MAP OF AN INDIVIDUAL HUMAN GENOME 
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C, Venter JC, Kirkness EF, Levy S et al. 2010. Towards a comprehensive structural variation 
map of an individual human genome. Genome Biol 11(5):R52. 
 
 
I performed the mate-pair, split-read, and Agilent 24M variant calling, the generation of a 
non-redundant variant set, data-mining of variants from personal genome studies, and cross-
platform and cross-study comparison. The comparison with genomic features was done by 
Jeff MacDonald. The variant-calling of the NimbleGen 42M array variant-calling was done 
by myself, Drs Dalila Pinto, Donald Conrad and Matthew Hurles, while the Agilent 24M by 
myself, Drs Hansoo Park and Charles Lee. The Sanger sequence alignment was done by Dr. 
John Wei. PCR and qPCR validation experiments were performed by me and Dr. 
Muhammad Rafiq. 
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II.A Introduction 

Comprehensive catalogues of genetic variation are crucial for genotype and phenotype 

correlation studies, in particular when rare or multiple genetic variants underlie traits or 

disease susceptibility (Bodmer and Bonilla, 2008; Feuk, et al., 2006a). Since the publication 

of the first personal genome, the HuRef genome, in 2007, several personal genomes have 

been sequenced, capturing different extents of their genetic variation content (Table I. 2). 

Comparing with HuRef, other individual genome sequencing projects identified similar 

numbers of SNPs, but significantly fewer structural variants (ranging from ~1,000 to 

~400,000). It is clear that even with deep sequence coverage, annotation of structural 

variation remains very challenging, and the full extent of structural variation in the human 

genome is still unknown.  

Microarrays (Iafrate, et al., 2004; Redon, et al., 2006; Sebat, et al., 2004) and sequencing 

(Khaja, et al., 2006; Kidd, et al., 2008; Korbel, et al., 2007; Tuzun, et al., 2005) have 

revealed that structural variation contributes significantly to the complement of human 

variation, often having unique population (Conrad, et al., 2010b) and disease (Buchanan and 

Scherer, 2008) characteristics. Despite this, there is limited overlap in independent studies of 

the same DNA source (Harismendy, et al., 2009; Scherer, et al., 2007), indicating that each 

platform detects only a fraction of the existing variation, and that many structural variants 

remain to be found. In a recent study using high-resolution CGH arrays, the authors found 

that approximately 0.7% of the genome was variable in copy number in each hybridization of 

two samples (Conrad, et al., 2010b).  Yet, these experiments were limited to detection of 

unbalanced variation larger than 500bp, and the total amount of variation between two 

genomes would therefore be expected to exceed 0.7%.  

My objective in the present study was to annotate the full spectrum of genetic variation in a 

single genome. The assembly comparison method presented in the initial sequencing of this 

genome (Levy, et al., 2007) discovered an unprecedented number of structural variants in a 

single genome; however, the approach relied on an adequate diploid assembly. As there are 

known limitations in assembling alternate alleles for structural variation (Levy, et al., 2007), 

for example, 44 – 52 % of heterozygous indels were estimated to have been missed due to 

low sequence coverage. I expected that there was still variation to be found. In an attempt to 
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capture the full spectrum of variation in a human genome, this current study uses multiple 

sequencing- and microarray-based strategies to complement the results of the assembly 

comparison approach in the Levy et al. (Levy, et al., 2007) study. First, I detect genetic 

variation from the original Sanger sequence reads by direct alignment to NCBI Build-36 

assembly, bypassing the assembly step. Furthermore, using custom high density microarrays, 

I probe the HuRef genome to identify variants in regions where sequencing-based approaches 

may have difficulties (Figure II. 1). I discover thousands of new structural variants, but also 

find biases in each method's ability to detect variants. My collective data reveals a continuous 

size distribution of genetic variants (Figure II. 2a) with ~1.58% of the HuRef haploid genome 

encompassed by structural variants (39,520,431bp or 1.28% as unbalanced structural variants 

and 9,257,035bp or 0.30% as inversions) and 0.1% as SNPs (Table II. 3, Figure II. 2). While 

there is still room for improvement, my result gives the best estimate to date of the variation 

content in a human genome, provides an important resource of structural variants for other 

personal genome studies and highlights the importance of using multiple strategies for 

structural variation discovery. 
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Figure II. 1. Overall workflow of the current study.  
Two distinct technologies were used to identify structural variation in the HuRef genome: 
whole genome sequencing and genomic microarrays. The sequencing experiments, the 
construction of the HuRef genome assembly, and the assembly comparison with NCBI 
Build-36 (B36) reference had been completed in previous studies (Khaja, et al., 2006; Levy, 
et al., 2007; Venter, et al., 2001). Hence, these experiments are shown as blue boxes. The 
scope of the current study is denoted in orange boxes. I re-analyzed the initial sequencing 
data, and searched for structural variants in sequence alignments by the mate-pair and split-
read approaches. Also, three distinct CGH array platforms were used: Agilent 24M, 
NimbleGen 42M and Agilent 244K. Unlike the other array platforms, which were designed 
based on the B36 assembly, the Agilent 244K targeted scaffold segments unique to the 
Celera/Venter assembly. To denote this, this figure shows a dotted line connecting between 
the assembly comparison outcome and the Agilent 244K box. Finally, the Affymetrix 6.0 and 
Illumina 1M SNP arrays were also used in the present study. 
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II.B Material and methods 

II.B.1 Sequencing based analysis 

The sequence data of the HuRef genome used for analysis was originally produced through 

experiments performed in the Venter et al. and Levy et al. studies (Levy, et al., 2007; Venter, 

et al., 2001). The sequence trace data and information files were downloaded from NCBI. In 

this study, I aligned 31,546,016 HuRef sequences to the NCBI human genome assembly 

Build-36 using BLAT (Kent, 2002). For paired-end mapping, the optimal placement of clone 

ends was determined by a modified version of the scoring scheme used in Tuzun et al. 

(Tuzun, et al., 2005). I categorized mate-pairs that mapped less than three standard deviations 

from the expected clone size as putative insertions, greater than three standard deviations as 

putative deletions, and in the wrong orientation as putative inversions. I required each variant 

to be confirmed by at least two clones, and for indels, I required the clones to be from 

libraries of the same average insert size (2kb, 10kb or 37kb) (Table II. 1). To identify small 

variants, the read alignment profiles were further examined for an intra-alignment gap with 

size greater than 10bp. Two independent “split-reads” were required to call a putative 

variant.  
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Table II. 1. Clone library information. 
Library 
category 

Average 
- 3 stdev (bp) 

Average 
size (bp) 

Standard 
deviations (bp) 

Average 
+ 3 stdev (bp) # clones 

2 kb 1,592.00 1,925.00 111.00 2,258 3,394,197 
10 kb 7,936.00 10,201.00 755.00 12,466 1,887,943 
10 kb 7,789.71 11,659.08 1,289.79 15,528.45 1,214,872 
10 kb 7,212.37 9,290.53 692.72 11,368.69 1,615,238 
10 kb 10,743.45 16,095.42 1,783.99 21,447.39 328,128 
10 kb 8,454.40 12,025.12 1,190.24 15,595.84 790,319 
10 kb 6,677.29 9,672.07 998.26 12,666.85 661,344 
37 kb 28,555.43 37,506.11 2,983.56 46,456.79 375 
37 kb 25,543.59 37,323.66 3,926.69 49,103.73 767 
37 kb 25,445.28 36,476.82 3,677.18 47,508.36 48,940 
37 kb 26,529.49 36,264.40 3,244.97 45,999.31 208,810 
37 kb 26,724.88 35,581.33 2,952.15 44,437.78 321,221 
37 kb 29,518.61 39,459.32 3,313.57 49,400.03 360,879 
37 kb 25,503.63 36,579.63 3,692.00 47,655.63 43,337 
37 kb 26,082.21 36,835.83 3,584.54 47,589.45 212,222 
37 kb 25,654.31 36,427.13 3,590.94 47,199.95 63,152 
37 kb 26,421.54 37,346.61 3,641.69 48,271.68 65,018 
37 kb 26,404.97 35,517.74 3,037.59 44,630.51 33,687 
37 kb 27,590.97 38,557.74 3,655.59 49,524.51 84,879 
37 kb 26,062.32 37,265.88 3,734.52 48,469.44 1,906 
37 kb 27,811.23 38,209.23 3,466.00 48,607.23 1,920 
37 kb 25,775.42 36,640.55 3,621.71 47,505.68 1,882 
37 kb 25,478.17 36,354.73 3,625.52 47,231.29 1,917 
37 kb 26,940.34 37,452.61 3,504.09 47,964.88 1,918 
37 kb 26,988.90 37,293.48 3,434.86 47,598.06 1,152 
37 kb 26,307.07 38,392.00 4,028.31 50,476.93 384 
37 kb 26,055.90 38,360.31 4,101.47 50,664.72 383 
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II.B.2 Array based analysis 

An Agilent 24 million features CGH array set (Agilent 24M) was designed with 23.5 million 

60-mer oligonucleotide probes tiled along the NCBI Build-36 assembly. The HuRef genomic 

DNA was co-hybridized with the female sample NA15510 from the Polymorphism 

Discovery Resource (Scherer, et al., 2007). The statistical algorithm ADM-2 by Agilent 

Technologies was used to identify CNVs based on the combined log 2 ratios. Similar 

experimental procedures and analyses are described in other studies (Kim, et al., 2009; Park, 

et al., 2010). Additionally, a custom NimbleGen 42 million features CGH microarray 

(NimbleGen 42M) was used in this study, and its design, experimental procedures and data 

analysis had been described in detail elsewhere (Conrad, et al., 2010b; Scherer, et al., 2007). 

HuRef genomic DNA was also co-hybridized with the sample NA15510. For both the 

Agilent 24M and NimbleGen 42M arrays, CNVs with >50% reciprocal overlap and opposite 

orientation of variants identified in NA15510 in Conrad et al. were removed, as these were 

specific to the reference.  

The HuRef sample was also run on the Affymetrix SNP Array 6.0 and Illumina BeadChip 

1M genotyping arrays. I followed the protocol recommended by the manufacturers. For 

Affymetrix 6.0, the default parameters in the BirdSeed v2 algorithm were used to perform 

SNP calling. Partek Genomics Suite (Partek Inc.), Genotyping Console (Affymetrix, Inc.), 

BirdSuite (Korn, et al., 2008) and iPattern (Zhang J et al., manuscript submitted) were used 

to call CNVs. For Illumina 1M, the SNP calling was done using the BeadStudio software. 

QuantiSNP (Colella, et al., 2007) and iPattern were used to identify CNVs. For both 

platforms, only variants confirmed by at least two calling algorithms were included in the 

final set of calls. 

The Agilent Custom Human 244K CGH array (Agilent 244K) was designed to target 9,018 

sequences >500bp in length that were annotated as “unmatched” sequences in Khaja et al. 

(Khaja, et al., 2006). CGH experiments were performed with genomic DNA from HuRef and 

six HapMap samples, hybridized against reference NA10851. Feature extraction and 

normalization were performed using the Agilent feature extraction software. The programs 

ADM-1 in the DNA Analytics 4.0 suite (Agilent Technologies), and GADA (Pique-Regi, et 
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al., 2008) were independently used to call CNVs, and those that were confirmed by both 

algorithms were then used in this study. 

II.B.3 Non-redundant variant data set 

To generate a non-redundant set of HuRef variants, I combined the lists of structural variants 

generated. For CNVs, to determine if two calls are the same, I required that they shared a 

minimum of 50% size reciprocal overlap; for inversions, I required that they shared at least 

one boundary. For those calls that were indicated to be the same variant, I recorded the one 

with the best size/boundary estimate (with preference given to assembly comparison, then 

split-read, NimbleGen-42M, Agilent 24M, mate-pair, Affymetrix 6.0, and Illumina 1M, in 

that order). For this analysis, I excluded variants called in the Custom Agilent 244K arrays. 

II.B.4 Polymerase chain reaction (PCR) and quantitative real-time PCR 
validation 

I used multiple approaches to validate structural variants found in this project. PCR primers 

were designed to target flanking sequences of indels detected by sequencing-based methods, 

such that PCR products representing the different alleles can be differentiated on a 1.5 % 

agarose gel. DNA from HuRef and five HapMap individuals of European ancestry were 

tested in PCR experiments. Amplifications and deletions detected by CGH arrays were tested 

by quantitative real-time PCR (qPCR). DNA from HuRef and six additional control 

individuals were used to assess the variability in copy number. Each assay was run in 

triplicate and the FOXP2 gene was used as the reference for relative quantifications. See 

Table II. 2 for all primer sequences. 
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Table II. 2. List of validated variants and their primers and probes 
Mate pair         

Chrom Start End Size Type PCR/qPCR Forward primer Reverse primer  
chr6 160,413,658 160,419,699 6,250 del qPCR GGAGATGTCAGGAGTGTGTAAGG AGGACGCTACCAAAGAGCTTC  

chr16 67,273,862 67,278,219 3,242 del qPCR TGGACAATGGTGAGAGCATC AAATAGCCCTCCTCGACACA  
chr9 27,179,804 27,186,618 3,036 del qPCR GATGTGGCACCAGGAGAATTA TCTGAAACAGAATCCTCTGCAA  

chr18 53,097,735 53,099,784 2,738 del PCR ATCCAATAAGGTGCCTCTGC CAAGGGAGATGCCTACAGGA  
chr9 130,450,741 130,454,363 2,694 del PCR ACGGGAGACAGACCTGAATG AGAAGCATTGCCCTTTGAGA  
chr9 109,072,830 109,075,329 2,627 del PCR TGCTCAGACTGCACTTCCAA GCATTTCAGCATCCCACAAT  
chr4 165,860,789 165,863,310 2,574 del PCR ATGGTAGGATGCCGTCATTG CGGAGGACTGTGAATGTTGA  
chr5 78,461,229 78,462,722 2,465 ins PCR TCCTCCCCTAGCTTTGGTCT ATGATGACAATGGCGGTTTT  

chr15 51,112,661 51,115,499 2,452 del PCR TGATTTTGTATCATGATCAGCTTG AATCATTTGGGCTGGCTCT  
chr4 128,132,938 128,134,943 2,433 del PCR TGCCAGCTTACTCACCCTCT TTCCACCTCCCCCTTCTATT  
chr3 3,206,919 3,207,649 2,393 ins PCR CAAATGCAAGAGGCATTTCT TGGGGAACTAAGGCTTATTGG  
chr2 239,165,137 239,166,987 2,355 del PCR GGAACTCAGGCTTTTCAACG AGGAGATTCAGGCCATTCCT  
chr8 11,282,662 11,284,635 2,168 del PCR TGCCTTTCACTTTTGCCTCT ACCCATCCCTGCTTCTCTCT  
chr4 58,581,984 58,583,707 1,100 del PCR GGAAATTGCTAGATTGGTGGA CTTCCGTACAGAGCCCATTT  

chr12 8,908,157 8,909,134 1,090 del PCR ACATATTGTCCTTGCCTTCTCG TCTCCTGATCTCTTCAAGTCCA  
chr4 139,185,478 139,186,884 1,030 del PCR CCCTCAGGAAGGGAGACATA GTGCACGTGAAGCAGATTGT  
chr7 157,721,887 157,723,436 962 del PCR GGAAACGCTTGGCTAAATGA GGAGCAGCCAGCACAGGT  
chr7 316,083 317,193 936 del PCR GCAAAGGATGCAGGAGGAG CAGTGGGTTTGGGAGGTG  
chr3 101,110,993 101,112,696 880 del PCR CCATTTCCATTCAACTGCCTAT CCAGTCTCCATCTCTTCATCCT  
chr4 190,809,808 190,811,339 750 del PCR AAGCGTGCAGTCATGGAAGT CCCACACTTTCCAGCTTGTT  
chr3 185,359,277 185,360,459 686 del PCR CTCAGCCTTTGAGGTGCTAGTT ATACTGCAATCCAGGAAGTGGT  

chr11 60,328,009 60,329,299 622 del PCR GGAGAAAGAGCACCTGGAACTA CTGCAAACAGAGTGGAGTGAAG  
chr2 195,922,788 195,923,944 516 del PCR TCCACTTCCAACTCTAGCATGA CGATCAACCAAGCATATAACCA  
chr6 137,354,930 137,356,192 516 del PCR AAGTTGAAGGTGCCCACTGA GCCATAGACATGCCCTTTGT  

chr12 45,361,232 45,362,078 498 del PCR TAGCCAATTTCATTGCCTTGT CAAATGTTCAAAATCTGGGTACG  
chr18 66,997,320 66,998,367 486 del PCR TCCTCTTCCTAAGGCATATTTCA GGAAAAGTCTGAGGCTGCAT  
chr6 46,075,421 46,076,160 462 del PCR TGGGTATTTCAGTTTTGGACCT AATCAGATGGATACTCCCCTCA  
chr3 96,598,848 96,599,246 461 del PCR GATGCGAAAACACCTGCATA TGAGCAATGGCCTACAGAAA  
chr4 43,446,460 43,447,145 446 del PCR GTGGGCTGCTTCTGAACATT CTTCCTGTGTCCAGCCTGAT  
chr1 196,160,273 196,161,167 437 del PCR GCCCTCTAGGGATGAGAAGAA CCCACTCCACACCAAGGTAA  

chr12 27,324,607 27,325,754 424 del PCR ACTGGCTGCCATTCAACG CACCACTGTTGTTGTCATGGA  
chr5 11,391,901 11,392,525 422 del PCR GCATGATTGCCTGTCTCTCA TGCCTTATTTCCCCATAGCA  
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chr10 46,508,167 46,508,929 409 del PCR CAGCTTGAGCTGAAAGATGC GGATGGAGTAGGAAGTGAGT  
chr10 132,048,184 132,048,985 400 del PCR CTGAATCCAAGGCTGTGCTT TCCCAACCAACCAAACTACC  
chr18 35,315,498 35,316,327 395 del PCR CACTTCCTCAGCGTGTGCTA GATTCTCAGCCTGGTGAAGG  
chr12 121,576,220 121,576,983 388 del PCR TCCAATCGTTAGGAAGAGCAA TTTGTACGCTCAATGAGATGCT  
chr4 133,333,257 133,333,943 384 del PCR AGAATGCCCAGGACTGACTT TTACTAGGCGAGTTCCCCATT  

chr13 21,952,874 21,953,674 383 del PCR GGTGTTTTCTTCTATATGGACAATCA TGTAGTAACTGGAACTAAGTGAACACA  
chr6 169,970,843 169,971,587 374 del PCR GCTGGCCACAAGTATGCAG CCTGGCCACAATTCTCCAA  
chr7 103,974,488 103,975,247 370 del PCR TGCATAACTGAGCTGGGAGA AATTGACTGCAACCTCAAGGA  

