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Abstract

In this dissertation, we study MIMO two-way relay networks consisting of single-

antenna users which wish to exchange information with the help of multiple multi-

antenna relays. The problem we aim to solve is to minimize the total transmit

power consumed in the entire network while certain quality-of-service constraints are

satisfied at the transceivers. To do so, we optimize jointly the relays’ beamforming

matrices and the transceivers’ transmit powers. We assume that networks use the

multiple access broadcast (MABC) relaying scheme where each round of information

exchange between the transceivers takes place in two time-slots.

In Chapter 3, the network is assumed to be synchronous while in Chapter 4,

we study asynchronous networks. In asynchronous networks, the data transmitted

from transceivers will arrive with different delays at relays and the data forwarded

from relays will arrive with different delays at each transceiver. In Chapter 5, we

use a massive number of relay antennas in a two-way relay network with multiple

peer-to-peer communications established with the help of multi-antenna relays.

We observe that under the assumption that the relay beamforming matrices are

symmetric, the total power minimization problems in synchronous and asynchronous

networks are amenable to semi-closed-form solutions. Considering asynchronous net-

works, we prove rigorously that at the optimum, only those relays corresponding to

the power-optimal synchronous sub-network of relays must contribute to the data

exchange between transceivers. Equipping relays in the multipair two-way relay net-

works with massive number of antennas, we study performance of linear relaying

techniques such as the maximum ratio transmitting/combining (MRT/MRC) and the

zero-forcing (ZF) schemes. Exploiting the approximate orthogonality among relay-

transceiver channel vectors when number of relay antennas are very large, we show

that the total power minimization problem for networks with a massive number of

relay antennas will be amenable to a semi-closed form solution.
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Chapter 1

Introduction

1.1 Overview

Nowadays, wireless communication services are not just limited to occasional phone

calls. These days, users’ daily life and businesses are relying heavily on the services

provided by wireless networks. For example, a significantly large portion of the en-

tire world population currently have access to the Internet, which provides users in

urban, rural, and remote areas with many social and economical benefits. This sig-

nificant growth in the access to the Internet is largely because of wireless networks.

Moreover, with the ever-increasing development of wireless networks, user demands

are not remaining limited to the connectivity. Instead, user requirements are moving

toward the quality-of-services being provided by the networks. To the contemporary

users, anything but a seamless and ubiquitous access to the network is becoming

inconvenient and unacceptable. Although, existing wireless networks relying on new

technologies are becoming very dependable, but users are still asking for much better

performances. Higher data-rates, lower latency, higher radio link reliability, higher

connectivity, and higher mobility ranges are among the essential features users ex-

pect from future wireless networks [2, 3]. These ever-increasing user demands result

in many challenges which prospective wireless networks have to overcome.

The users ever-growing demand for ubiquitous access to wireless networks with

acceptable quality-of-service, drives researchers to unstoppably work on improving

networks. Increasing the transmission power of the communication links can improve
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the network performance to some extents. However, increasing the transmission power

can result in a significant growth in the network energy consumption which raises the

concerns associated with the network running expenditures and maintenance costs.

Aside from the energy costs, excessive usage of energy can also cause many environ-

mental problems. These concerns emphasize on the need for methods considering

the energy consumption efficiency. To address these issues, seeking the minimum

energy consumption, many researchers are attracted to the areas focusing on opti-

mizing different network design parameters. Recently, many studies have been aimed

at minimizing the network energy/power consumption while certain constraints on

the quality-of-service are guaranteed [4], and this is exactly what we aim to study in

this dissertation.

In the remaining of this chapter, we first explain the main concepts that will be

used in the forthcoming chapters. Next, we present motivations which encouraged us

to conduct the research presented in this dissertation, and then, we describe objectives

and methodology that will be employed in our work.

1.2 Relay-assisted Wireless Networks

Due to the broadcast nature of wireless communications, a signal being transmitted

from a source node can travel through multiple paths before arriving at the desti-

nation. More specifically, a transmitted signal can be reflected or scattered by the

surface of the objects in the propagation environment, causing various replicas of the

transmitted signal to reach the destination. In such communication links, signals

traveling through different paths can each arrive with distinct amplitude and delay at

the destination. Indeed, the phase of a signal passing through a path is determined

by the length of the path and by the positions of the source and destination nodes. A

destination node equipped with a single antenna can only receive the superposition

of the arriving signals, and as a result, cannot distinguish different replicas of the

transmitted signal. The superposition of the received signals with different phases
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can be either constructive or destructive.

Aside from the effects of the signal arrival from multiple paths, the source and

destination movements can cause the superposition of the signals arrived at the des-

tination to fluctuate over time. The signal fluctuation caused by source and/or des-

tination movements in the order of the signal wavelength is called the small-scale

fading effect.

Furthermore, obstacles can block the signal traveling path, meaning that a signal

originated from a source node may not reach some areas. The effect of the signal

blockage caused by the obstacles in the propagation environment is known as shad-

owing. The signal strength in the coverage area can vary slowly from the points

less affected by the blockage to the points that are completely blocked by the obsta-

cles. That is, shadowing can be significant only when displacements of the source

and/or the destination is in the order of the size of environmental obstacles. Signal

fluctuations caused by the shadowing are known as the large-scale fading [5].

To summarize, movements in the order of the signal wavelength result in small-

scale fading, while movements in the orders much larger than the signal wavelength

can result in the large-scale fading [6, 7].

One of the methods widely being used to tackle the fading issue is to transmit

signals conveying the same information through multiple statistically independent

paths. Doing so, the receiver is provided with multiple replicas of the signal trans-

mitted. Methods providing multiple statistically independent paths are known as

diversity techniques. Diversity techniques are materialized by sending the same sig-

nal through different time-slots, through different frequency-bands, or through differ-

ent spatial-directions. Combinations of these techniques can also be used to obtain

multiple statistically independent paths.

In spatial diversity techniques, transmitter and/or receiver nodes are equipped

with multiple antennas. Doing so, each link between a transmit antenna and a receive

antenna can construct a signal path from the source to the destination [8, 9]. As a

result, the probability of a complete signal blockage can decrease.

3



Equipping transmitter and receiver antennas with a number of antennas can also

allow these nodes to employ local beamforming techniques. Using these techniques,

transmitter and/or receiver can align their antenna beams such that signals arriving

at the receiver combine in a constructive manner. Doing so, the communication range

and the quality-of-signal at the receiver side can be improved.

Due to the terminal size limitation (particularly for handheld wireless devices),

some network nodes cannot be equipped with a very large number of antennas. On the

other hand, wireless nodes equipped with small number of antennas may not be able to

afford the diversity gains expected. To achieve satisfactory diversity gains even with

small number of antennas at source and destination, relay-assisted communication

strategies have been proposed. In relay-assisted communications, multiple antennas

are distributed among geographically separated network nodes called relays. Doing

so, relays construct a virtual antenna array which can help with achieving spatial

diversity gains required [8]. The technique of aligning the virtual beam of multiple

single-antenna relays geographically distributed in the area between the source and

the destination is known as the network beamforming technique.

Relay-assisted wireless networks can work as one-way relay networks transferring

signals from source/s to destination/s, or as two-way relay networks exchanging sig-

nals between transceivers.

1.2.1 One-way Relay Networks

One-way relay networks are established to transfer information in one direction from

source to a number relays and then to a destination. In one-way relay networks,

transferring a signal from the source to the destination requires two time-slots. As

can be seen in Fig. 1.1, in the first time-slot, signal is transmitted from the source to

the relays. Then, each relay processes its received signal to produce the relay transmit

signal. In the second time-slot, each relay transmits its transmit signal toward the

destination.

Relays can use different schemes to process signals they receive. The amplify-and-

4



Time-slot 1 Time-slot 2

Transmitter

Receiver

Relay 1

Relay 2

Relay (nr − 1)

Relay nr

Transmitter

Receiver

Relay 1

Relay 2

Relay (nr − 1)

Relay nr

Figure 1.1: One-way relaying scheme with two time-slots (unidirectional from trans-
mitter to receiver).

forward (AF) scheme is one of these signal processing techniques which is widely being

studied in the literature. In AF relaying scheme, each relay multiplies its received

signal by a complex valued weighting factor which amplifies the signal magnitude

and adjusts the signal phase. Relays then forward the amplified signal toward the

receiver. The AF relaying scheme imposes no significant processing delay to the

signal transfer time. In AF relaying scheme, no extra information is broadcasted

along with the processed signals. Hence, in terms of the security, networks which

use AF relaying scheme are less vulnerable to the eavesdroppers [10]. Note that,

under AF relaying scheme, summation of the received signal and noise at the relays

is amplified. As a result, AF relaying scheme is mostly recommended for low-noise

wireless communications [11, 12].

The decode-and-forward (DF) technique is another signal processing strategy

which has been well studied in the literature. In the decode-and-forward (DF) tech-

nique, relays first decode the received signal to regenerate a replica of the original

signal transmitted by the source. Relays then encode and forward the so-regenerated

signal toward the destination [13]. In comparison to the AF scheme, the DF tech-

nique is more complicated. However, in some conditions, the DF relaying technique

can perform very satisfying while AF relaying scheme may fail to do so. For example,
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consider a case where the noise power received at the relays is high. AF relaying

scheme amplifies and forwards the high-power noise along with the intended signal.

As a result, the quality of the signal reaching the destination is very poor. To the

contrary, DF technique extracts the signal contaminated with the high-power noise.

Doing so, DF relaying technique prevents high-power noise arrived at the relays to

reach the destination. As a result, the quality of the signal arrived at the destination

is expected to be satisfying.

Besides the AF and DF relaying techniques, compress-and-forward, estimate-and-

forward, and filter-and-forward techniques have also been studied as relaying schemes.

The compress-and-forward relaying scheme can be used when relays are unable to de-

code the signal sent by the source, but are able to transmit a compressed version of

their observations to the destination [14, 15]. The compressed information transmit-

ted by relays can help the receiver to decode the signal directly arriving from the

source. The relays can employ different source coding techniques to compress the in-

formation they transmit to the destination [16, 17]. As another relaying scheme, the

compute-and-forward technique can help with harnessing the interference in a wire-

less network. In compute-and-forward technique, relays provide the destination with

the information they obtain through computing a linear combination of the signals

they receive from the source. Employing the compute-and-forward technique, relays

are not obliged to know or decode individual source signals [18].

In estimate-and-forward (EF) technique, relays use the received signal to obtain

an estimated version of the transmitted signal. This estimate is then forwarded to

the destination. In the EF technique, relays first use the received signal to estimate

the original signal transmitted by the source. Relays then forward the so-obtained

estimated signal toward the destination. The filter-and-forward (FF) technique is

a relaying scheme being used in networks with frequency selective channel between

each relay antenna and each transceiver antenna. In the FF technique, each relay is

equipped with a finite impulse response (FIR) filter. Signals arriving at each relay are

to pass through the relay FIR filter before being forwarded toward the destination.
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Time-slot 1 Time-slot 2

Transceiver 1

Transceiver 2

Relay 1

Relay 2

Relay (nr − 1)

Relay nr

Transceiver 1

Transceiver 2

Relay 1

Relay 2

Relay (nr − 1)

Relay nr

Time-slot 3 Time-slot 4

Transceiver 1

Transceiver 2

Relay 1

Relay 2

Relay (nr − 1)

Relay nr

Transceiver 1

Transceiver 2

Relay 1

Relay 2

Relay (nr − 1)

Relay nr

Figure 1.2: Conventional two-way relaying scheme with four time-slots.

The role of relay FIR filters is to compensate for the frequency selectivity of the

relay-transceiver channels.

1.2.2 Two-way Relay Networks

Two-way relay networks are utilized to exchange information between transceivers in

a bi-directional manner. That is, each node can both transmit and receive signal.

In two-way relay networks, a round of information exchange between transceivers

can take two, three, or four time-slots. Using Figs. 1.2, 1.3, and 1.4, we explain

how information is exchanged between transceivers, when networks are employing

different two-way relaying schemes. Note that, relay nodes in these figures can also

be considered as base stations geographically distributed over a specific area in cellular

networks.
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Time-slot 1 Time-slot 2

Transceiver 1

Transceiver 2

Relay 1

Relay 2

Relay (nr − 1)

Relay nr

Transceiver 1

Transceiver 2

Relay 1

Relay 2

Relay (nr − 1)

Relay nr

Time-slot 3

Transceiver 1

Transceiver 2

Relay 1

Relay 2

Relay (nr − 1)

Relay nr

Figure 1.3: Time division broadcast (TDBC) relaying scheme.

Let us consider the conventional relaying scheme, shown in Fig. 1.2. This relaying

scheme needs four time-slots for a complete round of information exchange between

two transceivers. As Fig. 1.2 illustrates, in the first time-slot, Transceiver 1 transmits

signal toward relays. Each relay then processes its received signal. In the second

time-slot, relays transmit signals being processed toward Transceiver 2. In the third

and fourth time-slots the signal transmission takes place in the opposite direction.

That is, Transceiver 2 transmits its signal to the relays and then relays process and

forward their received signals to Transceiver 1. In conventional two-way relaying

scheme, signal transmission in each direction, from Transceiver 1 to Transceiver 2 or

vice versa, can be viewed as a signal transmission in a one-way relay network. As a

result, relays can use the same signal processing schemes being used in one-way relay
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Figure 1.4: Multiple access broadcast (MABC) relaying scheme.

networks.

As can be seen from Fig. 1.3, the time division broadcast (TDBC) scheme

needs three time-slots for a complete round of information exchange between two

transceivers. Requiring three time-slots, the TDBC scheme can provide higher

spectral efficiency in comparison to the simple relaying scheme with four time-slots.

In the first time-slot of the TDBC scheme, one of the transceivers (e.g., Transceiver

1) transmits its signal toward the relays. In the second time-slot, the transceiver on

the other side (i.e., Transceiver 2) transmits its signal toward relays. Then, each

relay processes the signals received in the first and second time-slots. Doing so, in

the third time-slot each relay broadcasts a combination of the signals arrived in the

first two time-slots. Signal processing techniques such as AF relaying scheme, DF

relaying scheme, etc. can also be used under the TDBC scheme. However, the way

signal processing strategies are implemented is different from that for the one-way

and conventional two-way relaying schemes. The difference in the signal processing

strategies rises due to the fact that in TDBC scheme individual signals arrived from

the transceiver are not relayed individually. Rather, at each relay a combination of

the signals arrived in the first two time-slots are processed.

The multiple access broadcast (MABC) scheme proposed in [19], is a spectrally

efficient relaying scheme. As Fig. 1.4 shows, the MABC scheme only needs two time-
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slots for a complete round of information exchange between two transceivers. More

specifically, in the first time-slot, both transceivers transmit their signals toward the

relays. In the second time-slot, relays broadcast a processed version of their received

signals back to the transceivers.

1.2.3 Synchronous and Asynchronous Networks

Techniques being used to transmit a signal through multiple statistically independent

paths can decrease the probability of complete signal blockage. Furthermore, these

techniques can increase the communication range and also improve the quality of

signal at the receivers. However, signals passing through different paths can arrive

at the destination with different propagation delays. The propagation delay of dif-

ferent relaying paths can be different due to the fact that relays are geographically

distributed at various locations. That is, different relaying paths can have different

path lengths and fading conditions. Signal transmission over a relay network with

significantly different propagation delays for different relaying paths resembles that

of a multipath channel. In certain conditions, signal transmission over two-way relay

networks can be presumed synchronous. For low data rate communications, when

the difference between signal arrivals from different relaying paths are less than the

symbol period of the transmitted signals, we can assume that the data transmission

is synchronous. More specifically, in synchronous networks the difference between the

maximum and the minimum propagation delays, known as the delay spread, is less

than the length of one symbol period. Such networks with synchronous signal arrival

are called synchronous relay networks. Note that when networks are not synchronous,

overhead signals can be employed to compensate for the difference in the propagation

delays and synchronize the data transmission. To do so, however, relays not only

need to be equipped with extra memories, but also to execute more complex relaying

processes.

Fig. 1.5 illustrates a synchronous networks in which symbols arrive with no timing

misalignment at the receiver front-end of the transceivers. Indeed, this figure shows
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Figure 1.5: Synchronous two-way relay network with MABC relaying scheme.
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Figure 1.6: Asynchronous two-way relay network with MABC relaying scheme.

that replicas of the signal transmitted by each transceiver arrive at relays with the

same delay and signals forwarded by the relays also arrive at each transceiver with

the same delay.

Aiming to provide higher data rates, networks should reduce the length of symbol

period. When symbol period length is smaller than the delay spread, the network is

not synchronous. In such networks, the difference of the propagation delays for sig-

nals arriving from different relaying paths are greater than the length of the symbol

period. These relay networks are called asynchronous relay networks (see Fig. 1.6).

An asynchronous relay network resembles a multi-path channel. Receiving different
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replicas of the same signal with different delays can cause symbols to spread beyond

the symbol period. As a result, each symbol can interfere with the preceding or suc-

ceeding transmitted symbols. This signal collision can cause inter-symbol interference

(ISI) and intra-block interference. Moreover, in a sequential block transmission, the

ISI can result in inter-block interference (IBI) between successive blocks.

1.3 Motivation

The ever-increasing user demands for access to wireless networks in remote, rural,

and urban areas can be satisfied by increasing the number of cellular networks’ base

stations. However, utilizing more base stations, network providers require to deal

with higher expenditures on network running and maintenance. Expanding networks

causes the energy consumption to significantly soar. A significant growth in the en-

ergy consumption renders costs prohibitive. Besides, excessive energy consumption

can also raise many environmental concerns. As a result, establishing wireless net-

works with the minimal energy consumption has attracted a significant amount of

interest among researchers studying wireless network optimization [4]. From the en-

vironmental point of view, these studies will arrive at the the greenest design for

wireless networks. Motivated by the demands for power optimal network designs,

in this dissertation we aim to minimize the total transmit power consumed in the

entire network while a certain set of quality-of-services, such as signal-to-noise-ratio

or information exchange data-rate, are satisfied.

Synchronous two-way relay networks with multiple multi-antenna relays

The majority of the published work on two-way relay networks consider networks with

single antenna nodes. On the other hand, the studies conducted on the two-way relay

networks with multi-antenna nodes mainly consider networks including a single multi-

antenna relay and two single-antenna transceivers. To the best of our knowledge, the

published results on the two-way relay networks with multiple multi-antenna relays

are scarce in the literature. The fact that networks with multiple multi-antenna relays
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are a generalized version of the formerly studied networks along with the fact that

studies considering this setup are scarce, encouraged us to study such network setups.

As such, we study two-way relay networks with multiple multi-antenna relays, a type

of two-way relay network which has not been considered much in the literature.

The problems of relay beamforming and transceivers power allocation have been

investigated in the literature for single-antenna multi-relay and multi-antenna single

relay scenarios. However, to the best of our knowledge, the problem of total power

minimization for multi-antenna multi-relay networks (where the beamforming ma-

trices and transceivers power allocation are to be jointly considered) has not been

studied. In the problem studied in Chapter 3, we aim to find the minimal power

consumption in the entire network while guaranteeing two given quality-of-service

thresholds at the receiver front-end of the two transceivers.

Asynchronous two-way relay networks with multiple multi-antenna re-
lays

Considering the published results on asynchronous networks, a question worth an-

swering is that for a single-carrier asynchronous two-way relay network, what is the

minimal power consumption required to satisfy given data rate constraints at the

two transceivers. While answering this question, one may not have any restriction

on the type of the equalizers (i.e., linear or otherwise) or on where the equalizers are

implemented (i.e., pre-channel equalization, post-channel equalization, or joint pre-

and post-channel equalization). This question is answered for the case of two-way

single-carrier asynchronous relay networks with single-antenna relays in [1]. Results

presented in [1], motivated us to answer the same question for the case of two-way

single-carrier asynchronous relay networks with multi-antenna relays. Solving this

problem is not a trivial extension of the work in [1]. Indeed, as we show in Chapter 4,

we have to optimize relay beamforming matrices while in [1] only one amplification

factor per relay has to be optimized.
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Multi-pair two-way networks with massive MIMO relays

A complete round of information exchange between two nodes, using one-way relay-

ing scheme, takes four time-slots (channel uses) where signal transmission in each

direction takes two time-slots. However, wireless networks employing two-way relay-

ing schemes can provide higher spectral efficiency. The spectral efficiency of two-way

relay networks can be even more improved via establishing peer-to-peer communi-

cations between more than a single pair of transceivers. This fact encouraged us

to investigate two-way relay networks with multiple pairs of transceivers. Indeed,

using the same amount of time and frequency resources, multipair two-way relay

networks can transfer higher amount of data per channel use. However, in such net-

works, inter-pair interference (between transceivers belonging to different pairs) and

intra-pair interference (users self-interference transferred back by relay(s)) raise new

challenges.

The most recent approach being introduced to suppress interference is to equip

relays with a very large number of antennas. Equipping relays with a massive number

of antennas (often referred to as massive multiple input multiple output (MIMO)

technique) can significantly improve the spectral and energy efficiencies in comparison

to the traditional MIMO techniques. The massive MIMO technique can substantially

suppress the intra- and inter-pair interferences. As such, when number of antennas are

very large, the effects of noise and small-scale fading are asymptotically eliminated.

Doing so, by employing simple signal processing techniques, networks can deal with

the remaining channel effects such as path loss and large-scale fading. Moreover, as

number of antennas are approaching infinity, the transmit power can be arbitrarily

reduced without degrading the network performance.

The promising benefits of the massive MIMO technique along with the fact that

published results on two-way network with massive MIMO relays are still scarce,

encouraged us to adopt this technique in Chapter 5 and deal with the issues arising

in multipair two-way relay networks.
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Adopting the massive MIMO technique allows relays in multipair two-way relay

networks to employ low-complexity relaying schemes such as linear signal process-

ing techniques. The most common structures being used for the uplink and down-

link beamforming matrices of two-way relay networks are constructed based on the

MRT/MRC and the ZF techniques. As such, we have been motivated to use these

techniques along with the massive MIMO concept to solve the total power minimiza-

tion problem in multipair two-way relay networks.

1.4 Objective and Methodology

In this section, we provide an overview on the objective and methodology of the

current dissertation.

1.4.1 Objective

In Chapter 3, we consider a two-way relay network consisting of two single-antenna

transceivers communicating with the help of multiple multi-antenna relays. The net-

work considered is assumed to be synchronous such that signals arriving at the re-

ceiver front-end of each transceiver via different relaying path are subjected to the

same propagation delay. In the network studied in Chapter 3, relays are equipped

with multiple antennas. Choosing the transceivers’ transmit powers and the relay

beamforming matrices as the design parameters, we aim to minimize the total trans-

mit power consumed in the entire network while the signal-to-noise-ratios (SNRs) at

the receiver front-end of transceivers are guaranteed to be greater than two given

thresholds.

In Chapter 4, we consider a single-carrier asynchronous two-way relay network

consisting of two single-antenna transceivers which wish to communicate with the

help of multiple multi-antenna relays. Addressing the total transmit power mini-

mization problem while the rates of the information exchange between transceivers

are maintained above two given thresholds, we aim to jointly determine the relay
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beamforming matrices and the transceivers transmit powers.

In Chapter 5, we consider a two-way relay network consisting of multiple pairs of

single-antenna transceivers which wish to communicate in a pair-wise manner. The

information between transceiver pairs is exchanged with the help of multiple relays.

Each relay is equipped with multiple antennas, where number of relay antennas is

considered to be very large. Considering the relay beamforming matrices and the

transceivers’ transmit powers as design parameters, we aim to minimize the total

power consumed in the entire network while signal-to-noise-ratio at the receiver front-

end of the transceivers are maintained above a set of given thresholds. In this chapter,

we study two different processing techniques at the relays. In the first technique, each

relay uses a maximum ratio transmission/combining (MRT/MRC) method to obtain

the relay’s vector of transmitted signals from the relay’s vector of received signals. In

the second technique, a zero-forcing-based (ZF) method is used as relaying protocol.

1.4.2 Methodology

In this dissertation, we study three scenarios for two-way relay networks with multiple

multi-antenna relays. Here below we present methods being developed for each each

scenario.

First Scenario: Synchronous two-way relay networks with multiple multi-
antenna relays

In Chapter 3, assuming the relay beamforming matrices and the transceivers’ trans-

mit powers as design parameters, we study the total power minimization problem.

This problem is considered for synchronous two-way relay networks consisting of two-

transceivers and multiple multi-antenna relays. We first model the system and signals

of such networks. We then show that the relay beamforming matrices have a special

structure. Using this special structure, we reduce the dimensionality of the prob-

lem. The problem with reduced dimensionality is then studied under two different

assumptions for the reduced size beamforming matrices.

16



In the first approach, we assume that the beamforming matrices are symmetric.

We show that restricting matrices to be symmetric renders the total power minimiza-

tion problem amenable to a semi-closed-form solution. That is, this problem can be

solved efficiently.

In the second approach, we assume that the relay beamforming matrices are not

restricted to be symmetric. We show that in this case, the total power minimization

problem can be solved using a computationally prohibitive algorithm. This algorithm

involves a 2-D search over a grid in the space of the transceivers’ transmit powers

along with a semi-definite programming at each vertex of this grid.

Using numerical examples, we compare the required power for maintaining SNRs

at the receiver front-end of transceivers above two given thresholds, for both ap-

proaches with general and symmetric relay beamforming matrices.

Second Scenario: Asynchronous two-way relay networks

In Chapter 4, we study asynchronous two-way relay networks consisting of two single-

antenna transceivers and a number of multi-antenna relays. We aim to minimize the

total transmit power consumed in the entire network while data rate in each direc-

tion is maintained above a given threshold. The design parameters are assumed to be

the relay beamforming matrices and the transceivers transmit powers. To provide a

computationally affordable solution to this power minimization problem, we develop

the following procedure:

We first model the system and signals of the asynchronous network under considera-

tion. We then derive two expressions for data rates in terms of the design parameters.

Exploiting the special structure of the beamforming matrices, similar to what is shown

for synchronous networks in Chapter 3, we reduce the dimensionality of the problem.

Next, to further simplify the problem, we assume that the beamforming matrices are

symmetric. Doing so renders the total power minimization problem amenable to a

closed-form solution. More specifically, we show that the asynchronous two-way relay

network consists of several synchronous sub-networks. We rigorously prove that at
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the optimum, the end-to-end channel impulse response (CIR) only consists of a syn-

chronous sub-network of relays. Indeed, at the optimum, only relays which contribute

to the power-optimal sub-network will participate in relaying and the remainder of the

relays have to be turned off. In other words, the total power minimization problem

reduces down to finding the best synchronous sub-network which consumes the small-

est total transmit power while satisfying the data rate constraints. Note that using

the problem solved in Chapter 3, we can solve the total power minimization problem

with signal-to-noise-ratio constraints (and similarly with data rate constraints) for

synchronous networks. It is shown in Chapter 3 that this problem is amenable to

a semi-closed-form solution. As a result, we arrive at the conclusion that the so-

lution to the problem studied for asynchronous two-way relay networks consists of

a number of problems each of which amenable to a semi-closed-form solution. The

problem considered for asynchronous networks chooses the power-optimal solution of

those obtained for a number of synchronous sub-networks. As such, the total power

minimization for network is also amenable to a semi-closed-form.

Using numerical examples, we evaluate the performance of the asynchronous two-

way relay networks with symmetric relay beamforming matrices.

Third Scenario: Multi-pair two-way networks with massive MIMO relays

In Chapter 5, we study a synchronous two-way relay network consisting of several

pairs of single-antenna transceivers and multiple relays each of which equipped with a

massive number of antennas. We aim to minimize the total transmit power consumed

in the entire network while the signal-to-noise-plus-interference at each transceiver

is maintained above a given threshold. The design parameters are assumed to be

the relay beamforming matrices and the transceivers transmit powers. To provide a

computationally affordable solution to this power minimization problem, we develop

the following procedure:

We consider two cases each of which employing a specific linear relaying scheme

at relays. In the first case, we study the case where the maximum ratio transmit/
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maximum ratio combining technique (MRT/MRC-based scheme) is employed at re-

lays. In the second case, we study the case when the zero-forcing (ZF-based scheme)

technique is used at the relays.

To this end, we first model the system and signals pertinent to each relaying

scheme. We then use the fact that when the number of relay antennas is very large,

the channel vectors between each relay and different transceivers are asymptotically

orthogonal. Exploiting such asymptotical orthogonality, we show that the structure

of the beamforming matrices for the two relaying schemes can be obtained from one

another. As such, we proceed only with the MRT/MRC-based scheme, and formulate

the total transmit power and signal-to-noise-ratio (SNRs) at the receiver front-end of

users for this scheme. We then solve the problem for the MRT/MRC-based scheme.

Next, we explain how the solution for the ZF–based technique is calculated from the

solution obtained for the MRT/MRC-based scheme. We aim to minimize the total

transmit power consumed in the entire network while certain SNR thresholds are

satisfied at the receiver front-end of users. We show that under the assumption that

channel vectors between each relay and transceivers are orthogonal, this problem boils

down to a set of total power minimization problems each of which corresponding to a

one-way relay network. We use the fact that each of these sub-problems are amenable

to a semi-closed-form solution. Doing so, we show that the total power minimization

problem for the network under consideration is also amenable to a semi-closed-form

solution.

Using numerical examples, we evaluate the performance of the two-way relay

networks with massive number of relay antennas. Numerical results are examined

for the cases where the MRT/MRC- and the ZF–based signal processing schemes are

employed at relays. We also compare the performance of networks when these two

relaying schemes are being used.
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1.5 Summary of Contributions

The main contributions of this dissertation are summarized as listed below:

• We model the signals and the system of synchronous two-way relay networks

which employ multi-antenna relays. We obtain jointly optimal relay beamform-

ing matrices as well as the optimal transceiver transmit powers for a synchronous

network with multiple multi-antenna relays such that the total transmit power

is minimized under two given SNR constraints at the transceivers. In order to

guarantee the reciprocity of the end-to-end channel between the transceivers, we

choose beamforming matrices to be symmetric. For this type of beamforming

matrices, we prove that the power minimization problem has a unique semi-

closed-form solution. That is, given a certain intermediate parameter, the sym-

metric beamforming matrices can be obtained in a closed-form. We prove that

this parameter can be obtained using the efficient Newton-Raphson technique.

• We model the end-to-end channel for single-carrier asynchronous two-way relay

networks which employ a number of multi-antenna relays. For the asynchronous

networks with multiple multi-antenna relays, assuming the relay beamforming

matrices as well as the transceivers transmit powers as the design parameters,

we study the problem of total power minimization under two constraints which

guarantee that the data rates at the two transceivers are above given thresholds.

In order to obtain a computationally efficient solution to the power minimiza-

tion problem, we assume that the relay beamforming matrices are symmetric.

Using such an assumption, we develop a computationally efficient solution to

the problem at hand.

• We model the signals and the system of two-way relay networks with multi-pair

transceivers which employ relays with a massive number of antennas. We obtain

jointly optimal relay beamforming matrices as well as the optimal transceiver

transmit powers for these networks such that the total transmit power is mini-
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mized under given SNR constraints at the transceivers. We study cases where

the MRT/MRC- and the ZF-based schemes are used as signal processing tech-

niques at relays. We rigourously prove that the power minimization problem

has a unique semi-closed-form solution. Using numerical examples we evaluate

network performance for each of these two relaying schemes. We also exam-

ine how network performance is affected when the optimization parameters are

calculated under the assumption that channel vectors between each relay and

transceivers are orthogonal while they may not be completely orthogonal.
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1.7 Outline of Dissertation

The remainder of this dissertation is organized as follows. In Chapter 2, we first

provide an overview on studies considering synchronous two-way relay networks. We

then present a detailed review on several network setups being considered for two-

way relay networks and discuss how modifications in setup can improve the network

performance. In Chapter 2, we also look at the variety of criteria chosen as the

measure of network performance. In the second section of Chapter 2, a survey on

studies considering asynchronous two-way relay networks is presented. In the last

section of Chapter 2, we provide an overview on studies extending single-pair two-

way relay networks to networks with multiple pairs of users (i.e., multipair two-way

relay networks). We then present a survey on studies incorporating the massive

MIMO concept into the multipair two-way relay networks.

