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High-throughput DNA sequencing and related biotechnologies revolutionized our
understanding of human genomics and diseases with genetic component, particularly of cancer —
one of the leading causes of death world-wide. Despite the progress in cancer research and
availability of over 150 FDA-approved anti-cancer drugs [193|, the cancer treatment is often
unsuccessful. Identifying the best cancer treatment using computational models to personalize
drug response prediction holds great promise to improve patient’s chances of successful recovery.
Unfortunately, the computational task of predicting drug response remains very challenging.

In this thesis 1 develop a deep latent-variable machine learning model with amortized
variational inference that improves accuracy of drug response prediction over the currently used
models. Besides increased expressiveness of this model thanks to parameterization by neural
networks, the achieved improvement stems from integration of drug-induced perturbation profiles,
a resource not fully utilized before.

Clinical trial datasets of cancer treatments which also include genomic characterization of
the tumours are small and scarce, therefore for the vast majority of drugs only responses in
pre-clinical biological models are available. To this end, I assess applicability of popular domain
adaptation approach, based on domain-invariant representation learning, to the drug response
prediction task. I conclude that necessary conditions of successful domain adaptation are often
not satisfied in the available datasets and as such many current methods are misguided.

Last but not least, in this thesis I also contribute to the area of non-invasive prenatal testing.
Using a hidden Markov model I propose a method for analysis of cell-free DNA fragments isolated
from maternal plasma that also contain admixture of DNA fragments derived from the fetal
genome. Here presented method is a first proof-of-concept for non-invasive sub-chromosomal

CNYV detection.
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(Glossary

AUPR area under precision-recall curve.

AUROC area under receiver operation characteristic curve.

biomarker (of drug response) a measurable indicator (in any genomic modality) that can

be used to predict whether a drug-treatment will be effective in a specific patient.

CCL cancer cell line; derived from a human cancer cells, it is a pre-clinical biological model of

cancer; Section 2.4.1.

cfDNA cell-free DNA; short DNA fragments present in blood plasma, typically a result of cell

apoptosis.

CMap-L1000v1l Connectivity Map L1000 v1; NIH LINCS dataset of reagent-induced

transcriptional perturbations in a cell line dataset [192].
CNYV copy-number variation; duplication or deletion of a genomic region.

CTRPv2 Cancer Therapeutics Response Portal v2; a dataset of drug sensitivity in CCLs [170].
Dr.VAE drug response variational autoencoder [166]; Chapter 3.

ELBO evidence lower bound; lower bound of data likelihood P(X) in a probabilistic model, we
refer to it in context of training VAE-based models [115, 174]; Section 2.5.2.

HMM hidden Markov model; Section 2.5.1.
MMD maximum mean discrepancy; Section 2.6.3.

organoid an in vitro pre-clinical model system that shows a realistic micro-anatomy in three
dimensions; provides more realistic model of cancer biology than cancer cell lines while

still allows for high-throughput screens.

PDX patient-derived tumor xenograft; an immunodeficient mouse with implanted human cancer

tumor tissue, provides an accurate pre-clinical model of human cancer; Section 2.4.1.



S2S learning mode in which a model is trained and evaluated on a source domain dataset.

S2T unsupervised domain adaptation learning mode; a model is trained on a source domain

dataset and evaluated on a target domain dataset.

SNP single nucleotide polymorphism; a position in DNA where the present nucleotide commonly

varies within a population.
SSVAE semi-supervised variational autoencoder [117]; Section 2.5.3.

ST2T semi-supervised domain adaptation learning mode; a model is trained on data from both

source and target domain but evaluated on a target domain.

T2T learning mode in which a model is trained and evaluated on a target domain dataset.

TCGA The Cancer Genome Atlas, a compendium of human cancers.

VAE variational autoencoder [115, 174]; Section 2.5.2.

VFAE variational fair autoencoder [139]; Section 2.6.3.

xi



Chapter 1

Introduction

1.1 Motivation

Advent of affordable high-throughput DNA sequencing and related biotechnologies has opened a
window into human genomics that has vastly expanded our understanding of cancers and
congenital disorders. These data have been extensively used to discover and study biological
processes and to identify causes and mechanisms of diseases with genomic component. Deeper
understanding of disease mechanisms and stratification to common subtypes has led to
development of new targeted treatments, therapies and diagnostic tests. But this effort is far
from over. With decreasing cost and increasing availability there is need for computational
methods to move the frontier of utility of the data provided by these biotechnologies in clinical
applications, for early diagnoses and successful treatments in addition to the primary research.

Particularly in oncology, stratification of patients to common subtypes is often too coarse.
Identification of biomarkers based on which chemotherapeutic drugs could be reliably prescribed
with close to perfect success rate remains an open problem not only for many existing cytotoxic
drugs, but also for targeted therapies as the drug targets alone are generally poor therapeutic
indicators [42, 46]. Precision medicine decisions based on genomic makeup of patient’s cancer
has tremendous potential to improve treatment outcomes [69, 48, 96, 46] by tailoring a treatment
to the individual patient.

To facilitate improved outcomes for a wide range of patients in clinical practice, genetic testing
and diagnosis need to be safe, timely, and affordable. For solid tumour cancers a biopsy of the
tumor is often required which limits monitoring and early detection of the cancer development. In
prenatal testing for genetic abnormalities, traditional invasive prenatal diagnostic methods, such
as chorionic villus sampling or amniocentesis carry a small but non-negligible risk of miscarriage
[49]. The discovery of fetal cell-free DNA in maternal plasma [135] enabled development of
non-invasive prenatal testing [17] and later also led to development of liquid biopsy of cancers
[155]. In both cases, only a blood sample of the patient is required to sequence the cell-free
DNA present in blood plasma, no other invasive procedure is necessary. However, a new set of

computational methods is needed to make most of this new data.
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Current high-throughput sequencing technologies can produce large amounts of data for a
spectrum of applications. But given the complexity of underlying biological processes and target
applications, exact algorithms and statistical tests are often not enough to fully utilize them.
Developments in the area of machine learning can provide tools and methodologies well fit for

this challenge.

1.2 Goals and achievements

In this thesis I develop machine learning methods that contribute to clinical translation of the
advancements in biotechnology and primary research it has enabled. The impact of the work
presented here is in developing advanced machine learning algorithms for two main application

areas: i) precision medicine in cancer, and ii) early detection of genetic aberrations.

e I pioneered use of the variational autoencoder framework [115, 174] for gene expression
representation learning, modeling of drug-induced perturbation effects [167], and semi-
supervised drug response prediction [166|. I developed, Dr.VAE, the first method that
successfully improved drug response prediction by generative modelling of drug perturbation
profiles. This deep latent-variable model outperformed currently most used drug response

prediction methods for majority of the 26 tested FDA-approved drugs.

e [ analyzed and assessed necessary conditions for deployability of domain adaptation methods
to improve clinical drug response prediction for cancer patients from pre-clinical studies.
My findings are that currently considered methods in this application area, based on
domain-invariant representations, are misguided. Instead, the field should focus on semi-
supervised transfer learning approaches, efficient learning from small clinical datasets and

mindful incorporation of biological priors.

e In the area of non-invasive prenatal testing, I developed the first method for detection of
sub-chromosomal copy number variations in a fetal genome by probabilistic analysis of cell-
free DNA fragments isolated from maternal blood plasma [165|. Experiments based on in
silico introduction of novel CNVs into plasma samples, with 13% fetal DNA concentration,
demonstrated a sensitivity of 90% for CNVs >400 kilobases with only 13 calls in unaffected

genome. This work was also featured in GenomeWeb [198].
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1.3 Organization

This thesis is organized into six chapters as follows:
e Chapter 1 briefly introduces motivation and overview of the thesis.

e Chapter 2 provides background and relevant literature review in the application domains
and of the employed machine learning methodologies. Particularly, introduced is
pharmacogenomics, drug response prediction in cancers, selected latent-variable generative

models and domain adaptation methods.

e Chapter 3 presents Drug Response Variational Autoencoder [166], a novel probabilistic
model with amortized variational inference for drug response prediction in cancer cell lines
that is the first method to jointly model drug-induced transcriptome perturbations [167]
together with efficacy of the treatment in killing of the cancer cells in order to improving
the latter. Shown in ablation studies, these aspects of Dr.VAE contribute to improved

classification performance over currently most used drug response prediction methods.

e Chapter 4 presents assessment of domain adaptation approach for learning clinically
applicable drug response prediction classifier from pre-clinical, particularly cancer cell line,
drug sensitivity datasets. First, in a series of simulation experiments, the importance of
necessary conditions for successful domain adaptation through learning of domain-invariant
data representation is shown. Next, in a pilot study and experiments with a clinical

response data set, practical validity of these assumptions are assessed.

e Chapter 5 presents fCNV, a probabilistic method for detection of copy number variations
(CNV) in a fetal genome from maternal plasma cell free DNA sequencing [165]. The f{CNV
is the first computational method for non-invasive sub-chromosomal copy number variation
detection. Using a Hidden Markov Model, f{CNV detects aberrant regions by combining

signals from SNP variant allele frequencies and relative sequencing coverage.

e Chapter 6 summarizes the thesis and outlines future directions in the studied areas.



Chapter 2
Background and literature review

This thesis touches upon several major areas of research in machine learning, computational
biology and cancer treatment. In this chapter we first provide a brief introduction to
pharmacogenomics in general and provide examples also outside cancer treatment.
Pharmacogenomics studies may include genome-wide analysis of multiple genomic modalities,
such as mutations, copy number variations, mRNA expression, methylation, and others. We
briefly describe the most common data types later in this chapter. We then turn the attention
to pharmacogenomics in cancer, specifically to the drug response prediction in cancers. In the
last parts of this chapter we provide background to machine learning methodologies used and

built upon in this thesis.

2.1 Pharmacogenomics

Pharmacogenomics studies impact of genomic variation in an individual on their response to drug
treatments [133]. Many modern drugs are targeted drugs, that target a specific cellular function
or activity, and the effectiveness of the drug can be very dependent on how effectively the body
handles the chemical compound. Therefore, the effect of a particular drug and dose will differ
between individual patients. Currently, most of the drugs are prescribed based on normatives
that are derived from simple clinical variables like gender, age, body mass, prescription of other
drugs or a particular disease state. However, with progressively more and more targeted therapies
the outcome can be significantly influenced by the genomic background of the patient. This is
especially the case in cancers, that is the main focus of this thesis.

The field of pharmacogenomics is still in early stages, but the decreasing cost of genetic
testing is making its translation to clinical practice possible [211], while the increasing complexity
and targeted nature of modern drug treatments is making it a necessity. It is predicted that in
the future pharmacogenomics will allow the development of drug therapies tailored to the patient,
i.e. personalized medicine, for a variety of diseases, e.g. Alzheimer disease, cancer, HIV/AIDS,
and more [172]. In this section we describe the major research areas in pharmacogenomics, but

first we start by reviewing the necessary terminology related to drugs and their activity.
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A drug undergoes several stages after the administration. Firstly, the drug needs to absorb
into the body, typically through the digestion system. Then it is distributed around the body
and needs to reach the site of its action. There, the intended biological target interaction takes
place, e.g. binding to an enzyme, ion channels, or various type of receptors. The drug is then
metabolically processed and excreted from the body. Theoretically, genes that influence any
stage of this process could affect the overall drug response.

There are two main groups of genes that are important when studying variation in drug
responses. The first are those influencing the pharmacokinetic properties of drugs, such as drug
metabolizing enzymes and drug transporters, that affect how the drug is handled by the body.
The second are those influencing pharmacodynamic properties of drugs, including drug targets
such as enzymes, receptors and ion channels, and their associated pathways, which determine
the drug’s effect on the body.

In clinical application, two aspects of a drug are most important: the efficacy and tozicity of
the drug. Efficacy refers to the best therapeutic response that a drug can produce, i.e. it is a
measure of clinical effectiveness. Efficacy can be expressed in terms of the percentage of patients
who show positive response given a standard dose. Toxicity then refers to the extent to which a
drug causes unwanted or harmful effects, and may be expressed as the percentage of patients
who show adverse side effects when administered a standard dose. The optimal dose range for
a drug is that which maximizes efficacy while minimizing toxicity. The optimal dose can vary

between individuals.

2.1.1 Research areas in pharmacogenomics

Drug response prediction A drug that is effective in one person may have little to no
therapeutic effect in another. Some patients may show partial response, while some may develop
undesirable side effects. Thus predicting effectiveness of a particular drug treatment in a specific
patient or dose level at which the treatment is effective but save for the patient is crucial.

One of the most common pharmacogenetic tests today is HLA-B*57:01 genotype testing
before Abacavir therapy for HIV /AIDS [143], which may cause a potentially lethal hypersensitivity
reaction because of the specific rare mutation.

Another example is that of Warfarin, an anticoagulant normally used in thrombosis prevention,
whose biological effects are complex and involve many genes [108]. There is a clear association
shown between the dose requirement of Warfarin and variants of particular metabolic and
pharmacodynamic enzymes. Thus screening for mutations in genes coding for these enzymes is

important for appropriate dose prescription.

Biomarker identification Identification of biomarkers, such as mutations or particular gene
expression levels, that are predictive of drug efficacy is important for designing affordable
clinical tests for clinical outcome or optimal dose prediction. Additionally, studying the genomic

influences on a drug action can also lead to better understanding of the disease mechanisms.



CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 6

Drug repurposing Also referred to as drug repositioning, is an application of an already
approved drug in treatment of another condition [95]. Probably the most widely known example
is that of Pfizer’s Viagra, originally developed for pulmonary arterial hypertension and then

approved for erectile dysfunction treatment.

Drug combination/synergy It has been showcased that combination of different drugs can
have synergistic effect resulting in increased efficacy of the treatment, while reducing the toxicity
thanks to reduced overall drug dosage and thus reduction of medication side effects. Development

of methods for drug synergy prediction is an increasingly active research area [62].

Drug design Advances in genomics and pharmacogenomics, among others, have propelled
a new paradigm in drug discovery. The old approach was a brute-force approach based on
screening of large library of chemical compounds for activity with target cells. The initial pool of
around a million of compounds would then be progressively filtered for desired activity, toxicity,
production feasibility, etc., and after around a decade, the clinical trials would start with a
handful of candidate compounds without precise knowledge about their cause of action. The
contemporary approach is to design a drug for particular action, based on genomic studies of the
disease. Pharmacogenomic studies are then a part of such targeted drug development, replacing

the previously dominant trial and error approach [176].

2.2 Overview of human genomics

Here we briefly summarize background of human genomics [203] that is most relevant for
application areas studied in this thesis.

Firstly, the genetic information is encoded in a deoxyribonucleic acid (DNA) molecule as
a sequence of nucleotides with either cytosine (C), guanine (G), adenine (A), or thymine (T)
nucleobase. Nucleotides A with T, and C with G form hydrogen bonds, thanks to which the
structure of the DNA molecule is a complementary double helix. A packaged and organized
DNA molecule is called a chromosome.

The human genome is composed of 22 pairs of autosomal chromosomes (one set inherited
from the mother and the other from the father) and two sex chromosomes, XX in females and
XY in males. This is the nuclear DNA, as it is stored in the nucleus of a cell. Additionally,

5" chromosome) that is

we recognize also mitochondrial DNA (sometimes referred to as the 2
located in mitochondria which are always inherited from maternal side.

The most well studied, and perhaps the most important, regions of chromosomes are the
genes. It is currently estimated [180] that there are around 43,000 genes in the human genome,
approximately 21,000 of which encode the primary structure of all proteins a cell can produce.
Those parts of genes that can be translated into amino acids (proteins) are so-called coding

regions, or all together called the erome. The exome forms only a fraction of the whole genome,
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less than 2%. The rest of the DNA has mostly regulatory and supportive function, subject to
ongoing research.

Now we give an overview of the central dogma of molecular biology [35] that in short stands as
“DNA makes RNA and RNA makes protein”. That is, genes from the DNA are first transcribed to
precursor messenger RNA (pre-mRNA). This primary transcript is then processed, most notably,
the non-coding regions that do not encode for amino acids (introns) are spliced out. The coding
parts, called the exons, are then joint together to form messenger RNA (mRNA). Alternative
splicing of mRNA can occur when appropriate, which significantly increases the diversity of
proteins a single mRNA can produce. Notably, the abundance of alternative splicing is what
sets humans apart from species with similar number of genes, as thanks to alternative splicing
humans can produce many times more proteins. The mRNA is then translated to a protein.
This is done in a sequential fashion. Consecutive triplets of nucleotides in mRNA, denoted as
codons, code for one of 20 possible amino acids. As the mRNA is read, a protein composed of a
sequence of amino acids defined by the codons is progressively created. The proteins fold into
complex 3D structures and interact with each other to create protein complexes. It is estimated
that a human body can produce up to a million of unique protein complexes with a wide variety
of functions. Proteins are building blocks of cells and also most of the regulation and activity in

a cell is carried out by proteins.

2.2.1 Point mutations

Point mutations, or single nucleotide variations (SNVs), are substitution changes in the DNA
such that a single nucleotide of a genome is altered compared to the reference. There are more
than 600 million SNVs in the human genome [112]. Those SNVs that are known to commonly
vary in a population (more than 1% of the population differs from the reference) are denoted
as single nucleotide polymorphisms (SNPs) [184]. Most of them are harmless and on average a
person has around 4 to 5 million SNPs in their genome that differ from the reference, however
this number is population specific and some populations (e.g. African) differ from the reference
more. Further, novel mutations do occur as well and slowly accumulate during one’s life span.
Depending on whether these mutations happen in germ cells, which means they are heritable,
they are denoted as germline mutations or somatic mutations if they happen in other tissues.
The harmfulness of a mutation depends on what kind of alternation it is and in what genomic
context it occurs in [126, 197]. If it occurs in a protein coding region (exon) it can result into a
change of the amino acid code. If the new triplet (codon) of nucleotides cannot be translated
into an amino acid anymore, it is a nonsense mutation. If the codon changes meaning, i.e. codes
for a different amino acid, it is a missense mutation. In case the new amino acid is chemically
similar to the original one, such a mutation can also be called neutral. The amino acid coding
is redundant, so it can happen that the meaning of a codon is not changed. In that case, such
mutation is called a silent mutation, however it still can have an impact on the folding of the

protein and thus also a functional effect. A single nucleotide deletion/insertion in a coding region
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leads to frameshift, that changes the offset with which the protein coding mRNA is read (and
interpreted into codons) during translation and thus resulting in a very different protein.

Mutations outside coding regions are less studied. Mutations in transcription factor sites
can change efficiency with which a transcription factor (a protein) binds at that locus, and so
influence regulatory mechanisms. Loci in genome that do influence expression levels are called
expression quantitative trait loci (eQTL).

Point mutations and short indels can be measured by DNA sequencing, either whole-genome
or exome-only for cost reduction. With sequencing it is possible to detect novel or rare variants.
In case it is desired to genotype the sample only on a set of pre-selected positions, e.g. the known

polymorphic sites, the so-called SNP microarrays are a very common and cheap option.

2.2.2 Structural variations

Structural variation is variation in how genome or a chromosome is structured [56]|. Such variations
are typically translocations, inversions, or copy-number variations in parts of the chromosomes.
Most commonly studied are copy-number variations (CNVs) as duplication or deletion of a
genomic region can influence transcription levels of the impacted set of genes both directly and
indirectly. In cancer, catastrophic structural variations can occur, e.g. chromothripsis, leading to
chromosomal and gene aberrations such as creation of pseudo chromosomes, gene fusions and
other [53].

Copy number variations are also the cause of many congenital genetic disorders, either
inherited from a parent or occurring de novo. Common disorders due to a medium- to large-
sized CNV include: DiGeorge syndrome, caused by deletion of ~3Mb region of chromosome 22
(22q11.2); Prader-Willi syndrome, the deletion subtype of which is caused by a ~4Mb deletion in
paternal chromosome 15; or Down syndrome that is caused by trisomy of chromosome 21. It
is important to identify these aberrations as soon as possible in order to provide appropriate
counseling and care. One of the contributions of this thesis, described in Chapter 5, is a
probabilistic method fCNV for prenatal detection of copy number variations. The presented
approach is a non-invasive approach in a sense, that it does not require a direct fetal DNA
sample but instead makes use of fetal DNA fragments that are freely circulating in maternal

plasma (cfDNA).

2.2.3 Gene expression

So far we have discussed DNA alterations, such as mutations and structural variants. However a
living cell is a dynamic system with highly complex regulatory mechanisms that are far from
understood. As mentioned earlier, proteins are the building blocks of a cell as well as they carry
out most of the activity ongoing in a cell. Therefore it is crucial for a cell to produce the right
proteins at the right time. The current technology of mass spectrometry for measuring protein

levels and their compositions are expensive and do not achieve necessary throughput. Instead, as
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a surrogate, the mRNA transcript levels are measured. Gene expression level is then the amount
of mRNA in the cell that is derived from that particular gene.

RNA can be sequenced similarly to how DNA is sequenced. Today, RNAseq using 274
generation high-throughput sequencing from Illumina is most common. The cheaper option are
mRNA microarrays, designed to measure abundance of particular RNAs, typically the RNA that
corresponds to the exome.

Gene expression levels are inherently noisy, as they depend on the tissue type, environment,
external stresses or current state of the cell cycle. In cancer, the cell activity is altered to a
very significant degree, and expression levels of some genes are changed manyfold. Some of
these dysregulated or otherwise aberrant genes are frequently indicated in multiple cancers, the
COSMIC Cancer Gene Census details 719 cancer-driving genes [189]. However there is generally
a considerable amount of tissue and individual-specific bias in cancer tumour gene expression

levels, e.g. because of intra-tumoural heterogeneity.

2.3 Hallmarks of cancer

In 2000 Hanahan and Weinberg [90] published a list of six biological capabilities that cells acquire
during their development into cancerous cells. These six hallmarks of cancer were later extended
to eight [91]. These hallmarks are fundamental principles that underlie cancer and show how
very diverse cancers can be. One of the original assumptions in cancer research has been that
normal cells evolve in a multistep process, progressively acquiring these hallmark capabilities.
However this may not be always the case, for example in chromothripsis the chromosomes are
believed to be massively rearranged during a single catastrophic event. Nevertheless these eight

hallmarks summarize well the fundamental processes leading to cancerous tumours:
1. Unlimited proliferation; cancer cells modify growth signalling and proliferate at high rate.

2. Fvading growth suppressors; means decreased sensitivity to inhibitory signals that regulate

excessive growth.

3. Resistance to programmed cell death (apoptosis); cells normally possess regulatory
mechanisms that in case of excessive damage to the cell trigger its self-destruction. TP53
and RB proteins are the most well-known apoptosis-inducing proteins that are often not

functional in cancers.

4. Enabling replicative immortality; repeated cycles of cell division lead to biological ageing
(senescence). Naturally, only stem cells and developing cells are immortal in this sense. In
normal (non-immortalized) cells, telomeres that protect the ends of chromosomes shorten
with each cycle, creating a sort of counting mechanism. However cancer cells develop a

mechanism to preserve the telomere length, making them replicatively immortal.
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Figure 2.1: Therapeutic targeting of the hallmarks of cancer. Figure reprinted from Hanahan
and Weinberg [91] with permission from Elsevier.

5. Induced angiogenesis; like normal tissues, tumours require nutrients, oxygen and a way to
remove metabolic wastes. The tumour tissue finds a way how to induce creation of new

vasculature (angiogenesis) in the tumour to address these needs.

6. Invasiveness and metastasis; in late stages, cancer cells invade into nearby blood and
lymphatic vessels, enabling them to invade distant tissues (metastasis) forming new nodules

that grow into tumours.

7. Reprogramming of the cellular energetics; in order to sustain the proliferation, cancer cells

modify metabolism to support such activity.
8. Awoiding immune destruction; cancer cells adapt to avoid destruction by T and B

lymphocytes, macrophages, and natural killer cells.

2.3.1 Therapeutic targeting of hallmark capabilities

The decades of cancer mechanisms research enabled introduction of mechanism-based targeted

therapies to treat human cancers. Hanahan and Weinberg [91] categorized the rapidly growing
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arsenal of targeted therapeutics according to their effects on one or more hallmark capabilities,
Figure 2.1. The fact that the current targeted therapeutics can be aligned with the hallmark
capabilities can be viewed as a confirmation of the hallmarks. Positive efficacy of a drug targeted
to inhibit or impair one of the hallmarks shows that the hallmark capability is truly important
for the biology of a tumour.

However, many resulting clinical responses of such targeted therapies have been only transitory,
frequently followed by relapses. This is caused by redundancy present in many biological
mechanisms. Therefore inhibiting only one key component is often not enough for complete
disruption of a hallmark capability, as the residual cancer cells grow to adapt to such an
intervention. Frequently, the adapted form of cancer that is formed under a selective pressure
imposed by the therapy is even more difficult to treat. Therefore drug synergy targeting multiple
targets and hallmarks is what is believe to be the future of cancer treatment. In short, it is
believed that the cancerous cells need to be exterminated quickly and completely in the early

stages of the cancer progression, before resistant subclones with large genetic diversity can evolve.

2.4 Computational approaches to drug response prediction in

cancer

Cancer is a leading cause of death worldwide and the most important impediment to increasing
life expectancy in every country of the world in the 21st century [22]. Fortunately, from 2011
to 2015, there has been a small but prominent decrease in death rates for all races/ethnicities
combined for 11 out of 18 most common cancers among men and 14 of the 20 most common
cancers among women. The continued decreases in death rates for colorectal cancer, prostate
cancer and female breast cancer are largely due to advances in early detection and more effective
treatments [36]. In this section we will focus on the computational challenges of identifying the
best treatment that improves chances of successful recovery.

Until recently, treatments were chosen based on the type of cancer in a one-size-fits-all
manner. We are now witnessing the advent of precision oncology [69, 48, 96| that takes into
account patients’ genomic makeup for treatment decisions [205, 107, 69|, illustrated in Figure 2.2.
Treatment approval based on tumour-site agnostic molecular aberration biomarkers has become
reality. The year 2017 marked the first FDA approval of such a treatment [161]. Based on
clinical trials in 15 types of cancer, pembrolizumab was approved for treatment of solid tumours
with mismatch repair deficiency or high microsatellite instability [127]. Larotrectinib is another
promising treatment, targeting the tropomyosin receptor kinase gene fusion in a variety of cancers
[50]. Unfortunately, there are no established biomarkers for majority of the anticancer drug
compounds. Identification of reliable biomarkers is a challenge not only for the most commonly
used cytotoxic drugs, but also in the case of targeted therapies as the drug targets alone are
generally poor therapeutic indicators [42, 46].

Discovery of biomarkers predictive of drug response and development of multivariate
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Figure 2.2: Graphical abstract of drug response prediction. Patient data is limited, so to
predict drug response, much of the existing literature uses model system data, e.g. immortalized
cell lines and PDX. (A) Currently most patients in cancer are still treated in a one-size-fits-all
manner according to the type (or subtype) of cancer they have. (B) There is a growing number
of examples of personalizing monotherapy in practice, where depending on the mutations in the
tumour, the patient can be prescribed a targeted drug. This approach is applicable to fewer
than 20% of the patients. The computational contribution is to take a large number of model
systems and patients, when available and construct a predictive model to identify the best drug
for majority of the patients. (C) Due to tumour heterogeneity and acquired drug resistance,
monotherapies may not be effective, there is currently a growing body of work predicting drug
synergy and effective drug combinations. Originally these models were trained using bulk data,
but more recently, single cell data-based approaches are starting to show promise.
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companion diagnostics require efficient computational tools and substantial number of samples.
Traditional statistical models and more sophisticated machine learning approaches have been
used to build predictors of drug response and resistance both in the clinical [160] and preclinical
[43] settings. As predictive models increase in complexity, the number of observations required
to train these models increases as well. While -omic profiles and clinical outcomes of patients
are the most relevant data sources for the development of clinically-relevant predictors, these
datasets are often limited in size due to many factors including high costs, limited accrual rates
and complex regulatory landscape. In addition, by the nature of the experiment, unbiased
testing of multiple therapeutic strategies for the same patient in the patient itself is practically
infeasible. Cancer models provide access to patient tumours in preclinical models, both in vivo
and in vitro, allowing researchers to test multiple drugs and combinations in parallel [43].
Although these preclinical models recapitulate patient therapy response to varying degrees, they
provide massive amounts of pharmacogenomic data for drug response prediction. Here we review
these preclinical models and the recent applications of machine learning to prediction of

response.

2.4.1 Prediction of response to monotherapies

Large-scale efforts to associate molecular profiles with drug response phenotypes in preclinical
models date back to the late 90s when the National Cancer Institute Developmental Therapeutics
Program released large-scale pharmacogenomic data of 60 cancer cell lines (NCI60) screened with
tens of thousands of chemical compounds, including a large panel of FDA-approved drugs [185].
NCI60 facilitated several drug discoveries, notably a 26S proteasome inhibitor bortezomib that is
now used in multiple myeloma treatment [185]. Since then, high-throughput in vitro drug screens
of cancer cell lines (CCLs) derived by immortalization of human cancer cells became popular
experimental bases for discovery of multi-omic underpinnings of drug sensitivity and resistance
[141]. Since this seminal study, multiple large-scale databases have been publicly released to the
cancer research community [188, 134]. More recently, advances in growing tumours in animal
models enabled the generation of large collection of patient-derived xenografts (PDX) to monitor
tumour growth with and without drug treatment in mice [5]. Novartis published the largest
PDX-based pharmacogenomic dataset to date, referred to as the PDX Encyclopedia [67]. The
NCI recently announced the Patient-Derived Models Repository (PDMR) with comprehensive
molecular profiling and commitment to release pharmacological profiles in the future. A series
of databases and tools have been developed recently to harmonize and make easily available

multiple pharmacogenomic studies investigating anticancer monotherapies, Table 2.1.