         
Split read         

Chrom Start End Size Type PCR/qPCR Forward primer Reverse primer  
chr4 139,185,661 139,186,667 1,007 del PCR GTATGCCTGGATTCTTTCAAGTG GGTTGGCTGTAAGTTTGGTAGTG  
chr6 109,535,615 109,536,423 811 del PCR CAGGTTTAGAACTCAAGAATTTGG AAATCACAGCACAAGGTCTCA  
chr9 103,483,792 103,484,557 766 del PCR CCTTTGTCTGTGAATTTGTTCC GTGTTGAACTATGGTCGGGTAG  

chr17 27,633,422 27,634,030 609 del PCR ATTTTGTTCCTGGGCATCAG TGGAGATGCAGCTGTGAGTT  
chr3 121,376,675 121,377,134 460 del PCR GCTCTCAGCTCACCATCCTACT CCTGCTGGACCCTGTTAAAGA  
chr5 2,004,012 2,004,454 443 del PCR GCGTAGTCTCTACCCTCACACC GCAGACAATGGACAATGCAC  
chr2 216,866,591 216,866,971 381 del PCR TGCTTCCGTCTTCATGGAAT GGAGAACTGAGAGCAGGTCAG  
chr7 28,180,827 28,181,190 364 del PCR TGTCACCTACGGGAAGAATTG GACTGGGAAAGTGGTGTCAAA  

chr13 81,787,199 81,787,541 343 del PCR CCGTACCGTATGACTAAGAACCA CGCAAGACACAGGCTATCATTA  
chr3 193,338,785 193,339,122 338 del PCR TCCAGGTCTTGGTTGACTTACA TATACCACTGAGGAGGCAACAA  
chr4 36,146,313 36,146,645 333 del PCR AACAATTTGGTCTTTGGTCCTG TCTCTGGCCTTAGTGTCAGCTT  
chr1 230,489,745 230,490,072 328 del PCR CAAGCTGGTGATCTCTCACTGT CAAGTGCAGCCTGTCCTCTT  
chr7 30,502,113 30,502,440 328 del PCR CACTGCATTCCACAGAGACATT TTGTAGCTCACTTGATGATGGTG  
chr5 122,302,244 122,302,566 323 del PCR TTCCAGGATTCTCTCTTCTCTCAG GTTGATGTGGCAGCAGCAGT  
chr2 78,818,917 78,818,917 315 ins PCR CTGCAAGGGAAAGATGAGCTA CATCCAAACATAACATCCATACAAG  
chr5 16,769,612 16,769,612 310 ins PCR GAACATTACCGAGCCTTCCATA ACGTCTTCCTGGGCTCTTCT  
chr3 139,048,074 139,048,074 306 ins PCR ATCTCCACCCTCAAGCTCTTC AGGGCAGAAATACTCAGTCCAG  
chr9 89,672,635 89,672,635 289 ins PCR TGCATCGACACTGAGAAATACA CTGTGATGACTTTGGAAGCACT  

chr12 1,515,635 1,515,635 262 ins PCR GGTATATGCTGGGACGAGGA CCTTTTTAAGAATAACAAAATGCAA  
chr18 10,452,407 10,452,654 251 del PCR TTGCTAAACACTGGGATGATTG GGAACAGCTCCCAACAAACTAC  
chr10 63,413,623 63,413,800 178 del PCR CTGACCTGCGTATGAAGCACT AAACGTAAAGCACATCCCAGAG  
chr5 5,984,072 5,984,072 148 ins PCR CAGGTGGTCAGGAATCATGTG GTGAGTTCTGGAATGGAGTCCT  

chr18 72,923,639 72,923,639 144 ins PCR ATAGCCAGGACCCAGTGAGAT CTCTATCCCGAAGCAGAATAGC  
chr3 52,841,692 52,841,692 135 ins PCR GGAGGAGGCAGTGTGAACAA GTCTCAGGGACCACCTCTCCT  
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chr17 78,490,010 78,490,010 124 ins PCR GCAGTGAGACATGATGACCAG GATCCCAGCAGTGAAGATGAC  
chr11 80,825,778 80,825,891 114 del PCR GCTTGTCTCCTTGCTCAACAG GTGCCATTGCTCTGAATGACTA  
chr17 46,020,716 46,020,718 111 ins PCR ACACGTTGTGTATCCAGTCCAC AACATGGACCGCACAGGTAT  
chr20 62,179,973 62,179,973 104 ins PCR AGAGACAGTGCTGGAGTTCTGC TCGGTCTCCTCATCTACTTGCT  
chr9 72,273,848 72,273,848 101 ins PCR TGTGTTGGCACCCATTATTTAC CACAGGCCCATTAGATGTAGC  

chr16 87,005,900 87,005,900 99 ins PCR GAAGAGACGAAACCCTGATGTT GAGACAGAGGCGAGACCAAC  
chr17 69,685,307 69,685,401 95 del PCR GACAGTGTGTGCCTGCATGT GACGGACACAACAGCATACG  
chr2 240,757,503 240,757,503 84 ins PCR CAGCAGAAGCTGACCCTGT GGTCATTGCTGTGCCCTACT  

chr20 62,322,579 62,322,659 81 del PCR AACTGTGGTCTGGGAAGCAG CGGATAATTGGACCTCGTTG  
chr15 99,543,140 99,543,140 80 ins PCR GTGTGGAATGGGAGATGGAG GGCAAAGATTCCATCCAGAA  
chrX 110,008,550 110,008,550 75 ins PCR AGGGATTTGCTGGTCAATGT TGCTCACTCAATTCTCATTTCC  
chr21 17,379,379 17,379,451 73 del PCR CCCTGAGTATTAAAGGCAAATCC AATAACAACACCAGTGACCCAAG  
chr18 61,768,283 61,768,283 72 ins PCR TGAGCTTACAAATTGCCACAA CACCAAAGAAAGAGATGACTTGA  
chr13 46,191,128 46,191,128 70 ins PCR CCAAGGAGAAGTTGAGAGCTACA GCTCAGTCTGTTTGGAGAACG  
chr1 244,723,725 244,723,789 65 del PCR CCAATGACTTCACAGAGCAGTAG ACGTTGTTGACCGATTAAAGG  

chr21 46,355,933 46,355,994 62 del PCR CCCGCTTCCTTGAAGACTG TCAGGAGGGACTGCTGTTG  
chr16 61,621,368 61,621,368 56 ins PCR TAAACCCTATGAACGCTGAGG ACTATAAGGCCGGACAGAAGAA  
chrX 66,681,884 66,681,928 45 del PCR GGATGGAAGTGCAGTTAGGG GCTGCTGTTGCTGAAGGAGT  
chr17 18,795,453 18,795,453 39 ins PCR ATCTGCACTGAATCCTACTCTGC CAATATCTGTCACACACCAAGGA  
chr14 73,332,432 73,332,432 30 ins PCR GTCCATAAGGGGCTGCAGAT GCTCTTTGCAACCAACTCAG  
chr11 22,171,452 22,171,458 24 ins PCR GCCTGGAGAAGTACTGGGAGA CGCCAACACTTCCAGGAGAT  
chr5 79,986,487 79,986,487 18 ins PCR AAGCCTGAAATCCACCTCCT CTTCCCACCTTCCCCTTCT  

chr11 6,368,510 6,368,510 13 ins PCR CCGAGAGATCAGCTGTCAGA TGATGGCGGTGAATAGACCT  
chr6 16,435,893 16,435,893 12 ins PCR CCTCCCGAGGGACAAAGT CGTGCAGTACGCTCACCTG  

chr15 88,121,138 88,121,149 12 del PCR AGAGCCTGACCAAGATCGAG AAGGGCCTCCACACATACCT  
         

Agilent custom 244k         
Celera_scaffold Start End Size Type PCR/qPCR Forward primer Reverse primer PCR size 

GA_x5YUV32V2AG 9,803 18,539 8,737 dup qPCR TGCACTGTAGTAAGGCAAGGAC TTGATGCCAAGTAGTATTGAGTGTC 98 
GA_x5YUV32VQPK 7,692 14,813 7,122 dup qPCR TTGGAGCTGAGAACACAGGTAA TGGTAGTCAGTCAAGGTCATGG 123 
GA_x5YUV32W46Y 33,940,348 33,947,171 6,824 dup qPCR CAGAGGCTATCTGCTCCTTGTA TGAATGCAGGAGTGATGAAGAG 112 
GA_x5YUV32VTY6 13,803,851 13,808,084 4,234 dup qPCR AATGAAGCCAGAGTATGCAAGG TCAAGGTTAGCTCATGGTCACT 125 
GA_x5YUV32VS0N 371 3,047 2,677 dup qPCR GAACTCAACTCTCTGCACCTGA CTCTGTCACTCCAGCCTCATCT 135 
GA_x5YUV32V15N 381 2,638 2,258 del qPCR GAGGCAGAAGAACAGGACAGAC CTGAGAGTCCAGAAGCAGCTC 129 
GA_x5YUV32W3JR 1,511,235 1,513,331 2,097 dup qPCR TGGTGGGTCTTGGACTCTTACT AGAACTCAGAGGCAGCTTTCAT 125 
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GA_x5YUV32V1HL 307 1,654 1,348 dup qPCR GGCGAGTATGTATGTGCAGTTG ATTGGTCAGTATCCATCAACATT 112 
GA_x5YUV32V00B 2,293 3,591 1,299 dup qPCR GCTCACTGGCCTGATTACTGAT CAACTTCAGAACTGGTAGAGAATG 119 

GA_x5YUV32UWVA 15,545 16,821 1,277 dup qPCR CTGAGGTTCAGCGAGGTTCT AAGTCACTGCTACCACGAAGGT 114 
GA_x5YUV32W7K2 46,804,628 46,805,061 434 del qPCR TCACCTCGATCTAACATCTGGA GTCACTGAATTGCATCGTGATT 99 

         
NimbleGen 42M         

Chrom Start End Size Type PCR/qPCR Forward primer Reverse primer  
chr3 163,994,833 164,109,038 114,206 dup qPCR ATTCCCAGGTCTTAGCCTTCTC TAAGCCTTTCATCTTCCTTCCA  

chr13 56,651,124 56,686,891 35,768 del qPCR ACTTTATGGGCAGTAGCACGAC GCCAGGCAATTAAATCTCACTC  
chr2 88,913,483 88,942,451 28,969 dup qPCR CCAATGTCCAGGCATCATTC AGAGACAGCAGCTTGGCATACT  
chr4 9,801,723 9,814,213 12,491 del qPCR AAGTGAGGGCTCCATCTCATAA CTAAGATCGCTGACAATGATTCC  

chr15 22,971,787 22,981,757 9,971 del qPCR AAGGGCTTCCTTCAACTCAAT GACAGAGAGCACCCTCATAACA  
chr17 49,208,550 49,214,575 6,026 del qPCR AATATCAGCCTAGTTTGTCTTCCAG GGATGGTCAGTAATCCATACACAA  
chr2 178,552,127 178,556,191 4,065 del qPCR ATGGAACTTAATGCCCAAACAC TTTAGGTTGTACCCATGATTGC  

         
Agilent 24M         

Chrom Start End Size Type PCR/qPCR Forward primer Reverse primer  
chr8 39,351,157 39,505,456 154,300 del qPCR CCACTGGACACTCACAGCTT TGTGCCTGGCTAACACATTC  
chr3 163,995,557 164,109,021 113,465 dup qPCR ATTCCCAGGTCTTAGCCTTCTC TAAGCCTTTCATCTTCCTTCCA  

         
Mate pair         

Chrom Start End Size Type FISH Probes   
chr16 21,501,943 22,620,002 1,118,060 inv FISH G248P81317B4   

      G248P89030H10   
      G248P85584B2   
      G248P8661A9   
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II.B.5 FISH validation 

To validate large variation, FISH experiments were performed using fosmid clones as probes 

on lymphoblastoid cell line from HuRef and seven other HapMap individuals. Five 

metaphases were first imaged to check for correct chromosome localization and 

hybridization, and then interphase FISH was performed to validate predicted inversions, 

similar to the protocol outlined in the Feuk et al. study (Feuk, et al., 2005) with the addition 

of the aqua probe, DEAC-5-dUTP (Perkin Elmer; NEL455). 

II.B.6 Overlap analysis 

Overlap with other datasets, genomic features and between subsets of data in the current 

paper was performed using custom PERL scripts. When comparing variants, two sites were 

considered overlapping if the reciprocal overlap among their estimated sizes was ≥ 50%. 

Data sources used for the annotations of overlaps with genomic features are listed in 

Appendix Table 1. To evaluate significance, 1,000 randomized sets of simulated variant calls 

were created and overlap analysis was performed against the same data source. For each 

simulation, I recorded the number of instances where I observed a higher number of overlaps 

than the real variant data set. A p-value was computed as the fraction of simulations whose 

number of overlap was greater than the number of real overlaps. 

II.B.7 Structural variation imputation 

Using a cutoff of 50% reciprocal overlap, there were 405 sites of overlap between the HuRef 

and genotyped, validated Genome Structural Variation (GSV) loci (Conrad, et al., 2010b). 

The best r2 value was computed between each of those GSV CNVs and an European CEU 

HapMap SNP in the neighboring genomic region. Here, I defined a minimum threshold of r2 

= 0.8, below which the HuRef structural variants were deemed not well imputed by SNP. 

Detailed description on genotyping, phasing, and tagging calls onto haplotypes defined by 

HapMap SNPs is presented in the Conrad et al. study (Conrad, et al., 2010b). 
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II.C Results 

Several different analytical and experimental strategies were employed to exhaustively 

analyze the HuRef genome for structural variation. An overview of the different analyses 

performed is shown in Figure II. 1. 

II.C.1 Sequencing-based variation 

I used computational strategies to extract additional structural variation information from the 

existing Sanger-based sequencing data generated as mate-pair reads from clone libraries of 

defined size (Levy, et al., 2007). First, I adopted a mate-pair mapping approach (Kidd, et al., 

2008; Korbel, et al., 2007; Tuzun, et al., 2005) and aligned 11,346,790 mate-pairs from 

libraries with expected clone sizes of 2, 10 or 37 kb (Table II. 1) to the NCBI Build-36 

assembly. I found that 97.3% of mate-pairs had the expected mapping distance and 

orientation. Mate-pairs discordant in orientation or mapping distance were used to identify 

variants, and I required each event to be supported by at least two clones.  In total, this 

strategy was used to identify 780 insertions, 1,494 deletions and 105 inversions (Figure II. 1, 

Table II. 3 and Appendix Table 2). In an independent analysis of the same underlying 

sequencing data, I then captured structural variants by examining the alignment profiles of 

31,546,016 paired- and unpaired- reads to search for intra-alignment gaps (Mills, et al., 

2006). The presence of an intra-alignment gap in the sequence read or in the reference 

genome would indicate a putative insertion or deletion event, respectively. The identification 

of such ‘split-read’ alignment signature complements the mate-pair approach, as significantly 

smaller insertions and deletions can be discovered. I required at least two overlapping split-

reads having an alignment gap >10bp to call a variant. While the initial assembly comparison 

study has acknowledged that due to insufficient coverage at 7.5 fold, between 44 % to 52 % 

of the heterozygous indels have been missed (Levy, et al., 2007), the depletion of 

heterozygous indels above 10 bp is especially notable. According to variant size distribution, 

one would expect ~ 10 % of indels to be over 10 bp (Levy, et al., 2007). Indeed, 10.4 % of 

homozygous indels are over 10 bp; however, surprisingly less than 3.3 % of heterozygous 

indels are of that size. In order to complement the assembly comparison indels, I focused my 

effort in finding additional calls > 10 bp – especially the heterozygous ones – by the split-
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read method. A total of 8,511 insertions and 11,659 deletions ranging from 11 to 111,714 bp 

in size were identified (Figure II. 1, Table II. 3 and Appendix Table 3). 
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Table II. 3. Structural variants detected by different methods. 

Method Type # Min 
size (bp) 

Median 
size (bp) 

Max 
size (bp) 

Total  
size (bp) 

Assembly comparisona Homo. insertion 275,512 1 2 82,711 3,117,039 
 Homo. deletion 283,961 1 2 18,484 2,820,823 
 Hetero. insertion 136,792 1 1 321 336,374 
 Hetero. deletion 99,814 1 1 349 250,300 
 Inversion 88 102 1,602 686,721 1,627,871 

Mate-pair Insertion 780 346 3,588 28,344 3,880,544 
 Deletion 1,494 340 3,611 1,669,696 10,531,345 
 Inversion 105 368 3,121 2,026,495 8,068,541 

Split-read Insertion 8,511 11 16 414 224,022 
 Deletion 11,659 11 18 111,714 1,764,522 

Agilent 24M Duplication 194 445 1,274 113,465 1,065,617 
 Deletion 319 439 1,198 852,404 2,779,880 

NimbleGen 42M Duplication 366 448 4,665 836,362 11,292,451 
 Deletion 358 459 2,460 359,736 3,861,282 

Affymetrix 6.0 Duplication 17 8,638 42,798 640,474 2,011,557 
 Deletion 21 2,280 13,145 856,671 1,978,028 

Illumina 1M Duplication 3 11,539 22,148 87,670 121,357 
 Deletion 9 8,576 32,199 145,662 431,131 

Custom Agilent 244k Duplication 44 219 1,356 8,737 98,529 
 Deletion 7 170 332 2,258 4,130 

Non-Redundant Totalb Insertion/Duplication 417,206 1 1 836,362 19,981,062 
 Deletion 390,973 1 2 1,669,696 19,539,369 
 Inversion 167 102 1,249 2,026,495 9,257,035 

a I used an italicized font to distinguish the results from the Levy et al. study. Moreover, from that previous study, I included all 
homozygous indels, heterozygous indels, indels embedded within simple, bi-allelic, and non-ambiguously mapped heterozygous 
mixed sequence variants, and only those inversions whose size is at most 3Mb. 
b Complete data is presented in Appendix Tables 4 to 6. Non-redundant variation size distribution is presented in Figure II. 2A. 
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II.C.2 Array based variation 

I used two ultra-high density custom CGH array sets and two commonly used SNP 

genotyping arrays to identify relative gains and losses. A significant amount of variation was 

detected from the two custom CGH arrays: an Agilent oligonucleotide array set with 24 

million features (Agilent 24M) (Kim, et al., 2009), and a NimbleGen oligonucleotide array 

set containing 42 million features (NimbleGen 42M) (Conrad, et al., 2010b). The Agilent 

platform identified 194 duplications and 319 deletions, while the NimbleGen array set 

detected 366 gains and 358 losses, ranging in size from 439bp to 852kb, in HuRef (Figure II. 

1, Table II. 3, Appendix Tables 7 and 8). Furthermore, the HuRef genome was scanned by 

the Affymetrix SNP Array 6.0 and Illumina BeadChip 1M, and the results are summarized in 

Table II. 3 and Appendix Tables 9 and 10. 

The majority of microarrays used for CNV analyses are designed based on the NCBI 

assemblies. Therefore, any region where the reference exhibits the deletion allele of an indel, 

or sequences mapping to gaps in the assembly, will not be targeted. In previous studies 

(Istrail, et al., 2004; Khaja, et al., 2006), many unknown DNA segments were identified to 

have no, or poor alignment to the NCBI reference when compared to the Celera R27C 

assembly. To capture genetic variation in such potentially novel sequences, a custom Agilent 

244K array was designed to target those scaffold sequences at least 500bp in length. CGH 

was then performed on seven HapMap individuals and detected 231 regions (101 gains and 

130 losses) in 161 scaffolds to be variable (Appendix Table 11). Of these, I found 44 gains 

and 7 losses in 36 Celera scaffolds specific to HuRef (Figure II. 1, Table II. 3). Using paired-

end mapping, as well as cross-species genome comparison with the chimpanzee, I was able 

to find a placement in NCBI Build-36 for 25 of 36 scaffolds that were copy number variable 

in HuRef. Two of the scaffolds were mapped to regions containing assembly gaps, 15 of 25 

anchored scaffolds corresponded to insertion events also detected elsewhere (Kidd, et al., 

2008; Tuzun, et al., 2005), and the remaining eight represent new insertion findings 

(Appendix Table 12) 
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Figure II. 2. Size distribution of genetic variants.  
(A) A non-redundant size spectrum of SNP and CNV (including indels) and a breakdown of the 
proportion of gain to loss. The indel/CNV dataset consists of variants detected by assembly 
comparison, mate-pair, split-read, NimbleGen 42M and Agilent 24M. The results show that the 
number and the size of variants are negatively correlated. Although the proportions of gains and 
losses are quite equal across the size spectrum, there are some deviations. Losses are more 
abundant at the 1 to 10kb range, and this is mainly due to the inability of the 2kb and 10kb 
library mate-pair clones to detect insertions larger than their clone size. The opposite is seen for 
large events, where duplications are more common than deletions which may be due to both 
biological and methodological biases. The increase in the number of events near 300bp and 6kb 
can be explained by Alu and L1 indels, respectively. The general peak around 10kb corresponds 
to the interval with the highest clone coverage. (B) Size distribution of gains (insertions and 
duplications) highlighting the detection range of each methodology. The split-read method is 
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designed to capture insertions from 11bp to the size of a Sanger-based sequence read (~1kb). 
There is no insertion detected in the size range between the 2kb and 10kb library using the mate-
pair approach. Furthermore, large gains (≥100,000bp) cannot be identified with these present 
sequencing-based approaches, while these are readily identified by microarrays. (C) Size 
distribution of deletions. 
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II.C.3 Validation of findings 

I used several computational and experimental approaches to validate our structural variation 

findings. I performed experimental validation by PCR amplification and gel-sizing and 

confirmed 89/96 (93%) of structural variants predicted by sequence analysis (Table II. 2). Using 

qPCR, 20 of 25 (80.0 %) CNVs detected by microarrays were validated, and the majority of 

these CNVs were from the custom Agilent 244K array covering sequences not in the NCBI 

assembly (Figure II. 3). In addition, one inversion was tested by fluorescence in situ 

hybridization (FISH) (Feuk, et al., 2005). A predicted 1.1 Mb inversion at 16p12.2 was identified 

to be homozygous in HuRef and in all of the 7 additional HapMap samples from four 

populations tested, suggesting that the reference at this locus represents a rare allele, or is 

incorrectly assembled (Figure II. 4). In total, 90.2 % of (110 out of 122) variants ranging in size 

from 12 bp to 1.1 Mb were validated, suggesting a false discovery rate of about 10 %. 
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Figure II. 3. Example of a qPCR-validate gain in HuRef relative to sample NA10851 as 
detected by the custom Agilent 244K aCGH.  
A 4.2 kb CNV was detected on the Celera scaffold GA_x5YUVVTY6, and by qPCR, I found 
that NA10851 had a heterozygous loss in that region, thus confirming a relative gain in 
HuRef. The y-axis indicates the ratio of copy number of the scaffold region versus copy 
number of the FOXP2 gene.  
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Figure II. 4. A common inversion on 16p12.2 validated by FISH.  
(A) A 2Mb website schematic of the region. This 1.1 Mb inversion was detected by the mate-
pair method in HuRef as seen in track “B_Clone”. The track “Inversions” shows that this 
inversion was annotated in three other studies (Kidd, et al., 2008; Korbel, et al., 2007; Tuzun, 
et al., 2005). (B) An image of a four-color FISH experiment revealing that HuRef is 
homozygous of the 16p12.2 inverted allele. Four differentially-labeled fosmid probes were 
scored in >100 interphase FISH experiments and the order of the probes in HuRef were 
found in the vast majority of experiments (including in 7 HapMap controls from 4 different 
populations) to be in the yellow-green-blue-pink order. In the absence of the inversion, the 
order of the probes would be yellow-blue-green-pink as depicted in the assembly schematic. 
Therefore, as discussed in the main text this data suggests that the NCBI Build 36 reference 
represents a rare allele, or may be incorrect. 
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I then compared the structural variation identified here with the previous assembly 

comparison-based analysis of the same genome (Levy, et al., 2007), and found that 11,140 

variants were in common. I noticed that this multi-platform method excelled in calling large 

variants. In fact, even after excluding all of the small variants (≤10bp) from the previous 

Levy et al. study (Levy, et al., 2007), I still observed that the current study tended to find 

larger structural variants (a current average of 1,909.3bp now versus a previous average of 

113.4bp). The sensitivity of assembly comparison dropped as size increased to over 1kb, and 

the proportion of larger structural variants significantly increased as a result of the present 

study (Figure II. 5 A and B).  

