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Memristor arrays are a promising memory technology that store information in a crossbar

array of two-terminal devices that can be programmed to patterns of high or low resis-

tance. While extremely compact, this technology suffers from the “sneak-path” problem:

certain information patterns cannot be recovered, as multiple low resistances in parallel

make a high resistance seem low. In this thesis we review the current state of mem-

ristor technology, including proposed solutions to the sneak-path issue. We extend this

discussion by proposing some variations on existing encoding schemes involving one-hot

encoding that improve reliability and ease of access, taking into account the scaling of

peripheral hardware. We also extend the scope of the discussion by deriving the infor-

mation capacity of models of multi-layer memristor devices, which is higher than that of

the same number of single-layer devices stacked.
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Chapter 1

Background

1.1 Introduction

Compact data storage systems are a key component of modern computer systems. With

advances in materials science and uncertainty about the continued shrinking of the tran-

sistor technologies that underlie modern solid-state storage, researchers are increasingly

exploring alternative storage technologies. One such technology is the memristor array.

A memristor is a passive two-terminal circuit element whose resistance can be changed

when a sufficiently extreme voltage is applied across the terminals (see e.g., Fig. 1 of Pan

et al. [1]). The device maintains its new resistance after the applied voltage is removed.

Most commonly and most simply, the memristor will change fairly rapidly between a

high-resistance state and a low-resistance state, making it a binary device for practical

purposes, meaning that a memristor can be used very naturally in computer storage to

store a single bit.

To store multiple bits, memristors are arranged at the intersections between two layers

of parallel wires, one running horizontally and one vertically. The corresponding circuit

diagram for an example array of 16 memristors is shown in Figure 1.1.1 (after [2]). In

this figure, black resistors indicate low-resistance, and white resistors high-resistance.

The second half of this figure shows the binary representation of the same array, with

1’s corresponding to low resistances (high conductivity), and 0’s corresponding to high

resistances (low conductivity).

This architecture has many benefits. First, it needs only two wires to access each

device, compared to the three wires typical to transistor-based architectures such as

flash. This results in improvements in density and, depending on the encoding method,

possible simplifications in reading and writing schemes. Second, as will be discussed

below, for manufacturing technology working at a given scale, it is possible to make

1
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(a) Circuit diagram

1 2 3 4

4

3

2

1

0 0 1 0

0 1 0 1
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1 0 1 0

(b) Simplified version

Figure 1.1.1: Two representations of the same 16-memristor array. Black is high-
conductance and white is low-conductance. After [2].

memristors smaller (i.e., with dimensions closer to the node’s feature length) without

many of the issues, such as reliability and leakage, that occur when transistors for data

storage are made at the same scale.

There is a major problem with the memristor architecture, distinct from any issues

introduced by material behaviour or manufacturing processes. In a large number of

data patterns, low-resistance paths, known as “sneak paths” are present in parallel with

a single large resistor, with the current passing through these paths known as “sneak

currents”. For instance, in Figure 1.1.1, a low resistance path through resistors (1, 1),

(1, 3), and (4, 3) (where the indices refer to the row and column respectively), runs parallel

to the large resistor at position (4, 1).

This problem manifests itself in the following way. We want to determine the resis-

tance of a memristor, as the magnitude of this resistance gives us information. To do

this, we apply a voltage to one of the leads connected to this memristor, and measure the

current flowing out of the other lead connected to the memristor through some sensing

device. This gives us a resistance (or conductance). Suppose in our example we measure

the resistance between the leads to row 4 and column 1 in an attempt to measure the

resistance at (4, 1). We will see an intermediate resistance, most likely very close to the

low resistance, which is typically very small. Effectively, the high resistance is misread

as a low resistance.

This is a problem in information storage. Like any storage device, a memristor array

can be considered a channel that transmits data over time (i.e., between an initial storage

and subsequent readings). However, this channel is far more data-dependent than most
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typical examples. If binary data is stored randomly, each 0 (high resistance) has a

non-negligible probability of being read as a 1 because of the sneak-path effect. This

probability depends entirely on the rest of the data in the array (which will not be

known a priori, and will be difficult to recover reliably for this same reason).

Moreover, the data-dependence is non-local: a 0 memristor can be corrupted by a

sneak-path through any other part of the array. This means that in the general case, the

data stored in the array must be considered as a single highly-intertwined unit.

This thesis examines this problem from an information-theoretic perspective. We

begin with background information describing the history of memristors and the current

state of device development, as well as a review of the (mostly hardware-level) methods

previously suggested to combat the sneak path problem. Then, in the case of sufficiently

extreme resistances, we examine arguments to count the fraction of data patterns which

do not have the sneak path problem. Next is an examination and comparison of ways

of encoding these “legal” patterns that minimize complexity while maximizing the num-

ber of patterns that may be represented. Our main figure of merit for a device with

an encoding scheme is the information density, which we define and develop. Finally,

we develop some extensions to the problem, including non-binary measurements of the

array, and non-ideal resistances, as well as some optimization considerations including

the complexity of the sensing circuits.

1.2 Overview of physical device development

The current work is concerned more with the behaviour of manufactured memristor

arrays, rather than the manufacturing process itself. Nevertheless, a brief history of the

development of the devices is given here to provide insight into the relevant physical

properties of the arrays, and the current state of their development.

The memristor was first proposed theoretically in 1971 by Leon Chua [3]. While it was

theoretically intriguing, and helped extend some mathematical models of fundamental

circuit quantities, it was not widely studied for several decades.

This changed in 2008, when a group at HP Labs described how a memristor might

be fabricated by exploiting the mobility of dopant particles in a thin semiconductor film

to create a material whose resistance could be changed by applying a voltage [4]. The

memristive effect depends on the inverse square of the device thickness, meaning that it

requires modern nanofabrication methods to build.

In the following years, many memristors were built and tested. The most common

memristive materials include metal oxides, such as HfO2 [5]–[7], TiO2 [8] and CoOx [9],
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with more exotic materials including blood [10] and slime mould [11].

Extensive work is also underway the better to understand the switching mechanisms

of memristive materials and the ways in which conductive paths form and are destroyed,

thereby changing the resistance [5]–[7], [12]–[15]. Important physical considerations such

as variability, long-term behaviour, noise, and degradation mechanisms are also the object

of considerable study [8], [16]–[19].

Additional theoretical work modelling these experimental results includes a variety

of mathematical models [20]–[27] and SPICE models [28]–[37].

1.3 Device switching

An excellent survey of existing memristor research, including the properties used to char-

acterize memristors, and the values of these properties achieved in various experiments,

is provided in [1]. The following are some of the more relevant properties.

In most devices, switching between resistive states occurs when a large enough voltage

is applied (at smaller voltages, the device acts like a resistor). Switching in the opposite

direction can either occur when a large voltage of the same polarity is applied (in a

unipolar device), or a large voltage of the opposite polarity (in a bipolar device) [1].

Thermally-activated switching is also possible [38].

Most physical devices only switch between two resistances: high and low, with many

orders of magnitude between them. It is difficult to repeatably program a device to

intermediate values, but it has been achieved in some cases [39], [40].

The major pieces of data that characterize a memory device are its size, power con-

sumption (equivalently, its effective resistance), set/reset speeds and voltages, endurance,

and stability.

1.4 Existing hardware-level sneak-path solutions

Sneak-paths are widely recognized as a problem in memristor memory architectures (as

well as in some less-common memories with analogous architectures [41]). Attempts to

reduce the impact of sneak currents largely fall into two categories: first, solutions that

act at the fabrication level to make a device that has reduced sneak currents; and second,

solutions that take the existing architecture as a black box and change the data reading

and writing processes to extract information in the presence of sneak currents.

A few researchers have also investigated information-theoretical methods for avoiding

sneak-paths by encoding the data to memristor patterns that do not induce sneak-paths.
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These are the most relevant methods for the current work, and will be discussed below

after the appropriate mathematical framework is developed.

1.4.1 Fabrication solutions

Fabrication solutions explore ways of modifying the materials or the circuit architecture

to redirect sneak currents. Pan et al.’s extensive survey paper provides a good summary

of the following devices (section 4 of [1]). Brief surveys of solutions are also given in [42]

and in [43].

Selection devices

One of the most natural solutions at the manufacturing level is to control the nodes

through which current can flow by adding some type of selection device at each node.

These devices are typically either transistors or diodes. In theory, this is an effective

solution, but most proposed designs are currently still problematic either due to their

size or their reliability. In addition, the extra devices compromise the 2D and 3D densities

of the devices.

Incorporating a CMOS transistor in series with each memristor allows us to switch on

only the memristor that we want to read. Several authors have proposed transistor-based

solutions [44]–[49]. Other work proposes hybrid devices with a transistor for every few

memristors [50].

Diodes have several advantages over transistors. They are typically smaller, and they

require no additional wiring for switching nodes (i.e., gates), which makes structures with

diodes usable in a wider variety of architectures. Several proposals for introducing diodes

have been made, some of which were proposed as a general solution for high-density non-

volatile memories before the 2008 proposal of a physical memristor [51]–[54].

Nonlinear devices

Another approach that has led to more robust implementations involves designing arrays

with inherently nonlinear elements. In [39], the memristor itself effectively acts as a

diode, and its rectifying properties drastically reduce sneak currents. In addition, [39]

successfully differentiates between 10 different resistance levels at each node to with a

few percentage points. A similarly nonlinear device is described in [55].