Cell line pharmacogenomic data sets

Cell lines derived from human cancers are the most common model used in pharmacogenomic
studies. The original donor cancer cells were intentionally mutated to induce replicative

immortality as not all cancer cells would proliferate indefinitely. The ability to grow these
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Table 2.1: Platforms harmonizing preclinical pharmacogenomic datasets and providing basic
processing functions for biomarker discovery.

Cancer models ‘ # Models ‘ # Drugs ‘ Reference

2D cell cultures

Platforms

PharmacoGx, PharmacoDB | Cell lines
GDSCTools Cell lines
CellminerCDB Cell lines
CancerDP Cell lines
PDXFinder PDX
Xeva PDX
Cancer-Drug eXplorer

1691
1001
~1000
1061
o967
277
462

759
265
~50,000

24
33
61
60

[187, 188|
32

[164]

[88]
Unpublished
[150]

[128]

Table 2.2: Available pan-cancer cell line screen datasets of monotherapy drug response.

Dataset Institution ‘ # CCLs ‘ # Tissues ‘ # Drugs ‘ Ref.

CCLE Broad Institute 1061 24 24 | |9, 74]

CTRP v2 | Broad Institute 888 25 544 | [170]

FIMM L e Fiand | ¢ w2

gCSI Genentech 754 30 16 | [92]
Wellcome Trust

GDSC1000 i;;sgsihuizfgmtgengfﬁ 1109 36 250 | [102]
Hospital Cancer Center

GSK GlaxoSmithKline 310 25 19 | [84]

NCI60 National Cancer Institute 74 9 49278 | [185]

cultures indefinitely is the major advantage of this model. It enables for standardized cancer cell
line models that are used for decades, can be tested to response to any drug or drug
combination at various drug concentration levels. It is thus possible to compare efficacy of
multiple different drugs on (at least partially) common set of cell lines.

Use of cell lines has facilitated high-throughput screening of in vitro efficacy of many approved
and experimental drugs [134]. As earlier mentioned, the first major data collection was NCI60
[185], which development started in late 1980” and continued for over two decades. Several other
followed after NCI60, the current most widely used data sets are the Cancer Cell Line Encyclopedia
(CCLE) |9, 74] initiated by Novartis/Broad Institute; the Genomics of Drug Sensitivity in Cancer
project (GDSC1000) [102] by the Wellcome Trust Sanger Institute, previously known as Cancer
Genome Project (CGP) [68]; and the Cancer Therapeutics Response Portal (CTRP v2) [170].
The most relevant pan-cancer datasets of cell line sensitivity to monotherapy treatments are

summarized in Table 2.2.
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Figure 2.3: Dose-response curves of various cell lines to olaparib from the CGP data set. Figure
reprinted from Garnett et al. [68] with permission of Springer Nature, (©2012.

Cell lines are typically tested for response sensitivity under varying drug concentrations.
Usually up to 10 dose concentrations are tested. Then so-called dose-response curves are analysed.
These dose-response curves show percentage of original cell line culture that survived under
respective drug concentration. Figure 2.3 shows several dose-response curves as measured in the
CGP.

There are several ways one can summarize a dose-response curve into a single real number
representing the cell line’s sensitivity. Originally, the half-maximal inhibitory concentration
(IC50) was commonly used. This is the drug concentration at which half of the original cells die.
However this IC5p summary statistic does not work that well in practice, and other statistics are
replacing it. Most commonly it is AAC statistic that is used, which is based on the area above
the dose-response curve. Alternatively, statistics based on the slope of the curve are used as well.

Even though these in vitro cell line experiments are the simplest models, it was showed that
the reproducibility of the reported results is not perfect [89], likely caused by mislabelling or
contamination of the cancer cell lines. Additionally, also choice of the sensitivity measure will
significantly affect result of downstream analysis [59, 104].

The major systematic issue of cell lines is that they undercome the immortalization process
that significantly modifies gene expression of the cells. Additionally the cell lines accumulate
spontaneous mutations over time. Further, cell line experiments are in vitro experiments without
presence of vascular system and lack immune system response. Therefore the measured response

and putative biomarkers do not necessarily translate to human patients.

Patient-derived tumour xenografts

Patient-derived tumour xenografts (PDXs) are mouse models with implanted human cancer
tumour tissue. Within an immunodeficient mouse a human tumour can grow in close to original

environmental conditions, like tissue structure, blood circulation, oxygen and nutrients access,
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or hormone levels. Furthermore, the tumour tissue mostly maintains its genetic and epigenetic
abnormalities as found in the patient. Thanks to that the PDX models exhibit drug response
very similar to that of the donor patient. Recently a high throughput response screening of 62

drugs in 1075 PDXs has been published [67], providing a compelling data source.

2.4.2 Methods for monotherapy prediction

The most typical computational approaches to drug response prediction, specifically in pre-
clinical models, consist of (1) quantification of drug response; (2) molecular feature selection or
dimensionality reduction of the cellular measurements; (3) machine learning model fitting to
predict drug response; and (4) model evaluation |7, 41]. Multiple studies explored which genomic
modalities harbour the most predictive signal of drug response by analyzing performance of
predictive models. The most commonly utilized modalities include single nucleotide variations,
copy number variations, RNA expression, methylation, and proteomics. Despite their widespread
use in clinical settings, mutations and copy number variations have been shown to account for only
a small subset of candidate biomarkers, while gene expression, methylation and protein abundance
are regarded as the most predictive modalities [102, 179, 104|, each can be complemented by the
multi-omic view of the cancer [191, 34, 149]. Perhaps the main obstacle in effectively leveraging
all data modalities is the dimensionality and the correlation structure among the features. A
combined set of measurements can reach hundreds of thousands of features, while the number of
available patients or cell lines remains in the hundreds. This prohibitive ratio of measurements
to samples limits the class of applicable predictive models requiring feature selection or learning
of reduced representations. Papillon-Cavanagh et al. [156] identified univariate feature selection
as a robust selection approach, later improved by mRMR Ensemble feature selection [40]. Jang
et al. [104] performed extensive comparative analyses of machine learning methods for drug
response prediction in cancer cell lines, recommending using elastic net or ridge regression
with input features from all genomic profiling platforms. Costello et al. [34] summarized a
crowdsourced DREAM drug prediction challenge, revealing two leading trends among the most
successful methods. First, the importance of the ability to model nonlinear relationships between
data and outcomes, and second, the incorporation of prior knowledge, e.g. biological pathways.
The challenge winning model, Bayesian multitask multiple kernel learning method [34, 79|,

incorporated both of these approaches together with multi-drug learning [4].

The integration of prior biomedical knowledge has since been recognized as a promising
approach for drug response prediction. Lee et al. [129] developed a method that integrates
disease relevant multi-omic prior information to prioritize gene-drug associations. Most recently,
Zhang et al. [219] and Wang et al. [208] introduced methods based on similarity network fusion
and similarity-regularized matrix factorization respectively that take into account similarity
among cell lines, drugs and targets. Drug chemical features and similarities were shown to be a

promising additional information that can improve drug response prediction performance.
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Deep learning methods for monotherapy prediction

The use of neural networks for drug response prediction dates back to the 90s. El-Deredy
et al. [57] showed that a neural network trained on tumour nuclear magnetic resonance (NMR)
spectra data has potential as a drug response predictor in gliomas, and may be used to provide
information about the metabolic pathways involved in drug response. Neural networks, however,
did not become a method of choice for monotherapy prediction yet. In fact, despite the recent
prevalence of deep neural network (DNN) methods across many areas and industries, including
related fields, such as computational chemistry [37, 206, 3, 75, 77, 148], DNNs have only fairly
recently found their way into the drug response prediction. The reason for this is the typically low
ratio of the number of samples to the number of measurements per sample that does not favour
traditional feedforward neural architectures. Overparameterization in these models easily leads
to overfitting and poor generalization to new datasets. However, in recent years, more public
data has become available and newly developed deep neural network models are showing promise.
For example, Chang et al. [26] developed the CDRscan model, featuring a convolutional neural
network architecture trained on a dataset of ~1000 drug response experiments per compound.
Their model achieved significantly improved performance compared to other classical machine

learning approaches, Random Forests and SVM.

Table 2.3: Computational tools for monotherapy prediction. A non-exhaustive summary
of the most recent monotherapy prediction methods with an available web service or source code.
(*) A web application has been promised by the authors, but is not available yet as of July 2019.

Name Availability | Purpose Methodology and Features Reference
Genomic and compound
HNMDRP Matlab and | Drug response | features combined with | Zhang et al.
R code prediction in CCLs | drug-target interaction and | [219]
PPI
Drug prioritization | Kernelized rank learning
KRL Python (ranking) in CCLs | using genomic features, | He et al
code transferable to | (predominantly gene | [94]
patients expression)
*Web Drug response Deep neura : networ.k trained Chang et al.
CDRscan . S on somatic mutations and
Application | prediction in CCLs . [26]
drug compound fingerprints
SVM models using
CancerDP | WWeb Drug response | (combination of) genomic | Gupta et al.
Application | prediction in CCLs | features (mutations, CNVs, | [88]
expression levels)
Bayesian multiview (original
BMTMKL Matlab and | Drug response | genomic modalities + | Costello
R code prediction in CCLs | aggregated views) multitask | et al. [34]
model
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Another promising direction is autoencoders that are able to learn from smaller datasets. A
major contribution of this thesis is a pioneering work on use of variational autoencoders for drug
response prediction, first published in conference workshop contributions [167, 168] then in the
final journal publication [166]. We evaluated semi-supervised variational autoencoders on
monotherapy response prediction and developed a joint drug response prediction model,
Dr.VAE, that leveraged pre- and post-treatment gene expression in cell lines, showing improved
performance in drug response prediction on a variety of FDA approved drugs compared
comprehensively to many classical machine learning approaches. Dr.VAE project is the subject
of Chapter 3. In parallel with our work, Way and Greene [210] explored the use of variational
autoencoders for unsupervised low-dimensional gene expression representation. Dincer et al. [45]
developed DeepProfile, a method that combined variational autoencoders; Section 2.5.2; to learn
8-dimensional representation of gene expression in AML patients and then used this
representation to fit a Lasso linear model for drug response prediction. Similarly, Chiu et al.
[28] pretrained autoencoders on mutation data and expression features on TCGA dataset and
subsequently trained a deep drug response predictor. The brief summary of methods is available
in Table 2.3. The trend of model development shows that as more data become available and
deep learning methods become better adapted to high dimensional / low sample size data, there
is hope for convergence and creation of sophisticated models that will likely push the field of

computational drug response prediction forward to eventually become clinically relevant.

Predicting clinical drug response from pre-clinical experiments

Clinical trial datasets of cancer treatments which include genomic characterization of the tumours
are small and scarce, therefore for the vast majority of drugs it is not possible to train a predictive
model using only clinical datapoints. Many have tried to use, perhaps without explicitly realizing
it, approaches that can be categorized into domain adaptation or transfer learning. They fit
their models using pre-clinical datasets and then adapt them to or directly evaluate them on the
limited clinical data.

The first methods in this area |71, 72, 221| are based on aligning the source and target
domains and thus can be characterized as domain adaptation approaches. They involve a dataset
preprocessing step to remove the difference in marginal distribution of the gene expression between
cell lines and a target patient cohort by methods typically used for dataset homogenization or
batch effect removal such as ComBat [110], SVA [130, 131] or removal of first few Principal
Components. Using so preprocessed datasets they fit and evaluated standard prediction models
such as logistic regression, support vector machines or random forests. A step further is PRECISE
method by Mourragui et al. [151] that explicitly aligns principal subspaces between the domains.

Recent transfer learning approaches are neural network-based autoencoding models, that
learn a low-dimensional representation of gene expression and then fit a response predictor
on such embedding. Dincer et al. [45], Chiu et al. [28] refit a patient-specific predictor, while
Sharifi-Noghabi et al. [183] directly apply the cell-line-trained predictor to clinical evaluation
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dataset without retraining.
The Chapter 4 is dedicated to in-depth assessment of domain adaptation for drug response

prediction, while the machine learning background is given in Section 2.6.

2.4.3 Limitations of monotherapies

While drug response prediction can help pick an optimal therapy given the current molecular
characteristics of the cancer cells, tumours often exhibit drug resistance over the course of
the treatment. Consequently, patients that respond initially to therapy regress as their cancer
either adapts to overcome the chosen treatment, or an existing resistant subclone repopulates
the tumour [97|. For therapies inhibiting the activity or signalling of their target, a common
mechanism towards resistance is feedback selecting for upregulated expression of the target
protein. For example, resistance to 5-FU has been demonstrated to arise from the amplification of
its target thymidylate synthase (T'S) [105], with corresponding overproduction of TS enzyme and
mRNA transcripts [16]. Furthermore, especially for tyrosine kinase inhibitors, tumours will evolve
to re-activate pathways downstream of the targeted protein. A classical example is the resistance
to the EGFR inhibitor gefitinib which can often be explained by an acquired T790M mutation
reducing drug binding affinity [121]. Other mechanisms of resistance include modifications to
enzymes involved in drug metabolism to either reduce conversion of drugs to active forms or
deactivate the compound [146, 99|, and more recently, the intra-tumour heterogeneity [195].

Intra-tumour heterogeneity and clonality is intimately linked with the problem of resistance to
treatment. The approaches reviewed above make drug response predictions using the molecular
state from bulk profiling at a single point in time. However, the heterogeneity within tumours
and the evolution of the cell population during treatment means that these predictions may not
extrapolate to every cell within the tumour throughout the course of treatment. Intratumoural
heterogeneity can act as the fuel behind clonal evolution during treatment, with the treatment
acting as selective pressure selecting for a resistant subclone [213].

Drug combinations are crucial next step for addressing the issue of drug resistance and
preventing recurrence caused by a negligible amount of remaining cancer cells. Synergistic
combinations can also reduce toxicity by allowing for lower doses of either drug to be used. By
enabling reduced doses, drug combinations can further increase the feasibility of drug repurposing
by increasing the potency of compounds that are only effective at clinically irrelevant doses [194].
Thus a promising future direction in cancer treatment is the development of computational
methods that account for tumour clonality and / or can predict anti-cancer drug combination
synergies as compared to only monotherapy response. However this research is outside of the

scope of this thesis and in what follows we specialize in monotherapy drug response prediction.
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Figure 2.4: A simplified hidden Markov model of eukaryotic genes. Figure from Yoon [217]
reproduced with permission of Bentham Science Publishers LTD. in the format thesis/dissertation
via Copyright Clearance Center.

In top right is shown a set of four possible hidden states. In top left is shown the state space
transition model, albeit without transition probabilities. In bottom, shown is an example of
observed DNA sequence and the corresponding hidden states. In this example, the HMM models
a gene simply as a sequence of nucleotide triplets (codons). No further gene structure is modeled
nor are the triplets guaranteed to encode one of 20 amino acids.

2.5 Introduction to selected latent variable models

This section briefly introduces probabilistic latent variable models used and built upon in this
thesis. First is described hidden Markov model with exact polynomial time inference and learning
algorithms, used for probabilistic sequence classification in Chapter 5. Next follows gentle
introduction to variational inference and variational autoencoders, a probabilistic framework for
deep latent variable models with approximate amortized inference [115, 174, 116]. Finally, we
describe semi-supervised variational autoencoder [117|, an extension that additionally enables
semi-supervised classification, which is also the basis for variational fair autoencoder [139]
discussed in the next section. The approach of amortized variational inference and the described

models are utilized and evaluated in Chapters 3 and 4.

2.5.1 Hidden Markov Model

A hidden Markov model (HMM) is a probabilistic model well suited for modeling of sequences of
observable events that depend on unobservable (hidden) states. The hidden states are assumed
to form a Markov chain, where the probability distribution over a hidden state at step i depends
only on the previous state ¢ — 1; the transition probability. While the probability distribution of
the observed symbol at step ¢ then depends on the underlying state of the step ¢; the emission
probability.

HMDMs have been extensively used in many fields for decades, notably in speech processing
[111] and analysis of biological sequences [52, 217]. In bioinformatics, extensions like pair-

HMM or profile-HMM [54], were developed for various tasks such as pairwise and multiple
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sequence alignment, genome annotation (Figure 2.4), protein secondary structure prediction,
RNA structural alignment, and many more, such as recently for chromatin state discovery and
characterization [58] or for base-calling in nanopore DNA sequencing [199, 136, 39] (now replaced

by recurrent neural networks [21]).

First, we introduce the necessary notation for components of an HMM \ = (A, B):
S =1{s51,52,...,5N} set of N possible states

A N x N transition probability matrix where each a; ; represents
the probability of moving from state s; to state s;

Z=21,%2,...,2T sequence of T' (hidden) states, Vt: z; € S

sequence of T observations (emissions) from a vocabulary V =

X =x1,29,...,2T
7 {wi )T of M possible tokens
N x M emission probability matrix where b; ; represents the
B probability of generating token w; in state s;; we shall denote
P(x; = wj|z = s;) also as b;(xy)
T="T1,T2,...,TN initial probability distribution over states S

Hidden Markov models can be characterized by three fundamental problems, as introduced

by Rabiner [163], for which we then describe efficient algorithms:

Likelihood: Given an HMM X = (A4, B) and a sequence of observations &', determine P(X|\)

(forward algorithm, described below).

Inference: Given an HMM ) and a sequence of observations X, find the most probable hidden
state path in A (Viterbi algorithm, described below).

Learning: Given an observation sequence and the set of possible states § in the HMM, find

HMM model parameters A, B that maximize its probability (maximum likelihood learning).

In case the path of hidden states is known for the training observation sequences, the
forward-backward algorithm can be used to estimate parameters by a variant of simple
maximum likelihood estimation (MLE). Otherwise, if the ground-truth hidden states of
training sequences are not known, an iterative expectation-maximization (EM) algorithm
of Baum-Welsh [11] is needed. Details of these training algorithms are out of scope of this

background chapter.

Forward and backward algorithm

To compute the likelihood P(X'|\) of a sequence X' in an HMM A = (A4, B) we need to sum over

all possible hidden state paths. Note, from now on we leave out conditioning on A to reduce
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clutter in the notation when possible.
P(X)=) P(x,2)=) P(X|Z)P(2) (2.1)
Z Z

This marginalization over Z can be efficiently computed in O(N?T) time by a dynamic
programming (DP) algorithm called the forward algorithm or a-pass. During computation of

the forward algorithm we keep an T' x N table «, where
(i) = P(x1,29, ..., Tty 20 = S5) (a-pass definition, 2.2)

is the probability of all possible hidden state paths that could generate the ¢ prefix of observation
sequence X<; = x1,%2,...,2¢ and end in state s;, i.e. zx = s;. The a4(i) can be computed
recursively by summing over all paths of length ¢ — 1 extended by transition to state s; and

emission of x; in this state s;:
N
(i) = Z ar—1(4) - aj;i - bi(zy) (a-pass recursion, 2.3)
j=1

Given we correctly initialize the dynamic programming table:
a1 (i) = mibi(x1) (a-pass initialization, 2.4)

the likelihood of the observation sequence X is then:

PXx) = Z oy (i) (a-pass result, 2.5)
=1

The dynamic programming recursion that the forward algorithm computes can be rewritten

in backward fashion, creating an equivalent algorithm that computes
Br(i) = P(Tt41, T2, - T, 2t = S;) (B-pass definition, 2.6)

This algorithm is called the backward algorithm or S-pass. We can use it to compute likelihood
P(X) as well, but its main utility is in the so-called forward-backward algorithm for maximum

likelihood estimation of the model parameters A\ = (A, B).

Viterbi algorithm

Viterbi algorithm is an algorithm for finding an optimal sequence of hidden states Z* for a given
sequence of observations X, an inference task also called decoding. Viterbi algorithm is a dynamic
programming algorithm similar to the forward algorithm with two main modifications. Firstly,

to compute likelihood of X in an optimal sequence of hidden states instead of marginalized
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over all possible paths, as done by the forward algorithm above, we need to only consider the
best extension of previous prefix paths instead of summing over all of the possible extensions.
This requires simply replacing the summation by maximum operation in the recursion formula.
Secondly, in order to reconstruct the optimal Z*, we need to keep track of optimal path extensions
in form of backpointers 7;(7) during the computation.

Viterbi dynamic programming algorithm:

(i) = ZlI-ltl-a;t(—l P21,y 201, @1y« oo Tty 2t = Si) (Viterbi definition, 2.7)
v1(2) = mibi(z1) (Viterbi initialization, 2.8)

(i) =L (2.9)

(i) = mﬁf vi—1(5) - aji - bi(ze) (Viterbi recursion, 2.10)

j:
. N .
(i) = arg HilaXUtfl(j) “aj - bi(y) (2.11)
]:

Finally, the probability of the observation sequence X given the most likely hidden state path
Z* in the HMM A is:

P(X|2*) = m]élx vr(4) (Viterbi result, 2.12)
1=

We can then recover the entire most likely hidden state path Z* by following backtraces 7(7)
from the last state 27, of the optimal path:

2 = arg]}[nax vr (i) (Viterbi backtrace start, 2.13)
i=1
The final backtracing step takes additional O(T') time, which does not change the overall time
complexity O(N?T) of the algorithm.

2.5.2 Variational Autoencoder

Generative modeling is a paradigm in machine learning that aims to approximate how real data is
generated, which can lead to learning of meaningful data representations, reusable also for other
down-stream tasks beyond realistic sample generation. The variational autoencoders (VAEs)
[115, 174] are a principled framework for learning expressive deep latent variable models that
have been successfully applied to a variety of problems ranging from aforementioned generative
modeling [25, 109, 118, 119], to semi-supervised learning [117, 139, 140, 162, 18|, representation
learning [20, 55, 169, 216, 78, 210], transfer learning [45], one-shot learning [175], and more [124].

In this section we provide a brief introduction to the framework of variational autoencoders,
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Figure 2.5: An illustration of variational autoencoder.

for an in-depth introduction please refer to Kingma and Welling [116], and to Koller and Friedman
[122] for probabilistic latent variable models at large.

The major advantage of the VAE framework is that it enables modeling of highly complex
conditional distributions between random variables of a probabilistic model. Each conditional
distribution is modeled as a parametric distribution whose parameters are computed by a
neural network. While there is no restriction on architecture of these neural networks, the used
parametric distributions have to be reparameterizable. The reparameterization, explained later,
allows stochastic gradient descent (SGD) to be used to conveniently learn the generative model
jointly with its corresponding inference model.

We will demonstrate this variational framework on the simplest latent variable model
p(x,2z) = p(x|z)p(z), called the variational autoencoder (VAE), after which the framework bears
its name. For simplicity, in this section we assume all distributions are multivariate Normals. The
generative conditional distribution p(x|z), also called the decoder, is thus a Normal distribution

parameterized by a deep neural network:

(py, log ox) = DecoderNNy(z) (2.14)
Py (x[z) = N (x; iy, diag (x)) (2.15)

where 6 denotes the weights and biases of the neural network. Next, the prior over latent variable

z is a standard Normal:

p(z) =N (0,1) (2.16)
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The exact posterior inference and learning in VAE are in general intractable problems.
Therefore, using the approach of variational inference, a parametric inference model g4 (z|x) is
introduced and trained such that ¢4(z|x) ~ pg(z|x). This approximate posterior model is often
referred to as the encoder or recognition model. Here ¢ denotes the variational parameters of
this model. Analogously to pg above, the g4(z|x) can be parameterized by a neural network with

parameters ¢:

(pt4,1log o,) = EncoderNNy(x) (2.17)
qs (2|x) = N (2; p,, diag (072)) (2.18)

Note that VAEs use what is called the amortized variational inference [73|, as a single
inference model is learned that shares variational parameters across all datapoints, no per-

datapoint optimization loop is required for the inference.

Evidence Lower BOund. Now that VAE model is defined, we need an efficient way to train

it to maximize the data likelihood, also called evidence, w.r.t. the model parameters:
po(x) = /pg(x|z)p(z)dz (per-datapoint likelihood, 2.19)

As introduced above, VAE is a variational method. Instead of optimizing py(x) exactly we aim to
optimize alternative objective, the evidence lower bound (ELBO), that will lead to joint training

of both model 6 and variational ¢ parameters. The lower bound can be derived as follows [116]:

log po(x) = Ey, (zx) [}nge( x)] (2.20)
:Eq¢(z|x) lo ZZ((’Z‘ 3 ;‘Z g] (2.22)
ZEq¢(z|x>_ pe(};i;)) B (al) [Zﬁg:{zﬂ (2.23)

=£(xf.6) (ELBO)  =Dycr[gy(a)llpo(2l)]

The emergent Kullback-Leibler (KL) divergence represents divergence of the approximate
posterior gy (z|x) from the true posterior pg(z|x), and also the tightness of the ELBO L(x;0, ¢)

w.r.t. the exact evidence log pg(x):

L(x;0,¢) = logpy(x) — Dxr [q4(2]%)||pe(2]x)] (2.24)
>0

< log py(x) (2.25)

Maximization of L£(x;6,¢) thus leads to increase of the model likelihood and decrease of the



CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 26

variational gap between the approximate and exact posterior.

Reparameterization trick. In order to train the VAE using SGD, we need to be able to

backpropagate through ELBO to get gradients w.r.t. 8 and ¢ parameters.

L(x;0,¢) = Eq, (4/x) log po(x,2z) — log g4(z(x)] (2.26)
= By, (zlx) [log po(x|2) 4 log p(z) — log g4 (z|x)] (2.27)
=Ky, (ax) [logpo(x|z) + log qf((;l)} (2.28)
= Eq¢(z\x) [logpe(x\z)] — Eq¢(z|x) [log qQﬁp((ZZ)X)] (2.29)
= Eg(ax logpe(x|z)]  — Drr [q4(z[x)||p(2)] (2.30)

expected reconstruction likelihood posterior regularization

ELBO written in the form above can be easily differentiated w.r.t. generative parameters 6,
however for ¢ we cannot backpropagate through the expectation of the reconstruction likelihood
term as it depends on ¢ (for Normal distributions the KL term can be evaluated analytically).
Here comes in the reparameterization trick [115, 174], a change of variables such that the random
variable z ~ ¢4(z|x) is expressed as a differentiable function g of another random variable €
given x and ¢:

z = g(€, ¢, x) (2.31)

Thanks to the fact that any Normal distribution can be reparameterized as a linear combination

of a standard Normal:

A~ N(p, o) (2.32)

e~N(0,1) (2.33)

AL et u (change of variables, 2.34)

we can define g as follows:

(p,log o,) = EncoderNNy(x) (2.35)

e~N(0,I) (2.36)

Z= Oz€+ U, (reparameterization trick, 2.37)

—_—
9(&,¢,x)

It is then possible to rewrite the expectation of reconstruction likelihood formula such that it

does not depend on the variational parameters ¢:

Eq, (ax) log po(x[z)] = Ey(e) [log po(x|g(€, ¢, x)] (2.38)
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Figure 2.6: An illustration of semi-supervised variational autoencoder. Solid lines represent
generative distributions py and dashed lines represent variational posteriors gg.

This expectation now can be approximated by a simple Monte Carlo estimator, gradients of
which are straightforward to compute w.r.t. both § and ¢, allowing the ELBO to be optimized
by SGD.

In addition to differentiable encoders and decoders, the VAE framework as presented relies on
using latent variables with parametric distributions that are reparameterizable. Many continuous
distributions like Normal, Laplace or Cauchy are reparameterizable, but e.g. Beta is not. For
several discrete distributions continuous approximations with gradient estimators were developed,
e.g. for Bernoulli and categorical variables [142, 103, 204, 83| or for permutations [147]. Next,
KL divergence for these distributions may not be analytical, in that case we need to use a Monte
Carlo estimator or rewrite the ELBO into a different form. Last but not least, the restriction
of using parametric distributions can be overcome by using flow-based extensions of the VAE
framework, that can potentially model any continuous distribution [173, 118, 201|. Review of

these models is outside of the scope.

2.5.3 Semi-supervised Variational Autoencoder

Semi-supervised Variational Autoencoder (SSVAE) is a deep latent variable model introduced
by Kingma et al. [117] for semi-supervised learning joint with generative modeling. SSVAE is an
extension of VAE by a second layer of hidden variables that further disentangle the VAE latent
embedding into a latent class variable y and the other factors of variation zo, Figure 2.6. Kingma
et al. [117] originally proposed SSVAE as a “stacked” model of two independently trained models,

however the model can be trained jointly as shown by Louizos et al. [139].

Using the VAE framework of amortized variational inference the evidence lower bounds can
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be derived for both labelled and unlabelled datapoints, denoted L and Ly, respectively:

Lr(x1,¥; 0,0) = Eg, (21 200x1 ) [log po(x1,21,22,y) — log q4(z1, Z2|x1, )] (2.39)
= By, (a1x1) | 108 Do (X1|21) — D1, [qp(22]21,¥)||p(22)] ] (2.40)
+Egy(malary) | — Drcr [as(21]x1)||po (21|22, y)] |
+log p(y)
Ly(x1; 0,0) = Eq, (2, zo.yjx1) [ 108 Do (X1, 21, 22, y) — log g4(21, 22, y[x1)] (2.41)
= Eq, (2 x1) [ 10g Po(x121) — Dir [g6(y121)|p(y)] ] (2.42)

+ Eg, (yl1)ap (z2lz,y) | — DiL [ag(z1]%1)|po(21 |22, y)] |
+ By (2111 )as (vln) | — DL [a6(22]21,5)||p(22)] ]

The model parameters # and variational parameters ¢ can be jointly optimized by SGD to
maximize the ELBOs, analogously to VAE. The final training objective Jssvag is the sum of all
per-datapoint ELBOs and of an additional prediction loss computed on labelled datapoints as
otherwise the predictive posterior g4(y|z1) would not get trained on the labelled data:

Jssvae = > Lp(x1,y:0,0)+ > Ly (x1;0,9) (2.43)
(x1,y)€L x1€U
T wy Z Bg,(z11x1) [log a5y = t‘zl)}
(x1,y)€L

2.6 Introduction to domain adaptation

Domain adaptation is a methodology for learning a classifier in a setting, when the training
data distribution; the source domain; is shifted from the test data distribution; the target
domain. Typically, many labelled datapoints are available in the source domain, while in the
target domain only a few or none. Note that this is the case in the problem of patient drug
response prediction based on labelled dataset of cell line responses, the topic of Chapter 4. This
section summarizes a popular approach to unsupervised domain adaptation based on learning of
domain-invariant representations [123, 209, 222|, such that the latent representation of the input
is discriminative of the primary classification task while simultaneously invariant to the domain.
This approach became popular with uptake of neural networks as they are particularly powerful
feature extractors. We will describe in further detail two particular methods, domain-adversarial
neural networks [66, 65, 2| and variational fair autoencoders [139, 18], that, respectively, represent
two most common types of methodologies: i) adversarial training for domain invariance based on
paradigm of generative adversarial networks [81], and ii) latent domain matching by discrepancy
minimization or sub-space alignment [61, 19, 218, 151]. We conclude by summarizing most

recent developments [186, 87, 101] and emergent criticism of the domain-invariant representation
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2.6.1 Theoretical background

Here we summarize the theoretical motivation behind domain adaptation via learning of domain-
invariant representations given Ben-David et al. [13, 14].