Finally, I determined the number of calls in this study which were either confirmed  by 

another platform in this study, or found in the DGV (Iafrate, et al., 2004; Zhang, et al., 2006). 

In total, I computationally confirmed 15,642 (65.6%) of our current calls: 6,301 of which 

were gains; 9,726 were losses; and 65 were inversions. 
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Figure II. 5. Comparative analysis of variants discovered in Levy et al. and the current 
study.  
The two graphs illustrate the proportion of structural variants identified by the assembly 
comparison method, by this present combined multi-approach strategy (including mate-pair, 
split-read, CGH arrays and SNP arrays), and the proportion confirmed by both. The x-axis 
represents size range, while the numbers at the top indicate the total number of calls in a 
particular size range. As size increases, the number of variants called by assembly 
comparison decreases significantly, so this indicates that the method has limited sensitivity in 
detecting large calls. In contrast, current combined multi-approach strategy is more suitable 
in finding large variation. (A) Size distribution of gains. (B) Size distribution of losses. 
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II.C.4 Cross platform comparison 

I performed an in-depth analysis of the characteristics of the variants detected by each of the 

methods. First, by contrasting against a population-based study (Conrad, et al., 2010b), I 

observed highly similar size estimates for the same underlying structural variants between 

methods (Figure II. 6). With sufficient genome coverage of clones with accurate and tight 

insert size, the mate-pair method yields precise variation size. Similarly, the split-read 

approach gives nucleotide resolution breakpoints, while the high-density CGH and SNP 

arrays have dense probe coverage to accurately identify the start and end points of structural 

variants. Overall, current multiple approaches are highly robust in estimating variant size. 
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Figure II. 6. Agreement between the non-redundant set of HuRef CNVs and genotype-
validated variable loci.  
The agreement between sites identified by different detection methods was measured by the 
percentage of reciprocal overlap between the estimated size for the non-redundant set of 
HuRef variants and the estimated size for the CNVs generated and genotyped in the Genome 
Structural Variation (GSV) population genetics study (Conrad, et al., 2010b). Two sites were 
considered overlapping if the reciprocal overlap among their estimated sizes was ≥50%. The 
lower right corner plot summarizes the mean discrepancy between HuRef and GSV loci 
sizes, as a proportion of the GSV-estimated CNV size. 
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Next, I compared the variants discovered by the two whole genome CGH array sets, 

NimbleGen 42M and Agilent 24M, and investigated the primary reason for the discordance 

between the two data sets. Not surprisingly, a substantial portion of the discordant calls can 

be explained by the difference in probe coverage. In fact, ~70% of the unique calls on the 

NimbleGen 42M array had inadequate probe coverage on the Agilent 24M array to be able to 

call variants, and ~30% vice versa. After that, I compared the number of calls uniquely 

identified by the SNP-genotyping microarrays, and identified 12 and 0 novel structural 

variants contributed by Affymetrix 6.0 and Illumina 1M, respectively. Of the 12 new 

Affymetrix calls, 9 are located in complex regions containing blocks of segmental 

duplications. 

Subsequently, when looking for enrichment of genomic features among variants detected by 

different approaches, I found that there was a significant enrichment (p < 0.01) of short 

SINEs in deletions called by sequencing-based approaches (mate-pair and split-read), but not 

in deletions called by the microarrays. Microarrays cannot detect copy number change of 

SINEs (e.g. Alu elements), as these regions cannot be uniquely targeted by short oligo 

probes, and over-saturation of probe fluorescence would prevent an accurate high copy 

count. Meanwhile, the sequencing methods employed here do not rely on alignments within 

the repeat itself, and consequently they are readily able to detecting gains and losses of these 

high-copy repeats. The complete result for enrichment of structural variants with various 

genomic features is shown in Appendix Table 1. 

Finally, one of the main challenges of genome assembly is to correctly assemble both alleles 

in regions of structural variation. To identify heterozygous events among the split-read 

indels, I searched for evidence of an alternate allele. Indels were determined to be 

heterozygous if two or more sequence reads that would support the NCBI Build-36 allele. 

From the split-read dataset alone, I identified 4,476/8,511 (52.6%) insertions and 

6,906/11,659 (59.2%) deletions as heterozygous. Additionally, I found that of the 10,834 

split-read indels that overlapped with results from the Levy et al. study (Levy, et al., 2007), 

4,332 events annotated as heterozygous in my results were previously classified as 

homozygous (Appendix Table 3). These differences highlight the difficulty of assembling 
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both alternate alleles in regions of structural variation, leading to an underestimate of the 

heterozygosity previously (Levy, et al., 2007). 

II.C.5 The total variation content of the HuRef genome 

In an attempt to estimate the total variation content in the HuRef genome, I combined the 

structural variants previously described in the HuRef genome in Levy et al. paper (Levy, et 

al., 2007) with the variants discovered in this study, to generate a non-redundant set of 

variants. I determined that 48,777,466bp was structurally variable, of which 19,981062bp 

belonged to gains, 19,539,369bp to losses, and 9,257,035bp to balanced inversions (Table II. 

3). A vast majority of this variation was discovered in the current analyses (83.3% or 

40,625,059bp) of the HuRef genome. Therefore, my significant contribution in detecting 

novel calls underscores the importance of using multiple analysis strategies for detecting 

structural variation in the human genome. See Figure II. 7 for the location of structural 

variants >1kb, and see Appendix Tables 4 to 6 for a complete list of variation in the HuRef 

genome. 
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Figure II. 7. Genome-wide distribution of large structural variants in HuRef.  
The sites of 2,772 structural variants whose position spans >1kb are shown. Red bars 
represent insertion or duplication, blue bars represent deletions, and green bars represent 
inversions. 
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II.C.6 Comparison with other personal genomes 

When I compared the complete set of HuRef’s structural variants with those from other 

published genomes (Ahn, et al., 2009; Bentley, et al., 2008; Kim, et al., 2009; McKernan, et 

al., 2009; Wang, et al., 2008; Wheeler, et al., 2008), I found that 209,493/808,345 (25.9%) of 

the HuRef variants overlapped variants described in one or more of the other six studies. 

Upon examining the size distribution of variants from different studies, particularly the size 

of insertions and duplications, I found that studies based primarily on NGS data for variation 

calling were unable to identify calls in certain size ranges (Figure II. 8). These results further 

signify that at present, NGS has notable shortcomings in structural variation detection, so 

additional strategies are needed to capture variants across the entire size spectrum. 



 

56 
 

 

Figure II. 8. Difference in the size distributions of reported indels/CNVs in some 
published personal genome sequencing studies.  
The graphs show variation found in a few personal genome sequencing studies. These 
diagrams indicate that multiple approaches are needed for better detection of structural 
variation. Here, the total variant set in the HuRef genome found in both the Levy et al. (Levy, 
et al., 2007) and the current study is displayed. Unlike the current study where the size of 
mate-pair indels is equal to the difference between the mapping distance and the expected 
insert size, the structural variants in the Ahn et al. (Ahn, et al., 2009) study is only based on 
the mapping distance. Besides the NGS data, I have also included the variants detected by the 
high density Agilent 24M data in the Kim et al. (Kim, et al., 2009) study. In Wheeler et al. 
(Wheeler, et al., 2008), insertions identified by intra-read alignment would be limited by the 
size of the sequencing read; hence, large insertions beyond the read length were not detected. 
Wang et al. (Wang, et al., 2008), Kim et al., and McKernan et al. (McKernan, et al., 2009) 
detected small variants based on split-reads and large ones based on mate-pairs and 
microarrays, but failed to detect variation between these size ranges. (A) Insertion and 
duplication size distribution. (B) Deletion size distribution. 
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II.C.7 Functional importance of structural variation 

Next, I analyzed the complete set of structural variants in HuRef for overlap with features of 

the genome with known functional significance, which might influence health outcomes 

(Table II. 4). I found 189 genes to be completely encompassed by gains or losses, 4,867 non-

redundant genes (3,126 impacted by gains and 3,025 by losses) whose exons were impacted, 

and 573 of these to be in the Online Mendelian Inheritance in Man (OMIM) Disease database 

(Appendix Tables 13 to 17). However, there was an overall paucity of structural variation (p 

≥ 0.999) overlapping exonic sequences of genes associated with autosomal 

dominant/recessive diseases, cancer disease, imprinted and dosage-sensitive genes. In 

general, there was a depletion of variation in both exonic and regulatory sequences, such as 

enhancers, promoters and CpG islands, in the genome of this individual. 
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Table II. 4. Genomic landscape and structural variants in the HuRef genome 
 Total Non Redundant gainsb Total Non Redundant lossesc 

Genomic Feature (# entries)a #  (%) Genomic 
Features 

# (%) Structural 
Variants P-Values #  (%) Genomic 

Features 
# (%) Structural 

Variants P-Values 

RefSeq Gene Locid  (20,174) 14,268 (70.72%) 159,250 (38.17%) 0.000 13,951 (69.15%) 149,568 (38.26%) 0.000 
RefSeq Gene Entire Transcript Locie (20,174) 101 (0.50%) 41 (0.01%) 0.000 91 (0.45%) 47 (0.01%) 0.000 
RefSeq Gene Exonsf (20,174) 3,126 (15.50%) 3,890 (0.93%) 0.999 3,025 (14.99%) 3,723 (0.95%) 0.999 

Enhancer Elements (837) 80 (9.56%) 85 (0.02%) 0.999 84 (10.04%) 93 (0.02%) 0.999 
Promoters  (20,174) 2,007 (9.95%) 2,071 (0.50%) 0.999 1,812 (8.98%) 1,922 (0.49%) 0.999 
Stop Codonsg (30,885) 225 (0.73%) 99 (0.02%) 0.000 272 (0.88%) 134 (0.03%) 0.563 

OMIM Disease Gene Loci  (3,737) 1,658 (44.37%) 20,589 (4.93%) 0.000 1,664 (44.53%) 19,396 (4.96%) 0.000 
OMIM Disease Gene Exons (3,737) 367 (9.82%) 458 (0.11%) 0.999 383 (10.25%) 492 (0.13%) 0.999 

Autosomal Dominant Gene Loci  (316) 247 (78.16%) 2,773 (0.66%) 0.023 245 (77.53%) 2,593 (0.66%) 0.031 
Autosomal Dominant Gene Exons (316) 60 (18.99%) 70 (0.02%) 0.999 64 (20.25%) 78 (0.02%) 0.999 
Autosomal Recessive Gene Loci (472) 386 (81.78%) 3,931 (0.94%) 0.065 402 (85.17%) 3,749 (0.96%) 0.009 
Autosomal Recessive Gene Exons (472) 58 (12.29%) 78 (0.02%) 0.999 86 (18.22%) 109 (0.03%) 0.999 

Cancer Disease Gene Loci (363) 301 (82.92%) 4,202 (1.01%) 0.651 307 (84.57%) 3,899 (1.00%) 0.821 
Cancer Disease Gene Exons (363) 66 (18.18%) 85 (0.02%) 0.999 71 (19.56%) 98 (0.03%) 0.999 
Dosage Sensitive Gene Loci (145) 120 (82.76%) 2,995 (0.72%) 0.604 125 (86.21%) 2,794 (0.71%) 0.728 
Dosage Sensitive Gene Exons (145) 39 (26.90%) 51 (0.01%) 0.999 41 (28.28%) 58 (0.01%) 0.999 
Genomic Disorders (52) 50 (96.15%) 14,178 (3.40%) 0.999 51 (98.08%) 13,373 (3.42%) 0.996 
Pharmacogenetic Gene Loci (186) 97 (52.15%) 853 (0.20%) 0.517 96 (51.61%) 838 (0.21%) 0.105 
Pharmacogenetic Gene Exons (186) 21 (11.29%) 27 (0.01%) 0.998 23 (12.37%) 29 (0.01%) 0.984 
Imprinted Gene Loci (59) 39 (66.10%) 405 (0.10%) 0.989 37 (62.71%) 378 (0.10%) 0.982 
Imprinted Gene Exons (59) 13 (22.03%) 15 (0.00%) 0.998 11 (18.64%) 13 (0.00%) 0.999 
MicroRNAs (685) 8 (1.17%) 9 (0.00%) 0.785 11 (1.61%) 9 (0.00%) 0.836 
GWAS Loci (419) 415 (99.05%) 9,413 (2.26%) 0.000 416 (99.28%) 8,852 (2.26%) 0.000 
GWAS SNPs (419) 1 (0.24%) 1 (0.00%) 0.786 2 (0.48%) 2 (0.00%) 0.810 
CpG Islands (14,867) 287 (1.93%) 1,516 (0.36%) 0.999 299 (2.01%) 1,508 (0.39%) 0.999 
DNAseI Hypersensitivity Sites (95,709) 6,524 (6.82%) 7,165 (1.72%) 0.999 6,392 (6.68%) 6,914 (1.77%) 0.999 
Recombination Hotspots (32,996) 16,839 (51.03%) 30,315 (7.27%) 0.000 16,211 (49.13%) 28,407 (7.27%) 0.000 
Segmental Duplications (51,809) 17,172 (33.14%) 13,864 (3.32%) 0.999 16,518 (31.88%) 13,177 (3.37%) 0.999 
Ultra-conserved Elements  (481) 2 (0.42%) 2 (0.00%) 0.999 2 (0.42%) 2 (0.00%) 0.999 
Affy 6.0 SNPsh (907,691) 1,556 (0.17%) 389 (0.09%) 0.999 3,022 (0.33%) 934 (0.24%) 0.999 
Illumina 1M SNPsi (1,048,762) 2,318 (0.22%) 601 (0.14%) 0.999 4,789 (0.46%) 1,536 (0.39%) 0.999 

*This table shows how structural variation affects different functional annotations and sequence characteristics in the HuRef genome. The leftmost column shows the names and total number of 
genomic features. The rest of the table is divided between gains and losses. Within the gain category, the first left column shows the number of (and percentage of total) genomic features impacted, 
and the second column shows the corresponding number of (and percentage of total) gain variants, and the last column shows the significance of the overlap as determined by simulations. An 
identical format is used for the losses. 
a See Table S12 for a list of data sources. 
b Based on a non-redundant list of 417,206 gains and insertions detected in this and the Levy et al. (Levy, et al., 2007) study of the HuRef genome. 
c Based on a non-redundant list of 390,973 deletions detected in this and the Levy et al. (Levy, et al., 2007) study of the HuRef genome. 
d Genes where a structural variant resides anywhere within the transcript (exonic and intronic). 
e Genes from RefSeq data set where the entire transcript locus is encompassed by the structural variant. 
f Genes from the RefSeq data set where exonic sequence is impacted by the structural variant. The non-redundant number of genes altered in some way by duplications and deletions is 4,867. 
g Structural variants which overlap/impact a stop codon from the RefSeq gene set. 
h Probes on the Affymetrix 6.0 Commercial array. 
i Probes on the Illumina 1M array. 
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Currently, direct-to-consumer (DTC) testing companies and genome-wide association studies 

(GWAS) mainly use microarray-based SNP data (Fox, 2008; Ng, et al., 2009), but structural 

variants are typically not considered. HuRef indels/CNVs, however, overlap with 4,565 and 

7,047 of SNPs on the Affymetrix SNP-Array 6.0 and Illumina-BeadChip 1M products (two 

commonly used arrays) potentially impacting genotype calling, most notably when deletions 

are involved.  

Moreover, imputation of structural variation calls using tagging-SNPs captured 308/405 

(76.0%) of the HuRef bi-allelic structural variants for which genotypes could be inferred 

(Appendix Table 18) (Conrad, et al., 2010b). Based on population data, rare structural 

variants with minor allele frequency ≤0.05 showed the lowest correlation with surrounding 

SNPs, thus indicating that these structural variants were least imputable (Figure II. 9). The 

fraction of imputable structural variants will be even lower when multi-allelic and complex 

structural variants are considered because the new mutation rate at these sites is higher.  
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Figure II. 9. Tagging pattern for HuRef structural variants as a function of its minor 
allele frequency (MAF).  
Linkage disequilibrium is depicted as the best r2 between a structural variation and a HapMap 
SNP in 120 Europeans (CEU). There were a total of 405 bi-allelic polymorphic structural 
variation sites of overlap between GSV and HuRef loci; 24% of the structural variation loci 
have a HapMap SNP with r2<0.8 in CEU, a cutoff below which HuRef CNVs would not be 
imputed simply by SNP detection. The line graph corresponds to the left y-axis, while the bar 
graph corresponds to the right y-axis. It should be noted that this analysis is performed on a 
small subset of bi-allelic structural variants and that the ability to impute a larger fraction of 
structural variants based on common SNPs would be even lower. 



 

61 
 

II.D Discussion 

Human geneticists have long sought to know the extent of genetic variation and here, in the 

most comprehensive analysis to date, this study presents the latest estimates of greater than 

1% within an individual genome. Using multiple computational and experimental 

approaches, it substantially expands on the structural variation map initially constructed by 

Levy and colleagues; more than 80% of the total 48,777,466 structurally variable bases have 

not been reported from the original sequencing of the HuRef genome.  

My study here differs from previous studies in many ways. My mate-pair approach makes 

use of multiple different clone insert sizes, ranging from 2kb to 37kb, and this enables me to 

detect a wide size range of variants compared to previous paired-end mapping focused 

studies (Kidd, et al., 2008; Korbel, et al., 2007; Tuzun, et al., 2005). As expected, my results 

show that using several libraries with different insert size leads to increased variation 

discovery. Furthermore, the long sequence reads used here increase alignment accuracy, and 

enable the identification of intra-alignment gaps. Using microarrays, I am able to identify 

large size variants that can be challenging to identify by sequencing.  

Furthermore, my results highlight that each variation-discovery strategy has limitations and 

that no single approach can capture the entire spectrum of genetic variation, thus 

emphasizing the importance of applying multiple strategies in structural variation detection. 

Figure II. 8 shows that the variation distribution of other personal genome sequencing 

studies, which relied almost exclusively on NGS technology, is substantially lower than the 

HuRef annotation across many size ranges.  

There are still some regions such as heterochromatin (Figure II. 7) and highly identical 

segmental duplication regions where all of the current approaches have limited detection 

capabilities. To prevent false-discovery, I have used stringent alignment criteria, excluded 

alignments to multiple high-identity sequences, and will therefore likely miss variants within 

or flanking these sequences. Insufficient probe coverage and low intensity ratio fold-change 

also prevent microarrays from capturing CNV of highly-repetitive sequences (e.g. Alu 

elements). As such, I suspect there will be more variants to be discovered, but their 
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ascertainment will require specialized experimental (Alkan, et al., 2009; Kidd, et al., 2008) 

and algorithmic (Chen, et al., 2009; Lam, et al., 2010; Lee, et al., 2008) approaches. Further 

increase in read-depth can yield new variants. Indeed, the greatest relative number of 

structural variants discovered in HuRef is in the 10kb size range (Figure II. 2), corresponding 

to the interval with the highest clone coverage (Levy, et al., 2007) (Table II. 1).  

The importance of structural variation to gene expression (direct and indirect) (Stranger, et 

al., 2007), protein structure (Ng, et al., 2008), and chromosome stability (Baptista, et al., 

2008; Higgins, et al., 2008) is being increasingly recognized in normal development and 

disease (Buchanan and Scherer, 2008; Feuk, et al., 2006a). At the same time I show that 

structural variants are (i) grossly under-represented in published NGS sequencing projects, 

(ii) not always imputable by SNP-based association, (iii) ubiquitous along chromosomes 

impacting all known functional genomic features, and (iv) often large, complex, and under 

negative or purifying selection (Conrad, et al., 2010b; Pinto, et al., 2007). Coupling these 

observations with conjectures that prophylactic decisions will be best informed by higher-

penetrance rare alleles (Bodmer and Bonilla, 2008) and that common SNPs explain only a 

proportion of heritability (Maher, 2008), these evidence argue persuasively that structural 

variants should gain more prominence in genomic medicine. 