In an early paper, [56] simulates nonlinear but symmetric devices, specifically devices

with a hyperbolic sine V (I) curve. These require a more involved reading procedure,

described below.
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Note that in general, as noted in [57], increasing the off resistance and increasing the

ratio of off to on resistances both increase the range of output voltages, and consequently

the decodability of the data. However, as further noted, physical constraints limit how

much these factors can be increased.

Complementary resistive switching

Another proposed solution involves having two memristors in series at each array node:

one in the high state, and one in the low [58]. Which one is high determines the state

of the overall device. Since the resistance at each node is still high, the sneak currents

are reduced. The main issue is that reading a high bit from the device resets the bit,

meaning that all high bits must be rewritten after reading, which reduces the average

read time and increases the number of writes to the device [59].

We note in passing the development of a similar circuit element, know as the memis-

tor, in [60], that consists of two memristors connected in series, with access to the elec-

trical node between them. This gives greater control over the resistance of the overall

device at the expense of volume.

Careful choice of wire pattern

Another approach involves dividing the crossbar wires into smaller pieces. This makes the

addressing more complicated, but has positive implications for density and reading [43].

A similar alternative involves placing memristors at only a select set of lead crossings [61].

Reference cells

Another approach, described in [43], involves including memristors of known state on

each word line. The current through these memristors can be used to estimate the

sneak current through unknown devices on the same line. This method is, however, very

sensitive to the resistance of the reference devices.

1.4.2 Black-box solutions

If the devices are kept small, some information can be extracted without changing the

basic structure. This is explored in [57]. In general, more involved methods are used.
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Multiple read/write operations

As mentioned briefly above, [56] uses a more involved reading procedure to avoid sneak

currents at the device level.1 This involves reading a bit, and then successively setting

the bit to each of the high and low states, reading after each operation, and then resetting

the bit to the state with the closer measurement to the original state, and reporting that

state. A similar approach is described in [42]. This method is more time-consuming, will

degrade the device more quickly, and is only effective if the low resistance is a sufficiently

large fraction of the high resistance to make the resulting measurements distinguishable

(which also means that at a constant voltage the devices will draw more current, leading

to a greater power budget).

Only read operations

In [62], a different approach is taken. By biasing all the input voltages appropriately and

comparing a combination of three output voltages against an appropriate threshold, the

voltage written to a bit can be determined. This gives an upper bound of three reads

per bit output, which is a slower solution, but avoids having to rewrite devices.

Restricted patterns

Vontobel [56] mentions that some gains can be seen when the data is restricted to balanced

patterns, that is, arrays of memristors where the devices in each row and column are

divided equally between the low and high states.

1.4.3 Discussion

In the present work, we will be focusing on black-box devices due to the relative simplicity

of their structure compared to the various kinds of switched devices that required addi-

tional manufacturing steps, and in some cases more complex connectivity requirements.

We will focus on a model which treats every memristor as either a short circuit or an

open circuit, which is often a valid approximation, and provides a useful mathematical

foundation for schemes with intermediate resistances, which will vary based on device

parameters.

1While [56] does explore fabrication, this particular technique is applicable to a range of devices.
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1.5 Outline

The remainder of this thesis is divided into four chapters. Chapter 2 focuses on the

capacities of single-layer memristor arrays from a mathematical perspective. Chapter 3

provides a discussion of existing encoding schemes for these devices, and proposes and

analyzes some alternatives. Chapter 4 extends the capacity discussion of chapter 2 to

multi-layer devices. Finally, chapter 5 discusses our conclusions and suggestions for future

work.‘



Chapter 2

Capacity of single-layer devices

This chapter explores some of the existing ways of representing the state of a single-

layer memristor array1, and proposes some modifications and new methods that will

be useful in subsequent chapters. Using this framework, we will derive the number of

distinguishable patterns that may be stored in the array, giving two new derivations for

an existing result.

2.1 General description and ideal model

Given a memristor array, we want to identify the pattern of resistances stored in it. In

particular, we would like to do this using the smallest number of operations on the array.

We will count the number of applied voltages and the number of measured voltages to

describe this.

In the typical case, we have a single layer of memristors in a rectangle of m devices

by n. The memristors can be programmed to values in a set of conductances, which will

usually be the set {h, `}, where h has a high value, and ` has a low value. The ideal case

has h→∞ and `→ 0.

We will choose to apply voltages to some subset of the n+m available nodes (m leads

on one layer, and n on the other), and to take readings at some other subset of the nodes.

Practically, these subsets cannot intersect, and in most cases, the inputs will be placed

along one edge of the device, and the outputs taken along a perpendicular edge. The

applied voltages will be binary on/off signals for the present discussion. If we make the

assumptions above that h and ` are extreme, these readings tell us whether the output

nodes are connected to the input nodes.

1That is, an array with one layer of memristors between two layers of leads.

9
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In practice, the circuits used for reading and writing will have finite positive conduc-

tances, although we will take them to zero or infinity as appropriate here.

2.2 Device representations

The state of the device is defined by a series of low and high conductances, often repre-

sented by 0s and 1s. For our purposes, it is often most useful to store this array state in

one of two mathematical objects: the matrix and the array.

It is worth noting that the array state corresponds to an encoded form of the data

that we wish to store in the array. We will use “data” to refer to the information we wish

to store, as an unencoded string of 1s and 0s from the set {0, 1}q for some integer q, and

we will use “array state” to refer to the result of encoding this data into a series of high

and low conductances, represented by elements of the set {0, 1}mn. We will typically

have k < mn.

These representations make the most sense if we assume, as we will, that the high con-

ductance value is high enough to be considered a short circuit, and the low conductance

value is low enough to be considered an open circuit.

2.2.1 Matrix representation

It is natural to represent the array state in matrix form. Sotiriadis provides a rigorous

mathematical background for a functionally similar device, and suggests two matrix

representations of a device [41]. First is the biadjacency matrix F, which has a one at

the (i, j) position when the memristor at the (i, j) position is in the high-conductance

state (i.e., when resistance is 0), and a zero otherwise (when resistance is infinite). An

alternative representation that, while often more useful, contains less information, is the

reachability matrix D, which has a one at (i, j) when the ith horizontal wire is connected

to the jth vertical wire through any low-resistance path, and a zero otherwise. This

better captures the overall connectivity of the device. Note that

D =
[
F + FFTF + (FFT )2F + · · ·+ (FFT )k−1F

]
>0

(2.1)

where k = min{m,n} for an m×n array. The matrix operator [·]>0 sets positive elements

of a matrix to 1 and all other elements to 0. Define

H ≡ F + FFTF + (FFT )2F + · · ·+ (FFT )k−1F (2.2)
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so that D = [H]>0. The (i, j)th element of H gives the number of paths between the

ith horizontal wire and the jth vertical wire. This follows from the fact that the term

(FFT )i−1F gives the number of paths of length 2i − 1 between the wires (where the

length refers to the number of low-resistance connections). This follows from the graph

theoretic properties of the biadjacency matrix: it is a blockwise section of an adjacency

matrix, whose powers give the numbers of paths between wires in the device. Note that

every path from a horizontal to a vertical wire will have odd length.

1 2 3 4

4

3

2

1

(a) Circuit diagram


1 0 1 0

0 1 0 1

0 1 0 1

0 0 1 0


(b) F matrix


1 0 1 0

0 1 0 1

0 1 0 1

1 0 1 0


(c) D matrix

Figure 2.2.1: Two representations of the same 16-memristor array. After [2].

As an example, consider the device with m = n = 4 in the state shown in Fig-

ure 1.1.1. This circuit is reproduced in Figure 2.2.1a. Figures 2.2.1b and 2.2.1c give the

corresponding matrix representations. We see that the only difference in this example is

at position (1, 1). As discussed previously, there is a sneak path at this position, which

means that the leads to the first row and first column are shorted together, even though

the memristor at this location is in the low-conductance state.

We can also verify (2.1) in this case. We have the following products of F and FT .

These matrices give the number of paths between the leads of lengths 1, 3, 5, and 7

respectively. We can stop after 7, because we have now reached the paths that include

all 8 leads (we don’t count the first lead in the path length).

FFTF =


2 0 3 0

0 4 0 4

0 4 0 4

1 0 2 0

 (2.3)

(
FFT

)2
F =


5 0 8 0

0 16 0 16

0 16 0 16

3 0 5 0

 (2.4)
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(
FFT

)3
F =


13 0 21 0

0 64 0 64

0 64 0 64

8 0 13 0

 (2.5)

For instance, the 1 in the lower-left corner of FFTF corresponds to the length-3

sneak path we have already identified between row 4 and column 1. Many of these paths,

especially the longer ones, often double back on themselves. For instance, the 3 in the

lower-left corner of
(
FFT

)2
F indicates the three ways that we can travel along that

same sneak-path, backtracking once through a single resistor (one example being row 4

to column 3, back to row 4, back to column 3, to row 1, to column 1).

It should also be noted that the set of F matrices that map to a matrix D includes

the matrix D. For this reason, as well as reasons of symmetry, D is often the best choice

when we want to choose a representative of each class of F matrices. Note that this

memristor pattern that has the same F and D matrices has no sneak paths (because

all of the connections between two nodes are explicitly present as a high-conductance

device). In a matrix, this means that if three 1s (high conductances) are the corners of a

rectangular submatrix, the entry at the fourth corner must also be a 1. The mathematical

implications of this are discussed further by Riguet [63]. It is worth noting that while

any binary m × n matrix can be an F matrix for a memristor array, only a subset of

these matrices are legal D matrices.

