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Abstract 

The current dissertation examined factors thought to influence the developmental 

dynamics of basic math fluency skill (addition and subtraction). The overarching goal of this 

research was to examine growth patterns in addition and subtraction fluency across Grades 1 

through 4 while taking into account the effects of the non-instructional period over the summer 

months. This was accomplished using an accelerated longitudinal design within the framework 

of hierarchical linear modeling. A cumulative pattern of growth was observed over time for each 

fluency measure. Differences between addition and subtraction growth trajectories were found 

and are discussed.  

This dissertation also aimed to examine the respective roles of verbal working memory, 

visual-spatial working memory, and teacher ratings of classroom inattention in the development 

of math fluency while controlling for sex and parent level of education.  This was done from a 

piecewise perspective, that is, by considering whether these cognitive and behavioral factors 

exerted differential effects based on seasonal patterns (i.e., skill growth that occurs within the 

school year (excluding the summer), and the growth that occurs across grades (including the 

summer)).  Differential seasonal patterns were identified: Visual-spatial working memory was 

predictive of skill development specific to the school year, whereas teacher-rated inattention was 

a key longitudinal predictor of weaker math fluency, across the years, including the summer 

months. Implications for research and educational practice are discussed.  
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CHAPTER I 
Overview and Rationale of the Dissertation Research  
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Overview of the Dissertation 

 Research on children’s mathematical skill has seen a significant surge over the past two 

decades. A number of these studies have utilized longitudinal designs. Critical to developmental 

research, longitudinal designs provide an advantage over cross-sectional studies as they help 

identify the nature of change over time, allow for the assessment of the variability and patterns of 

this change, and the identification of factors associated with change.  Under certain 

circumstances, they can even contribute qualified causal inferences about cause and effect 

relationships (Little, Card, Preacher, & McConnell, 2009). In addition to gaining a better 

understanding of human development, from an educational perspective, information gleaned 

from these studies can inform theories of academic achievement as well as decisions regarding 

both practice and policy.      

Much of the extant longitudinal research on the developmental trajectories of math comes 

from large-scale national studies. Many of these studies range a number of years in childhood 

and include thousands of participants, such as the Early Childhood Longitudinal Study – 

Kindergarten Cohort (ECLS-K)  (Judge & Watson, 2011; Kohli, Sullivan, Sadeh, & Zopluoglu, 

2015; Lee, 2010; Li-Grining, Votruba-Drzal, Maldonado-Carreno, & Haas, 2010; Morgan, 

Farkas, & Wu, 2009; Morgan, Farkas, & Wu, 2011; Schulte & Stevens, 2015) and the National 

Longitudinal Survey of Youth (NLSY) (Duncan et al., 2007; Leahey & Guo, 2001; Stipek & 

Valentino, 2015). However, most of these studies have approached the domain of mathematics 

from a general perspective, simultaneously tapping a variety of mathematical abilities (e.g., 

conceptual knowledge, procedural knowledge, problem-solving) reflecting grade-appropriate 

content. The importance of these studies in the advancement of our understanding of the nature 

of math development is undeniable, as they provide important insight into overall math 

development at an epidemiological level. However, one particular challenge to the study of 

mathematics is its heterogeneous nature; therefore, taking a general approach may obscure 
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developmental variability in the acquisition of the various sub-skills. These sub-skills may have 

differing developmental trajectories, may be associated with different sets of predictive factors, 

and may lead to diverging long-term effects on achievement (Fuchs et al., 2006; Geary, 1993; 

Jordan, Hanich, & Kaplan, 2003; Vasilyeva, Laski, & Shen, 2015). For example, and most 

relevant to the current study, children may experience difficulties in basic math fluency (i.e., the 

ability to solve basic arithmetic facts with both speed and accuracy), despite normal achievement 

in other areas of math, such as story problems (Hanich, Jordan, Kaplan, & Dick, 2001; Jordan et 

al., 2003).  Therefore, it is equally important to have insight into the developmental trajectories 

of specific math sub-skills. To this end, the current dissertation focuses on the development of 

the sub-skill of math fluency, which has seen relatively little research attention, particularly from 

a longitudinal perspective using community samples. 

 

Organization of the dissertation. The current dissertation focuses on the development 

of math fluency in the early elementary grades. It is organized in 4 chapters. The first chapter is 

comprised of a comprehensive literature review and delineation of the purpose of the study. The 

second chapter outlines the methods used in the dissertation research, where growth of basic 

math fluency across Grades 1 through 4 is examined from a longitudinal perspective while taking 

into account the effect of the summer months, thereby considering both between-grade (across 

years) and within-grade (within school years) skill growth. This study also investigates the roles 

of verbal (numerical) working memory, visual-spatial working memory, and teacher-rated 

inattention on the development of math fluency while controlling for the effects of sex and 

parent level of education. Results are presented in the third chapter. The fourth chapter is a 

comprehensive discussion of the findings, as well as implications for research and practice. The 

Appendix includes further details regarding methodology (scoring outlines).  
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Literature Review 

Influence of Quantitative Literacy Across the Lifespan.  

 Poor arithmetic skills are considered a risk factor for occupational and health outcomes 

in adulthood, as quantitative literacy is a strong predictor of high school completion, 

employment status, occupational earnings, and health-related decision-making in adulthood in 

both industrialized and developing nations, over and above the influence of literacy, educational 

level, and intelligence (Boissiere, Knight, & Sabot, 1985; Golbeck, Ahlers-Schmidt, Paschal, & 

Dismuke, 2005; Montori & Rothman, 2005; Parsons & Bryner, 2005; Rivera-Batiz, 1992). Math 

difficulties that appear early (e.g., at school entry, around ages 5 or 6) have been identified as an 

important risk factor for weaknesses in math at the end of schooling (Duncan et al., 2007; 

Pagani, Fitzpatrick, Archambault, & Janosz, 2010) regardless of family background, social-

emotional factors, reading skill, and intelligence.  Further, previous research estimates that 

between 5-8% of school-age children experience some form of mathematics learning difficulty 

(Geary, 2004). Considering the impact of mathematical competency across the lifespan and the 

current movement in educational practice and psycho-educational service delivery models 

towards prevention and early intervention (Meyers & Nastasi, 1999; Reisener, Dufrene, Clark, 

Olmi, & Tingstrom, 2016), gaining a clearer understanding of the developmental dynamics of 

mathematical ability as well as the elucidation of factors that contribute to the developmental 

variability is critical. The current dissertation examines the developmental dynamics of the 

foundational sub-skill of math fluency (Fuchs et al., 2006), and investigates the role of factors 

that may predict individual differences in the context of normative development. 
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Math Fluency 

  Definition and development of math fluency. A number of studies have examined the 

development of basic arithmetic in terms of accuracy, or the ability to obtain a correct response 

regardless of time (Aunola, Leskinen, Lerkkanen, & Nurmi, 2004; Morgan et al., 2009; Morgan 

et al., 2011). A related, though distinct sub-skill is math fluency; in the context of the current 

dissertation1, math fluency refers to the narrow ability of computational proficiency, or the 

ability to recall (or efficiently calculate) simple arithmetic problems (“math facts”) with both 

speed and accuracy (Binder, 1996; Clarke, Nelson, & Shanley, 2016). For mastery with fluency 

to occur, the accurate recall (or use of other procedures, see below) of math facts must be 

accompanied by conceptual knowledge (Baroody, Bajwa, & Eiland, 2009), which promotes the 

efficient and adaptive use of facts and procedures (e.g., knowing whether or not algorithm can be 

used) within the context of both familiar and novel tasks (Baroody et al., 2009; Clarke et al., 

2016). The development of math fluency has received notably less research attention than 

accuracy, despite being recognized as an important focus for mathematics instruction as 

highlighted by educational standards in the U.S. (National Council of Teachers of Mathematics, 

2000; National Mathematics Advisory Panel, 2008). Although the importance of fluency is noted 

in the current Ontario2 mathematics curriculum (Ontario Ministry of Education, 2005), explicit 

acquisition through memorization is deemphasized. The Ontario curriculum adopts a discovery-

based method of teaching, where a greater importance is placed on a conceptual understanding of 

mathematics than on memorization, or on students’ ability to follow a “correct” procedure to a 

known answer. This is somewhat in contrast to Québec, which also follows a discovery-based 

																																																								
1	As summarized by Clarke et al. (2016), math fluency can also be conceptualized as a broad construct that relates to 
having gained proficiency in various math domains (e.g., early numeracy, whole number concepts, rational number 
concepts, and algebra).  	
2	Students	in	the	current	study	were	attending	school	in	Ontario,	Canada.	
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curriculum, albeit with an integrated requirement of memorization of basic math facts and 

algorithms (Gouvernement du Québec, Ministère de l’Éducation, 2001).  

 Most research related to math fluency development has been conducted from a cognitive 

lens, and primarily relating to the development of increasingly sophisticated strategies used to 

solve basic arithmetic problems (Bailey, Littlefield, & Geary, 2012; Geary, Hoard, & Nugent, 

2012; Vasilyeva et al., 2015). From this perspective, math fluency develops as children gradually 

become less reliant on quantity-based procedural strategies, such as counting, and increasingly 

proficient at flexibly using a mix of fact retrieval from long-term memory and back-up problem-

solving strategies (e.g., sophisticated and/or rapid counting and decomposition) (Bailey et al., 

2012; De Smedt, Taylor, Archibald, & Ansari, 2010; Geary, BowThomas, Liu, & Siegler, 1996; 

Geary et al., 2012; Mazzocco, Devlin, & McKenney, 2008; Shrager & Siegler, 1998; Siegler & 

Shipley, 1995; Siegler & Stern, 1998; Thevenot, Barrouillet, Castel, & Uittenhove, 2016). 

Models of skill acquisition demonstrate how practice supports the transition through distinct 

learning states leading to increased automaticity (Tenison & Anderson, 2015). In the case of 

arithmetic, solving simple arithmetic through counting leads to repeated exposure to a problem 

and its answer, which in turn leads to the formation of increasingly strong associations between 

problem and answer pairs (Shrager & Siegler, 1998; Siegler & Shrager, 1984).  The probability 

of direct retrieval from memory is dependent on the strength of this association, which itself 

increases with practice; therefore, retrieval becomes increasingly frequent with practice (Imbo, 

Vandierendonck, & Rosseel, 2007) and advancing development (Siegler & Shipley, 1995). This 

has been suggested for addition (Geary & Burlinghamdubree, 1989) and subtraction (Siegler, 

1987). Fluency is also related to problem size, such that problems involving smaller numbers 

(e.g., 2 + 4) are solved more quickly and accurately than problems involving larger numbers 

(e.g., 7 + 9); this problem size effect has been observed in both adults (e.g., LeFevre et al., 1996) 

and children (De Smedt, Holloway, & Ansari, 2011; Imbo & Vandierendonck, 2008). In 
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children, this effect is related to the finding that smaller problems are more likely to be retrieved 

directly from memory, whereas larger problems are more likely to be solved through procedural 

strategies (Imbo & Vandierendonck, 2008). By the mid-elementary school years (10-12 years), 

children who tend to rely more on quantity-based strategies are less fluent in simple arithmetic, 

compared to peers who tend to retrieve facts directly from memory (De Smedt et al., 2011).  

However, because a mix of retrieval and procedural strategies continue to be used throughout the 

lifespan (De Smedt et al., 2010; Fayol & Thevenot, 2012; Imbo et al., 2007; LeFevre, DeStefano, 

Penner-Wilger, & Daley, 2006; LeFevre et al., 1996), math fluency is related both to the 

frequency and speed of basic fact retrieval from long-term memory and to the sophistication, 

accuracy, and speed of backup problem-solving procedures, such as counting and decomposition 

(Geary et al., 1996; Geary et al., 2012; Mazzocco et al., 2008; Siegler & Stern, 1998; Vasilyeva 

et al., 2015).   

 

Effects of math fluency ability and difficulty. Increased fluency has been linked to 

important educational outcomes. Generally, fluency contributes to improved retention and 

maintenance of learned material, increased task endurance and attention span, greater resistance 

to distraction, and the ability to apply what has been learned to the performance of higher level 

skills (Binder, 1996; Lindsley, 1996). Fluency is a critical foundation of math development, as 

operations that are automatized require limited allocation of attentional or other cognitive 

resources (e.g., working memory) (Ackerman, Anhalt, & Dykman, 1986; Binder, 1996; Imbo & 

Vandierendonck, 2007; Lindsley, 1996), thus freeing up these resources, which can then be 

allocated to the acquisition of more complex skills needed to tackle advanced aspects of problem 

solving in childhood (Carr & Alexeev, 2011; Carr, Taasoobshirazi, Stroud, & Royer, 2011; 

Fuchs et al., 2006; Hecht, Torgesen, Wagner, & Rashotte, 2001; Vasilyeva et al., 2015)  and 

adolescence (Price, Mazzocco, & Ansari, 2013). In this way, as argued by Gersten and Chard 
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(1999), a lack of arithmetic fluency may present a barrier to understanding higher-level aspects 

of the curriculum.  Indeed, previous studies have found that simple fact fluency (i.e., single digit 

operations) and strategy choice are foundational to the acquisition of computation skills in terms 

of accuracy (Vasilyeva et al., 2015), as well as word-problem solving ability (Fuchs et al., 2006; 

Hecht et al., 2001). The notion that fluency scaffolds higher level math abilities has also been 

supported by a neuroimaging study which demonstrated that activation in functional brain 

networks known to be associated with fact retrieval (i.e., left supramarginal gyrus and bilateral 

anterior cingulate cortex) during a simple arithmetic task was related to higher scores on a Grade 

10 students’ Preliminary Scholastic Aptitude Test (a standardized test used to predict college 

entrance exams) scores (Price et al., 2013). Conversely, greater activation in the right hemisphere 

regions known to be associated with processing of quantity (right intraparietal sulcus) during the 

arithmetic task was associated with weaker PSAT scores.  A further possible advantage to 

achieving fluent performance includes a link to lower levels of math anxiety (Cates & Rhymer, 

2003). 

 Conversely, consistent research findings have shown that deficits in fact fluency are 

hallmark features of both math difficulties and disabilities, regardless of the presence of 

comorbid reading disabilities (Geary, Hoard, & Bailey, 2012; Jordan, Hanich, & Kaplan, 2003). 

In fact, it has been proposed that it is the specific failure in becoming fluent in basic math facts 

that underlies many students’ mathematical difficulties (Bull & Johnston, 1997; Geary, Brown, 

& Samaranayake, 1991).  

 

Math fluency as dissociable from accuracy. Measures of math fluency and accuracy 

may appear similar (e.g., assessing basic arithmetic), with the key difference being that speed is 

taken into account in the scoring and interpretation of the former.  Converging lines of evidence 

suggest that the construct of math fluency is dissociable from that of untimed basic arithmetic. 
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From a mastery perspective, prior work has indicated that taking performance rate into account 

provides a more sensitive gauge of skill growth and proficiency than accuracy alone (Ackerman 

et al., 1986; Deno, 1985; Prindle, Mitchell, & Pretscher, 2016; Shapiro, DuPaul, Bradley, & 

Bailey, 1996; Zentall, 1990).  Conversely, scores from untimed tests may mask differences in 

ability (Ackerman et al., 1986; Binder, 2003; Ramos-Christian, Schleser, & Varn, 2008). For 

example, in an early study investigating the children’s transition from the use of counting to 

retrieval from memory, Ashcraft and Fierman (1982) noted that without time constraints, 

children in third grade were able to complete simple addition as accurately as children in Grade 

6, despite greater fluency in the latter group. Similarly, Jordan and Montani (1997) found that 

children with math disabilities were able to correctly complete computation tasks in terms of 

accuracy when given enough time, despite weakness in fluency. Binder, Haughton, and Bateman 

(2002) noted the pitfalls of a “percentage correct world” where 100% represents the highest level 

of performance. Their assertion that perfect accuracy is not the definition of mastery can be 

highlighted using a simple example: consider two children who are both able to perform at 100% 

accuracy on a math task; the first child is able to give 10 correct responses in an allotted time, 

whereas the second child completes 5 within the same time frame. Given time-based 

information, it could be argued that the second child does not know the material as well as the 

first. However, this information would not be reflected in their accuracy scores.  

 Behavioral studies that have considered arithmetic both in terms of accuracy and fluency 

have shown that math fluency accounts for unique variance in math ability over and above that 

of untimed math skill (Fuchs et al., 2008; Hart, Petrill, & Thompson, 2010; Mazzocco et al., 

2008).  In a 2011 study, Carr and Alexeev examined children’s math development; although 

gender, single-digit accuracy and single digit fluency each exerted an influence on higher-level 

math ability, fluency had the most significant impact on math skill growth. From a genetic 

perspective, studies with school-aged twins identified math fluency as being etiologically distinct 
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from untimed basic arithmetic, untimed reading, and reading fluency (Hart, Petrill, Thompson, & 

Plomin, 2009; Hart et al., 2010; Petrill et al., 2012). Further, with respect to measurement, in a 

study of students in second to fifth grade, Burns and colleagues (2006) identified that the 

categorization of students into instructional levels (i.e., frustration, instructional, and mastery 

levels) that enable the matching of students’ ability (based on their baseline fluency skills) to 

appropriate instructional approaches, was significantly more reliable using math fluency 

compared to accuracy data. These same authors found that fluency outcomes were more closely 

related to criterion measures (standardized general math outcomes) compared to accuracy data. 

Considering the converging evidence for the distinction between timed and untimed skill, it 

cannot be assumed that fluency development mirrors the development of basic arithmetic skill in 

terms of accuracy.  

 

 Longitudinal development of math fluency. When considering studies that have 

investigated the developmental trajectories of math fluency, most come from the math learning 

disability literature.  These studies compare groups of students who experience math difficulties 

and/or disability to their typically achieving peers (Chong & Siegel, 2008; Geary et al., 1991; 

Geary et al., 2012; Jordan, Kaplan, & Hanich, 2002; Jordan et al., 2003; Ostad, 1997; Vanbinst, 

Ghesquiere, & De Smedt, 2014).  Note that in the literature, the convention is generally that 

children who score at or below the 10th percentile on standardized tests of math achievement 

over at least two consecutive years are considered to fall within the math learning disability 

category, whereas children who score between the 11th and 25th percentile are categorized as 

having learning difficulties (Geary, 2011b), although some authors include children up to the 35th 

percentile (Jordan et al., 2003).  

Overall, these studies identify important differences in terms of the development of fluent 

math skill across subgroups of ability.  For example, research examining fluency development 
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from the perspective of forced retrieval from memory tasks has shown that children with 

relatively weaker fluency skill (defined as falling below the 35th percentile) experienced virtually 

no growth over Grades 2-3 despite growth in other areas of mathematics, such as broad math and 

story problems (Jordan et al., 2003). This was in contrast to students with stronger fluency skills 

who demonstrated linear growth within the same timeframe. In another study, stable weakness in 

fluency (direct retrieval measured across Grades 2 and 3) was found to be a feature of children 

with math disability, regardless of whether this weakness occurred alone (MD-only), or with a 

comorbid reading disability (MD-RD) (Jordan et al., 2003). In contrast, children who were 

typically achieving (TA) and those with a reading disability (RD-only) had higher slopes. 

Growth rates were similar for all four groups, indicating that the low fluency groups did not 

catch up to groups with stronger fluency, over time (Jordan et al., 2003).  Similarly, Chong and 

Siegel (2008) found that low-achieving children or those with a math learning disability 

experienced overall weaker fluency over Grades 2-5, compared to typically achieving students. 

In contrast to the findings of Jordan and colleagues (2003), however, Chong and Siegel observed 

a linear increase in fluency growth within the study’s timeframe for all three groups, and no 

between-group differences were observed in terms of rate of fluency increase. Sampling over a 

longer timeframe (across Grades 1 to 5), Geary and colleagues (2012) found that fact retrieval 

fluency and decomposition skill development followed a curvilinear (decelerating) trajectory 

over time in typically developing and persistently low achieving children; the quadratic slope 

effect was non-significant in the math disabled group. Further, there were significant differences 

in the mean levels of the slopes in each group. Other authors have investigated variability in 

longitudinal profile types (Jordan, Kaplan, Olah, & Locuniak, 2006). For example, recently, 

VanBinst and colleagues (2014) used a data-driven, model-based clustering approach to 

delineate profiles of arithmetic fact fluency based on repeated fluency assessment at the 

beginning of third, fourth, and fifth grades. These authors found three distinct profiles which 
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were comparable in terms of age, sex, SES, and intellectual ability: slow and variable, average, 

and efficient.  

These studies are of course essential to the enhancement of our understanding of the 

nature, development, course, and correlates of math learning disability. However, group based-

approaches do not provide a sense of person-level variability across the spectrum of ability. 

Further to this point, Geary and colleagues (2012) did not find distinct MLD and LA groups 

when using cluster and growth curve analyses, indicating that children composing these groups 

are part of the normal distribution of mathematics achievement.  

Of the studies that have evaluated fluency longitudinally from a person-centered general 

education perspective, between-year comparisons have generally been made from a group 

(grade) perspective. For example, in an earlier study, Fuchs and colleagues (1993) examined 

students’ rates of growth in math fluency using mathematics curriculum-based measurement (M-

CBM) in a community sample of students in Grades 1-6 to determine the weekly rate of student 

progress in fluency. Two samples were collected over two consecutive years (Year 1, n = 177 

and Year-2, n = 1,208 for math measures). Students were assessed weekly in Year 1 and at least 

once per month in Year 2. The authors conducted person-centered analyses by calculating 

individual slopes for each student using OLS regression, and the distributions of slopes were 

examined. Based on a randomly selected subset (n = up to 56) at each grade level, linearity was 

determined to represent the functional form within the grades (although a sizeable minority of 

Grade 6 students showed a decelerating pattern of growth within the grade).  Cross-year analyses 

were performed to examine the relationship between the slope and grade level, using one-way 

ANOVA. This analysis revealed gradual deceleration in the magnitude of improvement with 

advancing years.   

Building on the study by Fuchs et al. (1993), Graney and colleagues (2009) examined the 

within-year development of math fluency (using Mathematics-CBM), for three grade cohorts 
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(Grade 3, 4, and 5) for two consecutive years. Data were collected in the fall, winter, and spring 

of each year, and was analyzed using repeated measures ANOVA. Similar to the Fuchs et al. 

(1993) study, the work of Graney and colleagues showed that growth rates increased with 

successive grade levels; however, they also found greater growth between winter and spring, 

compared to the growth that occurred from fall to winter.  In a more recent study building on 

Graney and colleagues’ work (2009), Keller-Margulis, Mercer, and Shapiro (2014) also found 

evidence for non-linearity in within-year math growth as assessed by M-CBM, with greater 

growth from fall to winter compared to winter to spring.  These authors noted that increased 

growth in the fall may have been reflective of a rapid recoupment of skills lost over the summer, 

once skills are reviewed at the return of school in the fall (Allinder & Eicher, 1994; Keller-

Margulis et al., 2014).    

 Martens, Hurks, Meijs, Wassenberg, and Jolles (2011) investigated differences between 

children’s (age 6-15 years) fluency in the four operation types (addition, subtraction, 

multiplication, and division). Using general linear modeling, they noted improvement in each 

operation type across the years. The largest improvements occurred yearly until Grade 5, with 

continued (though less) improvement until grade 8.  Further, these authors found that fluency 

level varied according to operation types, as further discussed below. More recently, using a 

large sample (N = 4337), Van de Weijer-Bergsma, Kroesbergen, and Van Luit (2015) also 

examined fluency performance according to operation types (i.e., addition, subtraction, 

multiplication, and division). Students from Grades 2 to 6 were tested longitudinally at 3 time 

points over the course of one school year. Multilevel multi-group latent growth modeling was 

used to examine differences in level and growth with advancing Grades. These authors also 

examined the predictive value of verbal and visual-spatial working memory, which will be 

discussed further below. Results showed that for all operation types, within-grade growth 

increased with advancing grades, although the magnitude of this growth decreased in the highest 
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grades assessed (Grades 5 and 6). The authors also found increased variability between student 

levels and rates of growth in the early grades, leading to greater variability over time. However, 

this gap appeared to stabilize in the later grades, as rates of growth became increasingly 

comparable despite variable levels of mean ability.   

  Collectively, relatively little is known about the development and variability of math 

fluency across the spectrum of ability. Further, in longitudinal studies that have taken a person-

level approach to the study of math fluency in typically developing children, between-grade 

analyses have been performed at a group level. Therefore, studies investigating developmental 

growth trajectories of general stream education students both from a within- and between-grade 

perspective are lacking, as highlighted by both Fuchs et al. (1993) and Graney et al. (2009).  

Based on the research, there is little doubt that problems with math fluency are most evident in 

children with persistent math disabilities or difficulties. However, studies also highlight the need 

for research in the normative development of basic fluency. First, as mentioned previously, 

fluency in basic arithmetic is fundamental to higher level math skills (Price et al., 2013). This is 

contrasted with evidence that typically achieving children are themselves not fluent in basic 

arithmetic (Henry & Brown, 2008). For example, in a study on 275 children in first grade, Henry 

and Brown (2008) found that children (including those from high performing schools) achieved 

the state standard of direct retrieval of sums (and corresponding differences) to 18 only 22% of 

the time. This was despite there being a specific focus on this goal in California schools at the 

time of the study. In Canada, skill in this area appears to be declining over time (LeFevre, 

Penner-Wilger, Pyke, Shanahan, & Deslauriers, 2014). Recently, LeFevre and colleagues (2014) 

identified a staggering decline (by 23%) in university undergraduates’ basic arithmetic fluency 

that has occurred gradually over the past 20 years. These findings were based on data from 

university students from 1993 and 2005, who began receiving formal arithmetic instruction 

between 1982 and 1993 (i.e., in their Grade 1 year).  The authors noted further decline, estimated 
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at 37%, for data collected between 2005 and 2010. LeFevre and colleagues hypothesized that 

these findings might be linked to significant changes in the curriculum over the past 20 years, 

where fluency has been deemphasized in the context of more discovery-based instructional 

methods, a general expansion in math areas of instruction, as well as increased calculator use. 

This concerning trend highlights the need to have a clear understating of fluency development 

regardless of disability level, with a focus on individual variability.  

 

Developmental Dynamics of Math Ability 

 Functional Form of Math Growth Trajectories. With respect to modeling growth, 

smooth linear and curvilinear models are almost universally seen in development and education 

literature. Accurately modeling the functional form (shape) of the growth trajectory can provide 

insight into the nature and developmental stages in a given academic domain. Specifically, in the 

presence of consistent practice, the acquisition of skilled behavior is often presumed to follow a 

relatively smooth curvilinear (or sigmoid, S-shaped) form, with a period of rapid growth 

occurring at a consistent rate, followed by a gradual slowing of growth in skill slowing over time 

(Speelman & Kirsner, 2005).  Gradual slowing in skill acquisition might occur as an individual 

approaches the optimal level of skilled performance (e.g., mastery). Alternatively, skill slowing 

may be seen if practice is halted, or if cognitive resources are redirected to other (e.g., higher 

level) tasks (e.g., Speelman & Kirsner, 2005).  

 Most researchers studying the growth of general math ability through childhood have 

noted a curvilinear pattern (J. Lee, 2010; Mok, McInerney, Zhu, & Or, 2015; Morgan et al., 

2009; Murayama, Pekrun, Lichtenfeld, & Vom Hofe, 2013; Muthen & Khoo, 1998; Schulte & 

Stevens, 2015; T. Shin, Davison, Long, Chan, & Heistad, 2013), although others have identified 

linear growth (Rescorla & Rosenthal, 2004). For general mathematics, linear growth may be 

reflective of its cumulative nature (i.e., new concepts are built upon previously learned ones) 
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(Clarke et al., 2106), whereas curvilinear growth may indicate that material becomes 

increasingly challenging with advancing grades (Mok et al., 2015; Shin et al., 2013). As outlined 

in the previous section, in terms of math fluency, linear growth has been generally identified in 

shorter-term longitudinal studies (e.g., those capturing within-grade growth (e.g., Fuchs et al., 

1993)), or in studies capturing growth across earlier elementary grades (e.g., Grades 2-3 as seen 

in Jordan et al., 2003a and 2003b). Curvilinear trends might be deduced in studies examining 

longer time-spans, which have generally identified decreased growth with increasing grade levels 

(Fuchs et al., 1993; Graney et al., 2009; Martens et al., 2011; Van de Weijer-Bergsma et al., 

2015). However, as noted above, these between-grade changes were examined at a group rather 

than at the individual level; the benefits of using a growth curve modeling approach over a 

repeated measures (Singer & Willett, 2003) are highlighted in the next section.   