My results present the most thorough estimate to date of the total complement of genetic 

variation across the entire size spectrum in a human genome. My findings indicate that, to 

date, NGS-based personal genome studies, despite having generated a significant amount of 

valuable genomic information, have captured only a fraction of structural variants, with 

substantial gaps in discovery at specific points along the size range of variation. My data 

indicate that structural variation-discovery is largely dependent on the strategy used, and 

presently there is no single approach that can readily capture all types of variation and that a 

combination of strategies is required. (Structural variation detection by NGS is discussed 

further in Chapter V.) The data also show that structural variation impact many genes that 

have been linked to human disease phenotypes, and that interpretation of this data is complex 

(Lee and Scherer, 2010). Current genotyping services offered in the personal genomics field 

do not always include screening for structural variants, and I find that interpretation of 

current SNP based screening may be significantly impacted by the existence of structural 
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variants. I also show that many structural variants will not be amenable to capture using 

imputation strategies from high density SNP data, arguing for direct detection of structural 

variants as a complement to SNP analysis. 
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CHAPTER III: MECHANISMS OF FORMATION OF STRUCTURAL 
VARIATION IN A HUMAN GENOME 

 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
Data from this chapter have been included in the following publication: 
 
Pang AW, Migita O, MacDonald JR, Feuk F, Scherer SW. 2013. Mechanisms of formation 
of structural variation in a fully sequenced human genome. Human Mutation (Early online 
publication). 
 
 
I performed the breakpoint sequence analysis, mechanism-assignment for each variant. 
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III.A Introduction 

In a study of individual genome sequences, to understand the impact and implications of 

genetic variation, we need precise details of its nature and content. Even with advanced 

approaches to discovery, only a limited portion of structural variation found in whole genome 

studies has breakpoints refined at the nucleotide level (Conrad, et al., 2010a; Kidd, et al., 

2010a; Lam, et al., 2010; Mills, et al., 2011b; Perry, et al., 2008). Knowledge of the precise 

start and end of a structural variant is essential to determine its functional impact, to estimate 

its formation of mechanism, and to design targeted genotyping assay.  

The main difficulty in resolving breakpoints is that they are not readily revealed by 

microarrays or whole genome sequencing using short read technologies. It is difficult to map 

short reads to tandem repeat loci whose length may be longer than the reads themselves, thus 

preventing detection of microsatellite polymorphisms. Also, short insert sizes limit the ability 

to properly anchor paired-end reads within complicated regions containing blocks of 

segmental duplication. So during breakpoint refinement at such regions, reads capturing the 

junction signature will likely be obscured by surrounding noisy alignments.  In a recent 

population-scale genome sequencing study, slightly over half (53%) of the detected structural 

variants could be mapped to nucleotide resolution (Mills, et al., 2011b). Junctions of 

structural variation discovered through methods that lack precise nucleotide resolution (e.g. 

read-depth and read pair analyses) can, in principle, be refined through overlapping calls 

detected by methods with greater precision (e.g. assembly comparison and split-read). In 

practice, however, there are notable differences among methods in terms of size and 

locations ascertained (Mills, et al., 2011b; Pang, et al., 2010), thus limiting the amount of 

overlap to be achieved. Moreover, co-localization of multiple breakpoints can further limit 

the ability to map, detect and resolve complex variation by short sequencing reads. 

Having precise structural variation breakpoints can enhance the ability to investigate the 

mechanisms responsible for variant formation. For this task, I needed a comprehensive set of 

structural variants with precise junction information. One such data set is the catalog of 

genetic variation discovered in the first sequenced personal human genome, the HuRef 

genome (Levy, et al., 2007; Pang, et al., 2010). 
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The HuRef genome was sequenced using Sanger capillary technology, and the long mate-

pair clone-end sequences were subsequently assembled into high quality scaffolds. The 

availability of long reads and scaffolds enable accurate alignments, which in turn can yield 

precise variant breakpoint information even across more complex loci. This unique 

information facilitates significant progress in characterizing the origin (Xing, et al., 2009) 

and functional impact (Ng, et al., 2008) of variation discovered in HuRef. There are 739 

small indels detected in the HuRef exome affecting 607 genes, and most of these coding 

variants are common and likely to be functionally neutral (Ng, et al., 2008). In addition, I 

found 189 genes to be completely encompassed by large gains or losses, and 4,867 genes 

whose exons are impacted (Pang, et al., 2010). Moreover, 573 genes with Online Mendelian 

Inheritance in Man Disease annotation are affected by variation. 

Nevertheless, even with a comprehensive variation dataset containing breakpoint 

information, a thorough annotation of formation mechanisms of structural variation remained 

to be done. In this study, I examined the mechanism of formation for 408,532 gains, 383,804 

losses and 166 inversions, and noted a differential proportion of mechanisms according to 

size. Ligation and replication slippage were more prevalent for small variants, whereas larger 

structural variants (≥ 1 kb) were more commonly associated with retrotransposition and non-

allelic homologous recombination (NAHR). To my knowledge, this is the first attempt to 

impute mutational mechanisms based on a near complete catalog of structural variation. This 

study represents an improvement over previous surveys (Table III. 1, Figure III. 1) (Conrad, 

et al., 2010a; Kidd, et al., 2010a; Lam, et al., 2010; Mills, et al., 2011b; Perry, et al., 2008), 

and I believe that this current work provides the closest estimate of the true proportions of 

various mutational processes. 
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Table III. 1. Summary of events and inferred mechanisms in current and two previous studies. 
 Current Study Kidd, et al., 2010* Mills, et al., 2011** 
 Total sample size = 1 Total sample size = 17 Total sample size = 185 

  Gains Losses Inversions 
Gains and 

losses Inversions Gains Losses Inversions 
VNTR† 109,297 (26.83%) 104,267 (27.26%) 2 (1.71%) 30 (3.08%) 0 122 (5.04%) 245 (3.76%) 0 

REI 650 (0.16%) 892 (0.23%) 0 200 (20.55%) 0 1,994 (82.36%) 272 (4.18%) 0 
NAHR 697 (0.17%) 1,289 (0.34%) 64 (54.70%) 219 (22.51%) 56 (69.14%) 226 (9.33%) 1,496 (22.97%) 0 

NH 296,721 (72.84%) 276,062 (72.17%) 51 (43.59%) 524 (53.85%) 25 (30.86%) 79 (3.26%) 4,500 (69.09%) 0 
Total 407,365 382,510 117 973 81 2,421 6,513 0 

 
* as reported in Table 1 in Kidd, et al., 2010 study, which is based on the combined variation results of 17 samples. This project was comprised of Sanger-based sequencing of 
13.8 million fosmid clones covering ~ 4.6 % of the human genome, thus explaining the comparatively low number of structural variants characterized. 
** as reported in Figure 4 in Mills, et al., 2011 study, which is based on the combined variation results of 185 samples. This project was based mainly on low-pass short-read 
next generation sequencing data, thus explaining the comparatively low number of structural variants characterized. 
† includes structural variants associated with microsatellites and minisatellite 
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Figure III. 1. A comparison of the size and number of variants in three studies whose 
mutational mechanisms have been annotated.  
The number of samples analyzed in each study is indicated next to the study name. Data from 
Kidd et al. study was obtained from Supplementary Table 2, while Mills et al. study from 
Supplementary Table 11 of the respective studies.
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III.B Materials and methods 

All non-SNP variation detected in HuRef from two previous studies (Levy, et al., 2007; 

Pang, et al., 2010), except those annotated as heterozygous mixed sequence variants (n = 

21,480), were analyzed to impute their formation mechanism. In addition, 153 structural 

variants were sequenced from the larger size spectrum to add more loci. In total, I studied 

408,532 gains, 383,804 losses and 166 inversions in HuRef, relative to the public reference 

assembly Build 36.   

I classified the following four mechanisms in our pipeline: A) switch-over of intra- or inter-

chromosomal homologous sequences by NAHR during repair or meiosis; B) ligation of 

double strand breaks (DSBs) by NHEJ or MMEJ; C) strand slippage or template switching at 

a replication fork that is stalled (FoSTeS) or broken (MMBIR); and D) transposition of 

retrotransposable elements. Furthermore, I distinguished variants located within highly 

mutable tandem repeat loci (i.e. VNTRs), and annotated them as copy number change of 

microsatellites and minisatellites. Such repeats have propensity to undergo copy number 

changes by recombination or replication slippage. Finally, because there is no obvious 

difference in the length of sequence microhomology among NHEJ, MMEJ, FoSTeS or 

MMBIR, I annotated them as non-homologous processes. 

Specifically, for a variant to be classified as a micro- or minisatellite repeat, it must be 

annotated by the Tandem Repeat Finder program (Benson, 1999). The minimum unit size of 

a microsatellite repeat is 1 base pair (bp), and the minimum unit size of a minisatellite repeat 

is 10 bp. The repeat must begin outside the variant and extend into the variant covering at 

least 50% of its span. To identify NAHR variants, I first looked for extensive nucleotide 

homology (> 200 bp) flanking the variation breakpoints, based on the segmental duplication 

track from the University of California, Santa Cruz (UCSC) database and the RepeatMasker 

annotations, and then searched for homology of size ≥ 20 bp using the software Vmatch 

(www.vmatch.de) (with parameters -d -p -l 20 -identity 100). For REI, more than 70% of an 

indel had to be annotated by RepeatMasker (Smit, 1996-2010) as an L1, Alu or SVA 

element. For the remainder of variants with precise boundary information, I further searched 

for signatures of non-homologous mechanisms such as NHEJ and MMBIR (Hastings, et al., 
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2009). I extracted 20 bp of flanking sequences from both the HuRef assembly and the NCBI 

reference assembly, build a local BLAST database based on the NCBI sequences, aligned the 

HuRef sequences to the database using BLAST  (blastall -W 11 -g T -F F -S 3 -e 20) 

(Altschul, et al., 1990). By aligning the breakpoint flanking sequences in both assemblies, I 

aimed to identify DNA sequences present in the HuRef DNA and not in the NCBI assembly. 

Identifying regions of microhomology surrounding variants (< 20bp) was determined by 

running a custom PERL script Figure III. 2. 

Using a 10 kb sliding window scheme, I screened for clusters of breakpoints of variation at 

least 1 kb in size. I compared the observed breakpoint density against a null model generated 

by simulations. While maintaining the size of variants, HuRef calls ≥ 1 kb were randomly 

shuffled along the chromosomes, and then I recorded the number of breakpoints observed in 

each 10 kb window. This simulation procedure was then repeated 1,000 times. To identify a 

candidate window that harbored a complex variation, I required that it must contain more real 

breakpoints than shuffled breakpoints in all 1,000 simulations. Finally, I further undertook 

manual inspection before annotating a region as having a complex variation event. 

III.C Results 

III.C.1 Mechanism of structural variation formation 

Previous studies (Levy, et al., 2007; Pang, et al., 2010) identified 792,502 structural variants 

in the HuRef genome. I had breakpoint information for 406,963 gains, 382,196 losses and 88 

inversions, and the majority of these calls were small (median size of 1 bp). An additional 

153 larger variants were sequenced to obtain additional regions. In total, there are 789,340 

structural variants (407,038 gains, 382,206 losses and 96 inversions) mapped at the base-pair 

level. 

I applied my computational pipeline (Figure III. 2), and was able to assign the formation 

mechanism for 407,365 (99.71 %) gains, 382,510 (99.66 %) losses, and 117 (70.48 %) 

inverted sequences. For the remaining calls, I had insufficient breakpoint precision to 

confidently assign a mechanism. Non-homologous processes were associated with the 

majority of variants with a gain or loss of DNA (Figure III. 3 A and B), whereas NAHR was 

the dominant mode of genesis for inversions (Figure III. 3 C). Overall, 54.7% of inversions 
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were flanked by homologous sequences in opposite orientation, and the majority of those 

were mediated by large segmental duplication or L1 elements. The two largest NAHR 

inversions were L1- and duplication-associated (87,609 bp and 68,145 bp, respectively). 
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Figure III. 2. Mechanism assignment pipeline.  
The computational pipeline in assigning variation formation mechanism is shown. 
Assignment of minisatellite, NAHR and REI does not require precise junction information, 
but such information is essential to assign the remaining categories. Note that the resulting 
mechanism assignment will change if the order of the analysis is rearranged. The primary 
reason of the order here is that I need to separate VNTRs from flanking microhomologous or 
homologous sequences, otherwise most of the expansions/contractions of tandem repeats 
would be incorrectly assigned as NHEJ or NAHR. Therefore, I decided to identify VNTRs 
before performing any flanking homology search. On the other hand, the number of REIs 
should be robust, and should not be affected by the ordering of the pipeline. 
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Figure III. 3. Relative proportion of mechanism of structural variation formation.   
This panel of figures shows an overall proportion of mechanism irrespective of variation size. 
(A) Gain. (B) Loss. (C) Inversion. NH represents non-homologous processes. 
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I next investigated the relative proportion of formation processes across variant sizes. I found 

that NAHR was a dominant mechanism for all large gains, losses and inversions (> 10 kb). 

For gains and losses, I observed a gradient in the relative proportion of processes (Figure III. 

4). The majority of small indels (< 10 bp) did not have any noticeable sequence signatures 

(Figure III. 4 A and B; Section III.C.1.iii). Most of the remaining gains and losses (up to 1 

kb) were associated with micro- and minisatellites. Retrotransposition of Alu, L1 or SVA 

elements accounted for 20.96 % of the variation in the 100 bp to 1 kb range and 24.98 % of 1 

kb to 10 kb variants. See Section III.C.1.i. Again, recombination errors, thus NAHR, was 

responsible for large structural changes (Section III.C.1.ii). Inversions showed a similar trend 

of changing mutational mechanism; non-homologous processes were responsible for most 

inversions of less than 1 kb, while NAHR was associated with the majority of larger variants 

(Figure III. 4 C). 
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Figure III. 4. Relative proportion of mechanism divided by variant size.   
The relative proportion of mechanism of variants of different length is shown. Generally, 
different mechanisms are responsible in forming variants of different size. (A) Gain. (B) 
Loss. (C) Inversion. NH represents non-homologous processes. 
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III.C.1.i Short tandem repeats and retrotransposable repeats 

There were 213,564 (27.0 %) insertions, duplications and deletions that were associated with 

simple tandem repeats: homopolymer, micro-, minisatellite sequences. Changes in length and 

copy number are believed to be caused by slippage of simple repeats in recombination and 

replication (Richard and Paques, 2000). Interestingly, there were 2,653 insertions that reside 

in simple repeat loci, yet their sequences do not have the same base composition as the 

surrounding repeats. I did not consider these sequences as tandem repeats, and it would be 

incorrect to classify this category of mechanism solely by the genomic location while 

ignoring the nucleotide content. Instead, 90 % of these insertions are classified as formed by 

nonhomologous process. Upon examining the location of minisatellite variants, I noticed that 

they were clustered overwhelmingly near the end of chromosomes (Figure III. 5), which are 

some of the most dynamic region in our genome, displaying hypervariability with a large 

number of alleles.  
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Figure III. 5. Ideograms illustrating the location of variants greater than 100 bp.  
(A) Gain. (B) Loss. (C) Inversion. Note that VNTR represents the variation associated with minisatellite, and these variants are 
clustered at the end of chromosomes. NH denotes variants formed by non-homologous processes, REI by retrotransposable 
elements insertions, NAHR by non-alleleic homologous recombination, and MS as associated with microsatellites.  
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Figure III. 5. Ideograms illustrating the location of variants greater than 100 bp.  
(A) Gain. (B) Loss. (C) Inversion. Note that VNTR represents the variation associated with minisatellite, and these variants are 
clustered at the end of chromosomes. NH denotes variants formed by non-homologous processes, REI by retrotransposable 
elements insertions, NAHR by non-alleleic homologous recombination, and MS as associated with microsatellites.  
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Figure III. 5. Ideograms illustrating the location of variants greater than 100 bp.  
(A) Gain. (B) Loss. (C) Inversion. Note that VNTR represents the variation associated with 
minisatellite, and these variants are clustered at the end of chromosomes. NH denotes 
variants formed by non-homologous processes, REI by retrotransposable elements insertions, 
NAHR by non-alleleic homologous recombination, and MS as associated with 
microsatellites.  
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There were 1,542 (0.2 %) indels classified as non-long terminal repeat (non-LTR) 

retrotransposition. And consistent with previous reports (Lander, et al., 2001; Stewart, et al., 

2011; Xing, et al., 2009), Alu elements are the most numerous transposable element in the 

human genome, constituting 1,045 events in the HuRef DNA. In addition, 96 gains and 

losses belonged to L1 retrotransposition and 17 to SVA, while 384 variants were associated 

with multiple Alu or L1 elements. L1 elements are the only currently known autonomous 

retrotransposons still active in humans (Konkel and Batzer, 2010). As expected, Figure III. 6 

shows a “U” shape size distribution of L1 variants. There were 42 variants greater than 6 kb, 

the size of a full-length L1, and they may have maintained the ability to retro-transpose 

autonomously. 
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Figure III. 6. L1-associated variant size distribution. 
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III.C.1.ii Non-allelic homologous recombination 

I examined stretches of homologous sequences (≥ 20 bp) surrounding variation junctions, 

as these sequences could have mediated meiotic chromosome/chromatid ectopic pairing. 

Specifically, I looked for large homologous sequences such as segmental duplications, 

medium size repeats such as LINE and SINE, and short perfectly identical nucleotides 

flanking each structural variation. I found that NAHR was responsible for 697 (0.2 %) gains, 

1,289 (0.3 %) losses and 64 (54.7 %) inversions. In particular for inversions, the median 

distance was 1.9 kb between homologous copies, and the length of homology is 2.9 kb. In 

general, I noticed that there was a moderate but significant correlation between the size of 

variants and the length of their flanking homologous sequences (Spearman’s correlation 

coefficient rho = 0.52. Besides length, homologs of high nucleotide similarity were better at 

mediating NAHR events. Of the variants surrounded by large segmental duplications, the 

majority (62.5 %) of them were accompanied by homologs sharing at least 95 % sequence 

identity.  

III.C.1.iii Non-homologous processes 

I next attempted to classify variants associated with replication and ligation. I searched for 

homologous sequences, and selected a threshold of 20 bp. This value  was similar to the 

length of 34 bp of the “minimal efficient processing segments” required to mediate NAHR 

events between human alpha-globin genes (Lam and Jeffreys, 2006), and was the same as the 

threshold applied in a previous fosmid-sequencing study (Kidd, et al., 2010a). Of course, I 

could not rule out that there may be other currently unknown molecular mechanisms at work 

besides NAHR and non-homologous processes. In any case, I could only characterize 

variants whose nucleotide-level breakpoint has been resolved to be associated with non-

homologous mechanisms. These represent variants detected by assembly comparison and 

split-read methods; and the variants with refined breakpoints. 

I characterized the sequence content at each break by determining the number and content of 

nucleotides inserted in the break, and the amount of microhomology at the break. There were 

9,898 (2.6 %) deletions and five (4.3 %) inversions with 1 to 10 bp of inserted sequence at 

breakpoints. With long reads and assembled contigs, I identified deletions as small as five bp 
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that had additional inserted sequence, and such sequence might correspond to non-template 

bases added as a consequence of imperfect NHEJ repairs. There were 117,505 (28.9 %)  

gains, 106,629 (27.9 %) losses and 28 (23.9 %) inversions that showed 1 – 20 bp of flanking 

homology, and this signature would indicate the formation processes to be either NHEJ, 

MMEJ, FoSTeS or MMBIR. However, it should be noted that the annotation of one to three 

base pairs of microhomology could be the result of random chance, or could be false 

positives due to sequencing-, alignment- or assembly error. After their exclusion, the 

remaining 4,370 insertions and 5,008 deletions were flanked by at least 4 bp of homologous 

sequences. Of those deletions displaying stretches of microhomology, 3,773 (3.5 %) also had 

insertion sequences at the breakpoint. Surprisingly, 14 (1.2 %) NAHR-associated deletions 

also had breakpoint-insertion sequences. The relative proportions were significantly different 

(P < 1.00x10-4, chi-square test), thus substantiating the difference among homologous and 

non-homologous mechanisms. Finally, 179,216 (44.7 %) gains, 159,535 (41.7 %) losses and 

18 (15.4 %) inversions were simple blunt-end junctions that had neither additional sequence 

nor microhomology. Figure III. 7 shows the distributions of signature size for 

microhomology, blunt-end and inserted sequence at the breaks of deletion variants.  In 

general, the data shows that non-homologous mutational processes facilitated the formation 

of the vast majority of insertions (72.8 %) and deletions (72.2 %), but most of them (99.8 %) 

were no bigger than 100 bp.  
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Figure III. 7. Distribution of deletions breakpoints with blunt end, microhomology, and 
additional sequence signatures. 
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III.C.1.iv Comparison with other mutational mechanism studies 

This study is the first to examine the relative proportion of mechanism across the entire size 

spectrum of structural variation. Table III. 1 illustrates a comparison of the results of the 

current study and two published studies (Kidd, et al., 2010a; Mills, et al., 2011b), which 

examined aggregated data across multiple genomes. While thorough in the analysis, these 

studies only annotated indels or variants of a certain size (Table III. 1, Figure III. 1). With a 

more complete variant set, the numbers of microsatellite and variants formed by non-

homologous processes were greater than in previous estimates. Furthermore, the proportion 

of NAHR was lower than previously found, as this process was relevant for the few but large 

variants. Overall, differences in the number and proportion of each mechanism category 

between this data and others reflect the underlying differences in variant ascertainment and 

annotation, and the number of samples typed. I benefit from the availability of a variation set 

of all types and of a wide range of sizes, so I can better approximate the true proportion of 

mechanism operating in the genome. 