Given the above, it is natural to try to determine which of the D matrices corre-

sponds to a memristor array. In fact, while sneak-paths will generally prevent us from

uniquely identifying the F matrix of an array, we can always find the D matrix. The

most conceptually simple approach is a “brute-force” test of connectivity. This involves

checking the conductance between each pair of input and output nodes. A natural way

of doing this is sequentially to drive each input node to some nonzero voltage, letting the

others float, and measure the voltages at the output nodes. Those that match the input

voltage are shorted to the relevant input node, and those that do not are isolated from

it. (In practice, each output should have a small pull-up or pull-down resistor to some

other voltage, probably ground, in order to make the voltages at these isolated nodes

well-defined.) This will determine a representative D matrix, which can be mapped to a

data pattern using a predetermined encoding scheme.

In short, we cannot reliably store data näıvely in the array, that is, in F matrix form,

but we can store data if we can first map it to a D matrix.
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Identifying D matrices

We already know that sneak paths are present (i.e., our memristor pattern is not in

D matrix form) if exactly three out of four corners of any rectangle of memristors are

high-conductance. The following theorem provides an alternative way to check whether

a given matrix is a possible D matrix which will be helpful to our discussion of the theory

of binary relations. It is stated without proof by Riguet in section 1.7 of [63].

Theorem 2.2.1. Consider an mn-bit pattern P, divided into m rows of n bits each, so

that P = (p1,p2, . . . ,pm). Then P is a possible D matrix for some m × n memristor

array, as defined above, if and only if the bitwise AND of two rows pi · pj equals 0n for

all (i, j) where pi 6= pj.

Proof. We first prove the forward direction: i.e., we prove that if pi · pj = 0n for all

(i, j) where pi 6= pj, then P is a D matrix for at least one F matrix. We prove this by

constructing such an F matrix.

Create bipartite graph G with n nodes in one bipartition (the “input”) and n in the

other (the “output”). If pi has a high bit in the jth position, draw an edge between

the ith input and the jth output. Call the D matrix for the array corresponding to this

graph P′. We will show that P = P′. First, by construction, if Pij = 1, P′ij = 1, where

the ij index refers to the jth element of the ith row. It remains to show that if P′ij = 1,

then Pij = 1. Suppose toward a contradiction that there exists a pair (i, j) such that

P′ij = 1 and Pij = 0. Since Pij = 0, the ith input is not directly connected to the jth

output. This means that the shortest path from the ith input to the jth output is of the

form ith input → j′th output → i′th input → path Π → jth output for some indices i′

and j′, and some (possibly empty) path Π. Because this is the shortest path, the first

node in Π (or the jth output itself if Π is empty) is adjacent to the i′th input, but not

the ith input. This means that pi 6= pi′ , which means (by assumption) that we must

have pi · pi′ = 0n. However, since both the ith and i′th inputs are adjacent to the j′th

output, both pi and pi′ have a high bit in the j′th position, which means that the bitwise

AND also has a high bit in this position, which is the desired contradiction.

Now we prove the reverse direction: i.e., we prove that if P is a legal D matrix (i.e.,

it corresponds to some F matrix), then pi · pj = 0n for all (i, j) where pi 6= pj. Suppose

toward a contradiction that there exist i and j such that Pik 6= Pjk for some index k, but

Pi` = Pj` = 1 for some index `. This means that the ith and jth inputs are connected to

each other through the `th output, and must therefore be connected to the same set of

outputs. This contradicts the fact that only one of them is connected to output k, which

completes the proof.
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Note that Theorem 2.2.1 is equivalent to stating that a bit pattern is a legal D matrix

if and only if each pair of rows has either all or none of its high bits in common. It is

also equivalent to check columns instead of rows, as the array is symmetric in the rows

and columns.

2.2.2 Graph representation

It is often convenient when visualizing the array connectivity to think of the matrices D

and F as the biadjacency matrices for bipartite graphs. That is, we have a bipartite graph

with m nodes in one part, corresponding to the inputs, and n nodes in the other part,

corresponding to the outputs. A 1 at position (i, j) in binary matrix D or F corresponds

one-to-one with an edge between the ith input and the jth output. In practice, we will

be more interested in the graph corresponding to the D matrix.

1 2 3 4

4

3

2

1

(a) Circuit diagram, after [64]


1 0 1 0

0 1 0 1

0 1 0 1

1 0 1 0


(b) D matrix

R1

R2

R3

R4

C1

C2

C3

C4

(c) Graph representation of
D

Figure 2.2.2: A circuit diagram and the corresponding connectivity graph for a sample
array. Here, the R nodes correspond to the rows, and the C nodes correspond to the
columns. Note that the sneak-path at (4, 1) in the circuit is represented as an explicit
connection in the matrix and the graph.

Figure 2.2.2 shows an example of this representation. On the left is a circuit diagram

from [64], with black resistors low and white resistors high, and both row and column

leads labelled 1 through 4. On the right is the graph representation of the same circuit.

The row wires correspond to the Rx nodes on the left, and the column wires correspond

to the Cy nodes on the right. Two nodes are connected if and only if the corresponding

leads are directly connected by a low-resistance memristor.

We can make a few comments about the resulting graphs. First, as mentioned, the

graphs are bipartite, with the rows and columns corresponding to the two parts. This

corresponds physically to the fact that every memristor connects a row lead to a column

lead. Second, note how the sneak-paths present themselves in this representation. A
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sneak-path exists between two nodes in a graph if and only if the nodes are not connected

by an edge, but are connected by some longer path.

2.3 Identifying and counting equivalent patterns

When sneak paths are present, several different F matrices will give the same D matrix.

We can, in fact, partition the set of all F matrices according to the corresponding D

matrices. We would like to know how many partitions this creates, since this is the

number of distinguishable patterns that can be stored in the device.

2.3.1 Stirling numbers

Definition 2.3.1. The Stirling number of the second kind
{
n
k

}
is the number of ways in

which n items may be partitioned into k (non-empty) sets.

For example, we have
{
4
2

}
= 7, since we may partition a set of 4 elements into 2

subsets in 7 ways. That is, we may partition the set {a, b, c, d} into 2 subsets as one of

{{a}, {b, c, d}}, {{b}, {a, c, d}}, {{c}, {a, b, d}}, {{d}, {a, b, c}},

{{a, b}, {c, d}}, {{a, c}, {b, d}}, {{a, d}, {b, c}}. (2.6)

2.3.2 Number of distinguishable array patterns

We want to know how many different patterns that might be stored in a memristor array

are distinguishable (that is, how many have different D matrices). This is a function of

the array dimensions m and n (both integers), denoted T (m,n). Sotiriadis derives this

value [41].

Theorem 2.3.1. For an m× n device, there are

T (m,n) =

min(m,n)∑
k=0

{
n+ 1

k + 1

}{
m+ 1

k + 1

}
k! (2.7)

distinguishable data patterns.

Sotiriadis provides a rigorous mathematical proof of this result. We will explore an

alternative and original proof here. We also provide a mathematical extension from the

theory of relations to improve our intuitive understanding of this quantity.
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2.3.3 Proof of Theorem 2.3.1 from graph theory

Proof. Consider the graph representation of the array state (in the D matrix form). We

have a bipartite graph with bipartitions µ and ν with m and n nodes respectively (indexed

from 1 to m and 1 to n respectively). Call the number of connected components k. A

connected component is a set of nodes that are all reachable from each other and from

no nodes outside of the set. Each of these connected components is a complete bipartite

subgraph (i.e., each element of one part is connected to every element of the other part).

Some nodes in either part may be disconnected, i.e., singletons.

Consider all the array graphs with k non-singleton connected components. Further

consider the sets of integers N = {0, 1, 2, . . . , n} and M = {0, 1, 2, . . . ,m}. Partition

each of M and N into k + 1 subsets. There are respectively
{
n+1
k+1

}
and

{
m+1
k+1

}
ways of

making these partitions (from the definition of Stirling numbers).

In each of these partitions, we will have a subset containing the integer 0 fromM or

N . We will name these subsetsDm andDn respectively. These represent the disconnected

nodes: if x ∈ Dm, then node x ∈ µ is disconnected (and analogously for ν). If Dm (or

Dn) equals {0} then every node in µ (or ν) is connected to some node in ν (or µ).

This leaves us with k subsets of each ofM and N , each corresponding to a connected

component of the graph. There are k! ways of pairing the connected subsets of M with

the connected subsets ofN , so there are Tk =
{
n+1
k+1

}{
m+1
k+1

}
k! different array graphs with k

non-singleton connected components. We can have as few as k = 0 of these components

(in the case where every node is a singleton), and as many as min(m,n) (in the case

where one of the parts of the bipartite graph has each node connected to a different set

of nodes from the other part). We then sum Tk over this range to obtain the desired

result.

2.3.4 Connections to the theory of binary relations

The expression above for T (m,n) also appears in the theory of binary relations as the

number of difunctional relations between sets of m and n elements [65]. This means

that we can prove Theorem 2.3.1 by establishing a one-to-one correspondence between

D matrices and difunctional relations. To do this, we need the following definitions.

Definition 2.3.2. A relation from a set E to a set F is a set of ordered pairs (e, f) ≡ eRf ,

where e ∈ E and f ∈ F . We will use the notation e.R to indicate the image of e, that is

e.R = {f |eRf}, or in other words the set of all ordered pairs in the relation whose first

element is e.
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Definition 2.3.3. A relation R from set E to set F is difunctional if and only if the

a ∈ E and b ∈ E are such that a.R ∩ b.R 6= ∅ implies a.R = b.R.