In Chapters 3, 4, and 5, we study two-way relay networks with multiple relay

antennas in three different scenarios. Note that in these chapters parameters are

denoted differently. As such, to avoid any confusion, we bring appendices of each

chapter right at the end of that chapter.

In Chapter 3, we first model the system and signals corresponding to the two-

way relay networks with multiple multi-antenna relays. We then provide the problem

statement which is aimed at minimizing the total transmit power consumed in the

entire network such that two SNR thresholds are satisfied at the receiver front-end of
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the transceivers. Next, we solve the power minimization problem under the assump-

tion that the beamforming matrices are to be symmetric. We also solve the power

minimization problem under the assumption that the beamforming matrices are not

constrained to be symmetric. A discussion on the computational complexity of the

proposed methods is presented as a remark in this chapter as well. In the last section

of Chapter 3, we use numerical examples to evaluate the proposed methods with both

symmetric and general beamforming matrices. At the end of Chapter 3, we provide

the corresponding appendices.

In Chapter 4, we first model the signals and system for asynchronous two-way relay

networks where relays employ multiple antennas. The problem we study in Chapter 4

is to minimize the total transmit power in an asynchronous two-way relay network

while the data rates of the transceivers are maintained above two given thresholds.

We then provide the problem statement and its solution along with the method being

used to solve this problem. We next present an algorithm which summarizes how the

proposed method must be implemented. In the last section of Chapter 4, we numer-

ically evaluate the performance of the asynchronous two-way relay networks under

consideration. At the end of Chapter 4, we provide the corresponding appendices.

In Chapter 5, we consider two-way relay networks with multiple massive MIMO

relays helping to establish multiple bidirectional peer-to-peer communications. We

assume that relays employ linear beamforming techniques such as the MRT/MRC

and the ZF schemes to precess their received signals. Exploiting the approximate

orthogonality of the channel vectors between each relay and transceivers, we provide

a computationally efficient solution to the problem of minimizing the total transmit

power when the transceivers signal-to-noise ratios (SNRs) are to be above certain

thresholds.. At the end of Chapter 5, we provide the corresponding appendix.

Finally, we conclude the dissertation in Chapter 6 where observations and the

results obtained are summarized. In this chapter, we also propose a number of ideas

for future work which are based upon the results and observations obtained in the

current dissertation.

23



1.8 Notations

Throughout this dissertation, we use small and capital boldface letters to denote

vectors and matrices, respectively. The operators (∙)∗, (∙)T , and (∙)H denote the

complex conjugate, the transpose, and the Hermitian transpose, respectively. [A]i,j

(and [A](i,j)) denotes the (i, j)-th entry of matrix A, while [a]i represents the i-th entry

of vector a. The operator vec(A) represents a column vector obtained by stacking the

columns of A. The operator ⊗ denotes the Kronecker product. The operators tr(∙)

and E{∙} denote the trace and the statistical expectation operators, respectively. We

use Ir to represent an r×r identity matrix, 1 to denote a vector with all entries equal

to 1, and 0r×s to represent an r× s matrix with zero entries. ‖ ∙ ‖ and | ∙ | denote the

Euclidean norm of a vector and the absolute value of a complex scalar, respectively.

blkdiag({El}L
l=1) is used to represent a block diagonal matrix whose l-th diagonal

block is El, for l ∈ {1, ∙ ∙ ∙ , L}. The cardinality of set N is denoted as card(N ).
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Chapter 2

Background and Literature Review

In this chapter, we review recent studies on relay-assisted two-way relay networks. To

begin with, we present an overview on studies investigating two-way relay networks

in a basic form consisting of three single-antenna nodes, i.e., two transceivers and a

relay node. We next review studies considering networks with extended numbers of

relays or antennas. We then offer an overview of studies benefiting from both types

of network extensions where multiple relays are employed and transceiver and/or

relay(s) are equipped with multiple antennas. Reviewing various network setups, we

discuss how each setup can affect the network performance. To do so, we provide a

brief survey on the network performance measures chosen by different studies. We

also review studies with various design parameters and constraints.

The rest of this chapter is organized as follows. In Section 2.1, we provide an

overview on studies considering synchronous two-way relay networks. We present

a detailed review on different network setups being considered for two-way relay

networks and how setup modifications can improve the network performance. We

then look at variety of criteria chosen by various studies as the measure of network

performance. We also discuss the design parameters and constraints being considered

in each study. A survey on studies considering asynchronous two-way relay networks

is given in Section 2.2. In Section 2.3, we present a survey on studies incorporating

the massive MIMO concept into the two-way relay networks. We also discuss how

employing a massive number of relay antennas can improve the performance of two-
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way relay networks.

2.1 Synchronous Two-way Relay Networks

Networks providing a synchronous signal transmission over different relaying paths

are called synchronous relay networks. In synchronous relay networks, signals trav-

eling through different paths all arrive at the destination approximately with equal

propagation delays. That is, the difference between the maximum and the minimum

propagation delays, known as the delay spread, is less than the length of one sym-

bol period. Note that when networks are not synchronous, overhead signals can be

employed to compensate for the difference in the propagation delays and synchronize

the data transmission. In this section, we survey studies which assume two-way relay

networks are synchronous/synchronized.

2.1.1 Two-way Relying Strategies

In two-way relay networks, two transceivers exchange information symbols with the

help of a number of relays. Different relaying strategies employed by the relays can

take different number of time-slots for a complete round of information exchange

between transceivers. For example, the traditional relaying strategy used for estab-

lishing a bidirectional communication between two transceivers, is implemented in

four time-slots (see Fig. 1.2). In the first time-slot, signal is transmitted in one direc-

tion from one of the transceivers to the relay(s). In the second time-slot, each relay

transmits a processed version of its received signal toward the transceiver on the other

side. In the third and fourth time-slots, a similar communication link is established

in the opposite direction. On the other hand, using the so-called time division broad-

cast (TDBC) strategy, one can reduce the number of required time-slots from four

to three [20–23]. In the TDBC protocol (see Fig. 1.3), transceivers send their signals

in two consecutive time-slots. Each relay then broadcasts a signal obtained via com-

bining signals received at that relay in the first two time-slots. As another relaying
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strategy, the multiple access broadcast (MABC) scheme (see Fig. 1.4) can reduce the

number of required time-slots to two time-slots [19,24–27]. In the first time-slot of the

MABC scheme, transceivers transmit their signals simultaneously toward the relays.

In the second time-slot, each relay transmits a processed version of its received signal

toward transceivers. Doing so, a complete round of information exchange between

two transceivers can take only two time-slots.

2.1.2 Network Setups

A two-way relay network in its simplest form consists of two single-antenna users

assisted by a single-antenna relay. Increasing the number of relays can extend the

coverage range, improve the spectral efficiency, and increase the link reliability [28].

Equipping a single relay with multiple antennas can also offer similar benefits [29–31].

Benefits provided by increasing either the number of relays or the number of antennas

have driven researchers to investigate how combinations of these two techniques can

improve the network performance [32–49]. Studies show that employing multiple

multi-antenna relays can significantly boost the achievable advantages. The majority

of the published results on two-way relay networks consider two-way relaying schemes

with single antenna nodes, see [27] and references therein. The studies conducted on

two-way relay networks with multi-antenna nodes mainly consider a two-way relay

network including a single multi-antenna relay which assists the establishment of a

link between two single-antenna transceivers [30, 50]. Compared to the volume of

the results published on networks with single multi-antenna relay and on networks

with multiple single-antenna relays, studies focusing on networks with multiple multi-

antenna relays are scarce.

We here review some of the results on networks with multiple multi-antenna relays.

In [51], the authors study a multi-pair two-way relay network where all the transceiver

pairs communicate via one multi-antenna relay. Studies in [29, 52–56] focus on two-

way relay networks with a single multi-antenna relay and multi-antenna transceivers.

Two-way MIMO relay networks with multiple relays are considered in [39, 57]. In
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these networks, transceivers and relays are all equipped with multiple antennas. The

setup of two-way relay networks is not limited just to single-hop relay networks.

For example, a multi-hop two-way relay network is investigated in [58], where the

authors assume that all the network nodes are equipped with multiple antennas. To

investigate the two-way relay networks in a more practical setup, in [59], the authors

look at a multi-pair two-way relay network. The network considered serves multiple

pairs of single-antenna transceivers which wish to communicate in a pairwise manner,

and each relay is equipped with multiple antennas.

2.1.3 Optimization Problems (Performance Measures, De-
sign Parameters, and Problem Constraints)

We can categorize the results published on the two-way relay based on the chosen

performance measure(s), design parameters, and problem constraints. In this section,

we provide a brief review on the wide variety of the performance measures, design pa-

rameters, and problem constraints considered in the literature. Note that the studies

we overview employ analytical methods to solve the optimization problems. However,

to deal with challenging problems, studies can also examine heuristic methods as an

alternative approach [20].

Transmit Power Minimization

The problem of minimizing the total transmit power in a relay-assisted network has

been widely studied in the literature [27,60–66]. The motivation behind these studies

is to arrive at the greenest design for the networks. The goal is to find the minimal

power consumption in the entire network while the quality of signals at the receiver(s)

front-end of users are maintained above certain thresholds. High energy consump-

tion in networks can cause huge running expenditures and detrimental effects on the

environment [67,68]. The problem of total transmit power minimization can be con-

sidered under various problem constraints. For example, in [66], the authors aim

to maximize the smallest received SNR under a total transmit power budget. The
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goal in [27, 65] is to minimize the total transmit power such that SNR values at the

transceivers are maintained above two given values. As another example, in [33], the

authors formulated the optimization problem such that the transmission power and

the network sum-rate are jointly optimized.

Sum-Rate Maximization

We here provide a brief overview on studies addressing the problem of sum-rate

maximization along with the studies aimed at characterizing capacity region of two-

way relay networks. The main focus of the studies in [29,30,39,56,57] is on maximizing

the achievable sum-rate of two-way relay networks. Results in [69] show that two-

way relay networks can achieve data rates higher than those provided by the one-way

relay networks. The goal of studies in [70–72] is to allocate network resources such

that the sum-rate of two-way relay networks is maximized for multi-carrier systems

and OFDM techniques. In [19], the authors show that the MABC protocol can

outperforms the TDBC (with three time-slots) and traditional relaying (with four

time-slots) strategies, in terms of the achievable sum-rate achieved in two-way relay

networks. In [22, 73, 74], the achievable sum-rate regions for two-way relay networks

are characterized from an information theoretical point of view. Achievable rate

regions for two-way relay networks with nodes operating in the full-duplex mode are

derived in [75–77]. Note that, under the full-duplex mode, network nodes can transmit

and receive signals at the same time. The maximum achievable rate region for single-

antenna two-way relay networks is studied in [23], where the employed TDBC scheme

is assumed to be implemented in time-slots with unequal durations.

Based on the studies conducted on end-to-end channels of two-way relay networks,

achieving the capacity region is a challenging open problem. Equipping nodes with

multiple antennas or employing multiple number of relays, only adds to the challenges

of characterizing the capacity region of the network. In an effort to obtain the maxi-

mum data sum-rate, in [28] the authors study the achievable rate regions for two-way

DF relay network with multiple single-antenna relays. On the other hand, in [29],
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the authors aim to achieve the capacity region of two-way relay network consisting

of two single-antenna transceivers and a multi-antenna relay. In [40], the network

weighted sum-rate is aimed to be maximized. Considering a two-way AF MIMO

relay network, the authors of [30] derive two computationally affordable algorithms

for the sum-rate maximization problem. Studies in [78] consider the data sum-rate

maximization and the total mean-square error minimization problems given that cer-

tain individual signal-to-interference-plus-noise ratio (SINR) at the destinations are

to be maintained above predefined thresholds. In a two-way relay network consisting

of multi-antenna nodes, the achievable rate region and the optimal transmit strate-

gies at both transceivers and at the relay are characterized by a weighted sum-rate

maximization problem in [32]. In [79], a sum-rate maximization problem is consid-

ered where the data rate fairness between two opposite directions of a two-way relay

network are to be satisfied.

Mean Square Error (MSE) Minimization

One of the interesting measures for two-way communication links is the mean square

of the error (MSE) that may occur between the transmitted signals and the sig-

nals received/detected at the destinations. Employing multiple antennas either at

transceivers or at relay(s) requires precoding/beamforming matrices to be designed

at corresponding nodes. These matrices play the role of design parameters which can

be set to minimize the mean square error between transmitted and received signals. In

this subsection, we review studies dealing with the MSE minimization problem where

precoding/beamforming matrices are designed such that some problem constraints

(for example, in terms of power budget) are satisfied.

In [41], the focus is on minimizing the maximum value of MSE in two-way relay

networks. An achievable rate region and the degradation related to the corresponding

channel estimation error in a MIMO two-way relay channel is investigated in [80].

In [39], a scheme is proposed to design the source and relay precoding matrices

(filters) to minimize the sum of the MSE in MIMO spatial multiplexing systems
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when multiple relays are employed for both one-way and two-way relay networks.

In [43], the authors aim to jointly design precoders at both the transceivers and at

the relays for MIMO two-way relaying, and the objective is to minimize the total

MSE at transceivers. The main focus of [43] lies on minimizing the maximum of the

signal estimation MSE among entire available data streams.

In [45], a joint beamforming scheme using MSE duality is proposed to maximize

the sum-rate of an AF MIMO two-way relay system.

The network considered in [21] is a two-way relay network consisting of three

multi-antenna nodes (two transceivers and one relay). Focusing on optimal joint

source precoding and relay beamforming optimization, in [21] the authors derive the

optimal structure of the source and relay precoding matrices via minimizing the mean

squared error of the symbol estimates at the two transceivers.

2.1.4 Other Optimizations Problems

The antenna selection problem based on the max-min channel coefficients criterion

in [50], the interference mitigation at the transceivers in [51], the diversity multiplex-

ing tradeoff analysis of [58], the mean-square-error minimization approach of [54],

and the energy efficiency maximization technique of [55] are other examples of stud-

ies conducted on the two-way relay networks. Moreover, a max-min fair criterion and

weighted sum-rate are performance measures investigated in [19] and [10], respec-

tively.

2.2 Asynchronous Two-way Relay Networks

In two-way relay networks, due to the fact that relays are geographically distributed at

different locations, the propagation delays over various relaying paths can be different.

A two-way relay network with significant difference between propagation delays for

different relaying paths, resembles a multipath channel.

Most of the two-way relay-assisted networks studied in the literature are assumed

31



to operate in a synchronous mode where different relaying paths cause (approxi-

mately) identical propagation delays. That is, symbols from different transceivers

arrive simultaneously at each relay. Similarly, transceivers receive all the replicas of

the relay forwarded signals at the same time. These networks are called synchronous

networks. In wideband communications with high data-rate transmissions, network

nodes are not guaranteed to operate synchronously and attempts for maintaining

their synchronization can incur significant overhead. As a result, signals arrived from

different paths experience different propagation delays. Hence, the end-to-end chan-

nel between transceivers can be viewed as a multi-path channel with multiple taps.

These networks are known as asynchronous networks.

Due to the collision between the consecutively transmitted symbols in asyn-

chronous networks, inter-symbol-interference (ISI) is produced at the receiver

front-end of the transceivers. The studies on asynchronous relay networks can

be categorized based on the approaches chosen either to avoid or to combat ISI.

Addressing the frequency-selective nature of the time dispersed multi-path channel,

one can avoid ISI via using the orthogonal frequency division multiplexing (OFDM)

technique at the network nodes. Using the OFDM technique can partition the

end-to-end channel into orthogonal frequency-flat sub-channels [81–84]. The two-way

data transmission over these parallel narrowband sub-channels can then be presumed

synchronous, provided that the length of the cyclic prefix is chosen to be equal to

or greater than the end-to-end channel delay spread. As an alternative solution,

distributed channel equalization techniques have been proposed in the literature.

The filter-and-forward relaying scheme is used in [64, 85–87], where relays employ

finite-impulse-response (FIR) filters to equalize the propagation delays of different

paths such that ISI is minimized at the receiver front-end of the transceivers. Aiming

to keep the signal processing at the relays simple, AF relaying scheme is used in [88],

while the channel equalization is left to be implemented at two post-channel block

equalizers used at the receiver front-end of the transceivers. As an alternative

approach, the authors of [89] choose a pre-channel block equalization scheme to
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circumvent the ISI related issues in an asynchronous single-carrier two-way relay

channel.

A question worth answering is that for a single-carrier asynchronous two-way relay

network, what is the minimal power required to satisfy given data rate constraints at

the two transceivers. While answering this question, one may not have any restriction

on the type of the equalizers (i.e., linear or otherwise) or on where the equalizers are

implemented (i.e., pre-channel equalization, post-channel equalization, or joint pre-

and post-channel equalization). This question has been answered for the case of

two-way single-carrier asynchronous relay networks with single-antenna relays [1]. In

Chapter 4, we aim to answer the same question for the case of two-way single-carrier

asynchronous relay networks with multi-antenna relays. Dealing with this problem is

not a trivial extension of the work in [1]. Indeed, as we show in Chapter 4, we have

to optimize relay beamforming matrices while in [1] only one amplification factor per

relay has to be optimized.

A brief review on the published work on asynchronous networks shows interest in

various design parameters and objectives. Resorting to the OFDM scheme, in [83] the

authors aim to design the AF relay weights and the transceivers subcarrier powers

such that the smallest subcarrier SNR at the receiver front-end of the transceivers

is maximized while a total transmit power constraint is satisfied. In [88], the goal

is to optimize the transceivers transmit powers, the relay amplification weights, and

the post-channel block equalizing matrices in a way that the total MSE between

the transmitted signals and the estimated received signals at the two transceivers

is minimized while a total transmit power budget is guaranteed. Similar to [88],

the objective in [89] is to minimize the total MSE under a total transmit power

constraint. The network considered in [89] consists of two single-antenna transceivers

which aim to communicate through multiple single-antenna relays. The authors of

[90], characterize the achievable SNR region and equivalently the achievable rate

region for an asynchronous multi-carrier two-way relay channel, with the restriction on

the total available transmit power. In [91], a multi-carrier asynchronous two-way relay
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channel similar to that studied in [83] is considered. It is shown that the network sum-

rate maximization problem with the total transmit power constraint results in a relay

selection scheme suggested by the max-min SNR fair optimization problem in [83].

All the results published in [1, 64, 83, 85–93], focus on networks with single-antenna

relays while studies in Chapters 3 and 4 of this dissertation consider two-way single-

carrier relay networks with multi-antenna relays in synchronous and asynchronous,

respectively . The single-carrier two-way relay networks we consider in Chapters 3 and

4, consist of two single-antenna transceivers which wish to communicate with the help

of multiple multi-antenna relays. Addressing the total transmit power minimization

problem while the SNRs or data rates of at two transceivers are maintained above

two given thresholds, we aim to jointly determine the relay beamforming matrices

and the transceivers transmit powers.

The problem of relay beamforming and transceiver power allocation has been in-

vestigated in the literature for single-antenna multi-relay networks, for multi-antenna

single-relay scheme, and for multi-antenna multi-relay synchronous networks. How-

ever, the problem of total transmit power minimization for synchronous or asyn-

chronous multi-antenna multi-relay networks, where the beamforming matrices and

transceivers power allocation need to be jointly considered, has not been investigated.

These two problems problems are exactly what we study in Chapters 3 and 4.

2.3 Massive MIMO Techniques and Multi-pair

Two-way Relay Networks

The spectral efficiency of two-way relay networks can be improved via establishing

peer-to-peer communications between more than a single pair of transceivers [63,94–

102]. Indeed, using the same amount of time and frequency resources, multipair two-

way relay networks can transfer higher amount of data per channel use. However,

in such multipair networks, inter-pair interference (between transceivers belonging to

different pairs) and intra-pair interference (users self-interference transferred back by
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relay(s)) raise new challenges.

A simple method to avoid inter-pair interference is to establish peer-to-peer com-

munications over orthogonal channels. Techniques such as code division multiple ac-

cess (CDMA) [103] and orthogonal frequency division multiple access (OFDMA) [104]

make the communication channels orthogonal. In [105], several low-complexity beam-

forming techniques are proposed which rely on the block-diagonalization concept.

However, these techniques are not spectrally efficient in the sense that they do not

allow multiple peer-to-peer communications to share the same channel (i.e., the same

time and frequency resource). In [51,106–110], the authors employ MIMO techniques

to suppress interference while allow users share channel resources. The drawback of

these techniques is their prohibitive computational complexity. Some of the other

advanced techniques proposed to suppress the inter-pair interference are the dirty

paper coding [111] and the interference alignment techniques [112]. The complexity

burden of implementing these techniques is also significantly high.

The most recent approach being introduced to suppress interference is to equip

relays with a very large number of antennas. Equipping relays with a massive num-

ber of antennas (often referred to as massive multiple input multiple output (MIMO)

technique) can significantly improve the spectral and energy efficiencies in comparison

to the traditional MIMO techniques [113–116]. The massive MIMO technique can

substantially suppress the intra- and inter-pair interferences. As such, when number

of antennas is very large, the effects of noise and small-scale fading are asymptoti-

cally eliminated [117]. Employing a massive number of antennas at the relays, allows

network to deal with the remaining channel effects such as path loss and large-scale

fading even using simple signal processing techniques. Moreover, as number of anten-

nas are approaching infinity, the transmit power can be arbitrarily reduced without

degrading the network performance [116, 118–120]. Due to these benefits, massive

MIMO technique has been the center focus of a significant volume of studies in recent

years. However, published results on two-way network with massive MIMO relays are

still scarce.
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In what follows, we describe how adopting massive MIMO technique can be of help

with multipair two-way relay networks. The massive MIMO technique, allows relays

in multipair two-way relay networks to employ low complexity relaying schemes such

as linear signal processing techniques. Thanks to their simplicity in implementation,

linear techniques have attracted a significant amount of interest in the literature.

Among the linear techniques, AF relaying scheme is the most studied one. Indeed,

adopting AF relaying scheme, relays do not require to decode their received signals.

As a result, AF relaying scheme incurs low hardware and software complexity. More-

over, when AF relaying scheme is employed, the transmission delay due to the signal

processing at relays is insignificant.

When AF relaying scheme is employed by two-way relay networks with multi-

antenna relays, the vector of received signal at each relay is first multiplied by the

uplink beamforming matrix and then by an amplification matrix. Next, the so-

obtained vector is multiplied by the downlink beamforming matrix to be transmitted

toward users. The most common structures being used for the uplink and down-

link beamforming matrices of two-way relay networks are constructed based on the

MRT/MRC [95,96] and the ZF [97–99] techniques.

In Chapter 5, with massive number of antennas being used at the relays, we

use two linear relaying schemes. We assume that relays employ linear beamforming

techniques such as the MRT/MRC and the ZF schemes to process their received

signals. Exploiting the approximate orthogonality among relay-transceiver channel

vectors when number of relay antennas are very large, we aim to minimize the total

transmit power while the transceivers signal-to-noise ratios are to be above given

thresholds.
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Chapter 3

Synchronous Two-way Networks
with Multiple Multi-Antenna
Relays

The focus of this chapter is on two-way relay networks consisting of two single-antenna

transceivers and multiple multi-antenna relays. Assuming an MABC relaying scheme,

our goal is to jointly obtain the optimal relay beamforming matrices as well as the

optimal transceiver transmit powers which minimize the total transmit power un-

der given signal-to-noise-ratio (SNR) constraints at the transceivers. To do so, we

consider two different types of beamforming matrices. We first restrict the relay beam-

forming matrices to be symmetric, thereby rendering the end-to-end channel between

the two transceivers reciprocal. Under such symmetry condition, we show that the

aforementioned total power minimization yields a semi-closed form solution. We then

solve the total power minimization problem for the case with general beamforming

matrices (without assuming that these matrices are symmetric).

The organization of this chapter is as follows. In Section 3.1, we model the system

and signals corresponding to the two-way relay networks with multiple multi-antenna

relays. We also formulate the total transmit power and signal-to-noise-ratio (SNRs)

at the receiver front-end of transceivers. In Section 3.2, we provide the problem

statement, where we aim to minimize the total power consumed in the entire network

while two SNR thresholds are satisfied at the receiver front-end of the transceivers.
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Figure 3.1: A two-way relay network with multiple multi-antenna relays.

In Section 3.3, we solve the power minimization problem under the assumption that

the beamforming matrices are to be symmetric. In Section 3.4, we solve the power

minimization problem under the assumption that the beamforming matrices are not

constrained to be symmetric. A discussion on the computational complexity of the

methods proposed and some other important remarks are provided in Section 3.5.

In Section 3.6, we use numerical examples to evaluate the proposed methods with

symmetric or general beamforming matrices.

3.1 System Model

As shown in Fig. 3.1, the two-way relay network we consider consists of two single-

antenna transceivers which wish to communicate with the help of nr multi-antenna

relays. The scenario we are considering can be used in cellular communication sys-

tems, where user devices can use only a single antenna due to their size and weight

limitations and the base stations act as relays. Indeed, our scheme can be viewed

as a distributed MIMO system used for connecting two single-antenna user devices.

Equipping the relays (base stations) with multiple antennas allows local beamform-

ing at the relays while distributed beamforming is materialized by all base stations

collectively.
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Each relay transforms the vector of its received signals by multiplying it with

a complex “beamforming” matrix. We refer to such a scheme as transform-and-

forward (TF) relaying protocol. To determine the relay beamforming matrices and the

transceivers’ transmit powers, we aim to minimize the total transmit power consumed

in the entire network while SNRs at the receiver front-ends of the transceivers are

kept higher than or equal to two given thresholds. Assuming that each relay node is

equipped with M antennas, we consider the two time-slot MABC relaying scheme,

where in the first time-slot, the two transceivers transmit their signals simultaneously

and in the second time-slot, each relay forwards a linearly transformed version of its

received signal vector to the two transceivers. We assume that no direct link exists

between the transceivers, i.e., all data transmissions go through the relay nodes.

For j ∈ {1, 2}, let sj denote the unit-power scalar information symbol transmit-

ted by Transceiver j with transmission power pj . Assuming frequency-flat fading

transceiver-relay channels, the M × 1 vector xi of the received baseband signals at

relay i in the first time-slot is given as

xi =
√

p1h1is1 +
√

p2h2is2 + ni, for i ∈ {1, . . . , nr}. (3.1)

Here, ni is the M × 1 received noise vector at the i-th relay, while h1i and h2i are the

M × 1 complex vectors of the coefficients corresponding to the channels between the

i-th relay and Transceivers 1 and 2, respectively. Denoting the beamforming matrix

of the i-th relay as an M × M complex matrix Ai, the M × 1 vector of the signal

transmitted by the i-th relay is denoted by ti and can be expressed as

ti = Aixi. (3.2)

Assuming that the relay-transceiver channels are reciprocal for uplink and down-

link transmissions, the received signals y1 =
∑nr

i=1 hT
1iti + η1 and y2 =

∑nr

i=1 hT
2iti + η2

at Transceivers 1 and 2 are written, respectively, as

y1 =
nr∑

i=1

√
p1h

T
1i Aih1is1 +

nr∑

i=1

√
p2h

T
1i Aih2is2 +

nr∑

i=1

hT
1i Aini + η1 (3.3)
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y2 =
nr∑

i=1

√
p1h

T
2i Aih1is1 +

nr∑

i=1

√
p2h

T
2i Aih2is2 +

nr∑

i=1

hT
2i Aini + η2 (3.4)

where ηj is the received noise at Transceiver j, for j ∈ {1, 2}. Since the two

transceivers know their own transmitted signals and assuming that they have per-

fect knowledge of global channel state information (CSI), the first term in (3.3) and

the second term in (3.4) (which are self-interference terms) can be subtracted from

y1 and y2, respectively. The residual signals ỹ1 and ỹ2 are then given as

ỹ1 ,
nr∑

i=1

√
p2h

T
1i Aih2is2 +

nr∑

i=1

hT
1i Aini + η1 (3.5)

ỹ2 ,
nr∑

i=1

√
p1h

T
2iAih1is1 +

nr∑

i=1

hT
2i Aini + η2. (3.6)

The noise processes at all nodes are assumed to be spatially white zero-mean complex

Gaussian processes with variance σ2. Therefore, we can write E{|η1|2} = E{|η2|2} =

σ2 and E{nin
H
i } = σ2IM . Hence, using (3.5) and (3.6), we can express the SNRs at

Transceivers 1 and 2 as

SNR1 =

p2

∣
∣
∣
∣

nr∑

i=1

hT
1iAih2i

∣
∣
∣
∣

2

σ2(1 +
nr∑

i=1

‖hT
1iAi‖2)

,

SNR2 =

p1

∣
∣
∣
∣

nr∑

i=1

hT
2iAih1i

∣
∣
∣
∣

2

σ2(1 +
nr∑

i=1

‖hT
2iAi‖2)

. (3.7)

The total transmit power PT in the network is the summation of the transceivers’

transmit powers and the transmit power of all the relays, that is PT = p1 + p2 + Pr,

where

Pr,p1

nr∑

i=1

‖Aih1i‖
2+p2

nr∑

i=1

‖Aih2i‖
2+σ2

nr∑

i=1

tr(AiA
H
i ) (3.8)

is the total relay transmit power.
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3.2 Power Minimization

In the current study, we aim to find the beamforming matrices and the transceivers’

transmit powers such that the total transmit power PT is minimized, while the SNRs

at Transceivers 1 and 2 are maintained above given thresholds γ1 and γ2, respectively.

This power minimization problem can be expressed as1 2 3

min.
p1,p2,{Ai}

nr
i=1

PT subject to SNR1 ≥ γ1, SNR2 ≥ γ2. (3.9)

Using (3.7) and (3.8), we can recast the optimization problem as

min.
p1,p2,{Ai}

nr
i=1

p1

(

1+
nr∑

i=1

‖Aih1i‖
2

)

+ p2

(

1+
nr∑

i=1

‖Aih2i‖
2

)

+ σ2

nr∑

i=1

tr(AiA
H
i )

subject to

p2

∣
∣
∣
∣

nr∑

i=1

hT
1iAi h2i

∣
∣
∣
∣

2

σ2

(

1 +
nr∑

i=1

‖hT
1iAi‖2

) ≥ γ1,

p1

∣
∣
∣
∣

nr∑

i=1

hT
2iAi h1i

∣
∣
∣
∣

2

σ2

(

1 +
nr∑

i=1

‖hT
2iAi‖2

) ≥ γ2. (3.10)

We observe that at the optimum, the SNR inequality constraints in (3.10) are

satisfied with equality, otherwise, if, at the optimum, any of these constraints is

satisfied with inequality, then the corresponding optimal power can be reduced to

satisfy this constraint with equality. This, in turn decreases the value of the objective

1It is worth mentioning that a total power minimization approach has been widely considered as
a design technique for relay networks, see for example [27, 60–63,66, 87, 121,122]. The advantage of
a total power minimization approach is to ensure the minimum amount of power is consumed in the
entire network, thereby leading to the most power efficient design of the network.

2Note that the power consumption at each node is the sum of the node transmit power and the
power consumed in the circuitry of the node. The latter power is the sum of the power consumption in
the node circuitry, excluding the node power amplifier, which is constant, and the power consumed
by the power amplifier and is a linear function of the node transmit power, see [123]. As such,
minimizing the total transmit power will minimize the total power consumed in the network.