III.C.2 Complex variants 

Hastings and colleagues (Hastings, et al., 2009) propose that template switching during 

replication is responsible for the formation of complex variants. Complex variants are those 

that have more than one simple rearrangement, and have two or more breakpoint junctions 

(Quinlan and Hall, 2012). Of course, it is also possible that such architecture came about via 

multiple independent simple events. Currently, to my knowledge, there is no definitive 

sequence signature that can be used to identify complex events. Nonetheless, I attempted two 

approaches to screen for clusters of local variants that potentially arose by a single mutation 

event.  

I first examined whether there were insertion sequences within larger deletions or inversions. 

All of the breakpoint insertion sequences were short (< 10 bp): too small to discern whether 

they originated from distinct genomic loci brought about by template switch during DNA 

replication. (See Section III.C.1.iii). I next searched for multiple rearrangements at a single 

locus. I explored the HuRef genome to identify loci where multiple structural variation 

breakpoints were present. From simulations (see Section III.B), I established a null model of 
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breakpoint density, against which I compared my observation to ensure that the observed 

clusters were unlikely to have occurred by chance. After comparing to simulated data and 

with subsequent manual inspection, I identified 56 regions where distinct breakpoints of 

variants > 1 kb co-localized within 10kb.  

Of the annotated loci, the most common pattern was consecutive deletion breakpoints, 

constituting 50% of the cases. The next most common pattern was adjacent insertions or 

duplications, accounting for 16 loci (28.57 %). I also observed other combinations: deletions 

and insertions embedded within an inversion; a triplication within a duplication next to two 

deletions; and a deletion embedded within an inversion contained in a duplicated region. I 

further genotyped the last region, and the results are described in Chapter IV.  

I emphasize that some of these breakpoints represented genuine single complex variants, 

while others were the results of serial independent events. There were 23 out of 56 (41.07 %) 

multi-breakpoint clusters that may be an accumulation of independent events, as they 

overlapped with known segmental duplications. Aside from those, 12 complex events 

impacted exons, and 18 overlapped regions that lacked synteny with primate sequences 

(Table III. 2). Hence, these events may have evolutionary significance. 
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Table III. 2. List of 10 kb regions that show clustering of breakpoints of variants whose size is at least 1 kb. 
Cluster Coordinates # of 

breakpoints 
Recombination 

hotspot 
Segmental 
duplication 

GC 
content Genes Synteny with 

primates 
chr1:1210001..1220000 4 n n 68.2386 SCNN1D+ACAP3 gap 

chr1:245040001..245050000 3 n y 46.5012 - break 
chr2:194390001..194400000 3 n n 37.6402 - - 
chr2:202440001..202450000 3 y n 41.902 CDK15 - 
chr2:219760001..219770000 4 y n 44.4614 - break 
chr2:242350001..242360000 3 n y 60.9193 D2HGDH gap 
chr3:37720001..37730000 5 n n 45.5319 ITGA9 - 
chr3:48500001..48510000 4 y n 44.9823 SHISA5 break 

chr3:164030001..164040000 3 n n 33.1409 - - 
chr3:196990001..197000000 4 n y 57.8509 MUC4 break 
chr4:48820001..48830000 4 n y 40.7881 - gap 

chr4:189600001..189610000 5 n y 43.1984 - break 
chr4:190840001..190850000 4 n y 41.8098 - break 
chr4:191000001..191010000 4 y n 44.3177 - break 

chr5:600001..610000 3 y y 51.6031 - gap in human 
chr5:1120001..1130000 3 y y 62.8091 SLC12A7 gap 

chr5:49470001..49480000 3 n n 39.4136 - gap 
chr5:51430001..51440000 3 n n 37.4957 - gap 
chr5:90530001..90540000 5 y n 36.0535 - - 

chr5:177750001..177760000 6 y n 53.0854 COL23A1 break 
chr6:310001..320000 5 y n 49.2756 - gap in human 

chr6:31380001..31390000 5 n n 44.998 - - 
chr6:31400001..31410000 3 n n 40.4016 - - 
chr6:32600001..32610000 5 n y 42.9543 HLA-DRB5 - 
chr6:57400001..57410000 3 n n 37.389 PRIM2 - 

chr6:161120001..161130000 3 y n 39.7957 - - 
chr6:168130001..168140000 3 y n 51.3425 - break 
chr6:170320001..170330000 4 n n 54.0094 - break 
chr6:170540001..170550000 3 n n 46.8858 FAM120B break 

chr7:1880001..1890000 4 n y 49.8606 MAD1L1 - 
chr7:100430001..100440000 3 n y 51.5118 MUC12 break 
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chr7:154080001..154090000 3 n y 41.9201 DPP6 break 
chr7:157630001..157640000 3 y y 53.2654 PTPRN2 break 

chr8:1320001..1330000 3 y y 53.6512 - break 
chr8:1820001..1830000 3 n n 46.6394 ARHGEF10 break 

chr8:18490001..18500000 4 y n 35.8669 PSD3 gap 
chr8:39360001..39370000 3 y n 28.6307 ADAM5P gap 
chr8:58280001..58290000 3 n n 55.9449 - break 

chr9:135860001..135870000 4 n y 56.2315 - gap 
chr10:27640001..27650000 3 y y 38.0937 - complex 

chr10:135140001..135150000 4 y y 48.0839 - complex 
chr11:1890001..1900000 3 n n 57.4181 TNNT3 - 

chr12:129690001..129700000 4 y n 50.6697 - - 
chr12:131320001..131330000 5 n y 59.865 GALNT9 gap 

chr13:45930001..45940000 4 y n 47.9043 - break 
chr13:98050001..98060000 4 y n 37.3917 - - 

chr13:113860001..113870000 3 n n 57.5622 - - 
chr14:105300001..105310000 3 n y 62.5484 - break 

chr15:89780001..89790000 3 y n 37.2457 - gap 
chr16:830001..840000 2 y n 58.6445 - - 

chr16:83990001..84000000 3 y y 55.328 - gap 
chr17:5530001..5540000 3 y n 47.5331 - gap 

chr18:74890001..74900000 4 n y 48.0441 - break 
chr19:58010001..58020000 3 y y 46.4685 ZNF28 - 
chr21:10110001..10120000 4 n y 42.3705 BAGE3 - 
chrX:78800001..78810000 3 n n 32.7793 - - 
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III.D Discussion 

In this study, with the availability of breakpoint sequences, I have undertaken a 

comprehensive analysis to fully investigate the underlying mechanisms that contributed to 

the formation of all non-SNP variants discovered in a single individual. Overall, variants 

derived from non-homologous events – those associated with NHEJ, MMEJ, FoSTeS, and 

MMBIR – are the most prominent, constituting up to 72.84 % of gains and 72.17 % of losses. 

However, once I subdivided by variant size, I discovered that most of these were no larger 

than 10 bp. Similarly, most micro- and minisatellite associated indels were small, and formed 

by strand slippage during DNA replication. Furthermore, we noticed that REI and NAHR 

were more prominent with variants larger than 1 kb. Multiple mechanisms for variant 

formation had been recognized as operating in the genome, but this study has improved upon 

earlier estimates of their relative proportion (Table III. 1). 

Figure III. 4, showing the relative proportion of mechanism by the variant size, clearly 

indicates a few notable features. The first is the division between small and large indels. 

They are often detected by different approaches, and have generally been treated as separate 

entities. Based on mechanism profiles, my results in Figure III. 4 support this distinction and 

would suggest a size dividing line of ~100 bp. Another notable feature is the abundance of 

evidence for  events associated with non-homologous processes that appeared to be 

“random”, that lacked any notable sequence signature or any correlation with known 

genomic features (Figure III. 5). Surely, some small non-homologous events – those not 

associated with short tandem repeats – are similar to SNPs, and are indeed distributed 

throughout the genome. Yet for the large variants, there may be other systematic 

explanations for their apparent random location. One such explanation may be chromatin 

spatial proximity and closeness in replication timing, as seen in cancerous alterations (De and 

Michor, 2011; Fudenberg, et al., 2011). Interestingly, a recent study correlates replication 

timing and structural variation mechanism, and shows that hotspots of NAHR-mediated 

variants are enriched in early replication regions of the genome, while variant hotspots 

associated with non-homologous processes are more enriched in late replicating regions 
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(Koren, et al., 2012). Examining sequence in cis alone is perhaps not sufficient to resolve 

mechanisms; additional in trans experiments may be needed to yield clarity. 

I also attempted to identify complex rearrangements that consist of more than one simple 

variant. These complex structural variants can rearrange exons, shuffle regulatory elements 

or disrupt multiple genes and pathways (Carvalho, et al., 2009; Lee, et al., 2007; Zhang, et 

al., 2009b). While excellent at detecting simple structural variants, current bioinformatics 

tools do not recognize these difficult, yet important variants. Here, I created custom 

approaches to search for co-localization of breakpoints and for non-template sequences at 

junctions, and then manually inspected each candidate. These approaches are not feasible for 

population-based whole-genome sequencing studies, so automated programs for such 

purpose are needed. 

Variation junction information is crucial for this project; however, there are still some calls 

(1,167 gains, 1,294 losses and 49 inversions) that cannot be properly annotated, as there is 

sufficient precision to identify nucleotide-level signatures such as flanking microhomology 

or non-reference additional sequences. These variants have been discovered by lower 

resolution microarrays or mate-pair mapping. Approaches that can discover variants at full 

resolution may also generate spurious results due to errors in assemblies or issues with 

alignments, further limiting accurate breakpoint assignments. In this data, there are five 

multi-breakpoint complex regions that contain inversions, and precise inversion junction data 

is available for four of the five (80 %). It is possible that complex loci may not be resolved 

solely by genome-wide approaches due to underlying sequence structures and technical 

limitations. Perhaps, their resolution will require traditional targeted approaches, or creative 

combinations of high-throughput methods such as sequence capture using probes/baits 

(Conrad, et al., 2010a) designed from variant junction libraries (Lam, et al., 2010). 

In conclusion, with precise breakpoint information, I assigned formation mechanisms to 

structural variants from the entire size spectrum in the HuRef individual genome. I 
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demonstrated that different mechanisms are more prominent within different size classes. My 

study offers additional insights into the origin and complexity of genome variation. 
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CHAPTER IV: COMPLEX BREAKPOINT STRUCTURES 
ASSOCIATED WITH MICROSCOPIC INVERSIONS 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Data from this chapter have been included in the following publication: 
 
Pang AW, Migita O, MacDonald JR, Feuk F, Scherer SW. 2013. Mechanisms of formation 
of structural variation in a fully sequenced human genome. Human Mutation (Early online 
publication). 
 
 
I performed some of the breakpoint PCR experiments together with Dr. Ohsuke Migita. Dr. 
Ohsuke Migita also performed qPCR experiments and analysis of the QIAxcel results. I performed 
the haplotype analysis. 
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IV.A Introduction 

Inversions have traditionally been considered to be a form of balanced rearrangement 

presumably with no gain or loss of DNA (Kidd, et al., 2010a). Significant knowledge of 

inversions and translocations comes from cytogenetics experiments. Microscopic structural 

abnormalities rearrangements occur in about 1/375 live births, with about three quarters 

being balanced rearrangements (Nussbaum, et al., 2007). The risk of a serious congenital 

anomaly is estimated to be 9.4 % for inversions (Warburton, 1991).  

The discovery of submicroscopic inversion, however, is rather modest compared to copy 

number changes, mostly due to the limited number of genome-wide tools. Many are 

identified in clinical cases, where inversions cause no apparent deleterious phenotype in 

parents but predispose subsequent rearrangements in offspring. For example, one third of the 

parents of patients with Williams-Beuren Syndrome have a 1.5 Mb inversion at 7q11.23 

(Osborne, et al., 2001). Similarly, inversions at the olfactory receptor gene clusters on 4p16 

and 8q23 are believed to mediate the recurrent t(4;8)(p16;p23) translocation by unusual 

meiotic exchanges, as the mothers of subjects with the de novo translocation all have 

heterozygous inversions on both 4p and 8q regions (Giglio, et al., 2002). Recent studies use 

assembly comparison across species (Feuk, et al., 2005; Khaja, et al., 2006) and mate-pair 

mapping (Kidd, et al., 2008; Tuzun, et al., 2005), and both approaches offer greater 

resolution in inversion discovery. Now it is known that inversions can suppress 

recombination between heterozygotes during meiosis, and can confer reproductive advantage 

(Stefansson, et al., 2005), and can drive evolutionary divergence (Feuk, et al., 2005). 

Nonetheless, the number of polymorphic inversions identified is much less than indels and 

CNVs. As of September 2012, the DGV hosted 833,981 gain and loss entries contrasting to 

906 inversions (Iafrate, et al., 2004; Zhang, et al., 2006). Inversions cannot be detected by 

genomic microarrays, and they are difficult to be found by mapping short reads generated by 

NGS. For instance, there is no inversion reported in a recent population sequencing study 

(Mills, et al., 2011b).  
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The HuRef inversion dataset is comparatively more complete than other personal genome 

datasets (Table I. 2). The HuRef assembly has been constructed from high quality and long 

Sanger-based sequences, thus yielding precise inversion breakpoints. A total of 166 

inversions have been detected by two complementary approaches: assembly comparison and 

mate-pair mapping (Levy, et al., 2007; Pang, et al., 2010). To obtain a better understanding 

of the impact and origins of inversions in the human genome, I selected 8 HuRef junction-

resolved inversions and genotyped these in human populations. I discovered that the 

structures of inversion could be complex, often accompanied by gains and losses of DNA, 

create conjoined genes, and their frequencies could exhibit population differentiation. 

Finally, I found inverted regions where the reference assembly may have been misassembled, 

or represents the minor human alleles. 

IV.B Materials and methods 

IV.B.1 Genotype analysis 

PCR assays were designed to genotype eight HuRef inversions for which I had nucleotide 

breakpoint information; four had been detected by an assembly comparison method, and the 

other four were detected by mate-pair mapping and subsequently refined by breakpoint 

sequencing. These were chosen to represent different formation mechanisms from the 

previous chapter. Specifically, I selected five inverted loci that were formed by non-

homologous processes, and three associated with NAHR. For the latter three, I designed PCR 

primers to amplify across the flanking homologous segmental duplications.  

I selected four oligonucleotide primers for each region, with two primers outside the variant, 

and two within the inversion region. One of the two within the variant was based on the 

NCBI reference orientation, whereas the other one was based on the HuRef DNA orientation 

(Feuk, et al., 2005) (Figure IV. 1). All primers were optimized using a gradient hybridization 

temperature from 52 to 70 °C. The experiments were carried out using the Agilent 

Technologies (Santa Clara, California) PicoMaxx High Fidelity PCR System kit. The PCR 

cycling conditions were 95 °C for 5 min, followed by 30 cycles of (95 °C for 40 s, optimized 

annealing temperature for 40 s, 72 °C for 60 s per kb of product length), and a final extension 

72 °C for 7 min. To estimate the frequency of the variant allele, I genotyped a panel of 42 



 

95 
 

human samples (10 HapMap Yoruba Nigerians (YRI), 10 HapMap Europeans (CEU), 10 

HapMap Japanese (JPT), 10 HapMap Han Chinese, (CHB) NA15510, and HuRef), three 

chimpanzee, and one orangutan samples (Table IV. 1).  
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Figure IV. 1. PCR assay.  
(A) Schematic diagram shows an example of a 17.9 kb inverted region at 7q11.22 as shown as the red track in the genome 
browser. Four primers A, B, C and D target the breakpoints. In the absence of inversion AB and CD sets will be amplified, 
whereas in the presence of inversion, AC and BD pairs will amplify. (B) A typical PCR result. This gel picture shows the PCR 
results for 9 samples with lanes loaded alternatively between the reference and inversion assays. The genotypes from left to right 
are as follow: HuRef homozygous for inversion; NA12763 homozygous for reference; NA07000 heterozgyous; NA18952 
homozygous for inversion; NA18852 homozgyous for reference; the chimpanzee sample homozygous for reference; and the 
orangutan sample homozygous for reference. 
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Table IV. 1. List of variants and their primers used for inversion genotyping. 

PCR primers       

Type Locus Chrom Start End Size Primer label Sequence 

inv Xp11.3 chrX 46,695,748 46,715,632 19,885 

A TTCTGCCTGTGTAAAGGATGC 

B GGAGCCAAAGGACTTGGTTT 

C TGTCCACCTAACTGCACCAA 

D ACCTCACTCGGTGGTCAACT 

inv 7q11.22 chr7 70,058,905 70,076,823 17,919 

A AACAGGTTGAGGAAAGACCATC 

B CTTCCTTCACAGACAGAACACG 

C ATTGAATTAGTTGCCCATTTGC 

D ATTCATTCCCTACACTGCATCC 

inv 16q23.1 chr16 73,797,599 73,814,159 16,561 

A (A3*) TGACCTGGTGGAGTCTAGGG 
Ar TCAGCATTCTGACCGTGAAC 

B (B3*) TCGAGCCTCACCCTCTTAAA 

C TCACTTCCTGCATGTTGACG 

C (C3*) TGCCATTTTATGGTGTGGAA 

D CAGTAAAGCTGGTTTGACCAATAG 

inv 16q24.1 chr16 83,746,237 83,747,302 1,066 

A CACCTGGATGCCCACTTATT 

B GATGGAGGTGCATTCGATTT 

C AAATCGAATGCACCTCCATC 

D TGGGTATATGGATGGGAGGA 

inv 4q22.1 chr4 89,066,188 89,077,724 11,537 

A N/A 

B GGAAACATGGGGATAAGAAACA 

C TTAGGATTTGAACAAGGCCAGT 

D GAGAGCTTCTGGCAGGCTTAC 

inv 1q31.3 chr1 196,023,411 196,024,609 1,199 

A CTCAGGGACTTGGATTAACCTG 

B GGCCCTTTTATCCTCCAATTAC 

C TGCAAACTTTCTGGCTACTCTG 

D N/A 

inv 6q27 chr6 168,835,529 168,836,601 1,073 

A AACGTGGACGCGATACTACC 

B ctggggaacaggacacaact 

C agccagaagaagggaagagg 

D CCATGCAGCTGCTTTTTACA 



 

98 
 

inv 3q26.1 chr3 164,008,436 164,030,337 21,902 

A TTGAAACCTCAGAGTTCCCATT 

B TGTGCCAGTATTTGATCTCCAC 

C AAAGAGACCCATTCTGCTTGAG 

D N/A 

        

Quantitative PCR primers     

Type Locus Chrom Start End Size Forward primer Reverse primer 

del 3q23.1 chr3 164,008,296 164,030,349 18,936 ATGCCCTCATCAACAATGCTA TTGTCTTTGGAGGCTGCTATTT 

dup 3q23.1 chr3 163,994,833 164,109,038 114,206 ATTCCCAGGTCTTAGCCTTCTC TAAGCCTTTCATCTTCCTTCCA 
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The inversions in all eight loci were genotyped using the above protocol and additional 

experiments were performed to better elucidate the structure of two regions. At 3q26.1, I 

reported a duplication, an inversion and a deletion overlapping one another in Chapter III. 

Here, in addition to genotyping the inversion, I also designed Life Technologies’ SYBR 

Green based qPCR assays to test the duplication and deletion on the panel of samples 

(Carlsbad, California). Each assay was run in triplicate and the FOXP2 gene was used as the 

internal control for relative quantifications (Feuk, et al., 2006b). The thermal profile for the 

qPCR was 95 °C for 5 min, followed by 40 cycles of (95 °C for 5 s, 60 °C for 11 s), followed 

by 95 °C for 60 s, 55 °C for 30 s, and finally 95 °C for 30 s. The primers used are listed in 

Table IV. 1. 