 Of course, discrepancies in findings regarding the form of the growth curve may be in 

part due to differences in study variables, including variability in the math subcomponents 

assessed, characteristics of the student sample, differences in measures used (see Graney et al., 

2009), whether the timeframe of the study adequately captures the form of the trajectory (e.g., 

earlier years when a skill is still being acquired, versus later years), the frequency of data 

collection, and the timing of data collection (e.g., fall vs. spring). Therefore, an important 

consideration to understanding the form of the developmental trajectory using a longitudinal 

design is measuring the skill during the time of developmental change (Little et al., 2009). In 

Ontario, teaching standards indicate that addition and subtraction are a focus of the Grade 1 

curriculum (Ontario Ministry of Education, 2005). Previous studies have suggested that children 

gradually transition from counting-based strategies to memory-based strategies around the third 

grade (e.g., Ashcraft & Fierman, 1982), although they continue to use procedural-based 

strategies in 3rd and 4th grade (Barrouillet, Mignon, & Thevenot, 2008; Robinson, 2001). 

According to the National Mathematics Advisory Panel (2008), in the U.S., achievement of 
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proficiency in basic addition and subtraction is a goal to be reached by the end of third grade. 

The current study spans the Grades 1 through 4, thus capturing theoretically critical time-points 

within the development of basic arithmetic fluency, and with an adequate number of time points 

(i.e., 8) to model various functional forms of growth.  

     

 Discontinuous/piecewise models of growth and the summer slowdown. An alternative 

to smooth growth models are piecewise ones, which propose that growth occurs in distinct 

phases with their own distinct shapes. Longitudinally, this creates a jagged trajectory, in contrast 

to the smooth trajectories seen in linear or curvilinear models. Few researchers in the area of 

math have adopted a piecewise modeling strategy, although studies that have utilized it have 

found that it provides a more adequate description of general math development than curvilinear 

models (Kohli et al., 2015; Shin et al., 2013).   For example, in a recent study using U.S. national 

longitudinal data from the Early Childhood Longitudinal Study (Kindergarten Cohort; ECLS-K), 

Kohli and colleagues (2015) found that a piecewise trajectory most accurately represented 

growth in children’s (Grade K-8) mathematics skills as compared to other trajectory forms. 

Notably, they also observed slowed growth rates between the spring of Kindergarten and the fall 

of Grade 1 (i.e., the two grades in which data had been collected in the fall and spring of each 

year). However, subsequently, data was collected only once per year in the spring of third, fifth, 

and eighth grades, which did not allow them to detect similar between-year variation in higher 

grades. In the realm of fluency, earlier studies also point to a piecewise development, although 

these effects were not directly examined. For example, Fuchs et al. (1993) noted that while a 

linear relationship adequately captured within-year growth of children’s math fluency skill, 

growth across Grades 1 to 6 was curvilinear. However, Fuchs and colleagues acknowledged that 

they were unable to simultaneously model both within- and between-year growth because the 

within-year analyses were conducted at the student level, whereas between-year analyses were 



	 18	

conducted at a group level.  Similarly, as noted above, Graney and colleagues (2009) studied 

within-year growth for Grades 3, 4, and 5, for two consecutive years; however, their analyses did 

not permit them to simultaneously investigate the growth across the grades (between year) from 

a longitudinal perspective. Notably, curvilinear functions may appear to be linear in a restricted 

range (e.g., within a single grade), which may in part explain why studies observe linear growth 

within a grade, and curvilinear trajectory when examining changes in grade means (e.g., Fuchs et 

al., 1993).  Piecewise functions are capable of approximating linear or curvilinear functions, thus 

offering a suitable option to address this design issue. Conditions necessary for conducting a 

piecewise analysis include: (a) that data are obtained from the same students in at least two 

different grades, (b) that the dependent variable has a consistent scale at all time points, and (c) 

that the analysis considers variability in growth trajectories. A piece-wise analysis would not 

have been possible in the Fuchs and colleagues’ (1993) study, as although they used data from 

two consecutive years, the sample sizes were different (year 1, n = 177; year 2,  

n = 1,208). In Graney and colleagues’ (2009) study, a subset of students would have participated 

over two years (i.e., those in Grade 3 to 4, and Grade 4 to 5). However, their analysis consisted 

of group comparison using an ANOVA approach, which did not permit analysis of variability in 

growth trajectories. Keller-Margulis and colleagues (2014) were also unable to conduct such an 

analysis as their data was only collected in one year for students in Grades 1 to 5, although as 

mentioned above, they noted the effects of the summer as a potential explanation for the 

observed differences in with higher rates of growth in the fall and decelerating rates of growth 

over the spring (linked to rapid recoupment after the summer months). The current research 

builds on these previous studies by utilizing a piecewise analysis to simultaneously estimate 

growth from both a within-year and between-year perspective.  

Given that children learn most of their math skills within the context of the school 

environment, an important variable to consider in the measurement of math development is the 
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timing of data collection within the school year (e.g., fall vs. spring). Generally, we would expect 

differences based on the timing of the assessment, such that assessments performed early in the 

year reflects skills learned in the previous year, whereas assessments administered later in the 

school year would also reflect learning that occurred within that grade level (Anderman, 

Gimbert, O'Connell, & Riegel, 2015). The importance of assessment timing is further 

highlighted by a body of educational research demonstrating that long breaks in instruction over 

the summer affect rates of academic skill growth (reading and math) over time (Alexander, 

Entwisle, & Olson, 2001; Cooper, Nye, Charlton, Lindsay, & Greathouse, 1996; Davies & 

Aurini, 2013; Downey, von Hippel, & Broh, 2004). This slowing of skill acquisition or skill loss 

during an instruction-free period is referred to as the summer slide (Alexander et al., 2007; Vale, 

2013) or summer slowdown (Vale et al., 2013). Other terms used to describe this phenomenon 

include summer setback (Davies & Aurini, 2013; Entwistle & Alexander, 1992; Vale, 2013; 

Downey et al., 2004), summer learning loss (Patton & Reschly, 2013), and summer effects 

(Cooper et al., 1996). These terms are used interchangeably in the literature; the term summer 

slowdown will be used in the current thesis.  Theoretically, a piecewise model to growth in math 

fluency skill across the grades is relevant in light of the summer slowdown literature (Cooper et 

al., 1996; Davies & Aurini, 2013; Downey et al., 2004; Vale et al., 2013), as the peaks and 

valleys in learning rates reflecting seasonal changes (i.e., within the school year and during the 

summer) could not be adequately captured using a single linear or curvilinear function.  

Most studies considering the summer break have focused on the effects of within-school 

versus out of school (e.g., home and neighborhood) variables. These studies have demonstrated a 

link between SES and the development of learning gaps, particularly in literacy, and mainly 

considering U.S. schools (Alexander et al., 2001; Alexander, Entwisle, & Olson, 2007a; 

Alexander, Entwisle, & Olson, 2007b), although Canadian (Davies & Aurini, 2013) and 

Australian (Vale et al., 2013) studies noted similar findings. Studies examining the effects of the 
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summer slowdown have shown that mathematical ability, and computation in particular (i.e., as 

opposed conceptual mathematics, such as problem-solving), is highly vulnerable to skill loss or 

slowing of skill acquisition over the summer months (Allinder, Fuchs, Fuchs, & Hamlett, 1992; 

Allinder & Eicher, 1994; Cooper et al., 1996). Some studies have found that children from 

disadvantaged backgrounds make fewer gains in the summer and begin the new school year 

lagging behind their higher-SES peers and that this pattern is cumulative over the years 

(Alexander et al., 2001; Alexander et al., 2007a; Downey et al., 2004; Verachtert, Van Damme, 

Onghena, & Ghesquiere, 2009). Other studies have not found a significant difference in the gains 

made by high and low SES groups, with all children experiencing significant loss in mathematics 

(Cooper et al., 1996). In a meta-analysis of the summer effects literature, Cooper and colleagues 

(1996) found that children were losing the equivalent to approximately 2.6 months of 

computation skill over the summer holiday. Notably, these authors found that this effect occurred 

regardless of children’s sex, IQ, race, and family income level.  Cooper and colleagues proposed 

that the loss of skill is particularly profound in math calculation because procedural math skills 

are susceptible to forgetting in the absence of practice, and because math is not generally 

practiced over the summer months (Cooper et al., 1996; Cooper & Sweller, 1987). Although 

studies that have investigated the effects of the summer months on math achievement have 

typically done so by considering general math or computation in terms of accuracy (e.g., 

Downey et al., 2004), similar effects on fluency skill have been documented (Allinder et al., 

1992; Allinder & Eicher, 1994). Considering the fact that practice is a significant factor in 

fluency growth (e.g., Tenison & Anderson, 2015), loss or slowing in skill growth over the 

summer months would be unsurprising. One might further postulate that loss of math fluency 

skill specifically, may be linked to the fact that speed of retrieval increases with practice (Bailey 

et al., 2012; Royer, Tronsky, Chan, Jackson, & Marchant, 1999).  
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The effect of the summer slowdown suggests that even when studies of varying time-

spans identify similar functional forms (e.g., linear within a grade and linear across the grades), 

the estimated rates of growth, within and across grades, cannot be assumed to be equivalent. 

Collectively, the studies outlined above suggest that the structure of the school year is an 

important environmental factor to consider when examining developmental growth, and once-

yearly measurement is likely insufficient to adequately capture growth patterns. In other words, 

although the development of math fluency may follow a general linear or curvilinear trajectory 

across a number of years, this trajectory likely also contains within-grade components.  Adopting 

a piecewise modeling strategy would allow for the explicit parceling-out the time period during 

which children are not receiving instruction (Anderson, 2012; Downey et al., 2004; Verachtert et 

al., 2009). To our knowledge, this hypothesis has not been empirically examined with respect to 

math fluency.  The piecewise modeling approach used in the current study allows for the 

simultaneous examination of growth patterns that are specific to the school year (i.e., excluding 

the summer) as well as across Grades 1 through 4 (including the summers).  

  

 Cumulative versus compensatory growth patterns.  Although is well established that 

early math ability is a strong predictor of proficiency in later mathematics (Duncan et al., 2007; 

Pagani et al., 2010), the developmental process by which children attain this proficiency is 

unclear. When examining the developmental of individual differences in growth trajectories, an 

important consideration involves the relationship between children’s early math ability and the 

rate at which their skills develop. In the presence of a significant correlation between initial skill 

level and growth rate, two primary views describe the process through which children gain 

proficiency in math ability (Ackerman, 2007; Aunola et al., 2004); specifically, the acquisition of 

math skill can occur in either a cumulative or compensatory fashion (Aunola et al., 2004; Mok et 

al., 2015; Morgan et al., 2009; Morgan et al., 2011; Muthen & Khoo, 1998; Shin et al., 2013).  In 
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the case of cumulative growth, ability increases through a process of cumulative advantage or 

disadvantage; that is, children who start out as having stronger basic skills (e.g., acquired through 

informal learning of mathematics concepts during the preschool years) continue to acquire skills 

more rapidly, whereas children who begin with weaker basic math skills have slower growth 

rates. Longitudinally, this pattern leads to a “fan-spread” effect (Aarnoutse & van Leeuwe, 

2000), with increasing variability between students’ ability as they advance through the grades, 

and growing achievement gaps between those with strong and those with weak initial abilities, 

with weaker students fall increasingly behind (Ackerman, 2007; Walberg & Tsai, 1983). This is 

also referred to as the Matthew effect, widely recognized in the reading literature (Aarnoutse & 

van Leeuwe, 2000; Stanovich, 1986). A cumulative growth pattern when measuring general 

math ability may be reflective of the hierarchical nature of math skills. For example, difficulty 

understanding whole numbers will be a barrier to understating fractions, which can subsequently 

lead to difficulties tackling higher-level math such as algebra (National Mathematics Advisory 

Panel, 2008). Cumulative effects may be linked to losses occurring over the summer months, 

establishing widening gaps between certain subgroups of children (e.g., along SES lines) 

(Alexander et al., 2001; Alexander et al., 2007a). In the case of math fluency, a cumulative cycle 

may be linked to proficiency in math fluency itself (e.g., fluency leads to greater fluency). For 

example, considering that practice is an important predictor of fluency (Binder, 1996), children 

who are more fluent would have more opportunity to practice a greater number of items in an 

allocated time (more completion of items), which could theoretically lead to greater fluency.  

Some authors have demonstrated that stronger fluency affects children’s maturation of strategy 

choice, by supporting a transition from the use of manipulatives to mental problem-solving 

approaches (Carr & Alexeev, 2011). Cumulative effects may also be linked to underlying 

cognitive abilities such as working memory (Bailey, Watts, Littlefield, & Geary, 2014; Geary et 

al., 2012), basic number competency (Jordan, Kaplan, Ramineni, & Locuniak, 2009), or 
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behavioural traits such as approaches to learning and student engagement (Bodovski & Farkas, 

2007; Li-Grining et al., 2010; McClelland, Acock, & Morrison, 2006). 

 An alternative pattern is a compensatory one, which supposes that children who initially 

have weaker math skills, eventually “catch up” to their peers. This could be the case for lower 

skilled children who enter school at an academic or social disadvantage, but who may benefit 

from receiving systematic instruction upon entering the school system (which, as highlighted by 

Aunola and colleagues (2004), has been the case in reading (Phillips, Norris, Osmond, & 

Maynard, 2002)), advantageous school characteristics (e.g., school safety, qualified teachers, 

adequate resources (Han, 2008)), becoming increasingly engaged with instruction (Bodovski & 

Farkas, 2007), or receiving effective interventions (Ramani & Siegler, 2008; Siegler, 2009). 

Finally, in the case where the correlation between the intercepts of the growth trajectory and the 

rates of growth is zero, gaps remain stable across the years (Jordan et al., 2003; Rescorla & 

Rosenthal, 2004).  

 Findings have been equivocal in terms of growth patterns of untimed computational 

accuracy and general math achievement, with some studies finding evidence for a cumulative 

pattern in the early elementary grades (Aunola et al., 2004; Chong & Siegel, 2008; McClelland et 

al., 2006; Morgan et al., 2009; Morgan et al., 2011; Salaschek, Zeuch, & Souvignier, 2014; 

Stevens, Schulte, Elliott, Nese, & Tindal, 2015), and others finding evidence for a compensatory 

model  (Han, 2008; Mok et al., 2015; Ready, 2013). Still others have noted parallel trajectories; 

for example, in a longitudinal study examining general math growth from Grades 3 through 10, 

Rescorla and Rosenthal (2004) found no differences in terms of growth rates between students 

with a higher initial status in math achievement and cognitive ability compared to lower 

achieving peers.  Further, some authors have highlighted sample heterogeneity in terms of 

growth patterns (Jordan, Mulhern, & Wylie, 2009; Jordan et al., 2006), and note differences in 

terms of growth patterns dependent on the subcomponent of math assessed (Salaschek et al., 
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2014). For example, in a study investigating the developmental dynamics of different math 

competencies across Grade 1, Salascheck et al. (2014) found that for untimed calculation, the 

majority of children followed a compensatory trajectory, although a smaller portion of the 

students experienced compensatory growth.  

 In terms of fluency specifically, across Grades 1 through 5, Geary and colleagues (Geary 

et al., 2012) found compensatory effects for procedural competence, but cumulative effects in 

terms of direct retrieval and decomposition skill between groups of typically achieving children 

and those with math learning disabilities (or low achievement, although the effect was less 

pronounced). Jordan, Hanich, & Kaplan (2003) found that children with low fluency experienced 

little growth over time, whereas those classified in the stronger fluency group showed linear 

growth; although this specific issue was not the focus of their study, this pattern would suggest 

cumulative growth.  Other studies mentioned above (math fluency section) found no relationship 

between level and slope between groupings of typically achieving children and those with math 

difficulties (Chong & Siegel, 2008; Jordan et al., 2003).  For example, Chong and Siegel (2008) 

found a compensatory pattern for untimed calculation (procedural), but stability for weakness in 

math fluency.   

 Although there is no agreed upon statistical test to explore cumulative and compensatory 

models, the primary statistical indicator for a cumulative effect is a positive correlation between 

the intercepts of children’s growth trajectories and their slopes (Huang, Moon, & Boren, 2014; 

Protopapas, Sideridis, Mouzaki, & Simos, 2011; Scarborough & Parker, 2003). Generally, if the 

slopes favor children whose level of achievement is initially strong, then differences between 

children are magnified. Conversely, if steeper slopes are seen in children who demonstrate 

initially weaker skills, then the differences between students’ skill level are minimized or 

cancelled out. If the slopes are the same despite varying initial skill level, the differences 

between student skill levels persist unchanged. Although these patterns may be seen from a 
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group perspective by examining mean intercepts and slopes (e.g., comparing groups of children 

with weaker math skills to those who have stronger abilities), considering that children may have 

different initial abilities (i.e., intercepts), their slopes (speed at which they gain skill) may also 

vary.  Taking a multi-level model approach such as the one utilized in the current study, allows 

one to capture such inter-individual variability in a sample of students (i.e., each student is 

allowed to have their own intercept and slope). In this case, the variance in intercepts and slopes 

can be correlated positively (cumulative), negatively (compensatory), or not at all. In the 

scenario where variance in growth rates is correlated with the intercepts, data would take on a 

fan pattern (whether fanning out in the case of the cumulative growth, or fanning inward in the 

case of compensatory growth). Conversely, in the case where there is zero correlation and zero 

variance in growth rate, children’s growth trajectories will be parallel but offset. In terms of the 

metric used to detect these effects, previous studies have argued for the use of raw scores over 

standard scores (Bast & Reitsma, 1998; Stanovich, 1986). These authors highlight the fact that 

raw scores at different ages are transformed to a distribution with the same variance; therefore, 

the increase in variance expected over time is lost to the standardization process, effectively 

masking any cumulative or compensatory effect (Bast & Reistma, 1998).  The multi-level 

modeling strategy used in the current study allows for the examination of the development of 

cumulative versus compensatory growth patterns over time (see next section).   

 Having an understanding of factors that are associated with increasing achievement gaps, 

or those that can support the closure of these gaps could theoretically lead to interventions that 

improve student prospects, both from an educational and societal point of view (Rivera-Batiz, 

1992).   
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Measurement and Analysis of Developmental Trajectories in Math Fluency  

The following section summarizes key measurement considerations relevant to 

longitudinal research on math fluency and the current dissertation. Specifically, potential 

differences in fluency development according to operation type, curriculum-based measurement 

as a measure of fluency, and analysis of growth trajectories using Hierarchical Linear Modeling 

are discussed.   

 

Potential differences between operation types. One issue that relates to the 

measurement of math fluency is the type of operation (i.e., addition, subtraction, multiplication, 

division) assessed. Few behavioral studies have specifically examined differences in operation 

types (Barrouillet & Lepine, 2005; Barrouillet et al., 2008; Martens et al., 2011; Robinson, 2001; 

Siegler, 1987). However, converging evidence from neuropsychological and behavioral studies 

provide a rationale for considering these abilities separately.  

 One line of evidence highlights that the strategy selected to solve the basic arithmetic 

problems may vary according to operation type (Barrouillet & Lepine, 2005; Barrouillet et al., 

2008). From a theoretical point of view, the work of Dehaene and colleagues (2003), suggest that 

operations may be dependent on differing neural codes, which are in turn linked to distinct neural 

pathways. Namely, whereas simple overlearned calculations (e.g., single digit addition and 

multiplication) are solved through a direct verbal retrieval route (left-hemisphere cortico-

subcortical loop), larger addition problems and subtraction are solved through an indirect route, 

where operands are coded as representations of quantity (left and right hemisphere inferior 

parietal areas).  Evidence for this theory includes findings that operation skills are dissociable in 

adults (Dehaene & Cohen, 1997; Dehaene et al., 2003; McCloskey, 1992), where subtraction and 

multiplication show the clearest differentiation (Barrouillet & Thevenot, 2013; LeFevre et al., 

1996; Prado, Mutreja, & Booth, 2014). Similar findings have been seen in the limited 
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neurofunctional studies involving children (Berteletti & Booth, 2015; De Smedt et al., 2011), 

with this dissociation increasing with age (Prado et al., 2014).   

From a behavioral perspective, two studies systemically investigated strategies that 

children use to solve arithmetic problems of addition (Barrouillet & Lepine, 2005) and 

subtraction (Barrouillet et al., 2008) and the relationship between strategy use and working 

memory capacity. Collectively, these studies found that third grade children used direct retrieval 

far less frequently when solving subtraction (19%) than when solving addition (65%), for the 

same problem stems (inverse problems). Further, these authors identified differential 

relationships between working memory and operation types. In the case of addition, high 

working memory capacity was associated with faster problem solving (including small sums), 

and children with stronger working memory were less reliant on algorithmic procedures 

(Barrouillet & Lepine, 2005). In contrast, in a follow-up study, Barrouillet and colleagues (2008) 

found no association between working memory and the speed of direct retrieval in subtraction, 

although working memory capacity was associated with faster problem-solving though 

algorithmic strategies. These results suggest potential differences between the mechanisms with 

which addition and subtraction problems are solved fluently (Dehaene, 1992). Conversely, from 

a longitudinal perspective, Van de Weijer-Bergsma and colleagues (2015) did not find 

differentiation between operation types in terms of their respective association with working 

memory.  

Further, in a study examining fluency development among 6- to 15-year-olds, Martens et 

al.  (2011) found that the ratio of correct to incorrect responses over the years indicated 

developmental differences according to operation type, such that addition > subtraction > 

multiplication > division. As acknowledged by the authors the fact that multiplication and 

division are introduced at least one year later than addition and subtraction may in part explain 
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this difference. However, the difference between addition and subtraction fluency is notable 

given that these operations are taught simultaneously.   

Many previous studies that have included measures of fluency have used mixed operation 

measures (Chong & Siegel, 2008; Petrill et al., 2012), which may mask differences linked to 

operation type. Further, of the studies that have considered single measures, most have focused 

on addition (e.g., Barrouillet & Lepine, 2005; Schutte et al., 2015; Vasilyeva et al., 2015), and 

research including measures of subtraction fluency is rarer (Barrouillet et al., 2008; Robinson, 

2001). Nonetheless, the aforementioned studies provide a rationale for considering operation 

types separately. Thus, in this dissertation, separate measures are used to assess addition and 

subtraction fact fluency. A mixed measure (i.e., addition, subtraction, and multiplication) is also 

used as a point of comparison.  

 

Mathematics curriculum-based measurement. Curriculum-based measurement (CBM) 

is a standardized procedure used to assess the level and trend of specific skill areas (Deno, 1985; 

Hosp, Hosp, & Howell, 2007). Traditionally, this measurement tool is primarily used in 

educational settings to screen for ability, monitor progress, make determinations regarding 

programming and placement, and to evaluate the effectiveness of programs (Deno, 2003). In the 

area of mathematics (mathematics curriculum-based measurement, M-CBM), single skill 

measures (referred to as “probes”) are designed to assess a narrow range of ability (e.g., addition, 

subtraction, multiplication, division) (Fuchs & Deno, 1991). These are also referred to as “robust 

indicators”, as they aim to tap into a core competency that is not necessarily reflective of the 

curriculum, but geared toward assessment of progress toward skill mastery (Christ, Scullin, 

Tolbize, & Jiban, 2008; Foegen, Jiban, & Deno, 2007). These single skill probes are in contrast 

to General Outcome Measures (GOMs) which are designed to capture content relevant to a given 
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grade curriculum (end of year) (Christ & Vining, 2006). Single skill probes are used in the 

current study.  

A significant difference between CBM probes and commonly used standardized 

assessments of fluency seen in the literature (e.g., Woodcock-Johnson Math Fluency; Woodcock, 

McGrew, Mather, & Schrank, 2001) lies in the scoring. In addition to a timed component, M-

CBM scores allow for partial credit, as scores represent correct digits (in the correct placement) 

per minute (CDPM), rather than the number of correct responses per minute. This makes the 

measure particularly sensitive to improvement, as illustrated by a simple example. Consider, 11 

+ 7 = 18: A child who correctly responds 18 would receive credit for two digits correct, a child 

that responds with one error (e.g., 19) would receive credit for the correct “1” value correctly 

placed in the tens position, whereas a child who responds incorrectly (e.g., 20) would not receive 

credit. A child who can obtain 40 digits correct per minute using this scoring would arguably 

have stronger skill than a child who can calculate these 40 digits, but requires double the time to 

do so.  

 Research on the psychometric properties of M-CBM has shown that single and multiple 

skill CBM probes measure slightly different, though related constructs (Foegen et al., 2007; 

Hintze, Christ, & Keller, 2002). Studies on single skill probes have found adequate to good 

levels of alternate form reliability (.73 for Grade 3, .93 for Grade 4 (Espin et al. (1989) as cited 

in Foegen et al. (2007) and .92 for Grade 4 as per Thurber et al. (2002)). Regarding criterion 

validity, correlations between single skill probes and other math measures (e.g., computation, 

word problems) ranged from .30 to .60 (Foegen et al., 2007); moderate correlations are expected 

given that the narrow skill of math fluency is a separate construct from general math measures 

that tap multiple skills. Single skills probes have been found to have very little variance in 

difficulty (i.e., aside from the digits used, the algorithms remain constant) across parallel probes; 

they are homogeneous in terms of content, stimuli, and the requisite skill set assessed (Hintze et 
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al., 2002).  Hintze and colleagues (2002) demonstrated that a 2-minute single skill (addition, 

subtraction, multiplication, and division) assessment provided exceptionally high levels of 

dependability from a single administration (i.e., greater than .95). Further, these authors found 

that upward of 80% of the measurement variance was accounted for by individual and 

developmental (age) variance among participants, indicating very little unsystematic random 

error. The conclusion of this study was that single skill M-CBM is of sufficient quality to make 

both criterion- and norm-referenced decisions (Hintze et al., 2002). This is relevant in light of the 

fact that longitudinal models require measurement invariability, or measurement of the same 

construct over time (Singer & Willett, 2003). Conversely, multiple-skill M-CBMs are more 

heterogeneous, and are more susceptible to differences between parallel assessment forms (see 

Christ & Vining, 2006; Hintze et al., 2002; Methe, Briesch, & Hulac, 2015).  

M-CBM measures have been used in developmental math research as a measure of 

fluency (Allinder et al., 1992; Allinder & Eicher, 1994; Fuchs et al., 1993; Fuchs et al., 2005; 

Fuchs et al., 2006; Graney et al., 2009), albeit to a lesser degree than norm- or criterion-

referenced tests. Unlike most standardized measures of achievement which are designed to 

assess a student’s standing in comparison to same-age or same-grade peers at a yearly interval or 

greater, CBM were designed to assess individual growth in skill at shorter testing intervals (Shin, 

Espin, Deno, & McConnell, 2004). Further, as highlighted by Shin et al. (2004), measurement 

error associated with growth estimates decreases with increasing data points, leading to higher 

reliability of growth parameters.  The argument for the use of a sensitive measure of skill growth 

has been made in relation to the summer learning loss (Patton & Reschly, 2013) since measures 

assessing skill loss over the summer must be sensitive to changes in a relatively short period of 

time.    
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Hierarchical linear modeling in the assessment of growth. In the current dissertation, 

analysis of longitudinal data is performed using growth-curve modeling. Growth curve modeling 

techniques are useful when the question of interest involves examining within-person (i.e., intra-

individual) change in a given phenomenon over time, as well the between-person (i.e., inter-

individual) differences in these developmental trajectories. For example, throughout the early 

elementary years, children’s math fluency skill increases over time (within-person change), but 

some individuals may gain skills more rapidly than others (between-person difference). 

Hierarchical linear modeling (HLM) is a statistical approach used to conduct growth curve 

modeling, and is an extension of regression analysis for data that are “nested”, or hierarchically 

organized (see Raudenbush & Bryk (2002), Bickel (2007), Little et al. (2009), and Woltman, 

Feldstain, MacKay, & Rocchi (2012) for more detailed overviews, though portions relevant to the 

current dissertation are briefly reviewed here). This allows for the analysis of longitudinal data 

that would otherwise violate the assumption of independence in regression. In the case of 

longitudinal data, repeated measures are seen as “nested within” individuals, as they are likely to 

be more closely related to each other than to measures drawn from another individual.   

Hierarchical linear model data is structured in at least two levels. For longitudinal data, 

Level-1 represents the repeated measurements (time), which are “nested” within Level-2, the 

individual. Therefore, Level-1 captures within-person change over time (e.g., captured by the 

mean level and growth rate), while Level-2 allows for the estimation of between-person 

variability (e.g., how much individuals differ in terms of their trajectories).    

As an example, the basic Level-1 model for repeated measures is: 

 
!"# = 	&'# +	&)#*+,-"# +	."#                           (1) 

 
 
Where !"#, is the outcome measure (e.g., math fluency), for an individual j at time i. &/#  is the 

intercept, &)#  is the linear slope, and ."# is the residual term.  