3Note that as shown in [29], the total power minimization problem in (3.9) can be used to
solve a related problem, namely the weighted sum-rate maximization problem under a total power
constraint. As shown in [29], the latter problem can be solved using a bisection type of algorithm
along with an algorithm which solves the total power minimization problem. Interested readers are
referred to [29] for more details on this approach.
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function thereby contradicting the optimality. This observation implies that p1 and

p2 can be respectively written as

p1 =

σ2γ2

(

1 +
nr∑

i=1

‖hT
2iAi‖2

)

∣
∣
∣
∣

nr∑

i=1

hT
2iAi h1i

∣
∣
∣
∣

2 , p2 =

σ2γ1

(

1 +
nr∑

i=1

‖hT
1iAi‖2

)

∣
∣
∣
∣

nr∑

i=1

hT
1iAi h2i

∣
∣
∣
∣

2 . (3.11)

Using (3.11), we rewrite (3.10) as the following unconstrained optimization problem:

min.
{Ai}

nr
i=1

γ2σ
2

(

1 +
nr∑

i=1

‖hT
2iAi‖2

)(

1 +
nr∑

i=1

‖Aih1i‖2

)

∣
∣
∣
∣

nr∑

i=1

hT
2iAi h1i

∣
∣
∣
∣

2

+

γ1σ
2

(

1 +
nr∑

i=1

‖hT
1iAi‖2

)(

1 +
nr∑

i=1

‖Aih2i‖2

)

∣
∣
∣
∣

nr∑

i=1

hT
1iAi h2i

∣
∣
∣
∣

2 + σ2

nr∑

i=1

tr(AiA
H
i ). (3.12)

Let us denote the M × 2 matrix that spans the vector space of h1i and h2i as Ui,

where UH
i Ui = I2. Following Theorem 3.1 of [29], we show in Appendix 3.A that the

optimal value of matrix Ai can be written, without any loss of optimality, as

Ai = U∗
i BiU

H
i . (3.13)

Here, Bi is a 2 × 2 complex matrix which can be viewed, as shown in the sequel,

as the effective beamforming matrix of the i-th relay. In light of (3.13), the beam-

forming matrix Ai is a cascade of three operations. The first operation is a receive

beamforming matrix UH
i , which filters out the components of the relay received noise

vector that do not reside in the signal subspace defined as the space spanned by h1i

and h2i. The second operation is denoted with Bi which transforms the output vector

of the relay receive beamformer into a new vector. The third operation is a transmit

beamforming operation represented by matrix U∗
i which guarantees that the trans-

formed vector is transmitted only into the signal subspace. The matrices {Bi}
nr
i=1

are now determined such that the total transmit power is minimized subject to SNR

constraints. That is, instead of finding the optimal values {Ai}
nr
i=1, without loss of

optimality, we can obtain the optimal values of {Bi}
nr
i=1.
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Let us define q1i , UH
i h1i and q2i , UH

i h2i as the effective channel vectors

between the i-th relay and Transceivers 1 and 2, respectively. Then, the unconstrained

problem in (3.12) can be equivalently written as

min.
{Bi}

nr
i=1

γ2σ
2

(

1 +
nr∑

i=1

‖qT
2iBi‖2

)(

1 +
nr∑

i=1

‖Biq1i‖2

)

∣
∣
∣
∣

nr∑

i=1

qT
2iBi q1i

∣
∣
∣
∣

2

+

γ1σ
2

(

1 +
nr∑

i=1

‖qT
1iBi‖2

)(

1 +
nr∑

i=1

‖Biq2i‖2

)

∣
∣
∣
∣

nr∑

i=1

qT
1iBi q2i

∣
∣
∣
∣

2

+ σ2

nr∑

i=1

tr(BiB
H
i ). (3.14)

where the effective beamforming matrices {Bi}
nr
i=1 are now the optimization variables.

3.3 Power Minimization with Symmetric Beam-

forming Matrices

3.3.1 Symmetric relay beamforming matrices

To ensure the end-to-end reciprocity between the transceivers, we choose Ai to be

a symmetric matrix, i.e., Ai = AT
i . Indeed, from (3.3) and (3.4), the end-to-end

gains are hT
1i Aih2i and hT

2i Aih1i which will be equal if we choose Ai = AT
i . As-

suming a symmetric4 beamforming matrix Ai, leads to a symmetric matrix Bi, i.e.,

Bi = BT
i . It is thus observed that in this case, for minimizing total power, the op-

timal scheme needs to determine 3nr unknown complex parameters as each of the

nr matrices {Bi}
nr
i=1 has only three unknown complex parameters, which are to be

optimally determined. Using the symmetric beamforming matrices assumption, the

4In the next section, we consider the case of non-symmetric beamforming matrices.
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optimization problem (3.14) can be rewritten as

min.
{Bi}

nr
i=1

σ2(γ1+γ2)

(

1+
nr∑

i=1

‖qT
2iBi‖2

)(

1+
nr∑

i=1

‖Biq1i‖2

)

∣
∣
∣
∣

nr∑

i=1

qT
2iBiq1i

∣
∣
∣
∣

2 + σ2

nr∑

i=1

tr(BiB
H
i )

subject to [Bi](1,2) = [Bi](2,1), for i = 1, 2, . . . , nr (3.15)

where the last set of constraints guarantees that {Bi}
nr
i=1 are symmetric. Assuming

that the beamforming matrices are symmetric renders the end-to-end channel over

each relaying path reciprocal, i.e., qT
1iBiq2i = qT

2iBiq1i, and also leads to the following

equalities ‖qT
1iBi‖ = ‖Biq1i‖ and ‖qT

2iBi‖ = ‖Biq2i‖, and thus, allows us to write

the optimization problem (3.14) as in (3.15). The latter optimization, as we show

in the sequel, is amenable to a computationally affordable solution, which is globally

optimal under the assumption of symmetric beamforming matrices. We now observe

that the matrices {Bi}
nr
i=1 remain unchanged for different values of γ1 and γ2 as long

as γ1+γ2 does not change5. Hence, in (3.10), if we replace γ2 with γ1+γ2 and then set

γ1 to 0, the optimal values of {Ai}
nr
i=1 (or equivalently the optimal values of {Bi}

nr
i=1)

will not change. Note that in (3.10), replacing γ1 with 0, means that p2 will be equal

to 0. Therefore, as long as the optimal values of {Bi}
nr
i=1 are concerned, we can solve

the following optimization problem:

min.
p̃1,{Bi}

nr
i=1

p̃1

(

1 +
nr∑

i=1

‖Biq1i‖
2

)

+ σ2

nr∑

i=1

tr(BiB
H
i )

subject to

p̃1

∣
∣
∣
∣

nr∑

i=1

qT
2iBi q1i

∣
∣
∣
∣

2

σ2

(

1 +
nr∑

i=1

‖qT
2iBi‖2

) ≥ γ1 + γ2

[Bi](1,2) = [Bi](2,1), for i = 1, 2, . . . , nr. (3.16)

Note that the optimal value for p̃1 in (3.16) is not the same as the optimal value

of p1 in (3.10). In other words, the matrices {Bi}
nr
i=1 obtained by solving (3.10) are

5Note that in case of single-antenna relays, each relay beamforming matrices shrinks to a scalar,
and thus, the symmetric property of relay beamforming weights is automatically satisfied. The case
of single-antenna relays which was studied in [27,121] has indeed inspired us to resort to symmetric
beamforming matrices.
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identical to the matrices {Bi}
nr
i=1 obtained by solving (3.16). However, the value of

p̃1 obtained by solving (3.16) is not the same as the value of p1 obtained by solving

(3.10). To obtain the optimal values of p1 and p2 in (3.10), once the optimal values of

{Bi}
nr
i=1 in (3.16) are obtained, we can use (3.13) to obtain the corresponding optimal

values of {Ai}
nr
i=1. The so-obtained Ai’s can then be used in (3.11) to calculate the

optimal values of p1 and p2. Indeed, by solving (3.16), we aim to find the optimal

values of {Bi}
nr
i=1 and the transmit power of Transceiver 1 in a one-way relay-assisted

communication scheme, where the received SNR at Transceiver 2 is at least equal to

γ1 + γ2. Using the following identities tr(ABC) = (vec(AT ))T (I ⊗ B) vec(C) and

tr(ATBCDT ) = (vec(AT ))T (D ⊗ B) vec(C) , defining bi , (vec(BT
i ))∗ and fi ,

vec(q1i q
T
2i), and after some algebraic manipulation, we can rewrite the optimization

problem in (3.16) as

min.
p̃1,{bi}

nr
i=1

p̃1(1+
nr∑

i=1

bH
i (I2 ⊗ q1iq

H
1i)bi)+σ2

nr∑

i=1

bH
i bi

subject to p̃1

∣
∣
∣
∣
∣

nr∑

i=1

bH
i fi

∣
∣
∣
∣
∣

2

− σ2(γ1+γ2)

(

1+
nr∑

i=1

bH
i (q2iq

H
2i ⊗ I2)bi

)

≥0

[bi]2 = [bi]3, for i = 1, 2, . . . , nr. (3.17)

We now define b , [bT
1 ,bT

2 , . . . ,bT
nr

]T and f , [fT
1 , fT

2 , . . . , fT
nr

]T , and hence, can write
∣
∣
∣
∣

nr∑

i=1

bH
i fi

∣
∣
∣
∣

2

= |bHf |2 = bHf fHb. Doing so, we can express the optimization problem

in (3.17) as

min.
p̃1

p̃1 + min
b

bH (p̃1E0 + σ2I4nr)b

subject to bH (p̃1E1 − σ2(γ1 + γ2)E2)b ≥ σ2(γ1 + γ2)

[b](i−1)nr+2 =[b](i−1)nr+3 for i = 1, 2, ∙ ∙ ∙ , nr (3.18)

where E0, E1, and E2 are defined as

E0 , blkdiag
(
{I2 ⊗ q1i q

H
1i}

nr
i=1

)
, (3.19)

E1 , f fH , (3.20)

E2 , blkdiag
(
{q2i q

H
2i ⊗ I2)}

nr
i=1

)
. (3.21)
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Here blkdiag(∙) stands for a block diagonal matrix. To solve (3.18), we can first

fix p̃1 and solve the minimization over b. This value of b will be a function of

p̃1. We plug this value of b into the objective function of (3.18), thereby turning

this function into a function of p̃1 only. We then deal with solving a single-variable

optimization problem. To further elaborate on this approach, we now focus on the

inner minimization in (3.18).

3.3.2 Inner minimization in (3.18)

For any given feasible value of p̃1, we rewrite this minimization as

min.
b

bH (p̃1E0 + σ2I4nr)b

subject to bH(p̃1 E1 − σ2(γ1 + γ2)E2 ) b ≥ σ2(γ1 + γ2)

[b](i−1)nr+2 =[b](i−1)nr+3 for i = 1, 2, . . . , nr. (3.22)

Using the following definitions:

T ,







1 0 0
0 1 0
0 1 0
0 0 1





 , L , Inr ⊗T (3.23)

we can write bi = T b̃i, where b̃i = [ [bi]1 [bi]2 [bi]4 ]T is the vector of the free

parameters in bi. We can further write b = L b̃, where b̃ = [b̃T
1 b̃T

2 ... b̃T
nr

]T . These

definitions enable us to rewrite (3.22) as

min.
b̃

b̃H(p̃1Ẽ0 + σ2LHL)b̃

subject to b̃H(p̃1Ẽ1−σ2(γ1+γ2)Ẽ2)b̃≥σ2(γ1 + γ2) (3.24)

where we further define: Ẽ0 , LH E0 L, Ẽ1 , LH E1 L, and Ẽ2 , LH E2 L.

We show in Appendix 3.B that the problem in (3.24) is feasible if and only if

p̃1 >
σ2(γ1 + γ2)

qH
1 q1

. (3.25)

We now aim to solve the minimization problem in (3.24) for any feasible value of

p̃1 which satisfies (3.25). We note that under the feasibility condition in (3.25), this
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problem is a quadratic programming problem. Based on the fact that for any feasible

p̃1 at the optimum, the inequality constraint in (3.24) is satisfied with equality, and

thus, we can use the method of Lagrangian multipliers to solve (3.24). As a result,

the solution to (3.24), denoted by b̃opt(p̃1), is obtained as6

b̃opt(p̃1) = αu(p̃1). (3.26)

Here, u(p̃1) = P{S(p̃1)} is the normalized principal eigenvector of the matrix7

S(p̃1) =(p̃1Ẽ0+σ2LHL)−1(p̃1Ẽ1− σ2(γ1 + γ2)Ẽ2) (3.27)

and α is a scalar factor which guarantees that the constraint in (3.24) is satisfied with

equality and is given as

α =

(
σ2(γ1 + γ2)

uH(p̃1)(p̃1 Ẽ1 − σ2(γ1 + γ2)Ẽ2 )u(p̃1)

)1/2

. (3.28)

In the next subsection, we address the problem of optimally obtaining the parameter

p̃1.

3.3.3 Optimizing p̃1

We can now rewrite the main problem in (3.18) as

min.
p̃1

p̃1+
σ2(γ1 + γ2)

λ(p̃1)
subject to p̃1 >

σ2(γ1 + γ2)

qH
1 q1

(3.29)

where λ(p̃1) = λmax{S(p̃1)} represents the principal eigenvalue of the matrix S(p̃1).

Lemma 1 The objective function in (3.29) has a unique extremum point in the in-

terval (σ2(γ1+γ2)

qH
1 q1

, +∞), which is the global minimum of this objective function.

6Indeed, the optimization problem (3.24) is a quadratic programming problem and has a closed-
form solution as in (3.26).

7From (3.23), we obtain

TT T =




1 0 0
0 2 0
0 0 1



 , LT L = Inr
⊗TT T.

Note that LT L is a block diagonal matrix of full-rank matrices TT T. Hence, (p̃1Ẽ0 + σ2LT L) is a
full-rank matrix and thus invertible.
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Proof See Appendix 3.C. �

The unique solution to (3.29) can be obtained by equating the derivative of the

objective function in (3.29) to zero. Denoting the objective function in (3.29) as

ψ(p̃1), we show in Appendix 3.D that derivative of ψ(p̃1) with respect to p̃1 is given

by

g(p̃1) ,
∂ψ(p̃1)

∂p̃1

= 1− σ2(γ1 + γ2)

∂
∂p̃1

λ(p̃1)

λ2(p̃1)

= 1− σ2(γ1 + γ2)
p̃−2

1 − λ(p̃1)f̃
HA−1(p̃1)Ẽ0A

−1(p̃1)f̃

λ2(p̃1)f̃HA−1(p̃1)(p̃1Ẽ0+σ2LTL)A−1(p̃1)f̃
. (3.30)

Here, the following definitions are used:

A(p̃1) , σ2(γ1 + γ2)Ẽ2 + λ(p̃1)(p̃1Ẽ0 + σ2LT L) (3.31)

f̃ , LHf , (3.32)

and λ(p̃1) is the largest eigenvalue of the matrix S(p̃1), and can be obtained, for any

feasible value of p̃1, as the provably unique positive solution to the following equation:

p̃1f̃
H
(
σ2(γ1+γ2)Ẽ2+λ(p̃1)(p̃1Ẽ0+σ2LTL)

)−1

f̃ =1. (3.33)

This unique solution can be obtained using a simple Newton-Raphson method or

a bisection method. Once λ(p̃1) is obtained, the corresponding value of g(p̃1) can

be obtained and thus the equation g(p̃1) = 0 can be solved using another bisection

method, thereby the optimum value of p̃1 can be obtained. Denoting the so-obtained

optimal value of p̃1 as p̃o
1, we can use (3.26) to obtain b̃opt(p̃o

1). The optimal value

of b can then be calculated as bopt = [bT
1 bT

2 ... bT
nr

]T = Lb̃opt(p̃o
1). Reshaping bi

yields the optimal value of Bi and finally the optimal value of Ai can be obtained

from Ai = U∗
i BiU

H
i . One can then use the so-obtained Ai in (3.11) to obtain the

transceivers’ transmit powers in closed-forms.

The proposed technique is summarized as in Algorithm 3.3.3.
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Algorithm 1 Based on bisection Method

1. Calculate E0 = blkdiag
(
{I2 ⊗ q1iq

H
1i}

nr

i=1)

)
and E2 =

blkdiag
(
{q2i q

H
2i ⊗ I2}

nr
i=1

)
as well as L = Inr ⊗ T, where T =







1 0 0
0 1 0
0 1 0
0 0 1





.

Then, calculate Ẽ0 = LH E0 L, Ẽ2 = LH E2 L, and f̃ = LHf where the vector f
is obtained as

f = [(vec(q11q
T
21))

T (vec(q12q
T
22))

T ∙ ∙ ∙ (vec(q1nrq
T
2nr

))T ]T .

2. For any value of z ∈ (σ2(γ1+γ2)

qH
1 q1

, +∞) , define function g(∙) as

g(z) = 1− σ2(γ1 + γ2)
z−2 − λ(z)uH(z)Ẽ0u(z)

λ2(z)uH(z)(zẼ0 + σ2LT L)u(z)
.

Here, for any value of z ∈ (σ2(γ1+γ2)

qH
1 q1

, +∞), the value of λ(z) is obtained, using

a bisection method, as the provably unique positive solution to the following
non-linear equation:

zfH(σ2(γ1 + γ2)Ẽ2 + λ(z)(zẼ0 + σ2LHL))−1f − 1 = 0

and for any value of z, the 3nr × 1 vector u(z) is obtained as

u(z) = (σ2(γ1 + γ2)Ẽ2 + λ(z)(zẼ0 + σ2LTL))−1f̃

3. To solve g(z) = 0 in the interval z ∈ (σ2(γ1+γ2)

qH
1 q1

, +∞), using a bisection method,

choose zl as

zl =
σ2(γ1 + γ2)

qH
1 q1

+ ε1

where ε1 is an arbitrarily small positive number such that g(zl) < 0. Also,
choose zu large enough such that g(zu) > 0.

4. Choose ε2 to be an arbitrarily small positive number.

5. Choose z = (zl + zu)/2.

6. If |g(z)| < ε2, go to Step 7. If g(z) < −ε2, then zl = z. If g(z) > ε2, then zu = z.
Go to Step 5.
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7. Set p̃o
1 equal to z and use a bisection technique to obtain the optimal value of

λ, denoted as λo, as the unique positive solution to the following non-linear
equation:

p̃o
1f̃

H(σ2(γ1 + γ2)Ẽ2 + λ(p̃o
1Ẽ0 + σ2LHL))−1f̃ − 1 = 0.

8. Calculate the total transmitter power, denoted as PT , consumed in the entire
network as

PT = p̃o
1 +

σ2(γ1 + γ2)

λo

9. Obtain b̃opt(p̃1) = [b̃T
1 b̃T

2 ∙ ∙ ∙ b̃T
nr

]T as

b̃opt(p̃1) = κ (σ2(γ1 + γ2)Ẽ2 + λo(p̃o
1Ẽ0 + σ2LHL))−1f̃

︸ ︷︷ ︸
u(p̃1)

where κ is obtained as

κ =

√
σ2(γ1 + γ2)

λouH(p̃1)(p̃1Ẽ1 + σ2LHL)u(p̃1)
.

10. Calculate bopt = [bT
1 bT

2 ... bT
nr

]T = Lb̃opt(p̃o
1).

11. Reshape bi to obtain the optimal value of the effective beamforming matrix
Bi of the i-th relay, and finally, obtain the optimal value of the beamforming
matrix of the i-th relay as Ai = U∗

i BiU
H
i .

12. Use the so-obtained beamforming matrices to obtain the optimal values of the
transceivers transmit powers in closed-forms as:

p1 =

σ2γ2

(

1 +
nr∑

i=1

‖hT
2iAi‖2

)

∣
∣
∣
∣

nr∑

i=1

hT
2iAi h1i

∣
∣
∣
∣

2 , p2 =

σ2γ1

(

1 +
nr∑

i=1

‖hT
1iAl‖2

)

∣
∣
∣
∣

nr∑

i=1

hT
1iAi h2i

∣
∣
∣
∣

2 .
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3.4 Power Minimization with General Beamform-

ing Matrices

In this section, we present the solution to the power minimization problem for the case

when the beamforming matrices are not constrained to be symmetric. The solution

to this case can then be used to evaluate the performance of the power minimization

problem with symmetric beamforming matrices. To develop the solution to the case

of general beamforming matrices, we rely on the pioneer results of [29], which consid-

ers a three-node two-way relay network and minimizes the transmit power consumed

in a single multi-antenna relay subject to SNR constraints at two single-antenna

transceivers. Note however that the authors of [29] assume that the transceivers’

transmit powers are fixed, while in our work, these powers are part of the design pa-

rameters. Nevertheless, the technique of [29] can be combined with a two-dimensional

search over the plane of (p1, p2) to find the optimal values of transceivers’ transmit

powers. In this section, we briefly review the technique of [29], while extending this

technique to allow the optimization of transceivers’ transmit powers.

Using (3.13), we can write the optimization problem (3.10) as

min.
p1,p2,{Bi}

nr
i=1

2∑

j=1

pj

(

1 +
nr∑

i=1

‖Biqji‖
2

)

+σ2

nr∑

i=1

tr(BiB
H
i )

subject to

pj

∣
∣
∣
∣

nr∑

i=1

qT
j̄i
Bi qji

∣
∣
∣
∣

2

σ2

(

1 +
nr∑

i=1

‖qT
j̄i
Bi‖2

)≥γj̄ , j ∈{1, 2} (3.34)

where q1i = UH
i h1i and q2i = UH

i h2i are defined as the effective channels between

the i-th relay and Transceivers 1 and 2, respectively. Also we can rewrite the norms

in problem (3.34) as ‖Bi qji‖2 = bH
i (I2⊗ (q∗ji q

T
ji))bi, ‖qT

jiBi‖2 = bH
i ((q∗ji q

T
ji)⊗ I2)bi,

and tr(BiB
H
i ) = bH

i bi, where we use the following definition: bi , (vec(BT
i ))∗.

Further, defining

f̆ , [vecT (q21 qT
11) ∙ ∙ ∙ vecT (q2nr qT

1nr
)]T
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we can write ∣
∣
∣
∣
∣

nr∑

i=1

qT
1iBi q2i

∣
∣
∣
∣
∣

2

= bH f̆ f̆Hb.

The optimization problem (3.34) can now be recast as

min.
p1,p2,b

p1 + p2 + bH (p1E0 + p2Ĕ0 + σ2I4nr)b

subject to bH (p2 Ĕ1 − σ2γ1Ĕ2 )b ≥ σ2γ1

bH (p1 E1 − σ2γ2E2 )b ≥ σ2γ2 (3.35)

where the following definitions are used:

Ĕ0 , blkdiag
(
{I4 ⊗ q2iq

H
2i}

nr
i=1

)
,

Ĕ1 , f̆ f̆H ,

Ĕ2 , blkdiag
(
{q1i q

H
1i ⊗ I4}

nr
i=1

)
.

The optimization problem (3.35) does not seem to be amenable to a closed-form

solution. We can solve the problem by finding the optimal value for b for any given

transceiver powers, p1 and p2, and then find the optimal values for p1 and p2 by

finding those values of p1 and p2 which yield the smallest value for the objective

function. For given values of p1 and p2, the minimization over b can be written as a

quadratically constrained quadratic problem (QCQP). If the feasible region in (p1, p2)

plane is quantized into a sufficiently fine grid, we can obtain the optimal value of b

corresponding to each vertex of this grid. We then choose, as the solution to the

problem, the values of p1, p2, and the corresponding value of b, which lead to the

minimum value of the objective function.

To solve the minimization over b for any given pair of p1 and p2, we need to

determine the set of feasible values of p1 and p2. One can see from the constraint

in (3.35) that for those values of p1 that make the matrix (p1 E1 − σ2γ2E2) negative

semi-definite, the problem becomes infeasible. Similar condition holds true for p2 in

matrix (p2 Ĕ1 − σ2γ2Ĕ2). Hence, the infeasibility conditions can be written as

p1E1 − σ2γ2E2 4 0, p2Ĕ1 − σ2γ1Ĕ2 4 0, (3.36)
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where the notation Z 4 0 means that matrix Z is negative semi-definite. These

conditions mean that the minimum values of p1 and p2 that make the problem feasible

are those for which the largest eigenvalues of the matrices in (3.36) are greater than

zero. It can be shown that the feasible values of p1 and p2 must satisfy

p1 >
σ2γ2

qH
1 q1

, and p2 >
σ2γ1

qH
2 q2

. (3.37)

where q1 , [qT
11, qT

12, ...,q
T
1nr

]T , and q2 , [qT
21, qT

22, ...,q
T
2nr

]T . Hence, we need to

start the exhaustive search over the values of p1 and p2 which satisfy (3.37) . Let us

consider the inner part of the minimization problem in (3.35) as

min.
b

bH (p1E0 + p2Ĕ0 + σ2I4nr)b

subject to bH (p2Ĕ1 − σ2γ1Ĕ2 ) b ≥ σ2γ1

bH (p1 E1 − σ2γ2E2 ) b ≥ σ2γ2 (3.38)

Once a feasible pair of p1 and p2 is chosen, we can solve the minimization problem in

(3.38), as explained in the sequel. Using the following definitions

G0 , (p1E0 + p2Ĕ0 + σ2I4nr) G1 ,
p1

σ2γ2

E1 − E2, G2 ,
p2

σ2γ1

Ĕ1 − Ĕ2 (3.39)

we can solve the problem using standard semi-definite program (SDP) tools [124].

Defining X , bbH , we can rewrite the problem in (3.38) as

min.
X

tr(G0X)

subject to tr(G1X) ≥ 1, tr(G2X) ≥ 1, rank(X) = 1,X < 0 (3.40)

Due to the rank-one constraint, this problem is not convex but we can exploit

a semi-definite relaxation (SDR) method to solve this problem [29]. Interestingly

enough, despite the relaxation, a rank-one solution to (3.40) exists and it can be

extracted from the relaxed problem (for detailed procedure, refer to [125–127]). This

rank-one solution for X yields the optimal b for the problem in (3.38) for the chosen

p1 and p2.
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3.5 Remarks

The following remarks are in order.

Remark 1: In terms of computational complexity, the proposed symmetric beam-

forming technique involves finding the root of g(p̃1) using a simple bisection technique.

In each iteration of this bisection technique, one has to find the unique positive root

of (3.33) for a given value of p̃1 using another simple bisection technique, thereby

obtaining λ(p̃1). Both of these bisection methods converge very fast [128]. Consid-

ering that the number of iterations in these two bisection methods are insensitive to

the problem size [128], the computational complexity of calculating g(p̃1) and λ(p̃1)

is O(nr). On the other hand, the general beamforming matrix based method involves

solving an SDP problem at each vertex of the grid which covers the (p1, p2) plane.

The computational complexity of solving an SDP problem at each of these vertices is

O(n6
r). Taking into account that the SDP problem has to be solved over all vertices,

the computational complexity of the proposed algorithm is significantly lower than

the SDP based solution. Indeed, the computational complexity of the combination

of the SDP based technique and the exhaustive search method is prohibitively high,

thereby justifying the use of the proposed method. In the next section, our numerical

examples show that the performance loss caused by imposing symmetry on the relay

beamforming matrices is negligible.

Remark 2: It is worth mentioning that the proposed scheme can be implemented

in a distributed manner. To further explain this, the optimization problem (3.15) can

be rewritten as

min.
b

σ2(γ1+γ2)
(
1+bHE2b

) (
1+bHE0b

)

bHf fHb
+σ2bHb

subject to [b](i−1)nr+2 =[b](i−1)nr+3, for i = 1, 2, . . . , nr. (3.41)

or, equivalently, as

min.
b̃

σ2(γ1+γ2)(1+ b̃HẼ2b̃)(1+b̃HẼ0b̃)

b̃H f̃ f̃H b̃
+σ2b̃HLHLb̃. (3.42)
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Differentiating the objective function of (3.42) with respect to p̃1 and equating it to

zero yields

1

(b̃H f̃)
f̃ = Q(b̃) b̃ (3.43)

where the following definition is used:

Q(b̃) ,
Ẽ2

(1 + b̃H Ẽ2 b̃)
+

Ẽ0

(1 + b̃H Ẽ0 b̃)
+

1

(γ1 + γ2)

LHL (b̃H f̃ f̃H b̃)

(1 + b̃H Ẽ2 b̃)(1 + b̃H Ẽ0 b̃)
.

(3.44)

Further, defining μ0 , (1 + b̃H Ẽ0 b̃), μ2 , (1 + b̃H Ẽ2 b̃), and μ1 , b̃H f̃ , we can

rewrite (3.43) as

μ0 μ2 f̃ =

(

μ0Ẽ2 + μ2Ẽ0 +
|μ1|2

(γ1 + γ2)
LHL

)

μ1b̃ . (3.45)

Since the matrix
(
μ0Ẽ2 + μ2Ẽ0 + |μ1|2

(γ1+γ2)
LHL

)
is invertible, we can obtain b̃ as

b̃ =
μ0 μ2

μ1

(

μ0Ẽ2 + μ2Ẽ0 +
|μ1|2

(γ1 + γ2)
LHL

)−1

f̃ . (3.46)

The fact that matrices Ẽ0, Ẽ2, and LHL are all block-diagonal matrices allows us to

use (3.46) and write the optimal value of b̃i for the i-th relay as

b̃i =
μ0μ2

μ1

(

μ0(Ẽ2)(i)+μ2(Ẽ0)(i)+
|μ1|2

(γ1+γ2)
(LHL)(i)

)−1

f̃i (3.47)

where (Ẽ2)(i), (Ẽ0)(i), and (LHL)(i) are the i-th diagonal blocks of Ẽ2, Ẽ0, and LHL,

respectively. If one of the two transceivers broadcasts the three parameters μ0, μ1,

and μ2, the i-th relay can then use (3.47) to obtain its b̃i vector from its local CSI.

Indeed, the matrices (Ẽ2)(i), (Ẽ0)(i), and (LHL)(i) depend only on the local CSI of

the i-th relay.

In terms of CSI acquisition, two scenarios can be implemented: 1) Due to the bidi-

rectional nature of the communication, each transceiver (user device) can obtain all

the channel coefficients through training, see for example [129–138]. Both transceivers

can then obtain the parameter p̃1 and consequently, calculate the vectorized version
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of the beamforming matrices as in (3.26), and find the transceivers’ transmit pow-

ers from (3.11). One of the transceivers can then calculate the parameters μ0, μ1,

and μ2 and broadcast these parameters to all relays. Each relay can use these three

parameters along with its local CSI as in (3.47) to obtain the vectorized version of

its effective beamforming matrix. 2) In the second scenario, all relays (base stations)

provide their CSI (which can be acquired using traditional training procedures) to

one of the relays (main relay or main base station) through a back haul link (for

example through an optical fiber link). The main relay can then use the global CSI

to calculate the parameter p̃1, and consequently, the vectorized version of the beam-

forming matrices as in (3.26), as well as the parameters μ0, μ1, and μ2, and broadcast

these parameters to other relays. Each relay can then use these three parameters

along with its local CSI as in (3.47) to obtain the vectorized version of its effective

beamforming matrix.

Remark 3: Note that the total power minimization approach utilized in this

study does not rely on individual per node power constraint. Adding such constraints

can lead to the increase in the total power consumed in the entire network. As a

result, it is recommended that the nodes hardware be designed to allow a relatively

high amount of power consumption. Note also that it is reasonable to assume that

the relay channel vectors are drawn from the same probability distribution function,

and as a result, the long-term average transmit power of different relays will be the

same. This is indeed what the numerical results of [27] showed for the case of two-way

networks with multiple single-antenna relays.