Furthermore, to identify the population frequency of the 16q23.1 inversion/deletion 

impacting CTRB1 and CTRB2 genes, the DNA of 871 individuals from 57 populations from 

the HGDP-CEPH Human Genome Diversity Panel were genotyped (Cann, et al., 2002). To 

enable the genotyping this large panel of samples, I selected the QIAxcel instrument (Qiagen, 

USA), basing on capillary electrophoresis and employing a gel cartridge, to detect and size-

measure PCR products. The QX Alignment Marker, which consisted of 15 bp and 5 kb 

bands, was injected into the cartridge with each 5 uL of PCR product, and this marker 

enabled the QIAxcel ScreenGel software to align the lanes automatically. I used the 

manufacturer recommended AM420 method in analyzing the PCR results. 

IV.B.2 Haplotype analysis 

Inversions were genotyped across ten HapMap samples per ethnicity, providing a sample size 

that was sufficient to look for tag-SNPs in linkage disequilibrium (LD) with the inversion. 

Thus by examining the haplotypes of the surrounding regions, I can better estimate the 

inversion frequency using the publicly available HapMap SNP allele information. I obtained 

SNP genotypes and phased haplotypes from the HapMap Phase II project database for 180 

CEU, 90 CHB, 91 JPT, and 180 YRI samples for all polymorphic inverted regions assayed in 

PCR experiments. I then searched for evidence of co-segregation by performing a correlation 

determination analysis using a minimum threshold r2 = 0.8 between the inverted alleles and 

the phased SNP genotypes. The inversion frequencies in each population were then estimated 
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using the frequencies of the co-segregated haplotypes. Hence, for those regions where 

haplotype imputation was possible, I obtained a better estimate of allele frequencies. 

Naturally, I performed additional inversion PCR typing on samples predicted by SNPs to be 

inverted to verify my imputations.  

Moreover, at these imputable regions, I further examined population differentiation and 

haplotype diversity. Population differentiation of individual variants was estimated by the 

statistic fixation index, FST. Finally, to examine haplotype diversity, I constructed haplotype 

networks based on phased HapMap SNPs surrounding each imputable inversion. The 

networks are built using a median-joining algorithm (Bandelt, et al., 1999) available in the 

SplitsTree software (Huson and Bryant, 2006).  

IV.C Results 

IV.C.1 Inversions in the human population 

Accurate breakpoint information from HuRef variants offers an opportunity to genotype 

inversions in a larger number of individuals, to better understand their structure and 

frequency. In particular, I selected eight HuRef regions from 1.1 to 21.9 kb. Five of the eight 

were caused by non-homologous processes, and three by NAHR, and I looked for any 

difference in their structure and frequency. I designed PCR assays for targeted genotyping 

across DNA samples. The cohort consisted of a panel of 42 human samples (10 HapMap 

YRI, 10 HapMap CEU, 10 HapMap JPT, and 10 HapMap CHB, a phenotypically normal 

individual NA15510, and HuRef), three chimpanzee samples and one orangutan sample. 

Three of the selected inversion regions (4q22.1, 1q31.3 and 16q24.1) were bi-allelic and 

polymorphic with unaltered breakpoints (Table IV. 2). They were formed by non-

homologous processes. From primate sequences, two of the regions indicated the reference 

orientation to be the ancestral allele. For four of the eight regions, I was able to identify a tag 

SNP that is in LD (r2 ≥ 0.8) with the inversion, and I obtained a more accurate estimate of the 

inversion allele frequency using these SNPs as proxies (Table IV. 3). From the imputation 

results, I calculated the level of genetic differentiation, and found that three of the four loci 

showed similar allelic frequency across populations. 
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Table IV. 2. Summary of inversion genotyping experiments. 
Locus Coordinate Size (bp) Methods Mechanism Allele European Chinese Japanese Yoruban Ancestral Imputation Tag  

SNP* Fst** 

3q26.1 chr3:164,008,436- 
164,030,337 21,902 Mate-pair NH Multi-allelic - - - - - No - - 

Xp11.3 chrX:46,695,748- 
46,715,632 19,885 Assembly 

comparison NAHR 
Inversion 19 14 14 16 

Inversion No - - 
Reference 0 0 0 0 

7q11.22 chr7:70,058,905- 
70,076,823 17,919 Mate-pair NH 

Inv-del 14 13 15 3 
Reference Yes rs1525303 0.38 

Reference 10 7 5 17 

16q23.1 chr16:73,797,599- 
73,814,159 16,561 

Assembly 
comparison NAHR 

Inversion 15 19 20 20 
Inversion No - - Reference 5 0 0 0 

- - Deletion 4 1 0 0 

4q22.1 chr4:89,066,188- 
89,077,724 11,537 Mate-pair NH 

Inversion 14 16 17 18 
Inversion Yes rs1477602 0.08 

Reference 10 4 3 2 

1q31.3 chr1:196,023,411- 
196,024,609 1,199 Mate-pair NH 

Inversion 8 2 2 0 
Inversion Yes rs1627999 0.17 

Reference 16 18 18 20 

6q27 chr6:168,835,529- 
168,836,601 1,073 Assembly 

comparison NAHR 
Inversion 24 20 20 20 

Inversion No - - 
Reference 0 0 0 0 

16q24.1 chr16:83,746,237- 
83,747,302 1,066 Assembly 

comparison NH 
Inversion 12 10 11 15 

Reference Yes rs9933231 0.03 
Reference 12 10 9 5 

*A tag SNP must have an r-square value of at least 0.8 
** Fst value is computed based on the frequency of a tag SNP 
 

Table IV. 3. Inversion allele frequency as estimated by SNP-imputation. 
Locus Tag 

SNP* 
SNP 
allele Inversion coordinate Size (bp) Methods Allele European Chinese Japanese Yoruban 

7q11.22 rs1525303 
A 

chr7:70,058,905-70,076,823 17,919 Mate-pair 
Inv-del 83 65 59 28 

T Reference 37 25 27 90 

4q22.1 rs1477602 
A 

chr4:89,066,188-89,077,724 11,537 Mate-pair 
Inversion 81 66 68 98 

G Reference 39 24 22 16 

1q31.3 rs1627999 
G 

chr1:196,023,411-196,024,609 1,199 Mate-pair 
Inversion 24 13 10 1 

A Reference 96 77 80 115 

16q24.1 rs9933231 
T 

chr16:83,746,237-83,747,302 1,066 Assembly 
comparison 

Inversion 81 51 51 77 

A Reference 37 39 39 37 
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IV.C.2 Complex inversion structures 

In Chapter III, I reported one 114.2 kb duplication, one 18.9 kb deletion, and one 21.9 kb 

inversion in HuRef in a highly complex region in 3q26.1, where many studies have also 

detected numerous CNVs and inversions (Figure IV. 2 A). Specifically, the duplication was 

detected by NimbleGen 42M array CGH, but the deletions and inversions were 

independently detected by mate-pair mapping (Pang, et al., 2010). Therefore for my current 

study, besides the inversion assay, I also designed two qPCR assays (one inside and one 

outside of the inverted locus) to genotype all three events. The outside qPCR assay aimed to 

target the 114.2 duplication, whereas the internal assay targeted the 18.9 kb deletion. 

Surprisingly, I noticed that 50% of individuals have a large deletion in place of the 114.2 kb 

duplication (Figure IV. 2 B). This variant is polymorphic and harbors different copy number 

states. Moreover, among those individuals with the 21.9 kb inversion, all have the 18.9 kb 

deletion embedded in the inverted area. I believe that the inversion and deletion may have 

arisen concurrently (Figure IV. 2 C and D). From these observations, I hypothesize that this 

region is multi-allelic harboring multiple polymorphisms. Also, since there is no segmental 

duplication in the region, I believe that replication-based mechanisms such as FoSTeS or 

MMBIR could be responsible for the observed complexity. 
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Figure IV. 2. Complexity at the 3q26.1 region.  
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(A) The top three tracks represent variation detected in the HuRef genome. The HuRef 
inversion of interest is shown in the green track, a deletion in blue and a large duplication in 
red. Furthermore, notice all the variants discovered in pervious studies as shown in the DGV 
track. The vertical dotted lines represent locations targeted by qPCR assays. (B) QPCR 
targeting of the 114.2 kb duplication outside the 3q26.1 inversion. (C) QPCR analysis of the 
18.9 kb deletion inside the 3q26.1 inversion. (D) PCR targeting the 3q26.1 inversion. Notice 
that inversion and small 18.9 deletion always occur together. Note that besides the 
chimpanzee sample GM03448, all others are human samples. The inferred genotype for each 
sample is listed below the gel image. 
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Another complex example is at 7q11.22, where there is co-occurrence of a 12.7 kb inversion 

and a 5.2 kb deletion – a situation supported by a previous study comparing the chimpanzee 

and the human reference assembly (Feuk, et al., 2005). A non-homologous process formed 

this inversion. By direct genotyping and SNP-imputation, I discovered that the inverted allele 

became the major allele in Europeans and Asians, but remained as a minor allele in Africans 

(Figure IV. 3 A). I observed more haplotypes with the reference genome orientation (Figure 

IV. 3 B to E), which is also the orientation found in chimpanzee, suggesting that the 

reference assembly contains the ancestral allele (Table IV. 2). Although I found no genes or 

regulatory elements in the locus, there was evidence of population differentiation, with Fst = 

0.38, which indicates 38% of allele frequency variance is found between different 

populations – much higher than the 10% value typically found between population groups 

(Conrad, et al., 2010b; Durbin, et al., 2010).  In the absence of any functional elements in the 

locus, I postulate that founder effect in the Eurasian ancestral population and genetic drift 

most likely explain the allele frequency difference observed between Africans and Eurasians. 
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Figure IV. 3. 7q11.22 inversion allele distribution among four HapMap III populations.  
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(A) Observed frequency from PCR genotyping and imputed frequency of the 7q11.22 
inversion. (B to E) Haplotype network graphs. The size of nodes represents haplotype 
frequency in the HapMap 2 cohorts, while the clades represent the amount of nucleotide 
substitution difference between adjacent nodes. Blue and red nodes correspond to haplotypes 
with the inverted and reference allele, respectively. Grey nodes mean that the orientation 
cannot be determined. (B) CEU samples. (C) CHB samples. (D) JPT samples. (E) YRI 
samples. 
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In HuRef, I found a 16.6 kb inversion at 16q23.1 that disrupts two genes – CTRB1 and 

CTRB2 – such that two genes with exchanged exon-1were potentially created (Figure IV. 4). 

Both CTRB1 and CTRB2 are members of the chymotrypsinogen B precursor. The two genes 

share an overall 97% DNA sequence identity, yet their first exons, which are protein-coding, 

are only 82% similar. The NAHR-associated inversion is the ancestral allele, and is highly 

prevalent in the population: 37 (out of 42) individuals were homozygous for the inversion, 

and five were heterozygous (Table IV. 2). Interestingly, all five individuals were of European 

origin. Public GenBank RNA databases showed five records with the exchanged transcript 

sequence. Specifically, entries M24400.1, BC005385.1, and BT007356.1 showed exon-1 of 

CTRB2 followed by exons of CTRB1, whereas entries BC073145, AK131056 had exon-1 of 

CTRB1 followed by exons of CTRB2. In four Europeans and one Chinese, I identified an 

adjacent 585 bp deletion that overlapped the entire 134 bp exon-6 of CTRB2, thus creating an 

out-of-frame transcript product. This deletion was not observed in the HuRef sample. Also, 

the deletion was found only on chromosomes with the 16.6 kb inversion. Considering that the 

primate samples were homozygous for the inversion, I postulate that the deletion was a 

derived allele that arose on an inverted haplotype. Finally, I found a CTRB2 transcript entry 

(AW584011.1) in the GenBank EST database that does not have an exon-6, which would 

correspond to the deletion allele found in this study. The corresponding results between 

genomic variation data and transcriptomic data highlight the importance of correlating both 

data types to delineate the structure and function of the human genome (McPherson, et al., 

2012). 
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Figure IV. 4. 16q23.1 inversion and the associated deletion.  
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(A) A genome browser showing the positions of the inversion (top green track) and deletion (second blue track), and the impacted 
genes CTRB1 and CTRB2 are shown. (B) Haplotype frequency showing HGDP-CEPH populations where at least 10 samples 
were genotyped. A total of 871 samples have been genotyped, whereas 749 are displayed here. 
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In light of the interesting finding at this 16q23.1 region, additional samples were tested with 

the same assay to better estimate the allele frequency. A total of 871 HGDP-CEPH samples 

from 57 populations were genotyped (Figure IV. 4 B). Consistent with the HapMap sample 

results, the inversion was the major allele. Moreover, the deletion was only observed in the 

inverted haplotype. The inversion-deletion haplotype is most prevalent in Surui (47.2 %), 

French Basque (20.5 %), North Italian (17.9 %) and Druze (15.4 %), and lowest with a 

frequency of zero in Yoruba, Yakut, Sindhi, and Mbuti Pygmies. Eleven (out of 871 samples) 

were homozygous for the inversion and deletion. The Fst value was 0.53, so there was 

evidence of population differentiation in haplotype frequency.  

IV.C.3 Dynamic regions in the human reference assembly 

Eight inversions were genotyped, five of which are non-homologous events and the other 

three are NAHR events. All of the bi-allelic and imputable variants were formed by non-

homologous events, but the NAHR-derived loci were more complex. As mentioned above, 

the inversion at 16q23.1 was associated with an additional deletion, creating fused and non-

functional genes. The other two showed potential reference assembly errors (Table IV. 2). 

Particularly, a 19.9 kb inversion at Xp11.3 was flanked by two Alu elements. At this region, 

NCBI Build 36 reference and subsequent Build 37 both showed that the supposed inversion 

is located at the edge of an assembly clone Z83822.2; however, neither the genotyping results 

nor the chimpanzee assembly supported the human reference orientation. The GenBank 

record was updated on July 10, 2011, and the clone was trimmed such that it no longer 

covers the 19.9 kb region of interest. Instead, the region is now represented by the 

neighboring clone AL627143.15, and its orientation is now concordant with the genotyping 

results (Figure IV. 5).  
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Figure IV. 5. The Xp11.3 region.  
(A) UCSC genome browser screenshot of the region. The red track is the HuRef inversion of 
interest. Notice that it resides at the edge of Z83822.1 assembly clone. (B) Schematic of the 
change in the reference assembly and the switch in sequence direction. As seen in Table 1 in 
the main text, there is no sample having the reference genotype, thus suggesting a putative 
reference assembly error. In both NCBI Build 36 and 37, the inversion of interest resides in 
the Z83822.1 clone, but in the update on July 10th, 2011, the region is covered by the 
neighboring clone AL627143.15. The AL627143.15 has been extended in both direction, and 
in doing so, the orientation at the region of interest has been flipped, thus removing the 
original reference orientation. 
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Next, I compared all of the HuRef inversions with the DGV (Iafrate, et al., 2004; Zhang, et 

al., 2006). I identified 15 loci where the majority of previous studies had unanimously called 

inversions. Again, most of them (11 out of 15) were NAHR-derived variants. I postulate that 

the reference genome orientation of these loci represents either a minor allele or is incorrect. 

Particularly, the reference assembly clones in five of these regions had been modified, and 

their orientation reversed from Build 36 to 37, thus indicating potential errors in the Build 36 

(Table IV. 4). To further investigate the number of inverted regions which have been 

highlighted as problematic, and may undergo additional modifications in upcoming 

assemblies, I compared the inversion dataset to the list of regions targeted by The Genome 

Reference Consortium for manual review and additional sequencing (Church, et al., 2011). I 

found that 49 of 166 regions coincide, thus indicating that these regions may not yet be fully 

resolved and require additional experimentation to determine the accurate structure. An 

alternate explanation is that there are indeed two (or more) alleles in humans, but the specific 

allele represented has changed over time. These changes exemplify the dynamic nature of the 

reference assembly. 
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Table IV. 4. List of HuRef inverted regions which are also discovered by previous inversion studies as listed in the DGV. 

Co-ordinates* Detection 
Method Mechanism Size 

(bp) 
Ahn, et 
al., 2009 

McKernan, 
et al., 2009 

Tuzun, et 
al., 2005 

Kidd, et 
al., 2008 

Kidd, et 
al., 2010 

Korbel, et 
al., 2007 

Chimpanzee 
Assembly 

Orangutan 
Assembly 

Human 
reference 
assembly 
change 

chr21:26296022..26296571 mate pair blunt_end 550 y y n n n n y y 

no change, 
same clone 

same version 
used from 

B35 to B37 

chr16:83746237..83747302 assembly 
comparison blunt_end 1,066 y y n n n y y y 

no change, 
same clone 

same version 
used from 

B35 to B37 

chr6:168835529..168836601 assembly 
comparison nahr 1,073 n y n y n y y y 

no change, 
same clone 

same version 
used from 

B35 to B37 

chr12:12436020..12437892 mate pair nahr 1,873 y y n n n y y y 

no change, 
same clone 

same version 
used from 

B35 to B37 

chr7:106846108..106850529 mate pair nahr 4,422 n y n y n y y y 

no change, 
same clone 

same version 
used from 

B35 to B37 

chr16:54399633..54405700 mate pair imprecise 
breakpoint 6,068 y y y y y n y n 

no change, 
same clone 

same version 
used from 

B35 to B37 

chr3:50900409..50910036 assembly 
comparison nahr 9,628 n n y y n y y y 

same clones 
used, different 

portion of 
clone 

AC099047.2 
used/trimmed 
(-80kb), clone 
AC131013.2 

extended 
(+74kb),  
removed 
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reference 
orientation. 

chr9:125780830..125791433 mate pair imprecise 
breakpoint 10,604 n n y y y y y y 

no change, 
same clone 

same version 
used from 

B35 to B37 

chr12:79370385..79381831 assembly 
comparison nahr 11,447 n n n y y y y y 

no change, 
same clone 

same version 
used from 

B35 to B37 

chr12:85764376..85777047 assembly 
comparison nahr 12,672 n n n y y y y y 

no change, 
same clone 

same version 
used from 

B35 to B37 

chr1:2475133..2489144 assembly 
comparison nahr 14,012 n y y y n y y y 

clone 
AL139246.21 
updated from 
AL139246.20 

in hg19, 
removed 
reference 

orientation 
allele 

chr2:234136102..234151235 assembly 
comparison nahr 15,134 n n n y y y y y 

clone 
AC019072.78 
updated from 
AC019072.7 

in hg19, 
region from 
~96 kb to 

114kb flipped, 
removed 
reference 

orientation 
allele 

chr2:234135688..234151644 mate pair nahr 15,957 n n n y y y y y 

clone 
AC019072.78 
updated from 
AC019072.7 

in hg19, 
region from 
~96 kb to 

114kb flipped, 
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removed 
reference 

orientation 
allele 

chrX:46695748..46715632 assembly 
comparison nahr 19,885 n y y y n y y y 

clone 
AL627143.15 
updated from 
AL627143.13 

on July 10, 
2011,  

extended 46.6 
kb and 

removed the 
reference 

orientation 
allele in the 

region of 
interest. 

chr16:54354976..54423120 mate pair nahr 68,145 y y y y y n n n 

no change, 
same clone 

same version 
used from 

B35 to B37 
*Dark green box shows evidence of inversion existing in the dataset, while red box shows no evidence of inversion .  
I expect that inversion  based on short insert mapping (Ahn and McKernan) can capture small size inversion,   
while those relying on large insert mapping (Tuzun, Kidd 2008 and 2010, Korbel) to be able to identify large inversion. 
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IV.D Discussion 

The availability of breakpoint-resolution allows for characterization in the general population 

of inversion polymorphisms, which have been underrepresented in most genomic studies. 

While three out of eight inversions were bi-allelic, had simple breakpoint junctions, and were 

tag-able by neighbouring SNPs, the rest were either multi-allelic, contained complex 

rearrangements, or were potentially reference assembly errors. From the results, I saw that 

small, presumably benign, polymorphic inversions could be complex, involved concurrent 

gain or loss of additional DNA sequences, and were similar in structure to larger inversions 

that had been associated with disease (Antonacci, et al., 2009; Chiang, et al., 2012; 

Kloosterman, et al., 2011; Osborne, et al., 2001; Stephens, et al., 2011). 

I believe that my assay design is most successful in typing bi-allelic, imputable inversions 

with simple junction structures. The ascertainment of complex, recurrent and NAHR-related 

variants will require a combination of longer sequence lengths, targeted local assembly, and 

long-range haplotyping (Bansal and Bafna, 2008; Fan, et al., 2011; Khaja, et al., 2006; 

Kitzman, et al., 2011; Levy, et al., 2007; Scherer, et al., 2003). Moreover, ultramicro- 

inversions on the other end of the size spectrum are largely understudied (Hara and Imanishi, 

2011). These variants can be detected within sequence reads, and are likely to have blunt-end 

boundaries, similar to most of the annotated indels discussed in Chapter III.  