	 32	

In contrast to ordinary regression, in HLM, the intercepts and slopes are allowed to vary 

(modeled as “random effects”), such that each individual has their own growth curve (i.e., their 

own intercept and slope). Although individual coefficients are not estimated, between-person 

differences are gleaned from estimates of means for the group(s) (“fixed effects”), variances 

(“random effects”, how the means vary), and covariances (whether and how means vary 

together). This creates the Level-2 equations, or the “slopes-as-outcomes” equations: 

 
&/# = 0'' 	+	1'#		              (2) 
&)# = 0)' +	1)#	 

 
 
0'' and 0)' are the means of the distributions of the Level-1 (the individual children’s) intercepts 

(&'#) and slopes (&)#) respectively. The terms 1'#		and 1)#  are the Level-2 residuals which 

represent the deviation (spread around) the mean, 0'', and slope , 0)',	respectively; 1'#		and 1)#  

are assumed to be normally distributed with means of 0, variances of 4'' and 4)), and covariance 

of 4)'. This covariance provides a sense of whether the between-person variance in the intercept 

and variance in slope change together across individuals, thus providing a measure of whether 

development follows a cumulative or compensatory pattern over time. Further, HLM allows for 

the meaningful partitioning of the variance (e.g., variance in the overall levels of children’s 

growth trajectories is separate from the variance in slopes), thus allowing for in-depth 

examination of developmental phenomena across a distribution (Little et al., 2009). 

This basic model described above can be expanded at Level-1 to include more complex 

growth terms (e.g., quadratic, cubic, within-grade versus between grade terms), as is discussed 

further in Chapter II. Overall, this approach allows researchers to answer questions relevant to 

the fixed part of the model regarding the functional form of the developmental trajectory (e.g., 

flat, linear, quadratic), as well as questions relating to the relationship between individual growth 

curves (e.g., Do individuals vary in terms of their fluency levels and rates of growth?). 
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The basic model can also be expanded to include time-invariant predictors at Level-2. 

Adding predictors to the model provides insight into relationships between constructs and the 

overall mean levels or slopes of the individual growth curve (i.e., fixed portion).  This creates 

implied cross-level interactions, which can be interpreted as Level-2 predictors moderating the 

effect of time (development) on the outcome (Bickel, 2007; Little et al., 2009). Taking working 

memory as an example, we can test a hypothesis about how working memory relates to the 

development of math fluency, that is, how does it relate to the levels (means) of fluency, and 

how does it relate to the rate of skill growth (linear, quadratic) over time. An estimate of this 

effect is obtained by examining the fixed portion of the model. The random effects portion of the 

model gives a sense of the spread (variance) in the levels of curves and/or slope distribution; by 

comparing the random portions of the model before and after the addition of working memory, it 

is possible to estimate how much of the between-student variance is explained when working 

memory is taken into account.     

HLM offers some distinct advantages to older approaches to analyzing longitudinal data, 

such as repeated measures ANOVA (see Shin et al., 2004, for a review). The first benefit is the 

fact that data can be collected at varying time points, which is important in research considering 

the effects of the summer since the school year interval is longer than the summer month one 

(although see Chapter II, below).  Second, HLM efficiently handles missing data, and in fact 

allows for missing data at all but the highest level of the model (i.e., Level-2 in the current 

study). This is a significant benefit in longitudinal data as it minimizes data loss (e.g., if a child 

was absent for one testing day, but present for the three other administration days, those data can 

be used). Further, HLM also permits the modeling of “planned missingness”, which is the case of 

an accelerated longitudinal design that is used in the current dissertation, as explained in Chapter 

II, below.  Notably, many of the studies examining the effects of the summer on math ability 
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have utilized ANOVA methods, comparing pre- and post-break measures from a categorical 

perspective (Allinder et al., 1992; Allinder & Eicher, 1994), although more recent models have 

adopted a longitudinal approach (Alexander et al., 2001; Davies & Aurini, 2013; Downey et al., 

2004; Vale et al., 2013). Further, HLM has been specifically highlighted as useful in studies 

analyzing CBM data (Shin et al., 2004). 

  
 
Potential Determinants of Math Fluency Development 
 
 In addition to describing growth patterns, an important contribution of longitudinal 

studies is the exploration of potential factors that affect development in a given domain. Previous 

studies that have modeled the effects of the summer have considered how personal traits affect 

losses over the summer months, although variables have been largely constrained to sex, SES, 

grade, and IQ (Cooper et al., 1996; Downey et al., 2004). Studies in cognitive and developmental 

psychology, on the other hand, have evaluated the effects of a number of different cognitive and 

behavioral predictors, such as IQ (Geary, 2011a), working memory (Geary, 2011a; LeFevre, 

Berrigan et al., 2013), phonological processing (Barnes et al., 2014; Fuchs et al., 2006; Hecht et 

al., 2001), processing speed (Bull & Johnston, 1997), number sense (Cowan et al., 2011; 

LeFevre et al., 2010; Salaschek et al., 2014), and classroom inattention (Fuchs et al., 2006) on 

the development of math. Although these two frameworks have largely remained separate, it is 

conceivable that individual differences in cognitive abilities would not only be associated with 

development over time, but that these patterns may interact with the seasonal effects of the 

summer. Therefore, the current study investigates the effects of two domain-general abilities, 

working memory and classroom attention (while controlling for sex and parent level of 

education), which have been the focus of a number of prior studies in terms their respective roles 

in the development of general math achievement, computational accuracy, and word problems 
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(Giannopulu, Escolano, Cusin, Citeau, & Dellatolas, 2008; Holmberg & Bolte, 2014; Pingault et 

al., 2014; Raghubar, Barnes, & Hecht, 2010).  

 

Sex. Sex differences in mathematical ability tend not to be significant when looking at 

math from a general perspective (Aunola et al., 2004; Lachance & Mazzocco, 2006; Lindberg, 

Hyde, Petersen, & Linn, 2010). However, previous research in the realm of direct retrieval has 

consistently found that boys tend to use retrieval more frequently than girls (Bailey et al., 2012; 

Carr & Jessup, 1997; Carr & Davis, 2001; Laski et al., 2013), which may lead to sex-based 

differences in performance on tasks including arithmetic (Royer et al., 1999). For example, Carr 

and Jessup (1997) found that when solving simple addition and subtraction problems, girls were 

more likely to favor the use of slower overt strategies (e.g., finger counting), whereas boys 

showed a greater tendency to use a direct retrieval strategy from memory. This effect was found 

to be significant by the end of Grade 1, despite no sex differences at the beginning of first grade. 

Notably, these authors found that there were no sex differences in terms of the number of total 

correct responses (i.e., accuracy) (also see Carr & Davis, 2001), which as proposed by the 

authors, may explain non-significant findings regarding measures of accuracy (Imbo & 

Vandierendonck, 2007; Lachance & Mazzocco, 2006). In a longitudinal study investigating 

preference of using retrieval across Grade 1 to 6, Bailey and colleagues (2012) found that in all 

six grades, boys showed a preference for retrieval over other potential strategies more frequently 

than girls, and regardless of retrieval accuracy. Notably, depending on the grade studied, there 

was not always a sex-based difference in terms of accuracy (e.g., no difference in terms of 

accuracy in Grade 1, and girls being more accurate than boys in Grade 2).  However, boys’ 

retrieval accuracy increased across the grades, and boys outperformed girls in terms of accuracy 

by sixth grade. Further, the preference for retrieval was not due to stronger working memory 

skills, as there were no sex differences on these measures.  
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  As mentioned above, considering studies that have reported neurophysiologically 

distinct representations of operation types (Dehaene et al., 2003), sex differences may also vary 

as a function of operation type. Indeed, Martens and colleagues (2011) that when looking 

specifically at fluency, sex differences emerged favoring boys for addition, and to a lesser extent, 

subtraction (though not multiplication or division). However, these differences were primarily 

seen in older children, a trend that was also noted by Royer et al. (1999). Other authors have not 

noted sex differences (Jordan et al., 2003b), highlighting the fact that this issue remains 

equivocal with respect to fluency.   

   
Parent level of education.  Parent level of education has been shown to be an indicator 

of socio-economic status (SES), that is strongly associated with children’s academic 

achievement, both in the early (Melhuish et al., 2008) and middle childhood (Davis-Kean, 2005) 

years (Davis-Kean, 2005; Entwisle & Alexander, 1990; Melhuish et al., 2008). Using data from a 

national cross-sectional sample, Davis-Keane (2005) found that parent education (highest 

education level in the household regardless of which parent), exerted both direct and indirect 

effects on children’s reading and math achievement for European-American families. For 

African-American families, parent level of education exerted significant indirect effects on 

achievement, through parents’ expectations of their children’s educational outcomes, parenting 

practice of reading to children, and parental warmth in interactions. Notably, Davis-Keane found 

that parent level of education was a significantly stronger predictor than income on child 

achievement. Her study highlighted how parent education can influence both the home 

environment as well as the manner in which parents interact with their child to promote 

academic success. Parent education has also been found to have an impact on summer learning 

loss for arithmetic (Paechter et al., 2015). Further, as mentioned previously, children’s SES has 

clearly been linked to differential effects of the summer, primarily in reading (Cooper et al., 
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1996; Davies & Aurini, 2013), but also in general mathematics (Downey et al., 2004). Therefore, 

in the current dissertation, parental education is included and serves as an indicator of SES.  

    

 Working memory. Working memory is a limited-capacity, multi-component cognitive 

system that allows for the maintenance and manipulation of information “on-line” for a short 

period of time (Baddeley, 1992; Baddeley, 1996; Miyake & Shah, 1999). Much of the 

developmental research involving math development and working memory has been conducted 

within the framework of Baddeley’s tripartite model, which is conceptualized as three 

interdependent systems that differ between stimulus modality (auditory-verbal versus visual-

spatial) and processing requirements (storage only versus storage plus manipulation) (Baddeley, 

1996). In this model, the central executive is a domain-general attentional controller that 

commands various functions including planning, sequencing, and monitoring of information in 

active storage in order perform complex cognitive tasks. The phonological loop and visual-

spatial sketchpad are responsible for the storage and rehearsal of speech-based and visual-spatial 

information, respectively. However, other lines of evidence demonstrate that storage and 

manipulation components are closely related constructs, and show significant overlap despite 

specific sources of variance (e.g., Colom, Shih, Flores-Mendoza, & Quiroga, 2006; Engle, 

Tuholski, Laughlin, & Conway, 1999). The overlap appears to be strongest in the visual-spatial 

domain (Alloway, Gathercole, & Pickering, 2006; Metcalfe, Ashkenazi, Rosenberg-Lee, & 

Menon, 2013; Miyake, Friedman, Rettinger, Shah, & Hegarty, 2001), where some authors have 

found short-term memory and working memory to be indistinguishable (e.g., Colom et al., 2006; 

Miyake et al., 2001). Specific to mathematics, the executive portion of working memory has 

been strongly linked to math ability in general (Friso-van den Bos, van der Ven, Kroesbergen, & 

van Luit, 2013; Peng, Namkung, Barnes, & Sun, 2016; Raghubar et al., 2010), although its 

specific involvement in basic math fluency development has been somewhat equivocal.    
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 Working memory is an important component of Geary’s (1993) influential theory on the 

nature of math disabilities, which posits that deficits in this domain could lead to a failure in 

consolidating math facts to long-term memory when problems are not successfully paired with 

their answers before working memory decays (Geary et al., 1991; Lemaire & Siegler, 1995), 

making these facts less available for direct retrieval. This could the case for children who have 

more limited working memory capacity, or if the use of slow or ineffective strategies tax 

working memory resources (Geary, 1993; Imbo & Vandierendonk, 2007). From a cross-sectional 

perspective, as mentioned above, Barrouillet and Lepine (2005) found that third and fourth-grade 

students with stronger working memory skills used direct retrieval more frequently when solving 

simple addition problems compared to their peers with weaker working memory skills. These 

authors postulated that working memory capacity influences the formation of associations 

between problem stems and their answers (achieved by counting), whereby working memory 

inhibits the activation of associations between problems stems and incorrect (though related) 

responses, thus leading to a greater resistance to interference and enhanced ability to retrieve 

correct facts directly from memory (Barrouillet & Lepine, 2005). In their follow-up study, 

Barrouillet and colleagues (2008) found that stronger working memory also predicted faster 

problem solving of subtraction facts using an algorithmic procedure, although unlike addition 

facts, the rate and frequency of direct retrieval of subtraction facts were not significantly related 

to working memory capacity. Work by Imbo and Vandierendonk (2007) also highlighted the 

influence of working memory capacity and retrieval skills for simple addition problems in 10 to 

12-year-olds. Using a dual-task procedure to increase the working memory load (functionally 

lowering working memory capacity), these authors found that taxing working memory led to 

slower direct retrieval times as well as slower execution of other strategies such as 

decomposition and counting. However, the authors also found that increasing working memory 

load exerted less of an effect with advancing age, in parallel with the use of more efficient skills 
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(e.g., when retrieval was used more frequently and when other procedural strategies were used 

with greater efficiency). Further, more frequent retrieval and efficient counting strategies 

reduced working memory requirements.   

Longitudinal studies have also identified a relationship between working memory 

capacity and fact fluency in the elementary grades (LeFevre et al., 2013; Martin, Cirino, Sharp, 

& Barnes, 2014), including its role as a predictor of math fluency growth over time (LeFevre et 

al., 2013). This relationship may be linked to the finding by Geary and colleagues (Geary et al., 

2012) that stronger central executive skills (as indexed by both verbal and verbal-numerical 

tasks) predicted maturation of children’s (Grades 1-5) counting strategy use, from a min counting 

strategy (e.g., 4 + 5 = 5 + 1 + 1 + 1 + 1 = 9) to a more sophisticated decomposition strategy (e.g., 

4 = 2 + 2, therefore 4 + 5 = 5 + 2 + 2 = 9). Intact counting abilities would contribute to math 

fluency development as they result in representations of basic facts in long-term memory 

(Siegler & Shrager, 1984), and because they are often used as a back-up procedure when direct 

retrieval fails (Geary et al., 1991; Geary, 1993; Geary et al., 2012; McKenzie, Bull, & Gray, 

2003). It would follow that a more rapid transition to greater counting sophistication would lead 

to more efficient strategy use, and therefore to faster development of arithmetic fluency. Further, 

children with working memory weaknesses may rely more heavily on finger counting and may 

commit more counting errors than those with stronger working memory skills, which would also 

impede fluent arithmetic (Geary, Hoard, Byrd-Craven, & DeSoto, 2004).    

   Conversely, other studies did not find working memory to be a predictor of math 

fluency skill (Vanbinst, Ceulemans, Ghesquiere, & De Smedt, 2015), or found that it was no 

longer a unique predictor of fluency when other factors, such as classroom inattention were taken 

into account (Fuchs et al., 2005; Fuchs et al., 2006).  As argued by Geary et al. (2012), a lack of 

significant findings may be in part related to the age at which working memory plays a role in 

arithmetic, such that working memory may take on greater importance during the earlier grades 



	 40	

while skills are being acquired (e.g., reliance on more memory-taxing strategies such as 

decomposition) (Peng et al., 2016; Raghubar et al., 2010), with decreasing importance in 

advancing grades, as the strategy mix moves toward a greater emphasis on direct retrieval 

compared to procedural strategies (Ackerman, 1988; Geary et al., 2004; Imbo & 

Vandierendonck, 2007). Conflicting results may also be in part related to the type of working 

memory measure used. Specifically, in a recent meta-analysis (Peng & Fuchs, 2014) highlighted 

the role of domain specificity in working memory tasks, with verbal-numerical working memory 

tasks (e.g., backward digit span) emerging as a stronger predictor of mathematical ability (Martin 

et al., 2014) compared to a strictly verbal (e.g., sentence span) ones (e.g., Fuchs et al., 2005; 

Fuchs et al., 2006).  

 Although not as frequently used as a measure of working memory compared to verbal 

working memory measures, visual-spatial working memory may be a particularly important 

predictor of basic arithmetic abilities (Ashkenazi, Rosenberg-Lee, Metcalfe, Swigart, & Menon, 

2013; Lukowski et al., 2014; Metcalfe et al., 2013; Raghubar et al., 2010), particularly in the 

elementary grades while the skill is still being acquired (Holmes & Adams, 2006).  For example, 

recent neuroimaging studies identified visual-spatial working memory as being specifically 

linked to arithmetic problem solving in children aged 7-9 years, whereas verbal working memory 

was not (Ashkenazi et al., 2013; Metcalfe et al., 2013). Visual-spatial working memory may 

support fluency development through the formation of mental models (representation of quantity 

mapped onto objects and their movements), which young children use when solving nonverbal 

addition and subtraction problems (Bisanz, Sherman, Rasmussen, & Ho, 2005; Huttenlocher, 

Jordan, & Levine, 1994; Rasmussen & Bisanz, 2005).  Visual-spatial working memory has also 

been associated with the representation of quantity along an internal mental number line 

(Berteletti, Man, & Booth, 2015; Geary et al., 2007; Rotzer et al., 2009), which children may use 

to solve basic arithmetic problems that are not automatically retrieved (Gunderson, Ramirez, 
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Beilock, & Levine, 2012). Visual-spatial working memory may also play a role in fluency 

development by supporting the maturation of counting strategies (Geary, Hoard, Byrd-Craven, 

Nugent, & Numtee, 2007). Finally, visual attention (visual working memory) is a key component 

in LeFevre and colleagues’ Pathways to Mathematics model, acting as a longitudinal predictor of 

the development of various branches of math ability, including numeration, number line 

knowledge, and untimed calculation (LeFevre et al., 2010).  Recent work using this model found 

that the working memory pathway (refined to also index the central executive and phonological 

loop) was a unique predictor of math fluency ability in students in Grades 2 and 3, when 

controlling for sex, parent level of education, and processing speed (Sowinski et al., 2015).  

 Further, as previously mentioned, the importance of working memory in fluency 

development may be dependent on operation type (Barrouillet & Lepine, 2005; Barrouillet et al., 

2008). Finally, it has also been suggested that the relative effect of verbal and visual-spatial 

working memory on arithmetic may shift in accordance with development and experience, with 

basic arithmetic skills being contingent on the visual-spatial skills during the acquisition phase 

(Holmes & Adams, 2006; Raghubar et al., 2010), and verbal skills becoming more important in 

supporting the direct retrieval of consolidated facts that are based on a verbal code (Dehaene et 

al., 2003; Holmes & Adams, 2006; McKenzie et al., 2003). This assertion is supported by a 

recent study by Van de Weijer-Bergsma and colleagues (2015), who found that the relationship 

between visual-spatial memory and math fluency was stronger in the early elementary grades, 

and weakened over time. Conversely, they found that the link between verbal working memory 

and math fluency grew stronger with increasing grades. Therefore, despite the clear importance 

of working memory math ability in general, there is still no consensus on its specific role 

(whether assessed by verbal or visual-spatial means) in the development of math fluency.  

Therefore, measures of verbal working memory and visual-spatial working memory are included 

in the current study to examine this issue further.  
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Behavioral inattention. Another domain-general predictor of mathematical achievement 

that has received increased attention in recent years are behavioral ratings of inattention, 

particularly teaching ratings of children’s inattention in the classroom. Inattention has been 

found to be predictive of academic underachievement, including weaknesses in math abilities 

(Polderman, Boomsma, Bartels, Verhulst, & Huizink, 2010).  

Previous studies have identified a robust finding that the dimension of inattention is 

associated with poor math achievement, both from cross sectional (Rodriguez et al., 2007) and 

longitudinal perspectives (Currie & Stabile, 2006; Massetti et al., 2008; Merrell & Tymms, 2001; 

Pingault et al., 2011). This relationship has been identified using measures of general math 

ability (Fitzpatrick & Pagani, 2013; Garner et al., 2013; Gold et al., 2013; Holmberg & Bolte, 

2014; Massetti et al., 2008), and specific sub-skills, including math fluency (Fuchs et al., 2005; 

Fuchs et al., 2006; Lewandowski, Lovett, Parolin, Gordon, & Codding, 2007; Martin et al., 

2014), computation in terms of accuracy (Fuchs et al., 2006; Li & Geary, 2013; Raghubar et al., 

2009), and word problems (Fuchs et al., 2006; Swanson, 2011). Results of a recent longitudinal 

study (spanning Kindergarten to Grade 5) suggest that children who demonstrate symptoms of 

classroom inattention earlier (i.e., beginning in Grade 1) and those who demonstrate these 

symptoms persistently over two years (Grades 1 and 2) were at greater risk of persistent math 

(untimed calculation) and reading weakness compared to children with no concerns regarding 

attention skills or whose inattention was only noted later (i.e., Grade 2) (Rabiner, Carrig, & 

Dodge, 2016). The dimension of inattention, specifically, has consistently been shown to be a 

stronger predictor of mathematical ability compared to the dimension of hyperactivity for 

children diagnosed with ADHD (Lee & Hinshaw, 2006; Massetti et al., 2008). This distinction is 

also seen in community samples (Garner et al., 2013; Pingault et al., 2014). Further, ratings of 

inattention as provided by teachers are stronger predictors of achievement than parent ratings of 

inattention (Garner et al., 2013). 
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With respect to math fluency specifically, children with ADHD experience persistent 

difficulties in this domain (Ackerman et al., 1986; Lewandowski et al., 2007; Zentall, 1990; 

Zentall & Smith, 1993). Although computational accuracy differentiates students with ADHD 

from their typically achieving peers throughout elementary school (Mariani & Barkley, 1997; 

Zentall, Smith, Lee, & Wieczorek, 1994), by middle school, only math fluency continues to 

distinguish these two groups (Zentall, 1990). Lewandowski et al. (2007) found that children 

diagnosed with ADHD were weaker on math fluency tasks than their typically achieving peers, 

and that this difference was not fully accounted for by processing speed ability. Further, in 

individuals with ADHD, difficulties with math fluency persist into adulthood (Biederman et al., 

2005). 

Symptoms of ADHD occur on a continuum in the population (Polderman et al., 2007) 

and the association between inattention and math fluency extends to community samples, 

although fewer studies have looked at this relationship specifically. For example, Fuchs and 

colleagues (2005) found that teacher-rated inattention was a unique predictor of math basic math 

fluency skills in Grade 1 students, and that other cognitive factors such as processing speed and 

working memory (as measured by digit span) were not significant once inattention was taken 

into account. Further, Fuchs et al. (2006) found that teacher-rated inattention and processing 

speed were significant predictors of algorithmic fluency, although working memory was not.  

Further, in terms of strategy choice, Geary et al.  (2012) found that classroom inattention 

predicted the rate at which children transitioned from less efficient procedural strategies to more 

sophisticated memory-based strategies when solving basic arithmetic. Conversely, other studies 

have not found inattention to be a unique predictor of fact fluency when other predictors such as 

verbal and visual-spatial working memory, phonological processing, and number processing 

abilities were accounted for (Martin et al., 2014).  Accordingly, teacher-rated classroom 

inattention is included as a predictor variable in the current thesis in order to examine this issue 
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further.  

 
Relationship between working memory, inattention, and mathematics. Empirical 

research highlights a close relationship between working memory, attention, and mathematics 

(Alloway, Gathercole, Kirkwood, & Elliott, 2009; Alloway, Elliott, & Place, 2010; Gray, 

Rogers, Martinussen, & Tannock, 2015; Rogers, Hwang, Toplak, Weiss, & Tannock, 2011).  

First, among children with ADHD, the dimension of inattention, and not 

hyperactivity/impulsivity, appears to be related to both verbal and visual-spatial working 

memory abilities, regardless of age, verbal intelligence, reading, and language skill (Martinussen 

& Tannock, 2006). Among non-referred children, those with weak working memory tend to 

perform poorly on math tasks, regardless of IQ, and these children also tend to be rated by their 

classroom teachers as being inattentive (Alloway et al., 2009). In a study on 5 to 7-year-old 

children, Fuchs and colleagues (2010) found that classroom attention was predictive of math 

ability (basic fact fluency and word problems) over and above measures of number sense, and 

was moderately correlated with measures of central executive component of working memory 

(although working memory itself did not account for unique variance). Using a longitudinal 

model, Rennie et al., (2014) found that working memory assessed in Grade 1 was predictive of 

third-grade mathematical achievement (using a composite of math fluency, arithmetic, and 

problem-solving) in students displaying high ADHD symptoms, although not in students 

displaying low symptoms of ADHD.  In terms of the nature of the relationship between teacher-

rated inattention and working memory in relation to achievement, recent longitudinal research 

from our lab (using a sample nearly identical to the one presented in the current dissertation) 

identified visual-spatial working memory as a partial mediator in the predictive relationship 

between classroom inattention and math fluency (addition and subtraction assessed one year 

later) for boys in a community sample of students (Gray et al., 2015). Notably, working memory 
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did not mediate the relationship between inattention and reading fluency. Finally, other lines of 

evidence have proposed that math fact retrieval difficulties may be linked to problems inhibiting 

irrelevant information from working memory during fact retrieval (Geary et al., 2012; 

Passolunghi & Siegel, 2004). Therefore, the overlap between attention and working memory 

underscores the importance of integrating both domains in the study of math development.   

 
 
Rationale of the Doctoral Research 
 

Overall, there has been increasing interest in mathematics research over the past 20 years, 

and growing focus on longitudinal studies on the development of math ability. However, the 

developmental dynamics specific to the basic skill of math fluency has received relatively little 

research attention.  Further, longitudinal investigations focusing on fluency development have 

varied in terms of study length, with many spanning one school year and others spanning a 

number of years, making the shape of developmental trajectories difficult to ascertain. A 

fundamental issue with these studies, however, is that they do not take into consideration the 

structure of the school year, specifically the effects of the summer months, which previous 

research has demonstrated is associated with slowed growth or skill loss (Cooper et al., 1996). 

Therefore, research is needed to delineate growth patterns, taking into account both within-grade 

effects (growth specific to time children spend at school) and between-grade effects (spanning a 

number of years, including the effects of the summer months).   When considering the body of 

research on summer learning, studies have generally been constrained to the realm of educational 

psychology and policy. These studies primarily focused on three main areas: a) demonstrating 

the effect of summer slowing or loss on achievement, b) highlighting the net effect of schooling 

on achievement, and c) explaining the increasing academic gaps between children from low and 

high socio-economic backgrounds (Cooper et al., 1996; Verachtert et al., 2009). While prior 

research has examined the effect of individual differences in sex, socioeconomic status, and IQ 
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on learning and learning slowing over the summer (Cooper et al., 1996; Davies & Aurini, 2013; 

Downey et al., 2004), to my knowledge studies to date have not examined the unique 

contributions of working memory and classroom inattention on fluency development within a 

framework which accounts for both within- and between-school year growth. The current study 

contributes to this literature by attempting to merge this area of educational research with 

developmental/cognitive research. The goal here is to identify key interactions between seasonal 

effects (within-year and between-years, including the summer) and individual factors stemming 

from cognitive research found to be associated with math development. Although I examined 

community-level data, the identification of these factors may be particularly important flags for 

later weakness in math, or targets for early intervention. The aforementioned issues are highly 

relevant to educational and clinical practice, considering that a significant minority 

(approximately 10 percent) of students experience persistent low achievement in mathematics 

despite average abilities in other areas, in addition to the approximately 5-8% with mathematical 

learning disabilities (Geary, 2011b). These estimates suggest that there are a number of children 

who struggle in math who may be ineligible for special education services. Without knowledge 

of variability of the growth trajectories of typically developing children, support geared at 

addressing areas of individual weaknesses may be lacking, leading to missed opportunities for 

these children to achieve to their potential. This would be an especially important point in the 

case of growth trajectories that follow a cumulative growth pattern. 

 Therefore, the overarching goal of the current dissertation is to address these gaps in the 

literature, attempting to merge and extend educational and developmental/cognitive lines of 

research, by answering the following questions:   
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1. What is the best fitting functional form of math fluency (addition and subtraction) when 

taking into account both between- and within- year growth, and is there evidence of a 

summer slowdown in math fluency? 

2. How much do children’s math fluency (addition and subtraction) trajectories vary 

between students, and does this variability increase (cumulative pattern) or decrease 

(compensatory pattern) across Grades 1 through 4? 

3. What is the predictive value of verbal working memory, visual-spatial working memory, 

and teacher-rated inattention on math fluency (addition and subtraction) development 

when controlling for sex and parent level of education?  What are the specific influences 

of these predictors on the different phases of growth?    

4. Are there differences between addition and subtraction growth curves, in terms of the 

growth curves themselves (e.g., shape), longitudinal growth patterns (cumulative versus 

compensatory), and their respective relationship to predictor variables outlined in 

Question 3? 

 

The goals of this study were accomplished through growth curve analysis (HLM) using 

an accelerated longitudinal design, with a community sample of children who were in Grades 1 

to 3 at study entry. The provincial curriculum focuses on explicit teaching of addition and 

subtraction starting in Grade 1. Children in each cohort were assessed at four time points over 

the course of two years, which allowed for modeling of higher level functional forms, as well as 

the ability to “link” overlapping trajectories in order to simulate a single developmental process. 

