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Abstract
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2020

Zipper codes, a new framework for describing spatially-coupled product-like codes, are

introduced. This framework encompasses many types of codes such as staircase codes

and braided block codes. New types of codes such as tiled and delayed diagonal zipper

codes are also introduced. Simulation results show that these new type of codes achieve

comparable performance to staircase codes while requiring less memory. This thesis

also analyzes the types of stall patterns that can arise in zipper codes and how they

affect the error floor. Finally, the impact of error-and-erasure decoding in zipper codes

is also studied. Software simulation results show that adding erasure symbols improves

the coding gain by around 0.1 dB with only a small increase in memory overhead and

decoding complexity.
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Chapter 1

Introduction

1.1 Motivation

For a long time, the use of Forward Error Correction (FEC) in optical transport networks

(OTNs) was ignored due to its high data integrity [2]. However, as data rates have

increased, the effect of transmission impairments such as noise, dispersion, and nonlinear

distortions have caused FEC to become a vital component of every optical communication

system [3]. Since then, FEC systems for OTNs have been extensively researched and

standardized in order to accomodate higher data rates.

The first standardized FEC for an OTN was in the ITU-T recommendation G.975.

Released in 2000, the recommendation specifies a (255, 239) Reed-Solomon (RS) code

operating at 2.5 Gb/s throughput. The code is 3.77 dB away from capacity at 10−15

bit error rate (BER). In 2004, ITU-T recommendation G975.1 was released with nine

proposed coding schemes, some of which are summarized in Table 1.1. Note that all

schemes listed in Table 1.1 use hard-decision, algebraic codes. Further, they also use

concatenated scheme, where two codes are used in tandem.

Table 1.1: Proposed Coding Schemes from ITU-T Recommendation G975.1

FEC Scheme Gap to Capacity (dB)
(3860, 3824) BCH outer, (2040, 1930) BCH inner 0.98
(1023, 1007) RS outer, (2047, 1952) BCH inner 1.3

(1901, 1855) RS outer, (512, 502)×
(510, 500) Hamming product inner

1.47

Then, the third-generation FEC such as turbo codes [4] and Low Density Parity

Check (LDPC) codes [5,6] are also considered for optical networks. Those codes leverage

iterative decoding to obtain realizable receivers and achieve high coding gains [7]. In

1
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2012, staircase codes [8] were formulated. The recent 400ZR standard uses a concatenated

staircase code and Hamming code [9] operating at 400Gb/s.

In almost two decades, the bit-rates of standardized OTNs have gone up 160-fold and

1 Tbit/s bit-rate is expected to be standardized within the next few years [10]. With

high-throughput applications, such as internet protocol traffic and data centers, as well

as very low bit error rate (BER) constraint of 10−15, it is vital that the decoders of FECs

can maintain data integrity while keeping the complexity of the system low.

In the past few years, there has been considerable interest in concatenated code

systems, such as [11, 12]. These concatenated schemes achieve state-of-the-art error-

correction performance while maintaining extremely low decoding complexity. The idea

of concatenated code system for OTNs is that a very high-rate outer code is used in

tandem with a lower-rate inner code. The inner code is used for correcting a portion of

the errors up to some threshold, then the outer code will correct it further down to the

10−15 BER requirement. However, a very high-rate outer staircase code cannot be used

for practical reasons such as the required memory for encoding and decoding. Figure 1.1

shows the staircase block size as a function of the code rate. As the code rate approaches

one, the memory size grows explosively. Hence, we need to formulate code families that

are memory-efficient to harness the full potential of the concatenated scheme.
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Figure 1.1: Staircase block size for quadruple-error-correcting constituent code, data
points for rate < 0.95 taken from [1].
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Since OTNs deal with a very high data throughput in the order of hundreds of gigabits

per second, the FEC used must have low complexity. Often, the decoders for such FEC

codes have a hard-decision decoding [13] as soft-decision decoding is shown to consume

more than an order of magnitude more power than hard-decision decoding [14–16]. In

addition, the codes often have a product-like structure akin to Elias’s construction [17]

or Wyner and Ash’s recurrent code construction [18] (a form of spatial coupling), or

a combination of both. Spatial coupling provide efficient encoding and decoding via

locality, and they have universality property. This means that a single code construction

performs well for various channel conditions and parameters [19, 20]. Indeed, spatially-

coupled systems yield better performance than non-coupled ones.

In this thesis, we introduce zipper codes, a framework for describing spatially-coupled

codes with iterative algebraic decoding. This framework encompasses many well-known

codes such as staircase codes [8], braided block codes [21], and swizzle codes [22]. We

also introduce new types of code family called tiled diagonal zipper codes and delayed

diagonal zipper codes, that are more memory-efficient than staircase codes while having

comparable error-correcting performance.

1.2 Literature Review

We provide brief descriptions of some families of spatially-coupled and product-like codes

below.

• Recurrent codes [18] are a type of code inspired by convolutional codes. They are

described by a parity check matrix

A = (B0 Bm B2m . . .) ,

where B0 is a semi-infinite matrix with infinitely many rows and b columns, m is

a positive integer, and Bk is B0 shifted down by k rows with the first k rows filled

with zeros for all positive integer k. The codes are shown to be effective for burst

or random error correction.

• LDPC convolutional codes [23, 24] are a type of LDPC codes where the parity

check matrix is banded similar to recurrent codes. The codes are decoded using a

sliding window decoder which allows pipelined implementation. The performance

is substantially better than convolutional codes while having same complexity. The

code has also been shown to be asymptotically capacity-achieving [25,26]. However,
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they are using soft-decision codes, which are significantly more complex than hard-

decision.

• ‘Half’-product codes are discussed in [27] as a variant of product codes by removing

the lower triangular part of the regular product code matrix. They have shorter

overall block length, only half of that of regular product code, but they have worse

error-correcting performance.

• Staircase codes [8] are characterized by having an infinite sequence of matrices of

size m × m: B0, B1, . . . such that each row of
(
Bi B

T
i+1

)
is a codeword of some

constituent code of length 2m. The error-correcting performance of staircase codes

surpassed the performance of the codes listed in the Appendix I of the ITU-T

recommendation G975.1 when it was introduced. The codes are 0.56 dB away from

the Shannon limit. As mentioned above, the codes have been adopted as part of

the 400ZR standard.

• Braided block codes (BBC) [21] operate on continuous data stream and are com-

posed of an interconnection between two constituent codewords, namely vertical

and horizontal codewords, in an infinite, two-dimensional array. Braided BCH

codes, a variant of BBC with Bose-Chaudhuri-Hocquengham (BCH) component

codes, have exhibited coding gain of 9.35 dB at 7% redundancy [19].

More review of historical and recent development of FECs for OTNs can be seen

in [28–30].

1.3 Outline of the Thesis

The organization of the thesis is as follows:

1. Chapter 2 starts with a mathematical description of zipper codes along with some

properties that the codes have. We then provide examples of some well-known

codes that zipper codes subsume as well as introduce new types of codes: tiled

diagonal and delayed diagonal zipper codes. We describe the decoding procedure

of zipper codes and some assumptions with regards to decoding properties. We

then provide a representation of zipper codes as a graph. Finally, we conclude the

chapter with the simulation results of high-rate codes.

2. Chapter 3 includes a description of a “stall pattern” as well as some patterns

that can arise from particular zipper code structures. We describe in detail the
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consequences of some code properties described in Chapter 2 in the context of stall

patterns that they produce. We also examine in detail the stall patterns of the new

types of codes that are introduced in Chapter 2.

3. Chapter 4 introduces the concept of error-and-erasure decoding for zipper codes.

We show that declaring erasure symbols helps the decoding procedure via simula-

tion results. The data flow and decoding complexity that arise from error-erasure

decoding will be examined. In particular, we show that decoding performance can

be improved with small additional complexity. An analysis of error-and-erasure

stall patterns is briefly discussed.

The author acknowledges Umberto Mart́ınez-Peñas for his collaboration in formulat-

ing some parts of the thesis listed below:

• Examples of zipper code formulation of well-known codes in Chapter 2.

• Examples of graph representation of “stall patterns” in Chapter 3.



Chapter 2

Zipper Codes

In this chapter, we introduce zipper codes, a new framework for describing spatially-

coupled product-like codes. Zipper codes are a member of the class of Generalized Low-

Density Parity-Check Codes [31]; however they focus on product-like codes where every

variable node has degree two. Such codes seems to be the case of most practical interest

in the high-rate regime [32]. This framework includes codes described in [8,21,22,33–35].

2.1 Code Structure

In this section, we will describe the two major components of a zipper code: a zipping

pair and an interleaver map.

2.1.1 Zipping Pair

A zipper code is composed of a sequence of codewords

c0, c1, . . . , (2.1)

where each ci is a codeword of a constituent code C(n, k, d). Here, n, k, d respectively

denote the block length, dimension, and minimum Hamming distance of C. We also

define the sequence (2.1) to be a buffer. Denote the (i, j)-th entry of a buffer to be the

j-th entry of the i-th codeword, where (i, j) ∈ Z× [n] and

[n] = {0, 1, . . . , n− 1}.

6
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Now, let m0,m1, . . . be a sequence of integers such that for all i,

0 ≤ mi ≤ k.

Denote Ai = {(i, j) : j ∈ [mi]}, Bi = {(i, j) : j ∈ [n] \ [mi]}, and

A =
⋃
i

Ai, B =
⋃
i

Bi.

We call A the virtual set and B the real set. Together, we refer to the pair (A,B) as a

zipping pair. The parameter mi is the width of virtual buffer at the i-th codeword.

For a buffer with zipping pair (A,B), we denote its entries by

cAi = (ci,0, . . . , ci,mi−1) and cBi = (ci,mi , . . . , ci,n−1) .

Together, we have ci = (cAi , cBi) ∈ C to be the i-th codeword, and denote the virtual and

real buffer to be the sequences {cAi} and {cBi}, respectively.

A visualization of a zipper code is shown in Figure 2.1. Note that from the visu-

alization, we will also sometimes denote the i-th constituent codeword as the i-th row.

Further, we also sometimes call the (i, j)-th entry of the buffer to be the entry at the i-th

row and j-th column.

cA1

cA2

cA3

cA4

cA5

cB1

cB2

cB3

cB4

cB5

∈ C

n

k
m1 r

...

...

Figure 2.1: Zipper code with ci = (cAi , cBi) being a codeword of C for all i. The first
mi entries of each constituent codeword belong to the virtual buffer and the remaining
n−mi entries (including the r parity symbols) belong to the real buffer.
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2.1.2 Interleaver Map

An interleaver map φ is defined as a function

φ : A→ B

associating each bit in the virtual set with a bit in the real set. We require that every

symbol in the virtual buffer be a direct copy of its associated symbol in the real buffer.

In other words, in a valid codeword, for every (i, j) ∈ A, we have

ci,j = cφ(i,j). (2.2)

Encoding Procedure

The encoding procedure of the i-th constituent code of a zipper code is as follows:

1. Fill in ci,mi , ci,mi+1, . . . , ci,n−r−1 with new message symbols.

2. Fill in cAi by duplicating the symbols from the locations prescribed by the inter-

leaver map, that is, for each j ∈ Ai, ci,j = cφ(i,j).

3. Compute the parity symbols ci,n−r, ci,n−r+1, . . . , ci,n−1 with (ci,0, ci,1, . . . , ci,n−r−1) as

the information symbols.

Properties of Interleaver Maps

We define a projection map

π1 : A ∪B → Z

(i, j) 7→ i,

and for all a ∈ A, define φ1(a) to be a shorthand notation of π1(φ(a)). For practical

purposes, we will only consider interleaver maps φ that are bijective, periodic, and causal.