I observed an inversion at 16q23.1 where an inversion and a deletion may potentially impact 

the function of the CTRB1 and CTRB2 genes. There was evidence of population 

differentiation in haplotype frequency. Moreover, despite the fact that both gene products are 

homologous, and are expressed in pancreatic islet cells in the kidney, there may be 

differences in expression pattern. According to ENCODE Project Consortium (Myers, 2011), 

there is a denser cluster of transcription factor binding sites and promoter-associated histone 

marks upstream of the exon -1 of CTRB1 than CTRB2 (Myers, 2011), and so an exchange of 

the exon-1 by the 16.6 kb inversion may alter the expression patterns in addition to the 

creation of hybrid protein structures. In addition, the frame-shift deletion would disrupt the 

trypsin-like serine protease domain. Chymotrypsinogen B is the precursor to the digestive 

enzyme chymotrypsin, whose function is to cleave aromatic amino acids such as 
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phenylalanine, tyrosine and tryptophan. The observed difference in haplotype frequency 

across population may be the result of adaptation to different diet. Further studies will be 

required to elucidate the functional impact of the variations characterized here at the DNA 

level. 

In conclusion, with precise breakpoint information, I annotated a subset of the HuRef 

inversions in the human population, and identified the inverted allele frequencies. I identified 

inversion alleles that exhibit population differentiation, and impact genes. Most importantly, 

I discovered that inversions can be associated with other rearrangements, creating more 

complex structures. These structures may even be challenging to the reference assembly. 

This study offers additional insights into the origin and complexity of the often understudied 

submicroscopic inversions. 

 



 
 
 
 
 
 
 
 
 

CHAPTER V: SUMMARY AND FUTURE DIRECTIONS 
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V.A Summary and future directions 

Our concept of what is variable in the genome has changed dramatically over the past half 

century: from rare chromosomal rearrangements, to single base polymorphisms, to various 

forms of submicroscopic structural variation. The field of variation study changes from 

investigating single locus to whole genome, and with ever improving accuracy and 

sensitivity. We are now able to study the full complements of variation in an entire 

population cohort. In recognition of the progress achieved in variation research, “Human 

Genetic Variation” is considered to be the breakthrough of the year by the Science magazine 

in 2007 (Pennisi, 2007). I showed that over 1 % of the genome is variable, and the majority 

of which are due to structural variants. The work presented in this thesis contributes to our 

understanding of variation by defining the amount of variation content between any two 

genomes, highlighting strengths and limitations of structural variation discovery methods, 

quantifying the different structural variation-formation mechanisms, and examining the 

structure and frequency of inversions. 

V.B Remaining challenges 

Technology has been instrumental in driving discovery. Presently, NGS holds great promise 

in impacting biomedical research. It can produce an unprecedented amount of sequence 

information at a low-cost and high throughput fashion. However, there are still some 

shortcomings in current technologies. 

V.B.1 Gap in variant discovery 

Current and future genome sequencing experiments using NGS technologies will become an 

increasingly common and inexpensive approach to discover variation within personal 

genome sequences. However, the improved speed and decreased cost come with a number of 

challenges, and most notably a reduction in resolution to detect all types and classes of 

genetic variation (Pang, et al., 2010). While NGS detection of single nucleotide and very 

small indels seems sufficient (Lam, et al., 2012), the short read lengths of NGS would limit 

the detection of larger and more complex genetic variants. The HuRef variation set described 

in this thesis (termed the HuRef Standard in this section) can act as a baseline to compare 
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variation data generated by NGS, and to investigate the completeness and accuracy of calls. 

In other words, if one were to sequence the HuRef genome by a NGS platform, one can 

directly examine the sensitivity and specificity of NGS data. 

The HuRef genome has also been sequenced by Complete Genomics (CG) (Drmanac, et al., 

2010). The CG platform was chosen because of its standardized sequencing process and 

analysis pipeline, its wide spread use, and its robustness in variation-detection performance 

(Figure V. 1, Table V. 1). With paired-end sequencing of inserts approximately 400 bp in 

length, an average depth of coverage of 63.5X was achieved in sequencing the HuRef 

genome by CG. The CG variant calls were detected primarily by three approaches: split-read, 

paired-end and read depth. Note that paired-end mapping is the same as mate-pair mapping, 

except that the insert fragment of a paired-end library (200-400bp) is smaller than a mate-pair 

library (a few kilobases). 
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Figure V. 1. The size distributions of reported DNA gains and losses in published 
personal genome sequencing studies.  
These diagrams show the relative uniformity of CG variants across the size spectrum. In 
Wheeler et al., insertions identified by intra-read alignment would be limited by the size of 
the 454 sequencing reads; hence, large insertions beyond the read length were not detected 
(Wheeler, et al., 2008). McKernan et al. used SOLiD and microarrays to detect variation in 
Yoruba individual NA18507 (McKernan, et al., 2009). They detected small variants based on 
split-reads and large ones based on mate-pair and microarrays, but failed to find medium size 
gains. Rothberg et al. performed whole genome sequencing using the Ion Torrent technology, 
but only reported deletions at least 50 bp in size (Rothberg, et al., 2011). Mainly relying on 
Illumina, Abecasis and colleagues detected variation in the sample NA18507 using a 
multitude of calling algorithms (Abecasis, et al., 2012). However, for large variation, only 
deletions were reported. From these size distributions, CG yielded the most consistent calling 
pattern across the size spectrum when compared with other NGS technologies. 
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Table V. 1. Summary of variation results in some personal genomes 
Sample Pop. Platform Cov. Gain/loss Reference 

        # 
Min 
size 
(bp) 

Max 
size (kb) Study PMID 

Venter 
(HuRef) Caucasian ABI3730xl; 

microarrays 7.5 796,079 1 82.7 
Levy et al., 

2007; Pang et 
al., 2010 

17803354;20482838 

Watson Caucasian 454 7.4 222,718 2 38.9 Wheeler et al., 
2008 18421352 

NA18507 Yoruba SOLiD 17.9 232,124 1 97 McKernan et al., 
2009 19546169 

Moore Caucasian Ion Torrent 10.6 3,391 50 982.8 Rothberg, et al., 
2011 21776081 

NA18507 Yoruba Illumina ~30 405,741 1 100.5 Abecasis et al., 
2012 23128226 

Venter 
(HuRef) Caucasian Complete 

Genomics 63.5 471,770 1 16,797 Current chapter   
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First, by examining the HuRef CG and HuRef Standard variation profile, one would notice 

that short read sequencing had challenges in detecting variants of certain size ranges. In total, 

there were 241,033 CG gains and 230,737 losses in the HuRef genome, which accounts for a 

portion of the HuRef Standards’ 408,403 gains and 383,470 losses (Table V. 2). Unlike the 

uniform negative slope of the size distribution of variants annotated in the Sanger-based 

assembly of the HuRef Standard, there were notable drops in sensitivity in the CG set, 

particularly for gains in the paired-end detection range (Figure V. 2, Figure V. 3). As has 

been acknowledged (in CG Support & Community webpage), CG’s junction detection 

approach has difficulty in calling variants at high identity repeats, and calling insertion 

sequences not in the NCBI reference genome. Also, in order to substantiate that the CG 

profile is indeed missing variants, not simply overcalling in the HuRef Standard set, one can 

compare the HuRef Standard variants with published studies. For example, one could 

compile 3,751,689 non-redundant variants from 18 published studies that have used multiple 

variant-detection methods: NGS, Sanger read-trace, Sanger fosmid-end mapping, and 

microarrays (Table V. 3) (Abecasis, et al., 2012; Alkan, et al., 2009; Altshuler, et al., 2010; 

Conrad, et al., 2010b; Durbin, et al., 2010; Itsara, et al., 2010; Jakobsson, et al., 2008; Ju, et 

al., 2010; Kidd, et al., 2008; Kidd, et al., 2010a; Kidd, et al., 2010b; McCarroll, et al., 2008; 

Mills, et al., 2011a; Perry, et al., 2008; Pinto, et al., 2011; Teague, et al., 2010; Tong, et al., 

2010; Wheeler, et al., 2008). Then after cross-examining the HuRef Standard with this 

reference set, one would notice that the size distribution curves representing the HuRef 

Standard variants also detected in published studies would still be consistently at or above the 

overall HuRef CG curves across the entire size spectrum (Figure V. 4). Evidently, variants 

were missing the HuRef CG profile. 
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Table V. 2. Gains and losses detected in the HuRef genome by different methods 
       

Detection strategy Type # 
Min size 

(bp) 
Median 
size (bp) 

Max size 
(bp) 

Total size 
(bp) 

Sanger assembly comparison Hom ins 275,417 1 2 82,711 3,110,678 
 Hom del 283,738 1 2 18,484 2,813,857 
 Het ins 128,084 1 1 321 299,562 
 Het del 92,564 1 1 316 220,051 

Sanger split-read Ins 3,747 11 18 414 125,549 
 Del 5,577 11 16 111,714 1,141,842 

Sanger mate-pair Ins 656 346 3,566 28,344 3,177,629 
 Del 1,077 352 3,827 232,308 5,034,418 

Agilent 24M Dup 136 445 993 81,458 457,872 
 Del 217 439 877 852,404 2,157,491 

NimbleGen 42M Dup 357 448 4,672 836,362 11,098,815 
 Del 293 459 2,712 359,736 3,634,700 

Affymextrix 6.0 Dup 7 14,485 42,798 640,474 1,519,885 
 Del 4 10,176 48,721 123,797 231,415 

Non-redundant total Gains 408,403 1 1 836,362 19,789,990 
 Losses 383,470 1 2 852,404 15,233,774 
       

       

Detection strategy Type # 
Min size 

(bp) 
Median 
size (bp) 

Max size 
(bp) 

Total size 
(bp) 

CG split-read Ins 240,813 1 1 63 584,548 
 Del 229,676 1 1 187 654,829 

CG paired-end* Dup 116 49 242 94,707 280,983 
 Del 956 236 868 16,797,153 19,400,558 

CG read depth Dup 104 1,307 14,001 160,001 2,448,564 
  Del 105 2,001 12,001 110,001 1,822,961 

Non-redundant total** Gains 241,033 1 1 160,001 3,314,095 
 Losses 230,737 1 1 16,797,153 21,878,348 
       
italics: generated from the non-redundant set from Levy et al., 2007, and Pang et al., 2010, and then subsequently lifted 
over from Build 36 to Build 37 
*The 16.8 Mb deletion detected by CG paired-end approach is likely an artifacts, as it has not been detected by karyotype 
(Levy et al., 2007). Also, it was found in all the other 79 samples sequenced in this study. The next largest call is 242,290 
bp. 
**Excluding the CG paired-end 16.8 Mb deletion, the next largest CG deletion would be 242,290 bp, and total size 
would be 5,081,195 bp. 
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Figure V. 2. Size distribution of non redundant gains and losses detected in the HuRef 
sample. 
(A) Gains. (B) Losses. 
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Figure V. 3. The size distributions of HuRef CG gains and losses detected by their 
discovery strategies.  
Note that these two graphs (A for gains and B for losses) show all the calls detected by each 
approach, regardless of redundancy. 
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Table V. 3. Summary of variation results from published population studies. 
Study PudMed Id Platform Gains (#) Losses (#) 

Jakobsson et al., 2008 18288195 Genotyping array 9,102 4,626 
Perry et al., 2008 18304495 Array CGH 26,730 8,578 

Wheeler et al., 2008 18421352 NGS 284,346 156,770 
Kidd et al., 2008 18451855 Sanger fosmid 15,597 3,961 

McCarroll et al., 2008 18776908 Genotyping array 1,620 1,012 
Itsara et al., 2009 19166990 Genotyping array 17,699 9,939 
Alkan et al., 2009 19718026 NGS 1,154 42 

Conrad et al., 2009 19812545 Array CGH/Genotyping array 77,762 25,744 
Kidd et al., 2010 20440878 Sanger fosmid 14,318 0 

Teague et al., 2010 20534489 Optical mapping 8,639 2,117 
Ju et al., 2010 20802225 Array CGH 1,574 1,010 

Altshuler et al., 2010 20811451 Genotyping array 173,254 142,752 
Tong et al., 2010 20822512 NGS 286,704 104,360 

Durbin et al., 2010 20981092 NGS 2,244,804 2,045,714 
Kidd et al., 2010 21111241 Sanger fosmid 1,469 627 
Mills et al., 2011 21460062 Sanger trace 2,933,141 976,321 
Pinto et al., 2011 21552272 Array CGH/Genotyping array 76,878 43,334 

Abecasis et al., 2012 23128226 NGS 2,043,940 888,150 
Non redundant total   1,637,756 2,113,933 
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Figure V. 4. The size distribution of HuRef Standard variation that was confirmed by 
published studies.  
The distributions for gains and losses are shown in plots (A) and (B), respectively. Note that 
the confirmed HuRef Standard size distributions were consistently equal to or above the 
HuRef CG ones. 
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Some of the missing gains and losses reside in DNA regions containing repeats. There can be 

notable reduction of calls in loci with retrotransposable repeats, tandem repeats and 

segmental duplications in the HuRef CG data with respect to the HuRef Standard (P-value < 

2.2e-16) (Figure V. 5). These observations highlight the importance of having long reads and 

long inserts for alignment and variant-calling. As for centromeric and telomeric repeats, both 

Sanger sequencing and HTS have challenges at these regions, it is premature to evaluate their 

variant-calling performance. 
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Figure V. 5. Proportion of HuRef Standard and HuRef CG gains and losses residing in 
repetitive regions. 
(A) Gains. (B) Losses. 
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While there was a good overall concordance rate (64.2%) for the CG calls with the HuRef 

Standard, the specificity of gains would be lower than that of losses. About 59.1% 

(142,368/241,033) of gains and 69.5% (160,392/230,737) of losses called by CG were 

concordant (70% reciprocal size overlap) with the HuRef Standard (Figure V. 6).  
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Figure V. 6. Overall concordant statistic between HuRef Standard and HuRef CG 
variation sets. 
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From comparison of HuRef CG and HuRef Standard, one can see that CG also has notable 

strengths. First, the HuRef CG loss size distribution was fairly uniform compared to the 

expected HuRef Standard (Figure V. 2). Second, CG was highly precise in determining 

variant size, with the exception of overcalling by the read-depth approach (Figure V. 7). 

Decreasing the binning-size together with increasing sequencing coverage can reduce the 

overestimation. 
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Figure V. 7. HuRef CG variant size estimation.  
(A) shows the tight size correlation between HuRef CG variants (> 5 bp) and the 
corresponding breakpoint-refined Standard variants, and (B) displays the average percent 
size difference between HuRef CG and HuRef Standard calls. 
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Through an assessment of indels and CNVs discovered in the HuRef genome, one would 

notice that short read sequencing are still missing a notable number of variants, especially 

gains readily detected by the paired-end approach (Figure V. 3). To address this, I 

recommend generating libraries of multiple insert lengths. Even without changing the overall 

coverage, having multiple insert sizes should improved sensitivity: small libraries are better 

at calling small and localizing breakpoints; large insert libraries at calling large variants 

(Medvedev, et al., 2009). The deficiency in detecting variation in repeats is with short read 

length (Figure V. 5). With long reads, even ultra-long trinucleotide expansion can be 

effectively captured (Loomis, et al., 2013). Computationally, one should continue to apply 

multiple complementary strategies: split-read, paired-end, read depth, and one-end-anchor 

(Hajirasouliha, et al., 2010) (further discuss below). Future studies can also consider 

incorporating whole genome assembly comparison approach, as it can yield the greatest 

number, type and size range of variants (Table V. 2). However, current de novo assembly of 

short sequences is hampered by repeats. A possible solution is a hybrid assembly constructed 

by a mixture of shallow coverage (~5x) of mate-pair long-read sequencing with deeper 

coverage (~25x) of short-read sequencing (Schatz, et al., 2010). Alternatively, sequencing 

can be performed in conjunction with microarray (Pinto, et al., 2011) or optical mapping 

(Teague, et al., 2010) to detect large variation. In the latter case, besides determining the 

genomic position of long DNA fragments by optical map, one can sequence each isolated 

fragment, and map the reads to the corresponding position. This and other (e.g. Long 

Fragment Read (Peters, et al., 2012)) processes of complexity reduction should improve 

alignment and variation-discovery accuracy. Finally, some common variants (minor allele 

frequency >5%) that are missed by NGS could be imputed by nearby tag SNPs, but some 

rare variants would not be tagged; for example, approximately 20% of biallelic structural 

variants cannot be readily captured (Mills, et al., 2011b). Ultimately, if NGS is to become a 

primary technology in clinical laboratories (Gargis, et al., 2012), it will benefit from 

improvement, particularly in capturing indels, CNVs, inversions and more complex 

rearrangements that are associated with diseases (Mills, et al., 2011a; Tang and Amon, 2013). 
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 V.B.2 Improvement of the HuRef variation map 

As shown in Chapter II and the previous section, both the HuRef Standard and HuRef CG 

profiles contained false positives and false negatives. While the HuRef Standard had the 

advantage of having long and accurate reads generated from long mate-pairs, the HuRef CG 

benefited from having deep coverage. I believe one can improve the HuRef Standard 

variation map by incorporating NGS data to validate existing calls and to identify novel 

variation.  

In Chapter, I show that there are currently many human genomes that have been sequenced 

using different NGS platforms. Furthermore, there is a plethora of software suites designed to 

analyze NGS data. While some are platform-specific or task-specific, others are platform-

agnostic and multi-purpose. Tables V. 4 to V. 7 show some alignment, substitution and 

structural variation detection programs. In the future, one can apply some of the listed 

algorithms on HuRef NGS data to uncover additional variants. I anticipate that NGS will 

discover many new heterozygous variants currently missed due to shallow coverage. Hence, 

the entire HuRef variation size distribution curve will likely elevate.  
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Table V. 4. Alignment tools for NGS 
Program* Platform Website 

BFAST Illumina/Life http://sourceforge.net/apps/mediawiki/bfast/index.php?title=Main_Page 
Bowtie Illumina/Roche/Life http://bowtie-bio.sourceforge.net 
BWA Illumina/Life http://bio-bwa.sourceforge.net/bwa.shtml 

CoronaLite Life http://solidsoftwaretools.com/gf/project/corona/ 
CABOG Roche/Life http://wgs-assembler.sf.net 

ELAND/ELAND2 Illumina/Life http://www.illumina.com/ 
EULER Illumina http://euler-assembler.ucsd.edu/portal/ 

Exonerate Roche http://www.ebi.ac.uk/∼guy/exonerate 
EMBF Illumina http://www.biomedcentral.com/1471-2105/10?issue=S1 

GenomeMapper Illumina http://1001genomes.org/downloads/genomemapper.html 
GMAP Illumina http://www.gene.com/share/gmap 

Gnumap Illumina http://dna.cs.byu.edu/gnumap/ 
ICON Illumina http://icorn.sourceforge.net/ 
Karma Illumina/Life http://www.sph.umich.edu/csg/pha/karma/ 
LAST Illumina http://last.cbrc.jp/ 

LOCAS Illumina http://www-ab.informatik.uni-tuebingen.de/software/locas 
Mapreads Life http://solidsoftwaretools.com/gf/project/mapreads/ 

MAQ Illumina/Life http://maq.sourceforge.net 
MOM Illumina http://mom.csbc.vcu.edu/ 

Mosaik Illumina/Roche/Life http://bioinformatics.bc.edu/marthlab/Mosaik 
mrFAST/mrsFAST Illumina http://mrfast.sourceforge.net/ 

MUMer Life http://mummer.sourceforge.net/ 
Nexalign Illumina http://genome.gsc.riken.jp/osc/english/dataresource/ 
Novocraft Illumina http://www.novocraft.com/ 

PerM Illumina/Life http://code.google.com/p/perm/ 
RazerS Illumina/Life http://www.seqan.de/projects/razers.html 
RMAP Illumina http://rulai.cshl.edu/rmap 

Segemehl Illumina/Roche http://www.bioinf.uni-leipzig.de/Software/segemehl/ 
SeqCons Roche http://www.seqan.de/projects/seqcons.html 
SeqMap Illumina http://biogibbs.stanford.edu/*jiangh/SeqMap/ 
SHRiMP Illumina/Roche/Life http://compbio.cs.toronto.edu/shrimp 

Slider/SliderII Illumina http://www.bcgsc.ca/platform/bioinfo/software/slider 
SOCS Life http://solidsoftwaretools.com/gf/project/socs/ 

SOAP/SOAP2 Illumina/Life http://soap.genomics.org.cn 
SSAHA/SSAHA2 Illumina/Roche http://www.sanger.ac.uk/Software/analysis/SSAHA2 

Stampy Illumina http://www.well.ox.ac.uk/∼marting/ 
SXOligoSearch Illumina http://synasite.mgrc.com.my:8080/sxog/NewSXOligoSearch.php 

SHORE Illumina http://1001genomes.org/downloads/shore.html 
Vmatch Illumina http://www.vmatch.de/ 

* This table is adopted from (Zhang, et al., 2011). 
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Table V. 5. Single nucleotide variation detection programs designed for NGS. 
Program* Platform Website 