This is one of several equivalent definitions. It is originally due to Everett [66], and

is stated in this form by Jaoua et al. (Definition 13.1.4) [67].

Difunctional relations are useful to consider because the number of difunctional re-

lations between a set of m elements and a set of n elements is exactly the expression

in (2.7). This means that there is a one-to-one correspondence between difunctional re-

lations and D matrices for memristor arrays. One such correspondence in particular is

very natural, and we will construct it below.

Theorem 2.3.2. The number of difunctional relations between a set E of m elements

and a set F of n elements is equal to the number of distinct D matrices for an m × n
array, as defined above, with m row “inputs” and n column “outputs”.

Proof. Without loss of generality, let E be the set of row indices of the array, labelled

{1, 2, . . . ,m}, and let F be the set of column indices, labelled {1, 2, . . . , n}. We can define

a relation R between E and F by declaring that for e ∈ E and f ∈ F , we have eRf if e is

shorted to f . Let R be the set of all such relations, and let B be the set of all difunctional

relations between E and F . To prove the theorem, we will show that R = B.

First, we show that R ⊆ B. This means that every relation defined as above by shorts

in the array is difunctional. This follows from Theorem 2.2.1. First note that there is a

one-to-one correspondence between relations R and the matrices D. In particular, the

elements of R are ordered pairs of the indices of the 1s in D. For an input a, the image

a.R is the set of indices of the 1s in row a of D. By Theorem 2.2.1 this means either

a1.R = a2.R or a1.R ∩ a2.R = ∅, for any distinct inputs a1 and a2, which is exactly the

definition of a difunctional relation, so R ⊆ B, as desired.

Next we show that B ⊆ R, that is, every difunctional relation defines a connectivity

pattern on an array. We do this by picking an arbitrary B ∈ B and constructing an array

that corresponds to this relation. For each input a, connect a to all the outputs in a.B.

This induces a relation B′. By the above, B′ is difunctional. It remains to show that

B′ = B.

Take an arbitrary element a ∈ E . It is sufficient to show that a.B = a.B′. By

construction, a.B ⊆ a.B′. We need to show that a.B′ ⊆ a.B. Suppose toward a con-

tradiction that there exists f ∈ F such that f ∈ a.B′ and f 6∈ a.B. This means that a

is connected to f under relation B′, but not under relation B. The argument proceeds

analogously to the proof of the converse of Theorem 2.2.1. In short, a is not directly

connected to f (by construction), so it must be connected to f through some other input
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a′ and some other output f ′. However, since the relation is difunctional and a and a′ are

both connected to f ′ they must be connected to the same set of outputs, which is the

desired contradiction.

Therefore the number of D matrices for an m × n array is equal to the number of

difunctional relations between a set of size m and a set of size n. Moreover, there is a

natural mapping between the two sets.

This view of device connections as “bundles” of connections between two layers of

wires will prove to be of particular value in later analysis when we consider multi-layer

devices.

2.3.5 Physical array readings

In the physical array, we use the following procedure to distinguish between patterns.

Attach a power source to some “input” subset of the wires. Read resulting voltages on

some other “output” subset of the wires. Repeat this process until the desired connections

have been determined. In practice, it will be easiest to take input wires from one edge

of the device, and outputs from a perpendicular edge, since these correspond to voltages

across individual memristors.

2.3.6 Capacity and asymptotics

The data storage capacity in an idealized m× n array is log2 T (m,n).2 While this is an

exact expression, the Stirling numbers make it difficult to use in efficient calculations.

Because of this, it is useful to develop an asymptotic scaling for the capacity.

Note that the capacity of arrays of constant perimeter (i.e., m + n fixed) have max-

imum capacity when they are square, but arrays of constant area (i.e., mn fixed) have

minimum capacity when square [41]. The above expression is symmetric in m and n,

which was to be expected from the symmetry of the device: since all rows are connected

to all columns, there is no way of distinguishing them mathematically.

An approximation of the capacity for large m+ n (from (8) in [41]) is

(n+m− q) log q + q log e (2.8)

where

q =
n+m

loge(m+ n)
. (2.9)

2From now on, all logarithms may be assumed to have base 2 unless otherwise specified



Chapter 2. Capacity of single-layer devices 19

This approximation of the capacity depends on m and n only through m + n and is

asymptotic to (m+ n) log(m+ n). This is formalized mathematically by Sotiriadis [41].

In particular, Sotiriadis proves the following theorem [41, Theorem 4, proved by analogy

with Theorem 3].3

Theorem 2.3.3. The capacity T (m,n) of an n×m memristor array has the property

lim
m,n→∞
n/m→a>0

T (m,n)

(m+ n) log(m+ n)
= 1 (2.10)

This means that the capacity grows as p log p, where p is the semiperimeter of the

array. The constraints in the limit on m and n force the device to have a finite aspect

ratio in the limit as the perimeter and area grow. This is necessary, since a 1× (m+ n)

device will always have full capacity 2mn. Such a device is physically difficult to manage

in most contexts, however. We will also see later that for at least some encoding schemes,

the additional cost of peripheral encoding and decoding hardware will make us favour

devices of intermediate aspect ratio anyway.

2.3.7 Figures of merit

To determine what choice of parameters makes a memristor array as good as possible,

we need to know what makes a memristor array good. There are many desirable physical

properties of an array, including its switching speed, ratio of high to low resistances,

and lifetime as a number of switching cycles, many of which are surveyed for a large

number of experiments and materials in [1]. Power consumption is another important

consideration, and it is explored for the basic encoding scheme from [64] described below

in section 3.1.

The main figure of merit that we will consider here is the information density of a

device. In its simplest form, this is ρ = [log T (m,n)]/(mn). However, as seen in [41], this

gives somewhat unsatisfactory results. For a given area A = mn, the densest results are

given when m = 1 or n = 1, since this gives a 1×A array which, by construction, cannot

include any sneak paths. Such a geometry will be impractical for applications involving

large A, so we will update our figure of merit as follows to reflect this.

One of the factors that makes the 1×A arrays unappealing is that they have maximal

perimeter, and therefore maximal peripheral hardware for reading and writing. This

hardware will also consume some area, which in general may be non-negligible as it may

still be implemented in standard silicon transistors, which are comparatively large.

3The notation and terminology have been altered slightly for consistency.
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The exact area of the peripheral hardware will vary based on the chosen encoding

scheme. However, since every read or write will find or change a binary symbol (high or

low resistance), it is reasonable to assume that we will need at least one read or write per

bit, and consequently peripheral hardware of logarithmic depth. That is, our hardware

will have area Ah(m,n) = C(m logm+ n log n) for some constant C.

We can now update our density figure of merit to

ρC(m,n) =
log T (m,n)

A(m,n) + Ah(m,n)
=

log T (m,n)

mn+ C(m logm+ n log n)
(2.11)

Figure 2.3.3 gives the values of ρC for a few fixed areas A = mn as a function of m

for both C = 1 and C = 10. We see that with the addition of peripheral hardware, even

in the case of small C, the square arrays are the densest. Because of this, from now on

we will focus on square arrays, for which we can consider how T changes as a function

of the array side length.

We also see that larger areas are less dense at their maxima, which makes sense, since

larger areas have more opportunity for sneak paths. We also see that, as expected, the

curves are symmetric (in a multiplicative sense) around m = n =
√
A. This is a result

of the symmetry of the arrays.

If we plot a heatmap of this density for array sizes up to 40× 40, which is shown in

figure 2.3.4a, we discover a potential issue. By a large margin, the highest density occurs

at the m = n = 1 case, since this sets the logarithms to zero. This is unrealistic for many

encoding schemes, as even a single-cell memristor will usually need peripherals (we will

examine one encoding scheme where this is not the case later). To adjust this, we can

consider a different approach where the area of peripherals scales with the perimeter,

making Ah(m,n) = C(m + n), with technology-dependent constants C. In this case,

when C = 10, we see that an intermediate array is optimal (the 5× 40 array is the best

array with both dimensions at most 40). The dimensions of the optimal array depend

on the value of C. This scheme adds the necessary overhead for small arrays, but loses

the relationship with the number of bits in the system.

In general, we may expect many encoding schemes to have a combination of these

schemes, with Ah(m,n) = C1(m + n) + C2(m logm + n log n), with constants C1 and

C2. Another alternative is to have an area expression of the form Ah(m,n) = C1 +

C2(m logm+ n log n).

It is also possible, as described in [64], to focus on one area of an array by grounding

a subset of the wires. This is another way to increase the effective density of an array,

by making a large array behave like a series of small ones.
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Since there is no obvious choice for the best device density calculation, and since the

different options vary so widely, in the following discussion, we will often look an the

alternative figure of merit for encoding schemes: the number of patterns in the range of

the scheme as a fraction of the total number of patterns that may be stored in an array

of that size.
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Figure 2.3.3: Density ρC for C = 1 and varying areas. Note the difference in scales.
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Chapter 3

Encoding schemes for single-layer

devices

3.1 Existing encoding scheme

A key source for current research on the information theory of memristor arrays is [64].

There, Cassuto et al. propose a scheme for encoding information into memristor arrays

in a way that is asymptotically optimal, only maps to distinguishable patterns of mem-

ristors, and in most cases is reasonably easy to encode and decode.