Formally, denote X' the input feature space of the classification task and )} = {0,1} to be
the set of possible labels; assuming here a binary classification task for simplicity. Then in case
of domain shift, there exist two different distributions over the joint space X x ) of features and
labels, denoted as the source domain Dg and the target domain Dp. Additionally, let us denote
Dz)f as the marginal distribution over features X in the target domain, which is equivalent to the
D7 with labels ) marginalized out.

In case of unsupervised domain adaptation task the training set with N = n + n’ samples is
composed of n labelled samples S drawn i.i.d. from Dg and of n’ unlabelled samples T' drawn

i.i.d. from the target input domain Di,)f :

S ={(xiyi)}iz1 ~ (Ds)" (2.44)
T ={xi}ilppr ~ (D7) (2.45)
training set = SUT (2.46)

Then the goal of unsupervised domain adaptation is to learn a classifier  : X — ), such that it
maximizes the probability of correct classification of samples from D7, without seeing labelled
target domain samples in the training. An equivalent alternative is to minimize the so-called

target domain risk:

RDT (77) =1- Pr(x,y)EDT [U(X) = y] (2'47)
= Prxy)eny [0(x) # Y] (2.48)

The general approach is to bound the target risk, i.e. the probability of target domain
prediction error, by the sum of the source domain risk and of a distance between the source and
target domain distributions. In this case Ben-David et al. [14] utilize the notion of H-divergence
[113] that is defined as follows.

Definition of H-divergence: First, define a hypothesis class H as a set of binary classifiers
n: X — {0,1} on an input space X. Then given two domain distributions Dgf and D7t over X,
and a hypothesis class H, the H-divergence between D:qY and D;‘f is:

Aw(DF, D) = 250 [Prepy 1(x) = 1] = Propyln(x) = 1 (2.49)
n

Intuitively, H-divergence then corresponds to performance of a classifier from H that best
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distinguishes samples drawn from the two domains Dgf and Dj)f . The empirical H-divergence

between two samples S~ (DF)™ and T~ (D)™ then can be computed as:

(S, T) = 2 (1 ~ min [1 > 1lnfxi) = 0] - % S I = 1]]) (2.50)

neH [N

1=n-+1

Now coming back to the estimation of an upper bound on the target risk Rp,(n). The
Rp,(n) can be assumed to be bounded by the sum of source risk and the domain H-distance,

i.e. formally for every classifier n € H:
RDT (77) < RDS (77) + d?—[(Dg‘{a Dj)g) (2'51)

Ben-David et al. [14] (Theorem 2) proved that for sample sets S ~ (Dg)™ and T ~ (D)™, with
probability at least 1 — § over the choice of S and T, it holds that for every classifier n € H:

Rpy(n) < Rs(n) +du(S,T) + B+~ (2.52)
where
Rs(n) = % i In(x;) = vil, (empirical source risk) (2.53)
i=1
B = nirg_l[RDS (n*) + Rp,(n")], (best combined risk achievable in H) (2.54)

and 7 being a term dependent on the sample size, §, and VC dimension of . This result shows
that Rp,(n) will be small when:

1. the term ( is small, that is, there exists a classifier that achieves low risk on both source

and target distributions,

2. the learning procedure that is searching through H to find a good 7 should minimize a

trade-off between the empirical source risk Rg(n) and the empirical H-divergence JH(S, T).

Ben-David et al. [14] further suggest that a good strategy to control the empirical H-divergence
ciH(S, T) is by finding representation of the source and target domain samples such that the two
sets are indistinguishable. Then the empirical H-divergence is minimized, which implies that
a classifier with small risk Rg(n) on the source domain will also have low target domain risk
Rp,(n).

Ganin et al. [66] follow this path and show how to train a deep neural network to represent
the source and target domain samples to be indistinguishable, i.e. to keep JH(S, T) low, while
simultaneously minimize the source domain prediction error and thus obtaining a classifier that

performs well also on target domain.
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2.6.2 Domain-Adversarial Neural Network

In this part we briefly present the concept of Domain-Adversarial Neural Network (DANN)
proposed by Ganin et al. [66] for unsupervised domain adaptation. The DANN architecture is
depicted in Figure 2.7.

In standard deep neural network it is possible to interpret one of the hidden layers as the
latent representation, denoted as features f(x), of the input x. That is, f(x) = Gf(x,0¢), where
Gy is a feed-forward neural network with parameters 6. Then the other part of the network
can be seen as the task classifier, here denoted as label predictor, G (f(x),6,). As motivated
in previous section, it is desirable for these features to be predictive of the class labels in the
original source domain and at the same time invariant w.r.t. discrimination between the source
and target domain. Ganin et al. [66] proposed to achieve this by employing one more classifier
G4(f(x),04) that operates on the features f, the domain classifier. In such network, 6¢,6, are
trained to minimize the class label prediction loss L, and 6, is trained to minimize the domain
prediction loss L4, while at the same time 6 also needs to be trained to mazimize the domain
prediction loss L. Authors showed that this domain-adversarial approach optimizes the domain

‘H-divergence. The learning procedure can be expressed as the following stochastic updates

process:
OL: oL’
0 O —p | —2 — \—2 2.55
Oy < 0, 8Ll 2.56
OLZ
0 0, — 2.
d < 0q—p 20, (2.57)

where A is a parameter that controls the trade-off between minimizing L, and maximizing L.

Ganin et al. [66] reduced the proposed stochastic update process to standard backpropagation
training of neural networks by introducing so-called gradient reversal layer (GRL). A GRL layer
R has only one parameter and that is A. In forward pass GRL is an identity function R)(x) = x,
but in backward pass, the gradient of GRL is negative A, i.e. a%x(x) = —Al. That is, GRL is not
influencing the forward pass, but in backward pass it reverses and scales the gradient propagated
through it. Plugging such gradient reversal layer between Gy and Gy, that is between the feature
extractor and the domain classifier makes the standard backpropagation learning that minimizes

error E(0¢,0,,0q) equivalent to the updates above, where:

E(0f,0y,00) = > Ly(Gy(Gp(xi,0¢),0y),u:) + Y La(Ga(RA(Gy(xi,0)),0a),di) (2.58)

X;ES x; €SUT
S ={(xi,d; =0,y;)}i=; (labelled source domain samples) (2.59)
T = {(x;yd; = 1)}\*, .1 (unlabelled target domain samples) (2.60)
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Figure 2.7: General architecture of domain-adversarial neural network; figure from Ganin et al.
[66] licensed under CC BY 4.0. The first part of the network, here denoted as the feature extractor
(in green) is trained to provide the most representative features for the primary classification
task, while not being discriminative of the source and target domain. This is achieved by
backpropagating the gradient of the task classifier (here denoted as label predictor, in blue)
to the feature extractor. At the same time, the gradient of the domain classifier (in magenta)
is reversed before backpropagating to the feature extractor, thus promoting domain invariant
features f.

To maintain theoretical bounds from Ben-David et al. [14] Theorem 2 (eq. 2.52) the label
classification hypothesis class H, that corresponds to G, has to be a subset of domain hypothesis
class Hq of Gy, i.e. the domain classifier part of the network has to be at least as expressive as

the label classification sub-network.

2.6.3 Variational Fair Autoencoder

Variational Fair Autoencoder (VFAE) is an extension of the SSVAE model [139, 18]. The data
encoder g4(z1|x1) and decoder pg(x1|z1) are extended to be conditioned on an observed variable
s that is a domain indicator variable, Figure 2.8. Here we assume that s € {0, 1}.

VFAE was proposed in context of learning fair representations, when the variable s is

O (Z1s=0, Z1s=1)

Figure 2.8: An illustration of variational fair autoencoder.
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considered sensitive information that may be correlated with the dependent variable y because
of a dataset bias, and the goal is to remove this ‘unfair’ influence of s on prediction of y. In case
of domain adaptation, s as considered a nuisance variable and the goal is to remove the domain
s from the latent representations z; in order to improve cross-domain prediction performance
on y. In addition to conditioning of the input data x; encoder and decoder on s, Louizos et al.
[139] incorporated an additional penalty term based on the Maximum Mean Discrepancy (MMD)
[85] measure to remove remaining dependencies of z; on s, thus achieving domain-invariant
representation.

The VFAE training objective Jywag is similar to Jsgvag with two differences. Firstly, the
ELBOs of labelled and unlabelled datapoints are trivially extended by conditioning on the domain
variable s. Secondly, added is the MMD distance between z; embeddings of the datapoints of

s = 0 domain and s = 1 domain, denoted Zq s—¢ and Zq s—1, respectively.

jVFAE = Z EL (X17y7$ 0 ¢ Z £U X178 0 ¢) (261>
(x1.,y,8)€EL (x1,8)€U
twy Y By [1086s(y = tlz1)]
(x1,y,s)€L

— wMMD MMD (Z1,5=0, Z1,5=1)

Maximum Mean Discrepancy is a kernel-based statistic developed for comparing samples
from two probability distributions and testing the null hypothesis that these distributions are
equal [85, 86]:

MMD?(z, y) N2 ZZk (xi,x5) % ZZk(yl,y]) — QZZk(az,y) (2.62)
v i

lla=b|?
where k(a,b) = e 202 is an RBF (Gaussian) kernel with bandwidth 0. Exact computation of

the MMD takes time quadratic in the number of samples, however there exists a linear time
approximation using random kitchen sinks approach, FastMMD, developed by Zhao and Meng
[223]:

MMD?(z,y) = [|[¢(X) — ¢(Y)|? (2.63)
where,
Z \/7005 ( T + b) (2.64)
W ~ N(0,1) € RMasis*D (2.65)
b~ U(0,2n) (2.66)

In our implementation of VFAE used in experiments in Chapter 4, we use the FastMMD linear

approximation method. We set the number of random basis np,s;s = 500, while we set the RBF
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kernel bandwidth based on “median heuristic” [70]:
o=4/= (2.67)

where v is an estimate of the median square distance in the sample set. Note that Botros
and Tomczak [18, eq. 33| suggest to use v = 2M, where M is the dimensionality of latent
representation z;. This corresponds to the median heuristic when assuming the two sets
of samples, X and Y, being compared are drawn independently from the standard Normal
distribution. In that case the random variable X — Y is distributed as a Normal with mean 0
and variance 2. Therefore the expectation of its square equals its variance + square of its mean,
which is 2, resulting in the expected square distance of 2M for samples from M-dimensional
standard Normal distribution. This would be a reasonable assumption if we imposed N (0, 1)
prior over z;. However that is only the case in a VAE, in VFAE g¢4(z1]x1) is a diagonal Normal,
but not necessarily with zero mean and unit variance, thus we use an empirical estimate of the
median square distance to set 7, as mentioned earlier.

In a follow-up work, Botros and Tomczak [18] slightly improved on the VFAE model by using
a different variational posterior factorization coupled with learned mixture priors (VampPrior
[200]). They also explored use of Mutual Information for domain matching, however in case of

fully observed domain indicator s, the MMD regularizer yielded better results.

2.6.4 Limitations of learning domain-invariant representations

Transfer learning and domain adaptation by learning of domain-invariant representations has been
theoretically motivated, as discussed in Section 2.6.1, and frequently used in the literature. In
addition to the aforementioned methods, many other successful neural network models encourage
similarity between their latent representations w.r.t. the domains. In [137, 138| Long et al. used
MMD or its extension to align layer activations of convolutional neural networks. Zhuang et al.
[224] used KL-divergence to regularize representation learned by a supervised autoencoder such
that the marginal domain distributions are matched. Bousmalis et al. [19] and Hou et al. [98]
developed autoencoding models that split their latent representation into a domain-invariant
and a domain-specific part, recognizing that in some applications domain-specific features are
important for the prediction task. However this approach is only feasible for semi-supervised
domain adaptation.

A common pattern to these methods is that the domain similarity is often enforced by
minimizing a certain distance between the domain-specific data representations. The often used
KL-divergence is an asymmetric measure of how one probability distribution p is different from
another distribution ¢ in terms of information loss. It can be viewed as the difference between the
cross entropy of p and ¢ and the entropy of p. In case g is Normal distribution, the KL-divergence
is minimized when the first two moments of the ¢ density match the first two moments of p

[125]. Next, particularly popular has been the use of Maximum Mean Discrepancy (MMD) [86];
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described above in Section 2.6.3. Through the Taylor expansion of MMD with a universal kernel,
such as the Gaussian kernel, the MMD minimization can be considered a minimization of a
distance between weighted sums of all raw moments of the two distributions [132]. In addition,
several other discrepancy metrics have been proposed. Zellinger et al. [218] introduced Central
Moment Discrepancy, a differentiable distance function that directly measures also differences
of higher order central moments. Last but not least, Ben-David et al. [13] proposed Proxy
A-distance, which essentially measures how difficult it is for a classifier to discriminate between
the domains. While Proxy A-distance was used to quantify domain discrepancy [76], it was

however not until Ganin et al. [66] that directly minimized this distance.

Another common approach has been dimensionality reduction followed by manifold alignment
[82, 51, 80, 61|. Particularly interesting is recent work of Mourragui et al. [151], who introduced
PRECISE, a PCA sub-space alignment method applied to domain adaptation for drug response

prediction.

All the reviewed methods and approaches for unsupervised domain adaptation rely on over-
simplified conclusion that better domain-invariance leads to better domain-adaptation. However
that is not universally true, as sufficient and necessary conditions are not well enough understood,
which has very recently been noted [214, 106, 222]. A common necessary assumption for
unsupervised domain adaptation is covariate shift, which states that the conditional distribution
of class labels given input features P(Y'|X) does not change between domains, while the marginal
distribution P(X) of the features (covariates) is allowed to differ. Ben-David et al. [15] already
showed that covariate shift on its own is not a sufficient condition. While Ben-David and Urner
[12] showed that sufficient support assumption, which states that source domain feature density
has to at least e-overlap all regions with any target domain support, is sufficient. Unfortunately,
as noted by D’Amour et al. [38] and Johansson et al. [106], the higher dimensional the input
space is, the less likely it is that such an overlap would hold. Thus sufficient support assumption

is typically invalid in many high-dimensional datasets.

Johansson et al. [106] pointed out that the 3rd term of Ben-David’s bound £, eq. 2.54, is
ignored by DANN [66] and other methods, which can lead to its explosion, making the upper
bound of the target domain risk uninformative. This scenario happens when enforcing domain-
invariant representation causes significant loss of class-predictive features, which means, that
the hypothesis class is significantly worse in the learned representation space compared to the
original input space. Johansson et al. [106] suggest that adding autoencoding objective may
help to maintain the original hypothesis class. Therefore autoencoding models such as VFAE
or Domain Separation Networks [19] can be more robust, while it also points to existence of a
trade-off between domain-invariance and richness of hypothesis class in a learned representation.
Their analysis concludes that support overlap of target and source domain feature distributions

is more important than achieving their matching.

Wu et al. [214] recognized that unequal ratio of classes in source and target domain, i.e. label

shift, leads to a failure of domain-invariant representation learning. Under these circumstances,
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enforcing domain-invariance necessary leads to representation that partially mismatches classes
between the domains. Wu et al. [214] suggest several asymmetrically relaxed distribution
alignment distances that mitigate this issue. Secondly, in case there is no class-preserving
overlap between the domains, domain-invariant representation can lead to domain alignment that
arbitrarily permutes target domain classes. This is because in unsupervised domain adaptation
all such alignments are indistinguishable from each other and achieve the same training objective.
In this case additional assumptions are necessary, like the cluster assumption, that datapoints
from different domains that are close together belong in the same class. DIRT-T and VADA
method of Shu et al. [186] rely on this cluster assumption.

Zhao et al. |222] also came to the conclusion that domain-invariance is not a sufficient
condition for successful domain adaptation, particularly in case of conditional shift, that is,
when class-conditional distributions of input features are not stationary across domains. They
show that learning invariant representations can in fact be harmful as it can lead to breaking
of originally favourable underlying problem structure. Their theoretical analysis uncovered
that when marginal distribution of class labels differs between the domains, then there is a
fundamental trade-off between achieving small combined classification error in both domains and
learning domain-invariant representations. This is a conclusion similar to that of Wu et al. [214].

Therefore the aforementioned conditions of successful unsupervised domain adaptation via
domain-invariant representation learning need to be assessed in the application dataset. We
conduct an empirical analysis for the problem of drug response prediction from gene expression

features in Chapter 4.



Chapter 3

Dr.VAE: improving drug response
prediction via modeling of drug

perturbation effects’

3.1 Introduction

Personalized drug response prediction promises to improve the therapy response rate in life-
threatening diseases, such as cancer. There are two main impediments that make the task of
drug response prediction highly challenging. First, the space of all possible treatments and their
combinations for a given condition is prohibitively large to be explored exhaustively in clinical
settings, drastically limiting the sample size for many therapies and tissues of interest. Second,
cancer heterogeneity among patients is very high, reducing the statistical power of biomarker
detection. These two conditions make it hard to characterize the genotype-to-phenotype landscape
comprehensively making it difficult to accurately stratify drug treatment options for a particular
cancer patient. To fulfill the promise of precision medicine, we need predictive models that can
take advantage of heterogeneous, sparsely sampled data and data generated from pre-clinical
model systems, such as cancer cell lines, to improve our prediction ability.

In the last decade there have been several public releases of large-scale drug screens in
cancer cell lines. The greatest advantage of cell lines is their potential for high-throughput
experiments as it is possible to screen cell lines against thousands of chemical compounds,
both clinically-approved and experimental. This screening task was undertaken by several
large consortia and pharmaceutical companies resulting in large, valuable public data resources
[171, 68, 9, 215, 170, 92]. The availability of these large cancer cell line datasets spurred the
development of predictive models [156, 7, 220, 208, 219, 129, 8, 179, 196] and computational
challenge-based competitions [34, 149].

Particularly influential has been the NCI-DREAM drug prediction challenge [34]. This

"Work published in Oxford Bioinformatics (2019) [166] and earlier workshop contributions [167, 168].
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challenge had 44 competing methodological submissions, categorized into six major
methodological types. Their post-competition analysis revealed two particular trends among the
most successful methods, the ability to model non-linear relationships between data and
outcomes, and incorporating prior knowledge such as biological pathways. The winner of this
challenge incorporated these approaches together with multi-drug learning by developing

Bayesian multitask multiple kernel learning method [34].

Complementary to large-scale cell line viability screens, the National Institutes of Health
Library of Integrated Network-based Cellular Signatures (NIH LINCS) Connectivity Map
(CMap) [192] project measured the transcriptional perturbations induced by over 20000
chemical compounds by profiling 1000 landmark genes in a set of 77 human cell lines before and
after short-term drug treatment. These case-control matched experiments show how the
expression of these genes changed in response to drug treatment at various concentration levels,
typically after 6 or 24 h treatment duration. The set of drug-induced up- and down-regulation
signatures is referred to as a drug perturbation signature {192, 187|. Combining response and
perturbation data is expected to ultimately yield a better and more biologically relevant model
of drug response [192, 154].

Previous work by [154] studied transcriptomic perturbations of six breast cancer cell lines,
from an initial CMap release, in combination with phenotypic drug response measurements to
determine whether cell lines that have similar phenotypic drug response also share common
patterns in drug-induced gene expression perturbation. Their analysis concluded that this is
the case for some drugs (inhibitors of cell-cycle kinases), but for other drugs the molecular
response was cell-type specific, and for some drug-cell line combinations a significant transcription
perturbation had no measurable impact on cell growth. These results motivated us to develop a
unified method that could identify more complex associations of molecular perturbations and

phenotypic responses that are potentially unique to a cell line subgroup.

The drug response prediction problem suffers from a high feature-to-sample ratio, where only
a limited number of samples are available compared to the large number of measured molecular
features (e.g. gene expression levels for thousands of genes). One way to alleviate this hindrance
is to find a reduced representation of the original data that captures the essential information
needed for the prediction task. Here, we take the approach of semi-supervised generative
modeling based on variational autoencoders (VAE) [115] that present a way to model complex
conditional distributions. Way and Greene [210] have shown that VAE can extract biologically
meaningful representation of cancer transcriptomic profiles, while Dincer et al. [45] combined a
pre-trained VAE and a separately trained linear model in a drug response prediction method
named DeepProfile. Contrary to Dincer et al. [45] we aim to jointly learn a latent embedding
that improves our ability to predict drug response (phenotypic outcome), while leveraging the
originally unsupervised (unknown phenotypic outcome) drug perturbation experiments to aid in

the learning of such embedding.

We introduce Drug Response Variational Autoencoder (Dr.VAE), a deep generative model to
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Figure 3.1: An overview of Dr.VAE prediction process. In training, Dr.VAE learns a drug
response classifier jointly with a latent representation of pre-treatment gene expression and its
drug-induced change. To make a prediction, we first embed the pre-treatment gene expression x;,
and then, from this latent representation z; we predict latent representation of post-treatment
state zo. Based on both z; and zs, a logistic regression classifier predicts the probability of
positive response. Additionally, we can decode the predicted post-treatment latent representation
Z5 to the gene expression data space, but this is not required for drug response classification.

predict drug response from transcriptomic perturbation signatures. Dr.VAE is a probabilistic
graphical model where each conditional distribution is computed by a deep neural network. The
model jointly learns a drug response predictor and a generative model of drug perturbation
effects in a low-dimensional latent representation of gene expression. This latent space is defined
by an encoder and decoder, both parameterized by a neural network, that, respectively, translate
to and from this latent space. The entire model, together with neural networks for approximate
inference, is optimized jointly end-to-end to maximize evidence (marginal likelihood) of the

observed training data. An overview of Dr.VAE is illustrated in Figure 3.1.

In our results, Dr.VAE significantly outperformed classification models typically used in the
field in more than half of the tested drugs and performed on par for most of the other drugs.
We show that the achieved improvement of Dr.VAE in drug response prediction is indeed due
to the joint modeling of drug response and drug-induced perturbation effects. This result is
further confirmed by observing that even unsupervised generative modeling of gene expression
and drug-induced perturbations yields a low-dimensional representation that is better suited for

subsequent training of standard classification models than the original data representation or
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representation obtained by principal component analysis (PCA).

3.2 Materials and methods

3.2.1 Pharmacogenomics high-throughput cell line datasets

We harness two principally different types of pharmacogenomics datasets, both retrieved via
PharmacoGx R package [187] and PharmacoDB [188|. First is a database of sensitivity of cancer
cell lines to drug treatment, the Cancer Therapeutic Response Portal (CTRPv2) [170], that
provides relative viability of cell lines at various drug concentration levels for combination of
up to 860 cell lines and 481 drug compounds. Sensitivity of the cell lines to a drug treatment
is quantified by the area above the dose-response curve (AAC), which was recomputed by
PharmacoGx from raw CTRPv2 experimental results. We further binarized the continuous
AAC by the waterfall method [9, 89], turning the sensitivity prediction task into a discrete
classification task.

Secondly, we utilized the NIH LINCS Consortium CMap project. The recently extended
CMap, termed CMap-L.1000v1 [192], screened perturbation effects of 19811 drug compounds on
gene expression of L1000 landmark genes in up to 77 cell lines. Experiments in CMap-L1000v1
do not measure the drug treatment sensitivity, however some of the cell lines were independently
tested in CTRPv2 as well. We cross-referenced these cell lines and assigned the corresponding
label to their perturbation measurements.

From the CMap-L1000v1 dataset, we used the level 3 data, i.e. the quantile normalized
gene expression of 978 landmark genes measured on Luminex based L1000 platform shown to
be consistent with gene expression measured by RNAseq [192, 178]. From the available set of
experimental conditions, we selected perturbation experiments with duration of 6 h conducted
at the most common concentration level for each particular drug. That is, a concentration
level that most cell lines were measured at for that drug. In case a cell line was not tested at
the chosen concentration, we used the closest tested concentration. Next, we matched controls
(DMSO vehicle) experiments to the drug perturbation experiments by the batch ID and bead
ID, to minimize batch effects between the cases and controls. Further, we filtered the selected
case-control pairs by correlation (>0.75 Pearson p) to filter out possibly mislabeled experiments
or outliers.

CTRPv2 and CMap-L1000v1 datasets had 973 common genes. We standardized the expression
values to zero mean and unit variance within each gene. For further homogenization, including
batch effect removal and differences between two incorporated data sources, we also removed the
first principal component (explaining 12.8% of variation) from the pooled dataset.

We selected 26 drugs tested in both CTRPv2 and CMap-L1000v1 datasets based on two
simple criteria: (i) for each selected drug at least eight distinct cell lines were tested in CMap-
L1000v1 perturbation experiments; and (ii) at least 20% of screened cell lines in CTRPv2 were

sensitive to the drug after binarization of dose-response AAC. The dataset summary is detailed
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in Appendix A.6.

3.2.2 Dr.VAE

We present Dr.VAE, a new machine learning model based on a semi-supervised generative model.
Dr.VAE learns a latent embedding of the gene expression. The latent embedding takes advantage
of both cell line viability experiments that measure drug response outcome directly and, at the
same time, the drug-induced transcription change, which in our case is modeled as a linear
function in this latent space. This is achieved via joint training of the model on (i) ‘perturbation
pairs’ [X1, X2| of pre-treatment (control) and post-treatment gene expression (outcome label y
is only observed for some pairs) and (ii) ‘singletons’ of pre-treatment gene expression with no
known post-treatment expression. Most of the outcome y labeled data are in the latter category.
We model the drug perturbation effects with a single step latent time series model, similar to
Deep Kalman Filter [124] and structured graphical models with amortized inference [109]. The
graphical representation of Dr.VAE model is shown in Figure 3.2.

Formally, Drug Response VAE models a joint distribution p(x1,X2,21,22,23,y) of pre-
treatment and post-treatment gene expression x1, X2, their latent embedding z,, zo, response class
y, and class-independent latent representation of the pre-treatment expression zs. Factorization

of this joint probability distribution is depicted in Figure 3.2(a) (solid edges) and is as follows:
p(X1,%X2,21,22,23,y) = p(X1]21) - p(X2|22) - p(22|21) - p(21]23, ) - p(23) - P(¥) (3.1)

Individual conditional generative distributions p(-) of Dr.VAE take the form of diagonal
multivariate Gaussian distributions, while p(y) is a uniform categorical prior over the binary
response y and prior p(z3) is a unit Gaussian AN(0,I). The conditional distributions are
parameterized by neural networks with a set of parameters 0, analogously to a VAE [115, 174].
We want to model all gene expression measurements in a single latent space, thus the pre-
and post-treatment gene expression have to be embedded into a common latent space. This is
achieved by sharing the ‘data decoder’ pg(xy|zx) for both k € {1,2}. Additionally, we constrain
the mean function of the perturbation py(z2|z1) to be a linear function z; + Wz; + b. Here, the
W and b are initialized close to zero, such that pg(z2|z;) starts as an identity function in the
beginning of optimization process.

In order to train and use our model, we need to be able to perform efficient inference of
the hidden variables from the observed variables. We turn to stochastic variational inference
and introduce an approximation ¢ to the true posterior. We assume this approximate posterior
q to factorize as shown in Figure 3.2(a) (dashed edges). Akin to generative distributions p
introduced above, the variational distributions are diagonal multivariate Gaussian distributions,
with exception of g4(y|21,22), parameterized by neural networks with a set of parameters ¢. The
‘data encoder’ gy (z|x)), detailed in Figure 3.2(d), is shared between pre- and post-treatment

for the same reason the data decoder is shared. The classification posterior ¢4(y|z1,22) is a
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Figure 3.2: Dr.VAE model and its derivatives. (a) Factorization of the generative
distribution p (solid edges) and of the approximate posterior ¢ (dashed edges). In case the post-
treatment gene expression X is not observed, we use the expected posterior Ey, (5, |x,) [Po(2221)]
for zo instead. (b,c) Hyperparameters of the generative and inference model, respectively.
Node labels show dimensionality of the corresponding random variables, while edge labels show
architecture of the encoders/decoders between the respective random variables. Note, that the
‘data decoder’ pg(xk|zx) is shared for both k& € {1,2} and so is the ‘data encoder’ gy (zx|xx).
(d) Detailed depiction of data-to-latent-space encoder gg(zx|x)) and of the reparameterization
trick. (e) Factorization of SSVAE model [117], we set the hyperparameters of generative and
inference distributions equivalently to the analogous distributions in Dr.VAE as shown in (b,c,d).
(f) Factorization of PertVAE model, we set the hyperparameters of generative and inference
distributions equivalently to the analogous distributions in Dr.VAE (b,c,d).

categorical distribution parameterized by a linear function with soft-max activation over two
output units. In our implementation, we use the latent embedding of pre-treatment state and
the predicted perturbation difference [z1,z2 — z1] instead of [z1,z2] as the classifier input. We

found that this slightly improves the performance.