Single skill addition and subtraction curriculum-based measurement (CBM), which have sound 

psychometric properties (Hintze et al., 2002; Thurber et al., 2002) were used as a measure of 

fluency. Separate analyses were completed for CBM addition and CBM subtraction to examine 

potential developmental differences between operation types. Further, current theories of 
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mathematical cognition suggest that skill in different operations are dependent on separate neural 

networks, and that there is evidence that operation skill is dissociable in both adults (Dehaene & 

Cohen, 1997; Dehaene et al., 2003; Mccloskey, 1992) and children (Berteletti & Booth, 2015; 

Prado et al., 2014). It is, therefore, conceivable that that there would be differences in 

developmental trajectories or with their relationship to associated cognitive/behavioral predictors 

based on the operation type; this issue has received relatively little attention, and results have 

been mixed, with some authors finding differences in the contribution of working memory based 

on operation type (Barrouillet & Lepine, 2005; Barrouillet et al., 2008), although others have not 

(Van de Weijer-Bergsma et al., 2015).  A third analysis using a mixed standardized math fluency 

probe was used as a point of comparison.  

In accordance with previous research in math development, it was hypothesized that a 

general curvilinear increase in skill would be seen across the years, but with practice being 

critical to fluency development (Bailey et al., 2012; M. K. Burns, 2005; Nelson, Burns, Kanive, 

& Ysseldyke, 2013), it was also expected that skills would be gained over the school year more 

rapidly than over the summer months (Allinder et al., 1992; Patton & Reschly, 2013).  Further, 

given that fluency has been found to be a strong predictor of the growth of arithmetic ability and 

the rate at which children increased their use of cognitive (e.g., counting mentally, retrieval from 

memory) strategies (Carr & Alexeev, 2011) and that fluency leads to greater retention (Binder, 

1996), it was expected that that math fluency development follows a cumulative pattern of 

development. Based on previous findings, it was also expected that verbal working memory, 

visual-spatial working memory, and classroom inattention would emerge as significant 

predictors of math fluency development.     
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CHAPTER II: Methods 
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Participants  

Participants (n = 204) of the current study were a subset of a larger sample (n = 524) of 

elementary school children, aged 6 to 9 years, who had been recruited for a study examining 

longitudinal relationships between classroom attention, working memory, and academic 

achievement (Social Sciences and Humanities Research Council of Canada; SSHRC: project # 

410-2008-1052). The original sample was recruited from seven public elementary schools 

(constituting 20% of the 33 schools in the board), in a large Canadian school board, containing 

both suburban and rural schools and serving a socio-economically diverse student population. 

Inclusion criteria were that participants were recipients of mainstream classroom education in 

either English or French (29% were in French immersion program), had no significant sensory or 

physical impairment, had received written informed parental and teacher consent, and had 

provided assent. As per the Ontario curriculum, mathematics instruction in the participating 

school board followed a discovery-based approach (Ross, Hogaboam-Gray, McDougall, & 

Bruce, 2002). 

The subset of participants were 214 elementary school students (as well as their teachers) 

who were randomly selected from the larger pool of participants based on their teachers’ ratings 

of inattention using the Strengths and Weaknesses in ADHD and Normal Behaviors Scale 

(SWAN (see description below); Swanson et al., 2004; Swanson et al., 2012). Stratifying for sex, 

2-3 students in each class from the top, middle, and bottom rank-ordered scores on the SWAN 

were selected to undergo more in-depth assessment, which included cognitive measures (e.g., 

working memory). Parents had provided consent with the knowledge that their child may or may 

not be selected for the in-depth assessments and thus would take part in either 2 or 4 assessments 

over the 2-year study period. This subset did not differ significantly from the full sample in terms 

of participant sex and age. Only 10 of the 214 students were in Grade 4, which was significantly 

fewer than the students in each of the other grades. Thus, to avoid potential skewing of the 
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results, these students were excluded from analyses. Therefore, the final subgroup for this study 

consisted of 204 students (102 boys and 102 girls), who were in Grades 1, 2, or 3 at study entry 

(Year 1, see Table 1). These students were followed for 2 years, and so were reassessed in 

Grades 2, 3, and 4 at Year 2 of the study. Most children spoke English as their primary language 

at home (95%), and identified as Caucasian (80%). Responding parents were mostly mothers 

(92%), and 93% of families had at least one parent (responder or spouse) who had completed at 

least some post-secondary education. With respect to learning exceptionalities (as defined by the 

Ontario Ministry of Education), 8.8% did not respond to this question, 75% indicated no 

exceptionality, and 15% identified exceptionalities as outlined in Table 13. Exceptionalities for 

the current sample are comparable to the incidence rates in the general population (Learning 

Disabilities Association of Ontario, 2011; Wilcutt, 2012). 

 

[INSERT Table 1. Participant demographics at study entry (fall of year 1)] 

 

Data-Collection Procedures 

The study was approved by the Ethics Committees of the University, The Hospital for 

Sick Children, and of the participating school boards. Parents and teachers provided written 

informed consent and each student provided verbal assent prior to participation in the study.  

Test administration and scoring was completed by psychologists, research assistants, and 

psychology graduate students, all trained in psychometric test administration. Participating 

students completed written math fluency measures (addition and subtraction CBM, WJ-III) in 

																																																								
3	Although ADHD does not in itself fall within its own exceptionality category (can be included in any category, 
according to a student’s learning need), ADHD diagnosis was included in the screening measure because extant 
research indicates a strong link between the dimension of inattention and academic difficulties (e.g., Holberg and 
Bolte, 2014; Garner et al. 2014; Rodriguez et al., 2007; Massetti et al., 2008), and is therefore relevant to the 
research questions.	



	 52	

small grade-groups of 3-6 students in a quiet room (e.g., library, empty classroom) in their 

schools.  The fluency assessment took place at 4 time-points: in the fall (i.e., the first term of the 

academic year) of year 1 (Time 1; November 2009), the spring of year 1 (Time 2; May 2010), 

the fall of year 2 (Time 3; November 2010); and the spring of year 2 (Time 4; May 2011). 

Working memory and math fluency measures were administered individually in the spring of 

each study year (Time 2 and 4). Teacher ratings of classroom attention were collected in the fall 

of each study year (Time 1 and 3), within two months of the start of the study year, allowing for 

time for the teachers to become familiar with their students.    

 

Instrumentation  

Demographics. Information regarding participants’ sex and their parents’ level of 

education was provided by parents in a background questionnaire. Parents provided their highest 

level of education (1=Grade 1-8, 2=Grades 9-11, 3=High School/GED, 4=Some College, 

5=College Graduate, 6=Some University, 7= University Graduate, 8=Post-College Degree (e.g., 

Masters)) from themselves and their spouse if applicable; the highest level of education (for 

either respondent parent or their spouse) was used in the analyses (Davis-Kean, 2005).   

Addition and subtraction fluency. Students’ growth in math fluency was measured 

using parallel addition and subtraction curriculum-based measurement math probes (M-CBM) 

from AIMSweb M-CBM. CBMs were selected as the primary measure of fluency as they are 

highly sensitive to improvement in fluency skill (Thurber et al., 2002). For each operation type, 

students in Grades 1-3 were given two minutes to write answers to up to 60 basic 

addition/subtraction facts (“primary” level forms). In Year 2, participants tested in Grade 4 (i.e., 

Year 2 for students who entered the study in Grade 3), were given two minutes to write answers 

to up to 84 basic addition/subtraction facts (“intermediate” level forms). Operations were 

composed of digits from 0 to 12, with no carrying or borrowing.  The two form types (primary 
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versus intermediate) differed only in the total number of problems (one additional problem per 

row and one additional row per page) so as to avoid potential ceiling effects in older students.  

Concurrent validity was calculated between CBM measures and the well-validated Woodcock 

Johnson Tests of Achievement Math Fluency subtest (Woodcock, McGrew, Mather, & Schrank, 

2001) (r = .88, p < .001 for addition; and r = .87, p < .001 for subtraction), which was also used 

in the fluency analyses as a point of comparison (see below). 

CBM scoring. For both CBM operation types, fluency performance was estimated as 

being the number of correct digits answered correctly per minute.  A “correct digit” was defined 

as a correct digit in the correct place value. For example, for an addition problem such as 7 + 4, 

the correct response of “11” would receive 2 correct digits for the correct digits in the correct 

places. For problems that were either incorrect or incomplete, credit was awarded for correct 

digits that were also in the correct place value.  Using the same example as above, a response of 

10 would receive one correct digit for the “1” in the tens position, but none for the “0”.   The 

order of the completion of the probes (i.e., addition or subtraction completed first) was 

randomized.  Please refer to Appendix A for further examples. 

WJ-III math fluency. To provide a standardized comparison to the math CBM 

measures, students also completed the Math Fluency subtest on the Woodcock-Johnson Tests of 

Achievement, Third Edition (WJ-III; Woodcock, McGrew, Mather, & Schrank, 2001). In 

contrast to CBMs, the WJ-III consists of a mix of operations, progressing from addition and 

subtraction, to multiplication. Children were given 3 minutes to complete this task. Scoring of 

the WJ-III was done in the standardized manner (i.e., score was the number of correct responses 

in obtained in 3 minutes). However, in order to be able to compare the outcomes to CBM 

measures, this score was also transformed into a score representing the number of correct 

response per minute (i.e., score divided by 3 minutes).    

Working memory. Components of working memory were assessed for both verbal and 
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visual-spatial modalities in the spring of each study year. Verbal WM was assessed using the 

Digit Span test of the WISC-IV (Wechsler, 2003). Both forward (measure of short-term 

memory) and backward (measure of executive control, working memory) digit spans were 

administered; standard scores of the backward measure were used as an index of verbal working 

memory. Visual-spatial WM was measured using the Finger Windows subtest from the Wide 

Range Assessment of Memory and Learning (WRAML2) (Adams & Sheslow, 2003). The score 

is the longest sequence correctly reproduced by the child. Both the standardized forward (short-

term memory) subtest and an experimental backward version (working memory; Bedard & 

Tannock, 2008) were administered; raw scores for the finger windows backward task were used 

in the current study. 

Inattention. For each participating student, classroom teachers completed the Strengths 

and Weaknesses in ADHD and Normal Behaviors Scale (SWAN; J. Swanson et al., 2004; J. M. 

Swanson et al., 2012) rating scale in the fall (November) of study Year-1 and Year-2. The 

SWAN includes DSM-IV criteria for ADHD including symptoms of inattention (Questions 1-9) 

and hyperactivity/impulsivity (Questions 10-18).   Each item is scored on a 7-point Likert scale 

from +3 (“Far Below Average”) to -3 (“Far Above Average”). Thus, the higher the score, the 

more inattentive or hyperactive/impulsive the teacher rated the child. Only the inattention 

subscale was used in the current study, because extant research consistently identified this 

dimension specifically (as opposed to hyperactivity/impulsivity) as a significant predictor of 

academic outcomes (Garner et al., 2013; Gau, 2011; Massetti et al., 2008; Pingault et al., 2011; 

Pingault et al., 2014; Rodriguez et al., 2007). Inattention subscale scores were obtained by 

calculating mean ratings from Questions 1-9 of the SWAN for each student; these served as the 

basis for dimensional measures of students’ inattentive classroom behavior. Reliability analyses 

for this subscale were performed using SPSS 19.0 (IMB Corp., 2010). For the current sample, 

Cronbach’s alphas were .98 for the teacher-rated inattention subscale, for both study years.   
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Considering the possibility that children’s level of attention may fluctuate from year to 

year (Rabiner et al., 2010) and/or that different teachers may rate similar behaviors differently, 

additional analyses were undertaken to determine whether the use of a composite score of 

inattention was warranted. The correlation between Year 1 and Year 2 inattention scores was r = 

0.75, n = 194, p < .000. Paired t-tests were performed for each grade pair in each school (e.g., 

inattention ratings for student cohort in a given school, in Grade 1 compared to Grade 2 ratings). 

Although this yielded 20 comparison groups with very small sample sizes (n = 5 to 14), such 

paired t-tests are feasible (e.g., acceptable statistical power and Type I error rate not typically 

exceeding a value of 5%), as demonstrated by de Winter (2013). Paired t-tests were non-

significant, with the exception of one pair from the Grade 3 cohort (p = .045). Closer 

examination of the participants in this pair group revealed that a single individual was rated as 

significantly more attentive (difference of 1 SD) by his teacher in Year 2 as compared to his 

teacher in Year 1. As the inattention ratings were highly correlated, and the distributions of 

inattentive behavior did not differ significantly from one year to the next on the whole (19 out of 

20 groups), a mean teacher-rated inattention score was used in multilevel analyses.   

 

Statistical Analysis 

Prior to analyses, all variables were examined for accuracy of data entry, missing values, 

and fit between their distributions and the assumptions of multivariate analysis using SPSS 

version 19.0. The distributions of addition and subtraction CBM and WJ-III fluency for each 

testing point were normal, with the exception of both CBMs in the fall of Year 1, where the 

distributions were positively skewed (skew = .61 SE = .17 for addition; skew = .66, SE = .17 for 

subtraction); however, no transformations were undertaken, as this would have hindered 

interpretation of results. A positive skew in the first year was likely reflective of the fact that the 

CBM are a) unstandardized measures, and b) many Grade 1 students had not yet acquired 
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addition or subtraction skills by the fall of the first year. Two outliers among the cases were 

found for the addition analysis and one was found for both the subtraction and WJ-III analyses, 

using a p < .001 criterion for Mahalanobis distance; because these cases represented less than 1% 

of the total sample, they were deleted separately for each analysis, leaving n = 202 for the 

addition analysis, and n = 203 for the subtraction and WJ-III analyses.       

Patterns of missing data were examined using the Missing Values Analysis program in 

SPSS 19.0.  For the current sample, one child dropped out at the outset of the study (i.e., only 

demographics were collected), and one child dropped out following the first wave of the study. 

Seven other children dropped out during study Year-2 (i.e., waves 3 and 4), and one child did not 

complete the fourth wave of math CBM measures.  Because these missing values represented 5% 

or less of cases, and because they were characterized as being missing completely at random 

(Little’s MCAR test, χ2 (21) = 18.227, ns for addition, and χ2 (21) = 16.741, ns, for subtraction 

χ2 (9) = 6.573, ns, for WJ-III fluency), these participants were deleted list-wise from preliminary 

SPSS analyses (addition CBM, n = 192; subtraction CBM, n = 193, WJ-III fluency, n = 194), 

although they were retained for HLM analyses as described below.  In terms of parent level of 

education, 19 cases were missing (approximately 9% of the data). However, most (17 of 19 

cases) of the missing parent education data came from a single school, and therefore eliminating 

these data would have resulted in listwise deletion of a large portion of students from that school. 

The parent education data was therefore imputed using Hot Deck imputation from the 

distribution of valid values.  Collinearity tests revealed low levels of multicollinearity among the 

predictors (all VIF ≤ 2).  

Multilevel analyses were conducted using HLM version 7.0 software (Raudenbush, Bryk, 

& Congdon, 2010). In the current study, a “cohort-sequential” (Nesselroade & Baltes, 1979) or 

accelerated longitudinal design was used, in which adjacent segments of limited longitudinal 

data from different grade cohorts were linked in order to examine a common developmental 
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trend. In this way, although all participating students had the “potential” to be tested at each of 8 

different time points (i.e., twice per year in each of Grades 1 through 4), in reality, each student 

was only tested at four time points (twice in their respective grades at study entry, and twice in 

their grade in the second year of the study), as depicted in Table 2.  

 

[INSERT Table 2. Accelerated growth curve design] 

 

Each grade cohort contributes a different section to the overall curve while also 

representing a different pattern of “missingness”. HLM was an ideal program for this study 

design, as it is capable of handling missing data at Level-1 of the model (i.e., the repeated 

measures within each student). By using the three sets of staggered grade-group data 

simultaneously, it was possible to build cohort-sequential growth trajectories spanning Grades 1 

through 4 (see Figure 1 in Results section).  Given that this approach was effectively linking 

multiple cohorts, growth within a given cohort may have been due to a developmental process 

common to each cohort (what is assumed in this design), or to other factors specific to a given 

cohort. As suggested by Miyazaki and Raudenbush (2000), the appropriateness of an accelerated 

longitudinal design was determined by comparing the fit of a full model (which included cohort 

membership as dummy-coded predictors (i.e., each cohort has its own intercept and slope)) to a 

simpler model where the cohorts are assumed to represent a single developmental trajectory. In 

order to perform the longitudinal analysis, one copy of the database was restructured from a 

“wide” data format, where math fluency scores were contained in different variables, to a “long” 

format, where each math result is a separate case under the same variable (i.e., CBM addition 

fluency and subtraction fluency, WJ-III fluency). This created the Level-1 database which had an 

n = 808 for CBM addition (i.e., n = 202 students at 4 time points), and n = 812 for CBM 

subtraction, and n = 812 for WJ-III fluency. The Level- 2 databases were kept in the standard 
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wide format. Although missing values are permitted at Level-1 of the models while running 

HLM analyses, the number of Level-1 cases is limited by the number of valid cases at Level-2. 

The 2 students with missing Level-2 data resulted in list-wise deletion, leading to a Level-2 n = 

200 (total of 2 children missing memory measures as they had dropped out before their 

collection) for CBM addition, and n = 201 for both CBM subtraction and WJ-III fluency. At 

Level-1, there was a total of 22 cases deleted (1 child missing all 4 measures, 1 child who 

dropped out after the first round of testing, 7 children who did not complete the two last math 

measures, plus one additional case from the student who did not complete the 4th round of math 

testing), resulting in a Level-1 n= 785 for CBM addition, n = 789 for CBM subtraction, and n = 

790 WJ-III fluency.  

 

Models 

Two-level multilevel models were specified to examine the growth trajectory of math 

fluency across Grades 1-4. These same models were subsequently used to examine the effects of 

inattention and working memory on the development of addition and subtraction fluency. Level-

1 of the model represents repeated measures within individual students, while Level-2 models 

contained the predictor variables for the growth trajectories. In other words, the growth 

parameters (i.e., the within-subjects’ intercepts and slope) of Level-1 were the outcome variables 

to be predicted by the variables at Level-2 (between-subjects). 

To determine the best-fitting overall form of the distribution of individual math fluency 

growth curves, exploratory models were specified. First, fully unconditional models (i.e., models 

with no predictors entered at either Level-1 or Level-2) where no growth was captured (model 

assumes variable intercepts, though no change in slope) were examined. This provided a baseline 

against which to compare a subsequent model where growth is captured (see Equation 7, below). 

Next, a set of polynomial contrasts representing linear, quadratic, and cubic trends were used in 
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the analysis of each math fluency measure (see Table 3).  “Between-grade” contrasts represented 

overall changes in skill that occurred from year to year, including the effect of the summer 

months (e.g., Grade 1 to Grade 2, etc.).  “Within-grade” contrasts depicted growth that occurred 

specifically within the (majority of) the school year (i.e., spring to fall, excluding the summer). 

Note that the overall between-grade mean was provided by the intercept.  Time was modeled in 

this way to best capture differences between growth that occurs during the school year as well as 

growth (or skill loss) that occurred over the summer months. An example of an unconditional4 

model with fixed slopes (where each time contrast was significant) would be defined as,  

 

Level-1:                 (3) 

	Y67 	= 	β'7 + 	β)7 Between − Grade	Linear +	βE7 Between − Grade	Quadratic
+ βI7	 Between − Grade	Cubic +	βL7 Within − Grade	Mean
+	βP7 Within − Grade	Linear +	βQ7 Within − Grade	Quadratic + r67		 

 
 
Level-2:                      (4) 

β	'7 = 	 γ'' 	+ µ'7 
β)7	 = 	 γ)'	  
βE7	 = 	 γE'	  
βI7	 = 	 γI'	  
βL7	 = 	 γL'	  
βP7	 = 	 γP'	  
βQ7	 = 	 γQ'	  
	  

 

where Yij is the math fluency achievement (CBM or WJ-III) for student j at time i. The intercept, 

β0j, (i.e., equivalent to a between-grade mean) was modeled as random at Level-2 (µ0j), to 

capture the individual variability in the overall curve level for each student. Parameters    β1j, β2j, 

																																																								
4	The	term	unconditional	refers	to	models	without	predictors	entered	at	higher	levels.	The	fully	unconditional	
model	refers	to	a	model	without	predictors	at	either	Level-1	(time-variant)	or	Level-2	(time-invariant).	In	
contrast,	interim	(Model	0)	and	final	(Model	1)	unconditional	models	refer	to	models	where	the	
developmental	trend	is	specified,	but	where	there	are	no	predictors	entered	at	Level-2			
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β3j, β4j, β5j, and β6j represent between-grade linear, quadratic, and cubic trends and within-grade 

mean, linear, and quadratic trends, respectively.   Parameter rij is an error term. Interpretation of 

the between-grade growth contrasts is similar to what would be considered typical linear, 

quadratic, and cubic functional forms.  For example, a significant β1j parameter would indicate a 

linear change in math fluency between the grades (e.g., as students move from Grade 1 to Grade 

2, etc.). The interpretation of the within-grade contrasts is additive to the between-grade 

contrasts. Specifically, the within-grade mean was the mean difference between fall and spring 

testing times within a year (i.e. the net increase in skill that students acquire within the school 

year), over and above what was predicted from the between-grade growth (i.e., level and slope).  

It can also be seen as the level of the within-year (spring) curve, representing growth that 

occurred within a school year that did not occur over the summer. The within-grade linear slope 

represented any additional linear growth that that occurred when considering the within-grade 

elements. For example, the within-grade slope could have a steeper pitch than the between-grade 

one if there was a linear increase in the amount of fluency children learned within a school year 

with advancing grades that is not accounted for by the between-grade linear slope; this would 

create a widening effect between within-year (spring) and between-year (fall) slopes, suggesting 

increasing skill loss over the summer with subsequent grades. Alternatively, a non-significant 

within-grade linear slope would mean that the within- and between-year slopes are parallel (i.e., 

end of year curve is simply higher than the beginning of year curve). The within-grade quadratic 

represented additional instantaneous change in linear slope (i.e., in addition to the between grade 

quadratic).  See Figure 2 in Results section for an illustration.   

 

[INSERT Table 3. Contrasts depicting linear, quadratic, and cubic trends, for both 

between-grade and within-grade growth.] 
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These contrasts were entered (uncentered) as time-dependent variables at Level-1 of the 

model using forward stepping (Nezlek, 2008). Non-significant terms were dropped, so that the 

interim unconditional (Model 0) and final unconditional (Model 1) developmental models only 

included contrasts that emerged as significant (although see results on CBM addition).  

Regarding the error structures, random effects were estimated if they emerged as significant in 

the preliminary analyses; a more liberal significance level was used (p < 0.10), because the 

coefficients are theoretically random, and to the extent possible, the models should be reflective 

of this variability (e.g., Nezlek, 2008). Model fit was examined using the log-likelihood ratio 

test. Therefore, Model 0 represented an interim unconditional model where slopes were fixed, 

and Model 1 was the final unconditional model where slopes were variable, based on goodness-

of-fit tests.  

The sign of the correlation between intercept and linear slope variances provided insight 

into whether fluency development followed a cumulative (positive correlation) or compensatory 

(negative correlation) pattern (Protopapas et al., 2011). Evidence of a cumulative effect would be 

seen in the case where variability between children’s growth curves increases over time (positive 

correlation between intercept and slope). Conversely, a compensatory effect would occur in the 

case of a negative correlation between intercept and slope (i.e., less variability between the 

slopes over time, as they converge). Correlations between intercept and within-grade mean 

variances provided insight into whether stronger fluency was associated with greater skill 

acquisition within a grade. 

 To address the third research question, working memory and inattention measures were 

entered independently at Level-2 as predictors of the intercept and each significant growth trend. 

Sex and parental level of education were entered as control variables at Level-2 of the models. 

For example, models outlined by Equations 5 and 6 would be specified to test whether verbal 

working memory, visual-spatial working memory, and inattention predicted both the overall 
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level of students’ growth curves (β0j) as well as whether these same measures predict linear 

growth trends (β1j) while sex and parent level of education were taken into account. In other 

words, the following equations provide an example of a conditional (i.e., predictors entered at 

Level-1 and Level-2) model with predictors and varying between-grade linear slopes,  

 

Level-1:               (5) 
 

	Y67 	= 	β'7 + 	β)7 Between − Grade	Linear +	βE7 Between − Grade	Quadratic
+ βI7	 Between − Grade	Cubic +	βL7 Within − Grade	Mean
+	βP7 Within − Grade	Linear +	βQ7 Within − Grade	Quadratic + r67 

 
Level-2:                         (6) 

β	'7 = 	 γ'' 	+ µ') Sex +	γ'E	 Parent	Level	of	Education +	γ'I Verbal	]^
+ γ'L Visual − Spatial	]^ +	γ'P Inattention +	µ'7			 

	 
β	)7 = 	 γ)' 	+ µ)) Sex +	γ)E	 Parent	Level	of	Education +	γ)I Verbal	]^

+ γ)L Visual − Spatial	]^ +	γ)P Inattention +	µ)7			 
βE7	 = 	 γE'	   
βI7	 = 	 γI'	   
βL7	 = 	 γL'	   
βP7	 = 	 γP'	   
βQ7	 = 	 γQ'	  
 

 

Level-2 continuous variable predictors were centred around their grand means. Although 

centering does not affect the estimates of slopes, the interpretation of the fixed intercepts’ 

coefficients is the β value when verbal working memory, visual-spatial memory, and attention, 

were not set to 0, but to their overall mean. Next, forward stepping was used to enter all 

predictors into the model. Finally, the proportion of the within-student variance that is explained 

by the fixed effects of time-varying variables (Level-1) was calculated as,  

 

rij(fully unconditional) – rij (Model 1)                                           (7) 
rij (fully unconditional) 
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where Model 1 was the final unconditional model (i.e., no predictors at Level-2) in which slopes 

were treated as random in accordance with goodness-of-fit tests. 

The proportion of variance explained at Level-2 (between students) after the addition of 

predictors at Level-2 was calculated as,  

 
µ0j(Model 1) – µ0j(Model X)                                           (8) 

µ0j(Model 1)                           
 

where X represented each subsequent model where a new predictor variable was added at Level-

2 (i.e., Models 2 through 7 in the Results section, below). 
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CHAPTER III: Results 
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Growth Curve Developmental Dynamics 

Descriptive statistics. Means and Standard Deviations of CBM and WJ-III fact fluency, 

for each time point, for each grade-cohort are presented in Tables 4. Correlations between each 

time point and predictor variables are presented in Table 5 (CBM addition), Table 6 (CBM 

subtraction), and Table 7 (WJ-III Fluency). It should be noted that in the case of Table 4, the 

connections of grade, time, and cohort are given explicitly, while in Tables 5-7, the correlations 

implicitly confound those connections. 

 

[INSERT Table 4. Means and Standard Deviations of Math Fluency] 

[INSERT Table 5. Correlations Among Predictor Variables and Addition Fluency] 

[INSERT Table 6. Correlations Among Predictor Variables and Subtraction Fluency] 

[INSERT Table 7. Correlations Among Predictor Variables and WJ-III Fluency] 

 

Accelerated cohort design: Proof of concept. The appropriateness of an accelerated 

cohort design was confirmed by testing a full model that included cohort membership as 

predictors against a simpler model where the cohorts were assumed to represent a single 

developmental trajectory (Miyazaki & Raudenbush, 2000). Note that this model could only be 

tested for subtraction; the addition CBM and the WJ-III models included a quadratic, and testing 

these models led to singularity. The deviance test between the full and simple model was non-

significant for subtraction CBM (χ2 (6, N =789) = 9.15, p = .16). Therefore, the Null Hypothesis 

that there is no difference between the complex and simple model was unable to be rejected; it 

was concluded that the simple model was appropriate and that it represented a single 

developmental trajectory. Figure 1 demonstrates the raw means by cohort and grade 

corresponding to the accelerated longitudinal design of the current study.   
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[INSERT Figure 1. Accelerated growth curve for CBM addition (n = 192), CBM subtraction (n 

= 193), and WJ-III fact fluency (n = 194)] 

 

Specification of Developmental Models 

Determination of the form of developmental trajectories (unconditional models). 

The following section outlines the process of determining the interim and final unconditional 

developmental models for each math fluency outcome (i.e., models with pruned time contrasts 

and that of random terms according to goodness-of-fit tests). The fully unconditional models 

(i.e., model with no predictors entered at either Level-1 or Level-2) are reported (FUM) in Tables 

8, 9, 10. To specify the Level-1 models for CBM addition, CBM subtraction, and WJ-III, each 

time-dependent contrast was entered using forward stepping (Nezlek, 2008).  For the fixed 

portion of the analyses, contrasts that did not emerge as significant or did not improve the model 

fit (estimated by full maximum likelihood) were pruned in order to specify interim unconditional 

models with fixed slopes (Model 0) and the final unconditional models with random slopes 

(Model 1), presented in Tables 8, 9, and 10.  