Remark 4: It is also noteworthy that the relay beamforming matrices {Ai}
nr
i=1

can be written in terms of maximum ratio combining (MRC) and maximum ratio

transmission (MRT) schemes. To show this, one can write Ui = [h1i h2i]Wi, where

Wi is a 2×2 invertible matrix. As a result, using (3.13), the relay beamforming matrix

can be written as Ai = [h∗1i h∗2i]W
∗
i BiW

H
i [h1i h2i]

H . Hence, the relay beamforming

operation can be viewed as a cascade of an MRC operation, a multiplication of the

MRC output with the matrix W∗
i BiW

H
i , and eventually an MRT scheme.
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For very large M , i.e, in massive MIMO relaying schemes, where h1i and h2i

are orthogonal, almost surely, one can easily show that at the optimum, matrix

Ci , W∗
i BiW

H
i is anti-diagonal i.e., has zero diagonal entries. This means that

self-interference will be zero. In this case, one still has to optimally obtain the two

off-diagonal entries of matrix Ci, To do so, one can show that we still need the same

amount of CSI. The details of the derivations do not fit in the scope of this study and

we leave these details to future studies.

Remark 5: In this study, we considered the network beamforming problem for

a single-pair of transceivers. Designing network beamforming schemes to simultane-

ously establish communication between multiple pairs of transceivers in a peer-to-peer

manner is yet another interesting problem. What we have done in this study can be

useful when considering a multi-pair scneraio when the number of antennas at the re-

lays is very large. The extension of results, here obtained for scenarios in this chapter,

into a multi-pair scenario is studied in Chapter 5.

3.6 Simulation Results

In this section, we compare the performance of the proposed symmetric beamforming

method, in terms of the total consumed power in the network, with the performance

of the general beamforming method with no restriction on the beamforming matrices.

We assume that the relays are randomly distributed between the two transceivers.

Each transceiver-relay link is modeled as the product of three terms: a small-scale

fading term (which is modeled as complex Gaussian random variables with zero mean

and unit variance), a log-normal term with a standard deviation of 8 dB (which

represents the shadowing effect), and a path loss component with a path loss exponent

of 3.8. Also, the noise process in all nodes is assumed to be spatially white zero-mean

Gaussian process with unit variance, i.e., σ2 = 1.

Fig. 3.2 shows the average total transmit power, normalized to the noise power,

versus equal SNR thresholds γ1 for both the proposed symmetric beamforming

57



0 2 4 6 8 10 12 14 16 18
132

134

136

138

140

142

144

146

148

150

152

γ1 (dB)

A
ve

ra
ge

T
ot

al
P
ow

er
/

σ
2

(d
B

)

Sym. Beamform., γ2 = γ1

Gen. Beamform., γ2 = γ1
Sym. Beamform., γ2 = γ1/4
Gen. Beamform., γ2 = γ1/4

Figure 3.2: Average normalized total transmit power versus γ1, for symmetric and general
beamforming schemes, for M = 4 and nr = 4.
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Figure 3.3: Average normalized total power, average normalized total relay power,
and average normalized transceivers’ transmit powers, versus γ1 = γ2 = γ, for M = 4
and nr = 4.
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Figure 3.4: Average normalized total power, average normalized relay power, and
average normalized transceivers’ transmit powers, for non-equal SNR thresholds:γ2 =
γ1/2, and for M = 4 and nr = 4.

method and the general beamforming technique in two different scenarios, i)

γ2 = γ1 and ii) γ2 = γ1/4 . As can be seen from this figure, in both scenarios,

the total power required for satisfying the SNR constraints in the network with

symmetric beamforming matrices is very close to the total power for the same

network with general beamforming matrices, while the computational complexity of

the symmetric beamforming method is significantly lower than that of the general

beamforming method. As a result, assuming symmetric beamforming matrices offers

computational saving with negligible performance loss, compared to the case when

the beamforming matrices are not restricted to be symmetric. In the remainder of

our simulation results, we focus on the proposed symmetric beamforming method.

Fig. 3.3 illustrates the average normalized values of the total consumed power

in the network, the average normalized total transmit power of the relays, and the

average normalized transceivers’ transmit powers, versus equal SNR thresholds, i.e.,

γ1 = γ2 , γ, for a network consisting two single-antenna transceivers and nr = 4

relays each equipped with M = 4 antennas. As can be seen from this figure, the

average total relay transmit power is 3 dB smaller than (i.e., half of) the average
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total transmit power consumed in the entire network. Although this figure shows

averaged quantities, one can prove that for any given set of channel realizations, the

total relay power is always half of the total transmit power consumed in the entire

network, when γ1 = γ2. We can also observe from Fig. 3.3 that the average transmit

power of each of the two transceivers are 6 dB lower than (or a quarter of) the average

total transmit power. Note however that this observation is correct only for average

quantities and it may not hold true for a given channel realizations.

Fig. 3.4 shows the same quantities as in Fig. 3.3 for the case when we choose

γ2 = γ1/2 . As can be observed from this figure, the average total relay transmit power

is about half of the average total transmit power consumed in the entire network. Note

however that this observation is true for average quantities and may not hold for all

channel realizations.

Note that in this study, we did not consider per-node power constraints. Adding

such constraints only shrinks the feasible set, and thus, increases the total power

consumption. However, a guideline can be derived to choose the maximum average

power consumption of each node. As shown in Fig. 3.3, under equal SNR thresholds,

the power consumption of each of the two transceivers is 1/4 of the total power

consumed in the entire network. Also, as the total relay power is half of the total

transmit power, if the relay-transceiver channels are drawn from the same probability

distribution function, then each relay node consumes, in average, 1/(2nr) of the total

transmit power.

Fig. 3.5 illustrates the normalized average minimum total transmit power for dif-

ferent number of relays each of which is equipped with M = 4 antennas. Fig. 3.6

illustrates the normalized average minimum total transmit power when nr = 4 relays

are equipped with 4, 8, and 16 antennas. As can be seen from Fig. 3.5, doubling num-

ber of relays, while keeping the number of antennas per relays unchanged, reduces the

average minimum total transmit power by 2.98 to 3.94 dB over the depicted range of

γ. Fig. 3.6 shows that doubling the number of antennas per relays, while keeping the

number of relays unchanged, will reduce the minimum total transmit power by 2.91
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Figure 3.5: The average normalized total transmit power versus γ1 = γ2 , γ, for networks
with different numbers of relays nr ∈ {4, 8, 16}, and for M = 4.
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to 3.13 dB over the chosen range of γ.

In Fig. 3.7, we plot the normalized average minimum total transmit power versus

M , when the total number of the relay antennas employed in the network is constant

(Mnr = 128), for different values of γ. Interestingly, we observe that when γ = 0

dB is chosen, the minimum power will be achieved when nr = 16 relays, each with

M = 8 are used. As γ is increased to 10 dB, the minimum power can still be achieved

when nr = 16 relays, each with M = 8 are employed, Further increasing γ to 20 dB

shows that the scenario with nr = 32 relays, each with M = 4 antennas results in the

minimum power consumption. In other words, when the SNR requirements are more

stringent, the network should become “more distributed”. This observation shows

that there exists a trade-off between local beamforming at the relays and network

beamforming distributed in the entire network. For low SNR requirements, local

beamforming appears to be power-optimal while for high SNR requirements, network

beamforming tends to be power-efficient. The theoretical justification/analysis of this

trade-off is certainly an interesting research direction but it does not fit in the scope

of this study.

As shown in Fig. 3.5, for a given number of antennas per relay, increasing number
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of the relays consistently improves the performance of the proposed scheme. Also,

Fig. 3.6 shows that for a fixed number of relays, increasing number of antennas per

relay consistently improves the performance. However, for a fixed number of total

number of available antenna, it appears from Fig. 3.7 that there exists an optimal

number of antennas per relay, and thus an optimal number of relays, which lead to

the best performance in terms of the total transmit power consumption. Finding

the optimal number of relays and/or developing an optimal node selection strategy

appears to be an interesting direction for future work on this topic.
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Appendices

3.A Problem Dimensionality Reduction

Let us denote the M × 2 unitary matrix that spans the vector space of h1i and h2i

as Ui, where UH
i Ui = I2. Then, without loss of generality, we can write Ai as

Ai =
[

U∗
i (U⊥

i )
∗ ]
[

Bi Ci

Di Ei

]
[

Ui U⊥
i

]H
(3.A.1)

where U⊥
i is an M × (M − 2) matrix with orthonormal columns which span the null-

space of matrix Ui, i.e., (U⊥
i )HU⊥

i = IM−2 and UH
i U⊥

i = 0. Also, Bi, Ci, Di, and Ei

are complex matrices of sizes 2× 2, 2× (M − 2), (M − 2)× 2, and (M − 2)× (M − 2),

respectively. We show in Appendix C that the following identities hold true:

∣
∣
∣
∣
∣

nr∑

i=1

hT
1iAih2i

∣
∣
∣
∣
∣

2

=

∣
∣
∣
∣
∣

nr∑

i=1

hT
1iU

∗
i BiU

H
i h2i

∣
∣
∣
∣
∣

2

(3.A.2)

∣
∣
∣
∣
∣

nr∑

i=1

hT
2iAih1i

∣
∣
∣
∣
∣

2

=

∣
∣
∣
∣
∣

nr∑

i=1

hT
2iU

∗
i BiU

H
i h1i

∣
∣
∣
∣
∣

2

(3.A.3)

‖hT
1iAi‖

2 = ‖hT
1iU

∗
i Bi‖

2 + ‖hT
1iU

∗
i Ci‖

2 (3.A.4)

‖hT
2iAi‖

2 = ‖hT
2iU

∗
i Bi‖

2 + ‖hT
2iU

∗
i Ci‖

2 (3.A.5)

‖Aih1i‖
2 = ‖BiU

H
i h1i‖

2 + ‖DiU
H
i h1i‖

2 (3.A.6)

‖Aih2i‖
2 = ‖BiU

H
i h2i‖

2 + ‖DiU
H
i h2i‖

2 (3.A.7)

64



tr(AiA
H
i ) = tr

{
U∗

i (BiB
H
i + CiC

H
i )UT

i + (U⊥
i )∗(DiD

H
i + EiE

H
i )(U⊥

i )T
}

. (3.A.8)

From (3.A.2) and (3.A.3), we observe that matrices Ci, Di, and Ei do not contribute

to the denominators of the fractions of the objective function in (3.12). Also, as

‖hT
1iU

∗
i Ci‖2 ≥ 0, ‖hT

2iU
∗
i Ci‖2 ≥ 0, and tr{U∗

i (CiC
H
i )(UT

i } ≥ 0, we see from (3.A.4),

(3.A.5), and (3.A.8) that any non-zero matrix Ci increases the values of the second

terms in (3.A.4) and (3.A.5) (which contribute to the numerators of the fractions

of the objective function in (3.12)) and the second terms in (3.A.8) (which con-

tribute to the last term of the objective function). The same discussion holds true

for matrix Di with the corresponding terms in (3.A.6), (3.A.7), and (3.A.8). That

is, any non-zero values for matrices Ci and Di result in a value for the objective

function which is larger than the case when these matrices are chosen to be zero.

Since tr{(U⊥
i )∗(EiE

H
i )(U⊥

i )T} ≥ 0 in (3.A.8), similar discussion holds true for any

non-zero matrix Ei. We conclude that at the optimum Ci, Di, and Ei must be 0,

for i = 1, ..., nr, and thus, the minimum power is achieved by finding only the opti-

mum values for matrices {Bi}
nr
i=1. Thus, we can define Bi , UT

i AiUi as the effective

beamforming matrix for relay i.
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3.B Deriving the feasibility condition (3.25)

We observe from the constraint in (3.24) that for values of p̃1 for which the matrix

(p̃1 Ẽ1 − σ2(γ1 + γ2)Ẽ2 ) is negative semi-definite, the problem becomes infeasible.

Therefore, the infeasibility condition can be written as

p̃1 LHf fHL− σ2(γ1 + γ2)L
HFFHL 4 0. (3.B.1)

Here, we used the definition of matrix E1 in (3.19) along with the fact that matrix

E2 in (3.21) can be written as E2 = FFH , where the following definitions are used:

F , blkdiag{F1,F2, ...,Fnr}, Fi , [ r1iI2, r2iI2 ]T , r1i , [q2i]1, and r2i , [q2i]2. Using

these definitions, we can also write f = Fq1, where q1 , [qT
11, qT

12, ...,q
T
1nr

]T . Hence,

the infeasibility condition in (3.B.1) can be written as

p̃1 LHFq1 qH
1 FHL− σ2(γ1 + γ2)L

HFFHL 4 0 (3.B.2)

which is equivalent to the following condition on p̃1:

LHF
(
p̃1 q1 qH

1 − σ2(γ1 + γ2)I2nr

)
FHL 4 0 . (3.B.3)

We now argue that the condition in (3.B.3) is equivalent to the following condition:

(
p̃1 q1 qH

1 − σ2(γ1 + γ2)I2nr

)
4 0 . (3.B.4)

It is obvious that if (3.B.4) holds true, then (3.B.3) also holds true. To show the

reverse, we note that if (3.B.3) holds true, then for any 3nr × 1 vector z, we can

write zHLHF
(
p̃1 q1 qH

1 − σ2(γ1 + γ2)I2nr

)
FHLz < 0. Since FHL is a fat matrix,

the vector FHLz can be any 2nr × 1 vector. We hence conclude that the matrix

p̃1 q1 qH
1 −σ2(γ1+γ2)I2nr is negative semi-definite, i.e., (3.B.4) holds true. As a results,

to find the feasible values of p̃1, it is necessary and sufficient to find those values of p̃1

which result in the largest eigenvalue of the matrix p̃1 q1 qH
1 − σ2(γ1 + γ2)I2nr being

positive. The largest eigenvalue of this matrix is equal to p̃1 qH
1 q1 − σ2(γ1 + γ2).

Hence, the problem in (3.24) is feasible if and only if

p̃1 >
σ2(γ1 + γ2)

qH
1 q1

. (3.B.5)

The derivation of the feasibility condition is complete.
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3.C Proof of Lemma 1

To prove that the objective function in (3.29), defined as ψ(p̃1) , p̃1 + σ2(γ1+γ2)
λ(p̃1)

, has a

unique extremum in the interval ( σ2(γ1+γ2)

qH
1 q1

, +∞), we first show that ψ(p̃1) approaches

+∞, either when p̃1 → +∞ or when p̃1 →
σ2(γ1+γ2)

qH
1 q1

, and thus, ψ(p̃1) has at least one

minimum in the interval ( σ2(γ1+γ2)

qH
1 q1

, +∞). We then show that this minimum is unique.

Note that we can write

lim
p̃1→

σ2(γ1+γ2)

qH
1 q1

S(p̃1)=

(
σ2(γ1+γ2)

qH
1 q1

Ẽ0 + σ2LHL

)−1(
σ2(γ1 + γ2)

qH
1 q1

Ẽ1 − σ2(γ1 + γ2)Ẽ2

)

=

(
σ2(γ1 + γ2)

‖q1‖2
Ẽ0 + σ2LH L

)−1(
σ2(γ1+γ2)

‖q1‖2
LHFq1q

H
1 FHL−σ2(γ1+γ2)L

HFFHL

)

=

(
σ2(γ1 + γ2)

‖q1‖2
Ẽ0 + σ2LHL

)−1(

σ2(γ1+γ2)L
HF

(
1

‖q1‖2
q1q

H
1 − I2nr

)

FHL

)

(3.C.1)

It is obvious that the largest eigenvalue of matrix 1
qH

1 q1
q1q

H
1 − I2nr in (3.C.1) is

equal to zero. Hence, when p̃1 →
σ2(γ1+γ2)

qH
1 q1

, the largest eigenvalue of S(p̃1), i.e.,

λ(p̃1) approaches 0, and thus, ψ(p̃1) approaches +∞. It is also obvious that as p̃1

approaches +∞, the objective function ψ(p̃1) also approaches +∞. Hence, ψ(p̃1)

has at least one minimum in the interval ( σ2(γ1+γ2)

qH
1 q1

, +∞). We now prove that this

minimum is the only extremum ψ(p̃1) can have. To this end, note that ψ(p̃1) is the

sum of a monotonically increasing function (i.e., p̃1 ) and the function σ2(γ1+γ2)
λ(p̃1)

. If

we can prove that λ(p̃1) is monotonically increasing with respect to p̃1, we can then

conclude that ψ(p̃1) has a unique minimum and the proof is then complete. We now

prove that when p̃1 ∈ (σ2(γ1+γ2)

qH
1 q1

, +∞), λ(p̃1) is a monotonically increasing function of

p̃1. To prove this, in this interval, the derivative of λ(p̃1) with respect to p̃1 is positive.
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The derivative of λ(p̃1) is obtained in Appendix 3.D as

∂λ(p̃1)

∂p̃1

=
p̃−2

1 − λ(p̃1)f̃
HA−1(p̃1)Ẽ0A

−1(p̃1)f̃

f̃HA−1(p̃1)(p̃1Ẽ0 + σ2LT L)A−1(p̃1)f̃
(3.C.2)

>
p̃−2

1 − λ(p̃1)f̃
HA−1(p̃1)(Ẽ0+

σ2

p̃1
LTL)A−1(p̃1)f̃

f̃HA−1(p̃1)(p̃1Ẽ0 + σ2LT L)A−1(p̃1)f̃

=
p̃−2

1

f̃HA−1(p̃1)(p̃1Ẽ0 + σ2LTL)A−1(p̃1)f̃
−

λ(p̃1)

p̃1

=
λ(p̃1)

p̃1

(
p̃−1

1

f̃HA−1(p̃1)λ(p̃1)(p̃1Ẽ0 + σ2LTL)A−1(p̃1)f̃
− 1

)

≥
λ(p̃1)

p̃1



 p̃−1
1

f̃HA−1(p̃1)
(
σ2(γ1 + γ2)Ẽ2 + λ(p̃1)(p̃1Ẽ0 + σ2LTL)

)
A−1(p̃1)f̃

− 1





=
λ(p̃1)

p̃1

(
p̃−1

1

f̃HA−1(p̃1)A(p̃1)A−1(p̃1)f̃
− 1

)

=
λ(p̃1)

p̃1

(
p̃−1

1

f̃HA−1(p̃1)f̃
− 1

)

= 0 (3.C.3)

where, in the first inequality, we have used the fact that

λ(p̃1)f̃
HA−1(p̃1)(

σ2

p̃1

LT L)A−1(p̃1)f̃ > 0.

In the second inequality, we have used the fact that E2 is positive semi-definite, and

in the last equality, we have used the fact that at optimum, as proven in Appendix

3.D, f̃HA−1(p̃1)f̃ = 1
p̃1

holds true. Hence, we conclude that ∂λ(p̃1)
∂p̃1

> 0 is positive,

implying that λ(p̃1) is a monotonically increasing function of p̃1. This completes the

proof.
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3.D Deriving λ(p̃1) and its derivative

In what follows, we derive an expression for ∂λ(p̃1)
∂p̃1

. Since λ(p̃1) is the largest eigenvalue

of the matrix S(p̃1), we can write (S(p̃1)− λ(p̃1)I3nr)u(p̃1) = 0 which is equivalent

to

(
(p̃1Ẽ0+σ2LTL)−1

(
p̃1Ẽ1−σ2(γ1+γ2)Ẽ2

)
−λ(p̃1)I3nr

)
u(p̃1) = 0 (3.D.1)

where we use the definition of S(p̃1) in (3.27). It follows from (3.D.1) that the matrix

S(p̃1) − λ(p̃1)I3nr has at least one zero eigenvalue. Multiplying (3.D.1) from left by

(p̃1Ẽ0 + σ2LT L), we arrive at

(
p̃1 Ẽ1 − σ2(γ1 + γ2)Ẽ2 − λ(p̃1)(p̃1Ẽ0 + σ2LT L)

)
u(p̃1) = 0. (3.D.2)

Based on the fact that if p̃1 > σ2(γ1 + γ2)/q
H
1 q1, then λ(p̃1) > 0 holds true, and that

the matrix LT L is full rank, we conclude that the matrix

A(p̃1) , σ2(γ1 + γ2)Ẽ2 + λ(p̃1)(p̃1Ẽ0 + σ2LT L) (3.D.3)

is nonsingular, and hence, A−1(p̃1) exists. As a result, we can write (3.D.2) as

(p̃1A
−1(p̃1)Ẽ1 − I3nr)u(p̃1) = 0. (3.D.4)

In light of (3.D.4), we observe that the matrix p̃1A
−1(p̃1)Ẽ1− I3nr must have at least

one zero eigenvalue. Defining f̃ , LHf , we can write Ẽ1 = f̃ f̃H , which is a rank-one

matrix. Hence the matrix A−1(p̃1)Ẽ1 is also rank-one. Therefore, all the eigenvalues

of the matrix p̃1A
−1(p̃1)Ẽ1−I3nr are equal to −1, except the largest eigenvalue which

is given by p̃1 f̃HA−1(p̃1)f̃ − 1. Thus, equating this largest eigenvalue to 0 yields

f̃HA−1(p̃1)f̃ =
1

p̃1

. (3.D.5)

Differentiating both sides of (3.D.5) with respect to p̃1 yields

f̃HA−1(p̃1)
∂A(p̃1)

∂p̃1

A−1(p̃1)f̃ =
1

p̃2
1

. (3.D.6)
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We now use the fact that

∂A−1(p̃1)

∂p̃1

= −A−1(p̃1)
∂A(p̃1)

∂p̃1

A−1(p̃1)

and that
∂A(p̃1)

∂p̃1

=
∂λ(p̃1)

∂p̃1

(p̃1Ẽ0 + σ2LT L) + λ(p̃1)Ẽ0

to rewrite (3.D.6) as

∂λ(p̃1)

∂p̃1

f̃HA−1(p̃1)(p̃1Ẽ0 + σ2LT L)A−1(p̃1)f̃ + λ(p̃1)f̃
HA−1(p̃1)Ẽ0A

−1(p̃1)f̃ =
1

p̃2
1

.

(3.D.7)

Therefore, we arrive at

∂λ(p̃1)

∂p̃1

=
p̃−2

1 − λ(p̃1)f̃
HA−1(p̃1)Ẽ0A

−1(p̃1)f̃

f̃HA−1(p̃1)(p̃1Ẽ0 + σ2LT L)A−1(p̃1)f̃
. (3.D.8)

By substituting (3.D.8) in (3.30), we can write

g(p̃1) = 1− σ2(γ1 + γ2)
p̃−2

1 − λ(p̃1)f̃
HA−1(p̃1)Ẽ0A

−1(p̃1)f̃

λ2(p̃1)f̃HA−1(p̃1)(p̃1Ẽ0+σ2LTL)A−1(p̃1)f̃
(3.D.9)

Equating g(p̃1) to 0 does not yield a closed-form solution when nr > 1, or when

M > 1. However, the solution to the equation g(p̃1) = 0 can be obtained using

a simple Newton-Raphson method or a bisection technique. Note that in order to

calculate g(p̃1) as in (3.D.9), one needs to calculate λ(p̃1) for each value of p̃1. To

calculate λ(p̃1), we plug A(p̃1) from (3.D.3) into (3.D.5) and arrive at the following

equality:

p̃1f̃
H
(
σ2(γ1+γ2)Ẽ2+λ(p̃1)(p̃1Ẽ0+σ2LTL)

)−1

f̃ =1. (3.D.10)

which can be used to obtain λ(p̃1) for every feasible value of p̃1. We now prove that

(3.D.10) yields a unique value for λ(p̃1) for any given feasible value of p̃1. To do so,

we first observe that the function

~(z), p̃1f̃
H
(
σ2(γ1+γ2)Ẽ2+z(p̃1Ẽ0+σ2LTL)

)−1

f̃ (3.D.11)

is monotonically decreasing in z, for any feasible value of p̃1. We then observe that

lim
z→+∞

~(z) = 0. Hence, if we show that lim
z→0

~(z) → +∞, for any feasible value of p̃1,
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we can conclude that for any feasible value of p̃1, the equation ~(z) = 1 has a unique

solution, so does (3.D.10).

To do so, let us define Γ(z) , σ2(γ1 + γ2)Ẽ2 + z(p̃1Ẽ0 + σ2LT L). Due to the fact

that LT L is a positive definite matrix, p̃1 > 0, and Ẽ0 is Hermitian, we arrive at

the conclusion that Γ(z) is positive definite. Using the singular value decomposition

method, we can write Γ(z) as

Γ(z) = Λ(z)Σ(z)ΛH(z) (3.D.12)

where Σ(z) and Λ(z) are 3nr × 3nr matrices and Σ(z) is diagonal. Due to the fact

that Γ(z) is positive definite, all entries of matrix Σ(z) are positive. We observe that

when z approaches zero, matrix Γ(z) becomes more and more close to the matrix

σ2(γ1 + γ2)Ẽ2, which is not a full-rank matrix. That is, as z approaches zero, some

of the diagonal entries of Σ(z) approach zero. In other words, since Γ(z) is positive

definite all its eigenvalues are positive, however, as z approaches zero, some of the

positive-valued eigenvalues of Γ(z) approach zero. As a result, the positive-valued

determinant of Γ(z) becomes more and more close to zero. Since ~(z) = p1f̃
HΓ−1(z)f̃

is inversely proportional to the determinant of Γ(z), as z approaches zero, the value

of ~(z) more and more approaches infinity. That is, lim
z→0

~(z) → +∞, and hence,

(3.D.10) has a unique solution in terms of λ(p̃1).
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Chapter 4

Asynchronous Two-way Networks
with Multiple Multi-Antenna
Relays

The single-carrier asynchronous two-way relay network we consider in this chapter

consists of two single-antenna transceivers which wish to communicate with the help

of multiple multi-antenna relays. Addressing the total transmit power minimization

problem while the rates of the information exchange between transceivers are main-

tained above two given thresholds, we aim to jointly determine the relay beamforming

matrices and the transceivers’ transmit powers.

The organization of this chapter is as follows. In Section 4.1, we model the signals

and system for asynchronous two-way relay networks where relays employ multiple

antennas. The problem we here study is to minimize the total transmit power in

an asynchronous two-way relay network while the data rates of the transceivers are

maintained above two given thresholds. In Section 4.2, the problem statement and

its solution along with the method being used to solve the problem are provided. In

Section 4.3, we provide an algorithm which summarizes how the proposed method

must be implemented. In Section 4.4, we numerically evaluate the performance of

the asynchronous two-way relay networks under consideration.
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4.1 Signals and System Model

As shown in Fig. 4.1, we consider a network where L relay nodes collaborate to es-

tablish a two-way communication link between a pair of single-antenna transceivers.

The l-th relay node is equipped with Ml antennas. It is assumed that the information

symbols are transmitted sequentially, in blocks with length Ns, over the channels. The

frequency-flat fading channels remain constant during an end-to-end block exchange

between the two transceivers. In addition, the perfect channel state information (CSI)

is assumed to be available at the transceivers. The employed relaying conforms to the

multiple access broadcast (MABC) scheme, where a round of information exchange

consists of two time-slots. In the first time-slot, relays receive a noisy superposition

of the attenuated versions of the signals transmitted by the transceivers. Each re-

lay then multiplies the Ml × 1 signal vector arrived at its antennas by a complex

beamforming matrix and broadcasts, in the second time-slot, the elements of the

transformed vector over its antennas. The propagation delays over various relaying

paths are different due to the fact that the relays are geographically distributed at

different locations in the environment. The relay networks with significantly different

propagation delays for different relaying paths are herein referred to as asynchronous

relay networks. An asynchronous relay network resembles a multi-path channel with

multiple taps. The multi-path characteristic of the asynchronous relay network can

cause symbols to spread beyond the symbol period. As a result, each symbol can

interfere with the preceding or succeeding transmitted symbols, thereby causing ISI,

which in turn can lead to intra-block interference in each block of symbols. Moreover,

in a sequential block transmission, the ISI can also result in inter-block interference

(IBI) between successive blocks. Adding cyclic prefix to a block at the transmitter

side provides a guard interval which eliminates IBI. The so-obtained IBI-free signal

still contains intra-block interference. One can devise a relay synchronization scheme

which entails adding extra hardware and more computations. To avoid such com-

plexities at the relays, we herein assume no synchronization at the relays and rather
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Figure 4.1: System block diagram.

aim to combat the intra-block interference while obtaining the network parameters.

We aim to determine the relay beamforming matrices and the transceivers’ transmit

powers such that the total power consumed in the entire network is minimized while

the data rates of the transceivers are maintained above two given thresholds. Since,

intra-block interference significantly affects the information exchange data rate, to

maintain the data rates above given thresholds, the optimal solution must tackle

intra-block interference.

End-to-end channel model: Aiming to exchange information, the two

transceivers simultaneously broadcast their signals toward the relays. Each relay

transforms the vector of its received signals, by multiplying this vector with a beam-

forming matrix, into a vector whose entries are transmitted over different antennas.

Each transceiver then receives a noisy superpositions of multiple attenuated replicas

of two distinct signals, i.e., its own transmitted signal and the signal transmitted

by the other transceiver. Any attenuated replica of the transmitted signal arrived

at a transceiver experiences a distinct delay. Let us define the Ml × Ml complex

matrix Al as the beamforming matrix of the l-th relay, and denote glq as the Ml × 1

complex vector of the coefficients associated with the channels between the l-th relay

and Transceiver q. Then, the end-to-end attenuation/amplification factor of the l-th
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relaying path from Transceiver q̄ to Transceiver q can be written as

αlq̄q , gT
lq Al glq̄, for q, q̄ ∈ {1, 2}, l ∈ {1, 2, . . . , L}. (4.1)

Here, we define q̄ , 2 when q = 1, and q̄ , 1 when q = 2. The aggregate end-to-end

channel from Transceiver q̄ to Transceiver q is characterized as a multi-path channel,

whose impulse response is given as

~q̄q(t) =
L∑

l=1

αlq̄qδ(t− τl) for q, q̄ ∈ {1, 2} (4.2)

where δ(t) is the Dirac delta function and τl denotes the propagation delay corre-

sponding to the l-th relaying path. Employing a pulse shaping filter at the transmit-

ter front-end of the transceivers produces a bandlimited signal associated with each

generated symbol. Denoting the pulse shaping filter response as φ(t), we can express

the signal transmitted by Transceiver q as

sq(t) =
∞∑

k=−∞

sq[k]φ(t− kTs), q ∈ {1, 2} (4.3)

where sq[k] is the k-th symbol transmitted by Transceiver q, and Ts is the symbol

period. The received signal rq(t) at Transceiver q ∈ {1, 2} is a superposition of the

transmitted signals after going through the end-to-end channel, that is

rq(t) =
2∑

q̄=1

sq̄(t)∗~q̄q(t) =
2∑

q̄=1

∞∑

k=−∞

sq̄[k]
L∑

l=1

αlq̄qφ(t− kTs − τl) (4.4)

where ∗ represents the continuous-time convolution operation. Sampling rq(t) at the

symbol rate 1/Ts, we can express the discrete-time received sequence rq[n] as

rq[n] = rq(t)
∣
∣
∣
t=nTs

=
2∑

q̄=1

∞∑

k=−∞

sq̄[k]
L∑

l=1

αlq̄qφ((n− k)Ts − τl) =
2∑

q̄=1

sq̄[n]?hq̄q[n]

(4.5)

where ? denotes the discrete-time convolution operation, and

hq̄q[n] ,
L∑

l=1

αlq̄qφ(nTs − τl) (4.6)
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serves as the equivalent discrete-time impulse response corresponding to the end-to-

end channel from Transceiver q̄ to Transceiver q. Assuming that φ(∙) is a rectangular

pulse with duration Ts, we note that only when 0 < nTs − τl ≤ Ts holds true for the

l-th relay, the value of φ(nTs−τl) is non-zero, implying that the l-th relay contributes

to the n-th tap of hq̄q[∙]. Let N denote the maximum delay spread of the end-to-end

CIR hq̄q[∙], i.e., N = max
1≤l≤L

dτl/Tse. To represent the contribution of the l-th relay to

the tap n of hq̄q[∙], we introduce an N × 1 vector dl , [dl,0 dl,1 ∙ ∙ ∙ dl,(N−1)]
T , where

the following definition is used:

dl,n ,

{
1 (n− 1)Ts ≤ τl < nTs

0 otherwise
, for n = 0, 1, 2, ∙ ∙ ∙N − 1. (4.7)

We now use (4.1), (4.6), and (4.7) to write hq̄q[n] as

hq̄q[n] =
L∑

l=1

dl,n gT
lqAlglq̄. (4.8)

Defining hq̄q , [hq̄q[0] hq̄q[1] ∙ ∙ ∙ hq̄q[N −1]]T as the vector of the taps of end-to-end

CIR hq̄q[∙], and using (4.8), we can write

hq̄q =
L∑

l=1

dl g
T
lqAlglq̄ (4.9)

The channel model in (4.9) is essential in our forthcoming derivations.