Ideally we would want to fit the § and ¢ parameters to maximize the evidence (marginal
likelihood) of the observed data, which is a difficult task and subject to active research in the
area of stochastic inference. However, following [115, 139, 117] we can derive a lower bound on
the evidence of each set of observed variables. We have four different sets of observed variables

that correspond to four different types of data we want to fit Dr.VAE to. Therefore there are
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four different evidence lower bounds for us to optimize:

labeled perturbation pairs LP: > L1 p(x1,X2,y;0, ) (3.2)
unlabeled perturbation pairs UP: Y Lyp(x1,X2;60, ) (3.3)
labeled pre-treatment singletons LS: > Lrs(x1,y;6, ¢) (3.4)
unlabeled pre-treatment singletons US: >~ Lys(x1;6, ¢) (3.5)

The sum of these four specific evidence lower bounds, ELBOp,yag, is the evidence lower bound
we need to maximize. Moreover, we need to explicitly introduce cross-entropy loss of the
predictive posterior log ¢4(y|21,22) so that it is trained on labeled data as well. Analogous to
semi-supervised variational autoencoder (SSVAE) [117], this explicit loss is required since in the
labeled data the random variable y is observed and therefore the lower bounds £ p and Lg are
conditioned on y and do not contribute to fitting of ¢4(y|z1,22). Using the reparameterization
trick [115] it is possible to backpropagate through the final objective and jointly optimize
parameters of all pg and g4 distributions by gradient decent. In our implementation, we compute
the parameter updates by Adam [114] for both 6 and ¢ parameters. Derivation of the final
objective function is presented in Section 3.5.2.

Detailed Dr.VAE architecture is shown in Figure 3.2(b-d). Throughout the model, we used

ELU activation function [31] as the non-linearity of our choice.

3.2.3 Perturbation variational autoencoder

We specifically denote the part of Dr.VAE that models drug-induced gene expression perturbations
as the Perturbation Variational Autoencoder (PertVAE). PertVAE is an unsupervised model,
depicted in Figure 3.2(f), which we use to study the contribution of drug effect modeling on
learned latent gene expression representation. We parameterize the Pert VAE the same way as

analogous parts in Dr.VAE. Detailed derivation of PertVAE is presented in Section 3.5.1.

3.3 Results

We evaluated our drug response prediction method, Dr.VAE, on 26 Food and Drug Administration-
approved drug compounds selected from the intersection of two independent in vitro drug screening
studies: (i) the CTRPv2 [170] where viability of up to 855 cell lines was measured in response
to drug treatment, and (ii) drug-induced transcriptomic perturbations, assayed by NIH LINCS
CMap project (CMap-L1000v1) [192], in up to 60 different cell lines for the selected set of drugs.

We compared Dr.VAE to ridge logistic regression (RidgeLR), random forest (RForest) with
100 trees, and support vector machine with a radial basis function kernel (SVMrbf) applied
directly to gene expression and also transformed through dimensionality reduction. We used the
implementation of these methods as available in the scikit-learn library [158|. For each drug, the

best regularization parameter of RidgeLLR was found in cross-validation. To assess the impact
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of drug-induced perturbations on the drug response prediction task we also compared Dr.VAE
to SSVAE [117] where the focus is on classification using solely pre-treatment gene expression.
SSVAE does not include any information of drug-induced transcriptomic perturbations. All
evaluated models were fit independently to each of the 26 drugs, reusing the same deep learning
architecture. We assessed the performance of the classifiers using the area under the ROC curve
(AUROC) and the precision recall curve (AUPR) (presented in Appendix A).

We generated 100 train-validation-test data splits by performing repeated 5-fold cross-
validation 20-times. The perturbation data from CMap-L1000v1 were split based on cell line
identifiers so that all measurements pertaining to one cell line were assigned to one fold. The
CTRPv2 sensitivity data were split such that the ratio of responders/non-responders was
approximately equal in each fold, except cell lines that are in the intersection of CTRPv2
and CMap-L1000v1, which were assigned to their corresponding CMap-L1000v1 folds. The
CMap-L1000v1 folds were pooled into training and validation splits only, as for some drugs the
availability of perturbation experiments was limited to only as few as eight cell lines. Therefore
test splits consisted exclusively of data from CTRPv2 that had no known post-treatment gene
expression. This way Dr.VAE is most fairly evaluated against methods that cannot model
perturbation effects, which is the typical scenario when response prediction has to be made solely
based on pre-treatment features. During training of Dr.VAE and SSVAE models, a validation
fold was used for early stopping and selection of classification loss weight. All compared methods

were trained and evaluated on the same 100 train-validation-test data splits.

3.3.1 Drug response prediction from expression of L1000 genes

We jointly trained Dr.VAE on both CTRPv2 cell line sensitivity dataset and CMap-L1000v1 6
h-long perturbations and compared the performance to three established baseline classification
models. Each model was trained on the expression of 973 genes that form the intersection of genes
measured by the L1000 platform in CMap and RNAseq in CTRPv2. For a fair comparison, the
baseline classifiers were trained on the very same data splits as Dr.VAE, consisting of CTRPv2
and CMap pre-treatment (control) experiments. Following the random variable notation from
our Dr.VAE model, Figure 3.1 and 3.2, these data correspond to x;.

Dr.VAE outperforms all three baseline classifiers for at least 14 out of 26 (53.8%) tested
drugs, and performs with no statistically significant difference on nine drugs. On only 3 out of
26 (11.5%) drugs the baseline models performed better than Dr.VAE, Figure 3.3 and 3.4. The
presented comparisons are based on one-sided Wilcoxon Signed-Rank Test (P-value < 0.05) over
100 data splits. Detailed performance of all models applied to each individual drug is presented
in Appendix A.1, the corresponding P-values are shown in Appendix A.2. Results in terms of
the AUPR follow a similar pattern (Appendix A).

For bortezomib, niclosamide, paclitaxel, decitabine and clofarabine, cancer drugs with no
established univariate biomarkers of response, Dr.VAE improved response prediction over every
standard classification method by at least 1% and up to 4.4% of AUROC, while AUPR improved
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Figure 3.3: Summarized classification results. (a) AUROC of Dr.VAE and baseline methods.
Shown is average over 26 drugs, each evaluated in 100 train-validation-test splits. (b) Dr.VAE is
comparable or better than any other baseline for >80% of the drugs (P-value <0.05 Wilcoxon
test).
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Figure 3.4: All to all comparison of tested methods. For each method, there is a row
showing the count of 26 drugs for which this method significantly outperforms the other methods
corresponding to individual columns. The comparison is based on test AUROC performance in
100 train-validation-test splits. Statistical significance of observed differences in test performance
for any two methods was tested by one-sided Wilcoxon Signed-Rank Test (P-value <0.05).
The heatmap color is normalized within each column, emphasizing methods that are the best
contenders compared to the method corresponding to that column.
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by at least 0.7% and up to 4.8%. We have observed the best improvement over RidgeLLR for
mitomycin and sirolimus with 5.7% and 3.9% AUROC improvement, respectively. Sirolimus
inhibits the activation of a key regulatory kinase, the mammalian Target Of Rapamycin (mTOR).
As showed in [154], perturbation effects induced by PI3K/Akt/mTOR kinases are typically
cell-type specific, which possibly hampers response prediction for these drugs. In this case,
Dr.VAE was able to better stratify the response classes, improving the response prediction,
particularly over RidgeLLR and SVMrbf. Mitomycin, an antibiotic that causes cross-linking
of DNA and inhibition of DNA synthesis, is used as a chemotherapy drug in the treatment
of various malignant neoplasms. Prediction of sensitivity to mitomycin treatment appears to
benefit from employing non-linear prediction models such as RForest and SVMrbf. Dr.VAE can
model non-linear relationships and performs on par with the RForest and SVMrbf, considerably
outperforming RidgeLR.

Contrarily, in the case of fluvastatin and bosutinib, Dr.VAE trails RidgeLR by 1.5% and
0.9% in test AUROC, repsectively. Fluvastatin belongs to a class of drugs called statins. Statin
inhibitors are used to control hypercholesterolemia but have been indicated to have a potential
as anticancer agents as well. Sensitivity to statins is highly dependent on strength of a feedback
mechanism, the activation of which has been reported to peak at time points >8 h post-treatment
[30]. Modeling of 6 h-long perturbations is insufficient in this case and as such Dr.VAE did
not improve sensitivity prediction. Reduced performance of Dr.VAE in the case of bosutinib
is likely due to modeling of perturbations at only the most common drug concentration level.
Bosutinib is a tyrosine kinase inhibitor, used in chronic myelogenous leukemia therapy, primarily
targeting Ber-Abl kinase. [154] observed that such inhibitors of extracellular matrix receptors and
receptor tyrosine kinases, exhibited considerably more variance in perturbation signatures with
changing drug dose than other drugs. Since we selected perturbation experiments at only one
drug concentration level, that with largest number of experiments, it is possible that modeling
perturbation effects at only this one concentration level is not sufficiently informing the treatment

sensitivity prediction.

3.3.2 Perturbation experiments improve drug response prediction

We investigated the contribution of drug perturbation experiments to response classification via
two ablation studies. First, we compared Dr.VAE to semi-supervised VAE [117]. SSVAE was fit
to the pre-treatment gene expression in cell lines from CMap-L1000v1l and CTRPv2 without
observing post-treatment gene expression and without modeling the drug effects. Since SSVAE
is conceptually a subset of Dr.VAE’s architecture, we used the same hyperparameters for the
corresponding encoders/decoders as in Dr.VAE, Figure 3.2(e). SSVAE outperforms baseline
methods according to AUROC but is not as good as Dr.VAE. Dr.VAE achieves significantly better
test AUROC than SSVAE on 9 out of 26 (34.6%) drugs (P-value <0.05) with no statistically
significant difference on 16 drugs (61.5%) and only for one drug (vincristine) SSVAE outperforms
Dr.VAE, Figure 3.3.
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To evaluate the contribution of the perturbation function to the classification performance,
we modified each trained Dr.VAE instance by replacing the learned drug perturbation function
with an identity function (denoted as ‘Dr.VAE w/I’) without retraining the rest of the model.
The modified ‘Dr.VAE w /T’ achieves AUROC close to Dr.VAE, however slightly worse in absolute
value over the 26 drugs. For 16 drugs Dr.VAE has significantly better performance than Dr.VAE
w/I and for 10 drugs there was no significant difference, showing that while functions more
complex than identity may be able to learn from the perturbation data, more drug perturbation
data are required to substantially improve response prediction for many drugs.

Our results show that Dr.VAE improves drug response classification performance thanks
to modeling of drug perturbation pairs. As our second set of experiments show, the learned
perturbation function contributes to better classification. However, most of the observed
improvement appears to stem from more informative latent gene expression representation, that,
compared to SSVAE, is learned by joint modeling of drug perturbations as well as sensitivity
response. The superior performance of Dr.VAE w/I compared to SSVAE is a testament to that
effect.

3.3.3 The importance of dimensionality reduction

Dr.VAE and SSVAE learn a lower dimensional latent representation of the data and the classifier
jointly. To understand the importance of the joint optimization, we also explored a learning
paradigm where we first optimize the latent representation in an unsupervised fashion and only
then train a classifier using the already learned embedding. To this end we performed two sets of
experiments. First, we evaluated dimensionality reduction by PCA. PCA projects the data into
a space given by orthogonal vectors called principal components that are selected in the order
of largest possible variance they account for in the data. We chose to represent the CTRPv2
and CMap-L1000v1 pre-treatment gene expression of L1000 genes in terms of their first 100
principal components that we estimated on each training data fold. Second, we trained just the
perturbation part of Dr.VAE, which we denote as PertVAE, to assess dimensionality reduction
using a deep generative model. PertVAE is an unsupervised model that does not model drug
response outcomes. Instead it learns to model drug perturbation effects from the perturbation
pairs, Figure 3.2(f). We then used the mean of the 100-dimensional latent embedding z; of the
pre-treatment gene expression as the reduced representation for subsequent fitting of standard
classifiers.

Both PCA and PertVAE were fit on each training data fold and the learned projections
then applied to test data fold. We used the same 100 train-validation-test splits as in the
previous experiments, thus the classification test results can be mutually compared by Wilcoxon
Signed-Rank Test with the above mentioned Dr.VAE and multiple baseline results, Figure 3.3(b)
and Figure 3.4. In terms of mean AUROC, Figure 3.3(a), and mean AUPR, Appendix A.1, all
three standard classifiers perform better when fit on the PertVAE embedding z; than when fit on
the PCA projection onto the first 100 principal components. In the case of both of these reduced
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representations, notable is the improvement of the RidgeLR classifier that performs better than
when trained directly on expression of the L1000 genes. These two methods, together with
SVMrbf trained on the Pert VAE z; embedding, achieve the most competitive results, nearly equal
to SSVAE. However, our Dr.VAE model that combines Pert VAE and a drug response classifier
in an end-to-end fashion delivers the best overall classification performance, accomplishing
statistically better or equivalent AUROC for at least 21 out of 26 drugs (80.8%) than any other

evaluated method.

3.3.4 Modeling of drug perturbation effects

We have shown that Dr.VAE can distill useful information from drug perturbation experiments
to improve cell line response classification. We seek to investigate how well Dr.VAE model can
predict the actual post-treatment gene expression levels. In the following set of experiments
we assessed how well Dr.VAE can predict the post-treatment expression in the latent space,
corresponding to random variable zo, as well as in the gene space, which corresponds to xs.
Particularly, we computed the expected root mean square error (RMSE) of Dr.VAE predictions
over zo and X2 when computed from pre-treatment x; compared to the expected embedding
7o computed from post-treatment xo and the true observed xo, respectively. Furthermore, we
compared how the RMSE of Dr.VAE predictions improved over the ‘Dr.VAE w/I’ baseline model
where we replaced the learned perturbation function by an identity function (as introduced
previously). On training data, Dr.VAE predicted the mean of zo with RMSE 10.5% lower
compared to Dr.VAE w/I, yet on validation data it was 9.6% worse on average across all 26 drugs.
This result shows that Dr.VAE, while being primarily optimized for drug response classification,
learns to partially model drug perturbation effects, but on average, suffers from data limitations
and overfitting.

To elucidate the connection between Dr.VAE performance and limitations of available
perturbation experiments, we computed the correlation of Dr.VAE z, prediction improvement
over Dr.VAE w/I across the set of 26 drugs with three data statistics: (i) effect-to-replicate
variance ratio (ERVR) in CMap-L.1000v1 perturbation experiments, (ii) number of unique cell
lines tested for a given drug in CMap-L1000v1 and (iii) the product of the previous two. The
computed Pearson correlations are shown in Table 3.1. The ability of Dr.VAE to generalize from
the training to validation set correlates with both the strength of the perturbation signal in the
data (quantified as ERVR) and the dataset size, yet the strongest is correlation with the product
of these two variables, p = 0.814 (P-value 4.35 x 10~7). The computation of ERVR measure is
described in Section 3.5.3.

For prediction of post-treatment gene expression xs we observed an analogous conclusion to
prediction of its latent representation zs. The detailed results are shown in Appendix A.7. We
conclude that there are presently data limitations (number and noise/signal resolution of drug
perturbation experiments) for generalizable post-treatment gene expression prediction yet, as

shown above, we can still distill information that improves drug response classification.
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Table 3.1: The ability of Dr.VAE to model post-treatment gene expression correlates with
signal /noise ratio and quantity of perturbation experiments. We computed A RMSE improvement
of Dr.VAE in post-treatment expression prediction over Dr.VAE w/I, averaged over validation
data splits, and correlated it to overall CMap-L.1000v1 dataset statistics. The Pearson correlation
was computed for prediction A improvement of both post-treatment gene expression xo and
its latent representation z,. Additionally we include correlation with difference in Dr.VAE and
SSVAE classification performance.

A RMSE

evaluated on Dataset property correlated to p P-value
Zo Effect /rep. variance ratio (ERVR) 0.66 2.4 x 1074
X ERVR 0.72 4.0x 1075
Z Num. unique CLs in CMap (NCL) 0.71 4.2 x 107°
X2 NCL 0.52 6.4x 1073
zo ERVR * NCL 0.81 4.4x1077
X ERVR * NCL 0.73 2.6 x 1075
X2 Dr.VAE - SSVAE [AUROC]| 0.29 0.15
X9 Dr.VAE - SSVAE [AUPR] 0.20 0.33

Lastly, we investigated whether there is a correlation between classification performance
improvement of Dr.VAE over SSVAE, which does not model perturbation effects, and the ability
of Dr.VAE to generalize post-treatment gene expression prediction to validation set. We found
weak correlation between the classification improvement in terms of both AUROC (Pearson
p = 0.293; P-value 0.147), and AUPR (Pearson p = 0.199; P-value 0.329). These results
suggest that Dr.VAE tends to improve over SSVAE for the drugs Dr.VAE manages to model the

transcriptomic perturbations induced by the drug compound.

3.4 Discussion

We developed Dr.VAE, the first unified machine learning method for drug response prediction
that enables semi-supervised learning and successfully leverages prior information in the form of
drug-induced transcriptomic perturbations. Our approach follows several previously identified
trends for improved drug response prediction [34], as we can model non-linearities in the data
and incorporate prior knowledge.

Typical discriminative feedforward neural networks do not fare well in drug response prediction,
most likely because of the data limitation (number of features versus number of samples). We
showed that joint generative modeling of drug response and perturbation effects alleviates this to
a significant extent, possibly acting as an effective regularization and robust feature extraction
that does not overfit the way discriminative neural networks do.

We tested 26 Food and Drug Administration-approved drug compounds for which both

perturbation and drug response experimental data were available. Our experiments showed that
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for those drugs that have sufficient data to capture the variation and effect on gene expression,
incorporating those effects yields a significant improvement over logistic regression, random forest
and support vector machines. Dr.VAE significantly outperformed these models in more than half
of the tested drugs and performed on par in other cases. Through a series of experiments, we
showed that the observed improvement of Dr.VAE in drug response prediction can be credited

to its joint modeling of both response and drug-induced perturbation effects.

Our study has several potential limitations. First, we considered only the gene expression
modality, as it has been consistently shown to provide the most predictive power in multiple
previous studies on drug response [104, 34]. There is accumulating evidence, however, that multi-
omic predictors that additionally integrate methylation, copy number variation, mutational status
or proteomic data can achieve improved prediction performance. It is relatively straightforward to
extend Dr.VAE, thanks to the stochastic variational inference approach we adopted. Categorical
or Poisson likelihood functions can be used to model discrete (mutational status) or count (CNVs)
data types, respectively, in addition to the Gaussian likelihood we used to model continuous gene
expression. We caution however, that inclusion of additional features accentuates the already
unfavorable ratio of the number of features to the number of available training examples, which

could prove, and indeed has been, problematic for any method, including ours.

Second, we modeled CMap-L1000v1 perturbations after 6 h of treatment duration at the
most common concentration level for each drug. That allowed us to pool the largest possible
number of experiments tested under consistent experimental settings. It can be argued that 6
h is too short for many feedback regulatory mechanisms to manifest themselves and as such
these experiments alone do not provide complete picture of the transcriptomic response. Notably,
drug-cell line viability assays are typically done with longer treatment duration, such as 72 h.
This is the case for a statin inhibitor fluvastatin, as we observed in out experiments. Thus we
also trained our Dr.VAE with 24 h perturbation experiments, however, potentially because of
the limited number of such experiments, this did not improve our prediction performance. A
potential future improvement to our method could be an extension which leverages all available

perturbation experiments of various durations and drug concentrations.

Every conditional distribution that Dr.VAE is composed of is parameterized by a neural
network. The ability to adjust hyperparameters to match complexity of the data makes Dr.VAE
a very flexible model. Since we opted for simplicity, most of our neural networks have one hidden
layer, while the classification posterior and perturbation function are linear. As more data
become available we will be able to take full advantage of the new methodological developments
in the generative deep learning field, further improving the performance of Dr.VAE and other
drug response prediction models. However so far our attempts to use deeper networks or utilize
normalizing flows to approximate posteriors by more complex distributions [173, 118] have not

significantly improved the performance to justify the added complexity.

In conclusion, we have demonstrated deep generative modeling to be a promising

methodological approach for method development in the field of drug response prediction. In
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particular, this approach has two major benefits. First, the flexibility of this paradigm allowed
us to integrate transcriptional perturbation effects into the drug response prediction framework
in a unique way. Second, all conditional distributions that form our Dr.VAE model, as well as
variational posteriors used for approximate inference in Dr.VAE, are parameterized by neural
networks that can model complex non-linear relationships. We have shown that both aspects
compounded in our Dr.VAE, which outperformed the most used methods in the field for the
majority of the evaluated drug compounds.

Processed data and software implementation using PyTorch [157] are available at: https:
//github.com/rampasek/DrVAE.


https://github.com/rampasek/DrVAE
https://github.com/rampasek/DrVAE
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3.5 Supplementary Methods and Results

3.5.1 Perturbation variational autoencoder

: : pezl—)ZQ @

Q¢x~>z q¢x~>z

(b)

Figure 3.5: Perturbation VAE. (a) Factorization of the generative distribution p, (b)
Factorization of the approximate posterior distribution gq. Note, we use the generative pg,, _,,,
in case x9 is not observed.

Perturbation Variational Autoencoder (PertVAE) is an unsupervised model for drug-induced
gene expression perturbations, that embeds the data space (gene expression) in a lower dimensional
latent space. In the latent space we model the drug-induced effect as a linear function, which is
trained jointly with the embedding encoder and decoder.

We fit PertVAE on “perturbation pairs” [x1,X2| of pre-treatment and post-treatment gene
expression with shared stochastic embedding encoder ¢4, ., and decoder py,_,,. The original
dimension of each vector x is 973 landmark genes. Additionally we use unpaired pre-treatment
data (with no know post-treatment state) to improve learning of the latent representation. The

graphical representation of PertVAE model is shown in Figure 3.5.

Joint distribution. PertVAE models joint p(x1, X2, 21, 2z2), which is assumed to factorize as:
p(X1,X2,21,22) = p(x1]21) - p(x2|22) - p(22|21) - p(21) (3.6)

Generative distribution pg. PertVAE’s generative process is as follows:

p(z1) = N (0,1) (3.7)
POz, -z, (22]21) = N <Z2\Mz2 = fo(z1),03, = epr@(Z1)> (3.8)
k€ {1,2} : po,_x (xk|zK) = N (Xk“l'xk = fo(z), 0%, = epr"(z’“)> (3.9)

The parameters of these distributions are computed by functions fy, which are neural networks
with a total set of parameters 6. For brevity we refer to these parameters as 6 instead of more
specific subsets 0,_,x or 05,2, when such level of detail unnecessarily clutters the notation.

We constrain the mean function in py,, ,,, to be a linear function fp,, _,,,(z1) of the following
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form:
f9z1—>zz (zl) =z1+Wz; +b (310)

with W and b initialized close to zero such that fg, ., (z1) starts as an identity function. We
found that together with L2 penalization this formulation improves stability and generalization
of the model.

Approximate posterior ¢;. Depending on the type of the data, we assume the approximate

posterior g with a set of parameters ¢ factorizes as:

perturbation pairs: g (21, 22/X1,X2) = oy, (Z1]X1) - 4, _,, (Z2]X2) (3.11)

pre-treatment singleton: gy (21, 22, X2|X1) = Ubnsy (21]X1) - PO, 2, (Z2|21) - Do,y (X2|22)
(3.12)

Analogously to the shared generative pg,_, distribution, also gy, ., (zx|xx) is shared for both

k € {1,2} and takes from of a diagonal Gaussian:
ke{l,2}:qg, ., (z1]xk) =N (Zk“l'zk = fo(xx), 05, = epr¢(Xk)) (3.13)

Fitting 0 and ¢ parameters. We jointly optimize the generative model 8 and variational ¢
parameters to maximize evidence lower bound, ELBOpgtvag, of training data. The training
data consists of a set of perturbation pairs P and unpaired “singleton” examples S that we

leverage to train the latent space variational autoencoder as well.

> logp(x1,x2) + Y logp(x1) > ELBOpertvaE (3.14)
(x1,%x2)€P x1ES
ELBOpaivap =  »  Lp(x1,%2;0,6) + Y Ls (x1;6,9) (3.15)
(x1,x2)€P x1€S5

The individual per-example lower bounds L£p and Lg take the following form:

Lp(x1,x2; 6,0) = E%(zl,zg\me) [logpg(xl, X2,21,22) — log q4(21, z2|x1, X2):| (3.16)
= By (i fx1) [log pg(x121) — Dk [qg(22]x2)|pe(22|21)] | (3.17)
+ Eg, (221x,) [l0g po (x2|22)]
— Dx1 [g9(z1x1)|[p(21)]
Ls(x1; 0,0) = By, (a1]x,) [ 10g Do (X1, 21) — log gg(z1]x1)] (3.18)
= Eqy (21 1x1) [log po(x1]21)] — Dicr (21 [x1)|[p(21)]

The expectations that are part of our evidence lower bounds are evaluated approximately, by

Monte Carlo sampling. In practice we use two MC samples. Thanks to so-called
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reparameterization trick it is possible to backpropagate through such approximation of the
expectations, yielding an unbiased gradient estimator of the distribution parameters known as
Stochastic Gradient Variational Bayes (SGVB) [115]. In our case, no approximation is necessary
for evaluation of the Kullback-Leibler divergences present in the ELBO, as there is a close form
solution for Dk between two normal distributions. Now we have all the tools to evaluate
ELBOpetvar and compute its approximate gradients w.r.t. both 6 and ¢ parameters. We then

use Adam [114] to compute the parameter updates during the optimization process.

3.5.2 Drug response variational autoencoder

Analogously to semi-supervised variational autoencoder, we extended the unsupervised
Perturbation VAE to a semi-supervised model by incorporating a modified “M2 model” [117].
The extended model, drug response variational autoencoder (Dr.VAE), enables us to model both
drug-induced perturbation effects as well as treatment response outcome at the same time. We
train Dr.VAE jointly and not as a stack of two models Pert VAE + M2 model, similarly to how
semi-supervised VAE can be trained jointly [139)].

We use similar type of data to train Dr.VAE as we use for PertVAE, however some of
the perturbation pairs and pre-treatment singletons now can have a binary outcome label y
associated with them, denoting if the drug treatment was successful or not. Schema of Dr.VAE

model is shown in main text, Fig 1.

Joint distribution. Drug response VAE extends PertVAE to model a joint distribution

p(x1,X2,21,292,23,y) factorized as:

p(x1,X2,21,22,23,y) = p(X1|z1) - p(x2|22) - p(z2|21) - p(Z1]23,y) - p(2z3) - p(y) (3.19)

Generative distributions pg. The individual generative distributions, Dr.VAE factorizes to,

have the following form:

p(y) = Cat(y|m = Unif) (3.20)

p(z3) = N (0,1) (3.21)

po(z1lz3,y) = N (Zl\uzl = fo(z3,y), 05, = epre(z3’y)) (3.22)
po(zalz) = N (22t = fo(m), o2, = exp/o®) (3.23)

ke {1,2}: po(xp|zi) =N (Xk\uxk fo(zs), 0%, = expf&(zk)) (3.24)

Same way as in Pert VAE, we share the “data decoder” py(xy|z;) among both k € {1,2}.
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Approximate posterior g;. Depending on the type of the data, we assume the approximate

posterior g to factorize as:

labeled pair: q¢(z1, 22, 23|X1,X2,¥) = q¢(z1|X1) - qp(22]%X2) - q¢(23|21, ) (3.25)

unlabeled pair: qg (21,22, 23, y|X1,X2) = ¢ (21]X1) - ¢5(22|x2) - q5(¥|21,22) - q4(23|21,Y)
(3.26)

labeled singleton: q4(21, 22, 23, X2|X1,y) = q4(21|X1) - po(22|21) - po(x2|22) - qg(2z3|21,y) (3.27)
unlab. singleton: q4(21, 22, 23, X2, y|X1) = q4(21(|X1) - Pe(22|21) - pe(x2|22)- (3.28)

- qg(y|21,22) - qp(23]21,y)

The “data encoder” k € {1,2} : g4(zk|x)) is shared and parameterized the same way as in

PertVAE. The additional approximate posterior distributions then take the following form:

q4(y|z1,22) = Cat(y|m = softmax(fy(z1,22 — 21))) (3.29)
as(zsl.y) = N (2sltty, = folm.y). 0%, = explot ) (3.30)

The afford mentioned factorizations of the joint and of the posteriors also provide a recipe

for sampling and inference in the model by Monte Carlo sampling.