The precise definition of each property is described below.

Definition 1. An interleaver map φ is bijective if there exists a map

φ−1 : B → A

such that for any arbitrary a ∈ A and b ∈ B, we have φ−1 (φ(a)) = a and φ (φ−1(b)) = b.

Such a φ−1 is called the inverse map of φ.
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Definition 2. Let φ be an interleaver map such that φ(i, j) = (i′, j′). We say that φ is

periodic with period ν if

φ(i+ ν, j) = (i′ + ν, j)

for all (i, j) ∈ A.

Observe that the periodicity of an interleaver map implies periodicity of the code

structure and zipping pair. If an interleaver map is periodic with period ν, then mi+ν =

mi for all i ∈ Z≥0.

Definition 3. An interleaver map φ is causal if φ1(i, j) < i for all (i, j) ∈ A. Conversely,

φ is anti-causal if φ1(i, j) > i for all (i, j) ∈ A.

Our running assumption from this point on is that all interleaver maps φ are bijective.

We will now introduce a few shorthand notations. For all A′ ⊆ A, denote

φ(A′) = {φ(a) : a ∈ A′} ,

and similarly, for all B′ ⊆ B, denote

φ−1(B′) =
{
φ−1(b) : b ∈ B′

}
.

Finally, for all X ⊆ A ∪B, denote

π1(X) = {π1(x) : x ∈ X} .

Before we define a “scattering” interleaver map, observe that for all row i, the con-

stituent code ci is composed of real symbols in positions Bi ∪ φ(Ai). For two distinct

rows i, j define the positions of the symbols in the real set that are shared between the

two codewords to be the intersections between rows i and j, denoted by

χ(i, j) = (Bi ∪ φ(Ai)) ∩ (Bj ∪ φ(Aj)) .

If χ(i, j) is nonempty, we say that that rows i and j intersect. The expression above can

be manipulated as follows:

χ(i, j) = (Bi ∪ φ(Ai)) ∩ (Bj ∪ φ(Aj))

= (Bi ∩Bj) ∪ (Bi ∩ φ(Aj)) ∪ (Bj ∩ φ(Ai)) ∪ (φ(Ai) ∩ φ(Aj))
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Note that Ai, Bi, Aj, and Bj are disjoint. Also, φ(Ai) ∩ φ(Aj) = ∅ since φ is bijective.

Thus, the resulting expression that we are left with is

χ(i, j) = (Bi ∩ φ(Aj)) ∪ (Bj ∩ φ(Ai)) . (2.3)

The expression above implies that the intersections between two distinct rows i, j can

only happen at rows i and j. Also, (Bi ∩ φ(Aj)) and (Bj ∩ φ(Ai)) are disjoint since Bi

and Bj are disjoint. Thus, the cardinality of the intersection between rows i and j is

|χ(i, j)| = |Bi ∩ φ(Aj)|+ |Bj ∩ φ(Ai)|.

Remark 1. If φ is causal and i < j, φ1(a) < i for all a ∈ Ai, and so Bj ∩φ(Ai) is empty.

Hence, we have χ(i, j) = Bi ∩ φ(Aj).

We will now state the definition of a scattering interleaver map.

Definition 4. Let φ be a bijective interleaver map. We say that φ scatters if for all

i ∈ Z≥0, i 6∈ φ1(Ai), and for all j 6= i, |χ(i, j)| ≤ 1.

In other words, any two constituent codewords have at most one bit in common. Also,

no entry in the virtual component of any row is a direct copy of a real component in the

same row, and if two codewords from distinct rows i, j intersect, they intersect at exactly

one point in either Bi or Bj. Finally, define the set of rows reachable from row i, or the

neighbourhood of i, to be

ρ(i) = φ1(Ai) ∪ φ−1
1 (Bi). (2.4)

We define row j to be reachable from row i, or j to be a neighbour of i, if j ∈ ρ(i).

Remark 2. Observe that for j 6= i, it immediately follows from (2.3) and (2.4) that

j ∈ ρ(i) if and only if χ(i, j) 6= ∅. Also, j ∈ ρ(i) if and only if i ∈ ρ(j) due to the

bijectivity of the interleaver map.

We now have three equivalent formulations of a scattering interleaver map

Theorem 1. Let φ be a bijective interleaver map. The following are equivalent.

1. φ scatters.

2. For all i ∈ Z≥0, i 6∈ ρ(i) and |ρ(i)| = n.

3. All of the following conditions are satisfied for all i ∈ Z≥0:
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(a) For all a ∈ Ai, φ1(a) 6= i,

(b) For all a ∈ Ai and b ∈ Bi, φ1(a) 6= φ−1
1 (b),

(c) For all distinct a, a′ ∈ Ai and b, b′ ∈ Bi, φ1(a) 6= φ1(a′) and φ−1
1 (b) 6= φ−1

1 (b′).

Proof. First, note that due to the bijectivity of φ, for all i ∈ Z≥0, i ∈ φ1(Ai) if and only

if i ∈ φ−1(Bi). It immediately follows from the definition of ρ that

i 6∈ ρ(i)⇔ i 6∈ φ1(Ai)⇔ φ1(a) 6= i for all a ∈ Ai.

For the remainder of the proof, we will assume that i 6∈ ρ(i). Observe that the number

of neighbours that row i has is given by

|ρ(i)| = |φ1(Ai) ∪ φ−1
1 (Bi)| (2.5)

≤ |φ1(Ai)|+ |φ−1
1 (Bi)| (2.6)

≤ mi + (n−mi) (2.7)

= n. (2.8)

(1)⇔ (2): If |ρ(i)| < n, then by pigeonhole principle there exists a j ∈ ρ(i) such that

|χ(i, j)| > 1. Conversely, if |χ(i, j)| > 1 for some j ∈ ρ(i), then at least one of (2.6) and

(2.7) will not achieve equality. Thus, |ρ(i)| = n if and only if φ scatters.

(2)⇔ (3): The equality (2.6) is achieved if and only if φ1(Ai) and φ−1
1 (Bi) are disjoint.

Similarly, the equality (2.7) is achieved if and only if for every distinct a, a′ ∈ Ai, φ1(a) 6=
φ1(a′) and for every distinct b, b′ ∈ Bi, φ

−1
1 (b) 6= φ−1

1 (b′).

The scattering property is important for an interleaver map design and will be dis-

cussed in detail in Chapter 3.

2.2 Code Properties

This section describes the properties of zipper codes. Given the construction in Section

2.1, we consider the encoder memory size, rate, and initialization.

2.2.1 Encoder Memory Size

All symbols in the virtual buffer are copies of some earlier symbols in the real buffer. We

need to store some old, previously encoded symbols in order to encode future rows. We

define the encoder memory size to be the number of old real symbols that the encoder
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stores in order to encode future rows. In order to encode row i, we require that the

interleaver map can recover every entry of cAi by looking it up in the encoder memory.

For all i ∈ Z≥0 and j ∈ [mi], denote δi,j = i−φ1(i, j) as the number of row lookbacks

needed for the (i, j)-th entry. Now denote mmax = maxi{mi} as the maximum virtual

buffer width. We will state a theorem that describes the minimum size of an encoder

memory.

Theorem 2. Suppose that φ is a bijective causal scattering interleaver map. Then the

minimum encoder memory size is

mmax(mmax + 1)

2
.

Proof. Let i ∈ Z≥0 be fixed. The encoder memory for row i is given by

Mi =

mi−1∑
j=0

δi,j.

Without loss of generality, let 0 < δi,0 < δi,1 < . . . < δi,mi−1. Then, observe that

δi,0 ≥ 1,

δi,1 ≥ δi,0 + 1 ≥ 2,

...

δi,mi−1 ≥ δi,mi−2 + 1 ≥ mi.

Hence, the encoder memory size of row i is

Mi =

mi−1∑
j=0

δi,j ≥
mi∑
j=1

j =
mi(mi + 1)

2
.

Finally, the minimum encoder memory size of the overall zipper code has to be at least

as large as the encoder memory of the row with the largest virtual buffer width, i.e.,

mmax(mmax + 1)

2
.
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For simplicity in the calculation of the encoder memory, we can assume that the

encoder stores old (real) rows, not symbol-per-symbol. In addition to cBi , the encoder

memory stores cBi−1
, cBi−2

, . . . , cBi−λ , where λ is defined to be the maximum lookback

parameter, i.e.,

λ = max
i,j

δi,j.

We require the encoder memory to store as many as (λ+ 1)mmax symbols.

2.2.2 Code Rate

Suppose that the interleaver map of the zipper code we are interested in is bijective and

periodic with period ν. The rate of zipper code is given by the fraction of the number of

information symbols in the real buffer over one period:

R =

∑ν−1
i=0 (n−mi − ri)∑ν−1

i=0 (n−mi)
= 1−

∑ν−1
i=0 ri∑ν−1

i=0 (n−mi)
= 1− r̄

n− m̄
, (2.9)

where

r̄ =
1

ν

ν−1∑
i=0

ri and m̄ =
1

ν

ν−1∑
i=0

mi.

Now since the interleaver map is assumed to be bijective, the sizes of virtual and real

components have to be equal, and so we have

ν−1∑
i=0

mi =
ν−1∑
i=0

(n−mi), (2.10)

which implies n = 2m̄. Hence, (2.9) simplifies to

R = 1− 2r̄

n
= 1− r̄

m̄
.

Remark 3. Observe that the number of symbols in the buffer over one period is νn.

Also, from (2.10), we have

νn = 2
ν−1∑
i=0

mi.

This implies that νn is even, and thus we require at least one of ν or n to be even.
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2.2.3 Initialization

Assuming that the information symbols start to fill in at time i = 0, we will initialize by

setting ci = 0 for i < 0.

2.3 Examples

This section describes some examples of related spatially-coupled codes that can be de-

scribed in the zipper code framework.

2.3.1 Staircase Codes

Staircase codes [8] are characterized by having an infinite sequence of matrices of size

m × m: B0, B1, . . . such that each row of
(
Bi B

T
i+1

)
is a codeword of some constituent

code of length 2m.

In our formulation of staircase codes, the width of both virtual and real buffers is

m for all rows and so n = 2m. The interleaver map for staircase codes is periodic with

period m and it is characterized by the transposition of the i-th staircase block, i.e.,

φ(mi+ r, j) = (m(i− 1) + j,m+ r) ,

where r ∈ [m]. To encode a row of the current staircase block, the encoder memory also

needs to store one previous staircase block. Thus, the encoder needs to store m2 + m

symbols.

A graphical representation of staircase codes in the form of a zipper code is shown in

Figure 2.2.

B0 BT
1

B1 BT
2

B2 BT
3

B0 BT
1

B2 BT
3

B4

Figure 2.2: Staircase code (left) and its graphical representation in the form of a zipper
code (right).
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2.3.2 Braided Block Codes

Braided block codes (BBC) [21] operate on continuous data stream and are composed of

an interconnection between two constituent codewords, namely vertical and horizontal

codewords, in an infinite, two-dimensional array. To illustrate the concepts of braided

block codes, Figure 2.3 shows a side-by-side comparison on how the rate 1/7 tightly

braided code from [21] can be represented in our formulation. Without loss of generality,

we assume that for a given information symbol, we encode its row (even-numbered)

constituent codeword first, then its column (odd-numbered) codeword. The width of the

virtual buffer alternates between 3 and 4 depending on which constituent codeword is

being encoded. Also, observe that the even-numbered rows are the only rows containing

information symbols, while the odd-numbered rows only contain parity symbols. The

information symbol in the even-numbered row is copied directly below it in the virtual

buffer. Hence, the interleaver map is defined as

φ(i, j) =


(i+ 2j − 5, 6− j) for i even,

(i− 2j − 3, 4 + j) for i odd, j 6= 3,

(i− 1, 3) for i odd, j = 3.