Tests of homogeneity of Level-1 variance were non-significant for each model, as 

required. The reliabilities for these intermediate growth models were .76, .73, .81 for the 

intercepts and .24, .21, .23 for the slopes (for CBM addition, CBM subtraction, and WJ, 

respectively); note that relatively low reliabilities do not invalidate the HLM analysis 

(Raudenbush, Bryk, Cheong, Congdon, & Du Toit, 2004), and the estimates exceeded the 

minimum threshold of .05 which may indicate that random coefficients should be fixed 

(Raudenbush & Bryk, 2002). The developmental forms of the trajectories are described 

according to outcome, below.   

CBM addition.  The results contained in the text below represent the statistics obtained 

during forward stepping of time contrasts while building the developmental models.  With 
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respect to the fixed portion of the addition CBM model, the between-grade linear contrasts 

emerged as significant (β = 2.31, t(584) = 16.60, p < .001), indicating linear growth in addition 

fluency moving from one grade to the next. The between-grade quadratic term, was also 

significant (β = -.74, t(583) = -3.86, p < .001). The within-grade effects are additive to the 

between-grade effects; these contrast the growth that occurs specifically within the school years 

(excluding summer) to the growth that occurs across the grades (including summer). The 

significant within-grade mean contrast for CBM addition (β = 2.15, t(582) = 17.89, p < .001), 

indicated that there is a mean increase in the level of skill assessed during the school year, 

parceled out of from the mean level of the developmental curve depicting growth across the 

years, including the summer months.  The within-grade linear terms were not significant for 

addition CBM; however, this term was retained in addition model (with no predictors) for 

accuracy in model specification due to the significant higher-order within-grade quadratic term. 

The within-grade quadratic term also emerged as significant (β = -.35, t(580) = -2.84, p < .01).  

None of the cubic terms emerged as significant. Each additional time-dependent contrast resulted 

in a significantly better fit compared to the previous model (each chi-square test was significant 

at the p < .001 level, with the exception of the within-grade quadratic term, which was 

significant at p = .03). This resulted in an interim unconditional model with all significant time-

dependent contrasts entered together, though where slopes were treated as fixed (i.e., only the 

intercept was allowed to vary, as an HLM program default), presented as Model 0 in Table 8.  

With respect to random effects, a model where the between-grade linear slopes were 

allowed to vary between students was a significantly better fit (estimated using restricted 

maximum likelihood) than one that included only random intercepts for addition (χ2 (2, N =785) 

=  57.77, p < .001). Although random effects for within-grade mean only emerged as significant 

for the WJ-III (see below), they were modeled as random for each analysis as doing so 

significantly improved the overall model fit for addition (χ2 (3, N =785) = 21.74, p < .001). The 
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random effect of the within-grade quadratic term was non-significant (each, p > .50) and were 

not modeled in the final analysis; the random effect of the between-grade quadratic term did not 

reach convergence, and was therefore also excluded from the model. This resulted in a final 

unconditional developmental model for CBM addition (Model 1 in Table 8). 

CBM subtraction.  Regarding the fixed portion of the CBM subtraction model, the 

between-grade linear contrast was also significant for subtraction (β = 2.00, t(587) = 19.96, p < 

.001). The between-grade quadratic term was significant when individual slopes were modeled 

as fixed (β = -.30, t(585) = -2.23, p = .02), but non-significant when linear slopes were modeled 

as random (better fit, as described below); it was therefore dropped from the model.    

 The within-grade mean contrasts was significant (β = 1.45, t(586) = 14.14, p < .001), 

again, signaling an increase in level of skill assessed during the school year, specifically. The 

within-grade linear term was not significant and was dropped from the subtraction model.  The 

within-grade quadratic slope was non-significant (p < .50) and was also dropped from the model. 

The cubic term was non-significant.  Each additional time-dependent contrast resulted in a 

significantly better fit compared to the previous model (chi-square test was significant at the p < 

.001 level). An interim unconditional model (with all significant time-dependent contrasts) and 

fixed slopes (only the intercept varied) is presented as Model 0 in Table 9.    

  Similar to CBM addition, a model where the between-grade linear slopes were allowed to 

vary between students resulted in a significantly better fit (χ2 (2, N =789) = 44.21, p < .001). 

Again, within-grade mean random effects were modeled as random for the subtraction analysis 

due to improved model fit, (χ2 (3, N =789) = 21.39, p < .001).  This resulted in a final 

unconditional developmental model for CBM subtraction (Model 1 in Table 9). 

WJ-III.   With respect to the fixed effects of the WJ-III, the between-grade linear contrast 

was significant (WJ-III: β = 1.60, t(587) = 22.99, p < .001), as was the  between-grade quadratic 

term (β = -.29, t(586) = -3.31, p < .001).   Similar to the addition and subtraction CBM models, 
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the within-grade mean contrasts were significant (β = .77, t(585) = 11.25, p < .001). In contrast, 

the within-grade linear, quadratic, and cubic terms were not (p < .50), and were dropped from the 

models. As with the CBM analyses, an interim unconditional model with significant time-

dependent contrasts, and fixed slopes (only the intercept varied) is presented as Model 0 in Table 

10. 

As in the CBM results, a model where the between-grade linear slopes were allowed to 

vary between students was a significantly better fit (χ2 (2, N =790) = 27.29, p < .001). Random 

effects for within-grade mean emerged as significant for the WJ-III, resulting in a better model 

fit WJ-III (χ2 (3, N =790) = 16.81, p = .001).   This resulted in the final unconditional 

developmental model for the WJ-III (Model 1 in Table 10). 

  

Final developmental trajectories. Results of the final multilevel models examining 

growth trends of fact fluency across Grades 1 to 4 are presented in Model 1 of Tables 8 (CBM 

addition), 9 (CBM subtraction), and 10 (WJ-III math fluency). Next, a detailed explanation of the 

developmental trend results is provided, using the CBM subtraction analysis as an example. The 

subtraction analysis is most straightforward given its linear trend, although a similar rationale 

applies to both the CBM addition and the WJ-III models; therefore, only noteworthy differences 

are highlighted here. The significant between-grade linear coefficients indicated linear growth 

across Grades 1 to 4, meaning that across the years (inclusive of both school and summer 

months), students’ fluency skill increased linearly by an average of 2.04 digits per minute as they 

moved from one time point to the next across the grades (i.e., 4.08 digits correct per minute, per 

grade including the summer months).  Further, the significant within-grade mean coefficient 

indicated that on average, students gained an additional 1.44 digits correct per minute over the 

school year, which was not gained over the summer months (i.e., slowing of rate of skill 

acquisition over the summer). In other words, with a linear increase of 2.04 correct digits per 
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time point and an additional 1.44 correct digits correct per minute acquired within a year, the 

average child would effectively have gained 3.48 digits by the spring testing time (i.e., 2.04 + 

1.44); this can be likened to the average linear slope from the fall to the spring (approximately 

.58 digits correct per minute per month). However, given that children have only gained 4.08 

digits correct per minute by the end of summer (i.e., 2.04 + 2.04, and the 1.44 correct digits are 

now gone), we can calculate the average linear slope from the spring to the fall (summer 

learning), as 4.08 – 1.44 = 2.64 digits correct per minute (approximately .44 digits correct per 

minute per month). 

 In the case of CBM addition and mixed WJ-III fluency, the significant between-grade 

quadratic trend had a negative valence, indicating a deceleration in the rate at which students 

acquired fluency over time. Further, for the addition CBM analysis only, the significant within-

grade quadratic trend suggests that there was an additional quadratic effect (i.e., the within-grade 

quadratic effect is even more negative than the between-grade effect). In other words, the 

between-grade trajectory was accelerating faster, but also decelerating faster (i.e., earlier “peak”) 

than the within-grade curve.  Note that the between-grade slope is the net effect of the growth 

that occurs within the school year and the growth that occurs over the summer. Therefore, 

despite the fact that both the within- and between-year slopes showed a gradual deceleration over 

time (significant quadratic), children gained progressively more addition fact fluency within each 

additional grade at a faster rate than they gained over the years, suggesting that students also 

experienced increasingly slower growth over the summer months with successive grades.  Non-

significant within-mean linear and quadratic slopes of the CBM subtraction and WJ-III suggest 

that the ratio of gain within school year to slowing over the summer was constant over the years. 

The linear and quadratic developmental trends for addition CBM are shown in Figure 2a (Figure 

2b shows the trend for subtraction CBM).    
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[INSERT Figure 2. CBM addition and subtraction fluency growth curves]. 

 

Examination of random effects revealed significant inter-individual differences in the 

level of the growth curve and linear growth rates. In other words, individual differences existed 

in the overall levels of each math measure fluency curves, as well as in their rates of linear 

growth. To provide a sense of the distribution of the overall of fluency curves, plausible values 

ranges for the between-grade trajectories were calculated. For CBM addition, the middle 50% of 

the children’s mean curve levels would fall between 11.12 to 18.98 digits correct (as calculated 

by Fixed Effect ± SD(.68)). Similarly, 50% of the children’s linear slopes would fall between 

1.73 to 3.03 digits correct per minute as they moved from one time point to the next across 

grades. The final developmental trend model explained 57.21% of the within-student (Level-1) 

variance in CBM addition fluency (calculated using Equation 7, between Model 1 and the fully 

unconditional model).  In the case of CBM subtraction, the middle 50% of the children’s mean 

curve levels would fall between 7.80 and 13.38 digits correct. Similarly, 50% of the children’s 

linear slopes would fall between 1.65 and 2.43 digits per minute as they moved from one time 

point to the next across grades.  Note that the CBM subtraction fluency values are lower than 

those of CBM addition fluency because, by their very nature, subtraction problems involved 

fewer correct digits in their solutions than addition problems.  The final developmental trend 

model explained 57.86% of the Level-1 variance in CBM subtraction fluency.  Finally, regarding 

inter-individual variability of WJ-III, the middle 50% of the children’s mean curve levels would 

fall between 5.90 and 12.46 correct responses. The middle 50% of linear slopes would fall 

between 1.32 to 1.95 digits correct per minute as children moved from one time point to the next 

across the grades. The final developmental trend model explained 61.38% of the Level-1 

variance in WJ-III fluency.   

 



	 72	

Longitudinal Growth Patterns (Examination of Cumulative Versus Compensatory 

Growth) 

Correlations between the intercept variation and slope variation were examined to 

determine whether growth followed a cumulative, compensatory, or parallel but offset pattern. 

Positive correlations were found between the intercept variation (i.e., for an average student in 

Grade 2) and the between-grade linear slope variation for CBM addition (.90), CBM subtraction 

(.83), and WJ-III (.63). Positive correlations were also found between the intercept variation and 

the within-grade mean variation for the WJ-III (.40). Overall, these patterns indicate that children 

with stronger fluency skills experienced faster growth over time compared to those with weaker 

fluency skills, as well as greater within-year differences; the change in mean was associated with 

greater individual differences, thereby following a “fan spread” pattern over the grades.   Figure 

3 (a, b, c) illustrate this point visually. The figures depict math fluency measures (CBM addition, 

CBM subtraction, and WJ-III) for each of the grades at study entry (i.e., Grades 1, 2, 3). The 

individual growth curves for each student in the study were drawn using the scale indicated in 

the lower right corners, and represent the score of each fluency measure according to the four 

administration times. Each student’s growth curve was then plotted according to the mean test 

score over the four testing points (X-axis) and the between-year growth (i.e., the average of the 

two upper grade year scores minus the average of the two lower grade scores; Y-axis).  Through 

visual inspection, one can observe that although there is variability between the forms of the 

curves and rates of growth, overall, for each math measure and each starting grade level, students 

who have lower mean scores tend to have “flatter” slopes whereas those with higher mean scores 

tend to have steeper slopes. There also a linear relationship between the level of skill (X-axis) 

and the between-year growth (Y-axis). Further, looking across the grades (i.e., from cohort 1, to 

2, to 3), a clear “fanning out” trend is seen, whereby there is greater variability (curves are more 

spaced apart) between the levels of the curves as one moves from starting grade to starting grade.  
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[INSERT Figure 3 (a, b, c). Plot of individual growth curves] 

 

Individual Differences in Working Memory and Inattention as Predictors of Math Fluency 

Growth  

To address the third research question, each predictor was entered at Level-2 to determine 

whether they predicted the developmental trends as established in question 1, and further, 

whether they explained for variability in the between-student variability in terms of the overall 

levels and slopes of their growth trajectories.  

 
Tables 8, 9, and 10 display the effects of each predictor on the developmental trajectory 

of CBM addition, CBM subtraction, and WJ-III fact fluency, respectively. 

 

[INSERT Table 8. Addition Growth Models with Predictors Entered at Level-2 (Level-1 n = 785, 
Level-2 n = 200)] 

 

[INSERT Table 9. Subtraction Growth Models with Predictors Entered at Level-2 (Level-1 n = 
789, Level 2 n= 201)] 

 
 

[INSERT able 10. WJ-III Growth Models with Predictors Entered at Level-2 (Level-1 n = 790, 
Level-2 n= 201)] 

 
 

The final models (Model 6) explained a significant amount of between-student variance 

in terms of the levels of the overall growth curves (52.85% for CBM addition, 53.32% for CBM 

subtraction, and 57.45% for the WJ-III).  Further, this model accounted for a significant amount 

of variability between students’ rates of linear growth, for both CBM measures (47.36% for 

addition, and 55.10% for subtraction). In contrast, only 13.04% of linear growth variability in the 

WJ-III slope was accounted for by the Level-2 predictors.   
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Sex. Sex did not emerge independently as a significant predictor of the overall level of 

the developmental curve, nor of the linear growth of addition or subtraction. Additional analyses 

revealed that sex acted as a suppressor variable for inattention, as evidenced by the change in 

significance of the sex coefficient at the point when this variable was added, by the increased 

value of β, and by the amount of additional variance explained when sex was included in the 

model (comparing Models 6 and 7). This is a case of classical suppression, where the effect of 

inattention on fluency is strengthened, as the variable sex suppresses some of the error variance 

in inattention. When acting as a suppressor variable, the coefficient for sex is not interpreted 

(Ludlow and Klein, 2014). Model 7 demonstrated that inattention emerged as significant 

regardless of the suppression effect. Notably, despite non-significant main effects of sex 

(addition and WJ-III) or improved model fit, adding it to the model resulted in additional 

variance explained for both intercept and linear growth for each math measure.   

Sex emerged as a significant predictor of the within-grade mean for subtraction (although 

not addition), such that being male conferred a slight advantage in terms of the average number 

of digits correct acquired over a school year. Interestingly, however, the fact that sex was not 

also a significant predictor of the overall growth curve suggests that this advantage is not 

sustained over time.        

Parent level of education. Adding parent level of education resulted in improved model 

fit, although ultimately, it did not emerge as a unique predictor of CBM addition, CBM 

subtraction, or WJ-III overall level or growth trends once all predictors were entered. 

Verbal working memory. Results showed a significant positive main effect of verbal 

working memory on the overall level of each math fluency measure, such that stronger verbal 

working memory was associated with greater fluency skill (higher trajectory levels). However, 

verbal working memory was not linked of the rate at which children acquired fluency skills 

(neither CBM or WJ-III). Adding verbal working memory to the model accounted for 7.30% of 
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the between-student variance in the CBM addition fluency levels, 7.11% of the variance in CBM 

subtraction fluency trajectory levels, and 10.75% of the variance in the WJ-III fluency trajectory 

levels, over and above models that included only control variables.  Verbal working memory also 

emerged as a predictor of the between-grade quadratic term in the CBM addition analysis. 

Stronger verbal working memory was related to steeper (more rapid) growth (i.e., higher 

coefficient resulting in an “earlier peak” quadratic) prior to an eventual deceleration of fluency 

skill acquisition (as indicated by the negative valence).   Figure 4 depicts the link between verbal 

working memory on the development of math fluency.   

 

[INSERT Figure 4. Relationship between verbal working memory and a) CBM addition, b) 

CBM subtraction, and c) WJ-III Math Fluency.]  

 

 Visual-spatial working memory. There was a positive main effect of visual-spatial 

working memory on the overall level (intercept) of each growth curve.  Adding visual-spatial 

working memory to the model accounted for an additional 11.63% in the CBM addition, 12.51% 

in the CBM subtraction model, and 10.22 % in the WJ-III intercepts over and above models 

including verbal working memory and the control variables.   Adding visual-spatial working 

memory to the models also accounted for a significant amount of between-student variability in 

terms of linear slopes for the CBM models (14.74% for addition, 14.29% for subtraction), 

although this effect was subsequently accounted for by inattention, as discussed below. Visual-

spatial working memory also emerged as the sole predictor of the additional acquisition of 

fluency skill within each school year, which does not occur over the summer (higher within-

grade means) for both CBM analyses. Figure 5 depicts the link between visual-spatial working 

memory and the development of math fluency.  
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[INSERT Figure 5. Relationship between visual-spatial working memory and a) CBM addition, 

b) CBM subtraction, and c) WJ-III Math Fluency.] 

 

Inattention. Teacher-rated inattention exerted a significant negative effect on the overall 

level of the between-grade growth curves. Further, when all variables were entered into the 

models, inattention emerged as the only significant (negative) predictor of the between-grade 

linear growth for both CBM operation types. In other words, students who displayed greater 

levels of inattentive symptoms had math fluency trajectories that were lower in level and slower 

in terms of growth across the grades, compared to peers with who were rated by their classroom 

teacher as having stronger attentional abilities. Further, as mentioned above, inattention 

accounted for the variance in linear slopes previously explained by visual-spatial working 

memory. Notably, adding inattention to the multilevel models accounted for the largest amount 

of unique variance in each analysis for the overall levels of the CBM addition (27.80%), CBM 

subtraction (27.66%), and WJ-III math fluency (31.20%).  It also accounted for significant 

unique between-student variance in CBM linear slopes (23.15% for addition; 28.57% for 

subtraction). Note that although inattention emerged as a predictor of the between-grade 

quadratic slope, further investigation revealed that inattention was not a predictor of the 

quadratic function when entered alone, and only emerged as significant when visual working 

memory was entered into the model. This is another case of a classical suppressor effect, and it is 

therefore not interpreted or discussed further. Figure 6 depicts the relationship between teacher-

rated inattention on the development of math fluency.  

 

[INSERT Figure 6. Relationship between inattention and math fluency for a) CBM addition, b) 

CBM subtraction, and c) WJ-III Math Fluency.] 
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The past two decades have seen increasing interest in the development of mathematical 

skill.  Recent longitudinal studies have provided important insight into the development of 

general math ability (Aunola et al., 2004; Bodovski & Farkas, 2007; Geary et al., 2012; Morgan 

et al., 2009; Morgan et al., 2011).  By contrast, there is a surprising paucity of longitudinal 

research focusing specifically on math fluency. The importance of gaining an accurate 

understanding of this developmental process is highlighted by findings from two previous lines 

of research: one, which found that math fluency is linked to higher order math abilities (Fuchs et 

al., 2006; Nelson, Parker, & Zaslofsky, 2016) well beyond the timeframe during which basic 

arithmetic is emphasized in the curriculum (Nelson et al., 2016); and the other which 

documented a steady decline in typically developing young adults’ ability to solve basic 

arithmetic problems with both speed and accuracy over the course of recent decades (LeFevre et 

al., 2014). The results of the study by LeFevre and colleagues are highly concerning, especially 

in light of the far-reaching health and economic consequences of numerical literacy across the 

lifespan (Golbeck et al., 2005; Montori & Rothman, 2005; Reyna & Brainerd, 2007; Rivera-

Batiz, 1992). 

The current study had four major objectives. Using an accelerated longitudinal design, 

the first aim of this dissertation was to examine the developmental dynamics of basic math 

fluency (addition and subtraction), simultaneously taking into account the effects of growth 

within and between the early elementary grades (1-4). This merged and extended developmental 

research that considers children’s mathematical growth trajectories over a number of years, with 

educational research that examines the slowing/loss of skill acquisition over the summer.  The 

second aim was to determine whether math fluency development followed a cumulative or 

compensatory growth pattern. The third objective of this study was to investigate the extent to 

which individual differences in terms of demographics (sex and parental education) as well as 

behavioral and cognitive constructs (i.e., visual spatial and verbal working memory, and teacher-
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rated inattention) predicted developmental patterns and accounted for between-student variability 

of math fluency skill development. Finally, the fourth objective was to examine differences 

between addition and subtraction development (in terms of growth curves and predictor 

variables).  

 

Developmental Dynamics of Math Fluency 

With respect to the functional form of the growth trajectories, there were both significant 

between- and within-grade elements; in other words, although there was an overarching shape to 

the developmental curves across the grades, growth also occurred in a piecewise manner, with 

greater growth within the school year, and slower growth over the summer months (cf., Cooper 

et al., 1996; Dawson et al., 2004; Vale et al., 2013). I recognize that the level of the within-grade 

mean may be somewhat of a conservative estimate, as children in this study were assessed within 

approximately two months of the end of school and not tested again until approximately two 

months into the new school year.  Given that the beginning of the school year often focuses on 

review, children may have recouped some of the skills lost over the summer (Allinder & Eicher, 

1994). Still, the findings of this study are in line with research that suggests that procedural 

skills, such as untimed arithmetic, are susceptible to loss in the absence of practice (Cooper et al., 

1996). Math fluency may be particularly vulnerable to skill slowing as by its very nature, fast 

and accurate completion of tasks is dependent on practice (Binder, 1996; Wintre, 1986).  Further, 

to date, most studies on the effects of the summer break, and of summer learning loss that 

include measures of math achievement have been conducted in the US, although one large-scale 

Canadian study (Davies & Aurini, 2013), also found evidence of summer learning loss in Ontario 

schools for both literacy and numeracy. Therefore, the current study also contributes to the 

literature on the summer setback within the Canadian context. 

Differences were found between operation types in terms of the shape of the 
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developmental trajectories. In the case of CBM addition, children gained skill across the years in 

a linear manner with a gradual deceleration in the amount of skill children gained with each 

advancing year (including summer months). When considering the growth that occurs 

specifically within the school year (i.e., excluding the summer months), the present results also 

showed that children gained increasingly more skills within each school year in the earlier 

grades, with a gradual deceleration in the amount of skill earned within a year, with advancing 

grades. Notably, however, the within-year curvilinear trajectory resulted in an earlier peak than 

the between-year one; by considering the dynamic of the within- and between- year trajectories, 

it is possible to ascertain a descriptive pattern of the summer effect on skill acquisition. 

Specifically, in the case of CBM addition, the within-school year curvilinear slope peaked earlier 

(i.e., showed faster acceleration and deceleration of fluency acquisition) than the between-year 

trajectory (which represents the net effect of school-year and summer growth), suggesting that 

children experienced progressively less summer growth with each passing year. Conversely, in 

the case of subtraction CBM, children gained skills in a linear manner as they moved from one 

grade to the next, and the rates at which they gained skills within the school year and slowed in 

skill acquisition over the summer months remained constant from grade to grade (i.e., the within- 

and between-grade increase in a parallel and linear manner). Regarding the WJ-III (in which 

there is a mix of addition and subtraction skills (and later, multiplication), between-year growth 

was curvilinear. However, unlike the CBM addition, the ratio of within-year gains to summer 

slowing remained constant across the grades. In summary, children’s math fluency development 

progressed in a piece-wise manner, with greater growth during the school years as compared to 

the summer months. The overarching functional forms across Grades 1 to 4 were decelerating 

quadratic for the addition CBM and WJ-III measures, and linear for the subtraction CBM 

measure. 
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The described differences in developmental trajectories according to operation type may 

indicate that addition fluency is an easier skill to acquire compared to subtraction (Kamii, Lewis, 

& Kirkland, 2001) if the assumption is that a decelerating quadratic is an indication of slowing 

due to gradually closer approximations toward skill mastery. This conclusion is in line with a 

previous longitudinal study that demonstrated developmental differences between operation 

types, such that the level of children’s addition fluency growth trajectories was consistently 

higher than that of subtraction fluency, from Grades 1 through 9 (Martens et al., 2011).  It may 

be more difficult for children to acquire fluency in subtraction than in addition if, as previously 

suggested by Kami and colleagues (2001, 2003), subtraction involves a negative construction of 

addition, implying that it is contingent on addition skill ability. For example, indirect addition 

may be used as a strategy for solving subtraction (i.e., subtraction by addition, for example, 

solving 9 – 7 = 2, by adding 2 to 7 to make 9), particularly with small differences (De Smedt, 

Torbeyns, Stassens, Ghesquiere, & Verschaffel, 2010). However, using a nested multiple 

baseline design, Poncy et al. (2010) failed to find that having fluent addition skills and the 

conceptual knowledge regarding the relationship between addition and subtraction (“think-

addition” strategy) transferred to subtraction fluency skills. This strategy may therefore require 

explicit instruction of these procedural skills (i.e., direct skill teaching) it does not tend to be 

learned implicitly through discovery (De Smedt et al., 2010).    

An alternative point of view suggests that skill slowing occurs due to fewer opportunities 

for practice, which could be the case if fluency practice is deemphasized in the curriculum, or if 

cognitive resources are allocated to more advanced math concepts in the later grades (Binder, 

2003). Interestingly, the finding of progressively slower summer growth with advancing years is 

strikingly similar to the reading results in Cooper and colleagues’ (1996) meta-analysis. 

Although grade was not included as a covariate in the models in this study (as these would have 

been confounded by cohort), Cooper and colleagues identified a grade effect, such that children 
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in “fourth grade and beyond showed significant losses (over the summer), some of which were 

quite dramatic”. The authors highlight the counterintuitive nature of the finding, given 

expectations for factors that would influence children’s early school experiences to have the 

most significant impact on learning. Cooper et al. (1996) proposed a possible floor effect of 

scaling as an explanation, such that the transformation of raw scores into standard scores 

eliminates variability present in youngest participants. Using grade-level data, children in grade 

one can only score one grade below the normed grade level, effectively decreasing the amount of 

negative change the child can experience.  However, as the CBM measures are not norm-

referenced, this hypothesis is unlikely to explain the current findings. Although the non-

experimental nature of my study does not permit for the determination of causal factors, if 

fluency skills are not mastered, a shift toward progressively less focus on practicing these skills 

within the school year may be at the expense of loss of fluency in the absence of practice over 

the summer.  In other words, deceleration may be more reflective of less practice, than of an 

approach toward mastery.   

Of course, if curve form is related to decreased opportunities for practice, it is reasonable 

to expect the same effect for subtraction. This highlights the further possibility that differences in 

within- and between- year growth patterns according to operation type reflect distinct problem-

solving strategies. Previous research suggests that addition is more likely to be solved through 

direct retrieval, whereas subtraction is more frequently solved using other algorithmic procedures 

(Barrouillet et al., 2008). Considering studies that have found accurate retrieval in early grades to 

predict the use of retrieval in later grades (Bailey et al., 2012), it is conceivable that children 

could acquire fluency skill based on retrieval (i.e., addition) increasingly more quickly with each 

passing grade.  It is unknown, however, whether problems solved through retrieval (e.g., 

addition) would be more susceptible to summer slowing in the relative absence of practice, 

compared to problems solved through an alternative algorithmic strategy (e.g., subtraction). In a 
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similar vein, differences in terms of susceptibility to summer slowdown have been demonstrated 

for other math sub-skills, in that calculation is more susceptible to slowing/loss as compared to 

conceptually based math (e.g., word problems) (Cooper et al., 1996). Therefore, to address these 

possibilities, future research investigating whether operation types are differentially related to 

seasonal growth patterns as a function of the strategy used is warranted. Note that the 

aforementioned possibilities are considered solely at the descriptive level, as it was not possible 

to perform a direct comparison between operation types. Further, it might be argued that 

differences in the curve forms reflect a measurement issue (e.g., if probe difficulty was 

confounded with grade levels). As only one probe per child per time as given, it was not possible 

to conduct supplementary analyses on whether parallel forms were truly equivalent in item 

difficulty.  However, a decelerating curve was also noted in the mixed WJ-III, where the same 

test was given at all assessment occasions.  

 Longitudinal Growth Patterns (Cumulative Versus Compensatory Growth). 

Regarding the variability of developmental slopes between students, the findings indicated that 

children differed significantly in terms of the overall level of their growth trajectories, as well as 

in their rates of growth across the grades. On average, children with higher overall levels of math 

fluency experienced faster growth over time, as compared to children who started with weaker 

math fluency skills (cf., Codding et al., 2007; Burns et al., 2010). Additionally, these children 

acquired greater fluency during the school year (WJ-III). Longitudinally, this resulted in a 

pattern of increasing differences between individual slopes with advancing grades, creating a fan 

spread effect consistent with a cumulative model (Matthew effect).  These results add to the 

growing body of longitudinal research that has identified cumulative growth in general math 

ability (Aunola et al., 2004; Morgan et al., 2009; Morgan et al., 2011) and calculation in terms of 

accuracy (Salaschek et al., 2014), by demonstrating that similar effects occur in terms of math 

fluency, both within and across years, and in spite of the summer slowdown.  As identified by 
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Carr and Alexeev (2011), math fluency has a significant impact on the rate of growth of strategy 

use, from manipulatives (e.g., counting with fingers or counters) to cognitive strategies (e.g., 

counting mentally or retrieving facts from memory), suggesting that fluency ability itself affects 

the developmental trajectory.  Notably, this effect was strengthened, albeit slightly, by taking 

into account the predictor variables, and particularly classroom inattention. 