We will be examining the third of three encoding and decoding schemes proposed

in [64] (section IV.C). In terms of speed and fraction of capacity achieved, the other two

schemes scale less well, since they require calculations that scale superpolynomially in the

device dimensions. This scheme does, however, have encoding issues that will be discussed

below. The scheme is optimized over a parameter L satisfying 1 ≤ L ≤ min{m,n}. It

encodes (m + n − L) logL bits of information, meaning that practically, L should be a

power of 2. The bits are arranged into m+ n− L binary vectors of length logL labelled

(r1, . . . , rm, c1, . . . , cn−L).

We pick a function f that maps logL binary vectors to integers between 1 and L

bijectively.1 A natural choice is to think of the binary vector as a binary number, convert

it to decimal, and add 1, although any f satisfying these criteria will work equally well.

Now we construct the m × n array A according to Algorithm 1, with indexed elements

indicated by aij (from [64]).

That is, the m×n array is divided into an m×L “row data” section and a m×(n−L)

“column data” section. The row section has exactly one 1 in each row, whose index in that

1Bijectivity is not specified in [64], but is necessary, as will become apparent.

24
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Algorithm 1 An encoding algorithm from [64]

for i = 1, . . . ,m do
ai,f(ri) = 1

end for
for j = 1, . . . , n− L do
a1:m,j+L = a1:m,ψ(cj)

end for
for i = 1, . . . ,m do

for j = 1, . . . , n do
if aij 6= 1 then
aij = 0

end if
end for

end for

row encodes logL bits of information. The column data section duplicates columns from

the row data section, which are (usually) distinct, and encodes information in the index

of the column that has been duplicated. The distinctness is, however, not guaranteed.

This is due to the encoding issue mentioned briefly, which will be analyzed below.

Assuming distinctness, the rate of this system is (m + n − L) logL. The value of

L that maximizes this is denoted L∗ and grows asymptotically as (m + n)/ log(m + n),

which means the overall fraction of distinct patterns that can be encoded approaches

capacity.

3.1.1 Example

Consider an array with m = 4, and n = 6, which gives L∗ = 4. We can store (m + n −
L∗) logL∗ = 12 bits of information in this array using this scheme. As an example, we

will store the bitstring 011110001001.

First, divide this bitstring into the r and c vectors of length logL∗ = 2. This gives the

vectors v listed in table 3.1, with corresponding values f(v), using the binary conversion

plus 1 for the function f .

Now we perform step 1, by entering the r vectors into the first L∗ columns of an

m × n array. For vector ri, we set the f(ri)th element of the ith row to 1. This gives

the following matrix, where “?” indicates a memristor whose value has not yet been set,
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Vector v Name f(v)
01 r1 2
11 r2 4
10 r3 3
00 r4 1
10 c1 3
01 c2 2

Table 3.1: Vectors of bits, with names and f -values, for a sample bitstring and m = 4,
n = 6.

and the bar divides the row and column sections:
? 1 ? ? ? ?

? ? ? 1 ? ?

? ? 1 ? ? ?

1 ? ? ? ? ?

 (3.1)

Proceeding to step 2, we duplicate column f(cj) into the j + L∗th column for j = 1

and j = 2. That is, we duplicate the third column into the fifth, and the second column

into the sixth, giving 
? 1 ? ? ? 1

? ? ? 1 ? ?

? ? 1 ? 1 ?

1 ? ? ? ? ?

 (3.2)

We have now set all the 1s in the array. Finally, step 3 fills in the remaining unknown

memristors to zeros, giving 
0 1 0 0 0 1

0 0 0 1 0 0

0 0 1 0 1 0

1 0 0 0 0 0

 (3.3)

Note that, as desired, there are no sneak-paths in this array. We also have no rectan-

gles of ones in the row-data section. The row-data section has four rows, each of which

encodes log 4 = 2 bits of information. The column-data section has two columns, each

of which also encodes log 4 = 2 bits of information.
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Figure 3.1.1: The number of bits as a fraction of the maximum value T (m,n) as a
function of p = m+ n, for the optimal choice of L and two array geometries

3.1.2 Comments

The existing row/column scheme from [64] discussed above encodes (m + n − L) logL

bits in mn memristors. The choice of L that maximizes capacity is asymptotically

L∗ =
m+ n

log(m+ n)
(3.4)

Note that L∗ depends on m and n only through the semi-perimeter p = m+n. Moreover,

the maximum number of bits with this scheme approaches the overall maximum quickly.

This is seen in Figure 3.1.1 for the cases n = L (i.e., no cj data in the original scheme)

and m = n (square arrays). Note that for constant p = m+ n changing m and n affects

T (m,n) but not the maximum number of bits that can be encoded using this scheme. In

these calculations, L and logL were constrained to the integers, since they correspond to

integer numbers of devices. Similarly, the minimum value for p is 3, since smaller values

give arrays of devices with nonpositive dimensions.

It is also worth noting that the optimum value L∗ = p/ log p is an asymptotic approx-

imation. In a physical device, L and logL are integers, meaning that L is a power of 2.

However, even the approximation that L is the smallest power of 2 larger than p/ log p,

i.e., 2dlog(p/ log p)e is occasionally incorrect. A comparison between the true power-of-2 op-
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Figure 3.1.2: The optimum value of L as a function of p, and two approximations, when
using the third encoding scheme from [64].

timum (found by brute-force iteration) and these two approximations for p up to 200 is

given in Figure 3.1.2.

3.1.3 Error probability

In a small subset of cases this scheme from [64] cannot be decoded uniquely. This happens

when two of the columns in the row data are identical. Because there is only ever one 1

per row in the row data section, these identical columns will always be columns of zeros.

Since each row of the m× L row data section contains exactly one 1, the probability

of any one element of this section being 1 is P1 = L−1, meaning the probability of any one

element of this section being 0 is P0 = 1−P1 = 1−L−1. We are interested in columns of

zeros. The probability that a given column is all zero is Pc = Pm
0 = (1−L−1)m, assuming

that the 1 in a row is equally likely to occur in each position. The probability that no

column is all zero is then Pnone = (1 − Pc)L and the probability that a given column is

the only column of all zeros is Ponly = Pc(1− Pc)L−1.
We want the probability that at least two columns are all zeros. This is the comple-

ment of the probability that either no column is all zeros, or exactly one column is all

zeros. Since there are L columns, this is 1− (Pnone + LPonly). For optimal L and square

arrays, this probability is between 0.05 and 0.15 for m between 10 and 500. Moreover,
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this probability for this geometry is an increasing function of m, meaning that larger

square arrays are more prone to error than small ones.

In order to avoid these errors without materially changing the encoding scheme we

need to ensure that each column of memristors contains at least one 1 (in fact, we need

only ensure that all but one of the columns have this property, but it will be easier for

the moment to maintain the rule for all columns). There are a few ways in which we can

do this. Each of them involves either a reduction in the amount of information stored,

or constraints on the geometry of the device.

If we have control over the geometry of the array, we can avoid this problem by

choosing n = L∗ (since L∗ depends on m and n only through p). This eliminates the

column data section of the original scheme, and therefore the problems it can cause.

In this case, we have m = p−n = p−L∗. Since L∗, and so n, is asymptotic to p/ log p,

this gives arrays that have a fairly skewed aspect ratio, which may not be desirable in

all architectures. Moreover, this solution does assume control over the geometry of the

system which may not be available in all contexts.

3.2 Simple “identity matrix” encoding

Perhaps the simplest way of guaranteeing that each column contains a 1 is to have the

first L∗ rows of the “row data” include all the possibilities for a single 1 in order, that

is, to set ai,i = 1 for i ∈ {1, 2, . . . , L∗} and ai,j = 0 for i ∈ {1, 2, . . . , L∗} when j 6= i.

This this section of the memristor array the appearance of an identity matrix in linear

algebra.

The rate of this method is reduced by L logL bits, since we are setting the first L of

m rows of the “row data” section, which originally encoded m logL bits. This gives an

overall capacity of (m+ n− 2L) logL, or (p−L) logL bits, compared with (p−L) logL

for the initial scheme. The number of reading and writing operations required to read

and change data is the same as in the original scheme. This is included in Figure 3.3.3.

3.3 Permuted identity matrix encoding

We can improve on this rate somewhat by permuting the rows of the identity matrix to

store additional information. There are L∗! such permutations, so we recover logL∗! bits

by doing this. This increases the capacity to (p−L∗) logL∗+logL∗! at the cost of making

it more complicated to read or alter the data stored in the permutation section of the
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array. In particular, this process will require a more sophisticated external computing

unit to determine the specific permutation present.

The rates of these two alternatives are compared against the rates of the (error-prone)

original scheme in Figure 3.3.3. The distinct “bumps” in the curves are a result of the

discreteness of the optimal values of L∗, which must be powers of 2 in order to produce

integer-dimensioned arrays of both data bits and memristors.
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Figure 3.3.3: Comparison of the schemes discussed (see text)

3.4 Generalized header rows

Both of these schemes fix the flaws in the original by adding several header rows in the

“row data” section of the memristor array. If we want to maintain the split between

the “row data” and “column data” sections, these header rows, and, in general, all the

rows in the row data section, must each contain at most one 1, since we may otherwise

have indistinguishable columns in the row data section, which is the same issue as in the

original scheme.