Fitting 0 and ¢ parameters. We have 4 different sets of partially observed variables, which
correspond to different types of data. Therefore there are 4 different evidence lower bounds to

optimize:

labeled perturbation pairs LP: >  Lrp (x1,X2,y;0,¢) 3.31
3.32
3.33

3.34

unlabeled perturbation pairs UP: Y Lyp (x1,X2;0, )

(3.31)
(3.32)
labeled pre-treatment singletons LS: > Lrs(x1,y;0, ¢) ( )
(3.34)

unlabeled pre-treatment singletons US: > Lygs (x1;6, ¢)

The sum of these 4 specific evidence lower bounds, ELBOp,yag, is the evidence lower bound we
need to maximize. The derivation of these specific lower bounds follows the same principles as
shown above for PertVAE and as shown in the derivation of semi-supervised VAE [117, 139].
Particularly, for unlabeled and labeled perturbation pairs, denoted U P and LP respectively, we
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obtain the following bounds:

Lyp(x1,%X9; 0,0) = By, (2, 20.25.y]x1.x2) | 108 P6(X1, X2, 21, 22,23, ¥ ) — (3.35)
— log q¢(z1, 22, 23, y|x1, X2)]
= By, (z11x1) [ 108 Po(x1|21) — D1, [qg(22]%2)|[po(22|21)] | (3.36)
+ E%(ZZ‘XQ) [log pp(x2|z2)]
+ By (yl1,22)a5 (22 x2)as (z5]21,y) | — DKL [46(21[%1)||po (21123, ¥)] |
+ B (31 22)a (21 1 o (a2l x2) | — D [9(23121,¥) [P (23)] ]
+ By (21131 )as (z2lx2) | — Prcr [46(¥ |21, 22)[|p(y)] ]
Lrp(x1,%2,Y; 0,0) = By, (2, 20,25/x1,x0y) | 108 D0 (X1, X2, 21, 22,23, ¥ ) — (3.37)
— log %(Zl, Z3, Z3|X1, X2, Y)]
=By, (21 1x1) [ l0g po(x1]21) — Dicr, [94(22/%2)|[po(22]21)] ] (3.38)
+ Eg, (22]x2) [108 Po(x2|22)]
+ By asizy) | — D las(z1]x1)|[po (21123, y)] |
+ EBqyz1x1) | — D ag(23]21, y)|[p(23)] ]
+ log p(y)

Evidence lower bounds for unlabeled singletons (US) and labeled singletons (LS):

Lus(x1; 0,0) = By, (21 20,25,y/x1) [ 108 Do (X1, 21, 22, 23,5 ) — (3.39)
— log qy(z1, 22, 23, y|x1)]
= Ey, (z1x1) [log po (x1]21)] (3.40)
T By (v121,22)p0 (221215 (21]%1 )5 (23 21,) [ — Dkr [q4(21]x1)||po (2123, ¥)] ]
+ B, (vizr.a2)as(aax)po aalan) | — Dici (623121, 5) [p(23)] ]
+ Eqy (21130 )po (z2]z1) | — Dicr [00(y121,22) | [p(y)] ]
Lrs(x1,¥;5 0,0) = By (2, 20.25%1,y) | 108 Po (X1, 21, 22,23,y ) — (3.41)
— log gy (21, 22, z3|x1, )]
= Ey, (21x1) [log po(x1]21)] (3.42)
+ By, (zs)1.y)a0 (@) | — Drcr [as(21[x1)|po (21|23, ¥)] |
+ B, (a1x1) | — Dir lag(23]21,y)|[p(23)] ]
+ log p(y)
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In these lower bounds, we compute expectation w.r.t. g4(y|z1,22) exactly by summation as y is

in our case a binary random variable:

By, ylara) (V)] = D ao(y = tlz1,22) f(y,) (3.43)
te{0,1}

Note, that the Kullback-Leibler divergence of two categorical distributions over y can be computed
analytically. Moreover, to mitigate the problem of overly strong prior causing the optimization
to get stuck in bad local optima, we follow [118] and allow “free bits” in Dg, of approximate
posterior and prior over y and z3 variables. Now, using the approach as described previously for
PertVAE, we can evaluate ELBOp,vag and its gradients w.r.t. both 8 and ¢ parameters.

Next, akin to semi-supervised VAE [117], we need to explicitly introduce loss of the predictive
posterior log ¢y (y|z1,22) in order for it to be trained on labeled data as well. This is required
since in the labeled data the random variable y is an observed variable and therefore the lower
bounds Lrp and L5 are conditioned on y and do not contribute to training of ¢4(y|z1, z2).

Additionally, we found beneficial to include explicit perturbation prediction loss
By (21 x1)pp (z2]z1) 108 Po(X2|22)] in addition to minimization of KL divergence between the
approximate posterior and predicted distribution over zg, Eq (5, |x,) [Drcr lq(z2|x2)||po(22|21)] |,
that is a part of Lyp and Ly p.

Eventually, the final objective Jprvar we seek to maximize is

Jprvak = ELBOp,vag +

+ o Z Eq¢(z1\x1)p9(z2|z1) [lOg Q¢(y = t|Z17 Z2)] +
LPULS

+6 Z E%(Zﬂxl)po(m\m) [log pe(x2|z2)]
LPUUP

(3.44)

where o and 3 are hyperparameters weighting the classification and perturbation loss, respectively,
relative to the ELBOp,vag and are selected based on the classification performance on a validation
set, distinct from a test set. We found § = 0.05 to be well suited for all drugs, while « is found
for each drug individually by cross-validation in grid search over {1, 3,5, 10}.

3.5.3 Supplementary Results
Effect-to-replicate variance ratio in perturbation experiments

The tested set of drugs manifests considerable diversity in the type of drugs (cytotoxic or targeted)
and number of available perturbation experiments ranging from 32 to 417 in as few as 8 and up
to 60 distinct cell lines. The magnitude of the perturbation effect together with the number of
available experiments and variance in biological replicates have paramount impact on how well
our Dr.VAE can model these drug perturbations. To quantify this connection, we first need to

quantify the drug perturbation effect.
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We computed the effect-to-replicate variance ratio (ERVR) for perturbation experiments of
each cell line with at least two biological replicates as the ratio of variance between clusters to
the variance within clusters where we denote biological replicates of the control (pre-treatment)
gene expression as one cluster and the matched post-treatment gene expression replicates as
the second cluster. For a drug d with perturbation experiments on a set of cell lines Cy its

effect-to-replicate variance ratio is

= 1 Var between S and SPo

ERde - m ZCEC{i Var(sgre)+var(sgost) (3.45)
- 1 VaT(Sc)_VaT’(SgTE)—Var(Sg"St)
— |Cd| ZCEC’d Var(sgre)+var(sgost) (346)

where S, = SP"¢ U SP° is the set of gene expression measurements of cell line ¢ composed of
replicates of its pre- and post-treatment experiments for drug d, SE™¢ and SE°, respectively.
The computed ERVR for each drug is listed in Supplementary Table A.6. We analyzed the

impact of ERVR in the results section of the main paper.

Reconstruction of gene expression from latent representation

Dr.VAE learns a non-linear representation of expression of the 1000 landmark genes in a reduced
100-dimensional latent space. In the above we studied how this embedding fares in drug response
classification and drug perturbation prediction. Lastly, we evaluated how well Dr.VAE can
reconstruct the original gene expression from this reduced representation for a held out set of
cell lines. We computed RMSE and Pearson correlation of the reconstructed gene expression
on the test set of CTRPv2 cell lines and compared it to PCA reconstruction from the first 100
principal components. The data splitting and training of Dr.VAE and PCA were performed the
same way as in the other experiments described in the main paper.

Dr.VAE accomplished average gene expression reconstruction RMSE of 0.380 per gene, while
PCA managed 0.329. In terms of Pearson correlation, the reconstructed gene expression from
Dr.VAE and PCA correlated with the original expression levels with p equal 0.767 and 0.829,
respectively. While Dr.VAE was trained for three tasks concurrently with model selection focused
on the classification task, it still achieved good reconstruction accuracy. This shows that Dr.VAE

does indeed learn latent representation of gene expression.



Chapter 4

Assessing domain adaptation for
improvement of clinical drug response

prediction

4.1 Introduction

Precision medicine in oncology aims to find the most effective treatment for the patients.
Currently many of the treatments are selected by standard of care guidelines mostly based on
primary site of the cancer, clinical variables or tumor biopsy, e.g. cancer cell shapes and tumor
composition, which are not personalized and work for some patients, but not for most. In recent
years increasingly more molecular biomarkers are used to stratify the genetically diverse cancers.
These include univariate genomic markers of drug response, such as copy number or mutational
status of particular cancer genes, e.g. ERBB2 (HER2) copy number amplification is predictive of
response to lapatinib, or presence of BRAFY6?F mutation is associated with response to MEK
inhibitors in skin melanomas. However for many drugs, there are no known strong univariate
biomarkers. Thus there is a need for more complex predictive models. Unfortunately clinical
response datasets that include molecular characterization of the tumors (gene expression, CNVs,
mutations or methylation) are not large enough, or not available at all, to train reliable machine
learning models with large number of genomic features.

Therefore many have sought to improve clinical drug response prediction by utilizing drug
response datasets of pre-clinical models (cancer cell lines, organoids or patient-derived tumour
xenografts) beyond univariate biomarker discovery. Despite early excitement, transfer learning
approaches have so far not yielded much more than proofs of concept [71, 221, 72|, demonstrating
that there can be response signal in cell line datasets that is transferable to patients.

Most recently, Mourragui et al. presented PRECISE [151], a domain-adaptation approach
that uses linear alignment of source and target sub-spaces by aligning Principal Components of

the two domains and interpolating between them to obtain domain-invariant bases to project both
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domains onto. Mourragui et al. [151] rely on the “imputed drug-wide association study” (IDWAS)
approach of Geeleher et al. [72]| to evaluate their method on a clinical dataset. IDWAS was
proposed to facilitate discovery of new drug-response biomarkers in originally unlabeled clinical
cancer datasets, by using response predictors trained on cell line sensitivity datasets to “impute”
the clinical response. These predicted responses, which Geeleher et al. [72] refer to as “imputed
drug response”, are then correlated with genetic variants measured in the clinical cohort, e.g.
CNVs or mutations in the exome, to evaluate whether known clinically actionable associations of
drugs and somatic alterations were recapitulated by the cell-line-trained response predictor. An
example of a successfully recapitulated association was that of ERBB2 over-expression in breast
cancers responsive to lapatinib treatment. Geeleher et al. [72] showed that in TCGA clinical
cohort the predicted response to lapatinib, based on gene expression data alone, correlated with
the patients’” ERBB2 copy number status reported using immunohistochemistry. Geeleher et al.
[72] suggested to use IDWAS as a hypothesis generator in identification of novel drug response
biomarkers. However this approach is not suited for method comparison. This evaluation does
not provide clear classification performance measure, rather just correlation with stratification
by a known clinical biomarker, such as the ERBB2 copy number for lapatinib. Additionally note,
that while ERBB2 over-expression is correlated with positive response to lapatinib and thus a
clinically relevant biomarker, it is not perfect. In NeoALTTO clinical trial of lapatinib [10], the
treatment was successful for less than half of the patients with over-expressed ERBB2 [64|. Due
to problems with evaluation approach of Geeleher et al. [72| deployed in evaluation of PRECISE
[151], it is unknown whether their models outperform simpler models trained only on a small
patient-domain dataset, or whether their models are sensitive enough to pick up response signal

beyond strong univariate biomarkers.

4.1.1 Assessment of domain adaptation assumptions

The domain difference between cancer cell lines and original tumours is caused by the process
by which cell lines are derived from patient tumour cells, immortalization, that introduces
mutations and systematic as well as essentially random gene expression changes into the cells.
Next, cell lines grow in 2-D n vitro environment that does not correspond well to the in vivo
tumour microenvironment, and further, cell lines continue to accumulate sporadic mutations.
These aspects result in difference in marginal distribution P(X) of gene expression between
the domains. Previous methods mentioned above focused on mitigating the P(X) domain shift
by dataset homogenization using ComBat [110], surrogate variable analysis [130, 131], or more
sophisticated sub-space alignment methods. However this marginal P(X) shift is not the only
difference between the two domains.

There are likely two principal causes for a lack of consistent success in domain adaptation
attempts for drug response prediction. Firstly, a crucial assumption for unsupervised domain
adaptation is the covariate shift assumption, that the conditional P(Y'|X) of the response

outcome Y given the gene expression X does not change between the domains. However it is
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not exactly valid in case of drug response in pre-clinical datasets and clinical trial datasets [212].
There are known cases when a treatment was found effective in cell lines but failed in patients
and vice versa. Unfortunately there are no large public datasets of matched clinical tumour
samples and from them derived cell lines. Therefore it is not possible to use matched data pairs
to estimate the domain impact on P(Y|X). One of the reasons for this P(Y|X) inconsistency is
that the causes influencing P(X) shift between the domains, e.g. tumour microenvironment or
the lack of, can also be influencing the outcome Y. Next, the response is quantified differently in
different domains. In CCLs it is typically a summary statistic derived from a dose-response curve,
where one point on the curve corresponds to relative amount of cells surviving after typically 72h
of treatment by a particular drug dose. For patients, the positive clinical response can be defined
in multiple ways and in varying time horizons, such as tumour shrinkage under a threshold after
a cycle of treatment using the Response Evaluation Criteria in Solid Tumors (RECIST) [182]
score, or using pathological complete response (pCR) as a surrogate for long-term outcomes. But
there is not always a universal consensus on the exact evaluation criteria and thus the outcome
evaluation can vary from trial to trial, as noted by the FDA guidance for use of pCR in breast
cancer clinical trials [33|. Penault-Llorca et al. [159] clearly demonstrated that differences in
pCR definition do matter as to what the computed response rates in a trial are. Therefore the
genotype/gene expression X to outcome relation P(Y|X) in pre-clinical models and in clinical

trials can be considerably different.

Secondly, pre-clinical models have a selection bias for cancers that survive the immortalization
process or manage to engraft in mouse models. Typically it is the more invasive tumours that pre-
clinical models can be derived from. Similarly, there are often recruitment criteria in clinical trials
of new treatments. Therefore datasets in these two domains are not i.i.d., but rather irregularly
sampled. Cumulative effect of these and other factors, e.g. treatment dose and schedule, prior
treatment, or environment, on learnable functional relationship of X and treatment outcome Y

is then virtually impossible to quantify.

Despite the discussed issues, magnitude of which is difficult to quantify, it is worth evaluating
performance of domain adaptation in drug response prediction, albeit with the limitations in
mind. In few other applications, such as sentiment prediction in Amazon reviews among different
shopping departments, domain adaptation methods that learn invariant representations were
demonstrated to improve the target domain classification performance [66, 139, 218, 18| despite
a lack of strict theoretical guarantees [106]. Thus given proof-of-concept results of Geeleher et al.
[71] and others [221, 151, 183] for clinical drug response prediction from pre-clinical models, here

we closely investigate domain adaptation for this task.

Based on previous successes in modeling of gene expression by deep generative models with
approximate inference, presented in Chapter 3 and [210, 166], we decided to evaluate variational
fair autoencoder (VFAE) of Louizos et al. [139], a domain-adaptation approach by latent space
domain matching, for the drug response prediction. Description of VFAE and domain-adaptation

background are presented in Section 2.6.
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4.2 General experimental setup

In the following sections we focus on evaluation of VFAE as a domain adaptation method in
three applications: (i) synthetic experiments designed to showcase success and failure cases of
domain adaptation under several domain-shift scenarios; (ii) pilot study using gene expression
datasets with real patient-cell-line domain shift and a substitute classification task with a strong
signal in the data; and (iii) drug response prediction in real cancer datasets of fluorouracil and
paclitaxel treatments. Our experimental setup is mostly shared across the three aforementioned

applications; thus we first proceed with its detailed description.

4.2.1 Learning modes and data splitting procedure

We considered both unsupervised and semi-supervised domain adaptation (DA). In unsupervised
DA, the typical DA scenario, a model is fit on labeled data from source domain and unlabeled
data from the target domain, while the models’ classification performance is evaluated on a
held out set of labeled target domain examples. In short, we will refer to this unsupervised
DA scenario as the source-to-target learning mode, denoted as S2T. In semi-supervised DA,
additionally, we have also labeled target domain examples available for training, however only in
a small number compared to the number of available labeled source domain data points. We
shall denote semi-supervised DA as ST2T (source-and-target-to-target) learning mode. Note,
ST2T is a flavour of transfer learning.

In real dataset applications we further evaluated classification methods on source and target
domains alone, denoted as S2S and T2T, respectively. Comparison of achievable performance in
these four learning modes provides us with empirical insight into difficulty of the prediction task
and the present domain shift in real dataset applications.

Classification performance achieved on source domain, S2S, provides empirical generalization
upper bound for baseline classification methods as well as for our selected VFAE architectures;
here tested in SSVAE regime without domain conditioning. The gap between S2S and S2T shows
empirical domain generalization gap (assuming no label distribution shift) that could be closed
by a perfect DA method. The performance in T2T mode is a benchmark for practicality of a
DA method deployment in practice. It is not practical to deploy a DA model trained in S2T
mode if it does not provide improved performance compared to T2T models. Next, if ST2T is
lower than T2T we can speak of negative transfer [202], that indicates that the domain shift is
perhaps too large, or the domain adaptation or transfer learning method is misspecified. Finally,
comparison of S2T and ST2T results directly elucidates value of even limited count of labeled
target domain examples in model fitting on generalization of the model.

Dataset splitting into training, validation and testing set follows stratified 5-fold cross-
validation scheme as is illustrated in Figure 4.1. In unsupervised domain adaptation mode, S2T,
the training set contains unlabeled and also delabeled target domain examples. This way any
difference between S2T and ST2T results can be fully attributed to utilization of the target
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stratified 5-fold split in each domain
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Figure 4.1: Dataset splitting procedure. (a) Both source and target domain datasets are
first divided into 5 folds stratified by the target label y. Green indicates positive examples,
red negative examples, and grey is for unlabeled examples. (b) Folds are assigned to training,
validation and test sets according to the depicted scheme. To achieve S2T and ST2T learning
modes, labels of examples from applicable domains are censored and used as unlabeled examples.
The fold assignment is then moved round-robin as in standard cross-validation.

domain labels in model fitting, and not to the dataset size. Similarly, source domain data
are delabeled in validation and testing sets of S2T and ST2T, as such they only contribute to

evaluation of between-domain MMD and reconstruction loss.

4.2.2 Baseline methods

Similarly to experiments in Chapter 3, we evaluated three established classification methods: ridge
logistic regression (RidgeLR), random forest (RForest) with 100 trees, and support vector machine
with a radial basis function kernel (SVMrbf). We used scikit-learn library [158] implementation of
these classification methods. Each of them was evaluated on up to three different representations
of the input x; data: standardized xi, x; projected into vector space of the first 100 principal

components, and 100 dimensional latent encoding z; learned by a VFAE or SSVAE model.
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(a) parameterization of p (b) parameterization of ¢

Figure 4.2: VFAE architecture used in experiments with simulated datasets. Depicted
are the dimensions of VFAE random variables and architecture of feed-forward neural networks
that parameterize (a) the generative distributions p, and (b) the approximate posterior
distributions g of the model.

4.3 Experiments with simulated datasets

We simulated six different 2-D datasets to study VFAE for unsupervised and semi-supervised
domain adaptation. These datasets include scenarios in which an unsupervised domain adaptation
method that learns a domain-invariant representation, such as VFAE, is expected to perform
well, and to fail in others [214, 106]. Next, we investigate whether VFAE in semi-supervised
learning mode (ST2T) can succeed where an unsupervised learning mode fails, and whether
learning of a domain invariant representation is still of any benefit in ST2T compared to baseline
linear and non-linear classifiers that have to learn a more complicated classification boundary

that applies to both source and target domain examples.

In each data scenario we sampled 500 positive and 500 negative examples in both source and
target domain, i.e. 2000 data points in total. A random half of the dataset was then stripped
off class labels to create unlabeled source and target examples. In following experiments we
follow experimental setup as described in Section 4.2. However, since domains and classes in our
simulations are clearly defined, it suffices that we evaluate just one random training-validation-
testing split per each dataset. The training set of each of our six 2-D datasets is plotted in

Figure 4.3.

We used a small VFAE architecture, depicted in Figure 4.2, that we kept unchanged across
all the conducted experiments. Summary of test results from all experiments is shown in
Figure 4.4, where Figure 4.4(a) is a table of classification results and Figure 4.4(b) presents
domain discrepancy evaluation. Additional figures that illustrate VFAE training progression in

each experiment can be found in Appendix B.
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Figure 4.3: Simulated datasets. Six simulated datasets we used for synthetic experiments of
VFAE behaviour.
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dataset (SD:x) mode| VFAE | RForest|RidgeLR| SVMrbf
overlap S2T 0.902 0.750| 0.764 0.761
inline-shift S2T 0.911 0.663| 0.663 0.663
inline-mirror S2T 0.095 0.670 0.670 0.670
inline-mirror ST2T 0.952| 0.952| 0.488 0.944
inline-uneq-ratio S2T 0.492 0.387 0.387 0.387
inline-uneq-ratio ST2T 0.947 0.762 0.000 0.781
diag-classes S2T 0.000 0.592 0.327 0.468
diag-classes ST2T 0.968 0.952 0.976 0.976
combination S2T 0.048 0.033 0.033 0.064
combination ST2T 0.983 0.900 0.000 0.918

(a) Class y prediction performance quantified as F score.

RForest Fyscore | RForest AUROC | /mMMD(Z1s=0; Z1s=1)
X1 —S|z1 —>s|x1 —>s|z1 —s| inital final

overlap S2T 0.929| 0.667| 0.980| 0.741 0.407| 0.114
inline-shift S2T 0.970| 0.513| 0995 0506 0.212[ 0.089
inline-mirror S2T 0.973| 0.550f 0994 0.524( 0.211 0.099
inline-mirror ST2T 0.973| 0579 0994 0577 0.211 0.113
inline-uneq-ratio S2T 0.955 0.670 0.990 0.720 0.200 0.198
inline-uneq-ratio ST2T 0.955 0.739 0.990 0.761 0.200 0.550
diag-classes S2T 0.965 0.627 0.993 0.685 0.246 0.061
diag-classes ST2T 0.965| 0.737| 0993 0.792( 0.246( 0.051
combination S2T 0.990( 0.707( 0994 0.761 0.189 0.123
combination ST2T 0.990| 0.988| 0.994| 0.995| 0.189 0.487

dataset (SD:x) mode

(b) Domain s discrepancy evaluation.

Figure 4.4: Results on simulated datasets. (a) Test classification performance on y, measured
as Fy score, of VFAE and baseline classifiers in all simulated scenarios. (b) Assessment of
domain invariance of the learned VFAE latent representation z; by: (i) comparison of domain s
classification performance from original data representation x; and latent z; using a random
forest classifier; (ii) comparison of domain discrepancy, measured as MMD, in VFAE latent
representation before and after training. All presented results are evaluated on the test set. Note
that a test set consists of held-out labeled target domain examples and of unlabeled examples
from both domains for domain discrepancy evaluation.
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4.3.1 Domain shift as mean and covariance shift with overlap (SD:overlap)

The first 2-D dataset we generated consists of source domain with two classes represented by
two non-overlapping Normal distributions aligned next to each other along the first data space
dimension. The domain shift is introduced as a mean shift predominantly along the second
dimension and by a change in the covariance matrix of the class-representing Normal distributions
resulting in their PDFs being shaped as a diagonal ellipse. The domain shift is set-up such that
there is an overlap between negative class of source and target domain, and analogously for the
positive class. We refer to this dataset as ‘SD:overlap’, and show its scatter plot in Figure 4.3(a).

In this case we expected unsupervised domain adaptation by a VFAE to work well, since
satisfactory conditions set by [214] are met while drawbacks of MMD loss are not exploited.
Indeed, VFAE managed to match the domains in its latent representation zi, illustrated in
Figure B.1, and thus a linear classification component of VFAE, that is trained jointly with the
rest of the model, successfully generalizes from source to the target domain. VFAE achieved
0.902 F; score on held-out target domain examples compared to 0.761 of SVMrbf, the best
baseline with no domain adaptation. The domain invariance of the latent embedding learned by
VFAE is quantified by significant decrease in ability to predict the original domain from this
embedding and also by reduction of domain MMD from 0.407 at the beginning of training to
0.114 at the end of training, Figure 4.4.

4.3.2 Domain shift as in-line mean shift (SD:inline-shift)

In this dataset we simulated the domain shift to be a mean shift that moves the domains far
apart enough for a cloud of examples from the same class to be disjoint between the two domains.
Like in the previous dataset, we first sampled examples of two classes in the source domain from
two Normal distributions, respectively, aligned next to each other along the first data space
dimension. However in this dataset the domain shift is a mean shift along this first data space
dimension. As such we denote this dataset as ‘SD:inline-shift’.

In our experiment, VFAE together with domain MMD loss successfully aligned the domains,
and learned a domain-invariant representation, which translates to practically no domain signal
in the latent embedding z;, Figure 4.4(b). Additionally this embedding also correctly matches on
class y, Figure B.2, and thus gave rise to an accurate domain-invariant classifier, Figure 4.4(a).

Since the respective classes do not overlap between the source and target domain, it is
not guaranteed that an unsupervised domain adaptation would always work without any other
assumption. In this case we could assume that the domain shift is only a mean shift, thus
mapping of the domains onto each other is likely to also correctly match on the classes. However,
if the correct class mapping between the domains does not follow the steepest decent on the
domain matching loss, an unsupervised domain matching will lead to mismatching of the classes
and in turn to a poor target classification performance. We demonstrate this failures on the next

two datasets, SD:inline-mirror and SD:inline-uneqg-ratio, each showing a different failure.
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Mirror class reversal (SD:inline-mirror)

Here we extend the domain shift from the above SD:inline-shift by swapping of the class order,
making the domain shift to correspond to a mirror reversal of the source domain along the
first data dimension. In unsupervised S2T setting, this domain shift appears exactly like the
SD:inline-shift. Therefore, without any additional assumption, every DA approach that learns
a domain-invariant representation is bound to fail in one or the other case. This impossibility
results from no class-preserving overlap between the source and target domain.

As expected, VFAE mismatches the classes when projecting source and target domains
onto a domain-invariant representation in unsupervised S2T setting, Figure 4.4. Next, we were
interested to evaluate VFAE in semi-supervised ST2T setting. We observe, Figure B.3, that
with labeled target domain examples in training set the VFAE can learn a domain-invariant

embedding that also correctly matches the classes.

Unequal class ratios (SD:inline-uneq-ratio)

We recreated a failure mode described by Wu et al. [214], when marginal class distribution is
shifted between the domains. That is, the ratio of classes is not equal between source and target
domains. Such class distribution shift is generally an issue when we optimize for a symmetrical
domain alignment, as is the case when using MMD loss or domain adversarial learning. Here,
training VFAE in S2T mode led to domain-invariant embedding that matched many of the
negative target domain examples to positive source domain examples, see Figure B.4.

Unsupervised domain adaptation can be fixed by asymmetrical relaxation of the domain
adaptation loss as proposed in [214]. In case of VFAE with MMD loss, we need labeled target-
domain examples to recover from this issue. Then VFAE can correctly match the domains and
classes, Figure B.5, and accomplish better classification performance than baseline classifiers.
However, in case of unequal class ratios between the domains, successful class matching between
domains does not coincide with minimization of the domain MMD. Therefore the resulting latent
embedding has higher domain MMD, Figure 4.4.

4.3.3 Diagonally opposed classes with 90° rotation (SD:diag-classes)

In this experiment we consider a variation on example by Johannson et al. [106] that further
illustrates that just the fact that an optimal domain-invariant representation exists, even though
a necessary condition, is not alone a sufficient condition. This dataset consists of two classes,
represented by two non-overlapping Gaussians, that lie on a diagonal of a 2-D data space. Domain
shift is a clock-wise rotation by 90° about the mean of the source domain. Similarly to previous
examples SD:inline-shift and SD:inline-mirror, it is impossible, in unsupervised S2T setting, to
distinguish a failure case that matches the domains but mismatches classes from a successful
case yielding accurate target classification performance.

Our experimental results confirm the expectations. In unsupervised domain adaptation mode



CHAPTER 4. DOMAIN ADAPTATION FOR CLINICAL DRUG RESPONSE PREDICTION 70

VFAE slipped into the failure case, Figure B.6, or successful case based on random initialization
of the dataset sampling and model initialization. While in semi-supervised ST2T mode, labeled
target domain examples steered domain-invariant representation learning towards the success

case, Figure B.7 and 4.4.

4.3.4 Domain shift as cross inversion with unequal class ratios
(SD:combination)

The last experiment combines both aforementioned pitfalls for unsupervised domain adaptation.
Firstly it is lacking class-consistent overlap between domains, and secondly, unequal class ratio
that we saw to be a cause for a failure when optimizing for symmetric domain matching in

SD:inline-uneg-ratio experiments.

This is an impossible case without any labeled target examples. Unsurprisingly unsupervised
domain adaptation fails to successfully match classes between the domains, Figure B.8. Yet we
were interested to study whether VFAE with MMD loss can recover correct domain-invariant
embedding given access to some labeled target domain examples. A small hyperparameter
adjustment of weights of classification loss w, = 18 and MMD loss wamup = 6 led to
successful domain alignment, Figure 4.4(a) and B.9, outperforming all baseline classification
methods. However the final VFAE embedding z; did not end up adversarially domain-invariant,
Figure 4.4(b), as a random forest classifier can still distinguish the two domains. Note that
adversarial domain invariance is not one of the VFAE training objectives, in our previously
discussed experiments it is a result of domain matching by MMD. Unlike in SD:inline-uneg-ratio,
we observed that the MMD loss had plateaued before the domains were aligned in a way a
classifier cannot distinguish them. At that point; the last epoch is shown in Figure B.9(d); most
of the MMD gradient points in direction of symmetrical domain alignment, and very little in

direction leading to adversarial domain invariance.

4.3.5 Summary of simulation experiments

We have shown that unsupervised domain adaptation by VFAE can work well when a set of
conditions is satisfied. However in many real world applications (particularly in high-dimensional
datasets) class-consistent overlap between domains is unlikely. Thus S2T learning is not guarantee
to work. Next, we have experimentally explored impact of marginal class distribution shift between
domains, that an MMD loss is sensitive to. The good news is that in semi-supervised mode
VFAE was able to learn correct domain matching that facilitated learning of a linear classifier, in
such latent z; space, that maximizes target domain classification performance often better than
even non-linear baselines trained using the original data representation. Therefore demonstrating
that promoting domain-invariant representation can improve classification performance even in
ST2T setting.
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Table 4.1: Gene expression datasets summary.

lung tissue fluorouracil paclitazel
dataset | total count

pos ‘ neg | pos ‘ neg ‘ unk | pos ‘ neg ‘ unk
TCGA 9359 | 1011 | 8348 | 87 | 54 | 9218 [ 95 | 60 | 9204
CTRPv2 933 | 173 | 760 | 161 | 597 | 175 | 488 | 257 | 188

4.4 Experiments with real datasets

In this section we present domain adaptation experiments on real gene expression datasets,
attempting DA between a patient cohort generated by The Cancer Genome Atlas (TCGA)
Research Network: https://www.cancer.gov/tcga and cancer cell lines from Cancer
Therapeutics Response Portal v2 (CTRPv2) [170] dataset. First we attempt to generalize
lung tissue type classification trained using labeled patient examples to accurate prediction in the
cell line dataset. Second, we evaluate DA for drug response prediction in a real scenario, when
available are several hundred response-labeled cell lines and only much fewer response-labeled
patients. The used datasets are summarized in Table 4.1.