To encode a constituent codeword, we need to look back as far as the rows containing

the three preceding information symbols. Thus, λ = 7, and the encoder memory has to

store up to (3× 7) + 4 + 3 = 28 symbols.

a â1 â2 â3

ã1 b b̂1 b̂2 b̂3

ã2 b̃1 c

ã3 b̃2

b̃3

a â1 â2 â3

a ã1 ã2 ã3

ã1 b b̂1 b̂2 b̂3

â1 b ã1 b̃2 b̃3

0

1

2

3

0

1

2

3

Figure 2.3: Graphical representation of tightly braided code with (7, 4) Hamming compo-
nent code (left) and its representation in the form of a zipper code (right). The numbers
on the side of each diagram represent the constituent codeword number.
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2.3.3 Diamond Codes

Diamond codes [34] are also a subfamily of zipper codes. Let C1, C2 be two constituent

codes of length n. Define n = 2m and choose the zipping pair (A,B) given by A = Z×[m]

and B = Z× [n] \ [m]. Next define

φ(i, j) = (−i− s,m+ j),

where the shifting parameter s ∈ Z>0 can be chosen freely. The map φ scatters and is

causal and periodic with period ν = m + s− 1. The zipper code with these parameters

and constituent code C = C1×C2 forms a general diamond code. See also Figure 4 of [34].

2.3.4 Swizzle Codes

Swizzle codes [22] are a family of spatially-coupled block code comprised of an information

array It of size w×k/2, a parity array Zt of size w× (n−k), and a parity-on-parity array

Z ′t of size p× `. We select the parameters such that w > k/2 and w(n− k) ≤ p(n− `).

Figure 2.4 shows the formulation of swizzle codes in our scheme. The period of the

buffer is ν = w + p. The width of the virtual buffer is k/2 for the first w rows and n− `
for the last p rows. Also, observe the irregularity in the number of parity symbols. Each

of the first w rows has n − k parity symbols and each of the last p rows has ` parity

symbols.

The interleaver map for I∗t is defined as a diagonal-like mapping in It, skipping the

current row as shown in Figure 2.4. On the other hand, the “inverse” interleaver map is

designed so that Z∗t contains a rearrangement of Zt. If w(n− k) < p(n− `), then we fill

in the remaining symbols in Z∗t with zero.

Note that since a swizzle code is a type of block code, the notion of the interleaver

map differs from the previously discussed codes. First, the interleaver map is not bijective

since the symbols in Z ′t are not replicated anywhere else. Also, the interleaver map for

I∗t is not causal since we are reading from “future” rows.

To make the interleaver map bijective, we can impose another constraint to the code

parameters. Suppose that w(n− k) + `p ≤ p(n− `), then we can fit the symbols in the

previous parity-on-parity array Z ′t−1 into Z∗t , and so the lookback that we need to do is

at most w + 2p− 1.
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Z∗t Z ′t

I∗t It Zt

k/2 k/2 n− k

w

p

n− ` `

v̂0

v̂1

v̂2

v̂3

v̂4

v̂5

v̂6

v̂7

v̂8

v̂9

v̂0 v̂1 v̂2 v̂3 v̂4 v̂5 v̂6 v̂7 v̂8 v̂9

Figure 2.4: The formulation of swizzle codes into zipper codes. The shaded tiles in It
denote the corresponding symbol in the real buffer for the marked tiles in I∗t .

2.3.5 Tiled Diagonal Zipper Codes

Tiled diagonal zipper codes are characterized by their “tile-like” structure. We first fix

positive integers L,w, then let m = wL and n = 2m = wL. Now, we represent the

row and column coordinates in the form of wq + i and ws + j for q ∈ Z, s ∈ [2L], and

i, j ∈ [w]. Denote a submatrix of C,

Tq,s =


c

(q,s)
0,0 · · · c

(q,s)
0,w−1

...
. . .

...

c
(q,s)
w−1,0 · · · c

(q,s)
w−1,w−1


of size w × w, where c

(q,s)
i,j is a compact notation of cwq+i,ws+j. We call Tq,s a tile in the

q-th row and s-th column. If s < L, then we call such tile a virtual tile. Otherwise,

we call it a real tile. For s ∈ [L], we would like to have Tq,s = T Tq−s−1,L+s, and so the

interleaver map is defined as

φ(wq + i, ws+ j) = (w(q − s− 1) + j, w(L+ s) + i). (2.11)

Figure 2.5 shows an example of a tiled diagonal zipper code with L = 3.

Note that if w = 1, the formulation is identical to continuously interleaved BCH (CI-

BCH) codes [35]. On the other hand, if L = 1, then the scheme is identical to staircase

codes.

The encoder has to store

w2 + 2w2 + . . .+ Lw2 = L(L+ 1)w2/2
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T Tq,2

T Tq,1

T Tq,0

Tq,0 Tq,1 Tq,2

φ

c
(q−1,1)
i,j

c
(q−3,4)
j,iw

w

Figure 2.5: Tiled diagonal zipper code with L = 3, tile size w × w, and interleaver map
as described in (2.11).

symbols for lookback plus additional wL symbols for the current row. Observe that if

w = 1, the encoding memory size lower bound is achieved.

2.3.6 Delayed Diagonal Zipper Codes

Delayed diagonal zipper codes are variants of tiled diagonal zipper codes with w = 1 and

with added ‘delay’ to the interleaver map. More specifically, the interleaver map is given

by

φδ(i, j) = (i− j − δ, j +m),

where δ ∈ Z>0 is the delay parameter. Observe that if δ = 1, the interleaver map

is identical to the interleaver map of CI-BCH codes. The encoder memory of delayed

diagonal zipper codes is

δ + (δ + 1) + . . .+ (δ +m− 1) = δm+
m(m− 1)

2
.

Similar to tiled diagonal zipper codes, the encoding memory size lower bound is achieved

if δ = 1. Figure 2.6 shows an example of delayed diagonal zipper code with m = 8.
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δ = 1

δ = 3

δ = 7

Figure 2.6: Delayed diagonal zipper code with m = 8 and different delay values δ.

2.4 Decoding

2.4.1 Transmission Procedure and Channel Model

We transmit only the real symbols since all symbols in the virtual buffer are copies

of previously transmitted symbols. The symbols are transmitted in the order they are

encoded, i.e., if i < j, then cBi gets transmitted before cBj . However, we can also similarly

transmit the symbols in terms of chunks. In other words, for some positive integer µ, we

transmit µ rows of real symbols,

cBi , cBi+1
, . . . , cBi+µ−1

all at once instead of row-per-row. We transmit the symbols over binary memoryless sym-

metric channel with some crossover probability, independently and identically distributed

for all transmitted (real) symbols.

2.4.2 Decoding Procedure

We decode using a sliding-window decoder on M consecutive received rows of (possibly

erroneous) symbols. Now suppose that the constituent code C1 can correct up to ti errors.

The decoding procedure for an incoming row of data c′Bi is described as follows:

1. Compute and store the syndrome of
(
c′Ai , c

′
Bi

)
, where c′Ai is obtained by looking up

the decoding window in the same manner as (2.2). If the syndrome of c′i is zero,

then we set the flag for that syndrome to ‘stale.’ Otherwise, set the flag to ‘fresh.’

2. Decode each ‘fresh’ syndrome in the decoding window using the decoder for C.
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(a) If the decoding is successful, the decoder will output t′i ≤ ti error locations. For

each of the t′i locations, update the codeword and syndrome for both affected

codewords. If the new syndrome of a particular codeword becomes zero, then

we set the flag to ‘stale.’ Otherwise, we set it to ‘fresh.’

(b) If the decoding fails, we set the flag to ‘stale.’

3. If there is any syndrome with ‘fresh’ flag and if maximum allowed number of iter-

ation is not exceeded yet, return to step 2.

We assume for now that the decoder is serial, i.e., only one codeword-syndrome pair

is updated at any given time, in order to prevent conflicts and race conditions during

read/write operations on the codewords and syndromes. Note that we can also pre-

compute the syndromes for future rows. Suppose that φ−1(i, j) = (i∗, j∗). If c′i,j 6= 0,

we update the syndromes for row i∗ with the j∗-th column of the parity check matrix of

C. This way, when a future row of data cB` (` > i) arrives, we only need to update the

syndrome of row ` with the syndrome of (0, cB`).

The decoding subroutine can potentially be computationally expensive, so in the

implementation we can add a scheduler so that the iterative decoding subroutine will be

invoked every time the receiver receive µ rows of symbols instead of every row.

We will now determine the memory size for the decoder. The number of symbols

in the decoding window is Mm∗B. However, the decoder also has to store some older

symbols for decoding. The number of such additional symbols is λm∗B, where λ is the

maximum lookback parameter defined in Section 2.2.1. Therefore, the decoder must be

able to contain as many as (M + λ)m∗B symbols. The decoder must also be able to

store additional (M +λ)r symbols to store syndromes for the codewords in the decoding

window and future rows.

The values of M for some of the codes mentioned in Section 2.3 are also discussed.

For staircase codes with staircase block of size m ×m and a decoding window that fits

L staircase blocks, we can let M = mL. Then, for braided block codes with I horizontal

decoders and I vertical decoders, we let M = 2I. Finally, for swizzle codes, we let

M = w + p. However, a larger M can be used assuming we modify the formulation of

swizzle code as described in Section 2.3.4.

The whole structure of a zipper decoder is summarized in Figure 2.7.
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row ` (cA` , cB`) ∈ CcA` cB`
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cφ(i,j)

φ
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Figure 2.7: Diagram of a zipper decoder with periodic virtual buffer width (period ν = 2).
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2.4.3 Decoding Complexity

A few factors that can determine decoding complexity are as follows:

1. Hard or soft decision constituent codes: In general, soft decision codes can

achieve better error correcting performance than hard decision codes, but their

decoding procedure is more complex with high in-chip data flows [36]. Thus, soft-

decision constituent codes are not ideal for high-throughput applications such as

optical communications.

2. Decoding frequency: Figure 2.8 shows the cumulative frequency of constituent

decoding as a function of row index of the decoding window for tiled diagonal zipper

and staircase codes (obtained experimentally with m = µ = 254 and BER of 10−7).

The constituent decoder is used only when it detects a row with ‘fresh’ flag. The

figure shows that most decoding activities take place around the newest rows, while

there are significantly less decoding activities on older rows. Around 80.7% and

54.7% of the decoding take place in the newest 254 rows for the diagonal zipper

and staircase codes, respectively. In addition, the average number of decoding per

row is 4.93 for diagonal zipper and 4.21 for staircase codes.

3. Error correcting capability of the constituent codes: For syndrome-based

constituent decoders, having stronger codes means that the syndromes are longer

and the decoder will have to process more symbols.

2.5 Graph Representation

2.5.1 Periodic Graph

Another way to represent periodic zipper codes is in the form of a periodic graph, an

infinite graph with repetitive structure. We will use similar notation introduced in [37]

to describe the periodic graph representation of zipper codes.

Definition 5. Let G = (V,E, f) be a finite weighted directed graph, where V,E respec-

tively denote the set of vertices and the set of edges. Also, let f : E → Z denote a weight

function of the edges. The periodic graph G∗ = (V ∗, E∗) is the undirected graph where

V ∗ =
{
r(i) : r ∈ V, i ∈ Z

}
,

E∗ =
{(
r(i), v(i+f(u,v))

)
: (r, v) ∈ E, i ∈ Z

}
.
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Figure 2.8: Cumulative frequency of decoding subroutine executed for each index in the
decoding window for tiled diagonal zipper codes and staircase codes with m = µ = 254
and BER of 10−7.