It may be worthwhile to consider a scheme where we store all data row-wise, where

each row is a copy of one of a set of header rows. In particular, in an m× n array with

h header rows, where h ≤ n, we have m − h data rows, each of which can have one of
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h values, for a total of (m − h) log h bits. For square arrays, the optimal value of h is

plotted in Figure 3.4.4.
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Figure 3.4.4: Optimal number of header rows for square arrays as a function of array
dimension

If we examine the number of bits that can be achieved with this header row scheme

as a fraction of the maximum, we obtain the results in figure 3.4.5. That is, this graph

shows

max
h

(m− h) log h

log T (m,m)
(3.5)

We see that this is a fairly small fraction, and appears to approach a value less than

0.5 asymptotically. Note moreover that this is an upper bound, as we would practically

need to truncate h to powers of 2 so that the relevant numbers of bits are integers. We

may add a few bits by permuting the header rows, as above, but this makes a negligible

difference as m increases, with benefits well below 1% when m is greater than 80.

3.5 One-hot rows

Probably the simplest scheme for reading and writing is a “one-hot” scheme. In such a

scheme, each row contains exactly one 1. This is simple to read, as a single read operation

extracts one bit. For instance, if the array has n = 2k columns for some integer k, we
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Figure 3.4.5: Maximum fraction of available bits using basic header row scheme

can store log n = k bits in a row, and extract one bit per read by checking whether the

1 appears in one of the corresponding columns. For example, if we want the third most

significant bit, we test all columns whose index has a 1 in the third most significant bit

of its binary representation, that is, columns 4, 5, 6, 7, 12, 13, 14, 15, . . . .

Writing is similarly straightforward. If the pattern to be overwritten is known a priori,

overwriting involves only flipping those memristors corresponding to the old and new 1s.

If the existing pattern is not known or the data is being initialized, the new pattern will

be written in k-bit words corresponding to rows of n memristors.

This means that writing is significantly more efficient when the data is known, so in

contexts where write speed is a priority we may want to read the current pattern before

writing, as this will take k = log n read and 2 write operations, instead of 2k = n write

operations. This choice will depend on the specifics of the array size, read and write

times, and the relative wear on the devices of reads and writes, which is a subject for

future work.

Each of the m rows of this scheme contains log n bits of information, meaning that the

entire array contains m log n bits of information. This is less than the (m+n) log(m+n)

asymptotic capacity, meaning that for most rectangular geometries this is a scheme to

use when read-write complexity is prioritized over storage density.
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3.5.1 Geometric dependence

The above expression, m log n, is a larger fraction of the asymptotically capacity-achieving

(m + n) log(m + n) for some values of m and n than others. In particular, if we fix

L = m + n and optimize m (equivalently n) to maximize m log n we obtain results that

are numerically very close to those for the (m + n) log(m + n) = L logL case. We need

to bear in mind that this asymptotic result is only valid when m/n approaches a finite

positive value as L increases.

3.6 Optimizing one-hot rows with peripherals

Encoding and decoding for the one-hot scheme are straightforward to implement in pe-

ripheral transistor hardware. The total area of this hardware will be proportional to

m logm + n log n. This means that if we let a memristor have unit area, the total area

including peripherals of an m× n device is

AC(m,n) = C(m logm+ n log n) +mn, (3.6)

where C is the proportionality constant, which depends on the transistor technology. The

terms multiplying the C come from the fact that we need to be able to select any of the

n rows and any of the m columns. Since this device stores m log n bits of information,

we can consider the area information density, which is

ρC(m,n) =
m log n

AC(m,n)
=

m log n

C(m logm+ n log n) +mn
. (3.7)

We would like to know the values of m and n that maximize this density for a given

parameter C. This gives us the most information-dense array, which can then be repeated

over the area to give maximally information-dense devices, assuming that it is possible

to route the inputs and outputs to such a device efficiently.

Figure 3.6.6 gives the pairs (m∗, n∗) that maximize ρC(m,n) as a function of C. Both

appear to grow roughly linearly in C, with some variance above roughly C = 20, which is

possibly due to numerical artifacts resulting from the difficulty of solving a large discrete

optimization problem.

We see that, as might be expected, m∗ is consistently larger than n∗. There are also

some integer values of m that do not appear to be optimal for any C.
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Figure 3.6.6: The values of m and n that maximize ρC(m,n) as a function of C.

3.7 Final notes

In this chapter we have discussed a variety of encoding schemes here. In general, there

is often a tradeoff between the number of bits that an encoding scheme can store and

the complexity of implementing it. We have also seen a brief analysis of the variation

in information density, including peripheral encoding/decoding hardware, for the one

scheme with a natural encoding/decoding algorithm (the one-hot encoding scheme).



Chapter 4

Capacity of multi-layer devices

One of the attractive features of memristor arrays is the fact that they are composed

of two-terminal devices. This contrasts with transistor-based memories such as flash,

as transistors are three-terminal devices, and therefore more both more complicated in

terms of connectivity and usually larger. This is a useful feature because it reduces

the number of connectors needed, and particularly means that all connectors can be

placed around the edges of the arrays. This means that memristor arrays can be stacked

vertically, producing a very dense device. To maximize density, we will consider devices

that alternate layers of wires and memristors without any separating layers.

4.1 Device representation

We generalize our graph and matrix representations for single-layer architectures to the

multi-layer devices. We identify a device architecture by the number of layers of mem-

ristors, rather than the number of layers of wires, so that the architecture examined in

previous chapters is a single-layer architecture, and the architecture examined in this

chapter are multi-layer devices.

4.1.1 Matrix representation

In the single-layer case, we used biadjacency matrices D and F to represent the locations

of high-conductance memristors and the overall connectivity of the architecture, respec-

tively. In cases with more than two layers of wires, a biadjacency matrix is not a valid

representation, so we can generalize to adjacency matrices A and B.

Toward a new representation, consider the adjacency matrices for the single-layer

case. Define the adjacency matrix A, corresponding to F, as follows. Matrix A is an

35
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(m + n) × (m + n) matrix with the first m indices corresponding to a layer of m wires,

and the last n indices corresponding to a layer of n wires. The value Aij = 1 if there is

a high-conductance memristor connecting the wire corresponding to index i to the wire

corresponding to index j, and Aij = 0 otherwise. Note that this means

A =

[
0m×m F

FT 0n×n

]
(4.1)

The reachability matrix B, corresponding to D, describes the overall connectivity of

the device. We can define B analogously to (2.1) as follows.

Definition 4.1.1. The reachability matrix is

B ≡

[
m+n∑
k=1

Ak

]
>0

(4.2)

where the terms in the sum correspond to paths of different lengths.

Now consider the `-layer case, with `+ 1 layers of wires, where there are nk wires in

the kth layer, 1 ≤ k ≤ `+ 1. We define the adjacency matrix as follows.

Definition 4.1.2. The matrix A is a square matrix of dimension
∑

k `k. Each index

corresponds to a wire in the device. As in the single-layer case, Aij is 1 when the wires

corresponding to indices i and j are directly connected by a high-conductance memristor.

For example, consider a four-layer case. We can think of this as four single-layer cases

that share a sets of wires in between. These four single-layer cases will have D matrices

D1, D2, D3, and D4. The A matrix will then have the form

A =


0 D1 0 0 0

DT
1 0 D2 0 0

0 DT
2 0 D3 0

0 0 DT
3 0 D4

0 0 0 DT
4 0

 (4.3)

with the zero matrices of the appropriate dimensions. In general, a layer of wires can

only be directly connected to the layers immediately above or below it, which means that,

in this block form, there are zero matrices everywhere except in the blocks immediately

above and below the main diagonal. Note also that since this A an undirected adjacency

matrix, it is symmetric.
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4.1.2 Graph representation

The graph representation used previously generalizes nicely to multi-layer devices. In-

stead of using a bipartite graph, we have an (`+ 1)-partite graph, with each part corre-

sponding to one layer of wires in the array.

4.2 Identifying sneak paths

In the single-layer case, we can go from the F matrix to the D matrix, or equivalently

the A matrix to the B matrix by identifying “Ls” in the matrix, that is, rectangles of

entries which have three corners equal to 1 and the fourth equal to 0. We cannot use the

same process in the multi-layer case. Consider the A matrix

A =



0 0 1 0 0 0

0 0 1 0 0 0

1 1 0 0 1 1

0 0 0 0 1 1

0 0 1 1 0 0

0 0 1 1 0 0


(4.4)

which has corresponding B matrix

B =



1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1


(4.5)

where the interior lines divide the matrix into the regions corresponding to each layer of

wires (i.e., this is a 3 × 3 × 3 array). We see that there are many sneak paths, despite

there being no “Ls” in the A matrix.

This happens because we can have sneak paths from layer to layer in the multi-layer

case (as between wire 1 and wire 4 in this case). The “L” rule works inside the block

corresponding to a single layer, but since these blocks are distributed above and below

the main blockwise diagonal, with zeros everywhere else, they are not caught by the “’L”

rule.

We can modify A so that we can still use the “L” rule by adding an identity matrix
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of the same size, which will generate the necessary “L”s. First let us examine how this

changes B.

Theorem 4.2.1. Define C ≡ A + I and G ≡
[∑m+n

k=1 Ck
]
>0

. It follows that B = G

except possibly along the diagonal. Moreover, the matrices differ at diagonal entry (i, i)

if and only if row (or column) i of A is zero.

Proof. Call G the reachability matrix with self-loops (this proof will show why this name

is appropriate).