 
Considerations for developmental research in mathematics: Modeling the summer 

break. Specification of accurate longitudinal models is an essential step in understanding 

developmental processes. Particularly within the context of education, developmental models 

shed light on various phases of learning (Tenison & Anderson, 2015).  Historically, most 

developmental research has modeled skill growth by assuming smooth trajectories (i.e., most 

frequently linear and curvilinear).  Studies using this modeling approach are unable to account 

for the effects of instructional breaks, despite the robust finding that the transitional period 

between grades presents significant deceleration in the learning curve or learning loss, and that 

this effect is most pronounced in the area of mathematics (Cooper et al., 1996). Therefore, 

omitting the stable characteristic structure of the school year may paint a potentially incomplete 

picture of the learning trajectory, if not significantly bias estimates of regression models. In 

contrast, piecewise models that allow for the estimation of slopes corresponding to different 

segments of the trajectory are a rarely seen in longitudinal research, although more recent studies 

have adopted this approach (Kohli, Harring, & Hancock, 2013; Kohli et al., 2015; McCoach & 

Yu, 2016; Shanley, 2016). Piecewise designs are particularly well-suited to examining portions 

of the developmental trajectories that deviate from the typical linear or curvilinear forms (i.e., 

correspond to fundamentally differing patterns of change) (Anderson, 2012; Collins, 2006; 

McCoach & Yu, 2016), as would be expected when considering growth rates during the school 

year (instructional period) as compared to the summer months (non-instructional period). In the 
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current study, the consistent finding of skill slowing over the summer across all three measures 

of fluency highlights the importance of accounting for seasonal effects in developmental models, 

as measurement differences are in part dependent on the time of the year children are assessed. 

Therefore, the results of the current dissertation support the value of models other than linear and 

curvilinear growth in order to capture developmental change (Kohli et al., 2015), specifically 

illustrating the utility of a piecewise approach to modeling learning trends that span a number of 

school years (McCoach & Yu, 2016). While parsimony is desirable, model utility and the ability 

to inform practice is equally important (Shanley, 2016). The inclusion of seasonal effects in the 

current study also allowed for the determination of interactions between instructional periods and 

predictor variables (working memory and inattention), which may have been obscured using 

smooth trajectory modeling. As discussed below, the differential effect of these predictors on 

achievement according to time of year may have implications for instruction or interventions. Of 

course, a major limiting factor to the use of piecewise designs is the sheer number of data points 

required for accurate modeling (McCoach & Yu, 2016). However, as demonstrated in this study, 

this obstacle can be overcome using a cohort sequential design (Nesselroade & Baltes, 1979). 

 

Predictors of Math Fluency Development 

Another important goal of developmental research in the area of mathematics is the 

identification of individual factors associated with skill growth or deficit, as these may signal 

flags for weakness in mathematics or opportunities for intervention. When considering the body 

of research on summer learning, studies have generally been constrained to the realm of 

educational psychology and policy. The current study contributes to this literature by attempting 

to merge this area of educational research with cognitive research. The goal was to identify key 

interactions between seasonal effects (within-year and between-years, including the summer) and 

individual factors previously found to be associated with math development.  
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Specifically, although verbal working memory, visual-spatial working memory, and 

inattention each emerged as independent predictors of the development of math fluency (while 

controlling for sex and parent level of education), their relative importance differed based on 

whether the effect was observed within the school year, or across school years including the 

summer months. These important relationships are masked when within- and between-year 

effects are not explicitly parceled out. Further, links between seasonal effects and predictors of 

fluency development highlight implications for the timing of interventions, as discussed further, 

below. Although the specific cognitive and developmental processes through which these 

trajectories arise is beyond the scope of the current study, previous research provides a basis for 

hypothesizing certain possibilities, as discussed next.  

Sex. Although not the focus of the present study, when examining control variables, there 

was a slight advantage for boys in terms of acquired subtraction fluency skill within school years 

specifically.  This is in line with previous research demonstrating that boys rely more heavily on 

direct retrieval strategy than girls when solving basic arithmetic problems (Bailey et al., 2012; 

Carr & Jessup, 1997). It would follow that more frequent use of retrieval would enhance boys’ 

speeded performance, despite no difference in accuracy (Carr & Jessup, 1997). However, if this 

were the case, then similar sex differences would be expected in addition fluency. Some studies 

have suggested that a male advantage in the early elementary grades may be related to visual-

spatial ability (Geary, Saults, Liu, & Hoard, 2000; Lummis & Stevenson, 1990). This is an 

interesting possibility, considering that the association between sex and fluency was found only 

for subtraction. Previous research has suggested that this operation tends to be solved through 

quantity-based procedures (Barrouillet et al., 2008; Prado et al., 2014), which have in turn been 

linked to visual-spatial skills (Geary et al., 2007; Rotzer et al., 2009; Zorzi, Priftis, & Umilta, 

2002).   An additional analysis that included a sex by visual-spatial working memory interaction 

effect was non-significant. However, it is noted that in this study, there was not a “pure” measure 
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of visual-spatial ability, and these skills are separable in terms of their ability to predict number 

processing proficiency (Krinzinger, Wood, & Willmes, 2012). Therefore, future studies 

including sex differences and operation types should include such measures. Nonetheless, the 

within-year sex difference was not maintained across school years (i.e., boys’ between-grade 

slopes were not higher than those of girls, and their between-grade linear growth was 

comparable), which is in line with other studies that have found no sex differences in children’s 

arithmetic ability (Aunola et al., 2004; Lachance & Mazzocco, 2006; Lindberg et al., 2010).  

Taken together, the current results suggest that some of the disparity in the literature on the role 

of sex in math development may be a function of the construct used to measure math ability 

(e.g., fluency as separate from untimed calculation or word problems, differences in operation 

type) (Carr, Steiner, Kyser, & Biddlecomb, 2008) as well as the time frame within which math 

ability is assessed (e.g., no longitudinal effect despite cross-sectional effect). Notably, sex 

accounted for a significant amount of variance in so far as it was related to other predictors, 

specifically inattention (Gershon, 2002).    

Working memory. With respect to the working memory measures, both verbal working 

memory and visual-spatial working memory were uniquely associated with higher overall slope 

levels for each fluency measure. This is in line with results of previous studies linking working 

memory to math fluency (Fuchs et al., 2008; LeFevre et al., 2013; Lukowski et al., 2014; Martin 

et al., 2014).  Interestingly, differences were found in terms of the relative importance of each 

working memory measure according to growth phases. Specifically, verbal working memory was 

predictive of the negative curvilinear trend of CBM addition fluency skill acquisition across the 

grades, suggesting that children with stronger verbal working had an earlier peak in their 

curvilinear trajectory compared to children with weaker verbal working memory.  Higher overall 

curves and earlier peaks in the trajectory may indicate that children with stronger verbal working 

memory may approach mastery levels more quickly than those with weaker working memory. 
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Alternatively, if the negative quadratic effect were reflective of decreased opportunities for 

fluency practice with advancing grades, this pattern still suggests that students with stronger 

verbal working memory acquired skills at a faster rate than their peers with weaker verbal 

working memory prior to such a shift in instructional focus. Having a solid grasp of quantity and 

the relationship between numbers is an important precursor to fluency (Baroody et al., 2009). 

Young children who possess stronger executive functioning skills (including working memory) 

appear to have an advantage in this area, as recently demonstrated by Fuhs and colleagues 

(2016). These authors found that Kindergarten students with stronger executive functioning skills 

had a greater ability to identify number sets (i.e., “sets” of numbers that can be combined to add 

up to a target value) compared to those with weaker executive functioning skills. In turn, this 

ability predicted growth in math skill through to the second grade (Fuhs et al., 2016). Working 

memory may also support fluency development through the maturation of strategies selected to 

solve arithmetic problems (Geary et al., 2012), from counting to the more sophisticated 

decomposition strategy. 

Visual spatial working memory uniquely predicted the additional skill acquired 

specifically within the school year, such that stronger visual spatial working memory was 

associated with higher fluency means in the spring. As first proposed by Heyns (1987), the 

summer months can be viewed as a temporal control for the effects of schooling. Because 

students are influenced year round by their non-school environments (e.g., demographics, family, 

neighborhood, peers, and individual characteristics), taking the effects of the summer into 

account approximates a natural experiment, thus isolating the effects of formal education when 

the effects of the non-school environment are held constant (Alexander et al., 2007). 

In this way, the link between visual-spatial working memory and math fluency growth 

occurring specifically within the school year points to the importance of visual-spatial working 

memory in the process of active learning within the school year, and by extension, may be 
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protective in relation to potential cumulative effects of the summer slowdown. In other words, 

this finding may represent a longitudinal parallel to previous cross-sectional research that has 

identified a particularly salient role for visual-spatial working memory during the process of 

arithmetic skill acquisition (Imbo & Vandierendonck, 2007; Laski et al., 2013; McKenzie et al., 

2003; Raghubar et al., 2010). Similar to verbal working memory, visual-spatial working memory 

may be linked to a more rapid transition to increasingly sophisticated counting strategies (Geary 

et al., 2007). A specific link between visual-spatial working memory and math fluency may 

relate to stronger mental models or a better appreciation of the representation of quantity along 

an internal number line (Berteletti, Man, & Booth, 2015; Geary et al., 2007; Rasmussen & 

Bisanz, 2005; Rotzer et al., 2009). Visual-spatial skills have been linked to the development of 

the mental number line (Gunderson et al., 2012; LeFevre, Jiménez Lira et al., 2013), which some 

authors have found to be linked to calculation (Gunderson et al., 2012), although see LeFevre et 

al. (2013).  While verbal working memory may take on greater importance as children gain 

increasing arithmetic proficiency (De Smedt et al., 2009; Holmes & Adams, 2006), visual-spatial 

working memory skill may continue to be harnessed across the lifespan, depending on the 

strategy used to solve arithmetic problems (i.e., higher working memory load when using 

counting compared to memory-based strategies (Hubber, Gilmore, & Cragg, 2014)).      

Notably, visual-spatial working memory skill was also associated with of more rapid 

linear growth in addition and subtraction CBM fluency across years, although this relationship 

was subsequently accounted for by classroom inattention. Teacher-rated inattention accounting 

for the relationship between working memory and math ability has been found in previous 

research (Fuchs et al., 2006). Nonetheless, the finding that visual-spatial working memory 

remained a significant predictor of within-year growth, despite non-significance over time, is in 

agreement with results from a short-term longitudinal study from our lab (using a nearly identical 

sample), which demonstrated that the relationship between boys’ inattentive classroom behavior 
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and math fluency (subtraction) one year later was partially mediated by visual-spatial working 

memory (Gray et al., 2015). Collectively, these findings suggest some overlap between 

behavioral inattention and visual-spatial working memory.  These findings may also be seen as 

being in line with LeFevre and colleagues’ Pathways to Mathematics model, which proposed that 

spatial attention (indexed by visual-spatial working memory) is linked to children’s early math 

abilities, including numeration, number line understanding, and calculation (LeFevre et al., 

2010). Further refinement of this model found that working memory (central executive, visual-

spatial sketchpad, and phonological loop) predicted children’s arithmetic fact fluency (Sowinski 

et al., 2015).   

Finally, collectively, the differential pattern of verbal and visual-spatial working memory 

measure according to growth phases supports the view that dynamic shifts in the salience of 

working memory occur throughout math development, with visual working memory acting as a 

key predictor of math development in early grades while skills are being acquired, and verbal 

working memory becoming increasingly important in later grades, perhaps when verbal retrieval 

may be relied upon more heavily (Holmes & Adams, 2006; Raghubar et al., 2010; Van de 

Weijer-Bergsma et al., 2015).  

Inattention. Teacher ratings of children’s classroom inattention, at levels well-below 

those required for a diagnosis of ADHD, were found to be a powerful long-term predictor of 

mathematical proficiency in this study (cf. Duncan et al., 2007; Garner et al., 2013; Holmberg & 

Bolte, 2014; Pagani et al., 2010; Pingault et al., 2011; Pingault et al., 2014; Rabiner et al., 2016).  

Findings add to the burgeoning literature on the deleterious effect of classroom inattention on 

academic outcomes, by demonstrating that inattentive behavior in the classroom predicts lower 

overall trajectories and slower growth in math fluency over time for both CBM addition and 

subtraction.  Notably, inattention was the sole unique predictor of growth across grades. In other 

words, greater levels of inattention are linked to consistently weaker fluency skills over time. 
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From a longitudinal perspective, the gap in math fluency ability between relatively inattentive 

children compared to their more attentive peers widens over time. Adding inattention to the 

model strengthened the relationship between the level of math ability and linear growth, 

suggesting that classroom inattention may potentiate the cumulative nature of math fluency 

learning; in this way, children who start out with weaker math skills and who are more 

inattentive are at a significant risk for chronic weakness in math fluency. What’s more, in the 

current study, teacher-rated inattention accounted for the largest amount of variance, both in 

terms of the levels of children’s growth curves and in rates of growth.   

Children with ADHD tend to have chronically low math fluency abilities (Lewandowski 

et al., 2007; Zentall, 1990; Zentall & Smith, 1993). The current study demonstrated similar 

findings in a community sample in which most children exhibiting inattention levels well below 

that of clinical significance (Fuchs et al., 2005). In the larger sample from which our sample was 

drawn, the proportion of students whose scores on the Strengths and Difficulties Questionnaire 

(SDQ) were within the at-risk range for inattention/hyperactivity symptoms was approximately 

9%, as rated by teachers and parents (Aitken, Martinussen, Wolfe, & Tannock, 2015). Therefore, 

a sizable minority of students struggle with inattentive behavior that may place them at risk of 

learning issues. As mentioned above, for the CBM measures, classroom inattention accounted 

for the same between-student variance in linear growth across the grades that was explained by 

visual working memory. This finding suggests that children who display greater inattentive 

symptoms in the classroom may have more difficulty acquiring skills compared to their more 

attentive peers regardless of the time of year. In other words, these children may have difficulty 

acquiring new skills over the school year, but also gain (or retain) less skill than their more 

attentive peers over the summer.  

The mechanism through which this relationship occurs remains unclear, but here I 

consider several possibilities.  First, behavioral attention is a logical prerequisite to processing 
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information and benefitting from classroom instruction. The development of attention skills 

during childhood allows for progressive improvements in children’s inhibition skills and their 

ability to delay gratification (Cerda, Im, & Hughes, 2014; Kochanska, Murray, & Harlan, 2000; 

Pagani et al., 2010). As proposed by previous authors, an inability to suppress competing 

behaviors in favor of those that support learning (Duckworth & Seligman, 2006; Pagani et al., 

2010) or filter out information unrelated to the instructional task (Li-Grining et al., 2010) might 

place students at risk for learning difficulties.  Given that the time frame of the current study 

began after the introduction of formal schooling, it is not possible to draw conclusions regarding 

the directionality of the relationship between inattention and fluency skill development (i.e., 

whether inattention is a causative agent in fluency underdevelopment, or rather, a symptom of 

other cognitive weaknesses which in turn predict mathematical difficulties (e.g., number sense, 

Locuniak & Jordan (2008)).   

Nonetheless, a second possibility is that classroom inattention may be reflective of 

reciprocal/iterative influences. For example, students who demonstrate poorer fluency skills due 

to, or exacerbated by weaknesses in other cognitive areas that are critical to fluency skill 

development (e.g., working memory (LeFevre et al., 2013; Martin et al., 2014) or processing 

speed (Bull & Johnston, 1997)) may also be inattentive. Indeed, in my study, greater inattention 

was moderately correlated with poorer visual-spatial working memory, and inattention acted as a 

statistical mediator, where visual-spatial working memory was no longer a significant predictor 

of the between-grade linear growth (addition and subtraction) once inattention was accounted 

for. Note that other lines of research have suggested that it is spatial ability specifically (as 

opposed to purely visual skill, such as recall of static images) that is most closely related to 

mathematical ability (Passolunghi & Mammarella, 2010).  Although my study did not include a 

measure of static visual memory as a point of comparison, it could be argued that the backward 

finger windows task involved active manipulation, and therefore required greater attentional 
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control (Passolunghi & Cornoldi, 2008; Passolunghi & Mammarella, 2010), highlighting a 

potential overlap between the measures tapping visual-spatial working memory and inattention 

(Gray et al., 2015; LeFevre et al., 2010). Following a bi-directional model, higher levels of 

inattention and weaker cognitive ability, could lead to increasingly greater academic difficulty 

(Diamantopoulou, Rydell, Thorell, & Bohlin, 2007; Thorell, 2007). Indeed, Metcalfe and 

colleagues (2013) identified a similar reciprocal relationship between inattention and academic 

achievement (i.e., a composite of reading, writing, and mathematics) in 3- to 6-year-old children.  

Third, it is possible that teachers’ ratings of inattentive behavior in the classroom may 

represent a proxy for weak achievement (Fuchs et al., 2006).  If this is the case, however, teacher 

ratings of inattention may still serve as a useful indicator of poor math ability, considering the 

significant correlations between inattentive behavior and math skill.  

Fourth, classroom inattention may be capturing latent constructs, such as academic 

enablers (e.g., motivation or engagement (Bailey et al., 2014; Plamondon & Martinussen, 2015)). 

Finally, it is possible that inattention corresponds to a cognitive determinant of math fluency. 

Although the relationship between behavioral inattention and cognitive attention remains unclear 

(Gold et al., 2013), mathematical theories suggest a role for attentional resources or attention 

regulation in fluency development. For example, insufficient allocation of attentional resources 

to improving the performance of various counting strategies could lead to a delay in 

memorization of math facts (Shrager & Siegler, 1998), and by extension, to prolonged reliance 

on inefficient and cognitively taxing counting strategies. Indeed, Geary and colleagues (Geary et 

al., 2012) found that teacher-rated inattention and intelligence independently predicted the 

transition to more sophisticated (and therefore more efficient) strategy use in children’s addition.  

Likewise, difficulty inhibiting the use of well-learned but inefficient calculation approaches may 

impede children’s ability to transition to more efficient strategy use, despite having the 

conceptual knowledge of more effective strategies (Robinson & Dubé, 2013). Further, difficulty 
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inhibiting irrelevant information from working memory may impede direct fact retrieval (Geary 

et al., 2012; Passolunghi & Siegel, 2004).      

The finding that teacher-rated inattention predicted slower growth over the summer 

months may be secondary to students’ difficulty mastering basic arithmetic within the school 

year.  Fluency theory purports that a benefit of achieving a level of automatic responding is that 

this ability in itself would be protective in terms of the student forgetting learned facts (Binder, 

1996; Mong & Mong, 2010). Students who acquire fluent math facts tend to retain these skills 

over time, compared to those who learn the skill to achieve accuracy only (Singer-Dudek & 

Greer, 2005). In other words, skills that are mastered are generalized across time (i.e., 

maintenance; Poncy et al. (2010)). Although all students may experience a slowdown of skill 

development in the absence of practice (Cooper et al., 1996), students who have not consolidated 

math skills during the school year may be at particular risk of skill loss.  Alternatively, children 

who tend to display more inattentive behaviors may have associated cognitive weaknesses (e.g., 

weak working memory; Gray et al., 2015), which could render them more susceptible to 

forgetting math facts in the absence of practice. 

Of course, these possibilities remain speculative at this time, although they provide a 

springboard for further study. While issues of etiology remain unclear, the results presented 

suggest that teachers’ ratings of inattentive behavior in the classroom could be used to identify 

children at risk for long-term weakness in fluency skill, and by extension, general mathematical 

difficulties (Fuchs et al., 2006; Hecht et al., 2001). Consequently, these findings also point to the 

potential use of accommodations or early interventions for children displaying classroom 

inattention, as discussed further below.   

Seems like you need a new heading here (next part is not about inattention but seems to be about 

limitations of the measures). 
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With respect to the WJ-III, no predictors accounted for the variance in slopes. One 

possible explanation for this finding relates to the measures themselves.  Although the WJ-III 

and M-CBM both contain only basic facts, on the WJ-III, problem stems range from 0 to 10 

(rather than 0 to 12 in M-CBM), and problems are arranged in order of increasing difficulty (in 

terms of operation type (i.e., addition and subtraction, and then multiplication)) and response 

requirements (i.e., the first 31 problems are single-digit responses, followed by a mix of single 

and two-digit responses). Therefore, it may be that more children were able to respond to the 

earlier questions fairly consistently on the WJ-III. Conversely, on the M-CBM, encountering 

relatively more challenging questions earlier on in the probe (e.g., one requiring a two-digit 

response), may differentiate weaker from stronger children (with the latter being able to obtain 

more digits correct early on, in this example), thus leading to greater variability (range) in 

responses for the sample.  Inspection of the variance components of the unconditional models 

indicated less variation on the WJ-III (SD = .47) compared to CBM addition (SD = .97), and 

CBM subtraction (SD = .70). Therefore, changes in variance may have been more difficult to 

detect on the WJ-III due to the limited variability of slopes in the first place (e.g., Nezlek, 

Kafetsios, & Smith, 2008).  

Alternatively, it could be argued that this difference across tasks may indicate that M-

CBM fluency growth is reflective of measurement error, rather than actual skill level, which 

limits the use of M-CBM probes for the tracking of skill growth. As has been noted by previous 

authors, repeated administrations of CBM can produce variable estimates of response rates 

depending on the type of measure used (Christ & Vining, 2006; Hintze et al., 2002; Methe et al., 

2015). Thus, although the CBM captures gradual skill improvement (Prindle et al., 2016), a 

potential trade-off is a reduction in psychometric reliability and score equivalence, because 

alternate use of forms, multiple testing occasions and different raters introduce potential sources 

of error (Christ, Van Norman, & Nelson, 2016). However, this issue appears to be more relevant 
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to multi-skill math CBM probes (Christ & Vining, 2006; Methe et al., 2015), whereas 2-minute 

administration of probes constrained to a single skill (such as those used in the current study) 

have been shown to provide reliable, valid, and dependable assessment of ability using a single 

probe (Hintze et al., 2002). Further, the fact that similar predictor patterns were seen in both 

addition and subtraction analyses in terms of slope, and between all three measures in terms of 

overall curve level, suggests that the results of the current study are quite robust.  

A final consideration is that, despite the important contribution of basic math fluency in 

the development of higher-level math skill, arithmetic fluency is a narrow skill that is only 

moderately correlated with other math abilities; in other words, it is not in and of itself 

representative of more advanced mathematical skill (Nelson et al., 2016).  As such, longitudinal 

studies that investigate the development of fluent performance in more complex math skills (e.g., 

multi-step algorithmic computation) are indicated. An important next step, therefore, is further 

psychometrically-based research that ensures adequately equated forms, both horizontally 

(within a grade) and vertically (across grades), so that these measures can be used with greater 

confidence to assess fluency development over time.        

 

Educational and Clinical Implications  

   Results of the current study highlight potentially important implications for educational 

practice. First, as mentioned above, the possibility that the developmental trajectory of 

subtraction fluency lags behind that of addition would indicate that a focus on a mastering 

addition may also support the acquisition of subtraction fluency, as previously suggested by 

Kamii and colleagues (Kamii & Lewis, 2003; Kamii et al., 2001), although this may require 

direct skill instruction (i.e., rather than relying on self-directed discovery; De Smedt et al., 2010). 

Second, children who experience significant weakness in math fluency improve less than more 

fluent children over time, perhaps in part because children respond differentially to instructional 
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approaches depending on their level of proficiency with number combinations (Codding et al., 

2007). Importantly, the current research suggests that chronic difficulties in basic math fluency 

appear to be compounded by inattentive behaviors in the classroom. With this pattern in mind, 

behavioral inattention, even at levels well below those required for the diagnosis of ADHD, 

predicts a profound and lasting negative impact on a child’s developmental trajectory in math.  

What is more, in my study, the seasonal effect was differentially related to cognitive and 

behavioral domains, such that the slower growth in math ability seen in relatively inattentive 

children extends to the summer months.  As such, the results presented provide the basis for 

hypothesizing that ratings of behavior may be useful in screening for mathematical difficulties 

and may identify children who may benefit from early intervention, whether within the school 

year or over the summer holiday. It is also possible that inattentive behaviors themselves may 

present a target for academic remediation. Alternatively, latent constructs (e.g., motivation) that 

may be captured by teacher-rated inattention may be important to target (Bailey et al., 2014).  

Finally, stronger visual working memory predicts greater skill acquisition within the school year, 

which may also be protective in terms of the effects of the summer (e.g., recoupment of skill). 

Further research is needed to explore these possibilities. In the remainder of the chapter, I review 

issues related to fluency instruction and remediation, and discuss how these may relate to my 

findings. 

General Implications for Educators and School Psychologists. The cumulative nature 

of math fluency development highlighted in the current study suggests important practical 

implications for educators and school psychologists. Historically, in the Ontario education 

system (where this study took place), children referred for a psychological assessment have 

already fallen well behind curricular expectations (often within the range of a one to two-year 

lag), which can subsequently lead to formal access to special education services. Further, 

students who may benefit from fluency instruction or intervention are unlikely to be limited to 
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those who struggle to such a degree where a comprehensive psychological assessment is 

warranted. Teachers are therefore well-positioned to identify children at risk for academic 

difficulties and implement effective intervention strategies. As highlighted by Methe and 

colleagues (2012), timely classroom-based intervention may offset the need for more intensive 

services (Ysseldyke, Vanderwood, & Shriner, 1997) or mitigate the development of more 

significant math difficulties (Mazzocco, 2007). Further, the benefits of fluency intervention have 

been shown to generalize to higher-level math skills such as computation (McTiernan, Holloway, 

Healy, & Hogan, 2016).  Therefore, focusing on instructional strategies that are empirically 

sound, cost-effective, engaging, generalizable, that can be easily implemented, and that may 

benefit all children but that can also target specific weakness in fluency, are of the utmost 

importance.   

Considerations regarding instructional and intervention strategies. Despite the far-

reaching influence of math fluency skill across the lifespan, there is a surprising lack of focus 

devoted specifically to math fluency instruction and remediation in the literature (Codding, Hilt-

Panahon, Panahon, & Benson, 2009; Codding, Burns, & Lukito, 2011). Many math intervention 

packages focus on improving mathematical knowledge (e.g., number sense, algorithms; Clarke et 

al., 2016). Further, early meta-analyses evaluating the effectiveness of math interventions have 

not considered fluency as separate from other math skills (e.g., Swanson & Sachse-Lee, 2000). 

Of the studies that have focused on math fluency interventions specifically, the majority have 

utilized small n, single-subject designs (Reisener et al., 2016; Whitney, Hirn, & Lingo, 2016), 

and these have mainly targeted the acquisition/frustration phase of learning (i.e., when children 

are first learning to complete a skill accurately), as opposed to learning phases where increasing 

fluency or skill generalization are primary goals (Burns, Codding, Boice, & Lukito, 2010; Poncy 

et al., 2010). Indeed, in a meta-analysis summarizing interventions supporting students 

struggling with mathematics, Codding and colleagues (2009) found that 68% of studies 
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employed a single-subject design. Similarly, there are no randomized control trials (RCT) 

specific to fluency intervention in the literature (Codding et al., 2007; McTiernan et al., 2016). 

While single-subject designs are important as they can be highly effective at determining 

treatment efficacy at the individual level, they should not be used in isolation to make 

determinations related to policy or practice, due to their lack of generalizability (Kavale & 

Forness, 2000). To this end, a few studies have taken a meta-analytic approach to analyze single-

subject studies (Burns et al., 2010; Codding et al., 2011; Joseph et al., 2012), in order to help 

establish external validity. The discussion below focuses on three main issues emerging from 

extant literature which may inform practice: key components of instruction/intervention, 

interactions between students’ skill level and intervention strategy, and the timing of 

interventions. Further considerations regarding the relations among inattentive behavior, fluency 

interventions, and instructional timing are also discussed.   

 Considerations regarding intervention components. Children at risk for weaknesses 

in mathematics may benefit from direct training in fluency (Hartnedy, Mozzoni, & Fahoum, 

2005; McTiernan et al., 2016). Components of fluency training may include (a) explicit 

instruction regarding the target skill using overt responding techniques (e.g., see/say), (b) the use 

of manipulatives, (c) drill (learning facts in isolation (Haring & Eaton, 1978)), (e) practice (the 

use of learned responses in combination with previously learned responses), (f) corrective 

feedback, review, written or computerized exercises, (g) self-management and (h) motivators to 

maintain engagement to with the task (Burns et al., 2015; Clarke et al., 2016; Clarke, Doabler, 

Nelson, & Shanley, 2015; Fuchs, Powell et al., 2010). A central component of fluency skill 

training involves practice, typically, repeated learning trials to develop speed and accuracy (see 

Clarke et al., 2016 for a review). However, not all practice opportunities are equal. Codding and 

colleagues (2011) synthesized 17 single-subject design studies to analyze key treatment 

components, treatment intensity, and feasibly of treatment delivery. They found that 
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interventions that combined multiple components (three or more), such as drill, modeling with 

practice, and self-management strategies, were more effective than those with fewer elements. 