We call G a static graph and G∗ the periodic graph generated by the static graph.

Example 1. Figure 2.9 shows a static graph and periodic graph generated by the static

graph. The weight of the edge connecting r0 and r1 is 1 in the static graph, so we connect

r
(i)
0 with r

(i+1)
1 in the periodic graph. In similar vein, we connect r

(i)
0 with r

(i−1)
2 and r

(i)
2

with r
(i+2)
2 . Observe that if we reverse any edge and flipping the sign of the weight of the

edges that we flip, we obtain the exact same periodic graph.

We will now describe how to formulate a zipper code structure as a periodic graph.

Let φ be a periodic interleaver map with period ν. In the static graph representation,

we will have ν vertices, denoted as

V = {r0, r1, . . . , rν−1} .

The vertex i represents the row index i modulo ν. Furthermore, for each i ∈ [ν], j ∈ [mi],

define

f(i, j) =

⌊
i

ν

⌋
−
⌊
φ1(i, j)

ν

⌋
and ψ(i, j) = φ1(i, j) (mod ν).

We form an edge
(
ri, rψ(i,j)

)
with weight f(i, j) in the static graph. The number of
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Figure 2.9: A simple example of static graph (left) and periodic graph (right).

outgoing edges for ri is mi and the number of incoming edges is ni − mi. Note that

if mi > ν, then there will be parallel edges and/or self-loops in the static graph since

there are more outgoing edges than the number of vertices. Also, if i > φ1(i, j), then

f(i, j) ≥ 0. Thus, we have proved the following lemma.

Lemma 1. If φ is causal, then f(i, j) ≥ 0 for all i,∈ [ν], j ∈ [mi].

The periodic graph generated by the static graph will then have vertices

V ∗ =
{
r

(`)
0 , r

(`)
1 , . . . , r

(`)
ν−1 : ` ∈ Z

}
.

The vertex r
(`)
i corresponds to the (ν`+i)-th row of the code. Then, for all i ∈ [ν], j ∈ [mi],

for all edge
(
ri, rψ(i,j)

)
with weight f(i, j) in the static graph, we will form an edge(

r
(`)
i , r

(`−f(i,j))
ψ(i,j)

)
in the periodic graph for all ` ∈ Z.

Lemma 2. A bijective periodic interleaver map φ scatters if and only if the periodic

graph G∗ is simple.

Proof. If G∗ has a loop, then f(i, j) = 0 and ψ(i, j) = i for some i ∈ [ν], j ∈ [mi], which

implies that φ1(i, j) = i. Conversely, if φ1(i, j) = i, then f(i, j) = 0 and ψ(i, j) = i,

which means that for all ` ∈ Z, we form a loop at the vertex r
(`)
i in the periodic graph.

If G∗ has an parallel edge, then there exists some i, j, j′ such that ψ(i, j) = ψ(i, j′) and

f(i, j) = f(i, j′). This implies that φ1(i, j) = φ1(i, j′). Conversely, if φ1(i, j) = φ1(i, j′),

then we have ψ(i, j) = ψ(i, j′) and f(i, j) = f(i, j′). This implies that there exist parallel

edges between vertices r
(`)
i and r

(`−f(i,j))
ψ(i,j) in G∗ for all ` ∈ Z.
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Figures 2.10, 2.11, and 2.12 show examples of the periodic and static graph represen-

tations of tiled diagonal zipper codes and staircase codes.

r(0) r(1) r(2) r(3) r(4) r(5) r(6) r(7) r(8)r(1)r(2)r(3) . . . . . .

r

1

2 3

Figure 2.10: Static and periodic graph representation of tiled diagonal zipper codes,
w = 1, m = 3.
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Figure 2.11: Static and periodic graph representation of tiled diagonal zipper codes,
w = 2, m = 4.

2.5.2 Factor Graph

Similarly, we can also show the factor graph representation of a zipper code as shown in

Figure 2.13. Each symbol is represented as a variable node (denoted as a circle in Figure

2.13), which can either represent a real symbol or a virtual symbol. Then, each variable

node is connected to two check nodes. One represents the constituent code constraint,

labeled as ‘C’ and the other represents the interleaver map constraint, labeled as ‘=.’

Each constituent code C check node connects to the n real and virtual symbols of the

corresponding codeword, and each interleaver map check node connects a virtual variable

node with a real variable node. Note that if the zipper code is periodic, then so is the

structure of the factor graph. Also, observe that by replacing all variable and ‘=’ nodes

with edges, we transform the factor graph into a periodic graph.
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Figure 2.12: Static and periodic graph representation of staircase codes, m = 3.
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Figure 2.13: Factor graph representation of zipper codes
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2.6 Irregular Zipper Codes

So far we have only discussed “regular” zipper codes with identical constituent codes for

each row as well as bijective interleaver map. This section describes a few generalization

that zipper codes can have by introducing a few “irregularities” such as non-uniform

constituent codes as well as non-bijective interleaver map.

2.6.1 Non-uniform Constituent Codes

In the non-uniform constituent codes scheme, each row i is now described by constituent

code Ci(ni, ki, di) of block length ni, dimension ki, and minimum Hamming distance di.

The choice of parameter in this scheme is similar to the regular case, e.g., for each row

i, we reserve the first mi ≤ ki symbols for the virtual symbols and the last ri ≤ ni −mi

symbols for the parity symbols. Also, we define

Ai = {(i, j) : j ∈ [mi]} and Bi = {(i, j) : j ∈ [ni] \ [mi]},

and respectively define the virtual and real set to be

A =
⋃
i

Ai and B =
⋃
i

Bi.

The definition of a “buffer” remains the same, although the graphical representation of

the buffer changes since we use a different code for each row, as shown in Figure 2.14.
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cB9

∈ C4

∈ C5

∈ C6

∈ C7

∈ C8

∈ C9

n4

k4

m4 r4

...

...

Figure 2.14: Buffer of an irregular zipper code, each row i is a constituent code of Ci with
the first mi symbols being virtual symbols.
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Further, the definitions of periodicity and causality in the irregular case are identical

to the regular case. However, if an interleaver map is periodic with period ν, it implies

that mi+ν = mi and ni+ν = ni.

2.6.2 Non-bijective Interleaver Maps

In the non-bijective scheme, we still require that each real symbol is copied in the virtual

buffer. However, in this scheme we allow each real symbol to have more than one copy

in the virtual buffer. In other words, we relax the constraint of the interleaver map to

be surjective instead of bijective.

Definition 6. An interleaver map φ is surjective if for any (i′, j′) ∈ B, there exists

(i, j) ∈ A such that φ(i, j) = (i′, j′).

For all b ∈ B define the preimage of b to be

φ−1(b) = {a ∈ A : φ(a) = b}.

We define the degree of b, denoted as γ(b), to be the cardinality of φ−1(b). In other

words, γ(b) denotes the number of copies of cb in the virtual buffer. If |γ(b)| = 1 for all

b ∈ B, then the interleaver map is bijective.

Suppose that the code is periodic with period ν, we also define the average degree of

each entry in the virtual set to be

γ̄ =

∑
b∈B0∪···∪Bν−1

γ(b)∑ν
i=1(ni −mi)

=

∑ν
i=1mi∑ν

i=1(ni −mi)
=

m̄

n̄− m̄
,

where

n̄ =
1

ν

ν∑
i=1

ni.

Hence, the rate is given by

R =

∑ν
i=1(ni −mi − ri)∑ν

i=1(ni −mi)
= 1− r̄

n̄− m̄
= 1− (γ̄ + 1)

r̄

n̄
.

The implication of surjective maps with γ̄ > 1 is that the code rate is lower than the

bijective case. Indeed,

1− (γ̄ + 1)
r̄

n̄
< 1− 2r̄

n̄
,

where the right-hand side of the inequality denotes the rate of zipper code with bijective

interleaver map.
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2.7 Simulation Results

We present our software simulation results of tiled diagonal zipper codes with δ = 1 and

triple-error-correcting BCH component codes of various rates and tile sizes. Figure 2.15

shows the simulation results of the code with w = 10, m = 1200 (rate 0.97) over various

values of M and µ. We also show how the performance varies when we modify the rate

of the code. Figure 2.16 shows the performance of the code over various rates listed in

Table 2.1.

Table 2.1 shows p∗, the binary symmetric channel crossover probability such that the

bit error rate (BER) is 10−15. We cannot bring the BER down to 10−15 in the software

simulation, so we use a least-squares fit linear extrapolation in the log-log scale. The

table also shows the gap to capacity for each parameter. The gap to capacity in a binary

symmetric channel for a code with rate R is defined as

Gap (dB) = 20 log10

(
erfc−1(2p∗)

erfc−1 (2H−1(1−R))

)
, (2.12)

where erfc denotes the complementary error function,

erfc(x) =
2√
π

∫ ∞
x

exp
(
−t2
)

dt,

and erfc−1 denotes its inverse. Moreover, H and H−1 respectively denote the binary

entropy function and its “inverse”. Note that since H(p) = H(1 − p) for p ∈ [0, 1], the

“inverse” entropy function H−1(q) will yield two values for q 6= 1. We will only consider

the lower of the two to be the “inverse” in (2.12) above.

The simulation results show that the gap to capacity decreases as we increase the

code rate. However, it comes at the cost of having to use longer constituent block length,

and consequently, the memory size also grows very quickly.

Concluding Remarks

In this chapter, we have introduced zipper codes as a framework to formulate spatially-

coupled product-like codes. We have also described some properties of zipper codes

that we deem practical and have given examples of codes that can be described in our

framework. We have introduced tiled and delayed diagonal zipper codes as a type of code

that is more memory efficient. Finally, simulation results show that tiled diagonal zipper

codes have comparable performance to staircase codes while requiring less memory.
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Figure 2.15: Simulation results on a binary memoryless symmetric channel of diagonal
zipper codes with m = 500 using a triple-error correcting (1000, 970) shortened BCH
constituent code. The values on the legend indicate the sizes of the decoder memory
used.

Table 2.1: Parameters, p∗, and Gap to Capacity of Diagonal Zipper Code and Staircase
Codes.

Type Rate m Chunk Size Window Size p∗ Gap
(kbit) (Mbit) (dB)

diagonal 0.96 825 339.9 3.744 2.67× 10−3 0.506
staircase 0.96 825 680.6 4.084 2.72× 10−3 0.489
diagonal 0.97 1200 720.0 7.921 2.01× 10−3 0.418
staircase 0.97 1200 1440.0 8.640 2.07× 10−3 0.392
diagonal 0.98 1800 1620.0 17.821 1.23× 10−3 0.397
staircase 0.98 1800 3240.0 19.440 1.25× 10−3 0.384
staircase 0.98375 2400 5760.0 34.560 1.02× 10−3 0.338
staircase 0.985 2600 6760.0 40.560 9.27× 10−4 0.333
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Figure 2.16: Simulation results of diagonal zipper codes and staircase codes with t = 3
based on the parameters listed in Table 2.1.
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Stall Pattern Analysis

This chapter describes the analysis “stall patterns” of zipper codes. In simple terms,

a stall pattern is a set of errors in the received symbols which cannot be corrected

using iterative decoding. The exact definition of a stall pattern will be provided in

Section 3.1. For simplicity, we analyze zipper codes with identical t-error-correcting

constituent code and virtual buffer width m throughout this chapter. Also, we use a

genie-aided, miscorrection-free constituent decoder: given a received word, the decoder

“knows” exactly how many erroneous symbols there are and their locations. If there are

fewer than t errors, the decoder will correct those symbols. Otherwise, the decoder will

do nothing.