First examine Ck ≡ (A+I)k. Since A is symmetric, this expands to Ck =
∑k

j=0

(
k
j

)
Aj,

where, as usual, A0 = I. Note that [qM]>0 = [M]>0 for any positive scalar q.

Combining these facts implies that

G =

[
m+n∑
k=1

k∑
j=0

(
k

j

)
Aj

]
>0

(4.6)

=

[
m+n∑
k=1

k∑
j=0

Aj

]
>0

=

[
m+n∑
k=0

Aj

]
>0

(4.7)

=

[
I +

m+n∑
k=1

Ak

]
>0

(4.8)

The final expression above differs from the expression for B only in the identity, which

gives that B = G except possibly along the diagonal, as desired. It remains to prove

that the matrices differ at diagonal entry (i, i) if and only if row i of A is zero.

Examine entries where G and B differ. These will be entries on the diagonal where

all powers Ak are zero. The entry Aii is zero if and only if there are no paths from wire

i back to itself, which means that wire i has no neighbours, or equivalently row i of A is

all zero. This completes the proof.

Graphically, we are making each graph node self-adjacent, which will not affect the

subsequent analysis, since we cannot have a sneak path from a node to itself. Because of

this, we may use the “L” rule to identify sneak paths as before. It is also still equivalent

to saying that every pair of rows (or columns) in G must have either all 1s in common

or no 1s in common by applying the arguments from Theorem 2.2.1.

It remains to show that we can find all sneak-paths using the “L” rule if we start

from G instead of from B. First we need to introduce some definitions.

Definition 4.2.1. The single-step rectangular closure of a binary matrix M is the matrix
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C1(M) defined by

C1(M)[r, c] =


1 if M[r, c] = 1

1 if ∃ r′, c′s.t.M[r, c′] = M[r′, c′] = M[r′, c] = 1

0 otherwise

(4.9)

Definition 4.2.2. The k-step rectangular closure of a binary matrix M is the result of

taking the single-step rectangular closure k times. It is denoted Ck(M).

Definition 4.2.3. The rectangular closure of a binary matrix M is

C(M) ≡ lim
k→∞
Ck(M). (4.10)

Note that this limit will exist, since by repeatedly taking rectangular closures we will

always reach a point where no more closures can be taken, even if this means filling

the entire matrix with 1s. In particular, we will need to take no more than
∏`

i=0 nini+1

closures, which is the number of memristors in the device.

We can now state the following theorem.

Theorem 4.2.2. For a given connectivity matrix A, the reachability matrix equals the

rectangular closure of the connectivity matrix with self-loops, that is

G = C(A + I) (4.11)

Proof. We will show first that any reachability matrix is a rectangular closure matrix,

and then that any rectangular closure matrix is a reachability matrix.

Assume that matrix G has a 1 at some index, that is, there exist r and c such that

G(r, c) = 1. We want to show that C(A + I)(r, c) = 1, which means there exists some k

such that Ck(A + I)(r, c) = 1.

The assumption that G(r, c) = 1 means that there exists some minimal k ≥ 0 such

that
[
Ak(r, c)

]
>0

= 1. Remembering that A is an adjacency matrix, this means that

there is some path of minimal length of connections between wire r and wire c which we

can write as π = [p0, p1, . . . , pk] where p0 = r and pk = c. This path is a list of all the

wires we traverse to get from r to c. This means that A(pi−1, pi) = 1 for 1 ≤ i ≤ k when

k > 0. When k = 0, then A0(p0, p0) = I(p0, p0) trivially.

We proceed by induction on k. We have already proved the k = 0 case, which is

sufficient for a base case. To gain intuition, consider the k = 1 and k = 2 cases. When
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k = 1, our path is π = [p0, p1] = [r, c]. We know that A(p0, p1) = 1, so we have

C(A + I)(p0, p1) = 1 (4.12)

since the closure has 1s wherever A has 1s.

When k = 2 we have π = (p0, p1, p2). We know that

(A + I)(p0, p1) = (A + I)(p1, p1) = (A + I)(p1, p2) = 1 (4.13)

so by definition, C1(A + I)(p0, p2) = 1, so C(A + I)(p0, p2) = 1.

Now assume that C(A + I)(r′, c′) = 1 for any path πk of length k beginning at some

r′ and ending at some c′. We want to show that for any path πk+1 of length k + 1 it

is true that C(A + I)(p0, pk+1) = 1. The first k elements of πk+1 form a path of length

k from r to some pk, so we have Ci(A + I)(r, pk) = 1 for some i. We also know that

(A + I)(pk, pk+1) = 1. Thus,

Ci(A + I)(r, pk) = Ci(A + I)(pk, pk+1) = Ci(A + I)(pk, pk) = 1. (4.14)

This means that Ci+1(A + I)(r, c) = 1, so C(A + I)(r, c) = 1 as desired.

We have shown that if the reachability matrix has a 1 at some index, the rectangular

closure has a 1 at the same location. To complete the proof that these matrices are equal

we will show that if the rectangular closure has a 1 at some location then so does the

reachability matrix.

Assume that C(A + I)(r, c) = 1 for some indices (r, c). If (A + I)(r, c) = 1, then

G(r, c) = 1 and we are done. Otherwise, there exists some k such that Ck−1(A+I)(r, c) =

0 and Ck(A + I)(r, c) = 1, where we define C0(A + I) = A + I.

Again, we proceed by induction on k. If k = 1 then (A + I)(r, c) = 0 but

C1(A + I)(r, c) = 1 (4.15)

meaning that there exists a pair (r′, c′) such that

(A + I)(r, c′) = (A + I)(r′, c′) = (A + I)(r′, c) = 1. (4.16)

This means that [r, c′, r′, c] forms a path in A + I, so G(r, c) = 1 as desired.

Now assume that if Ck(A+ I)(r, c) = 1 then G(r, c) = 1 for some k. We want to show

that if Ck+1(A + I)(r, c) = 1 when Ck(A + I)(r, c) = 0 then G(r, c) = 1. By definition, if
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Ck+1(A + I)(r, c) = 1, there must exist (r′, c′) such that

Ck(A + I)(r, c′) = Ck(A + I)(r′, c′) = Ck(A + I)(r′, c) = 1. (4.17)

However, by the inductive assumption, this means that G(r, c′) = G(r′, c′),G(r′, c) = 1.

Hence, [r, c′, r′, c] forms a path in the graph corresponding to A+I. By construction, the

endpoints of any path in this graph correspond to a 1 in G, so G(r, c) = 1 as desired.

We have shown that G has a 1 at some location if and only if C(A + I) has a 1 at

that location. Since these are binary matrices, they must be equal.

4.3 Counting data patterns

As in the single-layer case, in order to understand a multi-level memristor architecture

in an information theoretic context it will be convenient to understand how many dis-

tinguishable data patterns may be stored in it. Unlike in the single-layer case, however,

it is not true that any rectangular closure matrix of the appropriate dimensions will cor-

respond to a physical device. This can be seen with the help of the following example.

Consider the adjacency matrix

A =



0 0 0 0 0 1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1 0 0 0 0 0


(4.18)

which has rectangular closure

C(A + I) =



1 0 0 0 0 1

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

1 0 0 0 0 1


. (4.19)

This is a matrix with no “L”s, but it is not physically realizable as it includes connections

from the first layer to the third layer that do not pass through the second. This is
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physically impossible. Indeed, the number of rectangularly closed matrices for a set

{ni}Li=1 of wire layer dimensions gives us a fairly loose upper bound on the number of

data patterns which may be physically stored in a device with these dimensions.

To find an exact expression for the L-layer case, we will need the following definitions.

Definition 4.3.1. A (k, s) pattern is a pattern in which the n nodes of the top layer are

partitioned into k non-trivial connected components, and s disconnected nodes.

In general, there is more than one (k, s) device for a given pair (k, s). In fact, there

are
(
n
s

)
ways of choosing the disconnected nodes and

{
n−s
k

}
ways of partitioning the

remaining nodes. This gives us the following alternative expression for T2(n0, n1).

Theorem 4.3.1. The number of distinguishable single-layer memristor patterns is

T1(n0, n1) =

n1∑
s=0

min(n0,n1−s)∑
k=0

{
n0 + 1

k + 1

}{
n1 − s
k

}(
n1

s

)
k!. (4.20)

Equation 4.20 follows either from the previous remarks, or from the Stirling number

identity {
n+ 1

k + 1

}
=

n∑
j=k

(
n

j

){
j

k

}
. (4.21)

Now let us consider the two-layer case. In particular, let us see how many two-layer

devices have a bottom layer with a (k1, s1) architecture.

For example, suppose we had n0 = 7, n1 = 6, and n2 = 7, with s1 = 3, and k1 = 3.

One possible device with these parameters is shown in Figure 4.3.1.

In our example, in the base single-layer device, n1 − s1 = 3 of the wires in layer 1

are partitioned into k1 = 2 connected components, and the remaining s1 = 3 are not

connected to lower layers. We will consider these two classes of components separately

when adding the new layer. In particular, we can divide the new upper layer of wires

(layer 2) into 3 types of components as follows. There will be k′2 connected components

that correspond to a subset of the previous layer’s k1 connected components. There will

be a further k′′2 connected components corresponding to some subset of the s1 unconnected

wires in the previous layer. Finally, there will be s2 disconnected wires. In our example,

k′2 = 1, k′′2 = 1, and s2 = 3.