Atlas-SNP2 Roche/Illumina http://www.hgsc.bcm.tmc.edu/cascade-tech-software-ti.hgsc 
BOAT Illumina http://boat.cbi.pku.edu.cn/ 

DNA Baser Roche http://www.dnabaser.com/help/manual.html 
DNAA Roche/Illumina/ABI http://sourceforge.net/projects/dnaa/ 
Galign Illumina http://shahamlab.rockefeller.edu/galign/galign.htm 

GigaBayes/PbShort Roche/Illumina http://bioinformatics.bc.edu/marthlab/GigaBayes 
GSNAP Roche/Illumina http://share.gene.com/gmap. 
inGAP Roche/Illumina http://sites.google.com/site/nextgengenomics/ingap 

ngs_backbone Roche/Illumina http://bioinf.comav.upv.es/ngs_backbone/index.html 
Omixon Variant ABI http://www.omixon.com/omixon/index.html 

PyroBayes Roche http://bioinformatics.bc.edu/marthlab/PyroBayes 
Slider Illumina http://www.bcgsc.ca/platform/bioinfo/software/slider 

SNP-o-matic Illumina http://snpomatic.sourceforge.net 
SNPSeeker Illumina http://www.genetics.wustl.edu/rmlab/ 
SNVMix Illumina http://compbio.bccrc.ca 
SOAPsnp Roche/Illumina/ABI http://soap.genomics.org.cn 
ssahaSNP Illumina/Roche http://www.sanger.ac.uk/Software/analysis/ssahaSNP 

SVA Illumina http://www.svaproject.org/ 
SWA454 Roche http://www.broadinstitute.org/science/programs/genome-biology/crd 
VAAL Illumina http://www.broadinstitute.org/science/programs/genome-biology/crd 
VARiD Roche/Illumina/ABI http://compbio.cs.utoronto.ca/varid 
VarScan Roche/Illumina http://genome.wustl.edu/tools/cancer-genomics 

* This table is adopted from (Zhang, et al., 2011). 
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Table V. 6. Structural variation detection programs designed for NGS. 
Program* Platform Website 

BreakDancer Roche/Illumina/Life http://genome.wustl.edu/tools/cancer-genomics/ 
BreakDancer/BD- Mini Roche/Illumina/Life http://seqanswers.com/wiki/BreakDancer 

Breakway Roche/Illumina/Life http://sourceforge.net/projects/breakway/files/ 
cnD Illumina http://www.sanger.ac.uk/resources/software/cnd.html 

CNVer Illumina http://compbio.cs.toronto.edu/cnve 

cnvHMM Illumina http://genome.wustl.edu/pub/software/cancer-
genomics/cnvHMM/ 

CNVSeq Roche http://tiger.dbs.nus.edu.sg/CNV-seq/ 
GASV/GSV Illumina http://cs.brown.edu/people/braphael/software.html 

Hydra Illumina http://code.google.com/p/hydra-sv/ 
MoDIL Illumina http://compbio.cs.toronto.edu/modil/ 

mrCaNaVaR Roche/Illumina/Life http://mrcanavar.sourceforge.net/ 
NovelSeq Roche/Illumina/Life http://compbio.cs.sfu.ca/strvar.htm 

PEMer Roche/Illumina/Life http://sv.gersteinlab.org/pemer/ 
Pindel Illumina http://www.ebi.ac.uk/∼kye/pindel/ 
PRISM Illumina/Life http://compbio.cs.toronto.edu/prism/ 
SegSeq Illumina/Life http://www.broadinstitute.org/ 
SOAPsv Roche/Illumina/Life http://soap.genomics.org.cn 

Solid CNV tool Life http://solidsoftwaretools.com/gf/project/cnv/ 
Solid large Indel tool Life http://solidsoftwaretools.com/gf/project/large_indel/ 

SWT Illumina http://genome.wustl.edu/pub/software/cancer-
genomics/GSTAT/ 

VariationHunter/VH-CR Illumina http://compbio.cs.sfu.ca/strvar.html 
VARiD Life http://compbio.cs.utoronto.ca/varid 

* This table is adopted from (Zhang, et al., 2011). 

 



 

141 
 

 

Table V. 7. Multi-task software suites designed for NGS. 
Multi-task software packages Website 

BING http://www.dinulab.org/bing 
Bioscope https://products.appliedbiosystems.com/ab/en/US/adirect/ 
CASAVA http://www.illumina.com/software/ 

CGA Tools http://www.completegenomics.com/analysis-tools/ 
GATK http://www.broadinstitute.org/gsa/wiki/index.php/ 

Geneious Pro http://www.geneious.com/default,1246,NGS%20Assembly.sm 
Geneus/GenoLogics http://www.genologics.com/solutions/research-informatics/ 

Genomatix Genome Analyzer http://www.genomatix.de/genome_analyzer.html 
Genomic workbench/CLCbio http://www.clcbio.com/index.php?id=1331 

JMP Genomics http://www.jmp.com/software/genomics/index.shtml 
NextGENe/SoftGenetics http://softgenetics.com/NextGENe.html 

PacBio RS system http://www.pacificbiosciences.com/products/software/ 
PaCGeE/PGI http://personalgenomicsinstitute.org/index.php/ 

Partek GS/Partek http://www.partek.com/partekgs 
PASS http://pass.cribi.unipd.it/cgi-bin/pass.pl?action=Download 

Roche Analysis tools http://454.com/products-solutions/analysis-tools/index.asp 
RTG/Real Time Genomics http://www.realtimegenomics.com/RTG-Software 
SeqMan Ngen/DNASTAR http://www.dnastar.com/t-products-seqman-ngen.aspx 

TorrentSuite Software 
http://www.invitrogen.com/site/us/en/home/Products-and-

Services/Applications/Sequencing/Semiconductor-
Sequencing/data_analysis/torrent_browser.html 

VSRAP http://sourceforge.net/apps/mediawiki/vancouvershortr/ 
Zoom http://www.bioinformaticssolutions.com/products/zoom/index.php 

* This table is adopted from (Zhang, et al., 2011). 
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V.B.3 Determine the genotype of CNVs  

Global assessment of the genotype or the absolute copy number of CNVs has been 

challenging for microarrays. SNP array assays are originally designed to discriminate SNP 

alleles rather than copy number measurements. And by measuring the relative intensity ratios 

in CGH arrays, it is difficult to discern copy number of multi-copy duplications. 

Nevertheless, the ability to accurately predict copy number can enable making genotype and 

phenotype correlation. For example, an individual with higher copy number of the CCL3L1 

gene than the average of his/her ethnic background tends to have greater resistance to HIV 

infection (Gonzalez, et al., 2005). Alkan and colleagues used read depth information to 

predict the absolute copy number of segmental duplications and CNVs in two deeply 

sequenced genomes (Alkan, et al., 2009). They demonstrated that this approach can 

distinguish multi-copy number difference (e.g. copy number 5 versus 12), a feat which is not 

attainable by microarrays due to the saturation of fluorescence intensities. Importantly, genes 

with highly variable copy number change tend to reside in duplicated loci, thus highlighting 

the dynamic nature of these regions. Some of these genes correspond to rapidly evolving 

gene families such as the zinc finger and the Morpheus families. Moreover, advance in 

digital PCR technology is capable of determining the exact copy number count of DNA 

segment (Sykes, et al., 1992). While multiplexing is currently under development, the 

technology can be used for validating estimations generated by sequence count. Hence, 

CNV-genotyping should be a routine task in future studies. 

V.B.4 Breakpoint refinement 

As discussed in Chapter III, current array or sequence based studies can reliably detect gains 

and losses of DNA, but nonetheless their precise breakpoint information may not be readily 

available. Particularly, complex loci with repeats or segmental duplications are difficult to 

align to, and can cause spurious alignments. Therefore, signatures of reads that capture true 

breakpoints can be obscured by surrounding noisy alignments. Certainly longer read length 

can improve the accuracy of alignment, variant detection, and subsequent breakpoint 

refinement by local assembly (Li, et al., 2010b; Simpson, et al., 2009; Zerbino and Birney, 
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2008). In addition, more targeted approaches, or other creative high-throughput sequence 

capture methods such as sequence capture using probes/baits (Conrad, et al., 2010a) designed 

from variant junction libraries (Lam, et al., 2010) are needed to elucidate the underlying 

variant structures. 

V.B.5 Detection and annotation of novel DNA sequences  

There are many insertion events in the HuRef genome that are absent in the public reference 

assembly. Similar observations have also been reported in other studies (Hajirasouliha, et al., 

2010; Kidd, et al., 2010b; Li, et al., 2010a; Wheeler, et al., 2008).  It has been estimated that 

19 to 40 Mb of sequences is missing in the reference. These sequences can represent 

insertions in the sequenced genome, or they can correspond to reference assembly gaps 

(Bovee, et al., 2008). These DNA fragments may have functional units such as enhancers, 

coding and other non-coding sequences. They may be polymorphic, exhibit population 

differentiation or individual-specific, and contribute to the phenotypic diversity and different 

disease susceptibility. Yet, since these sequences are absent in commercially available 

microarrays, and are typically not sought for in variation studies, our understanding of these 

sequences is noticeably less than other euchromatic sequences readily reported in existing 

genome browsers. 

In Chapter II, a custom Agilent 244k CGH array was designed to search for evidence of copy 

number change in sequences present in the Celera assembly and not in the public reference 

assembly, and I demonstrated that these sequences were indeed polymorphic among a cohort 

of seven individuals.  

One can also use computational method to detect novel insertion sequences using mate pair 

sequence data. In a genomic region upstream or downstream of site of a large insertion event, 

there should be an abundant number of mate-pair inserts where only one of the mates would 

align to the reference genome (Figure V. 8). Hence, to search for large insertion sites, one 

can look for loci where there is a significant number of these “one-end anchored” (OEA) 

inserts (the green reads in Figure V. 8).  
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Figure V. 8. Schematic of detection of insertion by OEA mapping.  
The presence of a sequence (thick blue box at top) in a sample, in this case HuRef, not 
present in the NCBI reference assembly would create a significant number of OEA 
inserts around an insertion breakpoint. The mapped end of the OEA read is colored in 
green. All unmapped reads are colored in orange while all other paired reads are colored 
in blue. This OEA signature can be used to identify insertion sequences in the reference 
genome. 
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Finally, whole genome de novo assembly can also detect and annotate these novel sequences; 

however, this is still challenging for current short read NGS technology. Future studies can 

use a combination of custom microarrays (Kidd, et al., 2010b; Pang, et al., 2010), OEA 

mapping approaches (Hajirasouliha, et al., 2010; Kidd, et al., 2010b), and local assembly to 

identify these DNA sequences, reveal their functional and structural importance, and close 

the remaining 271 gaps in the public assembly. Of course, these new sequences should then 

be incorporated into the reference. Because the reference assembly should ultimately 

encompass the longest chromosomal sequences, incorporating novel DNA from multiple 

studies, in order to represent all possible DNA in the human species (Feuk, et al., 2006a; 

Scherer, et al., 2007).  

V.B.6 Inversion detection 

In Chapter III, I show that the majority of large size (> 1 kb) inversions detected in the 

HuRef genome are flanked by homologous segmental duplications and interspersed repeats. 

These repeats can obscure mate-pair alignments. I envision that this problem of misalignment 

will be alleviated with improvement in NGS chemistry in generating longer reads from larger 

insert libraries. On the other hand, the detection of small inversions, which are less often 

flanked by homologous DNA, can be enhanced by having deeper coverage, thus increasing 

the number of DNA fragments covering variant breakpoints. Finally, understudied 

ultramicro-inversions may be captured by algorithms that search for strand-flipping 

alignments (Hara and Imanishi, 2011; Ye, et al., 2009). 

V.C Structural variation de novo rate 

The rate of formation has been known to differ among variation types. For example, the rate 

differs between SNPs and CNVs, as they are formed by different mutagenesis process (Table 

V. 4). Similarly, from Chapter III, I show that multiple mechanisms operate within even the 

broad categories of structural variation. So, I hypothesize that the de novo rate of formation is 

different for each mechanism. For instance, structural variants formed by replication 

processes such as FoSTeS or MMBIR would likely differ from those formed by 

recombination-based NAHR events. Replication errors tend to correlate with paternal age, 

but recombination ones do not (Zhang, et al., 2009a). Furthermore, NAHR depends on the 
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structure of other genomic architectures. In the case of 17q21.31 microdeletion syndrome, 

parents of patients with the 424 kb deletion carry a 900 kb inversion at the deleted locus 

(Koolen, et al., 2008). The deletion and inversion are flanked by segmental duplications, and 

the inversion contains the specific segmental duplication structure necessary to mediate the 

formation of the pathogenic deletion by NAHR during meiosis (Itsara, et al., 2010). So in this 

case, the rate of deletion-formation would vary between chromosomes that have the 

inversion and those that do not. In addition, the inversion is present in ~ 20 % of the 

European population but is rarer in other populations (Stefansson, et al., 2005). So 

recombination rate may also vary in different populations. Therefore, due to heterogeneity in 

local sequence structures and haplotype frequencies, our current estimate of 1.5x10-2 new 

CNVs per generation is likely an average of all mechanism types. Future de novo rate 

estimation should sub-divide by mechanism type, and consider the ethnicity of the samples.  
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Table V. 8. De novo mutation rate of various types of variation. 

Type 
Mutation rate 

(per genome per 
generation) 

Reference 
Size of 

variants 
studied 

# of 
corresponding 
variants HuRef 

SNV 70 (Conrad, et al., 2011) 1 bp 3,213,401 
Small indel*† 3 (Lynch, 2010) 1 – 50 bp 581,280 

Retrotransposition** 4.6x10-2 (Stewart, et al., 2011) 30 – 6,250 
bp 1,542 

CNV 1.2x10-2 (Conrad, et al., 2010b; 
Itsara, et al., 2010) > 500 bp 4,072 

* The rate excludes micro- and minisatellite loci. The study only examined 2,585 deletions and 903 insertions 
residing in 21 loci associated with autosomal dominant and 13 loci associated with X-linked disorders. The study 
also ignored indels whose length is divisible by three, and its reason was that those variants would leave codon 
reading frame intact and would have minimal phenotypic effects. The number of HuRef indel variants indicated 
in the last column excludes those characterized as microsatellite or minisatellite in Chapter III. 
† Expansion and contraction of microsatellites has been independently examined at 2,477 autosomal loci, and the 
mutation rate is estimated to be between 2.7x10-4 to 10.0x10-4 per locus per generation (Sun, et al., 2012). 
** This rate was calculated based on a map of 7,380 Alu, L1 and SVA detected in 185 samples. This study was 
based mainly on low-pass short-read sequencing data, thus explaining the relatively low number of 
retrotransposons detected. The coverage per sample was about 3.0 x. The number of HuRef retrotransposition 
has been determined in Chapter III. 
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V.D Towards a complete variation map of the human genome   

A reader may notice that I have a recurring theme in this thesis, and that is the importance of 

having the complete catalog of variation. The HuRef data set, being the most complete to 

date, offers many unique opportunities: examine the strengths of different discovery 

methods, genotype the rarely studied insertions and inversions, quantify the relative 

proportion of mutational mechanisms for variants of different size, et cetera. None of these 

tasks would be possible, or at least the results might be less accurate, had I used less 

complete data with notable gaps. The importance to study all forms of variation is also 

recognized in other population (Altshuler, et al., 2010; Durbin, et al., 2010; Jakobsson, et al., 

2008) and clinical studies (Berkel, et al., 2010; Sanders, et al., 2012). At the present moment, 

to get a complete set of structural variation, one cannot rely on SNP-based imputation, and 

has to employ multiple direct discovery approaches. So in the future, how will we be able to 

get a “complete” variation map of the human genome? 

The coming third generation sequencing approach has the potential address some existing 

issues in variation-detection by NGS. There are two main characteristics to the third 

generation technology: PCR is not needed before sequencing; and sequencing signal is 

captured in real time. No pre-sequencing amplification enables shortening of DNA 

preparation time and elimination any systematic bias in PCR amplifications. Sequencing 

signal in real time means that the signal is captured during enzymatic reaction of adding 

nucleotide. Uninterrupted, DNA polymerase can incorporate multiple bases per second; 

hence natural long length DNA can be produced. There are two notable third generation 

sequencing methods, and they are the Pacific Bioscience’s Single-molecule real-time 

(SMRT) method and Nanopore DNA sequencing. The average read length of PacBio RS 

machine is about 1.3 kb, while Nanopore can potentially reach over 5 kb read length (Liu, et 

al., 2012). Both lengths are significantly longer than what can be achieved by Sanger 

sequencing and NGS. Long read length enables placement of sequenced reads to their proper 

location, and that can subsequently improve variation discovery. It will be exciting to see if 

the third generation sequencing can detect all types of variation, thus potentially avoiding the 

need to use multiple approaches to find the full spectrum of variation. 



 

149 
 

How will one get a “complete” human variation map? I think that there are two prerequisites 

to generate such map, and they are 1) the availability of accurate sequencing and 2) the 

availability of genome sequence from a large number of individuals. To achieve the first 

prerequisite, the Archon Genomics X prize is set up to challenge the scientific community to 

radically improve sequencing technology. The participating teams will have to rapidly, 

accurately and economically sequence 100 human genomes (Kedes and Campany, 2011; 

Kedes, et al., 2011). Specifically, a $10 million prize will be awarded to the team to sequence 

the samples within 30 days with an error rate of 1 error per megabase, with 98 % genome 

coverage, identification of genetic variation, completely phased the variants, and at a cost of 

$1,000 per genome. The competition took place in January 3rd, 2013. Moreover, the 100 

samples have been derived from genomes of centenarian samples, and the findings of the 

competition can potentially enhance our understanding to longevity and health.  

Second, initiatives such as the 1000 Genomes Project and the Personal Genome Project 

(PGP) will enable the collection of variation information from many samples from the 

general public. The 1000 Genomes Project (www.1000genomes.org), whose goal is to 

sequence 2,500 genomes from 27 populations. The Personal Genome Project aims to enroll 

100,000 volunteers from the general public (Ball, et al., 2012). In addition, the Personal 

Genome Project records very detailed phenotype information such as personal medical 

history, and that would enable the development of tools to correlate genomic information to 

phenotypes. The 1000 Genomes Project, Personal Genome Project as well as others will 

facilitate the continual accumulation of variation data, and in the near future we may find out 

the full extent genetic variation in the human DNA. This comprehensive catalogue of human 

genetic variants can in turn be used a reference for disease association. 

V.E Personal genomics and medical relevance 

Ultimately, what can we learn from sequencing healthy individuals, with no disease 

phenotype? We may be able to discover carrier status for incompletely penetrant dominant 

variants and recessive variants for monogenic disorders. We currently have limited idea on 

the impact on phenotype for the majority of variants, both substitution and structural variants. 

Nevertheless, those known variants associated with physical traits can be used for risk 

calculation for developing a disease, and many of these variants are genotyped by DTC 
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companies (Ng, et al., 2009). Yet, the odds ratio of most of these variants is low, thus 

providing limited predictive values. Better prediction can be done by incorporating genomic 

data with data such as diet, exercise and clinical characteristics. Currently, these analyses 

provide limited but useful information for an individual (Ashley, et al., 2010). 

Since the publication of the first individual human genome (the HuRef genome) in 2007, 

there has been significant improvement in sequencing. Such advancement will surely 

continue at an even faster pace. However, the greatest challenge in the future is not in 

sequencing, but in the interpretation of the data. We still know little on the effects of most 

variation, as well as the genetic cause of many complex traits. First, we need a better 

understanding of the genome, in addition to protein-coding regions. Novel techniques now 

enable us to examine the regulatory landscape and three-dimensional DNA organization 

(ENCODE Project Consortium, et al., 2012). These could enhance our understanding of 

distal effects mediated by variants. Second, it is important to collect detailed human 

phenotypes, according to agreed upon standards, together with the deluge of genomic 

information. This availability of both data sets from a large number of individuals is 

fundamental to predict outcomes from sequences. Genetic information has the potential to 

improve the ability to direct lifestyle change and therapeutic selection. An example of this is 

can be seen with the HuRef individual. From his family history and from his genotype, Dr. 

Venter knows that he is at risk of cardiac problem, so he is proactively exercising and taking 

the cholesterol-lowering drug statin to address this condition (Venter, 2007). Yet despite such 

great expectations, we should remember that the effect of the vast majority of genetic 

variants is unlikely to be deterministic, as additional genetic, epigenetic and environmental 

interactions can influence an individual’s phenotype.  

The work in this thesis highlights numerous structural variation characteristics. It emphasizes 

the need to study the full complement of variation in personal genome, population and 

disease studies. The collective information gathered from analyzing the HuRef genome, 

some of which are reported in this thesis, can provide a good standard in the rapidly growing 

field. It contributes towards a greater understanding of the human genome, and ultimately 

will help unravel the association between genotypes and phenotypes. 
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