3.1 Error Patterns, Stall Patterns, and Decoding Pro-

cedure

An error pattern S is a nonempty subset of the real set B. Although S can be arbitrarily

large, we will only consider finite-sized S for error pattern analysis.

First, for all S ⊆ B, denote

S∗ = S ∪ φ−1(S)

to be the error pattern with its copy in the virtual buffer. We define π1(S∗) to be the

affected rows of S∗ and we say that row i ∈ π1(S∗) is correctable if

|S∗ ∩ (Ai ∪Bi)| ≤ t,

32
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where t denotes the error-correcting capability of the constituent code. Also, denote

κ(S) = {i ∈ π1(S∗) : |S∗ ∩ (Ai ∪Bi)| ≤ t}

to be the set of correctable rows of S. We call a nonempty set S a stall pattern if no

rows of S are correctable.

We will now define the decoding function as follows:

D : P(B)→ P(B)

S 7→

S if κ(S) = ∅,

S \ (Bκ∗ ∪ φ(Aκ∗)) otherwise,

(3.1)

where P(B) denotes the power set of B and κ∗ = minκ(S). In other words, if S is

nonempty, D will remove the errors in the row of S∗ with lowest affected row index as

well as their duplicates.

Given an error pattern S, we have |D(S)| ≤ |S|, so the correctability of a stall pattern

S can be determined by repeatedly applying D up to |π1(S∗)| times, i.e., we call S to be

correctable if

D|π1(S∗)|(S) = D(D(· · · D(D(S)) · · · )︸ ︷︷ ︸
|π1(S∗)| times

= ∅.

We will now define the minimality of a stall pattern.

Definition 7. A stall pattern S is minimal if for all nonempty T ( S, T is correctable.

Definition 8. A stall pattern S is minimum-sized if for all stall patterns T , we have

|T | ≥ |S|.

Remark 4. A minimum-sized stall pattern is always minimal, but the converse is not

always true. For example, in staircase codes with t = 2, the minimum-sized stall patterns

have size (t + 1)2 = 9, but we can also have a minimal, but not minimum-sized, stall

pattern of size 12 as shown in Figure 3.1. Removing any one error from the second

diagram will cause the pattern to be correctable.

3.1.1 Periodic Graph Representation

We can also describe an error pattern S using graphs. The graph representation of error

pattern S is a nonempty subgraph G of the periodic graph representation of the zipper

code we are interested in. The vertices of G represent the affected rows and for all b ∈ S,
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Figure 3.1: Minimum-sized (left) and minimal-but-not-minimum-sized (right) stall pat-
terns of a staircase code with double-error-correcting constituent code.

we connect vertices that correspond to rows π1(b) and φ−1
1 (b) with an edge. The number

of edges represent the number of errors in an error pattern. Assuming the interleaver map

is scattering, G will be a simple graph. In addition, a vertex is decodable if the degree

is t or smaller, and an error pattern G is a stall pattern if all vertices have degree of at

least t+ 1. The decoding function will therefore act as if we delete decodable vertices as

well as the edges that are connected to them. We will repeatedly remove vertices that

have at most t edges connected to them until either:

• the resulting graph is empty, in which case the error pattern is correctable, or

• the remaining vertices have degree ≥ t + 1, in which case we converge to a stall

pattern.

We define the (t+ 1)-core of G to be the maximum induced subgraph of G such that the

degree each vertex is at least t + 1, as defined in [38]. If G converges to a stall pattern

subgraph after repeatedly removing vertices that have degree t or smaller, such subgraph

is the (t+ 1)-core of G.

Remark 5. The decoding function (3.1) corrects the correctable row with the lowest

row index. However, the order in which we correct the correctable rows does not matter

as the (t+ 1)-core of G is unique.

Examples of the graph representation of stall patterns of tiled diagonal zipper codes

are shown in Figures 3.2, 3.3, and 3.4.

3.2 Zipper Codes with Scattering Interleaver Map

Recall that an interleaver map scatters if the duplicates of all n entries in row i are all

in pairwise distinct rows and not in row i, for all i. For example, the interleaver maps

for staircase codes, braided block codes, and tiled diagonal zipper codes introduced in

Section 2.3 are scattering. We will discuss the importance of scattering interleaver maps

in this section.
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Figure 3.2: Graph representation of a stall pattern of size 6 of tiled diagonal zipper code,
w = 1, m = 3, t = 2.
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Figure 3.3: Graph representation of a stall pattern of size 8 of tiled diagonal zipper code,
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Figure 3.4: Graph representation of a stall pattern of size 10 of tiled diagonal zipper
code, w = 2, m = 4, t = 2.

For brevity, we will sometimes combine φ and φ−1 into one function defined as follows.

φ̂ : A ∪B → A ∪B

x 7→

φ(x) if x ∈ A

φ−1(x) if x ∈ B.

Such a function is sometimes called a union of functions φ̂ = φ∪φ−1. It is a well-defined

concept since the domains are disjoint. We also define a shorthand notation

φ̂(X) =
{
φ̂(x) : x ∈ X

}
for all X ⊆ A ∪B.

We will first begin by showing a simple property of a minimal stall pattern in the

theorem below.

Theorem 3. Let S be a minimal stall pattern of a zipper code with a bijective scattering

interleaver map. Suppose that there exists a row index i ∈ π1(S∗) such that |S∗ ∩ (Ai ∪
Bi)| > t+ 1. Then for all j ∈ φ̂1(S∗ ∩ (Ai ∪Bi)),

|S∗ ∩ (Aj ∪Bj)| = t+ 1.
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In other words, if any row in a minimal stall pattern has more than t+ 1 errors, then

all of its neighbouring rows in the stall pattern have exactly t + 1 errors. An equivalent

periodic graph formulation of the theorem is that the neighbours of a node in a minimal

stall pattern with degree larger than t+ 1 all have degree exactly t+ 1.

Proof. Removing an error location shared between two rows having more than t+1 errors

in a stall pattern gives a stall pattern of smaller size. Thus, such a configuration cannot

exist in a minimal stall pattern.

Note that Theorem 3 implies the existence of an affected row with exactly t + 1

errors in every minimal stall pattern, provided that the interleaver map is bijective and

scattering. Figures 3.2 and 3.3 are examples of minimal stall patterns. On the other

hand, Figure 3.4 is not minimal since removing the edge connecting r
(0)
0 and r

(2)
1 will

result in a stall pattern of smaller size.

Now we will show a theorem that describes the lower bound on the size of a stall

patterns with scattering interleaver map.

Theorem 4. Let S be a stall pattern of a zipper code with a bijective scattering interleaver

map. Suppose that the constituent codes can correct up to t errors. Then,

|S| ≥ (t+ 1)(t+ 2)

2
.

Proof. Let i be an arbitrary element of π1(S∗), and suppose that

S∗ ∩ (Ai ∪Bi) = {u1, u2, . . . , uv} ,

i.e., {u1, u2, . . . , uv} are the error locations in row i. Since S is a stall pattern we have

v ≥ t+ 1. Furthermore, since φ scatters,

φ̂(u1), φ̂(u2), . . . , φ̂1(uv)

are distinct and not equal to i. Thus, there are at least t + 1 errors in each of those

affected v rows, and so the total number of errors is

|S∗| ≥ v(t+ 1) + v

= v(t+ 1 + 1)

≥ (t+ 1)(t+ 2).
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Finally, since φ is bijective, we have

|S| = |S
∗|

2
≥ (t+ 1)(t+ 2)

2
.

Now recall that

ρ(i) = φ1(Ai) ∪ φ−1
1 (Bi)

is the set of rows reachable from row i (or neighbours of row i) defined in Section 2.1.2.

We will now describe the condition to produce stall patterns of size 1
2
(t+ 1)(t+ 2).

Theorem 5. Let φ be bijective and scattering. Suppose that the consituent code can

correct up to t errors. Then there exists a stall pattern of size 1
2
(t+ 1)(t+ 2) if and only

if there exists I ⊆ Z such that |I| = t+ 2 and I \ {i} ⊆ ρ(i) for all i ∈ I.

Equivalently, a stall pattern of size 1
2
(t + 1)(t + 2) exists if and only if there exists a

(t+ 2)-clique in the periodic graph.

Proof. (⇐) Since φ scatters, for each i ∈ I, there are exactly t + 1 distinct coordinates

α
(i)
1 , . . . , α

(i)
t+1 ∈ Ai ∪Bi such that{

φ̂1

(
α

(i)
1

)
, . . . , φ̂1

(
α

(i)
t+1

)}
= I \ {i}.

We then let

S∗ =
{
α

(i)
j : i ∈ I, j = 1, . . . , t+ 1

}
,

which contains (t+ 1)(t+ 2) entries, and since φ is bijective, we have

|S| = |S
∗|

2
=

1

2
(t+ 1)(t+ 2).

(⇒) Suppose that S is a stall pattern of size 1
2
(t+1)(t+2), then |S∗| = (t+1)(t+2) since

φ is bijective. Now suppose that there are fewer than t + 2 affected rows in S∗. Then

on average there will be more than t + 1 errors per row, and so there exists a row that

contains more than t+1 errors. This implies that there are more than t+2 affected rows

since φ is dispersive, which contradicts our previous assumption. On the other hand, if

there are more than t + 2 affected rows, at least one row in S∗ will contain fewer than

t + 1 errors, which cannot happen if S is a stall pattern. Hence, S∗ is forced to contain

exactly t+ 2 affected rows, each having exactly t+ 1 errors.
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Now let I = π1(S∗). Observe that |I| = t+ 2 and for each row i ∈ I,

φ1(S∗ ∩ Ai) ∪ φ−1
1 (S∗ ∩Bi) = I \ {i},

i.e., the neighbours of row i in the stall pattern are all rows in I other than i. Thus,

I \ {i} = φ1(S∗ ∩ Ai) ∪ φ−1
1 (S∗ ∩Bi)

⊆ φ1(Ai) ∪ φ−1
1 (Bi)

= ρ(i).

For example, Figure 3.2 shows a stall pattern of a tiled diagonal zipper code with

w = 1, t = 2. The stall pattern size is 1
2
(t + 1)(t + 2) = 6 and the periodic graph

representation is a 4-clique.

Note that Theorems 4 and 5 imply that the minimum number of affected rows of a

stall pattern is at least t+ 2. If we know the number of affected rows of a stall pattern,

we can find a bound on the number of errors that the stall pattern has.

Theorem 6. Let S be a stall pattern of a zipper code with a bijective scattering interleaver

map and t-error-correcting constituent code. Suppose that S∗ has ` affected rows, then⌈
`(t+ 1)

2

⌉
≤ |S| ≤ `(`− 1)

2
.

Proof. There have to be at least t+ 1 errors in each affected row of S∗, so

|S| = |S
∗|

2
≥
⌈
`(t+ 1)

2

⌉
.

On the other hand, the maximum number of edges in a simple graph with ` vertices is

precisely 1
2
`(`− 1), i.e., when an `-clique is formed.

3.3 Zipper Codes with Causal Interleaver Map

In this section, we will describe a few properties of the stall patterns that can occur from

a causal interleaver map.
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Theorem 7. Let φ be bijective, and let S be a stall pattern. Denote ` = minπ1(S∗) and

h = max π1(S∗) as the first and last rows of the affected rows of S∗, respectively. If φ is

causal, then S∗ ∩A` = ∅ and S∗ ∩Bh = ∅, i.e., the errors in the first row must all be in

the real buffer, while the errors in the last row must all be in the virtual buffer.