Received noise model: Let γlm(t) denotes the measurement noise at the m-

th antenna of the l-th relay. This noise is assumed to be spatially and temporally

white with variance σ2. The noise processes received at the Ml antennas of the l-

th relay form an Ml × 1 noise vector γl(t) , [γl1(t) γl2(t) ∙ ∙ ∙ γlMl
(t)]T . In

the transform-and-forward relaying scheme, the vector of the signals received at the

l-th relay is multiplied by the beamforming matrix Al. As a result, γl(t) is also

multiplied by the same matrix. The transformed noise vector is transmitted along

with the superposition of the transformed versions of the relay received signals. The

attenuated version of the transformed noise vector arrives at Transceiver q with delay

τ̆lq, where τ̆lq represents the propagation delay between the l-th relay and Transceiver
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q. The total discrete-time noise ηq[n] received at Transceiver q is a combination of

the noises forwarded by the relays and the additive noise at the receiver front-end of

that transceiver and is given by

ηq[n] =
L∑

l=1

γT
l ((n− n̆lq)Ts)A

T
l glq + η′q[n], for q ∈ {1, 2} (4.10)

where η′q[n] denotes the additive noise at Transceiver q. The integer parameter n̆lq

is the discrete-time delay experienced by the transformed noise vector when these

noise travels from the l-th relay to Transceiver q transformed noises are and satisfies

τ̆lq

Ts
< n̆lq ≤

τ̆lq

Ts
+1. The Nt× 1 noise vector ηq[i], received at Transceiver q during the

i-th Nt successive transmissions can be written as

ηq[i] =
L∑

l=1

ΓT
l (i)AT

l glq + η′q[i], for q ∈ {1, 2} (4.11)

where the following definitions are used:

ηq[i] , [ηq[(i− 1)Nt] ηq[(i− 1)Nt + 1] ∙ ∙ ∙ ηq[iNt − 1]]T ,

η′q[i] ,
[
η′q[(i− 1)Nt] η′q[(i− 1)Nt + 1] ∙ ∙ ∙ η′q[iNt − 1]

]T
.

Moreover, Γl(i) , [γl(((i − 1)Nt − n̆lq)Ts) γl(((i − 1)Nt + 1 − n̆lq)Ts) . . . γl((i(Nt −

1)− n̆lq)Ts)] is an Ml×Nt matrix whose m-th column is a sequence of noise processes

which arrive at the m-th antenna of the l-th relay during Nt successive transmissions.

Received signal model: Let the vector sq(i) = [sq[iNs] sq[iNs+1] ∙ ∙ ∙ sq[iNs+

Ns − 1]]T denote the i-th block of information symbols with length Ns transmitted

by Transceiver q, for q ∈ {1, 2}, with transmission power pq. Here, sq[k] represents

the k-th symbol transmitted by Transceiver q.

The frequency selectivity of the end-to-end channel leads to inter-block-

interference (IBI) between successive transmitted blocks. Hence, the signals received

at Transceiver q̄, corresponding to the i-th transmitted block, depend on the i-th

and the (i − 1)-th blocks transmitted by Transceiver q, i.e., sq(i) and sq(i − 1). In

order to eliminate IBI, a cyclic prefix is annexed to sq(i) by pre-multiplying it with
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the matrix Tcp , [ĨT
cp IT

Ns
]T , where Ĩcp is the matrix of the last N rows of the identity

matrix, and N is the length of the vector of the equivalent discrete-time end-to-end

CIR hq̄q[∙] taps. After the cyclic prefix insertion, the corresponding i-th transmitted

block s̄q(i) (with length Nt , Ns + N) can be written as

s̄q(i) , Tcpsq(i)

= [sq[(i+1)Ns −N ] . . . sq[(i+1)Ns − 1] sq[iNs] . . . sq[(i+1)Ns − 1]]T (4.12)

These transmitted blocks can arrive at the relay nodes at different time instants due

to the different propagation delays corresponding to different relay-transceiver links.

Therefore, there can be a timing misalignment between the received versions of these

signals. The i-th signal block at the output of the self-interference cancellation block

at Transceiver q can be written as [139]

r̄q(i) =
√

pq̄ Hq̄q
0 (A) s̄q̄(i) +

√
pq̄ Hq̄q

1 (A) s̄q̄(i− 1) + ηq(i) (4.13)

where A , {Al}L
l=1 is the set of the relays’ beamforming matrices. Furthermore, pq̄

is the transmit power of Transceiver q̄, and matrices Hq̄q
0 (A) and Hq̄q

1 (A) are defined
respectively as [139]

Hq̄q
0 (A) ,












hq̄q[0] 0 0 ∙ ∙ ∙ 0
... hq̄q[0] 0 ∙ ∙ ∙ 0

hq̄q[N − 1] ∙ ∙ ∙
. . . ∙ ∙ ∙

...
...

. . . ∙ ∙ ∙
. . . 0

0 ∙ ∙ ∙ hq̄q[N − 1] ∙ ∙ ∙ hq̄q[0]












,

Hq̄q
1 (A) ,












0 ∙ ∙ ∙ hq̄q[N − 1] ∙ ∙ ∙ hq̄q[1]
...

. . . 0 ∙ ∙ ∙ 0

0 ∙ ∙ ∙
. . . ∙ ∙ ∙ hq̄q[N − 1]

...
...

...
. . .

...
0 ∙ ∙ ∙ 0 ∙ ∙ ∙ 0












. (4.14)

The received signal vector r̄q(i) is multiplied by Rcp , [0Ns×N INs ], which is the

cyclic prefix removal matrix, and thus, the first N entries of r̄q(i) are discarded. One

can easily verify that RcpH
q̄q
1 (A) = 0, and hence, the IBI-inducing matrix Hq̄q

1 (A) is

eliminated through the cyclic prefix removal operation. Therefore, using (4.13), we
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can write

rq(i) ,
√

pq̄ H̃q̄q(A) sq̄(i) + η̃q(i) (4.15)

where we define η̃q(i) , Rcpηq(i), while H̃q̄q(A) = RcpH
q̄q
0 (A)Tcp is an Ns × Ns

circulant matrix whose (k, l)-th entry is given by h̃q̄q[(k− l) mod Ns], where we define

h̃q̄q[n] = hq̄q[n], for 0 ≤ n ≤ N − 1 and h̃q̄q[n] = 0, for N ≤ n ≤ Ns − 1. That is,

H̃q̄q
0 (A) ,








h̃q̄q[0] h̃q̄q[Ns − 1] h̃q̄q[Ns − 2] ∙ ∙ ∙ h̃q̄q[1]

h̃q̄q[1] h̃q̄q[0] h̃q̄q[Ns − 1] ∙ ∙ ∙ h̃q̄q[2]
...

...
...

. . .
...

h̃q̄q[Ns − 1] h̃q̄q[Ns − 2] h̃q̄q[Ns − 3] ∙ ∙ ∙ h̃q̄q[0]








. (4.16)

Total transmit power: The Ml ×Nt matrix Xl(i) of the blocks received at the

l-th relay in the first time-slot is given as

Xl(i) =
√

p1 gl1s̄
T
1 (i) +

√
p2 gl2s̄

T
2 (i) + Γl(i), for l ∈ {1, 2, . . . , L}. (4.17)

Here, the m-th row of the matrix X(i) is the signal block received at the m-th antenna

of the l-th relay and Γl(i) is the Ml×Nt noise at the l-th relay. The Ml×Nt matrix of

the signals transmitted by the l-th relay is represented by Tl(i) and can be expressed

as Tl(i) = AlXl(i). Based on (4.17), the average transmit power of the l-th relay is

obtained as (see Appendix 4.A)

Pl ,
1

Nt

E{1TTH
l (i)Tl(i)1)} = p1‖Algl1‖

2 + p2‖Algl2‖
2 + σ2tr(AlA

H
l ). (4.18)

The total transmit power PT in the network is the summation of the transceivers’

transmit powers and the transmit power of all the relays, that is,

PT = p1 + p2 +
L∑

l=1

Pl

= p1

(

1 +
L∑

l=1

‖Algl1‖
2

)

+ p2

(

1 +
L∑

l=1

‖Algl2‖
2

)

+ σ2

L∑

l=1

tr(AlA
H
l ). (4.19)

In the next section, we use the channel model in (4.9), the data model in (4.15),

and the total power expression in (4.19) to optimally determine the transceivers’
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transmit powers p1 and p2 as well as the beamforming matrices {Al}L
l=1 under the

constraint that these matrices are symmetric. It is worth mentioning that without

such symmetry constraints, the total power minimization problem does not appear

to be amenable to a computationally efficient solution.

4.2 Total Power Minimization

To find the relay beamforming matrices as well as the transceivers’ transmit powers,

the total transmit power minimization problem, subject to two constraints which

guarantee that the data rates at Transceivers 1 and 2 are maintained above two given

thresholds b1 and b2, respectively, can be expressed as12

min.
P,A

PT subject to R1(A, p2) ≥ b1, R2(A, p1) ≥ b2, p1 ≥ 0, p2 ≥ 0, (4.20)

where P , {pq}2
q=1, and A = {Al}L

l=1 are defined as the set of the transceivers’

transmit powers and the set of the relays’ beamforming matrices, respectively. The

main contribution of this chapter is to solve the optimization problem (4.20) under

the assumption that the beamforming matrices {Al}L
l=1 are symmetric, i.e., Al = AT

l .

Indeed, in the absence of such an assumption, the problem is not amenable to a

computationally efficient solution3. To develop a computationally affordable solution

to (4.20), we take the following steps:

• Step 1: We first derive two expressions for the data rates R1(A, p2) and

R2(A, p1) in terms of the design parameters.

1The power minimization problem (4.20) is solved under the assumption that the relay network
is asynchronous, meaning that the signal transmitted by any of the two transceivers arrives at
different relays with different delays and signals transmitted by different relays arrive at any of the
two transceivers with different delays. That is, this minimization is solved for the model presented
for the end-to-end CIR in the previous section. This model and also the solution to this minimization
have not appeared prior to this study.

2For now, we do not express the symmetric constraints on the relay beamforming matrices. We
add these constraints later.

3As shown in [140], even for synchronous networks with multi-antenna relays, solving the total
power minimization problem without the assumption of symmetric beamforming matrices is com-
putationally prohibitive. Asynchronism only adds to the challenge that one has to overcome when
solving the total power minimization problem.
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• Step 2: Based on the expressions obtained in the first step, we use a change of

variables to simplify the problem in (4.20).

• Step 3: We then exploit a special structure of the matrices ({Al}L
l=1) (as proven

in [29]) to reduce the dimensionality of the problem.

• Step 4: Next, we use the symmetric beamforming assumption to further sim-

plify the problem. After this step, the optimality is only studied under the

assumption that the relay beamforming matrices are symmetric.

• Step 5: In this step, we relax the problem by ignoring some of the constraints

and solve the relaxed problem. Using the structure of the relaxed problem, we

prove that the solution to the relaxed problem satisfies the original constraints

being relaxed, and thus, this solution is optimal for the original problem with

symmetric relay beamforming matrices.

• Step 6: We then solve the relaxed problem, thereby showing that this problem

is amenable to a semi-closed-form solution. To develop this solution, we prove

rigorously that at the optimum, the end-to-end CIR in (4.8) has only one non-

zero tap. As a result, only those relays which contribute to the non-zero tap of

the end-to-end CIR will participate in relaying and the remainder of the relays

have to be turned off. Those relays which contribute to one tap of the end-to-end

CIR constitute a synchronous sub-network. As a result, the problem reduces

to finding the best synchronous sub-network which consumes the smallest total

power while satisfying the rate constraints. For synchronous network, however,

finding the solution to total power minimization problem under rate constraints

is amenable to a semi-closed-form solution.

The rest of this section presents the details of the above steps. To ensure that the

flow of the presentation is easy to follow, we bring the details of the derivations in

the appendices. Readers interested only in implementation of the proposed algorithm

are referred to the summary of the algorithm presented in Section 4.3.
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Step1: Developing rate expressions

The data model in (4.15) can be viewed as a multi-input multi-output (MIMO)

scheme. Hence, one can use the expression for the rate of a MIMO channel to obtain

an expression for the data rate of the two transceivers. Indeed, based on the results

of [7], the data rate corresponding to the MIMO data model in (4.15) can be written

as4

Rq(A, pq̄) = log det
(
INs + pq̄C

− 1
2

q (A) H̃q̄q(A) H̃H
q̄q(A)C

− 1
2

q (A)
)

(4.21)

where det (∙) denotes the determinant of a matrix and Cq(A) is the correlation matrix

of the noise η̃q(i) at Transceiver q and, as shown in Appendix 4.B, is given by

Cq(A) = σ2

(
L∑

l=1

‖AT
l glq‖

2 + 1

)

INs . (4.22)

Exploiting the fact that the matrix H̃q̄q(A) is circulant, we show in Appendix 4.C

that (4.21) can be simplified as

Rq(A, pq̄) = log
Ns∏

k=1



1 +
pq̄ |ψk

q̄q(A)|2

σ2
(∑L

l=1 ‖A
T
l glq‖2 + 1

)



 (4.23)

where the following definitions are used:

ψk
q̄q(A) =

√
Nsφ

H
k h̃q̄q (4.24)

φk ,
1

√
Ns

[1 e
j2π(k−1)

Ns ∙ ∙ ∙ e
j2π(Ns−1)(k−1)

Ns ]T , for k = 1, 2, . . . , Ns (4.25)

h̃q̄q , [hT
q̄q 0T

1×(Ns−N)]
T . (4.26)

Indeed, h̃q̄q = [hT
q̄q 0T

1×(Ns−N)]
T is the zero-padded version of the channel vector hq̄q,

the Ns× 1 vector φk is the k-th column of the matrix FH , for k = 1, 2, . . . , Ns, and F

is the DFT matrix, i.e., [F]k,k′ = 1√
Ns

e−j2π(k−1)(k′−1)/Ns , for k, k′ = 1, 2, . . . , Ns. As a

result, ψk
q̄q(A) is the frequency response of the end-to-end CIR hq̄q[∙] at the normalized

frequency k
Ns

.

4Note that we drop the factor 1/2(Ns + N), where 2(Ns + N) is the number of channel uses. As
a result, the thresholds b1 and b2 are measured in bits.
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By using (4.23) and (4.19), the optimization problem in (4.20) can be rewritten

as

min.
P, A

2∑

q=1

pq

(

1 +
L∑

l=1

‖Alglq‖
2

)

+ σ2

L∑

l=1

tr(AlA
H
l )

subject to log
Ns∏

k=1



1 +
pq̄ |ψk

q̄q(A)|2

σ2
(∑L

l=1 ‖A
T
l glq‖2 + 1

)



 ≥ bq, for q, q̄ ∈ {1, 2}

p1 ≥ 0, p2 ≥ 0. (4.27)

We observe that at the optimum, the first two inequality constraints in (4.27)

are satisfied with equality. Otherwise, if at the optimum, any of these constraints is

satisfied with inequality, the corresponding optimal power can be reduced to satisfy

this constraint with equality. This, in turn, decreases the value of the objective

function which contradicts the optimality. Hence, we have

Ns∑

k=1

log



1 +
pq̄ |ψk

q̄q(A)|2

σ2
(∑L

l=1 ‖A
T
l glq‖2 + 1

)



 = bq. (4.28)

Step 2: Change of variables

We now replace the optimization variables p1 and p2 with two new sets of opti-

mization variables, without any loss of optimality. Let us define the new optimization

variables {βk
q̄q}

Ns
k=1, for q = 1, 2, as

βk
q̄q ,

pq̄ |ψk
q̄q(A)|2

σ2
(∑L

l=1 ‖A
T
l glq‖2 + 1

) , for k = 1, 2, . . . , Ns, and q = 1, 2. (4.29)

Using (4.29), we can then express pq̄ as

pq̄ =
σ2βk

q̄q

|ψk
q̄q(A)|2

(
L∑

l=1

‖AT
l glq‖

2 + 1

)

, for k = 1, 2, . . . , Ns, and q = 1, 2 (4.30)

It follows from (4.30) that

βk
q̄q

|ψk
q̄q(A)|2

=
βk′

q̄q

|ψk′
q̄q(A)|2

, for q ∈ {1, 2}, and k, k′ ∈ {1, 2, . . . , Ns}. (4.31)

Using (4.31), we can rewrite (4.30) as

pq̄ =
σ2

Ns

(
Ns∑

k=1

βk
q̄q

|ψk
q̄q(A)|2

)(
L∑

l=1

‖AT
l glq‖

2 + 1

)

, for q = 1, 2. (4.32)
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Using (4.28), (4.29), (4.31), and (4.32), we can now rewrite the power minimization

problem in (4.27) as

min.
β1,β2,A

σ2

Ns

2∑

q=1

{(
Ns∑

k=1

βk
q̄q

|ψk
q̄q(A)|2

)(
L∑

l=1

‖AT
l glq‖

2 + 1

)(

1 +
L∑

l=1

‖Alglq̄‖
2

)}

+ σ2

L∑

l=1

tr(AlA
H
l )

subject to
Ns∑

k=1

log(1 + βk
q̄q) = bq, for q ∈ {1, 2}

βk
q̄q

|ψk
q̄q(A)|2

=
βk′

q̄q

|ψk′
q̄q(A)|2

, for q ∈ {1, 2}, and k, k′ ∈ {1, 2, . . . , Ns}

βk
q̄q ≥ 0, for k = 1, 2, . . . , Ns, and q = 1, 2 (4.33)

where

βq , [β1
q̄q β2

q̄q ∙ ∙ ∙ βNs
q̄q ]T , for q ∈ {1, 2} (4.34)

are the two vectors of the new optimization variables.

Step 3: Dimensionality reduction

To reduce the dimensionality of the problem, we use the following lemma:

Lemma 2 Let Ul be any Ml × 2 matrix whose columns span the vector space spanned

by gl1 and gl2 and UH
l Ul = I2. Then, without loss of optimality, the beamforming

matrix Al can be written as

Al = U∗
l BlU

H
l , (4.35)

where Bl is a 2× 2 complex matrix.

Proof The proof is similar to the proof of Theorem 3.1 in [29] and also the proof

in [141]. �

The structure of Al given in (4.35) can be intuitively explained: According to (4.35),

first the signal is multiplied with UH
l whose columns span the two-dimensional signal

space. Doing so yields a linear estimate for the 2 × 1 vector of the symbols trans-

mitted by the two transceivers. The so-obtained linear estimate is then rotated via
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multiplication with Bl, whose role is to ensure that each of the two elements of the

linear estimate contains a sufficient amount of corresponding symbol of interest while

interference from the other symbol is minimal, and at the same time, the total power

is minimized. The matrix U∗
l guarantees that the so-obtained rotated linearly esti-

mated vector is transmitted on the bases of the signal subspace, and hence, power is

not wasted in transmitting over the noise subspace.

Let us define ql1 , UH
l gl1 and ql2 , UH

l gl2 as the effective channels between the

l-th relay and Transceivers 1 and 2, respectively. Then, the optimization problem in

(4.33) can be equivalently written as

min.
β1,β2,B

σ2

Ns

2∑

q=1

{(
Ns∑

k=1

βk
q̄q

|ζk
q̄q(B)|2

)(
L∑

l=1

‖BT
l qlq‖

2 + 1

)(

1 +
L∑

l=1

‖Blqlq̄‖
2

)}

+ σ2

L∑

l=1

tr(BlB
H
l )

subject to
Ns∑

k=1

log(1 + βk
q̄q) = bq, for q ∈ {1, 2}

βk
q̄q

|ζk
q̄q(B)|2

=
βk′

q̄q

|ζk′
q̄q(B)|2

, for q ∈ {1, 2}, and k, k′ ∈ {1, 2, . . . , Ns}

βk
q̄q ≥ 0, for k = 1, 2, . . . , Ns, and q = 1, 2 (4.36)

where B , {Bl}L
l=1 is a set of effective beamforming matrices and as shown in Ap-

pendix 4.D, we can write

ζk
q̄q(B) , ψk

q̄q(A)
∣
∣
∣
{Al=U∗

l BlU
H
l }

L
l=1

=
√

Nsφ
H
k h̃q̄q

∣
∣
∣
{Al=U∗

l BlU
H
l }

L
l=1

=
√

Nsφ
H
k





∑L
l=1 dl q

T
lqBlqlq̄

0(Ns−N)×1



 . (4.37)

In the second equality above, we use (4.24), while in the third equality, we use (4.9)

and (4.35) along with the following definition: h̃q̄q = [hT
q̄q 0T

1×(Ns−N)]
T to write

hq̄q =





∑L
l=1 dl q

T
lqBlqlq̄

0(Ns−N)×1



 . (4.38)
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Note that ζk
q̄q(B) now represents the frequency response of the end-to-end CIR hq̄q[∙]

at the normalized frequency k
Ns

. Compared to the optimization problem (4.33), the

optimization problem (4.36) has a lower dimensionality as matrices {Bl}L
l=1 are 2×2,

while in (4.33), matrices {Al}L
l=1 are Ml ×Ml.

Step 4: Imposing symmetry on beamforming matrices

The optimization problem (4.36) does not appear to be amenable to a computa-

tionally efficient solution. To develop such a solution, we now impose the constraint

that the beamforming matrices are symmetric, AT
l = Al, or equivalently, BT

l = Bl.

Hereafter, the optimality is claimed only under the assumption that the relay beam-

forming matrices are symmetric. Imposing such a constraint renders the end-to-end

channel over each relaying path reciprocal, i.e., qT
l1Blql2 = qT

l2Blql1, which in turn,

in light of (4.37), leads to ζk
12(B) = ζk

21(B). Moreover, for such symmetric beam-

forming matrices, we can write ‖qT
l1Bl‖ = ‖Blql1‖ and ‖qT

l2Bl‖ = ‖Blql2‖. Defining

ζk(B) , ζk
12(B) = ζk

21(B), we rewrite the optimization problem (4.36) as5

min.
β1,β2,B

σ2

Ns

(
Ns∑

k=1

βk
12 + βk

21

|ζk(B)|2

)(

1 +
L∑

l=1

‖Blql1‖
2

)(

1 +
L∑

l=1

‖Blql2‖
2

)

+ σ2

L∑

l=1

tr(BlB
H
l )

subject to
Ns∑

k=1

log(1 + βk
qq̄) = bq, for q ∈ {1, 2}

βk
q̄q

|ζk(B)|2
=

βk
q̄q

|ζk′(B)|2
, for q ∈ {1, 2}, and k, k′ ∈ {1, 2, . . . , Ns}

βk
q̄q ≥ 0, for q ∈ {1, 2}, and k ∈ {1, 2, . . . , Ns}

[Bl](1,2) = [Bl](2,1), for l ∈ {1, 2, . . . , L} (4.39)

where the last set of the constraints emphasizes that the effective beamforming ma-

trices {Bl}L
l=1 should be symmetric. Using the following identities: tr(X1X2X3) =

vec(X1
T )T (I⊗X2) vec(X3), and tr(X1

TX2X3X4
T ) = vec(X1

T )T (X4⊗X2) vec(X3),

5Note also with AT
l = Al, it follows from (4.8) and (4.9), that h12[∙] = h21[∙] and thus, h12 = h21

holds true, implying that the end-to-end channel is reciprocal.
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we can write

‖Blql1‖
2 = bH

l (I2 ⊗ ql1q
H
l1)bl (4.40)

‖qT
l2Bl‖

2 = bH
l (ql2q

H
l2 ⊗ I2)bl (4.41)

tr(BlB
H
l ) = bH

l bl. (4.42)

where the following definition is used: bl , vec(BH
l ), for l = 1, 2, . . . , L. Using (4.40)-

(4.42) and defining b , [bT
1 bT

2 ... bT
L]T , we can rewrite the optimization problem

(4.39) as

min.
β1,β2,b

σ2

Ns

(
Ns∑

k=1

βk
12 + βk

21

|ζk(b)|2

)
(
1 + bHE1b

) (
1 + bHE2b

)
+ σ2bHb

subject to
Ns∑

k=1

log(1 + βk
q̄q) = bq, for q ∈ {1, 2}

[b]4(l−1)+2 = [b]4(l−1)+3, for l ∈ {1, 2, . . . , L}

βk
q̄q

|ζk(b)|2
=

βk′

q̄q

|ζk′(b)|2
, for q ∈ {1, 2}, and k, k′ ∈ {1, 2, . . . , Ns}

βk
q̄q ≥ 0, for q ∈ {1, 2}, and k ∈ {1, 2, . . . , Ns}

(4.43)

where E1 and E2 are defined as

E1 , blkdiag
(
{I2 ⊗ ql1q

H
l1}

L
l=1

)
, E2 , blkdiag

(
{ql2 qH

l2 ⊗ I2}
L
l=1

)
. (4.44)

Note that in (4.43), since vector b includes the vectorized version of matrices {Bl}L
l=1,

with a small abuse of notation, we write ζk(b) = ζk(B). Indeed, ζk(b) now represents

the frequency response of the end-to-end CIR hq̄q[∙] at the normalized frequency k
Ns

.

Using the following definitions: T ,







1 0 0
0 1 0
0 1 0
0 0 1





 and L , IL ⊗ T , we can write

bl = T b̃l, where b̃l = [ [bl]1 [bl]2 [bl]4 ]T is the vector of the free parameters in bl.

Furthermore, b can be written as b = L b̃, where b̃ = [b̃T
1 b̃T

2 ... b̃T
L]T . Now, defining

Ẽ1 , LH E1 L and Ẽ2 , LH E2 L results in the following identities

bHEqb = b̃HLHEqLb̃ = b̃HẼqb̃, for q ∈ {1, 2}. (4.45)
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Identities in (4.45) enable us to rewrite (4.43) as

min.
β1,β2, b̃

σ2

Ns

(
Ns∑

k=1

βk
12 + βk

21

|ζk(b̃)|2

)
(
1 + b̃HẼ1b̃

)(
1 + b̃HẼ2b̃

)
+ σ2b̃HLHLb̃

subject to
Ns∑

k=1

log(1 + βk
q̄q) = bq, for q ∈ {1, 2}

βk
q̄q

|ζk(b̃)|2
=

βk′

q̄q

|ζk′(b̃)|2
, for q ∈ {1, 2}, and k, k′ ∈ {1, 2, . . . , Ns}

βk
q̄q ≥ 0, for q ∈ {1, 2}, and k ∈ {1, 2, . . . , Ns} (4.46)

where once more with a small abuse of notation, we write ζk(b̃) = ζk(b). Indeed, by

using the vectors of free parameters, i.e., b̃ instead of b, the second set of constraints

in (4.43) is automatically satisfied.

Step 5: Relaxation

To solve (4.46), we relax the last two sets of constraints. Let us consider the

problem in (4.46) with only the first set of constraints:

min.
β1,β2, b̃

σ2

Ns

(
Ns∑

k=1

βk
12 + βk

21

|ζk(b̃)|2

)
(
1 + b̃HẼ1b̃

)(
1 + b̃HẼ2b̃

)
+ σ2b̃HLHLb̃

subject to
Ns∑

k=1

log(1 + βk
q̄q) = bq, for q ∈ {1, 2}. (4.47)

We soon show that such a relaxation will not cause any loss of optimality. In other

words, any solution to (4.47) will satisfy the relaxed constraints.

The following lemma enables us to solve (4.47).

Lemma 3 At the optimum of (4.47), the following equalities

βk
12 = βk′

12 and βk
21 = βk′

21 (4.48)

|ζk(b̃)| = |ζk′(b̃)| , for k, k′ ∈ {1, 2, . . . , Ns}. (4.49)

hold true.

Proof See Appendix 4.E. �

It follows from (4.48) and (4.49) that at the optimum of (4.47), the relaxed constraints
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in (4.46) are satisfied with equality. Hence, any solution to the relaxed problem (4.47)

is a solution to the original problem (4.46).

Step 6: Solving the relaxed problem

To solve the relaxed problem, using (4.48) along with the rate constraints in (4.47),

we observe that at optimum

βopt
21 , βk

21 = βk′

21 = 2
b1
Ns − 1 and βopt

12 , βk
12 = βk′

12 = 2
b2
Ns − 1 (4.50)

hold true. Note also that as ζ(b̃) , ζk(b̃) represents the frequency response of the

end-to-end CIR h[∙] at the normalized frequency k
Ns

, we infer from (4.49) that at the

optimum, the CIR h[∙] must be frequency flat. As this CIR has a finite length, it

must have only one non-zero tap. Since each relay contributes only to one of the

taps of h[∙], we conclude that at the optimum only a synchronous subset of the relays

(corresponding to the best tap) has to be selected and the remainder of the relays

will not participate in the relaying (that is, their beamforming matrices are zero). If

Cn stands for the set of the vectors b̃ which result in the n-th tap of the end-to-end

CIR being non-zero, then, based on the fact that no relay contributes to two different

taps of the end-to-end CIR, Cn

⋂
C ′n = ∅ holds true for n 6= n′. Hence, defining

N , {n
∣
∣0 ≤ n ≤ N − 1, Cn 6= ∅} and using (4.49) and (4.50), the optimization

problem (4.47) can be equivalently written as

min.
n∈N

min.
b̃∈Cn

σ2(βopt
12 + βopt

21 )

|ζ(b̃)|2
(1 + b̃HẼ1b̃)(1 + b̃HẼ2b̃) + σ2b̃HLHLb̃ . (4.51)

For any n ∈ N , the inner minimization in (4.51) aims to find the optimal values of

the compact version of the vectorized beamforming matrices, i.e., b̃, while assuming

that only relays contributing to the n-th tap of the end-to-end CIR are active. For

any n ∈ N , the value of the objective obtained by solving the inner minimization in

(4.51) is the minimum amount of the total power consumed in the synchronous sub-

network which consists of the relays that contribute to the n-th tap of the end-to-end

CIR. The outer minimization aims to determine which of the card(N) synchronous

sub-networks results in the least amount of the total power consumption. Note that
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if none of the relays contributes to the n-th tap of the end-to-end CIR, then Cn will

be empty. Note also that when b̃ = [b̃T
1 b̃T

2 ∙ ∙ ∙ b̃T
L]T ∈ Cn, then b̃l = 0, if the

l-th relay does not contribute to the n-th tap of the end-to-end CIR. For any n ∈ N ,

let an be the vector of all b̃l’s which corresponds to those relays that contribute to

the n-th tap of the end-to-end CIR. That is, for any n ∈ N , if b̃l(n) is the compact

version of the vectorized beamforming matrix of the l-th relay which contributes to

the n-th tap of the end-to-end CIR, then we define an , [b̃T
1(n) b̃T

2(n) ∙ ∙ ∙ b̃T
K(n)]

T .