In both TCGA and CTRPv2 datasets the gene expression was quantified from RNA-Seq
using Kallisto [23] tool and normalized for sequencing depth and transcript length as TPM
(Transcripts Per Million). Next, transcript expression levels were pooled into gene expression
levels using GENCODE v23 human genome reference annotation [63]. Finally, we selected all
landmark L1000 genes, resulting in 1051 genes, as our input feature set. We used per-gene
standardized logarithm of TPM, log,(TPM + 0.001), as the input gene expression levels. In the
following text, we occasionally refer to the input features also as x; as it corresponds to the

observed random variable x; of the VFAE model.

4.4.1 VFAE and SSVAE architecture hyperparameters

We experimented with two VFAE architectures selected based on the size of the labeled part of
a training set. In tissue type prediction experiments, when primarily training on labeled TCGA
patients, we trained a larger model denoted as “archTCGA”. In all drug response prediction
experiments and tissue type prediction experiment on a cell line dataset we employed a smaller
“archCCL” architecture analogous to that of SSVAE presented in Chapter 3 and [166]. The two
“archTCGA” and “archCCL” model architectures are illustrated in Figure 4.5.

In the following domain adaptation experiments we also use an SSVAE model as an ablation
baseline, since it has comparable expressiveness but lacks conditioning on domain indicator
variable s and domain-invariance regularization by MMD loss on the latent embedding z;. Each
time we compare SSVAE and VFAE in one scenario, they share the common architectural
hyperparameters. Note that when evaluating a VFAE model in S2S or T2T learning mode it
reduces to an SSVAE model.


https://www.cancer.gov/tcga
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Figure 4.5: VFAE architectures used in experiments with gene expression datasets.
Shown are hyperparameters of neural networks that parameterize the generative distributions p,
and the approximate posterior distributions ¢ of VFAE model. We used a larger “archTCGA”
model architecture (a, b) or a smaller “archCCL” architecture (c, d) depending on the number of
labeled examples in a training set.
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4.4.2 Evaluation procedure

All experimental results presented in this section are based on evaluation in 10-times randomized
5-fold cross-validation following data-splitting procedure described in Section 4.2. In training of
our deep generative models we used early stopping based on validation set performance with
20 epoch patience, and if the validation performance did not increase in 8 epochs the learning
rate was halved. Classification performance was quantified by the area under the ROC curve
(AUROC) and the precision-recall curve (AUPR). Where applicable we show results with their

95% confidence interval.

4.4.3 Tissue type prediction pilot study

The first real gene expression dataset application we consider is a classification of the primary site
tissue type of cancer tumour samples. Particularly, we simplify this task to a binary classification
problem of distinguishing lung-derived samples from the others. We selected lung cancer samples
as the positive class because lung is the most abundant primary site among TCGA and CTRPv2
samples. The source domain is 9359 TCGA patients (1011 lung cancers) and the target domain
is 933 cancer cell lines (173 derived from lung cancer). In TCGA cohort we pooled LUAD (lung
adenocarcinoma) and LUSC (lung squamous cell carcinoma) cancers together, each with 513
and 498 patients, respectively.

We designed the tissue prediction pilot study with three main reasons in mind. Firstly, this
classification task is expected to have strong and broad (genome-wide) signal in both cell lines and
patients. Secondly, even though cell line creation process introduces considerable perturbation of
the transcriptome, it is reasonable to expect that the tissue signal is sufficiently conserved. Thus
the covariate shift assumption is likely to hold. Finally, this pilot problem definition allows us to
quantitatively evaluate VFAE on a large labeled datasets of real cancer gene expression, and
conduct power analysis in this idealized setting. Note that here we attempt domain adaptation
from patients to cell lines, contrarily to drug response prediction application, since in this case

the patient domain contains 10x more labeled samples than the cell line domain.

TCGA patients domain (S2S)

First, we set out to experimentally quantify strength of the tissue type signal in the source
domain dataset. We trained SSVAE and a set of baselines to classify lung cancer patients in
TCGA cohort. Note that here we trained an SSVAE model as this is a standard classification
scenario in a single domain. Most of the evaluated models were able to achieve close to perfect
generalization, scoring near 1 test AUROC, see Figure 4.6. SSVAE performed nearly identically
to SVMrbf and Ridge logistic regression, with Random forest ensemble model falling slightly
behind. We can conclude that lung tissue type is a property with a strong signal in the TCGA
dataset.

A weight of SSVAE classification loss w, used during training did not have much influence
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Figure 4.6: Source domain (patients) lung tissue type classification (S2S). All
classification methods can generalize and accurately predict lung tissue type in held out patient
samples when there is no domain shift present and dataset is of sufficient size (9359 examples).
Note, VFAE is not evaluated as it reduces to SSVAE in the case of a single domain.
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on the result of this experiment. In a grid search the best validation results were achieved with
wy € {30,...,50}. Next, it is worth mentioning SSVAE x; reconstruction performance: Pearson
p = 0.877, R? = 0.822; was nearly identical to that of PCA: p = 0.878, R? = 0.826. The obtained
SSVAE performance also confirms that the deep generative model architecture “archfTCGA” we

selected is well suited to the task.

Adapting tissue type prediction from patients to cell lines (S2T)

We evaluated VFAE in unsupervised domain adaptation (S2T) learning mode against baselines
that do not perform any domain adaptation. Consequently we conducted an ablation study to
quantify contribution of features that set VFAE apart from SSVAE on the final classification
performance. Those two features are: domain conditioning of z; encoder and x; decoder, and
additional domain-invariance regularization of z; embedding by domain MMD loss. Last but not
least we performed power analysis by reducing the number of labeled examples in a training set.

We run a grid search for weights of the classification loss w, and domain MMD loss wyvp
used in VFAE training. The best weights, wy, = 15 and wyvp = 1200, were selected based on
validation split AUROC performance. VFAE achieved the best domain adaptation performance,
eclipsing random forest, L2 logistic regression and SVM baselines, Figure 4.7. Note that baseline
classifiers trained on VFAE latent embedding z; perform better than when trained on the original
input x; of L1000 genes, while using PCA representation yields the poorest performance. This
goes to show that VFAE learns embedding with distinctly better domain-invariant class features.
At the same time the VFAE is good for a competitive reconstruction accuracy of the input gene
expression; Pearson p = 0.836 and R? = 0.759; even though behind the PCA; p = 0.867 and
R? = 0.806.

In Figure 4.8 we show the effect of wyivp on VFAE results by modulating wymvp from zero to
1800 in 300 increments. Usage of MMD regularization clearly aids in learning of domain-invariant
z1 embedding, that, to a point, leads to better target domain classification performance. The
VFAE performance is equal or better than the baselines for any wynmp > 300.

Next, we conducted a power analysis by censoring the TCGA patient cancer type class in
a training set. The number of labeled training examples was reduced to 1000, 2000, 3000, 4000
and 5000 examples, respectively; the censored examples were used as unlabeled examples.
As expected, the performance of all models increases with the number of labeled examples,
while VFAE performance is higher than that of any other method, Figure 4.9. The increasing
performance shows that the models’ capacity had not been saturated even when all (approximately
5615) examples are used in training. Next, since the gap between VFAE and SVMrbf, the
second-best model, tends to widen with the increasing number of labeled examples, the VFAE
would likely benefit from further increased training set size more than the baseline. Most
consequentially, in the lowest data regime there is only a marginal difference between VFAE
and SVMrbf, which is concerning in case of intended application to limited-sized drug response

datasets.
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Figure 4.7: Unsupervised domain adaptation (S2T) for predicting lung tissue type.
Classification performance of predicting lung tissue type in cancer cell lines by adaptation from
patients to cell lines domain. VFAE was trained with loss weights w, = 15 and wyvp = 1200.
Furthermore, we evaluated SSVAE and baseline classifiers trained on: (i) original L1000 genes,
denoted as x3; (ii) top 100 Principal Components of xi; and (iii) VFAE’s learned latent
representation z;. Shown are test set (cell lines) results in terms of: (a) AUROC, and (b) AUPR.
Error bars indicate 95% confidence interval.
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Figure 4.8: Effect of MMD regularization in VFAE unsupervised domain adaptation
(S2T). Results are shown for VFAE trained with loss weights w, = 15 and varying wymp €
{0..1800..300}. (a) Relationship of VFAE’s test AUROC in tissue prediction task y and the
domain discrepancy in VFAE’s latent representation z;. (b) Shows classification performance
of predicting the domain label s from VFAE’s z; compared to original L1000 genes and their
first 100 PCs representation. Presented is test AUROC of a random forest classifier. Error bars
indicate 95% confidence interval.
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Figure 4.9: Impact of labeled training set size in S2T setting. Lung tissue classification
performance of VFAE and baselines for varying number of labeled patients (source domain) in
the training set. (a) VFAE compared to baselines trained on original data. (b) VFAE compared
to baselines trained on 100 PC representation and 100-dimensional VFAE latent representation
of the original data. Error bars indicate 95% confidence interval.
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Figure 4.10: Pilot study dataset visualization. 2-D UMAP embedding of a TCGA (source
domain) and CTRPv2 (target domain) training split. Shown is embedding of the input L1000
genes expression (left) and of the VFAE z; embedding (right) annotated by tissue type (top
row), true lung tissue labels (middle row), and VFAE predictions when trained in S2T mode
(bottom row). VFAE embedding improves alignment of cell lines and patients, which improves

domain adaptation for lung tissue classification.
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Finally, we qualitatively investigated distribution of the dataset and its latent representation
by VFAE. We used Uniform Manifold Approximation and Projection (UMAP) [144] to project
the L1000 genes expression x; and its corresponding VFAE embedding z; onto a 2-D plane,
shown in Figure 4.10. Annotation by the most abundant tissue types reveals that in several tissue
types the cell lines and patients are rather close or overlap in the UMAP projection of L1000
gene expressions. While this supports our expectation that VFAE should be able to align cell
lines and patients of the same tissue type, we can see in the plot of VFAE latent embedding of
this data that even though the alignment of the domains is improved; for qualitative evaluation
refer to Figure 4.8; the domains are not precisely matched on all tissue types. The domain
alignment in VFAE embedding seems to have successfully aligned tissue types for which patients
and cell lines are close or overlapping already in the original data input. Further, the unequal
ratio of tissue type samples between our two domains in connection with use of MMD loss, an
issue investigated in synthetic experiments earlier in Section 4.3.2, may too be contributing to
the occasional tissue mismatch in the VFAE latent embedding. Importantly, the alignment of
lung-cancer-derived samples is rather successful, as illustrated in the middle row of the Figure 4.8.
This may be aided by optimization for the lung tissue classification task in training of the VFAE
as well. Interestingly, lung-cancer-derived cell line samples that are outside of the patient cohort
support; see the mid-right pane of Figure 4.8; are typically those incorrectly classified by the
VFAE model; the bottom-right pane.

Semi-supervised domain adaptation (ST2T)

In this semi-supervised DA scenario we investigated how much a relatively small amount of labeled
target domain examples can improve generalization of the prediction models. In our experiments
we obtained significantly higher test performance across all models, Figure 4.11. However, unlike
in our previous simulation experiments, training for a domain-invariant representation in VFAE
does not lead to improved target domain classification. SSVAE performs almost equally to VFAE
for any setting of MMD weight. Both evaluated deep generative models are comparable to the
best baselines, while SVMrbf edges out the other models in terms of AUPR.

Cancer cell line domain (T2T)

The final set of tissue type prediction experiments assays how well can the considered methods
generalize from a small training set in the target domain alone. Achievable performance in T2T
mode sets a benchmark for assessment of domain adaptation practicality; whether DA methods
can surpass training on a limited target domain training set.

The ‘archTCGA’ SSVAE architecture is too large for cell line dataset of this small size,
therefore we used the smaller ‘archCCL’ instead. Still, considering previous S2S results, it seems
that the dataset is too small for SSVAE to outperform baseline classification methods. Even

though the difference is small, both logistic regression and SVM with the RBF kernel score
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Figure 4.11: Semi-supervised domain adaptation (ST2T) for predicting lung tissue
type. Classification performance of VFAE was nearly identical for any setting of wymvp, yielding
results comparable with SSVAE and the best baseline models.
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Figure 4.12: Target domain (cell lines) lung tissue type classification (T2T). Most
classification methods can achieve high prediction performance when trained and tested solely
on cell line dataset of limited size (933 examples in total). Note, VFAE is not evaluated as it
reduces to SSVAE in the case of a single domain.
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higher than SSVAE, Figure 4.12. In terms of reconstruction of the x; gene expression SSVAE
performed well, yet behind PCA; Pearson p 0.756 of SSVAE vs 0.787 of PCA on the test set.
From the aforementioned practicality perspective, models trained in unsupervised S2T mode
are worse than in T2T, while semi-supervised ST2T training does yield slightly improved
performance over the T2T models. When comparing T2T to ST2T learning modes, we see
that addition of a large amount of labeled data from the source domain actually improved
prediction performance over training solely on a limited target domain dataset and lead to the

best performing models overall.

Conclusion of the pilot study

Our pilot study with real gene expression datasets showed that domain adaptation by VFAE is
feasible in case of broad class signal and sufficient similarity of the source and target domains.
VFAE trained in unsupervised domain adaptation mode outperformed every other evaluated
method that utilized labeled samples only from the source domain. Our ablation study also
showed the domain adaptation features of VFAE model contribute to this improved target domain
performance. On the other hand, we also observed signs of limitations of the unsupervised
domain-invariant representation learning with Maximum Mean Discrepancy, that we had studied
in the simulation experiments. Yet these limitations were not critically detrimental in this lung
tissue prediction pilot study.

Taking a pragmatic perspective, the negative observation is that S2T mode lead to worse
performance than T2T. That means training standard classification models on the limited target
domain dataset is better than attempting unsupervised domain adaptation by VFAE in this case.
Next, the power analysis in S2T mode rises concerns about domain adaptation applied to drug
response prediction because of the small number of labeled examples in those datasets. However
ST2T learning mode lead to training of the best performing models overall, proving that the
patients and cell lines indeed share some common signal at least in relation to the tissue type.

How these aspects pan out in the case of drug response task we analyze in the next section.

4.4.4 Drug response prediction from cell lines to clinical datasets

Finally, we evaluate domain adaptation for response prediction of fluorouracil and paclitaxel
treatments. We aimed to leverage CTRPv2 dataset [170] that provides treatment sensitivity
in cancer cell lines (source domain), to train a response classifier applicable to clinical patients
(target domain).

In the following experiments we used TCGA patient cohort, with limited number of patients
with known response to fluorouracil or paclitaxel treatments, where the clinical outcomes were
curated by Ding et al. [47]. We bifurcated the patients’ RECIST response scores such that
patients with "Stable Disease", "Clinical Progressive Disease" or "Partial Response" score were
considered non-responders and only patients with "Complete Response" score were labeled as
positive responders. For exact CTRPv2 and TCGA dataset sizes refer to Table 4.1. In case of
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cancer cell lines, the drug sensitivity in CTRPv2 experiments was first quantified by the area
above dose-response curve as computed by PharmacoGx R package [187] and then bifurcated by

the waterfall method [9, 89| into responders and non-responders.

We follow the same experimental procedure as described earlier in this section. Next, due to
limited labeled training set size in either learning scenario, we use VFAE/SSVAE architecture

“archCCL”, Figure 4.5, in all following experiments.

Results

Domain adaptation by VFAE led to improved classification performance over SSVAE in both
unsupervised (S2T) and semi-supervised (ST2T) domain adaptation mode, Figure 4.14 and
4.15. However the achieved performance does not surpass baseline methods. Overall, the best

approach to predict patient response is SSVAE trained on patient data only (T2T), Figure 4.16.

The drug response classification signal is fairly strong in the cancer cell line dataset, where
for both fluorouracil and paclitaxel all baseline models and SSVAE achieve similar performance
well above 0.7 AUROC, Figure 4.13. However, considering the poor S2T results, the classifiers
learned on cell lines do not transfer well to the patient dataset. Next, there is a sizeable gap
between patient classification performance in ST2T and T2T mode as well. Additionally, in S2T
and ST2T the best results were achieved with wypp = 0, which shows that forcing CCL and
patient invariance by MMD is not helping to generalize classification of the drug response from
CCL to patients. This may point to invalidity of covariate shift assumption. Perhaps the drift
between response in CCLs and patients is too large for practically successful domain adaptation

or limitations of VFAE come into play too.

Supplementary to the above quantitative evaluation we qualitatively assessed VFAE fit in S2T
mode for fluorouracil response. Figure 4.17 shows 2-D projection by UMAP of the input L1000
gene expression x; and VFAE embedding z; annotated by either tissue type of the samples or
by the fluorouracil response. The subclustering of the dataset is dominated by tissue type, while
the response labeled samples are unequally distributed among different tissue (cancer) types in
cell lines compared to patients. Here we can observe several necessary assumptions of domain-
invariant representation learning for domain adaptation, earlier investigated in our simulation
experiments, be violated: i) responders in one domain are typically not close to responders in
the other domain; ii) unsupervised domain-invariant representation tends to match domains
on tissue type as this component of variance dominants the response signal; and iii) unequal
ratio of outcome classes between domains and tissue type hinders unsupervised DA with MMD
loss, as studied in Section 4.3.2 and confirmed by selection of wynp = 0 in our hyperparameter
grid-search. As such our experiments point to impossibility of successful unsupervised domain

adaptation for drug response without further assumptions in general.
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Figure 4.13: Cancer cell lines only (S2S) drug response prediction.
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Figure 4.14: Unsupervised domain adaptation (S2T) for drug response prediction trained
on cell lines and evaluated on TCGA patients.
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Figure 4.15: Semi-supervised domain adaptation (ST2T) for drug response prediction
trained on both cell lines and TCGA patients, evaluated on held out patients.
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Figure 4.16: TCGA patients domain only (T2T) drug response prediction.
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Figure 4.17: Fluorouracil response in CTRPv2 and TCGA visualization. 2-D UMAP
embedding of a CTRPv2 (source domain) and TCGA (target domain) training split. Shown is
embedding of the input L1000 genes expression (left) and of the S2T VFAE z; embedding (right)
annotated by tissue type (top) and ground truth fluorouracil response (bottom). Penalization
of VFAE latent embedding to be more domain invariant does not lead to accurate transfer
of fluorouracil response classification from cell lines to patients. Such representation matches
marginal distribution of cell lines and patients that is dominated by tissue type, which does not
benefit the drug response prediction task.
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4.5 Discussion

In this chapter we investigated how drug response measured in pre-clinical models, particularly
cancer cell lines, can be of use to improve clinical drug response prediction using domain
adaptation methodology. We summarized theoretical assumptions for unsupervised domain
adaptation and experimentally illustrated them in a series of simulations studies. In our
experiments we have focused on a particular domain adaptation model, the Variational Fair
Autoencoder [139], but most of our conclusions are not specific to this model, and rather apply to
the family of domain adaptation methods that aim to learn domain-invariant data representations.

In a pilot study, where we aimed to learn a domain-invariant classifier of lung-cancer-derived
samples, we saw that variational autoencoder-based models like SSVAE and VFAE can model
gene expression comparably to PCA in terms of reconstruction quality, while their representation
is co-optimized and thus considerably better suited for down-stream classification tasks. Next,
our pilot study confirmed that when domain adaptation assumptions hold, or at very least are
not strongly violated, domain adaptation features of VFAE undoubtedly contribute to improved
domain-generalization of the task classifier.

Despite the success in our pilot study, application of VFAE to response prediction to
fluorouracil and paclitaxel treatments turned out unsuccessful. We tracked down two principal
causes of the lack of success: i) the drug response datasets do not conform well with the
assumptions for successful domain adaptation, ii) even if the DA assumptions held as well as
in our pilot study, the number of response-labeled samples is too low, which we showed in a
down-sampling experiment, Figure 4.9.

Concerning the necessary assumptions we have the following takeaways. Firstly, the response
signal, i.e. P(Y|X), has to be mostly conserved between domains. Unfortunately in some cases
response in cell lines differs from clinical response. Thus the covariate shift assumption may not
hold and unsupervised domain adaptation is not possible without incorporating a suitable prior
knowledge. Utilization of more faithful pre-clinical models, like organoids or PDX mouse models
could alleviate this issue as these biological models are closer to the biology of cancer in humans.
The practical limitation of these models is that with their increasing realism typically increases
cost and decreases scalability of high-throughput pharmacogenomic studies, more so for PDX
than organoids. Last but not least, after the biology of cancer can be accurately replicated in
pre-clinical models, also the treatment response outcome has to be quantified in a way directly
comparable to the outcome in a clinical trial. Without a matching response quantification the
covariate shift assumption cannot hold.

Next, different class ratios between domains is detrimental in case symmetrical domain
matching is enforced [214]. However in drug response datasets this class ratio asymmetry is a
common occurrence and most importantly, the extend of it cannot be assessed from unlabeled
target domain data. Furthermore, other heterogeneity in the datasets, such as ratio of cancer
types or subtypes, between the domains may have similar effect. Here, a correct prior knowledge

has to be incorporated, as some drugs are expected to have response that is tissue or cancer
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subtype specific, while other drugs target a specific genomic aberration that is a common response
marker across many cancer types, e.g. across all solid tumours.

Based on our series of simulation experiments, culminating in a combination of the
aforementioned issues in the SD:combination experiment, as well as experiments with real
gene expression and drug response datasets, we conclude that unsupervised domain adaptation
by exact domain-matching is not generally applicable to drug response prediction from cell
lines to patients. Not without thorough assessment and addressing of the points discussed here.
Going forward, we will need either to develop domain adaptation methods with inductive bias
that leads to successful domain matching for drug response, or rather instead of unsupervised
domain adaptation focus on semi-supervised domain adaptation. Perhaps methods such as DIVA
[101] that do not force domain-invariance and rather try to disentangle domain-specific and
class-specific factors of variations may be more suitable. But perhaps most likely avenue of
further research is utilization of transfer learning or multitask learning methods where response
in cell lines is considered a correlated task that may help to learn a more robust prediction model
given limited number of labeled patient data, ideally together with incorporation of biological
priors. In case negative transfer is observed, i.e. when treatment response in cell lines is very
different from patients, we best focus on patient-only models with treatment-relevant feature
preselection, e.g. gene sets implicated in given cancer type or pathways related to the drug

mechanism of action, or other prior incorporation.



Chapter 5

fCNV: probabilistic method for
detecting copy number variation in a
fetal genome using maternal plasma

. T
sequencing

5.1 Introduction

Until recently, the prenatal analysis of a fetal genome required samples directly obtained from the
fetus by invasive procedures like chorionic villus sampling or amniocentesis, where amniotic fluid
is sampled from around the developing fetus. Amniocentesis, however, has several important
disadvantages. Foremost, it carries a non-trivial risk of miscarriage (estimated procedure-related
fetal loss rate is 0.6% to 1% [49]), and hence is refused by a fraction of patients. Secondly,
amniocentesis cannot be performed too early, as the risk of miscarriage rises significantly, and
is typically indicated for the 15th week of pregnancy, outside of the time-frame for the safest
abortion options (<12 weeks) and leaving only limited time for follow-up analysis. Finally,
amniocentesis is a complex and expensive medical procedure ($1,500-$3,000). Consequently,
amniocentesis is typically performed only to confirm or reject a diagnosis if a genetic disease is
suspected, e.g. high likelihood of Down syndrome based on prenatal ultrasound.

The several years has seen the initial development of alternative, non-invasive methods for
prenatal genetic testing. Prominent among these are methods that are based on analysis (arrays
or sequencing) of cell-free DNA (c¢fDNA) extracted from maternal blood plasma, which contains
an admixture of fetal and maternal DNA. The fraction of fetal DNA in such an admixture varies
depending on multiple factors, including maternal weight and size of the fetus, but typically

builds up from ~5-7% early in the pregnancy to 10% at week 10 [207] to as much as 50% before

"Work published in Oxford Bioinformatics (2014) [165], presented at conferences RECOMB 2014 and ISMB
2014, and featured in GenomeWeb [198].
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delivery [207, 60]. In experiments conducted by Kitzman et al. [120] (and utilized in this paper)
the estimated admixture in samples obtained at 8 weeks and 18.5 weeks of gestation was 7% and

13%, respectively.

The decreasing cost of DNA sequencing has made it practical to directly sequence cfDNA
extracted from maternal blood to identify likely genetic disorders present in the fetus. Non-
invasive methods are becoming more commonly used to directly identify aneuploidies (abnormal
chromosome counts) and are also enabling preventive screening for heritable genetic diseases,
resulting in better prenatal health care [181]. While most non-invasive genetic diagnostics aim
to test for a particular previously known biomarker, Kitzman et al. [120] demonstrated the
possibility of the reconstruction of the whole genome of the fetus by combining whole-genome
sequencing of parental genomes with deep sequencing of ¢fDNA from maternal plasma (78x
coverage). The key intuition in this method is the comparison of allelic ratios at individual SNP
loci, as the inheritance of a particular paternal allele affects the percentage of reads with that
allele at the particular position in the genome. This method heavily relies on the availability of
phased parental genotypes, as these allow for the inference of likely co-inherited SNPs, leading
to an improvement in the signal-to-noise ratio. It consequently provides for high accuracy
identification of inherited (98% accuracy) but not de novo single nucleotide variants (17 correct

calls out of 44 true de novo sites, with 3884 called positions).

While most efforts to detect Copy Number Variants (CNVs) from ¢fDNA sequencing have so
far concentrated on whole-chromosome events (e.g. Chu et al. [29]), the past year has seen the
first few attempts at methods for genome-wide identification of sub-chromosomal de novo CNVs.
Such methods are desired to enable non-invasive prenatal screening for diseases like DiGeorge
syndrome (~3Mb deletion), Prader-Willi syndrome (the deletion subtype caused by a ~4Mb
deletion), and other disorders associated with a mid to large sized CNV. So far two publications
address the problem of detecting sub-chromosomal CNVs [27, 190]. While the exact methods
used in both of these approaches differ, both rely on depth of coverage: they map the reads to
the genome, divide the genome into bins, and identify the CNVs by comparing the number of
reads mapped to each bin. The key idea in these methods is that deletions/duplications will
result in more/fewer fetal reads within a window, and this difference can be identified using
statistical methods. Srinivasan et al. [190] use depth-of-coverage computed in 1Mb windows
across the genome to identify CNVs that are typically >1MB, though they do report discovery
of a 300kb CNV. 9 of the 22 discovered CNVs in 11 patients were concordant with karyotyping
results, with most discrepancies being short (<1Mb) CNVs. Importantly, they use extremely
short (25bp) reads, allowing for larger number of fragments at equal coverage depth. Chen et al.
[27] use even larger 10Mb windows, again considering only the number of fragments mapped
and are able to successfully identify variants 9-29Mb with only one false positive among 6 true
positives in 1311 patients. Both methods utilize low coverage WGS of the plasma cfDNA, while

leveraging the large number of samples.

In this chapter we introduce a novel model for non-invasive prenatal identification of de
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novo CNVs with increased sensitivity compared to methods published so far. Our method
combines three types of information within a unified probabilistic model. First, our method
takes advantage of the imbalance of allelic ratios at SNP positions that are introduced by various
types of paternally and maternally inherited CNVs. Secondly, following the work of Kitzman
et al. [120], we use parental genotypes to phase nearby SNPs, modelling their co-inheritance (or
recombination) and thus improving the signal-to-noise ratio. Finally, we observed that allelic
ratios poorly differentiate between certain types of CNVs: for example, as further described below,
a duplication of a paternally inherited allele results in extremely similar allelic ratios to deletion
of a maternally inherited one. We thus combine the allelic ratios with the depth-of-coverage
signal to better differentiate between such cases. Our simulation results, based on in silico
introduction of novel CNVs into plasma samples with 13% fetal DNA concentration, demonstrate
a sensitivity of 90% for CNVs >400 kilobases (with 13 calls in an unaffected genome), and 40%
for 50-400kb CNVs (with 108 calls in an unaffected genome).

5.2 Methods

Our method models two types of signal from the data: (i) imbalance of the allele distributions
at SNP loci (discussed in Section 5.2.1), and (ii) number of fragments sequenced from ~1kb
genomic regions (discussed in Section 5.2.2). Though each of these is noisy, the two are (nearly)
independent (modulo number of reads overlapping the SNP position) variables and can be
combined into a single generative model. For this purpose we use a Hidden Markov Model
(HMM), where we interpret the allele counts at SNP loci as emissions, while the coverage is used
as a prior probability for each state (see Section 5.2.3).

For our method we assume that we have phased haplotypes of both parents, and deep
sequencing data of ¢cfDNA from maternal plasma. In practice we used whole genome sequencing
(WGS) data for the parents, with phasing based on 1000 Genomes data (see Section 5.3.1). All
de novo CNVs thus correspond to a particular parental haplotype duplication or deletion event.
Labelling the two maternal and paternal haplotypes as M4, Mg, P4, Pg. For each inheritance
pattern — normal inheritance, maternal duplication, paternal duplication, maternal deletion,
paternal deletion — we introduce a set of phased inheritance patterns that enumerates all the
possible configurations of fetal haplotypes corresponding to the respective inheritance pattern.
For example a duplication in the maternal gamete will consist of one (or more) of six phased

inheritance patterns:

MAMAPA> MAMBPA7 MBMBPA7
MAMsPg, MasMpPp, MpMpPg

There are a total of 20 phased inheritance patterns (PP): 6 each for maternal /paternal duplication,
2 each for maternal/paternal deletion, and 4 for normal inheritance). We refer to the number of

alleles (copy count) inherited by the fetus as | PP|. We use r to refer to the percentage of cfDNA
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that is fetus-derived; this parameter is estimated from positions in the genome where the parents

are homozygous for alternate alleles.