Further, a critical finding was that drill and practice that also includes demonstration (i.e.,  

modeling, where students observe the process or steps of the skill to be learned; this may be self- 

or teacher-directed) emerged as an effective remedial strategy (mean Phi = .71) for children with 

fluency weaknesses, although drill and practice alone was not (mean Phi = -.003), in support of 

the view that practice is a necessary but not sufficient aspect of math fact instruction (Baroody et 

al., 2009; Binder, 1996; Daly, Martens, Barnett, Witt, & Olson, 2007; Rivera & Bryant, 1992).  

Children need a fundamental understanding of number combinations (Burns et al., 2015), 

because weaknesses in conceptual understanding of basic mathematical concepts (e.g., inversion, 

commutative properties) may impair procedural fluency (i.e., knowledge of rules, symbols, and 

steps required to solve math problems; Burns et al., 2015).  Therefore, a focus on fluency should 

not come at the expense of conceptual understanding (or vice versa) (Villasenor & Kepner, 

1993). Rather than being mutually exclusive, fluency and conceptual understanding emerge from 

an iterative developmental process (Clarke et al., 2016; Rittle-Johnson, Siegler, & Alibali, 2001; 

Rittle-Johnson, Schneider, & Star, 2015). For example, in a RCT with 178 Grade 2 students, 

Carr et al. (2011) found that students who received both conceptual instruction as well as fluency 

training performed significantly better than those who were in a control group (no math 

intervention), and those who received other fluency or conceptual training only. Indeed, previous 

research on curriculum development suggests that an emphasis on mastery of basic skills within 

a rich problem-solving based context presents an effective approach to developing computation 

abilities (Reys, Reys, & Koyama, 1996). 

Examples of intervention approaches. One example of a repeated-trial fluency training 

intervention which includes drill and practice with modeling, Cover-Copy-Compare (CCC) 

(Skinner, Turco, Beatty, & Rasavage, 1989), is prominently featured in the fluency intervention 



	 101	

literature (e.g., 7 out of 17 studies including in the Codding et al., 2011 analysis were CCC or a 

variant).  In CCC, fluency develops through a combination of repeated exposures to problems 

and their answers, repeated opportunities to respond, and immediate feedback to ensure accuracy 

and avoid the reinforcement of errors (Carr et al., 2011). Students move through five steps, 

including viewing the math fact and solution (written on left side of the page), covering the math 

fact and solution, writing the fact and solution (on the right side of the page), uncovering the 

original fact/answer combination, and comparing their response to the model. Literature reviews 

and meta-analyses of single-study research have identified CCC and its variants as an effective 

strategy for building math fluency in typically-achieving children, as well as in students with 

difficulties and disabilities in mathematics (Codding et al., 2011; Joseph et al., 2012; Stocker & 

Kubina, 2016).  

CCC is simple and cost effective (i.e., is a non-commercial product). Students can easily 

learn this strategy at school, which can then be reinforced by parents (Stocker & Kubina, 2016). 

On the other hand, drill and practice with modeling strategies have been criticized for not 

engaging students, and treatment effectiveness is limited by whether students will adhere to the 

program (Hawkins et al., 2016). Experimental studies have found that technology-delivered 

fluency intervention, or computer-assisted instruction (CAI; through computers, as well as 

mobile applications “apps”), may provide an effective and cost-effective alternative (Burns, 

Kanive, & DeGrande, 2012; Ysseldyke, Thill, Pohl, & Bolt, 2005). These programs, which 

incorporate drill and practice, as well as self-monitoring, have become increasingly popular 

(Hawkins, Collins, Hernan, & Flowers, 2016).  Recently, Hawkins and colleagues (2016) 

provided guidelines to help teachers implement computer-assisted instruction. These guidelines 

include similar components to those in traditional methods, such as opportunities to respond (i.e., 

repeated practice), immediate feedback (with the option for overcorrection, or the opportunity to 
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repeat correct response following an incorrect one), and pacing that is fast enough to maintain 

student engagement but appropriate to the instructional level.  

Results from a meta-analysis of computer-based interventions (Cheung & Slavin, 2013), 

indicated that CAI are an appropriate adjunct to the math curriculum (ES = +0.15 for CAI and 

ES = +0.19 for CAI when used to supplement math instruction). The effectiveness of this 

approach is highlighted by an experimental study that included children in Grade 3 and 4 who 

were initially categorized as being at risk of serious math difficulties or disabilities (i.e., scoring 

below the 25th percentile on a group administered math achievement test) (Burns et al., 2012). 

The authors found that significantly fewer students who had received the computer-based 

fluency intervention were still categorized as at-risk for math failure at the post-test as compared 

to the control group. Not all students respond favorably to computer-based programs, and other 

work suggests that some students respond better to more traditional methods (Cates, 2005; 

Mautone, DuPaul, & Jitendra, 2005). Further, Cheung and Slavin (2013) found that CAI does not 

provide a replacement for sound teaching practices (ES = + 0.06 when used as a core component 

to math instruction). One limitation of CAI methods is that they focus only on developing 

fluency, which may not be appropriate for students whose struggles also reflect difficulties in 

conceptual understanding (Burns et al., 2012).  

My study highlighted visual-spatial working memory as a correlate in the development of 

math fluency, which raises the issue of whether working memory training might benefit students’ 

acquisition of fluency. The basic premise of working memory interventions is that targeting 

domain-general factors variables that are correlated with learning will translate to academic skill 

growth (“far transfer”). However, meta-analyses (Melby-Lervag & Hulme, 2013; Melby-Lervag 

& Hulme, 2016; Melby-Lervag, Redick, & Hulme, 2016) have failed to find convincing 

evidence supporting the improvement of academic skills after working memory training (Melby-

Lervag & Hulme, 2013; Melby-Lervag et al., 2016; Redick, Shipstead, Wiemers, Melby-Lervåg, 
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& Hulme, 2015; Titz & Karbach, 2014). For example, in a recent randomized control trial, 

Roberts and colleagues (2016) found that although working memory training in 6- and 7-year-

old children resulted in short-term improvements in visual-spatial working memory at one year, 

these effects were not sustained at two years. Further, these authors found no improvement in 

math calculation, and in fact, observed a negative association between working memory training 

and math outcomes two years post intervention.  

Working memory training programs may be more effective for younger children. For 

example, Passolunghi and colleagues (2016) found a link between working memory training and 

early math abilities/conceptual understanding of numerical quantities in preschool children. Still, 

other studies that have considered young children found that working memory training was not 

as effective as training in counting for increasing early numeracy skills (Kyttala, Kanerva, & 

Kroesbergen, 2015). Therefore, considering the significant cost of working memory training 

programs (Melby-Lervag & Hulme, 2013; Melby-Lervag et al., 2016; Redick et al., 2015; Titz & 

Karbach, 2014), and the lack of evidence for transfer to specific math skills, these programs 

would at a minimum require further study prior to implementation. 

 Other traditional strategies with demonstrated effectiveness (see Clarke et al. (2016), for 

a review) include Incremental Rehearsal (Burns, 2005), which is a drill flashcard based 

intervention without conceptual teaching, and Taped-Problems (McCallum, Skinner, & 

Hutchins, 2004; Poncy et al., 2012), where the student attempts to answer problems before the 

answer is provided on an audiotape.  Multi-component interventions include Detect, Practice, 

and Repair (Poncy, Skinner, & O'Mara, 2006), Math to Mastery (Doggett, Henington, & 

Johnson-Gros, 2006), and Great-Leaps Math (Mercer, Mercer, & Campbell, 2002; Whitney et 

al., 2016). Next steps will be to compare treatment strategies in classroom settings using RCT 

methods. For example, using a classroom-wide approach, Poncy and colleagues (2012) found 

that the Taped Problems strategy led to greater increases in arithmetic skills compared to CCC 
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for many grade 3 children, when presented as class-wide interventions.  However, Poncy et al. 

found that a minority of children responded better to CCC, suggesting differences in student 

responses to intervention. In the next section, I discuss one of the factors identified in the 

literature to consider when adapting effective interventions, the skill-by-intervention interaction.  

Considerations regarding skill-by-intervention interactions (learner characteristics). 

When determining the utility of fluency instructional approaches or interventions, an important 

factor to consider relates to matching students’ relative skill level to an intervention strategy that 

meets the need of that student. Research in this area has used the instructional hierarchy (Haring, 

Lovitt, Eaton, & Hansen, 1978), which describes students as moving through four stages of 

increasing skill (i.e., acquisition, fluency, generalization, adaptation), progressing from slow and 

deliberate responding, to fluent with the ability to utilize learned skills in novel settings. A 

similar hierarchical concept is that of instructional levels (Burns et al., 2006; Gickling & 

Thompson, 1985), also referred to as benchmarks in CBM (Hosp et al., 2007). Here, observable 

behavior (e.g., digits correct per minute) is used to categorize students by skill level ranges. 

 Studies have shown that an appropriate match between student skill level and 

intervention strategy optimizes treatment effects (Burns et al., 2010). Specifically, fluency skill 

that falls below 14 digits correct per minute (DCPM) for students in Grades 2-3, or below 24 

DCPM for 4th and 5th grade students, is referred to as the “frustration” range of performance 

(Burns et al., 2006) (i.e., similar to the “acquisition” stage of the instructional hierarchy). At this 

level, the primary goal is for the development of accurate responding, and the intervention need 

is scaffolding and direct instruction. Students are considered to be within the “instructional” 

range of performance (i.e., similar to “fluency” stage of the instructional hierarchy) when fluency 

levels fall between 14-31 DCPM in Grades 2-3 or 24-49 DCPM in Grades 4 and 5; for these 

children, the goal is increasing fluency and the suggested interventions include drill tasks (Burns 

et al., 2006). Finally, the “mastery” range is reached when children’s fluency is > 31 DCPM 
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(Grade 2-3) or > 49 DCPM (Grades 4-5). Here, the learning goal is for generalization and the 

suggested approach is to encourage problem solving with diverse and novel items and 

applications (corresponding to “generalization” and “adaptation” stages of the instructional 

hierarchy; Burns et al. (2006)).  

According to the instructional levels outlined by Burns et al. (2006), the mean DCPM in 

my study (addition), suggests that most students fell within the frustration range in the earlier 

years, with progression toward the acquisition range. However, the variability of the results 

suggests that at any given grade level, some students are particularly strong (i.e., at or close to 

the next instructional level), whereas other may lag behind (e.g., still at the frustration phase 

when same aged peers are on average working within the acquisition range). Therefore, these 

results point to the need for a class-wide instructional approach which is flexible enough to also 

meet the needs of individual students.  

In one of the few randomized control trials investigating the effectiveness of fluency 

interventions, Codding et al. (2007) found a significant interaction between initial level of 

fluency skill and response to intervention, such that students who experienced fluency levels 

within the frustration range benefitted most from an approach that included modeling (Cover-

Copy-Compare; Skinner et al., (1989; 1997)), whereas those students whose fluency levels fell 

within the instructional range benefitted most from an intervention focused on drill within a time 

limit (Explicit Timing or ET; Rhymer et al., 2002). The skill level by treatment interaction was 

further examined using meta-analysis by Burns et al. (2010), who conducted a meta-analysis of 

single-study research which included instructional approaches/interventions other than CCC and 

ET. These authors found that in Grade 2 to 6 children, interventions targeting initial acquisition 

of skills resulted in large effect sizes for those at a frustration level, but only moderate 

improvement for students at an instructional level. Although the authors were unable to draw 

firm conclusions regarding the effect of fluency interventions (i.e., to be used for those with 
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higher proficiency because of the small number of studies that included students with more 

advanced skills), they noted that fluency interventions had only small to moderate effects on 

students with weaker skills (i.e., those at the frustration level).  

Similar results have been demonstrated using single-study designs in recent years. Using 

a single-case design (multiple baseline with two first-grade students and one third grade student), 

students who struggled with conceptual knowledge received an intervention to address this 

weakness (i.e., modeling), whereas students who demonstrated weakness in fluency (but who 

showed acceptable knowledge) were administered an intervention focusing on procedural 

fluency without conceptual teaching (incremental rehearsal) (Burns et al., 2015). Following the 

establishment of a baseline, the contra-indicated instruction procedure was administered for the 

first two weeks (i.e., those with conceptual deficits received fluency training, and vice versa); the 

prescribed intervention was administered for the following two weeks. Results indicated that the 

prescribed (well-matched) intervention was significantly more effective than the contra-indicated 

intervention regardless of which intervention this was. The percentage of non-overlapping data 

(PND; non-parametric statistic providing a measure of how many points of the intervention 

phase fall above the highest point of the previous phases) ranged from 70 to 100, indicating that 

70-100 percent of the students’ data during the experimental phase fell above the highest point of 

the previous phases. These findings are in line with an earlier non-experimental study (i.e., no 

third staggered implementation phase recommended to demonstrate experimental control; Burns, 

2011). 

Taken together, these studies demonstrate the utility of ensuring that the intervention is 

well matched to the students’ level of performance. Indeed, these studies provide an illustration 

of the notion of a “window of learning” (Tucker, 1985), where learning is optimized when it 

occurs at a level that is challenging enough to stave off boredom, but not so difficult as to be 

frustrating (Burns et al., 2006). 
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Considerations regarding the timing of instruction/interventions. In addition to 

treatment effectiveness (i.e., whether an intervention is effective at increasing learners’ skill 

levels), an important practical consideration for educators is treatment efficiency (i.e., how well 

or how quickly it works). In a recent meta-analysis, Poncy and colleagues (2015) highlight the 

issue of an intervention’s relative effectiveness, by noting that remedial approaches may be 

similarly effective (change the level of ability), although they may not be equally efficient 

(taking into account the rate of improvement). By accounting for both the time devoted to the 

intervention and the scope of the intervention material presented, these authors established that 

explicit timing was twice as efficient as incremental rehearsal in improving fluency skill when 

basing the analysis on learning rate, despite the finding that effect sizes of learning (net) 

suggested that incremental rehearsal was more effective than explicit timing.  

Another timing consideration with respect to fluency building relates to the organization 

of practice when the total time is held constant. Schutte and colleagues (2015) found that third 

grade students made greater gains in addition fluency with distributed practice (i.e., 1-minute 

practice 4 times per day) than with massed practice (i.e., once per day for 4 minutes). This 

finding is in line with the well-established “spacing effect” seen in memory and learning 

research, where retention is improved when presentation of learned material is spread out over 

time (see Cepeda, Pashler, Vul, Wixted, & Rohrer, 2006 for a review). These studies have 

implications for teachers, as they suggest that optimized outcomes do not have to come at the 

expense of additional time or resources. Note, however, that few studies have studied timing and 

relative efficiency (i.e., comparing the effectiveness of interventions), and thus further research 

in this area is needed.  

Results of my dissertation also suggest that the timing of potential interventions is an 

important consideration. First, consistent with previous longitudinal studies of mathematics in 

general and of fluency skills specifically (cumulative results in this study), early interventions are 
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indicated.  However, research regarding the timing and frequency of interventions is needed, as 

previous studies have noted that the effect of early interventions often “fade out” over time 

(Bailey et al., 2014; Cooper, Charlton, Valentine, & Muhlenbruck, 2000; Cooper, Valentine, 

Charlton, & Melson, 2003). This pattern suggests that one-time early intervention may be 

insufficient to support children at risk of math weaknesses, and that close monitoring, repeated 

interventions, or implementations of supports targeting other stable latent traits that also affect 

math ability such as motivation (e.g., Bailey et al., 2014; Plamondon & Martinussen, 2015) may 

be indicated. Considering the results of the current study, one approach would be the provision 

of intervention over the summer months. 

Current initiatives in Ontario are focused on providing short-term (3-week) intensive 

interventions over the summer months to elementary students (Grades 1-5) who were identified 

as possibility being able to benefit from instruction to offset learning loss (Davies & Aurini, 

2013). This initiative started in 2010 and was coordinated by the Council of Ontario Directors of 

Education (CODE). It was funded by the Literacy and Numeracy Secretariat, Ontario Ministry of 

Education, and was initially directed at reading interventions (Davies & Aurini, 2010). Since 

2013, the province has expanded this approach to address weakness in mathematics. As this is a 

relatively recent, ongoing large-scale study, published data is limited, although initial results 

suggest promising outcomes (Davies & Aurini, 2014; Davies, Aurini, Milne, & Jean-Pierre, 

2015).  Specifically, Davies and Aurini (2014) reported that although both attendees of the 

numeracy program (n = 463) and controls (n = 1,888) experienced summer learning losses, 

attendees of the program fared better, showing one month more skill compared to the control 

group (reported effect size = .17), when student characteristics (prior numeracy, grades, and SES 

factors) were taken into account. In essence, this short-term intervention effectively offsets some 

of the summer losses, thus allowing children to “hit the ground running” when school resumes in 
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the fall (Davies & Aurini, 2014).  Qualitatively, the authors also describe increased engagement 

with the material. However, interactions with symptoms of classroom inattention are unknown.        

This line of research and intervention is important, not only in because it can offset 

summer losses, but also because it capitalizes on teaching resources by reducing the amount of 

time needed for review and re-teaching the previous year’s content. A national U.S. survey of 

500 teachers suggested that a majority (66%) spend at least 3-4 weeks re-teaching material from 

the previous year (National Summer Learning Association, 2013). Further, in terms of review 

strategies specific to arithmetic, in light of the summer slowdown, it is conceivable that some 

students will begin the year falling within a different instructional level from that which he/she 

was at in the spring. For example, consider a child who is performing at the instructional level at 

the end of Grade 3, but who is functioning at a frustration level for Grade 4 skills. It is unclear 

whether this student would benefit from further instruction with modeling, or whether they 

would simply require drill and practice. Studies indicate that skills are rapidly recouped after the 

summer months (Allinder & Eicher, 1994), in support of a focus on drill and practice, however, 

some combination of instructional methods might constitute the most effective review for many 

children.  

Consideration of the relationship between inattentive behavior, fluency 

interventions, and instructional timing. Although questionnaires related to symptoms of 

inattention (and hyperactivity) are most often administered within the context of an assessment 

regarding a potential diagnosis of Attention-Deficit/Hyperactivity Disorder, the current results 

point to the use of these tools as a potential screener for difficulties in basic academic skills (in 

the present case, math fluency). For example, irrespective of diagnosis, high levels of inattentive 

behavior may identify children who may be at risk for early academic difficulties. This 

identification is particularly relevant for children who display a greater number of inattentive 

behaviors, compared to children who also display hyperactive/impulsive behaviors, because 
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inattentive children may be less likely to come to the attention of school professionals (Willcutt, 

2012).  

Research considering accommodations for behavioral concerns has been conducted using 

clinical samples (i.e., diagnosis of ADHD), but as outlined by Harrison and colleagues (2013), 

evidence for the utility of classroom accommodations for ADHD (e.g., additional time, 

preferential classroom seating, etc.) on academic outcomes is surprisingly lacking. A commonly 

suggested accommodation for children struggling with dysfluent responding is the allocation 

additional time to complete tasks. Lewandowski and colleagues (2007) found that extended time 

limits on math fluency tasks may allow students diagnosed with ADHD achieve to their potential 

without conferring a distinct academic advantage over their typically-achieving peers, thereby 

possibly mitigating the impact of disability associated with ADHD.  Other studies, however, 

have not found that additional time enhances performance in children with attentional difficulties 

(Pariseau, Fabiano, Massetti, Hart, & Pelham, 2010), and highlight the counterintuitive nature of 

this recommendation given that children with ADHD often struggle to sustain attention during 

prolonged periods of time (e.g., Barkley, 1997). Therefore, it is currently unknown whether 

classroom accommodations could appropriately support students displaying classroom 

inattention at risk of math weakness.   

Results of my study indicate a close longitudinal link between classroom inattention and 

fluency development, suggesting the importance of considering both factors when selecting 

fluency interventions. Specifically, one might postulate that if interventions delivered during the 

school year are effective at increasing fluency growth, these may be protective in terms of skill 

slowing or further loss that inattentive children may face over the summer.  

Targeted training in fluency may be beneficial for children who struggle with fluency and 

who concurrently display symptoms of inattention. In a general sense, research suggests that the 

ability to respond fluently during tasks has the associated benefit of building children’s task 
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endurance (i.e., maintenance of a certain level of performance, or attention span, on a given task) 

(Binder, Haughton, & Van Eyk, 1990).  Other lines of evidence suggest that self-management of 

practice is associated with increased attention, motivation, and independence (Reid, Trout, & 

Schartz, 2005). Results from a meta-analysis (Codding et al., 2011) demonstrated that student-

managed fluency interventions (i.e., interventions that are self-directed) resulted in large effect 

sizes for treatment effectiveness, which as noted by the authors, highlights the beneficial nature 

of students taking responsibility for their own learning (McDougall & Brady, 1998).  Further, 

research on technology-based interventions also suggests concurrent improvements in both math 

fluency and on-task behavior (Burns et al., 2012; Mautone et al., 2005). In other words, 

following a model of reciprocal influences described above, it would be conceivable that fluency 

developed through targeted training programs could engender improvement in classroom 

inattentive behavior.  

 Students whose mathematical development is impeded by inattentive behavior may also 

benefit from interventions where behavioral symptomatology and academic functioning are 

concurrent targets. For example, class-wide peer tutoring (CWPT) which integrates one-to-one 

peer tutoring, frequent immediate feedback (Duhon, House, Hastings, Poncy, & Solomon, 2015), 

active student responding, and positive reinforcement, has been found to effectively increase 

both on-task behavior and academic productivity in children with ADHD (Buzhardt, Greenwood, 

Abbott, & Tapia, 2007; DuPaul & Eckert, 1998; DuPaul, Ervin, Hook, & McGoey, 1998; 

Maheady & Gard, 2010; Raggi & Chronis, 2006). Importantly, CWPT utilizes a game format, 

whose competitive nature may build motivation for math tasks (Plass et al., 2013). Bailey et al. 

(2014) suggest that success on math games may positively alter children’s beliefs about the value 

of math and required effort, thereby enhancing long-term math achievement (Blackwell, 

Trzesniewski, & Dweck, 2007). In addition, peer-tutoring programs have reciprocal benefits, in 
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that they effectively increase fluency for both the tutee (i.e., through overt responding) and the 

tutor (i.e., by delivering feedback; Rhymer, Dittmer, Skinner, & Jackson, 2000).  

Finally, based on the results of my study, interventions provided over the summer months 

may help inattentive children at risk of math failure catch up to their peers. Of particular interest 

are programs such as the Summer Treatment Program (STP; e.g., Fabiano, Schatz, & Pelham, 

2014; Pelham et al., 2000), a multimodal intensive treatment program based on behavioral 

principles (operant conditioning and learning theory), which targets multiple areas of impairment 

typically seen in children with ADHD (i.e., academic functioning, family and peer relationships). 

Academic impairments are addressed through daily classroom instruction, in an environment that 

promotes the development of adaptive skills and academic enablers (e.g., cooperation, increasing 

tolerance for seat work). Although STP has empirical support demonstrating its effectiveness for 

children with ADHD (see Fabiano et al., 2014, for a review), it is currently unclear whether a 

similar approach (e.g., with differing intensity) would be useful for inattentive children at risk of 

math difficulties, but whose behavioral symptoms do meet clinical threshold. Future studies 

would be needed to explore these possibilities.  

 

Limitations and Future Directions 

Although the current findings are notable, it is important to highlight the study’s 

limitations. First, although this was a community-based study, the ethnic composition of the 

study was largely Caucasian. Previous studies examining the relationship between ethnicity, 

attention problems, and academic achievement suggests a potential relationship between these 

factors. For example, Hooper and colleagues (2010) found that ratings of inattention predicted a 

more profound impact on academic functioning for African-American compared to Caucasian 

students (Hooper, Roberts, Sideris, Burchinal, & Zeisel, 2010). Further, Rabiner and colleagues 

(2004) found that attention problems were uniquely associated with academic achievement in 
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first grade children, and that a substantial portion of the achievement gap between African 

Americans and Caucasian students was related to higher rates of inattention in the former group. 

Although these studies were conducted using American samples, and it is unclear if similar 

findings would be seen using a Canadian sample; nonetheless, with potential interactions 

between these factors, replication with large samples representative of the population in terms of 

ethnic representation will be important. Second, the significant amount of variance that remained 

unexplained in each analysis  of the current study highlights the importance of including of other 

variables that are associated with math fluency in future longitudinal work (Bailey et al., 2014). 

The current study only accounted for a limited number of domain-general abilities. However, 

previous studies as well as extant theory in math development suggest important roles for both 

domain-general and domain- specific factors. For example, research highlights the importance of 

domain-general constructs such as IQ (Geary, 2011a), processing speed (Bull & Johnston, 1997), 

and phonological processing (Barnes et al., 2014; De Smedt et al., 2010; Fuchs et al., 2005; 

Fuchs et al., 2006) for fluency development (but also see Jordan, Hanich, and Kaplan; 2003). 

Domain-specific abilities (e.g., number sense and subitizing ability) are also important in math 

fluency development (Fuchs et al., 2010; Martin et al., 2014; Robinson, Menchetti, & Torgesen, 

2002).  

Other important factors may include academic enablers, such as motivation or task 

engagement (Plamondon & Martinussen, 2015; Murayama et al., 2013). In terms of theories 

proposed to synthesize current findings on math development, LeFevre and colleagues’ 

Pathways to Mathematics model (LeFevre et al., 2010; Sowinski et al., 2015) highlights the 

contribution of linguistic and quantitative pathways, in addition to a visual attention (working 

memory) pathway, to children’s skill in numeration, number line understanding, and calculation 

(LeFevre et al., 2010). Notably, all three pathways contributed to math fluency specifically, 

while controlling for sex, parent level of education, and processing speed (Sowinski et al., 2015). 
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Therefore, linguistic and quantitative factors should be included in future longitudinal studies on 

math fluency development. Further, an appreciation of the fact that the independent variables 

may themselves be developing (e.g., working memory; Li and Geary, 2013) will be important to 

include in these studies. Third, providing a direct comparison of addition and subtraction fluency 

using the corresponding problem stems (e.g., 7 + 4 and 7 - 4), would have allowed for a more 

robust comparison of growth trajectories (Barrouillet et al., 2008; Kamii et al., 2001).  Fourth, a 

small number of longitudinal studies on the math development have noted heterogeneity in terms 

of the developmental dynamics of math achievement in community samples (Aunola et al., 2004; 

Jordan et al., 2009; Jordan et al., 2006; Salaschek et al., 2014). Although the current study was 

able to model variability in the sample level, data-driven analyses identifying subgroups of 

children who follow different trajectories, and the individual variables that predict these 

trajectories in community samples (Salaschek et al., 2014) are important next steps, which would 

further differentiate children who are particularly at risk for long-term math failure versus those 

who may be able to catch up to their peers, despite early struggles in math.  

Finally, the current research did not take into account specific teaching practices that 

were in operation at the time of the study, and the potential effects of these practices on math 

fluency development for the current sample. Although it might be assumed that approaches to 

teaching may be fairly uniform (i.e., following the Ontario curriculum), there may be variability 

in the implementation of prescribed methods (Ross et al., 2002). Factors to consider would 

include whether students were offered instruction aimed at enhancing fluency skill, whether a 

focus on fluency shifted over the grades, and whether practices were differentiated according to 

individual student need. These variables could have important implications for results both 

between and within students over time (e.g., could influence the Matthew effect). This type of 

analysis could be performed in future research by adding a third level to the HLM analysis, 
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which would account for classroom variables (i.e., time is nested within students, and students 

are nested within classrooms).   

 

Summary and Conclusion 

The current study showed that basic addition and subtraction fluency develops in a 

cumulative manner, both within and across the early elementary grades. Thus, children who lag 

behind their peers in fluency skills do not catch up, at least in the four-year period covered by 

this study. Further, by parceling out seasonal effects, I showed that visual-spatial working 

memory is related to the development of fluency during instructional periods (i.e., school), 

whereas classroom inattention was a unique predictor of weaker addition and subtraction fluency 

both during school and over the summer. Further, teacher ratings of classroom inattention 

predicted children’s long-term fluency development and the widening gap between students 

across the early elementary years, even after controlling for age, sex, parent level of education, 

verbal and visual-spatial working memory. Major implications of these findings include a 

potential role for behavioral symptoms of classroom inattention as a flag for later math 

difficulties, as well as the consideration of the interaction between timing of interventions and 

individual characteristics when planning for effective math fluency instruction and intervention. 

These results also suggest that children who are inattentive and have weak visual-spatial working 

memory may be particularly at risk for math difficulties in the early elementary grades.  

The results of the current dissertation raise interesting questions for future research. 