Here, k(n) is the index of the k-th relay which contributes to the n-th tap of the

end-to-end CIR, and K(n) is the number of the relays which contribute to the n-th

tap of the end-to-end CIR. In Appendix 4.F, we show that for b̃ ∈ Cn, one can write

|ζ(b̃)|2 = aH
n fnf

H
n an (4.52)

where we define

fn =[(LHvec(q1(n),2q
T
1(n),1))

T (LHvec(q2(n),2q
T
2(n),1))

T ∙ ∙ ∙ (LHvec(qK(n),2q
T
K(n),1)

T ]T .

(4.53)

Using (4.52), we can rewrite the minimization problem (4.51) as

min.
n∈N

min.
an

σ2(βopt
12 +βopt

21 )(1+aH
n Ẽ

(n)
1 an)(1+aH

n Ẽ
(n)
2 an)

aH
n fn fH

n an

+σ2aH
n LH

n Lnan (4.54)

where we define Ln = IK(n) ⊗ T, and Ẽ
(n)
1 and Ẽ

(n)
2 are two block diagonal matrices

whose diagonal blocks are subsets of those diagonal blocks of Ẽ1 and Ẽ2 correspond-

ing to those relays which contribute to the n-th tap of the end-to-end CIR. More

specifically, we define

Ẽ
(n)
1 , blkdiag

(
{I2 ⊗ ql1q

H
l1}

K(n)
l=1(n)

)
, Ẽ

(n)
2 , blkdiag

(
{ql2 qH

l2 ⊗ I2}
K(n)
l=1(n)

)
. (4.55)

For any n ∈ N , the inner minimization problem in (4.54) amounts to solving the

total power minimization problem for the synchronous sub-network which consists of

those relays that contribute to the n-th tap of the end-to-end CIR [142], under the

assumption that the relays employ symmetric beamforming matrices. As shown in
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Chapter 3 (and also in [142]), the solution to the inner minimization of (4.54) can be

written as

an = κn (σ2(βopt
12 + βopt

21 )Ẽ
(n)
2 + λn(ρnẼ

(n)
1 + σ2LH

n Ln))−1fn︸ ︷︷ ︸
,un

(4.56)

κn =

√
σ2(βopt

12 + βopt
21 )

λnuH
n (ρnẼ

(n)
1 + σ2LH

n Ln)un

(4.57)

where the parameters ρn and λn are the solutions to the follwoing two nonlinear

equations:

σ2(βopt
12 + βopt

21 )
ρ−2

n − λnu
H
n Ẽ

(n)
1 un

λ2
nu

H
n (ρnẼ

(n)
1 + σ2LT

n Ln)un

= 1 (4.58)

ρnf
H
n (σ2(βopt

12 + βopt
21 )Ẽ

(n)
2 + λn(ρnẼ

(n)
1 + σ2LH

n Ln))−1fn = 1. (4.59)

Here, ρn ∈
(σ2(βopt

12 + βopt
21 )

qHn qn
, +∞

)
must hold true, where we define

qn , [qT
1(n),1 qT

2(n),1 ∙ ∙ ∙ qT
K(n),1]

T .

Note that for any value of ρn ∈
(σ2(βopt

12 + βopt
21 )

qHn qn
, +∞

)
, the nonlinear equation (4.59)

has a unique solution for λn. As such, λn can be viewed as a function of ρn, and

hence, the non-linear equation (4.58) can be viewed as an equation only in terms of

ρn. Based on this point of view, it is shown in [140] that (4.58) has a unique solution.

As a result, to find ρn, one can use a bisection method, where in each step of this

method, another bisection algorithm is used to obtain λn for intermediate values

of ρn in the outer bisection method. Once ρn and λn are obtained, the minimum

total transmission power corresponding to the scenario where only those relays which

contribute to the n-th tap of the end-to-end CIR are active, can be obtained as [140]

ρn +
σ2(βopt

12 + βopt
21 )

λn

. (4.60)

Hence, the index of the optimal non-zero tap of the end-to-end CIR can be obtained

as

no = arg min
n∈N

ρn +
σ2(βopt

12 + βopt
21 )

λn

. (4.61)
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Note that if no relay contributes to the n-th tap of the end-to-end CIR, the total

transmit power corresponding to that tap will be +∞ and such value of n cannot be

optimal. Replacing n in (4.56)-(4.59) with no, we can obtain the optimal vector ano ,

[b̃T
1(no) b̃T

2(no) ∙ ∙ ∙ b̃T
K(no)]

T . Then the vectorized version of the effective beamforming

matrix of the l-th relay which contributes to the no-th tap of the end-to-end CIR

can be obtained as bl(no) = Tb̃l(no). Reshaping bl(no) yields the optimal value of the

effective beamforming matrix Bl(no) of the l-th relay which contributes to the no-th

tap of the end-to-end CIR, and finally, the optimal value of the beamforming matrix

Al(no) of the l-th relay which contributes to the no-th tap of the end-to-end CIR, can

be calculated as Al(no) = U∗
l(no)Bl(no)U

H
l(no). The beamforming matrix of all those

relays which do not contribute to the no-th tap of the end-to-end CIR will be zero.

One can then use the so-obtained beamforming matrices to obtain the transceivers

transmit powers in closed-forms as

p1 =

σ2βopt
12

(

1 +
K(no)∑

l=1(no)

‖gT
l2Al‖2

)

∣
∣
∣
∣
∣

K(no)∑

l=1(no)

gT
l2Al gl1

∣
∣
∣
∣
∣

2 , p2 =

σ2βopt
21

(

1 +
K(no)∑

l=1(no)

‖gT
l1Al‖2

)

∣
∣
∣
∣
∣

K(no)∑

l=1(no)

gT
l1Al gl2

∣
∣
∣
∣
∣

2 . (4.62)

4.3 Algorithm

To summarize, we proved rigorously that the solution to the total power minimiza-

tion for an asynchronous two-way network with MIMO relays (which use symmetric

beamforming matrices) turns out to be a relay selection scheme, where only those

relays which contribute to one of the taps of the end-to-end CIR are active. That is,

only a synchronous sub-network of the relays are to be selected. Hence, as proved

in the previous section, the network design reduces to finding the best synchronous

sub-network which consumes the least amount of power. Once such sub-network is

identified, the solution to the network beamforming problem for synchronous two-

way MIMO relay networks with symmetric beamforming matrices can be employed

to obtain the beamforming matrices.
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The following table summarizes the proposed algorithm.

1. Calculate βopt
21 = 2

b1
Ns − 1 and βopt

12 = 2
b2
Ns − 1.

2. For l = 1, 2, . . . L, obtain the Ml×2 matrix Ul such that its ortho-normal columns span
the space spanned by gl1 and gl2. For example, based on Gram-Schmidt approach,

choose Ul = [ gl1
‖gl1‖

(gl2−
gH

l1gl2
‖gl1‖

2 gl1)

‖(gl2−
gH

l1
gl2

‖gl1‖
2 gl1)‖

]. Then calculate ql1 = UH
l gl1 and ql2 = UH

l gl2,

for l = 1, 2, . . . L.

3. Set n = 0.

4. If no relay contributes to the n-th tap of the end-to-end CIR h[∙], i.e., if dl,n = 0, for
l = 1, 2, . . . , L, go to Step 15.

5. Define qn = [qT
1(n),1 qT

2(n),1 ∙ ∙ ∙ qT
K(n),1]

T , where ql1 = UH
l gl1 and ql2 = UH

l gl2, for
l = 1(n), 2(n), . . . , K(n). Here, k(n) is the index of the k-th relay which contributes to
the n-th tap of the end-to-end CIR and K(n) is the number of relays which contribute
to the n-th tap of the end-to-end CIR.

6. Calculate E(n)
1 = blkdiag

(
{I2 ⊗ ql1qH

l1}
K(n)
l=1(n)

)
and E(n)

2 = blkdiag
(
{ql2 qH

l2 ⊗ I2}
K(n)
l=1(n)

)

as well as Ln = IK(n) ⊗T, where T =







1 0 0
0 1 0
0 1 0
0 0 1





.

7. Define
un(θ, z) , (σ2(βopt

12 + βopt
21 )Ẽ(n)

2 + θ(Ẽ(n)
1 + σ2LH

n Ln))−1fn

where the vector fn is obtained as

fn = [(LHvec(q1(n),2q
T
1(n),1))

T (LHvec(q2(n),2q
T
2(n),1))

T ∙ ∙ ∙ (LHvec(qK(n),2q
T
K(n),1)

T ]T .

8. For any value of z ∈

(
σ2(βopt

12 + βopt
21 )

qH
n qn

, +∞

)

, define function gn(∙) as

gn(z) = 1− σ2(βopt
12 + βopt

21 )
z−2 − λuH

n (λ, z)Ẽ(n)
1 un(λ, z)

λ2
nu

H
n (λ, z)(zẼ(n)

1 + σ2LT
n Ln)un(λ, z)

where for any value of z ∈

(
σ2(βopt

12 + βopt
21 )

qH
n qn

, +∞

)

, the value of λ is obtained, using a

bisection method, as the provably unique positive solution to the following non-linear
equation:

zfH
n (σ2(βopt

12 + βopt
21 )Ẽ(n)

2 + λ(zẼ(n)
1 + σ2LH

n Ln))−1fn − 1 = 0.
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9. To solve gn(z) = 0 in the interval z ∈

(
σ2(βopt

12 + βopt
21 )

qH
n qn

, +∞

)

using a bisection

method, choose zl as

zl =
σ2(βopt

12 + βopt
21 )

qH
n qn

+ ε1 (4.63)

where ε1 is an arbitrarily small positive number such that gn(zl) < 0. Also, choose
zu large enough such that gn(zu) > 0.

10. Choose ε2 to be an arbitrarily small positive number. The parameter ε2 determines
the precision of the bisection algorithm used to obtain the roots of gn(∙).

11. Choose z = (zl + zu)/2.

12. If |gn(z)| < ε2, go to Step 13. If gn(z) < −ε2, then zl = z. If gn(z) > ε2, then zu = z.
Go to Step 11.

13. Set ρn equal to z and use a bisection technique to obtain λn as the unique positive
solution to the following non-linear equation:

ρnf
H
n (σ2(βopt

12 + βopt
21 )Ẽ(n)

2 + λn(ρnẼ
(n)
1 + σ2LH

n Ln))−1fn − 1 = 0.

14. Calculate the total transmit power, denoted as Pn
T , consumed by the synchronous

sub-network, whose relay nodes contribute to the n-th tap of the end-to-end CIR, as

Pn
T = ρn +

σ2(βopt
12 + βopt

21 )
λn

(4.64)

15. Set n = n + 1. If n ≥ N , go to Step 16, otherwise go to Step 4.

16. Find the optimal value of the only non-zero tap index of the end-to-end CIR as

no = arg min
n∈N

Pn
T . (4.65)

17. Obtain ano = [b̃T
1(no) b̃T

2(no) ∙ ∙ ∙ b̃T
K(no)]

T using

ano = κno (σ2(βopt
12 + βopt

21 )Ẽ(no)
2 + λno(ρnoẼ(no)

1 + σ2LH
noLno))−1fno

︸ ︷︷ ︸
,uno

where κno is obtained as

κno =

√√
√
√ σ2(βopt

12 + βopt
21 )

λnouH
no(ρnoẼ(no)

1 + σ2LH
noLno)uno

.

18. The vectorized version of the effective beamforming matrix of the l-th relay which
contributes to the no-th tap of the end-to-end CIR can be obtained as bl(no) = Tb̃l(no).
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19. Reshape bl(no) to obtain the optimal value of the effective beamforming matrix Bl(no)

of the l-th relay which contributes to the no-th tap of the end-to-end CIR, and finally,
obtain the optimal value of the beamforming matrix Al(no) of the l-th relay which
contributes to the no-th tap of the end-to-end CIR as Al(no) = U∗

l(no)Bl(no)U
H
l(no).

The beamforming matrix of all those relays which do not contribute to the no-th tap
of the end-to-end CIR will be zero.

20. Use the so-obtained beamforming matrices to obtain the transceivers’ transmit powers
in closed-forms as:

p1 =

σ2βopt
12

(

1 +
K(no)∑

l=1(no)

‖gT
l2Al‖2

)

∣
∣
∣
∣
∣

K(no)∑

l=1(no)

gT
l2Al gl1

∣
∣
∣
∣
∣

2 , p2 =

σ2βopt
21

(

1 +
K(no)∑

l=1(no)

‖gT
l1Al‖2

)

∣
∣
∣
∣
∣

K(no)∑

l=1(no)

gT
l1Al gl2

∣
∣
∣
∣
∣

2 . (4.66)

Remark 1: To evaluate the computational complexity of the proposed method,

let us assume that all relays have the same number of (say M) antennas. As the

first step, one has to obtain Ul from [gl1 gl2] as Ul = [gl1 (gl2 −
gT

l1gl2

‖gl1‖2
gl1)]. As

a result, the complexity of calculating Ul is O(M), and hence, the complexity of

calculating {Ul}L
l=1 is O(LM). Also, the computational complexity of {ql1}L

l=1 and

{ql2}L
l=1 is O(LM). Then, in Steps 4 to 15, one has to obtain the values of ρn and

λn for all possible values of n between 0 and N − 1, (see (4.61)). For any possible

value of n, the proposed symmetric beamforming technique involves finding ρn, as

the unique root of (4.58), using a simple bisection technique. In each iteration of this

bisection technique, one has to find the unique positive root of (4.59) for a given value

of ρn using another simple bisection technique, thereby obtaining λn. Both bisection

methods converge very fast [128]. The number of iterations in these two bisection

methods is insensitive to the problem under consideration [128]. As a result, the

main computational complexity of the proposed algorithm resides in evaluating the

left-hand sides of (4.58) and (4.59). Since the size of un is 3K(n) × 1 and Ẽ
(n)
1 and

LT
nLn are 3K(n)× 3K(n) block diagonal matrices, the complexity of computing the

quadratic terms in (4.58) is O(K(n)). The complexity of finding λn using (4.59) is

also O(K(n)) as Ẽ
(n)
1 , Ẽ

(n)
2 , and LT

nLn are 3K(n)× 3K(n) block diagonal matrices.

Hence, evaluating ρn requires a computational complexity of order K(n). Given

that complexity of calculating λn is also O(K(n)), we conclude that for any value
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of n, evaluating the cost function of (4.61) has a computational complexity of order

K(n). Therefore, the worst-case computational complexity of Steps 4 to 15 of the

proposed algorithm is max
0≤n≤N−1

O(K(n)). Given the fact that a maximum of L relays

can contribute to the tap n of the end-to-end CIR (i.e., K(n) ≤ L), we conclude that

the worst-case computational complexity of these steps of the proposed algorithm is

O(L). It is worth mentioning that the maximum number of possible values of n is

equal to the number of the relays L. Indeed, when each relay contributes to a distinct

tap of the end-to-end CIR (i.e., when no two relays contribute to the same tap), then

number of possible values of n is equal to L. If, on the other hand, all relays contribute

to one tap of the end-to-end CIR, then the number of possible values of n is equal to

1. Hence, number of points in the search space of the minimization problem (4.61)

ranges from 1 to L.

Once the index of the optimal non-zero tap of the end-to-end CIR is obtained, the

corresponding vector ano , can be determined using (4.56)-(4.57) with a computational

complexity O(K(no)). Then one can use the reshaping operations and obtain the

vectors {b̃l(no)}
K(no)
l(no)=1(no) from the vector a(no), the vectors {bl(no)}

K(no)
l(no)=1(no) from the

vectors {b̃l(no)}
K(no)
l(no)=1(no), and the effective beamforming matrices {Bl}

K(no)
l=1(no) from the

vectors {bl(no)}
K(no)
l(no)=1(no), respectively. Since reshaping can be done by changing the

indices, determining the matrices {Bl}
K(no)
l=1(no) from the vector a(no) does not require any

computation. The computational complexity of obtaining each of the beamforming

matrices Al(no) = U∗
l(no)Bl(no)U

H
l(no) for l(no) ∈ {1(no), . . . , K(no)} is O(M). As

a results, obtaining {Al(no)}
K(no)
l(no)=1(no) has a computational complexity O(MK(no)).

Once, the beamforming matrices are obtained, one can obtain the transceiver powers

as in (4.62). The complexity of calculating the transceiver powers using (4.62) is

O(MK(no)). Therefore, the worst-case computational complexity of Steps 16 to 20

of the proposed algorithm is O(ML). This worst-case computational complexity

corresponds to the case when each relay contributes to a distinct tap of the end-to-

end CIR. To summarize, we conclude that the worst-case computational complexity

of the proposed algorithm is O(ML).
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Remark 2 : It is worth mentioning that in asynchronous two-way relay networks,

minimizing the total relay power is an interesting problem. Our result is however not

applicable to the problem of total relay power minimization. Note also that minimiz-

ing the total relay power may lead to high power consumption at the transceivers,

and in turn, could result in high total power consumption in the network.

Remark 3: It is worth emphasizing that the proposed method is amenable to

a distributed implementation where the selected (activated) relays require only their

local channel estimation along with a few common parameters that they all receive

from the two transceivers. Indeed, as the proposed solution ends up being the selection

of the most power-optimal synchronous sub-network, the distributed implementation

presented in [140], which is applicable to any synchronous network, can be used to

implement the proposed method in a distributed manner. We refer our reader to [140]

for the details of this distributed implementation. In [140], two different approaches

are presented for acquisition of channel state information. These approaches can also

be used for the method which is developed herein for asynchronous networks.

4.4 Numerical Simulations

Considering the average value of the total transmission power consumed in the entire

network as the measure of performance, we aim to evaluate the performance of an

asynchronous two-way network consisting of two single-antenna transceivers which

wish to exchange information with the help of L relays. In our simulations, each

of the assisting relays is assumed to be equipped with M antennas and the relays’

beamforming matrices are assumed to be symmetric.

Considering two fixed geographical points for transceivers positions at

(−5000 m, 0 m) and (5000 m, 0 m), we assume that relays are randomly dis-

tributed in an area with dimension 5000 m × 5000 m and centered around the

middle point (0 m, 0 m) of the line connecting the two transceivers. The path-loss

exponent is considered to be 3.8 and the standard deviation of the shadowing effect is
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Figure 4.2: Comparison of the proposed method with the interior point method used
to solve (4.27), without symmetric beamforming matrix assumption.

assumed to be 8 dB. The coefficients of the channels corresponding to the small-scale

fading are modeled as complex Gaussian random variables with zero mean and unit

variance. The noises received at the relays and at the transceivers are zero-mean

spatially and temporally white Gaussian random processes with variance σ2 = −130

dBm.

In Fig. 4.2, we compare the performance of the proposed method (which relies on

symmetric beamforming matrix assumption) with a technique which relies on interior

point method to solve (4.27), without symmetric beamforming matrix assumption 6.

As can be seen from this figure, the two methods perform very close to each other.

In Fig. 4.3, we compare the performance of the proposed scheme with that of the

interior point method for an arbitrarily chosen channel realization, but for 100 dif-

ferent random initialization points. In this figure, we choose M = 8 and L = 8 and

plot the performance curves for three different values of b1 = b2. This figure shows

that in these examples, for any of the 100 random initialization points, the interior

point method performs very close to the proposed technique. These observations lead

us to conjecture that the proposed method yields the optimal solution. Proving or

6Note that the latter method uses random initial point for each simulation run and it can trap
in local optimal points.
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Figure 4.3: The average minimum total transmit power for the proposed method and
that for interior point method for 100 different initialization, for L = 8 and M = 8
and different values of b1 = b2.

disproving this conjecture does not fit in the scope of this study.

Fig. 4.4 shows the average minimum total transmit power required for satisfying

a range of data rate thresholds for networks with different numbers of relays. Each

relay is assumed to be equipped with M = 8 antennas. Fig. 4.5 depicts the average

minimum total transmit power versus data rate thresholds for networks with the

same number of relays (L = 8), but with different numbers of antennas per relay

(i.e., M = 8, 16, 32, 64). As can be seen from Fig. 4.4, for fixed number of antennas

per relay, doubling the number of relays reduces the average minimum total transmit

power by 1.96 to 2.31 dB over the considered range of rate thresholds. On the other

hand, Fig. 4.5 shows that in networks with fixed number of relays, doubling the

number of antennas per relay reduces the minimum total transmit power by 3.03 to

3.13 dB over the same range of rate thresholds.

In Fig. 4.6, we consider four asynchronous networks with L = 8 relays, but with

different numbers of antennas per relay (i.e., M = 8, 16, 32, 64) and compare the per-

formance of each of such asynchronous networks with that of a synchronous network

which has the same number of relays as the corresponding asynchronous network se-
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Figure 4.4: The average minimum total transmit power versus equal rate thresholds,
for L ∈ {8, 16, 32, 64} and M = 8.
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Figure 4.5: The average minimum total transmit power, versus b1/N = b2/N , for
networks with L = 8, M ∈ {8, 16, 32, 64}.
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lects. More specifically, once the solution to the asynchronous network is obtained for

a given channel realization, we obtain the solution to a synchronous network which

has the same number of relays as the asynchronous network activates, while assuming

that those relays are causing minimal propagation delay. In order for relays employed

in the synchronous network to be able to transfer symbols synchronously, i.e., with-

out time misalignment, we assume that those relays are randomly distributed in an

area with dimension of 540 m × 540 m centered at the middle point (0 m, 0 m)

between the two transceivers. Fig. 4.6 shows that the total transmit power required

for the asynchronous network to achieve a certain rate threshold is less than that for

the corresponding synchronous network. we can also observe that with increasing

the number of antennas per relay from M = 8 to M = 16, to M = 32, and then

to M = 64, the performance gap between the two networks remains around 11 dB.

This superior performance of the asynchronous networks in comparison with their

synchronous counterparts can be explained by the fact that in each asynchronous

scheme, the proposed algorithm chooses the best set of synchronous relays which re-

sults in the lowest power consumption, and hence, this algorithm exploits the spatial

diversity of the relays. In the synchronous networks such spatial diversity does not

exist.

Fig. 4.7 illustrates the comparison of the performance of our proposed

scheme/method (for M = 8, 32, and L = 8), with that of the asynchronous

two-way network of [1] with ML single-antenna relays. The latter network can be

viewed as a special case of the proposed scheme when the relay beamforming matrices

are restricted to be diagonal. As can be seen from this figure, the proposed scheme

can outperform the scheme of [1] by 1.6 to 6.5 dB depending on the required data

rates and the total number of available antennas, i.e., ML. The superior performance

of the proposed scheme is due to the advantages offered by local beamforming at the

relays. Note that based on Remark 1, the computational complexity of the method

of [1] for an asynchronous network with ML single-antenna relays is the same as

that of the proposed method.
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Figure 4.6: A comparison between synchronous and asynchronous networks: The
average minimum total transmit power versus equal rate thresholds for M ∈
{8, 16, 32, 64}.
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Figure 4.7: The comparison between the proposed scheme and the multiple single-
antenna scheme of [1]: the average minimum total transmit power obtained vs. rate.
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Figure 4.8: The average minimum total transmit power versus total number of an-
tennas per relay, for ML = 512.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
1

1.5

2

2.5

3

3.5

4

4.5

5

b1
Ns

= b2
Ns

(bits per channel use)

A
ve

ra
ge

n
u
m

b
er

of
ac

ti
ve

re
la

y
s

L = 8 and M = 8
L = 16 and M = 8
L = 32 and M = 8
L = 64 and M = 8
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L ∈ {8, 16, 32, 64}.
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In Fig. 4.8, assuming a fixed number of total antennas employed in the entire net-

work, i.e., ML = 512, we plot the average minimum total transmit power versus the

number of antennas per relay. Interestingly, this figure shows that there is an optimal

number of antennas per relay which results in the minimum power consumption for

the given required rates. This phenomenon can be explained as the result of two

factors which affect the power performance of the network. When M is low, the net-

work will benefit from the fact that a relatively large number of relays are distributed

in the coverage area, and hence, on average, the distance of the transceivers from

the closest relay will be relatively smaller. On the other hand, when M is low, the

degrees of freedom for local beamforming at each relay is rather small. When M is

large, such degrees of freedom will be relatively large while the number of relays will

be small leading to an increase in the average distance of the transceivers from the

relays. When M is increased, the degrees of freedom available for local beamforming

increases, and at the same time, the average distances of the two transceivers form re-

lays also increase. These two conflicting factors, i.e., the degrees of freedom available

for local beamforming at the relays and the average distance of the two transceivers

form the relays result in the performance trade-off shown in Fig. 4.8. That is, there

appears to be an optimal number of antennas per relay which leads to the best power

performance among all possible configurations of the available antennas. As shown in

Fig. 4.8, for the given rates, the optimal value of M is 128 antennas and the number

of relays is 4. Note that since the total number of antennas is fixed i.e., ML = 512,

when M = 512 is chosen, the number of relays will be only 1 and the proposed algo-

rithm calculates the power-optimal beamforming matrix (with the size 512 × 512) for

this relay. When M = 128 is chosen, then the number of available relays is 4, and the

proposed algorithm benefits form the spatial diversity offered by selecting the best

subset of relays which leads to the least amount of power consumption. However,

when M = 512 is chosen, such spatial diversity does not exist, as there is only one

relay in the network. It is worth mentioning that as Fig. 4.8 shows, when reducing

M from 512 to 128, exploiting this spatial diversity overcomes the loss in the number
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of degrees of freedom available for local beamforming. Fig. 4.8 also shows that as M

is further reduced (and thus the number of available relays is increased), although

the spatial diversity increases, the gain achieved by exploiting the spatial diversity

cannot compensate for the loss in the number of degrees of freedom available for local

beamforming.

In Fig. 4.9, we show the average number of active relays (which contribute to the

optimal tap of the end-to-end CIR) versus the equal rate thresholds. As shown in

this figure, for fixed M , for the scenario considered here, a small portion of the relays

are selected and this portion does not change significantly with the rate thresholds.
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Appendices

4.A Derivation of (4.18)

To derive (4.18), we can write

Pl ,
1

Nt

E{1TTH
l (i)Tl(i)1)} =

1

Nt

E{1TXH
l (i)AH

l AlXl(i)1}

=
1

Nt

E
{
1T (

√
p1 s̄∗1 gH

l1+
√

p2 s̄∗2 gH
l2+ΓH

l )AH
l Al(

√
p1 gl1s̄

T
1+
√

p2 gl2s̄
T
2+Γl)1

}

=
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Nt

E{1T s̄∗1 gH
l1A

H
l Algl1s̄

T
1 1}+
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Nt
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l Algl2s̄
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2 1}+
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l AlΓl1}
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Nt

gH
l1A

H
l Algl1E{1

T s̄∗1 s̄T
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p2

Nt

gH
l2A

H
l Algl2E{1

Ts̄∗2 s̄T
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1

Nt
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=p1g
H
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H
l Algl1+p2g

H
l2A

H
l Algl2+σ2tr(AlA

H
l )

=p1‖Algl1‖
2+p2‖Algl2‖

2+σ2tr(AlA
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l ). (4.A.1)
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4.B Calculation of the noise correlation matrix at

Transceiver q

To calculate Cq, we write

Cq , E{η̃qη̃
H
q } = RcpE{ηqη

H
q }R

H
cp

= RcpE





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L∑
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l glq + η′q
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ΓT
l AT

l glq + η′q
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RH
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lq A
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T
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σ2INt
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RH
cp

= σ2

(
L∑

l=1

‖AT
l glq‖

2 + 1

)

INs (4.B.1)

where we used the fact that Rcp = [0Ns×N INs ], and RcpR
H
cp = INs . Note that in the

sixth equality, we have omitted straightforward derivations.
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4.C Derivation of (4.23)

To derive (4.23), we note that the circulant matrix H̃q̄q(A) can be decomposed using

a DFT matrix [139], denoted by F, i.e.,

H̃q̄q(A) = FHDq̄q(A)F (4.C.1)

where [F]k,k′ = 1√
Ns

e−j2π(k−1)(k′−1)/Ns , and

Dq̄q(A) , diag{Hq̄q(e
j0), Hq̄q(e

j2π/Ns), . . . , Hq̄q(e
j2π(Ns−1)/Ns)} is defined as an Ns×Ns

diagonal matrix of the frequency response of the end-to-end CIR, hq̄q[∙] at integer

multiples of 1
Ns

, that is, Hq̄q(e
j2πf ) =

∑N−1
n=0 hq̄q(n)e−j2πfn. By substituting (4.C.1)

and (4.22) in (4.21), Rq(A, pq̄) can be recast as

Rq(A, pq̄) = log det
(
INs + pq̄C

− 1
2
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− 1
2
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T
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T
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 (4.C.2)

where in the last equality, we have used the fact that FHF = FFH = INs , along with

that for two arbitrary square matrices U and V, the identity det (UV) = det (VU)

holds true. As matrix Dqq̄(A) is a diagonal matrix, we can rewrite (4.C.2) as

Rq(A, pq̄) =
1

2
log

Ns∏

k=1



1 +
pq̄|ψk

q̄q(A)|2

σ2
(∑L

l=1 ‖A
T
l glq‖2 + 1

)



 (4.C.3)

where ψk
q̄q(A) is the k-th diagonal entry of the diagonal matrix Dq̄q(A), and is given

as ψk
q̄q(A) = Hq̄q(e

j2π(k−1)/Ns) =
∑N−1

n=0 hq̄q(n)e−j2πn(k−1)/Ns . Using the definition of

Dq̄q(A), we can write

Dq̄q(A) ,
√

Ns diag{φH
1 h̃q̄q, φ

H
2 h̃q̄q, ∙ ∙ ∙ , φH

Ns
h̃q̄q} (4.C.4)

where we use the following definition for φk

φk ,
1

√
Ns

[1 e
j2π(k−1)

Ns ∙ ∙ ∙ e
j2π(Ns−1)(k−1)

Ns ]T , for k = 1, 2, . . . , Ns, (4.C.5)
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and h̃q̄q , [hT
q̄q 01×(Ns−N)]

T is defined as the zero-padded version of the channel

vector hq̄q. Using (4.C.4) and (4.C.5), we can recast ψk
q̄q(A) as ψk

q̄q(A) =
√

Nsφ
H
k h̃q̄q.

The derivation of (4.23) is now complete.
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4.D Derivation of (4.37)

To derive (4.37), we can write

ζk
q̄q(B) , ψk
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∣
∣
∣
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l BlU
H
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L
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∣
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H
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l=1 dl g

T
lqAlglq̄
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Nsφ
H
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[ ∑L
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T
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0(Ns−N)×1

]

. (4.D.1)
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4.E Proof of lemma 3

Let Pmin
T denote the minimum value of the total transmit power consumed in the

entire network obtained by solving (4.47) and the corresponding optimal value of the

optimization variables by (βopt
1 , βopt

2 , b̃opt). We now consider the following optimiza-

tion problem:

max.
β1,β2, b̃

Ns∑

k=1

log(1 + βk
21)

subject to
Ns∑

k=1

log(1 + βk
12) = b2, for k ∈ {1, 2, . . . , Ns}

σ2

Ns

(
Ns∑

k=1

βk
12 + βk

21

|ζk(b̃)|2

)
(
1 + b̃HẼ1b̃

)(
1 + b̃HẼ2b̃

)
+ σ2b̃HLHLb̃ ≤ Pmin

T .