Proof. Suppose that S∗ ∩A` 6= ∅, then for all a ∈ S∗ ∩A`, we have φ1(a) ≥ `. Similarly,

if S∗ ∩ Bh 6= ∅, then for all b ∈ S∗ ∩ Bh, we have φ−1(b) ≤ h. In either case, φ is not

causal.

If the interleaver map is both scattering and causal, we also have the following corol-

lary that follows from Theorems 5 and 7.

Corollary 1. Let φ be bijective, scattering, and causal. Then there exists a stall pattern

S of size 1
2
(t + 1)(t + 2) if and only if there exists I = {i1, . . . , it+2} ⊆ Z with ii < i2 <

. . . < it+2 such that for j = 1, . . . , t+ 2,

φ−1
1 (S ∩Bij) = {ij+1, ij+2, . . . , it+2}.

Proof. (⇒) By Theorem 5, we have I = {i1, i2, . . . , it+2} ⊆ Z (without loss of generality,

let i1 < i2 < . . . < it+2) and there are t+ 1 errors in each affected row. Now by Theorem

7, all errors in row i1 are contained in Bi1 , and since φ scatters, by Theorem 5 we have

φ−1(S ∩Bi1) = {i2, i3, . . . , it+2} and φ−1(S ∩Bit+2) = ∅.

For the remaining rows ij, j = 2, . . . , t+ 1, observe that since φ is causal, φ−1
1 (S ∩Bij) ⊆

{ij+1, . . . , it+2}. Now suppose that φ−1
1 (S ∩ Bij) ( {ij+1, . . . , it+2}, then there will be at

least one of ij+1, . . . , it+2 contained in φ1(S∗ ∩ Aij), which contradicts our assumption

that φ is causal. Hence,

φ−1
1 (S ∩Bij) = {ij+1, ij+2, . . . , it+2}.

(⇐) Since φ scatters, we have |φ−1
1 (S ∩Bi)| = |S ∩Bi| for all i ∈ I, and so,

|S| =
t+2∑
j=1

|S ∩Bij | =
t+2∑
j=1

(t+ 2− j) =
t+1∑
k=0

k =
(t+ 1)(t+ 2)

2
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3.4 Diagonal Zipper Codes

In this section, we analyze the stall patterns of tiled diagonal and delayed diagonal zipper

codes introduced in Sections 2.3.5 and 2.3.6, respectively.

3.4.1 Tiled Diagonal Zipper Codes

Recall that the interleaver map of tiled diagonal zipper codes is given by

φ(wq + i, ws+ j) = (w(q − s− 1) + j, w(L+ s) + i),

where w and L respectively denote the tile size and the number of tiles in a row of virtual

(or real) buffer, s ∈ [L] i ∈ [w], j ∈ [w]. Assuming that we use a constituent code that

can correct up to t errors, there are three small-sized pattern sizes that can be easily

constructed for this type of code: 1
2
(t + 1)(t + 2), t2 + 2t, and (t + 1)2. Examples of

the first two stall patterns are shown in Figures 3.2 and 3.3. For each of the three sizes

listed above, we will now determine the number of stall patterns that can be completely

contained inside a decoding window with m = wL and M = wK (K > L).

1. Case 1
2
(t+ 1)(t+ 2): We assume that L ≥ t+ 1. First, we pick t+ 1 real tiles from

the same row. Then, we select a row index that we are going to fill with errors.

For each of the t+ 1 tiles, pick one column index and we will place an error there.

The location of the other t(t+ 1)/2 errors in future real tiles can then be obtained

deterministically. Thus, the number of patterns of such type is

L−1∑
s=t

(
s− 1

t− 1

)
(K − s)(L− s)wt+2.

This is the exact number of stall patterns of this size in a decoding window of size

M ×m due to Theorem 5.

2. Case t2 + 2t: We assume that w ≥ t and L ≥ 2. We first select two real tiles in

the same row. Select a row index, and for each of those two tiles, select t column

indices for the errors. Finally, the other t2 errors are contained in a future real

tile which coordinates can be obtained deterministically. Note that there exist stall

patterns of this size of this size even if w < t or L < 2, but the exact number and
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shape cannot be determined easily. Hence, there are at least

L∑
s=1

(
w

t

)2

(K − s)(L− s)w

ways to choose a pattern.

3. Case (t+1)2: Here, we assume that w ≥ t+1. Select any real tile from the decoding

window, then fill it in with (t+ 1)2 errors in a similar fashion to the minimum stall

patterns of a product code of size w2. Similar to the previous case, we can form

stall patterns of this size even if w < t+ 1, but the exact number and shape cannot

be determined easily. Therefore, there are at least(
w

t+ 1

)2

KL

ways to obtain a stall pattern of this type.

Remark 6. There exist other stall patterns with size between 1
2
(t+1)(t+2) and (t+1)2

as well as configurations other than the ones described above. However, they are harder

to construct and describe, e.g. stall patterns of size 2(t + 1) + 1
2
t(t + 1). There are also

stall pattern with sizes that are impossible to construct due to Theorem 6, such as stall

patterns of size 1
2
(t+ 1)(t+ 2) + 1 for t ≥ 2.

3.4.2 Delayed Diagonal Zipper Codes

Recall that the interleaver map of the delayed diagonal zipper codes with delay δ is given

by

φδ(i, j) = (i− j − δ, j +m).

The delay parameter δ controls the occurrences and size of the minimum-sized stall

patterns. Having larger delay suppresses the occurrences of stall patterns of size 1
2
(t +

1)(t + 2), which exist when δ = 1 (or tiled diagonal zipper code with w = 1). We will

state a theorem below regarding the existence of stall patterns of size 1
2
(t + 1)(t + 2) in

delayed diagonal zipper codes.

Theorem 8. For a delayed diagonal zipper code with delay δ, there exists a stall pattern

of size 1
2
(t+ 1)(t+ 2) if and only if

δ ≤ m− 1

t
.



Chapter 3. Stall Pattern Analysis 43

Proof. Without loss of generality, let the first affected row of the stall pattern be row

zero.

(⇐) We claim picking I = {0, δ, . . . , (t+ 1)δ} yields a stall pattern of size 1
2
(t+ 1)(t+ 2).

To see this, observe that

(t+ 1)δ = tδ + δ ≤ m+ δ − 1,

thus, for i = 0, . . . , t,

{(i+ 1)δ, (i+ 2)δ, . . . , (t+ 1)δ} ⊆ φ−1(Biδ).

So we now let

φ−1(S ∩Biδ) = {(i+ 1)δ, (i+ 2)δ, . . . , (t+ 1)δ}.

Hence, by Corollary 1, there exists a stall pattern of size 1
2
(t+ 1)(t+ 2).

(⇒) Let I = {0, i1, . . . , it+1} and 0 < i1 < . . . < it+1. By Corollary 1, for j = 0, . . . , t+1,

we require

φ−1(S ∩Bij) = {ij+1, . . . , it+1}.

Also, observe that

i1 ≥ minφ−1(S ∩B0) ≥ minφ−1(B0) = δ,

and so,

i2 ≥ minφ−1(S ∩Bi1) ≥minφ−1(Bi1) = i1 + δ ≥ 2δ

i3 ≥ minφ−1(S ∩Bi2) ≥minφ−1(Bi2) = i2 + δ ≥ 3δ

...

it+1 ≥ minφ−1(S ∩Bit) ≥minφ−1(Bit) = it + δ ≥ (t+ 1)δ.

However, we also require row it+1 to be reachable from row zero, i.e., it+1 ≤ m + δ − 1.

Hence,

(t+ 1)δ ≤ m+ δ − 1

tδ ≤ m− 1

δ ≤ m− 1

t
.
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Theorem 8 states that for a fixed m, the required delay to eliminate stall patterns

of size 1
2
(t + 1)(t + 2) is inversely proportional to the error correcting capability of the

constituent code. Thus, the encoder memory,

m(m− 1)

2
+ δm ≈ m2

(
1

2
+

1

t

)
is also smaller for higher t. For example, the encoder memory for t = 2 is comparable

to that of staircase codes, while for t = 4, the memory is about 3/4 of that of staircase

codes.

Suppose that δ ≤ m−1
t

and a stall pattern S has size 1
2
(t + 1)(t + 2). The set of row

indices I = {0, i1, . . . , it+1} of the first row of S must satisfy the following inequalities:

δ ≤i1 ≤ m− (t− 1)δ − 1

i1 + δ ≤i2 ≤ m− (t− 2)δ − 1

i2 + δ ≤i3 ≤ m− (t− 3)δ − 1

...

it + δ ≤it+1 ≤ m+ δ − 1.

The number of possible configurations is the number of paths from source to sink of the

trellis network in Figure 3.5, which is(
m− tδ + t

t+ 1

)
.

The expression above can be approximated as

(m− tδ)t+1

(t+ 1)!

for m− tδ � 1.

Example 2. Figure 3.6 shows the number of stall patterns of size 1
2
(t + 1)(t + 2) in a

delayed diagonal zipper codes for m = 1000 and t = 3, 4, 5. Observe that when δ = 1

and t = 3, there are (
1000

4

)
≈ 4.14× 1010

possible configurations in the first row. However, there is only one possible configuration

for δ = 333 and stall patterns of size 1
2
(t+ 1)(t+ 2) do not exist for δ ≥ 334.
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Figure 3.5: Trellis diagram for selecting i1, . . . , it+1. The number of possible patterns are
given by the number of paths from source to sink.
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Figure 3.6: Number of stall patterns of size 1
2
(t + 1)(t + 2) in a delayed diagonal zipper

codes with m = 1000 and varying t, δ.
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3.5 Error Floor Approximation

We approximate the error floor using the union bound technique similar to [8]. We

consider a decoding window of size M ×m, and denote the set of all stall patterns in the

decoding window to be S. We determine the error floor estimate to be the enumeration

of S and evaluating the probability of error with p denoting the probability that a symbol

is in error.

BERfloor ≤
1

M ×m
∑
S∈S

|S|p|S|. (3.2)

Suppose that we know exactly the sizes of stall pattern that can occur in a decoding

window. We can also express (3.2) to be

BERfloor ≤
1

M ×m
∑
`∈L

N`p
`,

where L denotes the set of all stall pattern sizes that can occur in the decoding window

and N` denotes the number of occurrences of stall patterns of size `. Note that since we

only consider stall patterns that can fit in the decoding window, we have ` ≤M ×m.

The possible sizes and the number of occurrences of stall patterns of certain size

depends on the interleaver map. For example, the sizes and occurrences of some stall

patterns of diagonal zipper codes are described above in Section 3.4. Also, [8] and [39]

describe the sizes and occurrences of stall patterns of staircase codes. We will now define

dominant stall patterns of zipper codes.

Definition 9. Given a decoding window and a set L of possible stall pattern sizes that

can fit in the window, we call the stall pattern of size `∗ ∈ L to be the dominant if

N`∗p
`∗ ≥ N`p

` for all ` ∈ L.

In general, the dominant stall pattern size is not always minimum-sized since there are

some cases where the number of occurrences of a larger stall pattern dominate the N`p
`

term. However, if p is sufficiently small, we can assume that stall patterns of minimum

size is the dominant stall pattern. The error floor can be then further approximated as

the contribution of just the minimum-sized stall pattern.

Figure 3.7 shows the error floor contributions from stall patterns of sizes ` = 10, 15, 16

for tiled diagonal zipper codes with m = 1200,M = 6000, t = 3 and tile sizes w = 5, 300.

From the figure, we can infer that the stall patterns of size 10 are the dominant stall
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patterns and the error floor contributions are below 10−15 in both cases at p∗ ≈ 2×10−3.