This means that there are k′2 + k′′2 connected components that include wires in wire

layers 1 and 2. In wire layer 1, there are
(
k1
k′2

)
ways to choose the k′2 components and{

s1+1
k′′2+1

}
ways to create the k′′2 components. In wire layer 2 there are

(
n2

s2

)
ways to choose

the s2 wires that will not be used, and
{
n2−s2
k′2+k

′′
2

}
ways to partition the remaining wires
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0 1 2

Figure 4.3.1: A (non-unique) legal connection pattern for which n0 = 7, n1 = 6, and
n2 = 7, with s1 = 3, s2 = 3, k1 = 2, k2 = 2, and j2 = 1. In this notation, all nodes in
pairs of boxes connected by lines with dots are connected to each other.

into k′2 + k′′2 connected components. Finally, there are (k′2 + k′′2)! ways of pairing the

components thus created.

Combining all of this gives us the following theorem.

Theorem 4.3.2. The number of distinguishable 2-layer memristor patterns with a given

(k1, s1) device as the lower layer is

n2∑
s2=0

k1∑
k′2=0

min(s1,n2)∑
k′′2=0

(
k1
k′2

){
s1 + 1

k′′2 + 1

}{
n2 − s2
k′2 + k′′2

}(
n2

s2

)
(k′2 + k′′2)! (4.22)

This can be simplified if we define k2 = k′2 + k′′2 and j2 = k′2. Such a simplification

gives the expression

n2∑
s2=0

k1∑
j2=0

min(j2+s1,n2−s2)∑
k2=j2

(
k1
j2

){
s1 + 1

k2 − j2 + 1

}{
n2 − s2
k2

}(
n2

s2

)
k2! (4.23)
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For ease of notation, let us define the following quantity.

Definition 4.3.2. Define Nn2(s1, s2, k1, k2, j2) to be the number of devices corresponding

to this set of parameters, namely(
k1
j2

){
s1 + 1

k2 − j2 + 1

}{
n2 − s2
k2

}(
n2

s2

)
k2! (4.24)

Finally, this means that we now can write an expression for the number of distin-

guishable 2-layer patterns.

Theorem 4.3.3. The number of distinguishable 2-layer patterns T2(n0, n1, n2) is

n1∑
s1=0

min(n0,n1−s1)∑
k1=0

n2∑
s2=0

k1∑
j2=0

min(j2+s1,n2−s2)∑
k2=j2

({
n0 + 1

k1 + 1

}{
n1 − s1
k1

}(
n1

s1

)
k!

)
Nn2(s1, s2, k1, k2, j2)

(4.25)

Note that the term in brackets looks a bit like Nn1. In fact, if we define s0 ≡ n0,

k0 ≡ 0 and j1 ≡ 0, we can write
{
n0+1
k1+1

}
=
(
k0
j1

){
s0+1

k1−j1+1

}
, which means that the term

in brackets is exactly Nn1(s0, s1, k0, k1, j1). This means that we can write the above

expression somewhat more compactly as follows.

Theorem 4.3.4. The number of distinguishable 2-layer patterns T2(n0, n1, n2) is

n1∑
s1=0

min(j1+s0,n1−s1)∑
k1=0

n2∑
s2=0

k1∑
j2=0

min(j2+s1,n2−s2)∑
k2=j2

Nn1(s0, s1, k0, k1, j1)Nn2(s1, s2, k1, k2, j2) (4.26)

This motivates the following theorem.

Theorem 4.3.5. The number of distinguishable L-layer patterns TL({ni}Li=0) is

n1∑
s1=0

k0∑
j1=0

min(j1+s0,n1−s1)∑
k1=j1

· · ·
nL∑
sL=0

kL−1∑
jL=0

min(jL+sL−1,nL−sL)∑
kL=jL

L∏
i=1

Nni
(si−1, si, ki−1, ki, ji) (4.27)

Proof. The proof is by induction. We have proved the base cases L = 1 and L = 2 above.

Now assume this is true for L = m. We want to show it is true for L = m+ 1.

Consider the bottom m layers of an m+ 1-layer device as an m-layer device. This is

a (km, sm) pattern, and by the inductive hypothesis, we know how many such patterns

there are. As in the proof for the 2-layer case, we will add a new wire layer with two

categories of connected components: km+1 connected components that connect to some

lower wires, and sm+1 disconnected wires. Of the km+1 connected components, jm+1 of
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them connect to subsets of the sm wires in wire layer m that are disconnected from all

lower wires.

We want to find out how many ways we can create km+1 connected components at

wire layers m and m+1. At layer m, jm+1 of the components are chosen from the existing

km connected components, and the other km+1− jm+1 are formed from a partition of the

remaining sm wires, for a total of
(
km
jm+1

){
sm+1

km+1−jm+1+1

}
ways of creating km+1 connected

components. At layer m+1, there are sm+1 disconnected wires, and the remaining nm+1−
sm+1 wires are partitioned into km+1 components. This can be done in

{
nm+1−sm+1

km+1

}(
nm+1

sm+1

)
ways. The km+1 connected components in the two wire layers can be paired in km+1!

different ways. These factors all multiply to form Nnm+1(sm, sm+1, km, km+1, jm+1).

Since Tm({ni}mi=0) equals

n1∑
s1=0

k0∑
j1=0

min(j1+s0,n1−s1)∑
k1=j1

· · ·
nm∑
sm=0

km−1∑
jm=0

min(jm+sm−1,nm−sm)∑
km=jm

m∏
i=1

Nni
(si−1, si, ki−1, ki, ji) (4.28)

there are

n1∑
s1=0

k0∑
j1=0

min(j1+s0,n1−s1)∑
k1=j1

· · ·
nm∑
sm=0

km−1∑
jm=0

min(jm+sm−1,nm−sm)∑
km=jm

km∑
jm+1=0

m+1∏
i=1

Nni
(si−1, si, ki−1, ki, ji)

(4.29)

different (km+1, sm+1) patterns, where we have multiplied the summand by

Nnm+1(sm, sm+1, km, km+1, jm+1) (4.30)

and summed over jm+1. Summing over km+1, and sm+1 gives

n1∑
s1=0

k0∑
j1=0

min(j1+s0,n1−s1)∑
k1=j1

· · ·
nm+1∑
sm+1=0

km∑
jm+1=0

min(jm+1+sm,nm+1−sm+1)∑
km+1=jm+1

m+1∏
i=1

Nni
(si−1, si, ki−1, ki, ji),

(4.31)

the desired result.

This approach to counting tells us that we can count the different arrays by first

classifying all L − 1-layer patterns as (kL−1, sL−1) devices, and then summing over all

possible ways that each of these device types can lead to each of the (kL, sL) device types.

This gives us a general expression for the number of distinguishable patterns that we

can store in a multilayer memristor array. The logarithm (base 2) of this value gives us

the capacity of such an architecture in bits.
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4.4 Analysis

We can see that layering memristors in this way will give us more capacity per unit area

than if we were to layer discrete single-layer devices alternating with layers of insulator.

This is because layering single-layer devices in this way is equivalent to setting all mem-

ristors on every second layer in the high-resistance state to the connected multi-layer

case.

The expression for TL({ni}Li=0) grows very quickly in L, as it includes two more Stirling

number factors, two more binomial factors, and two more factorial factors for every unit

increase in L. All of these factors are roughly exponential. For this reason, we can

only analyze fairly small multi-layer arrays exactly. However, even for such small arrays,

we can already see the benefits of layering compared to stacking single-layer devices.

Figure 4.4.2 shows this for devices having every dimension equal to 5. We see that log TL

grows much more quickly than bL/2c log T1 for these small arrays, as expected. In the

general case when comparing across area we would develop a density metric as explored

in Section 2.3.7. However, in this case plotted, the dimensions of all layers are the same,

which means that the devices will have similar footprints when calculating densities.

1 2 3
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40
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Layered single-layer

Figure 4.4.2: Comparison between capacity of multi-layer device and layered single-layer
devices, where ni = 5 for all i.
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Conclusions and future work

5.1 Single-layer devices

Single-layer memristor storage devices were well modelled in the existing literature prior

to our work. The present work provides an alternative proof for the capacity of these

devices, and links their study to the study of difunctional relations, which is useful when

extending the analysis to the multi-layer case. Moreover, we explored some improvements

to existing encoding schemes, which both avoid a flaw in one of the existing schemes,

and, in the case of the one-hot encoder, lend themselves well to straightforward encoding

and decoding.

There are many possible extensions to this work. For instance, in the present model,

we have been assuming that all resistances are either zero or infinite, and all applied

voltages are equal. If we generalize either of these assumptions to allow intermediate

resistances or voltages, we introduce an interesting new set of challenges, as well as a

variety of new device parameters. In particular, we can start to consider the important

consideration of the power consumed by a device, especially a multi-layer device, in which

the physical problem of heat dissipation will be of particular concern. This is discussed

to some extent by Cassuto in [2], and is important to consider when implementing a

device physically.

In addition to having non-ideal resistances, it may also be interesting to consider mod-

elling memristors that may be reliably programmed to more than two values. Although

this programming is often unstable physically, some promising work in the materials

science of such a device has been done in, for instance, [39].

47



Chapter 5. Conclusions and future work 48

5.2 Multi-layer devices

Our discussion of multi-layer develops novel combinatorial results describing the capacity

of such devices. Moreover, this discussion suggests that if such a device can be constructed

it would be worthwhile to consider as a memory device. In any case, many of the

discussions here about single-layer devices bear consideration in the multi-layer case. In

particular, it would be useful to develop encoding and decoding algorithms for these

devices.
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