Longitudinal studies using larger and more representative samples are needed that also 

incorporate piecewise designs to explore the interaction between instructional breaks and 

individual characteristics (i.e., demographic, cognitive, and behavioral). Further, studies that 

examine whether inattention in the classroom is a reliable marker for mathematical difficulties, 

those that explore the reciprocal impact of interventions on both fluency development and 
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behavioral attention, and those that evaluate strategies that could mitigate the negative impact of 

inattentive behavior on mathematical achievement while increasing productivity are indicated.   

Finally, the finding inattention and working memory also shared variance in the prediction of the 

development of math fluency across the grades highlights a close relationship between these 

factors. Examination of this association, with a focus on potential reciprocal relationships (e.g., 

Metcalfe et al., 2013), and exploration of the value of shared (as opposed to unique) variance 

(Plamondon &Martinussen, 2015) is warranted. The overarching goal of this line of research 

would be to gain a clearer understanding of the relationship between teacher-related inattention, 

working memory, and math achievement, to guide the development of preventative instructional 

or early-intervention programs geared towards helping children achieve their academic potential.   
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Table 1. Participant demographics at study entry (fall of year 1). 

 Grade at Study Entry 
 Grade 1 Grade 2 Grade 3 
n 55 66 88 
Sex (% male) 45% 48% 54% 
Mean age in years 6.05 7.04 8.04 
 Exceptionalities (Percentages) 
Gifted 0 0 0 
Learning Disability 3.6 1.5 3.6 
Language Impairment 7.3 6.1 1.2 
Mild Intellectual Disability 0 0 0 
Autism/ASD 0 0 0 
Multiple Exceptionalities 0 0 0 
Developmental Disability 0 1.5 0 
Behavioural  3.6 0 1.2 
Attention Deficit Hyperactivity 
Disorder 

1.8 4.5 7.2 
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Table 2. Accelerated growth curve design. 
Grade at 

study entry 
(cohort) 

Grade 1 
Fall  

Grade 1 
Spring  

Grade 2 
Fall  

Grade 2 
Spring  

Grade 3 
Fall  

Grade 3 
Spring  

Grade 4 
Fall  

Grade 4 
Spring  

1 X X X X     
2   X X X X   
3     X X X X 

Note. Xs indicate points where students were assessed.  
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Table 3. Contrasts depicting linear, quadratic, and cubic trends, for both between-grade and 
within-grade growth. 

Grade 
(Time) 

Between-
grade linear 

Between-
grade 

quadratic 

Between-
grade cubic 

Within-
grade mean 

Within-
grade linear 

Within 
Grade 
Quad 

1 (Time 1) -3 1 -1 -1 3 -1 
1 (Time 2) -3 1 -1 1 -3 1 
2 (Time 1) -1 -1 3 -1 1 1 
2 (Time 2) -1 -1 3 1 -1 -1 
3 (Time 1) 1 -1 -3 -1 -1 1 
3 (Time 2) 1 -1 -3 1 1 -1 
4 (Time 1) 3 1 1 -1 -3 -1 
4 (Time 2) 3 1 1 1 3 1 
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Table 4. Means and Standard Deviations of Math Fluency.  
 Grade at 

study 
entry 

(cohort) 

Grade 
1 

Time 
1 

Grade 
1 

Time 
2 

Grade 
2 

Time 
1 

Grade 
2 

Time 
2 

Grade 
3 

Time 
1 

Grade 
3 

Time 
2 

Grade 
4 

Time 
1 

Grade 
4 

Time 
2 

CBM  
Addition 

1 
(n = 52) 

5.00 
(4.18) 

8.85 
(4.82) 

9.91 
(6.36) 

15.63 
(8.30) 

    

 2 
(n = 61) 

  11.83 
(5.79) 

15.53 
(6.31) 

17.15 
(5.90) 

21.63 
(7.83) 

  

 3 
(n = 79) 

    15.61 
(6.27) 

21.12 
(6.85) 

19.94 
(7.79) 

22.96 
(9.48) 

CBM 
Subtraction 

1 
(n = 53) 

3.12 
(2.87) 

6.13 
(3.56) 

7.72 
(4.10) 

11.00 
(5.48) 

    

 2 
(n = 61) 

  6.67 
(4.43) 

10.06 
(4.98) 

12.27 
(5.01) 

14.32 
(5.75) 

  

 3 
(n = 79) 

    10.79 
(4.81) 

13.83 
(5.44) 

14.32 
(5.80) 

17.18 
(6.72) 

WJ-III 
Math 

Fluency 

1 
(n = 53) 

3.61 
(2.89) 

5.73 
(344) 

7.54 
(3.65) 

9.75 
(3.91) 

    

 2 
(n = 62) 

  7.92 
(3.79) 

9.07 
(3.83) 

10.89 
(4.20) 

13.06 
(4.28) 

  

 3 
(n = 79) 

    11.26 
(3.58) 

12.00 
(3.87) 

13.66 
(4.30) 

15.02 
(5.17) 

Note. Numbers in parentheses are standard deviations. 
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Table 5. Correlations Among Predictor Variables and Addition Fluency (n =192 to 201).    

  1 2 3  4 5 6   7 8 
1. CBM Addition T1 - - - - - - - - 
2. CBM Addition T2 .84*** - - - - - - - 
3. CBM Addition T3 .79*** .81*** - - - - - - 
4. CBM Addition T4 .72*** .72*** .81*** - - - - - 
5. Sex -.09 -.07 -.07 -.06 - - - - 
6. Parent Education .07 .11 .14 .22** .08 - - - 
7. Verbal WM .17* .20** .21** .21** -.07 .17* - - 
8. Visual-Spatial WM .38*** .50*** .41*** .45*** .05 .15* .14* - 
9. Inattention -.32*** -.35*** -.43*** -.48*** -.38*** -.23** -.16* -.36*** 

 Note. a Point biserial correlations are reported for Sex. 
*p < .05, **p <. 01, *** p < .001  
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Table 6. Correlations Among Predictor Variables and Subtraction Fluency (n =193 to 203)   

  1 2 3 4 5 6   7 8 
1. CBM Subtraction T1 - - - - -  -   - - 
2. CBM Subtraction T2 .78*** - - - - - - - 
3. CBM Subtraction T3 .73*** .81*** - - - - - - 
4. CBM Subtraction T4 .68*** .76*** .80*** - - - - - 
5. Sex -.15* -.11 -.04 -.19** - - - - 
6. Parent Education .05 .09 .17* .19** .09 - - - 
7. Verbal WM .16* .17* .19** .22** -.06 .17* - - 
8. Visual-Spatial WM .41*** .49*** .43*** .47*** .04 .15* .12 - 
9. Inattention -.29*** -.35*** -.45*** -.38*** -.39*** -.24** -.18** -.34*** 

 Note. a Point biserial correlations are reported for Sex. 
 *p < .05, **p <. 01, *** p < .001 
 
  



	 123	

 
 
 
Table 7. Correlations Among Predictor Variables and WJ-III Fluency (n =193 to 203)    

  1 2 3 4 5 6 7 8 
1. WJ-III T1 - - - - - - - - 
2. WJ-III T2 .85*** - - - - - - - 
3. WJ-III T3 .84*** .88*** - - - - - - 
4. WJ-III T4 .77*** .82*** .83*** - - - - - 
5. Sex -.07 -.09 -.09 -.12 - - - - 
6. Parent Education .11 .09 .13 .16* .09 - - - 
7. Verbal WM .21** .23** .24** .24** -.06 .17* - - 
8. Visual-Spatial WM .45*** .47*** .42*** .41*** .04 .15* .12 - 
9. Inattention -.35*** -.41*** -.42*** -.40*** -.39*** -.24** -.18** -.34*** 

 Note. a Point biserial correlations are reported for Sex. 
*p < .05, **p <. 01, *** p < .001 
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Table 8. Addition Growth Models with Predictors Entered at Level-2 (Level-1 n = 785, Level-2 n = 200) 
 FUM Model 0 Model 1 

 
Model 2 

 
Model 3 

 
Model 4 

 
Model 5 Model 6 

 
Model 7 

 
For Intercept, β0       
    Intercept, γ00 
    Sex, γ01 

    Parent Education, γ02 
    Verbal WM, γ03 
    Visual-spatial WM, γ04 
      Inattention, γ05 

 
15.95*** 

 
15.14*** 

 
15.05*** 

 
 

 
15.38*** 

-.63 
  
 

 
15.54*** 

-.93 
.91** 

 
15.38*** 

-.65 
 .73** 

.54*** 
  

 
15.43*** 

-.89 
.54* 
.45** 

.50*** 
 

 
16.84*** 
 -3.76*** 

.17 

.25* 

.18* 
-2.76*** 

 
14.99*** 

- 
.15 
.36** 
.23* 

-2.17*** 
For Between Gr. Linear, β1 
    Intercept, γ10 
    Sex, γ11 

       Parent Education, γ12 

    Verbal WM, γ13 
    Visual-spatial WM, γ14 
      Inattention, γ15 

  
2.38*** 

 
 2.38*** 

  
 

 
2.41*** 

-.05 
 

   

 
2.46*** 

-.13 
.19  

  
 

 
2.44*** 

-.10 
.17 
.05 

  
 

 
2.44*** 

-.16 
.13  
.03 

.09*** 

 
2.72*** 

-.54* 
.08 
.03 
.05 

-.28** 

 
2.45*** 

- 
.05 
.04 
.06 

-.20* 
For Between Gr. Quad, β2 
     Intercept, γ20 
    Sex, γ21 

       Parent Education, γ22 

    Verbal WM, γ23 
    Visual-spatial WM, γ24 
      Inattention, γ25 

  
-.72*** 

 
-.77*** 

 

 
-.87*** 

.21 
  

  
-.85** 
.19 

-.01 

 
-.83** 
.13 
.02 

-.12* 

 
-.86** 
.11 
.02 

-.11 
-.03 

 
-.73** 
-.17 
-.03 
-.14* 
-.07 
-.31* 

 
-.80*** 

- 
-.02 
-.13* 
-.06 
-.28* 

For Within Gr. Mean, β3 
    Intercept, γ30 
    Sex, γ31 

      Parent Education, γ32  
   Verbal WM, γ33 
    Visual-spatial WM, γ34 
      Inattention, γ35 

  
2.05*** 

 
 2.05*** 

 
 

  
 .2.07*** 

-.04 
 
 

  
 2.09*** 

-.08 
.19* 
 

 
2.09** 
-.07 
.18* 
.02 

 
2.13*** 

-.13 
.13 

-.00 
.14*** 

 
2.20*** 

 -.27 
.11 

-.00 
.13*** 
-.13 

 
2.07*** 

- 
.11 

-.00 
.13*** 
-.09 

For Within Gr. Linear, β4 
    Intercept, γ40 

  
-.03 

 
-.05 

 
-.05 

 
-.04 

 
-.05 

 
-.10 

 
-.10 

 
-.10 

For Within Gr. Quad, β5 
    Intercept, γ50 

    Sex, γ51 

      Parent Education, γ52 
    Verbal WM, γ53 
    Visual-spatial WM, γ54 

  
-.35** 

 
-.32** 

 
-.20 
-.24 

 
-.21 
-.23 
-.00 

 
-.210 
-.24 
.00 

-.03 
 

 
-.19 
-.24 
-.00 
-.02 
.01 

 
-.18 
-.27 
-.00 
-.02 
.01 

 
-.31* 
- 
-.00 
-.01 
.01 
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      Inattention, γ55  -.02 .01 

Random effect   
Intercept, u0 

Between Grade Linear, u01 

Within Grade Mean, u02 
Level-1 error (rij)1 

48.01*** 
 
 

27.23 

33.79*** 
 
 

13.94 

33.45*** 
.95*** 

.43 
11.65 

33.21*** 
.95*** 

.42 
11.52 

31.40*** 
.88*** 

.36 
11.48 

28.96*** 
.86*** 

.35 
11.34 

25.07*** 
.72*** 

.18 
11.24 

15.77*** 
.50*** 

.14 
11.43 

18.46*** 
.57*** 

.16 
11.43 

Total % Variance intercept 
explained  
Total % Variance linear 
slope explained  

    
 

.07 
 
.00 

6.12 
 

 7.36 

 13.42 
  

9.47 

25.05 
 

24.21 

52.85 
 

 47.36 

44.81 
  

40.00  

Model fit deviance test 
compared to previous 
model 

  χ2 (3) = 
21.72*** 

χ2 (5) = 
2.37 

χ2 (5) = 
12.42* 

χ2 (5) = 
19.22** 

χ2 (5) = 
33.65*** 

χ2 (5) = 
87.40*** 

χ2 (5) = 
28.72*** 

*p < .05, **p <. 01, *** p < .001;  

1Note: p values are not calculated for Level 1 error. FUM: Fully Unconditional Model. Model 0 represents a preliminary unconditional 

model (no predictors at level 2) where only the intercept was treated as random; all other contrasts were fixed. Model 1 represents is 

the final unconditional model (no predictors at level 2), when between-grade linear and within grade means were allowed to vary (best 

fit as outlined in the text). Model 2 through 6 represents forward stepping of variables in the following order: sex, parent level of 

education, verbal working memory, visual-spatial working memory, classroom inattention. Backward stepping was used in Model 7, 

where the effect of sex was removed.  
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Table 9. Subtraction Growth Models with Predictors Entered at Level-2 (Level-1 n = 789, Level 2 n= 201) 

*p < .05, **p <. 01, *** p < .001 

Fixed effect FUM Model 0 Model 1 Model 2 
 

Model 3 
 

Model 4 
 

Model5  Model 6 
 

Model 7  

For Intercept, β0       
    Intercept, γ00 
    Sex, γ01 

    Parent Education, γ02 
    Verbal WM, γ03 
    Visual-spatial WM, γ04 
      Inattention, γ05 

 
10.97*** 

 
10.51*** 

 
10.61*** 

  
 

 
11.11*** 

-.97 
 

 
11.24*** 

-1.22* 
.67** 

 
11.14*** 

-1.03 
.53** 

.41*** 

 
11.20*** 

-1.17* 
.39* 

.35*** 

.38*** 

 
12.18*** 
-3.17*** 

.15 

.20* 
.18** 

-1.83*** 

 
10.60*** 

- 
.12 

.29*** 
.22** 

-1.34*** 
For Between Gr. Linear, β1 
    Intercept, γ10 
    Sex, γ11 

       Parent Education, γ12 

    Verbal WM, γ13 
    Visual-spatial WM, γ14 
      Inattention, γ15 

  
2.01*** 

 
2.04*** 

  
 

 
2.05*** 

-.04 
 

  

 
2.09*** 

-.11 
.18** 

 
2.08*** 

-.08 
.15* 
.04 

 
2.04*** 

-.13 
.12 
.03 
.04* 
 

 
2.20*** 

-.43** 
.08 
.02 
.02 

-.21*** 

 
2.00*** 

- 
.06 
.04 
.02 

-.16** 
For Within Gr. Mean, β3 
    Intercept, γ20 
    Sex, γ21 

      Parent Education, γ22 

    Verbal WM, γ23 
    Visual-spatial WM, γ24 
      Inattention, γ25 

  
1.45*** 

 
 1.44*** 

  

  
1.64*** 

 -.40* 
 

 
1.66*** 

-.43* 
.09 

 
1.65*** 

-.41* 
.08 
.03 
 
 

 
1.67*** 

-.44* 
.05 
.02 

.08*** 
 

 
1.72*** 

-.54* 
.04 
.01 

.07** 
-.09 

 
1.44*** 

- 
.03  
.02 

.08** 
-.00 

Random Effect    
Intercept, u0 

Between Grade Linear, u01 

Within Grade Mean, u02 

Level-1 error (rij)1 

24.17*** 
 
 

16.85 

17.75*** 
 
 

8.33 

16.87*** 
.49*** 

.31 
7.10 

16.64*** 
.49*** 

.29 
7.06 

15.79*** 
.43*** 

.27 
7.03 

14.65*** 
.43*** 

.27 
7.02 

12.54*** 
.36*** 

.19 
7.03 

7.88*** 
.22*** 

.14 
7.22  

9.95*** 
.29*** 

.22 
7.13 

Total % Variance intercept 
explained  
Total % Variance linear slope 
explained  

     1.36 
 
.00 

6.40 
 

12.24 

13.15 
 

12.24 

25.66 
 

26.53 

53.28 
  

55.10 

41.01 
 

40.81 

Model fit deviance test 
compared to previous model 

  χ2 (3) = 
21.39*** 

χ2 (3) = 
5.44 

χ2 (3) = 
13.29** 

χ2 (3) = 
13.05** 

χ2 (3) = 
28.99*** 

χ2 (3) = 
78.02*** 

χ2 (3) = 
38.49*** 
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1Note: p values are not calculated for Level 1 error. FUM: Fully Unconditional Model. Model 0 represents a preliminary unconditional 

model (no predictors at level 2) where only the intercept was treated as random; all other contrasts were fixed. Model 1 represents is 

the final unconditional model (no predictors at level 2), when between-grade linear and within grade means were allowed to vary (best 

fit as outlined in the text). Model 2 through 6 represents forward stepping of variables in the following order: sex, parent level of 

education, verbal working memory, visual-spatial working memory, classroom inattention. Backward stepping was used in Model 7, 

where the effect of sex was removed.  
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Table 10. WJ-III Growth Models with Predictors Entered at Level-2 (Level-1 n = 790, Level-2 n= 201) 
Fixed effect FUM Model 0 Model 1 

 
Model 2 

 
Model 3 Model 4  Model 5 

 
Model 6 

 
Model 7 

 
For Intercept, β0       
   Intercept, γ00 
    Sex, γ01 

    Parent Education, γ02 
    Verbal WM, γ03 
    Visual-spatial WM, γ04 
      Inattention, γ04 

 
10.27*** 

 
9.81*** 

 
9.89*** 

 
  
 

 
10.16*** 

-.55 
 
 

 
10.24*** 

-.70 
.51** 

 
10.14*** 

-.52 
.38* 

.41*** 
 

 
10.21*** 

-.61 
.28 

.37*** 

.30*** 
 

 
11.10*** 
-2.41*** 

.05 
.23*** 

.11* 
-1.68*** 

 
9.91*** 

- 
 .04 

.29*** 
.14** 

-1.31*** 
For Between Grade Linear, β1 
     Intercept, γ10 
    Sex, γ11 

       Parent Education, γ12 

    Verbal WM, γ13 
    Visual-spatial WM, γ14 
      Inattention, γ15 

  
1.63*** 

 
1.64*** 

 
1.68*** 

-.10 

 
1.70*** 

-.12 
.05 

 
1.69*** 

-.11 
.04 
.02 

 
1.66*** 

-.13 
.02 
.02 
.01 

 
1.74*** 

-.21 
.02 
.02 
.00 

-.05 

 
1.64*** 

- 
.00 
.02 
.00 

-.02 
For Between Gr. Quad, β2 
    Intercept, γ20 
    Sex, γ21 

      Parent Education, γ22 

    Verbal WM, γ23 
    Visual-spatial WM, γ24 
      Inattention, γ25 

  
-.29*** 

 
-.23** 

 
-.16 
-.16 

 
-.16 
-.15 
-.01 

 
-.15 
-.16 
-.00 
-.01 

 
-.14 
-.16 
-.00 
-.01 
.00 

 
-.08 
-.28 
-.03 
-.03 
-.01 
-.14* 

 
-.21* 
- 
-.02 
-.02 
-.01 
-.10 

For Within Grade Mean, β3 
    Intercept, γ30 
    Sex, γ31 

      Parent Education, γ32 

    Verbal WM, γ34 
    Visual-spatial WM, γ35 
      Inattention, γ36 

  
.77*** 

 
 .76*** 

  
.82*** 

-.12 

 
.82*** 

-.12 
.00 

  
.82*** 

-.11 
-.00 
.00 
 

 
.82*** 

-.12 
-.00 
.00 
.00 
 

 
.86*** 

-.19 
-.00 
.00 

-.00 
-.06 

 
.76*** 

- 
-.00 
.00 

-.00 
-.03 

Random Effect          
Intercept, u0 

Between Grade Linear, u01 

Within Grade Mean, u02 
Level-1 error (rij)1 

18.09*** 
 
 

7.95 

12.10*** 
 
 

3.07 

11.54*** 
.23** 
.20* 

3.07 

11.51*** 
.22** 
.19* 

3.08 

10.93*** 
.22* 
.19* 

3.07 

9.69*** 
.22* 
.19* 

3.07 

8.51*** 
.20* 
.18* 

3.09 

4.91*** 
.20* 
.20* 

3.05 

5.91*** 
.24** 
.22* 

3.07 
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*p < .05, **p <. 01, *** p < .001 

1Note: p values are not calculated for Level 1 error. FUM: Fully Unconditional Model. Model 0 represents a preliminary unconditional 

model (no predictors at level 2) where only the intercept was treated as random; all other contrasts were fixed. Model 1 represents is 

the final unconditional model (no predictors at level 2), when between-grade linear and within grade means were allowed to vary (best 

fit as outlined in the text). Model 2 through 6 represents forward stepping of variables in the following order: sex, parent level of 

education, verbal working memory, visual-spatial working memory, classroom inattention. Backward stepping was used in Model 7, 

where the effect of sex was removed.  

  

  

% Variance intercept 
explained  
% Variance linear slope 
explained 

    
 

 .25 
4.34 

5.28  
4.34 

 16.03 
4.34 

26.25 
13.04 

57.45 
13.04 

48.78 
-4.16 

Model fit deviance test 
compared to previous model 

  χ2 (3) = 
16.81*** 

χ2 (4) = 
2.52 

χ2 (4) = 
9.90* 

χ2 (4) = 
22.45*** 

χ2 (4) = 
24.11*** 

χ2 (4) = 
102.69**

* 

χ2 (4) = 
35.56*** 
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Figure 1. Accelerated growth curve for CBM addition (n = 192), CBM subtraction (n = 193), 

and WJ-III fact fluency (n = 194). Fluency scores represent raw score means. In each graph, the 

three distinct curves represent the three grade cohorts (Grade 1-3, at study entry).   
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Figure 2. Addition (2a) and subtraction (2b) fluency growth curves. For both graphs, solid black 

lines depict the combined effect of the between- and within-grade growth. In Figure 2a, 

significant between-grade linear and between-grade quadratic growth trends are illustrated by 

both the dotted (linking the beginning of the year of each grade) and hashed lines (linking the 

end of year for each grade). Similarly, Figure 2b, shows the significant between-grade linear 

growth.   
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Figure 3a. Plot of individual growth curves representing CBM addition. Individual curves are plotted 

according to the average growth over four testing points (X-axis) by growth from Year 1 to Year 2 of 

the study (Y-axis), for each grade at study entry (i.e., Grade 1, 2, 3 at study entry). 

0 20 40 60 80

−2
0

−1
0

0
10

20
30

40
G

ro
wt

h 
fro

m
 g

ra
de

 1
 to

 g
ra

de
 2

●

● ●
●

●
●

●

●

●
●

● ●

●

●

● ●

●
● ● ●

●
●

● ●

●

●
●

●

● ●
●

●

●

●

● ●

●
● ●

●
●

●
●

●

●
●

●

●

●
●

●

●

●

●

● ●

● ●
●

●

●

● ●

●
● ● ●

●

● ●
●

●

●
●

●
●

●

●
●

●

●
●

● ●

● ● ●

●
●

●
●

●

● ● ●

●

● ●
●

●

●

●
● ●

●
●

●
●

●
●

● ●

●

● ●
●

●

●
●

●

●
●

●

●

●

● ●

●

●

●
●

●

●

● ●
●

● ● ●
●

● ●

●

●

●
● ●

●

● ● ●

●

●

●

●
●

● ●
● ● ●

● ●
●

●
● ●

●

●

●

● ●

●

●
●

●

●

● ● ●

● ●

●
●

●
● ●

●

●

●
●

●
●

● ●
●

●

●

●
●

●

●
●

●

● ● ● ●

●
●

●

●

● ● ● ●

−25

0

25

−25
1 2

Cohort 1

0 20 40 60 80

−2
0

−1
0

0
10

20
30

40
G

ro
wt

h 
fro

m
 g

ra
de

 2
 to

 g
ra

de
 3

●
● ● ●

●
●

●
●

●
● ●

●

●

●
●

●● ●
● ●

●

●

●
●

● ●

● ● ●

●
●

●

●

●
● ●

●

● ●
●

● ● ●

●

●

●
●

●

●

●
●

●

●
●

●

●

●
●

●

●

●
●

●
●

● ●

● ●

●

●

●

●

●

● ●

●

● ●

●
● ●

●
● ●

●
●

●

●

●
● ●

●

● ●
● ● ● ●

●
●● ●

●

●

● ● ●

●

● ● ●
●

● ● ●

●

●

●

●

●

● ● ●
●

●
● ●

●

●

●

●

●

●

●

●

●

● ●

●
●

●
●

●
●

●
● ●

●

●
● ●

●

●
●

● ●
●

●

●

●

●

●
●

●

●

●

●
●

● ●
●

●
● ● ●

●

●

● ● ●

●

●
●

●

●
● ●

●

●

● ●
●

●

● ● ●

●
● ●

●

● ● ●

●

●

●
● ●●

●
● ●

●
●

●

●

●

●
● ●

●

●
●

●

● ●

●

●

●

● ●

●

● ● ●

●

●

● ●
●

●
● ●

●

● ● ● ●

−25

0

25

−25
2 3

Cohort 2

0 20 40 60 80

−2
0

−1
0

0
10

20
30

40
G

ro
wt

h 
fro

m
 g

ra
de

 3
 to

 g
ra

de
 4

●

●
● ●

● ●

●
●

●

●

● ●

●

● ●
●

●

●
●

●

●

● ● ●
● ●

●

●

● ●

●
●

●
● ●

●

● ● ●

●

●

●

●
●

●
●

●
●

●

●
● ●

●
● ●

●
● ●

● ●

●

●
●

●

●
●

●
●

●

● ● ●

●
● ●

●

●

●
●

●

●

●
●

●
● ● ●

●

●
● ●

●●

● ● ●

● ● ●
●

●
●

● ●

● ●
●

●

●

●

●
●

●

●
●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

● ●
● ●

● ●

●

●

●

●
●

●

● ● ●

●

●

●
●

●

● ●

●

●
●

● ●

● ●
●

●

●
●

●
●

● ● ●

●
●

●
● ●

●

● ●

●

● ● ●

●

●

● ●
●

●
●

●
●

●
●

●
●

●

● ●

●

●

●
●

●

●
●

●

●

●

●
● ●

●

●

●
●

●

● ●

●

●

●

●
●

●

● ●

●

●
●

●

●

●

●
●

●

● ●

●
●● ●

●

●

●
● ●

●

● ●

●

●

●

●

●

●

●
●

●

●●
● ●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●
●

●

● ●
● ●

●

●
●

●

●

●

●
●

●
●

●

●

●

● ●

●

●

●
●

●

●
● ●

●

●

●

●

●

●
●

● ●
●

●

●

●●
●

● ●

● ● ● ●

−25

0

25

−25
3 4

Cohort 3

CBM Addition

Overall average over both grades



	 133	

 

Figure 3b. Plot of individual growth curves representing CBM subtraction. Individual curves are 

plotted according to the average growth over four testing points (X-axis) by growth from Year 1 to 

Year 2 of the study (Y-axis), for each grade at study entry (i.e., Grade 1, 2, 3 at study entry). 
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` 

Figure 3c. Plot of individual growth curves representing WJ-III. Individual curves are plotted 

according to the average growth over four testing points (X-axis) by growth from Year 1 to Year 2 of 

the study (Y-axis), for each grade at study entry (i.e., Grade 1, 2, 3 at study entry). 
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Figure 4. Relationship between verbal working memory and math fluency for  a) CBM addition, 

b) CBM subtraction, and c) WJ-III Math Fluency. Lines depict quartiles of verbal working 

memory. 
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Figure 5. Relationship between visual-spatial working memory and math fluency for a) CBM 

addition, b) CBM subtraction, and c) WJ-III Math Fluency. Lines depict quartiles of visual-

spatial working memory.    
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Figure 6. Relationship between teacher-rated inattention and math fluency for a) CBM addition, 

b) CBM subtraction, and c) WJ-III Math Fluency. Lines depict quartiles of inattention.   
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Appendix A 
 

Scoring guidelines for M-CBM 
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Scoring guidelines for M-CBM 
 
1. Correct Digits (CD): Each correct digit that a student writes in the correct place value is 
marked and counted. 
2. Full credit for the digits correct is awarded even if work is not shown.   
3. For problems that are either incorrect or incomplete, credit is awarded for correct digits that 
were also in the correct place value. 
 
 
Examples: 

   11         (2 CD possible)                 
+   7                    Score = 2 CD          
  18     
 ññ 

 
 

     8         (2 CD possible)                 
+   7                    Score = 1 CD          
  14 
 ñ 

 

 
      
  12    (1 CD possible) 
-   5     Score = 1 CD 
    7 
  ñ 

 
  12            (2 CD possible) 
-   2          Score = 0 CD 
    9 
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