10−3 10−2
10−51

10−47

10−43

10−39

10−35

10−31

10−27

10−23

10−19

10−15

10−11

crossover probability

N
`p
` /

(M
×
m

)

w = 5, ` = 10 w = 5, ` = 15 w = 5, ` = 16
w = 300, ` = 10 w = 300, ` = 15 w = 300, ` = 16

p∗

Figure 3.7: Error floor contributions from stall patterns of sizes ` = 10, 15, 16 of tiled
diagonal zipper codes with m = 1200,M = 6000, t = 3 and tile sizes w = 5, 300.

Concluding Remarks

In this chapter, we have introduced the concept of a stall pattern in zipper codes. The

types of stall patterns that can occur depend on the interleaver map. We have determined

the lower bound of the size of the stall pattern for zipper codes with scattering interleaver

map. We also have shown that for delayed diagonal zipper codes, the stall patterns of

small size vanish with sufficiently large “delay.” Finally, we have shown the error floor

analysis of zipper codes.
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Error-and-Erasure Decoding

In this chapter, we investigate the use of error-and-erasure decoding in zipper codes.

In particular, we study the error-and-erasure staircase decoder. Whereas the conven-

tional interface to a noisy channel expected by staircase code is binary {0, 1}-valued, we

wish to investigate a ternary {0, 1, ?}-valued interface. Here the ‘?’ symbol denotes a

so-called “erasure,” appropriate for symbols where the decoder cannot reliably decide

between 0 and 1. It is well-known that error-and-erasure decoding can achieve improved

performance with small increase in decoding complexity [40].

We have researched whether employing erasure declaration on staircase codes im-

proves its decoding performance. This can be done by concatenating staircase code with

a soft-decision inner code with ternary output: 0, 1, and ?. This also implies that the

staircase decoder needs to be modified so that it can handle erasure symbols.

We answer the following research questions:

• How should the inner code declare erasures?

• What is the appropriate fraction of erasures to declare?

• How should we modify the staircase decoder to handle erasures?

• Can the new system achieve a better performance and/or complexity than the

existing system?

4.1 Related Works

Some related works on improving the decoding performance of staircase codes are listed

below:

48
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1. Holzbaur et al. [39] locate stall patterns by intersecting non-zero syndromes and

flipping corresponding bits. The error floor estimate is shown to improve from

∼ 2 × 10−10 to ∼ 9 × 10−15. However, determining the error locations of a stall

pattern increases the decoder complexity.

2. Häger and Pfister [41] propose an anchor-based bit decoding method, which per-

formance outperforms [8]. However, this method suffers from increased complexity

as the anchors need to be tracked during iterative decoding.

3. Lei et al. [42] include marked bits as part of the decoding procedure. A fraction of

the received bits are marked to be either “highly reliable” or “highly unreliable”

by setting a threshold on the log-likelihood ratios (LLRs) of the channel output.

The decoder detects miscorrection if any of the highly reliable bits is flipped while

decoding. The decoder then flips the unreliable bits and repeats the decoding

procedure. Experimental verification shows that the algorithm can achieve up to

0.30 dB SNR gain [43]. However, additional bitflow into the chip is required to

describe the locations of the highly reliable and unreliable bits.

In addition, it has been shown that erasure declaration yields some improvement to

the decoding performance in other coding schemes, e.g. Hermitian codes in [44] and

Reed-Solomon codes in [45]. Further, [46] shows that there exists an optimal erasure

threshold for block codes, convolutional codes, and LDPC codes. Also, [47] lists some

approximations of the optimum erasure threshold in the context of generalized minimum

distance decoding.

Our proposed method is similar to [42] and [43]. First, we mark some bits to be erased

by setting a threshold on the LLRs of the channel output. Then, we perform error-and-

erasure decoding for each constituent codeword in the iterative decoding method. The

details of the implementation are described in the following sections.

4.2 Channel Model

For simplicity, we use a Binary Phase Shift Keying (BPSK) constellation over AWGN

channel for declaring erasures. Let η ≥ 0 be the erasure threshold, and let x be the

transmitted symbol, which has value in {+1,−1}. Also, given noise variance σ2, let y be

the received value, i.e., y = x+ν, where ν ∼ N (0, σ2). We then assign x̂ as the quantized
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value of y as follows:

x̂ =


0 if y > η

1 if y < −η

? otherwise

Figure 4.1 shows the decision region of a BPSK constellation. As shown in the

diagram, when y is close to zero we will declare erasure. On the other hand, if y is highly

biased we will deem it “reliable” and declare 0 or 1 based on which bin it falls into. Note

that setting η = 0 is equivalent to allowing errors only. Also, observe that the error and

erasure probabilities depend on η and σ2. The error and erasure probabilities, given by

e(η, σ2) and ε(η, σ2), respectively, are

e(η, σ2) =
1

2
erfc

(
1 + η√

2σ2

)
,

ε(η, σ2) =
1

2
erfc

(
1− η√

2σ2

)
− 1

2
erfc

(
1 + η√

2σ2

)
=

1

2
erfc

(
1− η√

2σ2

)
− e(η, σ2).

(4.1)

−1 1−η η

x̂ = 1 x̂ = 0x̂ =?
p(y|x = −1) p(y|x = 1)

Figure 4.1: Decision regions for BPSK constellation over the AWGN channel

Now suppose that we have a code of length n with minimum distance d. A codeword

of such a code can be corrected using a bounded distance decoder if and only if

s+ 2t < d (4.2)

where s and t respectively denote the number of erasures and errors. Therefore, the

probability of receiving a codeword that cannot be corrected is

P(n, d, η, σ2) =
∑
s,t

s+2t≥d

(
n

s

)(
n− s
t

)
e(η, σ2)tε(η, σ2)s

(
1− e(η, σ2)− ε(η, σ2)

)n−s−t
(4.3)
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We are looking for the optimum erasure threshold η∗ for any given noise variance σ2, i.e.

η∗ = arg min
η
P(n, d, η, σ2) (4.4)

Figure 4.2 shows P(950, 8, η, σ2) for different values of SNR. The optimum η for each

SNR value lies around 0.1. However, considerable gain can be seen in the high SNR

regime as shown in Figure 4.3.

10−2 10−1
10−21

10−18

10−15

10−12

10−9

10−6

10−3

100

η

P
(n
,d
,η
,σ

2
)

13.98 dB
13.01 dB
12.22 dB
11.55 dB

Figure 4.2: P(n, d, η, σ2) versus η for n = 950 and d = 8 over different SNR values. The
optimum η for each SNR is also marked.

4.2.1 Threshold on Log-Likelihood Ratios

Equivalently, we can also set the threshold on the LLR of the channel outputs. The LLR

of a channel output y is defined as

LLR(y) = ln
pY |X(y|x = 1)

pY |X(y|x = −1)
.

In similar fashion to the binning method introduced in Section 4.2, if the LLR is highly

positive, then we will declare the value of that symbol to be 0. If it is highly negative,

then we will declare 1. Otherwise, we will declare an erasure symbol.
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Figure 4.3: P(n, d, η, σ2) versus SNR for n = 950 and d = 8 with error only and error-
and-erasure.

For a binary AWGN channel with zero mean and noise variance σ2, the density

function of the resulting LLR is

L(y, σ2) =

√
σ2

8π
exp

(
−
(
y − 2

σ2

)2

8/σ2

)
.

The function L(y, σ2) is a Gaussian with mean 2
σ2 and variance 4

σ2 [48]. Thus, the

corresponding error and erasure probabilities are respectively

eL(η, σ2) =
1

2
erfc

(
2
σ2 + η√

8/σ2

)
,

εL(η, σ2) =
1

2
erfc

(
2
σ2 − η√

8/σ2

)
− 1

2
erfc

(
2
σ2 + η√

8/σ2

)
=

1

2
erfc

(
2
σ2 − η√

8/σ2

)
− eL(η, σ2).

(4.5)

It is also worth noting that from (4.1) and (4.5), if η2 = 2
σ2η1, then

e(η1, σ
2) = eL(η2, σ

2) and ε(η1, σ
2) = εL(η2, σ

2).

Thus, setting the threshold on channel outputs and LLRs are equivalent with proper
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scaling of the threshold.

The optimum threshold, however, cannot be obtained analytically in product and

staircase codes due to their structures. Instead, we rely on simulation results. The next

section will describe the simulation setups and its results.

4.3 Simulation Results

We simulated the error-and-erasure decoding of product codes and staircase codes. For

product codes, we use a genie-aided, miscorrection-free constituent decoder. For each

constituent codeword, if the number of errors and erasures satisfies (4.2), then the decoder

will correct the corresponding constituent code. Otherwise, the decoder will do nothing.

We use a triple-error-correcting BCH decoder for staircase codes with the “decode twice”

method described in [49]: if a constituent codeword is affected by an erasure, we decode

twice: first time with all erased symbols replaced with 0’s, second time with 1’s. The

codeword with fewer number of errors corrected outside the erased symbols is chosen to

be the ‘correct’ codeword.

4.3.1 Product Codes

We simulated the error-and-erasure decoding of product codes of sizes 500 × 500 and

1000 × 1000 with minimum distance 8 and maximum decoding iteration of 10. We set

the thresholds on the outputs of the binary AWGN channel. Figures 4.4 and 4.5 show the

effect of erasure declaration on the decoding performance. We also compare the decoding

performance of error-and-erasure with the error-only case on Figure 4.6.

4.3.2 Staircase Codes

We simulated the error-and-erasure decoding of staircase codes of staircase block sizes

125 × 125 (rate 0.808), 250 × 250 (rate 0.892), and 400 × 400 (rate 0.925) and a triple-

error-correcting constituent code, which can correct up to d = 8. Unlike the simulations

for product codes above, we set the threshold on the LLRs of the output of the channel.

Figures 4.7, 4.8, and 4.9 show the BER performance against the erasure threshold η.

We then compare the performance against the error-only case, shown on Figure 4.10. By

picking the appropriate value for the erasure threshold, we can achieve around 0.10 ∼ 0.15

dB gain compared to the error-only case.
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Figure 4.4: BER versus erasure threshold for product code of size 500×500 over different
SNR values.
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Figure 4.5: BER versus erasure threshold for product code of size 1000 × 1000 over
different SNR values.
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Figure 4.6: BER versus SNR for product codes of sizes 500× 500 and 1000× 1000 with
error only and error-and-erasure.
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125× 125 over different SNR values.
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Figure 4.8: BER versus erasure threshold for staircase codes with staircase block of size
250× 250 over different SNR values.
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Figure 4.9: BER versus erasure threshold for staircase codes with staircase block of size
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250× 250, and 400× 400 with error only and error-and-erasure.

4.4 Data Flow and Decoding Complexity

We modified the existing staircase decoder so that the outer decoder can decode errors

and erasures. For each symbol, the LDPC decoder outputs the corresponding LLR,

which will be then be quantized to zero or one depending on the LLR value. In addition,

if the LLR is between −η and η, then we deem the symbol to be unreliable and also

output the coordinate of the symbol. Thus, the modified staircase decoder will take

the quantized LLRs as well as the coordinates of the ‘erased’ symbols. The high-level

decoding procedure is summarized in Figure 4.11.

+ LDPC
decoder

LLR-to-{0,1}
+erasures

Zipper
decoder

Noise η

LLRs
{0,1}

erasure locations

{0,1}

Figure 4.11: Block diagram of the inner and outer decoders showing data flow.