(4.E.1)

Let us represent the solution to the optimization problem (4.E.1) as (β̂opt
1 , β̂opt

2 , b̂opt),

and denote the maximum achievable rate at Transceiver 1 as Rmax
1 , which is obtained

by solving (4.E.1) for the given power budget Pmin
T . We now argue that Rmax

1 = b1

holds true. To show this, we consider that if Rmax
1 < b1, then (βopt

1 , βopt
2 , b̃opt) results

in a higher value for the objective function of (4.E.1). Indeed, since (βopt
1 , βopt

2 , b̃opt)

is a solution to (4.47), this solution attains a higher value for
∑Ns

k=1 log(1+βk
21) = b1 >

Rmax
1 , while

∑Ns

k=1 log(1 + βk
12) = b2, and at the same time, PT = Pmin

T which contra-

dicts the optimality of (β̂opt
1 , β̂opt

2 , b̂opt) for (4.E.1). On the other hand, it is easy to

show that Rmax
1 cannot be greater than r1 as well. Otherwise, if Rmax

1 > b1, then one

can scale down the optimal value β̂opt
1 such that

∑Ns

k=1 log(1 + βk
21) = b1 holds true,

while PT < Pmin
T . This means that, (β̂opt

1 , β̂opt
2 , b̂opt) results in a lower PT while satis-

fying the two constraints in (4.47). This contradicts the optimality of (βopt
1 , βopt

2 , b̃opt)

for (4.47). Therefore, we can conclude that Rmax
r = b1 holds true, meaning that the

solution to the power minimization problem in (4.47) is indeed a solution to the rate

maximization problem (4.E.1). The maximization problem (4.E.1), however, is sim-

ilar to the optimization problem (18) in [91]. It has been proven in [91] that at the

optimum of (4.E.1), i) |ζk(b̃)| = |ζk′(b̃)| holds true, for k, k′ ∈ {1, 2, . . . , Ns} and
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ii) βk
12 = βk′

12 and βk
21 = βk′

21 hold true, for k, k′ ∈ {1, 2, . . . , Ns}. As a result, at the

optimum of (4.47), βk
12 = βk′

12, βk
21 = βk′

21, and |ζk(b̃)| = |ζk′(b̃)| also hold true, for

k, k′ ∈ {1, 2, . . . , Ns}. The proof is complete.
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4.F Derivation of (4.52)

For b̃ ∈ Cn, we can write

|ζ(b̃)|2 =
1

Ns

Ns∑

k=1

|ζk(b̃)|2 =
Ns∑

k=1

|φH
k h̃12|

2 = ‖h̃12‖
2 = ‖h12‖

2 = ‖h‖2 = |h[n]|2

(4.F.1)

In (4.F.1), the first equality follows from the fact that for b̃ ∈ Cn, one can write ζ(b̃) =

ζk(b̃), for k = 1, 2, . . . , Ns, the second equality follows from (4.37), the third equality

follows from the Parseval’s theorem, the forth equality follows from the following

definition: h̃12 , [hT
12 0T

1×(Ns−N)]
T = [hT 0T

1×(Ns−N)]
T , and the fifth equality follows

from the fact that for b̃ ∈ Cn, only the n-th of the end-to-end CIR, i.e., h[∙] is non-zero.

Note that using (4.8), we can write

h[n] = h12[n] =
L∑
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vecT (Bl)vec(ql2q
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n fn (4.F.2)

where we define

fn , [(LHvec(q1(n),2q
T
1(n),1))

T (LHvec(q2(n),2q
T
2(n),1))

T ∙ ∙ ∙ (LHvec(qK(n),2q
T
K(n),1)

T ]T

.

113



Chapter 5

Multipair Two-way Relay
Networks with Massive MIMO
Relaying

In this chapter, we consider two-way relay networks with multiple massive MIMO

relays helping to establish multiple bidirectional peer-to-peer communications. We

assume that relays employ linear beamforming techniques such as the maximum ratio

transmitting/combining and the zero-forcing schemes to precess their received signals.

Exploiting the approximate orthogonality among relay-transceiver channel vectors

when number of relay antennas are very large, we provide a computationally efficient

solution to the problem of minimizing the total transmit power when the transceivers’

signal-to-noise ratios (SNRs) are to be above given thresholds.

The organization of this chapter is as follows. In Section 5.1, we model the sys-

tem and signals corresponding to the multipair two-way relay networks with a number

of multi-antenna relays. In Section 5.2 we propose an approximation based on the

fact that when number of relay antennas are very large the small scale fading and

noise are asymptotically averaged out. Indeed, under such assumption, the channel

vectors between each relay and transceivers become asymptotically orthogonal. In

Section 5.3, we present the structure of beamforming matrices for two linear tech-

niques i.e., the MRT/MRC- and the ZF–based schemes. We also show that under

the assumption that channel vectors between each relay and transceivers are orthogo-
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nal, the structure of the beamforming matrices for these two schemes can be obtained

from one another. As such, in Section 5.4 we proceed only with the MRT/MRC-based

scheme, and formulate the total transmit power and signal-to-noise-ratio (SNRs) at

the receiver front-end of users for this scheme. We then solve the problem for the

MRT/MRC-based scheme. Next we explain how solution for the ZF–based technique

can be calculated from the solution obtained for the MRT/MRC-based scheme. In

Section 5.5, we provide the problem statement for the MRT/MRC-based scheme,

where we minimize the total transmit power consumed in the entire network while

certain SNR thresholds are satisfied at the receiver front-end of the transceivers. In

Section 5.6, we use numerical examples to evaluate the network performance for the

MRT/MRC- and the ZF-based schemes.

5.1 System Model

We consider a two-way relay network consisting of K pairs of single-antenna

transceivers which communicate in a pair-wise manner. The information exchange

between transceiver pairs is performed with the help of nr relay nodes. Each relay

is equipped with M antennas, where M is very large. The signals arrived at the

antennas of each relay form a very long vector with size M × 1. Each entry of

this vector is the superposition of the noise-contaminated, attenuated copies of

signals transmitted by transceivers. Each relay then transforms the vector of its

received signals, by multiplying it with a complex “beamforming” matrix, into a new

M × 1 vector whose different entries will be transmitted over different antennas of

that relay. Considering the relay beamforming matrices and multipair transceivers’

transmit powers as design parameters, we aim to minimize the total power consumed

in the entire network while the quality-of-service at the receiver front-ends of the

transceivers are maintained above a set of given thresholds. Here, we study two

different processing techniques at the relays. In the first technique, each relay uses

an MRT/MRC method to obtain the relay’s vector of transmitted signals from the
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relay’s vector of received signals. In the second scenario, a ZF method is used as

the relaying protocol. It is herein assumed that a complete round of information

exchange between all the transceiver pairs follows the two time-slot MABC relaying

scheme. In the first time-slot of this scheme, all the transceivers transmit their signals

simultaneously and in the second time-slot, each relay forwards to the transceivers,

a linearly transformed version of that relay’s received signal vector. Denoting xi as

the M × 1 vector of the received signals at the i-th relay in the first time-slot, we

can write

xi = HiP
1/2s + ni, for i ∈ {1, 2, . . . , nr} (5.1)

where Hi , [h1i h2i ∙ ∙ ∙ h2K,i] is the M ×2K channel matrix associated with the i-th

relay. The l-th column of Hi, denoted as hli, is the M × 1 channel vector between

the M antennas of the i-th relay and the l-th transceiver, for l ∈ {1, 2, . . . , 2K} and

i ∈ {1, 2, . . . , nr}. The 2K×2K matrix P , diag{p1, p2, . . . , p2K} is a diagonal matrix

whose l-th diagonal entry, pl, represents the transmit power of the l-th transceiver,

the vector s , [s1 s2 ∙ ∙ ∙ s2K ]T denotes the 2K×1 vector of the signals transmitted by

all the transceivers, and sl represents the symbol transmitted by the l-th transceiver.

Note that s2k−1 and s2k are the symbols transmitted by the two transceivers in the k-

th pair with p2k−1 and p2k as the corresponding transmit powers. That is, s2k−1 (s2k)

is transmitted by Transceiver 2k− 1 (2k) and is meant to be received by Transceiver

2k (2k − 1), for k ∈ {1, 2, . . . , K}. The M × 1 vector ni denotes the vector of the

noise processes received at the M antennas of the i-th relay. Here, each entry of ni

is assumed to be zero-mean spatially white Gaussian noise with variance σ2.

At the i-th relay, the received vector xi is multiplied by a beamforming matrix

Ai. Let the M × 1 vector ti represent the vector of the signals transmitted by the

i-th relay. We can then write

ti = Aixi. (5.2)

The received signal at Transceiver l, denoted as yl, is the superposition of the relays’
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transmitted signals attenuated by the channel coefficients, and the noise at the re-

ceiver front-end of the l-th transceiver which is represented by ηl. Hence, one can

write

yl =
nr∑

i=1

hT
liti + ηl, for l ∈ {1, 2, . . . , 2K}. (5.3)

Using (5.2) in (5.3), yl can be expressed as

yl =
nr∑

i=1

hT
liAiHiP

1/2s +
nr∑

i=1

hT
liAini + ηl. (5.4)

Also, using (5.1) and (5.2), the total relay transmit power, denoted as Pr, can be

written as

Pr =
nr∑

i=1

E{tH
i ti} =

nr∑

i=1

‖AiHiP
1/2‖2 + σ2

nr∑

i=1

tr(AiA
H
i ) (5.5)

and thus, the total transmit power consumed in the entire network, denoted as PT,

is given by

PT =
2K∑

l=1

pl + Pr =
2K∑

l=1

pl +
nr∑

i=1

‖AiHiP
1/2‖2 + σ2

nr∑

i=1

tr(AiA
H
i ) (5.6)

which is defined as the sum of the transceivers’ transmit powers and the total relay

transmit power.

5.2 Very Large Number of Relay Antennas

The channel coefficient from the k-th transceiver to the m-th antenna of the i-th relay

is herein modeled as the product of a complex small-scale fading coefficient and an

amplitude factor that accounts for the shadowing effect and path-loss (attenuation).

That is, we can write the channel coefficient matrix Hi as

Hi = GiD
1/2
i (5.7)

where Gi denotes the small-scale fading matrix and Di = diag{d1,i, d2,i, . . . , d2K,i} is

a positive real-valued diagonal matrix representing path-loss and shadowing effects
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namely the large-scale fading effect. Here, dl,i represents the large-scale effect of

the channel between the l-th transceiver and the i-th relay, for l ∈ {1, 2, . . . , 2K} and

i ∈ {1, 2, . . . , nr}. Note that channel coefficient variations due to the large-scale effect

can be observed over communication ranges proportional to the distances between

network nodes and the size of the obstacles in the communication environment. These

ranges are much larger than the orders of the signal wavelength whereas the distances

between the antennas on the same relay are in the order of signal wavelength. Hence,

it is assumed that the large-scale fading coefficients corresponding to the links between

each transceiver and different antennas of a given relay are identical. On the other

hand, small-scale fading occurs over distances in the order of the signal wavelength

[143]. The fact that the small-scale fading coefficients for different transceivers can

be independent renders the channel vectors from different transceivers asymptotically

orthogonal when M , the number of relay antennas, is large [117, 144, 145]. This

asymptotic orthogonality enables us to approximately write
1

M
HH

i Hi in the form of

a diagonal matrix, that is

1

M
HH

i Hi =
1

M
D

1/2
i GH

i GiD
1/2
i ≈ D

1/2
i I2KD

1/2
i = Di. (5.8)

Note that the approximation 1
M

GH
i Gi ≈ I2K holds true for large values of M that

are no less than 2K (i.e., M � 2K).

5.3 Linear Relaying Techniques

In this section, the MRT/MRC- and ZF-based techniques are assumed to be used as

linear relaying techniques at relays equipped with a very large number of antennas.

5.3.1 The MRT/MRC-based Scheme

Based on the MRT/MRC scheme used for signal processing at the relays, the relay

beamforming matrix, AMRTC
i can be written as

AMRTC
i = H∗

i C
MRTC
i HH

i . (5.9)
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Here, CMRTC
i is assumed to be a 2K × 2K block-diagonal matrix which is formed by

K blocks {BMRTC
ki }K

k=1, and can be written as

CMRTC
i ,






BMRTC
1i ∙ ∙ ∙ 0
...

. . .
...

0 ∙ ∙ ∙ BMRTC
Ki




 (5.10)

where each block, an anti-diagonal matrix with size 2 × 2, is associated with one of

the transceiver pairs and is given as

BMRTC
ki ,

[
0 β(2k−1),i

β2k,i 0

]

. (5.11)

The parameters β(2k−1),i and β2k,i can be viewed as intermediate design parameters.

Once the optimal values of these parameters are obtained, the optimum values of ma-

trices BMRTC
ki , for k ∈ {1, . . . , K}, and their corresponding matrix CMRTC

i can be cal-

culated in a straightforward manner. The optimal beamforming matrices {AMRTC
i }nr

i=1

are then easily calculated using (5.9). As such, in the next section our goal is to obtain

the optimal values of the matrices {CMRTC
i }nr

i=1 (or equivalently the optimal values of

the intermediate design parameters βl,i for l ∈ {1, 2, . . . , 2K} and i ∈ {1, 2, . . . , nr}).

Note that according to (5.2) and (5.9), the signal vector received at the i-th

relay is first multiplied by HH
i which plays the role of a matched filter. According

to (5.8), when the number of relay antennas are very large, the columns of Hi are

approximately orthogonal. Hence, using (5.9), implies that the signal vector received

at relay i is first multiplied by HH
i yielding a 2K × 1 vector ŝi = HH

i xi which is the

linear estimate of the symbol vector s at the i-th relay. Note that the (2k− 1)-th and

2k-th elements of ŝi are respectively the estimates of the two symbols transmitted

by Transceivers 2k − 1 and 2k, for k ∈ {1, 2, . . . , K}. Taking into account H∗
i , the

left-most term in AMRTC
i (see (5.9)), the role of the anti-diagonal matrix BMRTC

ki on

the k-th diagonal block of CMRTC
i is to swap these two estimates so that the estimate

of the symbol transmitted by Transceiver 2k can be forwarded to Transceiver (2k−1)

and the estimate of the symbol transmitted by Transceiver (2k−1) can be forwarded

to Transceiver 2k. This goal is achieved by multiplying ŝi with CMRTC
i , as (5.9)
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implies and then by H∗
i . As HH

i Hi ≈ MDi holds for a very large M (see (5.8)),

the use of H∗
i as the left-most component in AMRTC

i guarantees that the transmitted

symbol estimates will not interfere with each other for M → ∞, as these estimates

will be transmitted over asymptotically orthogonal columns of H∗
i . However, when

M is a finite number, the MRT/MRC-based relaying scheme suffers from inter- and

intra-pair interferences.

5.3.2 The ZF-based Method

Denoting AZF
i as the relay beamforming matrix corresponding to the ZF-based

method, we can write

AZF
i = H∗

i (H
T
i H∗

i )
−1CZF

i (HH
i Hi)

−1HH
i . (5.12)

where CZF
i has the same block-diagonal structure as CMRTC

i in (5.10), and its corre-

sponding blocks are denoted as {BZF
ki }

K
k=1, i.e., CZF

i = blkdiag{BZF
1i ,BZF

2i , . . . ,BZF
Ki}.

The block BZF
ki is an anti-diagonal 2× 2 matrix with the same structure as BMRTC

ki in

(5.11).

Note that using (5.12) in (5.2) implies that the signal vector received at the i-

th relay is first multiplied by (HH
i Hi)

−1HH
i which yields a 2K × 1 vector s̆i =

(HH
i Hi)

−1HH
i xi. In this ZF-based scheme, the l-th element of s̆i does not suffer

from interference caused by signals transmitted by transceivers other than the l-th

transceiver. The anti-diagonal matrix BZF
ki (i.e., the k-th diagonal block of CZF

i ),

swaps the estimated signals for k-th transceiver pairs such that the estimate of the

symbol transmitted by Transceiver 2k can be forwarded to Transceiver (2k − 1)

and the estimate of the symbol transmitted by Transceiver (2k − 1) can be for-

warded to Transceiver 2k. The so-obtained signal CZF
i s̆i is now multiplied by matrix

H∗
i (H

T
i H∗

i )
−1. Doing so, the signals received at Transceivers 2k − 1 and 2k are noise

contaminated interference-free versions of the estimates of the signals transmitted

respectively by Transceivers 2k and 2k − 1.

When the number of relay antennas are very large, we can use (5.8) and (5.12)
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and rewrite AZF
i as

AZF
i = H∗

i (MDi)
−1CZF

i (MDi)
−1

︸ ︷︷ ︸
block diagonal

HH
i . (5.13)

In this case, AZF
i has the same structure as AMRTC

i in (5.9). Indeed, a close look at

(5.13) reveals that the matrix (MDi)
−1CZF

i (MDi)
−1 is block diagonal and the role

this matrix plays in AZF
i is the same as the role the block-diagonal matrix CMRTC

i

plays in AMRTC
i . As a result, once CMRTC

i is obtained, we can use (5.9) and (5.13) to

rewrite CZF
i as

CZF
i = M2DiCi

MRTCDi. (5.14)

Doing so, we can first use the forthcoming MRT/MRC-based method and optimally

(in some sense) determine {CMRTC
i }nr

i=1. Once the total transmit power minimization

problem is solved for the MRT/MRC-based method, we can use {CMRTC
i }nr

i=1 in (5.14)

and obtain {CZF
i }

nr
i=1. We can then use {CZF

i }
nr
i=1 in (5.12) to obtain {AZF

i }
nr
i=1.

5.4 Power-optimal MRT/MRC-based relaying

Given the relationship between the solutions for the two linear relaying protocols ex-

plained in the previous section, without any loss of generality, we herein opt to proceed

based on the MRT/MRC principle. Later, we rely on the results for MRT/MRC-based

method to determine solution to the power minimization problem based on the ZF

technique.

Using (5.9)-(5.11) in (5.5), the total relay transmit power for the MRT/MRC-
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based scheme, denoted as PM
r , can be derived as

PM
r =

nr∑

i=1

(
tr(AiHiPHH

i AH
i ) + σ2tr(AiA

H
i )
)

=
nr∑

i=1




tr(H∗

i CiH
H
i︸ ︷︷ ︸

Ai

HiPHH
i HiC

H
i HT

i︸ ︷︷ ︸
AH

i

) + σ2tr(H∗
i CiH

H
i︸ ︷︷ ︸

Ai

HiC
H
i HT

i︸ ︷︷ ︸
AH

i

)






=
nr∑

i=1



tr(PHH
i Hi︸ ︷︷ ︸

MDi

CH
i HT

i H∗
i︸ ︷︷ ︸

MDi

Ci H
H
i Hi︸ ︷︷ ︸

MDi

) + σ2tr(Ci H
H
i Hi︸ ︷︷ ︸

MDi

CH
i HT

i H∗
i︸ ︷︷ ︸

MDi

)





=
nr∑

i=1

tr
(
M3PDiC

H
i DiCiDi + σ2M2CH

i DiCiDi

)
(5.15)

where in the last equality, we have used (5.8). Since Di is a diagonal matrix and Ci

is a block-diagonal matrix with blocks formed as anti-diagonal matrices, CH
i DiCiDi

becomes a diagonal matrix1. Hence, we can write

CH
i DiCiDi = diag

{
|β̃2,i|

2, |β̃1,i|
2, . . . , |β̃2K,i|

2, |β̃2K−1,i|
2
}

= diag{|β̃l̄,i|
2}2K

l=1 (5.16)

where we define

β̃l,i ,
√

dl,idl̄,iβl̄,i, for l ∈ {1, 2, . . . , 2K} (5.17)

and l̄ ∈ {1, 2, . . . , 2K} is defined as

l̄ ,

{
l + 1, if l ∈ {1, 3, . . . , 2K − 1}
l − 1, if l ∈ {2, 4, . . . , 2K}

. (5.18)

Using (5.15) and (5.16), PM
r can be rewritten as

PM
r =

nr∑

i=1

tr(
(
M3PDi + σ2M2I

)

︸ ︷︷ ︸
diagonal matrix

CH
i DiCiDi︸ ︷︷ ︸

diagonal matrix

) =
nr∑

i=1

2K∑

l=1

(
M3pl̄dl̄,i + M2σ2

)
|β̃l,i|

2.

(5.19)

1The k-th block of the product CH
i DiCiDi can be written as

[
0 β∗2k,i

β∗2k−1,i 0

][
d2k−1,i 0

0 d2k,i

][
0 β2k−1,i

β2k,i 0

][
d2k−1,i 0

0 d2k,i

]

=

[
d2k−1,id2k,i|β2k,i|2 0

0 d2k−1,id2k,i|β2k−1,i|2

]

.
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Defining fl , [
√

dl,1

√
dl,2 ∙ ∙ ∙

√
dl,nr ]

T , β̃l , [β̃l,1 β̃l,2 ∙ ∙ ∙ β̃l,nr ]
T , and Fl , diag(fl �

fl), we can rewrite PM
r in (5.19) as

PM
r =

2K∑

l=1

M2β̃H
l

(
Mpl̄Fl̄ + σ2Inr

)
β̃l. (5.20)

Hence, using (5.6) and (5.20), the total transmit power, PM
T can be rewritten as

PM
T =

2K∑

l=1

(
pl̄ + M2β̃H

l (Mpl̄Fl̄ + σ2Inr)β̃l

)
. (5.21)

Let us define el,i , [0 0 ∙ ∙ ∙ 0 1 0 ∙ ∙ ∙ 0]T as a 2K × 1 vector associated with the i-th

relay which consists of all 0 entries except for the l-th entry which is 1. Using (5.8) and

(5.9), one can write yM
l , the signal received at Transceiver l, for l ∈ {1, 2, ∙ ∙ ∙ , 2K},

as

yM
l =

nr∑

i=1

hT
l,iH

∗
i︸ ︷︷ ︸

Mdl,ie
T
l,i

Ci H
H
i Hi︸ ︷︷ ︸

MDi

P1/2s +
nr∑

i=1

hT
l,iH

∗
i︸ ︷︷ ︸

Mdl,ie
T
l,i

CiH
H
i ni + ηl

= M2

nr∑

i=1

dl,i e
T
l,iCi
︸ ︷︷ ︸
βl,ie

T
l̄,i

DiP
1/2s + M

nr∑

i=1

dl,i e
T
l,iCi
︸ ︷︷ ︸
βl,ie

T
l̄,i

HH
i ni + ηl

= M2

nr∑

i=1

dl,iβl,i e
T
l̄,iDiP

1/2s
︸ ︷︷ ︸

dl̄,i
√

pl̄sl̄

+M
nr∑

i=1

dl,iβl,i e
T
l̄,iH

H
i︸ ︷︷ ︸

hH
l̄,i

ni + ηl

= M2

nr∑

i=1

dl,iβl,idl̄,i

√
pl̄sl̄ + M

nr∑

i=1

dl,iβl,ih
H
l̄,ini + ηl. (5.22)

In light of (5.22), it is worth noting that under the assumption of the orthogonality

of the channel vectors, the received signal yl, does not contain the signal from other

transceiver pairs. That is, as long as the orthogonality of channel vectors holds,

implementing the MRT/MRC-based technique incurs no interference at the receiver

front-end of the transceivers. Based on (5.22), the SNR at Transceivers l can now be

written as

SNRM
l =

M4pl̄

∣
∣
∣
∣
∣

nr∑

i=1

√
dl,idl̄,iβ̃l,i

∣
∣
∣
∣
∣

2

M3σ2

nr∑

i=1

∣
∣
∣
√

dl,iβ̃l,i

∣
∣
∣
2

+ σ2

, for l ∈ {1, 2, . . . , 2K} (5.23)
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where we have used the fact that E{|hH
l̄,i
hl̄,i|} = Mdl̄,i, which in turn follows from

using the assumption that E{nH
i ni} = σ2IM , along with (5.8). Using the following

definition:

gl , fl � fl̄, for l ∈ {1, 2, . . . , 2K} (5.24)

we can rewrite SNRM
l in (5.23) as

SNRM
l =

M4pl̄|g
T
l β̃l|

2

σ2(1 + M3β̃H
l Flβ̃l)

, for l ∈ {1, 2, . . . , 2K}. (5.25)

Note that these expressions are obtained under the assumption that the channel

vectors are asymptotically orthogonal (see (5.8)).

5.5 Power Minimization

Assuming perfect (ideal) orthogonality of the transceiver-relay channel vectors, i.e.,

GH
i Gi = MI2K , we now aim to find the beamforming matrices and transceivers

transmit powers such that the total transmit power PM
T is minimized, while the SNR

at Transceiver l is maintained above given threshold γl, for l ∈ {1, 2, . . . , 2K}. This

power minimization problem can be expressed as

min.
P,A

PM
T subject to SNRM

l ≥ γl, for l ∈ {1, 2, . . . , 2K} (5.26)

where P , {pl}2K
l=1 is the set of transceivers transmit powers and A , {Ai}

nr
i=1 is the

set of relay beamforming matrices. Using (5.21) and (5.25), the power minimization

problem for the MRT/MRC-based scheme in (5.26) can be recast as

min.
P,B

2K∑

l=1

(
pl̄ + M 2β̃H

l (Mpl̄Fl̄ + σ2Inr)β̃l

)

subject to
M 4pl̄|g

T
l β̃l|

2

σ2(1 + M3β̃H
l Flβ̃l)

≥ γl, for l ∈ {1, 2, . . . , 2K} (5.27)

where B , {β̃l}2K
l=1 is the set of vectors β̃l each with size nr × 1. A closer look at

(5.27) shows that the total transmit power minimization problem can be decoupled
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into a set of 2K total power minimization problems each of which written as

min.
β̃l,pl̄

pl̄ + M2β̃H
l (Mpl̄Fl̄ + σ2Inr)β̃l subject to

M4pl̄|g
T
l β̃l|

2

σ2(1 + M3β̃H
l Flβ̃l)

≥ γl. (5.28)

Indeed, the minimization problem (5.28) amounts to minimizing the total power con-

sumed to guarantee a received SNR at Transceiver l. We can rewrite the optimization

problem in (5.28) as

min.
pl̄

pl̄ + min
β̃l

M2β̃H
l (Mpl̄Fl̄ + σ2Inr)β̃l

subject to M3β̃H
l (Mpl̄g

∗
l g

T
l − σ2γlFl)β̃l ≥ σ2γl. (5.29)

To solve (5.29), we can first fix pl̄ and solve the inner minimization problem over β̃l. It

can be shown2 that the inner problem in (5.29) is feasible if and only if pl̄ >
σ2γl

M‖fl‖2
,

and that the solution to the inner minimization problem can be written as

β̃opt
l = μl (σ2γlMFl + λl(Mpl̄Fl̄ + σ2Inr))

−1gl︸ ︷︷ ︸
,ul

(5.30)

μl =

√
σ2γl

λlM2uH
l (Mpl̄Fl̄ + σ2Inr)ul

. (5.31)

Here, β̃opt
l is the optimal value of β̃l while pl̄ and λl, are required to satisfy the

following two nonlinear equations:

σ2γl

p−2
l̄
− λlM

3uH
l Fl̄ul

λ2
l u

H
l (M3pl̄Fl̄ + M 2σ2Inr)ul

= 1 (5.32)

pl̄M
2gH

l (Mσ2γlFl + λl(Mpl̄Fl̄ + σ2Inr))
−1gl = 1 (5.33)

and pl̄ ∈

(
σ2γl

M‖fl‖2
, +∞

)

must hold true. Note that for any given value of z ∈
(

σ2γl

M‖fl‖2
, +∞

)

, the following nonlinear equality

zM 2gH
l (Mσ2γlFl + λ(MzFl̄ + σ2Inr))

−1gl = 1 (5.34)

has a unique positive solution for parameter λ. That is, in (5.34), the parameter λ

can be viewed as a function of z. As such, the function

σ2γl
z−2 − λM 3uH

l Fl̄ul

λ2uH
l (zM 3Fl̄ + σ2M2Inr)ul

− 1 (5.35)

2The same optimization problem has been solved in [146], see eq. (13) in this reference paper.
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can be considered as a function of z, where λ is obtained, for any value of z ∈(
σ2γl

M‖fl‖2
, +∞

)

, via solving (5.34). As it has been proven in [146] and from (5.32),

the parameter pl̄ is indeed the provably unique root of (5.35), and one can use a

bisection method to find this root. Note that in this bisection method, the function

in (5.35) has to be evaluated for intermediate values of z. As such, to obtain a value

of λ corresponding to an intermediate value of z, one has to solve (5.34) using another

bisection technique. Once pl̄, the root of (5.35), is obtained, the corresponding value of

λ is indeed λl. Once pl̄ and λl are obtained, the value of the objective function in (5.29)

is given by (pl̄ +
σ2γl

λl
), which is a portion of the minimum total transmit power being

used to deliver information symbols to Transceiver l from its peer transceiver. Based

on (5.27)-(5.29), the minimum value of the total transmit power can be obtained as

PM
T =

2K∑

l=1

(pl̄ +
σ2γl

λl

). (5.36)

Exploiting the optimal values of pl̄ and λl, we can obtain the optimal beamform-

ing matrices using the following steps. Using pl̄ and λl, we first obtain the optimal

vector β̃opt
l from (5.30) and (5.31)3. Once β̃opt

l , [β̃opt
l,1 β̃opt

l,2 ∙ ∙ ∙ β̃opt
l,nr

]T is obtained,

the optimal values of βopt
l,i can be calculated from (5.17) as βopt

l,i = β̃opt

l̄,i
/
√

dl,idl̄,i, for

i ∈ {1, 2, . . . , nr}. Using the so-obtained values of βopt
l,i along with the definition of l̄

in (5.18), the optimal values of βopt
2k−1,i and βopt

2k,i are determined for k ∈ {1, 2, . . . , K}.

Replacing β2k−1,i and β2k,i in (5.11), respectively with βopt
2k−1,i and βopt

2k,i, the optimal

anti-diagonal block of the i-th relay corresponding to the k-th pair of transceivers, de-

noted as BMRTC, opt
ki , can be obtained. Replacing blocks BMRTC

ki for k ∈ {1, 2, . . . , K}

in (5.10), with the so-obtained set of blocks {BMRTC, opt
ki }K

k=1, the effective beamform-

ing matrix of i-th relay, denoted as CMRTC, opt
i , can be formed. Finally, the optimal

beamforming matrix of the i-th relay for the MRT/MRC-based scheme, denoted as

AMRTC, opt
i , can be calculated as AMRTC, opt

i = H∗
i C

MRTC, opt
i HH

i .

It is worth noting that when channel vectors between each relay and different

3Note that all diagonal matrices, vectors and scalar values of the right-hand side of (5.30) and
(5.31) are positive real valued which renders β̃opt

l a vector with all positive real valued entries.
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transceivers are asymptotically orthogonal as in (5.8), the relay beamforming matrices

obtained using the MRT/MRC- and the ZF-based methods are the same. We can see

this via comparing (5.9) and (5.13), where Ai is constructed from H∗
i as the left-most

term multiplied by a block-diagonal matrix in the middle and then multiplied by HH
i

as the right-most term. Note that under the assumption that (5.8) holds true, the

block-diagonal matrix between H∗
i and HH

i will be the same for these two schemes.

As such, once the optimal beamforming matrices are obtained using the MRT/MRC-

based scheme (i.e., AMRTC
i ), the beamforming matrices pertinent to the ZF-based

method are also at hand (i.e., AZF
i

∣
∣
GH

i Gi=MI2K
= AMRTC

i

∣
∣
GH

i Gi=MI2K
). In reality,

with a large but finite number of relay antennas, channel vectors between each relay

and different transceivers are not perfectly orthogonal. When the columns of Gi are

only asymptotically orthogonal, then, after solving the power minimization problem

AMRTC
i and AZF

i (given respectively in (5.9) and (5.12)) are no longer the same. As

a result, these schemes will perform differently in terms of the total transmit power

and quality of service. For example, when the MRT/MRC-based scheme is used,

the transceivers suffer from the interference caused by signals transmitted by other

transceivers. To the contrary, when the ZF-based scheme is employed transceivers do

not suffer from interference.