5.2.1 SNP Allele Distribution

For every SNP locus we observe a distribution of nucleotides in maternal plasma reads. In
this section we focus on calculating the probability of the observation with respect to a phased
inheritance pattern. Formally, we observe the counts of the 4 nucleotides {ky, k¢, k¢, kr} and
compute the probability of observing each of these from a particular phased inheritance pattern
PP. Ideally, these counts should follow multinomial distribution with the parameter vector
(pa, pc, pa, pr). However we have found that modelling them as independent Gaussians with
variance equal to the mean (as an approximation of the Poisson), makes the inference of the

inheritance pattern more robust to noise.

More formally,
Prlky | Ma, Mp; Pa, Pg;7; PP ~ N (pis, piz) (5.1)

To compute the expected support u, for z € {A,C,G, T}, we first adjust the mixture ratio r based
on the expected number of fetal haplotypes | PP|, as absence/presence of an additional fetal copy
in the plasma sample influences the local fetal mixture ratio. We accommodate this influence of

| PP| expected fetal haplotypes instead of regular two as follows:

, |PP|-r/2

"TIPPI 2 £ -1

(5.2)

Then for each nucleotide x we compute the probability p, of observing a read supporting x.
Such a read might have originated from multiple haplotypes, including two maternal haplotypes
and | PP| fetal haplotypes. We can individually evaluate this probability for each haplotype and

subsequently sum them to obtain p,:

Dz = Z [M; equals x] - m;(1 —1") (5.3)
1€{A,B}
,,,,/
+ Z [y equals x] - 123
yePP

For reads putatively coming from maternal portion of the cfDNA sample, we correct for maternal
CNVs by using the allele ratios m; as observed in maternal-only sequencing data. Additionally,
in order to mitigate noise we add pseudocount « (proportional to the genome-wide coverage) to

these counts.

«a + #reads supporting M; in maternal sample

i (5.4)

~ 2a + Eje{A,B} #reads supporting M; in maternal sample
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Figure 5.1: Distribution of fragments per kilobase of chromosome 1 per million fragments (FPKM)
in 1 megabase segments for plasma sample (blue) and maternal sample (red) of the I1 trio.

We thus obtain the expected probability distribution for each nucleotide observed at this SNP
locus.
In order to obtain the expected number of reads p, supporting particular variant at this

SNP locus, we have to multiply p, by the number of reads mapped,
Iz = Pz - #Fmapped reads (5.5)

As we describe later, we use this probability distribution N (g, 1) that is conditional on phased

pattern PP as the emission distribution for each nucleotide in our HMM.

5.2.2 CNVs and Depth of Coverage

Variations in number of fragments sequenced per a region is a standard measure used for detection
of mid to large sized CNVs (see Medvedev et al. [145] for a review), and has also been used
for CNV detection from maternal plasma [190, 27]. However the relatively low admixture of
fetal DNA in the maternal plasma together with ¢fDNA sequencing biases considerably limit
potential of methods relying on coverage signal from a single sample. Furthermore, the high
variability of the coverage derived from blood plasma (Figure 5.1) makes it difficult to identify
shorter CNVs. Thus methods of Srinivasan et al. [190], Chen et al. [27] use large bins and require
multiple datasets to establish a baseline for CNV calling.

Simultaneously, the coverage forms an important complementary signal to the allelic

distributions described above: certain ratios have very similar probability under different phased
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Figure 5.2: (a) A scatterplot demonstrating the correlation of window ratio values (WRV)
between plasma samples of I1 and G1 trios. The shown WRVs were computed for windows of size
1kb in chromosome 1. (b) Histogram of absolute errors between WRVs from different samples;
comparing distribution of absolute error between plasma samples of I1 and G1 trios (red), and
between plasma sample and maternal sample of 11 trio (blue). There is a notably heavier tail in
case of plasma to maternal sample error distribution, composed of windows with weak WRV
correspondence — an artifact of wider coverage distribution in plasma ¢fDNA sample compared
to standard WGS maternal sample (Figure 5.1). This artifact causes plasma to maternal sample
WRV comparison to have higher mean absolute error (0.000521, compared to 0.000347 for plasma
I1 to plasma G1) even though they are from the same trio.
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patterns, e.g. a deletion of a maternally inherited allele may yield distributions similar to a
paternally inherited duplication. Incorporating the coverage signal helps to discriminate such
states. In our method, we use the coverage information as a noisy predictor to complement the

signal we obtain from SNP loci.

As a measure of coverage in a genomic region we use window ratio value (WRV) analogous
to the bin ratio value measure used by Srinivasan et al. [190], which is essentially the number of
fragments mapped to the region and normalized by the number of fragments mapped to other
regions with similar GC content. Note that window ratio values are independent of GC content

and depth of sequencing of the sample.

For the purpose of our model, we split the genome to non-overlapping windows, each
containing a single SNP, with breakpoints being in the middle between two adjacent SNPs. For
each SNP i the corresponding WRV; for the window W; containing the i-th SNP position is
then computed as the ratio of number of fragments Ny, mapped to W; to the sum of fragments

mapped to 200 windows of the same size with GC content closest to W;:

WRV; — : (5.6)
W eneigh23®(W;)

However, the variable length of the windows makes such computations expensive as computation
of neigh2®(W;) is linear in number of windows. To make the WRV computations practical,
we scale Ny, to correspond to expected number of fragments as if |WW;| = 1kb by multiplying
Nyw, by 1000/|W;| (for clarity, not shown in our equations). Then WRVs in 1kb bins can be
precomputed, enabling us to find neigh22’(W;) in time logarithmic from the number of bins.
Using 1kb bins is a good approximation as the mean distance between two adjacent SNP loci is
expected to be 1kb.

Overall, our goal is to estimate the probability of observing WRV;S in the studied plasma
sample conditional on the number of fetal haplotypes (| PP|), which is either three for duplication,
one for deletion, or two for normal inheritance. To do so, we use a reference sample to obtain
WRVf” for comparison (computed in the same genomic window W;). Further we need to compute
two more reference WRVf-?‘s, each scaled to reflect one CNV type. For duplication, we would
expect to see (14 r/2) times more fragments while for deletion (1 — 7/2) times less fragments,
thus the scaled WRV PP

; is estimated as
gy irrl _ Nwe (L (PP —2) - 7/2)

" S Nyn

Weneigh2d®(WE)

(5.7)

Finally, we can compute the probability of WRV? being generated from an event with fetal
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allele copy count |PP| as:
N(WRVEFPL _ WRVS: 11 = 0, 0neise) (5.8)

where we model the difference between WRVY and WRV T as a Gaussian noise with zero mean
and empirically estimated variance oppige.

By normalizing the probabilities of WRV;‘3 w.r.t. all phased patterns, we obtain priors for
each phased pattern that are used in the HMM described in the next section.

As a reference plasma sequencing coverage we use plasma sample of the G1 trio of Kitzman
et al. [120] dataset, as the overall coverages observed in corresponding bins between the two
samples correlate well (mean absolute error of WRVs being 0.000347, see Figure 5.2(a)). Since
coverage variation of ¢cfDNA from plasma has much wider distribution than standard WGS, a
sample from other plasma is more suitable than the same trio maternal sample (see Figure 5.2(b))
for purpose of coverage distribution reference in our model. Availability of additional plasma
datasets would enable us to further improve the accuracy of the reference bins.

Note that compared to previous methods we use significantly smaller windows: ~1kb versus
100kb-1Mb used by other methods [27, 190]. As mentioned earlier, our goal here is not to
detect CN'Vs immediately, but to rather compute a probability distribution over the number of
haplotypes the fetus has inherited, which are used as priors in the more complex model. Due
to the independence assumptions inherent in the HMM we want these priors, applied at each
state, to be (approximately) independent, and hence we picked non-overlapping windows each

containing one SNP locus.

5.2.3 Hidden Markov Model for CNV Inference

To combine the signals from individual SNP positions, we use an HMM with 20 states
corresponding to modelled phased inheritance patterns (Figure 5.3). That means each sate
represents a possible set of parental haplotypes inherited by the fetus. States representing
normal inheritance are central to the model assuming that two CNVs cannot be immediately
subsequent. Between states of the same inheritance pattern, we allow for transitions reflecting
either recombinations or errors in phasing. For each state, the emissions are the counts of
individual alleles in reads mapped to that particular SNP position. The probability of the
observed emission is the probability of such allele counts in the expected allele distribution
conditional on phased inheritance pattern as described above in Section 5.2.1.

To incorporate the coverage information, for each SNP position we multiply the transition
probabilities into the state by the copy number priors obtained in Section 5.2.2. Specifically,
each edge incoming to a state is multiplied by the corresponding prior of inheriting that many
haplotypes, which are then normalized so that the sum of the probabilities leaving each state is
one.

The transition probabilities within an event type (e.g. maternal duplication) were set to 0.01,
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(a) Overall HMM architecture (b) States for normal inheritance

(c) States for maternal duplication (d) States for maternal deletion

Figure 5.3: Hidden Markov model used for CNV inference. (a) High-level architecture of the
HMM with 5 sets of states corresponding to 5 types of fetal inheritance. Note, we do not allow
two CNVs to be adjacent, thus switching between two CNVs always has to go through a normal
inheritance state. Edges in (a) represent edges coming in/out of all states between two sets of
states. (b-d) Correspond to the diagram of states of the HMM within the normal inheritance,
maternal duplication, and maternal deletion states of (a). Paternal duplications/deletions are
analogous to (c) and (d). Inner edges in (b-d) serve to model errors in phasing or recombination
events.

to reflect expected haplotype block lengths of several hundred SNPs. Further, the transition
probability for starting a CNV was set to one in ten thousand SNP loci (0.0001) with length
expected to span approximately one thousand SNPs (i.e. transition probability back to normal

inheritance was set to 0.001).

5.2.4 CNYV Simulation in silico

To evaluate the accuracy of our CNV discovery algorithm we created simulated datasets with
CNVs of various sizes inserted into the sequenced plasma. While previous approaches have used
simple Poisson modelling of the coverage of ¢fDNA for simulation purposes [27]|, we propose a

more elaborate model to more accurately model the extremely uneven coverage that we observe in



CHAPTER 5. DETECTING CNVS IN FETAL GENOME FROM MATERNAL CFDNA 101

cfDNA samples (Figure 5.1). Our simulation performs the deletion or duplication of a particular
fetal allele. We need to resolve the haplotypes of every individual in the trio, to correctly add or
remove reads originating from a target haplotype of the CNV event. Similarly to our detection
method (described in Results, below), we used Beagle 4 [24] with 1000 Genomes Project reference
haplotypes, however we also use the fetal genome sequenced after delivery, and utilize pedigree

information to phase each individual in the trio.

In order to simulate a duplication, of either maternal or paternal origin, we used the parental
DNA sequencing data from the family trio data set. First, we filtered for reads mapping to the
intended region of duplication that also match the target haplotype of the parent according to the
parental phasing. In case of reads not uniquely mapping to either of the two parental haplotypes,
i.e. the read mapped to a region without any heterozygous SNP locus, the read was selected
randomly with probability 0.5. Subsequently, the filtered reads were uniformly down-sampled
according to fetal DNA mixture ratio and the original plasma DOC in this region to match the
expected number of reads derived from a single fetal haplotype in plasma sequencing. Resulting
reads were then mixed together with original plasma reads to create a plasma sample containing

the desired duplication in the fetal genome.

To simulate a deletion, we first identified a fetal haplotype inherited from the parent of choice,
which was to be deleted. We filtered the plasma sample removing reads coming from this target
fetal haplotype. That is, each read mapped to the intended deletion region was removed with
probability of belonging to the fetus and also being inherited from the intended parent. In order
to find this probability we used the phasing to check which maternal and fetal haplotypes match
the SNPs in the read. If none of the four haplotypes matched the read, we removed the read
with probability /2 where r is the fetal DNA admixture ratio. If the fetal target haplotype

matched the read, it was removed with probability

r/2
Ny - (1—=7)/2+ Ng-7/2

(5.9)

where 0 < Ny < 2 and 0 < Ny, < 2 are respectively the number of fetal and maternal haplotypes
that matched the read.

We also simulated plasma data sets with decreased fetal DNA mixture ratio. In order
to achieve a desired down-rated admixture ratio 7’ in our plasma sample, we had to remove
appropriate number of reads coming from the fetal DNA. First, we have computed the appropriate

fraction of fetal-origin reads, w.r.t. original admixture ratio r, to be removed from the plasma as

1—17r T

Tgel = 1 — (5.10)

r 1—7

Similarly to simulation of a deletion, we have then filtered the plasma reads for reads originating

from the fetal genome. Since this cannot be decided without ambiguity, we estimated the
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Table 5.1: Summary of mother-father-child trio I1 sequencing data [120].

Individual ‘ Sample ‘ DOC
Mother (I1-M) | Plasma (5 ml, gestational age 18.5 weeks) | 78
Whole blood (< 1 ml) 32
Father (I1-P) | Saliva 39
Child (I1-C) Cord blood at delivery 40

corresponding probability ps:

Ne-r/2 .
iff Ny + Ny >0
pe(seq) ={ Nm - (1 —=7)/2+ N¢-r/2 (5.11)

r iﬁNm+Nf:0

where Nt and Ny, as above, are the number of fetal and maternal haplotypes that match SNP

alleles of the read. Thus a read was then removed with probability equal to

Tdel * pf(seq) (5.12)

5.3 Results

5.3.1 Datasets and Processing

In our experiments, we used whole genome sequencing data of two mother-father-child trios I1
(Table 5.1), and G1, obtained and published by Kitzman et al. [120]. In our experiments we
mainly used the first trio I1 with 13% fetal admixture in obtained plasma. For maternal, paternal,
and plasma datasets the reads were aligned to the hgl9 genome using BWA. We genotyped
both the parents using Samtools and Vcftools. To improve the precision of genotyping we only
consider variants at positions previously identified as variable within the 1000 Genomes Project.
Subsequently we phased the haplotypes using Beagle 4 [24| with reference haplotype panels from
1000 Genomes Project.

5.3.2 Evaluation

We simulated 360 CNVs in I1 plasma to evaluate our method’s recall, while G1 plasma sample
served as a reference in DOC-based CNV estimation as described in Section 5.2.2. For each
test case, we picked a random position in chromosome 1, outside known centromere and
telomeres regions, to place the simulated CNV. Our simulation methods are described in detail
in Section 5.2.4. We then ran our algorithm on a genomic window starting 20Mb before the
simulated CNV and ending 20Mb after the CNV. The results are shown in Table 5.2. We
acknowledge a CNV as correctly called if CNV predictions of the same type span at least 50% of

it, while precision is computed as the fraction of correct CNV calls over all calls of that category.
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Table 5.2: Summary of recall on test set composed of 360 in silico simulated CN'Vs in I1 maternal
plasma samples with 13% and 10% fetal admixture ratio. The ‘ratios only* column corresponds
to the method that only uses allelic ratios, but not the coverage prior. In such cases both the
precision and recall are mostly dominated by the model combining both signals. (We write ‘NA*
in a precision field if no call of such CNV category was predicted by the model).

mixture length Paternal Del (20) Paternal Dup (40) Maternal Del (20) Maternal Dup (40)
ratio ratios only | combined | ratios only | combined | ratios only [ combined ] ratios only | combined
50k - 400k recall 55 60 55 60 10 15 25 22
precision 73 52 25 75 67 100 2 2
13% 400k - 3M recall 100 100 98 98 30 40 73 78
precision 100 100 100 100 86 100 23 89
53M recall 95 100 93 95 95 100 100 100
precision 100 100 100 100 100 100 100 100
50k - 400k recall 50 45 48 48 0 (0] 15 15
precision 71 69 23 30 NA NA 2 2
10% 400k - 3M recall 100 100 920 92 5 20 38 45
precision 100 100 95 100 100 80 10 16
>3M recall 95 95 100 100 45 40 93 88
precision 100 100 100 100 100 100 97 97

To evaluate the effect the admixture has on accuracy, we repeated this experiment not only with
the original plasma dataset, but also once down-sampled to only contain 10% admixture.

The results indicate that our method can achieve nearly perfect recall and precision for
variants > 3 megabases, and promising results down to CNVs of 400 kilobases. Maternally
inherited events are typically more difficult to identify than paternally inherited ones, and
deletions more difficult than duplications, possibly due to complete dropout of fetal alleles due
to reduced admixture.

To evaluate power of individual signals utilized by our unified model, we also tested models
that take into consideration only either the allelic ratios or coverage information. The allelic
ratios only model is as described above in Section 5.2.3 but without multiplying of copy number
prior in the transition probabilities. Obtained results are shown together with the results of the
unified model in Table 5.2.

For predicting fetal CNVs based solely on coverage information we split the sample to bins of
uniform size and computed WRVs for each, following the work of Srinivasan et al. [190]. We then
ran a simple HMM with 3 states corresponding to normal inheritance, duplication, and deletion,
respectively. The WRVs in bins were interpreted as emissions and the emission distributions
were computed as described in Section 5.2.2, Equation 5.8. We tested the HMM with bin sizes of
100kb and 300kb, and the results are summarized in Table 5.3. Using larger bins limit resolution
of the method, e.g. in case of 300kb bins the obtained recall on < 400kb CNVs is (close to) zero.
On the other hand for large CNVs > 3Mb using 300kb bin size mostly improves upon 100kb
bins in terms of both recall and precision.

Note, that a direct comparison to the methods of Chen et al. [27] and Srinivasan et al. [190]

is not possible, as they are tailored to low coverage plasma sequencing data and require a large
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Table 5.3: Summary of results obtained by an HMM using only WRYV signal. The same test set
composed of 360 in silico simulated CNVs was used as in Table 5.2. We ran the model with
100kb, and 300kb bin sizes. (We write ‘NA‘ in a precision field if no call of such CNV category
was predicted by the model).

mixture lenath Paternal Del (20) Paternal Dup (40) Maternal Del (20) Maternal Dup (40)
en

ratio o binsize ->] 100kb 300kb 100kb 300kb 100kb 300kb 100kb 300kb
50k - 400k recall 5 0 22 0 20 (0] 8 0
precision 5 0 100 NA 2 0 100 NA
13% 400k - 3M retfa‘ll 75 25 50 20 75 25 30 18
precision 35 21 100 100 11 5 100 100
53M recall 75 75 50 55 89 80 32 55
precision 37 94 100 100 81 48 100 100
50k - 400k recall 5 0 18 0 10 (0] 8 2
precision 8 0 100 NA 2 0 100 100
10% 400k - 3M retfa.ll 60 20 32 18 60 15 18 8
precision 26 9 100 100 6 3 100 100
>3M recall 75 60 45 45 85 70 22 45
precision 25 86 100 100 40 24 100 100

Table 5.4: In silico recall and number of CNVs of various sizes generated in a genome-wide run.
For each CNV size we also show (in parenthesis) the number of calls that are from at least 50%
overlapped by CNVnator [1] calls on the fetal, maternal, and paternal genomes, respectively.

Combined Model 50-200k | 200-400k | 400-750K | 750k-3M | 3M-7.5M 10M+
o Maternal origin 0% 40% 57% 73% 100% 100%
in silico CNV recall —
Paternal origin 43% 77% 100% 97% 93% 100%
WG calls and their (F, M, P) overlap |82(7,8,4)[26(2,3,2) 9(1,1,0) | 4(2,1,2) 0(-) 0(-)

number of control plasma samples to evaluate significance of observed coverage variation in the

studied plasma sample for CNV calling.

To further test precision of our combined method, we ran our combined model on the whole
plasma dataset (expected to contain no large de-novo variants) and observed the number of CNV
calls for each size. These numbers are shown in Table 5.4, with in silico accuracy for each length
shown for comparison. Notably, a large fraction of the larger false positive calls correspond to

CNVs already present in parents (and hence inherited, rather than de novo).

5.3.3 Implementation Note

Our model is implemented in the Python programming language with the PyPy interpreter.
When ran on a whole genome dataset our implementation required up to 20GB of system memory
and took less than 4 hours of single thread CPU time to finish. The implementation is available
at http://github.com/compbio-UofT/fCNV.


http://github.com/compbio-UofT/fCNV
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5.4 Discussion

In this chapter we introduced a novel probabilistic method for the identification of de novo
Copy Number Variants from maternal blood plasma sequencing with largely increased sensitivity
compared to methods published so far. Our method combines three types of data: allelic
ratios, reflecting the changes in the expected observations of various alleles at SNP positions
in the presence of the CNV; phasing information, allowing for the combining of allelic ratios
across multiple SNP positions, thus improving the signal-to-noise ratio; and depth of coverage
information reflecting the change in expected sequencing depth in the presence of the CNV. We
applied the resulting method to simulated sequencing data, demonstrating promising results for
CNVs > 400 kilobases in length, and especially for CN'Vs of paternal origin.

Simultaneously, we believe our method can be further improved in several ways. First, our
approach of modelling the depth of coverage prior using small windows is likely suboptimal.
Especially because the method is searching for larger CNVs, using larger windows would be
advantageous; however in this case the observations of coverage at adjacent SNPs would no
longer be independent, and thus not properly modelled as an HMM. We believe a more expressive
model that is able to model such interactions between coverage terms would improve upon the
current results. Secondly, our method does not directly model potential inherited CNVs in the
father (maternally inherited CNVs are modelled through the use of maternal priors at each
position). Explicitly pre-computing and utilizing information about these inherited CNVs is
likely to reduce the false positive rate of ours and related methods. Thirdly, we incorporated the
coverage signal in our model by comparing the observed WRV with the corresponding WRV in
a reference plasma sample (G1 in our experiments). Using multiple plasma references would
reduce individual-specific biases, thus improve the overall performance.

The main limitation of our method in practice is the need for deep maternal plasma cfDNA
sequencing in order to exploit the allelic ratios signal. Note that the parental genome WGS
could be replaced by genotyping using SNP arrays, however the need for a paternal sample is a

limitation for broad clinical use.



Chapter 6

Conclusion

Identifying the best treatment for cancer patients that maximizes their chances of successful
recovery remains a largely unresolved problem for many cancer types and both cytotoxic and
targeted treatments. In this thesis I developed a machine learning model, Dr.VAE, that improves
accuracy of drug response prediction over the currently used models. The drug response
variational autoencoder, described in Chapter 3, leverages advancements of deep learning recently
introduced in the area of latent-variable generative modeling. Neural network aspect of the
model facilitated greatly increased expressiveness and effective feature extraction in the model.
On the other hand, the latent-variable aspect enabled integration of drug-induced perturbation
profiles, a resource not fully utilized before, and further enabled semi-supervised training of the
model.

However my Dr.VAE model is limited to training and prediction in pre-clinical datasets
of cancer cell line drug sensitivity. Clinical datasets mapping genomic profiles to oncological
treatment response are currently of insufficient size for training of such deep learning models.
Therefore approaches of domain adaptation or transfer learning are required to make the pre-
clinical models clinically valuable. To this end, I assessed applicability of domain-invariant
representation learning, a popular domain adaptation approach, to the drug response prediction
task. In my analysis, presented in Chapter 4, I came to the conclusion that necessary conditions of
successful domain adaptation via the means of learning domain-invariant representation are often
not satisfied in the available datasets. This analysis brings insight into why homogenization of
cell lines and patient cohorts does not necessary lead to improved clinical prediction performance,
a result also empirically observed by Zhao et al. [221].

To improve chances of successful unsupervised domain adaptation or transfer learning, the
research community likely needs to move towards high-throughput screening of biologically more
accurate pre-clinical cancer models. While cell lines enabled discoveries of several important
univariate biomarkers and facilitated successful drug repositioning (Section 2.4.1), it is possible
that there this biological model reaches limits of its utility. A biologically more accurate model of
cancer is necessary to discover more complex biomarkers and to train accurate powerful machine

learning models. We need to study anti-cancer drug sensitivity and there-by induced phenotype
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perturbations in an environment as close to in vivo as possible yet feasible to scale towards
acquisition of massive datasets. Organoids are a promising step in this direction. Patient derived
xenografts, while currently the most accurate pre-clinical models, have inherent drawback of
cost, scalability and consistency. The high-throughput aspect is crucial for application and
development of powerful machine learning methods. Last but not least, special care has to be
taken to adequately match treatment outcome measures between a pre-clinical (source) and

clinical (target) domain, as well as cancer type and subtype composition of the datasets.

Pre-clinical models however cannot completely substitute clinical trial data. Labeled clinical
datasets will always be needed to evaluate transferability of a model into the clinic. Clinical data
should, to largest extent possible, be also included in training of the models. As I observed in my
experiments in Chapter 4, training in source + target domain (ST2T) regime, that is using both
cell line and patient datapoints in training, leads to the best target domain performance if the
source domain dataset is at all helpful. Therefore approaches of transfer learning (semi-supervised

domain adaptation) will likely yield the best clinical predictive models.

In case of limited dataset sizes, it can be beneficial to incorporate biological priors, as I did
in Chapter 3. Many other priors can be used, perhaps most straightforward is feature (genes,
variants, etc.) preselection to increase power of a prediction method. In my studies I selected
the L1000 landmark genes [192], but based on mechanism of action of a particular drug, a more
relevant, yet smaller, set of genes could be selected. Another promising avenue for improving
drug response prediction in limited datasets is to leverage similarity of anti-cancer drugs in their
mechanism of action. Here, machine learning approaches for transfer learning and multi-task
learning could deliver a further improvement in prediction accuracy as already shown in several
prior studies [34, 4, 183].

The tissue type of cancer’s primary site is often correlated with the response outcome.
That shows that for many existing treatments, the response is considerably tissue-specific.
Therefore it can be promising to train tissue-specific prediction models if the dataset sizes allow
it. Unfortunately current cell line datasets provide more than 200 cancer samples in only two

tissue types: lung tissue and blood cancers (combined haematopoietic and lymphoid tissue).

Next, as I alluded in Section 2.4.3, efficient monotherapies are unlikely to exist for all cancers
and all patients. Combination therapies can target multiple aberrant cancer processes at once
by combination of several synergistic drugs and achieve higher efficacy and/or lower toxicity. In
fact many of currently used cancer treatments are predetermined “drug cocktails” [100]. Many
expect that future progress in cancer treatment will come from discoveries of new combination
therapies [153] and ultimately personalized predictions of treatment combinations that account

for intra-tumoural heterogeneity and attack all cancer subclones at the same time.

In this thesis I also contributed to the area of non-invasive prenatal testing based on sequencing
of circulating cell-free DNA shed from the placenta into the maternal circulation during pregnancy.
Here presented method was the first proof-of-concept for sub-chromosomal CNV detection. It

was later followed by Arbabi et al. [6] who leveraged characteristics of placenta-derived cfDNA
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fragment size distribution to detect even shorter CNVs. Progress in this area has led to routinely
available commercial screening tests for aneuploidy and major sub-chromosomal aberrations.
Despite the advancements in underlying biotechnology, all commercially available tests remain
screening tests and to establish a diagnosis, an invasive test is still necessary [17].

Exciting is the future development in a related area — liquid biopsy of cancer [177, 155|, which
consists of detection and analysis of circulating tumour cells and DNA fragments released by
tumours into the patient’s circulation. Feasibility of this approach is dependent on development
of reliable and cost-effective biotechnology, which has been a hurdle until very recently [44, 93].
Emergence of this technology will continually enable a wide range of clinical applications in
cancer screening, diagnosis, prognosis, and personalized treatment selection [155]. T hope that
biotechnologies, such as liquid biopsy, will lead to generation of massive-scale clinical datasets of
genomics in cancer, including progressive monitoring of the tumour development in response to
treatment, and will eventually facilitate development of accurate machine learning models for

precision medicine in cancer that are fully personalized and adaptive.
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Figure A.1: Summarized classification results (AUPR). (a) Area under the precision-recall
curve of Dr.VAE and baseline methods. Shown is average over 26 drugs, each evaluated in 100
train-validation-test splits. (b) Dr.VAE is comparable or better than any other baseline for
>85% of the drugs (p-val < 0.05 Wilcoxon test).
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Figure A.2: All to all comparison of tested methods (AUPR). Comparison of all tested
methods by one-sided Wilcoxon Signed-Rank Test (p-val < 0.05) based on test area under the
precision-recall curve performance in 100 train-validation-test splits. Cell at (4, j) position shows
the number of drugs for which a method in row ¢ outperforms the method corresponding to j-th
column. Analogous to Figure 3.4 in the main text that presents comparison by test AUROC.
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Table A.1: Per-drug AUROC classification results. Cross-validated test AUROC (area
under the ROC curve) of our Dr.VAE to SSVAE and other classification models detailed for
each evaluated drug. Methods including PCA and PertVAE are 2-step methods: (i) fit the
unsupervised model, (ii) use latent representation to fit a standard classifier.

AUROC
drug

bortezomib
bosutinib
ciclosporin
clofarabine
dasatinib
decitabine
docetaxel
etoposide
fluvastatin
fulvestrant
gemcitabine
lovastatin
mitomycin
niclosamide
omacetaxine me
paclitaxel
PLX-4032
prochlorperazine
sirolimus
sitagliptin
teniposide
topotecan
trifluoperazine
valdecoxib
vincristine
vorinostat

Dr.VAE | Dr.VAE | SSVAE

baselines trained on
pre-treatment X,

baselines trained on
top 100 PCs of x;

baselines trained on
PertVAE latent z; of x|

RForest | RidgeLR | SVMrbf | RForest RidgeLRlSVMrbf RForesthidgeLR SVMrbf

0.659 0.649] 0.641 o.sssh

‘ 0.737| 0750 0.735 0.747| 0.735
0.638| 0.637 0632 0638 0637 0.631| 0633
0.746| 0745 0.749 0.754| 0.754

| 0775 o. 0.764| 0.771| 0778 0.772| 0775
0.838|0:838| 0827 0832 0822 0.820

0.729| 0.724 0.711 0.724

0.866| 0.863| 0.868| 0.847 0.866
0.650| 0.648| 0.649| 0.657 0.652
0.561| 0559 0.549 0.547

0.728

0.726

0.729
0.651
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Table A.2: Per-drug statistical comparison of Dr.VAE to other evaluated methods
by AUROC. Statistical comparison of Dr.VAE to a set of evaluated baseline models on basis of
their test AUROC on 100 data splits. Shown is p-value of one-sided Wilcoxon Signed-Rank Test
rejecting null hypothesis of “Dr.VAE performance is worse or no different from the compared
model performance” in favor of alternative hypothesis “Dr.VAE mean performance is higher than
the compared baseline model”. In Dr.VAE column, the mean test AUROC is shown.