The decoding complexity consideration described in Section 2.4.3 also applies here,

but we have additional criteria for error-and-erasure decoding. For example, the number
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of additional bits to describe the erasure locations depends on the size of a staircase

block, the operating SNR, as well as η. Suppose that the staircase block is of size

m ×m, then we will require 2 × dlog2me to describe the row and column indices of an

erasure. Hence, the number of additional bits required per staircase block on average is

2× dlog2me ×m2 × εL(η, σ2). The relative increase of the data flow per staircase block

on average is therefore given by

2× dlog2me ×m2 × ε(η, σ2)

m2
= 2× dlog2me × εL(η, σ2)

Table 4.1 shows the average relative increase in the data flow over various parameters.

The data flow increases by about 26 ∼ 27% for staircase codes of rate 0.808. However,

the data flow only increases by about 13 ∼ 15% for rate 0.892 and 10 ∼ 11% for rate

0.925.

Table 4.1: Increase of number of bits for error-and-erasure staircase decoding.

Size SNR (dB) η∗ eL(η∗, σ2) εL(η∗, σ2) Relative increase
125× 125 6.47 0.8 1.083× 10−2 1.683× 10−2 0.269
125× 125 6.50 0.8 1.064× 10−2 1.652× 10−2 0.264
125× 125 6.51 0.8 1.058× 10−2 1.641× 10−2 0.263
250× 250 7.48 0.7 5.971× 10−3 7.301× 10−3 0.131
250× 250 7.49 0.8 5.582× 10−3 8.329× 10−3 0.150
250× 250 7.50 0.7 5.885× 10−3 7.197× 10−3 0.130
400× 400 7.90 0.7 4.344× 10−3 5.242× 10−3 0.105
400× 400 7.91 0.7 4.310× 10−3 5.199× 10−3 0.104
400× 400 7.92 0.8 4.030× 10−3 5.923× 10−3 0.118

Further, the “decode twice” method increases the number of decoding operations

required, with the worst-case scenario being each constituent codeword having at least

one erasure, effectively doubling the number of decoding operations for the first iteration

of the decoding window. The subsequent iterations, however, will have some erasures

resolved from the previous iteration so the “decode twice” operation will not take place

as often. Figure 4.12 shows the cumulative frequency of the “decode twice” operations

taking place for each row index for staircase codes with triple-error-correcting BCH con-

stituent code and block sizes 125 × 125 and 400 × 400. In both cases, it shows that

about 94% of the “decode twice” operations take place in the newest staircase block. In

addition, Figure 4.13 shows the fraction of the “decode twice” operation over different

values of η. For η = 0.7, the constituent decoder sees erasures, and therefore the decoder

“decodes twice,” about 40% of the time.
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Figure 4.12: Cumulative frequency of “decoding twice” over all row indices for staircase
codes with m = 125 and triple-error-correcting constituent codes.
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Figure 4.13: Fraction of “decode twice” in an error-and-erasure staircase decoding.
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Figure 4.14: Diagram showing admissible and non-admissible sets as well as the εmax

constraint.

4.5 Concatenation with Inner Codes

So far we have shown the performance of the channel with binary input and ternary

output, which is equivalent to having a “rate-1” inner code. We can extend the analysis

with an actual inner code, such as an LDPC code.

Suppose that we know the distribution of the LLRs of the inner code. For example, the

LLR distribution at the output of the LDPC decoder is a symmetric Gaussian assuming

AWGN channel model. We would like to have an error-and-erasure probability (e, ε) such

that the outer staircase decoder corrects to at most 10−15 bit error rate. We call such

error-erasure pair to be admissible. Let A denote the set of all admissible error-erasure

pairs. In addition, suppose that we do not want to have too many erasure symbols as

having more erasure symbols will increase the data flow and decoding complexity. This

implies that we impose another constraint such as having a maximum allowable erasure

probability εmax. Figure 4.14 shows a diagram of the admissible set as well as the εmax

constraint. We require the operating point of a code to be at the intersection of the

admissible and ε ≤ εmax regions.

4.6 Stall Patterns and Error Floor Approximation

The definition of a stall pattern in error-and-erasure decoding is similar to the error-only

case as defined in Chapter 3. The difference lies on the condition of the correctability of

a row or constituent codeword. Recall that a row is correctable if it contains s erasures
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and t errors such that

s+ 2t < d,

where d denotes the constituent code minimum distance.

The set of error-and-erasure stall patterns of zipper codes with consituent code of

minimum distance d contains the set of stall patterns of the error-only case where the

constituent code is
⌊
d−1

2

⌋
-error-correcting. The difference here is that some stall patterns

include erasures. Figure 4.15 shows some examples of stall patterns in error-and-erasure

scheme of a staircase code with d = 8.

Figure 4.15: Examples of stall patterns in error-and-erasure scheme of a staircase code
with d = 8. The dots and triangles respectively denote errors and erasures.

Similar to the error-only case, we approximate the error floor by considering the

enumeration of the set of stall patterns S in a decoding window of M rows and m

columns. Let e, ε respectively denote the error and erasure probability. Given a stall

pattern S, partition it into Se and Sε as the subsets containing only errors and only

erasures, respectively. Thus,

Se ∩ Sε = ∅ and Se ∪ Sε = S.

Then by using union bound, the error floor is approximated to be

BERfloor ≤
1

M ×m
∑
S∈S

|S|ε|Sε|e|Se|.

Likewise, we can also enumerate over the number of errors and erasure in the stall patterns

that occur,

BERfloor ≤
1

M ×m
∑

(s,t)∈L

Ns,tε
set,

where

L = {(s, t) : there exists a stall pattern in S with s erasures and t errors} ,

and Ns,t denotes the number of stall patterns in S with s erasures and t errors.

We will also define dominant stall patterns of error-and-erasure code analogous to
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Definition 9 of the error-only case. We say that a stall pattern of size (s∗, t∗) is dominant

if

Ns∗,t∗ε
s∗et

∗ ≥ Ns,tε
set for all (s, t) ∈ L.

If ε and e are sufficiently small, we can assume that the dominant stall patterns are the

minimum-sized one. Therefore, the error floor estimate can be simplified to

1

M ×m
Ns∗,t∗ε

s∗et
∗
,

where (s∗, t∗) corresponds to the number of erasures and errors in the minimum-sized

error-and-erasure stall patterns.

Remark 7. Theorem 4 also applies in the error-and-erasure case, i.e., the size of the

minimum-sized stall patterns is lower bounded by 1
2
(t + 1)(t + 2), where in this case

t =
⌊
d−1

2

⌋
. However, the number of errors and erasures in the minimum-sized stall

patterns depend on the value of d. If d is even, the minimum-sized stall patterns will

contain only errors and therefore will be equivalent to the error-only case. To see this,

note that the ‘adversarial power’ of an error is twice that of an erasure. By Theorem

3, any replacement of an error with erasure also affects a row that contains exactly d/2

errors, and so we will need to introduce at least another error or erasure for such rows

to keep them undecodable. The replacement effectively increases the stall pattern size.

However, if d is odd, we may be able to form minimum-sized stall patterns that contain

some erasures as shown in Figure 4.16. Replacing erasures with errors in such cases will

not increase the stall pattern size.

Figure 4.16: Examples of minimum-sized error-and-erasure stall patterns of diagonal
zipper code with d = 6 (left) and d = 5 (right). The circles denote errors and triangles
denote erasures.

Also, there are some cases where a stall pattern can be corrected even if s + 2t ≥ d.

To illustrate this, we will show an error-and-erasure stall pattern of a staircase code with

d = 6 in Figure 4.17. Suppose that we replace each erasure symbol with either a correct

symbol or erroneous symbol. Then observe that the pattern becomes correctable if, for
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example, we replace all erasure symbols with the correct ones. By exhaustive search, we

have determined that there are 151 correctable patterns in this case.

Figure 4.17: Error-and-erasure stall pattern of staircase code with d = 6. The errors are
denoted with circles and the erasures are denoted with triangles.

Suppose that we replace each erasure symbol with a correct or erroneous symbol with

equal probability in an i.i.d. manner. The probability that the stall pattern is correctable

is given by
151

28
≈ 0.590.

Figure 4.18 shows the graph representation of the example above. The solid edges

represent the errors and the dotted edges represent the erasures. Removing a dotted edge

is equivalent to replacing the corresponding erasure with the correct symbol. Similarly,

replacing a dotted edge with an solid edge is equivalent to replacing the corresponding

erasure with an erroneous symbol. We can determine if the new, error-only graph is

correctable by repeatedly deleting nodes with degree ≤ t and if the resulting graph is

empty, then the new error-only graph is correctable. Otherwise, the resulting graph

converges to a stall pattern that is at most as big as the original error-and-erasure stall

pattern.

Figure 4.18: Graph representation of the stall pattern shown in Figure 4.17. Solid edges
denote errors and dotted edges denote erasures.

Observe that if we remove all erasures in the stall pattern above, we are left with

an error pattern that is correctable in the error-only scheme with double-error-correcting

constituent code. We call such stall pattern conditionally correctable.
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Theorem 9. Let S be an error-and-erasure stall pattern of a zipper code with a bijec-

tive scattering interleaver map. Then S is conditionally correctable if and only if Se is

correctable.

Proof. If Se is not correctable, then it contains a stall pattern of size at most |Se|. This

implies that S is not a minimal stall pattern and therefore not correctable. On the other

hand, if Se is correctable, then S can be corrected if we replace all erasure symbols with

the correct ones.

Concluding Remarks

In this chapter, we have demonstrated that declaring erasures in zipper decoding yield

coding gain of around 0.1 dB compared to the error-only case. Adding erasures increases

the data flow into the chip by around 26 percent for staircase codes with block size

125× 125 and around 10 ∼ 11 percent for 400× 400.
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Conclusion and Future Work

In this thesis, we have described zipper codes as a framework of spatially-coupled product-

like codes. We have compared and formulated some well-known codes in our zipper

codes framework. In addition, we have also introduced tiled and delayed diagonal zipper

codes as a new type of code that are memory-efficient in the encoding and decoding

procedure, hence allowing us to use high-rate codes. We have also analyzed the types

and characteristics of stall patterns that arise from certain types of zipper codes and

how they translate to the error floor analysis. Finally, we have also implemented an

error-and-erasure decoding procedures for staircase codes. Software simulation results

have shown that declaring erasures yield considerable coding gain when compared to the

error-only case.

A possible future direction may include examining the performance of zipper codes

in concatenated schemes. We are interested in using a very-high rate outer zipper code

with lower rate inner LDPC codes. Also, most analysis that we have performed for zipper

codes concerns the case with identical constituent codes. It may be worth to investigate

the cases where more than one type of constituent code is used.

In addition, all numerical results presented in this thesis are software-based, which

may not reflect the actual performance, especially since we cannot get the BER down to

10−15. Hence, we are also interested in examining the performance of the proposed scheme

when implemented in hardware. We anticipate that it yields comparable performance to

state-of-the-art while using comparatively less memory.

Similarly, we may analyze the performance of hardware implementation of our pro-

posed error-and-erasure decoding of zipper codes. We would like to determine the actual

optimum erasure threshold of the LLRs with different type of decoder implementation,

e.g., Berlekamp-Welch-styled or syndrome-based decoding. In addition, we are also in-

terested in the hardware implementation of the concatenated LDPC-zipper error-and-

65
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erasure decoding scheme.

Finally, we have assumed that we decode each constituent codeword in a decoding

window in a serial manner. This assumption is made so that we do not have codeword

or syndrome conflicts due to race conditions and other read/write conflicts. We are

interested in investigating whether parallel iterative decoding is possible in a zipper

decoder. More specifically, we would like to investigate the criteria of interleaver maps

that can give rise to parallel zipper decoding.
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