In what follows, we describe how each of the proposed schemes perform in the pres-

ence of noise and interference, i.e., when the columns of Gi are only asymptotically

orthogonal. A closer look at (5.9) reveals that the structure of AMRTC
i ignores inter-

ference. As such, when channel vectors between each relay and different transceivers

are not perfectly orthogonal, the signal received at Transceiver l is not the same as

the interference-free signal that the last equality in (5.22) suggests. The fact that

the signal received at each transceiver is contaminated with the interference from

other transceivers implies that the MRT/MRC-based scheme cannot satisfy the SNR

thresholds, particularly in high-interference regimes. However, the MRT/MRC-based

method is practically appealing in the sense that it does not suffer from the com-

putational burden of matrix inversion. The structure of AZF
i in (5.12) shows that
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the ZF-based method can eliminate the interference while noise is disregarded. That

is, with ZF-based method being employed at relays, even if channel vectors between

each relay and different transceivers are not perfectly orthogonal, the signals received

at transceivers are interference-free. However, implementing the ZF-based scheme

requires matrix inversion which can result in prohibitive computations.

The following Theorem reveals an interesting property of the total transmit power

as well as the transceivers transmit powers obtained using the proposed methods.

Theorem 1 The minimum total transmit power, PM
T in (5.36), and the transceivers

transmit powers, pl, for l ∈ {1, 2, . . . , 2K}, are inversely proportional to the number

of relay antennas, M .

PM
T =

c

M
and pl =

zl

M
for l ∈ {1, 2, . . . , 2K}. (5.37)

Here c and zl are scalar values which are independent of the number of relay antennas,

M .

Proof See Appendix 5.A. �

In the next section, we evaluate the performance of the proposed methods and verify

the result of Theorem 1 via numerical examples.

5.6 Numerical Results

Considering multipair two-way relay networks, we herein examine the total transmit

power consumed in the entire network while a certain set of SNR thresholds are to be

satisfied at the transceivers. To do so, we consider a two-way relay network consisting

of K = 4 pairs of single-antenna transceivers which aim to exchange information with

the help of nr = 4 relays, each equipped with M antennas. In the different scenarios

we herein evaluate, different numbers of relay antennas are considered (i.e., M =

50, 100, 200, 1000). We use the combined path-loss and shadowing model introduced

in [143], where channel models for path-loss and shadowing are superimposed. As
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such, we assume that the path-loss exponent is 3.8 and the standard deviation of the

shadowing effect is 8 dB. The channel coefficients corresponding to the small-scale

fading are here modeled as complex Gaussian random variables with zero mean and

unit variance. The noises received at the relays and transceivers are assumed to be

zero-mean spatially white Gaussian random processes with variance σ2 = −130 dBm.

The results we analytically derived for the MRT/MRC- and the ZF–based schemes

were obtained under the assumption that (5.8) holds true which means that the chan-

nel vectors between each relay and different transceivers are asymptotically orthogo-

nal. However, with a finite number of relay antennas, these channel vectors are not

perfectly orthogonal. The question worth answering via simulations is how network

performance is affected when the optimization parameters are calculated under the

assumption that the channel vectors are orthogonal (here called the ideal condition)

while in reality these vectors are not orthogonal (here referred to as the actual condi-

tion). To elaborate more on the definitions of the ideal and actual conditions, we now

explain how the total transmit power and the quality-of-service at the transceivers are

calculated under the ideal and the actual conditions. Under the ideal condition, we

use (5.21) to calculate the total transmit power. To do so, we use β̃l and μl obtained

from (5.30) and (5.31), where pl̄ and λl are calculated by solving (5.32) and (5.33)4.

Under the actual condition, we first use the optimal values of {CMRTC
i }nr

i=1, ob-

tained under the ideal condition, in (5.14) to obtain the optimal values of {CZF
i }

nr
i=1.

We then use the optimal values of {CMRTC
i }nr

i=1 and {CZF
i }

nr
i=1 in (5.9) and (5.12) to

obtain the actual values of the beamforming matrices {AMRTC
i }nr

i=1 and {AZF
i }

nr
i=1, re-

spectively. Next, we use these actual values of beamforming matrices along with the

optimal values of {pl}2K
l=1 (obtained under the ideal condition) in (5.6) to calculate the

total transmit power consumed under the actual condition for each of these schemes.

Taking into account the lack of perfect orthogonality between any two columns

of Hi, interference may not be perfectly canceled at the transceivers. As a result, we

4Under the ideal condition, we can also calculate the total transmit power from (5.36), where pl̄

and λl are found to satisfy (5.32) and (5.33).
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Figure 5.1: The average of the minimum total transmit power vs. the SNR threshold
for ideal scenario and the actual minimum total transmit power vs. actual SINR, for
MRT/MRC-based scheme when K = 4 and nr = 4.

use SINR to evaluate the actual quality-of-signal at the transceivers. Using (5.4), we

can write SINR at the receiver front-end of Transceiver l as

SINRl =

pl̄

∣
∣
∣
∣
∣

nr∑

i=1

hT
l,iAihl̄,i

∣
∣
∣
∣
∣

2

2K∑

r=1
r 6=l̄

pl

∣
∣
∣
∣
∣

nr∑

i=1

hT
r,iAihl,i

∣
∣
∣
∣
∣

2

+ σ2

(
nr∑

i=1

∥
∥hT

l,iAi

∥
∥2

+ 1

) , for l ∈ {1, 2, ∙ ∙ ∙ , 2K}.

(5.38)

In light of (5.38), it is worth noting that under the actual condition, channel vectors

between each relay and different transceivers are not perfectly orthogonal. As a

result, when relays employ the MRT/MRC–based scheme, the interference power

term
2K∑

r=1
r 6=l̄

pl

∣
∣
∣
∣

nr∑

i=1

hT
r,iAihl,i

∣
∣
∣
∣

2

in (5.38) is not zero. For the ZF-based scheme, however,

this term is zero.
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5.6.1 Numerical results for the MRT/MRC-based technique

In what follows, we present our numerical results obtained under the assumption

that relays process their received signals using the MRT/MRC-based scheme. In

Fig. 5.1, we show the performance of networks with different numbers of relay an-

tennas (i.e., M = 50, 100, 200, 1000) under both the ideal and the actual conditions.

For results obtained under the ideal condition, we show the average of the minimum

total transmit powers versus the equal SNR thresholds denoted as γ (where γ = γl

for l = 1, 2, . . . , 2K). This figure shows that under the actual condition, i.e., when a

finite number of relay antennas are employed, the SINR values are smaller than the

SNR threshold targeted. We can observe that when the power minimization problems

are solved for 100 channel realizations but for the same SNR threshold, we arrive at

100 different values for the total transmit power each resulting in a different SINR

value. A closer look at Fig. 5.1 reveals that for a given SNR threshold γ, increasing

the number of relay antennas from M = 50 to M = 1000, renders the SINR values

less scattered and closer to the SNR threshold. This observation is consistent with

the fact that as the number of relay antennas is increased, the approximation to the

channel vectors orthogonality (i.e., (5.8)) becomes more accurate. This figure also

shows that for a fixed number of relay antennas, increasing the SNR threshold from

γ = 0 dB to γ = 15 dB renders the achieved SINR values more scattered. Indeed,

aiming to satisfy higher SNR thresholds, transceivers tend to transmit their signals

with higher amounts of transmit powers which lead to an increase in the interference

at the receiver front-end of transceivers. As the power of interference increases, the

performance of the MRT/MRC-based method is expected to deteriorate further due

to the fact that this method ignores interference and only aims to suppress noise.

In Fig. 5.2, we show the total transmit power, averaged over all simulation runs for

the MRT/MRC-based scheme, under both the ideal and the actual conditions. This

figure shows that as the number of relay antennas is increased, the total transmit

power consumed under the ideal condition, is reducing by a factor of M . As an
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example, for a fixed SNR threshold γ = 15 dB, a ten-fold increase in the number of

relay antennas, from M = 100 to M = 1000, leads to a ten-fold decrease (i.e., 10 dB)

in the total transmit power. This observation complies with the results of Theorem

1, which states that the minimum total transmit power is inversely proportional to

the number of relay antennas. Fig. 5.2 also shows that the average total transmit

power required for satisfying a certain SNR threshold under the actual condition, is

higher than that under the ideal condition. However, we observe that for a fixed SNR

threshold, for example γ = 6 dB, doubling the number of relay antennas from M = 50

to M = 100, can reduce the gap between the total transmit powers consumed under

the ideal and the actual conditions from 6.28 dB to 2.97 dB. Further doubling the

number of relay antennas to M = 200, can reduce this gap to 1.51 dB. Eventually,

with a very large number of relay antennas, i.e., M = 1000, the difference between the

total transmit powers under the ideal and the actual conditions reduces to 0 .34 dB.

This observation can be explained by the fact that as the number of relay antennas

is increased the approximation to the channel vectors orthogonality (i.e., (5.8)) is

expected to become more and more accurate. As a result, the network performances

under the actual and the ideal conditions are expected to become closer.

Fig. 5.3 shows the average SINR achieved using the MRT/MRC-based scheme

versus the SNR thresholds. In this figure, we examine how increasing the number of

relay antennas can affect the SINR values. We also plot the average SINR achieved

under the ideal condition as an upper bound to the achievable values of the SINR

under the actual condition. We observe from this figure that SINR values achieved

under the actual condition are less than those achieved under the ideal condition. This

observation can be explained by the fact that, the MRT/MRC-based scheme ignores

interference. As a result, unlike the ideal condition, under the actual condition the

interference power term
2K∑

r=1
r 6=l̄

pl

∣
∣
∣
∣

nr∑

i=1

hT
r,iAihl,i

∣
∣
∣
∣

2

in (5.38) is not zero. As such, under the

actual condition, the SINR values achieved using this method are expected to be less

than the SNR thresholds. However, as can be seen from this figure, for a fixed SNR
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Figure 5.4: The CDF of the achievable SINR values versus SNR thresholds, for
MRT/MRC-based scheme when K = 4, nr = 4, and M = 50, 100, 200, 1000.

threshold, increasing the number of relay antennas can reduce the gap between the

values of the SINR and SNR. For example, for a 15 dB SNR threshold, doubling the

number of relay antennas from M = 50 to M = 100 reduces the gap between the

values of the SINR and SNR from 7.6 to 5.6 dB. Further doubling the number of relay

antennas, we observe that for M = 200, the gap is reduced to 3.9 dB. Eventually,

for M = 1000 relay antennas, the gap between the values of the SINR and SNR is

reduced to 1.4 dB. This observation complies with the fact that as the number of relay

antennas is increased the approximation to the channel vectors orthogonality (i.e.,

(5.8)) becomes more accurate and the interference power term
2K∑

r=1
r 6=l̄

pl

∣
∣
∣
∣

nr∑

i=1

hT
r,iAihl,i

∣
∣
∣
∣

2

in (5.38) is further reduced. This reduction in the power of interference results in

SINR values closer to the SNR thresholds.

In Fig. 5.4, we plot the cumulative distribution function (CDF) of the SINR values

achieved using the MRT/MRC-based scheme versus the SNR thresholds for networks

with different numbers of relay antennas (i.e., M = 50, 100, 200, 1000). This figure
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Figure 5.5: The average of the minimum total transmit power vs. the SNR threshold
for ideal scenario and the actual minimum total transmit power vs. actual SINR, for
ZF-based scheme when K = 4 and nr = 4.

shows that for an SNR threshold of γ = 0 dB, increasing the number of relay antennas

from M = 50 to M = 1000 leads to a decrease in the spread of the SINR values.

This observation is in agreement with the fact that as the number of relay antennas is

increased, the approximation to the channel vectors orthogonality (i.e., (5.8)) becomes

more and more accurate. On the other hand, when the SNR threshold is increased

from γ = 0 dB to γ = 15 dB, the spread of SINR values is increased. This observation

is explained by the fact that when the SNR threshold is increased, transceivers have

to increase their transmit powers to satisfy higher SNR thresholds. However, these

increases in the transceiver transmit powers lead to an increase in the interference

at the receiver front-end of transceivers. As the level of interference is increased, it

becomes increasingly more probable that the MRT/MRC-based method suffer from

the fact that it ignores interference.
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5.6.2 Numerical results for the ZF-based Technique

We now present our numerical results obtained under the assumption that relays

process their received signals using the ZF-based scheme. In Fig. 5.5, we show

the performance of networks with different numbers of relay antennas (i.e., M =

50, 100, 200, 1000) both under the ideal and the actual conditions. For numerical re-

sults under the ideal condition, we plot the average of the minimum total transmit

power versus equal SNR thresholds denoted as γ (where γ = γl for l = 1, 2, . . . , 2K).

We observe that under the actual condition, when a finite number of relay antennas

are employed, the SINR values are slightly smaller than the targeted SNR thresh-

old, However, even for a small number of relay antennas, the SINR values achieved

for the ZF-based method are not as scattered as those achieved for the MRT/MRC-

based scheme in Fig. 5.1. This observation is partly explained by the fact that while

the MRT/MRC-based scheme ignores interference, the ZF-based method completely

eliminates interference. As such, even with a finite number of relay antennas, the ZF-

based method does not suffer from inter-transceiver interference. On the other hand,

it seems that when ZF-based method is employed at relays, the powers of the received

signal and the noise at the l-th transceiver (given respectively as pl̄

∣
∣
∣
∣

nr∑

i=1

hT
l,iAihl̄,i

∣
∣
∣
∣

2

and

σ2

(
nr∑

i=1

∥
∥hT

l,iAi

∥
∥2

+ 1

)

in (5.38)) do not significantly differ under the ideal and the

actual conditions.

Taking a closer look at Fig. 5.5, we observe that for a fixed SNR threshold γ, in-

creasing the number of relay antennas from M = 50 to M = 1000, reduces the spread

of SINR values achieved. The reduction in the SINR spread, when M is increased,

can be attributed to the fact that as the number of relay antennas is increased, the

powers of the received signal and the noise at the l-th transceiver (given respectively

as pl̄

∣
∣
∣
∣

nr∑

i=1

hT
l,iAihl̄,i

∣
∣
∣
∣

2

and σ2

(
nr∑

i=1

∥
∥hT

l,iAi

∥
∥2

+ 1

)

in (5.38)) further approach those un-

der the ideal condition. As a result, as the number of relay antennas is increased, the

performance under the actual condition further improves and becomes closer to that

under the ideal condition.
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Figure 5.6: The minimum total transmit power vs. the minimum required SNR at
the transceivers for ideal scenario and the actual minimum total transmit power vs.
actual SINR, for ZF-based scheme when K = 4 and nr = 4.

Fig. 5.5 also reveals that for a fixed number of relay antennas, the spread of the

SINR values achieved using the ZF-based scheme, is only slightly sensitive to the

increase in the SNR threshold from 0 dB to 15 dB (unlike the MRT/MRC-based

scheme which ignores interference). This slight sensitivity of the performance under

the actual condition reveals that when the ZF-based scheme is employed at relays,

the lack of perfect orthogonality of the relay-transceiver channel vectors only slightly

affects the powers of noise and desired signal at the transceivers.

In Fig. 5.6, we show the average of the total transmit power obtained using the

ZF-based scheme under both the ideal and the actual conditions. This figure shows

that for a fixed SNR threshold, the average of the total transmit powers under the

actual condition is higher than that under the ideal condition. However, it is observed

that for M = 100, M = 200, and M = 1000, the differences between the performances

under the ideal and the actual conditions are very small. As can be seen from this

figure, as the number of relay antennas is increased, the total transmit power con-

sumed, under the actual conditions, is reduced by a factor of M . As an example, for a

fixed SNR threshold γ = 15 dB, a ten-fold increase in the number of relay antennas,
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Figure 5.7: Average SINR achieved at the transceivers versus SNR thresholds for
ZF-based scheme under the ideal and actual conditions.

from M = 100 to M = 1000, leads to approximately a ten-fold decrease (i.e., 10

dB) in the total transmit power. This observation implies that the minimum total

transmit power consumed under the actual condition follows the same behaviour as

that under the ideal condition (as proved in Theorem 1). The close performance of

the ZF-based scheme under the ideal and the actual conditions observed in this figure

can be attributed to the fact that this scheme eliminates the interference. As such,

the performance of the ZF-based scheme is only slightly affected by the difference in

the powers of signal and noise under the ideal and actual conditions. As the number

of relay antennas is increased, the approximation to the channel vectors orthogonality

(i.e., (5.8)) becomes more accurate. As a result, the network performances under the

actual and the ideal conditions are expected to become more and more close.

Fig. 5.7 displays the average SINR achieved using the ZF-based scheme versus

the SNR thresholds. This figure shows how increasing the number of relay antennas

can affect the SINR values. The average SINR (SNR) value achieved under the ideal

condition is also plotted as an upper bound to the achievable SINR values under the

actual condition. As can be seen from this figure, for an SNR threshold of γ = 15

dB, doubling the number of relay antennas from M = 50 to M = 100, reduces the
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Figure 5.8: The CDF of the achievable SINR values versus SNR thresholds, for ZF-
based scheme when K = 4, nr = 4, and M = 50, 100, 200, 1000.

gap between the values of the SINR and SNR from 0.33 to 0.16 dB. Further doubling

the number of antennas, we observe that for M = 200, the gap is reduced to 0.08

dB. Eventually, for M = 1000 relay antennas, the gap between the values of the

SINR and SNR is reduced to 0.02 dB. These observations can be explained by the

fact that the ZF-based method is designed to eliminate interference. As a result,

even under the actual condition, the interference power term
2K∑

r=1
r 6=l̄

pl

∣
∣
∣
∣

nr∑

i=1

hT
r,iAihl,i

∣
∣
∣
∣

2

in (5.38) is zero. As such, the performance of this method can be only affected by

the powers of received signal and noise (given respectively at the l-th transceiver

as pl̄

∣
∣
∣
∣

nr∑

i=1

hT
l,iAihl̄,i

∣
∣
∣
∣

2

and σ2

(
nr∑

i=1

∥
∥hT

l,iAi

∥
∥2

+ 1

)

in (5.38)). As can be seen from this

figure, the close performance of the ZF-based scheme under the ideal and the actual

conditions implies that the powers of signal and noise are only slightly different under

the ideal and the actual conditions.

In Fig. 5.8, the CDF of the SINR values achieved using the ZF-based method under

the actual condition are plotted versus the SNR thresholds for networks with different
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numbers of relay antennas (i.e., M = 50, 100, 200, 1000). This figure shows that for

a fixed SNR threshold γ, increasing the number of relay antennas from M = 50 to

M = 1000, slightly reduces the spread of SINR values achieved. As can be seen from

this figure, even for a small number of relay antennas, increasing the SNR threshold

does not severely scatter the SINR values. Note that when the SNR threshold is

increased, transceivers have to increase their transmit powers to satisfy higher SNR

thresholds. As the ZF-based method completely eliminates interference, this increase

in the transmit power (unlike the MRT/MRC-based method) does not lead to any

interference at the receiver front-end of transceivers. As such, for a fixed number

of relay antennas (even small numbers such as M = 50), the spread of the SINR

values achieved using the ZF-based scheme (unlike the MRT/MRC-based scheme) is

only slightly sensitive to the increase in the SNR threshold. This slight sensitivity of

the performance under the actual condition can be attributed to the lack of perfect

orthogonality in (5.8) (when the number of relay antennas are finite) which only

affects the powers of noise and desired signal at the transceivers.
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5.6.3 Performance comparison for the MRT/MRC- and the
ZF-based relaying schemes

In Fig. 5.9, we compare performances of the MRT/MRC- and the ZF–based schemes

under both the ideal and the actual conditions. In this figure, we illustrate the

average total transmit power required for satisfying a certain SNR threshold. The

performance is compared for networks with two different numbers of relay antennas,

i.e., M = 100, 1000.

This figure shows that the performances of these two schemes under the ideal con-

dition are the same. For example, under the ideal condition, regardless of the scheme

being employed at relays, for a fixed SNR threshold γ = 15 dB, a ten-fold increase

in the number of relay antennas, from M = 100 to M = 1000, leads to a ten-fold

decrease (i.e., 10 dB) in the total transmit power. This observation is in agreement

with the results of Theorem 1, which states that the minimum total transmit power

is inversely proportional to the number of relay antennas. On the other hand, under

the actual condition, we observe that the performance of the ZF-based scheme for

M = 100 and M = 1000 is superior to that of the MRT/MRC-based scheme. A

close look at results in this figure and the structures of beamforming matrices of the

MRT/MRC- and the ZF-based schemes offers a trade-off between the performance

and the computational complexity of these schemes. The performance superiority of

the ZF-based scheme can be explained by the fact that the MRT/MRC-based scheme

ignores interference, while the ZF-based scheme is designed to completely eliminate

interference. However, such performance superiority comes with a cost. More specif-

ically, the MRT/MRC-based method does not suffer from the computational burden

of matrix inversion (see the structure of AMRTC
i in (5.9)), while implementing the

ZF-based scheme requires the calculation of the matrix HTH (which is O(k2M)) fol-

lowed by finding the inverse of this matrix (which is O(k3)), (see the structure of AZF
i

in (5.12)). As a result, the ZF-based scheme eliminates interference at the expense

of adding computational burden. On the other hand, while the MRT/MRC-based
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Figure 5.10: The CDF of the achievable SINR values versus SNR thresholds, for
MRT/MRC- and ZF-based schemes, when K = 4, nr = 4, and M = 100.

scheme does not require prohibitive computations, it suffers from ignoring interfer-

ence, specially in high interference regimes or when the number of relay antennas are

relatively low. Hence, one can recommend the MRT/MRC-based scheme to be used

when SNR thresholds are relatively low or when the number of relay antennas is very

large or when the number of transceiver pairs is high. The ZF-based method, on the

other hand, can be recommended when the number of relay antennas is low and when

SNR requirements are stringent and when the number of transceiver pairs is not too

large.

In Figs. 5.10 and 5.11, we plot the CDF of the SINR values achieved using

the MRT/MRC-and the ZF–based schemes, for networks with M = 100 and M =

1000 relay antennas, respectively. As can be seen from these two figures, in terms

of the spread of the SINR values, the ZF-based scheme performs better than the

MRT/MRC-based schemes. Moreover, we observe that for low SINR values (low-

interference conditions), the MRT/MRC-based scheme performs close to the ZF-based

scheme. However, as SINR threshold is increased (i.e., as transceivers transmit pow-
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Figure 5.11: The CDF of the achievable SINR values versus SNR thresholds, for
MRT/MRC- and ZF–based schemes, when K = 4, nr = 4, and M = 1000.

ers, and as a result, interference are increased), the spread of the SINR values achieved

using the MRT/MRC-based scheme moves away from the spread of the SINR values

achieved using the ZF-based scheme. These observations can be explained by the

fact that the MRT/MRC-based scheme ignores interference while ZF-based scheme

eliminates interference. As such, while in low-interference conditions, the MRT/MRC-

based scheme can afford a satisfactory performance, in high-interference conditions

only the ZF-based scheme is able to do so.
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Appendices

5.A Proof of Theorem 1

Defining new variables zl ,Mpl and ζl ,
λl

M
, we can rewrite vector ul in (5.30) as

ul =
1

M
(σ2γlFl + ζl(zl̄Fl̄ + σ2Inr))

−1gl︸ ︷︷ ︸
,vl

=
1

M
vl (5.A.1)

where, given zl and ζl, the vector vl is defined as a vector invariant with respect to

(w.r.t.) M , and is in the same direction as ul. Using (5.A.1), we can rewrite (5.32)

and (5.33), respectively as

σ2γl

z−2
l̄
− ζlv

H
l Fl̄vl

ζ2
l v

H
l (zl̄Fl̄ + σ2Inr)vl

= 1 (5.A.2)

zl̄g
H
l vl = 1 (5.A.3)

Interestingly enough, we observe that the optimal values of zl̄ and ζl, which are

obtained via solving (5.A.2) and (5.A.3), do not depend on the number of relay an-

tennas, i.e., M . This observation states that the optimal values of zl̄ and ζl, denoted

respectively as zopt
l and ζopt

l , remain unchanged for different numbers of relay anten-

nas. As a result, at the optimum, equalities pl =
zopt

l

M
and λl =

M

ζopt
l

hold true. As

such, we can rewrite the minimum total transmit power in (5.36) as

PM
T =

2K∑

l=1

(pl̄ +
σ2γl

λl

) =
2K∑

l=1

(
zopt

l̄

M
+

σ2γl

Mζopt
l

) =
1

M

2K∑

l=1

(zopt

l̄
+

1

ζopt
l

) =
c

M
(5.A.4)

where c is a scalar value invariant w.r.t. M . The proof is complete.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

In Chapter 3 of this dissertation, we studied the total transmit power minimization

problem for a two-way relay network under two constraints on the transceivers’ re-

ceived signal-to-noise-ratios. The network we considered in this chapter consists of

multiple multi-antenna relay nodes and two single-antenna transceivers. Each relay

linearly transforms the vector of its received signals (by multiplying this vector with

a complex “beamforming” matrix), thereby obtaining a new vector whose entries are

transmitted over different antennas of that relay. Assuming the relay beamforming

matrices and the transceivers’ transceiver powers as the design parameters, we first

considered the problem of total power minimization under the assumption that the

relay beamforming matrices are symmetric. Under such an assumption, we showed

that the total power minimization problem is amenable to a semi-closed-form solu-

tion, and thus, can be solved efficiently. We then considered the case where the relay

beamforming matrices may not be symmetric and showed that in this case, the to-

tal power minimization problem can be solved using a computationally prohibitive

algorithm which involves a two-dimensional search over a grid in the space of the

transceivers’ powers and semi-definite programming at each vertex of this grid. Our

numerical results showed that the symmetric assumption on the relay beamforming

matrices incurs only insignificant loss, while this assumption allows us to significantly

reduce the computational burden of solving the total power minimization problem.
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In Chapter 4, we considered a single-carrier asynchronous relay network, where

two transceivers exchange information with the help of multiple multi-antenna relays.

The network is assumed to be asynchronous meaning that the signal transmitted by

any of the two transceivers arrives at different relays with different delays and also

signals transmitted by different relays arrive at any of the two transceivers with dif-

ferent delays. The network asynchronism renders the end-to-end channel frequency

selective. We further assumed that each relay uses a beamforming matrix to trans-

form the vector of the relay received signals into a new vector whose different entries

will be transmitted over different antennas of that relay. Assuming the relay beam-

forming matrices as well as the transceivers’ transmit powers as design parameters,

we studied the problem of minimizing the total power consumed in the entire net-

work while guaranteeing given data rates at the two transceivers. To this end, we

developed a model for the end-to-end channel and used this model to solve the total

power minimization problem. By restricting the relay beamforming matrices to be

symmetric, we presented a computationally efficient solution to this problem. Our

simulation results suggest that for a given total number of antennas to be employed

in the network, there appears to be an optimal number of antennas per relay (and

thus an optimal number of relays) which results in the lowest power consumption in

the network.

In Chapter 5, we studied a two-way network of multiple multi-antennas relays

which enable multiple pairs of transceivers to establish pairwise communications.

Each relay is equipped with a very large number of antennas leading to the transceiver-

relay channel vectors being approximately orthogonal. As a result, intra- and inter-

pair interference will be negligible. Aiming to maintain the signal-to–noise ratio

(SNR) at the receiver front-end of each transceiver above a certain threshold, we de-

veloped an algorithm to obtain the relay beamforming matrices and the transceiver

powers such that the total transmit power consumed in the entire network is mini-

mized. To do so, we assumed that the channel vectors between each relay and different

transceivers are asymptotically orthogonal. For such power minimization problem,
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we derive computationally efficient solutions for the MRT/MRC- and the ZF-based

techniques. Furthermore, we proved that when number of relay antennas are very

large, at the optimum, both the minimum total transmit power and the transceivers

transmit powers are inversely proportional to the number of relay antennas.

Our numerical results show that a trade-off holds between the performance and the

computational complexity of the MRT/MRC- and the ZF-based schemes. The ZF-

based scheme provides a superior performance in comparison to that provided by the

MRT/MRC-based scheme. This superiority in performance is due to the fact that the

MRT/MRC-based scheme ignores interference, while the ZF-based scheme completely

eliminates interference. However, the superior performance of the ZF-based scheme

is achieved at the expense of additional computational burden. On the other hand,

while the computational complexity of implementing the MRT/MRC-based scheme

is not prohibitive, this scheme suffers from ignoring interference, specially in high

interference regimes or when the number of relay antennas are relatively low. Hence,

the MRT/MRC-based scheme can be recommended for use when the SNR thresholds

are relatively low or when the number of relay antennas is very large or when the

number of transceiver pairs is high. On the other hand, one can recommend the

ZF-based method when the number of relay antennas is low and when the SNR

requirements are stringent and when the number of transceiver pairs is not too large.

6.2 Future Work

Some of the possible extensions to the work presented in the dissertation are listed

below:

• Throughout this dissertation, we considered two-way relay networks with mul-

tiple multi-antenna relays and assumed that the channels between transceivers

and relay antennas are frequency flat. A possible extension to our work in

Chapters 3, 4, and 5 is to investigate these networks under the assumption that

the channels between transceivers and relay antennas are frequency selective.
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Addressing such networks in single-carrier mode, one can assume that some

type of equalizers are implemented at the transceivers and/or at the relays.

On the other hand, one can deal with the frequency selectivity of the chan-

nels between relays and transceivers via using OFDM technique both at the

transceivers and at the relays. Addressing each of these extended cases of the

networks we considered in this dissertation are interesting directions for future

work.

• In this dissertation, we also assumed that all communications are performed in a

single-carrier mode. However, one can solve the total power minimization prob-

lems for the case when communications are established in a multi-carrier mode

or when the orthogonal frequency division multiplexing (OFDM) technique is

employed.

• The analytical results in this dissertation are derived under the assumption that

the channel vectors are fully known at the network nodes. Due to the fact that

CSI can be acquired via traditional training procedures, using this assumption

is a common practice in studies aimed at optimizing network parameters. How-

ever, as a future work, one can investigate how practical transceivers and relays

have to operate under uncertain CSI or when CSI is only partially known at

the transceivers and/or relays.

• In Chapter 4, we consider asynchronous two-way relay networks with multi-

antenna relays and we obtained the minimal power consumption required to

satisfy given data rate constraints at the two transceivers. While answering

this question, we assumed no equalizer(s) at the transceivers and/or at the

relays. However, as a future work, one can investigate this problem for the

case that some type of equalizers (i.e., linear or otherwise) are implemented

at transceivers and/or at relays (i.e., pre-channel equalization, post-channel

equalization, or joint pre- and post-channel equalization). As an interesting
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approach, one can use the filter-and-forward (FF) relaying scheme, where relays

employ finite-impulse-response (FIR) filters to equalize the propagation delays

of different paths such that ISI is minimized at the receiver front-end of the

transceivers.

• In Chapter 5, we considered multipair two-way relay networks with massive

MIMO relays and assumed that the network is synchronous. As a future work,

one can study this network under the assumption that the network is asyn-

chronous. Based on the results we obtained for asynchronous networks serving

a single pair of transceivers in Chapter 4, we conjecture that the solution to

the total power minimization for asynchronous multipair two-way network with

massive MIMO relays can also reduce down to a relay selection scheme. In such

scheme, only those relays which contribute to the power-optimal tap of the end-

to-end CIR are activated. Proving or disproving this conjecture is an interesting

direction that can be pursued in the continuation of this dissertation.

• In this dissertation, we aimed to minimize the total power consumed in the entire

network while some level of quality of services are satisfied at the transceivers.

To do so, we assumed the relays beamforming matrices and the transceivers’

transmit powers as the problem design parameters. However, while studying

the same networks we studied in this dissertation, one can address different

objective functions and or different design parameters to be optimized. For

example, maximizing the network sum-rate or minimizing the minimum mean

square error can be interesting problems to be considered in the continuation

of this dissertation.
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