AUROC baselines trained on baselines trained on baselines trained on
drug Dr.VAE | Dr.VAE | SSVAE pre-treatment x; top 100 PCs of x; PertVAE latent z; of x;

(6h) w/l RForest | RidgeLR | SVMrbf [ RForest | RidgelR [ SVMrbf | RForest [RidgeLR | SVMrbf
bortezomib 0.670|w 6.2E-03 | w 1.9E-03| w 1.3E-03|'w 4.5E-09 | 4.3E-12| » 5.5E-13 | 1.7E-10 | 2.9E-10| » 5.1E-07 == 1.5E-01 |-=4.3E-01
bosutinib 0.743 | 1.2E-02 |+ 3.4E-04 » 3.4E-02|“ 1.0E+00 | 4.2E-03| < 8.4E-11(“ 1.0E+00 |-~ 9.4E-01|  2.0E-05 [~ 9.0E-01 |~ 2.7E-03
ciclosporin 0.638|-=1.5E-01 |~ 8.9E-01 | == 1.2E-01|~=4.5E-01 |-~ 4.8E-01| ~w 4.9E-04 [~ 3.8E-01 |~ 8.5E-01| “» 4.2E-04|~=9.1E-02 |- 2.5E-01
clofarabine 0.757 | 2.1E-06 |~ 8.8E-02 w 2.9E-05|w 6.1E-04 [ 4.8E-05| w 1.7E-15 | 2.7E-06 | 3.0E-11| » 2.5E-08 = 1.9E-01 |-~ 6.3E-02
dasatinib 0.775|w 1.9E-04 |~ 9.4E-02 w 1.9E-06 |-~ 5.4E-02 4 9.7E-01|  1.3E-03 [~ 7.2E-01|“ 1.0E+00| w 4.9E-11|w 1.3E-02 |-~ 1.4E-01
decitabine 0.840|w 6.0E-07 | 2.8E-01| w 1.0E-07 |'w 6.9E-05 [ 2.6E-11| “w 3.1E-15 | 4.9E-02 | & 4.9E-16| “» 1.6E-12 |- 3.6E-01 |+ 2.9E-14
docetaxel 0.733 | 8.56-06 | w 2.1E-03 | == 5.2E-01 | 2.0E-03 [ 9.2E-08| w 3.3E-15 | 2.5E-02 | w 1.3E-11| » 1.4E-04|w 2.1E-02 | 7.7E-03
etoposide 0.866|w 6.1E-09 | 7.7E-01| w 3.6E-12| 4 9.9E-01|4 1.0E+00| w 1.9E-16 [~ 6.1E-01|w 4.1E-14| ~ 5.8E-13 == 1.2E-01 |~ 4.5E-01
fluvastatin 0.650|w 7.7E-09 |~ 3.6E-01| 4 9.8E-01|“ 1.0E+00 |4 1.0E+00| w 2.1E-02 = 8.5E-01|==5.3E-01|  3.2E-03|==7.1E-02 | 7.1E-01
fulvestrant 0.561 |~ 1.3E-01|~=9.4E-02| “ 9.8E-01 |~ 5.8E-02 |-~ 8.4E-02 1.7E-01 == 1.7E-01|==2.1E-01| == 8.9E-02 | 3.9E-02 | 4.1E-02
gemcitabine 0.734|-=4.1E-01 | 5.4E-03| w 8.0E-03 |w 9.5E-04 [ 3.0E-01| w 5.1E-07 [~ 6.8E-01 | 2.0E-06| “» 1.2E-04|w 1.1E-03 | 1.2E-02
lovastatin 0.651|=3.4E-01 |- 6.4E-02 1.1E-01|w 1.3E-02 |~ 2.6E-01| w 3.4E-12|w 1.8E-03 [ 3.0E-09| w 1.2E-03 [~ 9.6E-01 |- 5.4E-01
mitomycin 0.734 < 5.1E-09 |~ 2.6E-01 8.4E-02 w 8.4E-13 5.5E-01| w 5.6E-06|wr 2.8E-05|w 2.9E-02| w 5.0E-05|w 5.7E-10(~ 9.8E-01
niclosamide 0.687 6.9E-01|w 1.6E-02| w 1.8E-03|w 5.2E-08 | 3.8E-07| w 7.8E-11(w 1.2E-04 | 4.9E-04| w 5.7E-08|w 6.4E-09 8.5E-02
omacetaxine me 0.735|w 5.3E-08 | 2.2E-04 w 1.5E-08 |~ 1.3E-01 | 5.5E-03| w 8.6E-16 [ 5.2E-01|w 1.2E-06| “» 1.4E-07 |- 8.8E-01 |- 8.8E-01
paclitaxel 0.753 |+ 2.9E-08 |~ 8.6E-02 w 6.2E-05 | 1.4E-09 [ 1.1E-10| w 2.9E-13 [ 4.3E-08 | 2.9E-10| » 1.2E-05|w 1.1E-03 |~ 5.7E-01
PLX-4032 0.583|-=5.3E-01 |~ 8.8E-01 | == 8.7E-02 |-~ 3.7E-01 | 8.8E-08| “w 6.8E-03 [~ 4.5E-01 |-~ 1.8E-01| » 2.8E-02 |4 9.8E-01 |4 9.9E-01
prochlorperazine 0.609 | 2.6E-02 | 3.3E-02 w 8.4E-07 |~ 6.7E-01 |==7.5E-01| » 1.0E-10 [~=9.5E-01 |~ 1.4E-01| “» 2.3E-04 |-~ 8.5E-02 | & 5.7E-07
sirolimus 0.670|-=5.3E-01 |~ 6.0E-01 | == 3.5E-01 | 1.8E-08|w 1.8E-07| “w 1.6E-05 [ 4.6E-05 |~ 6.5E-02 | == 7.9E-02 == 4.1E-01|“ 1.0E+00
sitagliptin 0.582|=3.6E-01 |- 6.8E-01| w 2.3E-02|w 5.7E-03 | 4.4E-02| w 4.5E-03 |w 3.6E-02 [ 3.7E-01 1.4E-01|w 4.5E-02 | 9.7E-01
teniposide 0.739|w 1.3E-03 |~ 2.1E-01 | == 9.0E-01|w 3.6E-02 [~ 4.2E-01| w 6.1E-07 [~ 1.5E-01|w 1.3E-09| » 3.3E-03 | 8.1E-04 |+ 5.5E-06
topotecan 0.752 |+ 4.0E-14 |~ 7.0E-01| w 1.2E-05 | 2.6E-04 [~ 9.3E-02| w 3.3E-13 | 5.0E-04 | 2.5E-09| » 2.7E-06 | 3.5E-03 |+ 3.9E-04
trifluoperazine 0.659 |+ 7.2E-03 | w 6.8E-03 4 1.0E+00 |~ 5.1E-01 | 5.2E-03| “w 2.0E-05 [~ 7.0E-01 | 4.1E-03 | » 3.4E-05| 4 9.7E-01 |+ 5.4E-03
valdecoxib 0.708|-=1.5€-01 | 1.0E-01 | == 5.3E-02 |~ 3.2E-01 | 8.9E-15| “» 3.9E-06 [~ 1.3E-01 | 3.9E-07 | » 9.8E-08 |-~ 2.1E-01 | 6.3E-10
vincristine 0.788 |+ 1.6E-08| 9.8E-01| w 3.5E-05|w 1.6E-08 1.7E-01| w» 4.0E-11|w 1.6E-05|w 6.2E-06| = 5.7E-05 8.9E-02 |~ 1.0E+00
vorinostat 0.743 |- 4.7E-01|w 4.2E-04| w 1.2E-04 |~ 1.1E-01 |+ 7.6E-05| = 5.2E-13 = 3.8E-01|w 6.7E-08| w 6.0E-08 |~ 1.3E-01|w 5.6E-08
% Dr.VAE ">" 61.5%| 34.6% 57.7%| 53.8%| 53.8% 96.2%| 46.2%| 65.4% 88.5% | 38.5%| 42.3%
% Dr.VAE "=" 38.5%| 61.5% 30.8%| 34.6%| 34.6% 3.8%| 50.0%| 30.8% 11.5%| 50.0%| 38.5%
% Dr.VAE "<" 0.0% 3.8% 11.5%| 11.5%| 11.5% 0.0% 3.8% 3.8% 0.0%| 11.5%| 19.2%




APPENDIX A. SUPPLEMENTARY FIGURES AND TABLES FOR CHAPTER 3

115

Table A.3: Per-drug AUPR classification results. Cross-validated test AUPR (area under
PR curve) of our Dr.VAE to SSVAE and other classification models detailed for each evaluated
drug. Methods including PCA and PertVAE are 2-step methods: (i) fit the unsupervised model,
(ii) use latent representation to fit a standard classifier.

AUPR
drug

bortezomib
bosutinib
ciclosporin
clofarabine
dasatinib
decitabine
docetaxel
etoposide
fluvastatin
fulvestrant
gemcitabine
lovastatin
mitomycin
niclosamide
omacetaxine me
paclitaxel
PLX-4032
prochlorperazine
sirolimus
sitagliptin
teniposide
topotecan
trifluoperazine
valdecoxib
vincristine
vorinostat

Dr.VAE

0.538( 0.537
0.380( 0.378

| 0427 0427]

0.396
0.848
0.351

0.837
0.856

Dr.VAE | SSVAE

baselines trained on
pre-treatment Xx;

RForest

RidgeLR | SVMrbf

0.756
0.841
0.758
0.725
0.366

0.882| 0.878
0.844
0.417

0.802
0.533
0.361
0.811
0.820
0.740
0.842
0.742
0.729
0.813
0.728
0.829
0.772
0.874
0.842
0.421
0.687
0.756

0.400 0.388
0.848 0.848
0.857 0.847
0.342 0.357
0.833 0.824
0.855 0.848
0.860 0.859
0.715 0.710

baselines trained on
top 100 PCs of x;
RForest | RidgeLR | SVMrbf

baselines trained on
PertVAE latent z; of x|

0.701

Rforest | RidgeLR | SVMrbf
0.805| 0.795
0.547

0.373

0.815
0.828
0.731

] 0.834
0.753| 0.762
0.726| 0733
0.380| 0.379

0.817
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Table A.4: Per-drug statistical comparison of Dr.VAE to other evaluated methods by
AUPR. Statistical comparison of Dr.VAE to a set of evaluated baseline models on basis of their
test area under precision-recall curve on 100 data splits. Shown is p-value of one-sided Wilcoxon
Signed-Rank Test rejecting null hypothesis of “Dr.VAE performance is worse or no different from
the compared model performance” in favor of alternative hypothesis “Dr.VAE mean performance
is higher than the compared model”. In Dr.VAE column, the mean test AUPR is shown.

AUPR baselines trained on baselines trained on baselines trained on
drug Dr.VAE | Dr.VAE | SSVAE pre-treatment x; top 100 PCs of x; PertVAE latent z; of x;

(6h) w/l RForest | RidgeLR | SVMrbf [ RForest | RidgelR [ SVMrbf | RForest [RidgeLR | SVMrbf
bortezomib 0.810|w 1.56-03 | 9.4E-05| w 1.1E-04|w 6.1E-07 | 1.8E-16| w 1.7E-15 | 3.7E-06 | & 7.6E-12 | “» 1.8E-12 | 3.0E-02 | 1.8E-07
bosutinib 0.538 |~ 1.8E-01|w 2.8E-02 1.4E-01|==9.4E-01| 9.9E-01| w 2.1E-07|“ 1.0E+00|“ 1.0E+00| w 1.2E-02|“~ 9.9E-01|- 9.9E-01
ciclosporin 0.380 | 7.0E-04 |-~ 8.2E-01| » 2.6E-04 | 3.0E-02 | 9.5E-01| “w 2.5E-06 [ 4.9E-04 |-~ 2.8E-01| “w 2.1E-10 == 3.3E-01 [~ 7.6E-02
clofarabine 0.823 | 3.1E-05|w 2.9E-02 » 1.1E-09 | 1.0E-04 | w 8.6E-08| “w 2.1E-16 [ 6.0E-05 | 4.4E-14| ~w 5.0E-14 [~ 5.3E-02 [ 2.3E-06
dasatinib 0.830|w 6.5E-03 | 3.5E-02 » 6.1E-05|w 2.4E-03 |~ 9.4E-01| “w 2.0E-02 [~ 5.5E-01|“ 1.0£+00| ' 2.3E-07 |*» 6.2E-03 [~ 1.5E-01
decitabine 0.761 |+ 4.3E-04 | 1.3E-02 » 1.7E-11|w 1.4E-02 | 3.9E-11| » 9.8E-17 ['» 6.6E-03 | 4.9E-15| “w 7.1E-12 == 8.3E-01 [ 1.7E-15
docetaxel 0.847 | 2.4E-07 | 3.3E-03 1.1E-01|w 3.6E-03 | w 8.9E-10( w 2.2E-16|w 4.6E-02 [ 1.0E-16| w 1.3E-07 [ 1.2E-02 |w 1.6E-04
etoposide 0.758 |+ 6.8E-08 |~ 2.8E-01| w 1.1E-05 [~ 5.9E-01 | 1.0E+00| w 6.7E-09 [~ 5.4E-02 [ 4.7E-08| < 2.7E-06 | 7.7E-03 |-~ 8.0E-01
fluvastatin 0.727 |+ 2.3E-03 |~ 1.4E-01| == 5.2E-01|“ 1.0E+00|“ 1.0E+00| “w 5.7E-03 [~ 2.8E-01|~=3.5E-01| ' 5.4E-03 [~ 3.8E-01 [~ 9.3E-01
fulvestrant 0.371|~~8.8E-02|~=2.3E-01| “ 1.0£+00 |4 9.7E-01|=9.3E-01| “w 2.1E-02 [ 9.9E-01 |~ 7.5E-01| == 2.3E-01 |-~ 8.5E-01 [~ 9.3E-01
gemcitabine 0.825 |+ 3.8E-01|w 8.9E-03| w 3.4E-08|w 1.7E-03 | 'w 4.4E-04| “w 1.6E-12 [~ 6.3E-01 | 2.5E-11| “w 4.2E-09 | 8.4E-03 [ 1.4E-04
lovastatin 0.734|-=3.3E-01|~=2.7E-01| » 4.4E-02 | 3.0E-02 |~ 6.0E-01| “w 4.2E-11 | 6.9E-05 | 1.2E-04| ~w 9.8E-06 |-~ 9.4E-01 [~ 6.8E-01
mitomycin 0.838|w 5.3E-09 |~ 8.2E-02| w 7.5E-06 |w 1.1E-15|w 3.3E-04| w 1.1E-13 | 1.9E-12 | & 7.1E-12| » 9.9E-12 | 2.9E-12 | 1.8E-05
niclosamide 0.786|-=9.1E-01 |~ 1.6E-01| w 1.2E-05|w 1.2E-03 |+ 6.5E-06| w 1.0E-12 | 6.3E-03|w 3.4E-09| w 4.1E-11|w 5.4E-04 |+ 1.3E-04
omacetaxine me 0.885 | 6.2E-07 | 9.3E-05 | w 8.6E-06|w 9.4E-03 | & 2.8E-03 | “w 1.5E-15 -~ 6.8E-01|w 1.5E-09| » 8.3E-08 [~ 9.0E-01 [~ 8.6E-01
paclitaxel 0.848|w 4.2E-04 | 2.5E-02 w 2.9E-04|w 1.1E-08|w 5.1E-14| w 6.9E-15 [ 2.4E-07 | & 2.1E-17 | “» 3.2E-08|w 1.3E-02 |+ 8.5E-04
PLX-4032 0.427 |==2.2E-01|w 6.9E-03 6.9E-02 [ 2.0E-03 | 1.8E-06| “w 1.8E-07 [ 5.7E-04 = 3.7E-01| “w 2.2E-03 [~ 9.2E-01 [ 9.9E-01
prochlorperazine 0.709 |~ 1.3E-01|w 1.7E-02| » 4.7E-10 | 2.6E-01 | 4.8E-02| “w 3.9E-14 |~ 8.0E-01 |w 2.2E-05| “w 1.6E-06 |w 6.8E-03 [ 8.6E-05
sirolimus 0.761|==2.4E-01|~=4.2E-01| == 5.3E-02 | 7.8E-11|w 4.3E-13| w 1.1E-07 | 1.6E-07 | & 2.8E-05| “» 1.2E-03 | 2.6E-02 |- 7.2E-01
sitagliptin 0.396 |- 2.3E-01|~=4.9E-01| == 9.6E-02 |~ 4.7E-01 |~ 7.8E-01| “w 1.9E-05 [~ 6.0E-01 |w 4.4E-03| w 2.4E-02 |-~ 1.7E-01 [-=9.2E-01
teniposide 0.848|w 1.3E-04 |~ 3.4E-01| == 4.9E-01 | 2.3E-03 |~ 2.6E-01| “w 5.5E-11 | 4.5E-02 |w 3.3E-11| w 2.0E-07 | 2.2E-06 [ 1.1E-08
topotecan 0.859|w 5.6E-12 == 1.1E-01| w 3.1E-09 | 7.6E-05 @ 1.6E-06| w 7.7E-15|w 1.7E-04|w 4.1E-16| “» 2.0E-11|w 3.7E-03 | 1.2E-11
trifluoperazine 0.351|w 7.2E-03 | 2.8E-02 | == 8.7E-01 |~ 6.5E-01 |~ 8.9E-01| “w 1.5E-02 [~ 7.8E-01|“ 1.0£+00| o 1.5E-04 -~ 1.4E-01 [~ 4.8E-01
valdecoxib 0.837|+=5.1E-01|w 1.2E-02| w 7.7E-10|~=3.3E-01 | 1.9E-17 | “» 5.6E-15 [~ 1.8E-01|w 4.9E-15| w 1.7E-13 | 1.0E-02 [ 8.5E-17
vincristine 0.856|w 3.6E-12 == 4.6E-01| w 1.9E-05|w 2.5E-07 [ 3.5E-02| “w 2.0E-10 | 1.7E-02 | 2.8E-07 | “» 1.8E-05 = 1.1E-01 |4 9.6E-01
vorinostat 0.865 |~ 7.3E-01|w 1.8E-03| w 7.2E-04 |~ 1.8E-01|w 7.9E-09| w 3.2E-15~=4.7E-01|w 1.8E-10| w 2.1E-10|~= 6.5E-02 [ 2.0E-12
% Dr.VAE ">" 57.7%| 53.8% 65.4%| 65.4%| 61.5%| 100.0%| 53.8%| 73.1% 96.2%| 50.0%| 50.0%
% Dr.VAE "=" 42.3%| 46.2% 30.8%| 26.9%| 23.1% 0.0%| 38.5%| 15.4% 3.8%| 46.2%| 38.5%
% Dr.VAE "<" 0.0% 0.0% 3.8% 7.7%| 15.4% 0.0% 7.7%| 11.5% 0.0% 3.8%| 11.5%




APPENDIX A. SUPPLEMENTARY FIGURES AND TABLES FOR CHAPTER 3 117

Table A.5: Overall statistical comparison of Dr.VAE to other evaluated methods.
Wilcoxon signed-rank test p-values that the performance of Dr.VAE is overall better (greater)
than that of a compared method in terms of their test AUROC and AUPR, respectively. The
Wilcoxon paired test is conducted on the methods’ average per-drug performance on the set of
tested 26 drugs, i.e. comparing corresponding columns in Table A.1 and Table A.3, for AUROC
and AUPR measure, respectively.

p-value that Dr.VAE performance is greater
uncorrected p-values | Bonferroni corrected p-vals

compared method AUROC | AUPR | AUROC | AUPR
DrVAE w/ 1| 9.36e-06 | 2.05¢-05 1.03¢-04 2.26e-04
SSVAE 1.97e-03 | 1.48¢-04 2.17e-02 1.63¢-03
baselines trained on RForest 1.97e-03 1.80e-04 2.17e-02 1.98e-03
RidgeLR 2.18c-04 | 1.42¢-03 2.40e-03 1.560-02
pre-treatment X, SVMrbf 1.196-04 | 1.920-02 1.616-03 2.11e-01
baselines trained on top RForest 4.15e-06 4.15e-06 4.57e-05 4.57e-05
100 POs of =, RidgeLR 1.540-03 | 1.08¢-02 1.696-02 1.196-01
SVMrbf 2.55e-05 | 7.32e-05 2.81e-04 8.05e-04
baselines trained on RForest 4.15e-06 4.15e-06 4.57e-05 4.57e-05
PertVAE latent 2, of x, _Fd8eLR 271e-03 | 8.200-03 2.086-02 9.026-02
SVMrbf 231002 | 2.17¢-02 2 540-01 2.390-01
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Table A.6: Dataset summarization. For each from the selected set of 26 FDA-approved drugs,
this table shows the number of cell lines tested in CMap-L1000v1 for drug-induced perturbation
effects on gene expression, the total number of extracted control-perturbation pairs including
biological replicates, as well as number of these cell lines for which drug sensitivity was matched
and retrieved from CTRPv2. Next, shown is effect-to-replicate variance ratio that quantifies
signal-to-noise strength in the perturbation experiments. The last two columns show the number
of drug-response-labeled samples (out of 927 total cell lines) and the ratio of positive responders
in CTRPv2 drug sensitivity data set.

CMap-L1000v1 perturbation data set CTRPv2 sensitivity d.s.
labeled Iabgled unlabeled unlalbeled total tqtal effet;t/rep. effect/rep. number of responder
drug . unique . unique . unique | variance silhouette || labeled o
pairs pairs pairs . %
CLs CLs CLs ratio score CLs
bortezomib 97 39 29 12 126 51 0.512 0.046 824 67.60%
bosutinib 26 7 14 6 40 13 0.209 -0.023 823 24.54%
ciclosporin 219 36 49 13 268 49 0.226 -0.026 808 20.67%
clofarabine 27 7 5 2 32 9 0.248 -0.004 854 58.43%
dasatinib 43 11 10 3 53 14 0.266 0.011 845 59.05%
decitabine 23 7 26 6 49 13 0.142 -0.044 849 25.91%
docetaxel 22 2 34 7 56 9 0.245 -0.046 422 64.69%
etoposide 25 6 13 5 38 11 0.356 0.018 840 26.90%
fluvastatin 44 7 16 6 60 13 0.215 -0.060 820 59.02%
fulvestrant 23 2 33 7 56 9 0.141 -0.022 206 25.24%
gemcitabine 74 28 50 23 124 51 0.366 -0.024 777 59.07%
lovastatin 66 9 33 7 99 16 0.180 -0.008 849 59.95%
mitomycin 64 7 11 2 75 9 0.237 0.008 838 60.14%
niclosamide 146 39 48 14 194 53 0.415 0.015 830 63.73%
omacetaxine mef 19 4 22 6 41 1oh 0.041 625/ 74.88%|
paclitaxel 90 9 29 3 119 12 0.175 -0.017 827 64.81%
PLX-4032 138 41 37 13 175 54 0.356 -0.011 820 25.37%
prochlorperazine 55 7 6 2 61 9 0.049 -0.035 823 60.63%
sirolimus 330 44 87 16 417 60| 0.262 -0.024 852 5833%
sitagliptin 13 4 19 5 32 9 0.254 0.003 212 26.42%
teniposide 67 27 54 23 121 50 0.415 -0.017 410 63.17%
topotecan 42 6 8 2 50 8 0494 0.8 855  64.56%
trifluoperazine 164 35 55 20 219 55 0.339 -0.035 782 21.10%
valdecoxib 91 36 28 13 119 49 0.373 -0.019 803 63.51%
vincristine 42 7 14 2 56 9 0.198 -0.007 845 60.83%
vorinostat 98 40 47 15 145 55 0.105 825 67.03%
MEAN 78.77 17.96 29.88 8.96] 108.65 26.92 0.306 -0.002 740.92 50.98%



APPENDIX A. SUPPLEMENTARY FIGURES AND TABLES FOR CHAPTER 3

119

Table A.7: Post-treatment expression prediction results. Shown is prediction RMSE of
full Dr.VAE model on post-treatment latent representation zo and post-treatment gene expression
x9 computed on training and validation sets, and the A improvement of full Dr.VAE over Dr.VAE
with an identity function instead of learned perturbation function (denoted “Dr.VAE w/ I” in the
main text) in these measures. Pearson correlation of these A improvements to data set statistics
are shown in Table 3.1 of the main text.

RMSE training set validation set CMap-L1000v1 stats
RMSE of | ARMSE | RMSE of | ARMSE | RMSE of | ARMSE | RMSE of [ ARMSE |[effect/rep.| number of
drug predicted [ over z, |predicted| over x, |predicted | over z, |predicted| over x, [ variance |unique CLs
Z, wrt. I X, wr.t.] Z, wrt. I ratio in CMap

bortezomib 0.248 0.090 0.511 0.014 0.443 0.025 0.512 51

bosutinib 0.297 0.026 0.513 0.011 0.529 0.209 13

ciclosporin 0.326 0.039 0.525 0.005 0.455 -0.023 0.226 49

clofarabine 0.316 0.025 0.467 0.011 0.490 -0.040 0.248 9

dasatinib 0.289 0.030 0.492 0.010 0.495 -0.036 0.266 14

decitabine 0.281 0.012 0.485 0.007 0.462 -0.045 0.142 13

docetaxel 0.316 0.518 0.005 0.503 0.245 9

etoposide 0.305 0.019 0.524 0.010 0.530 0.356 11

fluvastatin 0.288 0.004 0.530 0.005 0.448 -0.057 0.215 13

fulvestrant 0.302 0.507 0.004 0.406 -0.044 0.141 9

gemcitabine 0.248 0.068 0.514 0.008 0.478 -0.009 0.366 51

lovastatin 0.304 0.013 0.515 0.004 0.489 0.180 16

mitomycin 0.342 0.005 0.500 0.008 0.500 0.237 9

niclosamide 0.287 0.056 0.550 0.436

omacetaxine mep 0.283 0.089 0.531

paclitaxel 0.316 0.000 0.509 0.004

PLX-4032 0.270 0.051 0.538 0.007

prochlorperazine 0.303 -0.004 0.501 0.005

sirolimus 0.321 0.040 0.559 0.005

sitagliptin 0.306 0.006 0.448 0.007

teniposide 0.240 0.083 0.506 0.012

topotecan 0.363 0.059 0.570

trifluoperazine 0.299 0.032 0.535 0.005

valdecoxib 0.239 0.065 0.514 0.007

vincristine 0.347 -0.001 0.505 0.008

vorinostat 0.256 0.511 0.018

MEAN 0.296 0.035 0.514 0.010
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(d) VFAE latent embedding z; during training progression; annotated by ground truth class labels.

Figure B.1: SD:overlap S2T. A successful unsupervised domain adaptation case when necessary

conditions are met.
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(d) VFAE latent embedding z; during training progression; annotated by ground truth class labels

Figure B.2: SD:inline-shift S2T. In this case of a simple mean shift, unsupervised DA is
successful despite lack of class-preserving overlap between the domains. This is thanks to the
successful domain matching coinciding with the matching imposed by the steepest descend on

the domain-matching objective.
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(d) VFAE latent embedding z; during training progression; annotated by ground truth class labels.

Figure B.3: SD:inline-mirror ST2T. Unsupervised domain matching (S2T) fails in this case,
as it is essentially an adversarial modification of SD:inline-shift case: nothing else changed but
the class association in the target domain is flipped, which has no impact on the VFAE training
loss, and as such it is indistinguishable from SD:inline-shift in S2T mode. Labeled target domain
samples are needed in the training to learn a successful representation that correctly matches

classes between the two domains.
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(d) VFAE latent embedding z; during training progression; annotated by ground truth class labels.

Figure B.4: SD:inline-uneqg-ratio S2T. Unequal class ratios between the domains causes
alignment of some target domain negatives to source domain positives in order to minimize
domain discrepancy.
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(d) VFAE latent embedding z; during training progression; annotated by ground truth class labels.

Figure B.5: SD:inline-uneqg-ratio ST2T. Labeled target domain samples are needed to learn
a successful representation that overcomes symmetric domain matching failure in case of unequal
class ratio between the domains.
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(d) VFAE latent embedding z; during training progression; annotated by ground truth class labels.

Figure B.6: SD:diag-classes S2T. Without further assumptions this data case is in general
impossible for unsupervised domain adaptation. Whether VFAE manages to correctly align
domains depends on random initialization. In this run, VFAE mismatched the classes in the two

domains.
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(d) VFAE latent embedding z; during training progression; annotated by ground truth class labels.

Figure B.7: SD:diag-classes ST2T. Do reliably match the domains successfully, i.e. positives
to positives and negatives to negatives, use of labeled target domain samples is required.
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(d) VFAE latent embedding z; during training progression; annotated by ground truth class labels.

Figure B.8: SD:combination S2T. This experiment is a combination of SD:diag-classes and
SD:inline-uneq-ratio experiments. As such it is in general impossible for an unsupervised domain
adaptation method to correctly match the two domains. As expected, VFAE fails in S2T learning

mode.
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(d) VFAE latent embedding z; during training progression; annotated by ground truth class labels.

Figure B.9: SD:combination ST2T. Labeled target domain samples are needed to learn a
representation in which samples from one class are projected close to each other, effectively
removing the domain shift, even despite unequal class ratio between the domains. This shows
how powerful a VFAE can be for semi-supervised domain adaptation.
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